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Abstract. There are many occasions in which the security community
is interested to discover the authorship of malware binaries, either for
digital forensics analysis of malware corpora or for thwarting live threats
of malware invasion. Such a discovery of authorship might be possible
due to stylistic features inherent to software codes written by human
programmers. Existing studies of authorship attribution of general pur-
pose software mainly focus on source code, which is typically based on
the style of programs and environment. However, those features critically
depend on the availability of the program source code, which is usually
not the case when dealing with malware binaries. Such program binaries
often do not retain many semantic or stylistic features due to the compila-
tion process. Therefore, authorship attribution in the domain of malware
binaries based on features and styles that will survive the compilation
process is challenging. This paper provides the state of the art in this
literature. Further, we analyze the features involved in those techniques.
By using a case study, we identify features that can survive the compi-
lation process. Finally, we analyze existing works on binary authorship
attribution and study their applicability to real malware binaries.

1 Introduction

Authorship attribution comprises an important aspect of many forensic investi-
gations, which is equally true in the computer world. When a malware attacks
computer systems and leaves behind a malware corpus, an important question to
ask is ‘Who wrote this malware? ’. By narrowing down the authorship of a mal-
ware, important insights may be gained to indicate the origin of the malware,
to correlate the malware to previously known threats, or to assist in develop-
ing techniques for thwarting future similar malware. Considering the fact that
humans are creatures of habit and habits tend to persist, therefore, various pat-
terns may be embedded into malware when their creators follow their habitual
styles of coding.

Although significant efforts have been made to develop automated approaches
for source code [18,34,41], such techniques typically rely on features that will
likely be lost in the strings of bytes representing binary code after the compi-
lation process (e.g., variable and function renaming, comments, and code orga-
nization, or the development environment, such as programming languages and
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text editors). Identifying the author of a malware binary might be possible but
challenging. Such identification must be based on features of the malware binary
that are considered to be author specific, which means those features must show
only small variations in the writing of different programs by the same author
and large such variations over the writing by different authors [41]. That is,
authorship identification requires stylistic features that depend on authorship of
the code, instead of any other properties, such as functionality. This fact implies
that most existing malware analysis techniques will not be directly applicable to
authorship attribution. On the other hand, several papers show that the stylistic
features are abundant in binaries [13,19,38], and it may be practically feasible
to identify the authorship with acceptable accuracy. Another challenge unique
to malware authorship attribution is that, while software code may take many
forms, including sources files, object files, binary files, and shell code, the malign
nature of a malware usually dictates the focus on binary code due to the lack of
source code.

In this paper, we investigate the state of the art on binary code authorship
techniques and analyze them. More specifically, we first present the survey of
existing techniques that are related to the analysis of authorship attribution.
This paper covers related work on different representations of malware, includ-
ing both source files and binaries. Second, we also look at a broader range of
work on general purpose malware analysis in order to study which features are
involved. Such a comprehensive study of features will allow us to consider a
rich collection of features before selecting those which potentially survive the
compilation process and are present in the binary code. Third, we analyze and
compare binary authorship attribution systems [13,19,38]. Besides, we study
their applicability to real malware binaries. Based on our analysis, we provide
many important steps that should be considered by reverse engineers, security
analysts, and researchers when they deal with malware authorship attribution.

2 Authorship Attribution

In this section, we review the state of the art in the broad domain of author-
ship attribution, including some techniques proposed for malware analysis. An
important goal of this study is to collect a rich list of features that are potentially
relevant to malware authorship attribution.

2.1 Source Code Authorship Attribution

Investigating source code authorship attribution techniques can help us under-
stand the features that are likely preserved during the compilation process.
Several studies have shown that certain programmers or types of program-
mers usually hold some features of programming. Examples are layout (spac-
ing, indentation and boarding characters, etc.), style (variable naming, choice of
statements, comments, etc.) and environment (computer platform, programming
language, compiler, text editor, etc.). The authorship identification of source
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codes has been gaining momentum since the initial empirical work of Krsul [34].
Krsul et al. described different important applications of source code authorship
techniques and found that style-related features could be extracted from mali-
cious code as well. Burrows [16] and Frantzeskou et al. [26] use n-grams with
ranking methods. Burrows and Frantzeskou have both proposed information
retrieval approaches with n-grams for source code authorship attribution.

Kothari et al. [33] first collected sample source code of known authors and
created profiles by using metrics extraction and filtering tools. In addition, they
used style-based and character sequences metrics in classifying the particular
developer. Chen et al. [22] proposed a semantic approach for identifying author-
ship by comparing program data flows. More specifically, they computed the
program dependencies, program similarities, and query syntactic structure and
data flow of the program. Burrows et al. [17] introduced an approach named
Source Code Author Profile (SCAP) using byte level n-gram technique. The
author claimed that the approach is language independent and n-gram pro-
files would represent a better way than traditional methods in order to find
the unique behavioral characteristics of a specific source code author. Jang
et al. [28] performed experiments to find a set of metrics that can be used to clas-
sify the source code author. They worked on extracting the programming layout,
style, structure, and fuzzy logic metrics to perform the authorship analysis. Yang
et al. [43] performed experiments to support the theory that a set of metrics can
be utilized to classify the programmer correctly within the closed environment
and for a specific set of programmers. With the help of programming metrics,
they suggested developing a signature of each programmer within a closed envi-
ronment. They used two statistical methods, cluster and discriminant analysis.
They did not expect that metrics gathered for a programmer would remain an
accurate tag for a long time. It is obvious that a one-time metrics gathering
is not enough, as this should be a continuous task. The practice of authorship
analysis includes metrics extraction, data analysis and classification.

A separate thread of research focuses on plagiarism detection, which is car-
ried out by identifying the similarities between different programs. For example,
there is a widely-used tool called Moss that originated from Stanford University
for detecting software plagiarism [12]. More recently, Caliskan-Islam et al. [18]
investigated methods to de-anonymize source code authors of C++ using coding
style. They modeled source code authorship attribution as a machine learning
problem using natural language processing techniques to extract the necessary
features. The source code is represented as an abstract syntax tree, and the
properties are driven from this tree.

2.2 Binary Code Authorship Attribution

In contrast to source code, binary code has drawn significantly less attention
with respect to authorship attribution. This is mainly due to the fact that many
salient features that may identify an author’s style are lost during the com-
pilation process. In [13,19,38], the authors show that certain stylistic features
can indeed survive the compilation process and remain intact in binary code,
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which leads to the feasibility of authorship attribution for binary code. The
methodology developed by Rosenblum et al. [38] is the first attempt to auto-
matically identify authors of software binaries. The main concept employed by
this method is to extract syntax-based and semantics-based features using pre-
defined templates, such as idioms (sequences of three consecutive instructions),
n-grams, and graphlets. Machine learning techniques are then applied to rank
these features based on their relative correlations with authorship. A subse-
quent approach to automatically identify the authorship of software binaries is
proposed by Alrabaee et al. [13]. The main concept employed by this method
is to extract a sequence of instructions with specific semantics and to construct
a graph based on register manipulation, where a machine learning algorithm
is applied afterwards. A more recent approach to automatically identify the
authorship of software binaries is proposed by Caliskan et al. [19]. They extract
syntactical features present in source code from decompiled executable binary.
Though these approaches represent a great effort on authorship attribution, it
should be noted that they were not applied to real malware. Further, some limita-
tions could be observed including weak accuracy in the case of multiple authors,
being potentially thwarted by light obfuscation, and their inability to decouple
features related to functionality from those which are related to authors’ styles.

3 Study of Features

In this section, we present a more elaborated study of features collected during
the literature review.

3.1 Features of Source Files

Program source code provides a far richer basis for writer-specific programming
features. Our goal is to determine which features may survive the compilation
process and be helpful for authorship identification of binary code.

Linguistic Features: Programming languages allow developers to express con-
structs and ideas in many ways. Differences in the way developers express their
ideas can be captured in their programming styles, which in turn can be used for
author identification [40]. The linguistic style is used to analyze the differences
in the literary techniques of authors. Researchers have identified over 1,000 char-
acteristics, or style markers, such as comments, to analyze literary works [20].
Moreover, it has been used to identify the author by capturing, examining, and
comparing style markers [27].

Formatting: The source code formatting shows a very personal style. Format-
ting is also considered as a good way for programmers to make it easier when
reading what was written. These factors indicate that the formatting style of
code should yield writer-specific features [34]: Placement of statement delimiters,
Multiple statements per line, Format of type declarations, Format of function
arguments, and Length of comment lines.
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Bugs and Vulnerabilities: A written program might have errors or bugs such
as buffer overflow, or a pointer to an undefined memory address. These kinds of
issues could be an indicator of the author.

Execution Path: The execution path may indicate the author’s preference in
how resolving a particular task through the selection of algorithms, as well as
certain data structures, or using specific keywords such as while or for.

Abstract Syntax Tree (AST): AST is an intermediate representations pro-
duced by code parsers of compilers, and thus forms the basis for the generation of
many other code representations. Such tree forms how statements and expres-
sions are nested to produce programs. More specifically, it encompasses inner
nodes representing operators (e.g., additions or assignments) and leaf nodes cor-
respond to operands (e.g., constants or identifiers).

Control Flow Graph (CFG): It describes the order in which code statements
are executed as well as conditions that need to be met for a particular path
of execution to be taken. Statements and predicates are represented by nodes,
which are connected by directed edges to indicate the transfer of control. For
each edge, there is a label of true, false or unconditional control.

Program Dependence Graph (PDG): It is introduced by Ferrante et al. [24],
which has been originally developed to perform program slicing [42]. This graph
determines all statements and predicates of a program that affect the value of a
variable at a specified statement.

3.2 Features of Binary Files

Compiler and System Information: A unique sequence of instructions might
be an indicator of the compilers. The code may contain different system calls
found only in certain operating systems. The analysis of binary code may reveal
that it was written in a specific source language such as C++. This can be
determined based on support routines and library calls in the binary code.

System Call: It is considered as programmatic way in which a computer pro-
gram requests a service from the kernel of the operating system it is executed on,
for instance, process scheduling with integral kernel services. Such system calls
capture intrinsic characteristics of the malicious behavior and thus are harder
to evade [21].

Errors: The binary code might have errors or bugs such as buffer overflow, or
a pointer to an undefined memory address. These kinds of bugs could be an
indicator of the author.

Idioms: An idiom is not really a specific feature, but rather a feature template
that captures low-level details of the sequence underlying a program. Idioms
are short sequences of instructions. A grammar for idiom feature follows the
Backus-Naur [32] form.
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Graphlet: A graphlet is an intermediary representation between the assem-
bly instructions and the Control Flow Graph, which represents the details of a
program structure [36], and is represented as a small connected non-isomorphic
induced sub-graph of a large network [23]. Graphlets were first introduced by
Prvzulj et al. [36] for designing two new highly sensitive measures of network
locality, structural similarities: the relative graphlet frequency distance [23], and
the graphlet degree distribution agreement [38].

n-grams: The n-gram feature was first used by an IBM research group [30].
An n-gram is an n-character slice of a longer string. A string is simply split
into substrings of fixed length n. For example, the string ‘MALWARE’ can be
segmented into the following 4-grams: ‘MALW’, ‘ALWA’, ‘LWAR’, and ‘WARE’.

Opcode: An opcode is the portion of an assembly instruction that specifies
the action to be performed, for instance, jmp, lea, and pop. Opcode sequences
have recently been introduced as an alternative to byte n-grams [35]. Some of
the opcodes (e.g. push or mov) have a high frequency of appearance within an
executable file. In [39] is shown that the opcodes by themselves were capable to
statistically explain the variability between malware and legitimate software.

Strings and Constants: The type of constants that used in the literature
is integers, which are used in computation, as well as integers used as pointer
offsets. The strings are ANSI single-byte null-terminated strings [31].

Register Flow Graph: This graph captures the flow and dependencies between
the registers that annotated to cmp instruction [13]. Such graph can capture
an important semantic aspects about the behavior of a program, which might
indicate the author’s skills or habits.

4 Implementation

This section shows the setup of our experiments and provides an overview of the
collected data.

4.1 Implementation Environment

The described binary feature extractions are implemented using separate python
scripts for modularity purposes, which altogether form our analytical system. A
subset of the python scripts in our evaluation system is used in tandem with
IDA Pro disassembler [4]. The Neo4j [10] graph database is utilized to perform
complex graph operations such as k -graph (graphlet) extraction. Gephi [9] is
used for all graph analysis functions (e.g., page rank) that are not provided by
Neo4j. The PostgreSQL database is used to store extracted features according to
its efficiency and scalability. For the sake of usability, a graphical user interface
in which binaries can be uploaded and analyzed is implemented.
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4.2 Dataset

The utilized dataset is composed of several files from different sources, as
described below: (i) GitHub [3], where a considerable amount of real open-
source projects are available; (ii) Google Code Jam [2], an international program-
ming competition, where solutions to difficult algorithmic puzzles are available;
and (iii) a set of known malware files representing a mixture of nine different
families [7] provided in Microsoft Malware Classification Challenge. According
to existing works, we only examine code written in C/C++. These programs
are either open-source or publicly available, in which case the identities of the
authors are known. Statistics about the dataset are provided in Table 1.

Table 1. Statistics about the binaries used in the evaluation

Source # of authors # of programs # of functions

GitHub 50 150 40000

Google Code Jam 120 550 1065

Malware 9 36 15000

Total 179 736 46065

4.3 Dataset Compilation

To construct our experimental datasets, we compile the source code with different
compilers and compilation settings to measure the effects of such variations. We
use GNU Compiler Collection’s gcc, Xcode, ICC, as well as Microsoft Visual
Studio (VS) 2010, with different optimization levels.

4.4 Implementation Phases

The original binaries are passed to the pre-processing component, where are
disassembled with IDA Pro disassembler. The second component contains two
processes: (1) ASMTODB, which extracts some specific features (e.g., idioms)
from the assembly files, and (2) BINTODB, which extracts the features directly
from the binary files. The result of this stage is a set of features stored in the data-
base. This phase also implements the feature ranking which is a pre-processing
phase for classification.

4.5 Feature Ranking

Feature ranking is a pre-processing phase for classification. We assume that there
exists a known set of program authors and a set of programs written by each
of them. The task of the feature ranking algorithm is to associate the identity
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of the most likely author of a feature. We extract features from the program
assemblies and binaries as described in the previous section in order to obtain
the feature list associated with a specific author. We apply mutual information
and information gain applied in Rosenblum et al. [38] and Islam et al. [19],
respectively.

4.6 SQL Schema to Store All Features

Storing, ranking and processing the features in the classification phase require
an appropriate SQL schema. We have chosen the PostgreSQL database system,
and designed our SQL tables, the relations between them, together with the
Features-to-DB APIs, so that our software modules minimize their interaction
with the database.

4.7 Authorship Classification

The authorship classification technique assumes that a known set of authors with
their program samples are collected. After extracting and ranking features, as
described in the previous subsection, a classifier is built based on the top-ranked
features, producing a decision function that can assign a label (authorship) to any
given new program based on the given set of known authors. More specifically,
the typical steps for authorship classification are the following:

1. Each program is first represented as an integral-valued feature vector describ-
ing those features that are present in the program.

2. Those features are ordered using the aforementioned ranking algorithm based
on the mutual information between the features and the known author labels.
A given number of top-ranked features are selected, and others filtered out
in order to reduce both the training cost and risk of overfitting the data.

3. A cross-validation is performed on those highly-ranked features. Those fea-
tures would jointly produce a good decision function for the authorship
classifier.

4. The LIBLINEAR support vector machine for the actual classification is
employed for the actual classification.

5 Evaluation

In this section, we present the evaluation results for the existing works on binary
authorship attribution. Subsequently, we evaluate the identification and the scal-
ability of existing works. The impact of evading techniques is then studied.
Finally, binary features are applied to real malware binaries and the results
are discussed.
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5.1 Accuracy

The main purpose of this experiment is to demonstrate how to evaluate the
accuracy of author identification in binaries.

Evaluation Settings. The evaluation of existing works is conducted using the
datasets described in Sect. 4. The data is randomly split into ten sets, where
one set is reserved as a testing set, and the remaining sets are used as training
sets to evaluate the system. The process is then repeated 15 times (according to
existing works). Furthermore, since the application domain targeted by binary
authorship attribution works is much more sensitive to false positives than false
negatives, we employ an F-measure as follows:

F 0.5 = 1.25 .
P . R

0.25P + R
(1)

Existing Works Comparison. We evaluate and compare the existing author-
ship attribution methods [13,18,38]. For this purpose the source code and the
used database are needed. The source code of the authorship classification tech-
niques presented by Rosenblum et al. [38] and Caliskan-Islam et al. [18] are
available at [5,8], respectively; however the datasets are not available. For the
system proposed by Alrabaee et al. (OBA2) [13], we have asked the authors to
provide us the source code.

Caliskan-Islam et al. present the largest scale evaluation of binary authorship
attribution in related work, which contains 600 authors with 8 training programs
per author. Rosenblum et al. present a large-scale evaluation of 190 authors
with at least 8 training programs, while Alrabaee et al. present a small scale
evaluation of 5 authors with 10 programs for each. Since the datasets used by
the aforementioned techniques are not available, we compare our results with
these methods using the same datasets mentioned in Table 1. The number of
features used in Caliskan-Islam et al., Rosenblum et al., and Alrabaee et al.
systems are 4500, 10000, and 6500, respectively.

Figure 1 details the results of comparing the accuracy between existing meth-
ods. It shows the relationship between the accuracy (F0.5) and the number of
authors present in all datasets, where the accuracy decreases as the size of
author population increases. The results show that Caliskan-Islam et al. app-
roach achieves better accuracy in determining the author of binaries. Taking all
three approaches into consideration, the highest accuracy of authorship attribu-
tion is close to 90% on the Google Code Jam dataset with less than 20 authors,
while the lowest accuracy is 45% when 179 authors are involved.

As can be seen in Fig. 1, OBA2 achieves good accuracy when it deals with
small scale of authors. For instance, the accuracy is approximately 84% on
GitHub dataset when the number of authors is 30, while the accuracy drops
to 58% on the same dataset when the number of authors increases to 50. The
main reason is due to the fact that the authors of projects in Github have no
restrictions when developing projects. The lower accuracy obtained by OBA2
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Fig. 1. Accuracy results of authorship attribution obtained by Caliskan-Islam et al.
[18], Rosenblum et al. [38], and OBA2 [13], on (a) Github, (b) Google Code Jam, and
(c) All datasets.

is approximately 28% on all datasets when the number of authors is 179. The
accuracy of Rosenblum et al. approach drops rapidly to 43%, whereas Caliskan-
Islam et al. system accuracy remains greater than 60%, if the 140 authors on all
datasets are considered.

5.2 Scalability

We evaluate how well existing works scale up to 1000 authors. Since in the case
of malware, an analyst may be dealing with an extremely large number of new
samples on a daily basis. For this experiment, we work with 1000 users, of which
are authors from the Google Code Jam. First, we extract the top-ranked features
as described in Rosenblum et al. and Caliskan-Islam et al. approaches, while the
features used by OBA2 are not ranked.

The results of large-scale author identification are shown in Fig. 2. As seen
in Fig. 2, by increasing the number of authors, all the existing works accuracy
drops significantly. For instance, Rosenblum et al. approach accuracy drops to
approximately 5% when the number of authors is greater than 600 authors.
While the accuracy of OBA2 approach drops to 15% when the number of authors
reaches to 500. However, Caliskan-Islam et al. approach accuracy drops to 20%
with an increase to over 700 authors.
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Fig. 2. Large-scale author
identification results

Through our experiments we have observed that
top-ranked features used in the Rosenblum et al.
approach are mixture of compiler and user features,
where leads to higher rate in false positives. OBA2
identifies author according to the way of branch
handling. Therefore, when the number of authors is
largely increased, distinguishing the author based on
handling branches becomes limited and hard. Finally,
Caliskan-Islam et al. approach relies on the features
extracted from AST of compiled binary; so with the
large number of authors, these features became common and similar which make
the authorship attribution harder.
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5.3 Impact of Evading Techniques

In this subsection, we apply different techniques to evade the existing systems in
order to study their stability. For this purpose, we randomly choose 50 authors
and 8 programmes for each author. The accuracy results without applying any
evading technique, and with applying evading techniques are shown in Table 2.

Refactoring Techniques. The adversary may use existing refactoring tech-
niques to prevent authorship attribution. Hence, we use chosen dataset for the
C++ refactoring process [1,11]. We consider the techniques of (i) Renaming a
Variable (RV), (ii) Moving a Method from a superclass to its subclasses (MM),
and (iii) extracting a few statements and placing them into a New Method (NM).
Depth explanations of these techniques are detailed in [25]. We obtain an accu-
racy of 81% in correctly classifying authors for OBA2 system, which drops to
62% when RV is applied. The reason of this dropping in accuracy is that variable
renaming affects the features used by OBA2, while OBA2 can tolerate NM, and
MM. The accuracy of Caliskan-Islam et al. approach drops not greatly from 79%
to 70%. This is due to the fact that their approach decompiles the binary into
source code, and then extracts the features. Hence, the aforementioned refac-
toring techniques do not change much in the abstract syntax tree. However, the
approach can tolerate renaming variables. Finally, Rosenblum et al. approach is
the one that is mostly affected by Refactoring techniques, where the accuracy
drops from 66% to 40%. Since their approach extracts idioms from assembly files,
any of these techniques will change the idioms (sequence of assembly instruc-
tions) which cause a drop in accuracy.

The Impact of Obfuscation. We are interested in determining how exist-
ing works handle simple binary obfuscation techniques intended for evading
detection, as implemented by tools such as Obfuscator-LLVM [29]. These obfus-
cators could apply Instruction Replacement (IR): replacing instructions by
other semantically equivalent instructions, Dead Code Insertion (DCI), Reg-
ister Renaming (RR), spurious control flow insertion, and can even completely
Flatten Control Flow graphs (FCF). Obfuscation techniques implemented by
Obfuscator-LLVM are applied to the samples prior to classifying the authors.
Caliskan-Islam et al. approach is the most affected approach by FCF technique;
since control flow flattening makes the decompilation process hard, which means
the features cannot be extracted correctly.

Table 2. Accuracy results before and after applying refactoring techniques, obfuscation
techniques, and different compilers. (AbET): Accuracy before Evading Techniques, (∼):
The accuracy has not affected.

System AbET Refactoring Obfuscation Compiler

RV NM MM All RR IR DCI FCF All GCC Xcode ICC

OBA2 0.81 0.62 ∼ ∼ 0.62 0.64 0.74 ∼ ∼ 0.58 0.74 0.60 0.54

Caliskan-Islam 0.79 ∼ 0.72 0.71 0.70 ∼ ∼ ∼ 0.24 0.24 0.66 0.64 0.54

Rosenblum 0.66 0.60 0.58 0.55 0.4 0.62 ∼ ∼ 0.27 0.25 0.15 0.55 0.29
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The Impact of Compilers. To create experimental datasets for this purpose,
we first compile the source code with GCC, VS, ICC, and Xcode compilers. Next,
the effect of different compilation options, such as the source of compiler, is mea-
sured. The results show that the approach which is mostly affected by changing
the compiler is Rosenblum et al.’s approach; since this approach does not distin-
guish between user functions or compiler functions. For instance, the accuracy
observed through our experiments is 15%, when the binaries are compiled with
GCC, because the GCC compiler inserts many compiler functions.

5.4 Applying Existing Works to Malware Binaries

We apply existing works to different sets of real malware: Ramnit, Lollipop,
Kelihos, Vundo, Simda, Tracur, Obfuscator.ACY, and Gatak. These malware
are selected due to their availability [7]. These samples contain different variants
of the same malware so we assume that these variants are written by the same
author or the same group of authors. Due to the lack of ground truth, we compare
outputs of each approach manually to verify that they belong to same family.
Details about the malware dataset are shown in Table 3. The number of compiler
functions are obtained based on [37], while the fifth column shows the number
of library functions acquired by F.L.I.R.T technology [4]. According to Table 3,
we can observe that the percentage of compiler functions is quite high, so a
pre-processing step before applying authorship attribution approaches would
be demanding. For instance, the percentage of compiler functions in Lollipop
family is 30%. We apply existing works and cluster functions according to their
features by using standard k-mean. Then we manually analysis the obtained
clusters to classify them to correct/wrong clusters as shown in Table 4.

Table 3. Characteristics of malware datasets. (BF): binary functions, (CF): compiler
functions, (LF): library function.

Malware # of variants # of BF # of CF # of LF

Ramnit 4 5285 1601 50

Lollipop 3 3510 1054 100

Kelihos 2 1924 847 74

Vundo 4 7923 2410 219

Simda 2 2100 689 105

Tracur 2 1657 787 100

Obfuscator.ACY 3 2762 986 310

Gatak 2 2054 860 174
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Table 4. Clustering results based on the features used in existing systems. (TC): the
total number of clusters, (CC): the percentage of correct clusters, (WC): the percentage
of wrong clusters.

Malware OBA2 Caliskan-Islam Rosenblum

TC CC WC TC CC WC TC CC WC

Ramnit 145 60% 30% 110 47% 50% 208 18% 70%

Lollipop 90 75% 14% 185 59% 38% 220 21% 67%

Kelihos 41 88% 8% 17 90% 4% 75 34% 55%

Vundo 200 62% 14% 89 28% 68% 384 39% 48%

Simda 52 49% 50% 41 92% 5% 109 42% 51%

Tracur 44 89% 9% 53 83% 12% 124 51% 40%

Obfuscator.ACY 30 78% 21% 45 74% 24% 89 29% 70%

Gatak 29 57% 34% 51 87% 12% 79 38% 62%

6 Learnt Lessons and Concluding Remarks

Functionality or styles: During the evaluation, we have observed that the fea-
tures selected by existing techniques are more closely related to the functionality
of the program rather than the author’s style. This argument may be supported
by the evidence that a basic short program has less features than comparatively
bigger, functionality-oriented programs. This shows that features are directly
related to the size of the program, which usually depicts functionality but not
style [13,18,38]. In order to avoid this, some existing systems could be used as
preprocessing stage [14,15] applies different steps.

Feature pre-processing: We have encountered top-ranked features related to
the compiler (e.g., stack frame set-up operation). It is thus necessary to filter
irrelevant functions (e.g., compiler functions) in order to better identify author-
related portions of code [38]. To avoid this, a filtration method based on the
FLIRT technology for library identification as well as a system for compiler
functions filtration such as BinComp [37] should be used. Successful distinction
between the two groups of functions (library/compiler and user functions) will
lead to considerable savings in time and will help shift the focus of analysis to
more relevant functions.

Application type: We find that the accuracy of existing methods [13,38]
depends highly on the application’s domain. For example, in Fig. 1, superior
accuracy is observed for the Google Code Jam dataset where the accuracy is
77% in average. This is because the approach used by Rosenblum et al. extracts
SysCalls, which are more useful in the case of academia/competition code than
in other cases. This can be explained by the authors’ choice to systematically
rely on external libraries and to implement, for instance, MFC APIs. The results
also show that Alrabaee et al. rely on the application because their approach
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extracts the manner by which the author handles branches; for instance, the
accuracy drops from 82% to 57% when Google Code Jam is used. After investi-
gating the source code, we notice that the number of branches is not big, which
makes the attribution even more difficult.

The source of features: Caliskan et al. [18] use a decompiler to translate
the program into C-like pseudo code via Hex-Ray [6]. They pass the code to
a fuzzy parser, thus abstract syntax tree is obtained, which is the source of
feature extraction. In addition to Hex-Ray limitations [6], the C-like pseudo
code is also different from the original code to the extent that the variables,
branches, and keywords are different. For instance, we find that a function in
the source code consists of the following keywords: (1-do, 1-switch, 3-case,
3-break, 2-while, 1-if) and the number of variables is 2. Once we check
the same function after decompilation, we find that the function consists of
the following keywords: (1-do, 1-else/if, 2-goto, 2-while, 4-if) and the
number of variables is 4. This will evidently lead to misleading features.

Misleading Features: To make things worse, our re-evaluation results show
that many top-ranked features are in fact completely unrelated to authors’ styles.
For example, many source code-level functions do not have their names identified
at binary level, i.e., IDA Pro assigns a name prefixed with “sub” and postfixed
with randomly generated numbers by the compiler. Experiments show that these
functions with random numbers play a vital role for features to be ranked high
by calculating the mutual information. This discovery shows that this technique
may select many features unrelated to author styles but rather some other prop-
erties, such as compiler-generated functions.

Concluding Remarks: Binary code authorship attribution is a less explored
problem compared with source code level authorship attribution due to many
facts (e.g., the reverse engineering is time consuming, having limited features
preserved during the compilation process). In this paper, we have first presented
a literature review relevant to authorship identification of binary and source
code. Subsequently, we introduce the way of extracting binary features. Then,
we deeply analysis and evaluate the existing works on different scenarios such as
scalability. Finally, we applied them to real set of malware binaries. It is clear
that there exist many features that could potentially be useful to determine
malware authorship. However, the harder part is to verify their applicability
through experimental studies. We must pay special care to the following issues
when we deal with binary authorship attribution:

– Dataset Size: A small amount of training set code might not be sufficient
to make a good identification and a precise comparison unless very unusual
indicators are present.

– Multiple Authors: The identification of authors in the case of multiple authors
will be more challenging, since we have to first identify code fragments that
are written by the same author.
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