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Preface

This volume contains the papers presented at the 9th International Symposium on
Foundations and Practice of Security (FPS 2016), which was hosted by Université
Laval, Québec City, Quebec, Canada, during October 24–26, 2016. Each submission
was reviewed by at least three committee members. The review process was followed
by intensive discussions over a period of one week. The Program Committee selected
18 regular papers and five short papers for presentation. The accepted papers cover
diverse research themes, ranging from classic topics, such as malware, anomaly
detection, and privacy, to emerging issues, such as security and privacy in mobile
computing and cloud. The program was completed with three excellent invited talks
given by François Laviolette (Université Laval), Jean-Yves Marion (Lorraine
University, France), and Jeremy Clark (Concordia University).

Many people contributed to the success of FPS 2016. First, we would like to thank
all the authors who submitted their research results. The selection was a challenging
task and we sincerely thank all the Program Committee members, as well as the
external reviewers, who volunteered to read and discuss the papers. We greatly thank
the local Organizing Committee, Josée Desharnais and Andrew Bedford, for their great
efforts to organize and perfectly control the logistics during the symposium. We also
want to express our gratitude to the publication chair, Joaquin Garcia-Alfaro (Télécom
SudParis), for his work in editing the proceedings. Last but not least, thanks to all the
attendees. As security becomes an essential property in information and communica-
tion technologies, there is a growing need to develop efficient methods to analyze and
design systems providing a high level of security and privacy. We hope the articles in
this proceedings volume will be valuable for your professional activities in this area.

November 2016 Nora Cuppens-Boulahia
Frédéric Cuppens

Nadia Tawbi
Lingyu Wang
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MalProfiler: Automatic and Effective
Classification of Android Malicious Apps

in Behavioral Classes

Antonio La Marra, Fabio Martinelli, Andrea Saracino(B),
and Mina Sheikhalishahi

Istituto di Informatica e Telematica, Consiglio Nazionale delle ricerche, Pisa, Italy
{antonio.lamarra,fabio.martinelli,

andrea.saracino,mina.sheikhalishahi}@iit.cnr.it

Abstract. Android malicious apps are currently the main security
threat for mobile devices. Due to their exponential growth in number
of samples, it is vital to timely recognize and classify any new threat,
to identify and effectively apply specific countermeasures. In this paper
we propose MalProfiler, a framework which performs fast and effective
analysis of Android malicious apps, based on the analysis of a set of static
app features. The proposed approach exploits an algorithm named Cat-
egorical Clustering Tree (CCTree), which can be used both as a divisive
clustering algorithm, or as a trainable classifier for supervised learning
classification. Hence, the CCTree has been exploited to perform both
homogeneous clustering, grouping similar malicious apps for simplified
analysis, and to classify them in predefined behavioral classes. The app-
roach has been tested on a set of 3500 real malicious apps belonging to
more than 200 families, showing both an high clustering capability, mea-
sured through internal and external evaluation, together with an accu-
racy of 97% in classifying malicious apps according to their behavior.

1 Introduction

In the last years we have witnessed an exponential increase in the number of mali-
cious applications (apps) for mobile devices [1,14]. Their continuously increase
and the considerable relevance that the phenomenon of malicious apps has on
users, draw the attention of developers, researchers and security software ven-
dors. Currently more than 98% of existing malicious apps are targeting Android
devices [7], which is the most popular operating system, with more than 80%
of the mobile device market share. Malicious apps exploit different techniques
to damage Android device users, generally aiming at private data, or money,
stealing them directly or through social engineering. Academic researchers and
antivirus software companies are daily striving to tackle the actions of mali-
cious developers by (i) collecting malicious apps found in the wild, performing

This work has been partially funded by the EU Funded Projects H2020 C3IISP, GA
#700294, H2020 NeCS, GA #675320, EIT Digital MCloudDaaS.

c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-51966-1 1



4 A. La Marra et al.

analysis which is generally manual inspection, (ii) extracting signatures to be
used to detect malicious apps in marketplaces and on device, and (iii) defining
active countermeasures to dynamically recognize and block malicious behaviors,
on device at runtime.

To simplify this complex tasks, malicious apps have been divided in malware
families, i.e. sets of malicious apps including the same malicious code. Among
1 M android malicious apps which can be find in the wild, about 200 families
of malware have been defined starting from 2011 [21] and this classification has
been adopted by the main antivirus software houses. Still this classification is not
sufficient for an easy analysis of malicious apps, nor to design countermeasures.
In fact, several families, even if showing different source code, they produce
the same or very similar effects. This moved researchers to perform a better
grouping by defining malware classes [17]. Malware classes group together several
families showing similar behaviors, causing a similar negative effect for the device
or user. However, this analysis task is tedious and time consuming, based on
manual analysis of malicious apps to infer their behavior and classifying them
accordingly. Indeed, malicious apps are generally collected in large databases
where malicious apps are either divided per family, or simply by the year of
discovery. Considering that family names are not standardized, the same malware
can be easily found under different names, further complicating this analysis task.

In order to simplify this analysis and to automate the classification of brand
new threats, commonly known as zero-day, in this paper we propose MalPro-
filer, a novel framework based on the Categorical Clustering Tree (CCTree)
algorithm to perform both automated grouping and classification of malicious
apps in behavioral classes. The proposed framework brings a two-fold contribu-
tion to simplify the malware analysis task: (i) it divides (clusters) large amount
of unlabeled (unclassified) malicious applications into smaller homogeneous sets
where the contained apps are structurally similar and show the same behav-
ior, (ii) builds a classifier out of a labeled dataset which can be used to clas-
sify new unknown malicious apps. The analysis is based on a set of static fea-
tures, extracted directly from the app’s apk file, which are representative of both
the app structure and of the performed behaviors. This easy-to-extract features
are very effective when exploited by the CCTree algorithm, which returns very
homogeneous and meaningful clusters, as demonstrated through both external
and internal evaluation. The contributions of this paper can be summarized as
follows:

– We introduce MalProfiler, a fast, lightweight and accurate analysis framework
which allows both clustering and classification of Android malicious apps.

– We present a set of static features extracted from apk files, effective in repre-
senting both the app structure and capabilities.

– We discuss the usage of the CCTree clustering algorithm to build an accurate
supervised learning-based classifier.

– An evaluation of the clustering algorithm with the presented set of features is
reported, through both internal and external evaluation.
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– The capability of the algorithm in classifying malicious apps according to their
behavior is evaluated on a set of 3500 malicious apps. An analysis for feature
selection is also discussed.

The rest of the paper is organized as follows: in Sect. 2 we report some back-
ground information on the CCTree algorithm and on Android native security
mechanisms. Section 3 describes the MalProfiler framework components and the
envisioned workflows. Section 4 reports the results on clustering, classification
experiments and performance overhead. Other related work in Android mali-
cious apps detection is presented in Sect. 5. Finally Sect. 6 concludes proposing
some future directions.

2 Background

In this section we first briefly introduce the mechanisms for security natively
included in Android, with the emphasis on the permission system needed to
understand some specific malicious behavioral patterns. Afterwards, we recall
notions on the Categorical Clustering Tree (CCTree) algorithm, presented in
[2,19], recalling the terminology and construction methodology.

2.1 Android Security Mechanisms

Given the level of threat, the Android framework includes several elements to
enforce security on the physical device, applications and user data. The Android
native security mechanisms are the Permission System and Application Sand-
boxing, which enforce, respectively, access control and isolation. Through the
permission system, every security critical resource (e.g., camera, GPS, Blue-
tooth, network, etc.), data or operation is protected by mean of a permission.
If an application needs to perform a security critical operation or access a
security critical resource, the developer must declare this intention in the app
AndroidManifest.xml (manifest for short) file asking the permission for each
needed resource or operation. Permissions declared by the application are shown
to users when installing the app, to decide if he wants to consider the applica-
tion secure or not. If the application tries to perform a critical operation without
asking the permission for it, the operation is denied by Android. The manifest
file is bound to the application by means of digital signature. The integrity check
is performed at deploy time, thus the Android system ensures that if an applica-
tion has not declared a specific permission, the protected resource or operation
cannot be accessed.

On the other hand, isolation is enforced through the synergy of two elements:
the isolated runtime environment implemented through Virtual Machines (VM)
and the underlying Linux kernel. In Android every application runs in a VM
named Dalvik Virtual Machine (DVM) up to release 4.4 and Android Runtime
Environment (ART) in the following releases. DVM and ART are an optimized
version of the Java Virtual Machine, in particular ART also includes the sup-
port for Ahead of Time compilation for improved performance. In DVM and
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ART each application has its own memory space, can act like it is the only
application running on the system and is isolated from other apps. Moreover
each VM instance is registered as a separate user of the Linux kernel. This
means that each installed app is considered a user at the kernel level, able to
run its own processes and with its own home folder. The home folder of each
application stores application files on the device internal memory, thus it is pro-
tected from unauthorized access by the Linux kernel itself. In fact, files stored
in the home folder can be accessed only by the application itself. However, since
the device internal memory is limited, the amount of data that can be stored in
the home folder is limited and generally using the internal memory is a depre-
cated practice.

2.2 CCTree Construction

CCTree [2] is constructed iteratively through a decision tree-like structure, where
the leaves of the tree are the desired clusters. The root of the CCTree contains
all the elements to be clustered. Each element is described through a set of
categorical attributes, such as the Language of a message. Being categorical
each attribute may assume a finite set of discrete values, constituting its domain.
For example the attribute Language may have its domain as {English, French,
Spanish}. At each step, a new level of the tree is generated by splitting the
nodes of the previous levels, when they are not homogeneous enough. Shannon
Entropy is used both to define a homogeneity measure called node purity, and to
select the attribute used to split a node. In particular non-leaf nodes are divided
on the base of the attribute yielding the maximum value for Shannon entropy.
The separation is represented through a branch for each possible outcome of the
specific attribute. Each branch or edge extracted from parent node is labeled
with the selected feature which directs data to the child node. For additional
information on the CCTree algorithm we refer the reader to [19]. An example of
CCTree is reported in Fig. 1.

Fig. 1. A small CCTree

3 MalProfiler Framework

MalProfiler is a versatile framework which can be used either to cluster large
amount of unlabeled malicious apps, dividing them in smaller, easy to handle,
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homogeneous sets of malicious apps, or to classify them in one of the aforemen-
tioned behavioral classes.

Figure 2 represents the logical components of MalProfiler and the possible
operative workflows. The three components of the framework are the Feature
Extractor, which takes as input the apk file of apps to be analyzed and extract
the features generating the feature vector (element) to be clustered or classified.
The CCTree Clustering is the component which generates a CCTree, according
to the model described in Sect. 2.2, from a dataset of elements representing
the apks. Finally the classifier performs supervised learning classification on
elements, assigning them a label which represents the behavioral class. Being
modular, MalProfiler can also use an alternative classifier in the place of the
CCTree, which however is very accurate. As shown in Fig. 2, there are three
main workflows represented by the three different arrow patterns. The training
workflow is performed when is available a set of malicious apk whose behavioral
label is already known, to be used as a training set. After feature extraction,
the elements are used to generate a CCTree classifier. The CCTree classifier is
like a normal CCTree where the leaves with their labels represent the classifier’s
knowledge. The classification workflow assumes that a trained classifier already
exists in the framework. This workflow takes any number of unlabeled malicious
apk, extracts the feature vectors through the extractor, and assigns a label to
them through the classifier. This workflow can be used for example to classify
zero day threats, or sets of malicious apps for which a label is not provided, or is
classified differently from different antivirus software. The clustering workflow is
instead exclusively applied to large datasets of unclassified malicious apps. After
feature extraction, the CCTree will divide malware in homogeneous clusters,
maximizing the cluster homogeneity related to the defined behavioral classes. In
particular, the target of this instance of CCTree is the one of minimizing the
probability that two or more elements, belonging to different behavioral classes
do not fall in the same leaf cluster. After clustering, if a trained classifier is

Fig. 2. MalProfiler logical model.
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available, it is possible to classify the element of each cluster. This brings a
double advantage to malware analyzer, since at the end of the clustering and
classification process, the result are homogeneous sets of malicious grouped by
similarity, whose behavior is known [18]. In the following we will detail the
various components both on conceptual and implementation aspects.

3.1 Feature Extraction

The Feature Extractor is a software which takes in input an apk file, exploit-
ing different tools to extract information on its internal files. The apk can
be considered, in fact, a compressed archive, containing all the files which
describe and define the behavior of the application. In particular, the feature
extractor analyzes the AndroidManifest.xml file to extract information related
to permissions and number of app components. Furthermore, it analyzes the
resources.arsc file to extract information on the static resources included in
the app (multimedia, documents, etc.) and decompiles the executable files (dex),
looking for invocation of critical libraries1.

We introduce now the set of 18 attributes (features) extracted by the Feature
Extractor component, which are representative of structural properties of mal-
ware and of their behaviors. The selected attributes extend the set of features
discussed in [9]. The attributes and a brief description are presented in Table 1.

Since the clustering algorithm is categorical, selected features are either binary
or categorical as well. Numerical features are turned into categorical by defining
intervals and assigning a feature value to each interval defined in such a way. The
intervals have been according to the ChiMerge discretization method [13], which
returns outstanding results for discretization in decision tree-like problems [11].

As shown in Table 1, the extracted features represent the capability of the
malicious apps to maliciously exploit security critical resources and operations,
together with information on the whole app structure. The rational of malprofiler
is that specific combinations of these features identify specific behavioral classes.
For this analysis, especially for those aspects concerning Android permissions, we
leverage the results of [8,10]. The Internet permission is generally exploited by
applications to send out (sensitive) information, or to receive commands from an
external server under the control of the attacker. These are typical behaviors of
spyware and botnet malware. However, the Internet permission by itself is not
sufficient to identify specific threats, since it is a permission normally required by
any app which needs to access the Internet to download or send information. The
SMS permission is referred to the SEND SMS permission which is mandatory to send
text messages. This permission is not very common between standard apps, since
normally in Android text messages are handled by a default messenger app, still
it is needed by all malware belonging to the class of SMS Trojan. The permis-
sions to read and write data on the external memories are respectively typical of
two classes of malware: spyware, to access data stored on external memory, and to
installers, which push malicious payload on external memory before installing it.

1 We made the software available at: www.android-security.it/RetrieveFeatures.jar.

http://www.android-security.it/RetrieveFeatures.jar
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Table 1. List of static features extracted from malicious apps.

Attribute Description

Internet Permission Allows to access network interfaces. (BIN)

SMS Permission Permission for sending text message. (BIN)

Read SD card Read-only access to external memory. (BIN)

Write SD card Write access to external memory. (BIN)

Permission to install package Used to install additional apks. (BIN)

Administrator permission Get administrator privileges. (BIN)

Accessibility service permission Allows keylogging. (BIN)

Permission to start at boot Self-Start of app at boot. (BIN)

Permission to read contacts Accesses contact list. (BIN)

Phone Status Permission Accesses sensitive info such as IMEI/IMSI.
(BIN)

Number of Permissions Amount of specified permissions. (CAT)

Camera permission Permission to start camera and record video.
(BIN)

Microphone permission Permission to register voice from microphone.
(BIN)

Reputation score App reputation calculated according to [8].
(CAT)

App components Number of components specified in the
manifest. (CAT)

Resource Size Size of static resource files. (CAT)

Hidden Application App not visible in launcher. (BIN)

Use cryptographic function Includes crypto API. (BIN)

Custom permissions Requires custom permissions. (CAT)

Accessibility services, camera and microphone related permissions are all related
to different attempts to spy user actions. Camera and microphone can be exploited
to record picture, video and voices to infer information about the user. Moreover,
the accessibility service permission, if maliciously exploited, allows an attacker to
read the movement pattern on the device screen, including key-logging. The analy-
sis on the size of the static resources included in the app can be meaningful to
identify installer malware, since often they include in the asset folder of the apk,
the payload of the other malicious app they will attempt to install. Some appli-
cations that only perform tasks in background may be configured by developers
to not be shown in the main launcher interface, though it is still possible to see
it in the apps list in Settings. This feature can be maliciously exploited especially
by botnet and spyware apps attempting to pass unnoticed to users. The access to
library for cryptographies is instead a behavior observed in the last generations
of ransomware, which attempt to encrypt all the files on the SDCard. For this
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misbehavior, the permission to write on external memory is also needed. Finally
the last feature specify if the application requires custom permissions, i.e. per-
missions defined by developers to protect interfaces of their applications. Some
malicious apps, in particular botnet and spyware requires these permissions to
access interfaces of apps with privacy sensitive data, or to perform confused deputy
attacks, combining permissions of different malicious apps.

3.2 CCTree Clustering

The CCTree Clustering is a component which takes as input the feature vectors
related to malicious apps and divides them in homogeneous clusters exploiting
the fast and effective CCTree algorithm [19]. Being a divisive clustering algo-
rithm, it requires that all the elements to be clustered are presented to the
algorithm all together. Hence this component will be mainly used to group large
sets of unlabeled malicious apps.

As discussed in Sect. 2.2, CCTree algorithm requires two stop conditions as
input, i.e. the minimum number of elements (μ) and the minimum purity in a
cluster (ε). Henceforth, the notation CCTree(ε, μ) will be used to refer to the
specific implementation of the CCTree algorithm.

In order to find the optimum stop conditions parameters and to evaluate our
proposed methodology, in the following we introduce two well known approaches
in clustering evaluations, named internal and external evaluation. Due to the
fact that each evaluation approach contains a wide range of metrics, in this work
we apply silhouette and cluster homogeneity as internal and external metrics,
respectively.

Internal Evaluation: Internal evaluation measures the ability of a clustering
algorithm in obtaining homogeneous clusters. A high score on internal evalua-
tion is given to clustering algorithms which maximize the intra-cluster similarity,
i.e. elements within the same cluster are similar, and minimize the inter-cluster
similarity, i.e. elements from different clusters are dissimilar. The cluster dissim-
ilarity is measured by computing the distances between elements (data points)
in various clusters. The used distance function changes for the specific problem.
In particular, for elements described by categorical attributes, the common geo-
metric distances, e.g. Euclidean distance, cannot be used. Hence, in this work
the Hamming distance measures [12] are applied. Internal evaluation can be per-
formed directly on the dataset on which the clustering algorithm operates, i.e.
the knowledge of the classes (desired clusters) is not a prerequisite.

Silhouette: Let d(xi) be the average dissimilarity of data point xi with other
data points within the same cluster. Also, let d′(xi) be the lowest average dis-
similarity of xi to any other cluster, except the cluster that xi belongs to. Then,
the silhouette s(i) for xi is defined as:

s(i) =
d′(i) − d(i)

max{d(i), d′(i)} =

⎧
⎪⎨

⎪⎩

1 − d(i)
d′(i) d(i) < d′(i)

0 d(i) = d′(i)
d′(i)
d(i) − 1 d(i) > d′(i)
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where the definition result in s(i) ∈ [−1, 1]. As much as s(i) is closer to 1, the
more the data point xi is appropriately clustered. The average value of s(i) over
all data of a cluster, shows how tightly related are data within a cluster. Hence,
the more the average value of s(i) is close to 1, the better is the clustering
result [12].

External Evaluation: The external evaluation is a standard technique to mea-
sure the capability of a clustering algorithm to correctly classify data. To this
end, external evaluation is performed on a dataset, whose classes, i.e. the desired
clusters, are known beforehand. This small dataset must be representative of the
operative reality, and it is generally separated from the dataset used for cluster-
ing. A common index used for external evaluation is cluster homogeneity.

Cluster Homogeneity: Cluster homogeneity [3] is an essential quality property
of a clustering algorithm. Cluster homogeneity states that the resulted clusters
must be homogeneous, i.e. they should not mix elements belonging to different
classes. In this study, we measure the cluster homogeneity as follows. Let D
be the dataset desired to be clustered, the elements of D belong to categories
(class labels) L′ = {L1, L2, . . . , Lm}. For example, the labels belonging to L in
our problem are represented by the behavioral classes defined in the following
subsection. Moreover, suppose that C = {C1, C2, . . . , Ck} are the resulted k
clusters by our clustering algorithm. Considering:

p(Ci, Lj) =
|{dit ∈ Ci|l(dit) = Lj}|

|Ci|
where |.| returns the number of elements in a dataset and l(x) returns the label of
element x; we compute the homogeneity of clustering algorithm as the following:

k∑

i=1

m∑

j=1

p(Ci, Lj)

where k and m ranges over the number attributes and class labels, respectively.

3.3 Classifier

This component is embodied by a supervised learning-based classifier, which
classifies feature vectors in five behavioral classes. Being configurable, virtually
any classifier can be used as specific instance of this component. However, in this
specific implementation, we are using a novel classifier, which is based on the
CCTree algorithm. We present here the methodology exploited to construct a
classifier inspired by the structure of CCTree clustering algorithm, hence named
CCTree classifier. To this end, suppose a set of labeled dataset D is given.

Figure 3 depicts the structure of CCTree classifier and how it is utilized to
label new unlabeled Android malicious app. As shown, the classifier is generated
as a normal CCTree, starting from a large set of malicious apps. The only dif-
ference in the generation process lays in the stop conditions for splitting nodes:
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(a) CCTree classifier construction. (b) Classification process.

Fig. 3. CCTree classifier construction and classification process.

(i) the number of elements in the node if fewer than a threshold, say μ, or
(ii) the node cluster homogeneity (as defined for external evaluation) is better
than a specific threshold δ. When the tree is generated, every leaf is labeled with
the majority class present in that leaf, completing thus the classifier training. In
the case that two or more class labels have the same frequency, or a leaf contain
no element, then it is labeled as the majority label of the parent node. It is worth
noting that, thanks to the high homogeneity of CCTree-generated clusters and
to the novel stop condition based on cluster homogeneity, the situation in which
a leaf contains elements of different classes is quite unlikely. This statement is
supported by the experimental results presented in Sect. 4. Once the classifier is
trained, the classification of single elements happens by walking the tree from
root to leaves, according to the associated feature values. A formal description of
the algorithm is given in Algorithm 1. It is worth noticing that CCTree classifier
is different from boht CCTree clustering and standard decision tree classifiers
[15]. We remark the differences in the following:

– CCTree classifier vs CCTree clustering: for constructing a CCTree classifier,
differently from CCTree clustering, the set of data are labeled. Consequently,
a node is considered as a leaf of a CCTree clustering, when the node purity
(measured through similarity of features) is better than a specified threshold.
However, in CCTree classifier, a node is considered as a leaf if the cluster
homogeneity, computed from the labels of elements, is better than a threshold.

– CCTree classifier vs Decision tree: CCTree classifier is different from decision
trees in splitting criteria. Basically, in decision trees the attribute causing the
maximum information gain depending to attribute distribution and the labels
of elements in a node, is selected to split the data belonging to a node. In
CCTree classifier, the splitting attribute is selected as CCTree clustering, i.e.
the one which has the highest entropy in terms of attribute values.
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Input: Labeled data points D , Attributes A = {A1, A2, . . . , Ak},
cluster homogeneity threshold, max num elem

Output: A set of labeled leaves L = {l1, l2, . . . , lm}
Root node N0 takes all labeled data points D
for each node Ni!=leaf node do

if cluster homogeneityi < cluster homogeneity threshold||
num elemi < max num elem then

Ni → L & li = majority labels in Ni

;

else
for each attribute Aj do

if Aj yields max Shannon entropy then
split Ni on Aj ;
generate new nodes Ni1 , . . . , Nit ;

end

end

end

end
Algorithm 1. CCTree Classifier algorithm

3.4 Definition of Classes

As discussed, the amount of malicious Android apps is continuously increasing
and currently counts to millions [14], whilst malware families count to hundreds.
However, Android malicious apps show for the majority a quite limited set of
common behavior which can be grouped into a more limited and manageable
number of classes. To this end, referring to the model presented in [17], we discuss
the behavioral classes which are used in the MalProfiler classification problem.

1. SMS Trojan: malware that send SMS messages stealthily and without the
user consent, generally to subscribe the user to a premium services, send spam
messages to user contacts, or exploit SMS-based authentication mechanism
of some bank institutes to authorize unwanted transactions.

2. Spyware: malware that steals pieces of private data from the mobile device,
such as IMEI and IMSI, contacts, messages or social network account cre-
dentials. The stolen information are sent to the attacker either through text
messages, or, more commonly, through Internet.

3. Installer: this malware do not carry malicious code by itself, reducing the
possibilities it is detected. However, once installed, they stealthily push on
the device additional apps without the user consent, which generally contain
the effective malicious code, belonging to any other of the behavioral classes
defined. The most typical methodology exploited to stealthily install malicious
apps consists of maliciously taking Linux super user privileges (rooting) to
have full read/write access to all folders, then pushing the new malicious apps.

4. Botnet: malware opening a backdoor on the device, waiting for commands
which can arrive from an external server or an SMS message.
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5. Ransomware: malware that prevent the user from interacting with the
device, by continuously showing a web page asking the user to pay a ran-
som to remove the malware. Other possible behavior consists of encrypting
personal user files asking a ransom to retrieve the decryption key.

4 Clustering and Classification Results

In this section we will present experimental results to evaluate clustering capa-
bilities, classification accuracy and performance overhead. All experiments have
been performed on a set of 3525 real malicious apps, which have been extracted
from three datasets, namely the Genome dataset [21], the Drebin [4] dataset
and a set of malware extracted from the Contagio Mobile website2. The mal-
ware are divided as follows in the 5 behavioral classes: (i) 1927 SMS Trojan,
(ii) 562 Installer, (iii) 1001 Spyware, (iv) 7 Botnet and (v) 28 Ransomware.

4.1 Clustering Evaluation

In order to evaluate the clustering capability of the CCTree Clustering compo-
nent, it is necessary to compute the indexes for internal and external evaluation
discussed in Sect. 3. Since CCTree is a parametric algorithm, we will study the
variation of silhouette, number of clusters (internal evaluation) and cluster homo-
geneity (external evaluation), at the variation of these parameters. Table 2 shows
the values for silhouette and cluster homogeneity at the variation of the purity
parameter (ε). The results are also matched with the amount of clusters and the
number of outliers, i.e. the number of clusters containing a single element, which
we attempt to minimize.

Table 2. Internal/External evaluation results of CCTree, μ = 1 and ε varies.

Metric CCTree − μ = 1

ε = 0.0001 ε = 0.001 ε = 0.01 ε = 0.1

Silhouette 1 1 0.9899 0.7295

Total number of clusters 483 483 469 231

Outliers 215 215 204 43

Cluster homogeneity 0.9991 0.9991 0.9899 0.9495

As the number of clusters is affected by the ε parameter, it is possible to
choose the optimal value of ε knowing the optimal number of clusters. The
problem of estimating the optimal number of clusters for hierarchical clustering
algorithms is discussed in [16], by determining the point of maximum curvature
(knee) on a graph showing the inter-cluster distance in function of the number
2 http://contagiominidump.blogspot.com.

http://contagiominidump.blogspot.com
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of clusters. Recalling that silhouette index is inversely related to inter-cluster
distance, it is sound to exploit the same methodology, finding the knee on the
graph of Fig. 4 computed with the silhouette on the dataset used for internal
evaluation, with four different values of ε(∈ {0.0001, 0.001, 0.01, 0.1}). To sim-
plify our analysis we fix the value of μ = 1, thus the only stop condition affecting
the result is the node purity ε.

(a) Silhouette. (b) Number of clusters,

Fig. 4. Knee analysis for silhouette and number of generated clusters in function of
the ε parameter with μ = 1.

As shown in Fig. 4, the purity value and generated clusters reach the max-
imum and almost stabilize when ε = 0.01, which is effectively the knee in the
graph, with a very high silhouette value of 0.989 and an acceptable number of
clusters.

Fixed ε it is possible to study the variation of silhouette changing the value of
μ. Table 3 shows silhouette, number of clusters, outliers, and the cluster homo-
geneity which we have previously defined for five different values of μ.

Table 3. Internal/External evaluation results of CCTree, ε = 0.01 and μ varies.

Metric CCTree − ε = 0.01

μ = 1 μ = 2 μ = 3 μ = 4 μ = 5

Silhouette 0.9899 0.9636 0.9413 0.9172 0.9004

Total number of clusters 469 426 391 354 329

Outliers 204 118 83 69 57

Cluster homogeneity 0.9985 0.9943 0.9909 0.9843 0.9807

As expected, μ = 1 returns the highest number of clusters and outliers (i.e.,
clusters with one element), whilst the internal purity (silhouette) and cluster
homogeneity are very high. On the other hand, by increasing the value of μ,
the number of generated clusters decreases, as the internal purity overall cluster
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homogeneity. However, it is worth noting how even for higher value of μ which
causes a consistent reduction of outliers, the overall cluster homogeneity and
silhouette are still consistently high, which proves the validity of our approach.
In fact, the CCTree algorithm, with the proposed set of features is able to divide
malware in homogeneous clusters (silhouette), which are also very well divided
for the behavioral classes, having only few clusters where malware from different
classes are mixed. Also, when μ = 5 the number of outliers drops to 57, out
of a dataset of 3525 analyzed malware. The value of μ can be considered as a
parameter to be changed according to the preference of the malware analyzer,
and to specific structures of the dataset under analysis.

4.2 Classification Results

To verify the capability of correctly classifying Android malicious application in
behavioral classes, the whole dataset of 3525 malicious apps is used for super-
vised learning and K-fold validation of the CCTree classifier. Also the results
are compared with a set of well known classifiers, which are the best representa-
tives of the various classifier sets, namely the K-star, C4.5, Bayes Network, and
Support Vector Machine. The performance evaluation has been done through
the K-fold (K = 5) validation method, i.e. classifying the data for K times using
each time K − 1/K of the dataset as training set and the remaining elements as
testing set. Table 4 reports True Positive Rate (TPR) and False Positive Rate
(FPR) for the five classifiers, reporting the detailed result for each class.

As shown, all classifiers have fair values of both TPR and FPR globally, which
remarks the effectiveness of the selected features for this specific classification
problem. However, the CCTree classifier shows better results both globally and
for each behavioral class, both on the side of TPR and FPR. The tested instance
of CCTree has the purity set to 0.01 and the minimum number of elements
set to 1. This configuration reported the best results for our analysis, which
is similar, still not equivalent to the clustering process. As can be observed,
all classifiers perform quite well in classifying SMS Trojan and Spyware, while
they find more difficult to classify elements from ransomware and botnet classes.
This is due to the strongly unbalanced dataset used, which tricks the classifiers

Table 4. Classification results evaluated on 5-fold cross validation.

Algorithm K-star C4.5 BayesNet SVM CCTree (0.01,1)

Measure TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

SMS.Trojan 0.995 0.048 0.989 0.019 0.991 0.142 0.991 0.126 0.989 0.012

Spyware 0.932 0.008 0.95 0.014 0.709 0.017 0.785 0.023 0.971 0.012

Installer 0.945 0.008 0.952 0.012 0.916 0.032 0.891 0.023 0.948 0.007

Ransomware 0.821 0 0.643 0.003 0.536 0.002 0 0 0.821 0.002

Botnet 0 0 0.143 0 0 0.001 0 0 0.857 0

Global 0.966 0.029 0.968 0.016 0.893 0.088 0.907 0.079 0.974 0.011
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in labeling elements with the majority class, reducing thus the error probability,
while increasing the FPR for that class. The CCTree classifier does not considers
in its training process the error probability, which yields better results also for the
minority classes. Even if overall results might benefit from a dataset balancing,
it is worth noting that the present dataset is representative of the reality, where
malware belonging to the first three classes of Table 4 are the larger majority
of existing malware for Android. This aspect has to be considered both for the
training process, which imposes to train any classifier to recognize the reality
in which it will operate, and for the specific analysis task of malware analyzers
that might have to operate on datasets that is not possible to balance.

Performance Analysis. One of the advantage of the CCTree algorithm, both
if used for clustering or classification is the low (linear) complexity and high
efficiency [2]. MalProfiler, is intended to work on large scale data, hence designed
for being effective and scalable. In the performed experiments, the average time
for clustering the set of 3525 malicious vector is below 1 s (878 ms), on a medium
performance PC, for different configuration of the ε and μ parameters, and, as
discussed it scales linearly if the amount of data to be considered increases.
The bottleneck of the analysis process is the feature extraction process, which
takes 3, 5 s in average for analyzed apps, which might increase for apps of large
dimension. However, it is worth noting that this process is totally independent
for each app and can thus be easily parallelized.

5 Related Work

As discussed, several efforts have been done in the direction of classifying mali-
cious application. In [21], the authors collect and classify a set of malicious apps
extracted from Chinese unofficial marketplaces. The study provided the first pub-
licly available dataset of Android malicious apps and a set of typical behaviors of
malicious apps. However, the authors do not propose techniques for automatic
app classification, nor sets of features to be analyzed. In [5] the authors propose
a methodology for behavior-based clustering of malicious applications for PCs.
The analysis is based on dynamic features, hence it requires the application to be
run. On the other hand, MalProfiler is able to cluster and then classifying Android
malware by analyzing easy-to-extract static features. The authors of [20] present
a methodology for Android malware classification using API dependency graphs.
The designed approach is effective and able to detect zero-day attacks. Still, the
classification requires an analysis of invoked API and graph generation not suit-
able for fast analysis. Another work which extracts and analyzes static features
of Android apps for fast malware detection is presented in [8]. The approach is
effective in determining if an application is malicious, still does not provide any
information about the misbehavior which could be performed by the app. A frame-
work which could benefit from a synergy with MalProfiler is the one presented in
[9,17]. This work defines different dynamic per-app malware control strategies,
defined on the base of the behavioral class of malicious applications, similar to
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the one proposed in the present work. In fact, the analysis of specific behavioral
classes may bring the definition of new strategies (policies) specifically designed to
counter specific behavior of novel threats. Another framework for static analysis
of Android malware is presented in [6]. This framework exploits n-grams analy-
sis, extracted after decompiling apps, to train classifiers in recognizing malicious
patterns. The framework has a fair detection, accuracy, still it is more directed
to detect malicious apps from benign ones, without giving detail on the possible
malicious behavior performed by the app.

6 Conclusion

Since malicious apps for Android devices are growing exponentially, tools to sim-
plify the analysis by security experts, for timely discovery and classification of
new threats are a needed asset. In this paper we have presented MalProfiler a
framework which exploits a categorical clustering algorithm to group and clas-
sify malicious Android apps according to behavioral classes. This paper shows
another successful application of the CCTree algorithm, already used as a secu-
rity tool for clustering spam emails. By grouping malicious apps in very homo-
geneous clusters, MalProfiler is a valuable tool in helping finding groups of apps
showing the same behavior. Furthermore, operating as a classifier, MalProfiler
can easily profile zero-day attacks, assigning to them their behavioral classes and
finding apps previously classified which show similar features. As future work,
MalProfiler will be extended to consider additional sets of features, including
dynamically extracted ones, also proposing an implementation as web service
publicly available, which allows the submission of large sets of apps for both
clustering and classification.
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Abstract. In order to protect Android users and their information, we
have developed a lightweight malware detection tool for Android called
Andrana. It leverages machine learning techniques and static analysis
to determine, with an accuracy of 94.90%, if an application is malicious.
Its analysis can be performed directly on a mobile device in less than a
second and using only 12 MB of memory.
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1 Introduction

Android’s domination of the mobile operating system market [30] has attracted
the attention of malware authors and researchers alike. In addition to its large
user base, what makes Android attractive to malware authors is that, contrarily
to iOS users, Android users can install applications from a wide variety of sources
such as first and third-party application markets (e.g., Google Play Store, Sam-
sung Apps), torrents and direct downloads. Malware on mobile devices can be
damaging due to the large amounts of sensitive information that they contain
(e.g., emails, photos, banking information, location).

In order to protect users and their information, researchers have begun to
develop malware detection tools specifically for Android. Traditional approaches,
such as the signature-based and heuristics-based detection of antiviruses can
only detect previously known attacks and hence suffer from a low detection rate.
One possible solution is to use Machine Learning algorithms to determine which
combinations of features (i.e. characteristics and properties of an application)
are typically present in malware. These algorithms learn to detect malware by
analyzing datasets of applications known to be malicious or benign.

The features used in Machine Learning are typically dynamically detected by
executing the application in a sandbox (an isolated environment where applica-
tions can be safely monitored) where events are simulated [7,20,21]. This app-
roach has two major problems, the first being the time needed. Analyzing each
malware takes between 10 and 15min (depending on the number of events sent
to the simulator). The infrastructure required to keep such a tool up-to-date
c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 20–35, 2017.
DOI: 10.1007/978-3-319-51966-1_2
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needs to be of considerable size, as more than 60 000 applications are added
to Google’s Play Store each month [4]. The second problem is that this app-
roach cannot take into account all possible executions of the application, only
those that happen in the time allocated. Furthermore, sophisticated malwares
can exploit this fact by stopping their malicious behavior when they detect that
the current execution is in a sandbox.

Toaddress these issues,webuilt anewmalwaredetection tool forAndroid called
Andrana. It uses static analysis to detect features, and Machine Learning algo-
rithms to determine if these features are sufficient to classify an application as a
malware. Static analysis can be performed quickly and directly on a mobile device.
This means that no sandbox and no external infrastructure is required.
Also, because static analysis considers all possible executions, it can detect
attempts to evade analysis by the application. Andrana analyzes applications in
three steps. First, the application is disassembled to obtain its code. Then, using
static analysis, the application’s features are extracted. Finally, a classification
algorithm decides from the set of present features if the application is malicious.

One of the most important obstacle to static analysis is obfuscation. A code
is obfuscated to make it hard to understand and analyze while retaining its
original semantics. Although obfuscation has its legitimate uses (e.g., protection
of intellectual property), it is often used by malware authors in an attempt
to hide the malicious behaviors of their applications. Andrana can identify a
number of obfuscation techniques and takes advantage of this information to
improve the precision of its analysis.

In summary, our contributions in this paper are:
– We introduce Andrana, a malware detection tool able to quickly and accu-

rately determine if an application is malicious (Sect. 3).
– We present the set of features that Andrana uses to classify applications. It

includes the obfuscation techniques used by the application (Sect. 4).
– We have trained and tested classifiers using different machine learning algo-

rithms on a dataset of approximately 5 000 applications. Our best classifier
has an accuracy of 94.90% and a false negative rate of 1.59%. (Sect. 5).

– We report on two of our experiments to improve the overall accuracy and
usability of Andrana: (1) using string analysis tools to improve the detection
rate of API calls, (2) executing Andrana on a mobile device (Sect. 6).

2 Android

Before presenting Andrana, we must first introduce a few Android-related
concepts and terminology, namely, the components of Android applications,
Android’s permission system and the structure of application packages.

2.1 Components

Android applications are composed of four types of components:

– Activities: An activity is a single, focused task that the user can do (e.g.,
send an email, take a photo). Applications always have one main activity
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(i.e., the one that is presented to the user when the application starts). An
application can only do one activity at a time.

– Services: A service is an application component that can perform operations
in the background (e.g., play music). Services that are started will continue
to run in the background, even if the user switches to another application.

– Intents: An intent is a message that can be transmitted to another compo-
nent or application. They are usually used to start an activity or a service.

– Content Providers: Content providers manage access to data. They provide
a standard interface that allows data to be shared between processes. Android
comes with built-in content providers that manage data such as images, videos
and contacts.

2.2 Permissions

Android uses a permission system to restrict the operations that applications
can perform. Android permissions are divided into two categories:

– Normal: Normal permissions are ones that cannot really harm the user, sys-
tem or other applications (e.g., change the wallpaper) and are automatically
granted by the system [2].

– Dangerous: Dangerous permissions are ones that involve the user’s private
information or that can affect the operation of other applications [24]. For
example, the ability to access the user’s contacts, internet or SMS are all
considered to be dangerous permissions. These permissions have to be explic-
itly granted by the user.

2.3 Application Packages

Android applications are packaged into a single .apk file which contains:

– Executable: Android applications are written in Java and compiled to Java
bytecode (.class files). The .class files are then translated to Dalvik bytecode
and combined into a single Dalvik executable file named classes.dex.

– Manifest: Every Android application is accompanied by a manifest file,
named AndroidManifest.xml, whose role is to specify the metadata of the
application (e.g., title, package name, icon, minimal API version required) as
well as its components and requested permissions.

– Certificate: Android applications must be signed with a certificate whose
private key is known only to its developers. The purpose of this certificate is
to identify (and distinguish) application authors.

– Assets: The assets used by the application (e.g., images, videos, libraries).
– Resources: They are additional content that the code uses such as user

interface strings, layouts and animation instructions.

3 Overview of Andrana

Andrana analyzes applications in three steps: disassembly, feature extraction
and classification (see Fig. 1).
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Fig. 1. General flow of Andrana

Step 1: Disassembly. To analyze the code of the application and extract
its features, we must first disassemble it. Fortunately, Android applications are
based on Java, which is easy to disassemble and decompile. Moreover, Java forces
multiple constraints on the structure of the code, which prevents manipulations
that could make static analysis less effective (e.g., explicit pointer manipula-
tions).

To disassemble the application, we use a tool called Apktool [3]. It converts
Dalvik bytecode into Smali [29], a more readable form of the bytecode.

Step 2: Feature Extraction. Once the application has been disassembled, its
features are extracted using static analysis. These features, presented in Sect. 4,
are characteristics and properties that the classifier will use in Step 3 to distin-
guish malicious from benign applications. It is the most computationally inten-
sive step of the analysis.

Step 3: Classification. Finally, the detected features are fed to a binary clas-
sifier that classifies the application as either “benign” or “malware”. To generate
the most accurate classifier possible, we have tried a variety of Machine Learning
algorithms (see Sect. 5). They were trained and tested on a dataset of approxi-
mately 5 000 applications.

The whole process takes on average 30 s and 280MB of memory (see Fig. 2)
on a desktop computer (Intel Core i5-4200U with 4GB of RAM). We were able to
produce an optimized Android version which utilizes a reduced set of significant
features and whose analysis takes on average less than a second and 12MB of
memory (see Sect. 6).

Fig. 2. Analysis time and memory usage distributions.
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4 Feature Extraction

In this section, we present the features extracted by Andrana. These features
characterize the behavior of an application and are used by the classifier to
determine if an application is malicious or benign. In addition to the features that
are typically extracted in similar tools (see Sect. 7), such as requested permissions
and API calls, Andrana also detects a number of obfuscation techniques and
tools used by the application.

4.1 Features Extracted from the Manifest and Certificate

Requested Permissions. We extract the permissions requested by the appli-
cation from the manifest file. Certain combinations of requested permissions can
be indicative of a malicious intent. For example, an application that requests per-
missions to access the microphone and start a service could be covertly listening
in on conversations.

Components. From the manifest file, we extract the application’s components
and determine if the application executes code in the background, which intents
it listens to and which content providers it accesses.

Invalid Certificate. We verify the validity of certificates using a utility called
jarsigner. An invalid certificate indicates that the application has been tampered
with.

4.2 Features Extracted from the Code

APICalls. WeextractAPI calls from the code and,whenpossible, we also extract
the value of their parameters. The latter are useful, for example, when trying to
detect the attempt to send an email. This is done by looking for the function call
Activity.startActivity("act=android.intent.action.sendto dat=mailto:").
Andrana considers that this feature is present if there is a call to this function and
a string containing the value "act=android.intent.action.sendto dat=mailto:"
somewhere in the code.

Necessary Permissions. By analyzing the API functions used in the code, we
extract the permissions that are actually necessary to run the application. This
allows to detect incongruities between the permissions requested by the applica-
tion and those needed. Missing permissions could indicate that the application
uses a root exploit to elevate its privileges during execution. To extract this infor-
mation, Andrana uses an exhaustive mapping between the API calls and their
required permissions. This mapping, which Google does not offer, is generated
using PScout [25]. Note that since PScout’s mapping is only an approximation,
it may lead to false positives (i.e., reporting that there are missing permissions
when, in fact, it is not true).
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Obfuscation Techniques Used. We identify the obfuscation techniques pos-
sibly used by the application. The common techniques are: renaming, reflection,
encryption and dynamic loading [23]. Note that their presence does not neces-
sarily mean that the application uses obfuscation, only that it may have. It is
the role of the learning algorithm to consider this feature as important or not.

Renaming. A simple way to obfuscate a code is to rename its packages, classes,
methods and variables. For example, a class “Car” could be renamed “diZx9cA”
or “ ” (Java supports unicode characters). This technique is particularly
effective against human analysts as the purpose of a class or method has to
be guessed from its content. It also makes it harder to recognize the method
elsewhere in the code.

To detect the use of renaming, we exploit the fact that class names usually
contain common names (e.g., File, Car, User) and methods contain verbs (e.g.,
getInstance, setColor). Knowing this, the first strategy of Andrana is to look
for classes that have single-letter names (e.g., b.class). If there are many of them,
then we assume that renaming has been used. If none are found, then we use
an n-gram-based language detection library [18] to detect the language used to
name the classes and functions of the application. If the result varies widely
across the application, then we assume that renaming has been used.

Reflection. Reflection refers to the ability of the code to inspect itself at run-
time. It can be used to get information on available classes, methods, fields,
etc. More importantly, it can also be used to instantiate objects, invoke meth-
ods and access fields at runtime, without knowing their names at compile time.
For example, using reflection, an instance of ConnectivityManager is created and
method getActiveNetworkInfo is invoked in Listing 1.1.

Class c = Class.forName("android.net.ConnectivityManager");
Object o = c.newInstance()

Method m = c.getDeclaredMethod("getActiveNetworkInfo", ...);
method.invoke(o, null);

Listing 1.1. Instantiating an object and calling a function using reflection

The use of reflection itself can be detected easily, by looking for standard reflec-
tion API calls.

Encryption. Encryption can be used to obfuscate the strings of the code. For
instance, it could be used to statically hide the names of classes instanced using
reflection, as in the following listing.

String className = decrypt(encryptedClassName);
Class c = Class.forName(className);

Listing 1.2. Instanciating an object of a statically unknown class using reflection

To detect the possible use of encryption, Andrana looks for standard cryp-
tography API calls.
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Dynamic Loading. Java’s reflection API also allows developers to dynamically
load code (.apk, .dex, .jar or .class files). This code can be hidden in encrypted/-
compressed assets or data arrays. However, to load this code, applications must
use Android’s API getClassLoader function. Once loaded, the reflection API
must be used to access the classes, methods and fields of the dynamically loaded
code. Android applications can also dynamically load native libraries through
the Java Native Interface (JNI). This not only allows Java code to invoke native
functions, but also native code to invoke Java functions. According to Zhou et
al. [34], approximately 5% of Android applications invoke native code.

To detect the use of dynamic loading, Andrana looks for instances of classes
DexClassLoader and ClassLoader. To detect the use of native libraries, we look
for calls to the API System.loadLibrary. Note that, for the moment, Andrana
only detects the use of dynamic loading and native libraries: the libraries are not
analyzed.

Commercial Obfuscation Tools. While developers can manually obfuscate
the code themselves, most of them use commercially available obfuscation tools.
Andrana is able to detect the use of these tools using the techniques described
by Apvrille and Nigam [5]. The obfuscation tools that are currently detected are
ProGuard, DexGuard and APKProtect.

– ProGuard renames packages, classes, methods and variables using either the
alphabet (default behavior) or a dictionary of words. ProGuard comes with
the Android SDK and runs automatically when building an application in
release mode. As such, it is the most popular obfuscation tool. Andrana can
detect the use of ProGuard by looking for strings such as “a/a/a->a” in smali
code.

– DexGuard is the commercial version of ProGuard. It also renames the pack-
ages, classes, methods and variables, but uses by default non-ASCII charac-
ters which reduces even more the readability of the code. It also encrypts
the strings present in the code. Andrana detects the use of DexGuard by
looking for names that contain non-ASCII characters.

– APKProtect can be detected by searching for the string "apkrotect" in the
.dex file.

Sandbox Detection. Certain malwares have the ability to deactivate their
malicious behaviors when they detect that they are in a sandbox. This may
indicate a malicious intent, as it could invalidate the results of a dynamic analy-
sis. It does not affect static analyses, of course.

To detect the use of sandbox detection, we look for strings whose values are
typically present in Android sandboxes. Vidas and Christin [31] enumerate some
of the most common ones.

Disassembly Failure. While disassembly works in most cases, it can sometimes
fail. Disassembly failure clearly indicates an attempt to thwart analysis. For this
reason, it is part of our feature set.
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5 Classification and Evaluation

In this section, we evaluate the performance of multiple Machine Learning algo-
rithms.

5.1 Dataset

To train and test our algorithms, we have collected and analyzed a dataset of
approximately 5 000 applications, 80% of which were malwares. To avoid over-
fitting, the malware samples were randomly selected from two repositories: Con-
tagio [12] and Virus Share [32]. The benign samples came from Google’s Play
Store various “Top 25”. We noted that 47% of the samples used some kind of
obfuscation.

Our dataset contains more malware samples than benign samples for two rea-
sons. The main reason is that it is hard to obtain benign applications. Indeed,
while there are many repositories of malicious Android applications, we found
none that contained certified benign applications. Had we taken a larger number
of applications from the Play Store, we would have risked introducing malicious
samples into our dataset of benign samples. Another reason for using more mal-
ware samples is that it has a desirable side effect on the learning algorithm: it will
lead the algorithm to try to make fewer bad classifications on this class. Hence,
the number of false negatives (i.e., applications classified as “benign” when they
are in fact malicious) will be naturally lower than the number of false positive.

5.2 Learning Algorithms

In order to obtain the best classifier possible, we have experimented with differ-
ent learning algorithms: Support Vector Machines (SVM), k-Nearest Neighbors
(KNN), Decision Trees (DT), Adaboost and Random Forest (RF).

Support Vector Machines (SVM) [13] is a learning algorithm that finds a
maximal margin hyperplane in the vector space induced by the examples. The
SVM can also take into account a kernel function, which encodes a notion of
similarity between examples. Instead of producing a linear classifier in the input
space, the SVM can produce a linear classifier in the space induced by the chosen
kernel function. In our experiments, we use the Radial Basis Function (RBF )
kernel k(x, x′) = e−γ||x−x′||22 , where γ is a parameter of the kernel function.
The SVM also considers a hyperparameter C that controls the trade-off between
maximizing the margin and permitting misclassification of training examples.

k-Nearest Neighbors (KNN) [14] is a learning algorithm that classifies a new
data point by considering the k most similar training examples and by choosing
the most frequent label among these examples. Here, k is a hyperparameter of
the algorithm: different values of k might give different results. The most similar
examples are computed using any similarity function, such as the Euclidean
distance.
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Decision Tree (DT) [9] is a learning algorithm that classifies examples by
applying a decision rule at each internal node. The label of the example is decided
at a leaf of the tree. Decision trees are learned by considering a measure of quality
for a split such as the Gini impurity or the entropy for the information gain. In
our experiment, we use the Gini impurity.

Adaboost [27]. is an ensemble classifier, that considers many base classifiers
and learns a weighted combination of these classifiers. At each iteration, a new
base classifier is chosen (or generated) to focus on examples that are incorrectly
classified by the current weighted combination. The algorithm usually stops after
a fixed number of iterations, or when the maximum number of base classifiers is
attained. This maximum number of base classifiers is a hyperparameter of the
algorithm.

Random Forest (RF) [8] is, similarly to adaboost, an ensemble classifier. It
builds a majority vote of decision tree classifiers, by considering sub-samples of
the data and by controlling the correlation between the trees. The number of
trees or tree construction parameters such as the maximal depth are hyperpa-
rameters of the algorithm.

5.3 Performance Metrics

To evaluate the performance of the resulting classifiers, we measured their True
Positive Ratio (TPR). It represents the proportion of malware applications that
are correctly classified:

TPR =
TP

TP + FN
where TP is the number of malware applications that are correctly classified
and FN is the number of malware applications that are classified as “benign”.
Similarly, we measured their True Negative Ratio (TNR), which represents the
proportion of benign application that are correctly classified:

TNR =
TN

TN + FP

where TN is the number of benign applications that are correctly classified and
FP is the number of benign applications that are classified as “malware”. Finally,
we measured their overall accuracy, which represents the proportion of applica-
tions that are correctly classified:

Accuracy =
TP + TN

TP + TN + FP + FN
.

5.4 Evaluation

According to Hoeffding’s bound [16], with at least 600 test samples, the real risk
is almost equal to the risk on test with 95% confidence. Hence, we chose to use
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Table 1. Considered values for each hyperparameter, for each algorithm.

Learning algorithm Hyperparameter Values

SVM C {0.001, 0.01, 0.1, 1, 10, 100, 1000}
γ {100, 10, 1.0, 0.1, 0.01, 0.001, 0.0001}

KNN k {1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100}
Decision Trees (DT) max_leaf_nodes {5, 10, 15, 20, 25, 30, 40, 50}

min_samples_leaf {1, 2, 3, 5, 10, 20}
AdaBoost n_estimators {5, 10, 25, 50, 100, 250, 500, 1000}
RandomForest (RF) n_estimators {2, 5, 10, 25, 50, 100, 500, 1000, 2000, 3000}

Table 2. A comparison of the classifiers’ metrics, Accuracy, True Positive Ratio and
True Negative Ratio, using different machine learning algorithms.

Learning algorithm Accuracy% TPR% TNR%

SVM 94.72 98.64 78.43
KNN 94.11 97.74 79.06
Decision Trees (DT) 93.20 97.43 75.62
AdaBoost 94.11 98.26 76.87
RandomForest (RF) 94.90 98.41 80.31

the following splitting scheme in our experiments: 2/3 (∼3300 samples) for the
training set and 1/3 (∼1700 samples) for the testing set. For each algorithm,
we chose the hyperparameters using a 5-folds cross-validation on the training
set and chose the hyperparameter values that optimized the accuracy. Table 1
shows the hyperparameter values on which the cross-validation was performed
for each algorithm. Finally, we trained the algorithm using the whole training
set, and predicted the examples of the testing set. Note that all reported values
are metrics calculated on the testing set, containing examples that have not
been seen during training time. Table 2 shows the resulting accuracies for each
algorithm.

We now discuss on whether an increase in the size of the training dataset
can possibly improve the learning algorithms’ performance. For this experiment,
we first split the dataset into a training set (2/3) and a test set (1/3). Then, we
followed the same procedure as above, but applied exclusively to a ratio of the
training set and without altering the test set. Figure 3 shows that an increase
of the training ratio leads to a fluctuating improvement of the accuracy. The
non-monotonous behavior of the accuracy is a common occurrence in statistical
learning and is mainly caused by noise in the dataset. Still, one can see that the
accuracy tends to increase when the training ratio increases. So, we can expect
a higher performance by using a larger dataset.
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Fig. 3. The progression of true positives ratio and accuracy on the test set for different
ratios of training set and for each learning algorithm. It is calculated using the best
configuration of hyperparameters outputted by a 5-fold cross-validation.

6 Additional Experiments

This section presents the various experiments that we did in order to improve
the overall accuracy and usability of Andrana.

6.1 E1: Using String Analysis Tools

As previously mentioned, API calls can be invoked through reflection. To detect
those calls, we look for their class and method names in the strings of the code.
Of course, strings are not necessarily hard coded, they can also be dynami-
cally built. For instance, in Listing 1.3, the class instantiated could be either
"java.lang.String" or "java.lang.Integer".

String a = "java.lang.";
String b;
if (random) { b = "String"; } else { b = "Integer"; }
String className = a + b;
Class c = Class.forName(className);
Object o = c.newInstance ();

Listing 1.3. Dynamically built class name

To take into account cases where the class and/or function names are dynam-
ically created, we have experimented with a tool called Java String Ana-
lyzer (JSA) [11,17]. JSA performs a static analysis of Java programs to
predict the possible values of string variables. This allows us to determine
that the possible values for the string variable className in Listing 1.3 are
{"java.lang.String", "java.lang.Integer"}.

However, JSA is not able to analyze entire Android applications in a reason-
able time or without running out of memory. Li et al. [19] encountered similar
problems with JSA and hypothesize that this problem is due to the fact that
it uses a variable-pair-based method to do the global inter-procedural aliasing
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analysis. This method has an O(n2) memory complexity, where n is the number
of variables in the application.

We have also experimented with another string analysis tool called Vio-
list [19]. While it is considerably faster than JSA and can actually be used to
analyze Android applications, it still requires too much time (around 4min) and
resources (up to 2.4GB of memory) for our purpose: the analysis has to be exe-
cutable on a mobile device. Furthermore, in our test on 10 applications that
used reflection, it did not lead to the detection of additional features. For these
reasons, we chose to not use them in Andrana. Besides, as seen in the previous
section, it turns out that a precise string analysis is not required to accurately
classify applications. This is because Andrana uses a wide variety of features
to classify applications, some of which are not affected by obfuscation techniques
(e.g., permissions, certificate, disassembly failure).

6.2 E2: Executing Andrana on a Mobile Device

Mobile devices generally have low computing power and memory compared to
desktop computers. Consequently, if Andrana is to run directly on such devices,
it must be very efficient. To evaluate Andrana’s runtime performance on mobile
devices, we have implemented a version of it for Android (see Fig. 4). In order
to minimize Andrana’s analysis time on Android, we chose to use the decision
tree as the classifier. As previously shown, it is accurate (93.20%) and requires
only a small subset of our features to classify applications (between 3 and 9
features). We also optimized Andrana’s Android version so that it uses as little
memory as possible. We analyzed 150 randomly selected applications from our
dataset on a Nexus 5X and, on average, the analysis took only 814 milliseconds
and 12MB of memory, much quicker than our desktop version which extracts all
features. Besides its performance, another advantage of using the decision tree
classifier is that it is simple to understand and interpret.

Fig. 4. Andrana’s interface on Android.
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7 Related Work

Research on malware detection tools for Android has been very active in recent
years. We present in this section the approaches that are most similar to ours.

Static Malware Detection Tools for Android. Sato et al. [26] present a
method to calculate the malignancy score of an application based entirely on the
information found in its manifest file. Namely, the permissions requested, intent
filters (their action, category and priority), number of permissions defined and
application name. They trained their classifier on a dataset of 365 samples and
report an accuracy of 90%.

Aafer et al. [1] present a classifier, named DroidAPIMiner, that uses the API
calls present in the code of the application to determine whether an application
is benign or malicious. To determine the most relevant API calls for malware
detection, they statically analyzed a large corpus of malware and looked at the
most frequent API calls. They report a maximum accuracy of 99% using a KNN
classifier.

Arp et al. [6] present another classifier, named Drebin, which uses stati-
cally detected features. Namely, they extract the hardware components (e.g.,
GPS, camera, microphone) used by the application by looking at the permis-
sions requested in the manifest file, the requested permissions, the API calls
present in the code, IP addresses and URLs found in the code. They use the
SVM machine learning algorithm to produce a classifier. It has an accuracy
of approximately 94%. Their Android implementation requires, on average, 10
seconds to return a result.

Since the datasets used in these approaches are not actually available for
analysis, we cannot directly compare their performance with Andrana’s. We
also do not know if their samples were as heavily obfuscated as ours. All we can
say is that Andrana seems to equal them in terms of accuracy and surpass them
in terms of speed. We expect that by using a larger dataset of applications, like
the 20 000 used by DroidAPIMiner, we could improve even more our accuracy.
So that others may compare their results with ours, our dataset is available
online [22].

There are also various antiviruses available on Google’s Play Store (e.g.,
AVG, Norton, Avira). Antiviruses mostly use pattern matching algorithms to
identify known malware (i.e., they look for specific sequences of instructions).
This means that different patterns must be used to detect variations of the same
malware. Andrana’s main advantage over antiviruses is that it can not only
detect known malware and their variations, but also unknown malware.

Dynamic and Hybrid Malware Detection Tools for Android. Crow-
droid [10], Andromaly [28] and MADAM [15] detect malware infections by look-
ing for anomalous behavior. To detect anomalies, they monitor system metrics
such as CPU consumption, number of running processes, number of packets sent
through WiFi and/or the API calls performed at runtime by an application.
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Machine learning techniques are then used to distinguish standard behaviors
from those of an infected device.

DroidRanger [34] use both static and dynamic analysis to perform a large-
scale study of several application markets. Instead of using machine learning
techniques to automatically learn to classify applications, they use a variety of
heuristics. Using their tool, they were able to identify 211 malicious applications
present on the markets, 32 of which were on Google’s Play Store.

DroidDolphin [33] inserts a monitor into applications to log their API calls
and then executes them. The authors generate a classifier using this information
and a dataset of 34 000 applications. They report an accuracy of 86.1%.

Andrubis [21] and its successor Marvin [20] uses approximately 500 000 fea-
tures, detected using a combination of static and dynamic analyses, to train and
test their classifier on a dataset of over 135 000 applications. They report an
accuracy of 98.24%.

Andrana’s main advantages over these approaches are that it introduces no
runtime overhead and that its analysis can be performed on the user’s mobile
device, very quickly.

8 Conclusion

In this paper, we have presented Andrana, a lightweight malware detection tool
for Android. It uses static analysis to extract an application’s features and then
uses a classifier to determine if it is benign or malicious. We have trained and
tested multiple classifiers using a variety of Machine Learning algorithms and a
dataset of approximately 5 000 applications, 4 000 of which were malwares. The
dataset is available online [22]. Its samples came from multiple sources to avoid
overfitting. Our best classifier has an accuracy of 94.90% and a false negative
rate of 1.59%, which is comparable to other similar tools. As indicated by the
upward trends of Fig. 3, the use of larger datasets should lead to even higher
accuracies.

As almost half of our dataset used reflection, we considered using two string
analysis tools, JSA and Violist, to improve the detection rate of our features,
but their use turned out to be too computationally expensive for our purpose.

We have implemented a version of Andrana for Android and our tests reveal
that, on average, it can analyze applications in less than a second using only
12MB of memory, faster and more efficiently than any similar tools. Since our
implementation uses a decision tree as its classifier, users can easily understand
what lead the application to be classified as malware/benign.

Future Work. Benign applications may also compromise the security of a user’s
information, generally by accident. For this reason, we are working on a way to
enforce information-flow policies by inlining a monitor in Android applications.
In theory, this type of mechanism could allow users to execute applications safely,
that is, without compromising the confidentiality of their information or the
integrity of their system.
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We are also working on our own string analysis tool. Our goal is to make it
as lightweight as possible so that it can be executed on a mobile device.

Acknowledgments. We would like to thank François Laviolette for his suggestions
and Souad El Hatib for her help with the string analysis tools. This project was funded
by Thales and the NSERC.

References

1. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level features for robust
malware detection in Android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao,
M. (eds.) SecureComm 2013. LNICST, vol. 127, pp. 86–103. Springer, Heidelberg
(2013). doi:10.1007/978-3-319-04283-1_6

2. Android operating system security. http://developer.android.com/guide/topics/
security/permissions.html. Accessed 5 July 2016

3. Apktool. https://ibotpeaches.github.io/Apktool/. Accessed 5 July 2016
4. Appbrain. http://www.appbrain.com/stats/number-of-android-apps. Accessed 18

July 2016
5. Apvrille, A., Nigam, R.: Obfuscation in android malware, and how to fight back.

Virus Bull. 1–10 (2014)
6. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K., Siemens, C.:

DREBIN: effective and explainable detection of Android malware in your pocket.
In: Proceedings of the Annual Symposium on Network and Distributed System
Security (NDSS) (2014)

7. Atzeni, A., Su, T., Baltatu, M., D’Alessandro, R., Pessiva, G.: How dangerous is
your Android app? An evaluation methodology. In: Proceedings of the 11th Interna-
tional Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services, pp. 130–139. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering) (2014)

8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
9. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression

Trees. CRC Press, Boca Raton (1984)
10. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based mal-

ware detection system for Android. In: Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, pp. 15–26. ACM (2011)

11. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String
Expressions. Springer, New York (2003)

12. Contagio. http://contagiominidump.blogspot.ca/. Accessed 16 July 2016
13. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297

(1995). http://dx.doi.org/10.1007/BF00994018
14. Cunningham, P., Delany, S.J.: k-nearest neighbour classifiers. In: Multiple Classifier

Systems, pp. 1–17 (2007)
15. Dini, G., Martinelli, F., Saracino, A., Sgandurra, D.: MADAM: a multi-level anom-

aly detector for Android malware. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS
2012. LNCS, vol. 7531, pp. 240–253. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33704-8_21

16. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

17. Java string analyzer (JSA). http://www.brics.dk/JSA/. Accessed 5 July 2016

http://dx.doi.org/10.1007/978-3-319-04283-1_6
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
https://ibotpeaches.github.io/Apktool/
http://www.appbrain.com/stats/number-of-android-apps
http://contagiominidump.blogspot.ca/
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://dx.doi.org/10.1007/978-3-642-33704-8_21
http://www.brics.dk/JSA/


Andrana: Quick and Accurate Malware Detection for Android 35

18. Language detection library. https://github.com/shuyo/language-detection.
Acessed 5 July 2016

19. Li, D., Lyu, Y., Wan, M., Halfond, W.G.: String analysis for Java and Android
applications. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pp. 661–672. ACM (2015)

20. Lindorfer, M., Neugschwandtner, M., Platzer, C.: MARVIN: efficient and compre-
hensive mobile app. classification through static and dynamic analysis. In: 39th
Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp.
422–433. IEEE (2015)

21. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der
Veen, V., Platzer, C.: Andrubis-1,000,000 apps later: a view on current Android
malware behaviors. In: 2014 Third International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS), pp. 3–17.
IEEE (2014)

22. LSFM. http://lsfm.ift.ulaval.ca/recherche/andrana/. Accessed 30 Sep 2016
23. Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth attacks: an

extended insight into the obfuscation effects on Android malware. Comput. Secur.
51, 16–31 (2015)

24. Permissions classified as dangerous. http://developer.android.com/guide/topics/
security/permissions.html#normal-dangerous. Accessed 5 July 2016

25. Pscout. https://github.com/dweinstein/pscout. Accessed 5 July 2016
26. Sato, R., Chiba, D., Goto, S.: Detecting Android malware by analyzing manifest

files. In: Proceedings of the Asia-Pacific Advanced Network, vol. 36, pp. 23–31
(2013)

27. Schapire, R.E., Singer, Y.: Improved boosting using confidence-rated predictions.
Mach. Learn. 37(3), 297–336 (1999)

28. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: “Andromaly”: a behav-
ioral malware detection framework for Android devices. J. Intell. Inf. Syst. 38(1),
161–190 (2012)

29. Smali/baksmali. https://github.com/JesusFreke/smali. Accessed 20 July 2016
30. Smartphone OS market share, q1 2015 (2015). http://www.idc.com/prodserv/

smartphone-os-market-share.jsp. Accessed 7 July 2016
31. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection.

In: Proceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security, pp. 447–458. ACM (2014)

32. Virus share. https://virusshare.com/. Accessed 14 July 2016
33. Wu, W.C., Hung, S.H.: DroidDolphin: a dynamic Android malware detection

framework using big data and machine learning. In: Proceedings of the 2014 Confer-
ence on Research in Adaptive and Convergent Systems, pp. 247–252. ACM (2014)

34. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. In: NDSS, vol. 25, pp.
50–52 (2012)

https://github.com/shuyo/language-detection
http://lsfm.ift.ulaval.ca/recherche/andrana/
http://developer.android.com/guide/topics/security/permissions.html#normal-dangerous
http://developer.android.com/guide/topics/security/permissions.html#normal-dangerous
https://github.com/dweinstein/pscout
https://github.com/JesusFreke/smali
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://virusshare.com/


Micro-signatures: The Effectiveness of Known
Bad N-Grams for Network Anomaly Detection

Richard Harang1(&) and Peter Mell2

1 United States Army Research Laboratory, Adelphi, MD, USA
richard.e.harang.civ@mail.mill

2 National Institute of Standards and Technology, Gaithersburg, MD, USA
peter.mell@nist.gov

Abstract. Network intrusion detection is broadly divided into signature and
anomaly detection. The former identifies patterns associated with known attacks
and the latter attempts to learn a ‘normal’ pattern of activity and alerts when
behaviors outside of those norms is detected. The n-gram methodology has
arguably been the most successful technique for network anomaly detection. In
this work we discover that when training data is sanitized, n-gram anomaly
detection is not primarily anomaly detection, as it receives the majority of its
performance from an implicit non-anomaly subsystem, that neither uses typical
signatures nor is anomaly based (though it is closely related to both). We find
that for our data, these “micro-signatures” provide the vast majority of the
detection capability. This finding changes how we understand and approach
n-gram based ‘anomaly’ detection. By understanding the foundational principles
upon which it operates, we can then better explore how to optimally improve it.

Keywords: Network intrusion detection � Anomaly detection �
Microsignatures

1 Introduction

Anomaly based intrusion detection systems attempt to learn a ‘normal’ pattern of
activity and then produce security alerts when behavior outside of those norms is
detected. This has been an active area of research since at least the late 1980’s [1–3]. In
the late 1990’s, the use of n-grams was discovered to be useful for host based anomaly
detection [4]. N-grams are simply a collection of arrays of length n obtained by
applying a sliding window of length n to whatever activity is being monitored (e.g.,
system calls) [5], and were first applied to analyze network payloads in the PAYL
model [6] in 2004 but were limited to 1-grams, as the number of different n-grams that
can be acquired can approach an where a is the number of characters available (UTF-8
encoding has 1,114,112 code points [7]). In 2006, the seminal Anagram approach
introduced using an n of greater than 1 by storing the acquired n-grams in Bloom filters
[8]. As a minor enhancement, Anagram introduced the idea of using known bad
n-grams to augment its ability to identify malicious traffic.
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While not discussed in [8], use of the bad n-grams represented a significant shift
away from pure anomaly detection. In this approach, a corpus of malicious packet
payloads or intrusion signatures can be used to generate n-grams and these n-grams are
filtered to exclude any that have been observed to occur in normal benign traffic. The
remaining n-grams are then added to a known bad content filter comprised of what we
refer to as automatically generated micro-signatures. In operation, any time an n-gram
is analyzed that matches one in the bad content filter, the score for the overall packet
increases pushing it towards being labelled anomalous/malicious. The good n-gram
filter works in an opposite fashion in that the score for the overall packet increases if an
n-gram is evaluated that is not in the good filter (thus truly looking for anomalies).

In our work, we re-implement the Anagram approach and attempt to reproduce the
results of [8]. We experiment with the Hypertext Transfer Protocol (HTTP) to provide a
direct comparison with one of the protocols examined in [8]. We also analyze Anagram
performance relative to Domain Name System (DNS) requests, which was not previ-
ously done. This traffic is of interest because – while previous work [9] found that
n-gram analysis of purely binary protocols was not feasible – DNS requests contain
both binary components (e.g., record types and number of requests are encoded as byte
fields) and textual components (e.g., the domain name itself is encoded in
human-readable ASCII text with length fields acting as separators).

We focus our evaluation on the extent to which the automatically generated
micro-signatures in the known bad n-gram filter contribute to the overall performance
of Anagram. To do this, we constructed a standalone intrusion detection system
(IDS) consisting only of the known bad filter. Unlike the original Anagram, which used
bad n-grams derived from IDS signatures and virus samples, we derived our n-grams
from known malicious packets to align it with our data sets. We refer to our known bad
n-gram IDS as the micro-signature approach.

We find that the Anagram and micro-signature approaches have very similar per-
formance characteristics with the Receiver Operating Curves (ROC) of the full Ana-
gram approach providing only small improvements over the micro-signature ROC
curves. In the best case, we found that the Anagram approach provided an increase in
area under the ROC of only .0028 compared to the micro-signature approach. This
means that the vast majority of the detection capability of Anagram (at least when
applied to our data sets) is derived from the known bad component.

The known bad component was portrayed in [8] as a minor enhancement and has
received little attention in any other paper in our literature survey. Thus, our results
suggests that future research and development of network anomaly detection systems
should focus on n-grams of malicious behavior as a primary detection method to be
supplemented by the more traditional n-grams of normal behavior. This is the reverse
of what is currently discussed in the literature. The utility of automatically generated
micro-signatures is an open area for future IDS research.

We should emphasize that this result does not imply that the known good content
filters are useless or that the Anagram approach is flawed. On the contrary, the full
Anagram approach slightly outperforms the micro-signature approach across a wide
range of false positive rates (e.g., false positive rates of .0001 to .001). However, the
vast majority of true positives are still attributed to the micro-signature approach,
supporting the primary conclusion of our paper. In the worst case with one data set, at a
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false positive rate of 0 the micro-signature true positive rate exceeds Anagram’s by .03.
In the best case with the same data set, the Anagram true positive rate exceeds the
micro-signature’s by .12 at a false positive rate of .0001. For the vast majority of
non-zero false positive rates, the Anagram true positive rate had some small advantage
over the micro-signature true positive rate.

In summary, the primary findings of this paper are the following:

1. The Anagram approach of using high order n-grams remains effective for analysis
of two ubiquitous network protocols (HTTP and DNS).

2. For our data sets, the known bad n-gram filter accounts for the vast majority of the
detection capability, and the identification of anomalous n-grams provides only an
incremental improvement.

3. Automatically generated micro-signatures provide an effective detection abstraction
and can be used to create standalone n-gram based IDSs that can be viewed as an
interesting hybrid of an anomaly detection technique (n-grams), standard signature
detection, and automated analyses of malicious packets.

The rest of this paper is organized as follows. Section 2 discusses our data. Sec-
tion 3 summarizes our experiments and Sect. 4 discusses the results. Section 5 pro-
vides related work and Sect. 6 concludes.

2 Data

We used three sets of data to compare the effectiveness of Anagram and the
micro-signature approach. The first two are sets of HTTP requests and the last is a set
of DNS requests.

For the first set, we collected HTTP requests to an operational web server over the
course of 24 h. We obtained 769,838 distinct requests, of which 605 were known to be
malicious due to signature-based analysis. The first 10,000 requests in this file were
closely examined by hand by network security personnel to verify that they were
benign.

For the second set, we generated a data set of 393,814 malicious requests from a
combination of scanning, vulnerability assessment, fuzzing, and exploit tools from the
Kali Linux distribution that were targeted at a virtual machine running an identical web
stack to the operational web server. We restricted the data to consider only incoming
TCP packets delivered via port 80; all packet headers were discarded, and no stream
reassembly was performed.

For the third set, we obtained DNS requests gathered via monitoring traffic crossing
the network boundary of an active network. Due to the high volume of requests, we
examined only the first 3,000,000 requests that were obtained, and restricted the data to
UDP packets with a destination port of 53 and containing a valid DNS header. As with
the HTTP data, all transport layer headers were discarded. Based on a pre-existing
analysis, 28 packets were known to be malformed and deliberately altered to contain
non-DNS data from the 32nd byte onwards. An additional 72,914 packets were known
to contain properly formatted requests, but requested domain names that encoded
non-DNS information in some fashion (such as base16 or base32 encoding). Many of
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these appeared to be commercial security products using DNS as a communication
channel, presumably to avoid being blocked by firewalls.

3 Experiment Design

For each of the two types of data sets (HTTP and DNS), we define training sets used to
generate the n-gram based content filters (both ‘good’ and ‘bad’). We then construct
both Anagram and micro-signature IDSs from the content filters and, from each of the
three data sets, we define a validation set used to test the IDSs’ effectiveness.

3.1 Training Sets

For HTTP, we constructed a ‘normal traffic’ training set consisting of the 10,000 hand
verified requests along with 100,000 randomly selected requests from the remaining
759,838 requests (excluding the 605 known bad requests). We constructed a malicious
training set consisting of 10,000 randomly chosen requests from the set of 393,814
generated malicious requests.

For DNS, we constructed a ‘normal traffic’ training set consisting of 10,000 ran-
domly selected requests from the 2,927,058 not known to be malicious. We constructed
a malicious training set consisting of 10,000 randomly chosen requests from the set of
28 malformed and deliberately altered requests and the 72,914 requests encoded with
non-DNS information.

3.2 Intrusion Detection System Construction

We followed the procedure as described in [8] to build and train the known good and
known bad content filters and to construct the Anagram IDS. We used just the known
bad filter to construct the micro-signature IDS. Note that different good and bad content
filters were generated specific to each protocol (HTTP and DNS). The Bloom filters
used for the content filters were constructed using a 224 bit index with 3 hash functions
per item and using SHA-1 as the hash function, as in [8]. We used an n-gram size of 5
as [8] cited this as being good for ‘general’ purpose experiments.

For HTTP, we first generated n-grams from the 10,000 hand-verified known good
requests to populate what we call a ‘gold’ content filter (there was no name for this in
[8]). We then constructed the bad content filter by generating n-grams from our
malicious request training set and including them in the filter if they didn’t also occur in
the gold filter. Note that this is the only use of the gold filter and it is not used again.
Finally, we generated n-grams from the normal traffic training set. For each HTTP
request, if the proportion of n-grams that appear in the bad content filter is less than 5%,
then we add those n-grams to the good content filter that did not occur in the bad
content filter. If this ratio exceeded 5% then the entire HTTP request was ignored.

For DNS, we followed the same methodology. For this though, we had no gold
content filter and we populated the known bad filter directly from the malicious request
training set. The good content filter was constructed using the ‘normal traffic’ training
set using the same methodology as with the HTTP traffic (using the 5% rule and the bad
content filter to eliminate candidate n-grams).
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To score a particular request (HTTP or DNS) using our content filters, we recorded
the number of n-grams in that request that were not found in either content filter (i.e.,
new n-grams), the number found in the known bad filter, and the total number of
n-grams in the request. Three scoring rules were applied: the Anagram rule of
5�#fbad ngramsgþ#fnew ngramsg

#fngrams in packetg , our micro-signature rule of
# bad ngramsf g

#fngrams in packetg,

and a “non-normalized” micro-signature rule which involves simply counting the
number of bad n-grams without normalization against the size of the packet. However,
this final non-normalized version produced worse results, which we do not display.

3.3 Validation Data Sets

To test the effectiveness of the Anagram and micro-signature approaches, we generated
three validation data sets. For each set, receiver operator characteristic (ROC) curves
were generated for the Anagram and micro-signature approaches.

The first HTTP validation set was focused on testing IDS effectiveness in detecting
‘real’ attacks. It consisted of 659,838 requests. This was the total set of 769,838 distinct
requests minus the 110,000 used in the training set for the good content filter. This set
includes the 605 known malicious requests. There was thus no overlap between the
training and testing data.

The second HTTP validation set was focused on testing IDS effectiveness in
detecting our generated attacks (from the use of security and exploit tools). It consisted
of 1,043,652 requests. We started with the total set of 769,838 distinct HTTP requests
and removed the 605 known malicious requests. Then we removed the 110,000
requests used in the training set for the good content filter. Lastly, we added the
383,814 generated malicious requests that were not used in the training set for the bad
content filter.

The DNS validation set consisted of 2,980,000 requests. We started with the
3,000,000 total requests and subtracted the 10,000 used to train the good content filter
and then subtracted the 10,000 used to train the bad content filter. This then included
62,942 known malicious requests that were not used in any of the training sets.

4 Results

The results of our experiments indicate that, for our data sets, the Anagram and
micro-signature approaches provide very similar performance. This is surprising as the
micro-signature approach is portrayed in the literature as simply a minor augmentation
to the overall Anagram approach. We first provide a look at the overall area under the
ROC curves for all data sets and then look specifically at the HTTP and DNS results in
more detail.

The area under the ROC curves for all three validation sets are shown in Tables 1
and 2. In the very best case for Anagram, it has an area under the curve of just 0.0028
more than the micro-signature approach. In the worst case (DNS), it slightly under-
performs micro-signatures, although by such a thin margin that the difference is likely

40 R. Harang and P. Mell



not significant. It is especially interesting that the micro-signature approach was able to
achieve this performance having been trained on only 10,000 malicious packets and
tested against data sets with up to 3 million requests.

In Fig. 1 we show the full ROC curve where Anagram has the greatest advantage
over micro-signatures with respect to the area under the curve (the HTTP validation set
with the real attacks). Notice the similarities between both algorithms. While some
differences do exist, the visual impact of this is highly exaggerated by the logarithmic
scaling of the x-axis. While such scaling is not common for ROC curves, we will do
this to highlight the importance of the true positive rate (TPR) values at very small false
positive rates (FPRs). This is because for network anomaly detection, the number of
packets is typically very high and an IDS will thus only be useful if it can operate at
extremely low false positive rates [10].

We now review each of the validation sets in detail and analyze the portions of the
ROC curves that best show the distinctions between the two approaches under analysis.

Table 1. HTTP results

Area under ROC curve per data set
Real attacks Generated attacks

Anagram 0.9648 0.9998
Micro-signatures 0.9620 0.9997

Table 2. DNS results

Area under ROC curve

Anagram 0.999963
Micro-signatures 0.999996

Fig. 1. Full ROC curve for the HTTP validation set with real attacks
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4.1 HTTP Results

As shown in Fig. 1 for the real HTTP attacks, Anagram has a better TPR than the
micro-signature approach at FPRs at .0001 and above. At extremely low FPRs
(.000001 and below), the micro-signature approach has a slight advantage. The largest
Anagram advantage is at a FPR of .0001 where the Anagram TPR exceeds that of the
micro-signatures by .12. The largest micro-signature advantage is at a FPR of 0 where
the micro-signature TPR exceeds that of Anagram by .03. Both methods converge in
performance at an FPR of .01.

In Fig. 2 we see how, for generated attacks, the Anagram TPR at most exceeds that
of the micro-signature TPR by .0015 at a FPR of .0001. At the lowest observed FPRs,
micro-signatures once again have an extremely small advantage over Anagram. Both
methods converge in performance at FPRs of .001 and higher.

4.2 DNS Results

Analogous to our previous results, Fig. 3 shows how Anagram exceeds the
micro-signature approach with our DNS dataset, but only by a very small margin. Note
how at best Anagram has a TPR .013 higher than the micro-signature approach at the
same FPR. The DNS data is of particular interest as it contains a mixture of binary
encoded header information with (mostly) textual domain information at the end of the
packet. Previous work [9] has suggested that binary protocols are difficult to analyze
with n-gram methods; however, it appears that in this particular case the distributions
over malicious and benign traffic in both the textual and binary encoded portions of the
payloads are sufficiently dissimilar to permit accurate classification. In contrast to the
HTTP data, Anagram outperforms the micro-signatures (albeit by extremely fine
margins) at all FPR values. Note the extremely small range of y-axis values in Fig. 3,
indicating the close similarity of the two approaches at all FPRs.

Fig. 2. Zoomed ROC curve for HTTP validation set with generated attacks
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5 Discussion

The results clearly show the effectiveness of the overall Anagram approach for the
HTTP and DNS request datasets. Quite surprisingly, the micro-signatures performed
almost as well as the full Anagram approach when considering the area under the ROC
curves. At the very best with the HTTP generated attack validation set, Anagram had
an ROC curve with an area .0028 greater than the corresponding micro-signature ROC
curve. This overall similarity hides the fact that Anagram does outperform
micro-signatures at most (but not all) operating points (although our data sets are
substantially smaller than those described in [8], which may also account for the
slightly poorer performance of the anomaly detection portion). In the best case at a
.0001 FPR with the HTTP real attack validation set, Anagram achieves a TPR .12
higher than the micro-signatures. However, the micro-signatures still account for the
vast majority of detections at all operating points and validation sets tested. This means
that, relative to our datasets, the seminal Anagram anomaly detection system that
proved the usefulness of n-grams for network packet inspection achieves the majority
of its effectiveness from a subsystem that is effectively signature based.

However, this signature based subsystem is very different from typical signature
based systems. The signatures are automatically generated from known malicious
packets and are very small in size. It is the presence of groups of signatures that are
indicative of an attack, not just single signatures as is the case with standard signature
based IDSs. This means that, while clearly signature based, micro-signatures can also
potentially generalize to new attacks. This micro-signature paradigm is then a hybrid
anomaly-signature system that, in our literature survey, has not been explicitly
investigated before. Micro-signatures are not a new discovery (having been included
within Anagram in 2006), but they were not highlighted as a major contributor and
were not separately evaluated. In this work, we have empirically shown the importance
of this component and suggest that micro-signatures can provide a new avenue of IDS
research.

Fig. 3. Zoomed ROC curve for DNS validation set
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An interesting aspect of micro-signatures (that is newly discovered in this research)
is that their accuracy can be extremely high even with a small training set. We used
385,751 bad n-grams for the HTTP data set and achieved similar HTTP detection
results to the original Anagram paper [8], which used 30 million bad n-grams. For the
DNS work, while we can’t compare the results directly to [8], we achieve a high
detection capability with only 78,532 bad n-grams. This suggests that the
micro-signatures generalize to attacks not present in training data, although further
research is necessary to quantify this. With a training set of just 10,000 malicious DNS
requests, the micro-signatures were able to detect a set of 62,942 malicious requests
with a TPR of .995 at a FPR of .0001. This may be potentially explained by consid-
ering micro-signatures as a form of supervised learning, while the anomaly detection
component of Anagram is more closely related to a one-class unsupervised learning
problem. Supervised learning approaches for intrusion detection using n-grams have
been shown to be successful elsewhere [11], although they are typically significantly
more complex than the simple set membership tests we consider here.

One consideration in the use of micro-signatures, is their resilience to evasion
attacks. In particular, the normalization to packet length in our micro-signature
approach could lead to an evasion attack where a malicious packet is stuffed with a lot
of normal data; this “content mimicry” attack is considered within the original Ana-
gram paper, where it is addressed via subsampling of the packet payload [8]. While the
mimicry resistant approach suggested in the original Anagram paper will likely not be
as effective for micro-signatures, another potential avenue for handling content
mimicry might be through not normalizing the micro-signature counts to packet length.
Not shown in this paper are results which find that this idea is effective, but has worse
performance than normalized micro-signatures.

6 Related Work

The difficulty of applying machine learning in general to intrusion detection is dis-
cussed by Sommer and Paxson [12], which points out several features of intrusion
detection problems that make it difficult to successfully apply machine learning; this
includes the rareness of attacks, the high cost of diagnosing detected attacks, and the
complexity of the input data. A more probabilistic argument is made in [10] in terms of
the base rate fallacy. Nevertheless, multiple examples of anomaly-based and unsu-
pervised network intrusion detection methods can be found in the literature.

One of the earliest n-gram approaches is that of the PAY-L system [6], which
clusters network traffic based on the distribution of 1-grams. The Anagram system [8],
which forms the basis of our analysis, extends the length of the n-grams to between 5
and 9, while also addressing the issue of “content mimicry”. In perhaps the most
general case, the issue of anomaly detection via n-grams in non-textual, binary pro-
tocols is considered by Hadžiosmanović et al. [9], building on the work of [6, 8]; this
work examines classifiers that make no use of any protocol-specific domain knowledge
and concludes that n-gram based methods generally perform poorly for binary proto-
cols, with an unavoidable tradeoff between high detection rate and low false positive
rate. This is formalized in the work of [14], which in addition to evaluating the settings
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in which n-gram based tools may be expected to perform well, also empirically
examines a number n-gram based intrusion detection systems, including the Anagram
system. While they do examine the “benign” filter alone and in conjunction with the
malicious content filter, they do not examine the contribution of the malicious content
filter alone. Finally, similarly to the clustering described in [6], the work of [13]
examines the use of a self-organizing map for on-line clustering of packets.

Domain-specific knowledge, in the form of partial parses of protocols, can be used
to extract more specific sets of features that help in the identification of anomalous
content. In Robertson et al. [15], for instance, web requests are processed by spe-
cializing to particular web components, and then learning simple specialized models
conditional on each field and component – in effect learning a mixture of site-specific
‘sub-protocols’ within HTTP. Guangmin [16] performs similar tokenization for use in
an artificial immune system model. Ingham et al. [17] attempt to learn deterministic
finite automata (DFAs) for normal HTTP traffic while detecting, parsing, and trans-
forming known features (such as email addresses) in order to control complexity. The
high degree of structure in the underlying grammar (HTTP) combined with the gen-
erally limited character set all contribute to the ability of such systems to be effective.
However, these systems are also highly specialized to their particular domain of
application and so cannot extend to more general intrusion detection scenarios.

Finally, as machine learning techniques have developed, anomaly-based IDS work
has kept pace. More advanced approaches to the problem include that of Gornitz et al.
[18]. Here, active learning is used to request that specific packets be labeled by an
outside mechanism (e.g. a human analyst) thus maximizing the discriminative power of
the learning algorithm within a limited budget of time and effort. While such systems
do require more resources to train initially, they typically result in significantly
improved performance over purely unsupervised systems. The use of the bad content
model in the Anagram system [8] may be viewed as a non-active, simplified version of
this semi-supervised approach.

7 Conclusion

The n-grams methodology has arguably been the most successful technique for
anomaly detection within packet payloads, with Anagram [8] being the seminal work.
We tested the Anagram anomaly detection system on two ubiquitous network proto-
cols, confirming its effectiveness on HTTP requests and newly demonstrating its
effectiveness on DNS requests. We analyzed the two primary components of Anagram
and showed that, for our data, the known bad n-gram filter accounted for the vast
majority of the detection capability and that the identification of anomalous n-grams
provided only a marginal improvement. Furthermore, we showed that the automatically
generated micro-signatures (comprising the known bad n-gram filter) provide an
effective detection abstraction and can be used to create standalone n-gram based IDSs,
which have performance comparable to Anagram under a wide range of operating
conditions.

This study strongly suggests that the effectiveness of Anagram is not primarily due
to its core anomaly detection filter but instead to a novel signature detection
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methodology (i.e., micro-signatures) that was never highlighted in the literature. Thus,
this result may indicate a new avenue for IDS research that is not pure anomaly
detection but that also deviates greatly from standard signature detection. Unlike
anomaly detection, it uses signatures and requires some reference set of malicious
traffic. Unlike standard signature detection, it neither looks for arbitrary and variable
length substrings or patterns within packet data nor does it require humans to write
complete descriptions of indicators of malicious traffic. Instead, it can automatically
construct n-gram based signatures automatically from malicious traffic, once that traffic
is identified.

In future work, we plan to evaluate how to most effectively use micro-signatures.
We plan to create micro-signatures from existing IDS signatures and compare the
micro-signature IDS performance against the standard signature based IDS perfor-
mance. We also need to evaluate the extent to which a group of micro-signatures can
hinder an attacker from creating variations of attacks that evade current signature sets.
Building on this, we need to evaluate how much micro-signatures generalize within
classes of attacks or even between different classes. The various parameters that can be
set for the micro-signatures, including the length of the n-gram used, the parameteri-
zation of the Bloom filter (or other data structure), and methods for selecting the
threshold parameter in the absence of extensive validation data, all require further
study. Methods for providing additional situational awareness around positive results
from micro-signatures should also be considered; we need to either identify the por-
tions of the packet in which micro-signatures were found or (if the micro-signatures
were created from existing signatures) find a way to link the micro-signature to source
data for easier interpretation. Finally, the effectiveness of micro-signatures across
multiple protocols must be examined, including the potential of combining
micro-signatures for multiple protocols into a single, larger Bloom filter.
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Abstract. Recommender systems are tools for processing and organiz-
ing information in order to give assistance to the system users. This
assistance is provided by analyzing their own preferences or the prefer-
ences of their community. This paper introduces an approach based on
content-based recommendation for efficient security administrators assis-
tance in the context of reaction against intrusion detection. The proposed
methodology considers the set of active contexts while analyzing the secu-
rity administrator decisions historic. It provides better recommendation
depending on the contexts in which the system is operating. For instance,
in an automotive system, given an attack scenario, the fact that a vehicle
is operating on downtown or on a highway influences countermeasures
selection.

1 Introduction

Decisions making against an attack detection is a complex task, because applying
an inappropriate countermeasure given a specific attack could be more harmful
than the attack itself and could have deleterious effects on the system. In other
words, a countermeasure that remedies to a specific attack while causing the
minimum loss on the nominal system functional behavior (e.g., performance,
availability) should always be preferred over other proposed countermeasures.
Moreover, an appropriate countermeasure should depend on the context in which
the system is operating. For instance, when considering a database server in a
private network of a company, the availability criterion should be favored during
work time when employees are using the system’s database, but the performance
criterion should be preferred outside the working hours when database backups
are created.

We believe that the goal of modern security systems is not only to maintain
the system in safe conditions but also to satisfy the system requirements. Thus,
we propose in this paper an approach based on a recommender system using
Multi-Criteria Decision Making (MCDM) method for assisting system security
administrators while selecting the appropriate countermeasures against a specific
attack scenario. This approach considers the different effects a countermeasure
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could have on the system as criteria to be considered when selecting the appro-
priate countermeasures. The objective of this paper is not to replace the security
administrator during the countermeasures selection process, but rather to rec-
ommend system responses based on the security administrator decisions historic.
This approach permits also to automatically select appropriate countermeasures
in critical cases where the system security administrator is unable to select them.
We apply the proposed methodology to automotive systems use case to show how
countermeasures could be recommended, given a detected attack scenario and
according to the contexts in which the system is operating.

The paper is organized as follows: Sect. 2 presents related works. In Sect. 3,
we show how the system responses set is generated given an intrusion scenario.
Section 4 introduces the MCDM approach for security administrator assistance.
Section 5 shows how to integrate the MCDM module into an existing system
response against intrusion detection. We present deployment scenarios highlight-
ing how our approach is applied in the use case of automotive system in Sect. 6.
Section 7 concludes the paper and outlines future work.

2 Related Work

2.1 Automated System Response

There have been various models and architectures proposed for dynamic decision
making based Intrusion Response Systems (IRS). The aim of such systems is to
respond in real time to the attack in progress. Dynamic decision making based
IRS involves a reasoning process about an ongoing attack based on detecting
alerts and selecting the most appropriate response. The authors in [1] propose
a dynamic intrusion response approach that evaluates the response effects on
the system using a dependency tree structure. This approach allows to select
the response which has the minimal negative effect on the system. However, the
work presented in [1] is not providing countermeasures that depend on the con-
text in which the system is operating. In [2] the authors propose a gain matrix,
which formulates the effects of selecting a specific response on the system. This
formulation is based on two metrics; the probability of the system to be on a
specific step from the attack scenario and the benefit from applying a system
response on a specific system state. The main limitation of this approach is the
large number of countermeasures to be selected especially when the correspond-
ing attack scenario is constituted of a large number of attack steps. The challenge
in such IRS systems is to select the optimal set of candidate responses in real
time. Existing works propose approaches that rely on heuristics to reduce the
size of candidate responses given a detected attack scenario. In [3] the authors
present an approach called ADEPTS that considers only the countermeasures
that are applicable in the sites where the detected alert was generated. This
approach limits the size of the system responses set. ADEPTS is not evaluating
the candidate system responses according to the response effect on the overall
system. The proposed approach considers only the system response effect on the
specific service where it is deployed. In our work, we propose a dynamic decision
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making based IRS that generates an optimal system responses set called the
preferred extension using argumentative logic. The proposed approach considers
the multi criteria aspect of systems to provide responses satisfying the different
objectives the system administrator could have. Moreover, this approach ana-
lyzes the security administrator decisions historic to provide a better assistance
when detecting a new intrusion alert.

2.2 Multi-Criteria Decision Making (MCDM)

The aim of this section is to address the recommendation problem from the
MCDM perspective and to demonstrate the interest of applying MCDM methods
to design multi-criteria recommender systems. There are three basic approaches
for recommender systems: the content-based recommendation [4], collaborative
filtering [5] and a hybrid approach [6] that combines collaborative and content-
based methods. The collaborative filtering approach consists in collecting evalu-
ations about the different contents and generating predictions for the user about
a specific content by comparing them with the evaluations done by users with
similar tastes and preferences.

The Content-based approach focuses only on the user evaluations to gener-
ate recommendations. This approach consists in analyzing the user evaluations
historic to identify the user common features of interest. The work done in [4]
presents an approach that collects user evaluations of the interest of visited pages
on the World Wide Web. The authors show that a user profile can learn from
this information and use it to recommend other pages that may interest the user.

There exists several contributions showing recommender systems that engage
some MCDM methods as presented in [7,8]. The authors in [9] propose a frame-
work to support strategic decision making in an organization. The proposed
framework employs Multi-Criteria Decision Analysis to support decision making
in strategy workshops. This framework takes into account the organization mod-
ern nature which is less hierarchic and more participative with a more distrib-
uted knowledge and decision taking. The approach proposed in [9] considers the
multiple objectives aspect that must satisfy the organization strategic decision.
However, this framework presents a high level of uncertainty. In [10], Zeleny
proposes to increase the decider confidence and to limit to the post-decision
regrets. Zeleny proves how pre-decision and post-decision steps are interdepen-
dent. In [11], the authors propose to model the MCDM process using Model
Driven Engineering approaches. The proposed approach offers a guidance for the
analyst and improves the communication between deciders and analysts. More
related to the security field, the authors in [12] propose a novel approach that
combines an MCDM approach called KAPUER with classic access control tools
to assist users while writing high level permission rules. This approach includes
algorithms that converge after the first phase of initializing user preferences.

In this paper, we propose a recommender system based on the content-based
approach to assist the system security administrator in choosing the most appro-
priate countermeasures according to his/her requirements, given a specific attack
scenario. Using a simple recommender system is not appropriate in the context
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of system response against intrusion detection. It cannot take into account the
multiple dimensions of the impact that a countermeasure could have on the sys-
tem state. The recommended tool proposed in this work applies MCDM methods
to consider the multiple criteria nature of countermeasures.

3 Responses Set Generation Process

In our previous work, we proposed an approach for system response against
intrusion detection. This approach allows to anticipate the attacker’s intentions
by generating potential future actions that the attacker may perform and by gen-
erating a response set that remedy to the potential attack scenario. The authors
used the argumentative logic [13] for this purpose by designing the Contextual
Value-based Argumentation Framework (CVAF) which is an extension of the
Value-based Argumentation Framework (VAF) [14]. This approach is used to
generate an optimal response set according to a detected intrusion based on an
argumentation reasoning. However, it does not provide a tool to recommend
better countermeasures corresponding to the security administrator preferences
and requirements. This tool is necessary especially when the generated response
set is large and the decisions of security administrator must be provided in a
real-time. Besides, security administrators may not have the required knowl-
edge about an ongoing attack or about the proposed countermeasures. In such
cases, a recommending module is useful to overcome these issues. In our work,
we opted for this approach and we extend it by integrating an MCDM module.
In this section, we present briefly the proposed approach for generating system
responses against intrusion.

3.1 Argumentative Logic

Due to the dynamic nature of modern systems, we argue in [15] that using
a static argumentation framework in intrusion response context is not adapted.
Thus, we extend the definition of VAF [14] to that of a contextual VAF (CVAF).

Definition 1. A contextual value-based argumentation framework, denoted
CVAF, is a 6-tuple 〈AR, attacks, V, val, C, ContPref〉 where:

– AR is a set of arguments and attacks is a relationship over AR × AR
– V is a non-empty set of values
– val is a function which maps elements from AR to elements of V
– C is a set of contexts. A context is either active or inactive. At a given time

multiple contexts can be active
– ContPref is a transitive, irreflexive and asymmetric preference relation on

V × V which depends on the set of active contexts in C
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3.2 Generating Potential Attack Scenario

Purpose: In modern attacks, the attacker can execute several actions in order
to make the execution of other actions possible until reaching a certain intru-
sion objective. The aim of generating potential attack scenario is to anticipate
the attacker’s intentions by generating correlated sequences of virtual actions
instances starting from a malicious action detection. An action A is said to be
correlated to an action B if the effects of action A are a subset of action B pre-
conditions. In other words, two actions are said to be correlated, if the execution
of one action has a positive influence on the execution of the other one.

Correlation Module: Once an alert is generated, the models instantiation
module instantiates the action corresponding to the detected alert as well as
other potential actions and intrusion objectives. As shown in Fig. 1, the correla-
tion module generates a sequence of detected actions, correlated virtual actions
instances and potential intrusion objectives. This constitutes the potential intru-
sion scenario for the detected action. Actions, intrusions objectives and counter-
measures are modeled in the proposed approach in Lambda [16].

3.3 Constructing the Set of Arguments

Given a detected alert, the proposed approach considers the arguments set AR
as the conjunction of the detected action, the potential actions hypothesis, the
potential intrusion objectives and the countermeasures that mitigate the effects
of the attack scenario different steps. The attacks relation role in this approach
is to select all countermeasures that are anti correlated to the attack scenario
steps (i.e., a countermeasure is said to be anti correlated to an action, if the
countermeasure effects on the system block the action execution).

3.4 Generating the Preferred Extension

Purpose: Attacks relation between arguments is also used in this approach to
formalize conflicts between countermeasures. Two countermeasures are said to

Fig. 1. Generating preferred extension architecture
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be in conflict, when the effects of a countermeasure block the execution of the
other one (e.g., filter host countermeasure requires, in its preconditions, that
wifi must be on, whereas disable wifi turns the wifi off). To avoid such problem,
the authors propose the Anti Correlation Module (ACM) that allows to generate
a set of coherent countermeasures.

Anti Correlation Module: The authors use the CVAF to generate a set of
preferred extension starting from the set of arguments, given an intrusion sce-
nario. The preferred extension constitutes the maximal set (with respect to set
inclusion) of coherent countermeasures according to the security administrator
preferences. The preferences are statically predefined according to the different
combination of active contexts and using the notion of defeat between coun-
termeasures. This notion is used in the proposed approach, by a mono-criterion
comparison. Each countermeasure being assigned to a simple nominal system
functional behavior (e.g., precaution for disable wifi), which constitutes the
value of the corresponding countermeasure. According to the CVAF, when two
countermeasures are attacking each other, the defeated one is the one which has
the lower value. In this work, we consider the multi-criteria nature of counter-
measures; the defeats notion is implemented to compare the concerned counter-
measures scores. The generating responses system architecture proposed in [15]
is presented in Fig. 1.

4 Multi-Criteria Decision Making Module

We designed an MCDM module to support security administrator during system
response against intrusion detections. The recommender system we designed fol-
lows a cyclical process as shown in Fig. 2. This cycle is triggered when the system
detects an intrusion and generates its preferred extension. The security admin-
istrator selects countermeasures among recommended ones generated from the
preferred extension. The system consults selected countermeasures evaluations
according to a predefined criteria list. The criteria list presents a list of nom-
inal system functional behavior (e.g., availability, integrity, performance). The
evaluation consists in assigning to each criterion, a mention that describes the
impact level the countermeasure could have on the system state. The possi-
ble evaluations are (Very Low(0), Low(1), Medium(2), High(3), Very High(4)).
“Very High” implies that the countermeasure has the highest impact level on
the system according to the considered criterion (e.g., countermeasures that dis-
able wifi connection ensure a very high level of precaution). This evaluation
is done by functional experts that study the different effects a countermeasure
could have on the system state (e.g., level of availability loss). Then, the system
checks the list of active contexts during countermeasures selection time by the
security administrator. To learn more about the security administrator way of
reacting, we propose a learning module which learns about the security admin-
istrator preferences and requirements according to his/her decisions historic.
Preferences in intrusion response context are considered in our approach as the
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Fig. 2. Recommender system architecture

criteria having the highest score according to a specific combination of active con-
texts. We define the Context/Criteria matrix, which constitutes the core of the
learning phase and which allows to analyze choices made by the security admin-
istrator. It is often called an options matrix or a decision table. This matrix is
updated when countermeasures are selected by the security administrator and
depending on the context on which the system is operating. For instance, when
a security administrator always selects countermeasures having a high score on
“precaution” criterion in a critical context, Criteria/Context matrix generates
“precaution” as the most preferred criterion by the security administrator in this
critical context. Thus, the recommendation of some countermeasures among all
the preferred extension refers to each criterion score provided by the Contex-
t/Criteria matrix. Different parts are involved in the Multi-Criteria Decision
Making process such as the learning module, the recommending module, and
the security administrator interface.

4.1 Learning Module

We define the learning part as the different process allowing to give a visibility
about the security administrator way of reacting and the different parameters
influencing his/her decisions. This part is supplied by the security administrator
decisions historic by analyzing the score of different criteria. Each time the secu-
rity administrator validates a decision, the Context/Criteria matrix is updated
with the selected countermeasure values according to each criterion. The update
process of the Context/Criteria matrix according to n selected countermeasures
is established as follows:
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Definition 2. Let Mat be a Context/Criteria matrix, Mat is a matrix of inte-
gers, j ∈ card(criteria) and criteria(CMi, j) a function returning the jth crite-
rion evaluation corresponding to the CMi countermeasure.

Matupdated[contconfig][j] = Matcurrent[contconfig][j] +
n∑

i=1

criteria(CMi, j)

Where contconfig presents the current combination of active contexts, and
criteria(CMi, j) ∈ [0, 4] as described in the previous section.

4.2 Recommending Module

The recommendation phase is based on the Context/Criteria matrix to deter-
mine the decider favored criteria per context. The recommending module calcu-
lates the jth coefficient criterion as follows:

Definition 3. Let Mat be a Context/Criteria matrix, n = card(criteria) and
j ∈ {1..n}

coeff(j, contconfig) =
Mat[contconfig][j]
n∑

i=1

Mat[contconfig][i]

Where coeff(j, contconfig) ∈ [0, 1]

Coefficients are then used in the score assignment phase where candidate coun-
termeasures are evaluated based on their value per criterion and the criterion
coefficient. The score of each candidate countermeasure must be calculated upon
dynamic criteria coefficients to reflect a score compatible with the importance the
security administrator assigned to each criterion according to each set of active
contexts. The score assignment presents the last phase of recommendation, which
consists in a dynamic assignment of score to each proposed countermeasure so
that the system can compare them and recommend the most relevant ones. There
exists several MCDM methods for calculating alternatives scores (e.g., SAW [17],
TOPSIS [18], ELECTRE [19], AHP [20]). In this approach, we opted for SAW
(Simple Additive Weighting) method which evaluates alternatives based on two
metrics: the performance value of the alternative in term of a specific criterion,
and the relative weight of importance of this criterion. Alternatives scores are
calculated using SAW method as follows:

Definition 4. Simple Additive Weighting (SAW) method

∀i ∈ {1, N}, Si =
M∑

j=1

wj × rij

Where: Si is the overall score of the ith alternative, rij is the rating of the
ith alternative for the jth criterion, wj is the weight (importance) of the jth

criterion, N the number of alternatives and M the number of criteria.
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SAW method is applicable only when all alternatives are evaluated in the same
unit. Otherwise, other methods, such AHP for example, that allow to stan-
dardize alternatives evaluations, should be applied. As presented in this section,
possible evaluations of all countermeasures are standardized (i.e., possible coun-
termeasures evaluations according to each criterion are: 1, 2, 3 and 4). Thus,
SAW method is applicable in our case of study. In addition, SAW is known as
the simplest and the faster MCDM method. This will be helpful when designing
systems response against intrusion detection since such systems must respond to
real-time constraints especially in critical contexts. The score of each proposed
countermeasure is calculated using SAW method as follows:

Definition 5. Let CM be a countermeasure, n = card(criteria), j ∈ {1..n}
and criteria(CM, j) ∈ [0, 4]

Score(CM, contconfig) =
n∑

j=1

(criteria(CM, j) × coeff(j, contconfig))

4.3 Security Administrator Interface

The aim of the recommending system is not only to replace security administra-
tors and to make decisions in their places, but also to assist and show them the
points that alone they are not able to see. As explained in Sect. 4.1, the secu-
rity administrator provides information that supply the learning module. Each
time the security administrator selects some countermeasures, he/she is asked
to validate his/her decision. The validation phase allows the learning module to
consider only the decisions that satisfy the security administrator, the learning
module does not consider the administrator regrettable countermeasures. Once
the administrator validates his/her decisions, the learning module updates the
Context/Criteria matrix, to take into account the new decisions.

Fig. 3. Overall system architecture
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5 MCDM Module Integration with Intrusion Response
System

The overall system architecture is described in Fig. 3, where the MCDM mod-
ule is integrated with the intrusion response architecture presented in [15]. In
our previous work, the reasoning module refers to a criteria order called “ratio-
nale order” which is manually predefined by the system expert. In this work,
we integrate the MCDM module to the existing architecture. In this approach,
the criteria order will be automatically established by referring to the security
administrator decisions historic. The overall system process can be summarized
in four steps.

5.1 Prediction Phase

Reacting in a critical context against an attack after its execution can not always
mitigate the adverse effects of the attack. In these cases it is essential to antici-
pate the attacker’s intentions and to take precautionary measures to prevent the
attacker from reaching his/her intrusion objective. For this purpose, the app-
roach proposed in [15] consists on instantiating actions hypothesis correlated to
the detected malicious action. The authors consider, as an example, that the
system detects an action consisting on cracking the wifi passkey. This action is
modeled in Lambda as follows:

name : wifi passkey crack(A, T )
pre : role(T,wifi gateway) ∧ is on(T )
post : network access(A, T,wifi)

The system instantiates correlated attack hypothesis that the attacker may exe-
cute. The system considers message saturation, which consists in overflowing
the ITS server with messages, as a correlated action. This action is modeled as
following:

name : message saturation(A, T,M)
pre : network access(A, T,M) ∧ role(T, its server) ∧ is on(T )
post : dos(T )

Message saturation is considered as a correlated action, since wifi passkey
crack postconditions are a subset of message saturation preconditions. The
system generates as well manipulation relayed messages as a potential intru-
sion objective correlated to message saturation.
Manipulation relayed messages is then considered as the intrusion objective
that the attacker can achieve starting from wifi passkey crack and through the
message saturation attack. This intrusion objective is modeled as follows:

name : manipulation relayed messages
condition : manipulate(A, T ) ∧ dos(T )

According to the example, an attack scenario {wifi passkey crack,message
saturation, manipulation relayed messages} is to be considered in the
responses generation phase and not only the wifi passkey crack.
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5.2 System Response Generation Phase

In this phase, the Anti Correlation Module selects countermeasures that are anti
correlated to the generated attack scenario. To avoid generating a response set
containing conflictual countermeasures, we proposed in [15] an approach that
refers to a mono criterion evaluation to determine which countermeasure should
be selected. In this work, we propose a more enhanced approach than the one
proposed in [15] by integrating the MCDM module. This module allows a more
adaptive evaluation between countermeasures by comparing their scores. This
allows an evaluation that covers all the countermeasures impacts on the system,
rather than considering the main effect of a countermeasure on the system as
the only criterion to be considered. MCDM module intervenes in the proposed
framework at two levels: (1) It automatically updates the criteria order according
to the set of active contexts in the preferred extension generation phase; (2) It
generates the recommended countermeasures among the preferred extension.

5.3 Recommendation Phase

Once a preferred extension is generated according to a specific attack scenario,
all generated countermeasures are subdivided into criteria evaluations. The rec-
ommender system refers to the current Context/Criteria matrix to generate the
criteria order and coefficients as described in Sect. 4. Then, the system calcu-
lates countermeasures scores starting from countermeasures criteria evaluations
and the criteria order and coefficients as defined in Definition 5. Countermeasures
having highest scores will be recommended over the other system responses from
the preferred extension. Security administrators are asked to select countermea-
sures that satisfy their preferences and requirements according to the current
set of active contexts. This module is summarized in Algorithm 1.

Theorem 1. Given a set of N generated countermeasures and M criteria, the
complexity of the Algorithm1 is O(N × M + Nlog(N) + 2M) in time.

Proof. According to Algorithm1, the loop from line 2 to line 4 costs O(M).
The second loop (from line 5 to line 7) costs also O(M). The nested loops (from
line 8 to line 13) costs O(N ×M). Finally, the execution of the function “order”
(line 14)costs in the worst case O(Nlog(N)), since it uses merge sort. Therefore,
the overall time complexity of Algorithm 1 is O(N × M + Nlog(N) + 2M).

5.4 Matrix Update Phase

The Context/Criteria matrix is updated when countermeasures are selected by
the security administrator and depending on the context in which the system
is operating. When the security administrator selects countermeasures from the
preferred extension, the Context/Criteria matrix is updated by adding selected
countermeasures evaluations according to each criterion to the matrix current
scores. This phase provides information concerning the security administrator
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Algorithm 1. ConstructRecommendedList(PreferredExt,contconfig)
1: Sum per context = 0
2: for all criterion ∈ Criteria do
3: Sum per context ← Sum per context + Mat[contconfig][criterion]
4: end for
5: for all criterion ∈ Criteria do
6: coeff(criterion, contconfig) ← Mat[contconfig][criterion] / Sum per context
7: end for
8: for all argument ∈ PreferredExt do
9: Score(argument, contconfig) = 0

10: for all criterion ∈ Criteria do
11: Score(argument, contconfig) ← Score(argument, contconfig) +

criteria(argument, criterion) × coeff(criterion, contconfig)
12: end for
13: end for
14: Recommended Countermeasure List ← order(PreferredExt, contconfig)
15: return Recommended Countermeasure List

preferences and requirements using his/her personal decisions historic organized
according to the different criteria. It provides criteria order according to each
set of active contexts as well as the coefficient of importance to give to each
criterion. In this work, the Context/Criteria matrix supports the generation of
preferred extension by updating the criteria order and coefficients, which allows
to apply the defeat notion between countermeasures by comparing their scores.

6 Application to the Automotive Case of Study

We show in this section, the deployment of our approach in the automotive
system as an example of a case study.

6.1 Automotive Systems

Modern automotive system consists of one hundred micro-controllers, called
Electronic Control Units (ECU) installed in the architecture specific components
and connected by bridges. Vulnerabilities in automotive system are mainly due
to the large number of enforcement points in the system architecture. Security
vulnerabilities can be exploited to affect automotive system different compo-
nents (e.g., lock/unlock car wheel at speed, disable brakes, kill engine, disable
cylinders) [21,22]. Such attacks are always originating form compromise Internet
or Bluetooth connection increasingly available in modern vehicles. Three main
contexts are considered in this approach: in car context which is defined to acti-
vate or deactivate specific activity in the vehicle, V2V context which is defined
to manage communication within vehicles and V2I context which is defined to
manage communication between vehicle and infrastructure. Extra contexts are
considered as well, describing the environment on which the vehicle may operate
(e.g., high way, parking, rainy day, night).
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6.2 Deployment Scenario

We consider in this section, the attack scenario S presented in Fig. 4. As an
output of the reasoning module presented in [15], the system generates a pre-
ferred extension that consists in a coherent set of candidate countermeasures.
The generation process of the preferred extension depends on the current active
contexts. The Figs. 4 and 5 show that the preferred extension corresponding
to S scenario are Ex pref{in car} and Ex pref{in car,high way} respectively, for
{in car} and {in car, high way} context. The shadowed nodes represent the
defeated countermeasures. Where:
Ex pref{in car} ={Filter host, Reduce frequency, Add source auth, Limit traffic,
Digitally sign message, Remove requirement, No Cryp ch-ecksum}.
Ex pref{in car,high way} = {Disable wifi, Reduce frequency, Add source auth,
Limit traffic, Digitally sign message, Remove requirement}.

We consider the Context/Criteria matrix presented in Table 1. Once the secu-
rity administrator selects and validates countermeasures, the Context/Criteria
matrix is updated by evaluations corresponding to each criterion. Values in
bold present the security administrator most preferred criterion according to
the different combination of active contexts. The recommending module gen-
erates the criteria order and coefficients using Definition 3 in Sect. 4.2. Table 2

Fig. 4. System response against crack passkey attack in {in car} context

Fig. 5. System response against crack passkey attack in {in car,high way} context
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Table 1. Context/Criteria matrix

Contexts Integrity Availability Confidentiality Performance Precaution

{in car} 64 88 110 104 22

{in car, high way} 81 72 127 112 103

{V 2V } 77 102 97 67 54

Table 2. Criteria order and coefficients provided by the Context/Criteria matrix
depending on the active contexts

(a) {in car} context (b) {in car, high way} context (c) {V 2V } context

Criteria Coeff Criteria Coeff Criteria Coeff

1 Confidentiality 0.284 1 Confidentiality 0.257 1 Availability 0.257

2 Performance 0.268 2 Performance 0.226 2 Confidentiality 0.244

3 Availability 0.227 3 Precaution 0.208 3 Integrity 0.194

4 Integrity 0.165 4 Integrity 0.164 4 Performance 0.169

5 Precaution 0.057 5 Availability 0.145 5 Precaution 0.136

presents the criteria order and coefficients according to three contexts config-
urations ({in car},{in car,high way},{V 2V }). This table is provided by the
Context/Criteria matrix. The criteria coefficients reflect the importance to be
attached to each criterion at the recommendation phase. Once the system gen-
erates a preferred extension corresponding to a specific attack scenario, the sys-
tem refers to the criteria order and coefficients tables to calculate the score
of each proposed countermeasure. For instance, the preferred extension gener-
ated in in car context and corresponding to S, contains two countermeasures:
Reduce frequency and Add source auth. In the following, we present the rec-
ommendation process for both countermeasures. We denote by Rf and Asa
respectively, Reduce frequency and Add source auth countermeasure. Evalu-
ations done by functional experts corresponding to both countermeasures are
presented in Table 3. To determine which countermeasures should be recom-
mended, the system calculates the score of each countermeasure using the Def-
inition 5 in Sect. 4.2. For instance, the score attribution of Reduce frequency
and Add source auth is calculated as follows:

Score(Rf, in car) =
5∑

i=1

(criteria(Rf, i) × Coeff(i, in car))

Score(Rf, in car) = 0.165 × 3 + 0.284 × 2 + 0.057 × 4 = 1.291

The Add source auth score in in car context is calculated with the same formula
as Reduce frequency, we obtain Score(Asa, in car) = 2.337.

Thus, Add source auth countermeasure will be recommended over
Reduce frequency countermeasure. Figure 6 summarizes the score assignment
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Table 3. Examples of countermeasures values per criteria

(a) Reduce frequency (b) Add source auth

Criteria Value Criteria Value

Integrity High (3) Integrity High (3)

Availability Very Low (0) Availability High (3)

Confidentiality Medium (2) Confidentiality Medium (2)

Performance Very Low (0) Performance Medium (2)

Precaution Very High (4) Precaution Low (1)

Fig. 6. Score assignment using SAW method for reduce frequency and add source
authentification countermeasures in {in car} context

Table 4. Updated Context/Criteria matrix

Contexts Integrity Availability Confidentiality Performance Precaution

{in car} 67 91 112 106 23

{in car, high way} 81 72 127 112 103

{V 2V } 77 102 97 67 54

process for both countermeasures. The shadowed node represents the recom-
mended countermeasure.

The main goal of our approach being to assist the decider rather than replac-
ing him, the user can select the recommended countermeasures as well as other
proposed countermeasures from the preferred extension. Once the decider selects
a countermeasure, the system updates the Context/Criteria matrix as presented
in Table 4 (when the decider selects Add source auth countermeasure) and cal-
culates the new criteria coefficients per contexts. This constitutes the learning
phase of the recommendation process.
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6.3 Evaluation

As explained in Sect. 4.2, we opted for SAW method for its low computational
costs. Indeed, we showed in Sect. 5.3 that the complexity in time of the pro-
posed algorithm is polynomial. Thus, our approach provides recommendations
of system responses in real-time for a reasonable number of criteria and coun-
termeasures included in the generated preferred extension. We can notice that
the proposed approach does not provide the same results after a finite number
of executions. Once a countermeasure is applied and validated by the security
administrator, the Context/Criteria matrix is updated by the selected counter-
measure evaluations. This update induces a change in criteria coefficients and
may as well change the criteria order, which may provide different results in next
executions.

7 Conclusion and Future Works

In order to assist security administrators when selecting countermeasures, it is
necessary to have a recommender system that analyzes the security administra-
tor decisions historic to determine his/her different preferences and requirements.
We consider the content-based approach the most appropriate to achieve this
objective. The content-based approach considers the user decisions historic and
analyses them to provide appropriate recommendations. In this work, we pro-
posed an approach based on content-based recommendation for efficient security
administrator assistance when selecting the appropriate countermeasures, given
a specific attack scenario. This approach considers the set of active contexts in
different steps of generation system response as well as in the recommendation
phase. Future research and development will focus on the evaluation of the app-
roach efficiency by testing different scenarios and checking if this approach is
applicable in the context of real-time system constraints.
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of attacks. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907,
pp. 197–216. Springer, Heidelberg (2000). doi:10.1007/3-540-39945-3 13

17. Afshari, A., Mojahed, M., Yusuff, R.M.: Simple additive weighting approach to
personnel selection problem. Int. J. Innov. Manag. Technol. 1(5), 511 (2010)

18. Hwang, C., Lai, Y., Liu, T.: A new approach for multiple objective decision making.
Comput. OR 20(8), 889–899 (1993)

19. Bouyssou, D., Roy, B.: Aide multicritere a la decision: Methodes et cas. Economica,
Paris (1993)

20. Saaty, T.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
21. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,

D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security
analysis of a modern automobile. In: 31st IEEE Symposium on Security and Pri-
vacy, S&P 2010, pp. 447–462. IEEE Computer Society (2010)

22. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: USENIX Association (2011)

http://dx.doi.org/10.1007/978-3-319-31811-0_6
http://dx.doi.org/10.1007/3-540-39945-3_13


An Optimal Metric-Aware Response Selection
Strategy for Intrusion Response Systems

Nadine Herold(B), Matthias Wachs, Stephan-A. Posselt, and Georg Carle

Technical University of Munich (TUM),
Boltzmannstr. 3, 85748 Garching bei München, Germany

{herold,wachs,posselt,carle}@net.in.tum.de
https://www.net.in.tum.de

Abstract. Due to the ever increasing number and variety of security
incidents, incident management is an important and challenging aspect
of operating indispensable services. Self-protection capabilities ensure
service continuity by detecting and counteracting security incidents.
Within this process, determining the set of countermeasures to be applied
is essential. But detecting and analyzing security incidents in a com-
plex network environment—especially under the pressure of an ongoing
incident—is a challenge usually too complex for human comprehension
and capabilities. As a consequence, often catastrophic and exaggerated
actions are chosen when manually antagonizing security incidents.

In this paper, we propose a novel approach towards automatic
response selection to counteract security incidents in complex network
environments and, by relieving network operators, increase network secu-
rity. Our approach is based on defining response selection as a mathe-
matical optimization problem and providing a proven optimal combi-
nation of countermeasures. Our approach pays respect to user-defined
cost metrics for countermeasures and supports restrictions like conflict-
ing countermeasures and resource restrictions in the network. To ensure
the usability and scalability of our approach, we evaluate the performance
and show the applicability in different network settings.

Keywords: Self-protection · Intrusion response · Optimization

1 Introduction

Computer networks are the backbone infrastructure of many companies and
organizations. The availability of services provided by such networks are com-
panies’ key economic assets. A security incident can easily generate huge losses
and even human casualties. Therefore, security is a key requirement especially
nowadays, with digital crimes, industrial espionage and cyber-attacks being
omnipresent threats. Self-protection capabilities for network environments get
more and more important, particularly when critical infrastructures need to
guarantee service continuity. One approach towards self-protection is to mon-
itor the network for security incidents, detect and counteract them by taking
appropriate countermeasures (often called responses).
c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 68–84, 2017.
DOI: 10.1007/978-3-319-51966-1 5
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Contemporary computer networks consist of a large number of components
and connected subnetworks creating inherently hard to manage complexity. More
or less sophisticated Intrusion Detection Systems (IDS) (often multiple products
at the same time) monitor network traffic, components, and systems for security
incidents. In case of a security incident, IDSes may report a large, uncorre-
lated number of alerts to network operators. Without systems assisting human
operators, it is impossible for them to identify the incident, analyze its source,
distinguish between parallel but uncorrelated incidents and determine suitable
countermeasures for the whole security incident in a timely manner.

Responses have varying efficacy, affect different targets, can be mutually
exclusive, and create negative impact, e.g. downtime of services. Determining
a response strategy and a set of non-contradictory responses, which mitigate the
incident for all affected systems with few negative impact, easily overwhelms
human operators under the pressure of ongoing attacks. Such situations can
lead to sub-optimal or catastrophic decisions not increasing but instead decreas-
ing network security. Intrusion Response Systems (IRS) extend traditional IDS-
functionality beyond detection by evaluating and applying suitable responses.

In this paper, we evaluate how automated response selection can help to
increase network security by providing a proven optimal response strategy to
mitigate security incidents. This strategy can be applied autonomously or with
the confirmation of a network operator. We present a model for incident response
strategies, along with a transformation to an optimization problem, which allows
us to solve this problem with mixed integer linear programming. This formal-
ization includes costs for responses on multiple metrics, resource restrictions,
and conflicts among responses. It provides a mathematically proven optimal
response strategy. To evaluate the viability of this approach with respect to cost
and execution time, we compare this approach to two greedy heuristics while
varying different network settings. With this evaluation, we determine the net-
work characteristics the performance of this approach depends on, and determine
the benefit of using optimization in comparison to simplistic, greedy heuristics.

2 Related Work

Response selection is an essential part in the field of IRS. Different surveys on
IRS [1,6,23] show the evolution IRS went through with respect to response selec-
tion strategies. Earlier IRS started with static mappings that connect an alert to
a predefined response. In [4], the authors focus on intrusion detection methods
and block suspicious transactions. No selection process is applied and anomalies
are directly mapped to responses. As static mappings based on simple tables,
are not a sufficient solution for complex networks, and cannot cope with envi-
ronmental changes [29], IRS became more flexible using more dynamic response
selection strategies. Several systems emerged, e.g. Cooperating Security Man-
agers (CSM) [31], EMERALD [20] or AAIRS (Adaptive, Agent-based Intrusion
Response) [21] that can cope with environmental changes using different metrics.

Later on, cost-sensitive mappings [16] were introduced using estimated dam-
age and intrusion costs. They are balanced against each other to find a good
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solution. The cost-sensitive approach was improved over time to become more
precise in terms of estimating response costs and damages [26,27]. Additionally,
calculations for distributed systems were proposed [32]. [29] presents an app-
roach using dependency trees to model network configurations and a cost model
to estimate the effects of responses. To cope with uncertainty what an intruder
really did, a specification-based response on the host level was proposed [2].
To improve the scope of decision making to more than one goal, timing aspects
between selected responses were considered [18]. In [19], the effectiveness of a
response is evaluated after its execution and fed back to response selection. In
[8,9], the costs of a response plan are evaluated and the best plan is chosen.
This approach needs to generate all possible response plans and calculate the
resulting costs of each of them.

Approaches for particular domains, or to antagonize specific attacks, were
presented: relational database systems [12], wireless sensor networks [28], mobile
ad-hoc networks [10,30], and denial of service attacks [25].

However, existing approaches lack in finding an optimal solution employing a
holistic approach to counteract the whole security incident. Neither the possibil-
ity that a single response can cover more than one network entity nor conflicting
responses are respected by the work described before.

3 System Model

In this section, we define a model of the relationships between network enti-
ties, incidents, and responses. The idea is that a real-world IRS will generate an
instance of this model from the parameters of a current incident. In the next
section, we will show an automatic transformation of this model into a mixed
integer linear programming (MILP) problem which can be solved programmati-
cally. As a result, the IRS obtains an optimal sub-set of responses to execute.

3.1 Definition of Elements and Relations

The sets and symbols we use to define our system model are summarized in Table 1.
A network consists of various entities, such as hosts, routers, and firewalls. In this
model, all of these entities are contained in the set S = {s1, s2, . . .}. A subset of
these entities is affected by the current incident:A = {a1, a2, . . .} ⊆ S. The setR =
{r1, r2, . . .} contains all responses available to the IRS. A response, if successfully
executed, will mitigate the effects of the incident to one or several entities of A.
This is captured by the function f : A×R → B with B = {0, 1}. f(a, r) evaluates
to 1 for true if r “frees” entity a, otherwise to 0 for false.

The function x : S ×R → B describes which entity can execute a response. If
another entity can execute a semantically equivalent response, those responses
are treated as distinct responses. A response is executable by exactly one entity.
Thus, the following property holds: ∀r ∈ R :

∑|S|
i=1 x(si, r) = 1.

If a response is executed, costs incur. Costs are measured by a set of metrics:
M = {m1,m2, . . .}. These metrics can be defined freely by the system designer.
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Table 1. Sets and symbols used in the system model

Symbol Set Meaning

s S Set system entities

a A ⊆ S Set of entities affected by incident

r R Set of responses

m M Set of metrics

c R × M → R≥0 Cost of a response in metric

d M → R≥0 Cost of inaction (‘damage’)

x S × R → B Is response executed by entity?

f A × R → B Does response ‘free’ entity?

o R × R → B Do responses conflict?

An example for such a metric is the execution time of a response. The rationale
behind this approach is that a service may be down while the response is still
running. The cost of a response is given by the function c : R × M → R≥0.
There is also a cost associated with not mitigating the incident at all. This is the
damage d : M → R≥0, measured in the same metrics. This damage limits the
effort put into the incident mitigation: if the total cost of the selected responses
exceeds the damage, it is cheaper to do nothing.

Metrics of different domains are, in general, not comparable. To be able to
choose the “best” responses, we will later convert and weight all metrics to get
a single cost domain with the range [0,∞).

Two responses may conflict with each other. A conflict implies that only one
of those responses can be executed, but not both. A conflict can occur because of
resource restrictions of the executing entity or counteracting effects. The function
o : R×R → B describes conflicting responses. In our model, o is symmetric and
non-reflexive, so ∀r1, r2 ∈ R : o(r1, r2) = o(r2, r1) and ∀r ∈ R : o(r, r) = 0 hold.

3.2 Scope

The detection and identification of incidents, and the selection of possible
responses are out of the scope of this work. These tasks are well studied among
IDSes, both for hosts and networks. We assume that for a certain incident, the
sets R, S, and A are given. We assume that responses and attacks can be assessed
appropriately, as related work provides suitable techniques [7,13,15,33].

4 Designing the Selection Strategy

In this section, we show a transformation from the presented model into the
linear equations of an optimization problem. The goal is to find the optimal
combination of responses which mitigates the incident on all affected hosts. This
problem can be solved with MILP.
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4.1 Linear Programming

Linear programming is a well-known and well-researched technique originating
from the field of operations research. While a linear programming problem can be
solved in polynomial time, the restriction of (some) variables to integral values
makes the problem one of Karp’s 21 NP-complete problems [14]. Well-known
methods to solve linear programming problems are Basic-Exchange algorithms,
for example the Simplex -algorithm proposed by Dantzig [5], or Interior Point
methods [14]. A beneficial property of these algorithms is the possibility of a
warm start-over, where an optimal solution from a previous solution run can be
re-used. This property has a positive impact on solution performance when a
problem has to be solved repeatedly with modified matrix coefficients. To solve
an integer linear problem (ILP), first the corresponding linear problem, called the
relaxation of the ILP, is solved. Based on the optimal solution of the relaxation,
exact methods like Branch and Bound algorithms or Cutting-Plane methods can
be applied to find the integer optimal solution.

4.2 Formulating the Optimization Problem

The model from Sect. 3 describes the network environment, the security inci-
dent, and responses available. The corresponding optimization problem formal-
izes the following question: In a given model instance, which subset from the set
of responses available

– frees all affected entities from an incident,
– has minimal cost within the given set of metrics, and
– has lower cost than the incident being unmitigated?

When transforming a problem to the form required to solve it as a linear
programming problem, it is common to distinguish between two kinds of con-
straints: feasibility constraints and optimality constraints. Feasibility constraints
force the solution to be within the constraints of a valid solution whereas the
optimality constraints drive the solution into the desired direction of minimiza-
tion or maximization. The constraints defined in Sects. 4.5 and 4.6 are explicitly
formulated to be linear and directly applicable to a mixed integer linear opti-
mization problem.

4.3 Inputs and Output

From the system model in Sect. 3, we get the inputs to the optimization problem
as depicted in Table 1. The solution of the optimization problem states as output
in a vector −→n for each response ri ∈ R whether it should be executed (ni = 1)
or not (ni = 0). Since these are integral values, the problem is a MILP problem.
In addition, the solution also offers the total cost ctotal of all selected responses.
If no valid solution exists, the solver reports the problem as infeasible.
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4.4 Objective Function

The goal of the optimization problem is to minimize the cost of the responses
selected to counter the incident. Therefore the objective function is defined as:

min(
|R|∑

i=1

|M |∑

j=1

nici,j) = min(n1c1,1 + · · · + n|R|c|R|,|M |)

4.5 Feasibility Constraints

Without any feasibility constraints, the optimal solution would be to select no
responses at all. Then, the total cost of the selected responses would be 0. The
following feasibility constraints force the optimization towards a practically use-
ful solution.

All Affected Entities Are Freed. Every entity affected by the incident has
to be freed. Such an entity has to be affected by at least one selected (nj = 1)
response:

∀a ∈ A :
|R|∑

j=1

njfa,j ≥ 1

Each Response Can only Be Executed once. We define that a response
r ∈ R, if executed once, is fully effective and does not need to be executed
multiple times:

∀ri ∈ R : 0 ≤ ni ≤ 1

Total Cost of Responses Has to Be Below Cost of Damage. Based on the
damage an incident inflicts in the network, we do not want responses to generate
more cost than the incident itself. Therefore, we add a constraint limiting the
cost of the responses to be below the expected cost of damage:

∀m ∈ M :
|R|∑

i=1

nici,m ≤ dm

If no damage is given for a metric mi, it is set to di = ∞.

No Conflicting Responses Are Executed. We prevent conflicting responses
to be selected at the same time:

|R|∑

i=1

|R|∑

j=1

oi,jninj = 0
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4.6 Optimality Constraints

The objective of this optimization problem is to determine the set of responses
with minimal costs fulfilling the feasibility constraints defined in Sect. 4.5.

∀m ∈ M : cmtotal
=

|R|∑

i=1

nici,m ⇒

∀m ∈ M : cmtotal
−

|R|∑

i=1

nici,m = 0

Based on this formalization, the size of the resulting optimization problem
depends on the size of input sets:

– Number of variables: |M | + |R|
– Number of constraints: 2|M | + 2|R| + |A|
– Number of non-zero elements in the problem matrix:

∑|A|,|R|
i=1,j=1 fi,j + 2|R||M | + |M | + 2

∑|R|,|R|
i=1,j=1 hi,j

Since the number of metrics is expected to be more or less constant and
small, the size of the problem and its complexity is dominated by the number of
available responses and the number of affected entities.

5 Alternative Cost Function

The objective function returns the combined cost of all responses as a single
metric, which is minimized by the solver. The given model supports more than
one metric per response, so the individual metrics need to be combined to a
single cost metric for the objective function. The objective function in Sect. 4.4
simply adds up all metrics. This requires the metrics to already be normalized
in a single domain. In this section, we look at suitable metrics and propose a
different cost function which is more practically useful.

One of the most common metrics used is the downtime tgi of components gi
as a side-effect of executed responses [11,22,24]. In [24], this metric is split up
into the downtime of critical components and at critical points in time. Another
prominent metric is the success probability pr of response r, or its counterpart,
the error-proneness (1 − pr), expressing how reliable a response is to cope with
the incident [3,11,17]. The effectiveness er of a response expresses how com-
pletely the incident is resolved, or how high the improvement of availability is
after applying the response [11,22]. Other metrics to measure a response were
proposed including the complexity or severity of a response during execution [17].

The cost functions depends on the system and may be fine-tuned towards
special use cases. However, the following cost function is a good starting point:

c(r,m) =
1
pr

· 1
er

·
∑

gi

(tgi · wgi · cgi).



An Optimal Metric-Aware Response Selection Strategy 75

The first term 1
pr

is the inverse success probability of the response. We assume
that executions of responses are independent events and factor in the number
of executions to get an expectancy value of 1. The second term 1

er
represents

the effectiveness of a response. We assume that coping with the remainder of
the incident will be proportional to the calculated costs. The last term includes
additional costs: wgi is a weighting factor translating the unit and scale of the
cost cgi to embed it into the single cost function. tgi is the duration over which
the cost occurs. This is well suited to resources like bandwidth and memory.

Those calculations are independent from the response selection process and
other metrics can be used as well. This proposed alternative cost function is
not part of the implementation where the straight-forward way of summing up
metrics is used.

6 Implementation

To be able to evaluate the applicability and performance of the presented app-
roach, we implement the proposed design and use this implementation for the
evaluation in Sect. 7.

The main tasks of this implementation are the generation of network envi-
ronment and incident scenario datasets, to transform these datasets into a linear
optimization problem and to instrument established MILP solvers to solve this
problem and obtain the computed solution.

This functionality is realized by a controller written in Python. First, a net-
work environment is generated where the controller accepts the number of enti-
ties, responses, and conflicts between responses, as well as the coverage rate of
responses as input. It assigns randomized costs to response and defines rela-
tions between responses, and responses and entities. In a second step, a specific
incident scenario is obtained by specifying the number of affected hosts. The
controller selects them from the network environment and filters information to
only contain applicable responses. Additionally, the user can restrict the number
of responses and conflicts to be used.

Based on this input, the controller generates the corresponding optimization
problem (see Sect. 4.1), and instruments existing MILP solvers to solve the opti-
mization problem and return the computed solution to the controller. Optionally,
a problem description file can be generated that can be used as input for both
solvers.

The controller interfaces with well-established and optimized linear program-
ming solutions: The GNU Linear Programming Kit (GLPK)1 and the IBM
ILOG CPLEX Optimization Studio (CPLEX)2. To interface with GLPK the
controller uses Python-GLPK 3 and pycpx 4 to interface with CPLEX. Solving a
MILP problem is often stated as computationally expensive and time consuming.
1 https://www.gnu.org/software/glpk/.
2 http://www.ibm.com/software/commerce/optimization/cplex-optimizer/.
3 http://www.dcc.fc.up.pt/∼jpp/code/python-glpk.
4 http://www.stat.washington.edu/∼hoytak/code/pycpx/index.html.

https://www.gnu.org/software/glpk/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.dcc.fc.up.pt/~jpp/code/python-glpk
http://www.stat.washington.edu/~hoytak/code/pycpx/index.html
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To be able to compare the MILP-based approach, the controller additionally
implements two simplistic heuristics to find a solution for the incident as a point
of reference for the performance of the optimization:

The Cheapest-First-Algorithm orders all available responses with respect
to their cost. For each affected entity, the cheapest response is selected. In case
the selected response covers more than one entity, no response will be selected
for the other entities since they are already covered.

The Coverage-First-Algorithm sorts the available responses with respect
to their coverage. The responses that help the most affected entities are con-
sidered first. On a tie, the cheapest is selected. Responses are drawn as long as
there are hosts left which were not covered. Responses which help only hosts
which are already covered are ignored.

7 Evaluation

The goal of this evaluation is to analyze whether the presented approach relying
on MILP is suitable for response selection, how MILP compares to simplistic
approaches like heuristics and to determine how different problem properties
influence the performance of both the MILP and heuristic approaches towards
response selection.

7.1 Evaluation Methodology

Based on the implementation presented in Sect. 6, we analyze and compare both
the performance of the MILP approach and both heuristics and the quality of
the solution (i.e. the cost to counteract the security incident) by all approaches.
We analyze the behavior of the presented MILP approach and both heuristics
in different incident scenarios by increasing problem complexity. We raise the
problem complexity by increasing (one at a time) the

1. number of responses
2. number of entities
3. number of conflicts
4. number of entities a response is applicable to (coverage factor)

in the problem while keeping the number of remaining problem parameters fixed.
We employ seven datasets for network environments with differing average

and maximum response coverage factors. The response coverage factor g is the
number of hosts a response frees. The first 6 datasets have an average coverage
factor rising from 1 to 25 using a step size of 5 and a maximum coverage factor
rising from 1 to 50 using a step size of 10. The last dataset has an average cover-
age factor of 50 and a maximum coverage factor of 100. If not stated differently,
the dataset with an average coverage factor of 10 is used in the evaluation since
it represents expected average values for responses.
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In order to avoid overhead from Python bindings and the Python interpreter
itself, we use the command line clients provided by the GLPK and CPLEX solver
and give them generated problem description files in CPLEX format as input.

We execute the evaluation using a system equipped with an Intel Xeon
E3-1275 CPU running at 3.4 GHz with 4 physical cores and Hyper-Threading
enabled, and 16 GB of RAM. The operating system is Ubuntu 15.10 64-Bit with
Python 2.7.10, GLPK 4.55, and CPLEX 12.6.1. GLPK does not support multi-
ple CPU cores and therefore uses only one of the CPU cores. CPLEX supports
multiple cores and can therefore benefit from the multicore system used in this
evaluation. All test runs are executed five times using the same random instance
of the incident scenario. All solutions are based on the same incident scenario as
well. In the remainder of this evaluation, all figures depict the average execution
time and response costs for each measurement. Additional information including
standard deviation is described in the corresponding text for each measurement.

(a) Varying number of responses (b) Varying number of entities

(c) Varying number of conflicts (d) Varying coverage factor

Fig. 1. Performance evaluation with increasing problem complexity in one of the fol-
lowing dimensions: number of responses, entities, conflicts, or coverage factor
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7.2 Evaluation of Solver Performance

To evaluate the applicability of the presented approach and its performance and
to be able to analyze the impact of different problem properties, we evaluate
the execution time based on different input settings with increasing complexity.
The execution time of both solvers includes reading the problem from the file,
setting up the optimization problem and calculating the optimal solution. This
evaluation has shown that problem creation and reading from a file has only
negligible impact on the execution time and is therefore not separately depicted
in the figures. The execution time of both heuristics includes the ordering of the
data as described in Sect. 6.

Increasing Number of Responses. With the first evaluation, we analyze the
impact of responses in the incident scenario. The evaluation starts with a number
of 500 responses which is raised up to 5000 responses using a step size of 500.
The number of entities in the scenario is fixed to 500 and the number of conflicts
between responses is 100. The resulting average execution time is depicted in
Fig. 1a. The maximum standard deviation for all iterations, all approaches and
all complexity settings is 0.007 s. Therefore, the results are very stable.

The number of responses increases the problem size in multiple dimensions:
with each additional response, the number of terms in the objective function
grows, additional constraints are added (cf. Sect. 4.5), and the number of terms
in the constraints increases (cf. Sect. 4.5). But still, both the GLPK and the
CPLEX solver are faster than both heuristics. We assume that the reason for
this is that both heuristics are implemented in Python. As both heuristics have
to order the list of responses with respect to costs and in case of the coverage-
first algorithm additionally with respect to the coverage factor, the execution
time increases with the number of responses. As both algorithms are dominated
by the search, the growth is expected to be n log(n).

Increasing Number of Entities Next, we analyze the impact of entities in
the incident scenario. The evaluation starts with a number of 100 entities which
is raised up to 1000 using a step size of 100. The number of responses in the
scenario is fixed to 5000 and the number of conflicts between responses is 100.
The resulting execution time is depicted in Fig. 1b. The maximum standard
deviation for all iterations, all approaches and all complexity settings is 0.045 s.
Therefore, the results are very stable.

The number of constraints increases with the number of hosts (cf. Sect. 4.5).
Those constraints have several terms as they reflect which response can help
which entity. However, this seems to have a moderate impact on the performance
of CPLEX for small values apart from the measurement with a number of 500
entities. But only after a number of 800 entities, the execution time increases
significantly. With CPLEX we have a solver capable of solving the problem
faster than both heuristics. In comparison, GLPK’s execution time increases
significantly with increased problem complexity. In the final measurement for
GLPK with 1000 entities, the execution time is many times higher than with
900 entities.
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Increasing Number of Conflicts. In this setting, we analyze the impact of
conflicts between responses in the incident scenario. The evaluation starts with
a number of 0 conflicts which is raised up to 500 using a step size of 50. The
number of responses in the scenario is fixed to 5000 and the number of entities is
500. The resulting execution time is depicted in Fig. 1c. The maximum standard
deviation for all iterations, all approaches, and all complexity settings is 0.03 s.
Therefore, the results are very stable.

Comparing the results from this and the previous section, the measurement
results look very different. Adding more conflicts leads to an increased number
of constraints (cf. Sect. 4.5), but the structure of those constraints is different
compared to constraints that are added with a rising number of entities. Con-
straints describing conflicts have a limited number of terms and have, therefore,
a much simpler structure.

This observation is reflected in the measurements, as an increasing number of
conflicts has no significant impact on the execution time of all tested approaches.
As a conclusion, conflicts do not harm performance, as long as only few responses
conflict with each other.

Increasing Coverage Factor. For this analysis, we use datasets with varying
coverage for responses, as described in Subsect. 7.1. The maximum value for the
average factor is increased from 1 to 25 using a step size of 5. Additionally, a
average coverage factor of 50 is used for the final measurement. For all tests the
number of entities is fixed to 500, the number of responses is fixed to 5000, and a
number of 100 conflicts is used. The results are shown in Fig. 1d. The maximum
standard deviation for all iterations, all approaches and all complexity settings
is 0.038 s. Therefore, the results are very stable.

A higher coverage factor for responses leads to a higher number of terms in the
constraints as described in Sect. 4.5, because a response will appear more often
within those constraints as the response is capable of freeing a higher number
of entities. An increasing coverage factor has the highest impact on performance
within the evaluation. The time consumption of both heuristics is growing rapidly,
but linear with an increasing coverage factor. From the measurements, the behav-
ior of GLPK is unclear as the time consumption goes up and down without clear
trend. CPLEX has one outlier with a coverage factor of 25. The rest of the mea-
surements show a rising tendency. Nevertheless, CPLEX performance beats both
heuristics and shows that the presented approach is usable even with complex net-
work environments.

7.3 Solution Quality

Besides performance with respect to execution time, another important aspect to
consider is the quality of solutions provided by MILP in comparison to solutions
of heuristic solvers. While the solution provided by MILP solvers is optimal
within the given objective function, the quality of a heuristic need not be optimal
in any way. We therefore compare the proven optimal solutions provided by the
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MILP approach and the solutions provided by the Greedy Coverage-First and
the Greedy Cheapest-First heuristic for all scenarios used for the performance
analysis. In Fig. 2a the number of responses is increased, in Fig. 2b the number
of entities, in Fig. 2c the number of conflicts between responses, and in Fig. 2d
the coverage factor of a response.

(a) Varying number of responses (b) Varying number of entities

(c) Varying number of conflicts (d) Varying coverage factor

Fig. 2. Cost evaluation with increasing problem complexity in one of the following
dimensions: number of responses, entities, conflicts, or coverage factor

In the following, we point out the potential cost benefits in case an opti-
mizer instead of the Cheapest-First heuristic is used. The Coverage-First metric
offers in all scenarios results worse than the Cheapest-First metric. In case the
number of responses increases, the average cost saving potential is nearly 33%.
At minimum 17.6% costs can be saved, at maximum around 39% are possible.
The percentaged cost saving possibilities slightly decrease during the scenario.
In case the number of entities increases, the average cost saving potential is
around 36% and lies between 15% at minimum and 54% at maximum. The per-
centaged cost saving potential increases slightly with an increasing number of
entities. In case additional conflicts are added, the cost saving potential stays
nearly constant around 38%. Within the datasets the optimal solution was rarely
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impacted with additional conflicts. In case the coverage factor increases, the per-
centaged cost saving potential increases slightly. The first measurement shows,
that all approaches find the optimal solution in case one response can free only
one entity. With an increasing coverage factor the cost calculated drift apart.
At minimum a 27%, at maximum 53%, and in average 37% cost can be saved
by using an optimizer. In summary, an average cost saving of 36% is possible
for all tested scenarios. The smallest potential saving is a still notable amount
around 15%.

8 Future Work

We only consider a selection of responses a valid solution if the incident is
completely mitigated, i.e. each entity in A is covered by at least one response:
∀a ∈ A :

∑
r∈R f(a, r) ≥ 1. Partial solutions covering only a subset of affected

entities are part of future work. Additionally, we plan to integrate response
dependencies, i.e. responses have to be executed in conjunction. This allows
to specify a more fine-grained response plan. The calculated costs of selected
responses can be further decreased, as multiple responses may depend on the
same prerequisite responses.

9 Conclusion

In this paper, we present an novel approach towards automated response selec-
tion to counteract security incidents in complex network environments. The focus
of this work is to relieve network operators from having to select countermeasures
in case of an ongoing security incident and hereby increasing network security.
With this work, we showed that automated response selection based on linear
optimization is a beneficial approach and can provide response strategies much
faster and with higher quality than simplistic heuristics.

This work is based on a problem model to represent security incidents. This
model is transformed to a linear formulation to solve the problem of response
selection as an optimization problem using mixed integer linear programming
(MILP). This transformation respects use case-specific metrics and constraints
and provides a mathematically proven optimal response strategy. With our eval-
uation, we have shown that our approach and using established MILP solvers
can provide solutions with much higher quality (i.e. lower cost) than heuristics.
Compared to heuristics, MILP optimization— often said to be computation-
ally expensive— provides a scalable and competitive approach towards response
selection in very complex network environments.

Acknowledgments. This work has been supported by the German Federal Ministry
of Education and Research (BMBF) under support code 16KIS0145, project SURF.
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Abstract. Address Space Layout Randomization (ASLR) and Control
Flow Integrity (CFI) have been regarded as the most effective defenses
against control flow hijacking attacks. However, researchers have recently
shown that data-oriented attacks can circumvent both ASLR and CFI,
and are even Turing-complete. These attacks often leverage encapsulated
data structures to achieve malicious behaviors. To defeat data structure
oriented attacks (DSOA), we propose data structure layout randomiza-
tion techniques. Our method not only randomizes the data structure
layout at compile time, but also inserts the padding bytes to increase
entropy. Experimental results show that our method can defeat DSOA
with low performance overhead (2.1% on average).

1 Introduction

Control flow integrity [3,10,17,18] has been regarded as an effective defense
against control flow hijacking attacks. However, recently, data oriented
attacks [11,12] are proposed to be able to circumvent control flow integrity
checks, thus demonstrating their Turing-completeness. Encapsulated data struc-
tures, such as structs and classes in C/C++, are vulnerable to data oriented
attacks as they usually contain security sensitive data (e.g., uid, password). In
this paper, we denote data oriented attacks that focus on data structures as
data structure oriented attacks (DSOA). Address Space Layout Randomization
(ASLR) [2,6,8,16], enforcement of Data Flow Integrity (DFI) [9] and Data Space
Randomization (DSR) [7] are all state-of-the-art defenses against data oriented
attacks. ASLR randomizes the base address of the code/data segments to pre-
vent the attacker from knowing the base address of the targets. However, ASLR
does not randomize the layout of data structures. Once an attacker knows the
offsets of data fields in a data structure, he/she is then empowered to manipulate
these fields to serve their purposes. For example, by exploiting the buffer over-
flow vulnerability related to the KEY ARG array in OpenSSL (CVE-2002-0656) [1],
the attacker can read a leaked pointer value. Knowing the offset of the target
data structure from the address pointed by the pointer, the attacker can acquire
the base address of the data structure, effectively rendering ASLR meaningless.
Enforcement mechanisms of DFI generates data flow graphs (DFG) and checks
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-51966-1 6



86 Z. Chen and H. Han

whether the data flow follows the DFGs at runtime. However, complete enforce-
ment of DFI suffers from high performance overhead, thus making it difficult
to apply DFI checks into everyday practices. DSR encrypts data objects and
decrypts them at time of usage. However, DSR does field insensitive pointer
analyses. Therefore, if any attack utilizes a bug found overwriting inner fields of
a data structure, it could not be prevented by DSR. In addition, DSR also suf-
fers from high performance overhead. In this paper, we propose a novel defense
against DSOAs - a customized compiler that defenders may use to generate pro-
grams with randomized data structure layouts. To further increase their entropy,
the compiler inserts paddings of flexible lengths into the data structures gener-
ated. Experimental results show that this method can defeat DSOAs with low
performance overhead.

Our contributions in this work are summarized as follows:

– We propose a novel defense against DSOAs with a new randomization algo-
rithm and flexible length padding insertion.

– We propose a method that determines which data structure can be randomized.
– We evaluate the effectiveness and overhead of the system. Experimental results

show that the runtime overhead is only 2.1% on average.

Fig. 1. An example of DSOA

2 Overview

2.1 Threat Model

Our threat model focuses on data structure oriented attacks. We assume the
target programs contains memory corruption bugs and the attacker can leverage
the bug to overwrite/overread any fields in the data structure. We assume that
there are no memory disclosure bugs, however, as existing defenses [4,5] can
mitigate such attacks. Take the program in Fig. 1 as an illustrating example.
The goal of the attack is to modify field uid in struct instance a to escalate
privilege. An attacker, knowing the base address of a, may get the layout of a
based on the definition of TEST. Then, he may write a maliciously-crafted value
to a->uid by exploiting the buffer overflow bug as shown.
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2.2 Key Idea

We propose a novel method for mitigating DSOAs by randomizing the data struc-
ture layouts of the programs. We compile programs with a customized compiler
(i.e., a modified GNU GCC) so that the relative offsets of fields in data struc-
tures can be shuffled every time the program is compiled. By doing so, each copy
of the program will be different and when an attacker launches a DSOA attack,
the layout of data structure he/she uses will be obsolete.

Fig. 2. Comparison of original definition with after-randomized definition.

For instance, consider a program that contains structure TEST as shown in
Fig. 2(a). An attacker, upon discovering a buffer-overflow vulnerability that can
overflow the string buffer buf in the data structure, may change security sensitive
field uid, and perform a privilege escalation attack. However, if the program is
compiled by a compiler that shuffles data structure layouts, the attack could
be defeated. Consider a randomized data structure layout inside struct TEST as
shown in Fig. 2(b). The attacker, referencing the original layout of the program,
will end up accessing completely irrelevant fields in most situations and fail to
change uid, resulting in an unsuccessful attack.

3 Challenges

In this section, we discuss the challenges in modifying the GNU GCC compiler
to include the data structure randomization process.

3.1 Flexible Array Members

Flexible array members are objects of incomplete array types that must be placed
at the end of a structure as defined by the C standard. This poses a challenge to
the implementation of the special compilers previously mentioned because the
flexible array members have to be identified and their positions preserved in the
data structure randomization process.
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3.2 Data Structure Initialization

As the definitions of structures are altered, initialization statements have to be
changed to match the new definitions. Refer to the structure TEST as shown in
Fig. 2 for example. To initialize struct instance s with the original definition of
TEST, we may use:

struct TEST s = {..., 0, "Hello World!",...};
However, if this initialization is used for the new definition in Fig. 2(b), the
fields’ values would mismatch. Then, the problem either could not finish com-
pilation with type-mismatching errors or, even worse, would raise unexpected
errors during execution.

3.3 Pointer Involved Data Structures

Another challenge posed by randomizing data structures is that it disrupts
direct pointer arithmetic based on the original structure definition. Still consider
the example of structure TEST. Originally, it is perfectly acceptable to do the
following:
char ∗p ;
struct TEST x ;
x . uid = 1 ;
p = &x . uid ;
∗(p+4) = ”He l lo World ! ” ;

However, the last statement will fail in the new definition of TEST as *(p+4)
now refers to some padding element rather than buf[100].

3.4 Dynamic Library Parameter Involved Data Structures

When a randomized data structure instance is passed to a dynamic library func-
tion, the function will handle this instance based on its original definition, which
will lead to unexpected results. For example, when a program calls bind in GNU
LIBC with an instance of data structure sockaddr, the sockaddr instance might
be randomized. However, bind would still attempt to use the sockaddr instance
based on its original definition. This will obviously lead to an execution error.

4 Design and Implementation

In this section, we introduce our randomization algorithm, illustrate how chal-
lenges mentioned in Sect. 3 may be solved, and calculate the post-randomization
entropy of the data structures.
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4.1 Randomization Algorithm

We implement the following randomization algorithm in GCC to randomize field
declarations in objects.

Algorithm 1. Randomization Algorithm
Input: Random value R, Original sequence of field declarations seq[1...m]
Output: The reordered declaration sequence seq[1...m]

Initialization: n ← m
while n > 1 do

i ← R %n + 1; /*Assign a random number between 1 and n to i */
t ← seq[i]; /* Swap the ith and nth elements of the sequence */
seq[i] ← seq[n];
seq[n] ← t;
n=n-1; /* Decrease n by 1 */

end while

4.2 Special Cases

Flexible Array Members. In the implementation, we are able to identify
flexible arrays with these two sets of criteria:

(1) The declaration in question is for an object of type array; and
(2) The declaration is incomplete.

After the flexible array members are identified, they are easily removed from
the randomization process.

Finding Randomizable Data Structure. As shown in Sect. 3, the random-
ization of data structure can cause serious issues. Some of them can be worked
around easily, some cannot. Therefore, we propose a blacklisting mechanism for
finding randomizable data structures. The compiler, with the randomization fea-
ture enabled, first tries to compile the source code with the potential problems.
The output is parsed, and whenever an error caused by data structure random-
ization is raised, the name of the related structure object is logged in a blacklist.
Then the compiler would try to compile the source code again, smartly omitting
the randomization process for the structures on the blacklist. If more randomiza-
tion related problem occurs, the names of the related structure will be appended
to the blacklist. The process repeats itself until all randomization related errors
are cleared.

4.3 Padding Insertion Algorithm

We implement the following padding insertion algorithm in GCC after the
data structure randomization process has completed to increase randomization
entropy. Algorithm 2 shows the details. For each field, we insert 1–4 padding
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variables in the data structure with the same size of the field. This method will
increase entropy. For example, suppose a data structure has m fields with total l
bytes. If we only randomize the data structure layout, the attacker has to guess
l times to overwrite a specific field’s value. If we add the paddings to the data
structure, the length of the randomized data structure is l’ (l’ ∈ [2l,5l]). As
such, the attacker has to guess at least 2l times, but at most 5l times.

Algorithm 2. Padding Insertion Algorithm
Input: Random value R, Randomized sequence of field declarations seq[1...m]
Output: The padded declaration sequence seq’[1...(m+k)] (k ∈ [m,4m])

Initialization: n ← 1, i ← 1
while n <= m do

seq’[i] ← seq[n];
a ← 0 /* Initialize local variable a to 0 */
while a < R%4+1 do

i=i+1;
seq’[i] ← a copy of seq[n]
a=a+1;

end while
i=i+1;
n=n+1;

end while

5 Evaluation

We chose to implement our data structure randomization feature in the open
source compiler, GNU GCC 4.5.0. In addition to randomization, the modified
compiler also adds paddings with arbitrary sizes in between each field declaration
to increase randomization entropy. In this section, we present our evaluation of
the effectiveness and performance overhead of the Data Structure Randomization
technique. The testing environment is a Redhat Linux 7.3 with 2 GB RAM and
Intel i7 CPU.

5.1 Effectiveness

Using the modified GCC, we test the effectiveness of the Data Structure Ran-
domization technique by recompiling Apache Server v. 1.3.23 and OpenSSL v.
0.9.6d with known heap overflow vulnerability when used within our testing
environment. The attack tool used is openssl-too-open [1], which exploits the
KEY ARG buffer overflow vulnerability to open a shell for the attacker. Experi-
mental results show that the recompiled Apache Server and the Openssl package
are able to defeat the buffer overflow attack, thus proving the randomization
technique is indeed effective against Data Structure Manipulation Attacks.
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5.2 Performance Overhead

The performance of the recompiled Apache Server is tested against that of the
original one with Apache Benchmark. The configurations of the two servers are
identical except for the directory paths their related files are in. The Apache
Benchmark is set to send a total of 100,000 requests in groups of 500 per round
per server with the keep-alive option enabled. The exact command used is ab
-n 100000 -c 500 -k http://localhost/index.html. Five rounds of testing
are administered to both servers and all requests completed with success. The
data collected is shown in Table 1. This result indicates that the recompiled
server introduces low performance overhead. Interestingly, randomized servers
may sometimes be even faster than the original servers due to program locality.

Table 1. Server performance data

Round # New server (reqs/sec) Original server (reqs/sec) Overhead (%)

Round 1 4384.04 4325.63 1.3

Round 2 4339.15 4274.78 1.5

Round 3 4375.22 4264.03 2.6

Round 4 4346.88 4247.19 2.3

Round 5 4344.05 4234.24 2.6

Average 4357.87 4269.17 2.1

6 Related Work

6.1 Memory Safe Protection

Memory corruption bugs, which are leveraged by the attacker to achieve data
oriented attacks [11,12], exist in languages like C/C++ because these languages
are type-unsafe. Cyclone [13] and CCured [15] propose a type-safe alternative to
C. SoftBound with CETS [14] provides bound checking and identifier matching
to achieve complete memory safety. However, both of these defenses suffer from
high performance overhead.

6.2 Data Space Randomization

Data Space Randomization (DSR) [7] encrypts all data objects at their definition
and decrypts them at usage. However, DSR performs field insensitive analyses
and thus does not prevent DSOAs that overflow the inside of a data structure.
In addition, DSR suffers from high performance overhead. Our method prevents
the DSOA with low performance overhead.
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7 Conclusion

To defeat data structure oriented attacks (DSOA), we propose Data Structure
Layout Randomization techniques. During compilation, our method not only
randomizes data structure layouts, but also inserts padding bytes to increase
entropy. Experimental results show that our method can defeat DSOA with low
performance overhead.
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Abstract. Security of Software Defined Networking (SDN) is an open issue
because of many reasons. Security requirements were not considered in the
primary definition of SDN. Consequently, SDN enlarges the network vulnera-
bility surface by introducing new vulnerabilities that do not exist in the con-
ventional networking architecture. In addition, there are neither security risk
management processes nor mathematical models that specifically address SDN
security and the influence of its specific features. We provide a vulnerability
analysis for SDN to study these weaknesses and to measure their impacts. Our
analysis specifies a model of SDN assets that needs to be protected. Then, it
derives 114 SDN generic vulnerabilities using standardized security objectives.
It relies on an open standardized semi qualitative semi quantitative scoring
system to calculate the severities of theses vulnerabilities. Then, it adapts them
to SDN specific features using Analytical Hierarchical Process (AHP).

Keywords: Software defined networking � Information security � Vulnerability
analysis � CVSS � Analytical hierarchical process � Security metrics

1 Introduction

Computer security risk management [1] faces many issues such as uncertainty, lack of
adequate data and technological changes. The later challenge becomes the most
impressive driving force for the overhaul of security risk management in computer
systems. Especially with the advent of emerging technologies, such as Internet of
things (IOT), Big Data, Machine Learning and Software Defined Networking (SDN),
security risk management needs to cover the specific characteristics of these tech-
nologies in order to enable stakeholders to take effective security decisions.

SDN [2–4] is an evolution of programmable networks. It is based on decoupling the
control plane from the data plane. The former is logically centralized while the latter is
distributed in the network. The major benefits of this separation are the network global
view empowering the control plane, the rapid innovation through the development of
automatized network functions, and the abstraction from hardware concerns.
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However, SDN is facing substantial challenges in security because it inherits
security flaws from classical network architecture. In addition, it reinforces these flaws
and introduces new vulnerabilities. Security risks are magnified within the control
plane, because it becomes a single point of failure in an SDN environment and because
it relies heavily on automation [5].

Vulnerability analysis is an important process in security risk management because
it enables discovering the weaknesses of a system and their impacts on its security. In
turn, analyzing a system to detect its unidentified weaknesses is still a complex and a
subjective process [6] because there is neither a universal classification nor a stan-
dardized methodology in vulnerability analysis. This fact is particularly amplified in a
dynamic and emerging environment such as SDN where there are no historical and
well known SDN vulnerabilities.

While the goal of SDN is the convergence of all network actors around a mutual
standardized set of technologies, in practice, it is still not the case. SDN is deployed and
implemented in different ways using different technologies that are not yet converging.
For example, the lack of standardized northbound API or East/West API (or the
non-standardization of controllers) pause many issues related to interoperability and
deployment. Moreover, each organization deploys and configures SDN in different
ways according to its specific needs and goals. Thus, a generic vulnerability analysis
for SDN is necessary to improve SDN security and understand its weaknesses. Such
analysis provides a generic classification of SDN vulnerabilities and evaluates their
impacts on SDN security. These outcomes enable organizations to know the impacts of
their conceptual and implementation choices. They aid them to adopt suitable coun-
termeasures against security attacks by making the best security decisions.

In order to perform robust vulnerability analysis, we rely on the Common Vul-
nerability Scoring System (CVSS) [7, 8] to estimate the impacts of security vulnera-
bilities. CVSS is based on qualitative and quantitative metrics that define the impacts of
the security vulnerabilities. Its computation procedures integrate three dimensions
related to the different characteristics of classical networks (or generally computer
systems): the intrinsic generic features of computer systems, their temporal features,
and their environment related factors.

However, there are significant factors, specific to SDN, which are not covered by
CVSS. These factors affect the security of SDN and enlarge its vulnerability surface.
For example, the centralization of the Controller transforms its components to pre-
carious shared resources among other SDN assets. In this case, all the SDN assets are
exposed by the vulnerabilities of the Controller.

Thus, a proper vulnerability analysis also needs to integrate specific SDN features
into the evaluation of vulnerability impacts. We rely on decision making procedures to
measure the intensities of SDN features on its security because these characteristics are
intangible.

Decision making is the process to choose among alternatives based on multiple
factors [9]. Although decisions are subjective judgments and they depend on the
knowledge and experience of domain experts, there are methods that can be used to
rationalize decisions and quantify them mathematically. The Analytical Hierarchy
Process (AHP) [10, 11] is one of these approaches. It is a multi-criteria decision making
procedure. It is used to define and evaluate the importance of decision alternatives in
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the decision making process. It decomposes complex problems into many levels of
connected sub problems. Then, it evaluates the intensity of each sub problem in the
overall set of problems. Within this framework, AHP enables us measuring the overall
intensities of SDN characteristics on the severities of its vulnerabilities.

Our work provides a new input into the arena of SDN. We are the first to propose
generic vulnerability analysis for SDN. Our contributions in this paper are as follows:

– We propose an SDN meta-model, its instantiation and a set of standardized security
objectives.

– We construct a matrix of generic SDN vulnerabilities.
– We evaluate the impacts of vulnerabilities on SDN security using the CVSS.
– We adapt the severity scores by integrating SDN specific features into the CVSS

using the AHP.

The outline of this article is organized as the following. In Sect. 2, we discuss the
research works related to SDN security analysis. We provide in Sect. 3 a meta-model
of SDN assets. In Sect. 4, we derive new SDN vulnerabilities using standardized
security objectives. In Sect. 5, we use CVSS to compute the severities of the SDN
vulnerabilities, and in Sect. 6, we enhance the results using AHP. Finally, in Sect. 7,
we conclude our work by highlighting the future directions.

2 Related Work

Lu et al. [12] propose a security assessment methodology for Software Defined Net-
working Based Mobile Networks (SDN-MN). The mechanism uses attack graphs to
define and to generate attack paths while taking into account SDN-MN’s specific
features. In addition, it uses AHP to quantify the influence of SDN-MN dynamic
factors on its security in terms of attacks costs.

Many works [13–17] focus on the security assessments of OpenFlow [18] (SDN’s
southbound Interface). Kloti et al. [19] provides an Openflow risk analysis based on
attack trees and the STRIDE1 approach [20]. A brief overview of Openflow vulnera-
bilities is discussed in [21]. The article highlights the OpenFlow vulnerabilities that are
currently deployed by hardware and software vendors.

The article in [22] proposes seven new threat vectors of SDN that can exploit its
vulnerabilities. The work considers the programmability and centralization features of
SDN as honeypots. According to its authors, these features attract attackers and expose
the SDN vulnerabilities. The proposed vectors are as follows: (1) Forged or faked
traffic flows. (2) Attacks on vulnerabilities in switches. (3) Attacks on control plane
communications. (4) Attacks on/and vulnerabilities in controllers. (5) Lack of mech-
anisms to ensure trust between the controller and management applications. (6) Attacks
on/and vulnerabilities in administrative stations. (7) Lack of trusted resources for
forensics and remediation.

1 STRIDE is a threat model proposed by Microsoft. Its name comes from the initials of the following
security categories: Spoofing identity, Tampering with data, Repudiation, Information disclosure,
Denial of service, and Elevation of privilege.

Vulnerability Analysis of Software Defined Networking 99



There are some researches that survey security in SDN [23, 24]. The authors in [25]
introduce a set of SDN specific vulnerabilities and provide a list of SDN attacks.
It categorizes SDN security issues by type with respect to the SDN layer/interface
affected by each issue. The issues are split into seven main categories (Unauthorized
Access, Data Leakage, Data Modification, Malicious/Compromised Application,
Denial of Service, configuration issues and System Level SDN Security). For each
problem, the survey provides examples how attacks might occur.

The aforementioned literature provides a general view of SDN vulnerabilities
without measuring their severities and the impacts of SDN characteristics. Furthermore,
many of these works are only focused on the aspects of Openflow security and do not
tackle the rest of the SDN architecture. Our work fills these gaps. It is the first work that
quantifies vulnerability assessment and customizes it to SDN’s characteristics. First, it
provides more complete and detailed SDN vulnerabilities based on a generic SDN
architecture covering all SDN components. Second, it measures the severities of these
vulnerabilities. It captures the impact of SDN’s inherent characteristics on them.
Finally, it adapts the previous measures by including these impacts.

3 SDN Assets Classification

SDN is organized into four layers [26–28]. On the top, an Application layer defines
different network services such as load balancing, firewalls, and VoIP. The Control
layer manages the infrastructure’s resources and provides the Application layer with
network state and network data. Both layers interact through northbound Application
programming interfaces (APIs), which allow the Application layer to program the
network. Besides, the Control layer supervises the behavior of the Data Plane layer,
which processes and executes network forwarding functions, through southbound
APIs. The three aforementioned layers are governed by a management layer that
manages all the administrative tasks of the network, spreads network policies, and
allocates SDN resources.

We propose a meta-model for SDN and its instantiation in Fig. 1. The meta-model
corresponds to a generic abstraction of SDN architecture. The SDN architecture model
is an example of a specialization of the SDN meta-model. It is based on the following
technologies. The Management layer corresponds to the Openstack solution [29].
Openstack is a set of open source software that controls large pools of compute,
storage, and networking resources. The later are managed through a dashboard that
gives administrators control while empowering their users to provision resources
through a web interface. The Application layer corresponds to a set of Security and
Networking Applications such as Firewalls, etc. The Control layer example is the RYU
Controller. RYU [30] is a component based Software Defined Networking Framework.
The Data Plane layer corresponds to Open Virtual Switch (OVS) [31]. OVS is a
multilayer virtual switching solution designed to enable massive network automation
and distribution across multiple physical servers.

Table 1 describes the assets of our system under study. It explains all the entities of
the aforementioned models. The assets are the logical objects of our system under study
that need to be protected.
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Fig. 1. SDN Architecture Metamodeling.
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Table 1. Assets of the system under study.

Asset Class Asset
Component

Location Describtion Instanciation

Application Application
Function

Application layer It defines the
operations and
processes of network
Service

SDN Firewall

Application
Content

It defines the
information used and
generated by the
network Service

Controller Controller
Content

Control layer It encompasses the
control behaviour
expressed by different
operations

Packets
parser/Serialiser,
RYU Applications,
Event
Queue/Dispatcher,
State Manager

Controller
Function

All the data produced
or consumed by
Controller Function

C-Agent Controller Agent
exposes the
Controller’s
functions and its
abstractions to
other entities
(Application and
Controller)

Ryu manager,
App-Manager

Controller
RDB

Controller Resource
Data Base
conceptualizes all the
information on the
Controller’s resources
in a data base model

Topology, Libraries

Network
element

Data
Processing
Engine

Data plane layer It is a set of
functionalities that
process data traffic
and store it

OVS Kernel Module

Data Source It delivers and
transmits data
traffic

Ports, Bridges,
Network Interfaces

Data Sink It is a memory
space that stores
the data received
from the two
previous entities

Buffers, Registers,
Flow Tables

Network
Element
RDB

It stores the data
plane resources
information

OVS DB

SDN
Interface

A-CPI Agent Application layer Application-Control
Plane Agent provides
Application Logic
entity with network
information. Also, it
exposes the
capabilities of the
Application Function
(Application) to the
later

REST Client, HTTP
Client

(continued)
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Table 1. (continued)

Asset Class Asset
Component

Location Describtion Instanciation

A-CPI Control layer Application Control
Plane Interface
allows Application to
express its
requirements and to
react
programmatically to
network states

REST Server, HTTP
server

C-CPI Control layer Controller-Controller
Programming
Interface offers a
view of Controller
resources to another
Controller

SDNi API, ForCES
API

D-CPI Control layer Data-Controller
Programming
Interface allows the
Control layer
programming the
behavior of the data
plane and sharing its
resources

Openflow-Controller,
Open vSwitch
Database Client,
NETCONF Client,
XFlow Client

D-CPI Agent Data plane layer It executes the
Controller’s
instructions using the
resources of Network
Element and exposes
the capabilities of the
later to Controller

Ovsdb-server,
Ovs-vswitchd

Manager Management
Function

Management
layer

It performs
administration
operations and allows
thir parties entities to
allocate SDN
resources

Neutron, Nova, Swift,
Keystone, Dashboard

Management
Content

Management
layer

It contains all the
information data such
as Resource
information, storage
data, Metrics

Nova DB, Swift DB,
Neutron DB, Object
Store, Keystone DBs

Coordinator Application
Coordinator

Application layer It installs customer
specific requirements
and network policies
received from the
Management layer on
the Application Layer

Openstack plugins
agents

(continued)
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4 SDN Vulnerability Construction

Security vulnerability [32] is a weakness in a system; when it is exploited, it triggers
the transition of the system to a flawed state. It can also expose parts of the system and
lead to the violation of its security characteristics. It is crucial to identify the vulner-
abilities of our system in order to correct them, because most of the attacks exploit
them in order to achieve their goals; therefore, by eliminating and correcting vulner-
abilities, we can prevent attacks from happening.

In contrast to our study, we propose a set of SDN generic vulnerabilities. These
vulnerabilities are not related to the implementation of the SDN components nor to any
specific technology; but rather to the SDN architecture design and its distinctive
characteristics. Our objective is to identify the new vulnerabilities introduced by the
SDN design apart from the known vulnerabilities in any network.

We have built these vulnerabilities by applying a set of inverted security principals
to the assets of our system under study. The security objects [33] that we took into
consideration are access control, authentication, confidentiality, non-repudiation,
integrity and availability. We obtain 114 generic vulnerabilities (see Table 4 in the
Annex) after applying the following vulnerability construction procedure:

1. Reverse the security object (see Table 2).
2. Combine each reversed security object to all the identified assets.
3. Delete from the new combinations all the unfeasible mappings.
4. If all the asset components have the same vulnerability and the same impact,

generalize the combination to their asset class.

The generated vulnerabilities are a generalization of all the intrinsic vulnerabilities
that may occur in an SDN architecture. They are used to measure the impacts on SDN
security. They can be also adapted to the environment and temporal variables if these
later change in the subject architecture. For example, vulnerability V1 with an impact I1
in the class C-Agent is passed to its instances Ryu Manager and Application Manager.

Table 1. (continued)

Asset Class Asset
Component

Location Describtion Instanciation

Controller
Coordinator

Control layer It installs customer
specific
configurations and
network policies
received from the
Management layer on
the control Layer

Neutron plugins
agents

Network
Element
Coordinator

Data plane layer It installs customer
specific
configurations
received from the
Management layer on
the data plane Layer

CLI, SNMP Agent
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A threat that affects C-Agent availability uses a Disruption weakness in this class.
Therefore, C-Agent Disruption is the inferred vulnerability. An instance of this vul-
nerability can be a Lack of Exception Handling Mechanism in Ryu Manager. An
attacker can interrupt Ryu Manager by generating an unhandled exception event. In this
case, the lack of a proper exception handler in Ryu Manager leads to an uncaught
exception (with the termination of Ryu Manager) or blocks Ryu Manager.

5 SDN Vulnerabilities Scoring

We use the CVSS in order to evaluate the severities of the vulnerabilities on SDN
security. It offers an open framework to assess the impacts of computer security vul-
nerabilities. It uses a set of standardized metrics to score vulnerabilities and compute
their severity scores. The metrics in the base group evaluate the unchangeable char-
acteristics of vulnerabilities not influenced by time or by user environments. On the
other hand, the metrics of the temporal group process the characteristics that are subject
to change over time and those in the environment group focus on the proprieties that
are influenced by user environments.

Table 3 describes all the CVSS metrics according to SDN requirements. It covers
all the SDN attributes inherited from the conventional network architecture. The vul-
nerabilities scores are scaled in an interval of [0, 10]. They are mapped to the following
ratings: None (0.0), Low (0.1–3.9), Medium (4–6.9), High (7–8.9), Critical (9–10). We
use CVSS 3.0 Calculator offered by [34] to calculate the impacts of the assessed SDN
vulnerability in the three metric groups.

We compute the severities using the following assumptions. In the base group, the
attacks on the assets of the Application and Data Plane layers can come from the
Network and may require user or external processes to succeed; however, the threats on
the Control layer come from a limited vector (adjacent neighbors) and do not require
user interactions. Besides, the attacks on the SDN interfaces and agents amplify the
scope of the attack. In the temporal group, Exploit Code Maturity is between Unproven
and Proof-Of-Concept because there is not a threat code that works in any SDN
situation. The Remediation Level value is set to Official Fix only when the deployment
of TLS (Transport Layer Security protocol) [35] mitigates or prevents the exploit.

Table 2. Reversion of security object.

Security object Reversion Description

Access Control Open Access Susceptibility to be accessed by any element
without restriction

Authentication Nonidentification Lack of identification in a distinctive way
Confidentiality No-secrecy Reveling its features and disclosing its

communications
Non-Repudiation Non-traceability Not tracking its actions, its events and their actors
Integrity Alterability Susceptibility to be tampered in whole or in part
Availability Disruption Resources are partially or totally inaccessible
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Table 3. CVSS vulnerabilities metrics applied on SDN.

Group Metric Definition

Base Attack Vector The path by which an attacker exploits the
vulnerability. Remote: from an external network
(internet), Adjacent: from a neighboring network that
shares the same infrastructure, Local: within the SDN
network, Physical: physically accessing the assets

Complexity The conditions and the efforts that need the attacker in
order to exploit the vulnerability. Low: conditions and
efforts are identified through SDN specifications and
standards, High: efforts need the attacker to invest in
reconnaissance, preparation, pen testing, and more
steps in order to exploit the vulnerability

Privilege
required

The rights that the attacker needs to exploit the SDN
vulnerability. None, Low: user privileges, High:
management privileges

User Interaction Determines if an SDN user is needed to participate or
not in the process of vulnerability exploitation

Scope Determines if the vulnerability exploitation impacts
other assets

Confidentiality The impact of the vulnerability exploitation on SDN
contents, communications and data bases
confidentiality. None, Low: Assets information leaks to
authorized entities, High: Asset information leaks to
unauthorized entities

Integrity The impact of the vulnerability exploitation on the
veracity and trustworthiness of SDN informational
resources (contents, communications and data bases).
None, Low: the attacker does not control the process
neither measures the consequences, High: the attacker
control the process of modification and the
consequences

Availability The impact of the vulnerability exploitation on SDN
resource accessibility. None, Low: asset availability is
partially impacted whether it is unavailable for a certain
time only or available all the time with some
interruptions, High: asset is completely inaccessible

Temporal Exploit Code
Maturity

The likelihood of the SDN vulnerability being
exploited based on current state of exploit techniques
and exploit code availability. Unproven: No exploit is
available, Prove of Concept: the exploit code is not
functional and not Practical in SDN, Functional: the
code works only on the vulnerable asset, High: exploit
code works in SDN and is widely-available, reliable,
and easy to use

(continued)
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We have also observed in the literature that the majority of security reports are focused
on the interface between the control plane and the data plane (Openflow). Therefore,
we assign a Reasonable Report Confidence for the threats on D-CPI and D-CPI Agent.
In the environment group, we assume that TLS is deployed in the interfaces between
the Control layer, the Data Plane layer and the Application layer. This security
measure modifies the required privileges to High. Finally, we assign different values to
the metrics Confidentiality, Integrity and Availability according to the security objec-
tive of the vulnerability. For example, the vulnerability Controller Function Alterability
impacts Integrity but does not affect Availability and Confidentiality.

Kandoi et al. [36] discusses a Denial-of-Service (DoS) attack on the Control layer.
The attacker sends a large traffic to the Data Plane layer. The latter encapsulates the
unknown traffic and forwards it to the Control layer. Controller Function processes the
traffic, installs the corresponding rules on the Data Plane layer and sends the traffic
back. One target of the attacker is to overload the Control layer by misusing Network
Element Resource. In this case, Data Processing Engine floods Controller Function
with large encapsulated packets, especially, if the size of the traffic and the sending rate
exceed the absorption capacity of Controller Function. The latter becomes impotent to

Table 3. (continued)

Group Metric Definition

Remediation
Level

The level of fixes and patches to correct the SDN
vulnerability. Official Fix: A complete SDN vendor
solution is available, Temporal: a temporal tool or
hotfix is available, Workaround: unofficial fix and a
non-vendor patch is available, Unavailable: there is no
solution to correct the vulnerability

Report
Confidence

The degree of confidence on the SDN vulnerability and
the level of its technical knowledge. Unknown: there
are documents reporting the vulnerability but its causes
are not identified, Reasonable: significant details are
available but the vulnerability is not proven in practice,
Confirmed: detailed vulnerability reports are available
and functional reproduction is possible

Environmental Confidentiality
Requirement

Enable to customize the importance of confidentiality
for the SDN asset relatively to other metrics in order to
adapt the score

Integrity
Requirement

Enable to customize the importance of integrity for the
SDN asset relatively to other metrics in order to adapt
the score

Availability
Requirement

Enable to customize the importance of availability for
the SDN asset relatively to other metrics in order to
adapt the score

Modified Base
Metrics

The eight metrics customize the base metrics according
to available modifications in the SDN environment. An
example is the existence of protection mechanisms
such as TLS in Openflow and https in Rest API
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respond because its resources (memory, buffer, bandwidth and CPU) are busy,
resulting in a DoS attack on Controller Function. The attack exploits at least the
vulnerability Controller Function Disruption.

Fig. 2. SDN base scores spider. Fig. 3. Enhanced SDN Base scores spider.

Fig. 4. SDN Temporal scores spider. Fig. 5. Enhanced SDN Temporal scores spider.

Fig. 6. SDN environment scores spider. Fig. 7. Enhanced SDN environment scores
spider.
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Thus, we proceed according to the following logic to estimate the severity of
Controller Function Disruption. In the base group, the Attack Vector of the vulnera-
bility is adjacent because the flooding source is Data Processing Engine. The com-
plexity of the attack is low because the attacker misuses the default behavior of Network
Element Resource and he can repeat the attack. He does not need special privileges and
user Interactions. Furthermore, this vulnerability impacts highly the availability of
Controller Function and in some cases it can lead the target to alter the contents it
receives and to interrupt the communications with other entities. As a result, the base
group score of Controller Function Disruption is 7.1. There are a proof-of-Concept
related to the exploit technic with a non-official solution and reasonable reports dis-
cussing this DoS Attack. Therefore, the vulnerability score in the temporal group is 6.3.
In the environment group, the TLS deployment modifies the privileges to Low. Thus,
Network Element Resource needs to open a secure channel before talking with the
Control layer. The attacker cannot misuse a non TLS Network Element Resource. As a
consequence the score in the environment group reduces to 6.9.

We compute the scores of the assessed SDN vulnerabilities in the base, temporal
and environment groups. We display them respectively in Figs. 2, 4 and 6. We observe
that the vulnerability surface is between 8.3 (High) and 5.2 (Medium) in the base group
spider diagram (Fig. 2). The different interfaces and their agents (A-CPI, A-CPI Agent,
D-CPI, D-CPI Agent and C-CPI) have the highest scores because they expose other
assets in different layers and enlarge the attack scope. Furthermore, the vulnerabilities
related to Open Access and Disruption are the most severe.

In the Temporal group (Fig. 4) the vulnerability surface becomes between 7.2 and
4.3. This decrease is due to the unavailability of mature malicious code and attacker
techniques. As a result the exploitation of the vulnerabilities is more difficult and
expensive, especially for the Control layer. Besides, the majority of the vulnerability
exploits (excluding Disruption and Alterability in Application Logic and Network
Element Resource) are not reported.

The vulnerability surface becomes between 8.0 and 5.0 in the environment score
spider (Fig. 6). However, it is not Open Access vulnerabilities (such as in the base
group) that have the most severe impact. The Disruption vulnerabilities of the inter-
faces become the most severe. The SDN specification recommends the deployment of
TLS in the southbound and in the northbound interfaces. This deployment reduces the
severities of Open Access vulnerabilities (and those of Non-Secrecy, Alterability. and
Nonidentification).

We note also that the vulnerabilities of C-CPI diverges from the other interfaces
vulnerabilities scores in the temporal and environment groups. The main reason is
because C-CPI’s security is unexplored and an untapped subject.

The results indicate a significant relation between SDN assets. In the Base group,
the vulnerabilities scores of Controller Function, C-Agent, and Controller Content are
equal to the vulnerabilities scores of Application Function, Application Content, Data
Processing Engine, Data Sink and Data Source (there are minor disparities in the
temporal and environment groups). The same equality relation is observed between the
different interfaces in the Control layer and their respective agents in the Application
layer and the Data Plane layer. For example another target of the aforementioned DoS
attack is the Openflow tables (Data Sink). Controller Function answers with Flow rules
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and packet-out Data Processing Engine. However, because flow table size is limited,
the tables can overflow. As a result, Data Processing Engine’s performance reduces
and it rejects the new Openflow rules (including those for legitimate traffic). In this
scenario, the DoS attack abuses the limited size of Openflow tables which corresponds
to the vulnerability Data Sink Disruption. The scores of this vulnerability in the
3 groups (respectively 7.1, 6.3 and 6.9) equal the scores of Controller Function Dis-
ruption; however there is an issue with this equality. The DoS attack on Controller
Function disturbs the entire network and enlarges the impacts to other layers. Other
network elements (and Applications in the upper SDN layer) will experience large
answer delays (and even communication interruptions) from the Control layer. At the
same time the other attack on the Data Plane layer remains in its scope. Therefore, the
severities of the Control layer vulnerabilities should be higher than the others.

The reasons of these observations are related to the functions and space of CVSS
method. They focus only on the characteristics of conventional network systems. They
do not take into account the specific features of SDN neither the importance of each
SDN asset towards the others. Therefore we need to enhance the CVSS in order to take
into account the characteristics of SDN and obtain more accurate scores reflecting SDN
features.

6 Vulnerabilities Scores Enhancement

In addition to the conventional features that define the severity of vulnerabilities, SDN
has its own specific characteristics that affect its vulnerabilities. These specific SDN
characteristics increase the severities of its vulnerabilities because they expose the
characteristics of its assets. Thus, the CVSS approach without taking into consideration
this aspect is incomplete.

In order to enhance the CVSS values and adjust them according to SDN specific
features, we integrate the latter in the quantification of the vulnerabilities scores. We
use AHP to define the impact of each SDN feature on SDN assets. We measure the
weight of each asset. Then, we integrate the weight of each asset into its vulnerability
scores to quantify the new CVSS. We undertake the following steps:

1. We describe SDN specific criteria and construct the hierarchy tree according to
AHP.

2. We calculate the weights of each SDN asset using the AHP tree and the weights of
each criterion.

3. We enhance the CVSS scores by integrating the assets weights scores into the
calculations of CVSS.

A. SDN hierarchy tree

The construction of the factors tree is the first step in the AHP process. The root of
the tree corresponds to the objective of our analysis which is the evaluation of the
impacts of SDN assets on security. The first level of the hierarchy represents the SDN
features that affect SDN security. The last level of the tree refers to the SDN assets.
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We define three SDN specific characteristics [37] that impact the severities of SDN
vulnerabilities. Programmability is an SDN feature that allows configuring, managing,
deploying automatically network operations, and adapting them dynamically to
network changes. This criterion increases the vulnerabilities of the SDN assets because
it gives attackers a way to automatize their threats, adapt them to the evolution of the
network and spread them dynamically and widely to other assets. Another feature is
Centralization. It defines the density of assets links and their reliance. A centralized
asset is critical and its vulnerabilities affect other assets. The third feature is neutrality.
SDN is neutral from any specific technology proprietary or from any constructor
hardware. This feature enables an attacker to extend their exploits to all SDN orga-
nizations since they share a common technology.

B. SDN Assets weights

AHP uses pairwise comparisons to evaluate individual alternatives, to derive
weights for the criteria and to construct their overall ratings [38]. We follow the
following AHP steps:

a. We calculate the pairwise matrix A (3X3) for the first level criteria. The values of
the matrix (see Table 4) represent the overall intensities of the impacts of the SDN
features on security. These values fulfil a standardized AHP scaling [39] form 1
(same intensity) to 9 (extremely intense). The entries a j

k and akj satisfy the following
constraint:

a j
k � akj ¼ 1: ð1Þ

b. We normalize the matrix A (n, m) into the Matrix A’ according to the equation:

a
0j
k ¼

a j
kPm

l¼1 a
k
l

: ð2Þ

c. We compute the criteria weight vector W based on the Eigen vector method. The
weights are derived according to the equation:

wj ¼
Pm

l¼1 a
0l
j

m
: ð3Þ

d. We define the pairwise matrixes of the second level. Each matrix expresses the
impacts intensities of each SDN criterion on the asset. In the Annex is an example
of a pairwise Matrix for the Programmability Criteria.

e. We repeat steps 2 and 3 for each pairwise matrix and calculate the criteria weight
vectors.

f. We construct the Matrix S where each column corresponds to a criteria weight
vector (see in the Annex).

g. We compute the impact overall intensities in Vector V (see below) based on the
equation:
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vk ¼
Xm

j¼1

S j
k �Wj ð4Þ

We see in vector V that Control layer
components have the highest weights
(0.1174 for the APIs and 0.0826 for Con-
troller Function) because SDN architecture
is based on the separation, the programma-
bility, and the centralization of the Control
layer. In contrast, Application and Network
Element Resource have lower intensities
(0.0198 for Application Function and
0.0161 for Data Source) because SDN does
not affect their designs. It enables organi-
zations to develop their own Application

and Network Element Resource separately from the architecture. SDN requires the
ability of these entities to interact with the interfaces agents; whereas, it offers to
Applications a way to configure and program the network.

C. CVSS adaptation

We integrate the final weights to CVSS computation according to the following
equation:

CVSS0i ¼ CVSSi þ CVSSi � við Þ ð5Þ

Because the scale of the new CVSS moves from the interval [0, 10] to [0, 10 +
(10 * Max (vi))], we adjust the new values according to the original interval by the
following equation:

CVSS00i ¼ CVSS
0 � 10=ð10þð10 �Max við ÞÞÞ ð6Þ

The new results are displayed in Figs. 3, 5, and 7. In contrast to the previous
results, we observe that the vulnerability surface increases in the 3 groups. It becomes
in the base group between 9.2 and 5.3. We see also an important shift. All the Control
layer vulnerabilities scores become the highest. The leading scores belong to D-CPI

A = W =

V =
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(9.2, 7.6, and 8.8), D-DPI (9.2, 7.6, and 8.5), and C-CPI (9.2, 7.5, and 7.4), and in
some extent to Controller Function, C-Agent and Controller Content. The CVSS
scoring enhancement breaks the equality relation between the Control layer assets and
the other assets in the Data Plane layer and Application layer. In the example of the
DoS Attack we found that it abuses two vulnerabilities which are Controller Function
Disruption and Data Sink Disruption. Both have equal scores in the 3 groups (7.1, 6.3
and 6.9) according to CVSS despite they belong to two different layers. The CVSS
enhancement resolves this incoherence. It gives more weight to Controller Function
Disruption. Hence, the new scores are 7.6, 6.8 and 7.4 for Controller Function Dis-
ruption and 7.3, 6.4 and 7.0 for Data Sink Disruption.

7 Conclusion

In this paper, we analyze the vulnerabilities of SDN. We propose a meta-model of SDN
architecture and its instantiation. Then, we construct a list of generic SDN vulnera-
bilities by inversing security objectives for each SDN entity. We use CVSS to compute
the severities of theses generic vulnerabilities. Besides, we integrate to these results the
intensities of specific SDN features in order to adapt CVSS to SDN.

Our findings indicate that SDN has a lot of vulnerabilities with high and medium
severities because of the weaknesses inherited from classical network architecture and
due to its specific characteristics. Overall, vulnerabilities related to Open Access are the
most severe in the base group, while the severities of disruption increase in the envi-
ronment group. We show that CVSS is agnostic to SDN specific features. It assigns to
different entities in different layers equal scores. We resolve this issue by integrating
AHP to CVSS and adapting the latter to SDN specific features.

We will continue to address security issues of SDN by using these results in a risk
assessment of SDN. The future study will highlight the threats that exploit these SDN
vulnerabilities. Also, we envision the development of a tool that probes SDN weak-
nesses by using our vulnerabilities as a reference data base.

Annex

See Table 4.
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Abstract. As a model of vulnerability information, attack graph has
seen successes in many automated analyses for defending computer net-
works against potential intrusions. On the other hand, attack graph has
long been criticized for the lack of scalability when serving as a visualiza-
tion model for conveying vulnerability information to human analysts. In
this paper, we propose two novel approaches to improving attack graph
visualization. First, we employ recent advances in network security met-
rics to design metric-driven visualization techniques, which render the
most critical information the most visible. Second, existing techniques
usually aim at an one-size-fits-all solution, which actually renders them
less effective for specific applications, and hence we propose to design
application-specific visualization solutions for network overview and sit-
uational awareness. We discuss the models, algorithms, implementation,
and simulation results.

1 Introduction

Computer networks have long become the nerve system of enterprise information
systems and critical infrastructures. On the other hand, the scale and severity
of security threats to computer networks have continued to grow at an ever-
increasing pace. To defend computer networks against potential attacks, an
important starting point is to understand the networks’ weaknesses and flaws.
To that end, a network security administrator or analyst should be capable of
assessing the security posture of a network quickly and efficiently. However, the
amount of vulnerability information in a network increases quickly in the net-
work’s size, mostly because vulnerabilities are seldom independent and attack-
ers may combine them in sophisticated ways for attack propagation or privilege
escalation. Therefore, conveying a large amount of vulnerability information to
human analysts is a challenging issue for most networks.

Attack graph is an established model of vulnerability information in net-
works [1,22]. By encoding potential exploits of vulnerabilities and linking them
through their common pre- and post-conditions, an attack graph provides a clear
picture about how attackers may potentially break into a network and subse-
quently compromise network assets. Attack graphs have seen successes in many
automated analyses for assessing, monitoring, and hardening computer networks.
c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 117–134, 2017.
DOI: 10.1007/978-3-319-51966-1 8
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On the other hand, attack graph has long been criticized for its poor scalabil-
ity when serving as a visualization model for human analysts to comprehend,
since even a small network may yield an attack graph that is too complex to
understand [17].

The visualization of attack graphs has received limited attention (a more
detailed review of related work will be given in Sect. 5). The scalability may be
partially improved by abstracting and hiding low-level details [17], although the
improvement is often limited since the method still relies on the same node-link
representation of attack graphs. The clustered adjacency matrices [18] address
the scalability issues but lead to a highly abstract model unsuitable for human
interpretation. GARNET [24] and NAVIGATOR [6] employ tree-based struc-
tures to represent host configuration, but they both lack sufficient details about
connectivity and exploit relationships.

In this paper, we propose two novel approaches to improving attack graph
visualization. First, we employ recent advances in network security metrics to
design metric-driven visualization techniques. Such techniques prioritize the
visualization based on relative metric scores. This will allow the most critical
information to be best highlighted or magnified in order to guide human ana-
lysts to explore the most pertinent threats. Second, we observe that most existing
attack graph visualization techniques aim at an one-size-fits-all solution, which
actually renders them less effective for specific applications; we then propose to
design application-specific visualization solutions. In this paper, we focus on two
such solutions, namely, the radial attack treemaps for network overview and the
topographic attack trees for situational awareness. We discuss models, algorithms,
implementation, and simulation results.

The rest of this paper is organized as follows. Section 2 reviews background
information on attack graph, security metrics, and relevant visualization tech-
niques. We will then introduce two novel attack graph visualization models
for network overview and situational awareness in Sects. 3 and 4, respectively.
Finally, Sect. 5 reviews related work and Sect. 6 concludes the paper.

2 Preliminaries

To be self-contained, this section reviews background information on attack
graph, security metrics and visualization techniques.

2.1 Attack Graph and the Scalability Issue

Attack graph models vulnerabilities and their inter-dependency inside a net-
work [1,22]. An attack graph can be represented as a directed graph, with
exploits and conditions as vertices, and the causal relationships between exploits
and conditions as edges.

The left-hand side of Fig. 1 shows our running example which will be used
throughout the paper to illustrate different visualization methods. On the right-
hand side of the figure is a toy network and on the left side the correspond-
ing attack graph, in which each predicate vulnerability(source host, destination
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host) inside an oval indicates a self-explanatory exploit, and each plaintext condi-
tion(host1,host2) or condition(host) indicates a security-related condition. Edges
point either from an exploit’s pre-conditions to the exploit (e.g., a user privilege
on host 1 is a pre-condition for exploits originated from host 1), or from the
exploit to its post-conditions. Note the numbers inside the attack graph can be
ignored for now, and they will be needed in later discussions. More formally,

Definition 1. An attack graph G is a directed graph G(E ∪ C,Rr ∪ Ri) where
E is a set of exploits, C a set of conditions, Rr ⊆ C × E the require relation,
and Ri ⊆ E × C the imply relation.

rpc(1,3)
0 . 6

user(3)
0 . 64

rpc(2,3)
0 . 6

ssh_bof(2,3)
0 . 3

rsh(0,1)
0 . 5

user(1)
0 . 4

rsh(0,2)
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user(2)
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user(0)

ftp_rhosts(0,1)
0 . 8

ssh_bof(0,2)
0 . 3

ftp_rhosts(0,2)
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rpc(1,2)
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t rus t (0 ,1)
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t rus t (0 ,2)
0 . 8

local_bof(3)
0 . 2

root(3)
0 . 13

Fig. 1. The running example (Left) and attack graph of a 14-host network (Right)

The above basic representation of attack graphs is more suitable for auto-
mated analysis than for visualization-based human analysis. Enumerating all
the exploits, their pre- and post-conditions, and edges between them in a single
directed graph will inevitably lead to very high node and edge density, a signifi-
cant amount of crossings between edges, highly complex edge paths, and a high
average edge length. These characteristics render the attack graph messy and dif-
ficult to comprehend, and prevent human analysts from interpreting the attack
graph and cross validating with results of automated analysis. As an example,
the right-hand side of Fig. 1 shows a messy and illegible attack graph. It may
be surprising to note that this attack graph actually represents a small network
composed of only 14 machines, each of which has less than 10 vulnerabilities.
Clearly, the basic representation of attack graphs is not a viable visualization
solution.
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2.2 Security Metrics

Scoring and ranking vulnerabilities and networks based on their relative sever-
ity and security has drawn significant attentions. Among existing efforts, the
Common Vulnerability Scoring System (CVSS) is a widely recognized standard
for security vendors and analysts to assign numerical scores to vulnerabilities to
reflect their relative severity [21]. The approach in [8] first assigns a normalized
CVSS score as the conditional probability of successfully executing each exploit
of the vulnerability given satisfied pre-conditions. The assigned probabilities are
then used to build a Bayesian network based on causal relationships between
exploits and used to find the probability that critical assets are compromised,
which provides a security metric for the whole network. For example, in Fig. 1,
a number inside an oval is the aforementioned conditional probability and under
each condition is the probability of satisfying that condition.

In this paper, we extend the above Bayesian network-based security metric
by introducing the notion of asset value to attack graphs, which is a numerical
value between 0 and 10 (corresponding to the domain of CVSS scores) assigned
by administrators to each condition in the attack graph based on the condition’s
relative significance with regards to confidentiality, integrity, and availability.
From this assigned asset value, we calculate the risk at multiple hierarchical
levels for conditions, hosts, groups of hosts (subnets), and networks. Here we
adopt the common approach of defining risk as the product of the asset value
and attack likelihood (that is, the probability obtained using the aforementioned
Bayesian network approach). More specifically,

Definition 2. Given the probability of executing each exploit P (e) and that of
satisfying a condition P (c) inside an attack graph G(E ∪ C,Rr ∪ Ri), and an
asset value assignment function AV (.) : C → [0, 10], we define

– the risk of a condition c as Rc(c) = P (c)∗AV (h)
10 .

– the risk of a host h as Rh(h) = Rc(< root, h >).
– the risk of a group of hosts (or the whole network) G as Rg(G) =

∑

h∈G

Rh(h).

2.3 Applying Existing Visualization Models

We apply several existing visualization models to attack graph to demonstrate
their limitations and motivate further discussions.

Balloon Attack Graph. Due to the hierarchical nature of most networks, an
obvious approach for improving the scalability of attack graphs is to grouping
or clustering certain nodes which share similar characteristics (e.g., residing on
the same or adjacent hosts [17]). However, such an approach will meet difficulty
to maintain readability without losing valuable information due to the relatively
high edge density and crossings in a usually highly-connected attack graph.
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In Fig. 2, we apply to our running example a clustering method with multiple
cluster centers in order to form clusters of nodes without a pre-defined top-down
path or a particular directional layout, based on the clustering method proposed
by Melancon et al. [16] which aims to achieve a balanced layout, namely, a balloon
attack graph.

Fig. 2. Balloon attack graph and attack treemap

From the example, it is clear that this visualization model can improve the
density of nodes as well as the readability to some extent, through clustering
exploits associated to the same host. However, it is equally clear that the edges
cannot be fully displayed (without breaking the balloons), leading to a significant
loss of information; the improvement of scalability is also quite limited.

Attack Treemap. An issue with conventional node-edge attack graph is the diffi-
culty of expressing the hierarchical relationships between exploits, hosts, and
networks. The above balloon attack graph addresses this through clustering
nodes into balloons, but it also wastes much visualization space to explicitly
depict the hierarchical relationships.

To that end, treemaps allow for implicit representation of hierarchical infor-
mation inside a rectangular display, where the entirety of the visualization space
is put to use [11]. Figure 2 shows an attack Treemap using our running exam-
ple, built with the JavaScript InfoVis Toolkit [3] using the binary tiling algo-
rithm [23]. In the attack treemap, each rectangle with a black bar at the top
represents a host, inside which each colored rectangle represents an exploit. The
color denotes the CVSS score, and the relative size of rectangles denotes the risk
value as calculated before.

Clearly, treemap is a dense and relatively scalable visualization model. In
addition, GARNET [24] has shown how to add reachability results to treemaps
by interactively displaying them through semantic substrates. However, most of
the connectivity information and edges in attack graphs are still missing here,
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and adding them as overlying edges will clearly lead to a messy result. We will
address this issue in Sect. 3.

Hyperbolic Attack Tree. As attack graphs get larger, screen size becomes a con-
cern, and forcing an analyst to zoom or pan on sections of an attack graph will
likely lead to a loss of context or awareness of the overall network. To this end, the
hyperbolic geometry offers opportunities for creating a fisheye-lens effect, with
the center of the graph (the focus) occupying the most space and the remain-
der of the graph condensed and pushed outwards, which helps to maintain the
context and awareness of the whole graph [2]. Figure 3 shows a hyperbolic attack
tree based on our running example.

(a) A Hyperbolic Tree (b) A Re-Centered Tree

Fig. 3. Hyperbolic attack tree

The constant contextual awareness makes hyperbolic attack trees an appeal-
ing choice for applications like situational awareness. We will revisit this app-
roach in Sect. 4.

3 Radial Attack Treemaps

This section introduces a scalable, metric-driven visualization model, the radial
attack treemap, for the purpose of obtaining a quick overview of a network’s
vulnerability information. We first give an overview, followed by the description
of models and algorithms, and finally we present simulation results.

3.1 Overview

Enabling a security analyst to acquire a quick overview of the entire network’s
vulnerability information is a key tactical advantage in assessing networks’ secu-
rity. The goal here is to encode as much legible details as possible inside a
given size canvas. Section 2.3 mentioned treemaps as a visualization model that
provides relatively high information density and scalability by occupying the
entirety of the canvas. On the other hand, the main shortcoming of treemaps
lies in the difficulty of displaying edges between exploits.
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Intuitively speaking, our main idea here is to bend the treemap into a ring,
and display edges inside that ring. As to the actual display of edges, we turn
to radial graphs, which allows a fixed-size layout with high information density,
element proximity, and edge management [14]. Unlike conventional graphs in
which an edge may be obstructed by a node, in a radial graph, a line between
two points on a circle is an unobstructed line. Moreover, the edges in a radial
graph can be hierarchically bundled with crossings between edges minimized.

By combining key concepts of treemaps and radial graphs, we propose a
metric-driven and treemap-based radial visualization, namely, the radial attack
treemap. We summarize the key features and advantages of this novel visualiza-
tion model in the following, while leaving details of the model and implementa-
tion to later sub-sections:

– The model provides a quick overview of exploits, chains of exploits (that is,
paths in an attack graph), hosts, and causal relationships between exploits in
a network.

– The color and size of each slice of the outside ring represents the CVSS score
and risk of the corresponding exploit, respectively.

– The stacking of slices and sub-slices in the outside ring implicitly represent
hierarchical relationships between exploits, exploit chains, and hosts, reducing
the number of edges that need to be explicitly displayed (in contrast to the
original attack graph).

– The center of the ring displays edges in a bundled way to minimize the number
of crossings between edges, leading to a cleaner visualization result.

– Layout of the bent treemaps is optimized such that the lower level details are
displayed more towards the outer side of the ring in order to occupy more
space.

Figure 4 illustrates an example of radial attack treemap, which is based on
our running example shown in Fig. 1.

3.2 Models and Algorithms

Definition 3 more precisely describes the radial attack treemap.

Definition 3 (Radial Attack Treemap). Given an attack graph G(E ∪
C,Rr ∪ Ri) with hosts H and the risk function Rc, Rh, and Rg, a radial attack
treemap is composed of a ring R and a collection of links L, where

– R is divided into a collection of slices S, with each slice s ∈ S corresponding
to a host h ∈ H.

– each slice s is divided into a collection of subslices SS, with each subslice
ss ∈ SS corresponding to an exploit chain (a sequence of exploits involving
the destination host h, the same source host, and leading to < root, h >.

– each subslice ss is further divided into a collection of subsubslices SSS, in
which each subsubslice sss ∈ SSS corresponds to an exploit e in the exploit
chain.
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Fig. 4. Radial attack treemap

– the relative size of each slice, subslice, and subsubslice is proportional to the
risk score (Definition 2) of corresponding host, exploit chain, and exploit,
respectively (details will be provided later).

– the color of each subsubslice represents the CVSS score of the corresponding
exploit (details will be provided later).

– each link in L points from a slice corresponding to host h, to a subslice corre-
sponding to an exploit chain involving the source host h.

– all the links in L are bundled and routed through the center of the ring R.

Data Structures. We now describe the data structures required for imple-
menting the proposed visualization model. Specifically, to implement the model,
we need to compute the aforementioned risk metrics and convert a given attack
graph into a suitable data structure. We then derive geometric information nec-
essary to the final rendering of the model. Therefore, for each element in the
model, there will be a corresponding view element containing additional infor-
mation necessary to the visualization, as detailed below.

– Exploit & Subsubslice: Each exploit is a list of five attributes, an identifier,
a set of pre-conditions and post-conditions, a CVSS score, and a risk value.
Correspondingly, a subsubslice, as the view representation of the exploit, is a
list of attributes including a label, a color derived from a normalized CVSS
score, as well as a size proportional to the risk value of exploit chain.
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– Exploit Chain & Subslice: Each exploit chain is a list of attributes including
an identifier, a risk value, as well as the source host involved. Correspondingly,
a subslice is a list of attributes including references to the composing subsub-
slices, a label, a size derived from the risk value, an anchor point which is a
set of coordinates used as destination points for incoming links, and a color
derived from the CVSS scores of the corresponding exploits.

– Host & Slice: A host is a list of attributes including the references to the
composing exploit chains, an identifier, and a risk value. Correspondingly, a
slice is a list of attributes including the host name, references to the composing
subslices, a label, a color derived from the CVSS scores, a size derived from
the risk value of the host, and two anchor points, with the first being a set
of coordinates used as intermediate destination points for incoming links and
the second being a set of coordinates used as the source points for outgoing
links from this host.

– Link: A link is a pair < h, ec > indicating the source host h involved by
exploits in the exploit chain ec. Correspondingly, the link is visualized using
the Bézier spline composed of two curves, a cubic Bézier curve and a quadratic
Bézier curve [20]. The former contains three sets of coordinates, namely, a start
point, an end point and a control point, while the latter has four, namely, a
start point, an end point and two control points.

Algorithms. This subsection discusses two series of algorithms. The first con-
verts a given attack graph to the data structures mentioned in the previous
sub-section. The second is for computing geometric information used in creating
the view structures.

First, in the following, Algorithm1 uses a recursive depth-first search in the
input attack graph to obtain all paths from user-access conditions to the root
condition of the target host (Algorithm2). For each path obtained, we verify
that all exploit sequences leading to this condition have all their pre-conditions
satisfied and that the path generated is valid (detailed algorithm is omitted due
to space limitations).

Second, we discuss how the view data structures may be generated (detailed
algorithms are omitted due to space limitations). The ring is generated by con-
verting exploits, exploit chains and hosts into subsubslices, subslices and slices,
respectively. Host and exploit chain risk scores are expressed by the angle of ring

Algorithm 1. getAllExploitChains
Input: An attack graph, a set of host-access conditions Host
Output: A set of Hosts possessing exploit chains and exploits

1 foreach Host to ∈ Hosts do
2 foreach Host from ∈ Hosts do
3 pathsfrom−>to[ ][ ] ← getAllPaths(from, to);
4 foreach path p ∈ pathsfrom−>to do
5 if isV alid(true, path, from, initialconditions) then
6 to.addExploitChain(path);
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Algorithm 2. getAllPaths
Input: A Linked List of visited nodes visited, the end condition end

1 Node n = visited.last();
2 Node[] nodes = n.getNexts();
3 foreach Node n ∈ Nodes do
4 if visited.contains(node) then
5 continue;

6 visited.add(n);
7 Node[] path ← visited;
8 allPaths.add(path);
9 visited.removeLast();

10 foreach Node n ∈ Nodes do
11 if visited.contains(n) || n = end then
12 continue;

13 visited.addLast(n);
14 getPath(visited, end);
15 visited.removeLast();

segments they occupy. Host0, representing the initial attacker-controlled host,
possesses a fixed angle, α0. The slices representing a given host x will have an
angle αx of value:

αx = (360 − α0) ∗ scorex
∑n

i=1 scorei
(1)

Similarly, the angle αy of an exploit chain ec ∈ hx, relative to risk of the
other exploit chains of the host – will have a value of:

αy = αx ∗ scoreec
∑

ec∈h scoreec
(2)

For an exploit e ∈ ec, the angle of ring segment it occupies is the same as
that by its exploit chain parent, and occupied area thus depends on the length
of the radius segment between the current exploit and the next exploit (or the
ring’s two edges), depending on the risk scores of these exploits’ post-conditions.
The color of subsubslice is derived from the normalized CVSS scores of the
vulnerabilities using a color ramping algorithm similar to the one described by
Bourke in [4].

The links displayed at the center are Bézier splines [20] computed using the
method by Holten in [9]. The spline is composed of two Bézier curves, the origin
curve, a cubic Bézier curve with two control points starting at the origin host’s
anchor point denoted by point 0 and ending on the destination host’s projection
on the host circle, and the destination curve, a quadratic Bézier curve starting at
the end of the origin curve and ending at the exploit chain anchor point. Finally,
the link color is derived from the score of the first exploit in the exploit chain
of the destination, using a color ramping algorithm.
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3.3 Implementation and Simulation

A prototype was built using Java and the Graphics2D and Curve2D libraries,
included in the JavaSE package. It is built using the Model-View Controller [12]
(MVC) pattern. A GraphViz [7] .dot file parser reads an input attack graph and
loads it into memory. The graph is then traversed to generate exploits, exploit
chains, and hosts, using Algorithms 1 and 2. This model is then converted into
slices, subslices, subsubslices, and links, in order to generate the ring and links.

We now study the density and scalability of the visualization model through
simulation using randomly generated attack graphs (we note that although an
experiment using real world data is certainly more desirable, to the best of
our knowledge, a publicly available dataset containing a significant number of
attack graphs is not currently available). We generate 1200 attack graphs using
Python programs from small seed graphs based on real world attack graphs.
The simulation environment is a dual-core Intel Core i5 processor with 8 GB of
RAM running Debian 7. The entire application was written in Java and runs on
OpenJDK 6.

We compare the scalability of radial attack treemaps with that of the input
attack graphs. As a radial asset treemap is designed as a fixed-size visualiza-
tion, we set a threshold value for the smallest allowable subsubslice, at 1000px2

(leaving approximately 10 characters at 8pt. font size), and we ensure all sub-
subslices in a radial attack treemap to be legible by scaling them according to
this threshold. Figure 5 shows the average canvas size of both models in relation
to the number of hosts.

The simulation clearly confirms that radial attack treemaps offer a higher
information density than conventional attack graphs. Figure 5 shows that, on
average, 10 hosts can be represented on a canvas of merely 900 × 900 pixels,
while the corresponding attack graphs would require a canvas of over 2800× 2800
pixels.
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Next, we study the degree of reduction in the number of edges/links by implic-
itly representing edges in the radial attack treemaps (through stacking subsub-
slices). We note that, in addition to this reduction in the number of edges/links,
the radial attack tree maps have other advantages in terms of displaying links,
as mentioned already in the previous subsection. Figure 6 compares the number
of edges/links in relation to the number of hosts in the graph.
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This simulation indicates that the amount of edges/links has been reduced
to approximately a third those of conventional attack graphs. The implicit rela-
tionships between host, exploit chains and exploits allow for such a significant
edge reduction.

We note that, Fig. 5 seems to indicate that the rate of growth of radial asset
treemap is greater than that of conventional attack graphs. This is a conse-
quence of the ring’s tiling algorithm: regardless of the size of the canvas, an
exploit chain’s partition angle will remain the same. When compared to a two-
dimensional graph canvas, both size increases are quadratic but with the parti-
tion size depending on the angle of its parent exploit chain, leading to a lower rate
of growth of partition surface compared to the available surface of a rectangular
canvas.

3.4 Discussions

The proposed metric-driven radial attack treemap provides a viable visualization
solution for human analysts to quickly grasp an overview of the vulnerability
information in a network. Nonetheless, the model in its current form still has a
few limitations. First, due to the limited level of hierarchy in the treemaps, it will
be difficult to visualize a large network in a single view. Developing a new tiling
algorithm to support more levels of hierarchy or using interactivity to vary the
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hierarchy levels of slices or filtering out certain nodes are both viable solutions.
How well those solutions would scale to larger networks with hundreds of hosts
will need to be confirmed through experiments. Second, the trade-off between
the areas occupied by the ring and by links requires developing algorithms to
optimize such a trade-off for clarify on both sides.

4 Topographic Hyperbolic Trees

This section introduces the novel topographic hyperbolic tree model for monitor-
ing and predicting real time progress of attacks.

4.1 Overview

One important aspect of visualization in the application of cyber-situational
awareness is to allow administrators to see both the current focus of an ongoing
attack and most likely next steps. Another important aspect is to provide a sense
of distance between potential attack steps based on the number of intermediate
steps or relative difficulty of such steps [24,25]. In Sect. 2.3, we have shown
that the hyperbolic tree model is a suitable model for the first purpose. As to
express the attack distance, we are inspired by geographical topographic maps,
in which contour lines are used to indicate fixed increases in altitude. Therefore,
the main idea here is to enhance the hyperbolic attack tree model with contour
lines representing attack steps at similar distance. Again, we summarize the key
features and advantages of this novel visualization model in the following, while
leaving details of the model and implementation to later sub-sections:

– It provides an interactive visualization of ongoing attacks and plausible next
steps.

– The hyperbolic tree creates a fisheye-lens effect that allows administrators to
focus on the current attack and its closest future steps, while not losing context
or awareness of other steps that may be further away but are still possible,
such as the ultimate goal of the attack.

– The contour lines provide a rough idea about future attack steps that are at
similar distance from the current step.

– In addition, the relative length of different edges represent (after taking into
account the fisheye-lens effect) the relative difficulty of the corresponding
exploit.

Figure 7 shows the topographic hyperbolic tree for our running example.
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Fig. 7. Topographic hyperbolic tree

4.2 Model and Algorithms

Definition 4 formally describes the topographic hyperbolic tree.

Definition 4. Given an attack graph G(E ∪ C,Rr ∪ Ri) with hosts H and the
risk function Rc, Rh, and Rg, a topographic hyperbolic tree is composed of a
hyperbolic attack tree T (E,C), which has the exploits E as nodes and conditions
C as edges, and a collection of contour lines L linking all the exploits sharing
the same depth in the tree. The relative length of an edge is based on the risk
metric score of the corresponding condition as well as the depth of the node (more
details will be provided later).

The construction of a topographic hyperbolic tree from an input attack graph
involves a few steps. We first load the attack graph into memory. Then, for each
time the graph is recentered, we apply the tree generation algorithms. We then
layout the tree on the canvas and generate the contour lines. More specifically
(detailed algorithms are omitted due to space limitations),

1. We start by establishing the context required to initiate the graph traversal
using (Algorithm 3), and then recursively perform the graph traversal and
tree construction using Algorithm 4, while limiting the maximal depth of any
tree branch to be a pre-defined parameter MAX DEPTH in order to avoid
the explosion of possible paths.

2. We then layout nodes on the canvas. We compute the coordinates of every
node by calculating the length of a link as well as the angle at the origin. The
length of an edge is a function of the risk of the pre-conditions of the exploit
represented, as well as the number of steps from the center: distancechild =
scorechild

c ∗ (MAX DEPTH − stepchild + 1). The angle of a node’s children
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will depend on the angle of the parent as well as the number of children this
parent possesses: αc = 180−c∗step

nbChildren .
3. Finally, we generate and draw the contour lines. Three main steps are required

for the drawing. First, after obtaining all points at a given level i, we ensure
that the polygon formed by these points completely includes the polygon
formed by the points at a previous level i − 1. Otherwise, we add the points
of polygon i − 1 lying outside of polygon i to the polygon i. Second, we
ensure that each polygon is convex. If the polygon is concave, we apply a
convex-hull algorithm commonly called the Gift-Wrapping Algorithm [10].
Finally, we smooth the lines by interpolating the points using the Catmull-
Rom Algorithm [5].

Algorithm 3. The Traversal Initiation Function
Input: A tree tree, an attack graph graph, a list of conditions attackerKnowledge
Output: A tree tree representing all possible attacker paths from given initial conditions

1 Node[ ] firstNextSteps ← getNextSteps(initialConditions);
2 for Node n ∈ firstNextSteps do
3 knowledge.add(n);
4 knowledge.add(n.getNexts());
5 traverse(tree, n, knowledge, 1);

6 return tree;

Algorithm 4. The Tree Generating Algorithm
Input: A tree node previous, an attack graph node graphnode, a list of conditions

attackerKnowledge a depth depth
Output: The fully expanded tree representing all possible attacker paths

1 Nodecurrent = graphNode;
2 if previous = FINAL CONDITION && depth ≤ MAX DEPTH then
3 previous.addNext(current);
4 current.addPrevious(previous);
5 Node[] nextSteps = getNextSteps(attackerKnowledge);
6 for Node n ∈ nextSteps do
7 if (! attackerKnowledge.contains(n.getNexts()) then
8 attackerKnowledge.add(n.getNext);
9 attackerKnowledge.add(n);

10 return traverse(current, n, attackerKnowledge, depth + 1)

We have implemented a prototype using Java and the Graphics2D library.
Our simulation (detailed results omitted due to space limitations) shows that
both the visualization result and the running time are easily manageable with
the maximal depth set to about six, whereas unsurprisingly there is a sharp
increase in both thereafter. Given the interactive nature of this visualization
model, we believe the model is still useful for many practical applications. On
the other hand, further study is needed to improve the tree expansion algorithms
in order to avoid the exponential explosion, and to find more efficient ways for
incrementally updating the model after each centering operation.



132 M. Emirkanian-Bouchard and L. Wang

5 Related Work

Sheyner et al. firstly employ a model checker to generate all possible attack
paths for a network, namely, an attack graph [22]. Since such a model-checking
technique suffers from scalability issues, the monotonicity assumption stating
that an attacker never relinquishes a gained privilege, is employed to achieve a
polynomial complexity [1], which is further improved by Ou et al. in developing
the MulVAL tool [19]. Related efforts on security metrics include the Common
Vulnerability Scoring System (CVSS) which is a widely recognized standard
for scoring and ranking vulnerabilities [21]. Frigault et al. [8] convert attack
graphs into Bayesian networks to analyze vulnerability metrics using a proba-
bilistic model. As to related efforts on visualization, Treemaps are introduced as
a graphical representation of a weighted tree by recursively partitioning rectan-
gles depending on the weight assigned to the node [11]. The shape of the par-
titions is dictated by tiling algorithms, as reviewed in [23]. Hyperbolic trees (or
hypertrees) are introduced by Lamping et al. [13] as a focus+context technique
to create a fisheye effect for viewing and manipulating large hierarchies. There
has recently been much focus on radial visualization models across different sci-
entific fields, such as VisAware [15], a radial visualization system representing
situational awareness in a generalized way, which is further adapted for intru-
sion detection in VisAlert [14]. Attack graph visualization presents additional
challenges due to their specific requirements. Noel et al. [17] present a frame-
work for hierarchically aggregating nodes in an attack graph. Noel et al. [18]
also make use of clustered adjacency matrices to compute the reachability and
distance similar to a heatmap. GARNET [24] is an Attack Graph visualization
tool which outputs treemaps with semantic substrates to visualize a network
and its reachability. GARNET later evolves into the NAVIGATOR (Network
Asset VIsualization: Graphs, ATtacks, Operational Recommendations) [6], with
improvements like the possibility of zooming-in to the host level and displaying
port numbers and possible exploits on these ports.

6 Conclusion and Future Work

We have proposed two novel approaches to attack graph visualization, namely,
metric-driven visualization and application-specific visualization. Specifically, we
proposed a new visualization model by combining treemaps with radial graph for
the use case of network overview. Second, we enhanced hyperbolic attack trees
with contour lines borrowed from topological maps for the purpose of situational
awareness. In addition to future work already mentioned in Sects. 3 and 4, we will
also pursue metric-driven visualization models for other applications of attack
graphs.
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able comments. This work is partially supported by Natural Science and Engineering
Research Council of Canada under Grant N01035.
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Abstract. Organizations need to use flexible access control mechanisms
where the access decisions to critical information assets are taken dynam-
ically. In this paper, we present a framework for insider threat likelihood
assessment within the context of access control systems. Our approach
takes into account information flows, the trustworthiness of subjects, the
sensitivity of objects and the security countermeasures. We identify and
formally describe a set of properties to be satisfied within this approach.
These properties are, then used for quantitatively assessing the insider
threat likelihood.

Keywords: Information Security · Access control · Information flow ·
Insider threat · Threat likelihood assessment · Risk assessment

1 Introduction

Risk-based access control provides support for flexible access control decisions
and facilitates information sharing. Consider a situation where a workflow archi-
tect asks an IT security specialist to determine which combinations of operations
are less risky for the tasks composing a workflow, given the subjects, objects and
actions involved in each operation. The decisions could be based on the evalua-
tion of access risks, by selecting the combinations giving the lowest risk values.

An access control system that can give employees risky accesses can cause
insider security incidents. According to the US firm Forrester Research, insider
incidents within organizations represent 46% of security breaches [11]. In addi-
tion, the survey Global Corporate IT Security Risks 2013 [6], conducted by
Kaspersky Lab, shows that 85% of companies worldwide have experienced an
insider computer security incident.

Bishop et al. [3] distinguish two categories of insider threats:

1. violation of access control policy by using authorized access,
2. violation of security policy by obtaining unauthorized access.

Our approach for threat likelihood estimation of access requests deals with the
first category of insider threats which includes cases where an employee uses his
legitimate access to perform an action that violates the access control policy:
c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 135–142, 2017.
DOI: 10.1007/978-3-319-51966-1 9
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discloses sensitive data to a third party, releases information to untrusted envi-
ronments, etc. Our method can be seen as an approach to estimate the threat
likelihood of the violation of an access control policy, caused by the authorization
of other access requests.

The rest of the paper is organized as follows. Section 2 presents an overview
of our work and the contribution of this paper. In Sect. 3, we present our threat
assessment approach. In Sect. 4, we compare our work with notable work of
the literature and we present the limitations of our approach. Finally, we draw
conclusions for this paper and outline opportunities for future work in Sect. 5.

2 Overview and Contribution

Assessing the threat likelihood for different types of events with their predicted
impacts is a common way to assess IT risks. OWASP [9] defines the risk R
as “the product of the likelihood L of a security incident occurring times the
impact I that will be incurred by the organization due to the incident, that is:
R = L × I”.

Our approach differentiates between the intrinsic threat likelihood which is
the probability that the risk in question will occur in the absence of security
countermeasures and threat likelihood which considers the reduction of risk by
the application of countermeasures [5]. The security countermeasures could be
devices, procedures, or techniques that reduce the likelihood of threat on the
security of information that is processed, stored or transmitted. Examples of
such countermeasures are enabled access logs, data encryption, etc.

Let us assume the existence of the following entities: S a set of subjects, O
a set of objects, A a set of actions, Lc a set of secrecy levels, and SC a set of
security criteria. We limit the set A to two actions, read and write, which will
be collectively called accesses. We also limit the set SC to two criteria: Secrecy
and Integrity. We define a function Threat likelihood : S ×A×O×SC → [0, 1]
that represents the threat likelihood value when a subject s ∈ S requesting an
action a ∈ A on an object o ∈ O when a security criterion sc ∈ SC is intended.
Secrecy will be abbreviated c.

3 Assessment of Threat Likelihood When Secrecy
Is Intended

In this section, we propose our approach to estimate threat likelihood on secrecy
in access control systems. This approach considers the following factors: the
intended security criteria (secrecy in this section), the requested action (read
or write), the secrecy level of subjects requesting access, the secrecy level of
objects to be accessed and the security countermeasures. We assume that threat
likelihood depends on the importance of information flow between objects and
subjects, determined by the difference between their security levels.

In our approach, the likelihood of threat on secrecy increases when informa-
tion flows down. Consider, for example, the information flow when a Top Secret
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subject writes in a Public object, such information flow is more important than
the one when the same subject writes in a Secret object. In the first case, Top
Secret information could be leaked to the public, in the second case this infor-
mation would remain secret. It is reasonable to assume that the threat likelihood
would be higher in the first case. The reasoning for integrity is dual.

We define a total order on Lc and for each secrecy level in Lc, we assign
a numerical value in accordance with the defined order, where higher numbers
denote higher security levels. Throughout this paper, the following functions will
be needed to develop our approach:

• csl : S → Lc formally represents the assignment of secrecy levels to subjects
that reflects the trust bestowed upon each of them.

• col : O → Lc formally represents the assignment of secrecy levels to objects
that reflects the protection needs of the data.

3.1 Defining “Threat Likelihood”

Instead of adopting the binary vision of the Bell La Padula model [2] to assess the
threat likelihood of read and write requests, we propose the following principles:
we consider that permitting a subject s to read an object o, such that csl(s) <
col(o) or permitting a subject s to write in an object o, such that csl(s) > col(o),
presents by itself a measurable threat likelihood.

In this section, we define the “threat likelihood” on secrecy as follows: we
say that the likelihood of threat on secrecy is non null if a subject s ∈ S is able
to read an object o ∈ O, such that csl(s) < col(o). But for any attempt by a
subject s to read an object o, such that csl(s) ≥ col(o) the threat likelihood is
null. Any measure of read threat likelihood on secrecy in the first case is affected
by the following two general principles:

• Principle 1: the likelihood of threat on secrecy increases (or decreases) as
the object’s secrecy level increases (respectively decreases).

• Principle 2: the likelihood of threat on secrecy increases (or decreases) as
the subject’s secrecy level decreases (respectively increases).

The reasoning for write accesses is dual.
We define the relation <T in the following way: (s, a, o, sc) <T (s′, a′, o′, sc)

iff Threat likelihood(s, a, o, sc) < Threat likelihood(s′, a′, o′, sc).

3.2 Read Threat Likelihood Assessment for Secrecy

We assume the existence of the subjects: s1, s2, s3, s4, s5 and s6, and the objects
o1 and o2. Table 1(a) and (b) illustrate the secrecy levels of these entities.
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Table 1. Secrecy levels for running examples

Subjects s1 s2 s3 s4 s5 s6
Secrecy levels 4 3 2 1 1 1

(a)

Objects o1 o2
Secrecy levels 5 4

(b)

3.2.1 Read Threat Likelihood Assessment for Secrecy: Qualitative
Approach

Assume that access for data objects has been requested by subjects who are
employees of the business that owns the objects (trusted and reliable to some
degree by the system). In this case, data owners might be more concerned about
the secrecy levels of objects than the secrecy levels of subjects. Hence, our app-
roach for threat likelihood assessment in this paper is primarily based on the
secrecy levels of objects.

Let us assume that a workflow architect asked an IT security specialist to
define a set of tasks composing a workflow by selecting the least threatening
combinations of subjects, objects and actions for the secrecy of data. Task T1

can be executed by s2 reading from objects o1 or o2, task T2 can be executed
by either s3 or s4 reading from o2 and task T3 can be executed by either s5 or
s6 reading from o1. The last two subjects request access from two distant sites
where s5 is connected via an unencrypted public network and s6 via VPN.

To determine the least threatening combinations of subjects, objects and
actions on secrecy we follow this method:

Method 1: A read threat likelihood assessment technique that is primarily
based on object secrecy levels should support the following:

1. always apply Principle 1: read threat likelihood always increases as object
secrecy level increases,

2. whenever object secrecy levels are the same, apply Principle 2: read threat
likelihood increases as subject secrecy level decreases,

3. apply Principle 3: threat likelihood of accesses increases (or decreases) as
the effect of security countermeasures reducing the threat likelihood decreases
(respectively increases).

The least threatening combinations of our example according to Method 1 are
as follows: T1 should be executed by s2 reading from o2 since col(o2) < col(o1)
((s2, r, o2, c) <T (s2, r, o1, c)), T2 should be executed by s3 reading from o2 since
csl(s3) > csl(s4) ((s3, r, o2, c) <T (s4, r, o2, c)) and T3 should be executed by s6
reading from o1 since csl(s5) = csl(s6) and only s6 is connected via VPN which
is a countermeasure that reduces threat likelihood by preventing disclosure of
information ((s6, r, o1, c) <T (s5, r, o1, c)). Indeed, VPNs typically allow remote
access using tunnelling protocols and encryption techniques.
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3.2.2 Read Threat Likelihood Assessment for Secrecy: Quantitative
Approach

Let us consider task T4 that can be executed by either s1 or s2 reading from
o1 where s1 is connected via an unencrypted public network and s2 via VPN.
According to Principles 1 and 2, allowing s2 to read object o1 has a greater
likelihood of threat on secrecy than allowing s1 to read object o1. However,
Principle 3 tells us that this may not be true in the presence of countermeasures
such as the VPN, that can reduce the threat likelihood of s2 reading o1. Hence, we
can see that priority orders such as the one outlined in Sect. 3.2.1, can not permit
threat likelihood comparison in all cases. However, quantitative measures which
correspond to this threat likelihood ordering may be useful, such as in the case
of task T4. There can be many different formulas which respect the properties of
our approach and can measure the threat likelihood of granting access. In this
section, we propose a formula and describe its construction.

ISO/IEC 27001 [10] requires regular verification of computer security. In
order to determine to which extent the countermeasures are producing the
desired outcome to meet the security requirements, the security administrator
measures the contribution of the implemented countermeasures in the reduction
of risks. In this work, we consider the effect of countermeasures in the calcula-
tion of threat likelihood. In Table 2, each rule determines a countermeasure and
its effect corresponding to an access request identified by the subject’s security
level, the object’s security level, the action requested and the security criteria
intended.

Table 2 shows a representation of all possible read accesses by subjects to
objects when secrecy is intended. Note that when csl(s) > col(o), the threat
likelihood is null. Hence, entries of Table 2 are empty along or below the diagonal.
Otherwise, each table entry [i, j] includes a set of couples (measure, value) that
represents the countermeasures and their contribution in the reduction of threat
likelihood of a subject s reading an object o, where csl(s) = i and col(o) = j.
The sum of all countermeasures values in each entry is bound between 0 and 1.

The rule of entry [2, 4] shows that if a subject having a secrecy level 2 reads
an object having a secrecy level 4, then the countermeasures m3 and m4 can
respectively reduce the likelihood of threat on secrecy by 0.5 and 0.2.

Counter(s, a, o, sc) denotes the sum of the effects of the different implemented
countermeasures to reduce threat likelihood if s executes an action a on an object
o when the security criteria sc is intended. For example, we can see from Table 2
that if a subject s having a secrecy level of 1 requests to read an object o having
a secrecy level of 5 when secrecy is intended and all three countermeasures are
applied, we have Counter(s, r, o, c) = 0.5 + 0.2 + 0.2 = 0.9.

We define the following additional principles for the calculation of the threat
likelihood of access requests, which we assume to be bound between 0 and 1.

• Principle 4: The threat likelihood of an access request is equal to zero, if the
cumulative effect of the corresponding security countermeasures is equal to or
greater than the value of the intrinsic threat likelihood.
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• Principle 5: The threat likelihood of an access request increases (or decreases)
when the intrinsic threat likelihood increases (respectively decreases).

Table 2. The effect of countermeasures in the reduction of the read threat likelihood

Subjects

secrecy levels

Objects

secrecy level 1

Objects

secrecy level 2

Objects

secrecy level 3

Objects

secrecy level 4

Objects

secrecy level 5

1 (m5, 0.5) (m5, 0.5) (m3, 0.5) (m1, 0.5)

(m2, 0.2)

(m4, 0.2)

2 (m2, 0.2) (m3, 0.5) (m2, 0.2)

(m4, 0.2) (m4, 0.2) (m4, 0.2)

3 (m3, 0.5) (m4, 0.2)

4 (m4, 0.2)

5

We now introduce the concept of threat likelihood indexing. We associate
a numerical value representing the threat likelihood index from the set
{0, · · · , |Lc| − 1} to each subject and object having a secrecy level in Lc. In
the case of read accesses when secrecy is intended, from the point of view of
subjects, we expect the threat likelihood to increase as subject secrecy levels
decrease. Hence, subject threat likelihood index values decrease with subject
secrecy levels. For level in Lc, we write ̂level to denote a subject threat like-
lihood index. Formally, ̂(level) = |Lc| − level. For example, when Lc = {Top
secret, Secret, Confidential, Restricted, Public}, ̂(Secret) = 5 − 4 = 1. However,
object threat likelihood indexes increase with object secrecy levels. We write
︷ ︸︸ ︷
level to denote an object threat likelihood index. Formally,

︷ ︸︸ ︷
level = level -1. For

example,
︷ ︸︸ ︷
Secret = 4 − 1 = 3.

If we assume that |Lc| = 5 there can be at most 5 × 5 = 25 combinations of
subject-object accesses. We define a function Intrinsic : S×A×O×SC → [0, 1]
that represents the intrinsic threat likelihood value of a subject s ∈ S requesting
an action a ∈ A on an object o ∈ O when a security criterion sc ∈ SC is
intended.

Intrinsic(s, r, o, c) =

⎧
⎨

⎩

(|Lc|×
︷ ︸︸ ︷
col(o)+̂csl(s))

(|Lc|2)−1 , ifcsl(s) < col(o)
0, Otherwise.

(1)

A formula that respects the principles of Method 1 and Principles 4 and
5 for measuring the threat on secrecy likelihood of granting read access to a
subject s for an object o, is given below:

Threat likelihood(s, r, o, c) =

⎧
⎪⎪⎨

⎪⎪⎩

Intrinsic(s, r, o, c) − Counter(s, r, o, c),
if csl(s) < col(o) and
Counter(s, r, o, c) < Intrinsic(s, r, o, c)
0, Otherwise.

(2)
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The numerator of formula (1) is intuitive. Since we require that more impor-
tance be given to the threat likelihood index of objects, we multiply the object
threat likelihood index by |Lc| that equals the cardinality of the set of secrecy
levels Lc. Then, we add the threat likelihood index of the subject. The numera-
tor of the formula maps all possible read accesses by subjects to objects into an
interval [0 · · · (|Lc|2) − 1], where a higher value represents a greater threat like-
lihood. In order to have intrinsic likelihood threat values into an interval [0, 1],
we divide the value obtained from the numerator by (|Lc|2) −1. In formula
(2), we subtract the value representing the effect of the different implemented
countermeasures corresponding to the request in question. The resultant value
represents the object-based read threat likelihood that respects the principles of
Method 1 and Principles 4 and 5.

Let us consider that the coutermeasure m2 in Table 2 represents the encryp-
tion of data and we apply formula (2) to our example stated in Sect. 3.2.2. We
have Counter(s1, r, o1, c) = 0 and Counter(s2, r, o1, c) = 0.2. We get the fol-
lowing: Threat likelihood(s1, r, o1, c) = Intrinsic(s1, r, o1, c) − Counter(s1, r,
o1, c) = 0.87 (1) and Threat likelihood(s2, r, o1, c) = Intrinsic(s2, r, o1, c) −
Counter(s2, r, o1, c) = 0.91 − 0.2 = 0.71 (2). From (1) and (2), we have
Threat likelihood(s2, r, o1, c) < Threat likelihood(s1, r, o1, c).

Future papers will show how to derive formulas giving values representing the
object based likelihood of threat on secrecy when write access is requested and
the likelihood of threat on integrity when write and read accesses are requested.
Note that threat likelihood on integrity increases when information flows up.

4 Related Work and Limitations

Cheng et al. propose Fuzzy Multi-Level Security (Fuzzy MLS), which quantifies
the risk of an access request in multi-level security systems as a product of the
value of information and probability of unauthorized disclosure [4]. Unlike Fuzzy
MLS which is limited to the estimation of the threat likelihood of read accesses
forbidden by Bell La Padula, our approach estimates the threat likelihood of read
and write accesses, is applicable when the objective of integrity is of interest (is
not limited to secrecy) and considers security countermeasures mitigating the
threat likelihood.

Bartsch proposes a policy override calculus for qualitative risk assessment in
the context of role-based access control systems [1]. This work presents a quali-
tative estimation of threat likelihood. In comparison with the work of Bartsch,
our approach is both qualitative and quantitative, developed in the context of
generic access control systems and is not limited to RBAC.

Threat likelihood assessment in our framework cannot cover unexpected
threats such as those in which several other socio-technical parameters must
be taken into consideration for reflecting the reality of insider threats such as
users’ access history, behavior, collusion with other users, etc.
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5 Conclusion

The main contribution of this paper is a quantitative approach for threat like-
lihood assessment in the context of access control systems. Our approach con-
siders primarily the security levels of objects, and thus gives more priority to
the sensitivity of data. This is only one possibility and our approach can be
easily modified to accommodate other views, such as those presented in [7,8].
In order to be compliant with IT Risk standards and guidelines, and to obtain
realistic values of threat likelihood, our approach takes account of the effect of
the security countermeasures mitigating the threat likelihood of access requests.

In this paper, we have focused on quantitative threat likelihood assessment,
which is a pre-requisite for estimating access risks. However, our ultimate goal
is to develop a framework for estimating the risk of access requests.

Acknowledgements. This research was partially supported by the Natural Sciences
and Engineering Research Council of Canada.
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Abstract. We consider secure pattern matching for some alphabet set,
where gaps are represented by the character ‘*’. Generally, we know that
a wildcard character ‘*’ in the pattern is used to replace zero or more
letters in the text. Yasuda et al. (ACISP 2014) proposed a new pack-
ing method for somewhat homomorphic encryption for handling wild-
cards pattern where the wildcards replace one letter in the text. We
extend the secure pattern matching so that the wildcards are replaced
with any sequences. We propose a method for privacy-preserving wild-
cards pattern matching using somewhat homomorphic encryption in the
semi-honest model. At the same time, we also propose another packing
method for executing homomorphic operations between plaintext and
encrypted wildcards pattern in three homomorphic multiplications rather
than 3k multiplications required by Yasuda et al. method to handle k
sub-patterns. Moreover, we have been able to improve the communica-
tion complexity of Yasuda et al. method by a factor k denoting the total
number of sub-patterns appearing in the pattern. In addition, our practi-
cal implementation shows that our method is about k-times faster than
that of Yasuda et al. Here, we show some applications of our packing
method to computing secure Hamming and Euclidean distances.

Keywords: Privacy-preserving · Repetitive-wildcards · Pattern
matching computation · Somewhat homomorphic encryption ·
Bioinformatics · Biometrics · Hamming and Euclidean distances

1 Introduction

Pattern matching computation (PMC) has vast applications in various fields like
biometrics authentication, speech and image recognition, bioinformatics, search
engine, forensics, etc. Now computer professionals and scientists are thinking
how these computations can be done securely without revealing any information
to the public. So encryption is one of the techniques to secure data. But we
need to do computation on encrypted data for security. So the solution is homo-
morphic computation which was introduced by Rivest et al. [1]. Moreover, data
is increasing day by day. So users are interested in storing it online not only
c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 145–160, 2017.
DOI: 10.1007/978-3-319-51966-1 10
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for saving space of local computers but also access it anytime and anywhere
from the world. Cloud service providers like Amazon, Google, Microsoft, etc.
are facilitating massive storage service along with computation. But securing
data and search over secured data are needed at the same time. Homomorphic
encryption (HE) has allowed service providers to facilitate these services to their
users. But at the early stages, cryptosystem of Goldwasser and Micali [20], El
Gamal [21], Cohen and Fischer [22], Paillier [23] allowed only single homomor-
phic computation either addition or multiplication but not both. In 2005, Boneh
et al. enabled us to perform both operations at the same time [3]. But they have
the limitation of doing multiple additions but single multiplication. After that
Gentry [4] did the revolution in the field of homomorphic computation which
can perform different operations on encrypted data. Their method is called fully
homomorphic encryption (FHE) which enables multiple additions and multipli-
cations. But the problem is that with FHE, it generates large ciphertext and
causes slow processing speed [5]. After these breakthroughs, Brakerski et al.
proposed another somewhat homomorphic encryption (SwHE) which supports
multiple additions and fewer multiplications [6]. Therefore, it reduces the cipher-
text size and speeds up the computation performances. In 2011, Lauter et al. [2]
showed some practical applications of SwHE in medical, financial, and advertis-
ing and pricing. Then using SwHE of [2] secure pattern matching application for
analyzing personal DNA sequence was proposed by Yasuda et al. [8]. But, they
did not address the pattern with a wildcard (*) like ‘AT*G’, ‘AT*’, ‘*AT’, etc.
in their research. To address this limitation, they proposed wildcards pattern
matching technique using SwHE for searching real-world genome data [7]. They
used packing method of [8] to match the pattern including a single wildcard
which replaced a letter in the text of practical genome data. For example, for a
DNA alphabet set Σ = {A, C, T, G}, pattern ‘AT*’ matches any of the texts like
‘ATC’, ‘ATG’, ‘ATA’. Here Yasuda et al. [7] addressed only a letter in the text to
be replaced by a wildcard character occurred in the pattern. But several letters
in the text are needed to be replaced by a wildcard character appeared in the
pattern that we call repetitive-wildcards pattern matching. Here, we address this
repetitive-wildcards pattern matching in encrypted domain. Therefore, search-
ing pattern like ‘AT*CG*AAG*TT*AGG’ securely in the text of cloud database is
our concern of research where ‘*’ replaces one or several letters in the text. In
reality, we have been motivated by the DNA search method used in mtDB (see
http://www.mtdb.igp.uu.se/ for the on-line version of DNA searching) where
wildcard ‘*’ has been represented by a gap. In this research, we address only one
wildcards symbol ‘*’. If we want to support other symbols, it will increase time
complexity of the method.

1.1 Recent Secure Pattern Matching Techniques

Pattern matching computation can be secured in two ways namely application
specific protocol and generalized protocol. We emphasized on application spe-
cific protocol. In 2008, Jha et al. implemented Yao’s protocol to secure genomic
computation [9]. Here they showed a modified protocol of Yao after dividing

http://www.mtdb.igp.uu.se/
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problem instance into smaller sub-circuits and sharing the result of evaluating
each sub-circuit between the participants. In 2010, Blanton et al. showed secure
pattern matching technique using finite automata for DNA searching [10]. In
the same year, Katz et al. described a new keyword search protocol for private
DNA pattern matching by modifying Yao’s garbled circuit approach [11]. For the
above cases, they did not work any patterns which contain a wildcard character
(*) that needed to be matched with actual text. So far we have observed that
secure pattern matching computation (SPMC) with single-character wildcard
was first addressed by Baron et al. in 2012 [12]. They proposed a new protocol
for more expressive search queries including single-character wildcard and sub-
string pattern matching of arbitrary alphabets. Thereafter, Defrawy et al. did a
comparative study among some secure pattern-matching (SPM) protocols and
measured their performances for a wildcard pattern matching [15]. But none
of the methods discussed so far address on repetitive-wildcards occurred in the
patterns. To address this pattern matching, Hazay et al. first proposed a few pro-
tocols for important variations of the SPM problem that were significantly more
efficient than their previous protocols [16]. But these protocols are not suitable
for cloud computing because they did not show any implementation procedure
in the cloud. To address this problem a new method is urgently necessary.

1.2 Our Contribution

In our research, we are emphasizing on SPMC in the cloud using symmetric
somewhat homomorphic encryption scheme of Yasuda et al. [7]. Moreover, wild-
cards pattern matching has a great impact on searching real-world genome [7].
But a few schemes discussed above used a wildcard character in a pattern which
will replace several letters in the text to search genome data. Here users may
also want to use repetitive-wildcards in the pattern to search their genome data.
In this regard, we should have a method which will be helpful for SPMC with
this type of wildcards appearance. Furthermore, we want to use patterns as
‘AC*CTA*T’ which can match any sequences like ‘AACGGCTATTACAACTGGT’. If we
use method of [7] then we require here nine homomorphic multiplications but
we need a method for doing this using a few homomorphic multiplications. For
this novel aim, we propose a protocol and a new packing method which enable
us to carry out privacy-preserving wildcards pattern matching using symmetric
somewhat homomorphic encryption scheme. Our packing method is a modified
version of Yasuda et al. [14] to prevent the overflow occurred in their computa-
tion when data size exceeds their limits.

1.3 Outline

Our paper is organized in the following way. Section 2 describes secure pattern
matching in the cloud along with protocol and some typical applications. More-
over, a homomorphic encryption scheme for our pattern matching protocol with
its security and correctness is described in Sect. 3. In addition, our proposed
packing method is discussed in Sect. 4. Our pattern matching computation is
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discussed in Sect. 5. We also narrate the performance of our protocol both the-
oretically and practically in Sect. 6. Finally, we conclude our paper in Sect. 7.

2 Secure Pattern Matching in Cloud

Among the early research works in secure pattern matching, most of them are
neither suitable for repetitive-wildcards pattern matching nor applicable to cloud
computing. Some researchers [7,8,14] presented their contributions that could
be applied to cloud. But they did not deal with the pattern containing this type
of wildcards. So our protocol for SPM using symmetric SwHE and its application
are discussed in the following sub-sections.

Fig. 1. Symmetric SwHE protocol for repetitive-wildcards pattern matching.

2.1 Our Protocol Using Symmetric SwHE

To describe this protocol, we consider a scenario for secure pattern match-
ing between Alice and Bob. For example - Bob has stored plaintext T =
(a0, . . . , al−1) of length l in his secure server which has a huge computa-
tion capability. Furthermore, Alice has a pattern P = (b1,0b1,1 · · · b1,p1−1 ∗
b2,0b2,1 · · · b2,p2−1 ∗ · · · ∗ bk,0bk,1 · · · bk,pk−1) with some wildcards which can be
found in the plaintext T . Here the Alice divides the pattern into sub-patterns
as {P1, P2, . . . , Pk} excluding the wildcards characters where length vector of
sub-patterns as (p1, p2, . . . , pk) with pk ≤ l. But Alice does not want to reveal
his pattern to Bob. On the contrary, Bob cannot reveal his information out-
side his server. So homomorphic encryption property [1] can handle this situ-
ation. Fully homomorphic encryption can do any operations which have large
time complexity. Somewhat homomorphic encryption [7] is helpful in our case.
In addition, Bob can do the pattern matching computation by measuring the
square Euclidean distance between the sub-text of T and each sub-pattern of
P . For 0 ≤ d ≤ (ly − py) and 1 ≤ y ≤ k, the square Euclidean distance Edis

between the sub-text T d and each sub-pattern Py is computed by the following
equation.
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Edis =
py−1∑

h=0

(ad+h − by,h)2 (1)

In addition, as shown in Fig. 1, our protocol can be narrated concisely by the
following points.

1. Alice has a pattern P with multiple wildcards. She breaks down the pattern P
into sub-patterns {P1, P2, . . . , Pk} excluding wildcard characters and encrypts
them with the homomorphic key generated by herself.

2. Then, she sends the encrypted pattern to Bob for performing a secure search.
3. Bob performs the required pattern matching computation between text T and

sub-patterns {C1, C2, . . . , Ck} by Eq. (1) and returns the result containing
encrypted locations to Alice.

4. Alice uses her keys to decrypt the result and uses our ‘table of computation’
for considering wildcards to get her desired result.

Remark 1. Here our protocol is secure under the assumption that Bob is semi-
honest (also known as honest-but-curious), i.e., he always follows the protocols
but tries to learn information from the protocol.

2.2 Typical Applications

SPMC has a wide area in terms of application scenarios. Moreover, the size
of data is increasing very rapidly. Secure computation needs where security is
the main phenomena to compute like patient’s electronic health records, human
genome database, digital forensics, bioinformatics, network intrusion detection,
etc. Healthcare centers may upload their patient’s data to a cloud server. Thus,
the patient may allow the doctors to check medical reports or DNA records
stored in the database. SPM is being used widely nowadays due to publicly
availability of Genbank database [17] which contains an annotated collection of
DNA sequences. The Genbank is actually part of the international nucleotide
sequence database collaboration which includes the DNA data bank of Japan
(DDBJ), the European molecular biology laboratory (EMBL), and Genbank at
the national center for biotechnology information (NCBI). SPM also be used
in forensics application to search a particular digital content from a large set
of digital contents to protect the copyright. We hope that our packing method
and protocol will be helpful for many pattern matching applications in the cloud
computing platform.

Used Notations. The symbol Z denotes the ring of integers. For a prime num-
ber p, the ring of integers is denoted by Zp. For a vector A = (a0, a1, . . . , an−1),
the maximum norm is ‖a‖∞ = max |ai|. Let 〈T, P 〉 denote the inner product
between two vectors T and P . The ciphertexts ctadd and ctmul denote homomor-
phic addition and multiplication of text m′ and encrypted text ct = Enc(m, sk)
respectively. Also by,iy denotes iy-th character of y-th sub-pattern. The distrib-
ution DZn indicates the n-dimensional discrete Gaussian distribution.
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3 Security Using Homomorphic Encryption

In this section, we review the symmetric SwHE scheme of [7] and its correctness.
In 2011, Brakerski and Vaikunthanathan [6] proposed the correctness of this
scheme.

3.1 Symmetric SwHE Scheme

Yasuda et al. [7] showed a symmetric SwHE based on the public key SwHE
scheme of [2]. For this scheme, we need to consider some parameters as follows:

– q: modulus q is an odd prime such that q ≡ 1(mod 2n) which defines the ring
Rq = R/qR = Zq[x]/f(x) for a ciphertext space.

– f(x): a cyclotomic polynomial where f(x) = xn + 1.
– n: an integer which represents the lattice dimension for the ring Rq =

Zq[x]/f(x). It also represents the degree of polynomials which is a power of 2
such as 1024 or 2048.

– σ: a parameter which defines a discrete Gaussian error distribution χ = DZn,σ

with the standard deviation σ = 4 ∼ 8 practically.
– t: a prime t < q which defines the message space of the scheme as Rt = Zt[x]/

f(x), the ring of integer polynomials modulo f(x) and t.

Now we can discuss the key generation, encryption, homomorphism, and decryp-
tion property of this scheme as follows:

Key generation. Generate a ring element R 	 s ← χ for our secret key sk = s;

Encryption. For a given plaintext m ∈ Rt, encryption algorithm first samples
a ← Rq and e ← χ then encryption can be defined by a ciphertext pair (c0, c1) =
ct as follows:

Enc(m, sk) = (c0, c1) = (as + te + m,−a)

Homomorphic Operations. Generally, homomorphic operations like addition (�)
and multiplication (�) are between two ciphertexts. But in our case, one is
plaintext m′ and another is ciphertext ct = Enc(m, sk). So the homomorphic
operation between our ciphertext ct = (c0, c1) and plaintext m′ can be defined as

{
ctadd = ct � m′ = (c0 � m′, c1)
ctmul = ct � m′ = (c0 � m′, c1 � m′) (2)

where the plaintext m′ is considered an element in Rq for the above computation.
We can also define the subtraction as similar to addition as ct � (−m)′ = (c0 �
(−m)′, c1).
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Decryption. For a ciphertext ct ∈ (Rq)2 and t ∈ Rt with the secret key sk = s,
a general decryption can be defined as

Dec(ct, sk) = [m̃]q mod t where m̃ = c0 + c1s.

In the same way, homomorphic decryption can be defined by the following ways:
{

Dec(ctadd, sk) = [m̃add]q mod t
Dec(ctmul, sk) = [m̃mul]q mod t

where m̃add = c0 + m′ + c1s and m̃mul = c0m
′ + c1m

′s.

3.2 Security of This Scheme

We can show the security of this scheme by polynomial ring learning with errors
(ring-LWE) assumption as done by Lauter et al. [2]. Let the ring Rq = Zq/f(x)
where f(x) = (xn + 1) is the cyclotomic polynomial over degree n. Let s ← Rq

be a uniformly random ring element. The assumption is given by any polynomial
number of samples of the form

(ai, bi = ai · s + ei) ∈ (Rq)2

where ai is uniformly random in Rq and ei is drawn from the error distrib-
ution χ. Here the bi’s are computationally indistinguishable from uniform in
Rq. Therefore, it is hard to distinguish (ai, bi) from a uniformly random pair
(ai, bi). Moreover, Lyubashevsky et al. [18] showed that ring-LWE assumption is
reducible to the worst-case hardness of problems on ideal lattices that is assumed
to be secure against the quantum computer.

Remark 2. Recently, Castryck et al. [25] showed provably weak instances of ring-
LWE. But these kinds of weak instances do not affect our scheme.

3.3 Correctness of this Scheme

The correctness of this scheme depends on how the decryption can recover the
original result from the ciphertext after some homomorphic operations. We can
write the decryption process as

{
Dec(ctadd, sk) = Dec((ct � m′), sk) = m + m′

Dec(ctmul, sk) = Dec((ct � m′), sk) = m · m′ (3)

Actually, the above process is already described in Sect. 1.1 of [6]. Here, cipher-
text ct comes from m ∈ Rq after encryption and another plaintext m′ ∈ Rq. The
encryption scheme in Sect. 3.1 is the presentation of SwHE and its holds if the
following lemma holds as shown in [7].

Lemma 1 (Condition for successful decryption). For a ciphertext ct, the
decryption Dec(ct, sk) recovers the correct result if 〈ct, s〉 ∈ Rq does not wrap-
around mod q, namely, if the condition ‖〈ct, s〉‖∞ < q

2 is satisfied, where let
‖a‖∞ = max |ai| for an element a =

∑n−1
i=0 aix

i ∈ Rq. Specifically, for a fresh
ciphertext ct, the ∞-norm ‖〈ct, s〉‖∞ is given by ‖m + te‖∞. Moreover, for a
homomorphically operated ciphertext, the ∞-norm can be computed by Eq. (2).



152 T.K. Saha and T. Koshiba

(a) (b)

(c)

Fig. 2. (a) Our Problem domain; (b) Pattern matching for a non-binary vector of
text and pattern using our sub-pattern matching concept; (c) Our pattern matching
technique.

4 Packing Method for Secure Pattern Matching

Here, we skip the reviewing of some early packing methods of [2,13] due to page
limitation. However, Yasuda et al. [7] implemented the packing method of [13]
for privacy preserving wildcards pattern matching using symmetric SwHE. Here,
they also require three homomorphic multiplications for some pattern like ‘AT*’
to match some DNA sequences ‘ATA’, ‘ATT’, ‘ATG’, and ‘ATC’ over the DNA alpha-
bet. In their research, they used a wildcard character in the pattern to replace a
single letter in the text. But we like to consider the DNA sequence and pattern as
shown in Fig. 2(a). Here there exist some gaps in the pattern which can be rep-
resented by a wildcard character. If we split the pattern into sub-patterns, then
we get 4 different sub-patterns here. For matching these sub-patterns with the
given DNA sequence, we require 4-queries i.e. 12-multiplications for the method
of [7] as shown in Fig. 2(b). But if we want to do it in a few multiplications using
one query as shown in Fig. 2(c), we need a different packing method than [13].

Let T be a text vector and P be a pattern vector which can be expressed as
T = (a0, a1, a2, . . . , a(l−1)) ∈ Z

l and P = (b1,0b1,1 · · · b1,p1−1 ∗ b2,0b2,1 · · · b2,p2−1 ∗
· · ·∗bk,0bk,1 · · · bk,pk−1) ∈ Z

|P | respectively. Here the length of T is l where l ≤ n.
Moreover, pattern P can be divided into k sub-patterns as P̄ = {P1, P2, . . . , Pk}
omitting the wildcards where the length of sub-patterns can be represented as
{p1, p2, . . . , pk}. We know that pattern matching is usually done by measuring
the distance between the text and pattern of the same length. That’s why we
need to measure the distances of every sub-pattern from every substring of text
with the same length. Here we can find the distances between text and each sub-
pattern by placing those distances as a coefficient of different degrees of x of an n
degree polynomial. Therefore, if we use the packing method of [13] which packs
all the sub-patterns as one pattern, pattern matching result of most sub-patterns
will be wrap-around the coefficient with some degrees of x. Then it is difficult to
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extract each sub-pattern matching result from the resultant polynomial. As a
result, it is necessary to get each sub-pattern matching result as a coefficient of
different degrees of x. Now we need to pack the pattern P̄ in a different way than
packing of [13]. To overcome the above problem that is, to avoid this wrap-around
of coefficient for any degrees of x, we take the highest degrees of x as ly for the
first element by,0 in Py and decrease those degrees for other elements by,i in that
Py with 1 ≤ i ≤ py and 1 ≤ y ≤ k. Therefore, using packing method of [2] and
modifying packing method of [14], our packing method can be represented by
the following two polynomials in the ring R = Z[x]/(xn + 1) where n ≥ (k + 1)l.

1. Poly1(T ) =
∑l−1

j=0 ajx
j

2. Poly2(P̄ ) =
∑k

y=1

∑py−1
iy=0 by,iyxly−iy

Here, multiplication of the above two polynomials helps to obtain the result of
each sub-pattern Py matching with actual text T . Therefore, degree(Poly2(P̄ ))
starts with ly for each sub-pattern so that one sub-pattern matching result does
not wrap-around another sub-pattern matching result as a coefficient of resultant
polynomial with 1 ≤ y ≤ k.

Inner product property. As discussed in Sect. 3.2 of [13], the inner product
of two vectors helps to compute Hamming distance and Euclidean distance. So
the polynomial multiplications of text T and pattern P̄ can be represented as

Poly1(T ) × Poly2(P̄ ) =

( l−1∑
j=0

ajx
j

)
×
( k∑

y=1

py−1∑
iy=0

by,iyxly−iy

)

=
k∑

y=1

l−1∑
j=0

py−1∑
iy=0

ajby,iyxj+ly−iy

=

k∑
y=1

ly−py∑
h=0

py−1∑
iy=0

ah+iyby,iyxly+h + terms of higher degree + terms of lower degree

=

k∑
y=1

l−py∑
d=0

〈T d, P̄ y〉xly+d + terms of higher degree + terms of lower degree (4)

Here, T d is the dth sub-vector (ad, ad+1, ad+2, . . . , ad+py−1) of length py and P̄ y

is yth sub-pattern vector (by,0, by,1, . . . , by,py−1) with 0 ≤ d ≤ (ly − py) and
1 ≤ y ≤ k. The above result shows that one polynomial multiplication includes
the simultaneous inner product of 〈T d, P̄ y〉. Furthermore, terms of higher degree
mean deg(x) > (2ly − py) and terms of lower degrees mean deg(x) < ly. As
discussed in our protocol in Sect. 2.1, Alice has encrypted pattern ct2 of P̄ and
Bob has the text T in the plaintext space Rt. So we can define ct2(P̄ ) for some
plaintext Poly2(P̄ ) ∈ R as

ct2(P̄ ) = Enc(Poly2(P̄ ), sk) ∈ (Rq)2 (5)
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Proposition 1. Let T = (a0, a1, a2, . . . , al−1) ∈ Z
l be a vector of text and P =

(b1,0b1,1 · · · b1,p1−1 ∗ b2,0b2,1 · · · b2,p2−1 ∗ · · · ∗ bk,0bk,1 · · · bk,pk−1) ∈ Z
|P | be a pat-

tern vector where |T | = l. Moreover, k sub-patterns are found from the pattern,
P̄ = {P1, P2, . . . , Pk} omitting the wildcards where the length of sub-patterns can
be represented as {p1, p2, . . . , pk} with pk ≤ l ≤ n. If ciphertext of P̄ can be rep-
resented by ct2(P̄ ) by Eq. (5) then under the condition of Lemma 1, decryption
of homomorphic multiplication Poly1(T )�ct2(P̄ ) ∈ (Rq)2 will produce a polyno-
mial of Rt with xly+d including coefficient 〈T d, P̄ y〉 =

∑py−1
h=0 ad+hby,h mod t

for 1 ≤ y ≤ k, 0 ≤ iy ≤ py and 0 ≤ d ≤ l − py. Alternatively, we can say that
homomorphic multiplication of Poly1(T ) and ct2(P̄ ) simultaneously computes
multiple inner products for 1 ≤ y ≤ k and 0 ≤ h ≤ (ly − py).

5 Pattern Matching Computation

In this section, we describe Euclidean distance calculation using our packing
method for pattern matching problem as shown in Eq. (1). Here we show how
Bob does the homomorphic operations between his plaintext and encrypted pat-
tern. Here we also try to show that how Euclidean distance computation can
be useful in computing Hamming distance. Secure Euclidean distance has many
applications like fingerprint authentication [19]. Similarly, secure Hamming dis-
tance has many applications like analysis of personal DNA sequence [8]. In this
respect, let T = (a0, a1, a2, . . . , al−1) ∈ Z

l be a vector of text where |T | = l
and P = (b1,0b1,1 · · · b1,p1−1 ∗ b2,0b2,1 · · · b2,p2−1 ∗ · · · ∗ bk,0bk,1 · · · bk,pk−1) ∈ Z

|P |

be a pattern vector. Here we get sub-pattern excluding wildcards as P̄ =
(P1, P2, . . . , Pk) where length vector of sub-patterns as (p1, p2, . . . , pk) with
pk ≤ l ≤ n. So the squared Euclidean distance Edis between T d and P y is
given by

py−1∑

h=0

(ad+h − by,h)2 =
py−1∑

h=0

(a2
d+h − 2 · ad+h · by,h + b2y,h)2 (6)

for each 0 ≤ d ≤ (ly − py) and 1 ≤ y ≤ k. Here, pattern P̄y occurs in the
dth position of the text T if Edis = 0. So through this equation, we can use
it to carry out exact pattern matching. Moreover, if the binary vector is used
then Eq. (6) also gives the Hamming distance. On the other hand, if T and P
are non-binary vectors over alphabets like Σ = {A, C, T, G} then we convert it
unary encoded vectors tipj ∈ {0, 1}|Σ| as in [7]. If dH means Hamming distance
between T d and P̄ y then computation (6) gives Edis that is equal to twice of
Hamming distance i.e. 2dH〈T d, P̄ y〉.

Theorem 1. Under the condition Lemma 1, the linear combination of homo-
morphic operations

Poly1(T
2) � ct2(v|P̄ |) � Poly1(vl) � ct2(P̄ 2) � (−2Poly1(T ) � ct2(P̄ )) (7)
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simultaneously computes multiple values of Eq. (6) for 0 ≤ d ≤ (ly−py) and 1 ≤
y ≤ k on encrypted data where v|P̄ | denotes an unit vector (1, 1, . . . , 1) of length
|P̄ | and vl denotes another unit vector (1, 1, . . . , 1) of length l. Concretely, the
homomorphic operation (7) gives a polynomial of Rt with the xly+d-th coefficient
equals to the value of Eq. (6) for each 0 ≤ d ≤ (ly − py) and 1 ≤ y ≤ k on
encrypted data.

Proof. The property (4) shows that each xly+d-th coefficient Poly1(T 2) ∗
Poly2(v|P̄ |) is equal to the sum

(a2
d, a

2
d+1, . . . , a

2
d+py−1) · (1, 1, . . . , 1)T =

∑py−1
h=0 a2

d+h for 0 ≤ d ≤ (l − py) and
1 ≤ y ≤ k
where AT denotes the transpose of a vector A. Moreover, according to proposi-
tion 1, we can say that the homomorphic multiplication of Poly1(vl) � ct2(P̄ 2)
and (−2Poly1(T ) � ct2(P̄ ) computes two polynomials on encrypted data with
the xly+d-th coefficient which are equals to

∑py−1
h=0 b2y,h and −2

∑py−1
h=0 ad+h · by,h

respectively for each 0 ≤ d ≤ (l − py) and 1 ≤ y ≤ k. Finally, we can also say by
the correctness (3), it proofs that homomorphic operation in Eq. (7) produces
a polynomial of Rt with xly+d-th coefficient which equals to Eq. (6) for each
0 ≤ d ≤ (l − py) and 1 ≤ y ≤ k on encrypted data.

Fig. 3. Table of Computation for finding pattern matching results.

Now we give an example to show how the computation of pattern matching is
done on text using our table of computation (ToC ) shown in Fig. 3. Let, Bob
has the plaintext T = AAGTGCTGCCAGTCGT where |T | = 16 and Alice has the
pattern P = GTGCT*CC*GT*T with 0 ≤ d ≤ (16 − py) and 1 ≤ y ≤ 4. Here,
sub-patterns are P1 = GTGCT, P2 = CC, P3 = GT, and P4 = T. So the length
vector (p1, p2, p3, p4) of sub-patterns is (5, 2, 2, 1). Then Alice encrypts all sub-
patterns using her key in a single polynomial by Poly2 and sends it to Bob
for pattern matching computation. Bob does the pattern matching according
to Eqs. (6) and (7) and returns coefficients of xly+d to Alice in encrypted form.
Alice then decrypts the coefficients and determine the indices where each sub-
pattern matches the actual text or not using her ToC as shown in Fig. 3. Here,
sub-patterns P1, P2, and P3 match in the indices 2, 8, and 11 respectively. But
sub-pattern P4 matches in four places. Here, Alice considers only that index
which is greater than the sum of the last index of sub-pattern-3 and its length
(>11+2). So the index is 15. Finally, she computes gaps between sub-patterns
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and matches number of wildcards between sub-patterns. In this way, Alice finds
her desired result using our protocol. Moreover, our algorithm does not match
a pattern like CC*GT*GTGCT*T with given plaintext T though every sub-pattern
exists in the plaintext. This mismatch happens because all sub-patterns do not
occur sequentially in this case. Therefore, we can say that our algorithm accepts
only sub-strings with the same order as in the main string. Furthermore, our
algorithm determines only the single occurrence of the pattern P in the text T
to reduce the complexity of computation.

Remark 3. Here our protocol does secure pattern matching between plaintext T
of Bob and encrypted pattern P̄ of Alice. Here Alice learns some extra informa-
tion for pattern matching than she requires that also happened in the Yasuda
et al. [7]. The goal of our protocol is to perform pattern matching by securing
the pattern of Alice from Bob that is already preserved. Alice is securing her
text using symmetric SwHE scheme in the semi-honest model. In addition, we
say that our protocol acts as a building block of privacy-preserving repetitive
wildcards pattern matching.

Table 1. Performance comparison for pattern matching computation with repetitive-
wildcards

Parameters Yasuda et al. method [7] Our method

Time complexity O(σl − δ) O(k(l + 1) − δ)

Communication complexity O(kα) O(α)

No. of homomorphic multiplication k 1

Text replacing behavior by a wildcard One letter Many letters

δ = total length of sub-patterns.
k = number of sub-patterns in the query.
α = communication cost for each query between Alice and Bob.

6 Performance Analysis

Here we evaluate our pattern matching result for both theoretically and practi-
cally in the following subsections.

6.1 Theoretical Evaluation

Usually, the performance of a computational research can be measured by com-
plexity analysis. In this research, we address time and communication complexity
analysis. Here, we also consider a performance parameter ‘no. of homomorphic
multiplication’ due to cryptographic perspective and ‘text replacing behavior by
a wildcard’. Let us consider the same text T and pattern P̄ with k sub-patterns.
Now let α be the communication cost for each query between Alice and Bob.
So we compare our privacy-preserving pattern matching method with that of [7]
as shown in Table 1. At this point, we observe that the time complexities of the
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both methods are nearly same. But we have been able to reduce the communi-
cation complexity of [7] by a factor of k. Next, our method is able to handle k
sub-patterns in three multiplications instead of 3k multiplications if we follow
the method of [7]. Therefore, simplification of multiplication is done here. More-
over, in Yasuda et al. [7] method, a wildcard in the pattern replaces one letter
in the text whereas in our method the same replaces many letters in the text.
For designing a large pattern matching system, our pattern matching system is
better than early research.

Table 2. Experimental comparison for pattern matching computation with repetitive-
wildcards

n q k Total time in milliseconds δ lg(tAdv)

Yasuda et al. [7] Our method

8192 49-bit 3 1359 437 1.00099 1150

4 1766 438

5 2234 442

16384 51-bit 3 2641 875 1.00052 2290

4 3547 875

5 4437 875

32768 53-bit 3 5375 1766 1.00027 4530

4 7125 1786

5 8953 1796

65536 55-bit 3 10750 3563 1.00014 8810

4 14453 3564

5 18000 3609

131072 57-bit 3 22500 7453 1.000073 17032

4 30469 7453

5 38156 7484

6.2 Experimental Settings and Results

We encoded the DNA alphabet set Σ = {A, C, T, G} as Σ = {1, 2, 3, 4} for simpli-
fying our pattern matching computation. In addition, to experiment our secure
protocol in Sect. 2.1, we implemented both our and Yasuda et al. [7] methods
in C programming language using Pari C library (version 2.7.5) [24] and ran on
a computer with Intel Core i7-4790 CPU with 3.60 GHz and 8 GB RAM. We
compiled our C code using gcc 5.4.0 in Linux environment. Here, we have chosen
the values of our required parameters (n, q, t, σ, k) carefully to comply with our
method. We fixed the value of some parameters as σ = 8, t = 28n, and vary other
three parameters (n, q, k) for our experimental evaluation. We also considered the
lattice dimension (n) ranging from 8192 to 131072. According to the work of [7],
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the value of q must be greater than 211ntσ = 211 ·213 ·221 ·23 = 248 for the cipher-
text space Rq. Therefore, we chose the value of modulus odd prime q = 49 ∼ 57
bits. To serve our purpose of repetitive-wildcards pattern matching, we took
three types of patterns with k = 3 ∼ 5 where k is the number of sub-patterns
existing in the pattern. We limit the value of k to (3, 4, 5) to keep the lattice
dimension n as low as possible for reducing the time complexity of the compu-
tation. In addition, we considered mtDB as our text database of the length of
1000 and sub-patterns of length 9 ∼ 15. In these settings, we implemented both
our and Yasuda et al. [7] methods for privacy-preserving repetitive wildcards
pattern matching and compare their performances as shown in Table 2. Here we
computed the total time for both of the methods in milliseconds (ms) required
by the protocols including key generation, encryption, query, pattern matching,
and decryption. From the first row of our experimental results in Table 2, we get
total time taken by [7] method is 1359 ms whereas our method takes only 437
ms to match 3 sub-patterns with our text. So our system is 1359/437 ≈ 3 times
faster than [7] for matching 3 sub-patterns with the text. Here same scenario
preserved for the experimental results of other rows in Table 2. Therefore, our
system is about k times faster than that of Yasuda et al. [7] for every parameter
settings as shown in Table 2. Here, our coding is not fully optimized and the
system has a low configuration as compared current high performance machine.
Consequently, optimized code running on a highly configured machine can sup-
port more text size and produce better results. As discussed in Sect. 4.1 of [8], we
need to achieve more than 80-bit security (lg(tAdv)) for protecting our scheme
from some distinguishing attacks. Here, we achieve the security level ranging
from 1150-bit to 17032-bit for our different parameter settings and root Hermite
factor δ < 1.0050 as shown in Table 2. Therefore, our settings are able to pro-
vide security from some distinguishing attacks. Here we also measured the time
taken by key generation, encryption, pattern matching, and decryption for every
parameter setting of our method. Here, the total time required for the highest
settings as shown in the last row of Table 2 is 7484 ms where the time taken
by key generation, encryption, pattern matching, and decryption are 47 ms, 891
ms, 6297 ms, and 249 ms respectively. Therefore, we can say that timings of
key generation, encryption, and decryption at the client are low as compared to
pattern matching time of our method.

Remark 4. Here we skip all the timings of key generation, encryption, pattern
matching, and decryption for all parameters settings due to page limitation.

7 Conclusions

Throughout this article, we tried to show privacy-preserving repetitive-wildcards
pattern matching using somewhat homomorphic encryption in the semi-honest
model. For this reason, we propose a protocol and modified packing method to
serve this purpose. We showed some real life applications. Here we applied our
packing method in pattern matching for non-binary vectors. It is also applicable
to a binary vector with multiple queries. In this article, we have discussed our
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method for normal text and encrypted multiple patterns. This method is also
applicable when both the text and pattern are in encrypted form. Through this
method, we have been able to provide a more succinct description for wildcards
pattern matching computation than [7]. Furthermore, our packing method is
not only applicable to SPM but also applicable to other secure computation
fields. In addition, through our experimental results, we believe that our method
will inspire future researchers to do large polynomial computations in a few
multiplications wherever applicable.
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Abstract. Despite being one of the most common approaches in unsu-
pervised data analysis, a very small literature exists in applying for-
mal methods to address data mining problems. This paper applies an
abstract representation of a hierarchical categorical clustering algorithm
(CCTree) to solve the problem of privacy-aware data clustering in distrib-
uted agents. The proposed methodology is based on rewriting systems,
and automatically generates a global structure of the clusters. We prove
that the proposed approach improves the time complexity. Moreover a
metric is provided to measure the privacy gain after revealing the CCTree
result. Furthermore, we discuss under what condition the CCTree clus-
tering in distributed framework produces the comparable result to the
centralized one.

Keywords: Distributed clustering · Algebra · Rewriting · Formal meth-
ods · Privacy

1 Introduction

Clustering is a very well-known tool in unsupervised data analysis, which has
been the focus of significant research in different domains, spanning from infor-
mation retrieval, text mining, scientific data exploration, to medical diagnosis [1].
Clustering refers to the process of partitioning a set of data points into groups,
such that the elements in the same group are more similar to each other rather
than to the ones in other groups. Despite its benefit in a wide range of appli-
cations, very few works exist to express and solve the problems of clustering
algorithms in terms of formal methods [13].

In the present work, we apply the abstract representation of a categorical
clustering algorithm, named CCTree [12], to formalize the process of distributed
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clustering. Distributed clustering is mainly applied when the data are originally
collected at different sites [6]. Generally, for global benefit, the distributed agents
are interested in obtaining a global structure of clusters on the whole data, whilst
for privacy issues they are unwilling to share their own datasets, except when
a desired level of privacy is guaranteed [2]. For example, the Center for Disease
Control (master agent) is interested to use the result of clustering on patients’
records in different hospitals (agents) to identify the trends and patterns of
diseases. The result on whole dataset brings the benefit for all agents to find the
better treatment. However, for privacy concerns, the hospitals are unwilling to
disclose the patients’ records, unless that a privacy level is satisfied [9].

In this study, we address the problem of privacy-aware distributed CCTree
clustering. To this end, first each agent clusters her own dataset with the use
of CCTree algorithm [12]. Then, each agent sends the abstract structure of the
clusters to a master agent (honest but curious). The abstract schema of clusters
is published if it preserves the required privacy of data holder. The master agent
aggregates the result of clusters to get a global structure of CCTree such that
each agent is able to homogenize her own clusters based on the global structure.
The whole process performed by the master agent is formalized with the use of a
rewriting system. Rewriting system as a well established mathematical structure
automatically creates a new desired final result applying the correctly specified
rules [3].

The contributions of the present work can be summarized as follows:

– Two rewriting systems are provided in order to automatically verify the com-
pliance of an element of our algebraic structure to a CCTree structure, and
moreover to get automatically a global CCTree structure from the abstract
schema of CCTrees collected from distributed agents.

– We prove that the proposed rewriting systems terminate and produce the
unique result. Furthermore, we state that under which condition the result of
our distributed CCTree clustering is comparable with the centralized one.

– A metric is provided for a data holder to measure the privacy gain after
revealing the structure of CCTree on her data in order to decide weather to
participate in data sharing or not.

The paper is organized as follows. In Sect. 2, the required background knowl-
edge for the proposed methodology is provided. In Sect. 3, we apply the abstract
CCTree representation to formalize CCTree distributed clustering in terms of
rewriting systems. In Sect. 4, we present a review of the literature. We conclude
and point to the future directions of the research in Sect. 5.
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2 Background

In present section, we give some required background information.

2.1 CCTree Construction

CCTree [12] is constructed iteratively through a decision tree-like structure,
where the leaves of the tree are the desired clusters. The root of the CCTree
contains all the elements to be clustered. Each element is described through a
set of categorical attributes. Being categorical, each attribute may assume a finite
set of discrete values, constituting its domain. At each step, a new level of the
tree is generated by splitting the nodes of the previous levels, when they are not
homogeneous enough. Shannon Entropy is used both to define a homogeneity
measure called node purity, and to select the attribute used to split a node. In
particular non-leaf nodes are divided trough the attribute yielding the maximum
value for Shannon entropy. The separation is represented through a branch for
each possible outcome of the specific attribute. Each branch or edge extracted
from the parent node is labeled with the selected feature which directs data
to the child node. A node is considered as a leaf if it respects one of the stop
conditions criteria, i.e. (1) the number of elements is fewer than a threshold “μ”,
or (2) the node purity is better than “ε”. Figure 1 depicts a simple CCTree.

Fig. 1. A small CCTree

2.2 Rewriting Systems

A rewriting rule is an ordered pair, written as x → y of terms x and y. Similar to
equations, rules are applied to replace instances of x by corresponding instances
of y. Unlike equations, rules are not applied to replace instances of the right-
hand side y [3]. A term over signature G , constants K , and variables X is either
a variable x ∈ X , a constant k ∈ K , or an expression of the form g(t1, t2, . . . , tn),
where g ∈ G is a function symbol of n arguments, and ti are terms [3]. A
derivation for a rule “→” is a sequence of the form “t0 → t1 → . . .”. An element
t is reducible (with respect to →), if there is an element u such that “t → u”;
otherwise it is considered as irreducible. A rewrite system R is a set of rewrite
rules, t → u, where t and u are term. The term u is “→ normal” form of t,
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if “t →∗ u” and u is irreducible via →, where “→∗” means that continuously
the transition is applied. A relation → is terminating, if there is no infinite
derivations “t0 → t1 → . . .” which means that it does not reach to a normal
term. A relation → is confluent, if there is an element v such that “s →∗ v”
and “t →∗ v” whenever “u →∗ s” and “u →∗ t” for some elements s, t and
u. A relation → is convergent, if it is terminating and confluent. Convergent
rewriting system are interesting, because all derivations lead to a unique normal
form [3]. A conditional rule is an equational implication in which the term in
the conclusion is oriented. We use the form “x1 = u1 ∧ . . . ∧ xn = un |x → y” to
show that under the conditions “x1 = u1 ∧ . . . ∧ xn = un” we have “x → y”.

2.3 Feature-Cluster Algebra

In this section, we present feature-cluster algebra proposed in [13] which abstracts
CCTree representation in terms of a term. We proved in [13] that under the
condition of having an order among the set of features, the proposed term fully
abstracts CCTree structure. Full abstraction guarantees that a CCTree structure
and its counterpart CCTree term can be applied one instead of the other. In what
follows, we briefly present the notations of CCTree abstraction [13] which will
be exploited in present study.

(I) Semiring of features: Assume that a set of disjoint attributes, denoted
as A, is given, where the carrier set of each attribute Ai ∈ A is denoted by
VAi

. We call the union of the attributes, denoted as V =
⋃

Ai∈A VAi
, the set of

values or features. For example, the set of attributes could be A = {color, size},
where Vcolor = {red, blue}, and Vsize = {small, large}. Consequently, the set of
features equals to V = {red, blue, small, large}. Let F = P (P (V)) be the power
set of the power set of V. We denote 1 = {∅} ∈ F and 0 = ∅ ∈ F, and the
operations “+” and “·” on F are respectively defined as “Fi +Fj = Fi ∪Fj” and
“Fi · Fj = {Xs ∪ Yt : Xs ∈ Fi , Yt ∈ Fj}” for Fi, Fj ∈ F [13]. Hence, F belongs
to F, if it respects one of the following syntax forms: F := 0 | {{f}} |F · F |F +
F | 1, where f ∈ V. Then, the quintuple (F,+, ·, 0, 1) constitutes a commutative
semiring.

(II) Semiring of elements: Let us consider that the set of the attributes
A = {A1, A2, . . . , Ak} is given. We say s belongs to the set of elements S, if
s ∈ VA1 × VA2 × . . . × VAk

× N, where N is the set of natural numbers. Hence,
s ∈ S can be written as s = (x1, x2, · · · , xk, n), where xi ∈ VAi

for 1 ≤ i ≤ k,
and n ∈ N represents the ID of an element. For the sake of simplicity, we may
use the alternative representation xi ∈ Ai instead of xi ∈ VAi

. In our problem,
S is the set of all elements that one desires to cluster. As the result of having
different sets of elements to be clustered in distributed clustering, we define a
semiring of the power set of all elements as follows. Two operations “+” and “·”
are defined on the elements of P (S) (the power set of S) as “Si + Sj = Si ∪ Sj”
and “Si · Sj = Si ∩ Sj”, respectively, for Si, Sj ∈ P (S). Formally, we say S
belongs to the set of elements S ∈ P (S), if it respects one of the syntax forms:
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S := ∅ |S′ |S + S |S · S |S, where S′ ⊆ S. Then, the quintuple (S ,+, ·, ∅,S) is a
commutative semiring [13].

Definition 1 (Feature-Cluster (Family) Term). The set of feature-cluster
family terms on V and S, denoted as FCV,S (or simply FC if it is clear from the
context), is the smallest set containing elements satisfying the following condi-
tions:

if S ⊆ S then S ∈ FC

if F ∈ F1, S ⊆ S then F 
 S ∈ FC

if τ1 ∈ FC, τ2 ∈ FC then τ1 + τ2 ∈ FC

In this case, we call S and F 
 S a feature-cluster term and the addition of
one or more feature-cluster terms is called feature-cluster family term. We may
simply use FC-term to refer to a feature-cluster family term. We define the
block function, which receives an FC-term and returns the set of its blocks as
the following:

block : FC → P (FC)
block(S) = {S}, block(F 
 S) = {F 
 S}, block(τ1 + τ2) = block(τ1) ∪

block(τ2)

In the case that no feature specifies S directly, it is called an atomic term. The
set of all atomic terms is denoted as A.

Definition 2 (CCTree Term). A term resulting from a CCTree structure, or
equivalently transformable to a CCTree structure, is called a CCTree term.

Example 1. The CCTree term resulted from Fig. 1 is written as follows:

τ = red 
 S + blue · small 
 S + blue · large 
 S

where the symbol “·” is used to separate the features specifying a cluster, the
symbol “+” is applied to separate different clusters from each other, and “
” is
exploited to represent that a cluster is resulted from which main dataset. The
latter property is desirable in the process of distributed clustering, where data
are clustered in different agents.

Definition 3 (Term). We call τ a term, if it has one of the following forms:
τ := S | F 
 S | τ + τ | τ · τ, where S := ∅ |S′ |S + S |S · S |S and F :=
0 | {{f}} |F + F |F · F | 1. The set of terms on S and F is denoted as CS,F, or
abbreviated as C.

Definition 4 (Feature-Cluster Algebra). The quintuple (C, “+”, “·”, 0 
 ∅,
1 
 S) is an idempotent commutative semiring which is called a feature-cluster
algebra.

Definition 5 (Order Rewriting Rule). Let an ordered set of features (V, <)
be given. An FC-term is called an ordered FC-term on (V, <), if it is the normal
form of the following rewriting rule:
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f1 · f2 
 S →O f2 · f1 
 S if f1 < f2 ∀ f1, f2 ∈ V

Moreover, we define a rewriting rule which orders the features of an FC-term
based on an attribute A ∈ A as f2 ·f1 
S

A−→O f1 ·f2 
S for f1 ∈ A. We represent
the normal form of a term τ applying above rewriting rule, based on attribute A,
as τ ⇓A.

To avoid the confusion of different representations of an FC-term, in what fol-
lows we present the definitions of factorized and non factorized terms. In the pro-
vided examples, attributes Color = {r(ed), b(lue)}, Size = {s(mall), l(arge)},
and Shape = {c(ircle), t(riangle)} are used to describe the terms.

Definition 6 (Factorized Term). We define the factorization rewriting rule
through an attribute A ∈ A, denoted as A−→, from an FC-term to its factorized
form as the following:

f · τ1 +f · τ2
A−→ f · (τ1 + τ2) for f ∈ A

we denote the normal form of applying the factorization rewriting rule on term
τ applying factorized rewriting rule, through attribute A as τ ↓A, and the set of
factorized forms of FC is denoted by FC ↓. A term after factorization is called
a factorized term.

Definition 7 (Non Factorized Term). We define the defactorized rewriting
rule on an FC-term as “f · (τ1 + τ2) →d f · τ1 +f · τ2”. A normal term resulted
from defactorized rewriting rule is called a non factorized term. A non factorized
form of the term τ is denoted as τ ↑. The set of non factorized forms of the terms
of FC are denoted by FC ↑.
Example 2. For factorization we have: (r · s 
 S + r · c 
 S + b · s 
 S) ↓color=
r·(s
S+c
S)+b·s
S, and for defactorization we obtain: r·(s
S+c
S)+b·s
S →
dr · s 
 S + r · c 
 S + b · s 
 S.

In the following, we present a set of relations on feature-cluster algebra, intro-
duced in [13], which are applicable in our methodology for distributed clustering.

Definition 8 (Attribute Division). Attribute division (DA) is a function
from A × FC to {True, False}, which gets an attribute and a non factorized
FC-term as input; it returns True or False as follows:

DA(A,S) = False
DA(A, f 
 S) = True if f ∈ A
DA(A, f 
 S) = False if f /∈ A
DA(A, f · F 
 S) = DA(A, f 
 S) ∨ DA(A,F 
 S)
DA(A, τ1 + τ2) = DA(A, τ1) ∧ DA(A, τ2)

The concept of attribute division is used to order the attributes presented in a
term.
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Definition 9 (Initial). We define the initial (δ) function from P (FC ↑) to
P (F), which gets a set of ordered non factorized terms on (V, <) and returns a
set of the first features of each term as follows:

δ(∅) = {0}, δ({S}) = {1}, δ({f · F 
 S}) = {f}, δ({τ1 + τ2}) = δ({τ1}) ∪
δ({τ2})

In the case that the input set contains just one term, we remove the brackets, i.e.
δ({τ}) = δ(τ) when |{τ}| = 1. Moreover, when the output set also contains just
one element, for the sake of simplicity we remove the brackets, i.e. δ(X) = {f} =
f for X ∈ P (FC ↑). The initial function will be used in the process of evaluating
that if a term represents a CCTree term, considering that in a CCTree the sibling
features (first features in an ordered term) belong to the same attribute.

Definition 10 (Derivative). We define the derivative, denoted by ∂, as a func-
tion which gets an ordered non factorized FC-term on (V, <), i.e. ∂ : FC ↑→
P (FC); it returns the term (set of terms) by cutting off the first features as
follows:

∂(S) = ∅, ∂(f 
 S) = {S}, ∂(f · F 
 S) = {F 
 S}, ∂(τ1 + τ2) = ∂(τ1) ∪ ∂(τ2)

The derivative function is defied to be used in the process of evaluating if a term
represents CCTree term. More precisely, if the first level features in an ordered
term (siblings in tree) belong to the same attributes, with derivative function
we remove first features to evaluate if the sub-terms (sub-trees) also represent
CCTree term.

Note that the functions initial (δ) and derivative (∂) are overloaded to the
input, depending on the input that if it is a tree or a term.

Definition 11 (Order of Attributes). We say attribute B is smaller or equal
to attribute A on the non factorized term τ ∈ FC ↑, denoted as B �τ A, if the
number of blocks of τ that B divides, is less than (equal to) the number of blocks
that A divides. Formally, B �τ A implies that:

|{τ
i
∈ block(τ) | DA(B, τ

i
) = True}| ≤ |{τ

i
∈ block(τ) | DA(A, τ

i
) = True}|

Given a set of attributes A and a term τ, the set (A,�τ) is a lattice. We denote the
upper bound of this set as �A,τ. This means that we have ∀A ∈ A ⇒ A �τ �A,τ.

Example 3. In the following we show how the order of attributes of a term is
identified. Suppose the term τ = r · s 
 S + r · c 
 S + b · s 
 S is given. We have:
block(τ) = {r · s 
 S, r · c 
 S, b · s 
 S}. Consequently, we obtain:

|{τi ∈ block(τ)|DA(shape, τi) = True}| = 1
≤ |{τi ∈ block(τ)|DA( size , τi) = True}| = 2
≤ |{τi ∈ block(τ)| DA(color , τi) = True}| = 3

which means that we have “shape �τ size �τ color”. Namely, the attribute
“color” is the one which appears in all the blocks of term τ. We notify that in
CCTree the first attribute from the root is the one which appears in all the blocks
of the equivalent CCTree term. For example, in the CCTree term of Example 1,
the attribute color exists in all blocks.
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Features Ordering. Recalling that not having the predefined order among
features creates a problem in full abstraction of terms [13]. To this end, here we
propose a way to order the set of features which is appropriate to our problem.
Given an FC-term τ, we find the order of attributes according to Definition 11,
whilst if for two arbitrary attributes A and A′, we have A = A′, without loss
of generality, we choose a strict order among them, say A ≺ A′. Then in each
attribute we arbitrarily (and fix) order the features.

Definition 12 (Ordered Unification). Ordered unification (F ) is a partial
function from P (A) × FC ↑ to FC ↓, which gets a set of attributes and a non
factorized term; it returns the normal form of rewriting rule A−→O (Definition 5),
iteratively, based on the order of attributes on received term as follows:

F (∅, τ ↑) = τ , F ({A}, τ ↑) = τ ⇓A, F (A, τ) = F (�A,τ, F (A − {�A,τ}, τ ↑))

The normal form of ordered unification is called a unified term. By F ∗(τ) we
mean that F is performed iteratively on the set of ordered attributes on τ to get
the unified term.
Ordered unification function by automatically ordering the features of a term, as
explained before, directs the shape of a term to be easily verified if it is a CCTree
term.

Example 4. To find the unified form of τ1 = r · s 
 S + r · c 
 S + b · s 
 S , we
have:

F ∗(τ1) = F ({shape, color, size}, τ1 ↑) = F (color, F (size, F (shape, τ1)))
= r · s 
 S + r · c 
 +b · s 
 S

Definition 13 (Well-formed Term). Well formed function, denoted as W , is
a binary function from FC ↑ to {True, False}, which gets a unified non factorized
FC-term τ ↑; it returns True if δ(τ ↑) is equal to one of the attributes belonging
to A; it returns False otherwise. Formally:

W (τ ↑) =
{

True if ∃ Ai ∈ A s.t. δ(τ ↑) = Ai

False otherwise

A unified term τ is called a well formed term, if W (τ) = True.

An atomic term is considered as a well formed term. Basically, well-form
function verifies if in a unified non factorized term the first level features belong
to the same attribute or not, as expected for CCTree structure.

Theorem 1. A unified term represents a CCTree term, or it is transformable
to a CCTree structure, if and only if, (1) it can be written in the form F ∗(τ) =∑

i fi ·τi, such that (1) “W (F ∗(τ)) = True”, i.e. the unified form of the received
term is a well formed term; and (2) the unified form of each τi is a well formed
term as well (W (τi) = True) and (3) each τi respects above requirements [13].
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3 Distributed Private CCTree Clustering

Data clustering has become increasingly exploited in a wide range of applications,
spanning from molecular biology to marketing [1]. In many areas, the data are
collected in different sites, for instance different hospitals. Due to the privacy
issues, each data holder may prevent to publish her own dataset, unless some
privacy level is guaranteed [9]. To this end, each agent computes the amount of
privacy leakage when the clustering algorithm result is published comparing to
the publishing of the original dataset. If this difference is higher than her desired
threshold, then she will share her CCTree; Otherwise she refuses to participate
in collaborative CCTree construction.

Afterwards, the result of each CCTree in each participated agent is trans-
formed to its equivalent CCTree term. The resulted CCTree terms are reported
to the master agent (honest but curious) for composition. The CCTree terms
are composed automatically based on our proposed composition rewriting rules
(Table 2), which creates a final CCTree term that all terms can be homogenized
to it. Therefore, the composition result is reported to each agent to homogenize
CCTree terms, and consequently the structure of all CCTrees. Figure 2 depicts
a high level representation of such an architecture.

Fig. 2. Distributed clustering workflow.

In what follows, we first prove that if all agents fix the stop condition (the
minimum number of elements in leaves) of CCTree equal to μ, then publishing
the result as a CCTree term satisfies k-anonymous dataset (k is dependent to μ)
[4]. Then, we propose CCTree rewriting system which automatically verifies the
compliance of a term to a CCTree structure. Afterward, we come up with the
composition rewriting system, which is exploited to find a global CCTree term
from the addition of several CCTree terms (received from distributed agents). At
the end of the section, we prove that the proposed methodology results in (1) a
unique CCTree term from the addition of several CCTree terms, (2) the process
of finding the global CCTree terminates, (3) the time complexity improves in
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distributed system, comparing to centralized one, and finally (4) under some
condition the CCTree, resulted from the distributed architecture, is comparable
to the centralized schema.

3.1 Privacy-Aware Data Sharing

In [5], a statistical framework is proposed to measure the amount of privacy
which is violated through publishing the result of a classifier. We extend the
same notations for publishing the result of our clustering algorithm. This privacy
violation is formally measured as what follows. Given a distribution (P,U, S),
where P is public data that everyone including the adversary can access, S
refers to sensitive data we are trying to protect, and U is data not known by
the adversary. The resulted structure of CCTree say C, i.e. CCTree term, is
available to adversary which can be used to predict U given P . Assume that
t samples {(p1, s1), . . . , (pt, st)} are already available to adversary. The goal is
to test whether revealing the resulted C increases the ability of adversary to
predict S values for unseen samples. It is expected that C would not be much
more accurate than random guess, and the adversary is not able to improve her
own estimation about S applying C. Formally, this concept is measured through
Bayes error, and means that for all classifiers using P the Bayes error should bed
the same as the Bayes error of all classifiers using (P,C(P )). Formally, given C

and t samples from P and S, if ρ(t) = ρ{t;P, S} and ρ(t;C) = ρ{t;P,C(P ), S} be
the Bayes errors for classifiers using P only and using P,C(P ) respectively, and
considering ρ̄ = lim

t→∞, and ρ̄(C) = lim
t→∞

ρ(t;C), we have the upcoming definition

from [5].
For 0 ≤ p ≤ 1, the result of CCTree C is (t, p) privacy violating if ρ(t;C) ≤

ρ(t) − p, and the clustering C is (∞, p)- privacy violating if ρ̄(C) ≤ ρ̄ − ρ.
Under this definition, if an agent finds that distributing her CCTree violates

her privacy requirement, she can refuse to participate in sharing the resulting
CCTree on her dataset.

3.2 CCTree Rewriting System

In order to be able to define some rules on a term to verify if it satisfies CCTree
structure, it is required to define the concept of Component of a term. Roughly
speaking, a component of a CCTree term refers to sub-tree in CCTree structure.
Hence, when we want to check the compliance of a term to a CCTree structure,
we need to verify it iteratively through sub-terms, as the iterative structure of
CCTree.

Definition 14 (Component). Given two ordered non factorized FC-terms τ1
and τ2 on (V, <), we define the component relation, denoted by ∼, as the first
level comparison of the terms as τ1 ∼ τ2 ⇔ δ(τ1) = δ(τ2).

Let the ordered term τ ∈ FC ↑ on (V, <) be given. The equivalence class of
τ′ ∈ block(τ) is called a component of τ, and it is formally defined as:
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[
′
τ]τ = {τi ∈ block(τ) | ′

τ ∼ τi}
The set of all components of the term τ through the equivalence relation ∼, is
denoted by “block(τ)/∼” or simply “τ/∼”, i.e. we have: τ/∼ = {[τi]τ | τi ∈
block(τ)}.
We order the components of term τ according to the order of features in V as
following:

[
′
τ]τ < [

′′
τ]τ ⇔ ( ∀f ′ ∈ δ([

′
τ]) , ∀ f ′′ ∈ δ([

′′
τ]) ⇒ f ′ < f ′′)

since the features are ordered strictly, the components are also ordered strictly.

Example 5. Consider the ordered form of the term τ1 in Example 4, i.e. τ1 =
r · s 
 S + r · c 
 S + b · s 
 S. The components of τ1 ↑ are {r · s 
 S, r · c 
 S} (all
blocks begin with r) and {b · s 
 S} (all blocks begin with b). Moreover if in the
first feature ordering we have r > b, then {r · s 
 S, r · c 
 S} > {b · s 
 S}.

To verify automatically if a term is a CCTree term, a set of conditional
rewriting rules are provided in Table 1. The term ∅ in this table, refers to a null
term. In this regard, the CCTree rewriting system is applied on a received term;
the term is a CCTree term if the only irreducible term is ∅. In this rewriting
system,

[
[f(τ)]

]
means that the semantics of f(τ) is replaced, whilst the result is

considered as one unique term. Furthermore, τ1 : τ2 contains two terms τ1 and
τ2, whilst each one is considered as a new term. Moreover, [τ]i refers to the i’th
component of “τ/∼” [13].

Table 1. CCTree rewriting system

(1) (τ ∈ A) | τ → ∅
(2) (τ �= F ∗(τ)) | τ → [

[F ∗(τ)]
]

(3) (τ = F ∗(τ)) ∧ (W (τ)) ∧ (τ /∈ A) | τ → [
[Στk∈[τ]1∂(τk)]

]
: . . . :

[
[Στk∈[τ]| τ /∼|∂(τk)]

]

The first rule of Table 1 specifies that if a term is an atomic term, it is
directed to ∅. The second rule expresses that if a term is not in unified form, it is
required to be transformed to its unified representation. The third rule specifies
that if a non atomic unified term is well formed, it is divided to the derivative of
its components. The last rule is used to verify whether the CCTree conditions
satisfy for the following components or not, resulting from the iterative structure
of CCTree. These rules are following the structure of Theorem 1 in identifying if
a term is in compliance with a CCTree structure.

Example 6. Suppose that the term τ1 = a1 
S +b1 
S, with the set of attributes
A = {a1, a2}, B = {b1, b2}, are given. We apply the CCTree rewriting rules
to automatically verify if τ1 is a CCTree term. The term τ1 is not atomic.
Moreover, we have τ1 = F ∗(τ1) and “W (τ1) = False” since the first features
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of the components of τ1 are not equal. There is no CCTree rewriting rule which
can be applied, whilst this term is not ∅. This means that the received term τ1
is not a CCTree term.

As another instance, we show that the term τ2 = a1 
 S + a2 
 S with the set
of attributes A = {a1, a2}, B = {b1, b2}, is a CCTree term.

(τ2 = F ∗(τ2)) ∧ (W (τ2)) | a1 
 S + a2 
 S
(3)−−→ S : S

(1)−−→ ∅ : ∅
The condition of this conditional rewriting rule verifies that if the term is in
unified form, and if in unified form all first features belong to the same attribute
or not. If so, then the terms is broken to its components, to verify the same
condition for following sub-terms. Since by removing the first features, atomic
terms (terms without feature specifying them) are ontained each one is directed
to a null term. There is no irreducible term except ∅, hence, τ2 is a CCTree
term.

3.3 Composition Rewriting System

To address the composition process, a set of composition rewriting rules (Table 2)
are proposed to obtain automatically a CCTree term when a term is not a
CCTree term. The split relation (4’th rule of Table 2) is added to the rules of
Table 1 to get CCTree term from non CCTree term.

Definition 15 (Split). Suppose that a unified term τ ∈ FC ↑ on (V, <) and
the set of attributes A, is given. Considering �A,τ as the upper bound attribute
of τ, we define the split relation as what follows:

split(τ) =
{

τ if W (τ) = True∑
τi∈block(τ) ζ(τi) if W (τ) = False

where:

ζ(τ
i
) =

{
τi if DA(A, τi) = True
(
∑

ai∈�A,τ
ai) · τi if DA(A, τi) = False

This means that all the blocks of τ which do not contain any feature of �A,τ are
multiplied to the addition of the features of �A,τ. In the following example we
show how split relation is applied.

Example 7. Suppose that the term τ2 = r · s 
 S + c 
 S + b 
 S is given. We
have W (r · s 
 S + r · c 
 S + b 
 S) = False, hence, τ2 is not a well formed term.
Considering that �A,τ2 = color, and DA(colro, r · s 
 S) = True, DA(colro, r · c 

S) = True, DA(colro, b 
 S) = False, we have: split(r · s 
 S + c 
 S + b 
 S) =
r · s 
 S + (r + b) · c 
 S + b 
 S = r · s 
 S + r · c 
 S + b · c 
 S + b 
 S.

Actually, when a term is not a CCTree term, it is possible to infer it from its
unified form when the first features of its components do not belong to the same
attribute. Therefore, the split rule is proposed to generate a well formed term
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from a non CCTree term. In what follows, we add the split rule to the previous
rewriting system, which is used when a term is not a CCTree term to obtain a
CCTree term.

The composition rewriting rules to get a CCTree term from a non CCTree
term is presented in Table 2. In the proposed rewriting system,

[
[f(τ)]

]
means

that the semantic of f(τ) is replaced, whilst the result is considered as one unique
term, not several terms. Furthermore, τ1 : τ2 contains two terms τ1 and τ2, whilst
each one is considered as a new term; and [τ]i refers to the i’th component of
τ/∼. Comparing to Table 1, just the split rule is added. This rule guarantees
that if a term is not a CCTree term, how by splitting the term based on the
upper bound attribute we may get a CCTree term.

Table 2. Composition Rewriting System

(1) (τ ∈ A) | τ → ∅
(2) (τ �= F ∗(τ)) | τ → [

[F ∗(τ)]
]

(3) (τ = F ∗(τ)) ∧ (W (τ)) ∧ (τ /∈ A) | τ → [
[Στk∈[τ]1∂(τk)]

]
: . . . :

[
[Στk∈[τ]| τ /∼|∂(τk)]

]

(4) (τ = F ∗(τ)) ∧ (∼ W (τ)) | τ → [
[split(τ)]

]

To this end, first of all, the set of attributes A describing the received term
τ is provided. Note that in categorical clustering algorithm, the set of attributes
are known beforehand. The set of attributes and non CCTree term are given
to the composition rewriting system. When the conditions of the rule (τ =
F ∗(τ))∧ (W (τ)) | τ → [

[Στk∈[τ]1∂(τk)]
]

: . . . :
[
[Στk∈[τ]| τ /∼|∂(τk)]

]
respects for

a term τ, we save τ. Then all
[
[Στk∈[τ]i ]

]
of τ are replaced by their own successive

terms respecting this rule. This process is repeated iteratively till reaching to
atomic terms in all derivations. The result of this term is the desired CCTree
term.

Example 8. Suppose that the addition of two CCTree terms is given as τ =
a1
S+a2
S+b1
S′+b2
S′, with the set of attributes A = {a1, a2}, B = {b1, b2}.
It is easy to verify that τ is not a CCTree term from the rules of Table 1. We are
interested to find a CCTree term from the received non CCTree term τ, with
the use of composition rewriting system. To this end we have:

(i) (τ = F ∗(τ)) ∧ (∼ W (τ)) | τ
(4)−−→ [

[split(τ)]
]

(ii)
[
[split(τ)]

]
= τ′ = a1 
 S + a2 
 S + (a1 + a2) · b1 
 S′ + (a1 + a2) · b2 
 S′

(iii) (τ′ �= F ∗(τ′)) | τ′ (2)−−→ [
[F ∗(τ′)]

]
= (a1·(S+b1
S′)+a2·(S+b1
S′)) = τ′′

(iv) (τ′′ = F ∗(τ′′)) ∧ (W (τ′′)) | τ′′ ∗(3)∗−−−→ S + b1 
 S′(I) : S + b1 
 S′(II)

(I) S + b1 
 S′ (4)−−→ (b1 + b2) · S + b1 
 S′ (2)−−→ b1 · (S + S′) + b2 
 S
∗(3)∗−−−→ S + S′ : S

(1)−−→ ∅ : ∅
(II) S + b1 
 S′ (4)−−→ (b1 + b2) · S + b1 
 S′ (2)−−→ b1 · (S + S′) + b2 · S

∗(3)∗−−−→ S + S′ : S
(1)−−→ ∅ : ∅
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To find the resulted CCTree term, we consider the terms respecting the rule
(3), shown with ∗(3)∗. Hence, we have them as: (∗) a1 · (S + b1 
 S′) + a2 · (S +
b1 
 S′), (∗∗) b1 · (S + S′) + b2 
 S, (∗ ∗ ∗) b1 · (S + S′) + b2 · S.

Then, since (∗∗) results from this term S + b1 
S′ inside (∗), and (∗∗∗) from
term S + b1 
 S′ inside (∗), we replace them to their previous form:

a1 · (b1 · (S + S′) + b2 
 S) + a2 · (b1 · (S + S′) + b2 · S)

Since there is no more term respecting rule (3), the above term is the desired
CCTree term. It can automatically be verified that the resulted term is a CCTree
term (Table 1).

After that the final CCTree term, resulting from the composition of two (or
more) CCTree terms, is returned to the distributed devices, the CCTree term of
each agent has to be extended to the final CCTree term. The extension of each
CCTree term to a final CCTree term will homogenize the structure of all CCTrees.
To this end, it is enough to add a CCTree term with the final CCTree term. Then,
all split rules applied on CCTree term in the process of its composition with final
CCTree term, shows the required split in the associated CCTree structure, follow-
ing the procedure of transforming a term to tree provided in [13].

3.4 Confluent Rewriting Systems

In this section, we first present what the termination and confluence of a rewrit-
ing system mean. Furthermore, through several theorems, we prove our proposed
rewriting systems are terminating and confluent. Termination and confluence
are the interesting properties of a rewriting system, which guarantee that firstly,
applying the rewriting rules of the proposed system, there is no infinite loop of
rules, and furthermore, we always get a unique result.

Termination and Confluence of a Rewriting System. A rewriting system
is terminating, if there is no infinite derivation “t1 → t2 → t3 → . . .” in R. This
implies that every derivation eventually ends to a normal form [3]. Lankford
theorem claims that a rewriting system R is terminating, if for some reduction
ordering “>”, we have “x > y” for all rules “x → y ∈ R”. An order is a reduction
ordering, if it is monotonic and fully invariant [3]. A relation is monotonic if it
preserves the order through adding or reduction a term in both sides, and it is
fully invariant, if it preserves the order when a term is substituted in both sides
of the relation [3]. An element t in the rewriting system R is locally confluent
if for all x, y ∈ R such that “t → x” and “t → y”, there exists u ∈ R such
that “x →∗ u” and “y →∗ u”. If every t ∈ R is locally confluent, then → is
called locally confluent. Newman’s lemma expresses that a terminating rewriting
system is confluent if and only if it is locally confluent [3].

Theorem 2. The CCTree rewriting system is terminating.

Proof. To prove this theorem we first define a reduction order on the rules of
CCTree rewriting system. To this end, we define the size function which gets an
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FC-term and returns the number of features appeared in the term as follows:
size : FC → N, such that size(S) = 1, size(f 
 S) = 1, size(F · τ) = |F | +
size(τ), size(τ1 + τ2) = size(τ1) + size(τ2) and we consider size(∅) = 0, and
size(τ1 : τ2) = size(τ1) + size(τ2).

We say FC-term τ1 is smaller than FC-term τ2, denoted by τ1 ≤ τ2, if the
number of features in τ1 is less than the number of features in τ2, or equally
size(τ1) ≤ size(τ2). This partial ordering is well-founded, since there is no infi-
nite descending chain (number of features are limited). It is monotonic, because
the property of number of features in two terms is preserved when a term is added
or reduced in both sides. Furthermore, the substitution in left and right sides,
preserves the order of number of features, i.e. it is fully invariant. Therefore, the
proposed ordering is a reduction ordering.

Considering that ∅ is a null term containing no feature, in the first rule we
have atomic term > ∅. In the second one, the conditional rule is just applied
when the term is not equal to its unified form; whilst the ordered unification
function, if applied, does not change the number of features, i.e. τ ≥ F ∗(τ) for
τ �= F ∗(τ), since size(τ) = size(F ∗(τ)). Worth noticing that this rule is a one
step rule, such that when the term is unified, the other rules are exploited. In the
third rule, the first features of all components of the left term are removed, i.e. the
size (number of features) of the left-hand term is greater than the size (number
of features) in the right-hand one. Hence, the proposed reduction ordering ≤ on
CCTree rewriting system, so the system is terminating. ��
Theorem 3. The CCTree rewriting system is confluent.

Proof. In CCTree rewriting system, all rules are conditional and there is no
term for which two (or more) conditions are satisfied at the same time. This
means that the possibility of having τ → τ1 and τ → τ2 where τ1 �= τ2, does not
happen. Hence, the rewriting system is locally confluent. According to Newman’s
lemma, the CCTree rewriting system being terminating (Theorem 2) and locally
confluent, it is confluent. ��
Theorem 4. The composition rewriting system is confluent.

Proof. The only rule added to composition rewriting system comparing to
CCTree rewriting system, is the rule split. We show that split rule is not con-
tradicting the termination and confluence of rewriting system. First of all, the
split rule is one step rule, i.e. the result of split rule, after one step application,
is considered as the premise of other rules (which decreases the term). On the
other hand, on each term, the split rule is applied at most equal to the number
of attributes (finite). Hence, since the split by itself is one step rule, and for each
term it is called finite times, the composition rewriting system is terminating.

On the other hand, there is no term respecting at the same time two (or more)
conditions of composition rewriting system, i.e. there is no term τ for which τ →
τ1 and τ → τ2, where τ1 �= τ2. This means that composition rewriting system
is locally confluent. Therefore, the composition rewriting system is terminating
and locally confluent, and hence, from Newman’s lemma, it is confluent. ��
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3.5 Complexity and Result Comparison Between Centralized
and Distributed CCTree Clustering

In what follows, we discuss on time complexity improvement for CCTree cluster-
ing in distributed devices, compared to centralized one. Furthermore, we state
under what condition the CCTree resulted from distributed schema equals to
centralized one.

Theorem 5. Let us consider N to be the total number of elements desired to be
clustered, k be the number of attributes, vmax be the maximum number of values
in an attribute, and K be the maximum number of non leaf nodes. The time
complexity of constructing CCTrees in n distributed devices equals to 1

n · O(K ×
(N × m + N × vmax)).

Proof. In [11], the time complexity of constructing a CCTree has been calculated.
Recalling again, consider N as the number of elements in whole dataset, Ni be the
number of elements in node i, m be the total number of features, vl the number
of features of attribute Al, k the number of attributes, and vmax = max{vl} .
For constructing a CCTree, if K = m + 1 be the maximum number of non
leaf nodes, which arise in a complete tree, then the maximum time required for
constructing a CCTree with N elements equals to O(K × (N ×m + N × vmax)).
Now if we equally divide the dataset containing N points to n devices, it takes
O(K × ((N/n) × m + (N/n) × vmax)) = 1

n · O(K × (N × m + N × vmax)) to
create n CCTrees, i.e. the whole required time will be divided to the number of
devices. The other part of algebraic calculations requires constant time. ��
Definition 16 (Kullback-Leibler Divergence). Let P and Q be two prob-
ability distributions on A1 × A2 × . . . × Ak, where Ai ∈ A, ∀ ≤ i ≤ k (the set
of attributes in CCTree clustering). Then, Kullback-Leibler divergence [7] from
Q to P , denoted by DKL(P ||Q), is a measure gained comparing the probability
distribution Q with the probability distribution P , as follows:

DKL(P ||Q) =
∑

Xi∈A1×A2×...×Ak

p(Xi) log
p(Xi)
q(Xi)

whilst whenever log p(Xi)
q(Xi)

→ ∞, then we set log p(Xi)
q(Xi)

to 1.

From the above definition, if for two datasets D1 and D2 with the probabil-
ity distributions P1 and P2, respectively, we have the result of DKL(P1||P2) is
close to zero, then it means that they have almost the same data distribution.
Consequently, they will produce similar CCTrees.

Theorem 6. Let D1 and D2 be two datasets with the probability distributions P1

and P2 (as Definition 16), respectively. If DKL(P1||P2) = 0, then CCTree(D1) =
CCTree(D2).

Proof. The proof is resulted from the fact that the structure of CCTree is depen-
dent to the attribute selected for dividing the data in each node. If the distribu-
tion of elements in two dataset are almost equal, it means that the same attribute
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in both causes the highest Shannon entropy, and hence, the one selected for data
division through branches labeled the features of selected attribute. ��

Theorem 6 states that if for two datasets the probability distributions are
equal, it results in having equal CCTree structure for both agents. In other
words, when Kullback-Leibler divergence of two probability distribution tends to
zero, the result of our distributed framework produces the more similar result
to the centralized system. Extending the result to more than two datasets, it
can be expressed as follows. Let N datasets D1,D2, . . . , Dn with the probability
distributions P1, P2, . . . , Pn, respectively, be given. If DKL(Pi||Pj) = 0 for all
1 ≤ i, j ≤ n, then the CCTree resulted from our distributed framework equals
to CCTree of centralized system. The more the probability distribution is diver-
gent (higher Kullback-Leibler divergence result), the more it is possible that the
final CCTree in distributed framework be different from the centralized one. In
future work, we plan to verify this topic in more detail through real use case
experiments.

4 Related Work

The problem of knowledge extraction among multiple parties involved in a data
mining task has been presented in [14]. The studied methodology aims at per-
forming data mining without data disclosure between the parties. This method-
ology relies on homomorphic encryption and digital envelope techniques. These
techniques suffer from the drawback of being applicable to only a small set
of data analysis functions. Also they impose a considerable overhead. In [8],
the basic paradigms and the notions of secure multiparty computation and
its relation to privacy preserving data mining has been surveyed. Still it only
works on data mining algorithms that apply the proposed computations. Clifton
et al. [2] propose a toolkit for different applications required in privacy preserv-
ing distributed data mining. Data transformation methods have been proposed
in [10] for privacy preserving clustering. In [9], a general framework is proposed
to formalize the architecture of privacy preserving data mining in collaborative
system. However, to the best of our knowledge, the present study is amongst the
very first efforts in applying algebraic structure for addressing data mining issues.

5 Conclusion

In the present work, an abstract representation of a categorical clustering algo-
rithm, named CCTree, is used to address the problem of privacy-aware distrib-
uted clustering. Generally for global benefit, the distributed agents are interested
to share their information to get the global structure of their own data. How-
ever, for privacy concerns, the agents in distributed system are unwilling to
disclose their datasets. To address the aforementioned challenges in distributed
CCTree clustering, we proposed a rewriting system which automatically returns
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a CCTree term, in a way that all CCTrees in distributed agents can be homog-
enized. The termination and confluence of the proposed rewriting system have
been proven, which guarantees first of all we have no infinite loop in applying
the proposed rewriting systems, and moreover, the resulted final term is unique.

In future directions, we plan to apply the proposed methodology in realistic
case studies to evaluate its efficiency in distributed clustering. Moreover, we plan
to generalize the proposed approach for a wide range of distributed categorical
clustering where the features play an important role in identifying the clusters,
thence, applicable in abstraction.
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Raphaël Khoury(B), Sébastien Gaboury, and Sylvain Hallé
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Abstract. This paper extends previous work on execution trace triag-
ing. We examine the problem of trace triaging along three of the four
views used in the study of temporal properties, namely the automata-
theoretic view, the temporal logic view and the set-theoretic view. For
each case, we propose several partitions of universe of possible traces
into equivalence classes, which follow naturally from the chosen view
and form the basis for trace triaging.

1 Introduction

The problem of log trace triaging consists of partitioning a set of traces into
meaningful equivalence classes, with respect to the evaluation of a sequential
property over these traces. Stated more formally, triaging can be seen as a gen-
eralization of trace verification, replacing its two-valued (pass/fail) result with
membership in one of potentially many equivalence classes—thus providing a
more detailed feedback about the status of compliance or violation of the trace.
As a simple example, consider the property “eventually, either a or b will hold”,
and the two traces cca and ccb. Checking the property in the classical way would
return the same verdict (“true”) for both; however, one could imagine multiple
ways of creating a finer classification: separating traces that fulfill the property
because a holds from those where b holds, or according to the length of their
longest non-compliant prefix, and so on.

So far, log trace triaging has been the subject of scarce literature; as we shall
see, the closest line of works concentrates on bug classification. However most
techniques either require human intervention, lack a formal definition, or perform
a form of partitioning that does not satisfy the definition of an equivalence class.
There is therefore a need for an automated and formally-grounded partitioning
methodology. In previous work, we introduced the basic concepts of such a trace
classification, as approached from the angle of Linear Temporal Logic [27]. In
particular, we introduced the concept of trace hologram, a tree structure resulting
from the evaluation of an LTL formula on a specific trace. When interpreted
as equivalence classes, manipulations on these holograms cluster event traces
into various natural categories, many of which correspond to intuitive ways of
grouping them.

c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 179–195, 2017.
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However, temporal logic is but one of four equivalent views in which formal
properties about traces can be stated and verified. These views, as defined in a
paper by Chang et al., also include automata, language theory and topology [10].
Therefore, in this paper, we build on previous work by approaching the problem
of trace triaging also from the automata-theoretic and language-theoretic view-
points. We shall show that the concepts introduced earlier, namely of creating
equivalence classes based on some criterion computed from the evaluation of a
temporal formula, have equivalents in finite-state automata and language theory.
We will describe multiple ways of classifying traces with respect to a property;
in some cases, we also demonstrate that some of these classifications subsume
others.

Such a partitioning of event traces into equivalence classes can have several
applications in the understanding, debugging and maintenance of complex soft-
ware systems. For example, in test case generation, it may be desirable to select
from the possibly infinite set of possible program behaviors, a finite subset of
test cases that covers every possible type of behavior of interest. One possible
way of doing so could be by picking one trace in each equivalence class defined
by some triaging rule. When debugging, one can use triaging to narrow down
the analysis on a subset of recorded traces for which the execution has violated
a property in a particular manner. Triaging can also help system administrators
minimize the overhead of record-keeping, since for many applications, records of
a single trace in each equivalence class can be sufficient, if we can determine that
the set of classes ranges over every possible behavior of interest. Finally, equiv-
alence classes also provide an easy way to perform trace reduction (also called
trace abstraction): abstracting a trace simply amounts to replacing it with the
shortest trace that belongs to the same equivalence class. For all these reasons,
the study of property-based partitioning of event traces introduced in this paper
shall prove to be a stepping stone towards the achievement of these goals.

In this paper, we present a theoretical framework that guides the triaging
of traces into meaningful subclasses, and permits new classifications schemes
to be defined, and compared with existing ones. We show how the problem of
trace triaging can be examined from each of three different views of temporal
specifications defined in the literature, namely temporal logic, automata and
language theoretic, and that each view gives rises to different classifications.
Indeed, a classification that can be easily stated and performed when operating
in a given view can be difficult of impossible to express under a different view.

The remaining of this paper proceeds as follows: Sect. 2 introduces prelimi-
nary notions related to traces and formalism. In Sect. 3, we review our previous
work on trace triaging, which approached the problem from the perspective
pf temporal logic view. Sections 4 and 5 propose triaging based on two addi-
tional views, namely automata theoretic and language theoretic. Section 6 sur-
veys related works. Concluding remarks are given in Sect. 7.
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2 Preliminaries

Let Σ be a finite or countably infinite set of events, each of which is assumed to
be a set of name-value pairs. An execution trace is a finite sequence of events, and
captures the behaviour of a system at runtime. We let σ, τ range over sequences.
Let Π be a set of attribute names, and V be a set of values; event i in a trace σ
is a partial function σi : Π → V that assigns a value to attributes. Σ∗ denotes
the set of all traces and acts(σ) is the set of events occurring in trace σ. We
write σ∗ for the ultimate event of sequence σ. The concatenation of sequences σ
and σ′ is given as σ;σ′.

2.1 Log Trace Triaging and Temporal Specifications

Trace triaging is the problem of sorting traces into meaningful categories. In
other words, it is the task of devising a triaging function κ : Σ∗ → C, with
C ⊆ P(Σ∗), the selector, that maps each trace to a class c ∈ C. For a given
triaging function κ we write �c�κ for the set of traces S ⊆ Σ∗ such that σ ∈ S ⇔
κ(σ) = c. The subscript κ is omitted when clear from context.

Let p ∈ Π be some attribute, σ, σ′ ∈ Σ∗ two traces that are identical,
except that at their i-th event, σi(p) �= σ′

i(p); where a(p) indicates the valuation
of attribute p in event a. These two traces are said to be (p, i)-different. A
formula ϕ is said to be p-invariant if, for any pair of (p, i)-different traces σ, σ′,
σ |= ϕ ⇔ σ′ |= ϕ.

This concept is best illustrated through an example. Let ϕ ≡ G (p = 0),
and the following two traces composed of a single event: σ = {(p, 0), (q, 0)},
σ′ = {(p, 0)}. One can see that σ and σ′ are (q, 0)-different, since σ(q) = {0}
and σ′(q) = ∅. Intuitively, it is clear that the truth value of ϕ is the same for
any two (q, i)-different traces, and hence that ϕ is q-invariant.

Let ϕ be a specification of property of interest in the context in which the
traces are generated and triaged. Any useful selector κ should respect the two
following properties (from [27]).

Definition 1 (Coherence). A selector κ is called coherent if and only if:

∀c ∈ C : ∀σ, σ′ ∈ �c�κ : σ |= ϕ = σ′ |= ϕ.

Informally, this first property states that a category cannot contain both
compliant and non-compliant traces. The second property states that two traces
that are not meaningfully different with respect to the property of interest should
be placed in the same category:

Definition 2 (Consistency). A selector κ is called consistent if and only if:
for each p ∈ Π, if ϕ is p-invariant and σ,σ′ are two (p, i)-different traces, then
κ(σ) = κ(σ′).

We say that a triaging function is reasonable when it is both coherent and
consistent. If we let κ : Σ∗ → C and κ′ : Σ∗ → C ′ be two selectors, we say that
κ is finer than κ′ (written κ 
 κ′) if ∀σ ∈ Σ∗ : κ(σ) ⊆ κ(σ′).
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2.2 The Four Views of Temporal Specifications

According to Chang et al. [10], a given property ϕ can be visualized along any one
of four distinct views: temporal logic, automata, language theory and topology.
In this paper, we approach the problem of trace triaging from the first three of
these four views. We argue that since each view gives rise to a different property
representation and a different verification mechanism, each view should also give
rise to a different trace triaging paradigm. This intuition is illustrated in Fig. 1.

Varvaressos et al. [27] introduced trace holograms, as a mechanisms to gen-
erate and represent triaging functions. An hologram is an abstraction of the tree
generated when verifying the satisfaction of an LTL formula on a trace. Sev-
eral triaging schemes occur naturally when specific information (e.g. nodes or
node labels) is deleted from the tree. Two distinct traces can thus be considered
equivalent and classified into the same category. In an analogous manner, if the
desired property is stated as an automaton, the verification process generates
a path over the states of the automaton, which can also be abstracted to pro-
duce a trace categorization. A similar reasoning can be applied to the language
theoretic representation of properties.

The ability to examine the same property along multiple alternative view
has several advantages, as a given property may be more concise, or more read-
ily understandable or checkable, given the chosen representation. Alternative
representations also give rise to alternative verification algorithms, and thus to
different tools. Likewise, one of the main advantages of a multi-paradigm view
of trace triaging, is that a given partitioning of Σ∗ might be stated in a natural
and intuitive manner in a given view of temporal properties, but the same clas-
sification would be difficult to achieve if a different view of temporal properties
were used.

Temporal Logic
Formula

Decision
Tree

Trace
Hologram

Property
Automata

representation Path
Path

Abstraction
Triaging

Categorisation

Set Theoretic
view

Set
Inclusion

Set
Approximation

Fig. 1. The alternative views of log trace triaging

3 Temporal Logic View

In previous work [27], it was shown how the use of a formal specification of
a system’s expected behaviour, expressed as formulæ of Linear Temporal Logic
(LTL), can be used as the basis for a classification of execution traces. By repeat-
edly applying the recursive rules defining the semantics of LTL operators, the
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evaluation of a LTL formula ϕ on a trace σ induces a tree. Figure 2 shows such a
tree for the formula G (a → X b), evaluated on the trace cab; the top-level oper-
ator of that formula, G, corresponds to the top-level node of the tree. According
to the semantics of LTL, Gϕ is true if and only if ϕ is true for every suffix of
the current trace. The tree hence spawns three child nodes, corresponding to
the evaluation of a → X b for traces cab, ab and b, respectively. Taking the first
such child node, the top-level operator now becomes →; this operator evaluates
to � when, on the current trace, either a evaluates to ⊥ or X b evaluates to �.
This, in turn, spawns to child nodes corresponding to each condition, and so on.
Provided that n-ary operators are evaluated in a fixed order, this structure is
uniquely defined for a given formula and a given trace.

Fig. 2. Evaluating an LTL formula on a trace induces a tree.

As a first classification, we take κ to be the function that associates each trace
to its hologram. We have demonstrated in earlier work that such a classification is
reasonable [27]. However, different traces are likely to have different holograms.
We introduce a number of systematic rules by which pieces of an hologram
can be taken off. Applying these rules has for effect that traces with originally
different holograms may now belong to the same category, thereby merging trace
categories.

3.1 Fail-Fast Deletion

The first deletion pattern is the fail-fast deletion. It consists of deleting all chil-
dren of a temporal operator node that no longer have an influence on its truth
value. Figure 3 shows the procedure for the G operator; ϕ is an arbitrary sub-
formula, and the symbols �i represent its truth value for each event, with the
additional condition that �i �= ⊥ for 1 ≤ i < n. The box ϕn hence represents
the first child node that evaluates to ⊥. One can see in Fig. 3b that all subtrees
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Fig. 3. Two deletion patterns for the G operator. (a) Original hologram (b) After
fail-fast deletion (c) After polarity deletion

following ϕn are deleted. Intuitively, this represents the fact that, once the n-th
event has ϕ evaluate to ⊥, then Gϕ itself evaluates to ⊥, no matter how ϕ
evaluates on the subsequent events.

Consider for example the formula G (a → X b), and the two traces caaa
and caac. Originally, these two traces have different holograms; however, the
application of fail-fast deletion on both holograms results in the same output,
and the two traces become members of the same category. This corresponds
to the intuitive notion that one does not care what follows in a trace once
a violation has occurred. Note however that the trace cacc is still considered
distinct, since the reason for the failure is different (a “c”, rather than an “a”,
occurred instead of the expected “b”). A dual rule for the F operator can also
be devised, by swapping the roles of � and ⊥.

3.2 Polarity Deletion

Fail-fast deletion applies only to temporal operators. As an extension of that
rule, one may only keep nodes that are sufficient to decide on the value of
an expression. For example, if the expression ϕ ∧ ψ evaluates to ⊥ because
ϕ evaluates to ⊥, then it is not necessary to conserve ψ, since its truth value has
no effect on the result (and dually for the ∨ operator). Similarly, if the formula
Gϕ evaluates to ⊥ because the n-th event of a trace σ does not satisfy ϕ, it is
not necessary to conserve nodes describing how ϕ evaluates to � on the n − 1
previous events: the knowledge that σn �|= ϕ is sufficient to decide on the value
of Gϕ. More generally, it is not necessary to keep nodes of a hologram whose
polarity (i.e. their truth value) does not contribute to the final result of the
global formula. Figure 3c shows the result of polarity deletion on the hologram
of Fig. 3a. Again, a dual reasoning can be made for the F temporal operator.

When applied to temporal operators, this deletion rule expresses the fact that
two traces where the same violating sequence of events occurs are considered the
same, even if this sequence is preceded by a varying number of events irrelevant
to the violation. For example, using polarity deletion, the traces bcabbbd and
cabbd get similar holograms for the formula G (a → X (bU c)). The problem
with both traces is that, after the occurrence of an “a”, the sequence of “b” is
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broken off by a “d” instead of the expected “c”. The position of the “a”, and the
actual number of “b” seen before the offending “d” are both abstracted away.

3.3 Truncation

A simple deletion rule consists of trimming from the hologram all nodes beyond
a certain depth n. An extreme case is n = 1, which deletes all but the root of
the hologram. In such a situation, κ classifies traces only according to the global
truth value of the specification. For other values of n, truncation is such that
one does not distinguish traces up to a certain level of abstraction. For example,
truncating the holograms for G ((a → X b) ∧ (F b ∧ F c)) at a depth of n = 2
indicates that one is interested in knowing which of the two eventualities caused
the failure, but not the actual contents of the event that caused it.

4 Automata Theoretic View

We shall now adopt a different point of view, and consider properties on traces
expressed as finite automata. A finite deterministic automaton A over the alpha-
bet Σ is a tuple 〈Q, q0, δ, S〉 where Q is a finite set of states, q0 ∈ Q is the initial
state, δ : Q × Σ → Q is a transition function and S ⊆ Q is a set of accepting
states.

For any automaton there exists a minimal unique (up to isomorphism)
canonical automaton. In what follows, we only consider canonical automata.
A path π is a sequence of states〈q1, q2, q3, ..., qn〉, such that such that there
exists a finite sequence of symbols a1, a2, a3, ..., an called the label of π such that
δ(qi, ai) = qi+1 for all i ≤ n. In fact, a path is a sequence of states consisting of
a possible run of the automaton, and the label of this path is the input sequence
that generates this run. A run is initial if it begins on the start initial state q0.
A run is accepting if it ends on an accepting state s ∈ S.

A sequence σ satisfies the property ϕ if the associated run on the property
automaton is initial and accepting.

The properties of coherence and consistency stated above can be stated quite
straightforwardly in a automata theoretic formalism. A selector κ is coherent iff
it does not include both accepting and non-accepting paths. A selector κ is con-
sistent if it does not distinguish between two traces that exhibit the same path
over the property automaton. The converse does not hold, as two sequences can
meaningfully differ, and yet exhibit the same path over the canonical automaton
of a property. This means that it may not be possible to state the finest clas-
sification when examining a property in the automata-theoretic view. Instead,
the finest classification expressible in automata view is one that places in the
same category every sequence that exhibits the same path over the property
automaton.

Proposition 1. Let κ : Σ∗ → C and let ϕ be a property. If selector κ is consis-
tent then ∀σ, σ′ ∈ Σ∗ : π(σ) = π(σ′) ⇒ κ(σ) = κ(σ′).
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Proposition 2. Let κ : Σ∗ → C and let ϕ be a property. Selector κ is coherent
iff ∀σ, σ′ ∈ Σ∗ : π(σ) is an accepting run ⇔ π(σ′) is an accepting run ⇒ κ(σ) =
κ(σ′).

The automata-theoretic view presents two interesting advantages that dis-
tinguishes it from the other representations of properties. First, it is easy to
generate a “typical”, or generic trace in each category C by computing the
shortest run over the property automata that visits the states needed for the
trace to be included in C. Secondly, for a given program, it is possible to count
how many different executions of length less than n are present in each category,
by adapting the algorithm proposed by Bang et al. [4]. These functionalities
have multiple applications, notably for estimating the coverage of an explicit-
state model checking algorithm. This counting measurement can also be used as
a complexity metric, providing an alternative to cyclomatic complexity.

In the following, We propose three path-based triaging schemes that are
potentially useful for log trace triaging. All are abstractions of the notion of
paths, thus analogous to trace holograms.

4.1 Shallow History Based Triaging

The shallow history (i.e. the same unordered set of visited states) was first
introduced by Fong [13], who showed that it is a sufficiently fine approxi-
mation to serve in the enforcement of most real-life access-control policies,
and other safety properties. This notion can be used for triaging, with two
sequences being considered equal iff they share the same shallow history. For-
mally, κsh : Σ∗ → P(Σ) : ∀σ, σ′ ∈ Σ∗ : κsh(σ) = κsh(σ′) ⇔ acts(σ) = acts(σ′).

For example, the Chinese Wall Policy [7] is used to avoid conflicts of interests
arising from the unrestricted flow of information. In this model, a user which
accesses a data object o is forbidden to simultaneously accessing certain other
data objects that are identified as being in conflict with o. A violation of the
policy occurs if the user accesses conflicting data objects. Since the application of
the property is not sensitive to the order or number of occurrences of each data
access, it makes senses to classify log traces according to their shallow history.
Other access control policies [13] behave similarly.

When abstracted to its shallow history, a trace of data access events will
retain only a list of the objects accessed by each user, regardless of the number
of times each object has been accessed. Since this information is sufficient to
detect a violation of the security policy or to generate a useful counterexample,
it is not necessary to distinguish between multiple traces that vary only with
respect to other, extraneous, information.

Theorem 1. Let property ϕ be a safety property or a guarantee property. κsh

is a reasonable selector.

Proof. An automata representing a safety property possesses a single distin-
guished end state s, with no outgoing transitions [3]. Every invalid sequence
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passes through this state. Since every trace σ for which s /∈ κsh(σ) is valid, and
every trace for which s ∈ κsh(σ) is invalid, this classification is coherent. Con-
versely, an automata representing a guarantee property has a single valid accept-
ing state s with no outgoing transitions, and only those sequence that exhibits
s are valid. That κsh is consistent follows immediately from Definition 1.

For non-safety and non-guarantee properties, the κsh is not necessarily rea-
sonable.

4.2 Duplicate Deletion

The second automata-based trace classification scheme is based upon the deletion
of some visited states from the path. This classification scheme is useful if we are
interested in examining which behaviors are present or absent in the trace, but
not in how many times each present behavior occurs. Two traces abstract into
the same class iff they share the same ordered list of visited states. For example,
sequences a; a; a; b; b; c and a; b; b; b; c and a; b; c are in the same category, but
c; b; a is not. We consider an erasing function δ : Σ∗ → Σ∗ defined as follows:

δ(σ; a) =
{

σ; a, if �i ∈ N : σi = a;
σ, otherwise.

The selector is defined with respect to this function as κdd : Σ∗ → P(Σ) :
∀σ, σ′ ∈ Σ∗ : κdd(σ) = κdd(σ′) ⇔ δ(σ) = δ(σ′).

The ordered list of states captures meaningful information about a program’s
behavior in many cases, as it gives a concise summery of the different behaviors
present in the trace. For example, system call trace can contain several repeti-
tions of the same system calls, representing copying a file to memory or sending
data through a network. While the actual system call numbers carry meaningful
information (i.e. identifies the higher-level behavior present in the trace), the
number of occurrences of each system call is not particularly relevant, and may
vary between runs of the same program.

As was the case with the shallow history based classification, duplicate dele-
tion is only reasonable for safety and guarantee properties. For liveness proper-
ties, a sequence path may alternate between two states, and the entire execution
will be considered valid or invalid depending on the final state present in the path
— an information that is not recorded by the duplicate deletion abstraction.

Theorem 2. Let property ϕ be a safety property or a guarantee property. κdd

is a reasonable classification.

Proof. Proceeds identically as that of Theorem 1.

Theorem 3. κdd is a finer selector than κdd.

Proof. Follows immediately from the fact that κdd distinguishes between path
that visit the same states with a different ordering, while κsh does not.
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4.3 Stuttering Insensitivity

As a final automata-based classification, we consider stuttering insensitivity [14].
Stuttering is the repetition of more than one consecutive occurrence of the same
token in a sequence. This notion has multiple applications, notably optimizations
in model-checking [17]. Stuttering Insensitivity differs from Duplicate Deletion
in that the former preserves multiple occurrences of same token in a path, as
long as they are not consecutive, while the latter erases all but one occurrence of
each trace-event. When using Stuttering Insensitivity as a classifier, a; a; a; b; b; a;
and a; a; b; a; a are in the same category but a; a; a; b; b is not. In this paper, we
consider stuttering in the path over the automaton validating the property (stut-
tering in the predicates of the automata’s input sequences themselves would not
be a reasonable selector in the sense of Definitions 1 and 2, except in the par-
ticular case of stuttering-insensitive languages). As was the case with duplicate
deletion, stuttering insensitivity is defined with respect to an erasing function
γ : Σ∗ → Σ∗:

γ(σ; a) =
{

σ, if σ∗ = a;
σ; a, otherwise.

The selector is defined as κsi : Σ∗ → P(Σ) : ∀σ, σ′ ∈ Σ∗ : κdd(σ) = κdd(σ′) ⇔
γ(σ) = γ(σ′).

Theorem 4. Let property ϕ be a safety or a guarantee property. κdd is a rea-
sonable classification.

Proof. Proceeds identically as that of Theorem 1.

We can now show that κsi is a finer selector than κdd and κsh.

Theorem 5. κsi 
 κdd 
 κsh.

Proof. That follows immediately from the fact that κdd distinguishes between
paths that visits the same states multiples times in a non-stuttering manner,
while κdd does not.

5 Language Theoretic View

The third and final view of properties which we will consider is the language
theoretic-view. Language theory is a convenient representation in which prop-
erties are directly represented as sets of sequences. This allows theorems and
proofs to be formulated with ease. First off, the desirable properties of consis-
tency and coherence can be formalized in a Language Theoretic manner using
the notion of residual language. The residual language of a sequence σ, with
respect to a property ϕ is the set of sequences τ such that σ; τ ∈ ϕ. Formally
res(σϕ) ≡ {τ |σ; τ ∈ ϕ}. Let ϕ be a property, and let σσ′ ∈ Σ∗ be two sequences
that are identical except for the value of their ultimate event, which differ in a
single path value q. ϕ is q-invariant iff res(σϕ) = res(σ′

ϕ).
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Proposition 3 (Consistency). Let κ : Σ∗ → C and let ϕ be a property. κ is
consistent iff ∀p ∈ Π : ∀σΣ∗ : σ, σ′ are identical except that at their ith event:
σi; (p) = σi; (p) : res(σϕ) = res(σ′

ϕ) ⇒ κ(σ; a) ∧ κ(σ; a′).

Proposition 4 (Coherence). Let κ : Σ∗ → C and let ϕ be a property. If
selector κ is consistent then ∀σ ∈ Σ∗ : κ(σ) ⊆ ϕ ∨ κ(σ) ∩ ϕ = ∅.

5.1 Edit Distance Based Classification

The trace correction distance [28] is the minimal number of insertions, deletions
and substitutions needed to transform a given sequence σ into a new sequence
σ′ such that σ′ |= ϕ. It is a generalization of the Levenshtein distance. Observe
that for sequences that already satisfy the property, the correction distance is 0.

The correction distance is useful because it gives users an intuitive measure of
how invalid a sequence is, allowing to distinguish gradations between violations
of the property. In the context of security policy enforcement [20], it provides
an approximation of the amount of modifications needed to recover from a vio-
lation. Trace correction can also be used for triaging, with two sequences being
considered equal iff they share the same edit distance to a valid sequence. Let
correct : Σ∗ → N be a function that calculates the minimal edit distance from
any sequence in Σ∗ to a sequence in the property of interest, using the algorithm
presented in [28]. Selector κed is formally defined as:

κed : Σ∗ → P(Σ) : ∀σ, σ′ ∈ Σ∗ : κed(σ) = κed(σ′) ⇔ correct(σ) = correct(σ′)

Theorem 6. κed is a reasonable classification.

Proof. That κed is coherent holds trivially from the fact that every sequence σ
such that σ |= ϕ has correction 0, and no invalid sequence does. Let σ, σ′ be two
ϕ-invariant sequences and let n be the correction distance for σ. Since σ and
σ′ are ϕ-invariant, they differ with respect to only one path event e. Since ϕ
is invariant with respect to e, the correction of the distance necessarily implies
either modifying this event for both traces, or for neither. Since the two traces
do not differ with respect to any other event, their respective edit distance are
the same.

5.2 Classifications Based on Subwords

As a final classification strategy, we consider two schemes based upon the pres-
ence or absence of subwords of a given length k. The subwords (or factors) of
length k of a sequence σ are the sequences of length k that occur inside a word.
For example the sequence a; b; a; b; a; b; a contains the factors of length 2 a; b and
b; a and the factors of length 3 a; b; a and b; a; b. Subwords are frequently used
as an abstraction for the behavior of complex systems.

Let subk(σ) be the set of subwords of length k present in a sequence σ. We
define κsk

as follows:

subk(σ) : Σ∗ → P(Σ) : ∀σ, σ′ ∈ Σ∗ : κsk
(σ) = κsk

(σ′) ⇔ subk(σ) = subk(σ′)
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Theorem 7. ∀j, k ∈ N : j < k ⇒ κsk
is a finer classifier than κsj

.

While subword are frequently used in trace analysis, they are only a coherent
classification in the case of locally testable properties [6]. Membership of a word
in a locally testable languages are defined by a set of factors of bounded length k
of that word, irrespective of the order of occurrences or their frequency. As shown
in [26] these include a number of security-relevant properties. The classification is
not generally consistent, unless care is taken to merge classes that differ only with
respect to the presence of two p-different subwords for a p-invariant property.

Theorem 8. Let property ϕ be a locally testable property. κsk
is a coherent

classification.

Proof. That κsk
is coherent follows immediately from the definition of locally

testable properties, which can be defined by the inclusion or exclusion of finite
length subwords.

5.3 Residual Language

We can use the residual language of a sequence as the basis for classification, with
the intuition that two sequence are equivalent iff the same set of continuations
will lead to a valid sequence:

κres : Σ∗ → P(Σ) : ∀σ, σ′ ∈ Σ∗ : κres(σ) = κres(σ′) ⇔ res(σ) = res(σ′)

The residual language is a useful notion, notably with respect to runtime enforce-
ment [25]. Observe that the set of possible residual languages correspond to the
states of a deterministic finite automata that accept the words of the language
accepted by this automata, with each state defining a different residual.

Theorem 9. κres is a reasonable classification.

Proof. The classifier κres is coherent, each possible residual corresponds to a
state of the DFA that accepts ϕ, and any state is either accepting or not accept-
ing. Likewise, the classifier κres is consistent, since any p-different sequence σ, σ′

exhibit the same path over the DFA that accepts a p-invariant property, and
thus exhibit the same residual language.

We can now show that κres is a coarser classification than κdd and κsi.

Theorem 10. κsi 
 κdd 
 κres

Proof. Follows immediately from the fact that the residual language of a
sequence σ is uniquely defined by the final state of the path of σ over the DFA
that accepts sequences in the property of interest. Let �c� be an equivalence class
of sequences, classified using κres. For every sequence σ in �c�, the path π(σ) in
the DFA of the corresponding property end in the same state d. It is easy to see
that any two traces that share the same classification according to κdd, will also
have the same final state. Conversely, two sequence may exhibit the same final
state, but differ in other parts of the sequence and thus be classified differently
according to κdd. The selector κdd is thus finer than κres.
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Interestingly, the comparison between κres and the automata-based classifi-
cations is the only case in which we were able to compare selectors that originate
with different views of the target property. In other cases we were only able to
show that a selector was finer than another selector of the same type. This moti-
vates the use of multiple representations of the property of interest. Likewise,
we also showed how certain views were more adequate to classify certain types
of properties, such as safety and guarantee properties for the automata-based
view, or locally testable languages for κs.

6 Related Work

6.1 Logic-Based Approaches

From a logical point of view, the notion of hologram bears resemblance to the
concept of Henkin witness [16], of which it can be seen as a generalization.
Parallels can also be drawn with multi-valued logics, such as LTL3 [19] and
RV-LTL [5], which provide truth values in addition to the classical � and ⊥.
For example, in the case of LTL3, a trace σ evaluates to � with respect to a
property ϕ if all extensions σ′ are such that σ;σ′ |= ϕ (and dually for ⊥). A
trace is associated with a third truth value, ?, when there exist extensions σ′

and σ′′ such that σ;σ′ |= ϕ and σ;σ′′ �|= ϕ.
These truth values can be seen as one possible partition of the set of traces

with respect to a property. The present paper generalizes this idea, and intro-
duced many more ways of creating equivalence classes with respect to a property,
which are not related to the concept of possible extensions.

6.2 Bug Classification

A second line of work relates to the classification of software bugs. The most com-
mon way of categorizing bugs is based on their assessed severity [8]. This approach
makes sense from a business standpoint, since it allows project managers to easily
prioritize the resolution of bugs. However, severity is generally distributed across
a handful of qualitative levels, such as “catastrophic”, “essential” and “cosmetic”.
Some approaches rather suggest to classify bugs by ease of reproduction [15] and
by type (e.g. system bugs, code bugs, etc.) [30]. Other categorizations reported
include HP’s three-dimensional scheme (origin, type, mode) and IBM’s Orthogo-
nal Defect Classification’s six-dimensional scheme (type, source, impact, trigger,
phase found and severity) [29]. The IEEE also defines a standard for the classifi-
cation of software anomalies using 18 attributes [1]. All these categories, however,
require human intervention (apart from basic fields such as date), and are based
on a qualitative evaluation of the reported bugs.

Other approaches attempt to classify bugs through automated means. Most
of these works use clustering techniques borrowed from data mining, mostly
based on textual data [2,31], which can be mined either to directly separate
bugs from non-bugs [22], or to generate labels (categories) from the most frequent
terms [23].
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Closer to the goals introduced earlier are approaches applying data mining
to execution traces for classification [21]. A number of patterns (i.e. orderings
of atomic events) are first defined based on the problem domain, and the most
frequent patterns occurring in a set of traces are used as the basis of a feature
vector that is then fed to a clustering algorithm. However, contrarily to the
approach we will present, this technique requires a set of traces to perform
computation; the category to which a trace belongs is not intrinsic, and rather
depends on the set of other traces on which the algorithm was applied. Moreover,
since this approach, as with all data mining techniques, is based on statistical
computations, the clusterings obtained do not necessarily correspond to intuitive
ways of grouping traces.

6.3 Trace Abstraction

Our proposed approach also relates to trace abstraction, which is widely used
in program maintenance and other tasks that require a solid comprehension of
complex programs. Cornelissen et al. survey four of these techniques [12]. The
first is subsequence summarization, [18], which assigns consecutive events that
have equal or increasing nesting levels (in terms of method calls) to the same
group; when a level decrease is encountered and the difference exceeds a certain
threshold, called the gap size, a new group is initiated. The second, stack depth
limitation [11,24], removes events from a trace that exceed some maximum level
of nesting in method calls. Language-based filtering removes events based on
their characteristics: for example, getters and setters, or private method calls,
are taken out from the trace. Finally, sampling techniques simply keep every
n-th event of a trace [9].

The main difference between these methods and the one we propose is that in
our case, the classification has solid theoretical foundation, and more importantly
are based on some property of the trace. This allows us to reason about the
equivalence classes; moreover, the property is preserved despite the abstraction
process. In contrast, Cornelissen’s survey rather compares these techniques with
respect to informal criteria, such as the proportion of a trace that is taken off,
or the processing time required to compute each filter.

7 Conclusion

In this paper, we have shown how techniques borrowed from runtime verification
can be adapted to the classification of event traces. First, we introduced the
concept of a partition of the set of event traces, and in particular the case of
coherent and consistent classification functions. For an arbitrary trace property
ϕ, we then presented different classification functions based on ϕ, depending on
whether it is expressed as a temporal logic formula, a finite-state automaton, or
a first-order expression over languages.

The approach itself lends itself to a number of extensions and refinements. At
the moment, all violations of a specification are considered equally. From a bug
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triaging perspective, it would be interesting to assign a weight to various parts
of a specification; hence a violation of ϕ∧ψ when ϕ is false could be given more
weight than when ψ is false. Similarly, the number of times a property is violated
could be integrated in the computation: a trace failing Gϕ ten times in a row
could be given a higher value than a trace where ϕ is false only once. Similarly for
a finite-state machine, a numerical score could be assigned to each non-accepting
state, so that violating the property bears a different cost depending on the final
state that is reached. In turn, these numerical values could be used to infer the
equivalent of a severity metric, providing a systematic and automated alternative
to the qualitative and manual assessment currently in use.

The set of all possible combinations of deletion rules forms a lattice over the
inclusion relation � on categories. This is one of the first conditions for one to be
able to apply basic data mining on Σ∗, where � can act as a generality relation.
It would be possible, for example, to search for the tightest set of deletion rules
that still puts all observed buggy traces into a single category, thereby providing
a “common point” to all the bug instances found and hinting at a possible repair.
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Abstract. This paper presents a new side channel attack to recover
a block cipher key. No plaintext and no ciphertext are required, no
templates are built. Only the leakage measurements collected in many
different rounds of the algorithm are exploited. The leakage is consid-
ered as a Hamming weight with a Gaussian noise. The chosen target is
the Advanced Encryption Standard (AES). Bayesian inference is used
to score all guesses on several consecutive round-key bytes. From these
scores a Belief Propagation algorithm is used, based on the relations of
the KeyExpansion, to discriminate the unique correct guess. Theoretical
results according to various noise models are obtained with simulations.

Keywords: Side channel analysis · Hamming weight · AES · Key expan-
sion · Multi-round attack · Bayesian inference · Belief propagation

1 Introduction

Security is a key component for information technologies and communication.
Even if an encryption algorithm is proved secure mathematically, cryptanalysis
has another dimension: physicals attacks. These attacks rely on the interaction
of the computing unit with the physical environment.

The Side Channel Analyses (SCA) are physical attacks based on observations
of the circuit behavior. They exploit the fact that some physical values (timing,
power consumption, electromagnetic emissions (EM)) of a device depend on
intermediate values of the computation. This is the so-called leakage of informa-
tion of the circuit.

The Advanced Encryption Standard (AES) has been chosen as a target
because it is the most widespread block cipher. Yet, our approach would be
the same for any other block cipher.

Motivations: Generally the SCA as in [1,2] links a text with a measurement.
This induces that the attack is often on the first or last round. But the framework
described in [3] suggests that other kinds of attack-path are possible.
c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 199–213, 2017.
DOI: 10.1007/978-3-319-51966-1 13



200 H. Le Bouder et al.

Our first idea is to draw an attack-path linking a leakage measurement with
another one. Another approach in SCA are template attacks [4,5] which compare
traces from the targeted device with traces from a profiling device.

In this paper, the main motivation was to build an attack which uses only
traces, no text and no template. We are in the case of an attacker who can just
observe a leakage but has no access to the device’s input/output.

The great majority of side-channel attacks published in the literature follows
a divide and conquer strategy. In the case of AES, bytes of a round-key are
attacked one at a time. So the other main motivation in our approach is to
attack different round-keys of the AES and use links between them to improve
the probability to find the correct guess.

Contribution: This paper presents a new side channel attack. It is a multi-
round attack, where no template and no texts (neither plaintexts nor ciphertexts)
are used; only leakage measurements are required. In our attack the leakage is
considered as a Hamming weight with a Gaussian noise. Bayesian inference is
used to obtain scores for the possible values of the different round-key bytes.
Then, the main idea is to use a Belief Propagation (BP) algorithm to cross
information between them, in order to have a key which respects the rules of
KeyExpansion.

Organization of this paper: The paper is organized as follows. The general
context is first introduced in Sect. 2. Our attack is divided in two steps. A first
analysis on each round is described in Sect. 3. Then in Sect. 4, the results of the
analysis of this first step are linked using the BP algorithm. Results are presented
in Sect. 5. Finally the conclusion is drawn in Sect. 6.

2 Preliminaries

2.1 The Targeted Encryption Algorithm: AES

The algorithm: The Advanced Encryption Standard is a standard established
by the NIST [6] for symmetric key cryptography. It is a block-cipher. The encryp-
tion first consists in mapping the plaintext T of 128 bits into a two-dimensional
array of 4·4 = 16 bytes called the State. Rows and columns are respectively noted
l and c. Then, after a preliminary xor (the bit-wise xor is noted ⊕) between the
input and the key K0, the AES executes 10 times a round-function that operates
on the State. The operations used during these rounds are:

– SubBytes, composed of non-linear transformations: 16 S-boxes noted SB,
working independently on individual bytes of the State.

– ShiftRows noted SR, a byte-shifting operation on each row of the State.
– MixColumns noted MC, a linear matrix multiplication on GF (28), working

on each column of the State.
– AddRoundKey a xor between the State and the round-key Kr, r ∈ [[0, 10]].
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The derived key: K denotes the master key. The size of the master key is
128 bits. Kr is the round-key used at round r, Kr is represented by a two-
dimensional array of 4 · 4 bytes, like the State. Kl,c

r is the round-key byte at
row l and column c. The round-key Kr+1 depends on the round-key Kr with
K0 = K. More precisely, the round-keys are computed with a KeyExpansion
function described by the system of Eq. (1), where SB is the S-Box function
and Rcon is a constant matrix of size 4 · 10.

{
Kl,0

r+1 = Kl,0
r ⊕ Rcon(l, r) ⊕ SB

(
Kl+1 mod 4,3

r

) ∀l ∈ [[0, 3]]
Kl,c

r+1 = Kl,c
r ⊕ Kl,c−1

r+1 ∀l ∈ [[0, 3]] and c ∈ [[1, 3]]
(1)

2.2 Overview of Our Attack and State of the Art

In this paper, we wanted to build an attack which uses only traces, no text and
no template. In our attack, all the round-keys have already been precomputed,
as is the case of most software AES implementations. So using the leakage of the
KeyExpansion as done by Mangard in [7] is impossible, the attacker just observe
leakage from AES round functions.

Actually in the state of the art, there are two kinds of approaches in SCA.
One consists in a divide and conquer strategy to attack one part (e.g. byte)

at a time, as in classical attacks [1,2]. An attacker gives a score (for example a
probability or a correlation) to each key byte guess. The difficulty is to enumerate
all possible round-key guesses in a way that minimizes the rank of the correct
round-key byte. This problem is indeed the focus of many papers as [8,9].

Recently in different works as [10–14], a new method consists in directly
using links between variables of an algorithm. Information of each trace feeds
a BP algorithm or a SAT-solver which usually converges to the correct key.
The first time that BP was used in SCA on AES, was in the attack of Veyrat-
Charvillon et al. [14]. They use BP on the whole AES algorithm to derive a
global template attack.

Grosso et al. [15] compared both approaches and concluded that BP is a little
bit better.

The presented work was made in parallel and independently from the recent
works [14,15]. The strategy was chosen to be applied to a real experimental
attack. Our attack presented is divided in two parts:

1. a divide and conquer attack focuses on key bytes of different rounds (Sect. 3);
2. linking the information obtained for each byte of every round-key (Sect. 4).

So, one contribution in our attack is to merge these two approaches and take
advantage of both.

2.3 Attack-Path

An attack-path is an exploitable relation between some observables (data or
measurements) and the target, here the key K. Generally the attack-path in
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MC

SB

SR

X

Y

Kr

EM(X)

EM(Y )

Fig. 1. Attack path

SCA as [1,2] links a text with a measurement. In our attack, we want to link
two EM or power leakage measurements. Finally the attack-path is between two
rounds (AddRoundKey of round r and the S-boxes of round r+1); it is illustrated
in Fig. 1. The attacker has no text at her disposal, she then needs an important
leakage as it is her only source of information. More precisely, the most leaking
functions in AES are MC and SB, so the leakages used in this attack are at the
output of both computations.

Hence this attack is possible on every rounds except rounds 0 and 10. Indeed
there is no MC before the xor with K0 and there is no SB after K10.

In the following, K denotes the discrete random variable on a targeted key
byte Kl,c

r , a guess is noted k and K is the set of guesses k, K = [[0, 255]]. The
correct value is noted k̂ (i.e. Kl,c

r = k̂).
X denotes the discrete random variable on the byte at the input of

AddRoundKey, an event is noted X = x with x ∈ [[0, 255]]. Likewise, Y denotes
the discrete random variable on the byte at the output of SubBytes, an event is
noted Y = y with y ∈ [[0, 255]].

The mathematical model for the leakage is a Hamming weight (HW) with
an additive Gaussian noise. This model is the classic model used in [1,2].

2.4 Theoretical Attack-Path

Before presenting our attack in practice, the relevance of the theoretical attack-
path is proved; i.e. whether with only pairs (hx, hy) of Hamming weights (with-
out noise) it is possible to deduce the value k̂. This approach is similar to alge-
braic attacks [16–18].

The function HW is not invertible, the set HW−1(h), whose cardinal depends
on the value of h, is the fiber of h by HW :

HW−1(h) = {x such that HW (x) = h}.
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For the good guess value k̂, the following equation is verified:

SB(k̂ ⊕ x) = y.

The attacker has only pairs (hx, hy). For each pair only a subset of guesses
k is possible. Let K(hx,hy) be such a subset of guesses:

K(hx,hy) = {k such that ∃x ∈ HW−1(hx) and HW (SB (k ⊕ x)) = hy}.

Let K(k̂) be the intersection of the sets K(hx,hy) built with all 256 possible values
of x, and the unknown and correct key k̂:

K(k̂) =
255⋂

x=0

K(hx,hy).

The correct guess k̂ belongs to K(k̂). Thus, the first natural idea is to use a sieve
to discriminate the wrong guesses.

We have studied all the cases for each key byte value k̂. The sieve is not
enough, because there exists some value k̂ such that one wrong guess is not
discriminated:

K(k̂) = {k̂, k}.

However it can be observed that the sets K(k̂) are all different, as illustrated in
the following example. Besides they can be computed once and for all, for every
possible value of the correct key k̂; for example:

K(25) = {25, 62}
K(62) = {62} .

If the attacker has used all possible pairs (hx, hy), she has computed the set
K(k̂). Since all the sets K(k̂) are different, the attacker can discriminate the
correct key k̂. The attack-path is valid.

2.5 Leakage Model

Our model for the leakage is a Hamming weight (HW) with an additive Gaussian
noise. In this paper, for a given discrete random variable Z, the discrete random
variable representing the Hamming weight of Z is noted HZ , the event “the
Hamming weight of Z is hz” is denoted HZ = hz for hz ∈ [[0, 8]]. H ′

Z denotes
the continuous random variable representing the “measured” Hamming weight;
an event is noted H ′

Z = h′
z, with h′

z ∈ R such as:

h′
z = hz + δ; (2)

with δ an event of the Gaussian random variable N (
0, σZ

2
)
. For a continuous

random variable H ′
Z , FH′

Z
denotes its probability density function. The proba-

bility density function associated to N (
0, σZ

2
)

is given by:

FσZ
(z) =

1
σZ · √

2π
· exp

(

−1
2

·
(

z

σZ

)2
)

. (3)
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3 Attack on Each Round-Key Byte

In practice, the attacker does not have pairs of Hamming weights, but leakage
measurements.

3.1 Points of Interest

In order to use observed Hamming weights h′
z, the time when they can be

observed in the trace must be identified. The points of interest, denoted PoI,
are a set of points which correspond to the moments of information leakage. The
detection of PoI is a critical point when performing an SCA attack but it is not
the subject of this paper. We consider that PoI can be found using the method
of [19], without a profiling phase.

3.2 Getting Observed Hamming Weights from Physical Measures

In this paragraph, the PoI are known and we assume that the noise follows a
normal distribution N (0, σZ

2). Physical measures are obtained, as an example,
with an oscilloscope.

The goal of our attack is to succeed without using a template approach, the
attacker may not have a profiling device. In this case, the attacker has to guess
the standard deviation σZ of the noise. A guess is noted σG. She considers the 9
theoretical Gaussian distributions N (

h, σ2
G

)
centered in the different Hamming

weights h ∈ [[0, 8]]. They are added to create a new distribution from which a
new standard deviation σH is computed:

σH = std

⎛

⎝
∑

h∈[[0,8]]

(
8
h

)

N (h, σG)

⎞

⎠ .

She computes the mean M of the measured values M = (mi)1≤i≤n at a PoI.
Then the observed hamming weights are computed as follow:

h′
i =

(
mi − M

) · σH

std(M)
+ 4.

If the attack succeeds, σG is a good approximation.

3.3 Bayesian Inference

In this part, the goal is to build a probability for each guess k given a set of
measurements of n pairs (H ′

X ,H ′
Y ) = (h′

x, h′
y) that a round-key byte K equals

k. The main idea is to study the joint probability. This kind of approach is used
in stochastic attacks [20] or in the attack of Linge et al. [19].

Throughout the paper, the following relations are used. A set of n pairs
(hx, hy) is denoted {(hx, hy)}n, the i-th pair is denoted (hx, hy)i. Likewise a set
of n pairs (h′

x, h′
y) is denoted {(h′

x, h′
y)}n and the i-th pair is denoted (h′

x, h′
y)i.
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X K

Y

HX HY

H ′
X H ′

Y

Fig. 2. Modeling the problem with a graph. An arrow means influence between two
variables. The variables in the rectangle have a different value at each execution, while
the value of the variables outside the rectangle is fixed throughout the attack.

The probability Ak for a guess k given the measurements (H ′
X ,H ′

Y ), (4) is
defined as follow.

Ak = Pr
[K = k|{(h′

x, h′
y)}n

]
. (4)

The context can be represented with a belief network (as in [21]). It is a graph
where the nodes are variables as illustrated in Fig. 2.

At the start of the attack all guesses are equiprobables, the prior distribution
is uniform:

∀k ∈ K, Pr [K = k] =
1

256
. (5)

Probabilities Pr [(HX ,HY ) = (hx, hy)|K = k] can be precomputed once and for
all by enumeration on the value x.

So the attacker wants to evaluate the probability of Ak, given by Eq. (4),
i.e. the probability of K = k given a set of measurements. The Bayes theorem
implies:

Ak =

A1k
︷ ︸︸ ︷

F(H′
X ,H′

Y )

({(h′
x, h′

y)}n|K = k
) ·Pr[K = k]

F(H′
X ,H′

Y )

({(h′
x, h′

y)}n

)

︸ ︷︷ ︸
A0k

.

The denominator A0k can be obtained by normalization, there is no need to
compute it. The pairs (H ′

X ,H ′
Y )i are independent and identically distributed;

i.e. all the pairs have the same distribution of probabilities and all the pairs are
mutually independent. It means that a pair (H ′

X ,H ′
Y )1 cannot be predicted with

the previous pair (H ′
X ,H ′

Y )2; thus:

A1k =
n∏

i=1

F(H′
X ,H′

Y )

(
(h′

x, h′
y)i|K = k

)

︸ ︷︷ ︸
A2k

.
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Now, the probability of a single pair is needed.

A2k = F(H′
X ,H′

Y )

(
(h′

x, h′
y)|K = k

)
.

The law of total probability implies that:

A2k =
∑

(hx,hy)

F(H′
X ,H′

Y )

(
(h′

x, h′
y)|(hx, hy)

)

︸ ︷︷ ︸
A3k

·Pr [(hx, hy)|K = k] .

A3k = F(H′
X ,H′

Y )

(
(h′

x, h′
y)|(hx, hy)

)

The pair (HX ,HY ), the variable H ′
X and the variable H ′

Y are independent. For
a fixed hx, H ′

X and HY are independent, thus:

FH′
X

(h′
x|(hx, hy)) = FH′

X
(h′

x|HX = hx) .

Likewise, for a fixed hy, H ′
Y and HX are independent, thus:

FH′
Y

(
h′

y|(hx, hy)
)

= FH′
Y

(
h′

y|HY = hy

)
.

Thus:
A3k = FH′

X
(h′

x|HX = hx) · FH′
Y

(
h′

y|HY = hy

)
.

But FH′
X

(h′
x|HX = hx) follows the normal distribution centred in hx, so:

FH′
X

(h′
x|HX = hx) = FσX

(h′
x − hx) .

Likewise:
FH′

Y

(
h′

y|HY = hy

)
= FσY

(
h′

y − hy

)
.

Finally, the probability Ak, that a round-key byte K equals k for some given
measurements of (H ′

X ,H ′
Y ), is proportional to the product1:

Ak ∝
n∏

i=1

∑

(hx,hy)

FσX

(
h′

x,i − hx

) · FσY

(
h′

y,i − hy

) · Pr [(hx, hy)|K = k] . (6)

Note that, in the previous equation, the Gaussian noise hypothesis can be
relaxed by replacing the Gaussian probability density functions (FσX

and FσY
)

by whatever probability density function the attacker can come up with.
At the end of this part, the attacker has a probability for each guess k on

every key byte of round 1 to 9.

1 h′
x,i is the i-th measurement h′

x.
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4 Crossing Information from Round-Key Bytes with BP

4.1 Goal

The round-key bytes are linked by KeyExpansion relations (1). There are 16 · 9
round-key bytes linked together using 16 · 8 equations. It is supposed that the
correct key is the one minimizing the ranks of its round-key byte values across all
9 rounds. In this part, this additional information is crossed with the estimations
to improve the probabilities Pr[K = k] and to have a key which respects the
rules of KeyExpansion. To this end, in this part a technique known as Belief
Propagation (or sum-product algorithm) [22] is used.

BP was first used by Gallager [23] for decoding low-density parity-check
(LDPC) codes. It was then rediscovered by Tanner [24] and formalized by
Pearl [25]. The first time that BP was used in SCA on AES, in the attack
of Veyrat-Charvillon et al. [14], then it is studied in [15].

4.2 Factor Graph

The BP algorithm relies on a bipartite graph called a factor graph (or Tanner
graph). To each node in the factor graph is associated some information.

The nodes of a factor graph are of two kinds:

– variable nodes, in our case representing round-key bytes;
– factor nodes, in our case representing equations used in the KeyExpansion.

An edge links a variable node with a factor node, when the equation represented
by the factor node involves the byte represented by the variable node. A part of
the factor graph associated with the KeyExpansion is illustrated in Fig. 3.

El+1,3
r El,1

r−1El,0
r

El,1
rEl,0

r+1

El,1
r+1

Kl,0
r

Kl,1
rKl,0

r+1

Kl+1,3
r−1 Kl,0

r−1

Kl+1,3
r Kl,1

r−1

S

S

Fig. 3. Part of the factor graph associated with the AES KeyExpansion. Circles are
variable nodes (round-key bytes) and squares are factor nodes (equations). Equations
are labeled using the same indexes as the round-key byte they define, i.e. equation El,c

r

is the equation used to create Kl,c
r . The S-labeled edges remind the use of the S-box

in the equation for that particular byte.
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In the following, the notation N(·) applied to a node is used to denote the
set of neighbours of that node. Thus N(K) is the set of equations involving
round-key byte K, and N(E) is the set of round-key bytes composing equation
E. Finally, a factor node E “is satisfied” when the corresponding KeyExpansion
equation is satisfied.

4.3 Algorithm

The BP algorithm in the general case is summed up in Algorithm 1.

Algorithm 1. Belief Propagation Algorithm.
Inputs: Experimental distributions Ak of every round-key byte K; m the maximal

number of iterations of BP.
Outputs: Final distributions Bk deduced using KeyExpansion relations.

for all round-key byte K and value k and equation E do

μK→E(k) = Ak.

end for
for j = 1 to m do

for all round-key byte K and value k and equation E do

μE→K(k) =
∑

(k1,k2)∈K2

E(k, k1, k2) · μK1→E(k1) · μK2→E(k2)

with N(E) \ {K} = {K1, K2}.
end for
for all round-key byte K and value k and equation E do

μK→E(k) ∝ Ak

∏
E1∈N(K)\{E}

μE1→K(k).

end for
end for
for all round-key byte K and value k do

Bk ∝ Ak

∏
E∈N(K)

μE→K(k).

end for

In our case, the input of BP are the probabilities Ak found in (6). For a
key byte K, BP computes Bk a better belief, from the initial value Ak. As
already stated, nodes in the factor graph exchange information messages with
their neighbours. More precisely, since the graph is bipartite, two types of mes-
sages are exchanged:

– variable to factor messages between a variable node (key byte) K and a factor
node (equation) E, denoted μK→E(k);
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– factor to variable messages between a factor node E and a variable node K,
denoted μE→K(k).

Bk is computed according to the input probability Ak and to the probabilities
Pr[K = k|E] conditional on factor node E in N(K) to be satisfied using the
following equation:

Bk ∝ Ak

∏

E∈N(K)

Pr[K = k|E]. (7)

N(E) \ {K} = {K1,K2}. Thanks to the law of total probability, Pr[K = k|E]
can the be obtained by summing Pr[K1 = k1] · Pr[K2 = k2] over all the possible
values for k1 and k2 such that factor node E is satisfied. Thus, the following
equation holds:

Pr[K = k|E] =
∑

(k1,k2)∈K2

E(k, k1, k2) · Pr[K1 = k1] · Pr[K2 = k2]. (8)

Pr[K1 = k1] and Pr[K2 = k2] are needed to compute Pr[K = k|E] which depends
on:

E ∈ N(K) ∩ N(K1) ∩ N(K2).

Hence, using Eq. (7) directly on K1 and K2 would create a self-convincing
loop for node K. To avoid that problem, the factor corresponding to node E is
removed from the product in Eq. (7) in that case:

Pr[K1 = k1] ∝ Ak1

∏

E1∈N(K1)\{E}
Pr[K1 = k1|E1]. (9)

However, it can be shown [22,23] that the Eqs. (7), (8) and (9) do not hold
in general because they require an independence assumption on the probabili-
ties used in the different products. In [26], authors show that in practice, the
equation can be replaced by approximation, the BP gives excellent results. So,
the Eqs. (7), (8), and (9) are respectively replaced by:

Bk ∝ Ak

∏

E∈N(K)

μE→K(k) (10)

μE→K(k) =
∑

(k1,k2)∈K2

E(k, k1, k2) · μK1→E(k1) · μK2→E(k2) (11)

μK→E(k) ∝ Ak

∏

E1∈N(K)\{E}
μE1→K(k) (12)

To complete the description of the BP algorithm, an initialization step is done
before applying the above equations. The variable to factor messages μK→E(k)
are initialized with the prior probabilities Ak corresponding to round-key byte K.

In summary, after an initialization phase, BP works by alternatively apply-
ing Eqs. (11) then (12) for every edge (K, E) in the graph. At the end of the
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execution, the returned value Bk is computed using Eq. (10). The number of
iterations is not precisely defined but BP converges rapidly.

At the end, the attacker deduces from the BP outputs Bk, 9 probable round-
keys. The attack succeeds if one of these 9 probable round-keys is an actual
round-key, i.e. it is derived from the correct master key using the KeyExpansion.

Finally it is interesting to note that using BP for enhancing the probabilities
on the different round-keys would work better as the number of rounds increases.
Indeed, each new round brings independent information on the key that can be
crossed with all other rounds.

5 Results

5.1 Simulation Results

The simulations are done with the programming language (v0.4). They
would correspond to an attack against a typical unprotected 8-bit software
implementation of AES. Plaintexts are randomly generated. Measured Hamming
weights are simulated with a noise according to N (0, σ2) for various standard
deviations σ. To facilitate the simulation the noise is supposed to be the same
on X and Y : σ = σX = σY .

We emphasize that to overcome floating point arithmetic issues, the nor-
malization steps in both the Bayesian attack and the BP algorithm are not
performed. As such, we work with scores corresponding to the logarithm of
probabilities instead of probabilities directly.

Simulation to retrieve a key byte from pairs of noisy Hamming
weights: First, at the level of a single byte using Bayesian inference (Sect. 3.3).
For different noise standard deviation σ and different numbers of traces n, the
average rank of the good key byte has been computed, for 100 simulated attacks
for each possible value of the key k̂. The results are displayed in Table 1.

Using BP on simulation results: Now, the attack on the whole master key
is simulated to see the additional benefit of BP. The algorithm returns 9 round-
keys. The measure used here is then the minimum of the Hamming distances

Table 1. Average rank of the good key byte k̂ according to the noise standard deviation
σ and the number of traces n, for 100 simulated attacks for each possible value of the
key k̂.

n\σ 0.1 0.2 0.3 0.5 1.0 1.5 2.0 3.0

100 1.2 1.3 2.3 14 66 96 107 119

1000 1 1 1 1 7.1 35 66 97

10000 1 1 1 1 1 2.2 12 48

100000 1 1 1 1 1 1 1.1 7.3
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Table 2. Hamming distance between the best key found by BP and the correct mas-
ter key K according to the noise standard deviation σ and the number of traces n,
estimated over 100 simulated attacks.

n\σ 0.1 0.2 0.3 0.5 1.0 1.5 2.0 3.0

100 0 0 0 0 59 51 53 54

1000 0 0 0 0 0 39 46 51

10000 0 0 0 0 0 0 0 40

100000 0 0 0 0 0 0 0 0

Table 3. Success of the attack according to the noise standard deviation σ and the
number of traces n, for 100 simulated attacks. � indicates the attack always succeeds
even if not using BP, � indicates the attack succeeds only with using BP and ×
indicates the attack fails.

n \ σ 0.1 0.2 0.3 0.5 1.0 1.5 2.0 3.0

100 � � � � × × × ×
1000 � � � � � × × ×
10000 � � � � � � � ×
100000 � � � � � � � �

between the guessed round-keys and the correct round-keys, where the minimum
is taken over the nine round-keys. The results are summarized in Table 2. As it
can be seen, the results are sharply separated, either the attack always succeeds
or it always fails completely. Nonetheless, the number of traces required for the
attack to succeed using BP is an order of magnitude below of what is required
without BP. Finally the improvement of BP on the attack is illustrated in the
Table 3.

Using the BP algorithm considerably improves the success rate. It makes it
possible to reduce the number of traces required for the attack to succeed. For
example, when σ is equal to 0.1, only 100 traces are required thanks to BP, as
opposed to 1000 traces without BP.

6 Conclusion

This paper presents a new side channel attack targeting the AES key. The first
motivation for this paper was to realize an attack without texts and without
templates, using only leakage measurements. The leakage is considered as a
Hamming weight with an additive Gaussian noise. On each round 1 to 9 of
the AES, two points of leakage are required to define the attack path without
any text.

First, with a Bayesian inference approach a score is assigned to each round-
key byte for all rounds from 1 to 9. Then, the second step is to use the KeyEx-
pansion rules to aggregate the knowledge on the round-key bytes to discriminate
the correct key. A belief propagation is used for that purpose.
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Simulation results have shown that the attack is effective, using the BP algo-
rithm is a very good way to enhance the chances to recover the key. Even in the
presence of a strong noise the attack can succeed. The BP algorithm approach
can be used in combination with any other attack able to score all round-key
bytes on several consecutive rounds. Additionally, it shows that increasing the
number of rounds in a crypto-algorithm in order to make it resist classical crypt-
analysis can weaken it with respect to our attack.

Finally, we would like to explore if masked implementations are effectively
protecting against this attack.
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2 LIMOS, Université Clermont Auvergne, Clermont-Ferrand, France

Abstract. Ring signature is a well-known cryptographic primitive that
allows any user who has a signing key to anonymously sign a message
according to a group of users. Some years ago, Hoshino et al. propose
a new kind of ring signature where anybody can transform a digital
signature into an anonymous signature according to a chosen group of
users; authors present a pairing-based construction that is secure under
the gap Diffie-Hellman assumption in the random oracle model. How-
ever this scheme is quite inefficient for large group since the genera-
tion of the anonymous signature requires a number of pairing compu-
tations that is linear in the size of the group. In this paper, we give
a more efficient anonymizable signature scheme without pairing. Our
anonymization algorithm requires n exponentiations in a prime order
group where n is the group size. Our proposal is secure under the dis-
crete logarithm assumption in the random oracle model, which is a more
standard assumption.

1 Introduction

Anonymizable Signature [7] is a kind of ring signature where anybody who has
a signature produced by a group member can transform it into an anonymous
signature within the group: someone can check that the anonymous signature
has been produced by the group member signature but it is not possible to guess
who is he. In practice, such a scheme allows a user to delegate to a proxy the task
to anonymize a given signature. For example, during the reviews of an academic
conference, each reviewer can sign his review before sending it to the program
chair. Then the program chair anonymizes the given signature for the program
committee and sends the review and the anonymous signature to the author of
the paper. Then the author is convinced that the review comes from one of the
member of the program committee but do not know who is the reviewer. The
reviewer does not need to know the other members of the program committee.

Authors of [7] propose a pairing-based scheme secure under the gap Diffie-
Hellman assumption in the random oracle model. In this scheme, the anonymous
signature is a proof of knowledge of a valid signature within the group. However,
this scheme is quite inefficient for large groups: the anonymization requires a
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number of pairing computation which is linear on the size of the group. In this
paper, we propose GAWP (for Get Anonymizable signature Without Pairing),
an efficient pairing-free anonymous signature scheme. This scheme is based on
the Schnorr signature [9] and uses the same methodology as [7]. Moreover, our
scheme is provably secure under the discrete logarithm assumption in the random
oracle model.

Related works: Ring signatures have been introduced by Rivest et al. in [8]. Such
a signature scheme allows a user to sign a message anonymously within a group.
Since the user only needs the public keys of all the members of the group and
his secret key, this primitive does not require any group manager as in group
signatures [2]. More recently, formal security definitions for ring signatures have
been proposed [1]. In [7], Hoshino et al. define anonymizable signatures that
extend the concept of ring signatures adding the possibility to transform any
signature into an anonymous signature within a chosen group. Authors formally
define the security models of this new primitive and propose a secure instantia-
tion based on the BLS signature [3]. This scheme requires pairing and is proven
secure in the random oracle model. To the best of our knowledge, it is the only
one anonymizable signature scheme of the literature. Finally, relinkable signa-
tures [10] are close to anonymous signatures: this primitive allows a proxy who
have the relink key to change the group of an anonymous signature. However,
a signature cannot be anonymized by anybody. Moreover, the signatures are
anonymous for everybody in anonymous signature, but they are not anonymous
for the proxy in relinkable signatures.

Outline: In the next section, we present the cryptographic background required
for our work. In Sect. 3 gives the formal definitions of an anonymizable signature
and the corresponding security models. Then we present the scheme GAWP in
Sect. 4 and we analyze its security before concluding in the last section.

2 Background

In this section, we recall some definitions and cryptographic notions.

Definition 1 (Discrete Logarithm). Let G be a multiplicative group of prime
order p and g ∈ G be a generator. The discrete logarithm problem (DL) is to
compute x given (g, gx). The discrete Logarithm hypothesis states that there
exists no polynomial time algorithm that solves DL with non-negligible advantage.

Zero-knowledge proofs: [6] A proof of knowledge is a two-party protocol between
two polynomial time algorithms P (the prover) and V (the verifier). It allows the
prover P to convince the verifier V that he knows a solution s to the instance I
of a problem P. Such a protocol is said zero-knowledge proof of knowledge (ZKP)
if it satisfies the following properties:

Completeness: If P knows s, then he is able to convince V (i.e., V outputs
"accept").
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Soundness: If P does not know s, then he is not able to convince V (i.e., V
outputs "reject") except with negligible probability.

Zero-knowledge: V learns nothing about s except I.

Honest-verifier ZKP (HZKP) is a weaker notion of ZKP which is restricted to
case where the verifier is honest, i.e., V correctly runs the protocol.

If we only have one flow from the prover to the verifier, we say that the ZKP is
non-interactive (NIZKP). In the litterature, sigma protocols are ZKP with three
exchanges between the prover and the verifier: a commitment, a challenge, and a
response. By example, the Schnorr protocol [9] is a signma protocol that allows
to prove the knowledge of the discrete logarithm of an instance (g, k = gx): the
prover chooses r

$← Z
∗
p and sends R = gr. Then the verifier sends the challenge

c
$← Z

∗
p to the prover, who responds with the value z = r + x · c. The verifier

accepts the proof iff gz = h · kc.
If the challenge is chosen on a large set, it is possible to transform a sigma

protocol into a NIZKP using the Fiat-Shamir heuristic [5] replacing the chal-
lenge by the digest of a hash function on the commitment. It is also possible to
transform such a NIZKP into a signature scheme in the random oracle model by
using the message together with the commitment as input in the hash function
to compute the challenge. For example, the Schnorr signature is obtained using
this transformation on the Schnorr protocol: to sign a message m with the secret
key x ∈ Z

∗
p, the signer picks r and computes h = gz and z = r + x · H(h,m).

Using the public key k = gx and the signature (h, z), anybody can check that
gz = h · kH(h,m) to validate the signature on m.

Finally, our scheme uses the generic transformation of ZKP designed by [4].
The authors propose a generic transformation from the ZKP of the solution to
some problem instance to a ZKP of the solution to one problem instance out of
n problem instances (without revealing this problem instance). This transforma-
tion holds with any sigma protocol and works as follows: consider n instances
{Ii}1≤i≤n and a prover who only knows the solution s1 of the instance I1. The
prover sends n commitment hi for 1 ≤ i ≤ n and receives an unique challenge c.
For all the instances {Ii}2≤i≤n, the prover chooses a challenge ci such that he
is able to prove the knowledge of the solution of Ii using hi and the challenge
ci as in the original sigma protocol (note that since he chooses the challenge by
himself, he does not need to really know the corresponding secret). Finally, he
computes c1 = c⊕ c2 ⊕ . . .⊕ cn and proves the knowledge of I1 using h1 and the
challenge c1 as in the original sigma protocol (note that, in this case, the prover
must to know the secret s1 to conclude the proof). Then the verifier check the
proof for all pairs (hi, ci) and checks that c = c1 ⊕ . . . ⊕ cn. The computational
and space cost of the resulting ZKP is n times the cost of the primary ZKP. It
is possible to use the Fiat-Shamir transformation on such a ZKP to obtain an
equivalent NIZKP.
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3 Security Models

We first give a formal definition of an Anonymizable Ring Signature.

Definition 2 (Anonymizable ring signature (ARS)). An ARS is a tuple of
algorithms (Init,Gen,Sig,Ver,Ano,AVer) such that:

Init(1t) : This algorithm outputs an init value from security parameter t.
Gen(init): This algorithm outputs a signing key pair (ssk, svk) from init.
Sig(ssk,m): This algorithm outputs a signature σ on the message m using the

signing key ssk.
Ver(svk, σ,m): This algorithm returns 1 when σ is a valid signature of m for the

verification key svk. Else it returns 0.
Ano(L, σ,m, svk): This algorithm outputs an anonymous signature σ̂ on the mes-

sage m according to the set of public key L from the signature σ and the
corresponding verification key svk.

AVer(L, σ̂,m): This algorithm returns 1 when σ̂ is a valid signature of m for the
set of verification keys L. Else it returns 0.

In what follow, we denote by outO the set of all the values outputted by the ora-
cle O during an experiment. The first security requirement is the unforgeability.
An ARS is unforgeable when it is not possible to forge a signature without the
corresponding secret key, and to forge an anonymous signature without a signa-
ture valide for one of the group members. In this model, we give to the attacker
the possibility to ask anonymous and regular signatures for chosen messages and
chosen users to some signing oracle. Of course, to win the attack, the attacker
must forge a signature that does not come from these oracles.

Definition 3 (EUF-CMA security). Let P be an ARS of security parameter t
and let A = (A1,A2) be a polynomial time adversary. We define the existential
unforgeability against chosen message attack experiment for A as follows:

Expeuf-cma
P,A (t, n):

init ← Init(1t)
∀ i ∈ {0, . . . , n}, (sski, svki) ← Gen(init)

I ← AGO(·),SO(·),AO(·)
1 (t, {svki}0≤i≤n)

(L∗, σ̂, m) ← AGO(·),SO(·),AO(·)
2 (t, {svki}0≤i≤n, {sski}i∈I)

if ((AVer(L∗, σ̂, m) = 1) and (L∗ ⊂ {svki}0≤i≤n,i�∈I)
and (∀ svk ∈ L∗, (svk, m, ∗) �∈ outSO ) and ((L∗, m, σ̂) �∈ outAO))

then output 1 else output 0.

Where oracles are defined as follows:

GO(·) is a key generation oracle that increments n ← n + 1, generates
(sskn, svkn) ← Gen(init) and returns it.

SO(·) is a signing oracle that takes (svki,m) as input. It computes σ ←
Sig(sski,m) and returns (svki,m, σ).

AO(·) is an anonymization oracle that takes (svki,m,L) as input. It computes
σ ← Sig(sski,m) and σ̂ ← Ano(L, σ,m, svki) and returns (L,m, σ̂).
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We define the advantage of the adversary A against the EUF-CMA experiment
by Adveuf-cma

P,A (t, n) = Pr[Expeuf-cma
P,A (t, n) = 1]. We define the advantage on EUF-

CMA experiment by Adveuf-cma
P (t, n) = maxA∈poly(t){Adveuf-cma

P,A (t, n)}. We say
that a ARS scheme P is EUF-CMA secure when the advantage Adveuf-cma

P (t, n) is
negligible for any polynomially bounded n.

The second security requirement is the anonymity. Loosely speaking, an ARS
is anonymous when it is not possible to guess who has produced the signature
used to compute an anonymous signature. In this security model, the adversary
chooses two users and a message m, and it receives an anonymous signature
produced from the signatures on m computed by one of the two users included
in a bigger set L. The goal is to guess who is the user chosen by the challenger.
To help him, the adversary have access to some signing oracles.

Definition 4 (Anonymity). Let P be an ARS of security parameter t and let
A = (A1,A2) be polynomial time adversary. We define the anonymity experi-
ment for adversary A against P as follows:

Expanon
P,A(t, n):

b ← {0, 1}
init ← Init(1t)
∀ i ∈ {0, . . . , n}, (sski, svki) ← Gen(init)

(i0, i1, L, m) ← AGO(·),SO(·),AO(·)
1 (t, {(sski, svki)}0≤i≤n)

If i0 OR i1 �∈ L then Abort
σ̂ ← Ano(L, Sig(sskib , m), m, svkib)

b′ ← AGO(·),SO(·),AO(·)
2 (t, σ̂)

output b = b′.

Where GO(·), SO(·) and AO(·) are defined as in Definition 3.
The advantage of the adversary A against anonymity is AdvanonP,A (t, n) =

∣
∣Pr[ExpanonP,A (t, n) = 1] − 1

2

∣
∣. We define the advantage on anonymity experiment

by AdvanonP (t, n) = maxA∈poly(t){AdvanonP,A (t, n)} where poly(t) is the set of all the
algorithm that are polynomial in t. We say that a ARS scheme P is anonymous
when the advantage AdvanonP (t, n) is negligible for any polynomially bounded n.

4 Constructions

In this section, we present our scheme called GAWP (for Get ARS Without Pair-
ing). We use the same design methodology as in [7]: to anonymize the signature
σ of a message m, a user computes a non-interactive zero knowledge proof of
the knowledge of σ according to one verification key out of all the verification
keys of the group. Our scheme is based on the well known Schnorr signature (see
Sect. 2). Particularly, the signature and the verification algorithm are the same
as in the Schnorr signature: let g be the generator of a prime order group, then
the signature algorithm outputs h = gr and z = r + ssk · H(h,m) where r is a
random value, ssk the signing key and m the message. To validate a signature,
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Prover P Verifier V
H,m,h,kz

s
$← Z

∗
p c

$← Z
∗
p

S = gs S−−−−−−−−−−−−−−−−→
α = s + z · c

c←−−−−−−−−−−−−−−−−
α−−−−−−−−−−−−−−−−→ Check that:

gα ?
= S · (h · kH(h,m))c

Fig. 1. Protocol Π0

a user checks that gz = h · svkH(h,m) where svk is the public verification key
such that svk = gssk. Then, our goal is to give a way to prove the knowledge of
a valid Schnorr signature according to one of the verification keys of the group.
Note that the first part of the signature h = gr does not leak any information
about the signing key ssk. Then this value can be public in the anonymized
signature. The last step is to prove the knowledge of the second part of the sig-
nature z according to h, m, H and the set of verification key L of all members
of the group. More precisely, our aim is to prove the knowledge of z such that
gz = h · svkH(h,m) for one svk ∈ L, h, m and H. In the following, we first give the
zero-knowledge proof that allows to prove the knowledge of a Schnorr signature.
Next, we give the concrete construction of GAWP, and finally, we analyze its
security.

Proof of knowledge construction: Let G be a group of prime order p, g be a
generator of G and n be an integer. Let k and h be two elements of G, m be a
bit-string and H : {0, 1}∗ → Z

∗
p be a hash function. Finally, for all i ∈ {1, . . . , n},

we set the instance tuple ti = (ki, h,m,H).
In the following, we show how to build Π, a non-interactive zero knowledge

proof of knowledge of z ∈ Z
∗
p such that there exists an instance (k, h,m,H) ∈

{ti}1≤i≤n such that z = logg(h · kH(h,m)). We first describe in Fig. 1 the inter-
active case Π0 where n = 1, hence there is only one instance t = (k, h,m,H). It
is a variant of the Schnorr protocol [9]. This proof is a sigma-protocol.

Lemma 1. The ZKP Π0 is complete, sound, and honest-verifier zero-
knowledge.

The proof of Lemma 1 is similar to the proof of the Schnorr protocol proper-
ties [9]. As Π0 is honest-verifier zero knowledge and a sigma protocol, we can use
the generic transformation of [4] to obtain the interactive version of our proof
for any n ≥ 1. Finally, using this transformation and the Fiat-Shamir heuristic
on Π0, we build the non-interactive proof Π in the random oracle model.

Theorem 1. The NIZKP Π is complete, sound, and zero-knowledge in the ran-
dom oracle model.

Proof. It is a direct implication of [4] and Lemma 1.
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Notation: We denote by Π.Proof(z, t, {ti}1≤i≤n) the algorithm that generates
such a proof where z is the secret, t = (k, h,m,H) ∈ {ti}1≤i≤n is the instance
corresponding to z such that gz = h · kH(h,m) and {ti}1≤i≤n is the set of all
the instances. We denote by Π.Verif(π, {ti}1≤i≤n) the algorithm that checks the
validity of the proof π according to the set of instances {ti}1≤i≤n.

Scheme 1 (GAWP scheme). GAWP = (Init,Gen,Sig,Ver,Ano,AVer) is an
ARS such that:

Init(1t): This algorithm chooses a group G of prime order p according to the
security parameter t. It then chooses a generator g of G and a hash function
H : {0, 1}∗ → Z

∗
p. It outputs (G, p, g,H).

Gen(init): This algorithm picks x
$← Z

∗
p, computes ssk = x and svk = gx and

returns (ssk, svk).
Sig(ssk,m): This algorithm picks r

$← Z
∗
p, computes h = gr, M = H(h,m) and

z = r + ssk · M and returns σ = (h, z).
Ver(svk, σ,m): Using σ = (h, z), if gz = h · svkH(h,m) then this algorithm returns

1, else it returns 0.
Ano(L, σ,m, svk): Using σ = (h, z), this algorithm computes a zero-knowledge

proof of the knowledge of the witness z such that there exists k ∈ L such
that gz = h · kH(h,m) without revealing neither z nor k. More precisely, it
uses the non-interactive zero-knowledge proof scheme Π to computes σ̂ =
Π.Proof(z, (svk, h,m,H), {(k, h,m,H)}k∈L) and returns it.

AVer(L, σ̂,m): This algorithm computes b = Π.Verif(σ̂, {(k, h,m,H)}k∈L) and
returns it.

Security Analysis: We have the following theorem.

Theorem 2. If there is no polynomial time algorithm A that solves the dis-
crete logarithm problem with a non-negligible probability, then Adveuf-cma

GAWP(t, n)
and AdvanonGAWP(t, n) are both negligible in t for any polynomially bounded n in
the random oracle model.

We show this, through the two following lemmas

Lemma 2. An ARS is unforgeable under the hardness of the discrete logarithm
problem.

Proof. We are going to show that is we have a polynomial adversary A able to
forge our scheme in a polytnomial time with non negligible probability ε, then
we can build a simulator B able to break the discrete logarithm problem with a
similar polynomial time with probability ε/q where q is the number of users in
the system.

Let assume B receives a discrete logarithm challenge svk∗ ∈ G. We are going
to build a sequence of games, allowing B to use adversary A to compute x such
that gx = svk∗.

We first start the simulation by picking a random user and setting his public
key as svk∗, all the user users have keys generated honestly (in other words
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the simulator B knows their corresponding signing keys). This means that if the
adversary wants to corrupt some users, we can give him the corresponding secret
keys.

When answering signing queries:

– If the signer is an honest user, B simply computes the signature honestly using
the associated (known) secret signing keys.

– If the user, is the expected challenge user, then B picks a random r ∈ Z
∗
p,

computes hr, and simulates the Zero-Knowledge proof σ̂ to say that this is
indeed a valid signature for a set of users L containing the challenge user i∗.
Under the Zero Knowledge property (hence the programmabilty of the ROM),
this simulation is indistinguishable from a real signature.

After a polynomial number of signing queries, the adversary picks a user i′∗
and returns a signature on an unsigned message/set of users. For the forgery
to be valid, the signature has to be valid, the set of users should only contain
uncorrupted users, and never have signed the said message.

From the adversary point of view honest signatures, and simulated ones are
indistinguishable, hence with probability 1/q the adversary is going to pick the
expected user as his challenge one.

Now using the extractability of the random oracle, B can recover the value ssk∗
used to generate the proof (this can simply be done by rewinding the random oracle
on the final proof computation). Hence after a polynomial time B is able to recover
the discrete logarithm associated with the challenge with probability ε/q. �	
Lemma 3. The previous scheme is anonymous in the Random Oracle Model.

Proof. Let us assume there exists an adversary A against the Anonymity of our
scheme, we are going to build a simulator B in the Random Oracle Model.

– We start from a game G0,0 where the simulator does everything honestly and
picks the identity i0. This includes generating honestly all the secret keys and
signing.

– We now change the generation of the challenge signature. The user still picks
a random r ∈ Z

∗
p but now simulates the Zero-Knowledge proof σ̂. This is done

by programming the random oracle, so that the challenge value fits with the
guess done in the first part of the proof. This leads to the game G1,0. Using
Theorem 1, this game is indistinguishable from the previous one.

– A simulated challenge signature for the identity i1 is exactly the same (as
the simulation does not require the knowledge of the key), hence game G1,1 is
identical to the previous one.

– Finally, the simulator B switches back to an honest signature this time made
by using the secret key i1 to generate σ̂. Once again, under the random oracle
model, this game is indistinguishable from the previous one. �	

Efficiency: In GAWP, the signature algorithm requires one exponentiation, and
the anonymization algorithm requires 2×n exponentiations where n is the size of
the group. In the scheme [7], the signature requires one exponentiation, but the
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anonymization requires n+1 exponentiations and 2×n+1 pairing computations.
Moreover, this scheme requires 2 × n pairing computations and n exponentia-
tions in the verification algorithm of an anonymous signature when our scheme
requires only 2 × n + 1 exponentiations. Thus GAWP is more efficient than the
scheme [7] that becomes impractical when the group contains a lot of members.

5 Conclusion

In this paper, we show that pairings are not needed in anonymizable ring sig-
nature: we design a paring-free scheme that is more efficient and secure under
a more standard assumption as the previous scheme in [7]. Particularly, the
anonymization algorithm and the anonymous verification algorithm in [7] are
very inefficient for large groups comparing to ours since it requires a number of
pairing computations that is linear in the size of the group. The next step will
be to design an anonymizable ring signature that can be proven secure without
the random oracle heuristic.
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Abstract. Communication security is a major concern in industrial
process management. Indeed, in addition to real-time requirements, it
is very important to ensure that sensing data sent by field sensors are
not altered or modified during their transmission. This is more true in
Wireless Sensor Networks where communication can be hijacked and
false data injected. Therefore wireless communication protocols include
several security mechanisms to ensure data confidentiality and integrity.
In this paper, we present an attack against WirelessHART, the lead-
ing wireless communication protocol in industrial environment. We show
that an insider attacker can bypass security mechanisms and inject false
commands in the network. Such attacks can have harmful economical
consequences or even more can threaten human lives. We propose also
some solutions that can be applied for detecting and mitigating this kind
of attacks.

1 Introduction

Industrial Control Systems (ICS) are computed-based systems used for monitor-
ing and managing industrial installations and facilities. We can find such systems
in airports, power plants, gas refineries, etc. The architecture of these systems
relies on several sensors and actuators deployed throughout the industrial instal-
lation. Sensors are responsible for gathering different kinds of information about
the industrial process such as temperature, pressure, flow, etc. These informa-
tion are sent to a controller that processes them and sends back commands to
actuators. As results, an actuator can for example open a valve to increase the
flow of a chemical component or stop a pump when the oil tank is filled.

The security in Industrial Control Systems is a major concern. Indeed, these
systems manage installations that play an important economical role. Even more,
targeting these systems can lead not only to economical losses but can also
threaten human lives [1].

Therefore and as these systems depend on sensing data, it is important to
secure communication channels between these sensors and the main controllers.
This issue is more challenging in Wireless Sensor Networks as the use of wireless
communications brings its own security weaknesses.
c© Springer International Publishing AG 2017
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Based on the analysis of the communication scheme, we present in this
paper an attack against WirelessHART [2], the leading wireless communication
protocol in the industrial environment. We show that although this protocol
implements several mechanisms to ensure the integrity and confidentiality of
exchanged data, an insider attacker can use its own credential to bypass secu-
rity mechanisms and inject false commands in the network. Using this weakness,
we describe three scenarios that can be used to launch an attack against a
WSN. Such attacks can have harmful economical consequences or even more
can threaten human lives.

Several tests were conducted on a simulated network to prove the feasibility
of these attacks and to assess its potential impact on the functioning of the
industrial process.

The rest of the paper is organized as follows. In Sect. 2, we give a brief descrip-
tion of the functioning of a WirelessHART network, its communication scheme
and how data are exchanged and secured. We detail in Sect. 3, the functioning
of the broadcast attack and give three different scenarios that use this attack.
Section 4 presents results of the three scenarios on a simulated WSN. Some coun-
termeasures that can be used to detect such attacks are discussed in Sect. 5. In
Sect. 6, we discuss prior works on the security of WirelessHART. Finally, Sect. 7
presents the conclusion and future works.

2 Background

WirelessHART [2] is the first standardized wireless communication protocol spe-
cially developed for industrial process management. It uses a time-synchronized,
self-organized and self-healing mesh architecture to provide a reliable and real-
time communication. It is included in version 7 of the HART standard, released
in 2007, and was approved as a IEC 62591 standard in 2010.

2.1 Topology of a WirelessHART Network

A typical WirelessHART network is composed of the following devices:

– A Gateway that connects the wireless network to the plant automation net-
work, allowing data to flow between the two networks. It can also be used to
convert data and commands from one protocol to another one;

– A Network Manager that is responsible for the overall management, schedul-
ing, and optimization of the wireless network. It generates and maintains all
of the routing information and also allocates communication resources;

– A Security Manager that is responsible for the generation, storage, and man-
agement of cryptographic keys;

– Access Points that connect the Gateway to the wireless network through a
wired connection;

– Field devices deployed in the plant field and which can be sensors or actuators;
– Routers used for forwarding packets from one network device to another;
– Handheld devices that are portable equipments operated by the plant person-

nel used in the installation and during the maintenance of network devices.
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2.2 WirelessHART Stack

The WirelessHART protocol is composed of 4 layers. It is based in its physical
layer upon the IEEE 802.15.4 standard [3]. It defines its own data link layer
and network layer and shares the same application layer with the wired HART
protocol (in the addition of wireless commands). A brief description of each layer
is given below:

– Application Layer (AL): it is a command based layer. It is used to send sensing
data from field devices to the Network Manager, and to send commands from
the Network Manager to the field devices. It supports both common HART
commands (inherited from the wired version) and WirelessHART commands.

– Transport Layer (TL): it provides mechanisms to ensure packets fragmenta-
tion and defragmentation. It ensures data delivery without loss, duplication
or misordering to its final destination. It supports acknowledged and unac-
knowledged transactions.

– Network Layer (NL): it ensures end-to-end integrity and confidentiality. It
provides routing features. It receives packets from the DLL and checks if they
have to be transmitted to the AL or have to be resent to the DLL to be
forwarded to the next device.

– Data Link Layer (DLL): it is responsible of preparing packets for transmission,
sending and receiving packets, managing time slots and maintaining informa-
tions about neighborhood. It provides hop-by-hop authentication.

– Physical Layer (PhL): it is based on the IEEE 802.15.4-2006 standard
and operates in the 2.4 GHz. It is responsible of wireless transmission and
reception.

2.3 WirlessHART Communication

The Network Manager is one of the most important devices in a WirelessHART
network. It is responsible for the overall management, scheduling, and optimiza-
tion of the wireless network. It generates and maintains graphs and routing
information and also allocates communication resources.

Communication Type. In WirelessHART there are 05 packet types, called
Data Link Protocol Unit (DLPDU), that can be exchanged between devices:

– Data DLPDU: encapsulates packets from the NL. It is used to exchange sens-
ing data and AL commands.

– Ack DLPDU: is used by a device that receives an unicast packet, to send back
to the sender device an acknowledgment of the reception of that packet.

– Keep-alive DLPDU: is used by a device that spends a defined time without
sending any packets, to inform its neighbors that it is still active.

– Advertise DLPDU: is used for providing information to neighboring devices
trying to join the network;
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– Disconnect DLPDU: is used by a device to inform its neighboring devices that
it is leaving the network.

Ack, Advertise, Keep-Alive and Disconnect DLPDUs are generated and
processed in the Data Link Layer and are not propagated to the network layer
or forwarded through the network. This means that these DLPDUs are only
used in local communication between neighbors. The Data DLPDU is the only
kind of packet that is transmitted in an end-to-end communication. During the
transmission, data fields in the payload are enciphered.

Communication Scheduling. To provide reliable and collision free communi-
cation, WirelessHART uses Time Division Multiple Access (TDMA) and Chan-
nel hopping to control the access to the wireless medium. The time is divided
in consecutive periods of the same duration called slots. Each communication
between two devices occurs in one slot of 10 ms. Superframes are collection of
slots repeated continuously with a fixed repetition rate.

Typically, two devices are assigned to one time slot (one as the sender and
a second as the receiver). Only one packet is transmitted in one slot from the
sender to the receiver which has to reply with an acknowledgment packet in the
same slot. In the case of a broadcast message, there is one sender and multiple
receivers and the message is not acknowledged.

In addition to the TDMA, WirelessHART uses channel hopping to provide
frequency diversity and avoid interferences. Thus, the 2.4 GHz band is divided
into 16 channels numbered from 11 to 26 which provide up to 15 communications
in the same slot (Channel 26 is not used).

Communication Routing. WirelessHART implements in the Network Layer,
two methods of routing packets throughout the network, i.e., graph routing and
source routing.

– Graph routing: a graph is a collection of directed paths that connect network
devices. It is build by the Network manager based on its knowledge of the
network topology and connectivity. Every graph has a unique graph identifier
that is inserted in the network packet header. Each device receiving this packet,
must forward it to the next hop belonging to that graph. This routing method
is used for normal communications, in both upstream (from a device to the
network manager) and downstream (from the network manager to a specific
device) directions.

– Source routing: it is a single directed route between a source and a destina-
tion device. The complete route is completely inserted in the network packet
header by the sender device. Each intermediate device propagates the packet
to the next device indicated in the source route field. This method of routing
is used only for testing routes, troubleshooting network paths or for ad-hoc
communications.
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Communication Security. WirelessHART implements several mechanisms to
ensure data confidentiality, authenticity and integrity in both hop-by-hop and
end-to-end transmissions.

Fig. 1. WirelessHART communication scheme

Indeed, as WirelessHART builds a mesh network, sensors are located several
hops from the network manager. Thus, these sensors rely on their neighbors to
forward their packets from/to the network manager. Therefore, as illustrated in
Fig. 1, the several forwards of packets between neighbor devices are called the
hop-by-hop transmission and the communication between the sending sensor and
the network manager is called the end-to-end communication.

Security at Data Link Layer: The hop-by-hop transmission security is pro-
vided by the Data Link Layer (DLL) using a cryptographic key called “Network
Key” shared by all devices composing the wireless network. It defends against
attackers who are outside the network and do not share its secret.

Each DLPDU is authenticated by the sending device using the network key.
Therefore, before processing any received DLPDU, a device must check the keyed
Message Integrity Code (MIC) to authenticate the identity of the sending device.
We must note that the DLPDU itself is not enciphered but authenticated by
a four-byte MIC generated with CCM* mode (Combined Counter with CBC-
MAC) using the AES-128 block cipher.

Security at Network Layer: The end-to-end security is provided by the Net-
work Layer (NL) using a cryptographic key called “Session Key” known only by
the two communicant devices. It defends against attackers who may be on the
network path between the source and the destination (Inside attacker).

The network layer also uses a keyed Message Integrity Code (MIC) for the
authentication of the Network Protocol Data Unit (NPDU). Additionally, it is
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used to encrypt and decrypt the NPDU payload. The end-to-end security is
session oriented i.e., it provides a private and secure communication channel
between a pair of network devices. Each session is defined by two elements:

– the session key: it is a dedicated 128-bits cryptographic key. It is used to
encipher the NPDU payload and to authenticate the whole NPDU.

– the session counter: it is a 32 bits value that defends against replay attacks
and used as the nounce for generating the NPDU MIC. Each device keeps a
history of received nonce counter.

2.4 Communication Scheme

WirelessHART implements unicast and broadcast communications in both the
Data Link and the Network Layers. In the Data link layer, the unicast or broad-
cast communication is set by configuring the packet with unicast or a broadcast
destination address, by using the unicast or the broadcast graph and also by
using the dedicated transmission slots. Indeed, the Network Manager configures
each wireless sensor to be at the beginning of each slot either a sender, a receiver
or to stay idle.

As illustrated in Fig. 2, when a device receives unicast packet, it starts by
authenticating it in the Data link layer (DLL) using the network key and then
it is transmitted to the Network layer. There, the destination NL address is
checked. If it matches the device’s address, the packet is authenticated a second
time using the unicast session key and its payload is deciphered and sent to the
Application Layer to be executed. Otherwise, the packet is sent back to the DLL
to be forwarded to the next hop device.

Fig. 2. Unicast packet processing sequence



Security Analysis of WirelessHART Communication Scheme 229

In a broadcast communication, a packet sent by the Network manager is
propagated to all devices in the wireless network. As illustrated in Fig. 3, each
time a device receives a broadcast packet, it starts by authenticating it firstly
in the Data link layer (DLL) using the network key and then in the Network
layer (NL) using the broadcast session key. If the packet passes authentication
validations, it will be deciphered and sent to the Application Layer (AL) to be
executed. A copy of the packet is also sent back to the DLL to be forwarded to
other devices.

Fig. 3. Broadcast packet processing sequence

On another hand, in the Network Layer, four sessions are set up as soon as
any device joins the network. They allow the transmission of sensing data from
a device to the Network Manager, and the transmission of commands from the
Network Manager to a field device.

1. unicast session with the NM: it is used by the network manager to manage
the device.

2. broadcast session with the NM: it is used to globally manage devices. For
example this can be used to roll a new network key out to all network devices.
All devices in the network have the same key for this session.

3. unicast session with the Gateway: it carries normal communications (for
example process data) between the gateway and the device.

4. broadcast session with the Gateway: it is used by the gateway to send the
identical application data to all devices.

In addition, each device has a join session key which cannot be deleted.
The Join key is the only key that is written once connecting to the device’s
maintenance port. It can also be updated by the Network Manager once the
device is successfully connected. All other keys are distributed by the Network
Manager.
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3 Communication Scheme Attack

The idea of the attack is that a malicious insider attacker uses its own credentials
to bypass the authentication mechanism and injects false command into the
network. These false commands will be authenticated as legitimate commands
and executed by receiving devices. Depending on the nature of injected false
commands, consequences on the network can be more or less harmful.

As indicated in the previous Section, end-to-end communications are secured
by session keys. In unicast communications, the session key is only known by the
two communicant devices while in broadcast communications, the session key is
shared by all devices connected to the network.

Therefore to launch the command injection attack, the malicious insider
attacker will use Broadcast Session credentials to perform this kind of attacks.
Indeed, as part of the network, the malicious node is configured with the broad-
cast session key and the session counter.

The command injection attack can be performed in several ways such as: a
Direct command injection attack, a Bounced command injection attack and an
On-the-fly command injection attack.

3.1 Scenario 1: Direct Command Injection Attack

In a Direct Command Injection Attack a malicious insider node forges a fake
broadcast packet and forwards it to its neighbors.

As illustrated in Fig. 4, at the moment T the malicious node Device5 uses
its knowledge on the broadcast session credential i.e., the broadcast session key
and the session counter, to forge a broadcast packet. The source address in the
NL is set to the Network Manager address and the destination addresses in both
network and data link layers are set to the broadcast address. The malicious
insider node will send the forged packet using its own broadcast link in the same
way as if it was a legitimate packet sent by the network manager. Receiving
nodes, Device8 and Device9, will authenticate the packet using the broadcast
session key and execute the injected false command.

Using this attack, a malicious insider node can inject any false command and
send it to its neighbors using the broadcast graph.

3.2 Scenario 2: Bounced Command Injection Attack

In WirelessHART both DLL and NL destination addresses can be either unicast
or broadcast addresses and all combinations are allowed. So, a packet can have
unicast DLL destination address and a broadcast NL destination address.

In a Bounced Command Injection Attack a malicious insider node forges a
fake broadcast packet and sends it to its parent node. As illustrated in Fig. 5,
this kind of attacks is composed of the following steps:

1. At the moment T the malicious node Device5 uses its knowledge of the broad-
cast session credential i.e., the broadcast session key and the session counter,
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Fig. 4. Direct broadcast attack

Fig. 5. Bounced broadcast attack

to forge a broadcast packet. The source address in the NL is set to the Net-
work Manager address and the NL destination address is set to the broadcast
address.
In the DLL, the source address is set to the Device5 address and the destina-
tion address is set to its parent’s address i.e., Device2. The malicious insider
node will send the forged packet using its own normal link between itself and
the parent node.

2. The receiving node Device2 authenticates the packet in the DLL as a legiti-
mate unicast packet and transmitted it to the upper layer.
In the NL, the packet is identified as a broadcast packet sent by the Network
Manager. It is authenticated and deciphered using the broadcast session key.
The packet is then transmitted to the application layer to be executed.
A copy of the packet is also transmitted to the DLL to be forwarded to
Device2 neighbors i.e., Device4 and Device5.
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3. Both Device4 and Device5 process the received packet as a legitimate broad-
cast packet sent by the Network manager and propagate it to their neighbors.

4. As results, the injected false command packet is received and executed by
Device2, Device4, Device5, Device6, Device7, Device8 and Device9.

This scenario allows a malicious insider node by using its parent node as
a relay to increase the impact of the attack. By this way, the injected false
command is propagated to all parent node’s children.

3.3 Scenario 3: On-the-fly Command Injection Attack

In an On-the-fly command injection attack, a malicious insider node that receives
a broadcast packet, will forward to its neighbors a modified version of the
received packet.

As illustrated in Fig. 6, this attack is performed according to the following
steps:

1. The Network Manager sends a broadcast packet.
2. The broadcast packet is forwarded to devices and received by the malicious

insider node Device5.
3. All receiving node execute the command sent by the network manager and

forward it to devices in their neighborhood.
4. The malicious node Device5 uses its knowledge of broadcast session credential

i.e., the session key and the session counter, to modify the received broadcast
packet and send it to its neighbors.

5. As results, the injected false command packet is received and executed by
Device8 and Device9.

As in the direct command injection attack, a malicious insider node can inject
any false command and sent it to its neighbors using the broadcast graph. The
difference is that an on-the-fly injection command attack is a stealth attack as
the injected packet is hidden inside a legitimate communication flow.

Fig. 6. On-the-fly broadcast attack
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3.4 Discussion

Described scenarios showed the feasibility of the broadcast attack and that it
can be performed in several ways. We must note that although we can launch the
attack at any chosen time T , the malicious node must wait for an appropriate
time slot to be able to send the forged packet. For example in the case of the
direct command injection, the malicious node must wait for the next broadcast
slot to send the false command to its neighbors. But as all devices are configured
with this kind of slots, it is always possible for a malicious node to send its
false command. According to the WirelessHART [2], by default each device is
configured with one sending unicast slot and one sending broadcast slot each
1 min. Thus, the average waiting time TAvg between the attack launching time
and the false command injection time is: TAvg = Tsending broadcast/2 = 30 s in the
case of a direct attack and TAvg = Tsending unicast/2+Tsending broadcast/2 = 60 s
for a bounced attack. The on-the-fly attack duration depends on the industrial
process and broadcast commands sending frequency. In average, this frequency
is around 1 h.

By comparing the 3 scenarios, we can see that the bounced command injec-
tion increases the spreading area of the attack by using the parent of the mali-
cious node as a relay. Also, the on-the-fly command injection attack is interesting
as it hides the attacks inside a legitimate flow. Nevertheless, the drawback of this
attack is that the malicious node must wait to the transmission by the network
manager of a broadcast packet which can take a long time to happen.

Finally, we must note that in all these scenarios, the malicious insider node
has the choice between executing or not the injected false command. Indeed,
depending on the attack’s goal, the malicious node can launch the attack with
or without executing it. For example, by not executing the false command, the
malicious node can mislead administrators in their investigations to discover the
origin of the network disturbances.

4 Attack Implementation

To test the broadcast attack, we use WirelessHART NetSIM [4], a simulator that
we develop for assessing the security of WirelessHART SCADA-based systems.

As illustrated in Fig. 7(a), the simulated wireless network is composed of a
network manager and 9 wireless sensors. Wireless sensors are configured to send
periodically each 4 s simulated sensing data to the Network Manager. Figure 7(b)
illustrates the routing graphs. The broadcast graph is indicated by dotted green
arrows.

For testing the three scenarios, we launched the broadcast attack at T = 800 s
and the Device5 is configured to be the malicious insider attacker. The injected
false command is the command 961 that is used to set a new network key. This
command has 2 parameters: the new network key, and T ′ the time when it will
be changed. In all the three scenarios T ′ = 920 s.

As illustrated in Fig. 8(a) i.e., in the normal case, the size of sensing data
received by the Network Manager is about 720 bytes each 4 s. We observe that
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Fig. 7. Simulation network topology (Color figure online)

for the three scenarios of the broadcast attack, the size of received data by the
Network Manager falls immediately at T = 920. This indicates that the Network
manager stops receiving sensing data from some wireless sensors.

Indeed at T = 920 infected devices will execute the injected false command
and start to use the received network key to calculate the DLL MIC. When
received by a device that has not been infected by the attack, the packet do
not pass the MIC validation step and is rejected. Consequently, packet sent by
infected devices will be rejected and not received by the Network Manager.

In comparison with the normal case, in the direct command injection attack
the data received by the Network Manager, illustrated in Fig. 8(b), falls from
720 bytes to 480 bytes. This represents a decrease of 33%. Indeed, 3 devices i.e.,
Device5,Device8 and Device9, are infected by this attack.

In the case of the bounced command injection attack, shown in Fig. 8(c), we
record a decrease of 77% in the data received by the Network Manager. This
indicates that this kind of attacks, allows a malicious node to use its parent
device as a relay to propagate the attack to a great number of devices. As result,
7 devices are infected by the attack, i.e., Device5, Device2, Device4, Device6,
Device7, Device8 and Device9.

In the on-the-fly command injection attack, we configure the Network Man-
ager to broadcast, at T = 800 s to all devices, a command to change the network
key at T ′ = 920 s. The malicious attacker will modify this command and send
a false command to its children devices. This attack has the same impact as
in the case of a direct command injection command. As a variant, we choose
that the malicious node does not execute the false command, which explains the
difference of the impact between the direct and on-the-fly broadcast attacks. As
indicated in Fig. 8(d), the received data by the network manager decreased by
22% as only 2 devices are infected i.e., Device5 and Device6.
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Fig. 8. Sensing data received by the network manager.

5 Countermeasures Discussion

The broadcast communication is an important feature in WirelessHART. It
allows the Network Manager to configure all devices composing the wireless
network by only sending a single packet. It avoids a costing time and resources
process of sending a single packet to each device. But as shown in this paper,
this feature creates a dangerous breach in the communication scheme security.
As it is complicated to ban broadcast communications, we propose hereafter,
some ideas to reduce the exposition to this vulnerability.

– Broadcast packet validation after the reception of 2 identical packets: this
condition aims to stop direct and on-the-fly command injections. Indeed, as
WirelessHART builds a meshed network, best practices in industrial sensor
networks recommends that each node has at least 2 or 3 parents. Consequently,
each sensor will receive the broadcast packet more than once. Thus, according
to this rule, each node must wait till the reception of the same packet from
another of its parents before it executes and forwards it. Nodes located at
one hop do not have to apply this rule as they receive the broadcast packet
directly from the Network Manager. This countermeasure adds a latency in
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the transmission of broadcast packets and can, in some cases, block their
forwarding.

– DLL and NL addresses validation: in the case of the bounced command injec-
tion attack, DLL and NL headers of the injected packet indicate contradictory
informations. Indeed, the source address in the DLL header indicates that the
packet has been sent by a children node i.e., the malicious node, while the
source address in the NL header indicates that the packet has been sent by a
parent node i.e., the network manager. Therefore, implementing in the NL a
security mechanisms that rejects packets indicating such contradictory infor-
mations can mitigate this kind of attacks. We must note that even if this
solution do not complain with the layer separation principle, in practice Wire-
lessHART layers already use information provided by other layers such as
addresses.

– Use of an IDS for monitoring node’s behavior: indeed, except rethinking deeply
the communication scheme of WirelessHART, as implementing asymmetric
cryptography for packet’s authentication, that is a costly process, the use of an
IDS will increase significantly the security of such networks. Indeed, this kind
of system by monitoring exchanged packets, are able to detect the injection
of a false packet or the modification of a packet during its transmission.

In conclusion, the two first countermeasures are partial solutions that do not
prevent all scenarios. The second solution is the costless one as it adds a reduced
overhead. The use of an IDS is the more efficient solution. Indeed, although it
requires the installation of dedicated equipments for traffic monitoring, it is the
only solution that detects all possible scenarios. Nevertheless, given that WSNs
are distributed systems, we must pay attention to the scheme used to deploy the
IDS as it directly impacts the information gathering capability.

6 Related Works

Most of dedicated studies on WirelessHART focus mainly on the evaluation of
the performances of this protocol and its capabilities to operate in an industrial
environment and its capacity to meet real-time requirements [5–7].

On the other hand, security analysis conducted on WirelessHART are based
on the specifications of the standard without conducting any tests. Thus, in [8]
Raza et al. discuss the strengths and the weaknesses of security mechanisms and
analyze them against the well known threats in the wireless sensor networks.
They conclude that WirelessHART is strong enough to be used in the industrial
process control environment. Alcazar and Lopez identify in [9] vulnerabilities
and threats in several wireless communication protocols used in industry i.e.,
ZigBee PRO, WirelessHART and ISA100.11.a. They analyze in detail the secu-
rity features of each of these protocols. For them, WirelessHART offers strong
authentication capabilities before and after deployment. However, they recom-
mend to add a rekeying process to WirelessHART to enforce its resilience to
sniffing attacks and thereby key disclosure.
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But although WirelessHART implements several security mechanisms, it
stays vulnerable to dangerous attacks. Thus, in a previous work, we develop
WirelessHART NetSIM [4], a simulator for assessing the security of Wire-
lessHART SCADA-based systems. It can be used to test attacks and counter-
measures on WSN. It includes several scenarios for testing simple and complex
kinds of attacks. Using this simulator, we give the first description of a Sybil
attack specially tailored to target WirelessHART based SCADA systems [10].
We demonstrate that an insider attacker using this weakness can isolate par-
tially or more again totally wireless sensors from the SCADA network. This
attack targets the security authentication in the data link layer and is based on
the knowledge of the network key by all devices composing the wireless network.

Nevertheless, this attack do not allow the injection of false commands into
the network as security mechanisms in the upper layer will stop injection attacks.
Therefore, the presented attack in this paper is more dangerous than the previous
one, as it permits the injections of any false command by circumventing security
mechanisms implemented in the Network Layer.

7 Conclusion

In this paper, we analyze the security of the communication scheme in Wire-
lessHART, the most widely used wireless protocol in SCADA systems. We show
that an insider attacker can bypass implemented security mechanisms and inject
false commands into the network. These false commands will be authenticated
as legitimate commands and executed by receiving devices.

The attack is based on the use of the broadcast session credentials that are
shared by all devices composing the wireless network. We give also the descrip-
tion of three different scenarios that exploit this weakness. Tests conducted,
using a simulator dedicated to WirelessHART security assessment, confirm the
feasibility of the attack and its potentially harmful impact. In these tests we
choose the network key change command as injected false command. By this
way, we were able to break the reception by the network manager of sensing
data from wireless sensors. Other scenarios can be developed to take advantage
of this weakness. For example, the source routing method can be used to inject
false commands to a greater number of sensors.

On the other hand, proposed solutions do not totally mitigate the broad-
cast attack. Indeed, the broadcast communication is an important feature that
cannot be removed. Therefore, and except changing deeply the communication
scheme implemented by WirelessHART, the use of an Intrusion Detection
System (IDS) is the best operational manner to detect and mitigate this kind of
attacks. Further research must be made to study the best way to apply IDS to
WSN in industrial environments.
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Abstract. In the past ten years, our team has developed a method
called morphological analysis that deals with malware detection. Mor-
phological analysis focuses on algorithms. Here, we want to identify pro-
grams through their functions, and more precisely with the intention of
those functions. The intention is described as a vector in a high dimen-
sional vector space in the spirit of compositional semantics. We show how
to use the intention of functions for their clustering. In a last step, we
describe some experiments showing the relevance of the clustering and
some of some possible applications for malware identification.

1 Introduction

In this contribution, we are concerned with the retro-engineering of malware. In
particular, we think to CERTs (Computer Emergency Response Team) where
people must determine the content of some attacks; usually, they are asked to
give answers quite quickly. Saving time is not just an option. This task is awfully
complicate, and demands some high skills and high education. Indeed, the major
part of questions are not computable, and thus only talented people may handle
such issues. Since the number of attacks is arising [Sym16], we think there is a
strong need to give some help, that is to provide automatic tools that output
some insights on what’s happening.

To get the outline of the behavior of a program, the
import address table (iat) provides a list of external
functions that are called. Those include low level sys-
tem calls. Naturally, those functions give good hints on
the job of the program itself. As a justification of the
fact, we recall that the (famous, if not the most) retro-
engineering tool called ida introduces this list on its front
page as shown on the right. No doubt about it, we are
aware that import tables may be hidden by malware or
by packers, in particular in the case of code injection.
But actually that enforces our argument: showing your
import table is telling who you are.

c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 241–255, 2017.
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In this paper, we put the focus on functions and we report some experiment
that we made about classification. We show in a second part how that can be
related to malware classification. But before going further, let us come back to
the context of this research. We have developed at the High Security Lab in
Nancy a detection method called morphological analysis. Let us say few words
about it. For deeper explanations, we refer the reader to [BKM09]. So, given
some program—no matter if it is a malware or not—, we extract its control flow
graph, either by a static analysis or a dynamic one. In the latter case, we use an
instruction tracer that is made as stealthy as possible, in particular against anti-
debugging techniques or anti-virtualization procedures. In the end, we transform
the control flow graph to avoid basic obfuscations and we cut it into small pieces
called sites. Sites are used as code signatures : they are identified up to some
isomorphism. To sum up, the method focuses on algorithms. But algorithms may
not reveal the intention behind them. Our slogan here is that functions can do
it. There is nothing new at that point: functional models (recall SADT!) are
central to software engineering (e.g. Ross [Ros77]).

Let us push a little bit further this idea of extracting the intention of a
function. For the internal functions of a malware (and possibly for sane pro-
grams), there are no chances to extract it easily. Indeed, malware are awfully
obfuscated, and thus two consequences: first, at the binary level, the code is
completely blurred, typically, call 0x12345678 is replaced by push eax, jmp
0x12345678 where eax points to the current instruction. The replacement can be
opposite, that is jmp 0x12345678 can be replaced by call 0x12345678, ...,
pop eax with pop eax pointing at position 0x12345678. Second point, malware
writers use tricks to hide functions. For instance, function call conventions are
not followed: the signature 55 8B EC corresponding to the standard sequence
push ebp, mov ebp, esp is no longer operative. Thus, it becomes even difficult
to identify correctly functions within a malware code. Finally, (and obviously,
but for the sake of the argument, we must mention it!), the malware does not
come with any documentation nor debugging hints. Thus, extracting the inten-
tion of internal functions of malware is difficult, and precisely this is the task of
retro-analysts.

But, for the functions that occur within external calls, the situation is quite
different. External calls refer to dynamically loaded libraries which—if cor-
rectly designed—provide well identified functionalities via functions. Moreover,
libraries are—should be—well documented within their API. Furthermore, they
are manually written, and for that reason, are one of the best sources of infor-
mation for our purpose.

The goal of this paper is to show that one can extract meaningful informations
from documentation in a retro-engineering perspective. We used microsoft’s
API documents as a source. We used it because it is correctly1 formatted and
uniform, but the method may be used for other vendors. We also used it since
many malware are written for windows and thus refer to microsoft’s system
library such as kernel32.dll or msvcr100.dll.

1 but not fully!
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There is one objection we want to address. One may argue that external func-
tion calls are usually heavily hidden by malware obfuscations, thus it would be
difficult to identify those functions via (for instance) import address tables. Sec-
ond point, malware authors include statically some functions within the malware
code so that they are not imported. This contribution is not about function iden-
tification. For that, we have shown that morphological analysis is able to do it,
even in a hostile code. For instance, we established the correspondence between
functions of two famous malware regin and qwerty in [BMS15]. We recall that
regin has been considered as one of the most sophisticated malware, see the
nice report by Kaczmarek [Kac15]. In conclusion, we think that the problem is
solved by combining morphological analysis and function analysis.

Our contribution has three facets. First, we associate to each function its
intention. To do that, we use the idea of Vector Space Semantics (VSS) coming
from Natural Language Processing. Each function will be associated to some vec-
tor representing its semantics. We built an IDA-plugin that shows this mapping.
Second, we propose some clustering algorithms. Indeed, depending on the depth
of the analysis, the retro-analyst may not need2 to distinguish functions such
as calloc or malloc, both dealing with memory allocation. Thus the idea of
clusters. We propose different versions of clustering procedures and we compare
them. In the perspective of VSS, clusters correspond actually to the concepts
that generalize the ones of their underlying inhabitants. Third, we show how to
relate the function clustering to a malware detection procedure. The idea that
two programs are close when they use same function is quite common, especially
for the android OS (e.g. [PZ13]). We show that clusters are even better. Doing
so, we justify the relevance of clusters, and we show them in action.

But, before we enter into technical details, we would like to make a reference
to the paper by Teh and Stewart in [TS12] who mention that there are good
malware detectors based on multi-layer perceptron whose inputs are features
extracted from executable file. However, these tools work too much as black
boxes and they do not bring human readable evidences. They conclude that these
tools are not that good for retro-analysis. What we do is precisely to establish
a human readable correspondence between programs and functionalities.

In Sect. 2, we present how we built an initial database. It contains informa-
tions coming from microsoft’s documentation. On these, we had to run some
specific tools that extract the “meaning” of the function, that is a weighted
vector of words. These are based on Natural Language Processing libraries. In
Sect. 3, we present our clustering algorithm with three variations on function
distances. We compare the three classification procedures with standard classi-
fication measures and we discuss pro and cons of each measure. In Sect. 4, we
relate the clustering to some external evaluation. We use microsoft’s classifi-
cation and some customized tests.

At the time of the conference, we will publish all python scripts that we
used all along, and our rough databases are available on https://github.com/
JulienOuryNogues/DataBase-Function-Microsoft/.

2 or must not.

https://github.com/JulienOuryNogues/DataBase-Function-Microsoft/
https://github.com/JulienOuryNogues/DataBase-Function-Microsoft/
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2 The Semantics of Functions

We describe the procedure that maps functions within libraries to their intention.
This is done in three steps: first, we associate libraries to functions, then, we
associate functions to documentation and finally, we extract the intention of the
function, that is, its semantics.

2.1 Extracting Function Names from Libraries

As stated in the introduction, we worked with dll coming from microsoft
libraries. Those are the most used, and certainly the most interesting since they
are directly used for communications with the Operating System.

Our database is built from the 2481 dll which are coming with the installa-
tion disc of our Windows distribution (Vista 64bits). A rapid comparison with
other windows distribution shows that results/conclusions should not be very
different. For each dll, using the python library Pefile, we get a table partly
shown in Fig. 1:

Fig. 1. The first 6 functions within accessibilitycpl.dll

This table contains the list of functions exported by the dll. Each function is
given by its Ordinal Number, its Relative Virtual Address and its name as should
be referred by calling executables. Actually, according to microsoft’s policy,
names are optional, only Ordinals are mandatory. We keep only those lines with
a Name. Second, some Names follow a mangling format corresponding to Visual
C/C++. Typically, we read :

??0IndexOutOfRangeException@UnBCL@@QEAA@PEAVString@1@PEAVException@1@@Z

In which case, our heuristics is to take the first alphanumeric string occuring
within the sentence (with a python filter of the shape r’\d*(\w*)’). In the
end, we got 50306 distinct names out of the dlls (34964 directly, 15342 via
‘demangling’).

2.2 Extracting Function Documentation

The documentation of functions has been extracted from microsoft website.
We used two different ways to do it. First, we took the root of the windows
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api index documentation that is stored at https://msdn.microsoft.com/fr-fr/
library/windows/desktop/ff818516(v=vs.85).aspx. We visited the site from this
rooting node, and we filtered pages corresponding to function documentation.
Doing so, we got a source page for 6155 functions.

Compared to the 50306 functions mentioned above, that is clearly not enough.
To complete it, we did some requests of the shape https://social.msdn.microsoft.
com/search/en-US/windows?query= on microsoft search tool. On the 44151
remaining functions, we performed the requests. Sometimes, we got more than
one answer, typically for functions with close names (printf vs wprintf), in
which case, we took them all! In the end, we got 24149 inputs on the total. We
denote by F the set of functions with documentation.

Now, let us come to the typical content of a page that is presented in Fig. 2.

Fig. 2. DefRawInputProc’s description

Thus, we get for each function,

– its name,
– its short description,
– its profile
– typed arguments and their description
– return value and its type.

https://msdn.microsoft.com/fr-fr/library/windows/desktop/ff818516(v=vs.85).aspx
https://msdn.microsoft.com/fr-fr/library/windows/desktop/ff818516(v=vs.85).aspx
https://social.msdn.microsoft.com/search/en-US/windows?query=
https://social.msdn.microsoft.com/search/en-US/windows?query=
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The windows api tree describes 211 “categories/key words” among which
155 correspond to functions (versus structures). We appended within our data-
base this category for those functions that could be properly situated within the
tree.

We crossed these informations with those extracted from the pefile as seen
in previous section, and, all in all, we have a table whose entries contain: a name,
a relative virtual address, a dll name, a windows distribution name, a short
description, a profile, arguments and return value description and a windows
category. The database is accessible for research purposes on our website https://
github.com/JulienOuryNogues/DataBase-Function-Microsoft.

2.3 Data Preparation, Some Natural Language Tools

Once we have a complete database, we want to perform some function classifica-
tion. Indeed, for instance, the reverse-engineer may work at some abstract level
for which there are no good reasons to discriminate wprintf from printf, both
dealing with printing. The clustering is supposed to cope that intuition.

Function descriptions are written in English/American English, and thus
in a natural language. Our classification purpose algorithm relies on what is
called vector space models of meaning [Sch98] (or more abstractly distributional
semantics) that has shown to be very powerful those last years by Copestake
and Herbelot [CH16] or by Abramsky and Sadrzadeh [AS14]. The rise of dis-
tributional semantics is due to the fact that the method requires large amount
of textual data for its learning process, and these amounts are now available.
The key idea behind the model can be summed up as follows: two words are
close if they occur in same contexts. Dogs and cats eat, are stroked and sleep.
In some way, the concept of a pet arises from this proximity. In that paradigm,
the meaning of a word (and contexts, and clusters) is represented by a vector in
a high dimensional vector space whose basis is built on words themselves.

The main problem with the approach is that some words blurs the co-
occurence relation that is underlying. Typically, stop words which play a gram-
matical role without bringing some particular concepts: “with”, “to”, “the”, and
so on. We have a first stage that removes them. To do that we use the nltk
python library (Natural Language Tool Kit [Bir15]). In a first step, we apply a
part-of-speech tagger that associate to each word its category (e.g. noun, verb,
adjective, determinant, etc.). Then, we keep only verbs, nouns and adjective.

For instance, printf’s description is that it submits a custom shader message
to the information queue. Applying the Part-Of-Speech Tagging, we get:

[(’submits’,’NNS’), (’a’,’DT’), (’custom’,’NN’), (’shader’,’NN’),
(’message’,’NN’), (’to’,’TO’), (’the’,’DT’), (’information’,’NN’),
(’queue’,’NN’), (’.’,’.’)]

And then,

[(’submit’,’NNS’), (’custom’,’NN’), (’shader’,’NN’),
(’message’,’NN’), (’information’,’NN’), (’queue’,’NN’)]

https://github.com/JulienOuryNogues/DataBase-Function-Microsoft
https://github.com/JulienOuryNogues/DataBase-Function-Microsoft
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Second step of our process deals with lemmatization. It is well known that
some words have many inflectional forms: verbs (am, are, is, be) and nouns
(singular or plural). For our purpose, there is no reasons to distinguish “submits”
from “submit”. Lemmatization aims to associate to each word in a sentence its
lemma, that is the “core” word. The task is not that easy and we used the tool
provided by nltk. Applying lemmatization on our example, we get for the verb
“submits”: (’submits’,’NNS’,’submit’).

In a third step, we remove some specific words that are so common that they
bring more noise to the discrimination procedure than they bring informations.
The complete list is ["none", "be", "specify", "function", "DLL"].

We end the process by forgetting all decorations. The resulting vector on our
current example is:

{’submits’:1, ’custom’:1, ’shader’:1, ’message’:1, ’information’:1,

’queue’:1}

The database is available on the website https://github.com/JulienOuryNogues/
DataBase-Function-Microsoft.

3 Function Classification

In this section, we present some clustering methods for functions. The rough idea is to
avoid dubious distinctions, between several forms of printf for instance. In microsoft
documentation, there is already a clustering of functions. Actually, functions are gath-
ered within a tree structure that can be used for our purpose. However, it is not
sufficient, for at least two reasons. First, only a third of functions occur within the tree
(around 6100 over 20000). And second, microsoft’s classification is not used by other
libraries. We prefer to have a direct method.

Generally speaking, we apply a standard classification algorithm, the k-mean to
function descriptions. The main point is then to define a proper distance between
functions. We propose three definitions and we compare them.

Given a word w and a function f ∈ F , we denote by n(w, f) the number of occur-
rences of w within the (formatted as above) description of the function f. Each function
f is transformed into a vector vf as follows:

vf =
∑

w∈W
n(w, f)−→w

where W denotes the set of english words and the family (−→w )w∈W defines the (orthog-
onal) basis of our vector space.

Definition 1 (μ-measure). Given two functions f and g, we define μ(f, g) =
|vf − vg|
|vf| + |vg| where |v| denotes the euclidian norm of the vector v.

The second measure we use is known as Levensthein distance. Given two words u,
v on some alphabet Σ, the Levensthein measure is the number of characters that must
be removed or added to the first word to reach the second one. It is denoted by δ(u, v)
in the sequel. For some function f, Namef denotes its name (as to be opposed to its
description).

https://github.com/JulienOuryNogues/DataBase-Function-Microsoft
https://github.com/JulienOuryNogues/DataBase-Function-Microsoft
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Definition 2 (δ-measure). Given two functions f and g, we define δ(f, g) =
δ(Namef, Nameg).

There is a slight abuse in notation, δ being used twice, but the context should be
clear.

Finally, we introduce a variant of the μ-measure that is obtained by weighting
words according to their relative frequency. This is known as TF-IDF (Term Frequency-
Inverse Document Frequency). The intention of this measure is to decrease the weight of
words that occur in a majority of documents. In the present case, each function descrip-

tion is considered to be a document and thus, idf(w) = log

(
|F|

|{f ∈ F | n(w, f) �= 0}|

)
.

The weight of a word w ∈ W in a function f ∈ F is then defined as ω(w, f) =
n(w, f) × idf(w). From that, we define the vector v′

f =
∑

w∈W ω(w, f)−→w . And, corre-
spondingly, we propose:

Definition 3 (μ′-measure). Given two functions f and g, we define μ′(f, g) =
|v′

f − v′
g|

|v′
f| + |v′

g|.

3.1 Clustering

In this section, we compare the influence of the three different measures on func-
tion clustering. We denote by d any measure among {μ, δ, μ′}. We write d(f, S) =
min{d(f, g) | g ∈ S} given f ∈ F and S ⊆ F .

We use the standard k-mean algorithm. Nevertheless, we want to make three obser-
vations. So, the algorithm is as follow:

def cluster(F, k): #F is the set of functions, k is the parameter

P = choose(F, k) # P chooses a list of k initial sets

end = False

while(not end): # (loop 1)

nP = [set() for i in range(k)] # nP is the next P, k empty sets

for f in F: # (loop 2)

nP.add(argmin ([ d(f, P[i]) for i in range(k)]))

end = nP == P

P = nP

First, we begin with a choice of the first k representative based on a density argument.
This choice is important since it will modify the number of times we perform loop 1.

More technically, we compute d(f) =
1

|F|
∑

g∈F d(f, g) for each function f, we order that

list in decreasing order. Then, we choose the (an approximation of the) largest value
m such that we can find k representative Fk = {f1, . . . , fk} such that d(f, Fk) ≤ m for
any function f and for all 1 ≤ i ≤ k, d(fi) = max{d(f) | d(f, fi) ≤ m}.

In the algorithm, we have to compute the distance d(f, P[i]) from a function f to

some cluster P, that is d(f) =

∑
g∈P d(f, g)

|P| . For μ and μ′, we compute first the mean

vector vP =
∑

f∈P vf/|P| so that loop (2) costs k × n with n = |F|. For Levenshtein
measure, there is no mean words, so that you have to compute each sum separately.
The cost is then (of the order) n2.
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3.2 Levenshtein Versus Vectors

With a first observation and k set to 1600 (to be compared to the 150’s of window),
we observe a similarity between Levenshtein’s clustering and μ-clustering. In Fig. 3, we
present a cluster obtained by μ-measure. Each line gives a function name followed by
its corresponding vector. One observes that their names are close, it corresponds to a
Levenshtein cluster!

Fig. 3. One of the categories, k = 1600

3.3 Experimental Protocol

Let us validate this observation. We use three similarity indices. They show different
aspects of the similarities, see [Qué12] for an in depth discussion. We suppose we are
given two partitions (not necessarily with same value k), (Pi)i=1..n and (Qj)j=1..m of
the set F of size N . Set ni,j = |Pi ∩ Qj |, ni,. = |Pi| and n.,j = |Qj |, then, we define:
a =
∑
i,j

(
ni,j
2

)
, b =

∑
i

(
ni,.
2

)−∑
i,j

(
ni,j
2

)
, c =

∑
j

(
n.,j
2

)−∑
i,j

(
ni,j
2

)
and d =

(
N
2

)
+
∑
i,j

(
ni,j
2

)−
∑
j

(
n.,j
2

)−∑
i

(
ni,.
2

)
.

The three similarity measures we use are Rand index: R =
a + d

a + b + c + d
, Jaccard’s

index, J =
a

a + b + c
and Dice’s index D =

2a

2a + b + c
. Rand’s index evaluates in

which way two partitions agree for pairwise elements (whether they are similar or
not), Jaccard’s evaluates only similarities and Dice’s strengthen similarities. These are
the symmetric forms. If the partition (Pi)i=1..n is finer than (Qj)j=1..m, that is if

n < m, one uses the non symmetric versions: R̃ =
a + d + c

a + b + c + d
, J̃ =

a + c

a + b + c
and

D̃ =
2a + c

2a + b + c
which avoids the fact that a partition in Qi that would be perfectly

split within (Pj)j , that is Qi = ∪�=i1,...,ikP�, is wrongly evaluated.

4 External Validation

Up to now, we worked without any references to other forms of evaluation. We do it
in three different ways. The first objective is to evaluate the relevance of the clustering
process as defined above. The second reason is that we want to justify the value of the
parameter k.
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4.1 Windows Categorization

Windows provides its own categories. We want to compare these with our own tool.
We sum up our results on the following plot:

Fig. 4. Window vs μ

There are several observation that we want to make. First, Dice and Jaccard indices
are closed. Thus, there are are no distance distortion (Fig. 4).

The figure shows that the clustering reaches a maximum for the symmetric Jaccard
distance when the two partitions have same parameter k and the value is not very
high—close to 10%–, but significant (compared to some random clusters). Differences
between window’s classification and our is due to the fact that some functions use
specific vocabulary. For instance, GetProcAddress and LoadLibrary which are within
the category “DLL” have no common words in their vectors:

Third, observe that we get a good refinement of window’s classification. We reach
a value of 96.6% for k = 800 for the asymmetric Jaccard distance. Finally, on our moti-
vating example, we get the cluster (for k = 1600): fwprintf s, wprintf s, wscanf s,

sscanf s, fscanf s, fwscanf s, swscanf s, scanf s, fprintf s, printf s,

fread s, scanf, wscanf, wprintf, printf.

4.2 Do Similar Programs Share Similar Functions?

We built a database from 25 programs “grouped” in 5 categories. The first four are
video players, browsers, archivers and text editors, the last one is made of microsoft
office’s main applications. For each category, we chose the most common softwares.

Given a function clustering, F = ∪k
i=1Fi, we define the homomorphism φ : RF → R

k

by φ(f) = ej where {e1, . . . , ek} is an orthogonal basis3 of Rk and j is the (unique) index

3 Being unique up to isomorphism, the definition does not depend on this choice.
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such that f ∈ Fj . From the homomorphism, one defines the cluster distance between
two vectors v and v′ in R

F to be Δ(v,v′) = |φ(v) − φ(v′)|. In other words, applied
to functions, this is the euclidian distance up to the clustering. Notice that given the
definition of the homomorphism, given two functions f and g, we have the inequality:
Δ(vf,vg) ≤ |vf − vg|. With clusters, the world is smaller–in terms of dimensions– and
more dense–functions being close.

From that definition, one can measure the distance between two programs:

Definition 4. Given two programs p1 and p2 importing respectively functions
f1, . . . , fk and g1, . . . , gm, we define vp1 = vf1 + · · ·+vfk and vp2 = vg1 + · · ·+vgm . Then,
the cluster distance between programs is Δ(p1, p2) = Δ(vp1 ,vp2). And the normalized

distance is Δ̃(p1, p2) =
Δ(p1, p2)

Δ(vp1 ,0) + Δ(vp2 ,0)
where 0 is the null vector within R

k.

Fig. 5. Program distance. Clustering with k = 400

In the table above, we computed the normalized distance between the applications
of our database. Two observations. First, if one takes the closest programs (outside
itself!), the result is not surprising: firefox is close to safari, gvim to notepad and
safari to quicktime. These relationships differ, either applications have same purpose,
or they share development.

In a second step, we use the correlation matrix above to perform some clustering
for the distances in Fig. 5. For that sake, we used the k-mean algorithm with k = 6,
that is 5 categories plus one for trash. We get the following result:

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

izarc2go winrar chrome firefox iexplore notepad

peazip winzip32 opera safari winword mspaint

notepad++ 7zFM iTunes quicktime powerpnt wordpad

gvim editpad7 realplay vlc

pspad excel wmplayer

The table shows that proximity is explained either by close functionalities, or by
a close (past or current) development process. However, we can conclude that a such
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a classification remains quite imprecise. For retro-engineering, this is not really prob-
lematic since the analyst would cope errors, but we could not use it for detection for
which false positive ratio must be low.

Finally, to show the role of function clustering, we worked directly with the direct
distance between programs Δ′(p1, p2) = |vp1 − vp2 |. The program clustering is not as
good as above.

Indeed, if we do not modify the convergence parameter (which corresponds to
some cluster distance), the algorithm converges to only one category. So, we have to
put a looser parameter (from 0.45 to 0.6) to get again some “reasonable” clusters. We
get the following table. One observes a big category still emerges. It is actually the
trash category (those who can’t be compared to any others). Note also that the other
categories are not as relevant as above.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

winrar izarc2go firefox quicktime mspaint iexplore

winzip32 peazip safari vlc wordpad wmplayer

7zFM gvim realplay winword

notepad++ editpad7 powerpnt

notepad pspad

chrome excel

opera

iTunes

4.3 Packer Identification

One may refine the preceding experiment as follows. The distance we define on pro-
grams does not take into account the order in which functions are used, or if they are
used once or several times. The run distance defined below takes this into considera-
tion. Characterizing programs using function sequence as signatures is known in the
literature as behavioral detection (see for instance [JDF08]). Usually, results are not
very good due to the high ambiguity (with respect to function sequence) of program
behaviors (e.g. [BGM10]). But, what we do here is much more modest. We just want
to identify some very particular behaviors, those coming from a small set of packers.

Given a program p calling some functions f1, . . . , fk, let us run p on some inputs,
one gets a sequence w ∈ {f1, . . . , fk}∗ of the functions called along the computation.
We define R to be the set of all inputs, and for r ∈ R, we define wp,r to be the sequence
of the called functions of the program p on inputs r. For the sake of the argument, we
will restrict runs to be finite, so are wp,r for all r ∈ R.

Let us suppose given a clustering F = ∪k
i=1Fi. for all f ∈ F , γ(f) denotes its cluster,

that is a number within {1, . . . , k}. The definition extends to sequences: γ(f1, . . . , fm) =
γ(f1) · · · γ(fm) ∈ {1, . . . , k}m.

Definition 5. Given two programs p1 and p2, we define their run distance to be
δ(p1, p2) = E(r 	→ δ(γ(wp1,r), γ(wp2,r))), that is the expectation of the distances of
the runs, the words in {1, . . . , k}∗ being compared with respect to Levenshtein distance.
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There are infinitely many runs, so that it is hard to get the distance between two
programs, actually undecidable. However, for packer identification, one may observe
that packers are almost insensitive to inputs outside some self-protection mechanisms.
This is for instance what is done by Calvet in [Cal10]. Thus, we will approximate run
distance by the distance on one run (Fig. 6).

Fig. 6. Program distance

If one uses the rough run distance, one gets a correlation matrix that reveal the
similarity between the original code and its packed form. Thus, to identify packers,
one use the C-prefix run distance for some C ∈ N, that is δp(p1, p2) = mini>C(E(r 	→
δ(γ(wp1,r)[0..i], γ(wp2,r)[0..i]))). We take C = 10. The result is:

Fig. 7. Program distance

Then, packers are correctly identified. Notice that for telock, we used different
options (98 or 982) and for the rough distance, the distance were high. Not anymore
with the prefix distance (Fig. 7).

4.4 Combining Morphological Analysis and Function Clustering

Let us come back to our broad objective. In our research group, we are developing
morphological analysis (ma) that is used for malware identification. We recall that
ma belongs to the branch of detecting method based on abstract control flow graph
identification, see [BMM06] for an other example. In other words, it puts into light
underlying algorithms, not functions. So, our question was the following: is there a
relationship between functions and morphological analysis? Or to put it in a more
precise setting: are there some specific algorithms before calling functions?

So, we came back to our application database and we applied morphological analy-
sis. The learning process went well. To sum up, we had at least 73 specific sites (some
remarkable graphs within applications). The main difference between applications is
whether they are stand alone or if they are based on dynamic libraries. In the first
case, we have lots of sites, in the latter one, much less.

Then, as we did above, we computed a correlation matrix that is displayed below.
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IZArc2Go winrar peazip winzip32 7zfm notepad++ notepad gvim editpad pspad iexplore firefox chrome opera Safari quicktime iTunes vlc realplay wmplayer mspaint winword powerpnt excel wordpad
IZArc2Go 0.00 9.89 9.57 9.04 10.96 4.48 2.45 9.94 6.74 9.86
winrar 9.89 0.00 5.31 4.92 4.79 9.19 5.43 7.25 1.77 9.19
peazip 0.00

winzip32 9.57 5.31 0.00 6.16 5.65 9.50 3.74 1.39 3.90 5.61 9.30 10.00
7zFM 0.00

notepad++ 9.04 4.92 6.16 0.00 2.45 9.26 3.91 5.42 5.35 9.55
notepad 0.00 3.14 1.05
gvim 10.96 4.79 5.65 2.45 0.00 10.60 3.79 4.73 5.35 5.61 10.70

editpad 4.48 0.00 6.06 7.24
pspad 2.45 9.19 9.50 9.26 10.60 6.06 0.00 9.25 6.04 10.20
iexplore 3.14 0.00 2.33
firefox 0.00 2.34 2.63 3.23
chrome 9.94 5.43 3.74 3.91 3.79 9.25 0.00 3.26 3.05 9.30 9.25
opera 7.25 1.39 5.42 4.73 3.26 0.00 4.03
Safari 2.34 0.00 1.89 2.34

quicktime 2.63 1.89 0.00 2.18
iTunes 6.74 1.77 3.90 5.35 5.35 6.04 3.05 4.03 0.00 6.04
vlc 0.00

realplay 3.23 2.34 2.18 0.00
wmplayer 5.61 5.61 0.00
mspaint 9.30 1.05 2.33 9.30 0.00 3.28
winword 0.00 0.97 1.05
powerpnt 0.97 0.00 0.97

excel 9.86 9.19 10.00 9.55 10.70 7.24 10.20 9.25 6.04 1.05 0.97 0.00
wordpad 3.28 0.00

Some clusters occur. They are:

[{’winword’, ’vlc’, ’powerpnt’, ’7zFM’, ’excel’, ’peazip’}, {’notepad’, ’wordpad’},

{’realplay’, ’Safari’, ’firefox’, ’Quicktime’}, {’iexplore’, ’mspaint’},

{’iTunes’, ’chrome’, ’IZArc2Go’, ’pspad’, ’winzip32’, ’wmplayer’, ’editpad’,

’gvim’, ’opera’, ’notepad++’, ’winrar’}]

that brings back some of the clusters that we have seen above. For instance, we see the
link between firefox, safari and quicktime. No surprises, there are differences since
we are using a very different mechanism. But, a manual verification on common sites
showed us that algorithmic relationships correspond to function relationship (around
one third of the sites). In other words, the function analysis could be used to enrich
our own methodology.

5 Conclusion

We propose a mapping from functions to their intentions via a vector of words within
a natural language. It is based presently on the function documentation provided by
microsoft, but it could be extended to any vendors.

In a second step, we discuss the question of function clustering, the idea being to
avoid dubious distinction. The clustering may be performed at different levels, depend-
ing on the expected precision.

In a third step, we relate the function clustering to other issues. We compare it
with respect to microsoft’s own clustering. Then, we work on program identification
and packer identification. In a last step we compare it to our morphological analysis.

Finally, we provide on our web-page a plugins for ida that maps functions to their
vectors, or alternatively to the url of each function. The plugins is available on our git
repository.

As a perspective, we would like to explore a little bit further the natural language
aspect of our approach. For instance, we did not relate words one to an other with
respect to their own semantics. We think that this could strengthen the semantics
of functions even more. An other idea is to look for informations in a much broader
way: there are tons of tutorials, technical explanations and code samples on the web.
Machine Learning techniques could be applied to these data (that could be inspired by
the work of Lakhotia et al. [LL15] or Tawbi et al. [SSM+16]).

Acknowledgment. The authors would like to thank Jean-Yves Marion and Mizuhito
Ogawa for early discussions and Fabrice Sabatier and Alexis Lartigue for discussions
and some experiments.
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de La Rochelle, December 2012

[Ros77] Ross, D.T.: Structured analysis (SA): a language for communicating ideas.
IEEE Trans. Softw. Eng. 3(1), 16–34 (1977)

[Sch98] Schuetze, H.: Automatic word sense discrimination. Comput. Linguist.
1(24), 97–123 (1998)

[SSM+16] Sheikhalishahi, M., Saracino, A., Mejri, M., Tawbi, N., Martinelli, F.: Fast
and effective clustering of spam emails based on structural similarity. In:
Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) Foundations and Prac-
tice of Security. LNCS, vol. 9482, pp. 195–211. Springer, Heidelberg (2016)

[Sym16] Symantec. 2016 Internet Security Threat Report (2016)
[TS12] Teh, A., Stewart, A.: Human-readable real-time classifications of malicious

executables. In: 10th Australian Information Security Management Confer-
ence (2012)

http://dx.doi.org/10.1007/978-3-642-54789-8_1
http://dx.doi.org/10.1007/978-3-642-54789-8_1
http://dx.doi.org/10.1007/978-3-642-16612-9_14
http://dx.doi.org/10.1007/978-3-642-16612-9_14
http://dx.doi.org/10.1007/978-3-319-08624-8_1
http://dx.doi.org/10.1007/978-3-319-08624-8_1


On the Feasibility of Malware
Authorship Attribution

Saed Alrabaee(B), Paria Shirani, Mourad Debbabi, and Lingyu Wang

Concordia University, Montreal, Canada
s alraba@encs.concordia.ca

Abstract. There are many occasions in which the security community
is interested to discover the authorship of malware binaries, either for
digital forensics analysis of malware corpora or for thwarting live threats
of malware invasion. Such a discovery of authorship might be possible
due to stylistic features inherent to software codes written by human
programmers. Existing studies of authorship attribution of general pur-
pose software mainly focus on source code, which is typically based on
the style of programs and environment. However, those features critically
depend on the availability of the program source code, which is usually
not the case when dealing with malware binaries. Such program binaries
often do not retain many semantic or stylistic features due to the compila-
tion process. Therefore, authorship attribution in the domain of malware
binaries based on features and styles that will survive the compilation
process is challenging. This paper provides the state of the art in this
literature. Further, we analyze the features involved in those techniques.
By using a case study, we identify features that can survive the compi-
lation process. Finally, we analyze existing works on binary authorship
attribution and study their applicability to real malware binaries.

1 Introduction

Authorship attribution comprises an important aspect of many forensic investi-
gations, which is equally true in the computer world. When a malware attacks
computer systems and leaves behind a malware corpus, an important question to
ask is ‘Who wrote this malware? ’. By narrowing down the authorship of a mal-
ware, important insights may be gained to indicate the origin of the malware,
to correlate the malware to previously known threats, or to assist in develop-
ing techniques for thwarting future similar malware. Considering the fact that
humans are creatures of habit and habits tend to persist, therefore, various pat-
terns may be embedded into malware when their creators follow their habitual
styles of coding.

Although significant efforts have been made to develop automated approaches
for source code [18,34,41], such techniques typically rely on features that will
likely be lost in the strings of bytes representing binary code after the compi-
lation process (e.g., variable and function renaming, comments, and code orga-
nization, or the development environment, such as programming languages and
c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 256–272, 2017.
DOI: 10.1007/978-3-319-51966-1 17
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text editors). Identifying the author of a malware binary might be possible but
challenging. Such identification must be based on features of the malware binary
that are considered to be author specific, which means those features must show
only small variations in the writing of different programs by the same author
and large such variations over the writing by different authors [41]. That is,
authorship identification requires stylistic features that depend on authorship of
the code, instead of any other properties, such as functionality. This fact implies
that most existing malware analysis techniques will not be directly applicable to
authorship attribution. On the other hand, several papers show that the stylistic
features are abundant in binaries [13,19,38], and it may be practically feasible
to identify the authorship with acceptable accuracy. Another challenge unique
to malware authorship attribution is that, while software code may take many
forms, including sources files, object files, binary files, and shell code, the malign
nature of a malware usually dictates the focus on binary code due to the lack of
source code.

In this paper, we investigate the state of the art on binary code authorship
techniques and analyze them. More specifically, we first present the survey of
existing techniques that are related to the analysis of authorship attribution.
This paper covers related work on different representations of malware, includ-
ing both source files and binaries. Second, we also look at a broader range of
work on general purpose malware analysis in order to study which features are
involved. Such a comprehensive study of features will allow us to consider a
rich collection of features before selecting those which potentially survive the
compilation process and are present in the binary code. Third, we analyze and
compare binary authorship attribution systems [13,19,38]. Besides, we study
their applicability to real malware binaries. Based on our analysis, we provide
many important steps that should be considered by reverse engineers, security
analysts, and researchers when they deal with malware authorship attribution.

2 Authorship Attribution

In this section, we review the state of the art in the broad domain of author-
ship attribution, including some techniques proposed for malware analysis. An
important goal of this study is to collect a rich list of features that are potentially
relevant to malware authorship attribution.

2.1 Source Code Authorship Attribution

Investigating source code authorship attribution techniques can help us under-
stand the features that are likely preserved during the compilation process.
Several studies have shown that certain programmers or types of program-
mers usually hold some features of programming. Examples are layout (spac-
ing, indentation and boarding characters, etc.), style (variable naming, choice of
statements, comments, etc.) and environment (computer platform, programming
language, compiler, text editor, etc.). The authorship identification of source
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codes has been gaining momentum since the initial empirical work of Krsul [34].
Krsul et al. described different important applications of source code authorship
techniques and found that style-related features could be extracted from mali-
cious code as well. Burrows [16] and Frantzeskou et al. [26] use n-grams with
ranking methods. Burrows and Frantzeskou have both proposed information
retrieval approaches with n-grams for source code authorship attribution.

Kothari et al. [33] first collected sample source code of known authors and
created profiles by using metrics extraction and filtering tools. In addition, they
used style-based and character sequences metrics in classifying the particular
developer. Chen et al. [22] proposed a semantic approach for identifying author-
ship by comparing program data flows. More specifically, they computed the
program dependencies, program similarities, and query syntactic structure and
data flow of the program. Burrows et al. [17] introduced an approach named
Source Code Author Profile (SCAP) using byte level n-gram technique. The
author claimed that the approach is language independent and n-gram pro-
files would represent a better way than traditional methods in order to find
the unique behavioral characteristics of a specific source code author. Jang
et al. [28] performed experiments to find a set of metrics that can be used to clas-
sify the source code author. They worked on extracting the programming layout,
style, structure, and fuzzy logic metrics to perform the authorship analysis. Yang
et al. [43] performed experiments to support the theory that a set of metrics can
be utilized to classify the programmer correctly within the closed environment
and for a specific set of programmers. With the help of programming metrics,
they suggested developing a signature of each programmer within a closed envi-
ronment. They used two statistical methods, cluster and discriminant analysis.
They did not expect that metrics gathered for a programmer would remain an
accurate tag for a long time. It is obvious that a one-time metrics gathering
is not enough, as this should be a continuous task. The practice of authorship
analysis includes metrics extraction, data analysis and classification.

A separate thread of research focuses on plagiarism detection, which is car-
ried out by identifying the similarities between different programs. For example,
there is a widely-used tool called Moss that originated from Stanford University
for detecting software plagiarism [12]. More recently, Caliskan-Islam et al. [18]
investigated methods to de-anonymize source code authors of C++ using coding
style. They modeled source code authorship attribution as a machine learning
problem using natural language processing techniques to extract the necessary
features. The source code is represented as an abstract syntax tree, and the
properties are driven from this tree.

2.2 Binary Code Authorship Attribution

In contrast to source code, binary code has drawn significantly less attention
with respect to authorship attribution. This is mainly due to the fact that many
salient features that may identify an author’s style are lost during the com-
pilation process. In [13,19,38], the authors show that certain stylistic features
can indeed survive the compilation process and remain intact in binary code,
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which leads to the feasibility of authorship attribution for binary code. The
methodology developed by Rosenblum et al. [38] is the first attempt to auto-
matically identify authors of software binaries. The main concept employed by
this method is to extract syntax-based and semantics-based features using pre-
defined templates, such as idioms (sequences of three consecutive instructions),
n-grams, and graphlets. Machine learning techniques are then applied to rank
these features based on their relative correlations with authorship. A subse-
quent approach to automatically identify the authorship of software binaries is
proposed by Alrabaee et al. [13]. The main concept employed by this method
is to extract a sequence of instructions with specific semantics and to construct
a graph based on register manipulation, where a machine learning algorithm
is applied afterwards. A more recent approach to automatically identify the
authorship of software binaries is proposed by Caliskan et al. [19]. They extract
syntactical features present in source code from decompiled executable binary.
Though these approaches represent a great effort on authorship attribution, it
should be noted that they were not applied to real malware. Further, some limita-
tions could be observed including weak accuracy in the case of multiple authors,
being potentially thwarted by light obfuscation, and their inability to decouple
features related to functionality from those which are related to authors’ styles.

3 Study of Features

In this section, we present a more elaborated study of features collected during
the literature review.

3.1 Features of Source Files

Program source code provides a far richer basis for writer-specific programming
features. Our goal is to determine which features may survive the compilation
process and be helpful for authorship identification of binary code.

Linguistic Features: Programming languages allow developers to express con-
structs and ideas in many ways. Differences in the way developers express their
ideas can be captured in their programming styles, which in turn can be used for
author identification [40]. The linguistic style is used to analyze the differences
in the literary techniques of authors. Researchers have identified over 1,000 char-
acteristics, or style markers, such as comments, to analyze literary works [20].
Moreover, it has been used to identify the author by capturing, examining, and
comparing style markers [27].

Formatting: The source code formatting shows a very personal style. Format-
ting is also considered as a good way for programmers to make it easier when
reading what was written. These factors indicate that the formatting style of
code should yield writer-specific features [34]: Placement of statement delimiters,
Multiple statements per line, Format of type declarations, Format of function
arguments, and Length of comment lines.
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Bugs and Vulnerabilities: A written program might have errors or bugs such
as buffer overflow, or a pointer to an undefined memory address. These kinds of
issues could be an indicator of the author.

Execution Path: The execution path may indicate the author’s preference in
how resolving a particular task through the selection of algorithms, as well as
certain data structures, or using specific keywords such as while or for.

Abstract Syntax Tree (AST): AST is an intermediate representations pro-
duced by code parsers of compilers, and thus forms the basis for the generation of
many other code representations. Such tree forms how statements and expres-
sions are nested to produce programs. More specifically, it encompasses inner
nodes representing operators (e.g., additions or assignments) and leaf nodes cor-
respond to operands (e.g., constants or identifiers).

Control Flow Graph (CFG): It describes the order in which code statements
are executed as well as conditions that need to be met for a particular path
of execution to be taken. Statements and predicates are represented by nodes,
which are connected by directed edges to indicate the transfer of control. For
each edge, there is a label of true, false or unconditional control.

Program Dependence Graph (PDG): It is introduced by Ferrante et al. [24],
which has been originally developed to perform program slicing [42]. This graph
determines all statements and predicates of a program that affect the value of a
variable at a specified statement.

3.2 Features of Binary Files

Compiler and System Information: A unique sequence of instructions might
be an indicator of the compilers. The code may contain different system calls
found only in certain operating systems. The analysis of binary code may reveal
that it was written in a specific source language such as C++. This can be
determined based on support routines and library calls in the binary code.

System Call: It is considered as programmatic way in which a computer pro-
gram requests a service from the kernel of the operating system it is executed on,
for instance, process scheduling with integral kernel services. Such system calls
capture intrinsic characteristics of the malicious behavior and thus are harder
to evade [21].

Errors: The binary code might have errors or bugs such as buffer overflow, or
a pointer to an undefined memory address. These kinds of bugs could be an
indicator of the author.

Idioms: An idiom is not really a specific feature, but rather a feature template
that captures low-level details of the sequence underlying a program. Idioms
are short sequences of instructions. A grammar for idiom feature follows the
Backus-Naur [32] form.
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Graphlet: A graphlet is an intermediary representation between the assem-
bly instructions and the Control Flow Graph, which represents the details of a
program structure [36], and is represented as a small connected non-isomorphic
induced sub-graph of a large network [23]. Graphlets were first introduced by
Prvzulj et al. [36] for designing two new highly sensitive measures of network
locality, structural similarities: the relative graphlet frequency distance [23], and
the graphlet degree distribution agreement [38].

n-grams: The n-gram feature was first used by an IBM research group [30].
An n-gram is an n-character slice of a longer string. A string is simply split
into substrings of fixed length n. For example, the string ‘MALWARE’ can be
segmented into the following 4-grams: ‘MALW’, ‘ALWA’, ‘LWAR’, and ‘WARE’.

Opcode: An opcode is the portion of an assembly instruction that specifies
the action to be performed, for instance, jmp, lea, and pop. Opcode sequences
have recently been introduced as an alternative to byte n-grams [35]. Some of
the opcodes (e.g. push or mov) have a high frequency of appearance within an
executable file. In [39] is shown that the opcodes by themselves were capable to
statistically explain the variability between malware and legitimate software.

Strings and Constants: The type of constants that used in the literature
is integers, which are used in computation, as well as integers used as pointer
offsets. The strings are ANSI single-byte null-terminated strings [31].

Register Flow Graph: This graph captures the flow and dependencies between
the registers that annotated to cmp instruction [13]. Such graph can capture
an important semantic aspects about the behavior of a program, which might
indicate the author’s skills or habits.

4 Implementation

This section shows the setup of our experiments and provides an overview of the
collected data.

4.1 Implementation Environment

The described binary feature extractions are implemented using separate python
scripts for modularity purposes, which altogether form our analytical system. A
subset of the python scripts in our evaluation system is used in tandem with
IDA Pro disassembler [4]. The Neo4j [10] graph database is utilized to perform
complex graph operations such as k -graph (graphlet) extraction. Gephi [9] is
used for all graph analysis functions (e.g., page rank) that are not provided by
Neo4j. The PostgreSQL database is used to store extracted features according to
its efficiency and scalability. For the sake of usability, a graphical user interface
in which binaries can be uploaded and analyzed is implemented.
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4.2 Dataset

The utilized dataset is composed of several files from different sources, as
described below: (i) GitHub [3], where a considerable amount of real open-
source projects are available; (ii) Google Code Jam [2], an international program-
ming competition, where solutions to difficult algorithmic puzzles are available;
and (iii) a set of known malware files representing a mixture of nine different
families [7] provided in Microsoft Malware Classification Challenge. According
to existing works, we only examine code written in C/C++. These programs
are either open-source or publicly available, in which case the identities of the
authors are known. Statistics about the dataset are provided in Table 1.

Table 1. Statistics about the binaries used in the evaluation

Source # of authors # of programs # of functions

GitHub 50 150 40000

Google Code Jam 120 550 1065

Malware 9 36 15000

Total 179 736 46065

4.3 Dataset Compilation

To construct our experimental datasets, we compile the source code with different
compilers and compilation settings to measure the effects of such variations. We
use GNU Compiler Collection’s gcc, Xcode, ICC, as well as Microsoft Visual
Studio (VS) 2010, with different optimization levels.

4.4 Implementation Phases

The original binaries are passed to the pre-processing component, where are
disassembled with IDA Pro disassembler. The second component contains two
processes: (1) ASMTODB, which extracts some specific features (e.g., idioms)
from the assembly files, and (2) BINTODB, which extracts the features directly
from the binary files. The result of this stage is a set of features stored in the data-
base. This phase also implements the feature ranking which is a pre-processing
phase for classification.

4.5 Feature Ranking

Feature ranking is a pre-processing phase for classification. We assume that there
exists a known set of program authors and a set of programs written by each
of them. The task of the feature ranking algorithm is to associate the identity
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of the most likely author of a feature. We extract features from the program
assemblies and binaries as described in the previous section in order to obtain
the feature list associated with a specific author. We apply mutual information
and information gain applied in Rosenblum et al. [38] and Islam et al. [19],
respectively.

4.6 SQL Schema to Store All Features

Storing, ranking and processing the features in the classification phase require
an appropriate SQL schema. We have chosen the PostgreSQL database system,
and designed our SQL tables, the relations between them, together with the
Features-to-DB APIs, so that our software modules minimize their interaction
with the database.

4.7 Authorship Classification

The authorship classification technique assumes that a known set of authors with
their program samples are collected. After extracting and ranking features, as
described in the previous subsection, a classifier is built based on the top-ranked
features, producing a decision function that can assign a label (authorship) to any
given new program based on the given set of known authors. More specifically,
the typical steps for authorship classification are the following:

1. Each program is first represented as an integral-valued feature vector describ-
ing those features that are present in the program.

2. Those features are ordered using the aforementioned ranking algorithm based
on the mutual information between the features and the known author labels.
A given number of top-ranked features are selected, and others filtered out
in order to reduce both the training cost and risk of overfitting the data.

3. A cross-validation is performed on those highly-ranked features. Those fea-
tures would jointly produce a good decision function for the authorship
classifier.

4. The LIBLINEAR support vector machine for the actual classification is
employed for the actual classification.

5 Evaluation

In this section, we present the evaluation results for the existing works on binary
authorship attribution. Subsequently, we evaluate the identification and the scal-
ability of existing works. The impact of evading techniques is then studied.
Finally, binary features are applied to real malware binaries and the results
are discussed.
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5.1 Accuracy

The main purpose of this experiment is to demonstrate how to evaluate the
accuracy of author identification in binaries.

Evaluation Settings. The evaluation of existing works is conducted using the
datasets described in Sect. 4. The data is randomly split into ten sets, where
one set is reserved as a testing set, and the remaining sets are used as training
sets to evaluate the system. The process is then repeated 15 times (according to
existing works). Furthermore, since the application domain targeted by binary
authorship attribution works is much more sensitive to false positives than false
negatives, we employ an F-measure as follows:

F 0.5 = 1.25 .
P . R

0.25P + R
(1)

Existing Works Comparison. We evaluate and compare the existing author-
ship attribution methods [13,18,38]. For this purpose the source code and the
used database are needed. The source code of the authorship classification tech-
niques presented by Rosenblum et al. [38] and Caliskan-Islam et al. [18] are
available at [5,8], respectively; however the datasets are not available. For the
system proposed by Alrabaee et al. (OBA2) [13], we have asked the authors to
provide us the source code.

Caliskan-Islam et al. present the largest scale evaluation of binary authorship
attribution in related work, which contains 600 authors with 8 training programs
per author. Rosenblum et al. present a large-scale evaluation of 190 authors
with at least 8 training programs, while Alrabaee et al. present a small scale
evaluation of 5 authors with 10 programs for each. Since the datasets used by
the aforementioned techniques are not available, we compare our results with
these methods using the same datasets mentioned in Table 1. The number of
features used in Caliskan-Islam et al., Rosenblum et al., and Alrabaee et al.
systems are 4500, 10000, and 6500, respectively.

Figure 1 details the results of comparing the accuracy between existing meth-
ods. It shows the relationship between the accuracy (F0.5) and the number of
authors present in all datasets, where the accuracy decreases as the size of
author population increases. The results show that Caliskan-Islam et al. app-
roach achieves better accuracy in determining the author of binaries. Taking all
three approaches into consideration, the highest accuracy of authorship attribu-
tion is close to 90% on the Google Code Jam dataset with less than 20 authors,
while the lowest accuracy is 45% when 179 authors are involved.

As can be seen in Fig. 1, OBA2 achieves good accuracy when it deals with
small scale of authors. For instance, the accuracy is approximately 84% on
GitHub dataset when the number of authors is 30, while the accuracy drops
to 58% on the same dataset when the number of authors increases to 50. The
main reason is due to the fact that the authors of projects in Github have no
restrictions when developing projects. The lower accuracy obtained by OBA2
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Fig. 1. Accuracy results of authorship attribution obtained by Caliskan-Islam et al.
[18], Rosenblum et al. [38], and OBA2 [13], on (a) Github, (b) Google Code Jam, and
(c) All datasets.

is approximately 28% on all datasets when the number of authors is 179. The
accuracy of Rosenblum et al. approach drops rapidly to 43%, whereas Caliskan-
Islam et al. system accuracy remains greater than 60%, if the 140 authors on all
datasets are considered.

5.2 Scalability

We evaluate how well existing works scale up to 1000 authors. Since in the case
of malware, an analyst may be dealing with an extremely large number of new
samples on a daily basis. For this experiment, we work with 1000 users, of which
are authors from the Google Code Jam. First, we extract the top-ranked features
as described in Rosenblum et al. and Caliskan-Islam et al. approaches, while the
features used by OBA2 are not ranked.

The results of large-scale author identification are shown in Fig. 2. As seen
in Fig. 2, by increasing the number of authors, all the existing works accuracy
drops significantly. For instance, Rosenblum et al. approach accuracy drops to
approximately 5% when the number of authors is greater than 600 authors.
While the accuracy of OBA2 approach drops to 15% when the number of authors
reaches to 500. However, Caliskan-Islam et al. approach accuracy drops to 20%
with an increase to over 700 authors.
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Fig. 2. Large-scale author
identification results

Through our experiments we have observed that
top-ranked features used in the Rosenblum et al.
approach are mixture of compiler and user features,
where leads to higher rate in false positives. OBA2
identifies author according to the way of branch
handling. Therefore, when the number of authors is
largely increased, distinguishing the author based on
handling branches becomes limited and hard. Finally,
Caliskan-Islam et al. approach relies on the features
extracted from AST of compiled binary; so with the
large number of authors, these features became common and similar which make
the authorship attribution harder.
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5.3 Impact of Evading Techniques

In this subsection, we apply different techniques to evade the existing systems in
order to study their stability. For this purpose, we randomly choose 50 authors
and 8 programmes for each author. The accuracy results without applying any
evading technique, and with applying evading techniques are shown in Table 2.

Refactoring Techniques. The adversary may use existing refactoring tech-
niques to prevent authorship attribution. Hence, we use chosen dataset for the
C++ refactoring process [1,11]. We consider the techniques of (i) Renaming a
Variable (RV), (ii) Moving a Method from a superclass to its subclasses (MM),
and (iii) extracting a few statements and placing them into a New Method (NM).
Depth explanations of these techniques are detailed in [25]. We obtain an accu-
racy of 81% in correctly classifying authors for OBA2 system, which drops to
62% when RV is applied. The reason of this dropping in accuracy is that variable
renaming affects the features used by OBA2, while OBA2 can tolerate NM, and
MM. The accuracy of Caliskan-Islam et al. approach drops not greatly from 79%
to 70%. This is due to the fact that their approach decompiles the binary into
source code, and then extracts the features. Hence, the aforementioned refac-
toring techniques do not change much in the abstract syntax tree. However, the
approach can tolerate renaming variables. Finally, Rosenblum et al. approach is
the one that is mostly affected by Refactoring techniques, where the accuracy
drops from 66% to 40%. Since their approach extracts idioms from assembly files,
any of these techniques will change the idioms (sequence of assembly instruc-
tions) which cause a drop in accuracy.

The Impact of Obfuscation. We are interested in determining how exist-
ing works handle simple binary obfuscation techniques intended for evading
detection, as implemented by tools such as Obfuscator-LLVM [29]. These obfus-
cators could apply Instruction Replacement (IR): replacing instructions by
other semantically equivalent instructions, Dead Code Insertion (DCI), Reg-
ister Renaming (RR), spurious control flow insertion, and can even completely
Flatten Control Flow graphs (FCF). Obfuscation techniques implemented by
Obfuscator-LLVM are applied to the samples prior to classifying the authors.
Caliskan-Islam et al. approach is the most affected approach by FCF technique;
since control flow flattening makes the decompilation process hard, which means
the features cannot be extracted correctly.

Table 2. Accuracy results before and after applying refactoring techniques, obfuscation
techniques, and different compilers. (AbET): Accuracy before Evading Techniques, (∼):
The accuracy has not affected.

System AbET Refactoring Obfuscation Compiler

RV NM MM All RR IR DCI FCF All GCC Xcode ICC

OBA2 0.81 0.62 ∼ ∼ 0.62 0.64 0.74 ∼ ∼ 0.58 0.74 0.60 0.54

Caliskan-Islam 0.79 ∼ 0.72 0.71 0.70 ∼ ∼ ∼ 0.24 0.24 0.66 0.64 0.54

Rosenblum 0.66 0.60 0.58 0.55 0.4 0.62 ∼ ∼ 0.27 0.25 0.15 0.55 0.29
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The Impact of Compilers. To create experimental datasets for this purpose,
we first compile the source code with GCC, VS, ICC, and Xcode compilers. Next,
the effect of different compilation options, such as the source of compiler, is mea-
sured. The results show that the approach which is mostly affected by changing
the compiler is Rosenblum et al.’s approach; since this approach does not distin-
guish between user functions or compiler functions. For instance, the accuracy
observed through our experiments is 15%, when the binaries are compiled with
GCC, because the GCC compiler inserts many compiler functions.

5.4 Applying Existing Works to Malware Binaries

We apply existing works to different sets of real malware: Ramnit, Lollipop,
Kelihos, Vundo, Simda, Tracur, Obfuscator.ACY, and Gatak. These malware
are selected due to their availability [7]. These samples contain different variants
of the same malware so we assume that these variants are written by the same
author or the same group of authors. Due to the lack of ground truth, we compare
outputs of each approach manually to verify that they belong to same family.
Details about the malware dataset are shown in Table 3. The number of compiler
functions are obtained based on [37], while the fifth column shows the number
of library functions acquired by F.L.I.R.T technology [4]. According to Table 3,
we can observe that the percentage of compiler functions is quite high, so a
pre-processing step before applying authorship attribution approaches would
be demanding. For instance, the percentage of compiler functions in Lollipop
family is 30%. We apply existing works and cluster functions according to their
features by using standard k-mean. Then we manually analysis the obtained
clusters to classify them to correct/wrong clusters as shown in Table 4.

Table 3. Characteristics of malware datasets. (BF): binary functions, (CF): compiler
functions, (LF): library function.

Malware # of variants # of BF # of CF # of LF

Ramnit 4 5285 1601 50

Lollipop 3 3510 1054 100

Kelihos 2 1924 847 74

Vundo 4 7923 2410 219

Simda 2 2100 689 105

Tracur 2 1657 787 100

Obfuscator.ACY 3 2762 986 310

Gatak 2 2054 860 174
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Table 4. Clustering results based on the features used in existing systems. (TC): the
total number of clusters, (CC): the percentage of correct clusters, (WC): the percentage
of wrong clusters.

Malware OBA2 Caliskan-Islam Rosenblum

TC CC WC TC CC WC TC CC WC

Ramnit 145 60% 30% 110 47% 50% 208 18% 70%

Lollipop 90 75% 14% 185 59% 38% 220 21% 67%

Kelihos 41 88% 8% 17 90% 4% 75 34% 55%

Vundo 200 62% 14% 89 28% 68% 384 39% 48%

Simda 52 49% 50% 41 92% 5% 109 42% 51%

Tracur 44 89% 9% 53 83% 12% 124 51% 40%

Obfuscator.ACY 30 78% 21% 45 74% 24% 89 29% 70%

Gatak 29 57% 34% 51 87% 12% 79 38% 62%

6 Learnt Lessons and Concluding Remarks

Functionality or styles: During the evaluation, we have observed that the fea-
tures selected by existing techniques are more closely related to the functionality
of the program rather than the author’s style. This argument may be supported
by the evidence that a basic short program has less features than comparatively
bigger, functionality-oriented programs. This shows that features are directly
related to the size of the program, which usually depicts functionality but not
style [13,18,38]. In order to avoid this, some existing systems could be used as
preprocessing stage [14,15] applies different steps.

Feature pre-processing: We have encountered top-ranked features related to
the compiler (e.g., stack frame set-up operation). It is thus necessary to filter
irrelevant functions (e.g., compiler functions) in order to better identify author-
related portions of code [38]. To avoid this, a filtration method based on the
FLIRT technology for library identification as well as a system for compiler
functions filtration such as BinComp [37] should be used. Successful distinction
between the two groups of functions (library/compiler and user functions) will
lead to considerable savings in time and will help shift the focus of analysis to
more relevant functions.

Application type: We find that the accuracy of existing methods [13,38]
depends highly on the application’s domain. For example, in Fig. 1, superior
accuracy is observed for the Google Code Jam dataset where the accuracy is
77% in average. This is because the approach used by Rosenblum et al. extracts
SysCalls, which are more useful in the case of academia/competition code than
in other cases. This can be explained by the authors’ choice to systematically
rely on external libraries and to implement, for instance, MFC APIs. The results
also show that Alrabaee et al. rely on the application because their approach
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extracts the manner by which the author handles branches; for instance, the
accuracy drops from 82% to 57% when Google Code Jam is used. After investi-
gating the source code, we notice that the number of branches is not big, which
makes the attribution even more difficult.

The source of features: Caliskan et al. [18] use a decompiler to translate
the program into C-like pseudo code via Hex-Ray [6]. They pass the code to
a fuzzy parser, thus abstract syntax tree is obtained, which is the source of
feature extraction. In addition to Hex-Ray limitations [6], the C-like pseudo
code is also different from the original code to the extent that the variables,
branches, and keywords are different. For instance, we find that a function in
the source code consists of the following keywords: (1-do, 1-switch, 3-case,
3-break, 2-while, 1-if) and the number of variables is 2. Once we check
the same function after decompilation, we find that the function consists of
the following keywords: (1-do, 1-else/if, 2-goto, 2-while, 4-if) and the
number of variables is 4. This will evidently lead to misleading features.

Misleading Features: To make things worse, our re-evaluation results show
that many top-ranked features are in fact completely unrelated to authors’ styles.
For example, many source code-level functions do not have their names identified
at binary level, i.e., IDA Pro assigns a name prefixed with “sub” and postfixed
with randomly generated numbers by the compiler. Experiments show that these
functions with random numbers play a vital role for features to be ranked high
by calculating the mutual information. This discovery shows that this technique
may select many features unrelated to author styles but rather some other prop-
erties, such as compiler-generated functions.

Concluding Remarks: Binary code authorship attribution is a less explored
problem compared with source code level authorship attribution due to many
facts (e.g., the reverse engineering is time consuming, having limited features
preserved during the compilation process). In this paper, we have first presented
a literature review relevant to authorship identification of binary and source
code. Subsequently, we introduce the way of extracting binary features. Then,
we deeply analysis and evaluate the existing works on different scenarios such as
scalability. Finally, we applied them to real set of malware binaries. It is clear
that there exist many features that could potentially be useful to determine
malware authorship. However, the harder part is to verify their applicability
through experimental studies. We must pay special care to the following issues
when we deal with binary authorship attribution:

– Dataset Size: A small amount of training set code might not be sufficient
to make a good identification and a precise comparison unless very unusual
indicators are present.

– Multiple Authors: The identification of authors in the case of multiple authors
will be more challenging, since we have to first identify code fragments that
are written by the same author.
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Abstract. We relax the notion of malware obfuscation to include
semantically non-preserving transformations. Unlike traditional obfus-
cation techniques, these transformation may not preserve original code
behaviour. Using web-based malware we focus on transformations which
modify abstract syntax trees. While such transformations yield syntac-
tically valid programs, they may yield dysfunctional samples, so that
it is not clear that this is a practical approach to producing detection-
evading malware. However, by implementing an automated system that
efficiently filters dysfunctional samples on a virtual cloud architecture,
we show that such transformations are in fact practical. Using two simple
transformations, we evaluated four antivirus products and were able to
create many samples that evade detection, demonstrating that semantic-
preserving obfuscation is not the only effective way to mutate malware.

1 Introduction

Recent data breaches at Target, Home Depot, JPMorgan Chase, Apple iCloud,
and Sony (to name a few) highlight the constant pressure that cyber-attackers
put on users and corporations alike [8]. Many attacks use malware, that is soft-
ware with some form of malicious functionality [4], to steal financial informa-
tion, intellectual property, and private data such as usernames and passwords.
An antivirus is a tool for malware detection. Since many organizations rely on
antiviruses for protection, it is important to evaluate antivirus effectiveness.

Obfuscation is a well known technique used by malware authors to create
new malware mutations that evade detection. Obfuscation modifies code, while
retaining its behaviour [6]. For example, in the context of HTML and Javascript,
renaming might transform the code payload=1; print(payload) into x=1;
print(x), while partitioning might transform the code str =‘‘abc’’ into str
=‘‘a’’+‘‘bc’’. See [15] for more examples.

Christodorescu and Jha [5] proposed a methodology to evaluate antivirus
products against obfuscated versions of known malware. They applied this idea
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to Visual Basic malware in Microsoft Office [5]. The same methodology was used
in the context of Java malware in Android applications [13,16] and Javascript
malware in HTML files [15]. Industry test labs follow the same approach [3].

Our research was motivated by considering the extension of [5] to the set-
ting of browser-delivered malware (“drive-by downloads”,) using HTML- and
Javascript-based malware for Internet Explorer produced by Metasploit [9]. Man-
ual experimentation indicated that malware obfuscated using traditional tech-
niques (along the lines of e.g. [15]) were detected, but techniques which would
not obviously produce semantically equivalent code (e.g. altering HTML ele-
ments, permuting lines of JavaScript) produced malware which still delivered
its payload, but was no longer detectable. This experiment, and the analysis
in Sect. 5, indicates that anti-malware tools should not be designed under the
assumption that all mutations must result from obfuscation. For example, [10]
proposed detection of malware mutations using a method that assumes mutant
malware preserves semantics, an assumption challenged by our results.

Semantically non-preserving transformations have several disadvantages
compared to obfuscation. With obfuscation, millions of mutations can be gen-
erated efficiently, they are all guaranteed to work, and if one class of trans-
formations (e.g. variable renaming) bypasses detection, then most likely other
mutations in this class also bypass detection. We show that, despite their dis-
advantages, semantically non-preserving transformations can be efficient and
practical. Our main contribution is a cloud based system that automatically
and efficiently generates malware mutations. The system is generic. It will work
with any antivirus, any malware, and any transformation, including obfusca-
tion. It even supports composition of transformations. Our system also scales
linearly; doubling the size of the cloud reduces the computation time by half.
We evaluated four antiviruses using two simple transformations, and yet were
able to create many mutations that evade detection. Our system is different from
script-based approaches used in prior work due to the specific challenges of our
transformations. These challenges, and our solutions are discussed in detail in
Sects. 3 and 4.

Our works focuses on obfuscation of what we might call transporter code, that
is, the HTML/Javascript code which triggers an exploit allowing the delivery of
a payload written in x86 code. While obfuscation of the payload is also a well-
known technique for evading detection, our abstract-syntax based approach is
not directly applicable to such obfuscations.
Related work. Evaluation of antivirus effectiveness via malware mutations have
been considered in [5,11,13,14,16]. A formal framework for this method has been
given as well (e.g., [7]). The reason for this evaluation method is that hackers
evade detection by tweaking their malware. Unlike [5,13,16], which use obfusca-
tion, we use transformations that do not preserve the semantics of the malware.
We show that our transformations yield functional and undetectable variants.
Also, unlike [5,13,16], where each component is automated, but not the system
as a whole, our software is fully automated and non supervised. A recent industry
report that evaluated eleven antiviruses against HTML malware [3] showed that
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all antiviruses detected all HTML obfuscation. Our results show that evaluations
which consider only transformations that preserve semantics are incomplete. In
[12] a semantics-based approach to malware detection is proposed, including a
definition of non-conservative obfuscation which is a generalization of our notion
of semantically non-preserving transformation. We have not investigated the sig-
nificance of our results in this broader framework.

2 Semantically Non-preserving Transformations

In formulating a notion of transformations which preserve semantics, we are
faced with several choices. In the most general setting, we would need to formally
model all the effects of executing a piece of code. This could involve modifications
to state and side-effects involving not only memory, but also files, communication
channels, etc. We will take a more practical perspective, tailored specifically
to the setting of malware deployment and detection, and depends only on the
ability of a piece of code to deliver a specified payload. See [12] for a more general
approach to semantics-based notions of obfuscation.

We consider transformations T : Code × AuxT → Code. In particular we
have T (m, r) = m′ where m is the code to be modified and r is some auxiliary
information and m′ is the mutated code. The auxiliary information r depends
on the transformation T . For example, in the case of variable renaming, AuxT

will consist a collection of variables and all strings to which the variables in
question may be mapped. We then say that T is semantically preserving with
respect to malware m if T (m, r) = m′ executes the same payload as m, for any
r ∈ AuxT . For example, obfuscation is always semantically preserving, whereas,
in our above mentioned experiment, the transformation T that replaces table
with various element names is semantically non-preserving, because there are r
such that T (m, r) = m′ is not malware. On the other hand, if T (m, r) = m′ is
malicious, it is not necessary that m′ exploits a different vulnerability compared
to m, or that m′ executes other things beyond the payload of m. It only means
that m′ is allowed to be computationally different from m, as long as it executes
the payload, and that T is allowed to output dysfunctional samples (that is,
samples that do not execute the payload).

Because we admit transformations that output dysfunctional samples, we
must address the issue of how generated samples may be used to test AV effec-
tiveness. We describe our approach in Sect. 4 below, but in short we filter out
dysfunctional samples by executing each sample and detecting whether it is able
to deliver a payload. In practise this post hoc approach will produce samples that
are not obtained using traditional obfuscation techniques.

3 The Generator

In this section we describe the software components that take an HTML file,
possibly containing Javascript, and generate variants of this file. The variants
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may or may not be malware. We collectively refer to these components as the
Generator.

As discussed previously, we focus on a simple class of transformations, namely
those which apply simple modifications to the abstract syntax tree (AST) of
an HTML sample document. We implemented two transformations, permute
and subset, both operating only on nodes that have children. its statements as
children. By permute we mean reordering of the children, and by subset we mean
removing some of the children. These transformations usually do not preserve
the semantics of the original HTML file.

While our goal was to apply these transformations in as general and auto-
matic a way as possible, it is clear that blindly applying these transformations
to the entire AST results in a combinatorial explosion making the approach
infeasible. In particular, for an AST with n nodes, subset will generate O(2n)
mutations, while permute will generate O(n!). We address this issue by special-
izing transformations to a distinguished subset of nodes, a technique we refer
to as per-node transformation. Currently, we have not addressed the question of
general strategies for assigning transformations to nodes. For our experiments
we are doing this in an ad hoc fashion.

4 The Infrastructure

In this section we describe the software components that take original HTML
files, transform them into new HTML variants, test whether the variants are
functional (that is, they execute the payload), and if so, whether they are
detectable as malware by various antivirus products. We collectively refer to
these components as the Infrastructure.

This Infrastructure is realized via a producer-consumer model wherein a pro-
ducer inserts jobs into a queue, blocking if the queue is full, and a consumer
removes jobs from the queue and executes them, blocking if the queue is empty.
Multiple producers and consumers can run concurrently, using database tables
for queues and transactions for synchronization. While the use of virtualization
in testing malware detection is not new, our automated concurrent infrastructure
is unique. In practice, this means that we were able to perform fully automated
tests involving several antivirus products and millions of malware variants.

In more detail, generator threads produce HTML variants for the functional-
ity workers, who test whether HTML variants execute a payload. If a variant is
functional, then the functional worker produces a job for the antivirus workers,
who then test whether the variant is detectable or not.

In order to maintain automation, we need a simple test to determine func-
tionality. We chose the creation by the malware of a text file on the desktop.
A possible objection to this approach is that in a real-world setting such an action
would be benign in terms of impact on the target system, and that more mali-
cious effects could be detected by other components of a detection or intrusion
protection system. With respect to the first objection, we note that the degree
of control required to allow the malware to perform the file creation effect would
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also allow it to perform more obviously malicious actions. This brings us to the
second objection. Here we note that it is essential for all components of such a
system to provide the highest degree of security possible. There is no guarantee
that if any one component fails some other component will be able to compen-
sate. Indeed, malware designers are able to combine evasion techniques to take
advantage of weaknesses in any one detection component.

When a browser loads an HTML file, it stores it as a file in a temporary direc-
tory, and this triggers the detection mechanism of some antiviruses. However,
due to the asynchronous nature of operating systems, quite often the antivirus
detects the file as malware only after the browser has processed the HTML
file and the malware has successfully executed. In such cases we consider the
malware as being undetectable.

5 Experiments

We selected four popular antivirus products from the websites of the following
companies: AVG, Kaspersky, McAfee, and Symantec. We have chosen not to
disclose which product is susceptible to each method, and thus have randomly
named them AV1, AV2, AV3, AV4. In all cases we downloaded the consumer
grade version, and evaluated it automatically using our infrastructure.

We reviewed more than thirty Internet Explorer malware samples from
Metasploit [9]. Unfortunately, not all were suitable for testing due to stabil-
ity or compatibility reasons. Hence, only seven were chosen. We refer to these
files, labelled S1 through S7, as the originals. All originals have a benign pay-
load that creates a dummy text file on the desktop. Samples S6 and S7 did not
parse with the parser of [1,2], while sample S5 had a payload that could not be
configured. Thus, we could only experiment with the first four samples. Sample
S1 was pure HTML, and the rest contained Javascript code. All samples were
evaluated on Windows7 64-bit SP 1 and Internet Explorer 8.
Test Definitions. We define an HTML file to be functional if and only if the
dummy is created when the HTML file is loaded by the browser. We note that,
since malware can destabilize the operating system, we have to timeout our tests,
which may incorrectly label a functional variant as non functional. However, this
is not a concern. The important thing is that the opposite cannot happen.

Although we use the notion of detection, we follow industry practise [3] and
measure prevention. i.e., whether the payload is prevented from executing. Pre-
vention is stronger than detection because, once malware gets control, it can do
anything, including disabling the antivirus, and detection in particular.

Our antivirus evaluation consisted of two tests. In the static test (denoted S)
we invoked the antivirus from the command line, with the HTML file as input.
In the dynamic test (denoted D) the browser loaded the HTML file from an
external HTTP server. In the static test, some antiviruses remove the file before
we even have a chance to invoke the antivirus from the command line. In such a
case we treat the HTML file as being detected. Conversely, in the dynamic test,
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if the dummy text file is created, then the payload has executed. Thus, even if
the antivirus produces an alert, we consider the file as being undetected.

Analysis. The evaluation of the originals is given in Table 1. It shows four
antiviruses evaluated against seven malware files, in both static and dynamic
tests. We use 1 for detected and 0 for undetected. If the payload finished exe-
cution, but with high probability was later detected, then we denote it by 0a.
Interestingly, AV3 can statically detect originals S3 through S6, and exactly those
are detected in the dynamic test, but only after the payload executes. This pro-
vides a strong evidence that AV3 is signature based only, not using any runtime
information. Notice that AV2 dynamically detected all malware. However, this
is expected because all the samples are a few years old, on average.

Table 1. Static (S) and Dynamic (D) tests for the original samples

Sample AV1 AV2 AV3 AV4

S D S D S D S D

S1 0 1 1 1 0 0 0 1

S2 0 0 1 1 0 0 0 1

S3 1 1 0 1 1 0a 0 0a

S4 1 1 1 1 1 0a 0 1

We evaluated the antiviruses by submitting jobs to our system. Each job
described the original, the transformation, and the antiviruses to test. These
jobs, given in Table 2, show that we found thousands of new malware variants.

Table 2. Jobs showing new HTML variants generated from originals

Sample Transformation Generated Functional

S1 Permute all 24 24

S1 Subset all 42 20

S2 Permute all 101674 1293

S2 Subset all 48 0

S2 Subset node 27 32768 2

S2 Subset node 20 4096 8

S3 Permute node 30 720 66

S3 Subset node 30 64 2

S3 Subset node 20 4096 8

S3 Subset node 32 524288 1

S3’ Permute node 30 108053 30

S4 Permute all 193070 7493

S4 Subset all 81494 0

S4 Subset node 10 3526 0

S4 Subset node 5 60 0
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Not all jobs ran to completion, which is why some of them generated fewer
variants than others under the same transformation. We suspended generator
threads when we saw that others were creating functional variants. This reduced
the workload on the functional workers. The transformation Permute all means
that each node has a permute transformation, and similarly for Subset all. Other
transformations are per node, usually assigned to Javascript nodes of the abstract
syntax tree. Since they are assigned to different parts of the tree, there are no
overlapping variants. The sample S3’ is essentially the same as S3, but has a
different AST, hence node 30 does not correspond to node 30 from S3.

Table 3. Number of Statically (S) and Dynamically (D) undetectable malware variants

Sample Transformation Functional AV1 AV2 AV3 AV4

S D S D S D S D

S1 Permute all 24 24 24 0 0 24 24 24 0

S1 Subset all 20 20 20 0 0 20 20 20 12

S2 Permute all 1293 1293 1293 1293 0 1293 1293 1293 0

S2 Subset all 0 0 0 0 0 0 0 0 0

S2 Subset node 27 2 2 2 2 0 2 2 2 0

S2 Subset node 20 8 8 8 8 0 8 8 8 0

S3 Permute node 30 66 65 65 66 0 66 66 66 0

S3 Subset node 30 2 1 1 2 0 2 2 2 0

S3 Subset node 20 8 0 0 8 0 8 8 8 0

S3 Subset node 32 1 0 0 1 0 1 1 1 0

S3’ Permute node 30 30 0 0 30 0 30 30 30 2

S4 Permute all 7493 0 0 0 0 0 5818 7493 0

S4 Subset all 0 0 0 0 0 0 0 0 0

S4 Subset node 10 0 0 0 0 0 0 0 0 0

S4 Subset node 5 0 0 0 0 0 0 0 0 0

The detection effectiveness of the antiviruses is given in Table 3. The table
shows that most of the functional variants that we have created are undetectable
by at least one antivirus. It proves that antiviruses cannot be evaluated based
on mutations only. It also indicates that any detection mechanism that assumes
that mutations must preserve the semantics of the original [10], may fail to work.

Table 3 provides the raw results, unabridged. The last three rows are all
zero because these jobs did not produce functional variants, and thus have been
suspended. No sample was dynamically undetectable by AV2. However, man-
ual experiments with this antivirus showed that a map transformation yields
statically and dynamically undetectable malware variants. The map is not an
obfuscation as it replaces HTML elements with non equivalent ones. Other vari-
ants can be obtained by composing two obfuscation methods (string partitioning
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and BASE64 encoding). We interpret these experiments as evidence that our
software is basic, and needs more transformations.

6 Conclusions

We have demonstrated that semantics-preserving obfuscation is not the only way
to produce malware mutations. By relaxing the notion of obfuscation to that of
semantically non-preserving transformations, we were able to obtain transfor-
mations that produce functional mutations. We developed a virtualized testing
environment which allowed us, using two simple transformations, to generate
thousands of samples which were undetectable by commercial AV products. Our
results demonstrate the viability of obfuscation techniques that do not preserve
code semantics. This does not mean that such mutations are more malicious, or
should be considered as a replacement for traditional code obfuscation. Rather,
they should be viewed as another threat, alone or in combination with other
techniques, that anti-malware technology must be able to prevent.
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Abstract. Web-browser security with emphasis on JavaScript security,
is one of the important problems of the modern world. The potency
of information flow control (IFC) in the context of JavaScript is quite
appealing. In this paper, we adopt an earlier technique, Address Split
Design (ASD), proposed by Deepak et al. [12]. We propose an alternate
data-structure to the dictionaries used in ASD to keep track of secret
variables. We also propose a novel approach to help track and learn
from information flows. This learnt data can subsequently be used to
create a more adaptive and effective IFC model. As the information
about a function augments, potential leaks are also thwarted. Using such
an approach, we show that more rigid security guarantees can be achieved
eventually with increase in learnt data.

1 Introduction

The state of the internet has been evolving with the constant sharing of content
and functionalities between websites. Many modern technologies proposed in
HTML5 have served to increase capabilities of the browser while also raising
new possibilities for information leakages. For example, LocalStorage provides
an efficient way for persistence in the web-browser. This could cause browser-side
persistent cross-site scripting if not sanitized properly. Another example is the
use of WebSockets, which provides a real-time communication channel to the
server. Once the channel is open, further messages in the channel do not require
re-authentication or cookies since the connection is already established. There
is hence a clear need to monitor the browser at a variable level as JavaScript
slowly dominates the application space.

Web-browser vulnerabilities have constantly been cited among the top preva-
lent threats as seen clearly in lists such as the OWASP Top Ten1. Despite the
numerous safeguards proposed over the years, including some important consid-
erations such as the “same-origin policy” and “content security policy”, these
threats continue exist. Moreover it is important to have a method to provide secu-
rity while preserving the user experience. It is our sincere belief that Information
Flow Control (IFC) could be an effective solution to this problem. Further, the
use of IFC is necessary for JavaScript since modern web-sites execute scripts
1 https://www.owasp.org/index.php/Category:OWASP Top Ten Project.
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from various sources with no restrictions. The only security model available on a
browser is an all-or-nothing Content-Security-Policy which can allow or deny a
script based on the url. Our approach allows the page itself to function without
changes while protecting secret variables from unauthorized scripts.

This paper is a logical extension an approach called Address Split Design
(ASD) proposed by Deepak et al. [12]. In ASD, the authors show how the use of
IFC can prevent unauthorized code from accessing sensitive information thereby
preventing leakage of sensitive information. ASD maintains a dummy/public
value for every secret variable and uses this public value in case of unauthorized
access. In this paper, we first propose a change to how ASD maintains runtime
monitoring. This proposal could reduce the number of operations that need to
be performed when a secret variable is updated. We also describe a learning-
based approach to information flow control on a web-browser. After the initial
execution of a program using ASD, information regarding the propagation of the
secret is remembered. This information is used in a self correcting mechanism
for the analysis and enforcement of security on JavaScript. The bedrock of our
proposed mechanism lies in correcting any possible leak through learning rather
than using rigid security guarantees. Hence, in this paper, we first start with
ASD as the base model and remember all the flow propagations which are used
subsequently thereby accounting for all possible information flows.

The rest of the paper is organized as follows. The Sect. 2 provides a summary
of the various related work. This is followed by a description of our model, address
split design with dependency graphs (ASD-DG), along with relevant formalisms,
in Sect. 3. The details on how reinforcement learning is applied to ASD-DG and
the security guarantees that can be obtained because of learning are described
in Sect. 4. There is a sum up of our approach in Sect. 5.

2 Related Work

There have been several key research since the models such as Bell and La
Padula [4], and Biba [5] that have helped in shaping the field of Information
Flow Control (IFC). These models established various levels of privileges and
associated information to these levels. A common mechanism to achieve this is
to attach security labels to information containers such as files or variables. The
most simple example consists of two security labels namely, “high/sensitive” and
“low/public”. Information cannot flow from “High” level containers to “Low”
level containers while the vice-versa is permissible. In a lattice-based design, the
security lattice can contain multiple parallel or intertwined levels allowing for
more complex information flow control design.

The first step in an IFC approach is to specify a policy. It consists first in
defining different security labels in a lattice-based structure and then to attach
these labels to the containers according to their sensitivity. Once a policy has
been specified, the IFC model ensures that the execution conforms to the pol-
icy. Such an approach helps to classify information flows into legal and illegal
flows. IFC models have varying mechanisms to deal with illegal information
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flows. These could be raising alerts, stopping execution, stopping the compila-
tion process, modifying execution or some other customized action.

Language based IFC has been explored in great detail by label based
approaches as illustrated by Sabelfeld and Myers [11]. In these approaches, the
secret variables are tagged with security labels and these labels are propagated
along with the information flows. In the context of IFC in JavaScript, Bielova
et al. [6] provide a substantive survey with comparative studies on techniques,
types of analysis (i.e. static vs. dynamic approaches) and their formal guaran-
tees. This work has been instrumental in providing a complete picture of this
research area thereby becoming a valuable stepping stone to the design of our
approach.

In the field of IFC, the most important property to be satisfied by any analysis
is non-interference. There are two types of non-interference based on the con-
ditions satisfied, namely Termination-insensitive non-interference (TINI) and,
Timing and Termination-sensitive non-interference (TTSNI).

TINI [1,6,7,11] is a security guarantee where, for two terminating executions
of a program with the same public input, the observable public output remains
unchanged regardless of the value of the secret.

TTSNI [7,10] is a security guarantee where, for two executions of a program
with the same public input, the public output, the number of execution steps
and time taken to generate the public output remain unchanged regardless of
the value of the secret.

There are several IFC models that have been designed for the web-browser
taking into account the nature of JavaScript. Relative work in this domain
has been heavily biased towards dynamic approaches. This is justifiable by the
highly dynamic nature of JavaScript which increases the complexity for static
approaches thereby making dynamic approaches more effective.

Label-based approaches have always been in the forefront of dynamic
approaches. In the context of JavaScript, Austin and Flanagan proposed the
no-sensitive-upgrade [2]. Hedin and Sabelfeld [9] proposed an IFC approach
for JavaScript based on a classical label-based approach previously described
by Sabelfeld and Myers [11]. Hedin and Sabelfeld show the need for dynamic
approaches by describing problem of the information-flow being flow sensitive in
JavaScript. This increases the need to keep track of changing labels throughout
the execution which becomes tedious with pure static approaches. The difference
between the two approaches is that Hedin and Sabelfeld allow some upgrade
instructions before the behest of the implicit information-flow. This means that,
in case an implicit flow results owing to the value of a secret variable, the pub-
lic output of a public value cannot be performed under any scenario in case of
the no-sensitive-upgrade. However, in case of Hedin and Sabelfeld, such a public
output can be allowed if and only if there was an explicit upgrade instruction
before the output statement is performed.

Both these label based approaches stop further execution of a program when
they encounter a possible information leak. These approaches are useful to check
if a program is adherent to TINI by default without any modifications. However,
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they fail to continue execution of the program if there is a possibility of a leak.
There exist a few dynamic preventive enforcement mechanisms in JavaScript
which are able to continue execution of the program and still prevent informa-
tion leakage. These mechanisms maintain more than one copy of the variable
and switch contexts of the variable based on the scenario. In case there is an
unauthorized public output of a secret variable, these mechanisms use a dum-
my/public value instead. Secure Multi-Execution (SME), faceted approach and
Address Split Design (ASD) are the models known to use this approach.

The model of SME was proposed by Devriese and Piessens [7]. In SME, the
information flow across labels is segregated at the process level by providing
a separate process for each level of sensitivity. Let us consider a system with
two levels namely a high and a low. Such a scenario would imply that there
is a dedicated process for high level computations and a dedicated process for
low computations. This ensures that the memory is also safely handled since
the processes themselves are isolated. The low level process is the only one that
can influence public output and it can only receive public input. FlowFox is
a concrete implementation of SME on the Firefox web browser by De Groef
et al. [8]. However, the use of SME automatically increases the time- and space-
complexity for the system.

The faceted approach that has been proposed by Austin et al. [2,3] is the
chief proponent of the multi-path execution approach. The authors attempt to
mimic the functionality of SME with the use of a single process. It would intu-
itively result in a much lower time complexity. The faceted approach attains
termination-insensitive non-interference since the use of a single process cannot
account for timing-sensitivity. This approach works on containing multiple copies
of the variables at each juncture to mimic the values of the variables in different
processes in case of SME. A faceted value is represented as ¡p?aprivate:apublic¿
where p is the principal. The principal is an access control object which deter-
mines which copy of the variable should be used. If an object c were created by
using two other objects a and b, each with its own principal, there would be four
possible values for this object, as shown in [FACETED APPROACH]. This growth

[FACETED APPROACH]

var a = 〈p1?1 : 2〉; var b = 〈p2?3 : 4〉; var c = a + b;

=> c = 〈 p1 ? 〈 p2 ? 4 : 5 〉 : 〈 p2 ? 5 : 6 〉 〉;

in the number of objects is exponential. The positive effect of this phenomenon is
that, only the correct copy of the object is used when it is invoked by the public
output function. Just like the SME approach, the execution of multiple branches
can have unintended consequences in a dynamic approach. The ZaphodFacets2

2 https://github.com/taustin/ZaphodFacets.

https://github.com/taustin/ZaphodFacets
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is an implementation of the faceted approach as a plug-in in Firefox. It use the
Narcissus JavaScript engine3. Cross-site scripting is handled effectively by this
approach by assigning each domain into separate principal. Variables from each
domain are accessed only if there is access to that principal hence significantly
reducing the effects of XSS.

The ASD was proposed by Deepak et al. [12] and forms the first basis for the
approach described in this paper. In this approach each secret variable is split
into public and private values. ASD is similar to the faceted approach in terms
of having a single process and different values for private variables. However, the
key difference is that a variable can have only one private value in ASD while the
faceted approach could force it to have multiple private values. Further, ASD
does not execute additional branches based on the split values.

ASD seems to provide a more fine-grained IFC with function level con-
trol and its performance degradation is much more acceptable than competing
approaches [12]. However, this approach does not adhere to TINI; though the
secret is never given as a public output. Therefore, it suffers from lower security
guarantees than SME while offering being practical. The core of this model starts
with a split variable which is represented as �publicp ‖ privates�. The split vari-
able consists of a public value and a private value which are stored in different
memory locations. The default symbol table connects the variable to its public
value while the ASD mechanism overloads the symbol table at appropriate junc-
tures to change the inferred memory location. This information is maintained in
a data-structure called a dictionary that is unique to each function defined in
the policy.

Fig. 1. Address split design [12]

3 http://en.wikipedia.org/wiki/Narcissus (JavaScript engine).

http://en.wikipedia.org/wiki/Narcissus_(JavaScript_engine)
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ASD’s policies allow a differentiation to read and write accesses to secret
variables. These policies hence result in more fine-grained IFC which we find to
be suitable as a base for our model. The working of ASD is shown in the Fig. 1.
There policies and the JavaScript program are the input. The monitor which
is added to the JavaScript compiler interprets these policies and creates data-
structures called dictionaries. The variables which contain secret values are split
to show public and private parts. The private parts of the variable are inferred
from the dictionaries. These dictionaries are updated by the monitor according
to information flow.

However, the tracking mechanism used in this IFC has been shown to be less
efficient in write operations in comparison with read operations by the authors
themselves. Further, the IFC mechanism does not consider all possible informa-
tion flows and relies solely on over-approximation. We believe that with some
suitable changes to this model supplemented by learning, ASD could eventually
become adherent to TINI while becoming more efficient.

3 Description of Our Approach

As described in the Sect. 1, our work is an extensio of the ASD approach. There-
fore, we describe the preliminaries regarding ASD in Subsect. 3.1. This is followed
by the description of the dependency graph which tracks the various secrets in
our approach in Subsect. 3.2. We finally discuss the evolution of the dependency
graph with information flows in Subsect. 3.3.

3.1 Preliminaries on ASD

ASD is an IFC where secret variables are split to store two different values in
their private and public addresses separately. The access to the secret value for
a given variable is determined by the function that refers to the variable. The
authors propose a dictionary data-structure to track the secret variables based
on the information flow. A mechanism called the dependency tracker (DT) keeps
track of the current statement and the list of secret values that are being used
in the current execution. The dictionaries are changed based on the DT at every
write into a variable.

An example of ASD’s working is shown in Listing 1.1.

1 var a = 2;
2 function f1()
3 {
4 a = 3;
5 print(a);
6 var b = a;
7 };
8 f1();

Listing 1.1. ASD Example
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Let us consider that variable a is secret and function f1 has access to a. In
that case, at the beginning of the function call, a = �2p ‖ undefineds�. This
notation signifies that the variable a has been split. Here, a has a public value
that was initialized to 2 and a secret value that is undefined. However, when
executing function f1, in line 4, the secret value is changed. This is because f1
has access to the variable a. Therefore, a = �2p ‖ 3s�.

In line 6, the variable a is read. Therefore, the dependency tracker is updated
and DT = {a}. When variable b is initialized, it is split. The public value remains as
undefinedwhile the secret value is assignedas3.Therefore, b = �undefinedp ‖ 3s�.

Further, any function that has access to a, is given access to b. Hence, the
function f1’s dictionary would be:

In the Table 1, the notation “scope(f1).b” represents the local variable of the
function. Each run of the function generates a unique scope identifier which is
used to identify which instance of the local variable is being used. Hence, the
use of the scope identifier allows handling of local variables in all cases including
recursion.

Table 1. Dictionary of function f1

Variable Rights Address
a RW @(A)
scope(f1).b RW @(B)

Any function that is defined in the policy is called a self-sufficient function
and has its own dictionary. All other functions are called utility functions and
use the dictionary of the self-sufficient function that called them. To implement
the above mechanism, the symbol table is overloaded with a dictionary data-
structure in ASD. There is hence a unique dictionary for every function defined
in the policy.

ASD creates all dictionaries when interpreting the policies and changes every
dictionary based on the monitored information flow. This creates an increased
overhead when there is a large number of dictionaries. We hence propose another
data-structure called the dependency graph to keep track of the information flows
supplanting the existing dictionaries. We call this approach Address Split Design
with dependency graphs (ASD-DG). When the dependency graph is updated,
those changes will be noted by a learning mechanism. These learnt dependencies
will be applied to the variables at the end of the function’s execution. In the
next subsection we will discus the dependency graph and its working.

3.2 Dependency Graph

The dependency graph is a tree data-structure which contains three types of
vertexes, namely, the function nodes, root nodes, and dependent nodes. The
function nodes represent the various self-sufficient functions, whereas the root
nodes and dependent nodes represent the various variables that contain secret
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values. Root nodes are created for all variables represented in the policies. Depen-
dent nodes are created when a variable contains a secret value originating from
another variable due to information flow.

In this paper, we describe the formalism along with the concepts involved
in our approach. The various initial suppositions are given in [DECLARATION].
Here, the various representations used throughout the rest of the paper have been
defined. We continue the representation used in ASD as part of the while lan-
guage. Most rules defined in ASD hold true to ASD-DG as well. We will describe
the rules that change in greater detail in parallel with the dependency graph.

The dependency graph is used to maintain data about the various variables
that contain secret values due to information flow. It is a tree structure which
can be defined as

DG(V,E) where,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V is a set of vertexes
V � { DGf ,DGroot,DGd }

E is a set of edges
E � { DGf → DGroot,DGroot → DGd }

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

[DECLARATION]

Let, Variables (x ∈ V ar)

Functions (f ∈ F ⊂ V ar)

Statements (S ∈ Stm)

State (s(f) → {public, secret})

Privilege (Priv ∈ {read, write, read + write})

Policy Specification (P(V ar, F, Priv) → Boolean)

Dictionary (D ∈ Dict)

Address Space[Var] (A[x] : V ar → Address)

Access Control

(
ACcontrol(f, x) : (F, V ar) → boolean where,

control ∈ { (r)ead, (w)rite }
)

Dependency Tracker dt ∈ DT ⊂ V ar

Dependency Graph DG

Dependency Graph States DGState {active, inactive}

Dependency Graph Nodes

⎛
⎜⎜⎜⎜⎝

DGnode where,

node ∈
⎧⎨
⎩

root : "Root node",
f : "Function node"

d : "Dependent node"

⎫⎬
⎭

⎞
⎟⎟⎟⎟⎠

Reinforced Learning L, collection of { (f)unction, (dt), (v)ariable }
Flow Type {FL ∈ (e)xplicit, (i)implicit}
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The structure of the dependency graph is a simple unidirectional that can
only consist of three layers. The edges are strictly only between the function
nodes to root nodes or root nodes to dependent nodes. Function nodes can have
any number of child root nodes. Similarly, there is no limitation on the number of
child dependent nodes for root nodes. Root nodes can have two possible states,
active and inactive. When interpreting the graph, the functions can access vari-
ables represented by any of the active root nodes with whom they share an edge.
The state modifications occur due to information flow. Such modifications are
described in greater detail along with the evolution of the graph in Subsect. 3.3.
Finally, a function can access a dependent node if and only if it has access to
all root nodes which are parents to that dependent node. In the formalism, the
x � f represents that f can access x. In the Fig. 2 f2 has access to V6. However,
it cannot access V5 because f2 cannot access V1.

An example of this data structure, can be seen in the Fig. 2.
When the variables contain secret values because of information flows, they

are added to the dependency graph. In our approach, we use the current DT to
assign parent nodes. The DT keeps track of the current set of secret values that
are influencing the information flow.

Fig. 2. Dependency graph

The rule [POLICY: FUNCTION READ ACCESS] describes the interpretation
of the policy into the dependency graph. The read access constructs the link
between the function nodes and the root nodes in the dependency graph. The
root nodes are the initial secrets. The other secrets are added to the depen-
dency graph because of information flows from the root nodes and hence become
dependent nodes. The main purpose of the dependency graph is to overload the
symbol table on a just in time basis as needed by the compiler. When a function
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[POLICY: FUNCTION READ ACCESS]

P(f, x,ACr)

DGf ← f ; DGroot ← x;x � f

attempts to read a variable, the monitor checks the dependency graph to vali-
date the function’s permissions to perform the operation. The rules for accessing
the variable are given in [RUNTIME: FUNCTION READ ACCESS]. In this equation,
for a given policy, the function and variable are added to the dependency graph
and then f becomes a parent of x.

3.3 Dependency Graph Evolution

In this section, we discuss the dependency graph’s evolution with the various
variables that are added to it over time. Variables evolve when a function per-
forms a write operation. There have been no changes in the write operation from
the original ASD in this paper. Since write permissions do not change because of
information flow and are only present to protect the variable, they are maintained
as a simple list. When a function writes a secret value into a public variable,
this variable is split and added as a dependent node to the dependency graph.
If this split variable becomes dependent on another root, it is simply moved to
become a child of that root node. However, if a root node becomes dependent on
another root, a dependent node pointing to that variable is created and original
root node becomes inactive. An inactive root node exists only for its children.
This implies that the original root variable’s value has changed but there are
other existing variables which contain some information about the value due to
information flow.

Let us consider a statement, V2 = V4 + 4;. It can be observed in the Fig. 3
that the variable V2, which is a root variable has been changed. The figure shows
that by marking the root node V2 as a grayed out node. This implies that the

[RUNTIME: FUNCTION READ ACCESS]

f ∈ DGf ;x ∈ DG s.t. x�f,DGState(x) = active

ACr(f, x) = true; s(f) = secret

f ∈ DGf ;x ∈ DG s.t. x�f,DGState(x) �= active

ACr(f, x) = false;

f ∈ DGf ;x ∈ DG ,DGState(x) = active, x���f

ACr(f, x) = false;

f�∈DGf ;

ACr(f, x) = false;

x�∈DG;

ACr(f, x) = false;
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function does not have access to the variable represented by this node but it may
have access to the variables represented by its children. It can also be observed
that the variable V2 is now dependent on V1 and is indicated by a square in the
figure.

Fig. 3. Dependency graph evolution

In ASD, every dictionary containing the variable required a change when the
variable was updated. However, dependency graph needs only a single operation
to be performed to the same effectiveness. Every time the dependency graph
changes, it is registered by the second part of model, the reinforcement learning
mechanism. The use and working of the learning mechanism is described in
greater detail in the following section.

4 Reinforcement Learning

The evolution of the dependency graph is continuously monitored when a func-
tion is executed and this data is used to learn about the function’s characteristics.
The information collected is stored as a persistent data set to be used in sub-
sequent executions. The purpose of this learning is to understand the various
paths and loops that were taken in prior executions.

The information collected contains the following: the name of the function,
the dependency tracker at the time of the split, the variable being split/updated,
root variable and the layout of the relevant nodes in the dependency graph. Once
collected, this information is used to split/update variables at subsequent flows.

Let us consider the current state to be as shown as in the Fig. 2. We now
consider functions f4, f5, and f6 as shown in the Listing 1.2.
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1 // var V1 = secret(true/false);
2 var V10 = true;
3 var V11 = true;
4 function f4()
5 {
6 if (V1)
7 V10 = false;
8 if (V10)
9 V11 = false;

10 return V11;
11 };
12 function f5(x)
13 {
14 var y = x+1;
15 console.log(y);
16 };
17 function f6()
18 {
19 if(V10)
20 {f5(V10);}
21 else{f5(0);}
22 };
23 f4();
24 f6();

Listing 1.2. ASD Example

In this example, the variable V1 is a secret variable. Here we consider that the
functions f4 and f6 have read access to V1. The function f5 does not have access
to V1. If V1 = trues, in line 7, the public variable V10 becomes a secret. In the
dependency graph, its root node is V1. If V1 = falses, in line 9, the public variable
V11 becomes a secret with its root node being V1 due to the over-approximation
of ASD.

1 [{function:"f4", rootVariable:"V1", split:"V10",
2 DT:[V1], dgInfo:[{"V1", "V10"}]},
3 {function:"f4", rootVariable:"V1", split:"V11",
4 DT:[V1], dgInfo:[{"V1", "V11"}]}]

Listing 1.3. ASD Example

The set of variable information shown in Listing 1.3 is the persistent data set
that is maintained about the function f4 for the example in Listing 1.2. As stated
above, it contains information on dependency tracker at the time of the split as
well as the root node that was allocated as the parent to the variable at the
end of the information flow. Each time a variable is split or its secret value is
updated because of a dependency, a data set for the variable is created. This
data set is added to the a persistent array of data sets if not already present.
This is hence the “learnt data”.

Hence, at the end of the execution of function f4, it is noted that variable
V10 and V11 are dependent on the variable V1. This information is used for
later executions. Now, let us consider the same function such that variable V1 =
�falsep ‖ falses�. In this case, the line 7 is not executed. However, we know from
the prior execution that V10 is dependent on V1 based on DT at the time of
the split. Hence, V10 is split at the end of the execution and its private address
contains the value copied from its public address, i.e. V10 = �truep ‖ trues�.
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Whenever, a variable is split or updated due to information flows, the changes
to the dependency graph are noted into the learning mechanism. Therefore, it is
represented as part of the rules [VARIABLE UPGRADE] and [VARIABLE UPDATED].
These rules stipulate the various necessary steps when a new secret value flows
into a public variable and split variable respectively. In these rules, the v.root
represents the parent root node set the variable v and v.root �x implies that
the node of the variable x becomes a child node to all the root nodes of variable
v. The rules show that a join operation is performed to the persistent set of
learnt data along with a successful variable update or split.

[VARIABLE UPDATED]

f ∈ DGf ;x ∈ DG;x → x′;ACw(f, x) = true; dt = {}
xs ← A[x′];x � f ;L �� (f, x, dt)

f ∈ DGf ;x → x′;ACw(f, x) = true; dt �= {}
xs ← A[x′]; ∀(v ∈ dt)v.root �x;L �� (f, x, dt)

f ∈ DGf ;x → x′;ACw(f, x) = true;x ∈ DGroot; dt �= {};

State(x) = inactive

f ∈ DGf ;x → x′;ACw(f, x) = true; dt �= {};x ∈ DGd

delete x ∈ DGd

f ∈ DGf ;x → x′;ACw(f, x) = false;

xp ← A[x′];
f�∈DGf ;

xp ← A[x′];

[VARIABLE UPGRADE]

f ∈ DGf ; dt �= {};S(y); y�∈DG

A[ys]; y ← 
A[y]||A[ys]�; (∀v ∈ dt){v.root �y};L �� (f, y, dt);

The rationale and the necessity for this split becomes evident in the execution
of the function f6. The Table 2 illustrates the execution of function f6 if variable
V10 was split or not. It must be noted that f6 has read access to V1 according
to the policy definition.

In the Table 2 we show the execution of the function f6 after the function f4
has been executed. There are two columns where we compare ASD with ASD-
DG post learning has been completed. The two cases where V1 = trues and
V1 = falses have been considered in this example.

The first major difference is caused because of V10 being split for both val-
ues of V1 in case of ASD-DG post learning. Since the variable split is known, the
DT remains the same for both cases. However, this is not the case in simple ASD.
In the first case, the variable is added to the DT. The rule [SELF-SUFFICIENT
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CALLED] [12] is invoked because f5 is also a self-sufficient function. Since f5 does
not have access to the V11, the function call is skipped. This is in line with the
dynamic policy enforcement where the secret addresses are not allowed to flow
into the public addresses.

[SELF-SUFFICIENT CALLED]

{ S(f); f ∈ DGf ; dt = {x};ACr(f, x) = true; }
s(f) = secret; dt = {x};

{ S(f); f ∈ DGf ; dt = {x};ACr(f, x) = false;FL = i }
(Skip S(f))

{ S(f); f ∈ DGf ; dt = {x};ACr(f, x) = false;FL = e }
s(f) = public;x → A[x]; dt = {};

{ S(f); dt = {}; }
S(f);

The use of the dependency graph is to compensate for the deficiencies caused
by the rule [SELF-SUFFICIENT CALLED] in ASD. This rule is necessary to pre-
vent the secret from being leaked. However, it still can cause leak on whether
the variable was split. This occurs when a self-sufficient function fails to split a
global variable because of that branch not being executed and this global vari-
able being used in a subsequent self-sufficient function as a conditional in an
implicit flow. In the Table 2, V10 being split affects the DT in line 1, thereby
allowing/denying the execution of f5. While such a leak is only caused under
specific circumstances, and the actual secret value is never leaked, it nevertheless
undesirable and makes the model non-adherent to TINI. We aim to solve this
issue through learning. Adding the dependency graph approach, the model grad-
ually closes up its leaks and will eventually become adherent to TINI. Further,

Table 2. ASD-DG working

function f6() ASD ASD-DG post-learning

First case [V1=trues]

1. {if(V10 == 1) true, DT={V10} true, DT={V10}
2. {f5(V10);} f5(x); f5(x);

3. else{f5(0);}
4. }}
Second case [V1=falses]

1. {if(V10 == 1) false; DT={} false; DT={V10}
2. {f5(V10);}
3. else{f5(0);} DT={}; f5(0); DT={V10};f5(0);
4. }}
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[DG LEARNING - FUNCTION ENDED]

exec(f) → completed;L(f) �= ∅

(∀r ∈ L(f)){([VARIABLE UPGRADE]/[VARIABLE UPDATED])(r);}

since the dependency graph keeps track of the variables for every run, it can also
observe dependencies caused by the use of eval, every case of a switch case and
other information flows gradually over a period of time. Hence, the dependency
graph and how it keeps track of various information flow is very important to
the model.

The various information learnt is used by the rule [DG LEARNING -
FUNCTION ENDED]. At the end of the execution of the function f, if there is any
past secret information flow, additional IFC actions are performed. The learnt
data contains a set of function, dependency tracker and the dependent variable.
If the dependent variables have not already been split, a variable upgrade is per-
formed based on the dependency tracker. Else, a variable update is performed.

[Proof for TINI]

Let,

Functions

(
fh
⋃

fl ≡
∀f∈F⋃

f

)

Public output functions (fp ∈ fl)

Secret input xin.s

Proof:

(∀f ∈ fh) : {f ← ACr(f, x) = true; } (∀f ∈ fl) : {f ← ACr(f, x) = false; }
(∀f ∈ fh) : {f ← ACw(f, x) = true; } (∀f ∈ fl) : {f ← ACw(f, x) = false; }

A[xin.s] := A[xp
in.s] A[xin.s] : �= A[xs

in.s]

{ f(xin.s) | f ∈ fl; }
f ← Vref (xin.s); DG(x)��←A[xin.s]

{ f(xin.s) | f ∈ fh; }
f ← Vref (xs

in.s); DG(x) ← A[xs
in.s]

Sfp ← xin.s;FL = e

fp ← A[xin.s];Sfp ;

Sfp ← xin.s;FL = i

(Skip Sfp)

{ f(xin.s), y�∈DG, y ← x | f ∈ fh; }
split(y); f ← Vref (ys); DG(y)←A[ys];

∴
{
Sfp(xs

in.s) ≡ Sfp((x′s
in.s)

∣∣ xin.s ≡ x′
in.s

}
However, xin.s ≡ x′

in.s iff ∀x ∈ s, if {x ∈ DG} =⇒ {x′ ∈ DG}
=⇒ Sfp(xs

in.s) � sSfp((x′s
in.s) iff ∀x ∈ s, if {x ∈ DG} =⇒ {x′ ∈ DG}
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4.1 Eventual TINI

It must be noted that the premise of our model starts with not being adherent
to TINI initially. This is because, ASD could leak state information of a variable
at the end of the execution of a function. This leak does not mean that secret
values would be printed but that it is possible to infer whether a public variable
has become a dependent node or not.

The [Proof for TINI] shows that ASD-DG is only adherent to TINI if
the same variables are split at the end of the execution of a given function for
different values of the secret. The reinforcement learning model solves this issue
by collecting information on the states of the various variables and simulating
these states at the end of each function. Hence, over time, all execution paths
would be covered and even dynamic flows like eval operations can be handled
to a certain extent. Since the learning model would eventually ensure that the
states of the variables would eventually be the same, the ASD-DG can be said
to be adherent to “eventual TINI”.

5 Conclusion

There is a clear and urgent need to address the various information leaks in the
context of JavaScript. The dynamic nature of the language makes the standard
approaches insufficient or inefficient. In this case, starting with a practical effi-
cient approach and making it adhere to more restrictive security guarantees over
time is more appropriate. We have proposed one such model and take the novel
approach of using learning in the runtime environment to achieve our goals of
“eventual TINI”. In this process, we have also proposed a proper change to the
architecture of ASD to become more efficient. Taking ASD as the base has also
allowes us to account for fine-grained function level policies. We hence, propose
this model as a viable IFC model for the modern web-browser. The future work
of the model is to work towards a complete web-browser implementation of the
proposed model.
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Abstract. Cloud computing has undergone rapid expansion through-
out the last decade. Many companies and organizations have made the
transition from traditional data centers to the cloud due to its flexibility
and lower cost. However, traditional data centers are still being relied
upon by those who are less certain about the security of cloud. This
problem is highlighted by the fact that there only exist limited efforts on
threat modeling for cloud data centers. In this paper, we conduct com-
prehensive threat modeling exercises based on two representative cloud
infrastructures using several popular threat modeling methods, including
attack surface, attack trees, attack graphs, and security metrics based
on attack trees and attack graphs, respectively. Those threat modeling
efforts provide cloud providers practical lessons and means toward bet-
ter evaluating, understanding, and improving their cloud infrastructures.
Our results may also imbed more confidence in potential cloud tenants
by providing them a clearer picture about potential threats in cloud
infrastructures and corresponding solutions.

1 Introduction

Cloud computing has emerged as an attractive option for many enterprises,
government agencies and organizations due to its flexibility and reduced costs.
The shifting to this new paradigm is, however, still impeded by various security
concerns, which are exacerbated by the lack of a clear understanding of security
threats facing cloud data centers. Unlike traditional computer networks, cloud
data centers usually exhibit some unique characteristics, such as the presence of
significant redundancy in terms of hardware configurations, and the co-existence
of both physical and virtual components. Such unique characteristics imply the
need for modeling and measuring security threats specifically for cloud data
centers.
c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 302–319, 2017.
DOI: 10.1007/978-3-319-51966-1 20
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On the other hand, modeling and measuring security threats for cloud data
centers is a challenging task due to the lack of public accesses to the detailed
information regarding hardware and software configurations deployed in real
cloud data centers. Existing work mainly focus on high level frameworks for
risk and impact assessment [19], guidelines or frameworks for cloud security
metrics [2,14], and specific vulnerabilities or threats in the cloud [6,21] (a more
detailed review of related work will be given in Sect. 6). However, to the best
of our knowledge, there does not exist a concrete study on threat modeling
and measuring for cloud data centers using realistic cloud infrastructures and
well established models. Although there already exist many such threat modeling
models, such as attack surface, attack tree, attack graph, and their corresponding
security metrics, a systematic application of those models to concrete cloud data
center infrastructures is yet to be seen.

In this paper, we present a comprehensive study on modeling and measur-
ing threats in cloud data center infrastructures. We first provide the basis for
our study as two representative cloud infrastructures, devised based on estab-
lished technologies of several major players on the cloud market, e.g., Amazon,
Microsoft, Google, Cisco, VMware, and OpenStack. We also provide details on
the hardware and software components used in the data center to manage the
cloud services. We then apply several popular threat modeling methods on such
cloud infrastructures, including attack surface, attack tree, attack graph, and
security metrics based on attack trees and attack graphs.

The main contribution of this paper is twofold. First, to the best of our
knowledge, this is the first comprehensive study of threat modeling based on
well established models and concrete cloud data center designs, which incorpo-
rate technologies used by major cloud providers on the market. Second, our study
provides answers to many practical questions, such as, How can cloud providers
gather and organize knowledge concerning the security of their cloud data center
and services? How can cloud providers examine the security of a cloud data cen-
ter at different abstraction levels? How can cloud providers measure the security
of their cloud data center before and after applying a hardening option? Those
threat modeling efforts can not only provide cloud providers practical lessons
and means for understanding and improving their cloud infrastructures, but
may also imbed more confidence in cloud tenants by providing them a clearer
picture about potential threats in cloud infrastructures.

The remainder of this paper is organized as follows. Section 2 provides the
background knowledge on threat modeling and security metrics needed later in
our work. In Sect. 3, the cloud data center architecture is presented. In Sect. 4,
the threat modeling is explained in details. In Sect. 5, security metrics are applied
to measure the level of security. Related work are reviewed in Sect. 6, and the
paper concluded in Sect. 7.
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2 Background

The following briefly reviews the threat models and security metrics that are
applied in this paper, including attack surface, attack tree, attack graph, attack
tree-based metric (ATM), and Bayesian network (BN)-based metric.

Fig. 1. Attack tree (left) and attack graph (right)

– Attack surface: Originally proposed as a metric for software security, attack
surface captures software components that may lead to potential vulnerabil-
ities. These may include entry and exit points (i.e., methods in a software
program that either take user inputs or generate outputs), communication
channels (e.g., TCP or UDP), and untrusted data items (e.g., configuration
files or registry keys read by the software) [15]. Due to the complexity of
examining source code, most existing work applies the concept in a less for-
mal manner. For example, between an end user, the cloud provider, and cloud
services, six attack surfaces can be composed [11].

– Attack tree: While attack surface focuses on what may provide attackers ini-
tial privileges or accesses to a system, attack trees demonstrate the possible
attack paths which may be followed by the attacker to further infiltrate the
system [20]. The left-hand side of Fig. 1 shows an attack tree example in which
the attacker’s goal is to get accesses to the database. In the example, there are
two ways to reach the root node (the goal). First, the attacker can follow the
left and middle paths at the same time (due to the and label), or the attacker
can follow the right path for reaching the root node.

– Attack graph: As a more fine-grained model, an attack graph depicts all pos-
sible attack steps and their causal relationships [22]. In the right-hand side of
Fig. 1, each triplet inside a rectangle indicates an exploit <service vulnerabil-
ity, source host, destination host>, and each pair in plaintext indicates a pre-
or post-condition <condition, host> of the exploits. The logic relationships
between the nodes are represented based on the assumption that any exploit
can be executed if and only if all of its pre-conditions are already satisfied
(e.g., In Fig. 1, the first exploit requires all three pre-conditions to be satis-
fied), whereas any condition may be satisfied by one exploit for which the
former is a post-condition.
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– The above threat models are all qualitative in nature. The attack tree-based
metric (ATM) quantifies the threat in an attack tree using the concept of
probability of success [8]. The probability of each node in the attack tree is
typically determined based on historical data, expert opinions, or both. In
Fig. 1, a number above the label represents the overall probability of suc-
cess, and a number below the label represents the probability of each node
alone. The probability on the root node indicates the most risky path, which
should be prioritized in security hardening. The BN-based metric [9,24] can
be applied to attack graphs to calculate the probability for an average attacker
to compromise a critical asset. The conditional probabilities that an exploit
can be executed given its pre-conditions are all satisfied can usually be esti-
mated based on standard vulnerability scores (e.g., the CVSS scores [16]). In
Fig. 1, the probability inside a rectangle is the CVSS score divided by 10, and
each underlined number represents the probability for successfully executing
that exploit. In this example, the attack goal has a probability of 0.54, and if
we change the ftp service on host2 and suppose the new probability becomes
0.4, then the new attack probability for the goal will become 0.228, indicating
increased security.

3 Devising Cloud Data Center Infrastructures

In this section, we devise two cloud data center infrastructures that will be used
for threat modeling in Sects. 4 and 5. To make our infrastructures more repre-
sentative, we have base our infrastructures upon concepts and ideas borrowed
from major players on the market, including Cisco, VMware, and OpenStack, as
follows.

– Cisco presents a cloud data center design for both public and private clouds
[4], which is divided into multiple layers with suggested hardware for the
physical network and software used to virtualize the resources. We borrow
the multi-layer concept and some hardware components, including Carrier
Routing System (CRS), Nexus (7000,5000,2000), Catalyst 6500, and MDS
9000.

– VMware vSphere suggests the hardware and software components to run a
private cloud data center [12]. They also tag the port numbers used to connect
services together. We borrow the concepts of Authentication Server, Domain
Name System (DNS), and Storage Area Network (SAN) and synthesize these
to represent the main functionality of some hardware components in our cloud
infrastructures.

– OpenStack is one of the most popular open source cloud operating
systems [17]. We borrow following components of OpenStack: Dashboard,
Nova, Neutron, Keystone, Cinder, Swift, Glance, and Ceilometer [17].

Table 1 compares the main concepts used in our infrastructures to the major
cloud providers in the market, including Amazon [5], Microsoft [23], and Google
[3] (some of those concepts will be discussed later in this section).
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Table 1. Concepts used by major cloud providers

AWS Microsoft azure Google compute

Multiple layers × × ×
Authentication sever × ×
Domain Name System × × ×
One service in each cluster × × ×
Multi-tier × × ×

We discuss two different infrastructures since OpenStack components can
either run centrally on a single server or be distributed to multiple servers [17].

Infrastructure 1. Figure 2 illustrates our first infrastructure. The physical net-
work provides accesses to both cloud users and cloud administrators. Cloud
administrators connect to the data center through firewalls (node 17) and
(node 19), an authentication server (host 18), and Nexus 7000 (node 20), which
is connected to the other part of the network. For cloud users, Cisco’s multi-layer
concept is used [4] as follows.

– In Layer 1, a CRS (node 1) is used to connect the cloud to the internet,
which then connects to a firewall (node 2, ASA 5500-X Series) while simul-
taneously being connected to two different types of servers (authentication
servers (host 3) as well as DNS and Neutron Servers (node 4)). Those servers
provide services to the cloud tenants and end users. The servers then connect
to Cisco Nexus 7000 with Catalyst 6500 (node 5) to route the requests to
destination machines.

– In Layer 2, a firewall (node 6, ASA 5500-X Series) connects the first layer to
this layer through Nexus 5000 (node 7). The Nexus 5000 is used to connect rack
servers through Nexus 2000, which is used to connect servers inside each rack
at the computing level (hosts 8, 9, 10, 11, and 12). The Nexus 5000 (node 7)
then connects to the next layer.

– In Layer 3, another Nexus 7000 (node 13) connects the previous layer to the
storage. A firewall (node 14, ASA 5500-X Series) connects the Nexus 7000
(node 13) and MDS 9000 (node 16).

The following outlines how the cloud works. OpenStack components run on
the authentication servers among which one (host 3) is designated for cloud ten-
ants, and another (host 18) for cloud administrators. The first runs following
components: Dashboard, Nova, Neutron, Keystone, Cinder, Swift, Glance, and
MySql. The second runs the same components, but additionally runs Ceilometer
for a billing system. The DNS server (node 4) runs a Neutron component that
provides the address of the machine running a requested service. At the comput-
ing level (hosts 8, 9, 10, 11, and 12), all physical servers run four components:
Hypervisor, Nova to host and manage VMs, Neutron agent to connect VMs to
the network, and Ceilometer agent to calculate the usage. At the computing
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level, each physical server cluster runs the same VMs service, e.g., all http VMs
run on the http server cluster, and the same occurs for application VMs, ftp
VMs, smtp VMs, and database VMs. Finally, all physical machines and VMs
run ssh for maintenance.

Fig. 2. Cloud data center infrastructure 1

Infrastructure 2. The second infrastructure is illustrated in Fig. 3. This
infrastructure has a similar physical network as the previous, with the addition
of new machines that separate OpenStack components, which are installed on
the authentication servers for cloud tenants in the previous infrastructure, into
many different machines. These new machines are Neutron servers (node 25),
controller servers (node 36), and network nodes (node 34). In addition, the
authentication server (host 23) for cloud tenants will run a Dashboard com-
ponent to access and manage the VMs related to the tenant user. Moreover,
Neutron server (node 25) serves to control the virtual network and connects to
the controller node (node 36), which runs Nova API, Neutron API, Keystone,
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Glance, Swift, Cinder, MySql, and any component needed to manage and control
the cloud. The last node is a network node (node 34) which translate between the
virtual IPs and the physical IPs to grant accesses to services running on VMs.
For example, if a cloud tenant wishes to access their VMs, they will first need to
connect to the Dashboard. Next, the Neutron server will send the authentication
request to the keystone service on the Controller node. If the user possesses the
privilege to access the VM, the controller will send a request to the network
node to obtain the address for the VMs, and will then send the address to the
Neutron server to connect the user to their VMs.

4 Threat Modeling

This section conducts threat modeling on the two cloud data center infrastruc-
tures that are just introduced. Since we have designed those infrastructures to
be representative enough, we expect our threat models to bring useful insights
to administrators of cloud infrastructures in general.

4.1 Attack Surface

In this section, we apply the attack surface concept at the resource level.
Gruschka & Jensen categorize attack surfaces into those between user, service,
and cloud provider [11]. The same classes are used in our discussions, with the
addition of surfaces belonging to the same class. Also, we consider the service
class used by Gruschka & Jensen [11] as the intermediate layer between users and
the cloud provider in the sense that, if a user wishes to attack a cloud provider,
he/she must pass through an attack surface consisting of services. In addition,
we focus on entry and exit points [15] which indicate the means through which
the attack starts and those through which data is leaked out, respectively.

In Figs. 2 and 3 it can be observed that there are three types of attack surfaces
in a cloud data center. First, there are attack surfaces related to the physical
network, involving hardware and software components, such as switches, routers,
servers, applications, and operating systems. Second, there are virtualization-
related attack surfaces, such as hypervisors and virtual switches. Last, there
are cloud operating systems, such as OpenStack components (Glance, Neutron,
Nova, Ceilometer, and Keystone). The first type of attack surface is similar to
those in traditional networks, but components related to cloud running on top of
the physical network must also be considered. On the other hand, virtualization
and cloud operating systems-related attack surfaces are unique to cloud and
their analysis will pose new challenges.

Attack Surface w.r.t. Users. We consider two types of users. First, the normal
user using the cloud service may aim to attack either the cloud tenant who owns
that service, another cloud tenant or its users using the same cloud, or the cloud
provider. Second, the cloud tenant may aim to attack another cloud tenant and
its users, or the cloud provider. Various surfaces can be utilized by users to
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attack the cloud, including the hypervisor, VMs, APIs and web services, and
OpenStack components (e.g., Horizon, Keystone, Neutron, Glance, and Nova).

Example 1. A normal user wants to attack a hypervisor on the database VM server
(host 8) to steal information about all VMs running on that machine. First, the
entry point to start this attack is the database VM on the hypervisor. After he/she
get initial accesses to the database VM, that VM become an exit point to attack the
hypervisor. Finally, with accesses to the hypervisor, e.g., through exploiting CVE-
2013-4344 [1], the attacker can get data related to all VMs run on top of this hyper-
visor and the hypervisor thus becomes an exit point. Next consider a cloud tenant
who wants to attack another tenant hosted on the same physical machine. First,
the attacker can use his/her VM as entry point to get a privilege to the hypervisor,
e.g., by applying CVE-2012-3515 [1], then the attacker will use the hypervisor as
an entry point to get accesses to the target VM.

Fig. 3. Cloud data center infrastructure 2
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Fig. 4. Attack tree

Attack Surface w.r.t. Cloud Providers. A cloud provider here refers to an opera-
tor who has privileges to access certain components (e.g., switches, firewall, and
SAN) for maintenance and management purposes. This type of attackers may
use his/her accesses to resources to attack the cloud data center. All three types
of attack surfaces explained before can be used by such an attacker.

Example 2. An operator who has accesses to Nexus 7000 (node 13) for manage-
ment wants to get accesses to sensitive data related to a tenant. First, he/she
can use the Nexus 7000 as an entry point to obtain a root privilege on Nexus
7000, and then use this machine as an exit point to start another attack to get
data from the storage device (node 16).

4.2 Attack Tree

The previous section shows how attack surface may capture the initial attack
attempts. To further study what may happen once an attacker gains initial
privileges, we will need attack trees, which represent high level attack paths
leading attackers to their goals. Figure 4 shows an attack tree for our cloud data
center infrastructures. It is assumed that the root node, or goal node, is a storage
device in the cloud that is susceptible to attacks by either a malicious user, a
cloud tenant, or a cloud operator. Eight paths in Fig. 4 represent the possible
ways to reach such a target. Each path represents a capability level of users who
can follow the path; not all paths can be used by all users. For example, some
paths can be followed by the cloud operator but cannot be accessed by normal
users or cloud tenants. In what follows, the paths and corresponding users will
be explained in further details.

– Path 1: This attack can be executed by a normal user to obtain data from
the storage device (node 16). The user must first establish a connection to the
http VM server (host 11) and must then acquire the root privilege on this VM.
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The attacker can then connect to the application VM server (host 10) provided
that they have obtained root privilege on that VM. After the user acquires
access to the application VM, he/she may create a connection to the database
VM server (host 8). From this point, the user can attack the database VM to
obtain root privilege on that VM. Finally, the attacker can launch an attack
on the hypervisor to gain access to other database VMs (host 8) running on
the same physical machine and obtain data related to all database VMs stored
on the storage device (node 16).

– Path 2: The normal user can use this path to attack the cloud storage device
(node 38). The attacker begins the attack by surpassing the firewall (node 22)
to obtain privilege on OpenStack (node 36) in order to gain a direct connection
to the database VM server (host 28). The remainder of this attack is similar
to that of path 1, and serves to gain access to the hypervisor and the storage
device.

– Path 3: This path can be used by a cloud tenant user who has user access
to the http VM server (host 11) and wishes to access ftp files stored on
the storage device (nose 16). First, the cloud tenant user must obtain root
privilege on the http VM server (host 11). Then, he/she will need to obtain
root privilege on the application VM server (host 10) to start a connection to
the ftp VM server (host 9). After this, the user will obtain root privilege on
this VM and get the ftp files related to this VM. In addition, the user can
attack the hypervisor to obtain the ftp files related to other VMs running on
top of this hypervisor.

– Path 4: Cloud tenants who do not already possess ftp VM servers running on
the cloud can use this path to obtain data from the storage device (node 16)
through the ftp VM server (host 9). Cloud tenants on this path will use Open-
Stack components (host 3) to gain privileges to access the ftp VM (host 9)
belonging to another cloud tenant. In this situation, the attacker can obtain all
files belonging to this VM. Furthermore, the attacker may attack the hyper-
visor to gain access to other ftp VMs running on the same physical machine.

– Path 5: Cloud operators with access to the admin user authentication server
(host 18) can use this path by obtaining root access to the authentication
server. They can then use this device to obtain root access on the SAN device
(node 16) to control the data stored on the storage device.

– Path 6: This path can be used by a cloud operator who has access to a
physical machine (e.g., a switch, firewall, or other type of machines) to attack
the storage device. Suppose the attacker has user access to a switch device
(node 13) for maintaining this device. The attacker can then obtain root access
on this device as well as root access to a firewall device (node 14) between the
switch device and the SAN (node 16). These two accesses may allow him/her
to create a connection to the SAN device and subsequently attack the SAN
in order to access the stored data.

– Path 7: This path may be used by a third party cloud provider who has access
to the authentication server (host 18) of an administrator. The user must
obtain root access on the authentication server and must then gain privilege
on the VM image storage (host 18) and (node 16). In this case, the user may
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use this privilege to modify or change the VM images stored on Glance. This
new image will have a backdoor that can be used by the attacker to gain access
to all VMs with this image.

– Path 8: This path can be used by either a cloud tenant or a normal user.
The goal for these attackers is to control the data belonging to other cloud
tenants on the cloud. The attacker must first have access to the http VM
sever (host 31) and must gain access to the Host Operating System (HOS)
(host 31). By gaining access to the HOS, the attacker can obtain access to
all VMs running on this machine. The attacker may then gain access to all
application VMs (host 30) connected to all http VMs to which they have
access. Subsequently, the attacker gains access to the application VMs which
may run on different physical machines; the attacker may then acquire access
over all HOS related to those VMs (host 30). The attacker can then gain root
access to the database VM server (host 28) in order to obtain the data stored
on the storage device. The attacker may also gain access to all HOS running
database VMs (host 28).

4.3 Attack Graph

In the previous section, the attack tree shows how an attacker may follow an
attack path to reach the goal. However, this is done at a higher abstraction level
without details about specific vulnerabilities. We now construct attack graphs
to represent specific exploits of vulnerabilities that can be use to reach the goal.
Although we can apply the standard attack graph concept designed for tradi-
tional networks, special consideration must be given to the virtualization level,
which is unique to cloud, and the fact that machines or VMs may have similar
or identical configurations.

We construct our attack scenarios based on real vulnerabilities related to
hardware and software components used in our infrastructures as listed in the
National Vulnerability Database (NVD) [1]. In our attack graphs, the Common
Vulnerability Scoring System (CVSS) [16] scores retrieved from the NVD are
depicted inside each node after dividing it by 10 to obtain a probability value
between 0 to 1, which is later used in the BN-based metric. An attack graph
may be created for different types of users but we will focus on the normal user
due to space limitations.

Figures 5 and 6 show two attack graphs for the data center infrastructures
depicted in Figs. 2 and 3, respectively. It is assumed that the attacker has access
to a cloud tenant’s services. The main goal for the attacker is to steal data
from the storage. The user must have access to the http VM as well as the
application VM and database VM before reaching the goal due to the multi-tier
infrastructure. The following services are assumed to be used in the data centers.

– Tectia Server version 5.2.3, for ssh running in all VMs.
– Apache http server running on http VM.
– Oracle version 10.1.0.2 installed on the application VM.
– Oracle version 10.2.1 on the database VM.
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Fig. 5. Attack graph for Fig. 2 Fig. 6. Attack graph for Fig. 3

– Xen version 4.3.0 is running as a hypervisor to control VMs on physical
machines.

Example 3. Figure 5 shows an attack graph corresponding to path 1 in the afore-
mentioned attack tree. Between five to seven vulnerabilities are required to reach
the goal. Specifically, five vulnerabilities are required if we assume the ssh vul-
nerability will be the same in the http server VM, application server VM, and
database server VM, whereas seven vulnerabilities are required if the ssh vulner-
ability is not used to reach the goal. We divide the attack graph to four stages
and in each stage the attacker will gain a different level of privileges.

– Stage 1: A vulnerability in the http server VM (host 11) (CVE-2007-5156)
is employed by the attacker to gain user access by uploading and executing
arbitrary code containing .php. in the file extension as well as unknown exten-
sions. Then, another vulnerability on the same VM (CVE-2007-1741) is used
to gain root privilege by renaming the directory or performing symlink. A
ssh (host 11) vulnerability (CVE-2007-5156) can also be used to gain root
privilege on the same VM.

– Stage 2: The attacker now can connect to the application server (host 10).
Then, by using a vulnerability related to the application sever VM (CVE-
2006-0586), the attacker is allowed to gain the user privilege by executing
arbitrary sql commands through multiple parameters. To gain root privilege
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on this VM, the attacker can apply this vulnerability (CVE-2004-1774) or by
using an ssh (host 10) vulnerability (CVE-2007-5616), and at this point the
attacker can start a connection to the database server VM.

– Stage 3: The attacker uses a vulnerability related to the database server
(host 8) VM (CVE-2005-0297) to gain user access. Then, on this VM he/she
can gain root access by using vulnerability (CVE-2007-1442) or an ssh (host 8)
vulnerability (CVE-2007-5616).

– Stage 4: The attacker can then obtain data related to this database VM
(host 8), and he/she may obtain even more data from another VM running on
the same physical machine by gaining access to a hypervisor through exploiting
(CVE-2013-4344).

Example 4. The attack graph in Fig. 6 is related to the infrastructure shown in
Fig. 3, where OpenStack components run on more than one physical machine.
The goal of this attack is to gain access to date storage in three stages. This
attack graph corresponds to path 2 in the attack tree.

– Stage 1: A vulnerability in the firewall (node 22) (CVE-2011-3298) is
employed by the attacker to bypass the firewall in order to connect to the
Neutron server (node 25). The attacker can then use the Neutron vulnerabil-
ity (CVE-2013-6433) to gain privileges with which he/she can use vulnerabil-
ity (CVE-2013-6391) to generate EC2 token API in order to gain access to a
database VM (host 28).

– Stage 2: After the attacker obtains access to the database VM (host 28),
he/she used the database vulnerability (CVE-2007-1442) to gain root privilege
on the same VM. This allows the attacker to obtain data related to this VM.

– Stage 3: To obtain data from another database on the same physical machine,
the attacker used the vulnerability (CVE-2013-4344) to gain access to the
hypervisor running on this physical machine such that he/she can access all
VMs running on this machine and view the data related to these VMs.

By constructing the attack surface, attack tree, and attack graphs for the
cloud data center infrastructures, we have demonstrated how each model may
capture potential threats at a different abstraction layer. Nonetheless, all those
models are qualitative in nature, and we will apply security metrics to measure
the threats in the coming section.

5 Cloud Security Metrics Based on ATM and BN

In this section, we apply two security metrics based on the attack tree and attack
graphs, respectively, to further quantify the threats modeled in the previous
section.

5.1 Attack Tree Metric

In this section, an attack tree metric (ATM) will be applied based on the attack
tree described in Sect. 4.2. In Fig. 7, all nodes inside the same path are considered
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as having AND relationships, whereas an OR relationship is assumed between
different paths unless if an AND relationship is explicitly stated. Based on such
assumptions, the corresponding equations are applied to calculate the proba-
bilities. The highest probability is assigned to the root node after applying the
metric. In Fig. 7, between the two probabilities in each node, the probability with
(+) represents the average CVSS values and the other probability represents the
metric result.

In Fig. 7, it can be observed that path 5 and 6 are the least secure paths in the
attack tree. Those two paths can be followed by a cloud operator to launch an
insider attack to steal data from the storage device. This metric can also be used
to verify whether or not adding a new service or disabling existing services can
increase security and by how much. As shown in Fig. 7, the probability to reach
n8 is 0.45; as such, if the cloud provider wishes to decide whether to increase
security levels in that node, he/she can use the metric before and after applying
the changes. For example, suppose the cloud provider wishes to add new rules
to a firewall to prevent attacks from n9 and n11 to n8. After re-applying the
ATM metric, the probability on n8 becomes 0.348, showing increased security.
Applying the ATM on other potential changes may help the cloud provider to
make the right decisions in hardening the cloud.

Fig. 7. Attack tree metric

5.2 Bayesian Network Metric

In this section, the BN-based security metric [9,24] will be applied to the attack
graph shown in Fig. 5 to measure the threat and also the effect of certain changes
made to the infrastructure. In particular, we show how the level of redundancy
and diversity may affect the security of the cloud infrastructure. For redundancy,
the ssh service running on some of the servers will be disabled to see the effect
on security. As to diversity, we assume the ssh service may be diversified with
other software, e.g., OpenSSH version 4.3, denoted as ssh2, with a vulnerability
CVE-2009-290 and a CVSS score of 6.9 [1].
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Table 2 shows how security is affected by reducing redundancy and increas-
ing diversity through disabling or diversifying some of the ssh instances in the
infrastructure. In the left-hand side table, the first row shows that the probabil-
ity for an attacker to reach the goal is 0.174 in the original configuration, and
the remaining rows show the same probability after disabling one or more ssh
instances on the three servers, e.g., the probability after disabling ssh on the
http server is reduced to 0.121, which corresponds to the most secure option by
disabling one ssh instance, and the lowest probability after disabling two and
three ssh instances is 0.094 and 0.074, respectively.

The middle and right-hand side of Table 2 show the effect of diversifying the
ssh instances. In the middle figure, we can observe that, after we replace the ssh
service on app and DB servers with ssh2, the probability for reaching the goal
decreases from 0.174 to 0.171, which indicates a slight improvement in security.
The next three rows of the table show that the same effect remains when one
of the ssh instances is disabled. The last three rows show the simple fact that,
when there is only one ssh instance left, the diversification effort has not effect.

In the right-hand side of Table 2, we change the ssh instance on the http
server instead of the app server, as in the above case, in order to see whether
different diversification options make any difference to security. We can see the
probability decreases in most cases (except the fourth row), which indicates a
slightly more effective option than the previous one. Overall, the best option
in terms of diversification without disabling any service instance is given in the
first row in the right table, with a probability 0.17, and the best option for
disabling one service instance is given in the fourth row of the middle table with
a probability 0.119 (disabling two instances always yields 0.094). Obviously, more
options may be evaluated similarly using the BN-based metric in order to find
the best option for making the cloud data center infrastructure more secure.

Table 2. The BN-based metric results for the attack graph shown in Fig. 5

〈user,Xen〉
http app DB T

ssh T

T T T 0.174
T F T 0.136
T T F 0.136
F T T 0.121
T F F 0.106
F F T 0.094
F T F 0.094
F F F 0.074

〈user,Xen〉
http app DB T
ssh1 ssh2 ssh2 T

T T T 0.171
T F T 0.135
T T F 0.135
F T T 0.119
T F F 0.106
F F T 0.094
F T F 0.094
F F F 0.074

〈user,Xen〉
http app DB T
ssh2 ssh1 ssh2 T

T T T 0.17
T F T 0.133
T T F 0.134
F T T 0.12
T F F 0.105
F F T 0.094
F T F 0.094
F F F 0.074

6 Related Work

Cloud environments are usually subject to many security threats some of which
exploit existing vulnerabilities related to the cloud [10]. There only exist lim-
ited efforts on threat modeling for cloud infrastructures. Ingalsbe et al. present
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a threat model by classifying all tenant-related components in three categories
(Actor, End Points, and Infrastructure) [13] but without concrete use cases.
Gruschka & Jensen identify three main entities (User, Cloud provider, and Ser-
vice) and the attack surfaces between those entities [11] but again without spe-
cific details about each attack surface. We borrow this classification in devising
our threat models. The original attack surface concept [15] is intended to mea-
sure the security of a software system focusing on identifying entry/exit points,
communication channels, and untrusted data items from the source code. Like
most existing work, our work applies those concepts but at a higher abstraction
level.

Attack tree is a well known threat model which can be used for many useful
analyses, such as analyzing the relative cost of attacks and the impact of one
or more attack vectors [20]. Attack trees can also be used in security hardening
to determine the best options to increase security within a budget [7]. Using
attack trees can help to understand what kind of attackers may follow an attack
tree path [18,20]. Attack graphs can be automatically generated by modeling
the network and vulnerabilities, and many useful analyses may be performed
using attack graphs [22]. We borrow the concepts of attack trees and attack
graphs but apply them to cloud data center infrastructures that we have devised.
There exist many research work on extending attack trees and attack graphs to
security metrics. A probabilistic metric is applied to attack graphs to obtain an
overall attack likelihood for the network [24]. Edge et al. presented protection
trees [8] which are similar to attack trees but contain information on how the
system can be secured, and our work borrows part of this work to apply the
attack tree-based metric. A BN-based security metric applies attack graphs to
measure the security level of a network [9]. The metric converts the CVSS scores
of vulnerabilities into attack probabilities and then obtain the overall attack
likelihood for reaching critical assets. We apply this metric to our cloud data
center infrastructures in this paper. The National Institute of Standards and
Technology (NIST) underline the importance of security measuring and metrics
for cloud providers by providing high level definitions and requirements but no
concrete methodologies [2]. Luna et al. propose a framework with basic building
blocks for cloud security metrics [14]. We loosely follow the framework in this
paper.

7 Conclusion

In this paper, we have conducted threat modeling and measuring for cloud data
center infrastructures. First, we have shown two cloud data center infrastructures
which are fictitious but represent many existing technologies adopted at real
cloud data centers by major cloud providers. Three threat models were then
applied to those infrastructures, namely, the attack surface, attack trees, and
attack graphs, which model potential threats from different viewpoints and at
different abstraction levels. We have also applied security metrics based on attack
trees and attack graphs, respectively, to quantify the threats. This work will
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benefit cloud providers in demonstrating how threat models and metrics may
assist them in evaluating and improving the security of their clouds. Future
work will focus on extending the scale and scope of our existing efforts and
developing automated hardening algorithms for cloud data centers to generate
actionable knowledge from the threat modeling and measuring results. Another
future direction is to study how cloud data center infrastructure may be best
secured through simulations.
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10. Grobauer, B., Walloschek, T., Stöcker, E.: Understanding cloud computing vulner-
abilities. IEEE Secur. Priv. 9(2), 50–57 (2011)

11. Gruschka, N., Jensen, M.: Attack surfaces: a taxonomy for attacks on cloud ser-
vices. In: 2010 IEEE 3rd International Conference on Cloud Computing, pp. 276–
279, July 2010

12. Hany, M.: VMware VSphere in the Enterprise. http://www.hypervizor.com/diags/
HyperViZor-Diags-VMW-vS4-Enterprise-v1-0.pdf. Accessed 05 Feb 2015

http://www.nvd.org
http://www.nist.gov/itl/cloud/upload/RATAX-CloudServiceMetricsDescription-DRAFT-20141111.pdf
http://www.nist.gov/itl/cloud/upload/RATAX-CloudServiceMetricsDescription-DRAFT-20141111.pdf
http://www.rightscale.com/blog/cloud-industry-insights/google-compute-engine-performance-test-rightscale-and-apica
http://www.rightscale.com/blog/cloud-industry-insights/google-compute-engine-performance-test-rightscale-and-apica
http://www.cisco.com/web/strategy/docs/gov/CiscoCloudComputing_WP.pdf
http://www.cisco.com/web/strategy/docs/gov/CiscoCloudComputing_WP.pdf
https://aws.amazon.com/blogs/aws/building-three-tier-architectures-with-security-groups/
https://aws.amazon.com/blogs/aws/building-three-tier-architectures-with-security-groups/
http://www.hypervizor.com/diags/HyperViZor-Diags-VMW-vS4-Enterprise-v1-0.pdf
http://www.hypervizor.com/diags/HyperViZor-Diags-VMW-vS4-Enterprise-v1-0.pdf


Threat Modeling for Cloud Data Center Infrastructures 319

13. Ingalsbe, J.A., Shoemaker, D., Mead, N.R.: Threat modeling the cloud computing,
mobile device toting, consumerized enterprise-an overview of considerations. In:
AMCIS (2011)

14. Luna, J., Ghani, H., Germanus, D., Suri, N.: A security metrics framework for
the cloud. In: 2011 Proceedings of the International Conference on Security and
Cryptography (SECRYPT), pp. 245–250, July 2011

15. Manadhata, P., Wing, J.: An attack surface metric. IEEE Trans. Softw. Eng. 37(3),
371–386 (2011)

16. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE
Secur. Priv. 4(6), 85–89 (2006)

17. Openstack. Openstack Operations Guide. http://docs.openstack.org/openstack-
ops/content/openstack-ops preface.html. Accessed 27 Aug 2015

18. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from
authorized insiders. In: Vimercati, S.C., Syverson, P., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005). doi:10.
1007/11555827 14

19. Saripalli, P., Walters, B.: Quirc: a quantitative impact and risk assessment frame-
work for cloud security. In: 2010 IEEE 3rd International Conference on Cloud
Computing, pp. 280–288, July 2010

20. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
21. Shaikh, F.B., Haider, S.: Security threats in cloud computing. In: 2011 Interna-

tional Conference for Internet Technology and Secured Transactions (ICITST), pp.
214–219, December 2011

22. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on
Security and Privacy, pp. 273–284 (2002)

23. Squillace, R.: Azure infrastructure services implementation guidelines (2015).
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-
linux-infrastructure-service-guidelines/. Accessed 28 March 2016

24. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based
probabilistic security metric. In: Atluri, V. (ed.) DBSec 2008. LNCS, vol. 5094, pp.
283–296. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70567-3 22

http://docs.openstack.org/openstack-ops/content/openstack-ops_preface.html
http://docs.openstack.org/openstack-ops/content/openstack-ops_preface.html
http://dx.doi.org/10.1007/11555827_14
http://dx.doi.org/10.1007/11555827_14
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-infrastructure-service-guidelines/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-infrastructure-service-guidelines/
http://dx.doi.org/10.1007/978-3-540-70567-3_22


Strategies for Incorporating Delegation
into Attribute-Based Access Control (ABAC)

Daniel Servos(B) and Sylvia L. Osborn

The University of Western Ontario, London, ON N6A 5B7, Canada
dservos5@uwo.ca, sylvia@csd.uwo.ca

Abstract. Attribute-Based Access Control (ABAC) is an emerging
model of access control that has gained significant interest in both recent
academic literature and industry application. However, to date there
have been almost no attempts to incorporate the concept of dynamic del-
egation into ABAC. This work lays out a number of possible strategies
for incorporating delegation into existing ABAC models and discusses
the potential trade-offs associated with each strategy. Delegation strate-
gies are categorized into families that share a number of similar proper-
ties. It is our hope that this preliminary work will aid in future ABAC
based delegation research by identifying and detailing the challenges and
opportunities intrinsic to each method of integrating delegation.

1 Introduction

Attribute-Based Access Control (ABAC) is a relatively new form of access con-
trol that bases access control decisions on the attributes of users, objects and the
environment rather than the identity of users or the roles/clearances assigned to
them. While there has been significant interest in the creation, enforcement and
application of ABAC models [5,7], to date there are few works that address how
delegation might be implemented or supported.

Delegation enables a user to temporarily and dynamically alter the design of
an access control system after policies have been created to account for every-
day changes that policies are insufficient to address. In traditional models of
access control delegation is relatively straightforward. A set of permissions or
a role membership is delegated directly by a delegator to a delegatee under
set conditions (e.g. an expiry date). In ABAC, this is complicated by both the
introduction of attributes and ABAC’s identity-less nature (i.e. access decisions
are made on the basis of attributes and the user’s identity may be unknown).
Attributes may seem like an ideal access control element to build delegation
around (as is done in ABE [2,6] and Attribute Certificates [8]); however, as we
will show, this naive approach comes with a number of unexpected challenges.

This paper offers a preliminarily investigation into strategies for incorporat-
ing delegation into ABAC. Potential strategies are created by evaluating the
combinations of delegators, delegatable access control elements and delegatees
common in most ABAC models (Sect. 2.1). The trade-offs associated with each
c© Springer International Publishing AG 2017
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family of strategies are discussed and multiple examples are given that demon-
strate how delegation might be performed (Sect. 2.2). Finally, we give conclusions
and outline directions for future work (Sect. 3). It is our hope that this work will
aid future research by identifying possible strategies for the creation of ABAC
delegation models as well as the challenges and benefits associated with them.

2 Strategies for Incorporating Delegation in ABAC

2.1 Delegation Components

Delegation can be thought of as relating three access control components; a
delegator, a delegatee and a delegatable access control element. A delegator
temporarily grants a delegatee an access control element (e.g. a set of permis-
sions or role membership) under set constraints. In RBAC delegation models,
this is relatively straightforward: the delegator and delegatee are typically users
and the access control element being delegated is either a set of permissions
(via a temporary role)[9] or membership in an existing role [1]. ABAC, how-
ever, presents new possibilities for delegators, delegatees and delegatable ele-
ments that result in different trade-offs and limitations when combined. Each
combination provides a conceivable strategy for delegation and offers particular
advantages/disadvantages if used as the basis for an ABAC delegation model.

Delegatable elements are the most important characteristic of delegation as
they answer what is being delegated, while the delegators and delegatees answer
who and where (i.e. who is doing the delegating and where the elements are
being delegated to). The following are the most suitable delegatable elements
that we have identified in current ABAC models [5,7, etc.]:

Attributes: Perhaps the most obvious element and one that has been explored
to a limited extent (in ABE [2,6] and Attribute Certificates [8]) are user
attributes. In cases where attributes are delegatable, users are allowed to dele-
gate their assigned attributes to a delegatee such that they are considered to be
part of the delegatee’s attribute set.

Permissions: Delegating permissions a delegator has obtained from a policy
decision is another option. In such cases users are granted permissions as a result
of their attribute set satisfying a policy and can delegate these permissions onto
others while the policy remains satisfied.

Group Membership: Recent ABAC models have incorporated the concept of
user groups into the core ABAC model. In HGABAC [7], groups can be directly
assigned user attributes that are inherited by users through their membership.
Membership in these groups provides a possible delegatable element, similar to
how role membership is delegatable in some RBAC delegation models [1].

While traditional models focus on delegation between users, additional pos-
sibilities exist for ABAC. In ABAC models with group support, user groups can
be delegators in the sense that attributes or other delegatable elements assigned
to groups may be temporarily delegated to a delegatee. In such a case, while the
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Table 1. Delegation Strategies

Strategy Name X DE Y Strategy Name X DE Y

Attribute Delegation Permission Delegation

User-to-User Attribute Delegation U AS U User-to-User Permission Delegation U PS U

User-to-Group Attribute Delegation U AS G User-to-Group Permission Delegation U PS G

Group-to-Group Attribute Delegation G AS G ‘ Group-to-User Permission Delegation G PS U

Group-to-User Attribute Delegation G AS U Group-to-Group Permission Del G PS G

User-to-Attribute Attribute Del U AS A User-to-Attribute Permission Del U PS A

Group-to-Attribute Attribute Del G AS A Group-to-Attribute Permission Del U PS A

User-to-Policy Attribute Delegation U AS P User-to-Policy Permission Delegation U PS P

Group-to-Policy Attribute Delegation G AS P Group-to-Policy Permission Del G PS P

Group Membership Delegation Legend

User-to-User Membership Delegation U GM U U = User X =
Delegator

Group-to-User Membership Del G GM U G = Group DE =
Delegatable
Element

Group-to-Group Membership Del G GM G P = Policy Y =
Delegatee

User-to-Group Membership Del U GM G A = Attribute

User-to-Attribute Membership Del U GM A PS = Policy Set

Group-to-Attribute Membership Del G GM A AS = Attribute Set

User-to-Policy Membership Delegation U GM P GM = Group Membership

Group-to-Policy Membership Del G GM P

group is the source of the delegatable elements, the actual instigator of the dele-
gation would be the members of the group or another actor in the system (e.g. a
group leader). Similarly, the delegatee need not be limited to a user. Delegating
to a group allows a delegator to assign their delegatable elements to multiple
users in one operation. This is useful in scenarios where multiple users are briefly
required to take on the duties of a single delegator (e.g. an absent store manager
delegating his permissions to all department managers). In cases where group
membership is being delegated, it can be considered that all members in the
delegatee group are also temporarily made members of the delegated group.

Delegations can also be made to a policy or attribute. When an attribute
is acting as a delegatee, all users that are directly (not through delegation)
assigned the same attribute also become delegatees. For example if a permission,
P, is delegated to the attribute (ROLE, {manager}) (an attribute named ROLE
with the value “manager”) all users that are assigned the attribute ROLE with
a value of “manager” will be delegated the permission P. Using a policy as a
delegatee works similarly. A delegator delegates some element to a policy they
create and all users satisfying this policy are delegated the element. For example,
if membership in a group, G, is delegated to the policy “ROLE = manager AND
YEARS EMPLOYED ≥ 3”, users that have attributes stating that they are
managers and employed for at least 3 years will be delegated membership in
group G. While delegating to an attribute or policy may seem complex, it is a
necessity to support delegation in a system where the identity of a user may
remain unknown and access decisions are made purely on the user’s attributes.
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2.2 Delegation Strategies

Each delegation components described in Sect. 2.1 may be combined to create a
delegation strategy. For example the combination (Users, Permissions, Users)
represents a strategy in which users can delegate their permissions to other users,
whereas (Groups, Attributes, Policies) would be a strategy in which groups can
delegate their attributes to any user that satisfies a policy. Table 1 categorizes
each strategy into families based on the element being delegated. Strategies in
the same family tend to share common characteristics and challenges for systems
adopting them. In this section, we discuss the advantages and limitations of each
family. It is assumed that only one strategy is used at a time. While hybrid
strategies are possible, and could offer advantages, they are left to future work.

Attribute Delegation. In Attribute Delegation strategies, delegatees are del-
egated a subset of the delegator’s attributes. Delegated attributes are merged
with the delegatee’s directly assigned attributes (i.e. assigned through any means
but delegation) and the combined attribute set is treated as the delegatee’s set
during policy evaluation. An example of User-to-User Attribute Delegation is
shown in Fig. 1 where direct(user) is the user’s directly assigned attributes and
effective(user) is the user’s effective attributes (i.e. the merged attribute set used
for policy evaluations). In Fig. 1, Alice wants to delegate a subset of her attributes
to a prospective student (Dave) so he can satisfy the policy “role = “undergrad”
AND year ≥ 2” to view some resource. As Dave only has the value “Prospec-
tiveStudent” for his role attribute and no year attribute, Alice must delegate
both her role and year attributes for Dave to satisfy the policy. The subset Alice
delegates is {(year, {4}), (role, {“undergrad”})} which makes Dave’s effective
attribute set {(role, {“ProspectiveStudent”, “undergrad”)}, (year, {4})}.

Multiple simultaneous delegations to a single user are also possible. In
Fig. 1, Alice wishes to delegate to Charlie so he can satisfy the policy “role IN
{ “undergrad”, “grad”} AND department = “CompSci””, and access a resource
limited to CompSci students. At the same time, Bob wishes to delegate to
Charlie so he can satisfy the policy “role = “faculty” AND department =
“SoftEng”” and access a resource limited to SoftEng faculty. Alice delegates
{(department, {“CompSci”})} and Bob {(role, {“faculty”})}. Making Char-
lie’s effective attributes {(role, {“grad”, “faculty”}), (department, {“SoftEng”,
“CompSci”})}.

While this style of delegation is easy to implement (a subject’s effective
attribute set is simply used in place of their direct set), it can lead to seri-
ous problems if not carefully constrained. The first issue is the creation of con-
flicting policy evaluations. In Fig. 1 Alice’s delegation results in Dave’s effective
attribute set containing two values for the role attribute, “ProspectiveStudent”
and “undergrad”. If a policy were to exist such as “role �= “ProspectiveStu-
dent”” two different results would be possible depending on the value of role
used when evaluating the policy. A potential solution is to use a policy language
that specifies clear resolutions to conflicts (e.g. prioritize attributes assigned via
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Fig. 1. Example of User-to-User Attribute Delegation. Arrows denote direction of del-
egation (arrow points to delegatee), boxes represent users of the system.

Fig. 2. Example of a possible attack on User-to-User Attribute Delegation.

delegation over those directly assigned or always grant access when any combina-
tion of attributes satisfies the policy). However, the issue is further complicated
when multiple delegations to the same delegatee are considered simultaneously.
In such cases, conflicts can arise from purely delegated attributes, making con-
flict handling more difficult (e.g. can not simply prioritize delegated attributes).

A second issue is the potential for users to collude to satisfy a policy that they
would individually be unable to. In Fig. 2 Oscar and Mallory are trying to satisfy
the policy “year > 2 AND department = “SoftEng””. Individually, neither can
satisfy the policy as Oscar lacks a department attribute with a “SoftEng” value
and Mallory lacks a year attribute with a value greater than 2. However, if Oscar
delegates {“year”, {4}} to Mallory it creates the effective attribute set {(year,
{1, 4}), (department, {“SoftEng”})} and Mallory can satisfy the policy if year
is evaluated as 4. While one solution is to heavily constrain what attributes can
be delegated or to use a constraint specification language [3] to enforce SoD style
constraints, the simplest fix is to isolate delegated attribute sets from each other
and the delegatee’s directly assigned set. Thus, a user must choose what set of
attributes to activate at the start of a session (similar to role activation in RBAC
[4]). Isolation of attribute sets would also provide a solution to conflicting policy
evaluations and aid in user comprehension. For example, Alice would know that
if she delegates all of her attributes to Dave, at most Dave would have access
to the same permissions as he did before in addition to the permissions Alice
has access to. Users would still be able to bypass negative polices like “year �= 4
AND year �= 1” if not having a year attribute is considered to satisfy the policy
by delegating a subset of their attributes that omits the year attribute.
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A third issue resulting from merging attribute sets is losing the descriptive-
ness of the delegatee’s attributes. In Fig. 1, after delegation, Dave’s effective
attribute set is no longer descriptive of Dave. Dave obtains a year attribute with
a value of 4 while not being a student. While this makes delegation possible and
allows Dave to satisfy the policy, it complicates policy creation (need to account
for unexpected attribute combinations) and restricts the use of attributes to the
purpose of access control (e.g. a system could not trust that an e-mail sent to
an address in a user’s effective attribute set was actually theirs).

The last issue is comprehension of what is being delegated and what needs
to be delegated to achieve a desired result. A delegator must be familiar with
the policies of the system and their own attributes. In Fig. 1, if Alice wanted to
delegate a permission she was granted from satisfying the policy “role = “under-
grad” AND year ≥ 2” she would have to understand the policy, what attribute
set she has been assigned and what attribute subset to delegate. This is further
complicated if delegated attribute sets are not isolated, as Alice would also have
to be aware of possible conflicts and unexpected attribute combinations.

Group Membership Delegation. Group Membership Delegation requires
an ABAC model which supports user groups in which members of a group
inherit attributes assigned to that group. Figure 3 shows an example of how
user groups work in HGABAC [7]. In this case Alice and Bob are members of
the CS Faculty group and inherit the attributes role and department with val-
ues “faculty” and “CompSci” respectively. Additionally, Bob is a member of the
SoftEng Undergrad group and inherits the values “undergrad” and “SoftEng”
for the attributes role and department. These inherited attributes are merged
with the user’s directly assigned attributes to form the user’s effective attribute
set (similar to how attributes are merged in Attribute Delegation). In Group
Membership Delegation, membership in groups are delegated as opposed to
the delegator’s attributes. In Fig. 3, if Alice wanted to delegate a permission
she was granted from belonging to the CS Faculty group (e.g. from satisfy-
ing the policy “role = “faculty” AND department = “CompSci””) to Dave she
would delegate her membership in the CS Faculty group such that Dave’s inher-
ited set of attributes would be {(role, {“undergrad”, “faculty”}), (department,
{“SoftEng”, “CompSci”})} leading to the effective attribute set {(year, {2}),
(role, {“faculty”, “undergrad”}), (department, {“CompSci”, “SoftEng”})} when
merged with his attributes.

This method of delegation has several advantages over Attribute Delegation.
User comprehension is improved as users are not required to pick individual
attributes to delegate and instead only need to consider what group memberships
are needed. Placing constraints on delegation becomes easier as delegators are
forced to delegate whole attribute sets belonging to groups at a time (constraints
can be placed on what group memberships can be delegated and by whom, rather
than individual attributes). Finally, the effective attribute set of delegatees is
more likely to remain descriptive of the delegatee as personal attributes (like
year, age, etc.) are more likely to be directly assigned than assigned to groups.
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Despite these advantages, Group Membership strategies share a number of
issues in common with Attribute Delegation. Conflicting policy evaluations and
user collusion is still possible, although more restrained. For collusion to be pos-
sible, groups have to be assigned the required attribute value pairs. For example,
if the policy was “role = “faculty” AND department = “SoftEng””, Alice and
Dave could still collude to satisfy the policy (by Alice delegating her membership
in the CS Faculty group to Dave); however, it would not be possible for Alice and
Dave to collude to satisfy the policy “year > 1 AND department = “CompSci””
as year is a directly assigned attribute. Isolating attribute sets obtained through
membership delegation and attribute sets obtained through normal assignment
would minimize the issue and avoid unforeseen permissions being granted (e.g.
if Alice delegates her membership a group to Dave, she knows that Dave would
not satisfy any policy that she her self could not satisfy from her membership).

Fig. 3. Example of attribute user groups from HGABAC [7]. User groups are shown
as circles and users as rectangles. Arrows denote a user being a member of a group.

Group Membership Delegation also introduces a new issue. Attributes that
are directly assigned to a delegator, like the year attribute in Fig. 3, are undele-
gatable. Assuming this attribute is only directly assigned to users and never to
groups, it would be impossible to delegate membership to satisfy a policy such
as “year ≥ 2”. A system utilizing Group Membership Delegation would either
have to carefully design its groups such that all desired delegation use cases can
be accomplished through delegating group memberships or implement a second
delegation strategy in addition to Group Membership Delegation.

Permission Delegation. Rather than delegating attributes (directly or indi-
rectly) Permission Delegation strategies are based on delegating permissions.
Delegators are able to delegate permissions they obtain by satisfying policies onto
delegatees so long as the granting policy remains satisfied (e.g. if the delegator’s
attributes or an environmental attribute changes such that the policy granting
the permission is no longer satisfied, the delegated permission is revoked). In
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strategies where a group is the delegator, the permissions the group can dele-
gate is equal to the set of permissions a user would be granted if they had the
same attributes as the group. For example, if the users and groups from Fig. 3
and the policy “role = “faculty” AND department = “CompSci”” existed that
granted the permission, p1, both Alice and Bob as well as the group CS Faculty
could delegate p1. If the policy “year ≥ 2 AND TIME > 9:00AM AND TIME
< 5 : 00PM ′′ granted the permission p2, Bob and Dave could delegate p2 but
the delegation would only be valid between 9:00AM and 5:00PM.

Permission Delegation strategies poses greater challenges in terms of imple-
mentation but resolve the issues faced by the other families. As delegated per-
missions are only valid while the policy granting them remains satisfied, a system
would be required to either periodically check that the delegator still satisfies the
policy or recheck the policy each time the delegatee uses the permission. Depend-
ing on the size of the system and the complexity of the policies, this could add
significant overhead. The benefit is that no change is made to the delegatee’s
attribute set, limiting conflicting policy evaluations and preventing user collu-
sion. User comprehension is also improved as users are delegated permissions
directly rather than attributes that only indirectly grant permissions.

3 Conclusions and Future Work

3.1 Delegation Strategies

The ideal delegation strategy depends on the needs of the implementing system;
however, a few generalizations can be made. Permission Delegation is suitable for
systems requiring high user comprehension and removes the possibility of con-
flicting policy evaluations and user collusion. Attribute Delegation is ideal when
continual policy evaluation would be difficult or low implementation complex-
ity is desired. Group Membership Delegation provides high user comprehension
with similar results to Attribute Delegation but requires group support.

Delegating to a user (X-to-User strategies) provides the closest parallel to
delegation in traditional models, however, delegating to groups (X-to-Group),
attributes (X-to-Attribute) or policies (X-to-Policy) can provide greater flexibil-
ity and allow for delegation to users whose identity is unknown during policy
creation. X-to-Group allows for delegation to groups of users in one operation
but requires group support. X-to-Policy introduces higher revocation complexity
and lower user comprehension but has the greatest flexibility. X-to-Attribute pro-
vides a middle ground between the two with less flexibility than X-to-Policy but
increases user comprehension while retaining the identity-less nature of ABAC.

3.2 Future Work

A number of directions are possible for future work. Using multiple strategies
simultaneously could provide new possibilities for delegation. Such combinations
could help overcome the limitations of individual strategies but further work is
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needed to evaluate any complexities or conflicts introduced. Existing policy con-
flict resolution techniques could help mitigate the issues faced by Attribute and
Group Membership Delegation, as well as allow for hybrid strategies with min-
imal limitations. Additional work is required to determine if current techniques
are applicable. Formalizing the strategies described in this work will allow for
in-depth analysis and aid integration into existing ABAC models. Extending an
existing model with each strategy would allow for a more quantitative evaluation
and provide a reference model for future work. HGABAC is an ideal candidate
for such extensions by virtue of its support for user groups.
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Abstract. Consider k identical robots traversing the edges of a geomet-
ric tree. The robots have to patrol the tree by perpetually moving along
edges, but without exceeding their maximum unit speed. The robots can
change direction and speed anywhere on vertices or interiors of edges.
The quality of patrolling is measured by idleness, which is defined as the
longest time period during which any point on the tree is not visited by
any of the robots. Goal is to provide algorithms describing the movement
of the robots along the tree so as to minimize the idleness.

Our main contribution is to show that there is an off-line schedule,
where placing k robots at specific initial positions on a geometric tree
T and making them move at unit speed, permits to achieve the optimal
idle time. We extend this to a graph tree model (where the robots can
change direction only on vertices). We also consider on-line schedules,
working for collections of simple, identical, memoryless robots, walking
with constant speed, which behave according to so-called rotor-router
model. We conclude with a discussion of experimental work indicating
that in a random setting the rotor router is efficient on tree graphs.

Keywords: Algorithms · Experiments · Idle time · Off-line · On-line ·
Patrolling · Robot · Rotor router · Tree

1 Introduction

Patrolling can be an important component of infrastructure security, espe-
cially when it is required to monitor physical resources enclosed within a given
bounded domain from potential threats by moving perpetually along the bound-
ary with mobile robots. The feasibility of an intrusion depends on the time dur-
ing which an intruder remains undiscovered, and therefore it is important to
design patrolling protocols which minimize the idle time, defined as the time
during which boundary points are left unmonitored by a patrolling robot. For
examples, discussion and a detailed survey on the use of optimization problems,
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like patrolling, evacuation, blocking, and coverage in infrastructure security and
SCADA in particular, see [23].

The present paper is concerned with patrolling geometric trees (where the
robots can change direction anywhere on vertices or interiors of edges) and graph
trees (where the robots can change direction only on vertices). The domain being
patrolled will be a tree, i.e., connected acyclic graph, say T . Assuming that k
robots are available, the main problem of interest will be to give a patrolling
algorithm that optimizes the idle time on T .

1.1 Related Work

Patrolling a one-dimensional boundary with mobile robots has many applications
and has been studied extensively in the robotics literature (cf. [10,16,17]) under
the names of boundary- and fence-patrolling. Patrolling consists of walking per-
petually around an area in order to protect or monitor it and has been defined as
the act of surveillance. It is considered useful for monitoring and locating objects
or humans that need to be rescued from a disaster, in ecological monitoring or
detecting intrusion. Patrolling has also been used by network administrators in
conjunction with mobile agents in order to detect network failures or in indexing
of search engines (cf. [24]). In robotics, patrolling is often viewed as a form of
terrain coverage and has been studied in [20,24,29].

Idle time (also called idleness) is the accepted measure of algorithmic effi-
ciency of patrolling and it is related to the frequency with which the points
of the environment are visited [10,16,17,24] (this last citation was also first to
introduce this concept). Idleness is sometimes also viewed as average [16], worst-
case [7,29], probabilistic [2] or experimentally verified [24] time elapsed since the
last visit of a point [10]. In some papers the terms blanket time [29] or refresh
time [27] were used instead.

A survey including diverse approaches to patrolling based on idleness cri-
teria can be found in [28]. In [4–6] patrolling is studied as a game between
patrollers and the intruder while some papers consider patrolling based on swarm
or ant-based algorithms [18,25,29]. Capabilities also vary and robots may be
memoryless, decentralized [25] with no explicit communication permitted either
with other robots or the central station, and with local sensing [18]. In ant-like
algorithms the graph nodes may be marked [29].

Theoretical approaches to patrolling in graph-based domains can be found
in [10]: the two basic methods are (1) cyclic strategies, where a single cycle
spanning the entire graph is constructed and the robots are assigned to consecu-
tively traverse this cycle in the same direction, and (2) partition-based strategies,
where the region is split into a number of either disjoint or overlapping portions
to be patrolled by subsets of robots assigned to these regions. The environ-
ment and the time considered in the models studied are usually discrete in an
underlying graph environment. When the environment is geometric, the skele-
tonization technique may be applied, with the terrain first partitioned into cells,
and then graph-theoretic methods are used. Cyclic strategies usually rely either
on TSP (Travelling Salesman Problem)-related solutions or spanning tree-based
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approaches. For example, spanning tree coverage, a technique first introduced
in [19], was later extended and used in [1,16,20]. This technique is a version
of the skeletonization approach where the two-dimensional grid approximating
the terrain is constructed and a Hamiltonian path present in the grid is used
for patrolling. In [27], polynomial-time patrolling solutions for lines and trees
are proposed, where the goal is to patrol only the vertices of the graphs (note
in the current paper every point of the graphs, including all the vertices and
edges, is supposed to be patrolled). For the case of cyclic graphs, [27] proves the
NP-hardness of the problem and a constant-factor approximation is proposed.

Patrolling with robots that do not necessarily have identical speeds has been
initiated in [12]. No optimal patrolling strategy involving more than three robots
has yet been proposed and the general problem is difficult and still unsolved
[15,21]. Optimal patrolling involving same-speed robots in mixed domains, where
regions to be traversed are fragmented by components that do not need to be
monitored, is studied in [11].

Distributed control in patrolling strategies is an important alternative to the
centralized. In one such approach, the authors of [13] show the convergence of
the dynamical system of k robots which interact by merely bouncing against
each other. Another (more popular) alternative is the rotor-router, a version of
a distributed model with local control at the nodes for managing the movement
of robots in a graph. The first study of rotor-routers is due to [29], which also
studied multiple parallel rotor-routers experimentally and made the conjecture
that a system of k > 1 parallel walks stabilizes with a period of length at most
2|E| steps (|E| is the number of edges). In [9] they disprove this conjecture, show-
ing that the period of parallel rotor-router walks can in fact, be superpolynomial
in the size of graph. More interestingly, they discuss the related concept of the
decomposition of the set of edges into sub-cycles, which plays an important role
in understanding the periodicity of a patrolling strategy. In [14] tight bounds
on the cover time (the number of steps after which each node has been visited
by at least one walk, regardless of the starting locations of the walks) of k par-
allel rotor-router walks in a graph are provided (see also [7,29] which consider
the cover time of a single walk). [22] determines the precise asymptotic value
of the rotor-router cover time for all values of k for degree-restricted expanders,
random graphs, and constant-dimensional tori.

Approaches emphasizing experimental results on boundary and area
patrolling have been considered in [2,16,17,27]. Experimental papers related to
unreliable robots performing patrolling were considered in the robotics literature
[16,17,20,26].

1.2 Preliminaries and Notation

Consider a geometric graph with n vertices and m edges and k mobile robots
initially placed on vertices of the graph. Let A be a patrolling algorithm, schedul-
ing the movement of the robots at the same constant speed. For any algorithm
A and any graph G let IA(G, k) denote the idle time of the algorithm A for
k robots on this graph; namely the supremum of “the time between successive
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visits of the robots at point x following algorithm A”, where the supremum is
taken over all the points x of all edges of the graph G. Finally, we define

I(G, k) := inf
A

IA(G, k), (1)

where the infimum is over all possible patrolling algorithms A for G.

1.3 Outline and Results of the Paper

There is an off-line schedule placing the k robots at specific initial positions on
a geometric tree T such that if the robots move perpetually at speed 1 it will
achieve the optimal idle time 2|T |

k where |T | is the sum of the length of T . Our
main contribution in Sect. 2 is to show that such a schedule is an optimal one,
i.e. that no other schedule can achieve a smaller idle time. We extend this to
the graph tree where the patrolling robots are allowed to change direction only
at vertices of the tree. In Sect. 3 we consider the on-line setting and construct
examples of trees with port numberings on the nodes such that the resulting
rotor-router has competitive ratio at least 4/3. In addition, in Sect. 3.2 we per-
form experimental work indicating that in a random setting the rotor-router on
tree graphs is nearly optimal. To the best of our knowledge, the study considered
in our paper, concerning off-line and on-line strategies for patrolling a tree has
not been considered in the past. Due to space limitations all missing proofs will
appear in the full paper.

2 Off-Line Algorithms

This section is concerned with the idle time for patrolling trees with a given
number of robots. We distinguish patrolling on two types of domains: geometric
trees, and graph trees. In the former, edge lengths are real numbers and during
their traversal the robots may change direction anywhere on vertices as well
as in the interior of edges. In the latter, edge lengths are positive integers and
during their traversal the robots may change direction only on vertices. Note
that the graph tree model will prove useful in our study of experimental results
in Sect. 3.2.

2.1 Patrolling of Geometric Trees

Let |T | denote the sum of lengths of the edges of T . The main theorem is the
following.

Theorem 1 (Idle Time for Trees). For any tree T and any number k of
robots,

I(T, k) =
2|T |
k

. (2)

This idle time is attained when k robots traverse the tree at their maximum
speed along an Eulerian cycle, while at the same time ensuring that during the
traversal consecutive robots remain equidistant on this cycle.
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Before proving the theorem we will prove several lemmas that will lead to the
main result. As noted above, we assume throughout the discussion of the proof
below that during their traversal the robots may change direction anywhere on
vertices as well as in the interior of edges. Let L denote the line segment. The
first lemma is well known (see [12]).

Lemma 1 (Idle Time for Lines). For k robots on a line L, I(L, k) = 2|L|
k ,

where |L| is the length of the line L. ��
First we prove the upper bound for trees in the following lemma.

Lemma 2 (Upper Bound for Trees). For any tree T and any number k of
robots, I(T, k) ≤ 2|T |

k .

Proof (Lemma 2). The upper bound I(T, k) ≤ 2|T |
k is obvious since we can

arrange the robots so that they traverse an Eulerian tour of the tree (stay-
ing equidistant) which has length 2|T |. In order to make the Eulerian tour of the
tree, every edge is replaced by two anti-parallel edges (of total length 2|T |). ��

To prove the lower bound, first we define the following useful concept.

Definition 1. The cumulative idle time on a tree T is defined as FT (k) :=
kI(T, k), where I(T, k) is the optimal idle time for k robots on the tree T .

The main idea for the proof of the lower bound I(T, k) ≥ 2|T |
k is based on proving

two properties, namely:

1. Monotonicity of the cumulative idle time with respect to doubling the number
of robots (see Inequality (3) and Lemma 3), and

2. Validity of the lower bound on caterpillar trees for k sufficiently large (see
Lemma 5).

A combination of these two ideas will lead to the proof of the actual result. First
we consider the monotonicity of the cumulative idle time.

Lemma 3 (Monotonicity of the Cumulative Idle Time). For any number
of robots k,

FT (2k) ≤ FT (k). (3)

Next we define a generalization of the concept of caterpillar that will be
useful for the proof.

Definition 2. A d-caterpillar tree is a tree in which all the vertices are within
distance d of a central path of the tree, where d ≥ 1.

Thus, the well-known concept of caterpillar is identical to 1-caterpillar. The
following lemma provides a useful property that will be useful for the proof of
the main theorem.
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Lemma 4. If T is a d-caterpillar with d ≥ 2 then there is a (d − 1)-caterpillar
T ′ which is subtree of T and such that all the vertices of T are within distance
1 of a node of T ′.

Proof (Lemma 4). The proof is simple. The subtree T ′ is obtained from T by
removing all its leaves. The required property for T ′ follows easily. ��
Lemma 5 (A Lower Bound for Caterpillar Trees). For any caterpillar
tree T , and for any real number ε > 0 there is a sufficiently large integer k0 such
that I(T, k) ≥ 2|T |

k − 2ε
k , for all k ≥ k0.

Now we are ready to prove the lower bound for caterpillars. We prove the
following.

Lemma 6 (Idle Time for Caterpillar Trees). For any caterpillar tree T

and any number k of robots, I(T, k) = 2|T |
k .

Proof (Lemma 6). The upper bound follows from Lemma1. We now concentrate
on the lower bound. Indeed, by Lemma5 the lower bound I(T, k) ≥ 2|T |

k − 2ε
k , is

valid for any k ≥ k0, where ε, k0 are selected as specified in Lemma 5. So assume
that k ≤ k0. Choose an integer i sufficiently large such that k ≤ k0 ≤ 2ik. Now
observe that the following inequalities are valid

I(T, k) =
FT (k)

k
(by definition)

≥ FT (2ik)
k

(by Lemma 3)

=
FT (2ik)

2ik
· 2ik

k

= I(T, 2ik) · 2ik

k
(by definition)

≥
(

2|T |
2ik

− 2ε

2ik

)

· 2ik

k
(by Lemma 5)

=
2|T |
k

− 2ε

k
.

The last inequality is valid for any integer k and any real number ε > 0.
By letting ε → 0 the proof of the lemma is complete. ��

We are now in a position to prove the main theorem which was given at the
beginning of the paper.

Proof (Theorem 1). Without loss of generality we may assume that the tree is
a d-caterpillar, for some d ≥ 2 (in fact, every tree is a d-caterpillar, for some
d ≥ 2, provided d is sufficiently large). Now the proof of Identity (2) proceeds by
induction on d. Recall that Lemma 6 is precisely the base case d = 1. Suppose the
identity in the theorem is valid for d − 1. By Lemma 4, the subtree T ′ obtained
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from T by removing all its leaves is a (d − 1)-caterpillar. Clearly, Identity (2)
is valid for |T ′|, namely I(T ′, k) = 2|T ′|

k . Therefore by repeating the proof of
Lemma 5 we can show that for any real number ε > 0 there is a sufficiently large
integer k0 such that I(T, k) ≥ 2|T |

k − 2ε
k , for all k ≥ k0. In turn, using this last

statement we repeat the proof of Lemma 6 to prove the desired identity. This
completes the proof of Theorem 1. ��

2.2 Patrolling of Graph Trees

Unlike geometric trees where a robot during patrolling may change direction
at any location in the graph be that an interior point on an edge or a vertex,
in graph trees a robot may change direction only on vertices of the tree. The
corresponding idle time on such a graph tree T for k robots is denoted by I ′(T, k).

Next we provide a patrolling algorithm for the case when all the edges have
integer lengths (not necessarily the same). Let e1, e2, . . . , e2(n−1) be the sequence
of edges in the order they occur in a given preorder traversal. Define a partition
from a sequence of integers as follows.

1. Let σ : r0 = 0 < r1 < · · · < rk = 2(n−1) be a sequence of integers and define
sets of edges as follows: Eσ

i := {eri+1, eri+2, . . . , eri+1}, where i + 1 < k;
(Thus, each Eσ

i is a sequence of consecutive edges in the preorder traversal;)
2. For each i, let |Eσ

i | :=
∑

e∈Eσ
i

|e|;
3. Define Δσ := maxi�=j

∣
∣|Eσ

i | − |Eσ
j |∣∣.

4. Now select a sequence σ0 : r0 = 0 < r1 < · · · < rk = 2(n − 1) which provides
the most balanced partition of the preorder traversal in the sense that it
attains

Δ := min
σ

Δσ = min
σ

max
i�=j

∣
∣|Eσ

i | − |Eσ
j |∣∣ . (4)

(Note that there could be more than one such sequence.) From now on when
writing Ei without a superscript we will be referring to Eσ0

i , where σ0 was
defined in Item 4 above.

We now define a patrolling strategy that we will analyze in detail in the
sequel.

Definition 3 (Eulerian Strategy ES). For i = 1, 2, . . . , k the i-th robot is
initially placed at the first vertex of the sequence of edges determined by the set
of edges Ei. The robots move forever with speed 1.

Theorem 2. Consider a graph tree T with n nodes and n − 1 edges such that
all the edges have integer lengths. For any k robots:

1. A lower bound on any patrolling strategy is
⌈
2|T |

k

⌉
.

2. The idle time of the Eulerian patrolling strategy ES on the tree T satisfies
I ′
ES(T, k) ≤

⌊
2|T |

k

⌋
+ Δ.

3. If Δ = 0 then I ′
ES(T, k) =

⌊
2|T |

k

⌋
.
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When T is a line graph and k = 2 then the two robots can be placed to start
at the endpoints of the line. Therefore in this case Δ = 0 and regular patrolling
provides an optimal algorithm even for arbitrary edge integer lengths. We note
that in the case where all the edges have integer lengths (not necessarily the
same) the robots may not be able to attain the optimal idle time I(T, k) = 2|T |

k
(for geometric trees) if they all start on vertices of the tree. For example, consider
three robots on a line T with three vertices and two edges one edge of length 1 and
the other of length n − 2. For the geometric line we have that I(T, 3) = 2(n−1)

3 .
However it is easy to see that for the line graph I ′(T, 3) = n − 2.

3 On-Line Algorithms with Rotor-Routers

All patrolling strategies proposed in Sect. 2 are centralized algorithms in that the
robots receive instructions from a central controller. We now describe a distrib-
uted mechanism, so-called rotor-router, which has been extensively studied in
the literature as a deterministic alternative to the “random walk”. Besides being
distributed, the rotor-router is also an on-line algorithm (i.e., the environment
to be patrolled is unknown), which makes it a practical tool for patrolling an
unknown environment as well.

The basic idea of rotor-router is to set locally shared memories at the nodes of
the graph. Subsequently, the robotswill be updating these sharedmemories as they
visit the vertices of the graph. For example, the rotor-router algorithm described
in [29] works as follows. Let u be a vertex of the graph. Denote by d(u) degree of
u. Label the edges adjacent to u with numbers 1, . . . , d(u) (called ports pointers at
u). At each vertex u there is a pointer (called exit port at u), indicating the next
(adjacent) edge to be traversed by a robot. Further, a departing robot also updates
(increments) exit port.

Clearly, independently from the initial configuration, which is defined by
initial placement of the robots, port pointers and initial exit ports at the nodes,
after some transient time steps, the system reaches a stable state, in which the
placement of the robots within the graph and the state of the exit ports repeats
periodically (this is called periodic behavior of rotor-router). Interestingly, it has
been proven (see [29]) that for a single robot such periodicity is only 2m, where
m is the number of edges.

3.1 Lower Bounds

For the rest of the paper we assume all edge weights are equal to 1. We know that
the optimal algorithm for patrolling a graph tree of n nodes satisfies I ′(T, k) =⌈
2(n−1)

k

⌉
. The main problem we are interested in is whether or not the parallel

rotor-routers algorithm for k robots is optimal on a tree graph with n nodes?
In this subsection we prove a lower bound on the asymptotic ratio of the rotor-
router on a graph tree having the form of star with three branches. The precise
theorem is as follows.
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A B

C

1 2

3

r r′

Fig. 1. Proving a 4/3 lower bound for patrolling the star graph by two robots r, r′.

Theorem 3. There is a star graph with n+1 vertices and edges of weight 1 and
an assignment of ports pointers and exit ports such that the competitive ratio of
the rotor-router algorithm for two robots is at least 4

3 .

Proof. Consider the star graph depicted in Fig. 1. It has n+1 vertices such that
one vertex is at the centre and each of its three branches has n

3 vertices. Let the
three leaves of the star be named A,B,C.

The ports pointers and exit ports on the vertices of the star are initially
directed as follows: (1) the ports pointers at the central node are numbers 1, 2, 3
and oriented towards the leaves A,B,C, respectively. Further, the initial exit
port at the center is 3, followed by 1 and then by 2. (2) The ports pointers and
exit ports on all the vertices from the leaf A (resp. B) to the center are oriented
towards the center, while the ports pointers and exit ports on all the vertices
from the leaf C are oriented away from the center.

First of all observe that an optimal off-line schedule of the star graph for two
robots is 2(n+1)

2 = n+1 as given by Theorem 1. We now propose the initialization
of a rotor-router schedule and analyze its idle time.

Two robots r, r′ start synchronously at the following two vertices of the graph.
Robot r starts at the vertex adjacent to the leaf A while robot r′ at the leaf B.
The robots move at the same speed. The first robot to reach the center is r which
follows port 3 towards leaf C. When robot r′ reaches the center a single time
unit later it will be directed towards leaf A. In the meantime robot r′ will follow
port 1 at the center and head towards leaf A. Observe now that when robot r′

is at A robot r is a vertex away from the leaf at C. Thus the two robots are in a
periodic repetition of the schedules after time exactly 2n

3 . It is easy to see that
in the next periodic iteration of the rotor-router, robot r will head towards leaf
B while robot r′ towards leaf A. It follows that the idle time is exactly 4n

3 . This
gives rise to the 4

3 competitive ratio of the rotor-router and completes the proof
of the theorem. ��

3.2 Experimental Results

In this section we provide experimental results based on rotor-router model.
We conducted experiments to compute idle time for different random trees,
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star graphs, variable number of robots and initial configurations. For this purpose
we have implemented the rotor-router simulator in Java. To run experiments the
simulator applied an algorithm (developed independently by David Aldous [3]
and Andrei Broder [8]) to generate uniform random trees. Moreover, it uses a
random number generator to generate uniform random initial configurations.

Random Trees. For a given tree T and a set of k robots, in addition to the
number of nodes n and robots k that affect the performance of rotor-router there
are also some non-quantitative factors such as: the ratio of m (number of edges)
and k, initial configuration of the system, and tree structures, that may also
affect the system’s performance. To study the affect of these factors we have run
experiments for random trees on the rotor-router simulator.

In order to observe how the ratio of m and k may affect rotor-router perfor-
mance we considered settings for k = 1, · · · , n robots in all experiments. Then,
we have run experiments for 100 distinctive initial configurations for each set
of k = 1, · · · , n robots on 1 random tree T (i.e., 5, 000 experiments in total)
to see how initial configurations may affect rotor-router performance. The rel-
evant plot for these experiments is illustrated in Fig. 2. Afterwards, to study
the affect of tree structure we ran experiments for 50 different random trees,
and 100 distinctive initial configurations for each set of k = 1, 2, · · · , 50 robots
on each tree (i.e., 250, 000 experiments in total). The respective plot for these
experiments is displayed in Fig. 3. In all displayed diagrams (Figs. 2 and 3), the
red, green, and blue plots represent the maximum, minimum, and average times
respectively. The black vertical lines demonstrates the %95 confidence intervals
for the average time.

Fig. 2. Idle Time of rotor-router algorithm for 1 random tree with 50 nodes, and 100
distinctive initial configurations for each set of k = 1, 2, · · · , 50 robots, drawn against
the number of participating robots in each experiment. (Color figure online)
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Fig. 3. Idle Time of rotor-router algorithm for 50 random trees with 50 nodes, and 100
distinctive initial configurations for each set of k = 1, 2, · · · , 50 robots on each tree,
drawn against the number of participating robots in each experiment. (Color figure
online)

Idle Time. Idle time is the number of time steps that an edge remains unvisited
by any robots. The idle time of a graph is the maximum idle time over all
it’s edges. To compute the idle time of tree T , we run rotor-router until the
system stabilizes, when it will follow a periodic behavior afterward. Then, we
run rotor-router for two more periodic cycles while keeping track of visited edges.
Thereafter, we compute the idle time of each edge, and then take the maximum
one as the idle time of the tree.

Figures 2 and 3 display the idle time of rotor-router algorithm for 100 dis-
tinctive initial configurations for each set of k = 1, 2, · · · , 50 robots running over
1 and 50 random trees (with 50 nodes) respectively. According to these dia-
grams, in most cases the idle time is almost 2m/k(m = n−1), which is optimal.
However, there are a few cases (e.g. for k = 2, 3 in Fig. 3 where the points are
highlighted on the plots) where the idle time is slightly more than 2m/k depend-
ing on the initial configuration and structure of the tree (as we also discussed
for the star tree in Sect. 3.1).

According to [9], after stabilization the system is decomposed into some dis-
joint sub-cycles. Apparently, the robots are also divided up to some subsets
traversing each sub-cycle independently, while the number of robots in each sub-
cycle is proportional to the number of edges in that sub-cycle. Consequently, the
idle time remains almost constant in most cases regardless of initial configura-
tions and structure of the tree. In Figs. 2 and 3, locating the red (maximum),
blue (minimum) and green (average) plots closely on each other confirms that
idle time is independent of initial configurations and tree structure in most cases.
However, apparently for some classes of trees (e.g. star graph), and number of
robots (e.g. k = 2, 3) the initial configuration may lead the system to some sub-
cycle decomposition where the number of robots and edges in each sub-cycle are
not balanced up, and consequently the idle time would not be optimal. According
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to our results only for k = 2, 3 the difference between maximum and minimum
idle times is noticeable, where the maximum I(T, k) is 4

3 of minimum I(T, k)
(see Fig. 3).

It is also worthy to note that although adding more robots to the system
improves (reduces) the idle time, at some point where k > m/2 adding more
robots does not change the idle time significantly.

Star Graph. In order to demonstrate the competitive ratio of the idle time we
have run experiments for the star graphs named “Tripod” and “Clover” for the
following settings:

1. We ran experiments for Tripod tree (Fig. 1) with 31 nodes, 2 robots, and the
same initial configuration as the one in the proof of Theorem3. We obtained
the idle time of 38, which is almost 4

3 (2m/k), for this setting.
2. We ran experiments for Tripod tree with 31 nodes, and 2 robots in the starting

positions as in the proof of Theorem 3, but for 100 distinctive random ports
pointers and exit ports. In total 100 experiments were ran and maximum,
minimum and average idle times of 38, 30, and 32 were obtained respectively.

3. We ran experiments for Tripod tree with 31 nodes, k = 2, 3, . . . , 30 robots, and
100 distinctive random initial configurations, i.e., 3, 000 experiments in total.
We observed that the idle time was almost optimal for all cases except for
k = 2 where the maximum, minimum and average idle time were 39, 29 and
32 respectively over 100 initial configurations.

4. First we ran experiments for Tripod tree with 106 nodes, 2 ≤ k ≤ 105
robots, and 100 distinctive initial configurations, i.e., 10, 500 experiments.
Then we replaced the tree branches of Tripod tree by random sub-trees and
named the new tree “Clover”. We ran experiments for Clover with 106 nodes,
k = 2, 3, . . . , 105 robots, and 100 distinctive initial configurations, i.e., 10, 500
experiments. Due to lack of space the results of these two types of star graphs
will appear in the full paper.

In our experiments for Tripod and Clover, the maximum and minimum idle
times were noticeably different for k = 2 as we expected. For the Tripod tree
the minimum and maximum idle times are 105 (104 for Clover) and 139 (138
for crawler) receptively. This confirms the idea that for any graph similar to
star graphs, which has one node in the center and three branches with length n

3
connected to it, the idle time may vary based on initial configuration. However,
as our experiments shows the idle time is 4

3 (2m/k) in the worse case.

4 Conclusion

Although patrolling by a team of mobile robots with the same speeds and zero
visibility may look straightforward, no optimal patrolling algorithm for general
graphs has been proved yet. Therefore, in order to get closer to a solution for this
problem, we took one step further and studied patrolling trees by a team of k
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mobile robots. We provided optimal algorithms in the off-line case and analyzed
the competitive ratio of on-line patrolling algorithms for trees. In addition, we
implemented a rotor-router simulator in Java and performed experiments on the
competitive ratio for randomly generated trees. Some interesting open problems
may be to study the off-line and on-line patrolling strategies for general graphs.

Acknowledgements. Many thanks to Leszek Gasieniec for useful conversations in
the early stages of the research.
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Abstract. Side-channel attacks represent a serious threat to the secu-
rity of encrypted firmware updates: if the secret key is leaked, then the
firmware is exposed and can be replaced by malicious code or be stolen.
In this work, we show how simple anomaly detection measures can effec-
tively increase the security of encrypted firmware updates at minimum
cost. Our method is based on the simple observation that firmware pay-
loads have a specific structure (machine code), which can be easily ver-
ified at runtime in order to react to side-channel attacks. This enables
performing proactive measures to limit the number of measurements that
can be taken when a side-channel attack is detected. We tested the via-
bility of our approach through simulations and verified its effectiveness in
practice on a TI MSP430 microcontroller using a software implementa-
tion of AES. Our approach represents a step forward towards increasing
the security of firmware updates against side-channel attacks: it effec-
tively increases the security of firmware updates, has only negligible
overhead in terms of code size and runtime, requires no modification to
the underlying cryptographic implementations, and can be used in con-
junction with countermeasures such as masking and re-keying to further
enhance the side-channel resistance of a device.

Keywords: Side-channel analysis · Anomaly detection · Embedded
devices · Secure firmware updates · Decryption

1 Introduction

In the world of Internet-of-Things (IoT), where millions of interconnected smart
devices collect and exchange potentially sensitive data, firmware update mech-
anisms are particularly important to prevent massive data leaks, when new
firmware vulnerabilities are found or disclosed in the public community [21].
Encrypted firmware update mechanisms provide a way to fix critical vulnera-
bilities remotely, i.e. once embedded systems are already deployed in the field,
without disclosing the firmware source code. However, while offering protec-
tion against data leaks, firmware exposure, and malicious firmware modification,
c© Springer International Publishing AG 2017
F. Cuppens et al. (Eds.): FPS 2016, LNCS 10128, pp. 345–360, 2017.
DOI: 10.1007/978-3-319-51966-1 23
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encrypted firmware update mechanisms may also introduce new attack vectors,
such as side-channel attacks, when unprotected cryptographic implementations
are used [5,11,20]. Although side-channel attacks have been known for more
than two decades, many commercial off-the-shelf embedded devices, such as
low-cost microcontrollers (MCUs), rarely include side-channel attack counter-
measures, mainly due to economical reasons and performance costs [18,19]. In
fact, applying side-channel countermeasures to cryptographic implementations
typically translates into a significant increase in terms of code size, runtime and
power consumption. These are all undesired characteristics for IoT end-node
devices, such as sensors and actuators, which are typically memory constrained
and battery operated devices that must be sold at low prices to meet the market
requirements. Also, most wide-spread side-channel countermeasures, like mask-
ing schemes, require large amount of randomness to be effective [8,10,14,26], but
low-cost embedded devices are typically not equipped with true random number
generators (TRNGs). Furthermore, the correct implementation of side-channel
countermeasures has been proven to be complicated in many situations [2,3],
and even when correctly implemented, the resistance provided by single coun-
termeasures may still be futile against educated attackers [16,25]. Therefore, it
is not uncommon to require the implementation of multiple countermeasures
to increase the side-channel resistance of embedded devices. These and other
factors have motivated researchers to continue the quest for alternative counter-
measures [18].

In this work, we propose the use of anomaly detection to recognize when
side-channel attacks are taking place during firmware updates in order to stop
them before successful attack completion. This strategy can be combined with
other side-channel countermeasures, e.g.:

– Updating the key while the firmware update is taking place in order to thwart
side-channel attacks when the attacker passively collects measurements during
a valid firmware update.

– Anomaly detection to recognize when side-channel attacks are taking place if
the attacker actively generates the inputs to the decryption algorithm instead
of using legitimate data, i.e. when not enough leakage can occur during a valid
firmware update procedure due to the key being updated.

– Secure counters (e.g. similar to wrong PIN counters found in EMV cards) to
prevent an attacker from interrupting the firmware update process.

In the following we will focus on the anomaly detection part, which is our new
contribution. Anomaly detection is achieved by creating a model of the expected
firmware characteristics (machine code) and embedding it into the device. Then,
during firmware decryption, independent of the block cipher mode used, the
content of the plaintext is immediately inspected after each ciphertext block is
decrypted, to verify whether or not it contains valid instruction encodings and
the memory addresses lie within valid ranges. If valid instruction encodings are
not found or the address locations do not match the standard memory layout



Towards Side-Channel Secure Firmware Updates 347

ranges, an alarm is raised and appropriate countermeasures can be applied, i.e.
update or erase a secret-key. Under the assumption that not enough leakage can
occur during a valid firmware update procedure, i.e. the key is refreshed dur-
ing the update itself, the attacker will provide random inputs to the decryption
algorithm instead of using legitimate data, i.e. firmware images. In this case,
the resulting machine code will deviate from the expected values after a decryp-
tion and hence can be detected with high confidence using anomaly detection
measures. Once an attack has been identified, a reaction may be initiated to
thwart the successful completion of the attack, e.g. re-keying. Note that limiting
the amount of information that can be leaked under the same key during side-
channel attacks is a commonly used technique, which has been proven effective
in many leakage-resilient constructions [4,17,23]. Our technique is a lightweight
and practical way to effectively enhance the side-channel resistance of embed-
ded systems at minimum cost. While our anomaly detection technique has the
limitation that analysis must be performed after decrypting at least one cipher-
text block, this provides good-enough protection against side-channel analysis
in practice, as we show with experimental results in Sect. 5.

Contribution. We present a general architecture to detect and react to side-
channel attacks based on anomaly detection measures. We introduce a minimal
model to recognize valid firmware sequences which can be implemented in soft-
ware with negligible overhead. This allows retrofitting general purpose MCUs
to increase their side-channel security. Our approach is agnostic to the block-
cipher used, and thus, does not require modifications to existing implementa-
tions, while also being orthogonal to available countermeasures. Furthermore,
it can be applied to products already deployed in the field through a firmware
update. Finally, we present implementation results, taking a Texas Instrument
MSP430FR5969 MCU as target of evaluation, as well as side-channel attacks on
simulated and real measurements. We show that embedding anomaly detection
measures on MSP430FR5969 MCU costs only 340 bytes of code (which could be
stored in ROM) and provide an effective first line of defense against side-channel
attacks at almost no costs. To the best of our knowledge, this is the first work
that exploits online anomaly detection measures to protect resource-constrained
embedded devices against side-channel attacks, by analyzing the properties of
the input data.

Organization. This work is structured as follows: Sect. 2 explains the background
concepts of side-channel attacks in encrypted firmware updates. In Sect. 3,
we introduce the generic architecture for our approach to anomaly detection.
Section 4 discusses the implementation of this architecture on a TI MSP430
MCU. The results of side-channel analysis on the microcontroller, and their
comparison with the attacks on simulated measurements, are shown in Sect. 5.
Finally, we discuss possible alternatives to our approach for the future work in
Sect. 6 before concluding with Sect. 7.
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2 Side-Channel Analysis of Secure Firmware Updates

Before an encrypted firmware image can be written into an MCU, it must be
first decrypted, e.g. using an n-bit block cipher defined by the pair (Enc, Dec):

Enc/Dec : {0, 1}n × {0, 1}κ → {0, 1}n

The device receives the encrypted firmware image Enc(FW) as a sequence
of ciphertexts (c1, c2, . . . , cq) = (Enc(p1), Enc(p2), . . . , Enc(pq)) obtained by

encrypting n-bit blocks of the firmware image using a secret key k
$←− {0, 1}κ.

The key k is distributed out-of-band in a trusted environment to all parties.
Performing decryption on the ciphertexts to retrieve the original firmware image
generates side-channel leakage information. This is defined as Dec(k, ci) � �i =
L(f(s, ci)), where L is a leakage function, f is an intermediate function of the
decryption algorithm, and s is a small part of the cryptographic key, known as a
sub-key. An attacker which can observe the leakage information, e.g. through the
power consumption of a cryptographic device for a number of queries q, and store
it as a vector l = (�1, �2, . . . , �q), can then perform a Differential Power Analysis
(DPA) attack offline. The attack works as follows: for each input ci, the attacker
will generate all possible sub-key candidates {s̃j}, and compute the intermediate
values f(s̃j , ci). The attacker makes use of a power consumption model M to
generate hypothetical leakage values M(f(s̃j , ci)), which are later compared to
the actual measurements through the use of a statistical distinguisher such as
Pearson’s correlation coefficient.

For anomaly detection, we define P as the set of all valid plaintexts, i.e.
plaintexts which contain valid instructions and memory offsets. To conduct a
successful attack, the attacker must collect enough side-channel leakage infor-
mation l, for a large enough q. The value q depends on the implementation of the
underlying cryptographic primitive (e.g. hardware/software) and the amount of
noise in the measurements. Hence, the maximum number of decryptions that
an attacker could observe under the same key is determined by the size of valid
firmware images and the number of different firmware updates. However, please
note that q can be arbitrarily limited by refreshing the secret key during firmware
updates at the cost of longer data transfers. Also note that this will also pre-
vent the attacker from averaging the measurements to remove the noise. At this
point, the attacker can only try collecting leakage information, either by gen-
erating random [15] or adaptively-chosen ciphertexts [27] {c̃i} to be decrypted,
i.e. {p̃i = Dec(k, c̃i)}. Hence, the resulting plaintexts {p̃i} will have a high prob-
ability of being invalid, that is, p̃i /∈ P, and the attack of being detected. This
scenario is particularly relevant for small, ultra-low power MCUs, which are
widely seen in IoT sensor applications, where the number of updates performed
is kept to a minimum in order to reduce energy consumption.

3 Architecture for Anomaly Detection

Anomaly detection is the problem of recognizing data instances that differ from
an expected behavior [7]. In the context of security, anomaly detection is used
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Fig. 1. Block diagram of the Anomaly Detection and Response (ADR) module and its
connection to a cryptographic core.

to identify evidence of attack attempts, under the assumption that anomalies
are introduced when malicious activity is taking place [9].

Figure 1 shows the proposed Anomaly Detection and Response (ADR) mod-
ule and its connection to a cryptographic core. The ADR is composed of two sub-
blocks: detection logic and response logic. The former is responsible for detecting
if an attack is taking place, the latter is used to generate a response to the attack.
Plaintext data is fed into the input of the ADR for data collection, regardless of
whether decryption or encryption routines are performed by the cryptographic
core. For the use-case of firmware updates, at least a block must be decrypted
in order to be able to analyze the plaintext data. Within the detection logic,
data characteristics from the observed plaintext will be compared against the
features which correspond to normal behavior. An attack-detection signal is trig-
gered when anomalies are found in the plaintext. The attack-detection signal is
then fed into the response logic block, whose function is to react to the attack.

3.1 Detection Logic

For the scenario described in Sect. 2, an attacker will generate uniformly dis-
tributed random messages c̃i, to the device. After decryption, there is a high
probability that the plaintext data observed at the output p̃i, will differ from
the expected data. We define the alarm signal to be:

attack-detection =

{
1 (attack), if p̃i /∈ P
0 (valid-msg), otherwise

(1)
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The amount of side-channel information leaked by the device in an attack is
related to the number of blocks decrypted before the attack is detected. In our
approach, the plaintext is analyzed immediately after each block decryption to
ensure fast detection. As soon as an anomaly is detected, an alarm signaling the
attack is triggered and a response is executed to counter it.

3.2 Op-Code Analysis

We make use of a deterministic approach to test the features of the plaintext,
i.e. the instructions encoding of a specific MCU. We associate valid instruction
sequences as features that correspond to normal behavior. To test for anomalies,
we examine whether the observations of the collected data are in fact valid
encodings for a known Instruction Set Architecture (ISA). Assuming that the
probability of appearance of any given instruction does not affect the probability
of appearance of another one in the sequence, i.e. obtaining valid instructions
is an independent event, the probability of generating a sequence for which
all observations yield valid instructions will decrease as the sequence length
increases. We define V as the set of all valid instructions. The probability that
a sequence of instructions in a plaintext is valid may be calculated as follows:

r∏

i=1

Pr(ṽi ∈ V) =
(

N

2m

)r

, (2)

where N is the number of valid plaintext encodings in the given instruction set
architecture, r is the number of instructions in a plaintext sequence, and m is
the bit-length of a single instruction encoding.

An alarm signaling the detection of an attack will be triggered on single
occurrences (point anomalies), i.e. when an individual observation does not com-
ply with the model of valid instruction encodings. Since the observations may
include not only the instruction’s op-codes but operands as well, inputs that do
not conform to the model will be taken as anomalous only when they represent
instructions, and not when they represent other type of data (thus treated as
conditional anomalies). We will discuss the special case of long data blocks in
Subsect. 4.2.

3.3 Response Measures

Once an attack is detected, a response can be applied to counter it. For this,
three different measures are proposed:

(a) Modifying the key material.
(b) Delaying the next response.
(c) Disabling the cryptographic core.

For (a), we erase the key value setting it to all zeros (i.e. zeroisation), that
is, k = 0κ. Response (b) creates a delay in the update mechanism in order
to slow down the collection of leakage information, {�i}. Lastly, (c) disables the
cryptographic core to prevent any further collections of leakage information {�i}.
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4 Implementation on a General Purpose MCU

For our experiments we chose TI’s MSP430 MCU architecture. To create
the function to be used for features-recognition, the 27 core instructions were
expressed as Boolean functions. The function for an invalid instruction was deter-
mined as the complement of the concatenation of these functions. The resulting
Boolean function was then reduced using Logic Friday [24], a graphical interface
for the ESPRESSO logic minimizer algorithm [22]. The resulting logic function,
F , is shown in Eq. 3, here bj corresponds to the j-th bit of the instruction encod-
ing word.

F = b̄15b̄14b̄13b̄12 + b̄15b̄14b̄13b11

+ b̄15b̄14b̄13b10 + b̄15b̄14b̄13b9b8b7

+ b̄15b̄14b̄13b9b8b6 + b̄15b̄14b̄13b9b7b6

+ b̄15b̄14b̄13b8b7b6 + b̄15b̄14b̄13b9b8b5

+ b̄15b̄14b̄13b9b8b4 + b̄15b̄14b̄13b9b8b3

+ b̄15b̄14b̄13b9b8b2 + b̄15b̄14b̄13b9b8b1

+ b̄15b̄14b̄13b9b8b0

(3)

Figure 2 shows the conditions to perform the checks. In order to avoid false
positives (i.e. triggering an alarm when an instruction is indeed valid), operands
are not analyzed. In MSP430, three types of instructions are possible: single
operand arithmetic, two operand arithmetic, and conditional jumps. When an
instruction is analyzed, one can determine the number of operands which follow.
By skipping over the operands and analyzing the op-codes as in Eq. 1 with the
Boolean function F , shown in Eq. 3, false positives are completely eliminated.
The amount of false negatives that will occur before an alarm is triggered will
depend on the properties of the op-code space, as given by Eq. 2.

4.1 Comparison of Instruction Set Architectures

To evaluate the choice of using the MSP430 instruction set, we compare it to
the instruction set ARMv6-M (which is used in ARM Cortex-M1, M0, and M0+
cores). While the MSP430 uses only 16-bit instructions, the instruction set of

Fig. 2. State machine for the firmware code feature analyzer.
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ARMv6-M uses 16-bit as well as a few 32-bit instructions. The instruction bus
for both architectures is 16-bit wide, therefore, even in the case of 32-bit instruc-
tions the ARM architecture sends the instructions one ‘halfword’ (16-bits) at a
time. Table 1 shows the percentage of valid instructions in comparison with the
complete encoding space for the MSP430 and the ARMv6-M instruction sets. A
column has been added to show the percentage of valid encodings if the instruc-
tions are compared making use of 16-bits for the analysis (first halfword only),
or the complete 32-bits (first and second halfwords).

Figure 3 shows how the probability of randomly generating a sequence in
which all instructions are valid, decreases as the number of instructions in a
sequence is increased. This is based on Eq. 2 and the values from Table 1. Using
both 32-bit and 16-bit instructions yields the best results for the detection of
anomalies in ARM instructions. For our use-case, the 16-bit MSP430 instruction
space is comparable to using both 32-bit and 16-bit instructions in the ARMv6-
M instruction set, while requiring a simpler logic function for the recognition of
valid instructions.

Table 1. Instruction encoding space comparison

MSP430 ARMv6-M (1st halfword) ARMv6-M (1st & 2nd halfwords)

Values [%] Values [%] Values [%]

Encoding space 216 100 216 100 232 100

Valid encoding 57985 88.48 62894 95.97 3752681472 87.37

Invalid encoding 7551 11.52 2641 4.03 542285824 12.63

Fig. 3. Probability of generating a sequence where all values represent valid instruction
encodings.
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4.2 Address Analyzer for Data and Code Segments

Along with code, data-only segments may also be found inside firmware images.
Typical examples of these are pre-computed tables and calibration values. The
values found in data segments do not conform to the firmware properties previ-
ously described for code, therefore a supplementary analyzer is needed. Typically,
MCUs make use of a unified address space for memory and peripherals. Defining
segments in memory can be used to divide the code and data content. This app-
roach prevents the occurrence of false positives caused by interpreting data as
invalid instruction encodings. Figure 4 shows the state machine for the address
check.

An advantage of this approach is that MCUs, such as the MSP430FR59xx
family from TI, have a large address space, of which only a fraction is used.
This means that, by comparing if the address obtained after decryption corre-
sponds to a valid address space or not, the detection capabilities of the ADR
can be improved. For example, Table 2 shows the memory organization of the
MSP430FR5969. The address space has a range of 220 addresses, which are
encoded in 3 bytes, giving a total of 224 possible values. This MCU has 2 kB of
RAM and 63 kB of non-volatile FRAM memory. Hence, generating an address
at random yields a mere ≈0.4% probability of landing in a valid address range.

In order to avoid treating code as data and vice versa, code and data can be
saved in different memory areas. To store data segments in a specific memory
area, separate from the instruction encodings, minor changes need to be done
to a program. Compilers, such as the ones included in newer versions of Code
Composer Studio and IAR Workbench, support the location pragma for placing
content in specific memory locations.

Fig. 4. State machine for the address range analysis

Table 2. Address space for the MSP430FR59x9

Size [Bytes] Address range [Hex]

Peripherals 4096 000000-000FFF

Bootstrap Loader (ROM) 2048 001000-0017FF

Device Descriptor Info 256 001A00-001AFF

RAM 2048 001C00-0023FF

FRAM 64512 00FF80-00FFFF



354 O.M. Guillen et al.

Since values inside data blocks are not analyzed, an attacker could potentially
perform modifications to these values that would go undetected. To limit the
chances of success of such an attack, the amount of data sent after an address
should be reduced. That is, firmware images that contain large blocks of data
values should be partitioned so that address checks occur often. By performing
constant address checks, the probability of a modification going undetected will
be reduced. To yield roughly the same probability of detection as the one that
would be obtained with code checks, two address checks must be performed for
every 72 half-word op-codes (i.e. 144 bytes). Therefore, 72 bytes is the maximum
number of data values that should be sent between address checks, in order
to maintain at least the same level of security as the one obtained with code
detection.

4.3 Results

The following results were obtained for a Texas Instruments MSP430FR5969
MCU [12]. This device belongs to the new family of Ferroelectric Random Access
(non-volatile) Memory (FRAM) microcontrollers from TI. For the block cipher,
we make use of the unprotected AES implementation provided by Texas Instru-
ments [13]. The code was compiled using TI’s compiler v.4.4.1 under Code Com-
poser Studio 6.1.

Table 3 shows the code foot-print of the ADR using different optimization
options. The ADR function analyzeData, which covers the anomaly detection
and response functions, has a foot-print of 340 bytes of code and 1 byte of data.
In comparison, the software implementation of AES makes use of 1.88 kB of
code and 267 bytes of data when compiling with whole program optimization
for code size. The low code-size overhead of the ADR is accomplished by making
use of Boolean functions as presented in Eq. 3.

Table 3 also shows the execution time required for the ADR to analyze a
16-bytes block of data. The time length was measured using an internal timer,
TA0, set to the system clock. The timer was triggered when calling analyzeData

Table 3. ADR code size under different optimization parameters

Optimization level No Reg. Local Global Interproc. Program

- -O0 -O1 -O2 -O3 -O4

Size [bytes]

.text:ADR:analyzeData 112 72 66 58 58 70

.text:ADR:analyzeOpcodeDet 352 306 272 270 270 270

.text:ADR:applyReactionMeasure 64 30 24 22 22 −

.text:ADR 528 408 362 350 350 340

Execution time [cycles/block]

analyzeData 1614 1192 1168 1063 1064 1045
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and stopped once the function returned. The number of cycles needed to step
in and out of the function has been accounted for and subtracted from these
numbers. The sampling size for this measurements was 105 ciphertexts.

5 Side-Channel Analysis

To validate the effectiveness of the ADR against side-channel attacks, we first
conducted differential power analysis attacks on a simulated target and later
compared them with the practical attacks on a real MCU.

5.1 Attacks on Simulated Measurements

For the simulations, a set of attacks was performed with the ADR active and
another without it. The output of the S-box function in the first round of AES
was selected as the target of the attack. To simulate the side-channel leakage l,
we made use of the Hamming weight (HW) model. Each leakage sample �i was
made Gaussian, that is, composed of a deterministic signal HW (Sbox(s, ci)),
and random additive noise η ∼ N (μ, σ2), such that �i = HW (Sbox(s, ci)) + η.
As commonly assumed in literature, we made use of additive noise following a
normal distribution with zero mean and variance σ2 [15]. Attacks were performed
for 1000 tests with 5000 queries per test. For each test a randomly generated key
was used. We measured the efficiency of the attack using the success rate for all
16 bytes in key k. Figure 5 shows the success rates for different noise levels, each
curve shows the average of 1000 tests, each with independent keys, as well as
the success rate of attacks on real measurements. Figure 5a shows a successful
attack when no countermeasure is activated, while Fig. 5b shows the effect of
applying key-zeroisation upon detecting the attack.

5.2 Practical Attacks on an MCU

To perform side-channel analysis, the MSP430FR5969 was configured to run
at 8 MHz using the internal digitally controlled oscillator (DCO). An Agilent
DSO9254A oscilloscope, configured to use a sampling rate of 200 MS/s, was then
used to perform the measurements. The MSP430FR5969 was placed within an
MSP-TS430RGZ48C 48-pin FRAM Target Board. To capture the power traces,
a 50Ω resistor was placed between the DVSS pin in the board and ground. A TI
THS4509EVM, a 10 dB and 1900 MHz bandwidth differential amplifier module,
was used to pre-amply the signal before feeding it to the oscilloscope. Figure 5
shows the success rate of a DPA attack of a software AES implementation in
comparison with the simulation values. The curve depicted in Fig. 5a for the
practical attack on AES is approximate to the one with a σ = 22 in our sim-
ulations model. This value shows the deviation between the simulated traces,
generated with a Hamming weight model, and the actual power consumption of
the target MCU.
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(a) Response measure deactivated

(b) Zeroisation measure activated

Fig. 5. Comparison of the success rates for DPA attacks with the proposed anomaly
detection and response module activated and deactivated.

In Fig. 5b one can observe that, while for simulations some information can
be leaked before the zeroisation response is applied, for the practical attack
the amount of information leaked about the secret key is in fact negligible.
To quantify the number of ciphertexts required to recognize an attack using
deterministic firmware checks, one million tests were conducted. For each test
16-byte ciphertexts of data with uniform distribution were sent until an alarm
occurred. The mean was found to be at 9.7914 ciphertexts. These results can
be compared with the expectations from the ideal calculations by taking a look
at the sample average in Fig. 3. When adding the address checks, the mean
was found to be equal to 1.0066, which represents a challenging scenario for
mounting successful side-channel attacks. Although it could be possible to collect
traces from multiple devices, we believe this attack would be quite laborious
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and time consuming, especially if, for example, each device is programmed with
an independent secret key, the anomaly detection is used in conjunction with
countermeasures such as masking, or the decryption module is implemented in
hardware rather than in software.

6 Discussion

We presented a minimalist, deterministic and agnostic (of the underlying cryp-
tographic primitive) approach for performing anomaly detection to thwart side-
channel attacks when the attacker actively generates the inputs to the device.
Our approach is not intended as a drop-in replacement for other side-channel
countermeasures, like masking schemes, but as a first line of defense against side-
channel attacks for low-cost resource-constrained devices. Moreover, it can be
combined with other software based measures, e.g. key-refreshing techniques and
secure counters, to effectively enhance the resistance of firmware update mecha-
nisms against side-channel analysis in a broader scope. The combination of the
our anomaly detection approach and other measures into a complete solution is
part of the future work.

Note that, even though on one hand, any upgrade to the underlying cryp-
tographic implementation (either hardware or software) used for decrypting the
firmware images would be possible without modification to the anomaly detec-
tion measure (potentially stored in ROM), on the other hand, the model underly-
ing the anomaly detection must be adapted to each Instruction Set Architecture
(ISA), i.e. if a change in the ISA is made, then the anomaly detection model
must be updated accordingly. Our approach is based on a deterministic anom-
aly detection model, which recognizes valid instructions and memory addresses,
without relying on other cryptographic primitives, i.e. hash functions or Mes-
sage Authentication Codes (MACs), to detect anomalies. We believe that, in
case of resource-constrained and battery operated devices, this setting repre-
sents the best compromise in terms of energy consumption, code-size and side-
channel security, i.e. fastest way to recognize side-channel attacks. A first possible
improvement would be to additionally apply probabilistic models in conjunction
with the deterministic model, such as Hidden Markov Models (HMM), in order
to verify whether a sequence of instructions within a decryption block is also
legitimate. Such a probabilistic approach would probably not only require more
code size and energy, but also a team of developers to run in-house verifications
of the anomaly detection model, in order to ensure that encrypted software
updates would pass successfully through the anomaly detection measures and
not generate false positives. Yet another possible approach would be interleaving
machine code and the corresponding hash values within the encrypted firmware.
This approach would require considerably more energy for the transmission of the
firmware (which would be at least double in length, depending on the output size
of the hash function), would require the resources for the implementation of the
hash function, and the corresponding energy for verifying the hash values during
firmware updates. Moreover, from a side-channel security point of view, more
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than one input block might be needed in order to verify the hash values, depend-
ing on the input block size of the hash function, hence potentially allowing for
more leakage, before the hash values can be verified and an alarm can be raised.
Finally, yet another possibility would be to use authenticated encryption with
associated data (AEAD) to simultaneously provide decryption with integrity
verification in one step. At the time of writing, the Competition for Authen-
ticated Encryption: Security, Applicability, and Robustness (CAESAR) [1] is
running, with the goal of determining a portfolio of authenticated ciphers that
offer advantages over AES-GCM (AES Galois Counter Mode) in terms of perfor-
mance, security, and ease of correct implementations [6]. We leave the evaluation
of CAESAR candidates for secure firmware updates as future work.

7 Conclusions

In this work we presented a minimalist approach to anomaly detection and reac-
tion, as a first line of defense against side-channel attacks for encrypted firmware
updates. Our solution has negligible code size and runtime overhead, can be
applied to products already deployed in the field during a firmware update,
and is orthogonal to existing side-channel countermeasures, such as masking
schemes, which can be used in conjunction with it to increase the overall system
security. Unlike many other countermeasures, the described solution is agnos-
tic of the underlying cryptographic implementation, allowing it to be applied
to any cryptographic module and does not require any source of randomness.
In the considered application case of TI MSP430 instruction set architecture,
embedding anomaly detection measures in software costs only 340 bytes, and
it was proven to be practically effective against differential side-channel attacks
both on simulated and real measurements, requiring only one decryption block
on average to identify side-channel attacks.
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3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
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