
Computing Longest Single-arm-gapped
Palindromes in a String

Shintaro Narisada1(B), Diptarama1, Kazuyuki Narisawa1, Shunsuke Inenaga2,
and Ayumi Shinohara1

1 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
{shintaro narisada,diptarama}@shino.ecei.tohoku.ac.jp,

{narisawa,ayumi}@ecei.tohoku.ac.jp
2 Department of Informatics, Kyushu University, Fukuoka, Japan

inenaga@inf.kyushu-u.ac.jp

Abstract. We introduce new types of approximate palindromes called
single-arm-gapped palindromes (SAGPs). A SAGP contains a gap in
either its left or right arm, which is in the form of either wgucuRwR or
wucuRgwR, where w and u are non-empty strings, wR and uR are their
reversed strings respectively, g is a gap, and c is either a single character
or the empty string. We classify SAGPs into two groups: those which
have ucuR as a maximal palindrome (type-1), and the others (type-2).
We propose several algorithms to compute all type-1 SAGPs with longest
arms occurring in a given string using suffix arrays, and them a linear-
time algorithm based on suffix trees. We also show how to compute type-2
SAGPs with longest arms in linear time. We perform some preliminary
experiments to evaluate practical performances of the proposed methods.

1 Introduction

A palindrome is a string that reads the same forward and backward. Discovering
palindromic structures in strings is a classical, yet important task in combina-
torics on words and string algorithmics (e.g., see [1,3,8,14]). A natural extension
to palindromes is to allow for a gap between the left and right arms of palin-
dromes. Namely, a string x is called a gapped palindrome if x = wgwR for some
strings w, g with |w| ≥ 1 and |g| ≥ 0. Finding gapped palindromes has applica-
tions in bioinformatics, such as finding secondary structures of RNA sequences
called hairpins [9]. If we further allow for another gap inside either arm, then
such a palindrome can be written as wg2ug1u

RwR or wug1u
Rg2w

R for some
strings w, g1, g2, u with |u| ≥ 1, |g1| ≥ 0, |g2| ≥ 0, and |w| ≥ 1. These types of
palindromes characterize hairpins with bulges in RNA sequences, known to occur
frequently in the secondary structures of RNA sequences [16]. Notice that the
special case where |g1| ≤ 1 and |g2| = 0 corresponds to usual palindromes, and
the special case where |g1| ≥ 2 and |g2| = 0 corresponds to gapped palindromes.

In this paper, we consider a new class of generalized palindromes where
|g1| ≤ 1 and |g2| ≥ 1, i.e., palindromes with gaps inside one of its arms. We
call such palindromes as single-arm-gapped palindromes (SAGPs). For instance,
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 375–386, 2017.
DOI: 10.1007/978-3-319-51963-0 29

376 S. Narisada et al.

string abb|ca|cb|bc|bba is an SAGP of this kind, taking w = abb, g1 = ε (the
empty string), g2 = ca, and u = cb.

We are interested in occurrences of SAGPs as substrings of a given string
T . For simplicity, we will concentrate on SAGPs with |g1| = 0 containing a gap
in their left arms. However, slight modification of all the results proposed in
this paper can easily be applied to all the other cases. For any occurrence of
an SAGP wguuRwR beginning at position b in T , the position b + |wgu| − 1
is called the pivot of the occurrence of this SAGP. This paper proposes var-
ious algorithms to solve the problem of computing longest SAGPs for every
pivot in a given string T of length n. We classify longest SAGPs into two
groups: those which have uuR as a maximal palindrome (type-1), and the others
(type-2). Firstly, we show a näıve O(n2)-time algorithm for computing type-1
longest SAGPs. Secondly, we present a simple but practical O(n2)-time algo-
rithm for computing type-1 longest SAGPs based on simple scans over the
suffix array [15]. We also show that the running time of this algorithm can
be improved by using a dynamic predecessor/successor data structure. If we
employ the van Emde Boas tree [4], we achieve O((n+occ1) log log n)-time solu-
tion, where occ1 is the number of type-1 longest SAGPs to output. Finally, we
present an O(n + occ1)-time solution based on the suffix tree [17]. For type-2
longest SAGPs, we show an O(n+ occ2)-time algorithm, where occ2 is the num-
ber of type-2 longest SAGPs to output. Combining the last two results, we obtain
an optimal O(n + occ)-time algorithm for computing all longest SAGPs, where
occ is the number of outputs. We performed preliminary experiments to compare
practical performances of our algorithms for finding type-1 longest SAGPs. All
proofs are omitted due to lack of space. A full version of this paper is available
at arXiv:1609.03000.

Related work. For a fixed gap length d, one can find all gapped palindromes
wgwR with |g| = d in the input string T of length n in O(n) time [9]. Kolpakov
and Kucherov [13] showed an O(n + L)-time algorithm to compute long-armed
palindromes in T , which are gapped palindromes wgwR such that |w| ≥ |g|.
Here, L denotes the number of outputs. They also showed how to compute, in
O(n + L) time, length-constrained palindromes which are gapped palindromes
wgwR such that the gap length |g| is in a predefined range. Recently, Fujishige
et al. [6] proposed online algorithms to compute long-armed palindromes and
length-constrained palindromes from a given string. A gapped palindrome wgwR

is an α-gapped palindrome, if |wg| ≤ α|w| for α ≥ 1. Gawrychowski et al. [7]
showed that the maximum number of α-gapped palindromes occurring in a string
of length n is at most 28αn + 7n. Since long-armed palindromes are 2-gapped
palindromes for α = 2, L = O(n) and thus Kolpakov and Kucherov’s algo-
rithm runs in O(n) time. Gawrychowski et al. [7] also proposed an O(αn)-time
algorithm to compute all α-gapped palindromes in a given string for any pre-
defined α ≥ 1. Hsu et al. [10] showed an O(kn) time algorithm that finds all
maximal approximate palindromes uvw in a given string such that |v| = q and
the Levenshtein distance between u and wR is at most k, for any q ≥ 0 and
k > 0. We emphasize that none of the above algorithms can directly be applied
to computing SAGPs.

https://arxiv.org/abs/1609.03000

Computing Longest Single-arm-gapped Palindromes in a String 377

2 Preliminaries

Let Σ = {1, . . . , σ} be an integer alphabet of size σ. An element of Σ∗ is called a
string. For any string w, |w| denotes the length of w. The empty string is denoted
by ε. Let Σ+ = Σ∗ − {ε}. For any 1 ≤ i ≤ |w|, w[i] denotes the i-th symbol of
w. For a string w = xyz, strings x, y, and z are called a prefix, substring, and
suffix of w, respectively. The substring of w that begins at position i and ends
at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|, i.e., w[i..j] = w[i] · · · w[j].
For j > i, let w[i..j] = ε for convenience. For two strings X and Y , let lcp(X,Y)
denote the length of the longest common prefix of X and Y .

For any string x, let xR denote the reversed string of x, i.e. xR = x[|x|] · · · x[1].
A string p is called a palindrome if p = pR. Let T be any string of length n. Let
p = T [b..e] be a palindromic substring of T . The position i = � b+e

2 � is called the
center of this palindromic substring p. The palindromic substring p is said to be
the maximal palindrome centered at i iff there are no longer palindromes than
p centered at i, namely, T [b − 1] �= T [e + 1], b = 1, or e = n.

A string x is called a single-arm-gapped palindrome (SAGP) if x is in the form
of either wgucuRwR or wucuRgwR, with some non-empty strings w, g, u ∈ Σ+

and c ∈ Σ ∪ {ε}. For simplicity and ease of explanations, in what follows we
consider only SAGPs whose left arms contain gaps and c = ε, namely, those of
form wguuRwR. But our algorithms to follow can easily be modified to compute
other forms of SAGPs occurring in a string as well.

Let b be the beginning position of an occurrence of a SAGP wguuRwR in T ,
namely T [b..b + 2|wu| + |g| − 1] = wguuRwR. The position i = b + |wgu| − 1
is called the pivot of this occurrence of the SAGP. This position i is also the
center of the palindrome uuR. An SAGP wguuRwR for pivot i in string T is
represented by a quadruple (i, |w|, |g|, |u|) of integers. In what follows, we will
identify the quadruple (i, |w|, |g|, |u|) with the corresponding SAGP wguuRwR

for pivot i.
For any SAGP x = wguuRwR, let armlen(x) denote the length of the arm

of x, namely, armlen(x) = |wu|. A substring SAGP y = wguuRwR for pivot i in
a string T is said to be a longest SAGP for pivot i, if for any SAGP y′ for pivot
i in T , armlen(y) ≥ armlen(y′).

Notice that there can be different choices of u and w for the longest
SAGPs at the same pivot. For instance, consider string ccabcabbace. Then,
(7, 1, 3, 2) = c|abc|ab|ba|c and (7, 2, 3, 1) = ca|bca|b|b|ac are both longest
SAGPs (with arm length |wu| = 3) for the same pivot 7, where the under-
lines represent the gaps. Of all longest SAGPs for each pivot i, we regard those
that have longest palindromes uuR centered at i as canonical longest SAGPs for
pivot i. In the above example, (7, 1, 3, 2) = c|abc|ab|ba|c is a canonical longest
SAGP for pivot 7, while (7, 2, 3, 1) = ca|bca|b|b|ac is not. Let SAGP(T) be the
set of canonical longest SAGPs for all pivots in T . In this paper, we present
several algorithms to compute SAGP(T).

For an input string T of length n over an integer alphabet of size σ = nO(1),
we perform standard preprocessing which replaces all characters in T with inte-
gers from range [1, n]. Namely, we radix sort the original characters in T , and

378 S. Narisada et al.

replace each original character by its rank in the sorted order. Since the original
integer alphabet is of size nO(1), the radix sort can be implemented with O(1)
number of bucket sorts, taking O(n) total time. Thus, whenever we speak of a
string T over an integer alphabet of size nO(1), one can regard T as a string over
an integer alphabet of size n.

Tools: Suppose a string T ends with a unique character that does not appear
elsewhere in T . The suffix tree [17] of a string T , denoted by STree(T), is a path-
compressed trie which represents all suffixes of T . Then, STree(T) can be defined
as an edge-labelled rooted tree such that (1) Every internal node is branching;
(2) The out-going edges of every internal node begin with mutually distinct
characters; (3) Each edge is labelled by a non-empty substring of T ; (4) For each
suffix s of T , there is a unique leaf such that the path from the root to the leaf
spells out s. It follows from the above definition of STree(T) that if n = |T |
then the number of nodes and edges in STree(T) is O(n). By representing every
edge label X by a pair (i, j) of integers such that X = T [i..j], STree(T) can be
represented with O(n) space. For a given string T of length n over an integer
alphabet of size σ = nO(1), STree(T) can be constructed in O(n) time [5]. For
each node v in STree(T), let str(v) denote the string spelled out from the root
to v. According to Property (4), we sometimes identify each position i in string
T with the leaf which represents the corresponding suffix T [i..n].

Suppose the unique character at the end of string T is the lexicographically
smallest in Σ. The suffix array [15] of string T of length n, denoted SAT , is an
array of size n such that SAT [i] = j iff T [j..n] is the ith lexicographically smallest
suffix of T for 1 ≤ i ≤ n. The reversed suffix array of T , denoted SA−1

T , is an
array of size n such that SA−1

T [SAT [i]] = i for 1 ≤ i ≤ n. The longest common
prefix array of T , denoted LCPT , is an array of size n such that LCPT [1] = −1
and LCPT [i] = lcp(T [SAT [i − 1]..n], T [SAT [i]..n]) for 2 ≤ i ≤ n. The arrays
SAT , SA−1

T , and LCPT for a given string T of length n over an integer alphabet
of size σ = nO(1) can be constructed in O(n) time [11,12].

For a rooted tree T , the lowest common ancestor LCAT (u, v) of two nodes
u and v in T is the deepest node in T which has u and v as its descendants.
It is known that after a linear-time preprocessing on the input tree, querying
LCAT (u, v) for any two nodes u, v can be answered in constant time [2].

Consider a rooted tree T where each node is either marked or unmarked. For
any node v in T , let NMAT (v) denote the deepest marked ancestor of v. There
exists a linear-space algorithm which marks any unmarked node and returns
NMAT (v) for any node v in amortized O(1) time [18].

Let A be an integer array of size n. A range minimum query RMQA(i, j)
of a given pair (i, j) of indices (1 ≤ i ≤ j ≤ n) asks an index k in range [i, j]
which stores the minimum value in A[i..j]. After O(n)-time preprocessing on A,
RMQA(i, j) can be answered in O(1) time for any given pair (i, j) of indices [2].

Let S be a set of m integers from universe [1, n], where n fits in a single
machine word. A predecessor (resp. successor) query for a given integer x to S
asks the largest (resp. smallest) value in S that is smaller (resp. larger) than x.
Let u(m,n), q(m,n) and s(m,n) denote the time for updates (insertion/deletion)

Computing Longest Single-arm-gapped Palindromes in a String 379

of elements, the time for predecessor/successor queries, and the space of a
dynamic predecessor/successor data structure. Using a standard balanced binary
search tree, we have u(m,n) = q(m,n) = O(log m) time and s(n,m) = O(m)
space. The Y-fast trie [19] achieves u(m,n) = q(m,n) = O(log log n) expected
time and s(n,m) = O(m) space, while the van Emde Boas tree [4] does
u(m,n) = q(m,n) = O(log log n) worst-case time and s(n,m) = O(n) space.

3 Algorithms for Computing Canonical Longest SAGPs

In this section, we present several algorithms to compute the set SAGP(T) of
canonical longest SAGPs for all pivots in a given string T .

A position i in string T is said to be of type-1 if there exists a
SAGP wguuRwR such that uuR is the maximal palindrome centered at posi-
tion i, and is said to be of type-2 otherwise. For example, consider T =
baaabaabaacbaabaabac of length 20. Position 13 of T is of type-1, since
there are canonical longest SAGPs (13, 4, 4, 2) = abaa|baac|ba|ab|aaba and
(13, 4, 1, 2) = abaa|c|ba|ab|aaba for pivot 13, where ba|ab is the maximal palin-
drome centered at position 13. On the other hand, Position 6 of T is of type-2;
the maximal palindrome centered at position 6 is aaba|abaa but there are no
SAGPs in the form of wgaaba|abaawR for pivot 6. The canonical longest SAGPs
for pivot 6 is (6, 1, 1, 3) = a|a|aba|aba|a.

Let Pos1(T) and Pos2(T) be the sets of type-1 and type-2 positions in T ,
respectively. Let SAGP(T, i) be the subset of SAGP(T) whose elements are
canonical longest SAGPs for pivot i. Let SAGP1(T) =

⋃
i∈Pos1(T) SAGP(T, i)

and SAGP2(T) =
⋃

i∈Pos2(T) SAGP(T, i). Clearly SAGP1(T) ∪ SAGP2(T) =
SAGP(T) and SAGP1(T)∩SAGP2(T) = ∅. The following lemma gives an useful
property to characterize the type-1 positions of T .

Lemma 1. Let i be any type-1 position of a string T of length n. Then, a SAGP
wguuRwR is a canonical longest SAGP for pivot i iff uuR is the maximal palin-
drome centered at i and wR is the longest non-empty prefix of T [i + |uR| + 1..n]
such that w occurs at least once in T [1..i − |u| − 1].

We define two arrays Pals and LMost as follows:

Pals[i] = {r | T [i − r + 1..i + r] is a maximal palindrome in T for pivot i}.

LMost [c] = min{i | T [i] = c} for c ∈ Σ.

By Lemma 1, a position i in T is of type-1 iff LMost [i+Pals [i]+1] < i−Pals[i].

Lemma 2. Given a string T of length n over an integer alphabet of size nO(1),
we can determine whether each position i of T is of type-1 or type-2 in a total
of O(n) time and space.

By Lemmas 1 and 2, we can consider an algorithm to compute SAGP(T)
by computing SAGP1(T) and SAGP2(T) separately, as shown in Algorithm 1.

380 S. Narisada et al.

Algorithm 1. computing SAGP(T)
Input: string T of length n
Output: SAGP(T)

1 compute Pals;
2 for i = n downto 1 do
3 c = T [i]; NextPos[i] = LMost [c]; LMost [c] = i;

4 for i = 1 to n do
5 if LMost [i + Pals[i] + 1] < i − Pals[i] then
6 Pos1(T) = Pos1(T) ∪ {i}; /* position i is of type-1 */
7 else
8 Pos2(T) = Pos2(T) ∪ {i}; /* position i is of type-2 */

9 compute SAGP1(T); /* Sect. 3.1 */
10 compute SAGP2(T); /* Sect. 3.2 */

In this algorithm, we also construct an auxiliary array NextPos defined by
NextPos[i] = min{j | i < j, T [i] = T [j]} for each 1 ≤ i ≤ n, which will be
used in Sect. 3.2.

Lemma 3. Algorithm 1 correctly computes SAGP(T).

In the following subsections, we present algorithms to compute SAGP1(T)
and SAGP2(T) respectively, assuming that the arrays Pals, LMost and NextPos
have already been computed.

3.1 Computing SAGP1(T) for Type-1 Positions

In what follows, we present several algorithms corresponding to the line 9 in
Algorithm 1. Lemma 1 allows us greedy strategies to compute the longest prefix
wR of T [i + Pals[i] + 1..n] such that w occurs in T [1..i − Pals[i] − 1].

Näıve Quadratic-Time Algorithm with RMQs. Let T ′ = T$TR#. We
construct the suffix array SAT ′ , the reversed suffix array SA−1

T ′ , the LCP array
LCPT ′ for T ′, and the array RMQLCPT ′ to support RMQ on LCPT ′ .

For each Pals[i] in T , for each gap size G = 1, . . . , i−Pals [i]−1, we compute
W = lcp(T [1..i−Pals [i]−G]R, T [i+Pals[i]+1..n]) in O(1) time by RMQLCPT ′ .
Then, the gap sizes G with largest values of W give all longest SAGPs for pivot
i. Since we test O(n) gap sizes for every pivot i, it takes a total of O(n2) time
to compute SAGP1(T). The working space of this method is O(n).

Simple Quadratic-Time Algorithm Based on Suffix Array. Given a
string T , we construct SAT ′ , SA−1

T ′ , and LCPT ′ for string T ′ = T$TR# as
in the previous subsection. Further, for each position n + 2 ≤ j ≤ 2n + 1 in the
reversed part TR of T ′ = T$TR#, let op(j) denote its “original” position in the

Computing Longest Single-arm-gapped Palindromes in a String 381

string T , namely, let op(j) = 2n − j + 2. Let e be any entry of SAT ′ such that
SAT ′ [e] ≥ n + 2. We associate each such entry of SAT ′ with op(SAT ′ [e]).

Let SAT ′ [k] = i+Pals[i]+1, namely, the kth entry of SAT ′ corresponds to the
suffix T [i + Pals[i] + 1..n] of T . Now, the task is to find the longest prefix wR of
T [i+Pals[i]+1..n] such that w occurs completely inside T [1..i−Pals [i]−1]. Let
b = i−Pals[i]+1, namely, b is the beginning position of the maximal palindrome
uuR centered at i. We can find w for any maximal SAGP wguuRwR for pivot i
by traversing SAT ′ from the kth entry forward and backward, until we encounter
the nearest entries p < k and q > k on SAT ′ such that op(SAT ′ [p]) < b − 1 and
op(SAT ′ [q]) < b − 1, if they exist. The size W of w is equal to

max{min{LCPT ′ [p + 1], . . . ,LCPT ′ [k]},min{LCPT ′ [k + 1], . . . ,LCPT ′ [q]}}.
(1)

Assume w.l.o.g. that p gives a larger lcp value with k, i.e. W = min{LCPT ′ [p +
1], . . . ,LCPT ′ [k]}. Let s be the largest entry of SAT ′ such that s < p and
LCPT ′ [s + 1] < W . Then, any entry t of SAT ′ such that s < t ≤ p + 1
and op(SAT ′ [t]) < b − 1 corresponds to an occurrence of a longest SAGP
for pivot i, with gap size b − op(SAT ′ [t]) − 1. We output longest SAGP
(i,W, b−op(SAT ′ [t])−1, |u|) for each such t. The case where q gives a larger lcp
value with k, or p and q give the same lcp values with k can be treated similarly.

We find p and s by simply traversing SAT ′ from k. Since the distance from k
to s is O(n), the above algorithm takes O(n2) time. The working space is O(n).

Algorithm Based on Suffix Array and Predecessor/Successor Queries.
Let occ1 = |SAGP1(T)|. For any position r in T , we say that the entry j of SAT ′

is active w.r.t. r iff op(SAT ′ [j]) < r − 1. Let Active(r) denote the set of active
entries of SAT ′ for position r, namely, Active(r) = {j | op(SAT ′ [j]) < r − 1}.

Let t1 = p, and let t2, . . . , th be the decreasing sequence of entries of SAT ′

which correspond to the occurrences of longest SAGPs for pivot i. Notice that
for all 1 ≤ � ≤ h we have op(SAT ′ [t�]) < b − 1 and hence t� ∈ Active(b), where
b = i−|u|+1. Then, finding t1 reduces to a predecessor query for k in Active(b).
Also, finding t� for 2 ≤ � ≤ h reduces to a predecessor query for t�−1 in Active(b).

To effectively use the above observation, we compute an array U of size n
from Pals such that U [b] stores a list of all maximal palindromes in T which
begin at position b if they exist, and U [b] is nil otherwise. U can be computed
in O(n) time e.g., by bucket sort. After computing U , we process b = 1, . . . , n
in increasing order. Assume that when we process a certain value of b, we have
maintained a dynamic predecessor/successor query data structure for Active(b).
The key is that the same set Active(b) can be used to compute the longest SAGPs
for every element in U [b], and hence we can use the same predecessor/successor
data structure for all of them. After processing all elements in U [b], we insert all
elements of Active(b+1)\Active(b) to the predecessor/successor data structure.
Each element to insert can be easily found in constant time.

Since we perform O(n + occ1) predecessor/successor queries and O(n) inser-
tion operations in total, we obtain the following theorem.

382 S. Narisada et al.

Theorem 1. Given a string T of size n over an integer alphabet of size σ =
nO(1), we can compute SAGP1(T) in O(n(u(n, n)+q(n, n))+occ1 ·q(n, n)) time
with O(n + s(n, n)) space by using the suffix array and a predecessor/successor
data structure, where occ1 = |SAGP1(T)|.

Since every element of Active(b) for any b is in range [1, 2n + 2], we can
employ the van Emde Boas tree [4] as the dynamic predecessor/successor data
structure using O(n) total space. Thus we obtain the following theorem.

Theorem 2. Given a string T of size n over an integer alphabet of size σ =
nO(1), we can compute SAGP1(T) in O((n+occ1) log log n) time and O(n) space
by using the suffix array and the van Emde Boas tree, where occ1 = |SAGP1(T)|.

Optimal-Time Algorithm Based on Suffix Tree. In this subsection, we
show that the problem can be solved in optimal time and space, using the fol-
lowing three suffix trees regarding the input string T . Let T1 = STree(T$TR#)
for string T$TR# of length 2n + 2, and T2 = STree(TR#) of length n + 1.
These suffix trees T1 and T2 are static, and thus can be constructed offline,
in O(n) time for an integer alphabet. We also maintain a growing suffix tree
T ′

2 = STree(TR[k..n])#) for decreasing k = n, . . . , 1.

Lemma 4. Given T2 = STree(TR#), we can maintain T ′
2 = STree(TR[k..n]#)

for decreasing k = n, . . . , 1 incrementally, in O(n) total time for an integer
alphabet of size nO(1).

Theorem 3. Given a string T of length n over an integer alphabet of size σ =
nO(1), we can compute SAGP1(T) in optimal O(n + occ1) time and O(n) space
by using suffix trees, where occ1 = |SAGP1(T)|.

Proof. We first compute the array U . Consider an arbitrary fixed b, and let
uuR be a maximal palindrome stored in U [b] whose center is i = b + |u| − 1.
Assume that we have a growing suffix tree T ′

2 for string TR[n− b+1..n]# which
corresponds to the prefix T [1..b] of T of size b. We use a similar strategy as the
suffix array based algorithms. For each position 2n − b + 2 ≤ j ≤ 2n + 1 in
string T ′ = T$TR#, 1 ≤ op(j) ≤ b − 2. We maintain the NMA data structure
over the suffix tree T1 for string T ′ so that all the ancestors of the leaves whose
corresponding suffixes start at positions 2n − b + 2 ≤ j ≤ 2n + 1 are marked,
and any other nodes in T1 remain unmarked at this step.

As in the suffix-array based algorithms, the task is to find the longest prefix
wR of T [i + |uR| + 1..n] such that w occurs completely inside T [1..b − 2] =
T [1..i−|u|−1]. In so doing, we perform an NMA query from the leaf i+ |uR|+1
of T1, and let v be the answer to the NMA query. By the way how we have
maintained the NMA data structure, it follows that str(v) = wR.

To obtain the occurrences of w in T [1..b−2], we switch to T ′
2 , and traverse the

subtree rooted at v. Then, for any leaf � in the subtree, (i, |str(v)|, b− op(�), |u|)
is a canonical longest SAGP for pivot i.

Computing Longest Single-arm-gapped Palindromes in a String 383

After processing all the maximal palindromes in U [b], we mark all unmarked
ancestors of the leaf 2n − b of T1 in a bottom-up manner, until we encounter
the lowest ancestor that is already marked. This operation is a preprocessing for
the maximal palindromes in U [b + 1], as we will be interested in the positions
between 1 and op(2n−b) = b−1 in T . In this preprocessing, each unmarked node
is marked at most once, and each marked node will remain marked. In addition,
we update the growing suffix tree T ′

2 by inserting the new leaf for TR[n− b..n]#.
We analyze the time complexity of this algorithm. Since all maximal palin-

dromes in U [b] begin at position b in T , we can use the same set of marked
nodes on T1 for all of those in U [b]. Thus, the total cost to update the NMA
data structure for all b’s is linear in the number of unmarked nodes that later
become marked, which is O(n) overall. The cost for traversing the subtree of T ′

2

to find the occurrences of w can be charged to the number of canonical longest
SAGPs to output for each pivot, thus it takes O(occ1) time for all pivots. Updat-
ing the growing suffix tree T ′

2 takes overall O(n) time by Lemma 4. What remains
is how to efficiently link the new internal node introduced in the growing suffix
tree T ′

2 , to its corresponding node in the static suffix tree T1 for string T ′. This
can be done in O(1) time using a similar technique based on LCA queries on
T1, as in the proof of Lemma 4. Summing up all the above costs, we obtain
O(n + occ1) optimal running time and O(n) working space. ��

3.2 Computing SAGP2(T) for Type-2 Positions

In this subsection, we present an algorithm to compute SAGP2(T) in a given
string T , corresponding to the line 10 in Algorithm 1.

Lemma 5. For any type-2 position i in string T , every (not necessarily longest)
SAGP for i must end at one of the positions between i + 2 and i + Pals[i].

Lemma 6. For any type-2 position i in string T , if wguuRwR is a canonical
longest SAGP for pivot i, then |w| = 1.

For every type-2 position i in T , let u = T [i..i + Pals[i]]. By Lemma 6, any
canonical longest SAGP is of the form cguuRc for c ∈ Σ. For each 2 ≤ k ≤
Pals[i], let ck = uR[k], and let uR

k be the proper prefix of uR of length k − 1.
Now, observe that the largest value of k for which LMost [ck] ≤ i − |uk| − 1
corresponds to a canonical longest SAGP for pivot i, namely, ckgkukuR

k ck is a
canonical longest SAGP for pivot i, where gk = T [LMost [ck] + 1..i − |uk|]. In
order to efficiently find the largest value of such, we consider a function findR(t, i)
defined by

findR(t, i) = min{r | t ≤ r < i and T [l] = T [r] for some 1 ≤ l < r} ∪ {+∞}.

Lemma 7. For any type-2 position i in T , quadruple (i, 1, r−LMost [T [r]], i−r)
represents a canonical longest SAGP for pivot i, where r = findR(i − Pals[i] +
1, i) �= ∞. Moreover, its gap is the longest among all the canonical longest SAGPs
for pivot i.

384 S. Narisada et al.

Algorithm 2. constructing the array FindR
Input: string T of length n
Output: array FindR of size n

1 Let Occ1 and Occ2 be arrays of size ΣT initialized by +∞;
2 Let FindR be an arrays of size n, and let Stack be an empty stack;
3 minin = +∞;
4 for i = n downto 1 do
5 c = T [i]; Occ2[c] = Occ1[c]; Occ1[c] = i;
6 minin = min{minin,Occ2[c]};
7 Stack .push(i);
8 while Stack is not empty and LMost [T [Stack .top]] ≥ i do Stack .pop();
9 minout = Stack .top if Stack is not empty else +∞;

10 FindR[i] = min{minin,minout}

By Lemma 7, we can compute a canonical longest SAGP for any type-2 pivot
i in O(1) time, assuming that the function findR(t, i) returns a value in O(1)
time. We define an array FindR of size n by

FindR[t] = min{r | t ≤ r and T [l] = T [r] for some 1 ≤ l < r} ∪ {+∞}, (2)

for 1 ≤ t ≤ n. If the array FindR has already been computed, then findR(t, i)
can be obtained in O(1) time by findR(t, i) = FindR[t] if FindR[t] < i, and +∞
otherwise. Algorithm 2 shows a pseudo-code to compute FindR.

Lemma 8. Algorithm 2 correctly computes FindR in O(n) time and space.

By Lemma 8, we can compute SAGP2(T) for type-2 positions as follows.

Theorem 4. Given a string T of length n over an integer alphabet of size nO(1),
we can compute SAGP2(T) in O(n + occ2) time and O(n) space, where occ2 =
|SAGP2(T)|.

Proof. For a given T , we first compute the array FindR by Algorithm 2. By
Lemma 7, we can get a canonical longest SAGP x1 = (i, 1, |g1|,Pals [i]) if any, in
O(1) time by referring to LMost and FindR. Note that x1 is the one whose gap
|g1| is the longest. Let b1 = i − Pals[i] − |g1| be the beginning position of x1 in
T . Then the next shorter canonical longest SAGP for the same pivot i begins at
position b2 = NextPos[b1]. By repeating this process bj+1 = NextPos[bj] while
the gap size |gj | = i−Pals[i]−|bj | is positive, we obtain all the canonical longest
SAGPs for pivot i. Overall, we can compute all canonical longest SAGPs for all
pivots in T in O(n + occ2) time. The space requirement is clearly O(n). ��

We now have the main theorem from Theorems 3, 4 and Lemmas 2, 3 as
follows.

Theorem 5. Given a string T of length n over an integer alphabet of size nO(1),
Algorithm 1 can compute SAGP(T) in optimal O(n+occ) time and O(n) space,
where occ = |SAGP(T)|.

Computing Longest Single-arm-gapped Palindromes in a String 385

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

es
 [m

s]

Text length [×106]

Traverse
RB tree
vEB tree
Y-fast trie

Fig. 1. Running times on random
strings of length from 106 to 107 with
|Σ| = 10.

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

of

 tr
av

er
se

d
en

tr
ie

s

Text length [×106]

per pivot
per output

Fig. 2. Average numbers of traversed
entries of suffix array per pivot/output.

4 Experiments

In this section, we show some experimental results which compare performance of
our algorithms for computing SAGP1(T). We implemented the näıve quadratic-
time algorithm (Näıve), the simple quadratic-time algorithm which traverses
suffix arrays (Traverse), and three versions of the algorithm based on suffix array
and predecessor/successor data structure, each employing red-black trees (RB
tree), Y-fast tries (Y-fast trie), and van Emde Boas trees1 (vEB tree), as the
predecessor/successor data structure. We implemented all these algorithms with
Visual C++ 12.0 (2013), and performed all experiments on a PC (Xeon W3565,
12 GB of memory) running on Windows 7.

We tested these programs on randomly generated strings of lengths from 106

to 107 with |Σ| = 10. Figure 1 shows the average running times of 10 executions,
where Näıve is exculded because it was too slow. As one can see, Traverse was the
fastest for all lengths. We also conducted the same experiments varying alphabet
sizes as 2, 4, and 20, and obtained similar results as the case of alphabet size 10.

To verify why Traverse runs fastest, we measured the average numbers of
suffix array entries which are traversed, per pivot and output (i.e., canonical
longest SAGP). Figure 2 shows the result. We can observe that although in
theory O(n) entries can be traversed per pivot and output for a string of length
n, in both cases the actual number is far less than O(n) and grows very slowly
as n increases. This seems to be the main reason why Traverse is faster than
RB tree, vEB tree, and Y-fast trie which use sophisticated but also complicated
predecessor/successor data structures.

We also tested Traverse, RB tree, vEB tree, and Y-fast trie on a genome of
M.tuberculosis H37Rv (size: 4411529 bp, GenBank accession: NC 000962). The
running times were Traverse: 4304.8, RB tree: 12126.7, vEB tree: 9729.8, Y-fast
trie: 17862.6, all in milli-seconds. Here again, Traverse was the fastest.

1 We modified a van Emde Boas tree implementation from https://code.google.com/
archive/p/libveb/ so that it works with Visual C++.

https://code.google.com/archive/p/libveb/
https://code.google.com/archive/p/libveb/

386 S. Narisada et al.

Acknowledgements. This work was funded by ImPACT Program of Council for
Science, Technology and Innovation (Cabinet Office, Government of Japan), Tohoku
University Division for Interdisciplinary Advance Research and Education, and JSPS
KAKENHI Grant Numbers JP15H05706, JP24106010, JP26280003.

References

1. Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a
string. Theor. Comput. Sci. 141(1&2), 163–173 (1995)

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). doi:10.1007/10719839 9

3. Droubay, X., Pirillo, G.: Palindromes and sturmian words. Theor. Comput. Sci.
223(1–2), 73–85 (1999)

4. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In:
FOCS, pp. 75–84 (1975)

5. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-complexity
of suffix tree construction. J. ACM 47(6), 987–1011 (2000)

6. Fujishige, Y., Nakamura, M., Inenaga, S., Bannai, H., Takeda, M.: Finding gapped
palindromes online. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA
2016. LNCS, vol. 9843, pp. 191–202. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-44543-4 15

7. Gawrychowski, P., Tomohiro, I., Inenaga, S., Köppl, D., Manea, F.: Efficiently
finding all maximal α-gapped repeats. In: STACS 2016, pp. 39:1–39:14 (2016)

8. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J.
Comb. 30(2), 510–531 (2009)

9. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York (1997)

10. Hsu, P.H., Chen, K.Y., Chao, K.M.: Finding all approximate gapped palindromes.
Int. J. Found. Comput. Sci. 21(6), 925–939 (2010)

11. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

12. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A. (ed.)
CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001). doi:10.
1007/3-540-48194-X 17

13. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput.
Sci. 410(51), 5365–5373 (2009)

14. Manacher, G.K.: A new linear-time on-line algorithm for finding the smallest initial
palindrome of a string. J. ACM 22(3), 346–351 (1975)

15. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

16. Shi, Y.Z., Wang, F.H., Wu, Y.Y., Tan, Z.J.: A coarse-grained model with implicit
salt for RNAs: predicting 3D structure, stability and salt effect. J. Chem. Phys.
141(10), 105102 (2014)

17. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory, pp. 1–11 (1973)

18. Westbrook, J.: Fast incremental planarity testing. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 342–353. Springer, Heidelberg (1992). doi:10.1007/
3-540-55719-9 86

19. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Θ(N).
Information Processing Letters 17, 81–84 (1983)

http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1007/978-3-319-44543-4_15
http://dx.doi.org/10.1007/978-3-319-44543-4_15
http://dx.doi.org/10.1007/3-540-48194-X_17
http://dx.doi.org/10.1007/3-540-48194-X_17
http://dx.doi.org/10.1007/3-540-55719-9_86
http://dx.doi.org/10.1007/3-540-55719-9_86

	Computing Longest Single-arm-gapped Palindromes in a String
	1 Introduction
	2 Preliminaries
	3 Algorithms for Computing Canonical Longest SAGPs
	3.1 Computing SAGP1(T) for Type-1 Positions
	3.2 Computing SAGP2(T) for Type-2 Positions

	4 Experiments
	References

