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Abstract. As a model of vulnerability information, attack graph has
seen successes in many automated analyses for defending computer net-
works against potential intrusions. On the other hand, attack graph has
long been criticized for the lack of scalability when serving as a visualiza-
tion model for conveying vulnerability information to human analysts. In
this paper, we propose two novel approaches to improving attack graph
visualization. First, we employ recent advances in network security met-
rics to design metric-driven visualization techniques, which render the
most critical information the most visible. Second, existing techniques
usually aim at an one-size-fits-all solution, which actually renders them
less effective for specific applications, and hence we propose to design
application-specific visualization solutions for network overview and sit-
uational awareness. We discuss the models, algorithms, implementation,
and simulation results.

1 Introduction

Computer networks have long become the nerve system of enterprise information
systems and critical infrastructures. On the other hand, the scale and severity
of security threats to computer networks have continued to grow at an ever-
increasing pace. To defend computer networks against potential attacks, an
important starting point is to understand the networks’ weaknesses and flaws.
To that end, a network security administrator or analyst should be capable of
assessing the security posture of a network quickly and efficiently. However, the
amount of vulnerability information in a network increases quickly in the net-
work’s size, mostly because vulnerabilities are seldom independent and attack-
ers may combine them in sophisticated ways for attack propagation or privilege
escalation. Therefore, conveying a large amount of vulnerability information to
human analysts is a challenging issue for most networks.

Attack graph is an established model of vulnerability information in net-
works [1,22]. By encoding potential exploits of vulnerabilities and linking them
through their common pre- and post-conditions, an attack graph provides a clear
picture about how attackers may potentially break into a network and subse-
quently compromise network assets. Attack graphs have seen successes in many
automated analyses for assessing, monitoring, and hardening computer networks.
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On the other hand, attack graph has long been criticized for its poor scalabil-
ity when serving as a visualization model for human analysts to comprehend,
since even a small network may yield an attack graph that is too complex to
understand [17].

The visualization of attack graphs has received limited attention (a more
detailed review of related work will be given in Sect. 5). The scalability may be
partially improved by abstracting and hiding low-level details [17], although the
improvement is often limited since the method still relies on the same node-link
representation of attack graphs. The clustered adjacency matrices [18] address
the scalability issues but lead to a highly abstract model unsuitable for human
interpretation. GARNET [24] and NAVIGATOR [6] employ tree-based struc-
tures to represent host configuration, but they both lack sufficient details about
connectivity and exploit relationships.

In this paper, we propose two novel approaches to improving attack graph
visualization. First, we employ recent advances in network security metrics to
design metric-driven visualization techniques. Such techniques prioritize the
visualization based on relative metric scores. This will allow the most critical
information to be best highlighted or magnified in order to guide human ana-
lysts to explore the most pertinent threats. Second, we observe that most existing
attack graph visualization techniques aim at an one-size-fits-all solution, which
actually renders them less effective for specific applications; we then propose to
design application-specific visualization solutions. In this paper, we focus on two
such solutions, namely, the radial attack treemaps for network overview and the
topographic attack trees for situational awareness. We discuss models, algorithms,
implementation, and simulation results.

The rest of this paper is organized as follows. Section 2 reviews background
information on attack graph, security metrics, and relevant visualization tech-
niques. We will then introduce two novel attack graph visualization models
for network overview and situational awareness in Sects. 3 and 4, respectively.
Finally, Sect. 5 reviews related work and Sect. 6 concludes the paper.

2 Preliminaries

To be self-contained, this section reviews background information on attack
graph, security metrics and visualization techniques.

2.1 Attack Graph and the Scalability Issue

Attack graph models vulnerabilities and their inter-dependency inside a net-
work [1,22]. An attack graph can be represented as a directed graph, with
exploits and conditions as vertices, and the causal relationships between exploits
and conditions as edges.

The left-hand side of Fig. 1 shows our running example which will be used
throughout the paper to illustrate different visualization methods. On the right-
hand side of the figure is a toy network and on the left side the correspond-
ing attack graph, in which each predicate vulnerability(source host, destination
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host) inside an oval indicates a self-explanatory exploit, and each plaintext condi-
tion(host1,host2) or condition(host) indicates a security-related condition. Edges
point either from an exploit’s pre-conditions to the exploit (e.g., a user privilege
on host 1 is a pre-condition for exploits originated from host 1), or from the
exploit to its post-conditions. Note the numbers inside the attack graph can be
ignored for now, and they will be needed in later discussions. More formally,

Definition 1. An attack graph G is a directed graph G(E ∪ C,Rr ∪ Ri) where
E is a set of exploits, C a set of conditions, Rr ⊆ C × E the require relation,
and Ri ⊆ E × C the imply relation.
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Fig. 1. The running example (Left) and attack graph of a 14-host network (Right)

The above basic representation of attack graphs is more suitable for auto-
mated analysis than for visualization-based human analysis. Enumerating all
the exploits, their pre- and post-conditions, and edges between them in a single
directed graph will inevitably lead to very high node and edge density, a signifi-
cant amount of crossings between edges, highly complex edge paths, and a high
average edge length. These characteristics render the attack graph messy and dif-
ficult to comprehend, and prevent human analysts from interpreting the attack
graph and cross validating with results of automated analysis. As an example,
the right-hand side of Fig. 1 shows a messy and illegible attack graph. It may
be surprising to note that this attack graph actually represents a small network
composed of only 14 machines, each of which has less than 10 vulnerabilities.
Clearly, the basic representation of attack graphs is not a viable visualization
solution.
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2.2 Security Metrics

Scoring and ranking vulnerabilities and networks based on their relative sever-
ity and security has drawn significant attentions. Among existing efforts, the
Common Vulnerability Scoring System (CVSS) is a widely recognized standard
for security vendors and analysts to assign numerical scores to vulnerabilities to
reflect their relative severity [21]. The approach in [8] first assigns a normalized
CVSS score as the conditional probability of successfully executing each exploit
of the vulnerability given satisfied pre-conditions. The assigned probabilities are
then used to build a Bayesian network based on causal relationships between
exploits and used to find the probability that critical assets are compromised,
which provides a security metric for the whole network. For example, in Fig. 1,
a number inside an oval is the aforementioned conditional probability and under
each condition is the probability of satisfying that condition.

In this paper, we extend the above Bayesian network-based security metric
by introducing the notion of asset value to attack graphs, which is a numerical
value between 0 and 10 (corresponding to the domain of CVSS scores) assigned
by administrators to each condition in the attack graph based on the condition’s
relative significance with regards to confidentiality, integrity, and availability.
From this assigned asset value, we calculate the risk at multiple hierarchical
levels for conditions, hosts, groups of hosts (subnets), and networks. Here we
adopt the common approach of defining risk as the product of the asset value
and attack likelihood (that is, the probability obtained using the aforementioned
Bayesian network approach). More specifically,

Definition 2. Given the probability of executing each exploit P (e) and that of
satisfying a condition P (c) inside an attack graph G(E ∪ C,Rr ∪ Ri), and an
asset value assignment function AV (.) : C → [0, 10], we define

– the risk of a condition c as Rc(c) = P (c)∗AV (h)
10 .

– the risk of a host h as Rh(h) = Rc(< root, h >).
– the risk of a group of hosts (or the whole network) G as Rg(G) =

∑

h∈G

Rh(h).

2.3 Applying Existing Visualization Models

We apply several existing visualization models to attack graph to demonstrate
their limitations and motivate further discussions.

Balloon Attack Graph. Due to the hierarchical nature of most networks, an
obvious approach for improving the scalability of attack graphs is to grouping
or clustering certain nodes which share similar characteristics (e.g., residing on
the same or adjacent hosts [17]). However, such an approach will meet difficulty
to maintain readability without losing valuable information due to the relatively
high edge density and crossings in a usually highly-connected attack graph.
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In Fig. 2, we apply to our running example a clustering method with multiple
cluster centers in order to form clusters of nodes without a pre-defined top-down
path or a particular directional layout, based on the clustering method proposed
by Melancon et al. [16] which aims to achieve a balanced layout, namely, a balloon
attack graph.

Fig. 2. Balloon attack graph and attack treemap

From the example, it is clear that this visualization model can improve the
density of nodes as well as the readability to some extent, through clustering
exploits associated to the same host. However, it is equally clear that the edges
cannot be fully displayed (without breaking the balloons), leading to a significant
loss of information; the improvement of scalability is also quite limited.

Attack Treemap. An issue with conventional node-edge attack graph is the diffi-
culty of expressing the hierarchical relationships between exploits, hosts, and
networks. The above balloon attack graph addresses this through clustering
nodes into balloons, but it also wastes much visualization space to explicitly
depict the hierarchical relationships.

To that end, treemaps allow for implicit representation of hierarchical infor-
mation inside a rectangular display, where the entirety of the visualization space
is put to use [11]. Figure 2 shows an attack Treemap using our running exam-
ple, built with the JavaScript InfoVis Toolkit [3] using the binary tiling algo-
rithm [23]. In the attack treemap, each rectangle with a black bar at the top
represents a host, inside which each colored rectangle represents an exploit. The
color denotes the CVSS score, and the relative size of rectangles denotes the risk
value as calculated before.

Clearly, treemap is a dense and relatively scalable visualization model. In
addition, GARNET [24] has shown how to add reachability results to treemaps
by interactively displaying them through semantic substrates. However, most of
the connectivity information and edges in attack graphs are still missing here,
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and adding them as overlying edges will clearly lead to a messy result. We will
address this issue in Sect. 3.

Hyperbolic Attack Tree. As attack graphs get larger, screen size becomes a con-
cern, and forcing an analyst to zoom or pan on sections of an attack graph will
likely lead to a loss of context or awareness of the overall network. To this end, the
hyperbolic geometry offers opportunities for creating a fisheye-lens effect, with
the center of the graph (the focus) occupying the most space and the remain-
der of the graph condensed and pushed outwards, which helps to maintain the
context and awareness of the whole graph [2]. Figure 3 shows a hyperbolic attack
tree based on our running example.

(a) A Hyperbolic Tree (b) A Re-Centered Tree

Fig. 3. Hyperbolic attack tree

The constant contextual awareness makes hyperbolic attack trees an appeal-
ing choice for applications like situational awareness. We will revisit this app-
roach in Sect. 4.

3 Radial Attack Treemaps

This section introduces a scalable, metric-driven visualization model, the radial
attack treemap, for the purpose of obtaining a quick overview of a network’s
vulnerability information. We first give an overview, followed by the description
of models and algorithms, and finally we present simulation results.

3.1 Overview

Enabling a security analyst to acquire a quick overview of the entire network’s
vulnerability information is a key tactical advantage in assessing networks’ secu-
rity. The goal here is to encode as much legible details as possible inside a
given size canvas. Section 2.3 mentioned treemaps as a visualization model that
provides relatively high information density and scalability by occupying the
entirety of the canvas. On the other hand, the main shortcoming of treemaps
lies in the difficulty of displaying edges between exploits.
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Intuitively speaking, our main idea here is to bend the treemap into a ring,
and display edges inside that ring. As to the actual display of edges, we turn
to radial graphs, which allows a fixed-size layout with high information density,
element proximity, and edge management [14]. Unlike conventional graphs in
which an edge may be obstructed by a node, in a radial graph, a line between
two points on a circle is an unobstructed line. Moreover, the edges in a radial
graph can be hierarchically bundled with crossings between edges minimized.

By combining key concepts of treemaps and radial graphs, we propose a
metric-driven and treemap-based radial visualization, namely, the radial attack
treemap. We summarize the key features and advantages of this novel visualiza-
tion model in the following, while leaving details of the model and implementa-
tion to later sub-sections:

– The model provides a quick overview of exploits, chains of exploits (that is,
paths in an attack graph), hosts, and causal relationships between exploits in
a network.

– The color and size of each slice of the outside ring represents the CVSS score
and risk of the corresponding exploit, respectively.

– The stacking of slices and sub-slices in the outside ring implicitly represent
hierarchical relationships between exploits, exploit chains, and hosts, reducing
the number of edges that need to be explicitly displayed (in contrast to the
original attack graph).

– The center of the ring displays edges in a bundled way to minimize the number
of crossings between edges, leading to a cleaner visualization result.

– Layout of the bent treemaps is optimized such that the lower level details are
displayed more towards the outer side of the ring in order to occupy more
space.

Figure 4 illustrates an example of radial attack treemap, which is based on
our running example shown in Fig. 1.

3.2 Models and Algorithms

Definition 3 more precisely describes the radial attack treemap.

Definition 3 (Radial Attack Treemap). Given an attack graph G(E ∪
C,Rr ∪ Ri) with hosts H and the risk function Rc, Rh, and Rg, a radial attack
treemap is composed of a ring R and a collection of links L, where

– R is divided into a collection of slices S, with each slice s ∈ S corresponding
to a host h ∈ H.

– each slice s is divided into a collection of subslices SS, with each subslice
ss ∈ SS corresponding to an exploit chain (a sequence of exploits involving
the destination host h, the same source host, and leading to < root, h >.

– each subslice ss is further divided into a collection of subsubslices SSS, in
which each subsubslice sss ∈ SSS corresponds to an exploit e in the exploit
chain.
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Fig. 4. Radial attack treemap

– the relative size of each slice, subslice, and subsubslice is proportional to the
risk score (Definition 2) of corresponding host, exploit chain, and exploit,
respectively (details will be provided later).

– the color of each subsubslice represents the CVSS score of the corresponding
exploit (details will be provided later).

– each link in L points from a slice corresponding to host h, to a subslice corre-
sponding to an exploit chain involving the source host h.

– all the links in L are bundled and routed through the center of the ring R.

Data Structures. We now describe the data structures required for imple-
menting the proposed visualization model. Specifically, to implement the model,
we need to compute the aforementioned risk metrics and convert a given attack
graph into a suitable data structure. We then derive geometric information nec-
essary to the final rendering of the model. Therefore, for each element in the
model, there will be a corresponding view element containing additional infor-
mation necessary to the visualization, as detailed below.

– Exploit & Subsubslice: Each exploit is a list of five attributes, an identifier,
a set of pre-conditions and post-conditions, a CVSS score, and a risk value.
Correspondingly, a subsubslice, as the view representation of the exploit, is a
list of attributes including a label, a color derived from a normalized CVSS
score, as well as a size proportional to the risk value of exploit chain.
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– Exploit Chain & Subslice: Each exploit chain is a list of attributes including
an identifier, a risk value, as well as the source host involved. Correspondingly,
a subslice is a list of attributes including references to the composing subsub-
slices, a label, a size derived from the risk value, an anchor point which is a
set of coordinates used as destination points for incoming links, and a color
derived from the CVSS scores of the corresponding exploits.

– Host & Slice: A host is a list of attributes including the references to the
composing exploit chains, an identifier, and a risk value. Correspondingly, a
slice is a list of attributes including the host name, references to the composing
subslices, a label, a color derived from the CVSS scores, a size derived from
the risk value of the host, and two anchor points, with the first being a set
of coordinates used as intermediate destination points for incoming links and
the second being a set of coordinates used as the source points for outgoing
links from this host.

– Link: A link is a pair < h, ec > indicating the source host h involved by
exploits in the exploit chain ec. Correspondingly, the link is visualized using
the Bézier spline composed of two curves, a cubic Bézier curve and a quadratic
Bézier curve [20]. The former contains three sets of coordinates, namely, a start
point, an end point and a control point, while the latter has four, namely, a
start point, an end point and two control points.

Algorithms. This subsection discusses two series of algorithms. The first con-
verts a given attack graph to the data structures mentioned in the previous
sub-section. The second is for computing geometric information used in creating
the view structures.

First, in the following, Algorithm1 uses a recursive depth-first search in the
input attack graph to obtain all paths from user-access conditions to the root
condition of the target host (Algorithm2). For each path obtained, we verify
that all exploit sequences leading to this condition have all their pre-conditions
satisfied and that the path generated is valid (detailed algorithm is omitted due
to space limitations).

Second, we discuss how the view data structures may be generated (detailed
algorithms are omitted due to space limitations). The ring is generated by con-
verting exploits, exploit chains and hosts into subsubslices, subslices and slices,
respectively. Host and exploit chain risk scores are expressed by the angle of ring

Algorithm 1. getAllExploitChains
Input: An attack graph, a set of host-access conditions Host
Output: A set of Hosts possessing exploit chains and exploits

1 foreach Host to ∈ Hosts do
2 foreach Host from ∈ Hosts do
3 pathsfrom−>to[ ][ ] ← getAllPaths(from, to);
4 foreach path p ∈ pathsfrom−>to do
5 if isV alid(true, path, from, initialconditions) then
6 to.addExploitChain(path);
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Algorithm 2. getAllPaths
Input: A Linked List of visited nodes visited, the end condition end

1 Node n = visited.last();
2 Node[] nodes = n.getNexts();
3 foreach Node n ∈ Nodes do
4 if visited.contains(node) then
5 continue;

6 visited.add(n);
7 Node[] path ← visited;
8 allPaths.add(path);
9 visited.removeLast();

10 foreach Node n ∈ Nodes do
11 if visited.contains(n) || n = end then
12 continue;

13 visited.addLast(n);
14 getPath(visited, end);
15 visited.removeLast();

segments they occupy. Host0, representing the initial attacker-controlled host,
possesses a fixed angle, α0. The slices representing a given host x will have an
angle αx of value:

αx = (360 − α0) ∗ scorex∑n
i=1 scorei

(1)

Similarly, the angle αy of an exploit chain ec ∈ hx, relative to risk of the
other exploit chains of the host – will have a value of:

αy = αx ∗ scoreec∑
ec∈h scoreec

(2)

For an exploit e ∈ ec, the angle of ring segment it occupies is the same as
that by its exploit chain parent, and occupied area thus depends on the length
of the radius segment between the current exploit and the next exploit (or the
ring’s two edges), depending on the risk scores of these exploits’ post-conditions.
The color of subsubslice is derived from the normalized CVSS scores of the
vulnerabilities using a color ramping algorithm similar to the one described by
Bourke in [4].

The links displayed at the center are Bézier splines [20] computed using the
method by Holten in [9]. The spline is composed of two Bézier curves, the origin
curve, a cubic Bézier curve with two control points starting at the origin host’s
anchor point denoted by point 0 and ending on the destination host’s projection
on the host circle, and the destination curve, a quadratic Bézier curve starting at
the end of the origin curve and ending at the exploit chain anchor point. Finally,
the link color is derived from the score of the first exploit in the exploit chain
of the destination, using a color ramping algorithm.
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3.3 Implementation and Simulation

A prototype was built using Java and the Graphics2D and Curve2D libraries,
included in the JavaSE package. It is built using the Model-View Controller [12]
(MVC) pattern. A GraphViz [7] .dot file parser reads an input attack graph and
loads it into memory. The graph is then traversed to generate exploits, exploit
chains, and hosts, using Algorithms 1 and 2. This model is then converted into
slices, subslices, subsubslices, and links, in order to generate the ring and links.

We now study the density and scalability of the visualization model through
simulation using randomly generated attack graphs (we note that although an
experiment using real world data is certainly more desirable, to the best of
our knowledge, a publicly available dataset containing a significant number of
attack graphs is not currently available). We generate 1200 attack graphs using
Python programs from small seed graphs based on real world attack graphs.
The simulation environment is a dual-core Intel Core i5 processor with 8 GB of
RAM running Debian 7. The entire application was written in Java and runs on
OpenJDK 6.

We compare the scalability of radial attack treemaps with that of the input
attack graphs. As a radial asset treemap is designed as a fixed-size visualiza-
tion, we set a threshold value for the smallest allowable subsubslice, at 1000px2

(leaving approximately 10 characters at 8pt. font size), and we ensure all sub-
subslices in a radial attack treemap to be legible by scaling them according to
this threshold. Figure 5 shows the average canvas size of both models in relation
to the number of hosts.

The simulation clearly confirms that radial attack treemaps offer a higher
information density than conventional attack graphs. Figure 5 shows that, on
average, 10 hosts can be represented on a canvas of merely 900 × 900 pixels,
while the corresponding attack graphs would require a canvas of over 2800× 2800
pixels.
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Next, we study the degree of reduction in the number of edges/links by implic-
itly representing edges in the radial attack treemaps (through stacking subsub-
slices). We note that, in addition to this reduction in the number of edges/links,
the radial attack tree maps have other advantages in terms of displaying links,
as mentioned already in the previous subsection. Figure 6 compares the number
of edges/links in relation to the number of hosts in the graph.

3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

180

Number of Hosts

A
ve

ra
ge

 N
um

be
r 

of
 E

dg
es

/L
in

ks

Attack Graph Edges
Radial Asset Treemap Links

Fig. 6. Average number of Edges/Links

This simulation indicates that the amount of edges/links has been reduced
to approximately a third those of conventional attack graphs. The implicit rela-
tionships between host, exploit chains and exploits allow for such a significant
edge reduction.

We note that, Fig. 5 seems to indicate that the rate of growth of radial asset
treemap is greater than that of conventional attack graphs. This is a conse-
quence of the ring’s tiling algorithm: regardless of the size of the canvas, an
exploit chain’s partition angle will remain the same. When compared to a two-
dimensional graph canvas, both size increases are quadratic but with the parti-
tion size depending on the angle of its parent exploit chain, leading to a lower rate
of growth of partition surface compared to the available surface of a rectangular
canvas.

3.4 Discussions

The proposed metric-driven radial attack treemap provides a viable visualization
solution for human analysts to quickly grasp an overview of the vulnerability
information in a network. Nonetheless, the model in its current form still has a
few limitations. First, due to the limited level of hierarchy in the treemaps, it will
be difficult to visualize a large network in a single view. Developing a new tiling
algorithm to support more levels of hierarchy or using interactivity to vary the
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hierarchy levels of slices or filtering out certain nodes are both viable solutions.
How well those solutions would scale to larger networks with hundreds of hosts
will need to be confirmed through experiments. Second, the trade-off between
the areas occupied by the ring and by links requires developing algorithms to
optimize such a trade-off for clarify on both sides.

4 Topographic Hyperbolic Trees

This section introduces the novel topographic hyperbolic tree model for monitor-
ing and predicting real time progress of attacks.

4.1 Overview

One important aspect of visualization in the application of cyber-situational
awareness is to allow administrators to see both the current focus of an ongoing
attack and most likely next steps. Another important aspect is to provide a sense
of distance between potential attack steps based on the number of intermediate
steps or relative difficulty of such steps [24,25]. In Sect. 2.3, we have shown
that the hyperbolic tree model is a suitable model for the first purpose. As to
express the attack distance, we are inspired by geographical topographic maps,
in which contour lines are used to indicate fixed increases in altitude. Therefore,
the main idea here is to enhance the hyperbolic attack tree model with contour
lines representing attack steps at similar distance. Again, we summarize the key
features and advantages of this novel visualization model in the following, while
leaving details of the model and implementation to later sub-sections:

– It provides an interactive visualization of ongoing attacks and plausible next
steps.

– The hyperbolic tree creates a fisheye-lens effect that allows administrators to
focus on the current attack and its closest future steps, while not losing context
or awareness of other steps that may be further away but are still possible,
such as the ultimate goal of the attack.

– The contour lines provide a rough idea about future attack steps that are at
similar distance from the current step.

– In addition, the relative length of different edges represent (after taking into
account the fisheye-lens effect) the relative difficulty of the corresponding
exploit.

Figure 7 shows the topographic hyperbolic tree for our running example.
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Fig. 7. Topographic hyperbolic tree

4.2 Model and Algorithms

Definition 4 formally describes the topographic hyperbolic tree.

Definition 4. Given an attack graph G(E ∪ C,Rr ∪ Ri) with hosts H and the
risk function Rc, Rh, and Rg, a topographic hyperbolic tree is composed of a
hyperbolic attack tree T (E,C), which has the exploits E as nodes and conditions
C as edges, and a collection of contour lines L linking all the exploits sharing
the same depth in the tree. The relative length of an edge is based on the risk
metric score of the corresponding condition as well as the depth of the node (more
details will be provided later).

The construction of a topographic hyperbolic tree from an input attack graph
involves a few steps. We first load the attack graph into memory. Then, for each
time the graph is recentered, we apply the tree generation algorithms. We then
layout the tree on the canvas and generate the contour lines. More specifically
(detailed algorithms are omitted due to space limitations),

1. We start by establishing the context required to initiate the graph traversal
using (Algorithm 3), and then recursively perform the graph traversal and
tree construction using Algorithm 4, while limiting the maximal depth of any
tree branch to be a pre-defined parameter MAX DEPTH in order to avoid
the explosion of possible paths.

2. We then layout nodes on the canvas. We compute the coordinates of every
node by calculating the length of a link as well as the angle at the origin. The
length of an edge is a function of the risk of the pre-conditions of the exploit
represented, as well as the number of steps from the center: distancechild =
scorechild

c ∗ (MAX DEPTH − stepchild + 1). The angle of a node’s children
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will depend on the angle of the parent as well as the number of children this
parent possesses: αc = 180−c∗step

nbChildren .
3. Finally, we generate and draw the contour lines. Three main steps are required

for the drawing. First, after obtaining all points at a given level i, we ensure
that the polygon formed by these points completely includes the polygon
formed by the points at a previous level i − 1. Otherwise, we add the points
of polygon i − 1 lying outside of polygon i to the polygon i. Second, we
ensure that each polygon is convex. If the polygon is concave, we apply a
convex-hull algorithm commonly called the Gift-Wrapping Algorithm [10].
Finally, we smooth the lines by interpolating the points using the Catmull-
Rom Algorithm [5].

Algorithm 3. The Traversal Initiation Function
Input: A tree tree, an attack graph graph, a list of conditions attackerKnowledge
Output: A tree tree representing all possible attacker paths from given initial conditions

1 Node[ ] firstNextSteps ← getNextSteps(initialConditions);
2 for Node n ∈ firstNextSteps do
3 knowledge.add(n);
4 knowledge.add(n.getNexts());
5 traverse(tree, n, knowledge, 1);

6 return tree;

Algorithm 4. The Tree Generating Algorithm
Input: A tree node previous, an attack graph node graphnode, a list of conditions

attackerKnowledge a depth depth
Output: The fully expanded tree representing all possible attacker paths

1 Nodecurrent = graphNode;
2 if previous = FINAL CONDITION && depth ≤ MAX DEPTH then
3 previous.addNext(current);
4 current.addPrevious(previous);
5 Node[] nextSteps = getNextSteps(attackerKnowledge);
6 for Node n ∈ nextSteps do
7 if (! attackerKnowledge.contains(n.getNexts()) then
8 attackerKnowledge.add(n.getNext);
9 attackerKnowledge.add(n);

10 return traverse(current, n, attackerKnowledge, depth + 1)

We have implemented a prototype using Java and the Graphics2D library.
Our simulation (detailed results omitted due to space limitations) shows that
both the visualization result and the running time are easily manageable with
the maximal depth set to about six, whereas unsurprisingly there is a sharp
increase in both thereafter. Given the interactive nature of this visualization
model, we believe the model is still useful for many practical applications. On
the other hand, further study is needed to improve the tree expansion algorithms
in order to avoid the exponential explosion, and to find more efficient ways for
incrementally updating the model after each centering operation.
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5 Related Work

Sheyner et al. firstly employ a model checker to generate all possible attack
paths for a network, namely, an attack graph [22]. Since such a model-checking
technique suffers from scalability issues, the monotonicity assumption stating
that an attacker never relinquishes a gained privilege, is employed to achieve a
polynomial complexity [1], which is further improved by Ou et al. in developing
the MulVAL tool [19]. Related efforts on security metrics include the Common
Vulnerability Scoring System (CVSS) which is a widely recognized standard
for scoring and ranking vulnerabilities [21]. Frigault et al. [8] convert attack
graphs into Bayesian networks to analyze vulnerability metrics using a proba-
bilistic model. As to related efforts on visualization, Treemaps are introduced as
a graphical representation of a weighted tree by recursively partitioning rectan-
gles depending on the weight assigned to the node [11]. The shape of the par-
titions is dictated by tiling algorithms, as reviewed in [23]. Hyperbolic trees (or
hypertrees) are introduced by Lamping et al. [13] as a focus+context technique
to create a fisheye effect for viewing and manipulating large hierarchies. There
has recently been much focus on radial visualization models across different sci-
entific fields, such as VisAware [15], a radial visualization system representing
situational awareness in a generalized way, which is further adapted for intru-
sion detection in VisAlert [14]. Attack graph visualization presents additional
challenges due to their specific requirements. Noel et al. [17] present a frame-
work for hierarchically aggregating nodes in an attack graph. Noel et al. [18]
also make use of clustered adjacency matrices to compute the reachability and
distance similar to a heatmap. GARNET [24] is an Attack Graph visualization
tool which outputs treemaps with semantic substrates to visualize a network
and its reachability. GARNET later evolves into the NAVIGATOR (Network
Asset VIsualization: Graphs, ATtacks, Operational Recommendations) [6], with
improvements like the possibility of zooming-in to the host level and displaying
port numbers and possible exploits on these ports.

6 Conclusion and Future Work

We have proposed two novel approaches to attack graph visualization, namely,
metric-driven visualization and application-specific visualization. Specifically, we
proposed a new visualization model by combining treemaps with radial graph for
the use case of network overview. Second, we enhanced hyperbolic attack trees
with contour lines borrowed from topological maps for the purpose of situational
awareness. In addition to future work already mentioned in Sects. 3 and 4, we will
also pursue metric-driven visualization models for other applications of attack
graphs.
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