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Preface

This volume contains the invited and contributed papers selected for presentation at the
43rd Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2017), held January 16–20, 2017, in Limerick, Ireland.

SOFSEM (originally SOFtware SEMinar) is devoted to leading research and fosters
cooperation among researchers and professionals from academia and industry in all
areas of computer science. SOFSEM started in 1974 in the former Czechoslovakia as a
local conference and winter school combination. The renowned invited speakers and
the growing interest of the authors from abroad gradually turned SOFSEM in the mid-
1990s into an international conference with proceedings published in the Springer
LNCS series, in the last two years in their prestigious subline ARCoSS: Advanced
Research in Computing and Software Science. SOFSEM became a well-established
and fully international conference maintaining the best of its original winter school
aspects, such as a higher number of invited talks and an in-depth coverage of novel
research results in selected areas of computer science. SOFSEM 2017, accordingly,
was organized around the following three thematic tracks:

• Foundations of Computer Science (chaired by Christel Baier, TU Dresden)
• Software Engineering: Methods, Tools, Applications (chaired by Mark van den

Brand, TU Eindhoven)
• Data, Information, and Knowledge Engineering (chaired by Johann Eder,

U. Klagenfurt)

With its three tracks, SOFSEM 2017 covered the latest advances in research, both
theoretical and applied, in selected areas of computer science. The SOFSEM 2017
Program Committee consisted of 62 international experts from 22 different countries,
representing the track areas with outstanding expertise. After a detailed reviewing
process, 34 papers were selected for presentation, namely: 27 in the Foundations of
Computer Science, four in the Software Engineering, and three in the Data, Informa-
tion, and Knowledge Engineering tracks.

As usual, SOFSEM 2017 comprised seven invited talks There was unifying talk:

• “Dependable and Optimal Cyber-Physical Systems,” by Kim Guldstrand Larsen
(Aalborg University, Denmark)

And two talks for each thematic track:

• “Trends and Challenges in Predictive Analytics,” by Jaakko Hollmèn (Aalto
University, Finland)

• “On Featured Transition Systems,” by Axel Legay (Rennes University and Inria,
France)

• “Domain-Specific Languages: A Systematic Mapping Study,” by Marjan Mernik
(University of Maribor, Slovenia)



• “Model-Driven Development in Practice: From Requirements to Code,” by Óscar
Pastor López (Polytechnic University of Valencia, Spain)

• “Network Constructors: A Model for Programmable Matter,” by Paul G. Spirakis
(University of Liverpool, UK)

• “Verifying Parametric Thread Creation,” by Igor Walukiewicz (Bordeaux Univer-
sity and CNRS, France).

An integral part of SOFSEM 2017 was the traditional SOFSEM Student Research
Forum (chaired by Anila Mjeda, University of Limerick and Lero, Ireland), organized
with the aim of presenting student projects in both the theory and practice of computer
science, and to give the students feedback on the originality of their results. The papers
presented at the Student Research Forum were published in separate local proceedings,
available as the Lero Technical Report.

In addition, this year’s edition introduced an industry track that included a full-day
track ASE@SOFSEM organized by Yaping Luo of Altran, The Netherlands, and
several demonstrations and presentations.

Moreover, five tutorials profiled emergent and established technologies:

• “Cinco: A Simplicity-Focused Language Workbench for Domain-Specific Graph-
ical Modeling Environments,” by Stefan Naujokat, Johannes Neubauer, Bernhard
Steffen (TU Dortmund, Germany)

• “Unifying Theories of Programming: Principles, Theories and Tools,” by Andrew
Butterfield (Trinity College Dublin and Lero, Ireland)

• “Verification and Test-case Generation from Architectural Models of Automotive
Systems,” by Cristina Seceleanu (Mälardalen Technical University, Sweden)

• “Plasma Lab Statistical Model Checker: Architecture, Usage, and Extension,” by
Axel Legay and Louis-MarieTraonouez (Rennes University and Inria, France)

• “Becoming Goldilocks: Privacy and Data Sharing in ‘Just Right’ Conditions for
Software Engineering,” by Fayola Peters (University of Limerick and Lero, Ireland)
– the Early Career Researcher tutorial

As editors of these proceedings, we are grateful to everyone who contributed to the
scientific program of the conference, especially the invited speakers and all the authors
of contributed papers. We would like to express our special thanks to:

• The members of the SOFSEM 2017 Program Committee and all external reviewers
for their careful reviewing of the submissions

• Anila Mjeda for her preparation and handling of the Student Research Forum
• The SOFSEM Steering Committee, chaired by Július Štuller and supported by Jan

van Leeuwen, for guidance and support throughout the preparation of the
conference

• The local Organizing Committee, chaired by Anna-Lena Lamprecht (University of
Limerick and Lero), with Pavel Tyl (TU Liberec, Czech Republic) as Website Chair
and the help and support of Susan Mitchell and Dara O’Connor (Lero), Andrew
Butterfield, Brian Fitzgerald, Clare McInerney and Brian O’Donnellan (Lero),
Gerard Mulligan and Denis Hogan (Lero, tech support), Colm Mc Gettrick and
Tony Irwin (CSIS, tech support)
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• The OCS team in Dortmund for their support with the OCS conference management
system and their immediate reaction to requests

• Springer for their continued support of the SOFSEM conferences
• Lero for publishing the second volume of the proceedings (at conference)

We are greatly indebted to Easy Conferences, in particular Petros Stratis, Melita
Rolandi Stratis, Boyana Slavova, Sotia Demetriou, Marios Christou, and Kyriakos
Georgiadis, for the event management of SOFSEM 2017.

We received generous sponsoring: We thank the Science Foundation Ireland, whose
support through the SFI Conference and Workshops program made this rich program
and in particular the many keynotes possible, and Altran (Eindhoven, The Netherlands)
for their industrial sponsorship of the ASE@SOFSEM track. The generosity of the
Slovak Society for Computer Science sponsored again the Best Student Paper Award.

We hope the readers of the proceedings gain valuable new insights that hopefully
contribute to their research and its uptake.

November 2017 Bernhard Steffen
Christel Baier

Mark van den Brand
Johann Eder

Mike Hinchey
Tiziana Margaria
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Trends and Challenges in Predictive Analytics
(Abstract of Invited Talk)

Jaakko Hollmén

Department of Computer Science, Helsinki Institute for Information Technology
(HIIT), Aalto University, P.O. Box 15400, FI-00076 Aalto, Espoo, Finland

jaakko.hollmen@aalto.fi

Abstract. Predictive analytics is one of the most popular areas in machine
learning and data mining. I will start by reviewing some fundamentals in data
science and then focus on time series analysis and prediction. In the talk, I will
present recent trends in predictive analytics, covering reducing dimensionality
of the data space, stream processing, learning interpretable models, and con-
nections to multi-label classification. I will also speak about patterns of missing
data and its implications on predictive analytics in stream processing where no
missing data imputation is possible. The solutions will be demonstrated in the
areas of environmental informatics, medical science and transportation areas.

Introduction

The research fields of machine learning [1] and data mining [3] have enjoyed increased
attention in recent years, thanks to their ability to generalize beyond recorded past
experience in the form of individual cases. The generalized laws can be deployed to
function as part of an operational data processing systems to make estimations of
unknown quantities or predictions.

In the talk, I will review fundamentals of data analysis, including the curse of
dimensionality and the concept of generalization. Then, I will speak about recent trends
in predictive analysis, including highlights from my own research. Making predictive
models transparent and understandable has high priority in many domains such as
medical diagnostics. One approach is to reduce the number of variables in the pre-
diction model, or to make the model representation compact, or sparse. Sparsity can be
enforced by a search procedure in the space of regressors [10, 12] or by optimizing a
penalized cost function that enforces sparsity [2, 11]. Reporting of results in a compact
and understandable form has been the topic our previous pattern mining research in the
context of cancer genomics application [4]. Prediction models could very well be
described in natural language [9] as well. Recent work in multi-label classification and
its connections to sequence prediction will be reviewed [5, 7, 8].

Although the popular discussion around Big Data has emphasized the power of
fusing data from many sources to improve results, the heterogeneity of the data poses
many challenges. The missing data found in many practical data sources is so prevalent
that only a rather small portion of the data contains valid values. If we select variables



to be included in the analysis by the prevalence of missing data, we may end up with
only a handful of variables, despite the large number of original data sources. This
provides an immediate motivation for investigating missing data in the context of
predictive models. Our theoretical studies [13] and applications in predicting quantities
in environmental monitoring context [14] show how the prediction results rapidly
deteriorate when missing values are present and when missing value imputation [6] is
not possible. We provide novel optimization criteria for learning linear predictive
models, when the prevalence of missing data is known.

References

1. David, B.: Bayesian Reasoning and Machine Learning. Cambridge University Press (2012)
2. Bradley, E., Trevor, H., Iain, J., Robert, T.: Least angle regression. Ann. Stat. 32(2), 407–

499 (2004)
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Machine Learning Series. MIT Press (2001)
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4723, pp. 1–12. Springer, Berlin (2007)
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temperature gradient. Agric. For. Meteorol. 232, 210–224 (2017)
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1 Cyber-Physical Systems

Cyber-Physical Systems (CPS) describe systems combining computing elements
with dedicated hardware and software having to monitor and control a particular
physical environment. This combination of the physical with a virtual world pro-
vides the digital foundation for smart solutions throughout society and within all
sectors. The constant demand for increased functionality and performance that
needs to be produced with tight time schedules and cost budges challenges with-
out compromising dependability of the final products constitutes a significant
challenge.

What is needed are improved, scalable methods, tools and techniques that
support the development of CPS. For this we propose a model-based approached
for the design of dependable and optimal CPS, powered by the tool Uppaal
(www.uppaal.org) [8]. The underlying formalism of Uppaal of timed automata
with support for so-called model checking. However, the most recent branches
of the Uppaal tool suite – Uppaal SMC and Uppaal Stratego– allows for
performance evaluation as well as automatic synthesis of optimal and safe con-
trollers for the much richer formalisms of stochastic hybrid automata and games.

The importance of CPS is clear within the domains of energy and trans-
port with the emergence Smart Grid, Home Automation, Autonomous Driving
and Advanced Driver Assistance, where optimizing yet critical functionality is
provided by intelligent and flexible software components.

To illustrate the usage of Uppaal Stratego within these two domains
we first describe in Sect. 2 the formalism of (weighted and stochastic) timed
automata and games by means of a small Route Choosing Problem. In Sect. 3 we
summarize the application of Uppaal Stratego to the synthesis of a safe and
optimal adaptive cruice control [7], and in Sect. 4 we summarize the applicaiton
of Uppaal Stratego to the synthesis of optimal floor heating system [6].

2 Stochastic Priced Timed Games

Uppaal Stratego [2,3] is a novel branch of the Uppaal tool suite that allows
to generate, optimize, compare and explore consequences and performance of

c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 3–10, 2017.
DOI: 10.1007/978-3-319-51963-0 1

www.uppaal.org


4 K.G. Larsen

strategies synthesized for stochastic priced timed games (SPTG) in a user-
friendly manner. In particular, Uppaal Stratego comes with an extended
query language (see Table 1), where strategies are first class objects that may be
constructed, compared, optimized and used when performing (statistical) model
checking of a game under the constraints of a given synthesized strategy.

Table 1. Various types of Uppaal Stratego queries: “strategy S =” means strategy
assignment and “under S” is strategy usage via strategy identifier S. Here the variables
NS, DS and SS correspond to non-deterministic, deterministic and stochastic strategies
respectively; bound is a bound expression on time or cost like x<=100 and n is the
number of simulations.

Strategy generators using [2]:

Minimize objective: strategy DS = minE (expr) [bound]: <> prop

Maximize objective: strategy DS = maxE (expr) [bound]: <> prop under NS

Strategy generators using Uppaal Tiga:

Guarantee objective: strategy NS = control: A<> prop

Guarantee objective: strategy NS = control: A[] prop

Statistical Model Checking Queries:

Hypothesis testing: Pr[bound](<> prop)>=0.1 under SS

Evaluation: Pr[bound](<> prop) under SS

Comparison: Pr[bound](<> prop1) under SS1 >= Pr[<=20](<> prop2) under SS2

Expected value: value E[bound;n](min: prop) under SS

Simulations simulate n [bound] { expr1, expr2 } under SS

Symbolic model checking queries:

Safety: A[] prop under NS

Liveness: A<> prop under NS

Infimum of value: inf { condition } : expression

Supremum of value: sup { condition } : expression

To illustrate the features of Uppaal Stratego, let us look at the example
in Fig. 1, providing an “extended” timed automata based model of a car, that
needs to make it from its initial position Start to the final position End. In fact
the model constitutes a timed game, where the driver of the car twice needs to
make a decision as to whether (s)he wants to use a high road (H1 and H2) or a
low road (L1 and L2). The four roads differ in their required travel-time (up to
100 min respectively 50 min as reflected by the invariants on the clock x). Also
the roads differ in fuel-consumption reflected by the difference in the rate of the
continuous variable fc (representing the total amount of fuel consumed).

Whereas the choice of road is up to the driver of the car to control (indicated
by the solid transitions), the actual travel-time of the road is uncontrollable
(indicated by the dashed transitions) reflecting the uncertainty of the amount of
traffic on the particular day. In one scenario, the objective of the car it to choose
the combination of roads that will ensure the shortest overall travel-time even
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Fig. 1. The route choice problem for a car.

in the most hostile traffic situation on the four roads. Under this interpretation,
Fig. 1 represents a timed game. However, it may also be seen as a stochastic
priced timed game (SPTG), assuming that the travel-times of the four roads
are chosen by uniform distributions, and the objective of the control strategy
is to minimize the expected overall travel-time, or the expected overall fuel-
consumption (e.g. the rate or fuel-consumption fc’==3 on the first high road H1
indicates that the cost variable fc grows with rate 3 in this location).

Fig. 2. Evaluation of strategy Opt via simulation.

We are interested in synthesizing strategies for various objectives. Being pri-
marily concerned with fuel-consumption, the query

strategy Opt = minE (fc) [<=200] : <> Car.End

will provide (by reinforcement learning1) the strategy Opt, that minimizes the
expected total fuel-consumption, learning from runs which are maximally 200
time units long. The relativized query E[<=200 ; 1000] (max: fc) under Opt,

1 The reinforcement learning uses machine learning techniques to learn strategies from
sets of randomly generated runs. See [2] for more details.



6 K.G. Larsen

generates 1000 runs of length 200 time units and then averages the maximum
value of fc from each run. this is used to estimate the expected cost to be
200.39. Figure 2a summarizes 10 random runs according Opt illustrating fuel-
consumption. None of the runs had a fuel consumption of 400 indicating that we
always choose the energy-efficient roads. In Fig. 2b we see that this is actually the
case as the simulations always choose to go to locations H1 and H2, which models
the energy-efficient roads.

Now, assume that the task must be completed before 150 time-units. From
Fig. 2 it can be seen that the strategy Opt unfortunately does not guarantee
this, as there are a few runs which exceeds 150 before reaching End. However,
the query

strategy Safe = control: A<> Car.End and time<=150

will generate the most permissive (non-deterministic) strategy Safe that guar-
antees this bound but unfortunately with a high expected total fuel-consumption
of 342.19. However, the relativized learning query

strategy OptSafe = minE (fc) [<=200] : <> Car.End under Safe

will provide a sub-strategy OptSafe that minimizes the expected total fuel-
consumption – here found to be 279.87 – subject to the constraints of
Safe. Figure 3 summarizes 10 random runs according to SafeOpt, incidat-
ing that only road L1 is never choosen. Also, the failed model checking of
E<> Car.H2 and time>=51 and Car.x==0 under Safe reveals that the high
road H2 may only be choosen in case the first phase is completed before 50
time-units, confirming the observations from the simulations.

Fig. 3. Evaluation of strategy OptSafe via simulation.

In general, as shown in the overview Fig. 4, Uppaal Stratego will start
from a SPTG P. It can then abstract P into a timed game (TGA) G by simply
ignoring prices and stochasticity in the model. Using G, Uppaal Tiga [1] may
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Fig. 4. Overview of Uppaal Stratego

now be used to (symbolically) synthesize a (most permissive) strategy σ meet-
ing a required safety or (time-bounded) liveness constraint φ. The TGA G under
σ (denoted G|σ) may now be subject to additional (statistical) model check-
ing using classical Uppaal[8] and Uppaal SMC [4,5]. Similarly, the original
STGA P under σ may be subject to statistical model checking. Now using rein-
forcement learning [2], we may synthesize near-optimal strategies that minimizes
(maximizes) the expectation of a given cost-expression cost. In case the learn-
ing is performed from P|σ, we obtain a sub-strategy σo of σ that optimizes the
expected value of cost subject to the hard constraints guaranteed by σ. Finally,
given σo, one may perform additional statistical model checking of P|σo.

3 Adaptive Cruice Control

These days the Google Self-Driving car is about to become a reality: legislation
has been passed in several U.S. states allowing driverless cars, in April 2014,
Google announced that their vehicles had been logging nearly 1.1 million km, and
it is forecast that Google’s self-driving cars will hit the roads this summer. Also,
in Europe driverless cars have been actively pursued, both by the automotive
industry itself and within a number of national and European research projects
(e.g. FP7 and Horizon2020). With more and more traffic, European roads are
becoming increasingly congested, polluted and unsafe. One potential solution to
this growing problem is seen to be the use of small, automated, low-polluting
vehicles for driverless transport in (and between) cities. Within the last decade, a
number of European projects have been launched for making transport systems
capable of fully automated driving, energy efficient and environmentally friendly
while performing. In addition, many individual driving assistant systems based
on suitable sensors have been developed for cars.

In [7], we have considered a small part of lane-change manoeuvres, namely
the existence of a safe-distance controller (assumed in the above work of Olderog
et al.). In particular, we demonstrated how Uppaal Stratego may be applied
to automatically obtain a safe yet optimal adaptive strategy safe for the cruice
control. Modelling the cruice control as a game with a car in front a safe strategy
was synthezed ensuring that the distance to the front care would never get
below 5 m. In fact utilizing the distinct feature of Uppaal Stratego– allowing
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Fig. 5. Smallest distance possible under the safe strategy as a function of speed differ-
ence computed using inf{velocityFront-velocityEgo==v}: distance under safe

for each v value. Connecting lines are from linear regression analysis.

additional properties to be verified of a synthesized strategy – we may verify the
smallest distance possible to the front care which will not violate the safe as
shown in Fig. 5.

Now asking for a sub-strategy safeFast of safe that will minimize the
expected accumulated distance to the front care yields a substantial improve-
ment as seen in Fig. 6.

Fig. 6. The probability density distribution over rDistance at time >= 100 thus after
100 time units under the strategies safe and safeFast. The (dark) red bars for safe

and the (light) green bars for safeFast. (Color figure online)

4 Home Automation

Home automation includes the centralized control of a number of functionalities
in a house such as lighting, HVAC (heating, ventilation and air conditioning),
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appliances, security locks of gates and doors as well as other systems. The overall
goal is to achieve improved convenience, comfort, energy efficiency as well as
security. The popularity of home automation has increased significantly in recent
years through affordable smartphone and tablet connectivity. Also the emergence
of “Internet of Things” has tied in closely with the popularization of home
automation.

In [6] we collaborated with the Danish company Seluxit within the
European project CASSTING2. The focus was on the floorheating system of
a family house, where each room of the house has its own hot-water pipe circuit.
These are controlled through a number of valves based on information about
room temperatures communicated wirelessly (periodically due to energy consid-
erations) from a number of temperature sensors. In the existing system, a simple
“Bang-Bang”-like strategy is applied, however, there are though several problems
with this strategy, as experienced by the house owner: it completely disregards
the interaction between rooms in terms of heat-exchange, the impact of the out-
side temperature and weather forecast as well as information about movements
in the house. Taking this knowledge into account should potentially enable the
synthesis of significantly improved control strategies. Unfortunately, direct appli-
cation of Uppaal Stratego does not scale: due to the enormous number of
control modes it is virtually impossible to learn optimal control. Instead, we
proposed a novel on-line synthesis methodology, where we periodically—and on-
line—learn the optimal controller for the near future based on the current sensor
readings. For additional scalability, we proposed and applied a novel composi-
tional synthesis approach.

In particular, the strategy provided by Uppaal Stratego takes weather
information into account, as illustrated by Fig. 7 showing the spring stability
scenario. From points of time between 0 and 500 min, the outside temperature
increases and exceeds the target temperature. We observe that since the con-
troller synthesized by Uppaal Stratego is able to look at the weather forecast
for the next 45 min, it shuts down the valves much earlier than the other con-
trollers. This results in energy savings and increased comfort.

Fig. 7. Room temperatures in the spring stability scenario

2 http://www.cassting-project.eu/.

http://www.cassting-project.eu/
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Abstract. Automatic verification of concurrent systems is an active
area of research since at least a quater of a century. We focus here on
analyses of systems designed to operate with an arbitrary number of
processes. German and Sistla, already in 1992, initiated in depth investi-
gation of this problem for finite state systems. For infinite state systems,
like pushdown systems, extra care is needed to avoid undecidability, as
reachability is undecidable even for two identical pushdown processes
communicating via single variable. Kahlon and Gupta in 2006 have pro-
posed to use parametrization as means of bypassing this undecidability
barrier. Indeed when instead of two pushdown processes we consider some
unspecified number of them, the reachability problem becomes decidable.
This idea of parametrization as an abstraction has been pursued further
by Hague, who in 2011 has shown that the problem is still decidable
when one of the pushdown processes is made different from the others:
there is one leader process and many contributor processes. We discuss
how the idea of parametrization as an abstraction leads to decidability,
and in some cases even efficient algorithms, for verification of systems
which combine recursion with dynamic thread creation.

1 An Overview

We consider recursive programs with thread creation. A thread can be abstracted
as a pushdown process. Communication between threads is via global variables as
well as via local variables that are shared between a thread and its sub-threads.
This setting is an abstraction of a situation found today in many programming
languages such as Java, Scala, or Erlang.

While this setting can model many phenomena in programming languages, it
is not adapted to automatic verification. Reachability is not decidable even for
the case when there are two threads communicating over a 2-bit shared variable.
In absence of global variables, reachability becomes undecidable already for two
pushdown threads if a rendez-vous primitive is available [19]. A similar result
holds if finitely many locks are allowed [11].

We obtain a decidable setting by relaxing the semantics of thread creation
operation. Instead of creating one thread the operation creates some unspecified
number of threads. The general idea goes back to Kahlon, who observed that
various verification problems become decidable for multi-pushdown systems that
are parametric [10], i.e., systems consisting of an arbitrary number of indistin-
guishable pushdown threads. Later, Hague extended this result by showing that

c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 11–14, 2017.
DOI: 10.1007/978-3-319-51963-0 2
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an extra designated leader thread can be added without sacrificing decidability
[9]. All threads communicate here over a shared, bounded register without lock-
ing. It is crucial for decidability that only one thread has an identity, and that
the operations on the shared variable do not allow to elect a second leader.

The setting of Hague has attracted some attention in recent years. Esparza
et al. established the complexity of deciding reachability in that model [7]. La
Torre et al. generalized these results to hierarchically nested models for a fixed
nesting depth [14]. Durand-Gasselin et al. [6] have shown decidability of the live-
ness problem for this model. It turns out that the problem has a surprisingly low
complexity, namely it is Pspace-complete [8]. Another problem that has been
considered is universal reachability: this is the question of deciding if on every
maximal execution trace of the system, the leader reaches some designated state.
In terms of temporal logics, reachability is about EF properties, while universal
reachability is about AF properties. While still decidable, this problem has very
different nature and it turns out to be coNexptime-complete [8]. Indeed, gen-
eralizing this result we obtain that all stuttering LTL properties of the leader
process can be decided in coNexptime.

The results above concern the case with one leader process that issues one
thread creation operation resulting in some number of sub-processes who do not
create any new sub-processes. It turns out that we can go even further and have
a decidable model for recursive programs with parametric thread creation [18].
Reachability is decidable for a very general class of processes. Every sub-process
can maintain a local pushdown store, spawn new sub-processes, and communi-
cate over global variables, as well as via local variables with its sub-processes
and with its parent. As in [7,9,14], all variables have bounded domains and no
locks are allowed.

The algorithm for deciding reachability in this expressive model relies on
well-quasi-orders, so its complexity is very high. Yet, there are simpler instances
where we know algorithms of a reasonable complexity [18]. As one such instance,
we consider the situation where communication between sub-processes is through
global variables only. We show that reachability for this model can be effectively
reduced to reachability in the model of Hague [7,9], giving us a precise char-
acterization of the complexity for pushdown threads as Pspace. As another
instance, we consider a parametric variant of generalized futures where spawned
sub-processes may not only return a single result but create a stream of answers.
For that model, we obtain complexities between NP and DExptime. This opens
the venue to apply e.g. SAT-solving to check safety properties of such programs.

2 Related Work

There are other approaches than parametrization to get a decidable model of
recursive programs with thread creation.

One approoach is to consider systems with locks. As we have mentioned,
the model with locks is undecidable even if there are no shared variables, no
rendez-vous, or other means of communication between processes. Interestingly,
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decidability is regained if locking is performed in a disciplined way. This is, e.g.,
the case for nested [11] and contextual locking [5]. These decidability results
have been extended to dynamic pushdown networks as introduced by Bouajjani
et al. [4]. This model combines pushdown threads with dynamic thread creation
by means of a spawn operation, while it ignores any exchange of data between
threads. Indeed, reachability of dedicated states or even regular sets of configu-
rations stays decidable in this model, if finitely many global locks together with
nested locking [15,17] or contextual locking [16] are allowed. Such regular sets
allow, e.g., to describe undesirable situations such as concurrent execution of
conflicting operations.

Another approach is to bound the number of switches of execution contexts.
A simple definition of an execution context is a part of an execution when only
one process reads from its stack. A context switch is when some other process
starts reading from its stack. So the reachability problem now asks for an exe-
cution with a given fixed number of context switches. Many decidability results
have been established in the last decade for more and more refined notions of
context switching [1–3,12,13]. In [1,3], dynamic thread creation is allowed.
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Abstract. We discuss recent theoretical models for programmable mat-
ter operating in a dynamic environment. In the basic Network Construc-
tors model, all devices are finite automata, begin from the same ini-
tial state, execute the same protocol, and can only interact in pairs.
The interactions are scheduled by a fair (or uniform random) sched-
uler, in the spirit of Population Protocols. When two devices interact,
the protocol takes as input their states and the state of the connection
between them (on/off ) and updates all of them. Initially all connections
are off. The goal of such protocols is to eventually construct a desired
stable network, induced by the edges that are on. We present protocols
and lower bounds for several basic network construction problems and
also universality results. We next highlight minimal strengthenings of
the model, that can be exploited by appropriate network-transformation
protocols in order to achieve termination and the maximum computa-
tional power that one can hope for in this family of models. Finally, we
discuss a more applied version of these abstract models, enriched with
geometric constraints, aiming at capturing some first physical restrictions
in potential future programmable matter systems operating in dynamic
environments.

1 Introduction

The realization of computing systems and computer networks was indisputably
one of the most outstanding achievements of science and engineering of the last
century. The impact of Information and Communication Technologies on society,
industry, and everyday life was incomparable. Digital communications and the
Internet have made the world look much smaller, personal computers radically
changed office work, largely simplifying it, high processing speeds made it possi-
ble for the first time to simulate and accurately predict a wide range of physical
phenomena, from weather forecast to chemical reactions and whole-cell simula-
tions [KSM+12], and combined to increased storage capabilities, transformed the
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world of paper to a world of digital information, where everything, from a data-
trace of successful collisions in CERN that produced the Higgs boson [CKS+12]
to the human genome, can be stored and retrieved. Computing and Informa-
tion Sciences have been extremely successful in revealing the laws underlying
all possible ways of manipulating information. Every possible object, system or
problem can be encoded in an appropriate binary representation, which can then
be stored, processed, retrieved and transmitted. It would be reasonable to say
that the 20th century was the century of information.

However, the story does not seem to end here. The established knowledge
of manipulating information seems to have opened the road towards a vision
that will further reshape society to an unprecedented degree. This vision con-
cerns our ability to manipulate matter via information-theoretic and computing
mechanisms and principles. It will be the jump from amorphous information
to the incorporation of information to the physical world. Information will not
only be part of the physical environment: it will constantly interact with the
surrounding environment and will have the ability to reshape it. Matter will
become programmable [GCM05] which is a plausible future outcome of progress
in high-volume nanoscale assembly that makes it feasible to inexpensively pro-
duce millimeter-scale units that integrate computing, sensing, actuation, and
locomotion mechanisms. This will enable the astonishing possibility of trans-
ferring the discrete dynamics from the computer memory black-box to the real
world and to achieve a physical realization of any computer-generated object. “It
will have profound implications for how we think about chemistry and materi-
als. Materials will become user-programmed and smart, adapting to changing
conditions in order to maintain, optimize or even create a whole new function-
ality using means that are intrinsic to the material itself. It will even change the
way we think about engineering and manufacturing. We will for the first time
be capable of building smart machines that adapt to their surroundings, such
as an airplane wing that adjusts its surface properties in reaction to environ-
mental variables” [Zak07], or even further realize machines that can self-built
autonomously.

This vision is not a human invention. It is an inspiration from a property that
pervades the biological world. Every biological organism is a collection of rela-
tively simple units of matter (the cells) coupled with information storing, process-
ing, and transmission capabilities. Moreover, the effort to realize this vision has
already begun and the first outcomes are more than promising. For example, it
has been already demonstrated that it is possible to fold long, single-stranded
DNA molecules into arbitrary nanoscale two-dimensional shapes and patterns
[Rot06]. Also, a system was recently reported that demonstrates programmable
self-assembly of complex two-dimensional shapes with a thousand-robot swarm
[RCN14]. “This was enabled by creating small, cheap, and simple autonomous
robots designed to operate in large groups and to cooperate through local inter-
actions and by developing a collective algorithm for shape formation that is
highly robust to the variability and error characteristic of large-scale decentral-
ized systems” [RCN14]. Other systems for programmable matter include the
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Robot Pebbles [GKR10], consisting of 1 cm cubic programmable matter mod-
ules able to form 2-dimensional (abbreviated “2D” throughout) shapes through
self-disassembly, and the Millimotein [KCL+12], a chain of programmable mat-
ter which can fold itself into digitized approximations of arbitrary 3-dimensional
(abbreviated “3D” throughout) shapes.

Apart from the fact that systems work is still in its infancy, there is also
an apparent lack of unifying formalism and theoretical treatment. The following
are some of the very few exceptions aiming at understanding the fundamental
possibilities and limitations of this prospective. The area of algorithmic self-
assembly tries to understand how to program molecules (mainly DNA strands)
to manipulate themselves, grow into machines and at the same time control their
own growth [Dot12]. The theoretical model guiding the study in algorithmic
self-assembly is the Abstract Tile Assembly Model (aTAM) [Win98,RW00] and
variations. Recently, a model, called the nubot model, was proposed for studying
the complexity of self-assembled structures with active molecular components
[WCG+13]. This model “is inspired by biology’s fantastic ability to assemble
biomolecules that form systems with complicated structure and dynamics, from
molecular motors that walk on rigid tracks and proteins that dynamically alter
the structure of the cell during mitosis, to embryonic development where large-
scale complicated organisms efficiently grow from a single cell” [WCG+13].
Another very recent model, called the Network Constructors model, studied
what stable networks can be constructed by a population of finite-automata
that interact randomly like molecules in a well-mixed solution and can estab-
lish bonds with each other according to the rules of a common small protocol
[MS16b]. Interestingly, the special case of the model that cannot create bonds
(known as the Population Protocol model [AAD+06]) is known to be formally
equivalent to chemical reaction networks (CRNs), which model chemistry in a
well-mixed solution and are widely used to describe information processing occur-
ring in natural cellular regulatory networks [Dot14]. Also the recently proposed
Amoebot model, offers a versatile framework to model self-organizing particles
and facilitates rigorous algorithmic research in the area of programmable matter
[DDG+14,DGP+16].

At the same time, recent research in distributed computing theory and prac-
tice is taking its first timid steps on the pioneering endeavor of investigating the
possible relationships of distributed computing systems to physical and biological
systems. The first main motivation for this is the fact that a wide range of phys-
ical and biological systems are governed by underlying laws that are essentially
algorithmic. The second is that the higher-level physical or behavioral properties
of such systems are usually the outcome of the coexistence, which may include
both cooperation and competition, and constant interaction of very large num-
bers of relatively simple distributed entities respecting such laws. This effort, to
the extent that its perspective allows, is expected to promote our understanding
on the algorithmic aspects of our (distributed) natural world and to develop
innovative artificial systems inspired by them.
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In the present paper, we shall focus on the Network Constructors model
and its existing variations. In Sect. 2, we present the basic Network Construc-
tors model and give the main definitions to be used in the sequel. In Sect. 3,
we present protocols for the spanning line construction problem and bounds for
other basic network construction problems. Section 4 goes one step further, show-
ing how one can establish universality results. In Sect. 5, we show how network-
transformation protocols can exploit minimal strengthenings of the basic model,
in order to maximize the computational power. Section 6 discusses a geometric
variant of the basic model, in which the nodes can be programmed to self-
assemble into complex 2D or 3D shapes. Finally, Sect. 7 highlights some promis-
ing directions for future research.

2 The Network Constructors Model

Suppose a set of tiny computational devices (possibly at the nanoscale) are
injected into a human circulatory system for the purpose of monitoring or even
treating a disease. The devices are incapable of controlling their mobility. The
mobility of the devices, and consequently the interactions between them, stems
solely from the dynamicity of the environment, the blood flow inside the circula-
tory system in this case. Additionally, each device alone is incapable of perform-
ing any useful computation, as the small scale of the device highly constrains
its computational capabilities. The goal is for the devices to accomplish their
task via cooperation. To this end, the devices are equipped with a mechanism
that allows them to create bonds with other devices (mimicking nature’s abil-
ity to do so). So, whenever two devices come sufficiently close to each other and
interact, apart from updating their local states, they may also become connected
by establishing a physical connection between them. Moreover, two connected
devices may at some point choose to drop their connection. In this manner, the
devices can organize themselves into a desired global structure. This network-
constructing self-assembly capability allows the artificial population of devices
to evolve greater complexity, better storage capacity, and to adapt and optimize
its performance to the needs of the specific task to be accomplished.

Our goal in [MS16b] was to study the fundamental problem of network con-
struction by a distributed computing system. The system consists of a set of n
processes that are capable of performing local computation (via pairwise inter-
actions) and of forming and deleting connections between them. Connections
between processes can be either physical or virtual depending on the applica-
tion. In the most general case, a connection between two processes can be in one
of a finite number of possible states. For example, state 0 could mean that the
connection does not exist while state i ∈ {1, 2, . . . , k}, for some finite k, that the
connection exists and has strength i. We considered the simplest case, which we
call the on/off case, in which, at any time, a connection can either exist or not
exist; that is, there are just two states for the connections, 1 and 0, respectively.
If a connection exists we also say that it is active and if it does not exist we say
that it is inactive. Initially all connections are inactive and the goal is for the
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processes, after interacting and activating/deactivating connections for a while,
to end up with a desired stable network. In the simplest case, the output-network
is the one induced by the active connections and it is stable when no connection
changes state any more.

Our aim in [MS16b] was to initiate this study by proposing and studying
a very simple, yet sufficiently generic, model for distributed network construc-
tion. To this end, we assumed the computationally weakest type of processes.
In particular, the processes are finite automata that all begin from the same
initial state and all execute the same finite program which is stored in their
memory (i.e., the system is homogeneous). The communication model that we
considered is also very minimal. In particular, we considered processes that are
inhabitants of an adversarial environment that has total control over the inter-
process interactions. Such an environment is modeled by an adversary scheduler
that operates in discrete steps, selecting in every step a pair of processes which
then interact according to the common program. This represents very well sys-
tems of (not necessarily computational) entities that interact in pairs whenever
two of them come sufficiently close to each other. When two processes interact,
the program takes as input the states of the interacting processes and the state
of their connection and outputs a new state for each process and a new state
for the connection. The only restriction that we imposed on the scheduler, in
order to study the constructive power of the model, is that it is fair, by which
we mean the weak requirement that, at every step, it assigns to every reachable
configuration of the system a non-zero probability to occur. In other words, a
fair scheduler cannot forever conceal an always reachable configuration of the
system. Note that under such a generic scheduler, we cannot bound the running
time of our constructors. To estimate the efficiency of our solutions, we assume a
uniform random scheduler, one of the simplest fair probabilistic schedulers. The
uniform random scheduler selects in every step independently and uniformly at
random a pair of processes to interact from all such pairs. What renders this
model interesting is, as we shall see, its ability to achieve complex global behav-
ior via a set of notably simple, uniform (i.e., with codes that are independent of
the size of the system), homogeneous, and cooperative entities.

We now give a simple illustration of the above. Assume a set of n very
weak processes that can only be in one of two states, “black” or “red”. Initially,
all processes are black. We can think of the processes as small particles that
move randomly in a fair solution. The particles are capable of forming and
deleting physical connections between them, by which we mean that, whenever
two particles interact, they can read and write the state of their connection. To
keep this first model as simple as possible, we assume that fairness of the solution
is independent of the states of the connections.1 In particular, we assume, for

1 This is in contrast to schedulers that would take into account the geometry of the
active connections and would, for example, forbid two non-neighboring particles of
the same component to interact with each other. Such a geometrically restricted
variant, studied in [Mic15], shall be discussed in Sect. 6.
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the time being, that, throughout the execution, every pair of processes may be
selected for interaction.

Consider now the following simple problem. We want to identically program
the initially disorganized particles so that they become self-organized into a
spanning star. In particular, we want to end up with a unique black particle
connected (via active connections) to n−1 red particles and all other connections
(between red particles) being inactive. Conversely, given a (possibly physical)
system that tends to form a spanning star we would like to unveil the code
behind this behavior.

Consider the following program. When two black particles that are not con-
nected interact, they become connected and one of them becomes red. When
two connected red particles interact they become disconnected (i.e., reds repel).
Finally, when a black and a red that are not connected interact they become
connected (i.e., blacks and reds attract).

The protocol forms a spanning star as follows. As whenever two blacks inter-
act only one survives and the other becomes red, eventually a unique black will
remain and all other particles will be red (we say “eventually”, meaning “in finite
time”, because we do not know how much time it will take for all blacks to meet
each other, but, from fairness, we know that this has to occur in a finite number
of steps). As blacks and reds attract while reds repel, it is clear that eventually
the unique black will be connected to all reds while every pair of reds will be
disconnected. Moreover, no rule of the program can modify such a configuration,
so the constructed spanning star is stable (see Fig. 1). It is worth noting that
this very simple protocol is optimal both with respect to (abbreviated “w.r.t.”
throughout) the number of states that it uses and w.r.t. the time it takes to
construct a stable spanning star under the uniform random scheduler.

(a) (b) (c)

Fig. 1. (a) Initially all particles are black and no active connections exist. (b) After
a while, only 3 black particles have survived each having a set of red neighbors (red
particles appear as gray here). Note that some red particles are also connected to red
particles. The tendency is for the red particles to repel red particles and attract black
particles. (c) A unique black has survived, it has attracted all red particles, and all
connections between red particles have been deactivated. The construction is a stable
spanning star.
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Our model for network construction has been strongly inspired by the Popu-
lation Protocol model [AAD+06] and the Mediated Population Protocol model
[MCS11]. In the former, connections do not have states. States on the connections
were first introduced in the latter. The main difference to the present model is
that in those models the focus was on the computation of functions of some input
values and not on network construction. Another important difference is that we
now allow the edges to choose between only two possible states which was not the
case in [MCS11]. As already mentioned, when operating under a uniform ran-
dom scheduler, population protocols are formally equivalent to chemical reaction
networks (CRNs). “With upcoming advances in synthetic biology, CRNs are a
promising programming language for the design of artificial molecular control
circuitry” [Dot14]. However, CRNs and population protocols can only capture
the dynamics of molecular counts and not of structure formation. Our model
then may be also viewed as an extension of population protocols and CRNs
aiming to capture the stable structures that may occur in a well-mixed solution.
From this perspective, our goal is to determine what stable structures can result
in such systems (natural or artificial), how fast, and under what conditions (e.g.,
by what underlying codes/reaction-rules).

2.1 Definitions

Definition 1. A Network Constructor (NET) is a distributed protocol defined
by a 4-tuple (Q, q0, Qout, δ), where Q is a finite set of node-states, q0 ∈ Q is the
initial node-state, Qout ⊆ Q is the set of output node-states, and δ : Q × Q ×
{0, 1} → Q × Q × {0, 1} is the transition function.

The system consists of a population VI of n distributed processes/nodes. In
the generic case, there is an underlying interaction graph GI = (VI , EI) spec-
ifying the permissible interactions between the nodes. Interactions are always
pairwise. In the basic model, GI is a complete undirected interaction graph, i.e.,
EI = {uv : u, v ∈ VI and u �= v}, where uv = {u, v}. Initially, all nodes in VI

are in the initial node-state q0. A central assumption of the model is that edges
have binary states. An edge in state 0 is said to be inactive while an edge in
state 1 is said to be active. All edges are initially inactive.

Execution of the protocol proceeds in discrete steps. In every step, a pair of
nodes uv from EI is selected by an adversary scheduler and these nodes interact
and update their states and the state of the edge joining them according to the
transition function δ.

A configuration is a mapping C : VI ∪ EI → Q ∪ {0, 1} specifying the state
of each node and each edge of the interaction graph. An execution is a finite or
infinite sequence of configurations C0, C1, C2, . . ., where C0 is an initial configu-
ration and Ci → Ci+1 (‘→’ meaning “goes via a single interaction to”), for all
i ≥ 0. A fairness condition is imposed on the adversary to ensure the protocol
makes progress. An infinite execution is fair if for every pair of configurations C
and C ′ such that C → C ′, if C occurs infinitely often in the execution then so
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does C ′. In what follows, every execution of a NET will by definition considered
to be fair.

Whenever we study the running time (counted in number of sequential inter-
actions) of a NET, we assume that interactions are chosen by a uniform random
scheduler which, in every step, selects independently and uniformly at random
one of the |EI | = n(n−1)/2 possible interactions. In this case, the running time
becomes a random variable (abbreviated “r.v.” throughout) X and our goal is
to obtain bounds on the expectation E[X] of X. Note that the uniform random
scheduler is fair with probability 1. We say that an execution of a NET on n
processes constructs a graph (or network) G, if its output stabilizes to a graph
isomorphic to G. We say that a NET A constructs a graph language L with
useful space g(n) ≤ n, if g(n) is the greatest function for which: (i) for all n,
every execution of A on n processes constructs a G ∈ L of order at least g(n)
(provided that such a G exists) and, additionally, (ii) for all G ∈ L there is an
execution of A on n processes, for some n satisfying |V (G)| ≥ g(n), that con-
structs G. Equivalently, we say that A constructs L with waste n − g(n). Define
REL(g(n)) to be the class of all graph languages that are constructible with
useful space g(n) by a NET. We call REL(·) the relation or on/off class. Also
define PREL(g(n)) in precisely the same way as REL(g(n)) but in the exten-
sion of the above model in which every pair of processes is capable of tossing an
unbiased coin during an interaction between them. In this case, we additionally
require that all graphs have the same probability to be constructed by the pro-
tocol. We denote by DGS(f(l)) (for “Deterministic Graph Space”) the class of
all graph languages that are decidable by a Turing Machine (abbreviated “TM”
throughout) of (binary) space f(l), where l is the length of the adjacency matrix
encoding of the input graph.

3 Basic Constructors

Probably the most fundamental network-construction problem, is the problem of
constructing a spanning line, i.e., a connected graph in which 2 nodes have degree
1 and n−2 nodes have degree 2. Its importance lies in the fact that a spanning line
provides an ordering on the processes which can then be exploited (as discussed
in Sect. 4) to simulate a TM and, in this way, to establish universality of the
model.

We begin with a lower bound on the expected time required by any NET to
construct a spanning line.

Theorem 1 (Line Lower Bound [MS16b]). The expected time to conver-
gence of any protocol that constructs a spanning line is Ω(n2).

Take any protocol A that constructs a spanning line and any execution of
A on n nodes. It suffices to show that any execution necessarily passes through
a “bottleneck” transition, by which we mean a transition that requires Ω(n2)
expected number of steps to occur. Observe that, in any execution, the set of
active edges eventually stabilizes (in this case, to a spanning line), which implies
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that there is always a last activation/deactivation of an edge. The idea is to focus
on this last operation before stabilization, and show that either this operation
is a bottleneck transition or an immediately previous operation is a bottleneck
transition. In both cases, any execution passes through a bottleneck transition,
thus paying at that point an Ω(n2) expected number of steps. Indeed, if the last
modification was an activation, then the construction just before this modifica-
tion was either a line on n − 1 nodes and an isolated node or two disjoint lines
spanning all nodes. In both cases, the expected number of steps until the last
edge becomes activated is Ω(n2). On the other hand, if the last modification was
a deactivation, then this implies that the construction just before this modifica-
tion was a spanning line with an additional active edge between two nodes, u
and v, that are not neighbors on the line. The only interesting case is the one
in which the construction was actually a spanning ring. Then, by considering
the last modification of an edge that resulted in the ring, we obtain again an
expected number of Ω(n2) interactions.

We present now our simplest protocol for the spanning line problem.

Simple-Global-Line. Q = {q0, q1, q2, l, w}, δ: (q0, q0, 0) → (q1, l, 1), (l, q0, 0) →
(q2, l, 1), (l, l, 0) → (q2, w, 1), (w, q2, 1) → (q2, w, 1), (w, q1, 1) → (q2, l, 1).

In the initial configuration C0, all nodes are in state q0 and all edges are
inactive, i.e., in state 0. Every configuration C that is reachable from C0 consists
of a collection of lines and isolated nodes. Additionally, every line has a unique
leader which either occupies an endpoint and is in state l or occupies an internal
node, is in state w, and moves randomly along the line. Lines can expand towards
isolated nodes and two lines can connect their endpoints to get merged into a
single line (with total length equal to the sum of the lengths of the merged
lines plus one). Both of these operations only take place when the corresponding
endpoint of every line that takes part in the operation is in state l. A line resulting
from merging, has a w internal-leader and only waits until the random walk of
w reaches one endpoint and becomes an l leader. Figure 2 gives an illustration
of a typical configuration of the protocol.

q1

q2

q2

l

q1 w q2 q2 q1

q1
l

l q1
l

q1

w q1
q1

q0 q0 q0

q0

q0

q0

q0

q0

q0

Fig. 2. A typical configuration of Simple-Global-Line (after some time has passed).
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Theorem 2 ([MS16b]). Protocol Simple-Global-Line constructs a spanning
line. It uses 5 states and its expected running time is Ω(n4) and O(n5).

For correctness, we have to prove two things: (i) there is a set S of output-
stable configurations whose active network is a spanning line, (ii) for every reach-
able configuration C it holds that C � Cs (‘�’ meaning “goes in one or more
steps to”) for some Cs ∈ S.

For the running time upper bound, we have an expected number of O(n2)
steps until progress is made (i.e., for another merging to occur given that at least
two l-leaders exist) and O(n4) steps for the resulting random walk (walk of state
w until it reaches one endpoint of the line) to finish and to have the system again
ready for progress. This is because the state actually walks only if it interacts
with one of its (at most) two neighbors on the line. As only 2 interactions over
the Θ(n2) possible interactions allow the state to walk, the otherwise O(n2)-time
walk is delayed by a factor of O(n2). As progress must be made n − 2 times, we
conclude that the expected running time of the protocol is bounded from above
by (n − 2)[O(n2) + O(n4)] = O(n5).

Next, it can be proved that we cannot hope to improve the upper bound on
the expected running time by a better analysis by more than a factor of n. For
this, we can prove by a Chernoff bound, that the protocol with high probability
(abbreviated “w.h.p.” throughout) constructs Θ(n) disjoint lines of length 1
during its course. A set of k disjoint lines implies that k − 1 = Θ(n) distinct
merging processes have to be executed in order to merge them all into a common
line and each single merging results in the execution of another random walk.
Let tmin be the first time at which there is a line L of length h ≥ k/4. It
holds that k/4 ≤ h ≤ k/2 − 1, so there is a remaining length of at least k − h ≥
k−(k/2−1) = k/2+1 to get merged to L via distinct sequential mergings. Now,
if di denotes the length of the ith line merged to L, Y the r.v. of the duration
of all random walks, and Yi the r.v. of the duration of the i-th random walk,
we have E[Y ] = E[

∑j
i=1 Yi] =

∑j
i=1 E[Yi] =

∑j
i=1 n2(h + d1 + . . . + di−1)di ≥

n2
∑j

i=1 hdi = n2h
∑j

i=1 di ≥ n2 · (k/4) · (k/2 + 1) = n2 · Θ(n) · Θ(n) = Θ(n4).
This proves the desired Ω(n4) lower bound.

By using more states, we can develop an alternative protocol that constructs
a spanning line much faster. The main difference between this and the previous
protocol is that we now totally avoid mergings as they seem to consume much
time. As before, when the leaders of two lines interact, one of them becomes
eliminated and the edge is activated. But now, the leader that has survived does
not initiate a merging process. Instead, it steals a node from the eliminated
leader’s line and disconnects the two new lines: its own line, which has increased
by one and is called awake, and the eliminated leader’s line, which has decreased
by one and is called sleeping. The code follows:

Fast-Global-Line. Q = {q0, q1, q2, q
′
2, l, l

′, l′′, f0, f1}, δ: (q0, q0, 0) → (q1, l, 1),
(l, q0, 0) → (q2, l, 1), (l, l, 0) → (q′

2, l
′, 1), (l′, q2, 1) → (l′′, f1, 0), (l′, q1, 1) →

(l′′, f0, 0), (l′′, q′
2, 1) → (l, q2, 1), (l, f0, 0) → (q2, l, 1), (l, f1, 0) → (q′

2, l
′, 1).
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In more detail, when two lines L1 and L2 interact via their l-leader endpoints,
one of the leaders, say w.l.o.g. that of L2, becomes l′ and the other becomes q′

2.
We can interpret this operation as expanding L1 on the endpoint of L2 and
obtaining two new lines (still attached to each other): L′

1 which is awake and
L′

2 which is sleeping. Now, the l′-leader of L′
1 waits to interact with its neighbor

from L′
2 (which is either a q2 or a q1) to deactivate the edge between them and

disconnect L′
1 from L′

2. This operation leaves L′
1 with an l′′-leader and L′

2 with
a sleeping leader f1 (it can also be the case that L′

2 is just a single isolated f0,
in case L2 consisted only of 2 nodes). Then l′′ waits to meet its q′

2 neighbor to
convert it to q2 and update itself to l. This completes the operation of a line
growing one step towards another line and making the other line sleep. A sleeping
line cannot increase any more and only loses nodes to lines that are still awake
by a similar operation as the one just described. A single leader is guaranteed
to always win and this occurs quite fast. Then the unique leader does not need
much time to collect all nodes from the sleeping lines to its own line and make
the latter spanning.

Theorem 3 ([MS16b]). Protocol Fast-Global-Line constructs a spanning line.
It uses 9 states and its expected running time under the uniform random sched-
uler is O(n3).

A variant that backtracks many “sleeping” lines in parallel, is an immedi-
ate improvement of Fast-Global-Line. The improvement is due to the fact that
instead of having the awake leader backtrack sleeping lines node-by-node, we
now have any sleeping line backtrack itself, so that many backtrackings occur in
parallel. We have some first experimental evidence showing a small improvement
in the running time [ALMS15], but we do not yet have a proof of whether this
is also an asymptotic improvement. For example, is it the case that the run-
ning time of this improvement is O(n3/ log n) (or even smaller)? This question
is open.

Table 1 summarizes a variety of protocols and the corresponding upper and
lower bounds that are known for several basic construction problems [MS16b].

4 Generic Constructors

An immediate next question is whether there is a generic constructor capable of
constructing a large class of networks. In [MS16b], we answered this in the affir-
mative by presenting constructors that simulate a TM. The idea is to program
the nodes to organize themselves into a network that can serve as a memory
of size O(n2), which is asymptotically maximum and can only be achieved by
exploiting the presence or absence of bonds between nodes as the bits of the
memory (if only the nodes’ local space was used, then the total memory could
not exceed O(n)). Then the population draws a random network and simulates
on the distributed memory a TM that decides whether the network belongs to
the target ones. If yes, the population stabilizes to it, otherwise the random
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Table 1. Some established upper and lower bounds [MS16b]. kRC (standing for k-
regular connected) protocol solves a generalization of global ring in which every node
has degree k ≥ 2, c-cliques partitions the processes into �n/c� cliques of order c each,
and Graph-Replication constructs a copy of a given input graph.

Protocol # states Expected time Lower bound

Simple-Global-Line 5 Ω(n4) and O(n5) Ω(n2)

Fast-Global-Line 9 O(n3) Ω(n2)

Cycle-Cover 3 Θ(n2) (opt.) Ω(n2)

Global-Star 2 (opt.) Θ(n2 log n) (opt.) Ω(n2 log n)

Global-Ring 9 Ω(n2)

2RC 6 Ω(n log n)

kRC 2(k + 1) Ω(n log n)

c-cliques 5c − 3 Ω(n log n)

Graph-Replication 12 Θ(n4 log n)

experiment and the simulation are repeated (see Fig. 3). What makes the con-
struction intricate is that all the sub-routines have to be executed in parallel
and potential errors due to this to be corrected by global resets throughout the
course of the protocol. This is summarized in the following theorem.

Theorem 4 (Linear Waste-Two Thirds [MS16b]). DGS(O(n2)+O(n)) ⊆
PREL(	n/3
). In words, for every graph language L that is decidable by a
(O(n2) + O(n))-space TM, there is a protocol that constructs L equiprobably
with useful space 	n/3
.

qu qu qu qu qu

qd qd qd qd qd

U

D

qm qm qm qm qm
M

Fig. 3. A partitioning into three equal sets U , D, and M . The line of set U plays the
role of an ordering that will be exploited both by the random graph drawing process
and by the TM-simulation. The line of set U uses the Θ(n2) memory of set M as the
memory of the TM. Set D is the useful space on which the output-network will be
constructed. Sets U and M constitute the waste.
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5 Network Transformations

We shall now consider minimal strengthenings of network constructors that can
maximize their computational power, also rendering them capable to terminate.
To this end, we now assume that the initial configuration of the edges can be
any configuration in which the active edges form a connected graph spanning
the set of processes. This choice is motivated by the fact that, without some
sort of initial connectivity (or bounded disconnectivity) we can only hope for
global computations and constructions that are eventually stabilizing (and not
terminating), roughly because a component can guess neither the number of
components not encountered yet nor an upper bound on the time needed to
interact with another one of them.2 The initial configuration of the nodes is
either, again, the one in which all nodes are initially in the same state, q0, or
(if needed) the one in which all nodes begin from q0 apart from a pre-elected
unique leader that begins from a distinct initial leader-state l. Unfortunately,
even with the additional assumption of bounded initial disconnectivity, it can
be proved that non-trivial terminating computation is still impossible.

We now add to the picture a very minimal and natural, but extremely pow-
erful, additional assumption that, combined with our assumptions so far, will
lead us to a stronger model. In particular, we equip the nodes with the ability
to detect some small local degrees. For a concrete example, assume that a node
can detect when its active degree is equal to 0 (otherwise it only knows that its
degree is at least 1). A first immediate gain, is that we can now directly simulate
any constructor that assumes an empty initial network (like those presented in
the previous section): every node initially deactivates the active edges incident
to it until its local active degree becomes for the first time 0, and only when this
occurs the node starts participating in the simulation.

Our main finding in [MS16a], was that the initial connectivity guarantee
together with the ability to modify the network and to detect small local degrees
(combined with either a pre-elected leader or a natural mechanism that allows
two nodes to tell whether they have a neighbor in common), are sufficient to
obtain the maximum computational power that one can hope for in this family
of models. In particular, the resulting model can compute with termination any
symmetric predicate3 computable by a TM of space Θ(n2), and no more than
this, i.e., it is an exact characterization. The symmetricity restriction can only
be dropped by UIDs or by any other means of knowing and maintaining an
ordering of the nodes’ inputs. This power is maximal because the distributed
space of the system is Θ(n2), so we cannot hope for computations exploiting
more space. The substantial improvement is that the universal computations are
now terminating and not just eventually stabilizing. It is interesting to point out
2 Alternative ways to overcome this are to assume that the nodes know some upper

bound on this time [MS15], or, as we shall discuss in the next section, to assume a
uniform random scheduler and a unique leader and restrict correctness to be w.h.p..

3 Essentially, a predicate in this type of models is called symmetric (or commutative) if
permuting the input symbols does not affect the predicate’s outcome. This restriction
is imposed by the fact that, in general, the nodes cannot be distinguished initially.
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that the additional assumptions and mechanisms are minimal, in the sense that
the removal of each one of them leads to either an impossibility of termination
or to a substantial decrease in computational power.

The approach to arriving at the above characterization is to develop protocols
that exploit the knowledge of the initial connectivity of the active topology
and try to transform it to a less symmetric and detectable active topology,
without ever breaking its connectivity. The knowledge of initial connectivity and
its preservation throughout the transformation process, ensure that the protocol
always has all nodes of the network in a single component. Still, if the target-
network is symmetric, then there might be no way for the transformation to
determine when it has managed to form the network. Instead, the protocols
transform any spanning connected initial topology into a spanning line while
preserving connectivity throughout the transformation process. The spanning line
has the advantage that it can be detected under the minimal assumption that
a node can detect whether its local degree is in {1, 2} and that it is minimally
symmetric and, therefore, capable of serving as a linear memory. Preservation
of connectivity allows the protocol to be certain that the spanning line contains
all processes. So, the protocol can detect the formation of the spanning line
and then count (on the O(log n) cells, i.e., the nodes, of the linear distributed
memory) the size of the system. Then the protocol can use the spanning line as
it is, for simulating (on the nodes of the line) TMs of space Θ(n). Going one
step further, it is not hard for a protocol to exploit all this obtained information
and perform a final transformation that increases the simulation space to Θ(n2)
(in the spirit of the universal construction of the previous section).

In particular, given an initially connected active topology and the ability of
the protocol to transform it, the following set of results can be proved [MS16a]:

– The running time of any protocol that transforms any initial active topology
to a spanning line and terminates is Ω(n2 log n).

– If there is a unique leader and a node can detect whether its degree is equal
to 1, then there is a time-optimal protocol, with running time Θ(n2 log n)
(now defined as the maximum/worst-case expected running time over all pos-
sible initial active topologies), that transforms any initial active topology to
a spanning line and terminates. This implies a full-power TM simulation as
described above.

– If all nodes are initially identical (and even if small local degrees can be
detected) then there is no protocol that can transform any initial active topol-
ogy to an acyclic topology without ever breaking connectivity. The impossibil-
ity result is quite strong, proving that, for any initial topology G, there is an
infinite family G, such that if the protocol makes G acyclic then it disconnects
every G′ ∈ G in Θ(|V (G′)|) parts. The latter implies that it is impossible to
transform to a spanning line with termination.

– There is a plausible additional strengthening that allows the problem to
become solvable with initially identical nodes. In particular, the assumption
that two interacting nodes can tell whether they have a neighbor in com-
mon (common neighbor detection mechanism). It can be proved that, with
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this additional assumption, initially identical nodes can transform any con-
nected spanning initial active topology to a spanning line and terminate in
time O(n3). This implies a full-power TM simulation as described above.

We now describe the aforementioned time-optimal protocol for the simplest
case in which there is initially a pre-elected unique leader that handles the trans-
formation. Recall that the initial active topology is connected and the goal is for
the protocol to transform the active topology to a spanning line and when this
occurs to detect it and terminate (called the Terminating Line Transformation
problem). Ideally, the transformation should preserve connectivity of the active
topology during its course (or break connectivity in a controlled way). The min-
imal additional assumption to make the problem solvable, is that a node can
detect whether it has local degree 1 or 2 (otherwise it knows that it has degree
in {0, 3, 4, ..., n − 1} without being able to tell its precise value).

Line-Around-a-Star. There is initially a unique leader in state l and all other
nodes are in state q0. Nodes can detect when their degree is 1.

The leader starts connecting with the q0s (by activating the connection
between them in case it was inactive and by preserving it in case it was already
active) and converts them to p′ trying to form a star with itself at the center.
When two p′s interact, if the edge is active they deactivate it, trying to become
the peripherals of the star. Additionally, if after such a deactivation the degree
of a p′ is 1, then the p′ becomes p to represent the fact that it is now connected
only to the leader and has become a normal peripheral. The same occurs if after
the interaction of the leader with a q0, the degree of the q0 is 1, i.e., the q0

immediately becomes a normal peripheral p.
When the leader first encounters a p, it starts constructing a line which has

as its “left” endpoint the center of the star and that will start expanding over
the peripherals until it covers them all. Whenever the leader interacts with an
internal node of the line, it disconnects from it (but it never disconnects from
the second node of the line, counting from the center; to ensure this, the protocol
has that node in a distinguished state i′ while all other internal nodes of the line
are in state i). The protocol terminates when the degree of the center becomes
1 for the first time (note that it could be 1 also at the very beginning of the
protocol but this early termination can be trivially avoided).

Theorem 5 ([MS16a]). By assuming a pre-elected unique leader and the abil-
ity to detect local degree 1, Protocol Line-Around-a-Star solves the Terminating
Line Transformation problem. Its running time is Θ(n2 log n), which is optimal.

For correctness, observe that every q0 eventually becomes p, because the
center forever attracts the q0s making them p′ and a p′ only disconnects from
other peripherals until it becomes p. This implies that eventually each non-leader
node will become available for the line to expand over it and thus the line will
eventually become spanning. Also, the protocol never disconnects the topology
because it performs only two types of edge eliminations, (p′, p′) and (center,
node 3 ≤ i ≤ k of the line of length k), which cannot lead to disconnection.
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Finally it can be shown that the protocol terminates iff the active topology has
become a spanning line, by showing that after the line formation subroutine has
performed at least on step, the degree of the center first becomes 1 when the
active topology becomes a spanning line.

For the running time, the time needed for the leader to connect to every q0

(and convert all q0 to p′), is equivalent to the time needed for a particular node
to meet every other node, which takes Θ(n2 log n) expected time. Next consider
the time for all peripherals to disconnect from one another and become p. If
we study this after the time all q0 have become p′, it is the time (in the worst
case) needed for all edges to be picked by the scheduler, which takes Θ(n2 log n)
expected time. After the completion of both the above, we have a star with the
leader at the center and all peripherals are only connected to the leader. Next
consider the formation of the line over the peripherals. The right endpoint of the
line is always ready for expansion towards another available peripheral. The time
needed for the line to cover all peripherals is again the time to meet every other
node, therefore takes time Θ(n2 log n) to complete. We finally take into account
the time needed for the center to disconnect from the peripherals that are part
of the line. We can study this after the line has become spanning. This is simply
a star deformation, i.e., the time needed until the center meets all peripherals in
order to disconnect from them, taking again time Θ(n2 log n). Putting all these
together, we conclude that the running time of the protocol is Θ(n2 log n), which
matches the Ω(n2 log n) lower bound mentioned above, therefore the protocol is
time-optimal.

6 A Geometric Variant

We shall now discuss a more applied version of network constructors, that may
be obtained by adjusting some of the abstract parameters of the general model.
In particular, [Mic15] introduced some physical (or geometrical) constraints on
the connections that the processes are allowed to form. In the general network
constructors model, there were no such imposed restrictions, in the sense that,
at any given step, any two processes were candidates for an interaction, inde-
pendently of their relative positioning in the existing structure/network. For
example, even two nodes hidden in the middle of distinct dense components
could interact and, additionally, there was no constraint on the number of active
connections that a node could form (could be up to the order of the system).
This was very convenient for studying the capability of such systems to self-
organize into abstract networks and, as we discussed, it helped us show that
arbitrarily complex networks are in principle constructible. On the other hand,
this is not expected to be the actual mechanism of at least the first potential
implementations. First implementations will most probably be characterized by
physical and geometrical constraints. To capture this, it was assumed in [Mic15]
that each device can connect to other devices only via a very limited (finite
and independent of the size of the system) number of ports, usually four or six,
which implies that, at any given time, a device has only a bounded number of
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neighbors. Moreover, the connections are further restricted to be always made
at unit distance and to be perpendicular to connections of neighboring ports.
Though such a model can no longer form abstract networks, we will see that it is
still capable of forming very practical 2D or 3D shapes. This is also in agreement
with natural systems, where the complexity and physical properties of a system
are rarely the result of an unrestricted interconnection between entities.

It can be immediately observed that the universal constructors of Sect. 4 do
not apply in this case. In particular, those constructors cannot be adopted in
order to characterize the constructive power of the present variant. The reason
is that they work by arranging the nodes in a long line and then exploiting
the fact that connections are elastic and allow any pair of nodes of the line to
interact independently of the distance between them. In contrast, no elasticity
is allowed in the more local model that we now consider, where a long line can
still be formed, but only adjacent nodes of the line are allowed to interact with
each other. As a result, new techniques have to be developed for determining the
computational and constructive capabilities of this model. Another main novelty
of [Mic15], concerns an alternative approach to overcome the inability of such
systems to terminate, by exploiting the ability of nodes to self-assemble into
larger structures that can then be used as distributed memories of any desired
length and the existence of a uniform random scheduler. Achieving termination
is crucial here, as it allows us to develop terminating subroutines that can be
sequentially composed to form larger modular protocols. Such protocols are more
efficient, more natural, and more amenable to clear proofs of correctness, com-
pared to protocols that are based on composing all subroutines in parallel and
“sequentializing” them eventually by perpetual reinitializations (like the one in
Sect. 4).

Now, every node has a bounded number of ports which it uses to interact
with other nodes. In the 2D case, there are four ports py, px, p−y, and p−x, which
for notational convenience are usually denoted u, r, d, and l, respectively (for
up, right, down, and left, respectively). Similarly, in the 3D case there are 6
ports. Neighboring ports are perpendicular to each other, forming local axes.
For example, in the 2D case, u ⊥ r, r ⊥ d, d ⊥ l, andl ⊥ u. An important
remark is that the above coordinates are only for local purposes and do not
necessarily represent the actual orientation of a node in the system. A node may
be arbitrarily rotated so that, for example, its x local coordinate is aligned with
the y real coordinate of the system or it is not aligned with any real coordinate.
Nodes may interact in pairs, whenever a port of one node w is at unit distance
and in straight line (w.r.t. to the local axes) from a port of another node v.

The transition function is now of the form δ : (Q × P ) × (Q × P ) × {0, 1} →
Q × Q × {0, 1}, where P = {u, r, d, l} (P = {py, pz, px, p−y, p−z, p−x}, respec-
tively, for the 3D case) is the set of ports. In every step, a pair of node-ports
(v1, p1)(v2, p2) is selected by an adversary scheduler and these nodes interact
via the corresponding ports and update their states and the state of the edge
joining them according to the transition function δ. A configuration is called
valid, if any connected component defined by it (when arranged according to the
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geometrical constraints) is a subnetwork of the 2D grid network with unit dis-
tances. Valid configurations restrict the possible selections of the scheduler at
each step. In particular, (v1, p1)(v2, p2) ∈ EI can be selected for interaction (or
is permitted) at step t iff the configuration that would result after an activation
between (v1, p1) and (v2, p2) is valid. The interactions are chosen by a uniform
random scheduler, which in every step selects independently and uniformly at
random one of the permitted interactions. The output shapes of a configura-
tion consist of those nodes that are in output or halting states and those edges
between them that are active. We are usually interested in obtaining a single
shape as the final output of the protocol. We say that an execution of a pro-
tocol on n processes constructs (stably constructs) a shape G, if it terminates
(stabilizes, resp.) with output G.

The following theorem gives a partial characterization of the constructive
power of the 2D version of this model.

Theorem 6 ([Mic15]). Let L = (S1, S2, . . .) be a connected 2D shape language,
such that L is TM-computable in space d2. Then there is a protocol that w.h.p.
constructs L. In particular, for all d ≥ 1, whenever the protocol is executed on a
population of size n = d2, w.h.p. it constructs Sd and terminates. In the worst
case, the waste is (d − 1)d = O(d2) = O(n).

The idea is again to organize the population in such a way that it can simulate
appropriate TMs; in this case, a type of shape-constructing TMs that will realize
their output-shape in the distributed system. Such a TM M constructs a shape
on the pixels of a

√
n × √

n square, which are indexed in a zig-zag way. M
takes as input an integer i ∈ {0, 1, . . . , n − 1} and the size n or the dimension√

n of the square (all in binary) and decides whether pixel i should belong
or not to the final shape, i.e., if it should be on or off, respectively. In order,
to self-organize and simulate the TM, the population first executes a counting
subroutine, which constructs w.h.p. a line of length Θ(log n), containing n in
binary. To do this, the protocol requires a pre-elected unique leader. The leader
maintains two distributed n-counters and uses them to implement two competing
processes, running in parallel. The first process counts the number of nodes that
have been encountered once by the leader and the second process counts the
number of nodes that have been encountered twice. The game ends when the
second counter catches up the first. It can be proved, via a probabilistic analysis
of random walks on lines with time and position dependencies, that when this
occurs, the leader will almost surely have already counted at least half of the
nodes.4 Then the leader exploits its knowledge of n to construct a

√
n × √

n
square and successfully detect termination of the construction. When it is done,
it simulates the TM on the square n distinct times, one for each pixel. As already
mentioned, the input to the TM is each time the index of the corresponding pixel
and

√
n, in binary, while its output is an on or off decision for that pixel. Finally,

4 In practice, this estimation is expected to be much closer to n than to n/2. A first
indication is that, in all of our experiments for up to 1000 nodes the estimation was
always close to (9/10)n and usually higher.
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the protocol releases the connected shape consisting of the on pixels. It is worth
mentioning that it is still open whether the pre-elected leader assumption can
be dropped.

7 Further Research

An obvious first target is to achieve complete characterizations of the con-
structible networks both in the basic and in the geometric model. It is also
worth noting that existing results on universal construction indicate that the
constructive power increases as a function of the available waste. A complete
characterization of this dependence would be of special value. Another intrigu-
ing question is whether there exists a network constructor for global line that
is asymptotically faster than O(n3). We also do not know yet whether count-
ing the size of the population w.h.p. and with termination is still possible if all
nodes are initially identical. Towards refining and extending the existing mod-
els, considering hybrid models of active and passive mobility seems interesting.
Also, it seems plausible, apart from geometric constraints, to take further phys-
ical considerations into account, like mass, strength of bonds, rigid and elastic
structure, and collisions. It would also be worth studying structures that opti-
mize some global property or that achieve a desired behavior or functionality.
Regarding fault-tolerance capabilities of programmable matter systems, proto-
cols that efficiently reconstruct broken parts of the structure would be of special
value. Moreover, we should draw more connections to natural processes and
to self-assembly and programmable matter models coming from other research
areas (e.g., by comparing the various models via formal simulations). Finally,
we believe that more real systems of collectives of large numbers of simple inter-
acting entities (e.g., devices) are needed in order to inspire theory and highlight
the feasible mechanisms and, thus, the realistic modeling assumptions.
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Abstract. Input-output conformance simulation (iocos) has been
proposed by Gregorio-Rodŕıguez, Llana and Mart́ınez-Torres as a
simulation-based behavioural preorder underlying model-based testing.
This relation is inspired by Tretman’s classic ioco relation, but has better
worst-case complexity than ioco and supports stepwise refinement. The
goal of this paper is to develop the theory of iocos by studying logical
characterisations of this relation and its compositionality. More specif-
ically, this article presents characterisations of iocos in terms of modal
logics and compares them with an existing logical characterisation for
ioco proposed by Beohar and Mousavi. A precongruence rule format for
iocos and a rule format ensuring that operations take quiescence properly
into account are also given. Both rule formats are based on the GSOS
format by Bloom, Istrail and Meyer.

1 Introduction

Model-based testing (MBT) is an increasingly popular technique for validation
and verification of computing systems, and provides a compromise between for-
mal verification approaches, such model checking, and manual testing. MBT uses
a model to describe the aspects of system behaviour that are considered to be
relevant at some suitable level of abstraction. This model is employed to gener-
ate test cases automatically, while guaranteeing that some coverage criterion is
met. Such test cases are then executed on the actual system in order to check
whether its behaviour complies with that described by the model.

A formal notion of compliance relation between models (specifications)
and systems (implementations) provides a formal underpinning for MBT. The
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de-facto standard compliance relation underlying MBT for labelled transition
systems with input and output actions is the classic ioco relation proposed by
Tretmans, for which a whole MBT framework and tools have been developed.
(See, for instance, [16] and the references therein.)

An alternative conformance relation that can be used to underlie MBT is
input-output conformance simulation (iocos). This relation shares with ioco many
of its ideas and rationale. However, iocos is a branching-time semantics based on
simulation, whereas ioco is a trace-based semantics. iocos has been introduced,
motivated and proved to be an adequate conformance relation for MBT in [8–10].

Since iocos has been proposed as an alternative, branching-time touchstone
relation for MBT, it is natural to investigate its theory in order to understand
its properties. The goal of this paper is to contribute to this endeavour by study-
ing the discriminating power of iocos and its compositionality. More precisely, in
Sect. 3, we provide modal characterisations of iocos in the style of Hennessy and
Milner [11]. We offer two modal chacterisations of iocos, which are based on the use
of either a ‘non-forcing diamond modality’ (Theorem1) or of a ‘forcing box modal-
ity’ (Theorem 2), and compare them with an existing logical characterisation for
ioco proposed by Beohar and Mousavi in [3] (Sect. 4). We also show, by means of
an example, that, contrary to what is claimed in [13, Theorem 2], ioco and iocos do
not coincide even when implementations are input enabled (Sect. 4.1).

As argued in [2,17] amongst other references, MBT can benefit from a com-
positional approach whose goal is to increase the efficiency of the testing activity.
The above-mentioned references study compositionality of ioco with respect to
a small collection of well-chosen operations. Here we take a general approach
to the study of compositionality of iocos, which is based on the theory of rule
formats for structural operational semantics [1]. In Sect. 5, we present a congru-
ence rule format for iocos based on the GSOS format proposed by Bloom, Istrail
and Meyer [5] (Theorem 4). Since operations preserving iocos need to take qui-
escence properly into account, we also propose a rule format guaranteeing that
operations preserve coherent quiescent behaviour (Theorem 5 in Sect. 5.1).

Section 6 concludes the paper and presents avenues for future research.

2 Preliminaries

The input-output conformance simulation preorder presented in [8–10,13]
(henceforth referred to as iocos) is a semantic relation developed under the
assumption that systems have two kinds of transitions: input actions, namely
those that the systems are willing to admit or respond to, and output actions,
which are those produced by the system and that can be seen as responses or
results.

We use I to denote the alphabet of input actions, which are written with a
question mark (a?, b?, c? . . .). We call O the alphabet of output actions, which
are annotated with an exclamation mark (a!, b!, δ!. . . ). In many cases we want to
name actions in a general sense, inputs and outputs indistinctly. We will consider
the set L = I ∪ O and we will omit the exclamation or question marks when
naming generic actions, a, b, x, y, z ∈ L.
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A state with no output actions cannot proceed autonomously; such a state
is called quiescent. Following Tretmans (see, for instance, [14,16]), we directly
introduce the event of quiescence as a special output action denoted by δ! ∈ O
in the definition of our models.

Definition 1. A labelled transition system with inputs and outputs, LTS for
short, is a quadruple (S, I,O,−→) such that

– S is a set of states, processes, or behaviours.
– I and O are disjoint sets of input and output actions, respectively. Output

actions include the quiescence symbol δ! ∈ O. We define L = I ∪ O.
– −→ ⊆ S × L × S is the transition relation. As usual we write p

x−→ q instead
of (p, x, q) ∈ −→ and p

x−→, for x ∈ L, if there exists some q ∈ S such that

p
x−→ p

x−→ q. Analogously, we will write p
x

−→/ , for x ∈ L, if there is no q such
that p

x−→ q.
In order to allow only for coherent quiescent systems, the set of transitions

−→ should also satisfy the following requirement: p
δ!−→ p′ iff p = p′ and p

o!

−→/
for each o! ∈ O\{δ!}.

The extension of the transition relation to sequences of actions is defined as usual.

Contrary to the classic ioco testing theory, in the theory of iocos presented in
[8–10], all actions are assumed to be observable. In this paper, we follow those
references and consider only concrete actions.

In general we use p, q, p′, q′. . . for states or behaviours, but also i, i′, s and s′

when we want to emphasise the concrete role of a behaviour as an implementation
or a specification, respectively. We consider implementations and specifications,
or, more generally, behaviours under study, as states of the same LTS.

The following functions over states of an LTS will be used in the remainder
of the paper:

outs(p) = {o! | o! ∈ O, p
o!−→}, the set of initial outputs of a state p.

ins(p) = {a? | a? ∈ I, p
a?−→}, the set of initial inputs of a state p.

Definition 2. We say that a binary relation R over states in an LTS is an
iocos-relation if, and only if, for each (p, q) ∈ R the following conditions hold:

1. ins(q) ⊆ ins(p).
2. For all a? ∈ ins(q) and p′ ∈ S, if p

a?−→ p′ then there exists some q′ such that
q

a?−→ q′ with (p′, q′) ∈ R.
3. For all o! ∈ O and p′ ∈ S, if p

o!−→ p′ then there exists some q′ such that
q

o!−→ q′ with (p′, q′) ∈ R.

We define the input-output conformance simulation (iocos) as the largest iocos-
relation. We write p iocos q instead of (p, q) ∈ iocos. As proven in [8], iocos is a
preorder.
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Example 1. Consider the following processes:

It is easy to see that i iocos s. Indeed, ins(s) = ∅ and therefore the specification
s does not prevent the implementation i from offering the input transition i

a?−→ i.

Throughout the paper we make extensive use of modal logics. A logic over
processes is defined by a language to express the formulae and a satisfaction
relation that defines when a process (that is, a state of an LTS) has the property
described by some formula. A classic example and a reference for the rest of the
paper is Hennessy-Milner Logic [11].

Definition 3. Hennessy-Milner Logic over the set of actions L (abbreviated to
HML) is the collection of formulae defined by the following BNF grammar:

φ ::= tt | ff | φ ∧ φ | φ ∨ φ | [ a ]φ | 〈a〉φ,

where a ∈ L. HML is interpreted over an LTS by defining a satisfaction relation
|= relating states to formulae. The semantics of the boolean constants tt and
ff and of the boolean connectives ∧ and ∨ is defined as usual. The satisfaction
relation for the modalities 〈a〉 and [ a ] is as follows:

– p |= 〈a〉ϕ iff there exists some p′ such that p
a−→ p′ and p′ |= ϕ.

– p |= [ a ]ϕ iff p′ |= ϕ for all p′ such that p
a−→ p′.

Every subset of HML naturally induces a preorder on a given set of behaviours.

Definition 4. Given a logic L included in HML and a set S of states in an
LTS, we define ≤L as the binary relation over S given by

p ≤L q iff ∀φ ∈ L (p |= φ ⇒ q |= φ).

Remark 1. Since the logics we use in this paper to give modal characterisations of
iocos have binary conjunctions and disjunctions, in what follows we will consider
only image-finite LTSs, that is, LTSs where for each p and each a ∈ I ∪ O there
are only finitely many p′ such that p

a→ p′. Also, we will consider both I and O
to be finite sets.

3 Logic for iocos

In this section we present a logic that characterises the iocos relation. This
logic is a subset of Hennessy-Milner Logic (HML) and is rather minimal, but is
convenient to characterize clearly the discriminating power of the iocos relation.

Definition 5. The syntax of the logic for iocos, denoted by Liocos, is defined by
the following BNF grammar:

φ ::= tt | ff | φ ∧ φ | φ ∨ φ | 〈|a?|〉φ | 〈x!〉φ,

where a? ∈ I and x! ∈ O. The semantics of the constants tt and ff , of the
boolean connectives ∧ and ∨, and of the modality 〈x!〉 is defined as usual. The
satisfaction relation for the modality 〈|a?|〉 is given below:
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– p |= 〈|a?|〉φ iff p
a?

−→/ or p′ |= φ for some p
a?−→ p′.

The new modal operator 〈|a?|〉 can be read as a non forcing diamond modality:
if the action specified in the modality is not possible in a given state then the
formula is satisfied. This operator can be expressed with the classic modalities
in HML; indeed, 〈|a?|〉φ is equivalent to 〈a?〉φ ∨ [ a? ]ff . The need for this special
modality arises because, in order for iiocoss to hold, s need only match the input
transitions of i that are labelled with input actions that s affords.

According to Definition 4, the logic Liocos induces the preorder ≤Liocos . Next
we prove that this logical preorder coincides with the input output conformance
simulation preorder, iocos, over an arbitrary (image-finite) LTS.

Theorem 1. For all states i, s in some LTS,

i iocos s iff i ≤Liocos s.

The logic for iocos we have presented in Definition 5 follows a stan-
dard approach to the logical characterisation of simulation semantics; see, for
instance, [6,18]. However, the iocos relation originated in the model-based test-
ing environment where the natural reading for a logical characterisation would
be ‘every property satisfied by the specification should also hold in the implemen-
tation’. Next we define an alternative logic that better matches this specifica-
tion/implementation view.

Definition 6. The syntax of the logic L̃iocos is defined by the following BNF
grammar:

φ ::= tt | ff | φ ∧ φ | φ ∨ φ | �a?�φ | [x! ]φ,

where a? ∈ I and x! ∈ O. The semantics of the constants tt and ff , of the
boolean connectives ∧ and ∨, and of the modality [x! ] is defined as usual. The
satisfaction relation for the modalities �a?� is as follows:

– p |= �a?�φ iff p
a?−→ and p′ |= φ, for each p

a?−→ p′.

The new modal operator, denoted by �a?�, can be read as a forcing box modality:
the action specified in the modality must be possible in order for a process to
satisfy the formula. This operator can be described with the classic modalities
in HML: �a?�φ is equivalent to 〈a?〉tt ∧ [ a? ]φ.

Now with this logic, we can define a preorder ≤
˜Liocos

in terms of the formulae

that the specification satisfies: s ≤
˜Liocos

i iff ∀φ ∈ L̃iocos (s |= φ ⇒ i |= φ).

We note that the logics Liocos and L̃iocos are dual. In fact, there exist mutual
transformations between both sets of formulae such that a behaviour satisfies
one formula if, and only if, it does not satisfy the transformed formula. These
statements are at the heart of the proof of the following result.

Theorem 2. For all states i, s in some LTS, i iocos s iff s ≤
˜Liocos

i.
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4 The Relation with a Logic for ioco

Input-output conformance (ioco) was introduced by Tretmans in [15]. The intu-
ition behind ioco is that a process i is a correct implementation of a specification
s if, for each sequence of actions σ allowed by the specification, all the possible
outputs from i after having performed σ are allowed by the specification. This
is formalized below in a setting in which all actions are observable.

Definition 7. Let (S, I,O,−→) be an LTS with inputs and outputs. We define
the traces of a state p ∈ S as traces(p) = {σ | ∃p′. p

σ−→ p′}. Given a trace
σ, we define p after σ = {p′ | p′ ∈ S, p

σ−→ p′}. For each T ⊆ S, we set
Out(T ) =

⋃
p∈T outs(p). Finally, the relation ioco ∈ S × S is defined as:

i ioco s iff Out(i after σ) ⊆ Out(s after σ), for all σ ∈ traces(s).

As shown in [8, Theorem 1], iocos is included in ioco.
In the setting of Tretmans’ standard ioco theory [15], only input-enabled

implementations are considered. A state i in an LTS is input enabled if every
state i′ that is reachable from i is able to perform every input action, that is,
i′ a?−→ holds for each a? ∈ I and for each state i′ that is reachable from i.

In [3] Beohar and Mousavi introduced an explicit logical characterization of
ioco. This characterization uses a non-standard modal operator reminiscent of
our �·�, denoted by �·�1. However, output actions can also be used as labels of
�·�. This modality can be extended to traces σ as follows: p |= �σ�φ if, and only
if, p

σ−→ and p′ |= φ, for each p′ such that p
σ−→ p′. (Note that, for the particular

case of input actions a?, the semantics of �a?� coincides with that of �a?�.)
The explicit logical characterization of ioco given in [3] is defined by means

of two different subclasses of logical formulae. The first subclass permits only
formulae of the form �σ�[ b ]ff , where σ is a trace and b is an output action.

For the second subclass of formulae, Beohar and Mousavi consider an exten-
sion of the operator [ · ] to traces, defined as: p |= [σ ]φ if, and only if, p′ |= φ

for each p′ such that p
σ−→ p′. This second subclass permits only formulae of the

form [σ ][ b ]ff , where σ is a trace and b is an output action.
The formulae in each of these two subclasses characterize one defining prop-

erty of the ioco-relation. This intuition is made precise in the following lemma.

Lemma 1 ([3]). For each sequence of actions σ, output action b and process p
the following statements hold:

1. σ ∈ traces(p) and b /∈ Out(p after σ) iff p |= �σ�[ b ]ff .
2. b /∈ Out(p after σ) iff p |= [σ ][ b ]ff .

1 In fact, the symbol used to denote the operator �·� in [3] is 〈[·]〉, but we prefer to use
an alternative notation in order to avoid confusion with our modal operator 〈| · |〉.
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The resulting logical characterization theorem for ioco is as follows,

Theorem 3 ([3]). i ioco s iff, for all σ ∈ L∗, b ∈ O, if s |= �σ�[ b ]ff , then
i |= [σ ][ b ]ff .

The above result is the counterpart of Theorem 2 in the setting of ioco. Note,
however, that Theorem 3 is not a classic modal characterization result (as it is
the case of, for example, Theorem 2) where if the implementation i is correct
with respect to the specification s and s satisfies a formula, then also i satisfies
it. Here the implementation does not need to satisfy the properties that hold for
the specification. By way of example, implementations need not exhibit all the
traces of a specification they correctly implement.

4.1 Relation with iocos

Theorem 2 in [13] states that if i is input enabled, i ioco s implies i iocos s. This
means that, when restricted to input-enabled implementations, ioco and iocos
coincide, and therefore the logics characterizing iocos presented in this paper
also characterize ioco over that class of LTSs. Unfortunately, however, Theorem 2
in [13] does not hold, as shown in the following example.

Example 2. Let s and i be defined as follows, where we assume that I = {a?, b?}.

Note that i is input-enabled, as required by the theory of ioco. It is easy to see

that i ioco s. On the other hand, i /iocos s because each iocos relation containing
the pair (i, s) would also have to contain the pair (i′, s1) or the pair (i′, s2).
However, no relation including either of those pairs is an iocos-relation because

i′ a!−→ and i′ b!−→, but s1

a!

−→/ and s2

b!

−→/.

As we will now argue, the logics for ioco and iocos are incomparable in
terms of their expressive power. First of all, note that, if we consider only
input-enabled implementations, the formulae of the form [σ ][ b ]ff , with σ

a trace, can be expressed in L̃iocos since in an input-enabled scenario �a?�
has the same semantics as [ a? ]. On the other hand, it is not possible to
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define a formula φ ∈ L̃iocos that captures Lemma 1(1). Indeed, by way of
example, consider φ = �x!�[ b! ]ff . Any specification s would have to sat-
isfy φ iff s

x!−→ and s′ |= [ b! ]ff , for all s
x!−→ s′. Now, assume that we have

in L̃iocos a formula ψ whose semantics coincides with that of �x!�[ b! ]ff . Let

It is easy to see that i iocos s, but s |= ψ and i �|= ψ. In other words, ψ is a

formula that distinguishes processes related by iocos. Hence, such a formula ψ
cannot be in any logic that characterizes iocos.

On the other hand, let us consider the two processes of Example 2 and the
formula φ = �a?�([ a! ]ff ∨ [ b! ]ff) ∈ L̃iocos. As we already stated in Example 2,
i ioco s, but s |= φ and i �|= φ. Hence, φ can distinguish processes that are
ioco-related.

5 A Rule Format for Iocos

In this section we study compositionality for iocos and present a congruence
rule format for the input-output conformance simulation preorder based on the
GSOS format proposed by Bloom, Istrail and Meyer [5]. The restriction to GSOS
rules is partly justified by our wish to have a purely syntactic rule format and
by the undecidability results presented in [12]. In what follows, we assume that
the reader is familiar with the standard notions of signature and of term over a
signature.

We recall that a deduction rule for an operator f of arity n in some signature
Σ is in the GSOS format if, and only if, it has the following form:

{xi
aij−→ yij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {xi

bik−→/ | 1 ≤ i ≤ n, 1 ≤ k ≤ �i}
f(x ) a−→ C[x,y]

(1)

where the xi’s and the yij ’s (1 ≤ i ≤ n and 1 ≤ j ≤ mi) are all distinct variables,
mi and �i are natural numbers, C[x,y] is a term over Σ with variables including
at most the xi’s and yij ’s, and the aij ’s, bik’s and a are actions from L. The above
rule is said to be f -defining and a-emitting. Its positive trigger for variable xi

is the set {aij | 1 ≤ j ≤ mi} and its negative trigger for variable xi is the set
{bik | 1 ≤ k ≤ �i}. The source of the conclusion of the rule is f(x ).

A GSOS language is a triple (Σ, L,D) where Σ is a finite signature, L is a
finite set of labels and D is a finite set of deduction rules in the GSOS format.
In what follows, we assume, without loss of generality, that all f -defining rules
have the same source of their conclusions.

A GSOS language naturally defines a set of transitions over the variable-free
terms over Σ by structural induction: for vectors of such terms p (with typical
entry pi) and q (with entries qij), there is a transition f(p) a−→C[p, q] if, and
only if, there is an f -defining rule of the form (1) such that
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– pi
aij−→ qij for each 1 ≤ i ≤ n and 1 ≤ j ≤ mi and

– pi

bik−→/ for each 1 ≤ i ≤ n and 1 ≤ k ≤ �i.

Note that GSOS rules define operations over states in an arbitrary LTS with
inputs and outputs. In what follows, we apply derived operations built over the
signature of a GSOS language to states in the collection of LTSs with input and
output actions.

Definition 8. An operation f in a GSOS language is in iocos-format if the
collection of f-defining rules satisfies the following conditions:

1. Each a?-emitting rule, where a? is an input action, has only output actions
as labels of negative premises and input actions as labels of positive premises.

2. For each input action a? and each pair of rules r = H

f(x1,...,xn)
a?−→ t

and r′ =
H′

f(x1,...,xn)
a?−→ t′

, there is a rule r′′ = H′′

f(x1,...,xn)
a?−→ t′

such that

(a) for each 1 ≤ i ≤ n, the positive trigger for variable xi in r′′ is included
in the positive trigger for variable xi in r;

(b) for each 1 ≤ i ≤ n, the negative trigger for variable xi in r′′ is included
in the negative trigger for variable xi in r;

(c) if xi
b?−→ z is contained in H ′′ and z occurs in t′, then xi

b?−→ z is also
contained in H ′.

3. Each a!-emitting rule, where a! is an output action, has only input actions as
labels of negative premises and output actions as labels of positive premises.

A GSOS language is in iocos-format if so is each of its operations.

Theorem 4. iocos is a precongruence for each GSOS language in iocos format.

As an example of application of the above result, we show that the merge
operator from [2] can be expressed in our rule format.

Example 3. Merge, or conjunction, is a composition operator from the theory of
ioco. It acts as a logical conjunction of requirements, that is, it describes systems
by a conjunction of sub-systems, or sub-specifications. We denote by

∧n
i=1 si the

result of the merge of the states si, with 1 ≤ i ≤ n. In [2] it is noted that, in
general, the merge of two systems can lead to invalid states (for example the
merge of a quiescent state with another with some output). The solution is to
add a pruning algorithm after calculating the merge. Here we just show the
merge operator and not that pruning algorithm. (See also Example 4.)

The merge operator can be formalized using the following GSOS rules (one
such rule for each a ∈ L):

{xi
a−→ yi | 1 ≤ i ≤ n}

n∧

i=1

xi
a−→

n∧

i=1

yi

.

It is immediate to check that the above rules are in iocos-format. Therefore
the above theorem yields that the merge operator preserves iocos.
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5.1 A Rule Format for Coherent Quiescent Behaviour

Operators for constructing LTSs with inputs and outputs should ensure ‘coherent
quiescent behaviour’ in the sense of Definition 1. This means that each opera-
tor f , when applied to a vector of states p in an LTS, should satisfy the following
property:

f(p) δ!−→ p′ iff p′ = f(p) and, for each a! ∈ O\{δ!}, f(p)
a!

−→/ . (2)

In what follows, we will isolate sufficient conditions on the GSOS rules that
define f that guarantee the above-mentioned property.

Definition 9. We say that the following sets of formulae contradict each other:

– {x
a−→ y} and {x

a

−→/} for a ∈ L,
– {x

b!−→ y} and {x
δ!−→ z} for b! ∈ O\{δ!}, and

– H and H ′ when H and H ′ are non-empty and H ∪ H ′ = {x
b!

−→/ | b! ∈ O}.

Formulae x
a−→ y and x

a

−→/ are said to negate each other.
We say that two sets of formulae H1 and H2 are contradictory if there are

H ′
1 ⊆ H1 and H ′

2 ⊆ H2 such that H ′
1 and H ′

2 contradict each other.

Intuitively, two sets of contradictory formulae cannot be both satisfied by states
in an LTS. For example, in the light of the requirement on quiescent behaviour

in Definition 1, there is no state p in an LTS such that p
b!

−→/ for each b! ∈ O.
This observation motivates the third requirement in Definition 9.

Definition 10. We say that an operation f is quiescent consistent if the set of
rules for f satisfies the following two constraints:

[δ1] If H/f(x) δ!−→ t is a rule for f then
1. for each f-defining rule H ′/f(x) b!−→ t′ with b! ∈ O\{δ!}, the sets H and

H ′ are contradictory, and
2. t = f(y) for some vector of variables y such that, for each index i, either

yi = xi or xi
δ!−→ yi ∈ H.

[δ2] Let {r1, . . . rn} be the set of output-emitting rules for f not having δ! as
label of their conclusions. Then the set of rules for f contains all rules of
the form {l1, . . . , ln}/f(x) δ!−→ f(x), where li negates some premise of ri and
no two sets of formulae included in {l1, . . . ln} contradict each other.

A GSOS language is quiescent consistent if so is each operation in it.

Theorem 5. If f is quiescent consistent then Eq. 2 holds for f .
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Example 4. Consider the merge, or conjunction, operator from [2] described in
Example 3. As remarked in [2, Example 2], the merge operator may produce an
invalid LTS when applied to states from an LTS. Note that the set of rules for the
n-ary merge operator satisfy constraint [δ1] in Definition 10, but not constraint
[δ2]. Constraint [δ2] also suggests how to add rules to those of the merge operator
so that it preserves consistent quiescent behaviour. By way of example, consider
the binary version of the merge operator, and assume that a! and b! are the only
two output actions different from δ!. Then one should add the following four
rules to those for the binary merge given in Example 3:

{x1
a!−→ y1, x2

b!−→ y2}
x1 ∧ x2

δ!−→ x1 ∧ x2

(a! �= b!) .

The resulting operation is quiescent consistent and, by Theorem5, satisfies Eq. 2.

6 Conclusion

In this paper, we have developed the theory of iocos [8–10] by studying logical
characterisations of this relation and its compositionality. We have also compared
the proposed logical characterisation of iocos with an existing logical charac-
terisation for ioco proposed by Beohar and Mousavi. The article also offers a
precongruence rule format for iocos and a rule format ensuring that operations
take quiescence properly into account. Both rule formats are based on the GSOS
format by Bloom, Istrail and Meyer.

Avenues for future research we are currently pursuing include an extension
of the logic for iocos with fixed points, a characteristic formula construction for
finite-state behaviours with respect to iocos, an application of the divide and
congruence approach from [7] to the definition of a congruence rule format for
iocos (as done in [4] for the XY-simulation preorder) and a compositionality
result for the logic characterising iocos over languages in iocos format.
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Abstract. We propose behavioral specification theories for most equiv-
alences in the linear-time–branching-time spectrum. Almost all previous
work on specification theories focuses on bisimilarity, but there is a clear
interest in specification theories for other preorders and equivalences. We
show that specification theories for preorders cannot exist and develop a
general scheme which allows us to define behavioral specification theo-
ries, based on disjunctive modal transition systems, for most equivalences
in the linear-time–branching-time spectrum.

1 Introduction

Models and specifications are central objects in theoretical computer science.
In model-based verification, models of computing systems are held up against
specifications of their behaviors, and methods are developed to check whether
or not a given model satisfies a given specification.

In recent years, behavioral specification theories have seen some popularity
[1,3,4,7,10–12,21,22,24,29]. Here, the specification formalism is an extension of
the modeling formalism, so that specifications have an operational interpretation
and models are verified by comparing their operational behavior against the spec-
ification’s behavior. Popular examples of such specification theories are modal
transition systems [3,11,21], disjunctive modal transition systems [7,10,24], and
acceptance specifications [12,29]. Also relations to contracts and interfaces have
been exposed [4,28], as have extensions for real-time and quantitative specifica-
tions and for models with data [5,6,8,13,14].

Except for the work by Vogler et al. in [10,11], behavioral specification the-
ories have been developed only to characterize bisimilarity. While bisimilarity is
an important equivalence relation on models, there are many others which also
are of interest. Examples include nested and k-nested simulation [2,17], ready or
2
3 -simulation [23], trace equivalence [19], impossible futures [33], or the failure
semantics of [9–11,27,32] and others.

In order to initiate a systematic study of specification theories for different
semantics, we exhibit in this paper specification theories for most of the equiv-
alences in van Glabbeek’s linear-time–branching-time spectrum [31].

Most of this work was carried out while the first author was still employed at
Inria Rennes, France.
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To develop our systemization, we first have to clarify what precisely is meant
by a specification theory. This is similar to the attempt at a uniform framework
of specifications in [4], but our focus is more general. Inspired by the seminal
work of Pnueli [27], Larsen [22], and Hennessy and Milner [18], we develop the
point of view that a behavioral specification theory is an expressive specification
formalism equipped with a mapping from models to their characteristic formu-
lae and with a refinement preorder which generalizes the satisfaction relation
between models and specifications.

We then introduce a general scheme of linear and branching relation families
and show that variants of these characterize most of the preorders and equiva-
lences in the linear-time–branching-time spectrum (notably also all of the ones
mentioned above). We transfer our scheme to disjunctive modal transition sys-
tems and use it to define a linear-time–branching-time spectrum of refinement
preorders, each giving rise to a specification theory for a different equivalence in
the linear-time–branching-time spectrum.

Specification theories as we define them here are useful for incremen-
tal design and verification, as specifications can be refined until a sufficient
level of detail is reached. The specification theories developed for bisimilarity
in [1,3,7,12,21,22,24,29] also include operations of conjunction and composi-
tion, hence allowing for compositional design and verification. What we present
here is a first fundamental study of specification theories for equivalences other
than bisimilarity, and we leave compositionality for future work.

To sum up, the contributions of this paper are as follows:

– a clarification of the basic theory of behavioral specification theories;
– a uniform treatment of most of the relations in the linear-time–branching-time

spectrum;
– a uniform linear-time–branching-time spectrum of specification theories.

The paper is accompanied by a technical report [16] which contains some of the
proofs of our results and extra material to provide context.

2 Specification Theories

We start this paper by introducing and clarifying some concepts related to mod-
els and specifications from [18,22,27].

Let Mod be a set (of models). A specification formalism for Mod is a structure
(Spec, |=), where Spec is a set of specifications and |= ⊆ Mod × Spec is the
satisfaction relation. The models in Mod serve to represent computing systems,
and the specifications in Spec represent properties of such systems. The model-
checking problem is, given I ∈ Mod and S ∈ Spec, to decide whether I |= S.

For S ∈ Spec, let �S� = {I ∈ Mod | I |= S} denote its set of implementations,
that is, the set of models which adhere to the specification. Note that |= and �·�
are inter-definable: for I ∈ Mod and S ∈ Spec, I |= S iff I ∈ �S�.

There is a preorder of semantic refinement on Spec, denoted �, defined by

S1 � S2 iff �S1� ⊆ �S2� .
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Hence S1 � S2 iff every implementation of S1 is also an implementation of S2,
that is, if it holds for every model that once it satisfies S1, it automatically also
satisfies S2. The corresponding equivalence relation � = �∩� is called semantic
equivalence: S1 � S2 iff �S1� = �S2�.

For a model I ∈ Mod, let Th(I) = {S ∈ Spec | I |= S} denote its set of
theories: the set of all specifications satisfied by I. As [22] notes, the functions
�·� : Spec → 2Mod and Th : Mod → 2Spec can be extended to functions on sets
of specifications and models by �A� =

⋂
S∈A�S� and Th(B) =

⋂
I∈B Th(I), and

then �·� : 2Spec � 2Mod : Th forms a Galois connection.
Let � be the preorder on Mod defined by

I1 � I2 iff Th(I1) ⊆ Th(I2) ,

and let �	 = � ∩ 	. Hence I1 �	 I2 iff Th(I1) = Th(I2), that is, iff I1 and I2

satisfy precisely the same specifications.
In terminology first introduced in [18], the specification formalism (Spec, |=)

is said to be adequate for �	. In fact, the usual point of view is sightly different:
normally, Mod comes equipped with some equivalence relation ∼, and then one
says that (Spec, |=) is adequate for (Mod,∼) if �	 = ∼. It is clear that ∼ is
not needed to reason about specification formalisms; we can simply declare that
(Spec, |=) is adequate for whatever model equivalence �	 it induces.

Using the terminology of [27], a specification S ∈ Spec is a characteristic
formula for a model I ∈ Mod if I |= S and for all I ′ |= S, I ′ �	 I. Hence S
characterizes precisely all models which are equivalent to I.

Again following [27], the specification formalism (Spec, |=) is said to be
expressive for Mod if every I ∈ Mod admits a characteristic formula. Our first
result seems to have been overlooked in [18,22,27]: in an expressive specification
formalism, the preorder � is, in fact, an equivalence.

Proposition 1. If Spec is expressive for Mod, then � = �	.

Proof. Let I1, I2 ∈ Mod and assume I1 � I2. Let S1 ∈ Spec be a characteristic
formula for I1, then S1 ∈ Th(I1). But Th(I1) ⊆ Th(I2), hence S1 ∈ Th(I2),
i.e. I2 |= S1. As S1 is characteristic, this implies I2 �	 I1. ��

Example. A very simple specification formalism is Spec = 2Mod, that is, specifi-
cations are sets of models. In that case, |= = ∈ is the element-of relation, and
�S� = S, thus S1 � S2 iff S1 ⊆ S2 and S1 � S2 iff S1 = S2. Every I ∈ Mod
has characteristic formula {I} ∈ Spec, hence 2Mod is expressive for Mod, so that
� = �	. Further, if I1 �	 I2, then I2 ∈ {I1}, hence I1 = I2. We have shown that
2Mod is adequate for equality =.

3 Behavioral Specification Theories

We are ready to introduce what we mean by a behavioral specification theory:
an expressive specification formalism with extra structure. This mainly sums up
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and clarifies ideas already present in [4,22], but we make a connection between
specification theories and characteristic formulae which is new. Specifically, we
will see that a central ingredient in a specification theory is a function χ which
maps models to their characteristic formulae.

Definition 2. A (behavioral) specification theory for Mod is a specification for-
malism (Spec, |=) for Mod together with a mapping χ : Mod → Spec and a pre-
order ≤ on Spec, called modal refinement, subject to the following conditions:

– for every I ∈ Mod, χ(I) is a characteristic formula for I;
– for all I ∈ Mod and all S ∈ Spec, I |= S iff χ(I) ≤ S.

The equivalence relation ≡ = ≤ ∩ ≥ on Spec is called modal equivalence. Note
that specification theories are indeed expressive; also, |= is fully determined by ≤.

Remark 3. In a categorical sense, the function χ : Mod → Spec is a section of the
Galois connection �·� : 2Spec � 2Mod : Th. Indeed, we have χ(I) ∈ Th(I) for all
I ∈ Mod and I ′ �	 I for all I ′ ∈ �χ(I)�, and these properties are characterizing
for χ.

We sum up a few consequences of the definition: modal refinement (equiva-
lence) implies semantic refinement (equivalence), and on characteristic formulae,
all refinements and equivalences collapse.

Proposition 4. Let (Spec, χ,≤) be a specification theory for Mod.

1. For all S1,S2 ∈ Spec, S1 ≤ S2 implies S1 � S2 and S1 ≡ S2 implies S1 � S2.
2. For all I1, I2 ∈ Mod, the following are equivalent: χ(I1) ≤ χ(I2), χ(I2) ≤

χ(I1), χ(I1) � χ(I2), χ(I2) � χ(I1), I1 �	 I2.

Proof. The first claim follows from transitivity of ≤: if I ∈ �S1�, then χ(I) ≤
S1 ≤ S2, hence χ(I) ≤ S2, thus I ∈ �S2�.

For the second claim, let I1, I2 ∈ Mod.

– If χ(I1) ≤ χ(I2), then χ(I1) � χ(I2) by the first part.
– If χ(I1) � χ(I2), then �χ(I1)� ⊆ �χ(I2)�. But I1 ∈ �χ(I1)�, hence I1 ∈

�χ(I2)�, which, as χ(I2) is characteristic, implies I1 �	 I2. Also, I1 ∈ �χ(I2)�
implies χ(I1) ≤ χ(I2).

– Assume I1 �	 I2 and let I ∈ �χ(I1)�. Then I �	 I1, hence I �	 I2, which
implies I ∈ �χ(I2)�. We have shown that χ(I1) � χ(I2).

We have shown that χ(I1) ≤ χ(I2) iff χ(I1) � χ(I2) iff I1 �	 I2, and reversing
the roles of I1 and I2 gives the other equivalences. ��

The second part of the proposition means that the mapping χ : Mod → Spec
is an embedding up to equivalence: for all I1, I2 ∈ Mod, I1 �	 I2 iff χ(I1) ≡ χ(I2)
iff χ(I1) � χ(I2). Because of this, most work in specification theories identifies
models I with their characteristic formulae χ(I); for reasons of clarity, we will
not make this identification here.

We finish this section with a lemma which shows that the property of χ(I)
being characteristic formulae follows when ≤ is symmetric on models.
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Lemma 5. Let Spec be a set, χ : Mod → Spec a mapping and ≤ ⊆ Spec×Spec a
preorder. If the restriction of ≤ to the image of χ is symmetric, then (Spec, χ,≤)
is a specification theory for Mod.

Example. For our other example, Spec = 2Mod, we can let χ(I) = {I} and
≤ = ⊆. Then I ∈ S iff {I} ⊆ S, i.e. I |= S iff χ(I) ≤ S. This shows that
(2Mod, χ,⊆) is a specification theory for Mod (which is adequate and expressive
for equality).

4 Disjunctive Modal Transition Systems

We proceed to recall disjunctive modal transition systems and how these can
serve as a specification theory for bisimilarity. The material in this section is
well-known, but our definitions from the previous sections allow for much more
succinctness, for example in Proposition 6 below.

From now on, Mod will be the set LTS of finite labeled transition systems,
i.e. tuples (S, s0, T ) consisting of a finite set of states S, an initial state s0 ∈ S,
and transitions T ⊆ S × Σ × S labeled with symbols from some fixed finite
alphabet Σ.

Recall [25,26] that two LTS (S1, s
0
1, T1) and (S2, s

0
2, T2) are bisimilar if there

exists a relation R ⊆ S1 × S2 such that (s0
1, s

0
2) ∈ R and for all (s1, s2) ∈ R,

– for all (s1, a, t1) ∈ T1, there is (s2, a, t2) ∈ T2 with (t1, t2) ∈ R,
– for all (s2, a, t2) ∈ T2, there is (s1, a, t1) ∈ T1 with (t1, t2) ∈ R.

A disjunctive modal transition system (DMTS) [24] is a tuple D =
(S, S0, ���,−→) consisting of finite sets S ⊇ S0 of states and initial states, a
may-transition relation ��� ⊆ S ×Σ ×S, and a disjunctive must-transition rela-
tion −→ ⊆ S × 2Σ×S . It is assumed that for all (s,N) ∈ −→ and all (a, t) ∈ N ,
(s, a, t) ∈ ���. Note that we permit several (or no) initial states, in contrast
to [24]. The set of DMTS is denoted DMTS.

As customary, we write s
a��� t instead of (s, a, t) ∈ ��� and s −→ N instead

of (s,N) ∈ −→. The intuition is that may-transitions s
a��� t specify which

transitions are permitted in an implementation, whereas a must-transition s −→
N stipulates a disjunctive requirement: at least one of the choices (a, t) ∈ N has
to be implemented.

A modal refinement [24] of two DMTS D1 = (S1, S
0
1 , ���1,−→1), D2 =

(S2, S
0
2 , ���2,−→2) is a relation R ⊆ S1 ×S2 for which it holds of all (s1, s2) ∈ R

that

– ∀s1
a���1 t1 : ∃s2

a���2 t2 : (t1, t2) ∈ R;
– ∀s2 −→2 N2 : ∃s1 −→1 N1 : ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 : (t1, t2) ∈ R;

and such that for all s0
1 ∈ S0

1 , there exists s0
2 ∈ S0

2 for which (s0
1, s

0
2) ∈ R. Let

≤ ⊆ DMTS×DMTS be the relation defined by D1 ≤ D2 iff there exists a modal
refinement as above (a witness for D1 ≤ D2). Clearly, ≤ is a preorder.
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LTS are embedded into DMTS as follows. For an LTS I = (S, s0, T ), let
χ(I) = (S, {s0}, ���,−→) be the DMTS with ��� = T and −→ = {(s, {(a, t)}) |
(s, a, t) ∈ T}. The following proposition reformulates well-known facts about
DMTS and modal refinement.

Proposition 6. (DMTS, χ,≤) is a specification theory for LTS adequate for
bisimilarity.

Proof. In lieu of Lemma 5, we show that ≤ is bisimilarity, hence symmet-
ric, on the image of χ. Let I1, I2 ∈ LTS and assume χ(I1) ≤ χ(I2). Write
I1 = (S1, s

0
1, T1), I2 = (S2, s

0
2, T2), χ(I1) = (S1, {s0

1}, ���1,−→1), and χ(I2) =
(S2, {s0

2}, ���2,−→2).
We have a relation R ⊆ S1×S2 such that (s0

1, s
0
2) ∈ R and for all (s1, s2) ∈ R,

∀s1
a���1 t1 : ∃s2

a���2 t2 : (t1, t2) ∈ R and ∀s2 −→2 N2 : ∃s1 −→1 N1 :
∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 : (t1, t2) ∈ R. Let (s1, s2) ∈ R. We show that R is a
bisimulation.

Let (s1, a, t1) ∈ T1. Then s1
a���1 t1, so that we have a transition s2

a���2 t2
with (t1, t2) ∈ R. By definition of χ(I1), (s2, a, t2) ∈ T2.

Let (s2, a, t2) ∈ T2. Then s2 −→2 N2 = {(a, t2)}, hence there is s1 −→1 N1

such that ∀(a, t1) ∈ N1 : ∃(a, t′2) ∈ N2 : (t1, t′2) ∈ R. But then t′2 = t2, and by
definition of χ(I2), N1 = {(a, t1)} must be a one-element set, hence (s1, a, t1) ∈
T1 and (t1, t2) ∈ R.

We have shown that χ(I1) ≤ χ(I2) implies that I1 and I2 are bisimilar; the
proof of the other direction is similar. ��

5 A Specification Theory for Simulation Equivalence

We want to construct specification theories for other interesting relations in
the linear-time–branching-time spectrum [31]. Given Proposition 1 and the fact
that specification theories are expressive, we know that it is futile to look for
specification theories for preorders in the spectrum. What we can do, however,
is find specification theories for the equivalences in the spectrum. To warm up,
we start out by a specification theory for simulation equivalence.

Recall [20] that a simulation of LTS (S1, s
0
1, T1), (S2, s

0
2, T2) is a relation

R ⊆ S1 × S2 such that (s0
1, s

0
2) ∈ R and for all (s1, s2) ∈ R,

– for all (s1, a, t1) ∈ T1, there is (s2, a, t2) ∈ T2 with (t1, t2) ∈ R.

LTS (S1, s
0
1, T1) and (S2, s

0
2, T2) are said to be simulation equivalent if there exist

a simulation R1 ⊆ S1 × S2 and a simulation R2 ⊆ S2 × S1.

Definition 7. Let D1 = (S1, S
0
1 , ���1,−→1),D2 = (S2, S

0
2 , ���2,−→2) ∈

DMTS. A simulation refinement consists of two relations R1, R2 ⊆ S1 × S2

such that

1. ∀s0
1 ∈ S0

1 : ∃s0
2 ∈ S0

2 : (s0
1, s

0
2) ∈ R1 and ∀s0

2 ∈ S0
2 : ∃s0

1 ∈ S0
1 : (s0

1, s
0
2) ∈ R2;

2. ∀(s1, s2) ∈ R1 : ∀s1
a���1 t1 : ∃s2

a���2 t2 : (t1, t2) ∈ R1;
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3. ∀(s1, s2) ∈ R2 : ∀s2 −→2 N2 : ∃s1 −→1 N1 : ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 :
(t1, t2) ∈ R2.

Intuitively, R1 is a simulation of may-transitions from D1 to D2, whereas
R2 is a simulation of disjunctive must-transitions from D2 to D1. Let ≤s ⊆
DMTS×DMTS be the relation defined by D1 ≤s D2 iff there exists a simulation
refinement as above. Clearly, ≤s is a preorder. A direct proof of the following
theorem, similar to the one of Proposition 6, is given in [16], but it also follows
from Theorem 12.

Theorem 8. (DMTS, χ,≤s) forms a specification theory for LTS adequate for
simulation equivalence.

6 Specification Theories for Branching Equivalences

We proceed to generalize the work in the preceding section and develop DMTS-
based specification theories for all branching equivalences in the linear-time–
branching-time spectrum. Examples of such branching equivalences include the
bisimilarity and simulation equivalence which we have already seen, but also
ready simulation equivalence [23] and nested simulation equivalence [2,17] are
important. We will treat the linear part of the spectrum, which includes rela-
tions such as trace equivalence [19], impossible-futures equivalence [33] or failure
equivalence [9–11,27,32], in the next section.

We start by laying out a scheme which systematically covers all branching
relations in the spectrum.

Definition 9. Let k ∈ N ∪ {∞} and I1 = (S1, s
0
1, T1), I2 = (S2, s

0
2, T2) ∈ LTS.

A branching k-switching relation family from I1 to I2 consists of relations
R0, . . . , Rk ⊆ S1 × S2 such that (s0

1, s
0
2) ∈ R0 and

– for all even j ∈ {0, . . . , k} and (s1, s2) ∈ Rj:
• ∀(s1, a, t1) ∈ T1 : ∃(s2, a, t2) ∈ T2 : (t1, t2) ∈ Rj;
• if j < k, then ∀(s2, a, t2) ∈ T2 : ∃(s1, a, t1) ∈ T1 : (t1, t2) ∈ Rj+1;

– for all odd j ∈ {0, . . . , k} and (s1, s2) ∈ Rj:
• ∀(s2, a, t2) ∈ T2 : ∃(s1, a, t1) ∈ T1 : (t1, t2) ∈ Rj;
• if j < k, then ∀(s1, a, t1) ∈ T1 : ∃(s2, a, t2) ∈ T2 : (t1, t2) ∈ Rj+1.

Clearly, a simulation is the same as a branching 0-switching relation family.
Also, a branching 1-switching relation family is a nested simulation: the initial
states are related in R0; any transition in I1 from a pair (s1, s2) ∈ R0 has to be
matched recursively in I2; and at any point in time, the sense of the matching
can switch, in that now transitions in I2 from a pair (s1, s2) ∈ R1 have to be
matched recursively by transitions in I1. In general, a branching k-switching
relation family is a k-nested simulation, see also [17, Definition 8.5.2] which is
similar to ours. A branching ∞-switching relation family is a bisimulation: any
transition in I1 has to be matched recursively by one in I2 and vice versa. We
refer to [15] for more motivation.
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Definition 10. Let k ∈ N ∪ {∞} and I1 = (S1, s
0
1, T1), I2 = (S2, s

0
2, T2) ∈ LTS.

A branching k-ready relation family from I1 to I2 is a branching k-switching
relation family R0, . . . , Rk ⊆ S1 × S2 with the extra property that for all
(s1, s2) ∈ Rk:

– if k is even, then ∀(s2, a, t2) ∈ T2 : ∃(s1, a, t1) ∈ T1;
– if k is odd, then ∀(s1, a, t1) ∈ T1 : ∃(s2, a, t2) ∈ T2.

Hence a branching 0-ready relation family is the same as a ready simulation:
any transition in I1 has to be matched recursively by one in I2; and at any
point in time, precisely the same actions have to be available in the two states.
A branching 1-ready relation family would be a nested ready simulation, and
so on. Branching k-switching and k-ready relation families cover all branching
relations in the linear-time–branching-time spectrum.

Because of Proposition 1, we are only interested in equivalences. For k ∈
N ∪ {∞} and I1, I2 ∈ LTS, we write I1 ∼k I2 if there exist a branching
k-switching relation family from I1 to I2 and another from I2 to I1. We write
I1 ∼r

k I2 if there exist a branching k-ready relation family from I1 to I2 and
another from I2 to I1. Then ∼0 is simulation equivalence, ∼1 is nested simulation
equivalence, ∼∞ is bisimilarity, ∼r

0 is ready simulation equivalence, etc.
We proceed to devise specification theories for LTS which are adequate for ∼k

and ∼r
k.

Definition 11. Let k ∈ N ∪ {∞} and D1 = (S1, S
0
1 , ���1,−→1),D2 = (S2, S

0
2 ,

���2,−→2) ∈ DMTS. A branching k-switching relation family from D1 to D2

consists of relations R0
1, . . . , R

k
1 , R0

2, . . . , R
k
2 ⊆ S1 × S2 such that

– ∀s0
1 ∈ S0

1 : ∃s0
2 ∈ S0

2 : (s0
1, s

0
2) ∈ R0

1 and ∀s0
2 ∈ S0

2 : ∃s0
1 ∈ S0

1 : (s0
1, s

0
2) ∈ R0

2;
– for all even j ∈ {0, . . . , k} and (s1, s2) ∈ Rj

1:
• ∀s1

a���1 t1 : ∃s2
a���2 t2 : (t1, t2) ∈ Rj

1;
• if j < k, then ∀s2 −→2 N2 : ∃s1 −→1 N1 : ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 :

(t1, t2) ∈ Rj+1
1 ;

– for all odd j ∈ {0, . . . , k} and (s1, s2) ∈ Rj
1:

• ∀s2 −→2 N2 : ∃s1 −→1 N1 : ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 : (t1, t2) ∈ Rj
1;

• if j < k, then ∀s1
a���1 t1 : ∃s2

a���2 t2 : (t1, t2) ∈ Rj+1
1 ;

– for all even j ∈ {0, . . . , k} and (s1, s2) ∈ Rj
2:

• ∀s2 −→2 N2 : ∃s1 −→1 N1 : ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 : (t1, t2) ∈ Rj
2;

• if j < k, then ∀s1
a���1 t1 : ∃s2

a���2 t2 : (t1, t2) ∈ Rj+1
2 .

– for all odd j ∈ {0, . . . , k} and (s1, s2) ∈ Rj
2:

• ∀s1
a���1 t1 : ∃s2

a���2 t2 : (t1, t2) ∈ Rj
2;

• if j < k, then ∀s2 −→2 N2 : ∃s1 −→1 N1 : ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 :
(t1, t2) ∈ Rj+1

2 ;

A branching k-ready relation family from D1 to D2 is a branching k-switching
relation family as above with the extra property that if k is even, then
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– ∀(s1, s2) ∈ Rk
1 : ∀s2 −→2 N2 : ∃s1 −→1 N1 : ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2;

– ∀(s1, s2) ∈ Rk
2 : ∀s1

a���1 t1 : ∃s2
a���2 t2;

and if k is odd, then

– ∀(s1, s2) ∈ Rk
1 : ∀s1

a���1 t1 : ∃s2
a���2 t2;

– ∀(s1, s2) ∈ Rk
2 : ∀s2 −→2 N2 : ∃s1 −→1 N1 : ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2.

For k ∈ N ∪ {∞} and D1,D2 ∈ DMTS, we write D1 ≤k D2 if there exist
a branching k-switching relation family from D1 to D2. We write D1 ≤r

k D2 if
there exist a branching k-ready relation family from D1 to D2. Note that ≤0 is
the relation ≤s from the preceding section.

Theorem 12. For any k ∈ N ∪ {∞}, (DMTS, χ,≤k) is a specification theory
for LTS adequate for ∼k, and (DMTS, χ,≤r

k) is a specification theory for LTS
adequate for ∼r

k.

Remark 13. There is a setting of generalized simulation games, based on Stir-
ling’s bisimulation games [30], which generalizes the above constructions and
gives them a natural context. We have developed these in a quantitative setting
in [15], and we provide an exposition of the approach in [16]. Generalized simu-
lation games can be lifted to games on DMTS which can be used to define the
relations of Definition 11, see again [16].

7 Specification Theories for Linear Equivalences

We develop a scheme similar to the one of the previous section to cover all linear
relations in the linear-time–branching-time spectrum. For I = (S, s0, T ) ∈ LTS,
we let T ∗ ⊆ S × Σ∗ × S be the reflexive, transitive closure of T ; a recursive
definition is as follows:

– (s, ε, s) ∈ T ∗ for all s ∈ S;
– for all (s, τ, t) ∈ T ∗ and (t, a, u) ∈ T , also (s, τ.a, u) ∈ T ∗.

Definition 14. Let k ∈ N ∪ {∞} and I1 = (S1, s
0
1, T1), I2 = (S2, s

0
2, T2) ∈

LTS. A linear k-switching relation family from I1 to I2 consists of relations
R0, . . . , Rk ⊆ S1 × S2 such that (s0

1, s
0
2) ∈ R0 and

– for all even j ∈ {0, . . . , k} and (s1, s2) ∈ Rj:
• ∀(s1, τ, t1) ∈ T ∗

1 : ∃(s2, τ, t2) ∈ T ∗
2 ;

• if j < k, then ∀(s1, τ, t1) ∈ T ∗
1 : ∃(s2, τ, t2) ∈ T ∗

2 : (t1, t2) ∈ Rj+1;
– for all odd j ∈ {0, . . . , k} and (s1, s2) ∈ Rj:

• ∀(s2, τ, t2) ∈ T ∗
2 : ∃(s1, τ, t1) ∈ T ∗

1 ;
• if j < k, then ∀(s2, τ, t2) ∈ T ∗

2 : ∃(s1, τ, t1) ∈ T ∗
1 : (t1, t2) ∈ Rj+1;

Hence a linear 0-switching relation family is a trace inclusion, and a linear
1-switching relation family is a impossible-futures inclusion: any trace in I1 has
to be matched by a trace in I2, and then any trace from the end of the second
trace has to be matched by one from the end of the first trace.
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Definition 15. Let k ∈ N ∪ {∞} and I1 = (S1, s
0
1, T1), I2 = (S2, s

0
2, T2) ∈ LTS.

A linear k-ready relation family from I1 to I2 is a linear k-switching relation
family R0, . . . , Rk ⊆ S1 × S2 with the extra property that for all (s1, s2) ∈ Rk:

– if k is even, then ∀(s1, τ, t1) ∈ T ∗
1 : ∃(s2, τ, t2) ∈ T ∗

2 : ∀(t2, a, u2) ∈ T2 :
∃(t1, a, u1) ∈ T1;

– if k is odd, then ∀(s2, τ, t2) ∈ T ∗
2 : ∃(s1, τ, t1) ∈ T ∗

1 : ∀(t1, a, u1) ∈ T1 :
∃(t2, a, u2) ∈ T2.

Thus a linear 0-ready relation family is a failure inclusion: any trace in I1

has to be matched by a trace in I2 such that there is an inclusion of failure sets
of non-available actions. For k ∈ N ∪ {∞} and I1, I2 ∈ LTS, we write I1 ≈k I2

if there exist a branching k-switching relation family from I1 to I2 and another
from I2 to I1. We write I1 ≈r

k I2 if there exist a branching k-ready relation
family from I1 to I2 and another from I2 to I1.

For D = (S, S0, ���,−→) ∈ DMTS, we define ���∗,−→∗ ⊆ S × Σ∗ × S recur-
sively as follows:

– s
ε���∗s and s

ε−→∗s for all s ∈ S;
– for all s

τ���∗ t and t
a��� u, also s

τ.a���∗u;
– for all s

τ−→∗ t, t −→ N , and (a, u) ∈ N , also s
τ.a−→∗u.

Definition 16. Let k ∈ N ∪ {∞} and D1 = (S1, S
0
1 , ���1,−→1),D2 = (S2, S

0
2 ,

���2,−→2) ∈ DMTS. A linear k-switching relation family from D1 to D2 consists
of relations R0

1, . . . , R
k
1 , R0

2, . . . , R
k
2 ⊆ S1 × S2 such that

– ∀s0
1 ∈ S0

1 : ∃s0
2 ∈ S0

2 : (s0
1, s

0
2) ∈ R0

1 and ∀s0
2 ∈ S0

2 : ∃s0
1 ∈ S0

1 : (s0
1, s

0
2) ∈ R0

2;
– for all even j ∈ {0, . . . , k} and (s1, s2) ∈ Rj

1:
• ∀s1

τ���∗1 t1 : ∃s2
τ���∗2 t2;

• if j < k, then ∀s1
τ���∗1 t1 : ∃s2

τ���∗2 t2 : (t1, t2) ∈ Rj+1
1 ;

– for all odd j ∈ {0, . . . , k} and (s1, s2) ∈ Rj
1:

• ∀s2
τ−→∗

2 t2 : ∃s1
τ−→∗

1 t1;
• if j < k, then ∀s2

τ−→∗
2 t2 : ∃s1

τ−→∗
1 t1 : (t1, t2) ∈ Rj+1

1 ;
– for all even j ∈ {0, . . . , k} and (s1, s2) ∈ Rj

2:
• ∀s2

τ−→∗
2 t2 : ∃s1

τ−→∗
1 t1;

• if j < k, then ∀s2
τ−→∗

2 t2 : ∃s1
τ−→∗

1 t1 : (t1, t2) ∈ Rj+1
1 ;

– for all odd j ∈ {0, . . . , k} and (s1, s2) ∈ Rj
2:

• ∀s1
τ���∗1 t1 : ∃s2

τ���∗2 t2;
• if j < k, then ∀s1

τ���∗1 t1 : ∃s2
τ���∗2 t2 : (t1, t2) ∈ Rj+1

2 .

A linear k-ready relation family from D1 to D2 is a linear k-switching relation
family as above with the extra property that if k is even, then

– ∀(s1, s2) ∈ Rk
1 : ∀s1

τ���∗1 t1 : ∃s2
τ���∗2 t2 : ∀t2 −→2 N2 : ∃t1 −→1 N1 :

∀(a, u1) ∈ N1 : ∃(a, u2) ∈ N2;
– ∀(s1, s2) ∈ Rk

2 : ∀s2
τ−→∗

2 t2 : ∃s1
τ−→∗

1 t1 : ∀t1
a���1 u1 : ∃t2

a���2 u2;
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and if k is odd, then

– ∀(s1, s2) ∈ Rk
1 : ∀s2

τ−→∗
2 t2 : ∃s1

τ−→∗
1 t1 : ∀t1

a���1 u1 : ∃t2
a���2 u2;

– ∀(s1, s2) ∈ Rk
2 : ∀s1

τ���∗1 t1 : ∃s2
τ���∗2 t2 : ∀t2 −→2 N2 : ∃t1 −→1 N1 :

∀(a, u1) ∈ N1 : ∃(a, u2) ∈ N2;

For k ∈ N ∪ {∞} and D1,D2 ∈ DMTS, we write D1 �k D2 if there exists a
linear k-switching relation family from D1 to D2 and D1 �r

k D2 if there exists a
linear k-ready relation family from D1 to D2.

Theorem 17. For any k ∈ N ∪ {∞}, (DMTS, χ,�k) is a specification theory
for LTS adequate for ≈k, and (DMTS, χ,�r

k) is a specification theory for LTS
adequate for ≈r

k.

Remark 18. In the setting of generalized simulation games, cf. Remark 13, the
linear relations can be characterized by introducing a notion of blind strategy.
This gives a correspondence between linear and branching relations which splits
the linear-time–branching-time spectrum in two halves: trace inclusion corre-
sponds to simulation; failure inclusion corresponds to ready simulation, etc. We
refer to [15,16] for details. Whether a similar notion of blindness can yield the
linear relations of Definition 16 is open.

8 Conclusion

We have in this paper extracted a reasonable and general notion of (behavioral)
specification theory, based on previous work by a number of authors on concrete
specification theories in different contexts and on the well-established notions of
characteristic formulae, adequacy and expressivity.

Using this general concept of specification theory, we have introduced new
concrete specification theories, based on disjunctive modal transition systems,
for most equivalences in van Glabbeek’s linear-time–branching-time spectrum.
Previously, only specification theories for bisimilarity have been available, and
recent work by Vogler et al. calls for work on specification theories for failure
equivalence. Both failure equivalence and bisimilarity are part of the linear-
time–branching-time spectrum, as are nested simulation equivalence, impossible-
futures equivalence, and many other useful relations. We develop specification
theories for all branching equivalences in the spectrum, but we miss some of
the linear equivalences; notably, possible futures and ready trace equivalence are
missing. We believe that these can be captured by small modifications to our
setting, but leave this for future work.

Our new specification theories should be useful for example in the setting
of the failure semantics of Vogler et al., but also in many other contexts where
bisimilarity is not the right equivalence to consider. Using our own previous work
on the quantitative linear-time–branching-time spectrum and on quantitative
specification theories for bisimilarity, we also plan to lift our work presented
here to the quantitative setting.
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Specification theories for bisimilarity admit notions of conjunction and com-
position which enable compositional design and verification, and also the spec-
ification theories of Vogler et al. have (different) such notions. Using the game-
based setting in [16], we believe one can define general notions of conjunction
and composition defined by games played on the involved disjunctive modal
transition systems. This is left for future work.
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the specification of modal systems. Sci. Comput. Program. 78(12), 2468–2487
(2013)

2. Aceto, L., Fokkink, W., van Glabbeek, R.J., Ingólfsdóttir, A.: Nested semantics
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Abstract. The link-calculus is a model for concurrency that extends
the point-to-point communication discipline of Milner’s CCS with mul-
tiparty interactions. Links are used to build chains describing how infor-
mation flows among the different agents participating in a multiparty
interaction. The inherent non-determinism in deciding both, the num-
ber of participants in an interaction and how they synchronize, makes
it difficult to devise efficient verification techniques for this language. In
this paper we propose a symbolic semantics and a symbolic bisimulation
for the link-calculus which are more amenable to automating reason-
ing. Unlike the operational semantics of the link-calculus, the symbolic
semantics is finitely branching and it represents, compactly, a possibly
infinite number of transitions. We give necessary and sufficient condi-
tions to efficiently check the validity of symbolic configurations. We also
implement an interpreter based on this semantics and we show how to
use such implementation for verification.

1 Introduction

Distributed systems are evolving in complex ways and adequate modeling lan-
guages are needed to specify and verify properties such as resources consuming,
security, privacy, among several others. Multiparty interactions are commonplace
in this new era of distributed systems. Take for instance an on-line payment ser-
vice where a shopper contacts the vendor’s webpage and fills a form with its
credit card information. Then, the vendor’s webpage automatically contacts the
cashier’s service that completes the payment and sends the needed confirmations.
At a certain abstract level, all the previous operations can be seen as a unique
multi-party communication, as if one of the steps fails, the whole transaction is
canceled.

In order to have a more comprehensive representation of the system’s dynam-
ics, it would be convenient to consider multiparty interactions instead of binary
ones. In the literature there are multi-way synchronization calculi [6,10,11] that
seem to be adequate to be applied in different areas such as distributed com-
puting, web applications and Systems Biology. Here we shall focus on the link-
calculus [1,2] to model multiparty communications.
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 62–75, 2017.
DOI: 10.1007/978-3-319-51963-0 6
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The link-calculus is a new multiparty process algebra where the number of
participants in each synchronization is not fixed a priori. It extends the binary
communication discipline of CCS [9] with links, e.g., a\b, that can be thought
of as the forwarding of a message received on channel a (the input channel) to
another channel b (the output channel). It could be the case that a link exposes
only an output (τ\b), or an input (a\τ ); these particular actions are the ends of
a link chain.

A link chain allows for the synchronize of several entities. Each entity must
offer a link that have to match with an adjacent link offered by another entity.
For instance, if three processes offer, respectively, the links a\b,

b\c and c\d, they
can synchronize and produce the link chain a\b

b\c
c\d, where information flow from

a to d through b and c.
The multiparty synchronization mechanism of the link-calculus brings inter-

esting challenges for devising automatic reasoning tools. The main technical
problem is that the number of participants in an interaction is not known a
priori. Then, the operational semantics (SOS) must consider all the possible
synchronizations among the agents running in parallel. For instance, consider
two processes offering, respectively, the links a\b and b\a. They may synchronize
and produce the link chain a\b

b\a, but also b\a
a\b. They may also produce the

link chain a\�
b \b

�\a, where the free space �\� (called virtual link) can be used
by a third participant offering the proper link.

We propose a symbolic semantics which is more amenable for reasoning about
link processes. The semantics collects together all the possible synchronizations
that can be composed with a multiset of links (e.g., 〈a\b,

b \a〉 for the example
above). We thus abstract from the order of the links and we represent, compactly,
a possibly infinite number of transitions in the SOS. Moreover, unlike the SOS,
the proposed semantics is finitely branching (if guarded recursive definitions are
considered).

The presence of restricted names makes more interesting the definition of
symbolic configurations. In fact, internal (multiparty) synchronizations play an
important role in the definition of network bisimulation [1,2]. We give a symbolic
representation of transitions involving restricted names and we give efficient
procedures to check the validity of such configurations. Furthermore, we define a
symbolic bisimulation and we show that it is a congruence and it coincides with
network bisimulation.

Finally, we present a prototypical implementation of our semantics in Maude
(available at http://subsell.logic.at/links/). We illustrate the semantics and the
tool with the classical problem of the dining philosophers. We show that this
problem has a simple implementation in the link-calculus. Furthermore, we use
our tool to show that the model is deadlock free. We then contribute with a the-
oretical framework, that may help to better understand multiparty interactions,
and a tool to enact it.

Contributions and Plan of the Paper. Section 2 recalls the theory of the link-
calculus. In Sect. 3 we define our symbolic semantics and we give polynomial

http://subsell.logic.at/links/
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procedures to check whether a symbolic configuration is valid or not. We then
show that the symbolic semantics is sound and complete wrt the SOS. We define
a procedure to extract a symbolic configuration from a trace in the SOS and
we show that the resulting configuration is an upper bound for the symbolic
semantics. In Sect. 3.3 we define a symbolic bisimulation that coincides with
network bisimulation and has the property to be a congruence. In Sect. 3.4 we
present the implementation of simulation and verification techniques for the
link-calculus based on the symbolic semantics. Section 4 concludes the paper
and discusses related work. Due to space restrictions, auxiliary results and the
detailed proofs are given in the companion technical report of this paper available
at tool’s web page.

2 Background on Link-calculus

A link is a pair α\β where α, β ∈ C∪{ τ,� }. C denotes the set of channels, ranged
over by a, b, c, ...; τ is the silent action and � is a virtual action. Intuitively, a\b

is a prefix that executes an input on channel a and an output on b. The τ action
is used to represent a link where no interaction is required (on the left or on the
right) as in a\τ . A virtual link �\� represents a non specified interaction that
will be later completed. The link α\β is solid if α, β �= �, and it is virtual if
α, β = �. A link is valid if it is solid or virtual. For instance, �\�, a\a, τ\a, b\a

are valid links whereas �\a, τ\� are not.
Links can be combined in link chains that record the source and the target

sites of each hop of the interaction. Formally, a link chain is a non-empty finite
sequence s = �1...�n of valid links �i =αi \βi

such that:

1. for any i ∈ 1..n − 1,
{

βi, αi+1 ∈ C implies βi = αi+1

βi = τ iff αi+1 = τ

2. ∃i ∈ 1..n. �i �=� \�.

The first condition says that two adjacent solid links must match on their
adjacent sites. Moreover, the silent action τ can not be matched by a virtual
action �. This last condition is required since, as we shall see, a τ action can
be only matched with τ when processes synchronize on restricted channels. The
second condition says that a valid link must have at least one solid link. We shall
use V C to denote the set of valid chains and we write |s| to denote the length
of the chain s.

Some examples of valid link chains are: �\a
�\b

b\τ , a\�
b \c

�\d, and τ\a
a\τ . The

first chain represents an interaction where there is a pending synchronization
on the left of a\b; similarly, the second chain represents an interaction where
a third-party process must offer a link joining b and c (i.e., b\c). Finally, the
last chain is the result of a binary interaction between a process performing the
output τ\a and a process performing the input a\τ . Examples of non valid link
chains are: a\c

b\d, �\τ
�\a, and a\c

τ\d.
Processes in the link-calculus are built from the syntax

P,Q:: = 0 | �.P | P + Q | P |Q | (ν a)P | A
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where � is a solid link (i.e. � =α \β with α, β �= �) and A is a process
identifier for which we assume a (possibly recursive) definition A � P .

The nil process 0 does nothing. The process �.P first performs � and then
behaves as P . The non-deterministic process P +Q can either behave as P or Q.
Parallel composition is denoted as P | Q. The process (ν a)P behaves as P but
it cannot exhibit any unmatched action a. Finally, A behaves as P if A � P .

As usual, (ν a)P binds the occurrences of a in P . The sets of free and of bound
names of a process P are defined in the obvious way and denoted, respectively,
by fn(P ) and bn(P ). Processes are taken up to alpha-conversion of bound names.
We shall often omit a trailing 0, e.g. by writing a\b instead of a\b.0.

Operational Semantics. The operational semantics is given by the labeled tran-
sition system (P,L,−→) where states P are link-processes, labels L are valid
chains (i.e., L = V C) and the transition relation −→ is the minimal transition
relation generated by the rules in Fig. 1. In the following we explain the rules.

The presence of virtual links in a link chain suggests that an interaction is
not completed and it allows for more processes to synchronize by offering the
correct links. A process �.P can take part in any interaction where � can be
placed in an admissible position of a (larger) chain. Hence, in order to join in a
communication, �.P should suitably enlarge its link � to a link chain s including
� and some virtual links. Formally, Rule Act says that �.P

s−→ P for any link
chain s such that s �� � where �� is the least equivalence relation on valid link
chains closed under the following axioms:

s�\� �� s s1
�\�

�\�s2 �� s�
1 \�s2

�\�s �� s s1
α\�

a \a
�\βs2 �� s1

α\a
a\βs2

Note that the link τ\a (resp. a\τ ) can be only enlarged with virtual links on
the right (resp. left). Moreover, if s��τ\τ then s =τ \τ .

Rules Lsum, Lpar and Ide are standard. If P is able to exhibit a transition
to P ′ with label s, then P + Q

s−→ P ′ (Rule Lsum). Similarly for Q with Rule
Rsum omitted in Fig. 1. If P can exhibit a transition, it can also exhibit the same
transition when running in parallel with Q (Rules Lpar and Rpar). Finally, A
moves to P ′ if its body definition P can move to P ′ (Rule Ide).

The synchronization mechanism (Rule Com) works by merging two link
chains, say s and s′. We require that the chains are of the same length (i.e.,
|s| = |s′|) and that every solid link of s must correspond to a virtual link in s′

in the same position, and vice versa. Then we make the two link chains collapse
in one link chain where some of the virtual links have been substituted with the
corresponding solid links. More precisely, let α, β be actions. We define

α • β = α if β = � α • β = β if α = � α • β = ⊥ otherwise Let
l1 =α1 \β1

and l2 =α2 \β2
be valid links and α1 • α2 = xα, β1 • β2 = xβ . If

xα, xβ �= ⊥, then l1 • l2 =xα \xβ
. Otherwise, l1 • l2 = ⊥. Let s = �1...�n and

s′ = �′
1...�

′
n be valid chains with �i =αi \βi

and �′
i =α′

i \β′
i
. If li • l′i �= ⊥ for all

i ∈ 1..n and (l1 • l′1)...(ln • ln) is a valid chain, then s • s′ = (l1 • l′1)...(ln • ln).
Otherwise, s • s′ = ⊥.
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s
s−→ P

Act
P

s−→ P

P + Q
s−→ P

Lsum
P

s−→ P

P | Q
s−→ P | Q

Lpar
P

s−→ P A P

A
s−→ P

Ide

P
s−→ P

(νa)P
(νa)s−−−→ (νa)P

Res
P

s−→ P Q
s−→ Q

P | Q
s•s−−→ P | Q

Com

Fig. 1. SOS semantic rules. Rules Rsum and Rpar are omitted. All the rules have,
as a side condition, that the link chains in the conclusion and premises are valid (i.e.,
different from ⊥).

As an example, the chains �\�
�\a

�\b and c\�
a \� cannot merge, as they have

different length; a\�
b \� and �\c

�\d cannot merge since a\c
b\d is not a valid chain;

a chain s cannot merge with itself; finally, c\�
a \b

�\d and �\a
�\�

b \� merges into
c\a

a\b
b\d.

We note that, contrary to CCS, the Rule Com can appear several times in
the proof tree of a transition since s • s′ can still contain virtual links (if s and
s′ have a virtual link in the same position). Hence, s • s′ can possibly be merged
with other link chains. However, when s • s′ is solid, no further synchronization
is possible.

As usual in process calculi, names are restricted in order to force an interac-
tion. Let α be an action and a ∈ C. Then,

(ν a)α =
{

τ if α = a
α otherwise and (ν a)α\β =((ν a)α) \((ν a)β)

Let s = �1...�n, with �i =αi \βi
and i ∈ 1..n. We say that a is matched in s if:

1. a �= α1, βn (i.e., a cannot occur in the extremes of the chain), and
2. for any i ∈ 1..n − 1, either βi = αi+1 = a or βi, αi+1 �= a.

Otherwise, we say that a is unmatched (or pending) in s. We define,

(ν a)s =
{

((ν a)�1) . . . ((ν a)�n) if a is matched in s
⊥ otherwise

As an example, all the names are matched in the valid link chain τ\τ . Instead,
neither a nor b are matched in a\a

a\b. In s = τ\a
a\�

b \�, the name a can be
restricted and (νa)s =τ \τ

τ\�
b \�; whereas (νb)s is undefined since b is pending

in s.
The Rule Res can serve different aims: (i) floating, if a does not occur in s,

then (ν a)s = s and (ν a)P s−→ (ν a)P ′; (ii) hiding, if a is matched in s, then all
occurrences of a in s are replaced with τ in (ν a)s; (iii) blocking, if a is pending
in s (i.e., there is some unmatched occurrence of a in s), then (ν a)s = ⊥ and
the rule cannot be applied.
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3 Symbolic Semantics

As mentioned in the introduction, the system a\b.0 | b\a.0 can synchronize in
different ways, i.e., we can use the rule Com to observe different link chains
such as a\b

b\a, b\a
a\b,

�\a
�\�

b \b
�\a, etc. In this section we propose a novel sym-

bolic semantics that represents, in a unique configuration, all these link-chains.
Hence, the non-determinism of the operational semantics (due to Com and Act)
is completely replaced with a deterministic transition collecting all the possi-
ble interactions the process may engage. We also give sufficient and necessary
conditions for testing the validity on configuration.

3.1 Symbolic Configurations

Definition 1 (Link configurations). Let L be a multiset of solid links. We
define the (symbolic) configuration 〈L〉 as the set

〈L〉 = {s ∈ V C | there exists si��li for all li ∈ L s.t. s = s1 • s2 • · · · • sn}

We say that 〈L〉 is a valid configuration if the set above is not empty.

Intuitively, the configuration 〈L〉 accumulates the links that can be merged
in an application of the rule Com. As an example, the configuration 〈a\b〉 rep-
resents, for instance, a\b (and the process does not interact any more), �\a

�\b

where there are no further interaction on b and a is still pending, �\a
�\�

b \�
where both a and b are pending. The configuration 〈a\b,

b \a〉 represents, e.g., the
following chains: a\b

b\a, b\a
a\b,

b\�
a \�

�\a
�\b,

�\b
�\a

a\�
b \�, etc. Finally, the config-

uration 〈τ\a,a \τ 〉 contains the chains τ\a
a\τ , τ\�

a \a
�\τ , τ\�

a \�
�\a

�\τ , etc. (recall
that matched τ -actions can be only introduced by the restriction operator).

Next proposition gives us an algorithm, linear on the number of elements in
L, to check whether 〈L〉 is valid or not.

Proposition 1 (Valid Configurations). Let L be a non-empty multiset of
solid links. Then, 〈L〉 is valid iff τ appears at most once in L as input and at
most once as output.

Definition 2 (Hiding). Let γ be a configuration and a ∈ C. We define the
configuration

(νa)γ = {s ∈ V C | there exists s′ ∈ γ and s = (νa)s′}

We say that (νa)γ is valid if the set above is not empty.

If γ is not valid, by definition, (νa)γ is not valid. The other direction is not
necessarily true. For instance, L1 = 〈a\a〉 and L2 = 〈τ\a,a \τ ,b \c〉 are valid
configurations but neither (νa)〈L1〉 nor (νa)〈L2〉 are valid. In the first case,
observe that (νa)(s) is not valid for any s��a\a (since a cannot appear in the
extremes and it must be matched). In the second case, if s ∈ 〈L2〉, then s must
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be of the shape τ\�
a \�...�\b

�\�
c \�...�\a

�\τ . Since a is not matched, (νa)s = ⊥
and (νa)〈L2〉 is empty.

We shall use γ, γ′, ψ, ψ′ to denote configurations (with and without restricted
names). Given a multiset L of solid links, we shall use names(L) to denote the
set of names occurring in the links in L. Let γ = (νa1)...(νan)〈L〉. We define
the free names of γ as fn(γ) = names(L)\{a1, . . . , an} and its bound names as
bn(γ) = {a1, . . . , an}. Given a sequence of distinct names a = a1, ...., an, we shall
use (νa1, ..., an)〈L〉 to denote the configuration (νa1)...(νan)〈L〉. If a is empty,
then we write 〈L〉 instead of (νa)〈L〉. Finally, we shall write γ ≡s γ′ when γ = γ′

(i.e., γ ⊆ γ′ and γ′ ⊆ γ).
As a direct consequence of the corresponding equivalences on chains [2], we

can show that (1) (νa)γ ≡s γ if a /∈ fn(γ) ; (2) (νa)(νb)γ ≡s (νb)(νa)γ; (3)
(νa)γ ≡s (νb)γ[b/a] is b /∈ names(γ) (α-conversion).

Now we give necessary and sufficient conditions for testing if a configuration
of the shape (νa)γ is valid or not. Such checking can be performed in linear time
on the number of links in the configuration γ.

Proposition 2 (Valid Configuration). Let γ = (νx)〈L〉 be a valid configura-
tion and a ∈ fn(γ). (νa)γ is valid iff the three conditions below hold:

1. Matched: a occurs the same number of times as input and as output in L.
2. Extremes: there exist two links α\β ,α

′ \β′ in L where α, β′ �= a.
3. Synchronizations: if both τ\a and a\τ occur in L, then either names(L) =

{a, τ} or there exist two links a\β ,β
′ \a in L s.t. β, β′ �∈ {a, τ}.

The following definition shows how to merge two valid configurations. This
definition will be useful to define the rule Com in the symbolic semantics.

Definition 3 (Merging). Let (νa1, ..., an)〈L〉 and (νb1, ...bm)〈L′〉 be two valid
configurations. By alpha conversion, we assume that the names a1, ..., an (resp.
b1, ..., bm) do not occur in L′ (resp. L). We define

(νa1, ..., an)〈L〉 • (νb1, ...bm)〈L′〉 = (νa1, ..., an, b1, ..., bm)〈L � L′〉
where � denotes multiset union.

It is easy to see that • is a commutative and associative (partial) operator.

3.2 Semantic Rules

The rules of the symbolic semantics are given in Fig. 2 and explained below.
We note that the equivalence relation �� relates two valid link chains when

they only differ on the number of virtual links. This relation is central to the
definition of configurations. In fact, it is easy to see that if s ∈ γ, then s′��s iff
s′ ∈ γ. Rule Acts builds a configuration containing only the solid link l. Then,
as we shall see, any move of the operational rule Act can be mimicked by Acts.

Rules Lsums, Lpars and Ides are self-explanatory and Rule Ress, as
expected, makes use of the restriction operator on configurations.
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P
γ

====⇒ P

P + Q
γ

====⇒ P
Lsums

P
γ

====⇒ P

P | Q
γ

====⇒ P | Q
Lpars

P
γ

====⇒ P A P

A
γ

====⇒ P
Ides

{
====⇒ P

Acts
P

γ
====⇒ P

(νa)P
(νa)γ

====⇒ (νa)P
Ress

P
γ

====⇒ P
γ

====⇒ Q

P | Q

γ

====⇒ P

Q

| Q
Comsγ•

Fig. 2. Symbolic semantics for the link-calculus. All the rules have, as a side condition,
that the configurations in the conclusion and premises are valid. Rules Rpars and
Rsums are omitted.

Rule Coms merges the symbolic configurations γ and γ′. Recall that the
merge operator simply computes the union (resp. multiset union) of the bounded
names (resp. links) in γ and γ′. Unlike the operational rule, Coms does not need
to know in advance the length of the chains to be merged. Instead, it only
checks whether γ • γ′ is valid (by using the algorithms in Propositions 1 and 2).
Moreover, from the definition of the merge operator, we can show that,

1. Composition: if s ∈ γ, s′ ∈ γ′ and s • s′ is defined then s • s′ ∈ γ • γ′.
2. Splitting: if w ∈ γ • γ′ then there exist s, s′ s.t. w = s • s′ and s ∈ γ and

s′ ∈ γ′.

Now we are ready to show the desired adequacy results.

Theorem 1 (Soundness). Let P be a process and assume that P
s−→ P ′.

Then, there exists γ s.t. P
γ

====⇒ P ′ and s ∈ γ.

Theorem 2 (Completeness). Let P be a process and assume that P
γ

====⇒
P ′. Then, for all s ∈ γ, P

s−→ P ′.

The above results can be easily extended to sequences of transitions. Given
a sequence of symbolic configurations Γ = γ1, ..., γn, we say that the sequence
of chains s1, ..., sn is an instance of Γ if si ∈ γi for all i ∈ 1..n.

Corollary 1 (Adequacy). Let P be a process. Then,

1. if P
s1−→ P1

s2−→ P2 · · · sn−→ Pn then there exists γ1, ..., γn s.t. P
γ1====⇒

P1 · · · γn====⇒ Pn and for all i ∈ 1..n, si ∈ γi.
2. if P

γ1====⇒ P1 · · · γn====⇒ Pn. Then, for all instance s1, ..., sn of γ1, ..., γn,
we have P1

s1−→ P2 · · · sn−→ Pn.

Extraction and Soundness. We can strength Theorem 1 and give an upper
bound to γ. If P

s−→ P ′, one may be tempted to think that such upper bound
is γ = solid(s) where solid(s) denotes the multiset of solid links in s. We note
that this does not work under the presence of restriction. For instance, s =
(νa)(τ\a

a\τ ) =τ \τ
τ\τ if a valid label for a transition P

s−→ P ′ but 〈τ\τ ,τ \τ 〉 is
not a valid configuration.

Next definition shows how to extract a valid configuration from a link chain,
that we later show to be a suitable over approximation of the symbolic semantics.
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Definition 4 (Extraction). Let s =x1 \x2
x′
1
\x′

2
· · ·xn \x′

n
be a valid chain and

α ∈ C be a name not occurring in s. We define ext(s) = (ν α)〈L〉 where L is
the multiset of solid links of s subject to the following substitutions:

∀ i ∈ 1 . . . n − 1, substitute x′
i and xi+1 with α if x′

i = xi+1 = τ .

For instance, if s =a \τ
τ\c

c\d then ext(s) = (νx)〈a\x,x \c,
c \d〉.

The ext(s) function satisfies the following properties: if s is a valid chain
without occurrences of matched τ ’s, then ext(s) ≡s 〈solid(s)〉; if |s| = 1, i.e.,
s = � for some solid link �, then ext(s) ≡ 〈�〉; for any valid chain s, s ∈ ext(s).
Moreover,

– If s • s′ is a valid chain then ext(s) • ext(s′) ⊆ ext(s • s′).
– If (νa)s be a valid chain. Then,

1. if ext(s) = (νβ)〈L〉 then ext((νa)s) ≡s (νβ)〈L[β/a]〉; and
2. (νa)ext(s) ⊆ ext((νa)s).

Theorem 3 (Soundness). Let P be a process and assume that P
s−→ P ′.

Then, there exists γ ⊆ ext(s) s.t. P
γ

====⇒ P ′.

We note that ext(s) over approximates the output of the symbolic
semantics since ext(s) identifies τ actions that may come from dif-
ferent synchronizations. For instance, consider the operational transition

(νa)(b\a|a\b) | (νc)(d\c|c\d)
s•s′
−→ 0 where

s =� \�
�\�

�\b
�\τ

τ\b s′ =d \τ
τ\�

d \�
�\�

�\� w = s • s′ =d \τ
τ\�

d \b
�\τ

τ\b

In the symbolic semantics we have (νa)(b\a|a\b) | (νc)(d\c|c\d)
γ•γ′

====⇒ 0 where

γ = (νa)〈b\a,a \b〉 γ′ = (νc)〈d\c,c \d〉 ψ = γ • γ′ = (ν a, c)〈b\a,a \b,d \c,c \d〉

Note that ext(w) = (νx)〈b\x,x \b,
d \x,x \d〉 and w′ =b \τ

τ\d
d\τ

τ\b ∈ ext(w). Note
also that w′ is not part of the operational semantics and w′ �∈ ψ.

Let γ = (νx)〈L〉 and a = {a1, ..., an} be a set of names s.t. x ∩ a = ∅. We
say that (νa)〈L′〉 is a ν-variant of γ if L′ is the least set satisfying:

– if α\β ∈ L, α, β /∈ x then α\β ∈ L′;
– if α\β ∈ L and α ∈ x, β /∈ x then a\β ∈ L′ for some a ∈ a;
– if α\β ∈ L and α /∈ x, β ∈ x then α\a ∈ L′ for some a ∈ a.
– if α\β ∈ L and α, β ∈ x then a\a′ ∈ L′ for some a, a′ ∈ a.

Intuitively, a ν-variant of γ may discriminate, using different local names, some
synchronizations in γ (take for instance a, c in ψ and x in ext(w) in the example
above).

Theorem 4 (Soundness). Let P be a process and assume that P
s−→ P ′.

Then, there exists a ν-variant γ of ext(s) s.t. P
γ

====⇒ P ′.
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3.3 Symbolic Bisimulation

In this section we show that network bisimulation, [1,2] coincides with the sym-
bolic bisimulation as defined below in Definition 7. Let us recall some definitions
from [1].

Let �� be the least equivalence relation over VC closed under the inference
rules:

s �� s′

s �� s′ s1
α\τ

τ\βs2 �� sα
1 \βs2

The relation �� allows us to enlarge/contract chains by adding/removing
matched τ actions (similar to �� for virtual actions). This means that ��
abstracts away also from internal (restricted) communications. A link chain is
essential if it is composed by alternating solid and virtual links, and has solid
links at its extremes. It is immediate to check that, by orienting the axioms of
�� and �� from left to right, we have a procedure to transform any link chain
s to a unique essential link chain s′ such that s �� s′. We write e(s) to denote
such unique representative.

Lemma 1 ([1]). For any link chains s, s′ we have s �� s′ iff e(s) = e(s′).

Definition 5. A network bisimulation [1] R is a binary relation over link
processes such that, if P R Q then:

– if P
s−→ P ′, then ∃ s′, Q′ such that e(s) = e(s′), Q

s′
−→ Q′, and P ′ R Q′;

– if Q
s−→ Q′, then ∃ s′, P ′ such that e(s) = e(s′), P

s′
−→ P ′, and P ′ R Q′.

We let ∼n denote the largest network bisimulation and we say that P is
network bisimilar to Q if P ∼n Q.

Theorem 5 (Congruence [1]). Network bisimilarity is a congruence.

Symbolic Bisimulation. Let s =a \τ
τ\a and s′ =a \a. We know that s��s′.

However, there is no a symbolic configuration γ such that s ∈ γ and also s′ ∈ γ.
On the other side, let γ = 〈a\a〉 and γ′ = (νb)〈a\b,

b \a〉. We know that γ �≡s γ′

but, if w ∈ γ and w′ ∈ γ′, it must be the case that w��w′.
Next definition introduces the relation �� on configurations.

Definition 6. Let �� be the least symmetric relation on valid configurations
s.t. γ��γ′ iff for all s ∈ γ there exists s′ ∈ γ′ s.t. s′��s.

Note that γ ≡s γ′ implies, of course, that γ��γ′. Moreover, it is easy to see
that �� is an equivalence relation.

Intuitively, if γ��γ′, then from γ we can build the same chains as in γ′ but
adding/removing τ synchronizations. For instance, let γ = (νx)〈a\x,x \b〉 and
γ′ = 〈a\b〉. If s ∈ γ (resp. s′ ∈ γ′) then s must be of the shape ...�\a

�\τ
τ\�

b \�...

(resp. s′ must be of the shape ...�\a
�\�

b \�...). Hence, γ��γ′.
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Definition 7 (Symbolic Bisimulation). A symbolic network bisimulation R
is a binary relation over link processes such that, if PRQ then:

– If P
γ

====⇒ P ′, then, there exists γ′��γ s.t. Q
γ′

====⇒ Q′ and P ′RQ′.

– If Q
γ

====⇒ Q′, then, there exists γ′��γ s.t. P
γ′

====⇒ P ′ and Q′RP ′.

We let ∼s be the largest symbolic network bisimulation and we say that P and
Q are bisimilar if P ∼s Q.

Testing whether γ��γ′, according to Definition 6, requires to check for every
sequence s ∈ γ the existence of s′ ∈ γ′ s.t. s′��s and vice versa. It turns out
that there is a more efficient procedure to decide γ��γ′ using the next definition
and lemma.

Definition 8 (Capabilities). Let γ = (νx)〈L〉 be a valid configuration. Let
a, b �∈ x. We say that [a·b] is a capability of γ, notation [a·b] ∈ γ, if a\b ∈ L or, it
is possible to use the links in L to form a chain of the shape a\x1

x1
\x2

· · ·xn−1 \xn

xn
\b

where x1, ..., xn ∈ x. We shall use cap(γ) to denote the multiset of capabilities
in γ.

Lemma 2. Let s ∈ γ. For all solid link a\b,
a\b ∈ e(s) iff [a · b] ∈ γ. Moreover,

let γ, γ′ be valid configurations. Then, γ��γ′ iff cap(γ) = cap(γ′).

Therefore, checking γ��γ′ can be done in polynomial time by extracting and
comparing the capabilities of the configurations.

Next theorem shows that network and symbolic bisimulations coincides.
Moreover, since network bisimulation is a congruence [1], so the symbolic bisim-
ulation.

Theorem 6. Let P and Q be processes. Then, P ∼n Q iff P ∼s Q.

Corollary 2. ∼s is a congruence.

3.4 Implementation

As we saw in the previous sections, the symbolic semantics allows for simple
mechanisms to generate traces and check whether a configuration is valid or not.
Moreover, it is finitely branching (if guarded recursive definitions are considered)
unlike the operational semantics. We have implemented the symbolic semantics
in Maude (http://maude.cs.illinois.edu) and it is available at http://subsell.logic.
at/links. In this section, relaying on the multiparty synchronization mechanism
of the link-calculus, we model the classical problem of dining philosophers. We
show how the semantics, and our tool, allow for the verification of such system.

The dining philosophers is a classical example introduced to study interac-
tions between independent and distributed entities that want to share resources.
The problem relates n philosopher sitting around a table, where each one has
its own dish, and they can only eat or think. When they, independently, decide

http://maude.cs.illinois.edu
http://subsell.logic.at/links
http://subsell.logic.at/links
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to eat, they need two forks. On the table, there is only one fork between two
dishes, i.e. exactly n forks.

A solution to this problem in a binary synchronization calculus such as CCS
leads to a deadlock exactly when all the philosophers take the fork at their
left at the same time [8]. Hence, the system reaches a state where no further
transition is possible. The multiparty synchronization mechanism of the link-
calculus allows us to overcome this problem. The idea is that, atomically, the
philosopher willing to eat has to synchronize with both, the fork on his right and
the one on his left. Then he can eat. The link-calculus model is:
(ν dw0, . . . , dwn−1, up0, . . . , upn−1)(Phil0 | · · · | Philn−1 | Fork0 | · · · |
Forkn−1) where processes Phili and Forki are defined as:

Phili � τ\thinki
.Phili +upi \up(i+1)modn

.PhilEati

PhilEati � τ\eati
.dwi\dw(i+1)modn

.Phili

Forki � τ\upi
.τ\dwi

.Forki + upi\τ .dwi\τ .Forki

Let us show a trace generated with our tool for the system with n = 2
philosophers:

(tau \ ’tk_1) --> (tau \ ’tk_0) --> (’up_0 \ ’up_1 ; ’up_1 \ tau ; tau \ ’up_0) -->
(tau \ ’eat_0) --> (tau \ ’tk_1) --> (’dw_0 \ ’dw_1 ; ’dw_1 \ tau ; tau \ ’dw_0) -->
(’up_0 \ tau ; ’up_1 \ ’up_0 ; tau \ ’up_1) --> (tau \ ’eat_1) --> (tau \ ’tk_0) -->
(’dw_0 \ tau ; ’dw_1 \ ’dw_0 ; tau \ ’dw_1)

In the first line, Phil1 thinks and then Phil0 thinks. Later, Phil0
grabs the two forks, as shown in the last configuration of the first line.
Such output represents the symbolic configuration (νup0, up1)〈L〉 where L =
{up0\up1

,up1 \τ ,τ \up0
}. This configuration is a three-party interaction involving

Phil0 and the two forks. Note that the chain (ν up0, up1)τ\up0
up0

\up1
up1

\τ =τ \τ
τ\τ

τ\τ

is the only chain that belongs to the configuration (due to the restriction on upi).
Hence, in one transition, we observe the atomic action of grabbing the two forks.
In the second line, we observe Phil0 eating, then Phil1 thinking again and, in
the end of the line, Phil0 releases the two forks with a multiparty synchroniza-
tion. The third and forth lines represent the transitions where Phil1 grabs the
forks, eats and then releases the forks.

Our tool can also compute the label transition system with all the reachable
states that, in the case of the dinning philosophers, is finite (note that this is not
always the case since the link-calculus is a conservative extension of CCS where
Turing Machines can be encoded [4]). The output of the tool and the resulting
graph can be found at the tool’s site. The transition system is deadlock-free, i.e.,
all the states have at least one transition. Moreover, using the search procedures
in Maude, we can verify that the system cannot reach a configuration containing
both τ\eat0

and τ\eat1
.

4 Concluding Remarks

We proposed a symbolic semantics and bisimulation for an open and multiparty
interaction process calculus. We gave efficient procedures to check whether a
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symbolic configuration is valid or not and proved adequate our semantics wrt
the operational semantics. We implemented also a tool based on this semantics to
simulate and verify systems modeled in the calculus. We are currently implement-
ing a procedure to check (symbolic) bisimulation in the link-calculus. We are
also planning to use the extraction procedure (ext(s)), that over approximates
the semantics, as basis for abstract debugging and analysis of link-calculus
specifications.

Related Work. Multiparty calculi with different synchronization mechanisms
have been proposed, e.g., in CSP [7], PEPA [6] and full Lotos [3]. These calculi
offer parallel operators that exhibit a set of action names (or channel names),
and all the parallel processes offering that action (or an input/output action
along that channel) can synchronize by executing it. In [11], a binary form of
input allows for a three-way communication. MultiCCS [4] is equipped with a
new form of prefix to execute atomic sequences of actions and the resulting par-
allel operator allows for multi-synchronizations. The multiparty calculus most
related to the link-calculus is in [10], where links are named and are distinct
from usual input/output actions: there is one sender and one receiver (the output
includes the final receiver name).

Symbolic semantics in processes calculi are used to represent compactly the
possibly infinitely many transitions a process may exhibit. For instance, [5] pro-
poses a symbolic semantics for the π-calculus to avoid the problem of considering
the possibly infinite number of values a process can send/receive along a channel.
We are currently considering such techniques to give a symbolic semantics for
the link-calculus with value-passing [1]. The only symbolic semantics for a mul-
tiparty calculus we are aware of is [3,12] where the authors present the definition
of a symbolic semantics for the full Lotos language and its implementation.

References

1. Bodei, C., Brodo, L., Bruni, R.: Open multiparty interaction. In: Mart́ı-Oliet, N.,
Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 1–23. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-37635-1 1

2. Bodei, C., Brodo, L., Bruni, R., Chiarugi, D.: A flat process calculus for nested
membrane interactions. Sci. Ann. Comp. Sci. 24(1), 91–136 (2014)

3. Calder, M., Shankland, C.: A symbolic semantics and bisimulation for full LOTOS.
In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) IFIP Conference Proceedings,
FORTE, vol. 197, pp. 185–200. Kluwer (2001)

4. Gorrieri, R., Versari, C.: Introduction to Concurrency Theory - Transition Systems
and CCS. Texts in Theoretical Computer Science. An EATCS Series. Springer,
Cham (2015)

5. Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–
389 (1995)

6. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, New York (1996)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc,
Upper Saddle River (1985)

http://dx.doi.org/10.1007/978-3-642-37635-1_1


Symbolic Semantics for Multiparty Interactions in the Link-Calculus 75

8. Lehmann, D.J., Rabin, M.O.: On the advantages of free choice: a symmetric and
fully distributed solution to the dining philosophers problem. In: White, J., Lipton,
R.J., Goldberg, P.C. (eds.) POPL, pp. 133–138. ACM Press (1981)

9. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

10. Montanari, U., Sammartino, M.: Network conscious pi-calculus: a concurrent
semantics. In: Proceedings of Mathematical Foundations of Programming Seman-
tics (MFPS), Electronic Notes in Theoretical Computer Science, vol. 286, pp. 291–
306. Elsevier (2012)

11. Nestmann, U.: On the expressive power of joint input. Electron. Notes Theor.
Comput. Sci. 16(2), 145–152 (1998)

12. Verdejo, A.: Building tools for LOTOS symbolic semantics in maude. In: Peled,
D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 292–307. Springer,
Heidelberg (2002). doi:10.1007/3-540-36135-9 19

http://dx.doi.org/10.1007/3-540-36135-9_19


Theory of Mobile and Distributed
Systems



Different Speeds Suffice for Rendezvous of Two
Agents on Arbitrary Graphs

Evangelos Kranakis1(B), Danny Krizanc2, Euripides Markou3,
Aris Pagourtzis4, and Felipe Ramı́rez2

1 School of Computer Science, Carleton University, Ottawa, ON, Canada
kranakis@scs.carleton.ca

2 Department of Mathematics and Computer Science, Wesleyan University,
Middletown, USA

{dkrizanc,framirez}@wesleyan.edu
3 Department of Computer Science and Biomedical Informatics,

University of Thessaly, Volos, Greece
emarkou@ucg.gr

4 School of Electronic and Computer Engineering,
National Technical University of Athens, Zografou, Greece

pagour@cs.ntua.gr

Abstract. We consider the rendezvous problem for two robots on an
arbitrary connected graph with n vertices and all its edges of length
one. Two robots are initially located on two different vertices of the
graph and can traverse its edges with different but constant speeds. The
robots do not know their own speed. During their movement they are
allowed to meet on either vertices or edges of the graph. Depending on
certain conditions reflecting the knowledge of the robots we show that a
rendezvous algorithm is always possible on a general connected graph.

More specifically, we give new rendezvous algorithms for two robots
as follows. (1) In unknown topologies. We provide a polynomial time
rendezvous algorithm based on universal exploration sequences, assuming
that n is known to the robots. (2) In known topologies. In this case we
prove the existence of more efficient rendezvous algorithms by considering
the special case of the two-dimensional torus.

Keywords: Graph · Mobile agents · Rendezvous · Speeds · Universal
exploration sequence

1 Introduction

Rendezvous is an important primitive in distributed computing which enables
remote and mobile entities in a distributed network to meet, coordinate and
exchange information. It is also important in robotics for establishing connec-
tivity and exchanging information in a geometric environment which is being
traversed by the robots. As such it has been the focus of numerous studies from
dynamic symmetry breaking problem [20], operations research [2], and distrib-
uted computing in general [16] and specific [15] distributed topologies.
c© Springer International Publishing AG 2017
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In this paper we study the rendezvous problem under a deterministic model
first introduced in [11] concerning rendezvous in a ring topology of two robots
which have different speeds but are otherwise identical. The authors in [11] give
an optimal time rendezvous algorithm (expressed as a function of the speed ratio
c and size n of the ring) in a ring network for two robots which do not know their
own speeds. This line of research has been extended to randomized rendezvous
in [14] and to deterministic rendezvous for many agents in a ring in [12]. In this
paper we study for the first time the rendezvous problem for two robots having
speed ratio c > 1 in the most general setting of an arbitrary graph of n nodes.

1.1 Model

In the sequel the terms agent and robot will be considered interchangeable. We
generalize to arbitrary graphs the model first introduced in [11]. There are two
mobile agents placed at different nodes of an unknown arbitrary network. The
network is modelled as a simple undirected connected graph with all its edges
of equal length and the agents are deterministic mobile entities with unlimited
memory; from the computational point of view they are modelled as Turing
machines. The agents are anonymous (i.e., they do not have labels) and identical
except for their speeds which are unknown to them. Each agent moves at all times
at its own same fixed speed. The speed of an agent is the inverse of the time it
takes that agent to traverse one unit of length in the network. For simplicity we
set as unit speed, the speed required by the slow robot to traverse a unit length
edge of the graph, in which case, the length of an edge is also the time it takes
the slow robot to traverse it. Thus, without loss of generality, we normalize the
speed of the slowest agent to 1, and denote by c > 1 the speed of the faster
agent.

The agents start the execution of the rendezvous algorithm simultaneously.
An agent can detect when it encounters another agent at a node or inside an edge.
The agents have to meet at a node or inside an edge of the graph. We consider
two situations below, one in which the topology of the network is unknown to
the agents and one in which it is known. They cannot mark the visited nodes in
any way. The nodes of the network are anonymous but the edges incident to a
node v have distinct labels in {0, ..., d−1}, where d is the degree of v. Therefore,
every undirected edge {u, v} of the graph has two labels, which are called its port
numbers at u and at v. The port numbering is local, i.e., there is no relation
between port numbers at u and at v. An agent entering a node u learns the port
of entry and the degree of the node and can see the exit port-labels at u. An
agent at a node u can decide to stop or move to an adjacent node by selecting an
exit port-label leaving u. The movement of an agent is always at its own constant
speed. The edges of the network are of the same length which we normalize to 1.
As the agents move, they can count the visited nodes. We note here that in the
model of [11] each agent is equipped with a pedometer and by using it, an agent
is capable of measuring the distance travelled and take decisions depending on
its value. However, the algorithms in our model only use the agent’s capability
to count the visited nodes and detect whether an agent occupies a node or not
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(in order to select its next destination). Hence the agents in our model can only
take decisions (stop or change direction) at a node and not inside an edge. The
agents cannot communicate at all (except when they meet) and each agent does
not know either its own or the other agent’s speed.

When discussing running-time and feasibility of rendezvous, we take an
adversarial model where the adversary can choose the network, the initial posi-
tion of each agent and their speeds. The network can be considered as a graph
where all edges have the same length given by the adversary. Although, as we
mentioned above, we normalize the distance of every edge to 1 for the sake of
the presentation, our algorithms work when the edges of the network have been
associated with any (same) distance value.

The time complexity of an algorithm solving the rendezvous problem for two
agents with different speeds and ratio c > 1 in an arbitrary network of size n,
is defined as the worst case time to rendezvous, taken over all pairs of initial
positions of the two agents, over all networks (of a particular type) of size n and
over all pairs of different speeds with ratio c.

1.2 Related Work

The rendezvous problem for mobile agents (or robots) has been studied exten-
sively in many topologies (or domains) and under various assumptions on system
synchronicity and capabilities of the agents [7–9,15]. A critical distinction in the
models is whether the agents must all run the same algorithm, which is generally
known as the symmetric rendezvous problem [3]. If agents can execute different
algorithms, generally known as the asymmetric rendezvous problem, then the
problem is typically much easier, though not always trivial.

In quite a few of those models, rendezvous cannot be achieved without sym-
metry breaking. For example, in the simple case of two deterministic identical
agents on a ring graph, rendezvous cannot be achieved since the agents, no mat-
ter how they move, they will always maintain the same distance apart. Even
in cases where rendezvous can be achieved without it, breaking symmetry often
leads to much more efficient algorithms. One studied method for breaking sym-
metry is to use random bits to make probabilistic choices. An extensive survey
of randomized rendezvous in various scenarios can be found in [4]. Although
such algorithms may provide reasonable expected time to rendezvous, in most
cases they have poor worst-case behaviour. Another studied symmetry breaking
mechanism is to let the agents drop tokens and count inter-token distances [18].
In arbitrary anonymous graphs with identical agents, the problem was solved
(when it is feasible) in [6], for synchronous agents. A third studied symmetry
breaking mechanism is to let agents have distinct labels [9,19]. In the asynchro-
nous case, an almost complete solution for rendezvous in networks using distinct
labels has been provided in [10].

In asynchronous scenarios the speed of any agent’s traversal is controlled by
an adversary. Hence even the traversals of the same edge by the same agent at
two different times, take finite, but maybe different times. Under this assumption
rendezvous in a node cannot be guaranteed even in very simple graphs, and
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therefore the rendezvous requirement in that case is usually relaxed to allow the
agents to meet at a node or inside an edge. In our model, although any two
traversals of the same edge by the same agent last the same fixed time, this
time is controlled by the adversary (by selecting the speed of the agent and the
length of the edges) and it is not the same for the two agents. It is easy to
see that rendezvous in the same node also cannot be guaranteed even in simple
networks (e.g., rings). Hence we also adopt in our model the relaxed requirement
for rendezvous, i.e., allow the agents to meet at a node or inside an edge. Note
that in our model since the agents initially have exactly the same information
about themselves and the network, they cannot assign to themselves distinct
labels. Hence the agents must exploit their different speeds (whose values are
unknown to the agents) in order to meet.

The difference in speed between two otherwise identical agents, is a source of
asymmetry that has recently received more attention. While agent speeds have
been considered as a problem parameter before, the traditional assumption for
synchronous agents has been that all agents move at a common fixed speed.
Even when agent speed has been allowed to vary, as in [5], agents have typically
had a uniform range of possible speeds and have been required to choose their
speed deterministically, maintaining the symmetry of the problem.

The rendezvous problem is also related to the exploration problem, since
both agents have to traverse (explore) some (the same) node or edge in order
to meet. The exploration problem of an anonymous arbitrary network by an
agent has been extensively studied. An important tool for exploration of anony-
mous arbitrary networks is the Universal Traversal Sequence (UTS) which has
been suggested in [1]. A UTS for n-vertex graphs is a predetermined sequence
of instructions that when executed on any n-vertex graph, from any starting
vertex, defines a walk that visits all the vertices of the graph. The authors of [1]
showed the existence of a UTS of a polynomial length for any graph of at most
n nodes. However, to date it remains unknown whether a UTS of a polyno-
mial length can be constructed in polynomial time. In [13] a tool closely related
to UTS was proposed, called Universal Exploration Sequence (UXS). Roughly
speaking, exploration sequences can replace traversal sequences when backtrack-
ing is allowed. Reingold showed in [17] that a UXS of a polynomial length can be
constructed in log-space and therefore in polynomial time. In [19], they defined
and constructed in polynomial time the so called strongly universal exploration
sequence, which is a possibly infinite sequence σ with the property that every
contiguous subsequence of σ of some fixed length p(n) (where p(n) is a polyno-
mial) is a UXS for any graph of at most n nodes.

1.3 Outline and Results of the Paper

Section 2 studies rendezvous in unknown topologies and includes preliminaries
on Universal Exploration Sequences in Subsect. 2.1, and a rendezvous algorithm
for known n in Subsect. 2.2. Section 3 deals with rendezvous when the network
topology is known; we discuss rendezvous in a torus.



Different Speeds Suffice for Rendezvous of Two Agents on Arbitrary Graphs 83

2 Rendezvous in Unknown Topologies

In this section we present algorithms for accomplishing rendezvous in unknown
graph topologies by using universal exploration sequences. We begin by men-
tioning relevant results on universal exploration sequences and then proceed to
give a new rendezvous algorithm that solves the problem in any graph consisting
of n nodes, when n is known.

2.1 Preliminaries on Universal Exploration Sequences

Let us briefly explain the notion of the universal exploration sequence. Let
(a1, a2, ..., ak) be a sequence of integers and let G be a graph and u be a node
of G. Let also w = succ(v, x) be the node reached by taking the exit-port x
from node v. A sequence of nodes (u0, . . . , uk+1) of G can be obtained as fol-
lows: u0 = u, u1 = succ(u0, 0); for any 1 ≤ i ≤ k, ui+1 = succ(ui, (p + ai)
mod d(ui)), where p is the entry-port number at ui corresponding to the edge
{ui−1, ui}. A sequence (a1, a2, . . . , ak) which can be applied to any node u of a
graph G and produces a sequence of nodes containing all nodes of G is called
a Universal Exploration Sequence (UXS) for graph G. A UXS for a class of
graphs is a UXS for all graphs in this class. The following important result,
based on universal exploration sequences introduced by Kouckỳ [13], is due to
Reingold [17].

Proposition 1 ([17]). For any positive integer n, a Universal Exploration
Sequence Y (n) = (a1, a2, . . . , aM ) can be constructed in polynomial time with
respect to n (thus, the agents will be using O(log n) bits of memory) for the class
of all graphs with at most n nodes, where M is polynomial in n.

The length of such a log-space constructive universal exploration sequence is
on the order of at least n100 in Reingold’s [17] original implementation (though
still polynomial in n). Aleliunas et al. proved in [1] the existence of Universal
Traversal Sequences of shorter length.

Proposition 2 ([1]). For any positive integers n, d, d < n, there exists a uni-
versal traversal sequence of length O(n3d2 log n) for the family of all graphs with
at most n nodes and maximum degree at most d.

Kouckỳ has shown in [13] in exactly the same way as in Proposition 2, a sim-
ilar result for universal exploration sequences. Note that the traversal (or explo-
ration) sequences in Proposition 2 above are not necessarily constructible in
logarithmic memory1 (and hence not constructible in polynomial time).

Given any positive integer n, the UXS leads one agent to visit all nodes of any
graph of size at most n, starting from any node of the graph, using at most T (n)
edge traversals, where T is some polynomial. Upon entering a node of degree d
by some port p, the agent can compute the port q by which it has to exit; more
precisely q = (p + xi) mod d, where xi is the corresponding term of the UXS.
1 In fact they are (deterministically) constructible in polylogarithmic space, but to

date it is unknown whether a universal traversal (or exploration) sequence of length
O(n3d2 log n) can be constructed in polynomial time.
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2.2 Rendezvous in Arbitrary Graphs When n is Known

Suppose that the two agents only know the size n of the graph. We will show that
they can rendezvous within at most polynomial time with respect to n. To this
end, we first need to convert a UXS U to a walk that traverses all edges of the
graph; let us call such a walk Full Edge Traversal (FET). This can be easily done
by having each robot traversing back and forth all incident edges of each node
visited by U before it continues with the next term of U . Let SU be this modified
sequence. The total number of edge traversals in SU is |SU | ≤ |U | + 2(n − 1)|U |.
If we additionally instruct the agents to traverse back and forth exactly n − 1
incident edges of each node (if a node has t < n − 1 incident edges, then the
agent additionally traverses one edge, randomly chosen, back and forth (n−1)−t
times), then the total number of edge traversals is exactly |U | + 2(n − 1)|U |.
Proposition 3. Given an arbitrary graph G consisting of n nodes and a univer-
sal exploration sequence U of G, of length |U |, an agent knowing U can construct
and follow a full edge traversal SU of G of length O(n|U |).

We will now show how to achieve rendezvous between two robots of different
speeds that are able to compute and follow a full edge traversal with a known
bound on its length.

Theorem 1. Consider an arbitrary graph G consisting of n nodes, and two
anonymous agents that have different speeds and (except for their speeds) are
identical. The agents start moving at the same time on their own constant speeds
and they know n.

1. If the agents follow full edge traversals Sc and S1, respectively, where |Sc| =
|S1| = B(n), then rendezvous is always possible within time at most O

(
B(n)
c−1

)
.

2. If the agents can construct a universal exploration sequence of length T (n)
then rendezvous is always possible within time at most O

(
n·T (n)
c−1

)
.

Proof. We present Algorithm 1; the idea is to make the slow robot stay long
enough at the first edge of its traversal during each round, so as to allow the fast
robot to arrive and rendezvous2.

Observe that on the one hand, the fast robot finishes its graph traversal in
time 2B(n)+|Sc|

c = 3B(n)
c . On the other hand, the slow robot finishes the back

and forth traversals of the chosen edge in time 2B(n). Therefore the fast robot
will catch up with slow robot while the latter is still traversing its chosen edge
provided that

2B(n) ≥ 3B(n)
c

. (1)

If c ≥ 3
2 then relation (1) is satisfied, which means that the robots meet during

their first round within time 3B(n)
c . If c < 3

2 , then we have:
The slow robot proceeds in each round i ≥ 1 as follows:

2 This algorithm builds on an idea proposed (without its analysis) by an unknown
reviewer based on an algorithm appearing in an earlier version of this paper.
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Algorithm 1. Rendezvous Algorithm for n known. The two robots stop imme-
diately when they meet.
1: Input: Graph G, FETs Sc,S1 of G for robots R(c), R(1) respectively, where |Sc| =

|S1| = B(n);
2: Goal: Rendezvous of the two robots;
3: repeat
4: let u be your current node; choose an adjacent node v;
5: zig-zag B(n) times between nodes u, v of edge {u, v};
6: traverse the edges of the graph in the order specified by your FET sequence;
7: until you meet the other robot

– zig-zags a chosen edge in the time interval [3iB(n), 3iB(n) + 2B(n)],
– traverses the graph in the time interval [3iB(n) + 2B(n), 3iB(n) + 3B(n)],

The fast robot proceeds in each round j ≥ 1 as follows:

– zig-zags a chosen edge in the time interval [ 3jB(n)
c , 3jB(n)+2B(n)

c ],
– traverses the graph in the time interval [3jB(n)+2B(n)

c , 3jB(n)+3B(n)
c ],

If during a round j the fast robot starts its FET after the slow robot (which
is at a round i) has started traversing back and forth its chosen edge and the
fast robot finishes its FET before the slow robot finishes its zig-zags, then the
two robots will meet. Hence the robots meet when:

3j + 3
3i + 2

≤ c ≤ 3j + 2
3i

(2)

The robots would meet at the same round if relation (2) is satisfied for i = j:

3i + 3
3i + 2

≤ c ≤ 3i + 2
3i

(3)

It is easy to see that for every i ≥ 1 it holds:

3(i + 1) + 3
3(i + 1) + 2

<
3i + 3
3i + 2

<
3(i + 1) + 2

3(i + 1)
<

3i + 2
3i

(4)

The above relation (4) implies that the sequence of intervals [3i+3
3i+2 , 3i+2

3i ],
∀i ≥ 1, covers any value of c when 1 < c < 3

2 and therefore for any such value
of c there is a round i for which relation (3) is satisfied. The number of rounds
needed for relation (3) to be satisfied (and thus the robots to meet) can be
calculated by the second part of relation (3):

i ≤ 2
3(c − 1)

(5)

Therefore the meeting will occur within time 2B(n)
c(c−1) + 3B(n)

c = O(B(n)
c−1 ), since

c > 1. The second claim is obtained as a corollary of the first, using Proposition 3
with |U | = T (n). This completes the proof of Theorem 1. ��
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Combining Theorem 1 with the result of Proposition 2 we derive easily the
following corollary.

Corollary 1. Consider an arbitrary graph G consisting of n nodes, and two
anonymous agents having different speeds with ratio c > 1. The agents start
moving at the same time on their own constant speeds and they know n. There
is an algorithm which accomplishes rendezvous in at most O

(
n6 logn
c−1

)
time. ��

Comments: One could possibly think of whether the algorithm could be mod-
ified in order to work for unknown n (e.g., by letting the agents test varying
values of n in an appropriate manner). Unfortunately, since the number of zig-
zags depends on B(n), there seems to be no obvious way to make the algorithm
work correctly; in particular, the agents would not generally test the same n at
the same time and therefore their delays due to zig-zags would vary considerably.

3 Rendezvous in a n × m Torus When the Agents Do
Not Know n or m

In this section we investigate whether rendezvous can be done faster when more
knowledge is available about the network topology. We focus on rendezvous in a
n×m torus when the agents do not know n or m. As usual there are two robots
with different speeds starting from arbitrary vertices. Let us imagine that the
two robots are located on a n×m torus with n rows, m columns, and thus a total
of nm vertices. The first result presented in this section assumes no knowledge of
n or m; the only requirement is gcd(n,m) = 1. For the second result knowledge
of lcm(n,m) and gcd(n,m) is assumed.

3.1 Rendezvous in a n × m Torus When gcd(n,m) = 1

Consider an n × m torus with n rows, m columns, and nm vertices. Further
assume that gcd(n,m) = 1. Construct a sequence of coordinates starting from
any arbitrary vertex (x, y) as follows:

� x0 ← x; y0 ← y
� for i = 0, 1, . . . set

xi+1 ← xi + 1 mod m
yi+1 ← yi + 1 mod n

For each i = 0, 1, . . . consider the L-shaped walk (L-walk in short) Li defined
as follows: Li = 〈(xi, yi), (xi+1, yi), (xi+1, yi+1)〉. That is, Li starts at point Pi =
(xi, yi), continues to point Ci = (xi+1, yi) and ends at point Pi+1 = (xi+1, yi+1),
thus traversing two edges, the first ‘horizontal’ and the second ‘vertical’.

Let us now consider the following simple algorithm: Each robot follows the
trajectory resulting from the concatenation of walks L0, L1, . . .. Then the follow-
ing theorem holds:
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Theorem 2. Consider a n×m torus with n rows, m columns, and nm vertices.
Further assume that gcd(n,m) = 1. Then rendezvous between two robots with
different speeds, 1 and c > 1, can be accomplished in time 2nm

c−1 .

Proof. Suppose that each robot follows the trajectory resulting from the concate-
nation of walks L0, L1, . . .. We will show that every vertex of the torus appears
in this trajectory as starting point of some L-walk, and as middle point of some
other L-walk. Indeed, by definition we get that (xi, yi) = (x0 + i mod m, y0 +
i mod n). Therefore, for any xi, xj ∈ {0, . . . , m − 1}, yi, yj ∈ {0, . . . , n − 1}
it holds (xi, yi) = (xj , yj) if and only if, i ≡ j mod m and i ≡ j mod n.
Since gcd(n,m) = 1, by applying the Chinese Remainder Theorem we get that
i ≡ j mod (nm).

To sum up we have shown that the trajectory L0, L1, . . . , Lnm−1 starting
from the vertex (x, y) must traverse all the vertices of the torus and also return
to its original position. Moreover the length of this trajectory is exactly 2mn. In
fact, each vertex is visited twice, once as a starting point of some L-walk (and
ending point of the previous one) and once as middle point of some other L-walk.
This is not unnecessary; the fact that each point is visited as a starting of some
trajectory is crucial, as it guarantees that both robots follow exactly the same
trajectory, differing only in their starting point.

Therefore, both robots move along the same cycle of length 2mn, in the same
direction. Thus, directly applying the result of the analysis of this rendezvous
algorithm of [11] (i.e., when the robots move in the same direction, not knowing
the length of the cycle or c), we obtain the claimed bound 2nm

c−1 . This concludes
the proof of Theorem 2. ��

3.2 Rendezvous in a n × m Torus When gcd(n,m) > 1

Assuming gcd(n,m) = 1, the previous trajectory passes from every vertex of the
torus (see the proof of Theorem 2) and the success of the previous algorithm
heavily relies on this.

If gcd(n,m) = d > 1 then the trajectory L0, L1, . . . , Llcm(n,m)−1 returns to
the initial point P0. It thus visits only 2 lcm(n,m) nodes (and an equal number of
edges). Therefore, the previous algorithm does not work in this case. A different
algorithm which works when gcd(n,m) > 1 is presented below.

Consider coordinates similar to those previously defined (the superscript
refers to the round number, with respect to the algorithm defined below). Recall
that (x, y) are the initial coordinates of a robot.

� x
(0)
0 ← x; y

(0)
0 ← y

� for k = 0, 1, . . ., i = 0, 1, . . . , set
x

(k)
i+1 ← x

(k)
i + 1 mod m

y
(k)
i+1 ← y

(k)
i + 1 mod n

� for k = 0, 1, . . ., set
x

(k+1)
0 ← x

(k)
0 + 1 mod m

y
(k+1)
0 ← y

(k)
0
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Let us also define the corresponding L-walk L
(k)
i :

L
(k)
i = 〈(x(k)

i , y
(k)
i ), (x(k)

i+1, y
(k)
i ), (x(k)

i+1, y
(k)
i+l)〉

We denote the points of walk L
(k)
i by P

(k)
i , C

(k)
i , P

(k)
i+1, respectively. We propose

the following algorithm:

Algorithm 2. Rendezvous Algorithm for the torus n × m with gcd(n,m) > 1
1: Input: lcm(n,m), gcd(n,m)(> 1);
2: Goal: Rendezvous of the two robots;
3: repeat
4: zig-zag gcd(n,m)(2lcm(n,m) + 1) times on edge P

(0)
0 , C

(0)
0 ;

5: for round k = 0 to gcd(n,m) − 1 do

6: follow trajectory T (k) = L
(k)
0 , L

(k)
1 , . . . , L

(k)

lcm(n,m)−1;

7: traverse edge P
(k)
0 , C

(k)
0 ;

8: until You meet the other robot

Theorem 3. Consider an n×m torus with n rows, m columns, and nm vertices.
Further assume that gcd(n,m) and lcm(n,m) are known and that gcd(n,m) > 1.
Two robots with different speeds, 1 and c > 1, can rendezvous in time O

(
nm
c−1

)
.

Proof. We will first show that the trajectories T (k), 0 ≤ k < d = gcd(n,m),
partition the torus into d edge-disjoint cycles, and that the cycle corresponding
to T (k) coincides with the cycle corresponding to T (k+d). Indeed, we can extend
arguments used in the proof of Theorem 2 as follows. We first observe that
(x(k)

i , y
(k)
i ) = (x(k)

0 + i mod m, y
(k)
0 + i mod n). Therefore for any x

(k)
i , x

(k)
j ∈

{0, . . . , m − 1}, y
(k)
i , y

(k)
j ∈ {0, . . . , n − 1} it holds (x(k)

i , y
(k)
i ) = (x(k)

j , y
(k)
j ) iff:

i ≡ j (mod m)
i ≡ j (mod n).

Since gcd(n,m) = d > 1, by applying a more general form of the
Chinese Remainder Theorem (for non coprime moduli) we get that i ≡ j
(mod lcm(n,m)); therefore each T (k) trajectory visits exactly lcm(n,m) distinct
points as starting points of L-walks and exactly lcm(n,m) distinct points as
middle points of L-walks.

Next, in order to have (starting) point coincidence among different tra-
jectories T (k), T (k′) it should hold that (x(k)

i , y
(k)
i ) = (x(k′)

j , y
(k′)
j ) for some

i, j ∈ {0, . . . , lcm(n,m) − 1}. This in turn is equivalent to:

(x(k)
0 + i mod m, y

(k)
0 + i mod n) = (x(k)

0 + k′ − k + j mod m, y
(k)
0 + j mod n),
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where we use the fact that the x-coordinate of the starting point of T (k′) is equal
to the x-coordinate of the starting point of T (k) shifted by k′ − k mod m, while
their y-coordinates coincide. Clearly, the above condition holds iff:

i ≡ k′ − k + j (mod m)
i ≡ j (mod n).

Since gcd(n,m) = d > 1, by applying the general form of the Chinese
Remainder Theorem we get that this can happen iff k′ ≡ k (mod d), and that
for given i, k, k′ there is a unique solution j ∈ {0, . . . , lcm(n,m)−1} to the above
system.

This means that, as already mentioned, every d rounds a robot repeats the
same cycle, usually starting from a different point of the cycle each time (if
m = d, trajectories T (k) and T (k+d) are completely identical). In addition, cycles
T (k) and T (k+t) with t mod d �= 0 are completely disjoint with respect to starting
points of their L-walks, hence are edge-disjoint.

Consequently, during a number of d = gcd(n,m) rounds a robot visits all
vertices of the torus twice (once as a starting point and once as a middle point
of some L-walk) and traverses all edges of the torus. Note that all edges are
traversed once, except for horizontal edges (P (i)

0 , P
(i+1)
0 ) which are traversed

twice, the second time providing a transfer of the robot to a different cycle.
Therefore, the concatenation of trajectories T (i), 0 ≤ i ≤ d − 1 performed in

the second step of the algorithm is in fact a full edge traversal (FET) of length
gcd(n,m)(2lcm(n,m) + 1) = 2nm + gcd(n,m), and by applying Theorem 1 we
get the claim.

Note that the fact that T (k) is not (in most cases) completely identical to
T (k+d) (due to different starting point) does not affect rendezvous time, since all
edges of the torus are traversed. This completes the proof of Theorem 3. ��

4 Open Questions

It would be interesting to investigate rendezvous algorithms for two robots which
require even less knowledge. In particular, it would be nice to remove the require-
ment of knowledge of the size of the graph, potentially by using an appropriate
guessing strategy. Another important open question would be to address the case
of equal speeds, possibly by introducing delays after certain number of rounds.
Finally, the study of rendezvous for many robots of different speeds would also
be of great interest.
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Abstract. Place/transition Petri nets are a standard model for a class
of distributed systems whose reachability spaces might be infinite. One
of well-studied topics is the verification of safety and liveness properties
in this model; despite the extensive research effort, some basic prob-
lems remain open, which is exemplified by the open complexity status of
the reachability problem. The liveness problems are known to be closely
related to the reachability problem, and many structural properties of
nets that are related to liveness have been studied.

Somewhat surprisingly, the decidability status of the problem if a net
is structurally live, i.e. if there is an initial marking for which it is live,
has remained open, as also a recent paper (Best and Esparza, 2016)
emphasizes. Here we show that the structural liveness problem for Petri
nets is decidable.

A crucial ingredient of the proof is the result by Leroux (LiCS 2013)
showing that we can compute a finite (Presburger) description of the
reachability set for a marked Petri net if this set is semilinear.

1 Introduction

Petri nets are a standard tool for modeling and analysing a class of distributed
systems; we can name [15] as a recent introductory monograph for this area.
A natural part of the analysis of such systems is checking the safety and/or
liveness properties, where the question of deadlock-freeness is just one example.

The classical version of place/transition Petri nets (exemplified by Fig. 1) is
used to model systems with potentially infinite state spaces; here the decidability
and/or complexity questions for respective analysis problems are often intricate.
E.g., despite several decades of research the complexity status of the basic prob-
lem of reachability (can the system get from one given configuration to another?)
remains unclear; we know that the problem is ExpSpace-hard due to a classical
construction by Lipton (see, e.g., [4]) but the known upper complexity bounds
are not primitive recursive (we can refer to [12] and the references therein for
further information).

The liveness of a transition (modelling a system action) is a related problem;
its complementary problem asks if for a given initial marking (modelling an
initial system configuration) the net enables to reach a marking in which the
transition is dead, in the sense that it can be never performed in the future.
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A marked net (N,M0), i.e. a net N with an initial marking M0, is live if all its
transitions are live.

The close relationship of the problems of reachability and liveness has been
clear since the early works by Hack [8,9]. Nevertheless, the situation is different
for the problem of structural liveness that asks, given a net N , if there is a mark-
ing M0 such that (N,M0) is live. While semidecidability of structural liveness
is clear due to the decidability of (reachability and) liveness, the decidability
question has been open: see, e.g., the overview [16] and in particular the recent
paper [3] where this problem (STLP) is discussed in Concluding Remarks.

Here we show the decidability of structural liveness, by showing the semide-
cidability of the complementary problem. The idea is to construct, for a given net
N , a marked net (N ′,M ′

0) (partly sketched in Fig. 2) that works in two phases
(controlled by places added to N): in the first phase, an arbitrary marking M
from the set D of markings with at least one dead transition is generated, and
then N is simulated in the reverse mode from M . If N is not structurally live,
then the projection of the reachability set of (N ′,M ′

0) to the set P of places of
N is the whole set N

P ; if N is structurally live, then there is M ∈ N
P such that

the projection of any marking reachable from M ′
0 differs from M .

In the first case (with the whole set N
P ) the reachability set of (N ′,M ′

0) is
semilinear, i.e. Presburger definable. Due to a result by Leroux [11], there is an
algorithm that finishes with a Presburger description of the reachability set of
(N ′,M ′

0) when this set is semilinear (while it runs forever when not). This yields
the announced semidecidability.

The construction of the above mentioned (downward closed) set D is stan-
dard; the crucial ingredient of our proof is thus the mentioned result by Leroux.
Though we use the decidability of reachability (for semidecidability of the pos-
itive case), it is not clear if reachability reduces to structural liveness, and the
complexity of the structural liveness problem is left open for future research.

Section 2 provides the formal background, and Sect. 3 shows the decidability
result. In Sect. 4 a few comments are added, and in particular an example of a
net is given where the set of live markings is not semilinear.

2 Basic Definitions

By N we denote the set {0, 1, 2, . . . }. For a set A, by A∗ we denote the set of
finite sequences of elements of A, and ε denotes the empty sequence.

Nets. A Petri net, or just a net for short, is a tuple N = (P, T,W ) where
P and T are two disjoint finite sets of places and transitions, respectively, and
W : (P × T ) ∪ (T × P ) → N is the weighted flow function. A marking M of N
is an element of N

P , a mapping from P to N, often also viewed as a vector with
|P | components (i.e., an element of N

|P |).
Figure 1 presents a net N = ({p1, p2, p3}, {t1, t2, t3},W ) where W (p1, t1) = 2,

W (p1, t2) = 1, W (p1, t3) = 0, etc.; we do not draw an arc from x to y when
W (x, y) = 0, and we assume W (x, y) = 1 for the arcs (x, y) with no depicted
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Fig. 1. Example of a net N = (P, T,W ), with marking M = (3, 1, 0)

numbers. Figure 1 also depicts a marking M by using black tokens, namely M =
(3, 1, 0), assuming the ordering (p1, p2, p3) of places.

Reachability. Assuming a net N = (P, T,W ), for each t ∈ T we define the
following relation t−→ on N

P :

M
t−→ M ′ ⇔df ∀p ∈ P : M(p) ≥ W (p, t) ∧ M ′(p) = M(p) − W (p, t) + W (t, p).

By M
t−→ we denote that t is enabled in M , i.e., that there is M ′ such that

M
t−→ M ′. The relations t−→ are inductively extended to u−→ for all u ∈ T ∗:

M
ε−→ M ; if M

t−→ M ′ and M ′ u−→ M ′′, then M
tu−→ M ′′. The reachability set

for a marking M is the set

[M〉 = {M ′ | M
u−→ M ′ for some u ∈ T ∗}.

For the net of Fig. 1 we have, e.g., (3, 1, 0) t2−→ (4, 0, 1) t1−→ (2, 0, 1) t1−→
(0, 0, 1) t3−→ (1, 1, 0); we can check that the reachability set for (3, 1, 0) is

{ (x, 1, 0) | x is odd } ∪ { (y, 0, 1) | y is even}. (1)

Liveness. For a net N = (P, T,W ), a transition t is dead in a marking M if
there is no M ′ ∈ [M〉 such that M ′ t−→. (Such t can be never performed in N
when we start from M .)

A transition t is live in M0 if there is no M ∈ [M0〉 such that t is dead in
M . (Hence for each M ∈ [M0〉 there is M ′ ∈ [M〉 such that M ′ t−→.) A set
T ′ ⊆ T of transitions is live in M0 if each t ∈ T ′ is live in M0. (Another natural
definition of liveness of a set T ′ is discussed in Sect. 4.)

A marked net is a pair (N,M0) where N = (P, T,W ) is a net and M0

is a marking, called the initial marking. A marked net (N,M0) is live if each
transition (in other words, the set T ) is live in M0 (in the net N). A net N is
structurally live if there is M0 such that (N,M0) is live.
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E.g., the net in Fig. 1 is structurally live since it is live for the marking (3, 1, 0),
as can be easily checked by inspecting the transitions enabled in the elements of
the reachability set (1). We can also note that the net is not live for (4, 1, 0), we
even have that no transition is live in (4, 1, 0), since (4, 1, 0) t1t1−→ (0, 1, 0) where
all transitions are dead.

Liveness decision problems.

– The partial liveness problem, denoted PLP, asks, given a marked net (N,M0)
and a set T ′ of its transitions, if T ′ is live in M0.

– The liveness problem, denoted LP, is a special case of PLP: it asks, given a
marked net (N,M0), if (N,M0) is live (i.e., if all its transitions are live in M0).

– The partial structural liveness problem, denoted PSLP, asks, given a net N
and a set T ′ of its transitions, if there is M in which T ′ is live.

– The structural liveness problem, denoted SLP, is a special case of PSLP: it
asks, given a net N , if there is M such that (N,M) is live.

3 Structural Liveness of Nets Is Decidable

We aim to show the decidability of PSLP, and thus also of SLP:

Theorem 1. The partial structural liveness problem (PSLP) is decidable.

We prove the theorem in the rest of this section. We first recall the famous
decidability result for reachability. The reachability problem, denoted RP, asks
if M ∈ [M0〉 when given N,M0,M .

Lemma 2. [13] The reachability problem (RP) is decidable.

In Petri net theory this is a fundamental theorem; we call it a “lemma”
here, since it is one ingredient used in proving the theorem of this paper (i.e.
Theorem 1). The first proof of Lemma2 was given by E.W. Mayr (see [13] for
a journal publication), and there is a row of further papers dealing with this
problem; we can refer to a recent paper [12] and the references therein for further
information. As already mentioned, the complexity of the reachability problem
remains far from clear.

There are long known, and straightforward, effective reductions among the
reachability problem RP and the (partial) liveness problems (PLP and LP); we
can find them already in Hack’s works from 1970s [8,9]. This induces semide-
cidability of the partial structural liveness problem (PSLP): given N and T ′,
we can systematically generate all markings of N , always deciding if T ′ is live
in the currently generated M (and halt when the answer is positive). Hence the
main issue is to establish the semidecidability of the complementary problem
of PSLP; roughly speaking, we need to find a finite witness when (N,M) is
non-live for all M .

We further assume a fixed net N = (P, T,W ) if not said otherwise.
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Sets of “dead” markings are downward closed. A natural first step for
studying (partial) liveness is to explore the sets

DT ′ = {M ∈ N
P | some t ∈ T ′ is dead in M}

for T ′ ⊆ T . We note that the definition entails DT ′ =
⋃

t∈T ′ D{t}. E.g., in
the net of Fig. 1 we have D{t1} = {(x, 0, 0) | x ≤ 1} ∪ {(0, x, 0) | x ∈ N},
D{t2,t3} = {(x, 0, 0) | x ∈ N}, and

DT = {(0, x, 0) | x ∈ N} ∪ {(x, 0, 0) | x ∈ N}. (2)

Due to the monotonicity of Petri nets (by which we mean that M
u−→ M ′ implies

M+δ
u−→ M ′+δ for all δ ∈ N

P ), each DT ′ is obviously downward closed. We
say that D ⊆ N

P is downward closed if M ∈ D implies M ′ ∈ D for all M ′ ≤ M ,
where we refer to the component-wise order:

M ′ ≤ M ⇔df ∀p ∈ P : M ′(p) ≤ M(p).

It is standard to characterize any downward closed subset D of N
P by the set of

its maximal elements, using the extension Nω = N ∪ {ω} where ω stands for an
“arbitrarily large number” satisfying ω > n for all n ∈ N. Formally we extend a
downward closed set D ⊆ N

P to the set

D̂ = {M ∈ (Nω)P | ∀M ′ ∈ N
P : M ′ ≤ M ⇒ M ′ ∈ D}.

We thus have

D = {M ′ ∈ N
P | M ′ ≤ M for some M ∈ Max(D̂)}

where Max(D̂) is the set of maximal elements of D̂. By (the standard extension
of) Dickson’s Lemma, the set Max(D̂) is finite. (We can refer, e.g., to [5] where
such completions by “adding the limits” are handled in a general framework.)

E.g., for the set DT in (2) we have Max(D̂T ) = {(0, ω, 0), (ω, 0, 0)}.

Proposition 3. Given N = (P, T,W ) and T ′ ⊆ T , the set DT ′ is downward
closed and the finite set Max(D̂T ′) is effectively constructible.

Proof. We consider a net N = (P, T,W ) and a set T ′ ⊆ T . As discussed above,
the set DT ′ is downward closed.

Instead of a direct construction of the finite set Max(D̂T ′), we first show that
the set ST ′ = Min(NP

� DT ′), i.e. the set of minimal elements of the (upward
closed) complement of DT ′ , is effectively constructible.

For each t ∈ T ′, we first compute St = Min(NP
�D{t}), i.e. the set of minimal

markings in which t is not dead. One standard possibility for computing St is to
use the following backward algorithm, where

MinPre(t′,M) is the unique marking in Min({M ′ | ∃M ′′ ≥ M : M ′ t′
−→ M ′′}).

(For each p ∈ P , MinPre(t′,M)(p) = W (p, t′) + max{M(p)−W (t′, p), 0}.)
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An algorithm for computing St:
1. Initialize the variable S, containing a finite set of markings, by

S := {MinPre(t,0)}
where 0 is the zero marking (0(p) = 0 for each p ∈ P ).

2. Perform the following step repeatedly, as long as possible:
if for some t′ ∈ T and M ∈ S the marking M ′ = MinPre(t′,M) is
not in the upward closure of S (hence M ′ �≥ M ′′ for each M ′′ ∈ S),
then put

S := S ∪ {M ′} � {M ′′ ∈ S | M ′ ≤ M ′′}.

Termination is clear by Dickson’s Lemma, and the final value of S is obviously
the set St (of all minimal markings from which t can get enabled). We can remark
that related studies in more general frameworks can be found, e.g., in [1,6].

Having computed the sets St = Min(NP
� D{t}) for all t ∈ T ′, we can surely

compute the set ST ′ = Min(NP
� DT ′) since

ST ′ = Min({M ∈ N
P | (∀t ∈ T ′)(∃M ′ ∈ St) : M ≥ M ′}).

This also entails that the maximum B ∈ N of values M(p) where M ∈ ST ′ (and
p ∈ P ) is bounded by the maximum value M(p) where M ∈ St for some t ∈ T ′.
Since the finite (i.e., non-ω) numbers M(p) in the elements M of Max(D̂T ′) are
obviously less than B, the set Max(D̂T ′) can be constructed when given ST ′ . ��

Remark. Generally we must count with at least exponential-space algorithms
for constructing Max(D̂T ′) (or Min(NP

� DT ′)), due to Lipton’s ExpSpace-
hardness construction that also applies to the coverability (besides the reacha-
bility). On the other hand, by Rackoff’s results [14] the maximum B mentioned
in the proof is at most doubly-exponential w.r.t. the input size, and thus fits in
exponential space. Nevertheless, the precise complexity of computing Max(D̂T ′)
is not important in our context.

Sets of “live” markings are more complicated. Assuming N = (P, T,W ),
for T ′ ⊆ T we define

LT ′ = {M ∈ N
P | T ′ is live in M}.

The set LT ′ is not the complement of DT ′ in general, but our definitions readily
yield the following equivalence:

Proposition 4. M ∈ LT ′ iff [M〉 ∩ DT ′ = ∅.
We note that LT ′ is not upward closed in general. We have already observed

this on the net in Fig. 1, where DT = {(0, x, 0) | x ∈ N}∪{(x, 0, 0) | x ∈ N} (i.e.,
Max(D̂T ) = {(0, ω, 0), (ω, 0, 0)}). It is not difficult to verify that in this net we
have

LT = {M ∈ N
{p1,p2,p3} | M(p2)+M(p3) ≥ 1 and M(p1)+M(p3) is odd }. (3)

Proposition 4 has the following simple corollary:
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Proposition 5. The answer to an instance N = (P, T,W ), T ′ of PSLP (the
partial structural liveness problem) is

1. YES if LT ′ �= ∅, i.e., if {M ∈ N
P ; [M〉 ∩ DT ′ �= ∅} �= N

P .
2. NO if LT ′ = ∅, i.e., if {M ∈ N

P ; [M〉 ∩ DT ′ �= ∅} = N
P .

It turns out important for us that in the case 2 (NO) the set {M ∈ N
P ; [M〉 ∩

DT ′ �= ∅} is semilinear. We now recall the relevant notions and facts, and then
we give a proof of Theorem 1.

Semilinear sets. For a fixed (dimension) d ∈ N, a set L ⊆ N
d is linear if there

is a (basic) vector ρ ∈ N
d and (period) vectors π1, π2, . . . , πk ∈ N

d (for some
k ∈ N) such that

L = { ρ + x1π1 + x2π2 + · · · + xkπk | x1, x2, . . . , xk ∈ N }.

Such vectors ρ, π1, π2, . . . , πk constitute a description of the set L .
A set S ⊆ N

d is semilinear if it is the union of finitely many linear sets; a
description of S is a collection of descriptions of Li, i = 1, 2, . . . , m (for some
m ∈ N), where S = L1 ∪ L2 ∪ · · · ∪ Lm and Li are linear.

It is well known that an equivalent formalism for describing semilinear sets
are Presburger formulas [7], the arithmetic formulas that can use addition but no
multiplication (of variables); we also recall that the truth of (closed) Presburger
formulas is decidable. E.g., all downward (or upward) closed sets D ⊆ N

P are
semilinear, and also the above sets (1) and (3) are examples of semilinear sets.
Moreover, given the set Max(D̂) for a downward closed set D, constructing a
description of D as of a semilinear set is straightforward.

It is also well known that the reachability sets [M〉 are not semilinear in
general; similarly the sets LT ′ (of live markings) are not semilinear in general.
(We give an example in Sect. 4.) But we have the following result by Leroux [11];
it is again an important theorem in Petri net theory that we call a “lemma” in
our context (since it is an ingredient for proving Theorem1).

Lemma 6. [11] There is an algorithm that, given a marked net (N,M0), halts
iff the reachability set [M0〉 is semilinear, in which case it produces a description
of this set.

Roughly speaking, the algorithm guaranteed by Lemma6 generates the reach-
ability graph for M0 while performing certain “accelerations” when possible
(which captures repeatings of some transition sequences by simple formulas);
this process is creating a sequence of descriptions of increasing semilinear sub-
sets of the reachability set [M0〉 until the subset is closed under all steps t−→
(which can be effectively checked); in this case the subset (called an inductive
invariant in [11]) is equal to [M0〉, and the process is guaranteed to reach such a
case when [M0〉 is semilinear. (A consequence highlighted in [11] is that in such
a case all reachable markings can be reached by sequences of transitions from a
bounded language.)
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Proof of Theorem 1 (decidability of PSLP).
Given N = (P, T,W ) and T ′ ⊆ T , we will construct a marked net (N ′,M ′

0)
where N ′ = (P ∪ Pnew, T ∪ Tnew,W ′) so that we will have:

(a) if LT ′ = ∅ in N (i.e., T ′ is non-live in each marking of N) then [M ′
0〉 is

semilinear and the projection of [M ′
0〉 to P is equal to N

P ;
(b) if LT ′ �= ∅, then the projection of [M ′

0〉 to P is not equal to N
P (and might

be non-semilinear).

This construction of (N ′,M ′
0) yields the required decidability proof, since we can

consider two algorithms running in parallel:

– One is the algorithm of Lemma 6 applied to (N ′,M ′
0); if it finishes with a

semilinear description of [M ′
0〉, which surely happens in the case (a), then we

can effectively check if the projection of [M ′
0〉 to P is N

P , i.e. if LT ′ = ∅. (A
projection of a semilinear set is effectively semilinear, the set-difference of two
semilinear set is also effectively semilinear [7], and checking emptiness of a
semilinear set is trivial.)

– The other algorithm generates all M ∈ N
P and for each of them checks if

there is M ′ ∈ [M ′
0〉 such that M ′�P (i.e., M ′ projected to P ) is equal to M .

It thus finds some M with the negative answer if, and only if, LT ′ �= ∅ (the
case (b)). The existence of the algorithm checking the mentioned property
for M follows from a standard extension of the decidability of reachability
(Lemma 2); for our concrete construction below this extension is not needed,
and just the claim of Lemma 2 will suffice.

The construction of (N ′,M ′
0) is illustrated in Fig. 2; we create a marked net that

first generates an element of DT ′ on the places P , and then simulates N in the
reverse mode. More concretely, we assume the ordering (p1, p2, . . . , pn) of the set
P of places in N , and compute a description of the semilinear set DT ′ ⊆ N

|P |

(by first constructing the set Max(D̂T ′); recall Proposition 3). We thus get

DT ′ = L1 ∪ L2 ∪ · · · ∪ Lm,

given by descriptions ρi, πi1, πi2, . . . , πiki
of the linear sets Li, for i = 1, 2, . . . ,m.

Remark. We choose this description of DT ′ to make clear that the construction
can be applied to any semilinear set, not only to a downward closed one.

The construction of (N ′,M ′
0), where N ′ = (P ∪ Pnew, T ∪ Tnew,W ′), is now

described in detail:

1. Given N = (P, T,W ), create the “reversed” net Nrev = (P, T,Wrev), where
Wrev(p, t) = W (t, p) and Wrev(t, p) = W (p, t) for all p ∈ P and t ∈ T .
(By induction on the length of u it is easy to verify that M

u−→ M ′ in N iff
M ′ urev−→ M in Nrev, where urev is defined inductively as follows: εrev = ε and
(tu)rev = urevt.)

2. To get N ′, extend Nrev as described below; we will have W ′(p, t) = Wrev(p, t)
and W ′(t, p) = Wrev(t, p) for all p ∈ P and t ∈ T .
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Fig. 2. Construction of (N ′,M ′
0) for deciding the (partial) structural liveness (PSLP)

3. Create the set Pnew of additional places

Pnew = {start, lin1, lin2, . . . , linm,revN}
and the set Tnew of additional transitions

Tnew =
⋃

i∈{1,2,...,m}{tρi
, fi, tπi1 , tπi2 , . . . , tπiki

}

(as partly depicted in Fig. 2.)
4. Put M ′

0(start) = 1 and M ′
0(p) = 0 for all other places p ∈ P ∪ Pnew.

5. For each i ∈ {1, 2, . . . ,m}, put W ′(start, tρi
) = W ′(tρi

, lini) = 1, and
W ′(tρi

, pj) = (ρi)j for all j ∈ {1, 2, . . . , n}, where (ρi)j is the j-th component
of the vector ρi ∈ N

n. (We tacitly assume that the value of W ′ is 0 for the
pairs (p, t) and (t, p) that are not mentioned.)

6. For each tπi�
(i ∈ {1, 2, . . . ,m}, � ∈ {1, 2, . . . , ki}) put W ′(lini, tπi�

) =
W ′(tπi�

, lini) = 1, and W ′(tπi�
, pj) = (πi�)j for all j ∈ {1, 2, . . . , n}.

7. For each fi put W ′(lini, fi) = W ′(fi,revN ) = 1.
8. For each transition t ∈ T in Nrev put W ′(revN , t) = W ′(t,revN ) = 1.
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In the resulting (N ′,M ′
0) we have only one token moving on Pnew; more precisely,

the set [M ′
0〉 can be expressed as the union

[M ′
0〉 = Sstart ∪ Slin1 ∪ · · · ∪ Slinm

∪ SrevN

of the disjoint sets Sp = {M | M ∈ [M ′
0〉 and M(p) = 1}, for p ∈

{start, lin1, . . . , linm,revN}. It is clear that each of the sets Sstart, Slin1 ,
. . . , Slinm

is linear, and that the projection of SrevN
to P = {p1, p2, . . . , pn} is

the set {M ∈ N
P ; [M〉 ∩ DT ′ �= ∅} where [M〉 refers to the net N .

The constructed (N ′,M ′
0) clearly satisfies the above conditions (a) and (b).

In the algorithm verifying b), it suffices to generate the markings M of N ′ that
satisfy M(revN ) = 1, M(start) = M(lin1) = · · · = M(linm) = 0, and to
check the (non)reachability from M ′

0 for each of them (recall Lemma 2).
Remark. We also have another option (than Lemma2) for establishing the

non-reachability of M from M ′
0, due to another result by Leroux (see, e.g., [10]):

namely to find a description of a semilinear set that contains M ′
0, does not

contain M , and is closed w.r.t. all steps t−→ (being thus an inductive invariant
in the terminology of [10]).

4 Additional Remarks

Sets of live markings can be non-semilinear. In Petri net theory, there are
many results that relate liveness to specific structural properties of nets. We can
name [2] as an example of a cited paper from this area. Nevertheless, the general
structural liveness problem is still not fully understood; one reason might be the
fact that the set of live markings of a given net is not semilinear in general.

We give an example. If the set LT of live markings for the net N = (P, T,W )
in Fig. 3 was semilinear, then also its intersection with the set {(x1, 0, 1, 0, 1, x6) |
x1, x6 ∈ N} would be semilinear (i.e., definable by a Presburger formula). But
is is straightforward to verify that the markings in this set are live if, and only
if, x6 > 2x1 , which makes the set clearly non-semilinear. Indeed, any marking
M where p4 is marked (forever), i.e. M(p4) ≥ 1, is clearly live, and we can get
at most 2x1 tokens in p5 as long as p4 is unmarked; if x6 ≤ 2x1 , then there
is a reachable marking where all transitions are dead, but otherwise p4 gets
necessarily marked.

Another version of liveness of a set of transitions. Given N = (P, T,W ),
we defined that a set T ′ of transitions is live in a marking M if each t ∈ T ′ is
live in M . Another option is to view T ′ as live in M if in each M ′ ∈ [M〉 at least
one t ∈ T ′ is not dead. But the problem if T ′ is live in M in this sense can be
easily reduced to the problem if a specific transition is live. (We can add a place
p̄ and a transition t̄, putting W (p̄, t̄) = 1. For each t ∈ T ′ we then add t′ and
put W (t′, p̄) = 1 and W (p, t′) = W (t′, p) = W (p, t) for each p ∈ P . Then T ′ is
live in M in the new sense iff t̄ is live in M .) The above nuances in definitions
thus make no substantial difference.
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Fig. 3. Sets of live markings can be non-semilinear

Open complexity status. We have not clarified the complexity of the (par-
tial) structural liveness problem (PSLP, SLP). The complexity of the (partial)
liveness problem (PLP, LP) is “close” to the complexity of the reachability
problem RP (as follows already by the constructions in [8]), but it seems nat-
ural to expect that the structural liveness problem might be easier. (E.g., the
boundedness problem, asking if [M0〉 is finite when given (N,M0), is ExpSpace-
complete, by the results of Lipton and Rackoff, but the structural boundedness
problem is polynomial; here we ask, given N , if (N,M0) is bounded for all M0,
or in the complementary way, if (N,M0) is unbounded for some M0.)
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Springer, Heidelberg (2008). 242 pp

http://dx.doi.org/10.2168/LMCS-8(3:28)2012
http://dx.doi.org/10.2168/LMCS-8(3:28)2012
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1109/SWAT.1974.28
http://dx.doi.org/10.1109/SWAT.1974.28
http://www.easychair.org/publications/?page=1673703727
http://dx.doi.org/10.1109/LICS.2013.7
http://dx.doi.org/10.1109/LICS.2013.7
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1137/0213029


Distributed Network Generation
Based on Preferential Attachment in ABS

Keyvan Azadbakht(B), Nikolaos Bezirgiannis, and Frank S. de Boer

Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
{k.azadbakht,n.bezirgiannis,f.s.de.boer}@cwi.nl

Abstract. Generation of social networks using Preferential Attachment
(PA) mechanism is proposed in the Barabasi-Albert model. In this mech-
anism, new nodes are introduced to the network sequentially and they
attach to the existing nodes preferentially where the preference can be
based on the degree of the existing nodes. PA is a classical model with a
natural intuition, great explanatory power and interesting mathematical
properties. Some of these properties only appear in large-scale networks.
However generation of such extra-large networks can be challenging
due to memory limitations. In this paper, we investigate a distributed-
memory approach for PA-based network generation which is scalable and
which avoids low-level synchronization mechanisms thanks to utilizing a
powerful programming model and proper programming constructs.

Keywords: Distributed programming · Social network · Preferential
Attachment · Actor model · Synchronization

1 Introduction

Social networks appear in many domains, e.g., communication, friendship, and
citation networks. These networks are different from random networks as they
demonstrate structural features like power-law degree distribution. There exist
certain models which generate artificial graphs that preserve the properties of
real world networks (e.g., [1–3]), among which Barabasi-Albert model of scale-
free networks, which is based on Preferential Attachment (PA) [3], is one of the
most widely-used ones, mainly because of its natural intuition, great explanatory
power and simple mechanism [4].

Generating network based on PA is inherently a sequential task as there is a
sequence among the nodes in terms of their addition to the network. The nodes
are added preferentially to the graph. The preference is the node degrees in the
graph, i.e., the higher a node degree, the higher probability with which the new
node makes connection.

Massive networks are structurally different from small networks synthesized
by the same algorithm. Furthermore there are many patterns that emerge only
in massive networks [5]. Analysis of such networks is also of importance in many
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areas, e.g. data-mining, network sciences, physics, and social sciences [6]. Never-
theless, generation of such extra-large networks necessitates an extra-large mem-
ory in a single server in the centralized algorithms.

The major challenge is generating large-scale social networks utiliz-
ing distributed-memory approaches where the graph, generated by multiple
processes, is distributed among multiple corresponding memories. Few exist-
ing methods are based on a distributed implementation of the PA model among
which some methods are based on a version of the PA model which does not fully
capture its main characteristics. In contrast, we aim for a distributed solution
which follows the original PA model, i.e., preserving the same probability distri-
bution as the sequential one. The main challenge of a faithful distributed version
of PA is to manage the complexity of the communication and synchronization
involved.

In a distributed version, finding a target node in order for the new node to
make connection with may cause an unresolved dependency, i.e., the target itself
is not yet resolved. However this kind of dependencies must be preserved and the
to-be-resolved target will be utilized when it is resolved. How to preserve these
dependencies and their utilization give rise to low-level explicit management of
the dependencies or, by means of powerful programming constructs, high-level
implicit management of them.

The main contribution of this paper is a new scalable distributed implemen-
tation of an ABS (Abstract Behavioral Specification) [7] model of PA. The ABS
language is a high-level actor-based executable modeling language which is tai-
lored towards modeling distributed applications and which supports a variety of
tool-supported techniques for, e.g., verification [8] and resource analysis [9]. In
this paper, we show that ABS also can be used as a powerful programming lan-
guage for efficient implementation of cloud-based distributed applications. The
underlying runtime system and compiler are written in the Haskell language
integrating the Cloud Haskell API [10].

The paper is organized as follows: The description of ABS language and
its Haskell backend is given in Sect. 2. Section 3 elaborates on the high-level
proposed distributed algorithm using the notion of cooperative scheduling and
futures. In Sect. 4, implementation-specific details and experimental results are
presented. Finally, Sect. 5 concludes the paper.

Related Work. Efficient implementation of PA model has been investigated in,
e.g., [4,11–15]. Some of these works still focus on the sequential approach (e.g.,
[4,11,12]). The main proposal of such methods is to adopt data structures which
improve time and memory complexity. There are also parallel and distributed
proposals: [13,14] do not fully capture the main properties expected in the orig-
inal model of graph generation; [15] also requires complex synchronization and
communication management.

Our work was inspired by the work in [15] where a low-level distributed
implementation of PA is given in MPI: the implementation code remains
closed source (even after contacting the authors) and, as such, we cannot
validate their presented results (e.g., there are certain glitches in their weak
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scaling demonstration), nor compare them to our own implementation. Since
efficient implementation of PA is an important and challenging topic, further
research is called for. Moreover, our experimental data are based on a high-level
model of the PA which abstracts from low-level management of process queues
and corresponding synchronization mechanism as used in [15].

In [16] a high-level distributed model of the PA in ABS has been presented
together with a high-level description of its possible implementation in Java.
However, as we argue in Sect. 4, certain features of ABS pose serious problems
to an efficient distributed implementation in Java. In this paper, we show that
these problems can be solved by a runtime system for ABS in Haskell and a cor-
responding source-to-source translation. We do so by providing an experimental
validation of a scalable distributed implementation based on Haskell.

2 ABS: The Modeling Framework

The Abstract Behavioral Specification language (ABS for short) [7] is a modeling
language for concurrent systems. Its formal operational semantics permit the
analysis [9], and verification [8] of complex concurrent models. Moreover, the
ABS language is executable which means the user can generate executable code
and integrate it to production—currently backends have been written to target
Java, Erlang and Haskell [17] and ProActive [18] software.

ABS at its core is a purely functional programming language, with support for
pure functions (functions that disallow side-effects), parametrically polymorphic
algebraic datatypes (e.g. Maybe<A>) and pattern matching over those types. At
the outside sits the imperative layer of the language with the Java-reminiscing
class, interface, method and attribute definitions. Unlike Java, the objects in ABS
are typed exclusively by interface with the usual nominal subtyping relations—
ABS does not provide any means for class (code) inheritance. It also attributes
the notion of concurrent object group, which is essentially a group of objects
which share control [7]. Note that a complement to this notion where the active
objects share the data, i.e., the message queue, instead of control is studied
in [19].

Besides the common synchronous method calls to passive objects o.m(ē),
ABS introduces the notion of concurrent objects (also known as active objects).
These concurrent objects interact primarily via asynchronous method invoca-
tions and futures. An asynchronous method invocation is of the form f = o!m(ē),
where f is a future used as a reference to the return value of the asynchronous
method call m. The method call itself will generate a process which is stored in
the process queue of the callee object of the call. Futures can be passed around
and can be queried for the value they contain. The query r = f.get blocks the exe-
cution of the active object until the future f is resolved, and returns its value. On
the other hand, the statementawait f? additionally releases control. This allows
for scheduling of another process of the same active object and as such gives rise
to the notion of cooperative scheduling : releasing the control cooperatively so
another enabled process can be (re)activated. ABS provides two other forms of
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releasing control: the await b statement which will only re-activate the process
when the given boolean condition b becomes true (e.g. await this.field==3),
and the suspend statement which will unconditionally release control to the
active object. Note that the ABS language specification does not fix a particular
scheduling strategy for the process queue of active objects as the ABS analysis
and verification tools will explore many (if all) schedulability options; however,
ABS backends commonly implement such process queues with FIFO ordering.

Since we are interested in the implementation of a distributed ABS model, we
utilize the cloud extension to the ABS standard language, as implemented in [17].
This extension introduces the Deployment Component (DC), which abstracts
over the resources for which the ABS program gets to run on. In the simplest
case, the DC corresponds to a Cloud Virtual Machine executing some ABS
code, though this could be extended to include other technologies as well (e.g.
containers, microkernels). The DC, being a first class citizen of the language, can
be created (DC dc1 = new AmazonDC(cpuSpec,memSpec)) and called for (dc1 !
shutdown()) as any other ABS concurrent object. The DC interface tries to stay
as abstract as possible by declaring only two methods shutdown to stop the DC
from executing ABS code while freeing its resources, and load to query the
utilization of the DC machine (e.g. UNIX load). Concrete class implementations
to the DC interface are (cloud) machine provider specific and thus may define
further specification (cpu, memory, or network type) or behaviour.

Initially, the Deployment Component will remain idle until some ABS code
is assigned to it by creating a new object inside using the expression o = [DC:
dc1] new Class(...), where o is a so-called remote object reference. Such refer-
ences are indistinguishable to local object references and can be normally passed
around or called for their methods. The ABS language specification and its cloud
extension do not dictate a particular Garbage Collection policy, but we assume
that holding a reference to a remote object or future means that the object is
alive, if its DC is alive as well.

3 Distributed PA

In this section, we present a high-level distributed solution for PA which is
similar to the ones proposed for multicore architectures in [20] and distributed
architectures in [15,16], in a sense that they adopt copy model introduced in [21]
to represent the graph. To this aim, the description of the main data structure
used to model the graph which represents the social network is given. Next we
present the basic synchronization and communication mechanism underlying our
approach and its advantages over existing solutions.

3.1 Array Representation of the Network Graph

In this paper, the social network is represented by the notion of graph, where
the members of the network are the nodes and the connection between them are
the edges. Generating a network based on Preferential Attachment is realized
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by means of adding new nodes to the network preferentially. The preference
is usually the degree of the nodes, that is, the higher the degree of a node, the
higher probability that it makes connection with the new node. We assume there
is a sequence between the nodes to be added to the network starting from 1 to
n, each of which makes m connections with the nodes in the existing graph. It
implies that the initial state is a complete graph composed of the nodes 1 to
m + 1. m is usually a small number.

Suppose node u ∈ [m + 2, n] is going to be attached to the existing graph
with the nodes [1, u− 1]. It is done by randomly selecting m distinct nodes from
1, ..., u − 1, so that the probability of each node to be selected is proportional to
its degree (to follow the PA model), that is, respectively [p1, ..., pu−1] where

pi =
degree(i)

∑u−1
j=1 degree(j)

u−1∑

i=1

pi = 1

Figure 1 illustrates the array representation of the graph. Given the number
of nodes n and the number of connections per node m, the size of the array is
known. As shown, 2m slots are allocated for the edges sourcing from a node, u
(in the figure, m = 3). The targets of u, represented by question mark (or later
in implementation with 0 ), are determined from the slots representing the edges
sourcing from the nodes [1, u − 1] which are located previous to the node u. In
order to generate the graph based on PA, the unresolved slots are resolved by
randomly selecting the slots previous to the current node. The obtained values
are then written as the targets of the current node, provided that there is no
conflict between them. In case of conflict, the algorithm simply retries until all
the targets are distinct for a specific node.

Fig. 1. The array representation of social network graph

The above-mentioned probability distribution is naturally applied through
randomly selecting the slots with a uniform chance, since the number of slots
keeping the value of a node is equal to its degree.

The sequential algorithm is fairly straightforward and the unresolved slots
of the array are resolved from left to right. The distributed algorithms however
introduce more challenges. First of all, the global array should be distributed over
multiple machines as local arrays. The indices of the global array are also mapped
to the ones in the local arrays according to the partitioning policy. Secondly,
there is the challenge of unresolved dependencies, the one marked by e in Fig. 2,
a kind of dependency where the target itself is not resolved yet since either
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Fig. 2. Dependency and computation directions in the array

the process responsible for the target has not processed the target slot yet or
the target slot itself is dependent on another target slot (chain of dependencies).
Synchronization between the processes to deal with the unresolved dependencies
is the main focus of this paper.

3.2 The Distributed ABS Model of PA

Two approaches are represented in Fig. 3 which illustrate two different schemes
of dealing with the unresolved dependencies in a distributed setting. In order to
remain consistent with the original PA, both schemes must keep the unresolved
dependencies and use the value of the target when it is resolved. Scheme A
(used in [15]) utilizes message passing. If the target is not resolved yet, actor b
explicitly stores the request in a data structure until the corresponding slot is
resolved. Then it communicates the value with actor a. Actor b must also make
sure the data structure remains consistent (e.g., it does not contain a request
for a slot which is already responded).

In addition to message passing, scheme B utilizes the notion of cooperative
scheduling. Instead of having an explicit data structure, scheme B simply uses
the await statement on (target �= 0). It suspends the request process until the
target is resolved. The value is then communicated through the return value
to actor a. The above-mentioned await construct eliminates the need for an
explicit synchronization of the requests. The following section describes an ABS
implementation of the scheme B and presents the performance results.

An ABS-like pseudo code which represents scheme B in the above section is
given in Fig. 4. The main body of the program, which is not mentioned in the
figure, is responsible to set up the actors by determining their partitions, and
sending them other parameters of the problem, e.g., n and m. Each actor then
processes its own partition via run method. The function whichActor returns
the index of the actor containing the target slot. The request for the slot is then
sent asynchronously to the actor and the future variable is sent as a parameter to
the delegate function where the future value is obtained and checked for conflict.
If there is no conflict, i.e., the new target is not previously taken by the source,
then the slot is written with the target value. The request method is responsible
to map the global index of the target to the local index via whichLocal function
and await on it and returns the value once the slot is resolved.
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(a) Simple message passing

(b) Message passing with futures and cooperative scheduling

Fig. 3. The process of dealing with unresolved dependencies in an actor-based distrib-
uted setting

4 Implementation

The distributed algorithm of Fig. 4 is implemented directly in ABS, which is sub-
sequently translated to Haskell code, by utilizing the ABS-Haskell [17] transcom-
piler (source-to-source compiler). The translated Haskell code is then linked
against a Haskell-written parallel and distributed runtime API. Finally, the
linked code is compiled by a Haskell compiler (normally, GHC) down to native
code and executed directly.

The parallel runtime treats ABS active objects as Haskell’s lightweight
threads (also known as green threads), each listening to its own concurrently-
modifiable process queue: a method activation pushes a new continuation to
the end of the callee’s process queue. Processes awaiting on futures are light-
weight threads that will push back their continuation when the future is resolved;
processes awaiting on boolean conditions are continuations which will be put
back to the queue when their condition is met. The parallel runtime strives
to avoid busy-wait polling both for futures by employing the underlying OS
asynchronous event notification system (e.g. epoll, kqueue), and for booleans by
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1: Each actor O executes the following in parallel
2: Unit run(...)
3: for each node i in the partition do
4: for j = 2 to 2m do j = j + 2 step
5: target ← random[1..(i − 1) ∗ 2m]
6: current = (i − 1) ∗ 2m + j
7: x = whichActor(target)
8: Fut < Int > f = actor[x]! request(target)
9: this! delegate(f, current)

10:
11:
12: Int request(Int target)
13: localTarget = whichSlot(target)
14: await (arr[localTarget] = 0)
15: At this point the target is resolved
16: return arr[localTarget]
17:
18:
19: Unit delegate(Fut < Int > f, Int current) :
20: await f?
21: value = f.get
22: localCurrent = whichSlot(current)
23: if duplicate(value, localCurrent) then
24: target = random[1..current/(2m) ∗ 2m]
25: Calculate the target for the current again
26: x = whichActor(target)
27: Fut < Int > f = actor[x]! request(target)
28: this. delegate(f, current)
29: else
30: arr[localCurrent] = value Resolved

31:
32:
33: boolean duplicate(Int value, Int localCurrent)
34: for each i in (indices of the node to which localCurrent belongs) do
35: if arr[i] == value then
36: return True
37: return False

Fig. 4. The sketch of the proposed approach

retrying the continuations that have part of its condition modified (by mutating
fields) since the last release point.

For the distributed runtime we rely on Cloud Haskell [10], a library frame-
work that tries to port Erlang’s distribution model to the Haskell language
while adding type-safety to messages. Cloud Haskell code is employed for remote
method activation and future resolution: the library provides us means to seri-
alize a remote method call to its arguments plus a static (known at compile
time) pointer to the method code. No actual code is ever transferred; the active
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objects are serialized to unique among the whole network identifiers and futures
to unique identifiers to the caller object (simply a counter). The serialized data,
together with their types, are then transferred through a network transport layer
(TCP, CCI, ZeroMQ); we opted for TCP/IP, since it is well-established and eas-
ier to debug. The data are de-serialized on the other end: a de-serialized method
call corresponds to a continuation which will be pushed to the end of the process
queue of the callee object, whereas a de-serialized future value will wake up all
processes of the object awaiting on that particular future.

The creation of Deployment Components is done under the hood by con-
tacting the corresponding (cloud) platform provider to allocate a new machine,
usually done through a REST API. The executable is compiled once and placed
on each created machine which is automatically started as the 1st user process
after kernel initialization of the VM has completed.

The choice of Haskell was made mainly for two reasons: the ABS-Haskell
backend seems to be currently the fastest in terms of speed and memory use,
attributed perhaps to the close match of the two languages in terms of language
features: Haskell is also a high-level, statically-typed, purely functional language.
Secondly, compared to the distributed implementation sketched in Java [16], the
ABS-Haskell runtime utilizes the support of Haskell’s lightweight threads and
first-class continuations to efficiently implement multicore-enabled cooperative
scheduling; Java does not have built-in language support for algebraic datatypes,
continuations and its system OS threads (heavyweight) makes it a less ideal
candidate to implement cooperative scheduling in a straightforward manner.
On the distributed side, layering our solution on top of Java RMI (Remote
Method Invocation) framework was decided against for lack of built-in support
for asynchronous remote method calls and superfluous features to our needs,
such as code-transfer and fully-distributed garbage collection.

4.1 Implementing Delegation

The distributed algorithm described in Sect. 3 uses the concept of a delegate for
asynchronicity: when the worker actor demands a particular slot of the graph
array, it will spawn asynchronously an extra delegate process (line 9) that will
only execute when the requested slot becomes available. This execution scheme
may be sufficient for preemptive scheduling concurrency (with some safe lock-
ing on the active object’s fields), since every delegate process gets a fair time
slice to execute; however, in cooperative scheduling concurrency, the described
scheme yields sub-optimal results for sufficient large graph arrays. Specifically,
the worker actor traverses its partition from left to right (line 3), spawning con-
tinuously a new delegate in every step; all these delegates cannot execute until
the worker actor has released control, which happens upon reaching the end of
its run method (finished traversing the partition). Although at first it may seem
that the worker actors do operate in parallel to each other, the accumulating del-
egates are a space leak that puts pressure on the Garbage Collector and, most
importantly, delays execution by traversing the partitioned arrays “twice”, one
for the creation of delegates and one for “consuming them”.
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A naive solution to this space leak is to change lines 8, 9 to a synchronous
instead method call (i.e. this.delegate(f, current)). However, a new prob-
lem arises where each worker actors (and thus its CPU) continually blocks wait-
ing on the network result of the request. This intensely sequentializes the code
and defeats the purpose of distributing the workload, since most processors are
idling on network communication. The intuition is that modern CPUs operate
in much larger speeds than commodity network technologies. To put it differ-
ently, the worker’s main calculation is much faster than the round-trip time of a
request method call to a remote worker. Theoretically, a synchronous approach
could only work in a parallel setting where the workers are homogeneous proces-
sors and requests are exchanged through shared memory with memory speed
near that of the CPU processor. This hypothesis requires further investigation.

We opted instead for a middle-ground, where we allow a window size of del-
egate processes: the worker process continues to create delegate processes until
their number reaches the upper bound of the window size; thereafter the worker
process releases control so the delegates have a chance to execute. When only
the number of alive delegate processes falls under the window’s lower bound,
the worker process is allowed to resume execution. This algorithmic description
can be straightforwardly implemented in ABS with boolean awaiting and a inte-
ger counter field (named this.aliveDelegates). The modification of the run is
shown in Fig. 5; Similarly the delegate method must be modified to decrease
the aliveDelegates counter when the method exits.

Interestingly, the size of the window is dependent on the CPU/Network speed
ratio, and the Preferential Attachment model parameters: nodes (n) and degree
(d). We empirically tested and used a fixed window size of [500, 2000]. Finding
the optimal window size that keeps the CPUs busy while not leaking memory
by keeping too much delegates alive, for a specific setup (cpu, network, n, d) is
planned for future work.

1: Unit run(...)
2: for each node i in the partition do
3: for j = 2 to 2m do j = j + 2 step
4: target ← random[1..(i − 1) ∗ 2m]
5: current = (i − 1) ∗ 2m + j
6: x = whichActor(target)
7: Fut < Int > f = actor[x]! request(target)
8: aliveDelegates = aliveDelegates + 1
9: this! delegate(f, current)

10: if aliveDelegates == maxBoundWindow then
11: await aliveDelegates <= minBoundWindow

Fig. 5. The modified run method with window of delegates.
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4.2 Experimental Results

We ran the ABS-Haskell implementation of the PA algorithm by varying the
graph size, on a distributed cloud environment kindly provided by the SURF
foundation. The hardware consisted of identical virtual machines interconnected
over a 10 Gbps ethernet network; each Virtual Machine (VM) was a single-core
Intel Xeon E5-2698, 16 GB RAM running Ubuntu 14.04 Server edition. The
runtime execution results are shown in Fig. 6; the execution time decreases while
we add more VMs to the distributed system, which suggests that the distributed
algorithm scales. However, still with 8 Virtual Machines the implementation
cannot “beat” the execution time of 1 VM running PA sequentially; to achieve
this we may need to include more VMs. The reason for this can be attributed to
the significant communication overhead, since each worker will send a network
packet for every request call made.

On the other hand, the memory consumption (Table 1) is more promising:
a larger distributed system requires less memory per VM. For example with
the largest tested graph size, a distributed system of 8 VMs requires approx.
2.5 times less memory per VM than a local system. This allows the generation
of much larger PA graphs than would otherwise fit in a single machine, since
the graph utilizes and is “distributed” over multiple memory locations. Finally,
the repository at http://github.com/abstools/distributed-PA contains the ABS
code for PA and instructions for installing the ABS-Haskell backend.

(a) (b)

(c) (d)

Fig. 6. Performance results of the distributed PA in ABS-Haskell for graphs of n = 106

nodes with degree d = (a) 3, (b) 10 and n = 107 nodes with degree d = (c) 3, (d) 10.

http://github.com/abstools/distributed-PA
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Table 1. Maximum memory residency (in MB) per Virtual Machine.

Graph size Total number of VMs

1 2 4 8

n = 106, d = 3 306 423 313 229

n = 106, d = 10 899 1058 644 411

n = 107, d = 3 1943 2859 1566 874

n = 107, d = 10 6380 9398 4939 2561

5 Conclusion and Future Work

In this paper, we have presented a scalable, high-level distributed-memory
algorithm that implements synthesizing artificial graphs based on Preferen-
tial Attachment mechanism. The algorithm avoids low-level synchronization
complexities thanks to ABS, an actor-based modeling framework, and its pro-
gramming abstractions which support cooperative scheduling. The experimental
results suggest that the implementation scales with the size of the distributed
system, both in time but more profoundly in memory, a fact that permits the
generation of PA graphs that cannot fit in memory of a single system.

For future work, we are considering combining multiple request messages in
a single TCP segment; this change would increase the overall execution speed by
having a smaller overhead of the TCP headers and thus less network communica-
tion between VMs, and better network bandwidth. In another (orthogonal) direc-
tion, we could utilize the many cores of each VM to have a parallel-distributed
hybrid implementation in ABS-Haskell for faster PA graph generation.
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Abstract. The general completeness problem of Hoare logic relative to
the standard model N of Peano arithmetic has been studied by Cook,
and it allows for the use of arbitrary arithmetical formulas as assertions.
In practice, the assertions would be simple arithmetical formulas, e.g.
of a low level in the arithmetical hierarchy. This paper further studies
the completeness of Hoare Logic relative to N with assertions restricted
to subclasses of arithmetical formulas. Our completeness results refine
Cook’s result by reducing the complexity of the assertion theory.
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The standard model · Relative completeness

1 Introduction

Hoare logic, first introduced by Hoare [1] and further studied by Cook [2] and
many other researchers, lays the foundation of program verification [3–5]. For
an introduction to Hoare logic, the reader should refer to [6–9]. Let L be the
language of Peano arithmetic PA [10], let N be the standard model of PA, and
let Th(N) be the set of all true sentences in N . Hoare logic for the set WP of
while-programs with the language L and the assertion theory T ⊂ L is denoted
HL(T ) [11]. The set {ϕ ∈ L : T � ϕ} of all theorems of T ⊂ L is denoted
Thm(T ). By Cook’s completeness theorem, it follows that Th(N) is the only
extension T of PA such that HL(T ) is complete relative to N : for any p, q ∈ L
and S ∈ WP , if N |= {p}S{q} then HL(Th(N)) � {p}S{q}; for any T ′ ⊇ PA
with Thm(T ′) � Th(N) (note that Thm(PA) � Th(N) follows from Gödel’s
incompleteness theorem), there exist p, q ∈ L and S ∈ WP such that N |=
{p}S{q} but HL(T ′) �� {p}S{q}. Note that Th(N) is not recursively enumerable,
and even not arithmetical [12, Lemma 17.3]. That Th(N) is the only extension
of PA for this completeness result to hold is due to the fact that it allows for the
use of arbitrary arithmetical formulas as pre- and postconditions. In practice,
the pre- and postconditions would be simple arithmetical formulas, e.g. of a
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 119–131, 2017.
DOI: 10.1007/978-3-319-51963-0 10
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low level in the arithmetical hierarchy [13, Chap. IV]. The set {true, false} of
logical constants true and false is denoted Cnt. Apt’s survey paper [6, p. 437]
has shown that, for no recursively enumerable extension T of PA, can HL(T )
derive all true Hoare’s triples with pre- and postconditions restricted to Cnt.
A natural question is whether there exists an arithmetical extension T of PA
such that HL(T ) derives all true Hoare’s triples with pre- and postconditions
restricted to Cnt. Furthermore, we shall investigate the completeness of Hoare
logic relative to N with pre- and postconditions restricted to the arithmetical
hierarchy.

The rest of this paper is organized as follows: the related work is given in
Sect. 2; the basic preliminary results are presented in Sect. 3; completeness of
HL(T ) with pre- and postconditions restricted to Cnt is given in Sect. 4; com-
pleteness of HL(T ) with pre- and postconditions restricted to the arithmetical
hierarchy is shown in Sect. 5; Sect. 6 concludes the paper.

2 Related Work

We call a set of assertions A complete w.r.t. a class of programs C if for any
p, q ∈ A and S ∈ C, whenever {p}S{q} holds, then all intermediate assertions
can be chosen from A. Apt et al. [14] studied the problem which sets of assertions
are complete in the above sense. They have shown that Σ1 is complete w.r.t.
WP ; Δ1 is not complete w.r.t. WP ; and by allowing the use of an ‘auxiliary’
coordinate, Δ1 is complete w.r.t. WP .

Clarke [15] exhibited programming language structures for which Hoare logic
is not complete relative to the finite structures, and observed that if a program-
ming language possesses a relatively complete Hoare logic for partial correct-
ness (relative to the finite structures) then the halting problem for finite inter-
pretations must be decidable (Clarke’s Observation). Lipton [16], Clarke et al.
[17], and Grabowski [18] investigated under what circumstances the converse of
Clarke’s Observation holds. For the detailed relationship among their results,
the reader refers to the Introduction of [18]. Note that their completeness results
hold under the assumption that the halting problem for finite interpretations
is decidable, whereas ours holds relative to the fixed structure N ; and their
axiom systems for Hoare logic are determined by the decision (or enumeration)
procedures, while ours is given by Cook [2].

Bergstra and Tucker [19] studied the logical completeness of Hoare logic with
nonstandard inputs: Th(N) is the only extension T of PA such that HL(T ) is
logically complete. Xu et al. [20] studied the logical completeness of Hoare logic
without nonstandard inputs: PA+ (cf. Definition 4.2.1) is the minimal extension
T of PA such that HL(T ) is logically complete when inputs range over N . To
establish this completeness result, the technical line of reducing from HL(T ) to
T (cf. Subsect. 3.3) has been adopted, which will also be followed in this paper.
Kozen and Tiuryn [21] investigated the completeness of propositional Hoare logic
with assertions and programs abstracted to propositional symbols.
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3 Preliminaries

First some notations are introduced: in syntax, we write ¬, ∧, ∨, →, ↔, ∀,
∃ to denote the negation, conjunction, disjunction, conditional, biconditional
connectives and the universal, existential quantifiers; in semantics, we write ∼,
&, |, ⇒, ⇔, A, E to denote the corresponding connectives and quantifiers.

3.1 Peano Arithmetic

Let Σ = {0, 1,+, ·, <} be the signature of L. For simplicity, the sum of 1 with
itself n times is abbreviated n. We use n to denote both a closed term and a
natural number, and use M to denote both a model and its domain. Besides
the standard model N , PA has nonstandard models. From PA, one can deduce
the least-number principle ∃x ϕ(x,y) → ∃z(ϕ(z,y) ∧ ∀u < z ¬ϕ(u,y)), where
ϕ(x,y) ∈ L.

Generalized Σn-formulas and generalized Πn-formulas of L are defined as
follows: a generalized Σ0-formula (or a generalized Π0-formula) is a formula
built up from atomic formulas using only negation, conjunction, disjunction,
and bounded quantifications ∀x < t and ∃x < t, where t is a term of L; a
generalized Σn+1-formula is a formula obtainable from generalized Πn-formulas
by conjunction, disjunction, bounded quantifications, and unbounded existen-
tial quantification; a generalized Πn+1-formula is a formula obtainable from
generalized Σn-formulas by conjunction, disjunction, bounded quantifications
and unbounded universal quantification. Σn-formulas and Πn-formulas of L are
defined as follows: a Σ0-formula (or a Π0-formula) is a generalized Σ0-formula;
a Σn+1-formula is a formula of the form ∃x ψ with ψ being a Πn-formula; a
Πn+1-formula is a formula of the form ∀x ψ with ψ being a Σn-formula. The
set of all Σn-formulas is denoted Σn, and similarly for Πn. Σn-sentences are
Σn-formulas without free variables, and similarly for Πn-sentences. The set of
all true Σn-sentences in N is denoted TrN (Σn), and similarly for TrN (Πn).

It holds, in PA, that every generalized Σn-formula (resp. generalized Πn-
formula) is logically equivalent to a Σn-formula (resp. Πn-formula) [13, Chap.
IV]. For the membership relation ∈, besides the standard meaning, we sometimes
adopt a nonstandard meaning: by ϕ ∈ A (the nonstandard meaning) is meant
that there exists ψ ∈ A (the standard meaning) such that PA � ϕ ↔ ψ. Only
when the standard meaning of ∈ is inapplicable, can the nonstandard meaning
be adopted. The reader should keep this in mind. Then ϕ ∈ Σn implies ¬ϕ ∈ Πn,
and ϕ ∈ Πn implies ¬ϕ ∈ Σn. Both Σn and Πn are closed under conjunction
and disjunction. For any i ≥ 0, Σi,Πi ⊂ Σi+1,Πi+1, and Σi � Πi, Πi � Σi. For
the truth of these results, the reader refers to [13, Chap. IV].

We say that a set of natural numbers is Σn (resp. Πn) if it is arithmetically
definable (or arithmetical for short) by a Σn-formula (resp. by a Πn-formula); a
set of natural numbers is Δn if it is both Σn and Πn. Note that a set of natural
numbers is recursively enumerable (or r.e. for short) iff it is Σ1, and that a set
of natural numbers is recursive iff it is Δ1 [12, Sect. 7.2]. Theorem 16.13 in [12]
says that for all Σ1-sentences ϕ, N |= ϕ iff PA � ϕ. Let �ϕ� be a fixed Gödel’s
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numbering function [12, Chap. 15]. By arithmetical definability of the theory
T ⊂ L is meant that the set {�ϕ� : ϕ ∈ T} of natural numbers is arithmetical.
Gödel’s diagonal lemma [12, Lemma 17.1] says that for any T ⊇ PA and any
ϕ(x) ∈ L there is a sentence G ∈ L such that T � G ↔ ϕ(�G�).

3.2 Hoare Logic

Based on the language L, together with the program constructs { :=, ;, if , then,
else, fi, while, do, od }, a while-program S is defined by S ::= x := E | S1;S2 |
if B then S1 else S2 fi | while B do S0 od, where an expression E is defined
by E ::= 0 | 1 | x | E1 + E2 | E1 · E2, and a boolean expression B is defined by
B ::= E1 < E2 | ¬B1 | B1 → B2. The set of all such while-programs is denoted
WP . The set of all assignment programs x := E is denoted AP . For S ∈ WP , the
vector (x1, x2, . . . , xm) of all m program variables x1, x2, . . . , xm occurring in S
will be denoted x; the vector (n1, n2, . . . , nm) of m natural numbers n1, n2, . . . ,
nm ∈ N will be denoted n; the connectives will be assumed to distribute over
the components of the vectors (for instance, n ∈ N means n1, n2, . . . , nm ∈ N ,
and x = n means

∧m
i=1 xi = ni). Let the program variables considered below

occur among x, the vector of all program variables of the target program. For
a model M of L, let v be an assignment over M for all the first order variables
(including x), let v(x) be the vector of elements of M assigned to x at v, and
let v(a/x) be an assignment as v except that v(a/x)(x) = a.

For any S ∈ WP and any model M of L, the input-output relation RM
S of S

in M is a binary relation on the set of all assignments over M defined as follows:

– (v, v′) ∈ RM
x:=E ⇔ v′ = v(EM,v/x), where EM,v receives the standard mean-

ing;
– (v, v′) ∈ RM

S1;S2
⇔ (v, v′) ∈ RM

S1
◦RM

S2
, where (z, z′) ∈ R1 ◦R2 ⇔ Ez′′((z, z′′) ∈

R1 & (z′′, z′) ∈ R2);
– (v, v′) ∈ RM

if B then S1 else S2 fi ⇔ M,v |= B & (v, v′) ∈ RM
S1

| M,v �|= B &
(v, v′) ∈ RM

S2
;

– (v, v′) ∈ RM
while B do S0 od ⇔ Ei ∈ N , Ea0, . . . ,ai ∈ M (v(x) = a0 & Aj <

i(M,v(aj/x) |= B & (v(aj/x), v(aj+1/x)) ∈ RM
S0

) & v′ = v(ai/x) & M,v′ �|=
B).

Given S ∈ WP and a model M of L, RM
S defines in M a vectorial func-

tion y = fM
S (x) such that for every a, b ∈ M , fM

S (a) = b iff Ev, v′(v(x) =
a & v′(x) = b & (v, v′) ∈ RM

S ). Given a model M of L and an asserted pro-
gram {p}S{q}, {p}S{q} is satisfied at M , denoted M |= {p}S{q}, iff Av[M,v |=
p ⇒ Av′((v, v′) ∈ RM

S ⇒ M,v′ |= q)]. Given a theory T ⊂ L and an asserted
program {p}S{q}, {p}S{q} is satisfied at T , denoted HL(T ) |= {p}S{q}, iff
AM(M |= T ⇒ M |= {p}S{q}). HL(T ) has the usual axiom system [11]; the
derivability of {p}S{q} in HL(T ) is denoted HL(T ) � {p}S{q}. By the logi-
cal completeness of HL(T ) we mean that for all asserted programs {p}S{q},
HL(T ) � {p}S{q} iff HL(T ) |= {p}S{q}. We say that HL(T ) is logically com-
plete when inputs range over N if for every S ∈ WP with program variables x,
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every p, q ∈ L (p, q could contain other first-order variables than those in x),
and every n ∈ N , HL(T ) � {p ∧ x = n}S{q} iff HL(T ) |= {p ∧ x = n}S{q}.

Let P and Q denote respectively the levels of choices of preconditions and
postconditions (i.e. Cnt or Σi, Πi, i ≥ 0), and let R denote the sets of programs
(i.e. AP or WP ). The completeness of HL(T ) relative to N for {P}R{Q} is
defined as follows.

Definition 3.2.1. HL(T ) is complete relative to N for {P}R{Q} if for any
p ∈ P , S ∈ R, and q ∈ Q, N |= {p}S{q} implies HL(T ) � {p}S{q}.

3.3 Reduction from HL(T ) to T

Let 〈x, y〉, L(z) and R(z) be the pairing functions with 〈L(z), R(z)〉 = z,
L(〈x, y〉) = x and R(〈x, y〉) = y [22, Theorem 2.1]. For notational convenience,
we denote (L(z), R(z)) by z. The functions 〈x, y〉 and z can be extended to
n-tuples (for each n ∈ N) by setting 〈x1, x2, . . . , xn〉 = 〈x1, 〈x2, . . . , xn〉〉 and
〈x1, x2, . . . , xn〉 = (x1, 〈x2, . . . , xn〉). Let (x)i be Gödel’s β-function such that
for each finite sequence a0, a1, . . . , an of natural numbers, there exists a natural
number w such that (w)i = ai for all i ≤ n [22, Theorem 2.4]. Note that the
graph relations of these functions are all Σ1.

Definition 3.3.1 (The definition of αS , cf. [20, Definition 3.1.1]). For every S ∈
WP with program variables x, the generalized Σ1-formula αS(x,y) ∈ L, where
y = (y1, y2, . . . , ym) is disjoint from x = (x1, x2, . . . , xm), is defined inductively
as follows.

Assignment: S ≡ xi := E

αS(x,y) ::= yi = E(x) ∧
j �=i∧

1≤j≤m

yj = xj ;

Composition: S ≡ S1;S2

αS(x,y) ::= ∃z(αS1(x,z/y) ∧ αS2(z/x,y));

Conditional: S ≡ if B then S1 else S2 fi

αS(x,y) ::= (B(x) ∧ αS1(x,y)) ∨ (¬B(x) ∧ αS2(x,y));

Iteration: S ≡ while B do S0 od. We first let

AS(i, w,x,y) ::= x = (w)0 ∧ ∀j < i(B((w)j/x)

∧ αS0((w)j/x, (w)j+1/y)) ∧ y = (w)i

then set
α∗
S(i,x,y) ::= ∃w AS(i, w,x,y)

and finally define

αS(x,y) ::= ∃i α∗
S(i,x,y) ∧ ¬B(y/x).
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Lemma 3.3.2 (Arithmetical definability of recursive functions, cf. [20, Lemma
3.1.2]). For every S ∈ WP and every a, b ∈ N , fN

S (a) = b iff N |= αS(a, b).

Theorem 3.3.3 (Reduction from HL(T ) to T , cf. [20, Theorem 3.1.3]). For
every T ⊇ PA, every p, q ∈ L and every S ∈ WP ,

HL(T ) � {p}S{q} iff T � p(x) ∧ αS(x,y) → q(y/x).

Corollary 3.3.4. HL(PA) is complete relative to N for {Cnt}AP{Cnt}.
Proof. Immediate from Definition 3.2.1 and Theorem 3.3.3. ��

4 Completeness of HL(T ) for {Cnt}WP{Cnt}
This section devotes to the completeness of HL(T ) for {Cnt}WP{Cnt}: in Sub-
sect. 4.1, a particular extension PA∗ of PA is defined and, by using PA∗, the
completeness of HL(T ) relative to N for {Cnt}WP{Cnt} is established; in Sub-
sect. 4.2, the relationship of PA∗, PA+ and PA ∪ TrN (Π1) is investigated.

4.1 Completeness of HL(T ) for {Cnt}WP{Cnt}
Lemma 4.1.1. There exists S ∈ WP such that N |= ∀x,y¬αS(x,y) and PA �

∀x,y¬αS(x,y).

Proof. Note that the set of Hoare’s triples {{true}S{false} : S ∈ WP,N |=
{true}S{false}} represents the complement of the halting problem, and hence
is not r.e. (cf. the Fact in [6, p. 437]). On the other hand, the set of Hoare’s
triples {{true}S{false} : S ∈ WP,HL(PA) � {true}S{false}} is r.e. By
soundness of Hoare logic, it follows that {{true}S{false} : S ∈ WP,HL(PA) �
{true}S{false}} � {{true}S{false} : S ∈ WP,N |= {true}S{false}}. Then
we have that there exists S ∈ WP such that N |= {true}S{false} but
HL(PA) � {true}S{false}. By Lemma 3.3.2, jointly with Theorem 3.3.3,
it follows that there exists S ∈ WP such that N |= ∀x,y¬αS(x,y) and
PA � ∀x,y¬αS(x,y). ��
Definition 4.1.2. We define PA∗ to be

PA∗ ::= PA ∪ {∀x,y¬αS(x,y) : S ∈ WP

& N |= ∀x,y¬αS(x,y) & PA � ∀x,y¬αS(x,y)}.

Proposition 4.1.3. PA∗ is Σ2.

Proof. Consider the statement ϕ ∈ PA∗ as follows: by definition of PA∗, it
is equivalent to saying that ϕ ∈ PA, or there exists S ∈ WP such that
ϕ = ∀x,y¬αS(x,y), N � ¬ϕ and PA � ϕ; since ¬∀x,y¬αS(x,y) is logically
equivalent to a Σ1-sentence, and a Σ1-sentence is true in N iff it is a theorem
of PA, it is equivalent to saying that ϕ ∈ PA, or there exists S ∈ WP such
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that ϕ = ∀x,y¬αS(x,y), ¬ϕ �∈ Thm(PA) and ϕ �∈ Thm(PA). Note that the
set {ϕ : ϕ = ∀x,y¬αS(x,y) & S ∈ WP} is Δ1 and hence Σ2. Since Thm(PA)
is Σ1, we have that the set {ϕ : ϕ �∈ Thm(PA)} is Π1 and hence Σ2, and the
set {ϕ : ¬ϕ �∈ Thm(PA)} is Π1 and hence Σ2. By closure of Σ2 under con-
junction, it follows that the set {ϕ : ϕ = ∀x,y¬αS(x,y) & S ∈ WP & ¬ϕ �∈
Thm(PA) & ϕ �∈ Thm(PA)} is Σ2. Moreover, since PA is Δ1, we have that the
set {ϕ : ϕ ∈ PA} is Σ2. By closure of Σ2 under disjunction, it follows that PA∗

is Σ2. ��
Definition 4.1.4. T ′ is the minimal extension T of PA such that the property
p(T ) of T holds if

(i) p(T ′) holds; and
(ii) for any T ′′ ⊇ PA with Thm(T ′′) � Thm(T ′), p(T ′′) doesn’t hold.

Theorem 4.1.5. PA∗ is the minimal extension T of PA such that HL(T ) is
complete relative to N for {Cnt}WP{Cnt}.
Proof. We first show that HL(PA∗) is complete relative to N for
{Cnt}WP{Cnt}. By Definition 3.2.1, we have to prove that for any p, q ∈ Cnt,
and S ∈ WP , N |= {p}S{q} implies HL(PA∗) � {p}S{q}. Let N |= {p}S{q}
with p, q ∈ Cnt and S ∈ WP . It remains to prove that HL(PA∗) � {p}S{q}.
For p ≡ false or q ≡ true, it’s easy to see that PA∗ � p(x)∧αS(x,y) → q(y/x);
by Theorem 3.3.3, it follows that HL(PA∗) � {p}S{q}. For p ≡ true and
q ≡ false, we have that N |= {true}S{false}; by Lemma 3.3.2, it follows that
N |= ∀x,y¬αS(x,y); by Definition 4.1.2, it follows that PA∗ � ∀x,y¬αS(x,y);
then PA∗ � p(x)∧αS(x,y) → q(y/x) follows; by Theorem 3.3.3, it follows that
HL(PA∗) � {p}S{q}.

We then show that for any T ⊇ PA with Thm(T ) � Thm(PA∗), HL(T )
is not complete relative to N for {Cnt}WP{Cnt}. By Definition 3.2.1, we
have to prove that for any T ⊇ PA with Thm(T ) � Thm(PA∗), there exist
p, q ∈ Cnt, and S ∈ WP such that N |= {p}S{q} but HL(T ) �� {p}S{q}.
Let T ⊇ PA with Thm(T ) � Thm(PA∗). By Definition 4.1.2, it follows that
there exists S ∈ WP such that N |= ∀x,y¬αS(x,y) and T �� ∀x,y¬αS(x,y).
Let p ::= true, q ::= false, and S ∈ WP such that N |= ∀x,y¬αS(x,y)
and T �� ∀x,y¬αS(x,y); by Lemma 3.3.2, it follows that N |= {p}S{q};
since T �� p(x) ∧ αS(x,y) → q(y/x), by Theorem 3.3.3, it follows that
HL(T ) �� {p}S{q}. ��

4.2 Comparison of PA∗, PA+ and PA ∪ TrN (Π1)

In our previous work [20], a particular extension PA+ of PA has been defined,
and, by using PA+, the condition under which HL(T ) is logically complete when
inputs range over N has been shown. For an explicit citation, PA+ is redefined
as follows.
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Definition 4.2.1 (cf. [20, Definition 3.2.2]). We define PA+ to be

PA+ ::= PA ∪ {∀y¬αS(n,y) : n ∈ N & S ∈ WP

& N |= ∀y¬αS(n,y) & PA � ∀y¬αS(n,y)}.

For the validity of Definition 4.2.1, the reader refers to [20, Theorem 3.2.1].
Note that the newly added formulas to PA∗ and PA+ are similar: both describe
nonterminating computations (one for all inputs while the other for one input)
and are logically equivalent to Π1-sentences. It would be interesting to relate
PA∗ to PA+. We achieve this by relating them to PA ∪ TrN (Π1).

In what follows, for while-programs, we should distinguish between the input
variables and non-input variables. Let S ∈ WP have the program variables
x = (p, q) with p and q being the vectors of input and non-input variables
respectively. Define α

(i)
S (p, y) by

α
(i)
S (p, y) ::= ∃q,y(αS(x,y) ∧ y = yi),

where y is the designated output variable.

Lemma 4.2.2. For every ϕ(x, y) ∈ Σ1 with PA � ∀x, y, z(ϕ(x, y) ∧ ϕ(x, z) →
y = z), there exists S ∈ WP such that PA � ∀p, y(α(1)

S (p, y) ↔ ϕ(p, y)).

Proof. It follows from recursion theory that for every ϕ(x, y) ∈ Σ1 with N |=
∀x, y, z(ϕ(x, y) ∧ ϕ(x, z) → y = z), there exists S ∈ WP such that N |=
∀p, y(α(1)

S (p, y) ↔ ϕ(p, y)). In order to extend this result from N to PA, partial
recursive functions should be redefined in PA, and recursion theory will be
rebuilt correspondingly. Due to space constraints, the detailed work is left to the
reader as an exercise. ��
Theorem 4.2.3. Thm(PA∗) = Thm(PA+) = Thm(PA ∪ TrN (Π1)).

Proof. Since ∀x,y¬αS(x,y) and ∀y¬αS(n,y) are logically equivalent to Π1-
sentences, it follows that Thm(PA∗), Thm(PA+) ⊆ Thm(PA∪TrN (Π1)). Then
we have to prove that Thm(PA∗), Thm(PA+) ⊇ Thm(PA ∪ TrN (Π1)). It
suffices to prove that PA∗ � TrN (Π1) and PA+ � TrN (Π1). Fix ϕ ∈ TrN (Π1).
It remains to show that PA∗ � ϕ and PA+ � ϕ. By definition of TrN (Π1), there
exists ψ(y) ∈ Σ0 such that ϕ ≡ ∀y ψ(y) and N |= ∀y ψ(y). Define φ(x, y) ∈ Σ0

by φ(x, y) ::= x = x ∧ ¬ψ(y) ∧ ∀i < y ψ(i). By the least number principle,
it follows that PA � ∃y ¬ψ(y) ↔ ∃y(¬ψ(y) ∧ ∀i < y ψ(i)). Negating both
sides of ↔, we have that PA � ∀y ψ(y) ↔ ∀y¬(¬ψ(y) ∧ ∀i < y ψ(i)). By
inserting the valid formula x = x into the right side of ↔, it follows that PA �
∀y ψ(y) ↔ ∀y¬(x = x ∧ ¬ψ(y) ∧ ∀i < y ψ(i)). By definition of ϕ and φ, it
follows that PA � ϕ ↔ ∀y¬φ(x, y). On the other hand, it’s easy to see that
PA � ∀x, y, z(φ(x, y) ∧ φ(x, z) → y = z). By Lemma 4.2.2, there exists S ∈
WP such that PA � ∀x, y(α(1)

S (x, y) ↔ φ(x, y)). Then PA � ∀y¬α
(1)
S (x, y) ↔

∀y¬φ(x, y) follows. Since PA � ϕ ↔ ∀y¬φ(x, y), we have that PA � ϕ ↔
∀y¬α

(1)
S (x, y). By definition of α

(1)
S (x, y) (note that p = x), it follows that PA �
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ϕ ↔ ∀x,y¬αS(x,y). By soundness of first-order logic, it follows that N |= ϕ ↔
∀x,y¬αS(x,y). Since N |= ϕ, we have that N |= ∀x,y¬αS(x,y). By definition
of PA∗, it follows that PA∗ � ∀x,y¬αS(x,y). Since PA � ϕ ↔ ∀x,y¬αS(x,y),
we have that PA∗ � ϕ ↔ ∀x,y¬αS(x,y). Then PA∗ � ϕ follows. Fix n ∈ N .
Since N |= ∀x,y¬αS(x,y), we have that N |= ∀y¬αS(n,y). By definition of
PA+, it follows that PA+ � ∀y¬αS(n,y). Since PA � ϕ ↔ ∀y¬αS(n,y), we
have that PA+ � ϕ ↔ ∀y¬αS(n,y). Then PA+ � ϕ follows. ��
Observe from Theorem 4.2.3 that PA∗, PA+ and PA∪TrN (Π1) have the same
set of theorems. Hence Theorem 4.1.5 can be reformulated as an alternative
form: PA ∪ TrN (Π1) (or PA+) is the minimal extension T of PA such that
HL(T ) is complete relative to N for {Cnt}WP{Cnt}.

5 Completeness of HL(T ) for {P}WP{Q}
We now turn our attention to the completeness of HL(T ) with pre- and postcon-
ditions restricted to the arithmetical hierarchy: letting P,Q be Σi,Πi, i ≥ 0, to
what extension T of PA, HL(T ) is complete relative to N for {P}WP{Q}. As
is established above, only for extension T of PA with Thm(PA ∪ TrN (Π1)) ⊆
Thm(T ) ⊆ Th(N), can HL(T ) be complete relative to N for {P}WP{Q}.
Note that if P or Q is expanded to a larger level in the arithmetical hierarchy,
then T will correspondingly be expanded to “a larger level in the hierarchy of
Th(N)”. Hence the hierarchy of Th(N) will be studied: whether TrN (Σn+1) and
TrN (Πn+1) can be derived from PA ∪ TrN (Πn). In Subsect. 5.1, the hierarchy
of Th(N) is given; in Subsect. 5.2, the completeness of HL(T ) relative to N for
{P}WP{Q} is studied.

5.1 Hierarchy of Th(N)

Lemma 5.1.1. For any n ≥ 0, PA ∪ TrN (Πn) � TrN (Σn+1).

Proof. Fix n ≥ 0, and fix ϕ ∈ TrN (Σn+1). It remains to prove that PA ∪
TrN (Πn) � ϕ. By definition of Σn+1, there exists a ψ(x) ∈ Πn such that ϕ ≡
∃x ψ(x). Since N |= ϕ, it follows that there exists m ∈ N such that N |=
ψ(m). Since ψ(m) is a Πn-sentence, it follows that PA ∪ TrN (Πn) � ψ(m).
By introducing the existential quantifier ∃x, it follows that PA ∪ TrN (Πn) �
∃x ψ(x). By definition of ϕ, we have that PA ∪ TrN (Πn) � ϕ. ��
Lemma 5.1.2. For any n > 0, the sets of sentences TrN (Σn), TrN (Πn), and
Thm(PA ∪ TrN (Πn)) are Σn, Πn, and Σn+1, respectively.

Proof. The argument can be done by using mathematical induction. Due to
space constraints, the detailed proof is omitted. ��
Theorem 5.1.3. For any n ≥ 0, PA ∪ TrN (Πn) �� TrN (Πn+1).
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Proof. The case for n = 0 follows from Gödel’s first completeness theorem,
together with the fact that PA � TrN (Π0). It remains to consider the cases for
n > 0. Fix n > 0. By Lemma 5.1.2, Thm(PA ∪ TrN (Πn)) is Σn+1. Then there
exists ϕ(x) ∈ Σn+1 such that for any ψ ∈ L,

ψ ∈ Thm(PA ∪ TrN (Πn)) iff N |= ϕ(�ψ�). (1)

By Gödel’s diagonal lemma, there exists a sentence G ∈ L such that

PA ∪ TrN (Πn) � G ↔ ¬ϕ(�G�). (2)

Assume for a contradiction that PA ∪ TrN (Πn) � G. Then G ∈ Thm(PA ∪
TrN (Πn)) and hence by assertion (1) we have N |= ϕ(�G�). On the other
hand, by assertion (2), it follows that PA ∪ TrN (Πn) � ¬ϕ(�G�). Since N |=
PA ∪ TrN (Πn), by soundness of first-order logic, we have that N |= ¬ϕ(�G�),
contrary to N |= ϕ(�G�). So we have that PA ∪ TrN (Πn) �� G. Then G �∈
Thm(PA ∪ TrN (Πn)) follows. By assertion (1), it follows that N |= ¬ϕ(�G�).
Since ¬ϕ(�G�) ∈ Πn+1, we have that ¬ϕ(�G�) ∈ TrN (Πn+1). By assertion (2),
together with the fact PA ∪ TrN (Πn) �� G, it follows that PA ∪ TrN (Πn) ��
¬ϕ(�G�). Finally we have that PA ∪ TrN (Πn) �� TrN (Πn+1). ��

5.2 Completeness of HL(T ) for {P}WP{Q}
To investigate the completeness of HL(T ) relative to N for {P}WP{Q}, we
remark that if P or Q is too large, or Thm(T ) is too small, then HL(T ) might
not be complete relative to N for {P}WP{Q}.

Definition 5.2.1. If HL(T ) is complete relative to N for {P}WP{Q}, then we
say that

(i) pre-P (resp. post-Q) is maximal w.r.t. T if for any P ′ �⊆ P (resp. Q′ �⊆ Q),
HL(T ) is not complete relative to N for {P ′}WP{Q} (resp. for {P}WP{Q′}).

(ii) T is minimal w.r.t. pre-P (resp. w.r.t. post-Q) if for any T ′ ⊇ PA with
Thm(T ′) � Thm(T ), HL(T ′) is not complete relative to N for {P}AP{Cnt}
(resp. for {Cnt}AP{Q}).

Note that in Definition 5.2.1 (ii), in case HL(T ′) is not complete relative
to N for {P}AP{Cnt} (resp. for {Cnt}AP{Q}), we can see that P (resp. Q)
is the only factor leading to this, since HL(PA) is complete relative to N for
{Cnt}AP{Cnt} (cf. Corollary 3.3.4).

Lemma 5.2.2. For any i > 0, HL(PA ∪ TrN (Πi)) is complete relative to N
for {Σi}WP{Πi}.
Proof. Fix i > 0. Let N |= {p}S{q} with S ∈ WP (having program vari-
ables x), p(u,x) ∈ Σi and q(u,x) ∈ Πi. By Definition 3.2.1, it remains to
prove that HL(PA ∪ TrN (Πi)) � {p}S{q}. By Lemma 3.3.2, it follows that
N |= ∀u,x,y(p(u,x)∧αS(x,y) → q(u,y/x)). By pure logic, we have that N |=
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∀u,x,y(¬p(u,x) ∨ ¬αS(x,y) ∨ q(u,y/x)). Since p(u,x), αS(x,y) ∈ Σi, it fol-
lows that ¬p(u,x), ¬αS(x,y) ∈ Πi. By closure of Πi under disjunction, it follows
that ¬p(u,x)∨¬αS(x,y)∨ q(u,y/x) ∈ Πi. Then ∀u,x,y(p(u,x)∧αS(x,y) →
q(u,y/x)) ∈ TrN (Πi) and hence PA∪TrN (Πi) � ∀u,x,y(p(u,x)∧αS(x,y) →
q(u,y/x)). By Theorem 3.3.3, it follows that HL(PA∪TrN (Πi)) � {p}S{q}. ��
Lemma 5.2.3. Let S ::= y := 0;while y < x do y := y + 1 od, and let PA ⊆
T ⊆ Th(N), ψ(x) ∈ L such that N |= ∀x ψ(x) and T � ∀x ψ(x). It is the case
that HL(T ) � {¬ψ(x)}S{false}.
Proof. Follows from the proof of Theorem 4.3 of [19]. ��
Lemma 5.2.4. Pre-Σi (resp. post-Πi) is maximal w.r.t. PA ∪ TrN (Πi).

Proof. Proof of pre-Σi being maximal w.r.t. PA∪TrN (Πi). Recalling Definition
5.2.1 (i), we have to prove that there exist p ∈ Πi (the minimal level �⊆ Σi), S ∈
WP , and q ∈ Πi such that N |= {p}S{q} but HL(PA ∪ TrN (Πi)) �� {p}S{q}.
By Theorem 5.1.3, it follows that PA∪TrN (Πi) �� TrN (Πi+1). Then there exists
a Πi+1-sentence ϕ such that N |= ϕ and PA ∪ TrN (Πi) �� ϕ. By definition of
Πi+1, we have that, for some ψ(x) ∈ Σi, ϕ ≡ ∀x ψ(x). Let p ::= ¬ψ(x) (∈ Πi),
S ::= y := 0;while y < x do y := y+1 od, and q ::= false. It’s easy to check that
N |= {p}S{q}. By Lemma 5.2.3, it follows that HL(PA ∪ TrN (Πi)) � {p}S{q}.

Proof of post-Πi being maximal w.r.t. PA ∪ TrN (Πi). Recalling Definition
5.2.1 (i), we have to prove that there exist p ∈ Σi, S ∈ WP , and q ∈ Σi (the
minimal level �⊆ Πi) such that N |= {p}S{q} but HL(PA∪TrN (Πi)) �� {p}S{q}.
Let p ::= true, let S ::= x := x, and let q ::= ψ(x) with ψ(x) being as defined in
the proof of pre-Σi being maximal w.r.t. PA∪TrN (Πi). It’s easy to see that N |=
{p}S{q}. It remains to show that HL(PA ∪ TrN (Πi)) �� {p}S{q}. By Theorem
3.3.3, it suffices to prove that PA ∪ TrN (Πi) �� ∀x, y(true ∧ αS(x, y) → ψ(y)).
By definition of αS(x, y), it suffices to prove that PA∪TrN (Πi) �� ∀x ψ(x). This
is the case due to the choice of ψ(x). ��
By Lemma 5.2.2, together with Definition 3.2.1, it follows that HL(PA ∪
TrN (Πi)) is complete relative to N for {Πi−1}WP{Σi−1}.

Lemma 5.2.5. PA ∪ TrN (Πi) is minimal w.r.t. pre-Πi−1 (resp. w.r.t. post-
Σi−1).

Proof. Proof of PA ∪ TrN (Πi) being minimal w.r.t. pre-Πi−1. Recalling Def-
inition 5.2.1 (ii), we have to prove that for any T ⊇ PA with Thm(T ) �

Thm(PA ∪ TrN (Πi)), there exist p ∈ Πi−1, S ∈ AP , and q ∈ Cnt such
that N |= {p}S{q} but HL(T ) �� {p}S{q}. Let T ⊇ PA with Thm(T ) �

Thm(PA ∪ TrN (Πi)). Then there exists a Πi-sentence ϕ such that N |= ϕ and
T �� ϕ. By definition of Πi, we have that, for some ψ(x) ∈ Σi−1, ϕ ≡ ∀x ψ(x).
Let p ::= ¬ψ(x) (∈ Πi−1), S ::= x := x, and q ::= false. It’s easy to see that
N |= {p}S{q}. It remains to show that HL(T ) �� {p}S{q}. By Theorem 3.3.3,
it suffices to prove that T �� ∀x, y(¬ψ(x) ∧ αS(x, y) → false). Since N |= ϕ
and T �� ϕ, by completeness of first-order logic, there exists nonstandard
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M |= T such that M |= ∃x ¬ψ(x). Since M |= ∀x∃y αS(x, y), we have that
M �|= ∀x, y(¬ψ(x) ∧ αS(x, y) → false). By completeness of first-order logic, it
follows that T �� ∀x, y(¬ψ(x) ∧ αS(x, y) → false).

Proof of PA∪TrN (Πi) being minimal w.r.t. post-Σi−1. Recalling Definition
5.2.1 (ii), we have to prove that for any T ⊇ PA with Thm(T ) � Thm(PA ∪
TrN (Πi)), there exist p ∈ Cnt, S ∈ AP , and q ∈ Σi−1 such that N |= {p}S{q}
but HL(T ) �� {p}S{q}. Let T ⊇ PA with Thm(T ) � Thm(PA∪TrN (Πi)). Then
there exists a Πi-sentence ϕ such that N |= ϕ and T �� ϕ. By definition of Πi, we
have that, for some ψ(x) ∈ Σi−1, ϕ ≡ ∀x ψ(x). Let p ::= true, S ::= x := x, and
q ::= ψ(x). It’s easy to see that N |= {p}S{q}. It remains to show that HL(T ) ��
{p}S{q}. By Theorem 3.3.3, it suffices to prove that T �� ∀x, y(true∧αS(x, y) →
ψ(y)). Since N |= ϕ and T �� ϕ, by completeness of first-order logic, there exists
nonstandard M |= T such that M |= ∃x ¬ψ(x). Since M |= ∀x αS(x, x), we have
that M �|= ∀x, y(true ∧ αS(x, y) → ψ(y)). By completeness of first-order logic, it
follows that T �� ∀x, y(true ∧ αS(x, y) → ψ(y)). ��
Theorem 5.2.6. For any i > 0, it is the case that

(i) HL(PA∪TrN (Πi)) is complete relative to N for {P}WP{Q} iff P ⊆ Σi

and Q ⊆ Πi;
(ii) if Σi ⊇ P ⊇ Πi−1 or Πi ⊇ Q ⊇ Σi−1, then HL(T ) is complete relative

to N for {P}WP{Q} iff Thm(T ) ⊇ Thm(PA ∪ TrN (Πi)).

Proof. Follows from Definition 3.2.1, together with Lemmas 5.2.2, 5.2.4 and
5.2.5. ��

6 Conclusion

In this paper, we have shown that PA ∪ TrN (Π1) is the minimal extension
T of PA such that HL(T ) is complete relative to N for {Cnt}WP{Cnt}.
We have shown that for any i > 0, HL(PA ∪ TrN (Πi)) is complete rela-
tive to N for {P}WP{Q} iff P ⊆ Σi and Q ⊆ Πi; and if Σi ⊇ P ⊇ Πi−1

or Πi ⊇ Q ⊇ Σi−1, then HL(T ) is complete relative to N for {P}WP{Q}
iff Thm(T ) ⊇ Thm(PA ∪ TrN (Πi)). Considering Thm(PA) � Thm(PA ∪
TrN (Πi)) � Th(N) and Th(N) =

⋃∞
i=1 Thm(PA ∪ TrN (Πi)), the complete-

ness gap between HL(PA) and HL(Th(N)) has been bridged.
Cook’s completeness result allows for the whole set of arithmetical formulas

as assertions, at the price of using Th(N) as an oracle for the assertion theory.
By restricting assertions to subclasses of arithmetical formulas, we show that
arithmetical extensions of PA suffice to act as the assertion theory, and the
lower the level of the assertions in the arithmetical hierarchy the lower the level
of the required assertion theory is. In conclusion, our completeness results refine
Cook’s one by reducing the complexity of the assertion theory.
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Abstract. In order to associate a transition system with an event struc-
ture, it is customary to use configurations, constructing a transition sys-
tem by repeatedly adding executable events. It is also possible to use
residuals, constructing a transition system by repeatedly deleting non-
executable events. The present paper proposes a systematic investigation
of how the two methods are interrelated. The focus will be on asymmetric
versions of prime, bundle, and dual event structures. For each of them,
configuration-based and residual-based transition system semantics will
be defined. The pairwise bisimilarity of the resulting transition systems
will be proved, considering interleaving, multiset, and pomset semantics.

Keywords: Bisimilarity · Event structures with asymmetric conflict ·
Labelled transition systems · Interleaving/Multiset/Pomset semantics

1 Introduction

Event structures, first defined in [16], consist of a set of events and three binary
relations between events: precedence, basically meant to be a transitive rela-
tion, understood in a causal (or temporal) way; conflict, broadly construed as
a symmetric relation, and understood as a relation of mutual exclusion; and
concurrency, which is generally symmetric and informally understood as the
absence of one of the other relationships. In the literature, several modifications
and generalisations of the original definition can be found, often depending on
the domain of application [6,7,9,19]. In this paper, we shall be particularly inter-
ested in event structures whose conflict relations are not necessarily symmetric

E. Best, N. Gribovskaya and I. Virbitskaite—Supported by DFG (German Research
Foundation) and by RFBR (Russian Foundation for Basic Research) through the
grant CAVER (Be 1267/14-1 and 14-01-91334, respectively).

c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 132–146, 2017.
DOI: 10.1007/978-3-319-51963-0 11



Configuration- and Residual-Based Transition Systems for Event Structures 133

(e.g., [1,8,15]), and which we shall uniformly call asymmetric. Such event struc-
tures allow, amongst other things, the description of weak causality.

Event structures are usually required to satisfy some basic properties. For
example, infinite pasts are generally disallowed. Hence there is always an initial
configuration, which can usually be taken as the empty set. By adding executable
events to a configuration, new configurations can be reached, until this is no
longer possible (or forever, if infinite executions are possible). In interleaving
semantics, only one executable event is added at a time; in multiset semantics,
a set of executable events (without any relation) is added; in step semantics, a
set of concurrently executable events is added; in pomset semantics, a partially
ordered set of executable events is added. This method is commonly used in
order to define transition system semantics of event structures. Another way of
associating a transition system to an event structure has a more “structural”
appeal. The entire event structure is initially considered as the initial state of
a transition system. Then, in each step, an initial part of the event structure is
executed, and the new state of the transition system consists of the residual event
structure, in which all parts that have become non-executable (e.g., all events
that are in conflict with an already executed one) are neglected. This method has
mostly been investigated in connection with operational and algebraic semantics.

The question, to be considered in the present paper, is whether the tran-
sition systems obtainable by these two methods are related, in some way. The
question has already been answered, for prime event structures with symmet-
ric binary conflict, by Majster-Cederbaum and Roggenbach in [12]. It is shown
there that for interleaving, step, and pomset semantics, bisimilar transition sys-
tems are obtained. [12] also demonstrates that such a result is not permitted by
(strong) history preserving semantics, and that one cannot, in general, expect
more than bisimilarity (in particular, no isomorphism). The authors know of
no other results of this kind, even though both types of semantics have been
defined in other circumstances, e.g., configuration semantics in [3–5,11,13,17],
and residual semantics in [2,8,14]. In this paper, we extend the work of [12] for
asymmetric versions of three types of event structures: prime event structures
[13,16], bundle event structures [9], and dual event structures [10]. Our main
results are that – with judicious but intuitively justifiable definitions, whenever
possible – bisimilarity can be achieved for three types of semantics: interleaving,
multisets, and pomsets. The proofs of the results can be found at www.iis.nsk.
su/virb/proofsketches-SOFSEM-FOCS-2017.

2 Models of Event Structures

A prime event structure is a set of events, together with a causality relation
(denoted by <) and a conflict relation (denoted by �) which satisfy the prin-
ciples of finite causes and hereditary conflict, respectively. Two events that
are neither in causality relation nor in conflict relation are considered to be
concurrent. Prime event structures are useful in order to study relationships
between different models of concurrent processes, such as Mazurkewicz trace

www.iis.nsk.su/virb/proofsketches-SOFSEM-FOCS-2017
www.iis.nsk.su/virb/proofsketches-SOFSEM-FOCS-2017
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languages, pomsets, occurrence nets, Petri nets, configuration structures, and
Scott domains [5,13,16,17].

Definition 1. A (symmetric) prime event structure over L is a tuple E =
(E, �,≤, L, l), where E is a set of events; ≤ ⊆ E × E is a partial order (the
causality relation), satisfying the principle of finite causes: ∀e ∈ E : �e� = {e′ ∈
E | e′ ≤ e} is finite; � ⊆ E ×E is an irreflexive and symmetric relation (the con-
flict relation), satisfying the principle of hereditary conflict: ∀e, e′, e′′ ∈ E : e ≤ e′

and e � e′′ then e′ � e′′; L is a set of labels; and l : E → L is a labeling function.

Let E
p
L denote the class of prime event structures over L. In the graphical

representation of a prime structure, pairs of events related by a causality relation
are connected by arrows (for the pairs derivable from the transitivity property,
the arrows are not shown), and pairs of the events included in a conflict relation
are marked by a symbol � (for the pairs derivable from the hereditary conflict
principle, symbols � are not depicted).

Ep

d b

a

c Eap
1

d

ba

c Eap
2

d

bae

c

Fig. 1. A symmetric (l.h.s.) and two asymmetric (r.h.s.) prime event structures

Example 1: Figure 1(l.h.s.) shows the prime event structure Ep over L = {a, b,
c, d}, with EEp = {a, b, c, d}, <Ep= {(d, a), (a, c), (d, c)}, �Ep = {(a, b), (b, a),
(c, b), (b, c)}, and the identity labeling function lEp .

The behavior of prime structures is described in terms of configurations,
subsets of conflict-free events left-closed with respect to the causality relation.
Call a set X ⊆ E a configuration of a prime event structure E iff X is a finite
set, left-closed in E (i.e., �e� ⊆ X, for all e ∈ X) and conflict-free (i.e., ¬(e � e′),
for all e, e′ ∈ X). The set of the configurations of E is denoted as Conf (E). For
X,X ′ ∈ Conf (E), we write X → X ′ iff X ⊆ X ′. Further, for X ∈ Conf (E), we
define the following sets:

�(X) = {e ∈ E | e � e′, for some e′ ∈ X} (strong syntactic conflict)
†(X) = {e ∈ E | ∃e′ ∈ �e� s.t. e′ ∈ �(X)} (weak syntactic conflict)
‡(X) = {e ∈ E |
 ∃X ′ ∈ Conf (E) containing X and e} (semantic conflict)

For symmetric prime event structures, these sets coincide:

Lemma 1. For a prime event structure E and X ∈ Conf (E), �(X) = †(X) =
‡(X).
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In [12,14], for a prime event structure E and a configuration X ∈ Conf (E), a
removal operator being used in constructing residuals has been defined as follows:
E\X = (E′, ≤ ∩(E′ ×E′), �∩ (E′ ×E′), L, l |E′), with E′ = E\(X ∪ �(X)). Due
to Lemma 1, we can use any of the conflict sets of X, in the removal operator.
We write E⇀XE ′ iff there exists X ∈ Conf (E) such that E ′ = E\X.

Based on Lemma 1 together with Lemma 1 of [12], the lemma below states
some correctness criteria for the removal operator with any conflict set. The
meaning of the correctness properties is that the obtained residuals are prime
event structures which do not allow configurations that are disallowed by an
original prime event structure. In some sense, this signifies some compositionality
properties of the removal operator.

Lemma 2. Let E be a prime event structure.

(i) For any X ∈ Conf (E), E ′ = E\X is a prime event structure.
(ii) For any E ′ = E\X with X∈Conf (E) and E ′′ = E ′\X ′ with X ′∈Conf (E ′),

(a) X ∪ X ′ ∈ Conf (E),
(b) if X → X ′′ in E, then X ′′\X ∈ Conf (E ′),
(c) E ′′ = E\(X ∪ X ′).

The results in items (a)–(c) are crucial for establishing bilimilarities between
different kinds of transition systems obtained from prime event structures (see
Proposition 1 and Theorem 1).

Asymmetric prime event structures have a causal relation similar to that
of prime event structures, but replace the symmetric conflict with a relation,
denoted by �, modelling asymmetric conflict or weak causality. Such a relation
allows one to represent a new kind of dependency between events arising in con-
textual nets [1] (an extension of place/transition Petri nets where transitions
can also have context conditions, modelling resources that can be read without
being consumed). Intuitively, e0 � e1 means that e0 cannot occur once e1 has
occurred, and if e0 and e1 both occur in a single system run, then e0 causally
precedes e1. So, in this setting, the symmetric binary conflict is no more a prim-
itive relation, but it is represented via “cycles” of asymmetric conflict. As a
consequence, prime event structures can be identified with a special subclass of
asymmetric (prime) event structures where all conflicts are actually symmetric.

Definition 2. An asymmetric (prime) event structure over L is a tuple E = (E,
≤, �, L, l), where E is a set of events; ≤⊆ E×E is a partial order (the causality
relation), satisfying the principle of finite causes: ∀e ∈ E : �e� = {e′ ∈ E | e′ ≤ e}
is finite; � ⊆ (E×E) is a disabling relation such that ∀e ∈ E : ↗�e�1 is acyclic2,
with ↗ = (� ∪ <); L is a set of actions; and l : E → L is a labeling function.

Let E
ap
L denote the class of asymmetric prime event structures over L. An

asymmetric prime event structure E is called with hereditary conflict iff whenever

1 For a set Y ⊆ X and a relation r ⊆ X × X, rY denotes the restriction of r to Y .
2 A relation r ⊆ X×X is acyclic if it has no “cycles” of the form e0 r e1 r . . . r en r e0,

with n ≥ 1 and ei ∈ X for all 0 ≤ i ≤ n.
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e � e′ and e < e′′, then e′′ � e′. In the graphical representation of an
asymmetric prime structure, pairs of events related by a causality relation are
connected by arrows (for the pairs derivable from the transitivity property, the
arrows are not shown), and the pairs of the events included in a disabling relation
are connected by squiggly arrows.

Example 2: Figure 1(r.h.s.) shows the asymmetric prime event structures Eap
1

and Eap
2 . For instance, consider the syntax of Eap

1 over L = {a, b, c, d}: EEap
1

=
{a, b, c, d}; <Eap

1
= {(d, a), (a, c), (d, c), (b, c)}; �Eap

1
= {(a, b)}; and the labeling

function lEap
1

is the identity.

A configuration of an asymmetric prime event structure E is a finite set
C ⊆ E such that: (i) ↗C is well-founded,3 and (ii) C is left-closed w.r.t. ≤,
i.e. for all e ∈ C, e′ ≤ e implies e′ ∈ C. Condition (i) guarantees that ↗ has
no infinite descending chains in C, and thus ensures that in C there are no ↗-
cycles, i.e. excludes the possibility of having in C a subset of conflicting events.
Condition (ii) requires that all the causes of each event are present. The set of
all configurations of E is denoted by Conf (E). For X ∈ Conf (E), the causality
relation on X, ≤X , is defined as the reflexive and transitive closure of ↗X .

Conventions. For a sequence t = e1 . . . en of events, let t := {e1, . . . en}, and
ti := e1 . . . ei, for all 1 ≤ i ≤ n. we write t → t′ iff t is a prefix of t′ and, further,
t′′ = t′\t iff t′′ is a suffix of t′, with t′ = tt′′.

A trace of an asymmetric prime event structure E is a sequence t = e1 . . . en
(n ≥ 0) of distinct events from E such that for all 1 ≤ i, j ≤ n if ei � ej , then
i < j, and for all 1 ≤ i ≤ n if e ≤ ei for some e ∈ E, then there is 1 ≤ j ≤ n
such that e = ej and j ≤ i. The set of all traces of E is denoted by Traces(E).
Clearly, t is a configuration of E , for any t ∈ Traces(E), and for any configuration
X ∈ Conf (E) there is a trace t such that X = t. For X,X ′ ∈ Conf (E), we write
X → X ′ iff there are t, t′ ∈ Traces(E) such that X = t, X ′ = t

′, and t → t′. For
t ∈ Traces(E), define the sets:

� (t) = {e ∈ E\t | e � e′ for some e′ ∈ t} (strong syntactic conflict)
†(t) = {e ∈ E | ∃e′ ∈ �e� s.t. e′ ∈� (t)} (weak syntactic conflict)
‡(t) = {e ∈ E | �t′ ∈ Traces(E) s.t. t → t′ and e ∈ t′} (semantic conflict)

Crucially, we define the conflict sets for a trace, but not for a configuration,
because the former allows for keeping the order of event occurrences that is
essential for event structures with asymmetric conflict. The following lemma
establishes the interrelations between these sets.

Lemma 3. Let E be an asymmetric prime event structure and t ∈ Traces(E).
Then � (t) ⊆ †(t) = ‡(t); and � (t) = †(t) = ‡(t), if E is with hereditary
conflict.

3 A relation r ⊆ X × X is well-founded if it has no infinite descending chains, i.e.,
〈ei〉i∈N such that ei+1 r ei, ei �= ei+1, for all i ∈ N.
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Example 3: To illustrate the ⊆ in this lemma, consider the asymmetric prime
event structures Eap

1 and Eap
2 shown in Fig. 1(r.h.s.). Clearly, Eap

1 is not with
hereditary conflict, but Eap

2 is. It is easy to see that �Eap
1

(t1) = {a} � {a, c} =
†Eap

1
(t1), for the trace t1 = db, and �Eap

2
(t2) = {a, c} = †Eap

2
(t2), for the trace

t2 = db.

For an asymmetric prime event structure E , we say that t, t′ ∈ Traces(E) are
equivalent if t = t′, and use [t] to denote the equivalence class of t. For E and
t ∈ Traces(E), define a removal operator as follows: E\[t] = (E′,≤′ =≤ ∩ (E′ ×
E′),�′=� ∩(E′ × E′), L, l |E′), with E′ = E\(t ∪ †(t)). Notice that semantic
conflict can be used as well. We write E⇀tE ′ iff there exists t ∈ Traces(E) such
that E ′ = E\[t].

Bundle event structures were introduced in [8,9] for the description of for-
mal semantics of the specification language LOTOS for parallel systems and the
corresponding algebra of processes. Unlike in prime event structures, the events
in bundle structures can be initiated by different sets of events. Causality is not
a binary relation anymore; instead, it is represented by the bundle relation �→
between a finite set of pairwise conflicting events W and an event e. This relation
can be interpreted as follows: in the system’s functioning, an event e can occur
only if one of the events from the set W has already occurred. A pair (W, e) such
that W �→ e is called a bundle, and W is called a bundle set. In asymmetric
bundle event structures, the conflict relation � is replaced by a disabling rela-
tion �. As in asymmetric prime structures, an event e1 disabling another event
e0 means that once e1 occurs, e0 cannot occur anymore. Clearly, asymmetric
bundle event structures are a generalisation of bundle event structures, since the
symmetric conflict can be modelled through mutual disabling (i.e., e � e′ and
e′ � e). Moreover, any asymmetric prime event structure Eap can be consid-
ered as a special asymmetric bundle event structure Eab, with {e′} �→Eab e, if
e′ <Eap e, and e′ �Eab e, if e′ �Eap e; the irreflexivity of �Eab is guaranteed by
the restriction on ↗Eap in the syntax of Eap.

Definition 3. An asymmetric bundle event structure over L is a tuple E = (E,
�, �→, L, l), where E is a set of events; � ⊆E × E is an irreflexive disabling
relation; �→⊆ 2E × E is the causality relation such that W �→ e ⇒ ∀e1, e2 ∈ W
if e1 
= e2 then e1 � e2 (Stability4); L is a set of labels; and l : E → L is a
labeling function.

Let E
ab
L denote the class of asymmetric bundle event structures over L.

The above definition allows an empty bundle, ∅ �→ e, to be defined. The
interpretation of such a bundle is that e can never happen, i.e. e is an impossible
(self-conflicting) event. Notice that there are alternative ways to specify impos-
sible events, for example, {e} �→ e or {e′} �→ e � e′. All the bundles can always
be eliminated while preserving the semantics. Notice that such impossible event
can not be specified in asymmetric prime event structures.

4 Stability ensures that two distinct events of a bundle set are in mutual disabling.
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Eab

ba

c

d

Ead

b
a c

d

Fig. 2. An asymmetric bundle (l.h.s.) and an asymmetric dual (r.h.s.) event structure

In the graphical representation of an asymmetric bundle structure, bundles
(W, e) are indicated by drawing an arrow from each element of W to e and
connecting all the arrows by small arcs; pairs of the events included in a disabling
relation are associated by squiggly arrows; and pairs of the events included in
the symmetric conflict relation are marked by the symbol �.

Example 4: Figure 2(l.h.s.) depicts an asymmetric bundle structure Eab over L =
{a, b, c, d} with EEab = {a, b, c, d}, �Eab= {(a, b), (b, a), (a, d), (b, d)}, �→Eab=
{({a, b}, c)}, and the identity labeling function lEab .

Next, we present an extension of asymmetric bundle event structures, called
asymmetric dual event structures [8,10]. Such structures are obtained by drop-
ping the stability condition. This may lead to causal ambiguity, in the sense
that, given a trace and one of its events, it is not always possible to determine
what caused this event.

Definition 4. An asymmetric dual event structure over L is a tuple E = (E,
�, �→, L, l), where E is a set of events; �⊆ E × E is an irreflexive disabling
relation; �→⊆ 2E ×E is the causality relation; L is a set of labels; and l : E → L
is a labeling function.

Let E
ad
L denote the class of asymmetric dual event structures over L. Asym-

metric dual event structures are represented graphically in the same way as
asymmetric bundle event structures.

Example 5: Figure 2(r.h.s) shows an asymmetric dual structure Ead over L =
{a, b, c, d} with EEad = {a, b, c, d}, �Ead= {(a, d), (c, d), (b, d), (d, b)}, �→Ead=
{({a, b}, c)}, and the identity labeling function lEad .

An asymmetric bundle/dual event structure E is called with hereditary con-
flict iff whenever e � e′ and ∃W �→ e′′ such that e ∈ W , then e′′ � e′.

A trace of an asymmetric bundle/dual event structure E is a sequence t =
e1 . . . en (n ≥ 0) of distinct events from E such that for all 1 ≤ i, j ≤ n if ei �
ej , then i < j, and for all 1 ≤ i ≤ n if W �→ ei, then ti−1 ∩ W 
= ∅. We use
Traces(E) to denote the set of traces of E . Let imp(E) = {e ∈ E | �t′ ∈ Traces(E)
s.t. e ∈ t′} denote the set of impossible events of E .

A set X ⊆ E is a configuration of an asymmetric bundle/dual event structure
E if there is a trace t such that X = t. The set of the configurations of E is denoted
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as Conf (E). For X,X ′ ∈ Conf (E), we write X → X ′ iff there are t, t′ ∈ Traces(E)
such that X = t, X ′ = t

′, and t → t′.
In an asymmetric bundle event structure E , for a configuration X ∈ Conf (E)

and d, e ∈ X, we write d ↗X e iff d � e or there is a set W ⊆ E such that
d ∈ W and W �→ e. The causality relation on X, ≤X , is defined as the reflexive
and transitive closure of ↗X . For a trace t ∈ Traces(E) and e ∈ t, we use the set
�e�t = {e′ ∈ t | e′ �t e} to denote the cause of the event e in the trace t, where
�t is the reflexive and transitive closure of {(d, e) ∈ t × t | there is a set W ⊆ E
such that d ∈ W and W �→ e}. Let �e� = {�e�t′ | t′ ∈ Traces(E) and e ∈ t′} be
the cause of e.

In (asymmetric) dual event structures, a configuration cannot be described
by a single poset anymore, because of the causal ambiguity—a configuration
may contain events whose causes are not determined uniquely. The authors of
[10] defined five different interpretations of causality in a trace: liberal, bundle
satisfaction, minimal, early and late posets. In all the interpretations, a cause
of an event (the set of “causal predecessors” that enable the event) in a trace is
not unique. Unlike [10], we are interested in maximal (w.r.t. �→) causality being
based on the idea that the cause of an event in a trace should be maximal, in
the sense that the cause is not a subset of any other set which is also a cause of
the event in the trace. This requirement guarantees the uniqueness of the cause
of an event in a trace.

In an asymmetric dual event structure E , let t ∈ Traces(E) and W1 �→ e, . . .,
Wm �→ e (m ≥ 0) be all bundles pointing to e ∈ t. The 0-cause of e in t, �e�0

t ,
is the singleton {e}. The 1-cause of e in t, �e�1

t , is a set satisfying the following
conditions: (i) each e′ ∈ �e�1

t occurs before e in t, (ii) Wl ∩ �e�1
t 
= ∅, for all

1 ≤ l ≤ m, and (iii) �e�1
t is a maximal (in set-theoretical sense) set satisfying (i)

and (ii). Informally speaking, �e�1
t is the set of “immediate predecessors” of e in

t. For k > 0, define the k +1-cause of e in t, �e�k+1
t , as the set

⋃
e′∈�e�kt �e′�1

t . So,
the k + 1-cause of e in t is a set containing the 1-causes of all the events from
the k-cause of e in t. Let l be the first index such that �e�lt = ∅. Define the cause
of the event e in the trace t as the set �e�t =

⋃l−1
j=0�e�jt . Clearly, each event in

a trace has a unique cause. Let �e� = {�e�t′ | t′ ∈ Traces(E) and e ∈ t′} be the
cause of e.

Example 6: Consider the asymmetric dual event structure Ead
1 over L = {a, b,

c, d, e, f} with EEad
1

= {a, b, c, d, e, f}, �Ead
1

= ∅, �→Ead
1

= {({b, c}, a), ({d}, a),
({e}, c), ({f}, b)}, and the identity labeling function lEad

1
. The 1-cause of the

event a in the trace t = e f d b c a is the set �a�1
t = {b, c, d} and 2-cause of a in t

is �a�2
t = {e, f}. The cause of a in t is �a�t = {a, b, c, d, e, f}.

For an asymmetric bundle/dual event structure E and t ∈ Traces(E), define
the sets:

� (t) = {e ∈ E\imp(E)\t | e � e′ for some e′ ∈ t} (strong syntactic conflict)
†(t) = {e ∈ E\imp(E) | ∀�e�t′ ∈ �e� : ∃e′ ∈ �e�t′ s.t. e′ ∈� (t))}

(weak syntactic conflict)

‡(t) = {e ∈ E\imp(E) | �t′ ∈ Traces(E) s.t. t → t′ ∧ e ∈ t′} (semantic conflict)
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We claim that the definitions properly extend those for asymmetric prime
event structures:

Lemma 4. Let E be an asymmetric bundle/dual event structure and
t∈Traces(E). Then � (t) ⊆ †(t) = ‡(t); and � (t) = †(t) = ‡(t), if E is
with hereditary conflict.

Notes on the proof. The inclusion �(t) ⊆ †(t) follows directly from the definitions
of �(t) and †(t), whereas the reasoning, when proving the equality †(t) = ‡(t),
is more involved and requires, in addition, the examination of the cause of an
event in the trace t. The inclusion †(t) ⊆ �(t), i.e. if e ∈ †(t) then e ∈ �(t), can
be restated, using the definitions of †(t) and the cause of e, in such a way: if an
event e′ from the cause of e in some trace t′ such that e′ ∈ �(t), then e ∈ �(t);
but this is possible only in event structures with hereditary conflict.

Let E be an asymmetric bundle/dual event structure. The equivalence class
of t ∈ Traces(E), [t], is defined in an analogous way as for an asymmetric prime
event structure. For t ∈ Traces(E), determine a removal operator in the following
way: E\[t] = (E′, � ∩(E′ × E′), �→′, L, l |E′), with E′ = E\(t ∪ †(t)) and
�→′= {(W ′, e) | e ∈ E′, ∃(W, e) ∈ �→ : W ′ = W ∩ E′ and W ∩ t = ∅}. The
intuitive interpretation of the above definition is as follows. First, all the events
in t and events conflicting with some event in t (i.e. that cannot happen anymore)
are removed. Second, each bundle W �→ e such that some event in W has already
happened in t is removed but each other bundle is retained with the bundle set
containing only remaining events. Third, the conflicts between the remaining
events are kept. We stress that in the above removal operator, semantic conflict
can be used as well. The conflict sets are especially important for models without
impossible events.5 We write E⇀tE ′ iff there exists t ∈ Traces(E) such that
E ′ = E\[t].

The lemma below establishes correctness results for the removal operators in
the setting of asymmetric prime, bundle and dual event structures. This seems
identical to Lemma 2 but it should be stressed that the residuals obtained by the
removal operators are, respectively, asymmetric prime, bundle and dual event
structures, which do not allow traces that are disallowed by an original asym-
metric structure.

5 Notice that in [8], for asymmetric bundle/dual event structures the removal operator
has been defined in a different way, without removing conflict sets. All the events
in a trace t and bundles W 	→ e such that W ∩ t �= ∅ are removed. However, the
events conflicting with some event in t are retained simply making them impossible
by adding empty bundles. There, the removal operator has been formally defined
as follows: E\[t] = (E′, 	→′, � ∩(E′ × E′), L, l |E′), where E′ = E\t and 	→′=( 	→ \{(W, e) ∈ 	→| W ∩ t �= ∅}) ∪ {(∅, e) | e ∈ E′, e � e′, for some e′ ∈ t}. We
say in advance that the “residual” transition systems constructed on the base of the
removal operator from [8] and our removal operator are isomorphic. This implies that
all bisimilarity results obtained in our paper are valid for event structures treated
within the process algebra PA in the work [8].
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Lemma 5. Let E be an asymmetric prime/bundle/dual event structure.

(i) For any t ∈ Traces(E), E ′ = E\[t] is an asymmetric prime/bundle/dual
event structure.

(ii) For any E ′ = E\[t] with t∈Traces(E) and E ′′ = E ′\[t′] with t′∈Traces(E ′),
(o) imp(E) ⊆ imp(E ′), if E is an asymmetric bundle/dual event structure,
(a) t t′ ∈ Traces(E),
(b) if t → t′′ in E, then t′′\t ∈ Traces(E ′),
(c) †E(t t′) = †E(t) ∪ †E′(t′),
(d) E ′′ = E\[t t′].

Notes on the proof. Items (o) and (c) are auxiliary and needed for the valid-
ity of items (a) and (d), while (a), (b), and (d) are crucial for establishing
bisimilarities between different kinds of transition systems from asymmetric
prime/bundle/dual event structures (see Proposition 2 and Theorem 1).

3 Associating Transition Systems with Event Structures

In this section, we first give some basic definitions concerning labeled transition
systems and then deal with two distinct kinds of transition systems associated
with an event structure from the classes under consideration. The distinction
appears in the choice of the states of the transition systems: either the configu-
rations of the event structure or the residual event structures (“what remains of
the event structure” after the computations of its configurations).

A transition system T = (S,→, i) over a set L of labels consists of a set
of states S, a transition relation →⊆ S × L × S, and an initial state i ∈ S.
Two transition systems over L are isomorphic if their states can be mapped
one-to-one to each other, preserving transitions and initial states.

We call a relation R ⊆ S × S′ a bisimulation between transition systems T
and T ′ over L iff (i, i′) ∈ R, and for all (s, s′) ∈ R and l ∈ L: if (s, l, s1) ∈→,
then (s′, l, s′

1) ∈→ and (s1, s
′
1) ∈ R, for some s′

1 ∈ S′; and if (s′, l, s′
1) ∈→, then

(s, l, s1) ∈→ and (s1, s
′
1) ∈ R, for some s1 ∈ S. A bisimulation R is backward-

forward iff for all (s1, s
′
1) ∈ R and l ∈ L: if (s, l, s1) ∈→, then (s′, l, s′

1) ∈→
and (s, s′) ∈ R, for some s′ ∈ S′, and if (s′, l, s′

1) ∈→, then (s, l, s1) ∈→ and
(s, s′) ∈ R, for some s ∈ S.

Conventions. From now on, we call an event structure E ∈ E
p
L∪E

ap
L ∪E

ab
L ∪E

ad
L

simply an event structure over L. We say that E is conflict-free if its disabling
(conflict) relation is empty.

We introduce some auxiliary notation. Let Lint := L, and Lmset := N
L
0 (the

set of multisets over L, i.e. functions from L to the non-negative integers), and
Lpom := PomL (the set of isomorphic classes of partial orders labeled over L)
be sets of labels.

For an event structure E over L and a set X ′ ⊆ X ∈ Conf (E), we write:

– lint(X ′) = a ∈ L iff X ′ = {e} and l(e) = a;
– lmset(X ′) = M ∈ N

L
0 iff M(a) = |{e ∈ X ′ | l(e) = a}|, for all a ∈ L,
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– lpom(X ′) = Y ∈ PomL iff ≤X′ is defined and Y = [(X ′,≤X′ ∩(X ′ ×
X ′), ∅, l |X′)].

We are ready to define TC -operators of an event structure over L.

Definition 5. For an event structure E over L and ∗ ∈ {int, pom,mset},
TC ∗(E) is the transition system (Conf (E), ⇁∗, ∅) over L∗, where X

p
⇁∗X ′ for

p ∈ L∗ iff X → X ′ and p = l∗(X ′\X), with ∗ ∈ {int,mset}, if E ∈ E
ad
L , and

with ∗ ∈ {int, pom}, otherwise.

TC pom(Ep)

∅

{b, d}{d}

{d, a}

{d, a, c}

{b}
d d

a

c

b

b

b d

d
; a

; c

d
;a

a
; c

TEpom(Ep)

Ep

E∅Ep\{d}

Ep\{d, a}

Ep\{b}
d

b

b d

d;
a;
c

b
a; c

a
c

dd
;a

Fig. 3. The transition systems TC pom(Ep) and TEpom(Ep)

TC pom(Eap
1 ) ∅

{b, d}

{d} {d, a} {d, a, b} {d, a, b, c}

{b}
b b

a

d

d cb

a; b; c

b
d

d; a; b; cd; a; bd; a

a; b b; c

TEpom(Eap
1 ) Eap

1

E∅

Eap
1 \ d Eap

1 \ d a

Eap
1 \ b

Eap
1 \ d a b

b

a

b
a
;b; c

d b

b; c c

d

b
d

d; a; b; c

d; a; b
d; a a; b

Fig. 4. The transition systems TC pom(Eap
1 ) and TEpom(Eap

1 )
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TC pom(Eab) ∅ {a} {a, c}

{a, c, d}{b, c, d}

{b, c}

{a, d}{b, d}

{b}

{d}

a

d

b a; db;
d

c

dc
d

c

d

c

d
c
d

c

d

a; (c d)b; (
c d)

b; c a; c

TE pom(Eab)

Eab Eab\ [a] Eab\ [ac]Eab\ [bc]

Eab\ [ad]Eab\ [bd]

Eab\ [b]

E∅

a
a
;(c

d
)

b;( c
d
)

d
b a; db;
d

c

d c
d c

d
c

c

d

cd d

b; c a; c

Fig. 5. The transition systems TC pom(Eab) and TEpom(Eab)

Example 7: Figures 3, 4, and 5 (left hand sides or upper parts, respectively)
show the transition systems TC pom(·) of the event structures Ep, Eap

1 , and Eab,
respectively, and Fig. 6(l.h.s.) depicts the transition system TCmset(Ead).6

We move to the definition of TE -operators of an event structure over L.

Definition 6. For an event structure E over L and ∗ ∈ {int, pom,mset},
– E p

⇀∗E ′ iff E⇀XE ′ for some X ∈ Conf(E) and p = l∗(X), with ∗ ∈
{int,mset}, if E ∈ E

ad
L , and with ∗ ∈ {int, pom}, otherwise.

– Reach∗(E) = {F | ∃E0, . . . , Ek (k ≥ 0) such that E0 = E, Ek = F and Ei
p
⇀∗Ei+1

for some p ∈ L∗ (i < k)}.
– TE∗(E) is the transition system (Reach∗(E),⇀∗, E) over L∗.

Example 8: Figures 3, 4, and 5 (lower parts or right-hand sides, respectively)
show the transition systems TEpom(·) of the event structures Ep, Eap

1 , and Eab,
respectively, and Fig. 6(r.h.s.)—the transition system TEmset(Ead). It is easy to
see that even TC int(·) and TE int(·), for all our example event structures, are
not backward-forward bisimilar.

6 We allow a single arrow between two states to denote multiple transitions. For
instance, the arrow from Ep to E∅ in TEpom(Ep) (Fig. 3) denotes two transitions.
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TCmset(Ead)

∅ {b}

{b, c}

{a, b, c}{a, c}{a, c, d}

{a, b}{a, d} {a}

{d}

a a

a

b

b

b

d

d

d

c c

c

a
+
c

a
+
c

c+
d

b+c

a
+
c
+
d

a
+
d

b+c

a+
b

a+
b+
c

TEmset(Ead)

Ead Ead\[b]

Ead\[bc]

E∅
Ead\[ac]

Ead\[ab]Ead\[a]

a a

a

a+
b

a
+
c

a
+
c

b

b

b

b+c

b+c

d

d

d

c c

c

c+d

a
+
d

a+
c
+
d

a+
b+

c

Fig. 6. The transition systems TCmset(Ead) and TEmset(Ead)

The following is a direct consequence of Lemma 2 of this paper, together
with Lemma 1 of [12].

Proposition 1. Let E be a prime event structure, and let ∗ ∈ {int, pom}.
1. Reachint(E) = Reachpom(E).
2. For any X ∈ Conf (E), E\X ∈ Reachint(E).
3. For any E ′ ∈ Reachint(E), there exists X ∈ Conf (E) such that E ′ = E\X.
4. For any X ′, X ′′ ∈ Conf (E), if X ′ p

⇁∗X ′′, then E\X ′ p
⇀∗E\X ′′.

5. For any E ′, E ′′ ∈ Reachint(E), if E ′ p
⇀∗E ′′, then there exist X ′,X ′′ ∈ Conf (E)

such that E ′ = E\X ′, E ′′ = E\X ′′, and X ′ p
⇁∗X ′′.

Proposition 2. Let E be an asymmetric prime/bundle/dual event structure,
and let ∗ ∈ {int, pom,mset}.
1. Reachint(E) = Reachmset(E), if E ∈ E

ad
L , and Reachint(E) = Reachpom(E),

otherwise.
2. For any t ∈ Traces(E), E\[t] ∈ Reachint(E).
3. For any E ′ ∈ Reachint(E), there exists t ∈ Traces(E) such that E ′ = E\[t].
4. For any t′, t′′ ∈ Traces(E), if t′

p
⇁∗t′′, then E\[t′]

p
⇀∗E\[t′′].

5. For any E ′, E ′′ ∈ Reachint(E), if E ′ p
⇀∗E ′′, then there exist t′, t′′ ∈ Traces(E)

such that E ′ = E\[t′], E ′′ = E\[t′′], and t′⇁p∗t′′.

Notes on the proof. The validity of items (1)–(3) can be proved using Lemma
5ii(a, b, d); the validity of (4) requires Lemma 5ii(a, d); (5) can in turn be
deduced from (1) and (3), using also Lemma 5ii(a, d).

More or less directly, Propositions 1 and 2 yield:

Theorem 1. Given an event structure E over L and ∗ ∈ {int, pom,mset},
TC ∗(E) and TE∗(E) are bisimilar, with ∗ ∈ {int,mset}, if E ∈ E

ad
L , and with

∗ ∈ {int, pom}, otherwise.
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Corollary 1. Given a conflict-free event structure E over L and ∗ ∈ {int, pom,
mset}, TC ∗(E) and TE∗(E) are isomorphic, with ∗ ∈ {int,mset}, if E ∈ E

ad
L ,

and with ∗ ∈ {int, pom}, otherwise.

Since in asymmetric dual event structures, several pomsets may correspond
to a trace, our results in Proposition 2, Theorem 1, and Corollary 1 apply to
multisets rather than pomsets.

4 Concluding Remarks

In this paper, we have demonstrated that for asymmetric versions of prime, bun-
dle, and dual event structures, interleaving/pomset/multiset bisimilarity results
can be obtained between configuration-based and residual-based transition sys-
tem semantics. We have defined appropriate formal concepts underlying such
results, both for removal operators (necessary for residual semantics), and for
conflict sets of events in traces. Because of ambiguity of causality in asymmetric
dual event structures, it was especially difficult to understand how to define the
cause of an event in a trace needed in a weak syntactic conflict set, while this
was more straightforward for asymmetric prime event structures, where causal-
ity is given as a partial order in their syntax, and for asymmetric bundle event
structures, where partial order based causality can be defined in configurations.

Work on extending our approach to other types of event structures (from
extended prime event structures [2] to configuration structures [5]) is under way
and will be submitted elsewhere. It will be shown that the conflict set definition
given in the present paper can actually be re-used. Our main goal will be to
see how the results obtained in [3,5] for configuration-based transition systems
can be interpreted in the context of residual-based ones. As shown in [17], the
categories of occurrence nets (ONs) of safe Petri nets, prime event structures
(PES) and finitary prime algebraic Scott domains are equivalent. Therefore, on
the one hand, the results concerning different kinds of transitions systems for
PES can be extended to ONs. On the other hand, it is unclear which kinds of
domain correspond to residual-based transition systems, and it is worth noting
that TE -operators on PES do not evolve into functors from PES to a category
of transition systems [12], i.e., do not possess a categorical characterisation [18].
Also, it is a promising open question how our methods of constructing transition
systems – even for asymmetric prime event structures – can be used in the
context of occurrence contextual nets, because using a left adjoint functor, there
is a coreflection (but not an equivalence) between the corresponding categories,
as shown in [1].
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15. Pinna, G.M., Poigné, A.: On the nature of events: another perspectives in concur-
rency. Theor. Comput. Sci. 138(2), 425–454 (1995)

16. Winskel, G.: Events in computation. Ph.D. thesis. University of Edinburgh (1980)
17. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2 31

18. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of Logic in Com-
puter Science, vol. 4 (1995)

19. Winskel, G.: Distributed probabilistic and quantum strategies. Electron. Notes
Theor. Comput. Sci. 298, 403–425 (2013)

http://boole.stanford.edu/~rvg/pub/history.draft.dvi
http://boole.stanford.edu/~rvg/pub/history.draft.dvi
http://dx.doi.org/10.1007/978-3-540-45187-7_4
http://dx.doi.org/10.1007/3-540-63141-0_22
http://dx.doi.org/10.1007/3-540-63141-0_22
http://dx.doi.org/10.1007/3-540-48068-4_20
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1007/3-540-17906-2_31


Hardness of Deriving Invertible Sequences
from Finite State Machines

Robert M. Hierons1, Mohammad Reza Mousavi2, Michael Kirkedal Thomsen3,
and Uraz Cengiz Türker4(B)

1 Department of Computer Science, Brunel University London, Uxbridge, UK
rob.hierons@brunel.ac.uk

2 School of IT, Center for Research on Embedded Systems (CERES),
Halmstad University, Halmstad, Sweden

m.r.mousavi@hh.se
3 Department of Computer Science, University of Copenhagen,

Copenhagen, Denmark
m.kirkedal@di.ku.dk

4 Computer Engineering, Faculty of Engineering, Gebze Technical University,
Kocaeli, Turkey

urazc@gtu.edu.tr

Abstract. Many test generation algorithms use unique input/output
sequences (UIOs) that identify states of the finite state machine spec-
ification M . However, it is known that UIO checking the existence of
UIO sequences is PSPACE-complete. As a result, some UIO generation
algorithms utilise what are called invertible sequences; these allow one
to construct additional UIOs once a UIO has been found. We consider
three optimisation problems associated with invertible sequences: decid-
ing whether there is a (proper) invertible sequence of length at least K;
deciding whether there is a set of invertible sequences for state set S′

that contains at most K input sequences; and deciding whether there is
a single input sequence that defines invertible sequences that take state
set S′′ to state set S′. We prove that the first two problems are NP-
complete and the third is PSPACE-complete. These results imply that
we should investigate heuristics for these problems.

1 Introduction

Software testing is an indispensable yet costly part of the development lifecycle
and this has led to interest in test automation. Model based testing (MBT) is
a high-profile approach to automation. It assumes the presence of a model that
represents the abstraction of some aspect of the expected behaviour of the system
under test (SUT). The model is usually represented as an extended finite state
machine, a finite state machine, or a labelled transition system.

In MBT, it is normal to generate test cases from a given model/specification
M . A test case is then applied to M and the response (the expected behaviour)
of M is recorded. The test case is then executed on the SUT N and the response

c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 147–160, 2017.
DOI: 10.1007/978-3-319-51963-0 12
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(observed behaviour) is recorded. If the expected behaviour and observed behav-
iour differ then the tester declares that the SUT failed the test. Otherwise, the
tester declares that the SUT passed the test case.

A number of techniques have been developed for generating test cases from an
FSM, with this line of research dating back to the seminal papers of Moore [1] and
Hennie [2]. Although FSM-based test generation techniques vary, they typically
aim to test transitions, where a transition is a tuple (s, x, y, s′) specifying that if
M receives input x when in state s then it moves to s′ and outputs y. In order
to test a transition τ of SUT N , it is necessary to bring N to a state from which
τ can be executed, fire the transition, record its output and decide whether the
resultant state of the SUT is the expected state. Most such techniques use state
identification sequences for the last part of this procedure [2–8]. The most widely
used state identification sequences are distinguishing sequences (DSs) [9], unique
input output sequences (UIOs) [10] and characterising sets (CSs) [10].

There are two types of DSs. A Preset Distinguishing Sequence (PDS) and
an Adaptive Distinguishing Sequence (ADS) (also known as a Distinguishing
Set [11]). When applied, DSs lead to different output sequences from the different
states of M . One important property of DSs is that it has been known that it is
possible to construct test sequences in polynomial time [12].

However, it has been long known that an FSM need not have a DS and instead
one might use a UIO for a state s′: an input sequence that distinguishes s′ from
all other states of M but need not distinguish any other pairs of states of M .
Although not all FSMs have a UIO for every state, it has been reported that in
practice most FSMs do have such UIOs [3] and this has led to the development
of many FSM-based test generation methods that use UIOs [3,13–20]. However,
the problem of checking the existence of a UIO is PSPACE-hard [21].

A CS is a set of input sequences that distinguish all pairs of states and it
has been shown that every minimum FSM has a CS [4,22]. Another appealing
aspect of CSs is that one can compute a CS from a given FSM in polynomial
time [4,22,23]. However, experiments suggest that the use of CSs can lead to
relatively long tests [12].

1.1 Motivation and Problem Statement

When generating test cases from an FSM it is desirable to have techniques that
reduce the time spent on deriving state identification sequences and there has
thus been work on this problem [6,12,24–26]. One promising method is to use
invertible sequences1 [27,28]. Despite this, to our knowledge there is no work
that investigates the problem of computing invertible sequences.

In this paper, we first extend the notion of invertibility to sets of states.
Then we introduce optimisation problems related to invertible sequences, with

1 An invertible sequence is a walk ρ with the property that if one determines the
ending state of ρ then one also determines the starting state of ρ. In the following
sections we formally define invertible sequences.
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these being motivated by a desire to reduce the cost of generating state identi-
fication sequences. Finally, we determine the computational complexity of these
problems.

1.2 Structure of the Paper

This paper is organised as follows. Section 2 defines FSMs and the corresponding
notation, while Sect. 3 defines invertible sequences and the decision problems in
which we are interested. In Sect. 4, we derive the bounds for the three decision
problems considered. In Sect. 5, we draw conclusions and discuss possible lines
of future work.

2 Preliminaries

In this section, we introduce some terminology related to finite state machines.

Definition 1. A deterministic FSM is defined by a tuple M = (S, s0,X, Y, δ, λ),
where: S = {s1, s2, . . . , sn} is the finite set of states; s0 ∈ S is the initial state;
X = {x1, x2, . . . , xr} is the finite set of inputs; Y = {y1, y2, . . . , yv} is the finite
set of outputs (X is disjoint from Y ); δ : S × X → S is the transition function;
and λ : S × X → Y is the output function.

Throughout this paper, M = (S, s0,X, Y, δ, λ) denotes an FSM from which
test sequences are to be generated. At any given time, M is in a state from S
and accepts one input at a time. If an input x ∈ X is applied when M is in state
s then M changes its state to δ(s, x) and produces output λ(s, x). We say that
τ = (s, x, y, s′) is a transition of M with starting state s, ending state s′, and
label x/y. The label x/y has input portion (in(x/y)) x and output portion y.

Given sequences x̄ and x̄′, x̄x̄′ denotes the concatenation of x̄ and x̄′. We
use pre(.) (post(.)) to denote the set of prefixes (suffixes). Given input/output
pairs x1/y1, . . . , xk/yk we use x1/y1 . . . xk/yk and also x1x2 . . . xk/y1y2 . . . yk to
denote the corresponding input/output sequence. Further, we let x1 . . . xk and
y1 . . . yk denote the input portion (in(x1/y1 . . . xk/yk)) and the output portion
(out(x1/y1 . . . xk/yk)) of x1/y1 . . . xk/yk respectively.

The transition and output functions are extended to a sequence of inputs as
follows, where ε denotes the empty sequence. For x̄ ∈ X� and x ∈ X, δ(s, ε) = s,
δ(s, xx̄) = δ(δ(s, x), x̄), λ(s, ε) = ε, λ(s, xx̄) = λ(s, x)λ(δ(s, x), x̄).

An FSM can be represented by a directed graph. A vertex represents a state
and a directed edge with label x/y that goes from a vertex with label s to a
vertex with label s′ represents the transition τ = (s, x, y, s′).

Example 1. Figure 1 represents an FSM M1 with state set {s1, s2, s3, s4}, inputs
{x1, x2}, and outputs {y1, y2, y3}.

The behaviour of an FSM M is defined in terms of the labels of walks that
leave the initial state of M . A walk ω of M is a sequence of consecutive transitions
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s1 s2

s3s4

x1/y1
x2/y2

x1/y2

x
2 /y

1

x1/y1
x2/y1

x
1/
y 2

x2/y2

Fig. 1. An FSM M1

ω = (s1, x1, y1, s2)(s2, x2, y2, s3) . . . (sk−1, xk−1, yk−1, sk)(sk, xk, yk, sk+1). Walk
ω has starting state s1, ending state sk+1, and label x1/y1x2/y2 . . . xk/yk. Here
x1/y1x2/y2 . . . xk/yk is a trace of M .

Example 2. For example ρ = (s4, x1, y2, s1)(s1, x1, y1, s1)(s1, x2, y2, s4) is a
walk of M1. The walk ρ has starting state s4, ending state s2, and label
x1/y2x1/y1x2/y2. Here x1/y2x1/y1x2/y2 is a trace of M .

An FSM M defines the language LM of labels of walks with starting state
s0 and we will use LM (s) to denote the language defined by making s the initial
state of M . More formally, LM (s) = {x̄/ȳ|x̄ ∈ X∗ ∧ ȳ = λ(s, x̄)}. Clearly,
LM = LM (s0). Given S′ ⊆ S, we let LM (S′) denote the set of traces that can
be produced if the initial state of M is in S′, i.e., LM (S′) = ∪s∈S′LM (s).

States s and s′ of M are equivalent if LM (s) = LM (s′) and FSMs M and N
are equivalent if LM = LN . FSM M is minimal if there is no equivalent FSM that
has fewer states. FSM M is strongly connected if for every ordered pair (s, s′) of
states of M , there is a walk that has starting state s and ending state s′. Note
that a strongly connected FSM M is minimal if and only if LM (s) �= LM (s′)
for all s, s′ ∈ S with s �= s′. Throughout this paper we only consider minimal
FSMs. This is not a significant restriction since one can convert an FSM into an
equivalent minimal FSM in low order polynomial time [29].

Assumption 1. We are testing from a minimal FSM M = (S, s0,X, Y, δ, λ).

Many test generation techniques use input sequences that identify states.

Definition 2. An input sequence x̄ defines a unique input output sequence for
s if for all s′ ∈ S\{s} we have that λ(s, x̄) �= λ(s′, x̄). Further, x̄ defines a UIO
for state set S′ ⊆ S if x̄ defines a UIO for all s ∈ S′.

3 Invertible Sequences

In this section, we first define invertible sequences. We then discuss optimisation
problems with potential impact on MBT related to invertible sequences.
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3.1 Definitions

Due to their potential role in test generation, we are interested in walks that are
invertible. A walk ρ with input/output label x̄/ȳ that has ending state s is an
invertible sequence for s if no other walk with ending state s has label x̄/ȳ.

For testing purposes, we may want to find a set of invertible sequences with a
common input portion. Given a set Γ , of invertible sequences we use Γi (respec-
tively, Γo) to denote the set of input (respectively, output) portions of labels
of the walks in Γ . We use Γin (respectively, Γen) to denote the sets of initial
(ending) states of walks in Γ . Let us suppose that S′ is a set of states of M .
Then we say that Γ is an invertible sequence for S′ if Γi = {x̄}, S′ = Γen, and
all walks in Γ are invertible sequences. An invertible transition is an invertible
sequence of length one.

Let us assume that we are given an input sequence x̄ that defines an invertible
sequence for a set of states S′. Consider any partitioning of x̄ as x̄ = x̄′x̄′′x̄′′′

where x̄, x̄′, x̄′′, x̄′′′ ∈ X+. If x̄′x̄′′′ also defines an invertible sequence for S′ then
x̄ is called a redundant invertible sequence for S′. In this paper, we consider only
irredundant invertible sequences. If an invertible sequence is redundant, then it
can be replaced by a shorter irredundant invertible sequence.

It has been shown that a suffix of an invertible sequence might not be an
invertible sequence but a prefix is; this fact is formally state in the following
lemma [27].

Lemma 1. If ρ = ρ′ρ′′ is an invertible sequence, then ρ′ is an invertible sequence
but ρ′′ might not be an invertible sequence.

We now define what it means for an invertible sequence to be proper. We
say that invertible sequence ρ is a proper invertible sequence for s, if every suffix
ρ′ of ρ is also an invertible sequence for s. An immediate consequence of the
definition of an invertible and an proper invertible sequence is that every proper
invertible sequence is an invertible sequence but an invertible sequence need not
be proper.

3.2 Invertible Sequences in Test Generation

It has been shown that invertible sequences can be used to extend the set of
UIOs [27].

Lemma 2 (From [27]). If x̄/ȳ is a UIO for state s and ρ = x̄′/ȳ′ is an invertible
sequence for s starting from s′ then x̄′x̄/ȳ′ȳ is a UIO for s′.

It should be noted that as every suffix of a proper invertible sequence ρ for s
is a proper invertible sequence for s, a UIO for s can be used to compute a UIO
for every state that a proper invertible sequence ρ visits.

Lemma 3. Let x̄/ȳ be a UIO for state s, ρ be a proper invertible sequence for
s and also let ψ = {(s′, ρ′)|s′ ∈ S, ρ′ ∈ post(ρ) and s′ is the initial state of ρ′} be
the set of pairs of suffixes of ρ and states from which they originate, then for
each pair (s′, ρ′) in ψ, in(ρ′)x̄/out(ρ′)ȳ is a UIO for s′.
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This result suggests that in computing UIOs, longer proper invertible
sequences are desirable, because longer invertible sequence lead to the derivation
of more UIOs.2 Therefore we investigated the following problem.

Definition 3. Longest proper invertible sequence (LPIS): Let M be an
FSM and also let s be a state of M . The LPIS problem is to decide whether there
is a proper invertible sequence ρ for s such that |in(ρ)| ≥ K.

In the next section, we show that the LPIS problem is NP-complete.
Assume that for a given set of states S′, we have computed a state identifying

sequence and this time our aim is to derive state identification sequences for a
specific set of states S′′ without actually computing them. Due to Lemma 3,
this can be achieved by using invertible sequences. However in order to reduce
the memory/test cost spend on the test sequences, we want to compute a preset
input sequence that takes S′′ to S′. These requirements lead us to the following
problem definition.

Definition 4. Preset reaching set invertible sequence (PRSIS): Let M
be an FSM and also let S′ and S′′ be sets of states of M of cardinality K. The
PRSIS problem is to decide whether there are invertible sequences with common
input portion x̄ for S′ such that x̄ takes S′′ to S′.

In the next section we show that the PRSIS problem is PSPACE-complete.
The following problem is also motivated by the fact that in some cases we

want to derive as many state identification sequences as possible from those
already computed. In other words, we would like to find a set of invertible
sequences to derive state identification sequences. However, considering the sim-
ilar motivation as PRSIS problem, we are looking for invertible sequences with
a minimum number of input portions.3

Definition 5. Minimum spanning invertible sequence (MINSIS): Let
M be an FSM and also let S′ be a set of states of M . The MINSIS problem is
to decide whether there is a set Γ of invertible sequences for S′ where |Γi| ≤ K
such that for all s ∈ S\S′ there exists an invertible sequence in Γ that takes s
to a state s′ ∈ S′.

We show that the MINSIS problem is NP-complete.

4 Complexity Results

We show that the LPIS problem is NP-complete by providing a polynomial time
reduction from the longest path problem (LPP) [30] to the LPIS problem. An
instance of the LPP can be defined as follows, where a path4 (P) is said to visit
a vertex v, if v is the starting vertex or the ending vertex of an edge in the path
and the length of a path is the number of edges in the path.
2 Recall that we restrict attention to invertible sequences that are not redundant.
3 Recall that Γi is the set of input portions of labels of the walks in Γ .
4 A path is a sequence of consecutive edges that, between them, do not visit any vertex

more than once.
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Definition 6. Longest path problem (LPP): Consider a strongly connected
directed graph G = (V,E) with vertex set V = {v1, v2, . . . , vn}, edge set E =
{e1, e2, . . . , em} and a positive integer K < n. The longest path problem for
(G,K) is to decide whether there exists a path of G that visits at least K vertices.

Let out(v) be the number of outgoing edges of a vertex v. We let the out-
degree (Out(G)) of the graph G be the maximum value of out(v) for G i.e.,
Max({out(v)|v ∈ V }).

Given an instance of the LPP (G,K), we construct an FSM M(G) = (S, s0,
X, Y, δ, λ). Our aim is to arrange the transition structure of M(G) in such a way
that an invertible sequence of length K defines a solution to the LPP. We now
show how we construct M(G).

For each vertex of G we introduce a corresponding state of M(G) and we
copy over the edge structure; if there is an edge from vertex v, represented by
state s, to vertex v′, represented by state s′, then there is a transition from s
to s′. We also introduce an additional special state s�. Then for each transition,
we assign a unique integer i in the range [1, |E|] and use it as the output label
(yi) of the corresponding transition in M(G). In other words, the label of each
transition in M(G) will have a unique output portion.

The cardinality of the input alphabet of M(G) is Out(G), i.e., X = {x1, x2, . . . ,
xOut(G)}, for some arbitrary, yet pairwise distinct, x1, x2, . . . , xOut(G). If s is a state
of FSM M(G) and the number of outgoing transitions is 
, then for each transition
leaving s, we pick a unique element from the first 
 elements of X (i.e., we pick
an element from {x1, x2, . . . , x�}) and assign this symbol as the input label of the
corresponding transition. Note that different states may have different numbers
of outgoing edges, therefore the constructed M(G) could be partial. We complete
the missing transitions of state si by adding transitions to s� with output yi. We
introduce a distinct input symbol � such that from every state si of M(G), there
exists a transition to s� with common output yi (see Fig. 2). Finally, all transitions
from s� are self-loop transitions with output 0.

We now show how the longest path for a connected graph G relates to the
LPIS problem for M(G).

Proposition 1. The longest path problem instance (G,K) has a solution if and
only if state s� of M(G) has a proper invertible sequence ρ of length K + 1.

Theorem 1. The LPIS problem is NP-complete.

We now show that MINSIS problem is NP-complete by a reduction from the
minimum covering problem (MCP) [30].

Definition 7. Minimum covering problem (MCP): Consider a set of ele-
ments U = {1, 2, . . . , u}, a set of sets of elements I = {I1, I2, . . . , II} (Ii ⊆ U
for all 1 ≤ i ≤ I), and an integer K. The minimum covering problem is to decide
whether there is a subset of I that contains at most K sets whose union is U .

We show how FSM M(U, I,K) can be constructed such that the MCP prob-
lem for (U, I,K) corresponds to the MINSIS problem for M(U, I,K). For every
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(b) Constructed FSM M(G).

Fig. 2. Construction of an FSM from a given longest path problem instance.

Ii ∈ U , we introduce a single state si and, in addition, we introduce a special
state s�. For every set Ij in I, we introduce an input symbol xj and an output
symbol yj . We also introduce a distinct output 0. The transition and output
functions of M(U, I,K) are then defined as follows:

δ(si, xj) =

{
s�, if i ∈ Ij

si, otherwise

λ(si, xj) =

{
yi, if i ∈ Ij

0, otherwise

The construction ends by setting S′ = {s�}. Please see Fig. 3 for an example.

Proposition 2. The minimum covering problem instance (G, I,K) has a solu-
tion if and only if S′ = {s�} of M(U, I,K) has a minimum spanning invertible
sequence Γ with |Γi| ≤ K.

Theorem 2. The MINSIS problem is NP-complete.

We show that the PRSIS problem is PSPACE-complete by a reduction from
the finite automata intersection problem (FA INT), which was introduced by
Kozen [31]. In the FA INT problem we are given a set of regular automata with
a common alphabet and our aim is to decide whether the automata accept a
common word. A regular automaton is defined as follows.

Definition 8. A regular automaton is defined by 5-tuple A = (Q,Σ, h, 0A, F )
where Q,Σ, h are a finite set of states, a finite set of inputs and a transition func-
tion, respectively. 0A ∈ Q is the initial state and F ⊆ Q is the set of accepting
state. Automaton A accepts a word w ∈ Σ� if h(0A, w) ∈ F .
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Fig. 3. Construction of a FSM M(U, I, K) from a given minimum covering problem
instance U = {1, 2, 3, 4, 5, 6}, I = {{1, 2, 4}, {3, 4, 6}, {1, 2, 5}} and K = 2.

Definition 9. Let A = {A1, A2, . . . , Az} be a set of regular automata with a
common alphabet Σ. The FA INT problem is to determine whether there is a
word w such that w ∈ L(Ai) for all 1 ≤ i ≤ z.5

We show that the PRSIS problem is PSPACE-complete. We first show how
we construct an FSM from a given instance of the FA INT problem.

Without loss of generality, we assume that the finite automata in A have
disjoint sets of states. Given an instance of the FA INT problem defined by set
A = {A1, A2, . . . , Az} of finite automata on common finite alphabet Σ (Ai =
(Qi, Σ, hi, 0i, Fi)), we construct an FSM M(A) = (S, s0,X, Y, δ, λ) as follows.

We copy the states of each automaton Ai = (Qi, Σ, δi, 0i, Ci) and given qj ∈
Qi we let sj denote the corresponding state in S. For each Ai we also introduce
an additional state �i. The input alphabet of the FSM is given by X = Σ∪{f, f ′}
and the output alphabet of the FSM is given by Y = {0, 1, 2, . . . , z}. The state
transitions of the finite automata in A are inherited: if a ∈ Σ and qj ∈ Qi for
1 ≤ i ≤ z and 1 ≤ j ≤ |Qi| then δ(sj , a) = sk if hi(qj , a) = qk. In a state of the
form �i, an input from Σ leads to no change in state and output 0.

Each transition with input x ∈ Σ produces output 0. For each �i, we intro-
duce a transition from �i to 0i with label f/i; all other transitions with input f
have output 0. We also introduce states sF

1 , sF
2 , . . . , sF

z and input f ′; the input
of f ′ in a state from Fi leads to state sF

i and the input of f ′ when the FSM is
in a state from some Qi\Fi leads to state �1. The input of f ′ always leads to
output 0.

Finally we set S′′ = {�1, �2, . . . , �z} and S′ = {sF
1 , sF

2 , . . . , sF
z }.

Theorem 3. PRSIS problem is PSPACE-complete.

5 Note that in some cases the initial state of each automaton is an accepting state.
Clearly, for such cases an empty input sequence defines a solution to the FA INT
problem instance, hence we do not consider such cases.
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5 Conclusion

Many algorithms for generating test sequences from FSMs use UIOs but UIO exis-
tence is PSPACE-complete. As a result, UIO generation algorithms take advan-
tage of situations in which one can generate additional UIOs from a UIO that has
been found. The main such approach is to use invertible sequences [27,28].

This paper has explored three optimisation problems associated with invert-
ible sequences: deciding whether there is a (proper) invertible sequence of length
at least K; deciding whether there is a set of invertible sequences, for state set
S′, that contains at most K input sequences; and deciding whether there is a
single input sequence that defines invertible sequences that take state set S′′ to
state set S′. We proved that the first two problems are NP-complete and the
third is PSPACE-complete.

There are several lines of future work. First, in practice we might have an
upper bound on the length of an invertible sequence that is of interest; there is the
problem of deciding whether the complexity results change if one incorporates
such an upper bound. It would also be interesting to use experiments to explore
properties of invertible sequences and UIOs. Finally, there is potential to use
invertible sequences in generating other types of tests that distinguish states of
an FSM. One might, for example, consider problems associated with generating
adaptive distinguishing sequences for an FSM or a given set of states of an FSM.

Acknowledgments. This work is supported by the COST Action under Grant
#IC1405.

Appendix

Lemma 3. Let x̄/ȳ be a UIO for state s, ρ be a proper invertible sequence for
s and also let ψ = {(s′, ρ′)|s′ ∈ S, ρ′ ∈ post(ρ) and s′ is the initial state of ρ′} be
the set of pairs of suffixes of ρ and states from which they originate, then for
each pair (s′, ρ′) in ψ, in(ρ′)x̄/out(ρ′)ȳ is a UIO for s′.

Proof. We use proof by contradiction. Let ψ be the set of pairs of suffixes and
states of some invertible sequence ρ for state s. Consider a pair (s′, ρ′) and let us
suppose that in(ρ′)x̄/out(ρ′)ȳ is not a UIO for s′. This implies that there exists
a state s′′ �= s′ such that there exists a walk from s′′ labeled with input/output
sequence in(ρ′)x̄/out(ρ′)ȳ. Now consider the state s′′′ reached from s′′ with walk
in(ρ′)/out(ρ′). As the underlying FSM is deterministic we have two options:

– we have s′′′ = s,
– or we have s′′′ ∈ S\{s}.

In the first case, ρ′ cannot be an invertible sequence. Otherwise, if the second
case holds, then x̄/ȳ cannot be a UIO for s. The result thus follows. 
�
Proposition 1. The longest path problem instance (G,K) has a solution if and
only if state s� of M(G) has a proper invertible sequence ρ of length K + 1.
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Proof. First we prove that if G has a path P = e1e2 . . . eK of length K, then
M(G) has a proper invertible sequence for s� whose input portion has length
K + 1. First note that for every vertex and edge of G there exists a state and a
transition in M(G) respectively. Let ρ = x1/y1x2/y2 . . . xK/yK be the label of
the walk corresponding to P. Since every transition of M(G) is labelled with
unique input/output values, ρ = x1/y1x2/y2 . . . xK/yK defines an invertible
sequence for a state of M(G). Finally, if we concatenate ρ with some ρ′ = �/yj ,
which is the label of a walk that starts from the ending state of walk ρ, then
ρ′′ = ρρ′ defines an invertible sequence for s�.

Now assume that s� has a proper invertible sequence ρ = x1/y1x2/y2 . . .
xK+1/yK+1 of length K + 1 and we are required to prove that G has a path of
length K. Note that since ρ is an invertible sequence for s�, the last input/output
pair belongs to a transition that takes M(G) to state s�. Besides, since ρ is a
proper invertible sequence, the first K symbols of the input portion of ρ should
visit K+1 different states of M(G). Since for every state and transition of M(G),
there exists a corresponding vertex and edge in G, the first K inputs of ρ define
a path of G with length K. Thus the result follows. 
�
Theorem 1. The LPIS problem is NP-complete.

Proof. We first show that the LPIS problem is in NP. A non-deterministic Turing
machine can guess an input sequence x̄ of length K. It can then apply x̄ to every
state and record the resultant output sequence and state reached. Afterwards,
it can compare the outputs to decide whether x̄ defines an invertible sequence
for a specific state s.

The problem is NP-hard due to Proposition 1 and the fact that the longest
path problem with directed graphs is NP-hard. Therefore the result follows. 
�
Proposition 2. The minimum covering problem instance (G, I,K) has a solu-
tion if and only if S′ = {s�} of M(U, I,K) has a minimum spanning invertible
sequence Γ with |Γi| ≤ K.

Proof. First we prove that if U, I,K has a minimum covering I ′ =
{I1, I2, . . . , IK} then M(U, I,K) has a set of invertible sequences Γ for S′ = {s�}
such that Γi = {x1, x2, . . . , xK}. Note that the transitions and output functions
of the FSM M(U, I,K) dictates that for a given input xi and output yj pair,
there exists at most one transition with ending state s� and label xi/yj . There-
fore, each transition with ending state s� is an invertible transition and hence
there is a set Γ of invertible sequences that take M from S\{s�} to s�. Further,
for every set Ii in I there exists a single corresponding input symbol xi and so
Γi = {x1, . . . , xK}. Thus, Γ defines a spanning invertible sequence for S′ with
|Γi| = K as required.

Now we assume that S′ = {s�} has a maximum spanning invertible sequence
Γ such that |Γi| = K and we are required to prove that U has a minimum
covering with at most K sets. First note that as we only consider invertible
sequences that are not redundant, the length of each input sequence in set Γi is
one. Let Γi = {x̄1, x̄2, . . . , x̄K}. Therefore, there is a set I ′ = {I1, I2, . . . , IK} of
sets derived from ΓI . The result thus follows. 
�
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Theorem 2. The MINSIS problem is NP-complete.

Proof. The proof of being in NP is almost similar to that of Theorem 1. However
this time Turing machine should guess at most K input sequences. The problem
is NP-hard due to Proposition 2, thus the result follows. 
�
Theorem 3. PRSIS problem is PSPACE-complete.

Proof. We first show that the PRSIS problem is in PSPACE. The working princi-
ple of the Turing machine for the PRSIS problem is as follows. First note that a
non-deterministic Turing machine T can take S′′ to S′ input by input as follows:
Let w be the sequences of inputs guessed by T so far, and T guesses an input
x. After this point T applies x to states δ(S′′, w). T should then check whether
(a) δ(S′′, wx) = S′, and (b) For all s ∈ S′′ and s′ ∈ S, if δ(s, wx) = δ(s′, wx)
then λ(s, wx) �= λ(s′, wx) If these three conditions hold T returns at accepting
state. Otherwise it returns at rejecting state.

To achieve this T maintains (and updates on each iteration) the following
information (given input sequence w): (1) a partition D of S′′ saying which pairs
of states from S′′ are not distinguished by w. (2) For each state s ∈ S′′, the pair
(s′, S′′′) where: s′ = δ(s, w) is the current state corresponding to s and S′′′ is
the set of current states from states in S\S′′ that are not distinguished from s.
Thus S′′′ = {δ(s′′, w)|s′′ ∈ S\S′′ ∧ λ(s, w) = λ(s′′, w)}

Clearly, it is straightforward to update this information if we extend w to
wx (guessing x). It is also easy to spot when one should not extend further by
x (either the current states reached from states of S′′ not distinguished by w
‘converge’ or there is some (s′, S′′′) such that s′ and a state from S′′′ ‘converge’).

The above can clearly be stored in polynomial space. In addition to the
terminating conditions mentioned above, T should terminate when the upper
bound is reached. First note that the number of possible values for a pair (s′, S′′′)
is bounded above by n.2n and so the number of possible such pairs is bounded
above by: (n2n)K = nK .2nK . Second, initially D contains K sets. The only way
we can change D is by merging two or more sets, with this reducing the number
of sets in D. Thus, the value of D can change at most K − 1 times.

Therefore the upper bound for the PRSIS is (K−1).nK .2(nK). Note that this
information can be stored in polynomial space, i.e. O(log((K − 1).nK .2(nK))) =
O(log(K − 1) + Klog(n) + nKlog(2)) space and the Turing machine T can hold
a counter and increment this by one after an input is guessed. Therefore when
the value stored in the counter exceeds the upper bound value, T terminates.

Therefore, the entire search in this way can be performed in NPSPACE. Based
on Savitch’s Theorem [32], the PRSIS problem is in PSPACE as required.

Now we prove that if the automata accept a common word w ∈ Σ then M(A)
has an invertible sequence that takes S′′ to S′. Clearly the application of fwf ′

from a state of S′′ brings M(A) to one of states in S′. As the output produced
as a response to input f is unique, fwf ′ is a PRSIS for S′ as required.

Now we assume that there are invertible sequences with common input
sequence x̄ that take S′′ to S′ and we are required to prove that there is a
common element for the automata in A. Note since x̄ takes S′′ to S′, the input
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sequence x̄ should contain at least one f and must end with f ′. Let x̄′f ′ be the
suffix of x̄ after the first input f . After the application of f , the FSM is in a
state that corresponds to an initial state of the corresponding automaton. Since
x̄ takes S′′ to S′, x̄′f ′ must takes set δ(S′′, f) to S′ and so x̄ must take initial
states of the Ai to final states. The result thus follows setting w = x̄. 
�
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Abstract. Region theory, as initiated by Ehrenfeucht and Rozenberg,
allows the characterisation of the class of Petri net synthesisable finite
labelled transition systems. Regions are substructures of a transition
system which come in two varieties: ones solving event/state separation
problems, and ones solving state separation problems. Linear inequation
systems can be used in order to check the solvability of these separa-
tion problems. In the present paper, the class of finite labelled transition
systems in which all state separation problems are solvable shall be char-
acterised graph-theoretically, rather than linear-algebraically.
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1 Introduction

The linear algebra-based synthesis algorithm described in [1] allows to check
whether a given edge-labelled transition system is isomorphic to the state graph
of an unlabelled Petri net, and if so, to construct such a net. In this algorithm,
the computational onus is on solving state separation problems, because their
number is quadratic in the size of the state set, and the set of states tends to be
very large, as compared with the set of edge labels.

It may therefore be interesting to characterise the solvability of state separa-
tion problems in a linear algebra-independent way. The present paper describes
a purely graph-theoretical characterisation. Based on a generalised notion of
paths and cycles, an exact condition for a transition system to have only solv-
able state separation problems shall be presented. We shall also investigate how
such systems look like in the special, but interesting, case of persistent systems.
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The structure of the paper is as follows: after recalling some notions about
labelled transition systems and about regions in Sects. 2 and 3, Sect. 4 presents
our graph-theoretical characterisation, and Sect. 5 develops the persistent case.
Finally some concluding remarks are presented in Sect. 6.

2 Labelled Transition Systems

A labelled transition system can be understood as an edge-labelled directed
graph. In this paper, we shall make use both of directed and of general (not
necessarily directed) paths in such a graph. We shall call the latter generalised
paths, and we shall employ the prefix “g-” (thus: g-paths, or g-cycles) in order
to emphasise their use. If directed paths are meant, as a special case, we shall
use the prefix “d-” (thus: d-paths, or d-cycles) explicitly.

Definition 1. lts, paths, reachability
A labelled transition system with initial state, abbreviated lts, is a quadruple
TS = (S,→, T, ı) where S is a set of states, T is a set of labels, →⊆ (S × T × S)
is the transition relation, and ı ∈ S is an initial state. Let

←−
T be a copy of T :

←−
T = {←−t | t ∈ T}, with T ∩ ←−

T = ∅; and also define
←−←−
t = t for all t ∈ T

A g-path (d-path) is a sequence σ ∈ (T ∪ ←−
T )∗ (respectively, σ ∈ T ∗), where ∗

denotes the Kleene star. For s, s′ ∈ S, a g-path σ = a1 . . . am leads from s to s′

(denoted by s[σ〉s′) if

∃r0, r1, . . . , rm ∈ S : s = r0 ∧ rm = s′ ∧
∀j ∈ {1, . . . , m} :

{
(rj−1, aj , rj) ∈→ if aj ∈ T

(rj ,
←−aj , rj−1) ∈→ if aj ∈ ←−

T

That is, s[σ〉s′ contains all t-edges of σ (t ∈ T ) in forward direction, and all
←−
t -

edges in backward direction. (Note that s[ε〉s′ is tantamount to s = s′.) We can
extend the back-arrow notation to sequences in (T ∪ ←−

T )∗ inductively as follows:

←−ε = ε and ←−σa = ←−a ←−σ , for a ∈ T ∪ ←−
T and σ ∈ (T ∪ ←−

T )∗

(Then s[σ〉s′ if and only if s′[←−σ 〉s.)
A d-path σ ∈ T ∗ is called enabled in a state s, denoted by s[σ〉, if there is some

state s′ such that s[σ〉s′. A state s′ is reachable from state s if ∃σ ∈ T ∗ : s[σ〉s′,
also denoted s′ ∈ [s〉.1 
�
Definition 2. Parikh vectors, cycles, and label-disjointness
A T -vector is a function Φ : T → Z; in linear algebra, it will usually be considered as
a column-vector; its support is the set of indices corresponding to nonnull values.

1 Note that enabledness and reachability refer to d-paths, rather than to g-paths.
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For a g-path σ ∈ (T ∪ ←−
T )∗, the Parikh vector of σ is a T -vector Ψ(σ), defined

inductively as follows:2

Ψ(ε) = 0 (the null vector)

(Ψ(σa))(t) =

⎧
⎨

⎩

(Ψ(σ))(t) + 1 if t = a ∈ T

(Ψ(σ))(t) − 1 if
←−
t = a ∈ ←−

T

(Ψ(σ))(t) if t �= a �= ←−
t

Two finite sequences are Parikh-equivalent if they have the same Parikh vector.
A g-path s[σ〉s′ is called a g-cycle, or more precisely a g-cycle at (or around)
state s, if s = s′. Two d-paths σ, τ ∈ T ∗ are called label-disjoint if their Parikh
vectors have disjoint supports. 
�
Definition 3. Determinism, spanning tree, equivalences
TS is called finite if S and T (hence →) are finite, deterministic if ∀s, s′, s′′ ∈ S,
t ∈ T : s[t〉s′ ∧ s[t〉s′′ ⇒ s′ = s′′, and totally reachable if every state is reachable
from ı. An lts TS is called a tree (with root ı) if it is totally reachable and
|→| = |S|−1 (i.e., for each state, there is a single directed path from the root to
it in the corresponding unlabelled graph). A tree TS ′ = (S′,→′, T ′, ı′) is called
a spanning tree of TS if S′ = S, →′⊆→, T ′ ⊆ T , and ı′ = ı. The language of TS
is the set L(TS ) = {σ ∈ T ∗ | ı[σ〉}.

Two lts TS 1 = (S1,→1, T, ı1) and TS 2 = (S2,→2, T, ı2) are language-
equivalent if L(TS1) = L(TS 2), and isomorphic if there is a bijection ζ : S1 → S2

with ζ(ı1) = ı2 and (s, t, s′) ∈→1 ⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1. 
�
As an example, consider the labelled transition system TS1 depicted in Fig. 1.
The d-path aba emanating from state ı (more precisely, exhibiting all intermedi-
ate states, ı[a〉s1[b〉ı[a〉s1), has Parikh vector (2, 1) (two a’s, one b). The g-path←−a emanating from s1 (i.e.: s1[←−a 〉ı) has Parikh vector (−1, 0).

TS1:

ı s1

a

b

TS2:

ı s1

a

a

TS3:
ı s1

s2s3

a

b

a

b

ı s1 s2 s3 s4 s5

a b b a a

TS4: TS5:

ı
s1

s2
b a

a

Fig. 1. Five illustrative transition systems.

2 This definition generalises the classic notion of a Parikh vector to g-paths.
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Here are a few simple observations about (generalised) paths and cycles.

(a) For any g-path σ ∈ (T ∪ ←−
T )∗: Ψ(σ) = −Ψ(←−σ ).

(b) For any two g-paths σ1, σ2 ∈ (T ∪ ←−
T )∗: Ψ(σ1σ2) = Ψ(σ1) + Ψ(σ2).

(c) Let r0[α1〉r1[α2〉r2[α3〉r0 and r1[β1〉r3[β2〉r2. Then, with κ1 = α1α2α3, κ2 =
α1β1β2α3, and κ3 = β1β2

←−α2, r0[κ1〉r0, r0[κ2〉r0, and r1[κ3〉r1 are g-cycles,
and Ψ(κ3) = Ψ(κ2) − Ψ(κ1). (Proof: simple calculation).

(d) If TS is a tree, then any g-cycle in TS has Parikh vector zero. (However,
there may also be non-cycles with Parikh vector zero).

(e) Let TS0 = (S,→0, T0, ı) be a spanning tree of TS = (S,→, T, ı). For any
state s, let πs denote the (unique) d-path from ı to s in TS0 (it is thus also
a d-path in TS ). An edge (s, t, s′) ∈ (→ \ →0) is called a chord. Every chord
(s, t, s′) defines a g-cycle ı[πst

←−πs′〉ı; let this g-cycle be called γ(s,t,s′). Let

ΓTS ,TS0 = {γ(s,t,s′) | (s, t, s′) is a chord}
The set ΓTS ,TS0 is called a g-cycle basis (of TS , with regard to TS 0), as
justified by the next point.

(f) The Parikh vector Ψ(κ) of any g-cycle κ in TS can be written as

Ψ(κ) =
∑

γ∈ΓTS,TS0

kγ · Ψ(γ)

for some coefficients kγ ∈ Z. (Proof: following the successive arcs s[t〉s′ of
κ and the corresponding g-cycles ı[πst

←−πs′〉ı, each πs will be cancelled out
by some ←−πs, the arc yields a γ if it is a chord, a reverse γ if it is a reverse
chord, and if the arc is not a chord (nor a reverse one), it is easy to see that
Ψ(πst

←−πs′) = 0).

In the remainder of this paper, we always assume that TS = (S,→, T, ı) is
a finite, totally reachable, labelled transition system. Note that by total reach-
ability, TS has at least one spanning tree TS 0 [2]. We pick one of them and let
Γ = ΓTS ,TS0 denote the cycle basis defined by it.

3 Regions

Regions, to be defined next, mimick the properties of Petri net places at the
transition system level. Our nomenclature accords with this idea, even though
we shall not define Petri nets in the present paper: B and F assign backward
and forward weights to labels t, so that these weights can serve as connecting
arcs between a transition t (which realises the label t) and a place of a Petri net,
while R assigns a token count in each marking to that place.

Definition 4. Regions of an lts, and the effect of a label
Let TS = (S,→, T, ı) be an lts. A triple ρ = (R,B, F ) ∈ (S → N, T → N, T → N)
is a region of TS if for all s, s′ ∈ S and t ∈ T , s[t〉s′ implies R(s) ≥ B(t)
and R(s′) = R(s) − B(t) + F (t). The derived function E : T → Z defined by
E(t) = F (t) − B(t) is called the effect of t. 
�
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Definition 5. State and event/state separation properties [1].
An lts TS = (S,→, T, ı) satisfies SSP (state separation property) iff

∀s, s′ ∈ [ı〉 : s �= s′ ⇒ ∃ region ρ = (R,B, F ) with R(s) �= R(s′) (1)

meaning that if all regions agree on two states, then the latter are equal.
TS satisfies ESSP (event/state separation property) iff

∀s ∈ [ı〉 ∀t ∈ T : (¬s[t〉) ⇒ ∃ region ρ = (R,B, F ) with R(s) < B(t)

meaning that if all regions satisfy R(s) ≥ B(t), then s enables t. 
�
In usual parlance, two distinct (unordered) states s, s′ ∈ S yield a state sep-
aration problem, denoted by SSP(s, s′), and if there is a region ρ as in (1),
then ρ is said to solve SSP(s, s′).3 Intuitively, ρ differentiates between s and s′.
Event/state separation problems are similarly defined, but in the remainder of
this paper, we shall limit ourselves to state separation problems.

For example, in Fig. 1, TS1 satisfies both SSP and ESSP. Indeed, if we repre-
sent the three functions of a region ρ = (R,B, F ) by their equivalent multisets,
ρ1 = ({s1}, {b}, {a}) and ρ2 = ({ı}, {a}, {b}) are two regions such that ρ1 solves
the event/state separation problem (¬ı[b〉) and ρ2 solves the event/state sep-
aration problem (¬s1[a〉). Either of them solves the state separation problem
ı �= s1. TS2 and TS3 (in Fig. 1) satisfy ESSP but not SSP, and TS4 satisfies SSP
but not ESSP. The significance of these properties is expressed by the following
result [1]. (Place/transition Petri nets are defined, e.g., in [9]).

Theorem 1. Basic region theorems for place/transition nets.
A totally reachable, finite lts is isomorphic to the reachability graph of some
place/transition Petri net if, and only if, it satisfies SSP∧ ESSP.
If a totally reachable, finite lts satisfies ESSP, then it is language-equivalent to
the reachability graph of some Petri net. 
�
For example, for TS3 as shown in Fig. 1, even though there is no Petri net with an
isomorphic reachability graph, there is still a Petri net with a language-equivalent
reachability graph, for instance a net whose reachability graph is isomorphic to
TS1. Interestingly, a totally reachable, finite lts may be language-equivalent to
some Petri net without satisfying ESSP. This is the case, for instance, for system
TS5 shown in Fig. 1: it is easy to build a Petri net with two transitions {a, b}
and the language {ε, a, b, ba} = L(TS 5), but since ı[a〉s2 and s1[a〉s2, any region
will assign the same token count to s1 and ı, so that it is not possible to allow
b at ı and to exclude it from s1; as a consequence, neither ESSP nor SSP are
satisfied by this system.

Here are some observations about regions, g-paths and Parikh vectors. Let
a finite, totally reachable lts TS = (S,→, T, ı) be given and let TS 0 be any
spanning tree of TS with root ı.

3 SSP(s, s′) equals SSP(s′, s), and thus, SSP(s, s′) is solvable iff SSP(s′, s) is solvable.
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(g) Any T -vector E : T → Z can be extended to g-paths in (T ∪←−
T )∗ by defining

E(σ) =
∑

t∈T

E(t) · Ψ(σ)(t) = ET · Ψ(σ) , for anyσ ∈ (T ∪ ←−
T )∗

(T means ‘transposed’, · is scalar product)
If ρ = (R,B, F ) is a region with effect E, then for any g-path s1[τ〉s2, we
obtain: R(s2) = R(s1) + E(τ). (Proof: by easy induction on the length of
τ .)

(h) In particular, by total reachability, for any state s ∈ S, we have R(s) =
R(ı)+E(πs). This implies that knowing R(ı) (and πs) is sufficient for know-
ing R(s), for every state s.

(j) Also, suppose that s[κ〉s is a g-cycle in TS . By (g) again, we have R(s) =
R(s) + E(κ). This means that the effect is zero along g-cycles of TS , i.e.,
E(κ) = 0, for every g-cycle s[κ〉s in TS .

4 State Separability

The synthesis task is to find, for any given separation problem, a region that
solves it. The next definition describes a graph-theoretical property which will
later turn out to characterise the solvability of state separation problems.

Definition 6. Mild [4] and g-mild cycle-consistency
An lts TS = (S,→, T, ı) is called mildly cycle-consistent (mcc) if for all d-cycles
r[σ〉r and d-paths s[σ′〉s′ where there is a p ∈ N\{0} such that Ψ(σ) = p · Ψ(σ′),
then s = s′. It is called g-mildly cycle-consistent (g-mcc) if the same condition
is satisfied for all g-cycles r[σ〉r and g-paths s[σ′〉s′. 
�
In other words, if there is at least one cycle r[σ〉r, then any σ′ whose Parikh
vector satisfies Ψ(σ) = p · Ψ(σ′) for some integer number p �= 0, also has a cyclic
effect whenever it is realised. The relevance of the factor p is shown by TS2 in
Fig. 1, which does not enjoy property mcc, since, for example, ı[σ〉ı, ı[σ′〉s1, with
σ = aa, σ′ = a, p = 2, and ı �= s1.

The two variants of cycle-consistency differ only in which kinds of paths are
considered: d-paths in the plain version, and g-paths in the generalised version.
The difference is illustrated by TS6, as depicted in Fig. 2.

Proposition 1. A necessary condition for SSP solvability.
Let TS = (S,→, T, ı) be a totally reachable, finite lts.
If SSP(s, s′) is solvable for any two different states (s, s′), then TS is g-mcc.

Proof: By contraposition.
Suppose that TS is not g-mildly cycle-consistent. Then there are states r, s, s′,
a number p ∈ N\{0} and g-paths σ, σ′ such that s �= s′, r[σ〉r, s[σ′〉s′, and
Ψ(σ) = p · Ψ(σ′). Let ρ = (R,B, F ) be any arbitrary region. Then

R(s′) = R(s) + ET·Ψ(σ′) (by s[σ′〉s′ and Item (g) above)
= R(s) + ET·(1/p)·Ψ(σ) (by Ψ(σ) = p · Ψ(σ′))
= R(s) (by r[σ〉r,hence ET·Ψ(σ) = 0,by Item (j))
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TS6:

ı
s1

s2

s3

s4

a

b

c

a

b

TS7:

ı s2
a

b

c

a

b

a

b

Fig. 2. TS6 is mildly cycle-consistent but not g-mildly cycle-consistent, since there are
a g-cycle ı[b←−a 〉ı and a non-cyclic g-path s3[

←−a b〉s4 with the same Parikh vector (−1, 1).
TS6 is deterministic, while TS7 is deterministic, but not mcc.

It follows that R(s′) = R(s), and since ρ was arbitrary, no region solving
SSP(s, s′) exists. Hence the claim. 
�
For the converse, we shall need a classical result of linear algebra (one of the
many variants of the duality theorems):

Lemma 1. Rational-Integer Fredholm Alternative [7]
Let A, b be a rational (n,m)-matrix and a rational (n, 1)-vector, respectively.
Exactly one of the following alternatives holds.
Either A·x = b has a rational solution x,
or yT·A = 0, yT·b �= 0 has an integer solution y. 
�
Proposition 2. A sufficient condition for SSP solvability.
Let TS = (S,→, T, ı) be a totally reachable, finite lts.
If TS is g-mcc, then SSP(s, s′) is solvable for any two different states s, s′.

Proof: By contraposition.
Assume that there are two states s, s′ with s �= s′ such that SSP(s, s′) is not
solvable. We shall construct a pattern in TS which shows that TS is not g-mcc,
and we proceed in two steps.

Step 1: The non-solvability of SSP(s, s′) can be characterised as follows: SSP(s, s′)
is not solvable if and only if there is no T -vector E : T → Z satisfying

(i) ∀γ ∈ Γ : ET·Ψ(γ) = 0
(ii) ET·Ψ(πs) �= ET·Ψ(πs′) (2)

where Γ is the cycle base defined before.

Proof: If SSP(s, s′) is solvable by some region ρ = (R,B, F ), then the effect
function E : T → Z derivable from ρ clearly satisfies both (i) and (ii) of (2), from
Items (j) and (h). Conversely, assume that (2) has a solution. Such a solution can
easily be transformed into a region (R,B, F ) solving SSP(s, s′) by the following
procedure. Let us choose some R(ı), and define for any s �= ı R(s) = R(ı)+E(πs)
(this is compatible with the initial value since πı = ε). For any arc s̃[t〉s̃′, the
path ı[πs̃t

←−πs̃′〉ı is a g-cycle; from Item (f) and point (i) of (2), we have that
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E(πs̃t
←−πs̃′) = 0, i.e., E(πs̃′) = E(πs̃) + E(t), so that R(s̃′) = R(ı) + E(πs̃′) =

R(ı) + E(πs̃) + E(t) = R(s̃) + E(t), as requested for a region. In order to ensure
that all those values are non-negative, one just has to choose a value high enough
for R(ı). For B and F , we can choose minimal non-negative values such that
E(t) = F (t) − B(t), for every t ∈ T . The triple (R,B, F ) so defined is then a
region, and it differentiates between s and s′ from point (ii) of (2).

Step 2: Now we show that the unsolvability of (2) implies that a pattern not
conforming to g-mild cycle-consistency is hidden somewhere inside TS . Suppose
that (2) is unsolvable. Let G be a matrix whose columns are all the Parikh vectors
of cycles γ in Γ . The unsolvability of (2) is equivalent to the unsolvability (in
the integer domain) of

(i’) ET·G = 0 (in fact, this is just a shorthand of (2(i)))
(ii’) ET·(Ψ(πs′) − Ψ(πs)) �= 0 (just a rewriting of (2(ii))) (3)

By Fredholm’s duality result (Lemma 1), the unsolvability of (2) thus implies
that the following system has a rational solution x:

(iii) G·x = Ψ(πs′) − Ψ(πs) (4)

(4) just means that the T -vector Ψ(πs′) − Ψ(πs) – so to speak, the “difference”
between s′ and s, with respect to ı – is a linear combination of cyclic Parikh
vectors from Γ .

From x, we construct a counterexample to g-mild cycle-consistency as follows.

• First, note that for any q ∈ S and g-cycle q[γ〉q, ı[πqγ
←−πq〉ı is also a g-cycle,

but around ı, with Ψ(πqγ
←−πq) = Ψ(γ).

• The g-path σ′ = ←−πsπs′ leads from s to s′, and Ψ(σ′) = Ψ(πs′) − Ψ(πs). More-
over, from (4), Ψ(σ′) =

∑
γ∈Γ xγ ·Ψ(γ), where the xγ can be (negative) rational

numbers. By multiplying this with a suitable natural number p > 0, we get
p · Ψ(σ′) =

∑
γ∈Γ yγ ·Ψ(γ), with integer numbers p·xγ = yγ ∈ Z.

• Using every γ exactly |yγ | times (backwards, if yγ < 0), we can therefore
realise a cycle ı[σ〉ı with Ψ(σ) = p · Ψ(σ′). Put r = ı.

With the states r, s, s′, number p, and g-paths σ, σ′ just constructed, TS is not
g-mildly cycle-consistent, since s �= s′. This ends the proof. 
�
For instance, consider TS2 as shown in Fig. 1. The state separation problem
SSP(s, s′) with s = ı and s′ = s1 is not solvable. We obtain G = (Ψ(aa)T) = 2
(a single component since T = {a}) and Ψ(πs′) − Ψ(πs) = 1 (idem), because of
ı[a〉s1; thus, x = 1/2 solves (4). Multiplying by p = 2 gives y = 1, and indeed,
Ψ(σ) = 2 · Ψ(σ′) with σ = aa and σ′ = a.

Theorem 2. G-mild cycle-consistency characterises SSP
For a totally reachable, finite lts TS = (S,→, T, ı), the following are equivalent:

• TS is g-mcc.
• For any two different states s �= s′, SSP(s, s′) is solvable.

Proof: By Propositions 1 and 2, considering also that all previous proofs hold
for any chosen spanning tree of TS (since the choice of TS 0 was arbitrary). 
�
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5 Persistent Systems

In this section, we shall show that in case TS is persistent, there exist some
useful variations of Theorem 2.

Definition 7. Persistence.
A labelled transition system (S,→, T, ı) is called persistent if for all states
s, s′, s′′ ∈ S, and labels t, u ∈ T with t �= u, if s[t〉s′ and s[u〉s′′, then there
is some state r ∈ S such that both s′[u〉r and s′′[t〉r (i.e., once two different
labels are both enabled, neither can disable the other, and this leads to the same
state, forming a characteristic diamond shape). 
�
For example, TS6, shown in Fig. 2, is not persistent, while TS7 (also shown in
that figure) is. Of course, g-mild cycle-consistency implies mild cycle-consistency.
We will show that the converse is true for persistent lts. First, we recall Keller’s
theorem, which is useful for arguing concisely about persistent systems. For
sequences τ, σ ∈ T ∗, the residue τ−• σ is defined inductively as follows:

ifσ = ε : τ−• ε = τ
ifΨ(τ)(t) = 0 : τ−• t = τ
ifΨ(τ)(t)�=0 : τ−• t = the sequence obtained by erasing the leftmost t in τ
otherwise: τ−• (tσ) = (τ−• t)−• σ

Theorem 3. Keller [8].
Let (S,→, T, ı) be a deterministic and persistent lts. Let τ ∈ T ∗ and σ ∈ T ∗

be two d-paths activated at some state s. Then τ(σ−• τ) and σ(τ−• σ) are also
activated from s. Furthermore, σ−• τ and τ−• σ are label-disjoint, and the state
reached after τ(σ−• τ) equals the state reached after σ(τ−• σ). 
�
Lemma 2. g-paths and semi-directed paths
In a deterministic and persistent lts, for any g-path r[α〉s, there is a path
r[β1

←−
β2〉s, where β1 and β2 are d-paths and Ψ(α) = Ψ(β1) − Ψ(β2).

Proof: Let us first assume that r[←−γ1〉r′[γ2〉s for two d-paths γ1 and γ2. From
Keller’s Theorem 3 and the definition of residues, since r′[γ1〉r and r′[γ2〉s, we
have r[γ2−• γ1〉r′′ and s[γ1−• γ2〉r′′ for some state r′′, i.e., r[(γ2−• γ1)(

←−−−−
γ1−• γ2)〉s;

moreover Ψ(γ1(γ2−•γ1)) = max(Ψ(γ1), Ψ(γ2)) = Ψ(γ2(γ1−•γ2)), so that Ψ(←−γ1γ2) =
Ψ(γ2)−Ψ(γ1) = Ψ(γ2−•γ1)−Ψ(γ1−•γ2) = Ψ((γ2−•γ1)(

←−−−−
γ1−• γ2)). (The max operation

on Parikh vectors is meant componentwise, and we also use the fact that γ1−• γ2

and γ2−•γ1 are label-disjoint.) The claimed property then arises from an iterative
application of this result, progressively pushing the backward paths to the right
of forward ones while keeping the same Parikh vector. 
�
A home state in an lts is a state s̃ such that, for any state s ∈ S, s̃ ∈ [s〉. It is well
known (see Corollary 4 of [3]) that, in a deterministic and persistent lts with a
home state s̃, for any d-cycle s[α〉s, there is a d-cycle s̃[β〉s̃ with Ψ(α) = Ψ(β)
(i.e., cycles may be transported Parikh-equivalently to home states). Moreover



172 E. Best et al.

(see Corollary 2 of [3]), any finite, totally reachable, deterministic and persistent
lts has home states.

A non-empty d-cycle s[α〉s in an lts is called small if there is no Parikh-
smaller non-empty d-cycle: s′[β〉s′ with Ψ(β) � Ψ(α) ⇒ β = ε with α, β ∈ T ∗.
An lts is said to satisfy the disjoint small cycles property if there is a set
{Υ1, . . . , Υn} of natural T -vectors with disjoint supports such that {Υ1, . . . , Υn} =
{Ψ(α)| there is a small cycle s[α〉s}.

Lemma 3. disjoint small cycles basis
Let TS = (S,→, T, ı) be a totally reachable, deterministic labelled transition
system which is finite, mildly cycle-consistent and persistent. Then TS satisfies
the disjoint small cycles property for some {Υ1, . . . , Υn}, and for any d-cycle
s[α〉s we have the decomposition Ψ(α) =

∑n
i=1 ki · Υi for some k1, . . . , kn ∈ N.

Proof: This follows from Theorem 2 of [3] and Theorem 2 of [4] (since finiteness,
determinism, mild cycle-consistency and persistence easily imply the premises
of the latter). 
�
Lemma 4. d-cycle base of g-cycles
Let TS = (S,→, T, ı) be a totally reachable, deterministic labelled transition
system which is finite, mildly cycle-consistent and persistent. Then there is a set
{Υ1, . . . , Υn} of natural T -vectors with disjoint supports such that for any g-cycle
s[α〉s, there is a unique set of integers k1, . . . , kn ∈ Z with Ψ(α) =

∑n
i=1 ki · Υi.

Proof: From Lemma 2, we know that, for some s1 ∈ S, s[α1〉s1 and s[α2〉s1

with α1, α2 ∈ T ∗ and Ψ(α) = Ψ(α1) − Ψ(α2). Applying Keller’s theorem, we
get s1[β1〉s2 and s1[β2〉s2 for some s2 ∈ S, with β1 = α1−• α2, β2 = α2−• α1,
Ψ(α1) − Ψ(α2) = Ψ(β1) − Ψ(β2), β1 and β2 being label-disjoint. From the label-
disjointness, we may then continue, and form a sequence s2[β1〉s3, s2[β2〉s3, . . .,
sn[β1〉sn+1, sn[β2〉sn+1, . . ., but since S is finite, we must have i < j such that
si = sj .

Thus, we have cycles si[(β1)j−i〉si, si[(β2)j−i〉si, but also si[β2(β1)j−i−1〉si

and si[β1(β2)j−i−1〉si. By Lemma 3, the Parikh vector of each of them is a linear
combination of the Υl’s, and from the label-disjointness of β1 and β2 on the one
side, and of the Υl’s on the other side, we must have Ψ(β1) =

∑n
l=1 k1,l · Υl as

well as Ψ(β2) =
∑n

l=1 k2,l · Υl, with ∀l : k1,l ≥ 0, k2,l ≥ 0 and k1,l · k2,l = 0. As a
consequence, Ψ(α) =

∑n
l=1(k1,l − k2,l)·Υl, and the claimed result is proved. 
�

Lemma 5. Cycles may be pushed to home states [3]
Let TS = (S,→, T, ı) be a totally reachable, deterministic labelled transition
system which is finite and persistent. Then there exists a home state s̃ ∈ [ı〉 so
that for any cycle s[α〉s there exists a cycle s̃[α̃〉s̃ with Ψ(α) = Ψ(α̃).

Theorem 4. Persistent lts are g-mcc iff they are mcc.
Let TS = (S,→, T, ı) be a finite, totally reachable, deterministic, persistent
labelled transition system. Then TS is g-mildly cycle-consistent iff it is mildly
cycle-consistent.
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Proof: It is clear that, if TS is g-mildly cycle-consistent, then it is mildly cycle-
consistent.

For the other direction, note first that by Lemma 3, TS satisfies the disjoint
small cycles property for some {Υ1, . . . , Υn} if TS is mildly cycle-consistent.

Let us thus assume that s[α〉s is a g-cycle, r[β〉r′ is a g-path with p · Ψ(β) =
Ψ(α) for some p ∈ Z\{0}: we need to show that r = r′.

From Lemmas 3 and 5 we know that there is a home state s̃, with small
cycles s̃[γi〉s̃, such that ∀i ∈ {1, . . . , n} : Ψ(γi) = Υi.

Lemma 4 implies that Ψ(α) =
∑n

i=1 ki · Υi, where each ki ∈ Z.
Since the lts is totally reachable, we have two d-paths ı[δ1〉r and ı[δ2〉r′. By

Keller’s theorem, there is a state r̃ such that r[δ2−•δ1〉r̃ and r′[δ1−•δ2〉r̃, and δ1−•δ2

and δ2−• δ1 are label-disjoint.
Let us now consider the g-cycle r[β(δ1−• δ2)(

←−−−
δ2−• δ1)〉r. From Lemma 4 again,

we know that Ψ(β(δ1−•δ2)(
←−−−
δ2−• δ1)) = Ψ(β)+Ψ(δ1−•δ2)−Ψ(δ2−•δ1) =

∑n
i=1 hi ·Υi,

where each hi ∈ Z.
Gathering all these relations, we get:

p · [Ψ(δ1−• δ2) − Ψ(δ2−• δ1)]

=
n∑

i=1

p · hi · Υi − p · Ψ(β)

=
n∑

i=1

p · hi · Υi − Ψ(α)

=
n∑

i=1

[p · hi − ki] · Υi

From the label-disjointness of δ1−• δ2 and δ2−• δ1, as well as of the various Υi’s, we
may express p ·Ψ(δ1−•δ2) =

∑n
i=1 l1,i ·Υi and p ·Ψ(δ2−•δ1) =

∑n
i=1 l2,i ·Υi for some

l1,i’s and l2,i’s in N. As a consequence, since p · Ψ(δ1−• δ2) = Ψ(γl1,1
1 γ

l1,2
2 . . . γ

l1,n
n )

and s̃[γl1,1
1 γ

l1,2
2 . . . γ

l1,n
n 〉s̃, from mild cycle consistency we have r = r̃. Similarly,

r′ = r̃, and we get r = r′ as requested. 
�
Theorem 4 can be understood intuitively by comparing TS6 and TS7, shown in
Fig. 2. Any attempt to turn TS6 into a persistent lts requires to extend the a/b
forks at states ı and s2 into persistent diamonds, which either yields an infinite
result, or creates cycles such as the ones in TS7, leading to a violation of mild
cycle-consistency (not just of g-mild cycle-consistency, as in TS6).

Finally, we use Theorems 2 and 4, together with previous results, in order to
prove the following theorem.

Theorem 5. For persistent synthesis, SSP can largely be neglected
Let TS be a finite, totally reachable, deterministic labelled transition system
which is mildly cycle-consistent and persistent. If TS satisfies ESSP, then it
is isomorphic to the reachability graph of some place/transition Petri net.
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Proof: By Theorem 4, TS is g-mildly cycle-consistent. By Theorem 2, it satisfies
SSP. The claim then follows by Theorem 1 (first part, (⇐)). 
�

For the reachability graphs of Petri nets, all premises of Theorem 5, except
finiteness and persistence, are satisfied. (The proof of this is easy; see, e.g., [4].)
For this reason, Theorem 5 can be paraphrased loosely as follows: “in the pres-
ence of persistence, SSP plays no role in finite Petri net synthesis”. This com-
plements Darondeau’s theorem [5] which states (loosely speaking) that “in the
presence of persistence, language equivalence is the same as isomorphism”. The-
orem 5 can also be viewed as a strengthened version of the second part of
Theorem 1 (under the premise of persistence).

6 Conclusion

The main results of this paper can be summarised as follows:

• State separability, as defined in Petri net synthesis [1], has a graph-theoretical
characterisation, using generalised – that is, not necessarily directed – paths
and cycles (Theorem 2).

• In the presence of persistence, (i): this characterisation can be replaced by a
simpler one, just using directed paths and cycles (Theorem 4); and (ii): state
separation problems are generally solvable (Theorem 5).

It should be observed that the g-mcc characterisation given by Theorem 2 does
not directly lead to a fast algorithm for checking the solvability of state separa-
tion problems. It remains to be found out (in future work) to what extent g-mild
cycle-consistency lends itself to useful algorithmic treatment.

Finally, we would like to emphasise that, while there may be less event/state
separation problems [1] in an lts than state separation problems, event/state
problems are much harder to characterise purely graph-theoretically. This is
true even for very simple (persistent, acyclic) transition systems [6].

Acknowledgments. We would like to thank the reviewers and Harro Wimmel for
their very useful comments.
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Abstract. We study a natural strategic situation arising from the selec-
tion of shared means of transportation. Some clients (the players) are
located on different nodes of a given graph and they want to be trans-
ported from their location to a common destination point (e.g. school,
airport). A fixed number of resources (also called buses) is available and
each client has to choose exactly one. Individual costs depend on the
route chosen by the buses and the distance between the nodes. We inves-
tigate the case where each bus has a static permutation which prescribes
the order by which the clients are visited. We identify the cases admitting
a pure strategy equilibrium and consider the construction of an equilib-
rium, via a dedicated algorithm, or a dynamics. We also determine the
price of anarchy and the price of stability for two natural social functions.

Keywords: Resource allocation game · Existence and computation of
equilibria · Price of anarchy/stability

1 Introduction

In many applications some entities compete for the use of shared resources (e.g.
processors, storage). These resources are typically rare enough to prevent the
existence of an ideal situation where every entity is fully satisfied with the
resources that it holds. Allocating scarce resources to a pool of agents is an
important problem in the AGT community. An allocation can be found by a
central planner who strives to optimize a prescribed social choice function. In
practice, this approach is often too rigid as some users, who disregard the social
cost and focus on their own individual cost, may not trust the planner’s global
solution. Therefore, one may prefer a more flexible mechanism, i.e. a decentral-
ized way for constructing an allocation with which the agents can interact and be
proactive. Unfortunately such a mechanism would fail if the agents were unable
to commit in a feasible allocation of the resources, or if every allocation that the
agents build has a high social cost. As a consequence, it is necessary to evaluate
the worth of a mechanism with respect to at least two criteria: (Stability) Can
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the agents reach a stable state where no one is capable to acquire more revenue?
(Performance) Are these stable states good from a social viewpoint?

We address these questions in a context where some agents, located on differ-
ent places of a map, compete for the use of some public means of transportation
(e.g. buses), so as to reach a common destination (e.g. an airport). Our work,
motivated by services like Dial-a-Ride, Lyft or Uber, uses strategic games to
model the situation. The models are called selfish transportation games because
every agent (also called player) controls a part of the entire solution (i.e. which
transportation means she decides to take) and this agent’s choice is solely guided
by her individual cost. Our study focuses on the existence of pure strategy equi-
libria, together with a worst-case analysis of the performance of the best (resp.,
worst) pure Nash equilibrium compared to configurations with minimum social
cost. Two natural, yet different, notions of social cost are used. More importantly
we concentrate on mechanisms where each bus visits and picks up the clients
according to a fixed order (possibly different for each bus).

1.1 The Model

Let G = (V,E) be an undirected graph with a source s and a destination t. The
graph is also endowed with a distance function d : V ×V → R+ which is possibly
metric, i.e., symmetric and it obeys the triangle inequality. The transportation
game has a set N of n players, and each one is located on a vertex of V . The
goal of each player is to be transported from its location to the destination t
at the lowest cost. There is a set M of m ≥ 2 resources (also called buses).
Each bus follows a path that starts from s, visits some players at their location,
and finally reaches the destination t. We suppose that each bus j has its own
algorithm Aj which, given V ′ ⊆ V , determines its route, i.e. an s− t path whose
set of intermediate nodes is V ′. Every algorithm Aj is public. It is assumed that
a bus always takes the direct link with distance d(a, b) between two consecutive
clients a and b and all links between two distinct clients are possible.

We consider a strategic game in which each player chooses by which bus
it is picked. Thus, M is the strategy space of every player in N . There are
different ways to define ci(σ), the individual cost of a player i under strategy
profile σ. In this work ci(σ) is the distance travelled by σi (the bus selected by
player i) between the original location of i (when player i is picked) and the
destination t. We suppose that each Aj , for j ∈ M , is based on a permutation
πj : {1, . . . , n} → N (independent of the current strategy profile). Actually πj

indicates the reverse order by which the players are picked. This picking order
is never violated, even if a bus visits a player’s location more than once. The
permutation is an expression of preferences, or priorities, that a resource has
over the set of players (or their locations).

Example 1. Consider an instance with 4 players and 2 buses. The permutations
of the buses are (1 2 3 4) and (1 4 2 3), respectively. Suppose player 1 chooses bus
1 whereas the others choose bus 2. Thus, bus 1 starts from s, visits 1 and goes
to t. Bus 2 starts from s, visits players 3, 2, 4 and goes to t. Individual costs are
c1(σ) = d(1, t), c4(σ) = d(4, t), c2(σ) = d(2, 4)+c4(σ) and c3(σ) = d(3, 2)+c2(σ).
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In a totally equivalent model, every player is at t and wants to reach her
location (e.g. airport to home). Each permutation πj indicates by which order
the players are dropped. In Example 1, bus 1 transports player 1 to his home.
Bus 2 starts from t, drops player 4, then player 2, then player 3.

1.2 Motivation and Related Work

Transportation problems have a prominent place in operations research and com-
binatorial optimization (e.g. the Traveling Salesman Problem [2] or Vehicle Rout-
ing Problems [22]) because they present both practical and theoretical challenges
to the researchers.

Ridesharing systems (see e.g., [16,18]) are emerging transportation models
and tools where car owners can share a ride with other persons via a dedicated
application (e.g. avego, blablacar, carpoolworld, carticipate, etc.). Ridesharing
systems, as public transportation systems, are valuable initiatives for the reduc-
tion of traffic congestion, CO2 emissions and fuel expenditure.

In this article, we depart from the extensive literature dealing with centrally
computed solutions (see e.g., [20]) and focus on game theoretic approaches. Con-
cerning transportation models, numerous articles on vehicle-routing games deal
with cooperative games (see e.g., [5,6,12]). However, noncooperative and com-
petitive games are more closely related to our transportation game. For example,
[13] study a competitive traveling salesmen problem in which two salespeople
compete for visiting some clients earlier than their opponent. In this model, the
players make their decisions in turn like in a game in perfect-information exten-
sive form. A similar model, with possibly more than 2 salespersons, is considered
in [17].

Our model of transportation differs from the aforementioned works since it
is a strategic game. The literature on strategic games for routing problems can
be divided in two parts, whether the players are non-atomic or atomic. In the
mathematical models involving non-atomic players, there is traffic in a network
and each infinitesimal portion of this traffic is associated with an autonomous
agent (see e.g. [10] for the notion of Wardrop equilibrium). In this article, we
assume that the players are atomic. In comparison, an atomic player represents
a non-negligible portion of the traffic.

As resource selection games, transportation games are reminiscent of schedul-
ing games with coordination mechanisms [9]. In coordination mechanisms we
have a scheduling policy, which imposes a priority over players in each resource.
The scheduling policy may be described by some simple rule, such as shortest
(resp., largest) job first, or may be more sophisticated (see e.g., [4]). Moreover,
the same or different scheduling policies can be used for the resources. The goal
is to find natural coordination mechanisms that can significantly improve the
resulting price of anarchy (see e.g., [4,7,9]) or can ensure the existence of an
equilibrium in pure strategies or the fast convergence to it (see e.g., [4]). Thus,
coordination mechanisms modify (or enrich) the individual cost structure, aim-
ing at improved efficiency (or equilibrium existence).
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In transportation games, we employ a fixed player priority, possibly differ-
ent in each bus, to simplify the individual cost structure and to allow for an
efficient best response computation. Of course, one might think of more sophis-
ticated player priorities and bus routes, which is somewhat reminiscent to more
complex scheduling policies in coordination mechanisms. Such priorities may
naturally depend on the set of players in the same bus and on their distances to
each other and to the destination. But, if e.g., we pick the players in each bus
according to the shortest route starting from the source, going through all of
them, and ending up to the destination, determining such a route and the cor-
responding individual costs requires the solution to an NP-hard optimization
problem. Keeping the player priorities fixed and independent of their partition
into buses, we simplify the individual cost structure so that transportation games
are amenable to theoretical analysis.

Transportation games also bear some resemblance to (non-cooperative ver-
sions of) hedonic games (see e.g., [8,11]), where the players are partitioned into
coalitions and the individual cost of each player depends on the identities of
other players in the same coalition (but not on the identity of the coalition). In
transportation games, the players in each bus could be regarded as a coalition
and the individual cost of each player depends on the identities of other players
in the same bus (but in a more subtle way than in the hedonic games of e.g.,
[14,15]). The special case of transportation games with the same player permu-
tation for all buses could be regarded as a hedonic game, since the individual
cost of each player depends on the locations of other players in the same bus (but
not on the bus itself). However, to enrich the individual cost structure of trans-
portation games, we allow for different player permutations in the buses, which
makes the individual cost of each player also depend on the bus (in addition
to the locations of the players to be picked up after him). This is a significant
departure from variants of hedonic games studied in the literature and a source
of difficulty in establishing the existence of pure Nash equilibria.

1.3 Contribution

We conduct a theoretical analysis of the transportation game by providing
answers to the following questions. Which case admits an equilibrium? Can we
compute an equilibrium in polynomial time? Do the players naturally converge
to an equilibrium? How good is the best (or worst) equilibrium in comparison
with a social optimum?

This work only deals with pure strategy profiles (each player’s choice is deter-
ministic). A pure Nash equilibrium (NE) is a strategy profile (also called state)
σ such that no player can unilaterally change her strategy and benefit [21].
A strong equilibrium (SE) is a refinement of the NE to group deviations. In a
SE, no group of players C can jointly deviate in such a way that every member
of C benefits [3]. This article also deals with the dynamics of the transportation
game. We say that the dynamics converges if, starting from any strategy profile,
every series of improvement moves (better response) eventually reaches a sta-
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ble state. Depending on the context (unilateral or group deviations), this stable
state can be a NE or a SE.

Our results show that if all the resources have the same permutation then a
SE exists and it can be computed in polynomial time (Theorem 1). But if the
permutations are not identical, then there exists a simple 2-resource 3-player
instance without any NE (Proposition 2). If there are 2 resources and if the
distances is metric, then the dynamics converges to a NE (Theorem 2). Moreover,
this equilibrium can be computed in linear time (Theorem 3).

Section 3 is devoted to a special metric case where distances can be 1 or 2.
We provide an algorithm that computes a NE in O(nm).

In Section 4, we analyse the price of anarchy and stability of the transporta-
tion game under two natural social cost functions namely egalitarian and Vehi-
cle Kilometers Travelled. These notions are worst case comparisons of the worst
and best NE with a social optimum, respectively. Without metric, the price of
anarchy and stability of our transportation game are unbounded, but they are
bounded for metric distances. Some possible extensions and future works are
discussed in the last section.

2 Existence and Computation of an Equilibrium

At least two properties play an important role in the existence of an equilibrium:
(i) whether the permutations of the buses are identical or not, (ii) whether the
distances are metric or not.

2.1 Instances with Not Necessarily Metric Distances

Theorem 1. If all the resources have the same permutation π, then the dynam-
ics converges to a SE. Moreover, a SE can be built in O(nm).

Theorem 1 cannot be extended to show the existence of a super strong equi-
librium (SSE), even with metric distances. A SSE is a refinement of the SE where
no group of players C can jointly deviate in such a way that no member of C is
worst off, while at least one member is better off.

Proposition 1. There exists a metric instance of the transportation game with
m = 2 resources having identical permutations which does not admit any SSE.

Proposition 2. There exists a non-metric instance of the transportation game
with m = 2 resources and n = 3 players which does not admit any NE.

Proof. Let the resources be 1 and 2 and let the players be α, β and γ. The per-
mutations are (α, β, γ) for resource 1 and (γ, β, α) for resource 2. The distances
are depicted in Fig. 1, on the left. Let us see that the instance has no pure Nash
equilibrium. If β is alone on a resource (or she is the last to be picked before
traveling to t) then she wants to move. In Fig. 1, on the right, the 4 remaining
configurations are depicted. The player with a star on its right has incentive to
switch. Hence, this instance does not admit any pure Nash equilibrium. ��
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distances

α β γ

t 2 100 1
α 0 0 0
β 0 0 10

states

1 2

σ1 β
α

σ2 β
γ

states

1 2

σ3 β
γ

σ4

α γ

Fig. 1. A non-metric instance of the transportation game with m = 2 resources and
n = 3 players that does not admit any pure Nash equilibrium (see also Proposition 2).

2.2 Instances with Metric Distances

Theorem 2. For the transportation game with m = 2 resources and metric
distances, better response dynamics converges to a NE.

Proof. Suppose for the sake of contradiction that there exists a cycle in the Nash
dynamics. Let N0 ⊂ N be the players who never change their strategy in the
cycle, whereas N1 := N \ N0 	= ∅. Note that there is some positive integer kj ,
with j ∈ {1, 2}, such that the kj first players in the permutation of resource j
are in N0 and they play j. Indeed, it is a dominant strategy for the first player
in the permutation of resource j to play j, because metric distances, ie., the
triangle inequality imposes that the cost of that player cannot be lower (namely
her distance to t).

For j ∈ {1, 2}, let pj denote the player of N1 coming first in the permutation
of resource j. Let dj be the player of N0 who is just before pj in the permutation
of resource j. Let cdj

denote the cost of dj in the cycle which is invariant. In the
cycle, if pj plays resource j then her cost is equal to d(pj , dj)+ cdj

, whatever the
players of N1\{pj} play. It must be p1 	= p2, otherwise we get a contradiction
with p1 ∈ N1 because the cost of p1 does not depend on the strategy adopted
by N1\{p1}. Since the players do unilateral deviations in the cycle, there must
be a state of the cycle in which p1 and p2 play the same strategy. Suppose wlog.
that at some point p2 profitably moves from resource 2 to resource 1, where p1

is. The new cost of p2 is at least her distance to p1 plus the cost of p1. Hence,
d(p2, d2)+cd2 > d(p2, p1)+d(p1, d1)+cd1 . At some point in the cycle p1 profitably
moves to resource 2 where its cost is at least its distance to d2 plus the cost of d2.
Thus, d(p1, d1)+ cd1 > d(p1, d2)+ cd2 . Combine previous inequalities to get that
d(p2, d2) > d(p2, p1) + d(p1, d2), which is a violation of the triangle inequality. ��

From this proof, we know that a potential function exists. Providing an
explicit potential function for metric transportation games with two resources
is an open question. Another open question asks whether the Nash dynamics
converges in polynomial time. We next show how to efficiently compute one
equilibrium with some central coordination (2 buses).

Theorem 3. For m = 2 resources and metric distances, the transportation
game has a NE that can be computed in O(n).
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Algorithm 1. Greedy algorithm for computing a NE
Input: set N of n players, set M of m resources, permutations πj for all j ∈ M (each

πj ends with �),
distance function d (we assume that d(u, �) = ∞).

Output: assignment σ : N → R that is a PNE
for all j ∈ M do

cost(j) ← 0; pj ← t; nj ← the first player in πj ;

for all v ∈ N do
cost(v) ← ∞; σ(v) ← �;

while ∃j with nj �= � do
k = arg minj{cost(j) + d(pj , nj)}; u ← nk;
in case of ties, select resource k with minimum cost(k)
if σ(u) = � then

assign u to resource k and set σ(u) ← k and c(u) ← cost(k) + d(pk, u);

if σ(u) �= � and c(u) > cost(k) + d(pk, u) then
restore cost(σ(u)) and pσ(u) to their values before u’s assignment to σ(u);
nσ(u) becomes the first player v after u in πσ(u) with c(v) > cost(σ(u)) +

d(pσ(u), v);
reassign u from σ(u) to k and set σ(u) ← k and c(u) ← cost(k) + d(pk, u);

let nk be the next player after u in πk (nk becomes � if u is the last player);
if σ(u) = k then pk ← u

return assignment σ

3 Computing a Pure Nash Equilibrium for Distances
1 and 2

For the simplest case of metric distances i.e., corresponding to the case that all
distances are either 1 or 2, a NE exists for any number of resources and can be
computed in linear time by a natural greedy algorithm.In Algorithm 1, a player
is available for assignment to a resource if she is currently the first player in the
resource’s permutation. Among all available players, Greedy picks the player u
that can be assigned to a resource k at a minimum cost. Ties are broken in favor
of resources with minimum cost. If player u is not assigned to any resource, she is
assigned to k. Otherwise, if u prefers k to her current resource, she is reassigned
to k. In both cases, u is removed from the permutation of resource k and Greedy
continues. We next show that Greedy terminates with a pure NE assignment if
the distances are either 1 or 2.

Example 2. Consider an instance with 8 players, p0, . . . , p7, and 3 resources r1, r2

and r3. The permutations are (p7 p6 p5 p4 p3 p2 p1 p0), (p0 p1 p2 p3 p4 p5 p6 p7) and
(p3 p2 p6 p7 p0 p5 p4 p1) for r1, r2 and r3, respectively. The nodes are partitioned
in three sets: {t, p0, p1}, {p2, p3, p4} and {p5, p6, p7}. The nodes in the same set
are within distance 1 to each other. All other distances are 2. In Algorithm 1, at
the beginning, players p7, p0 and p3 are available for assignment to r1, r2 and r3,
respectively. In the first iteration, p0 is assigned to r2 and p1 becomes available
for r2. In the subsequent iterations, p7 is assigned to r1, p3 to r3, and p1 to r2
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(this takes place last due to the tie breaking rule). At this point, we have that
n1 = p6 and n2 = n3 = p2. Next, p6 is assigned to r1, p2 to r3, p2 and p3 are
considered for and not assigned to r2, p4 is assigned to r2, and p5 is assigned
to r1. From that point on, p6, p7, p0, p5, p4 and p1 are considered for and not
assigned to r3, p4, p3, p2, p1 and p0 are considered for and not assigned to r1,
and p5, p6 and p7 are not assigned to r2. The final assignment is (p7 p6 p5) to r1,
(p0 p1 p4) to r2, and (p3 p2) to r3, which is a NE.

Theorem 4. Algorithm 1 computes a NE in O(nm) time if the distances are
either 1 or 2. Moreover, each player is reassigned at most once through the
execution of the algorithm.

Proof. We refer to a player u as a candidate for resource j if either nj = u or u
appears in πj after nj (so u will be considered for assignment or reassignment to
j in a subsequent iteration). For convenience, we let costmax = maxj cost(j) and
costmin = minj cost(j). We use induction on the number of iterations and show
that at the end of the current iteration: (i) no assigned player wants to deviate
to any resource j, unless she is a candidate for j; (ii) costmax − costmin ≤ 2;
(iii) costmin does not decrease from one iteration to the next; and (iv) if player
u is reassigned from resource σ(u) to resource k, her cost at σ(u) is costmax =
costmin+2 and her cost at k is costmin+1. At the end of the algorithm, no player
is a candidate for any resource. Hence, (i) implies that if Greedy terminates, the
assignment σ is a pure NE.

Claims (i)-(iv) are true before the first iteration. We inductively assume that
(i)-(iv) hold at the end of any iteration. To establish (i)-(iv) hold at the end of
the next iteration, we distinguish between three cases: whether u is assigned for
the first time to k, whether u is reassigned to k, and whether u stays with σ(u).
If u stays with σ(u), nothing changes and (i)-(iv) remain true at the end of the
current iteration.

If u is assigned or reassigned to k, u does not want to deviate at the end
of the current iteration, because k minimizes u’s cost among all resources j
with nj = u. If u is assigned to k, other resources and assigned players are not
affected, and claim (i) remains true. If u is reassigned to k, the cost of resource
σ(u) decreases. To maintain (i), we let nσ(u) be the first player after u in πσ(u)

that wants to be assigned to σ(u) (this may involve some backtracking in πσ(u)).
Then, if an assigned player wants to deviate to σ(u), so as to take advantage of
u’s move out of σ(u), she has become a candidate for σ(u). So, claim (i) holds
at the end of the current iteration.

As for claims (ii)-(iv), since all distances are either 1 and 2, and due to
the greedy choice of resource k and to the tie-breaking rule, k’s cost is equal
to costmin. Hence, if u is assigned for the first time to k, u’s cost becomes at
most costmin + 2. Moreover, costmin does not decrease and costmax either does
not change or becomes c(u) ≤ costmin + 2. Therefore, (ii)-(iv) hold after u’s
assignment.

If u is reassigned from σ(u) to k, the cost of u at σ(u) is c(u) = costmax =
costmin + 2. Furthermore, cost(k) = costmin (just before u’s reassignment) and
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the cost of u at k (after u’s reassignment) is costmin + 1. These follow from the
facts that costmax − costmin ≤ 2 at the end of the previous iteration, that c(u) >
cost(k) + d(pk, u) and that all distances are 1 and 2. So, after u’s reassignment,
cost(k) is at most costmax and cost(σ(u)) decreases by 2 and becomes costmin.
These imply that (ii)-(iv) remain true after u’s reassignment.

Claims (iii) and (iv) imply that any player is reassigned at most once. Due
to (iv), if a player u is reassigned from resource σ(u) to resource k, cost(σ(u))
decreases from costmax to costmin = costmax − 2 and the new cost of u at k is
costmin + 1. Thus, if u is reassigned from resource k later on, the new costmin

would be costmin − 1, which contradicts (iii). Hence, Greedy terminates after n
assignments and at most n reassignments.

Each reassignment causes a backtrack of at most n players in πσ(u). But only
assigned players with cost costmin + 2 can be reassigned to σ(u) after u moves
out. So, after u is reassigned to k, we need to insert at the beginning of πσ(u) only
assigned players that appear after u in πσ(u) and have cost equal to costmin + 2.
Since there are at most m such players, the additional running time due to each
reassignment is O(m). So the running time of Greedy is O(nm), i.e., linear in
the size of the input. ��

4 The Price of Anarchy and the Price of Stability

We consider two different social functions. For a strategy profile σ, D(σ) is the
total distance travelled by the buses when they transport at least one client
(for each bus we neglect the distance between s and the first client). This func-
tion reflects the environmental impact of the solution and it corresponds to the
objective Vehicle Kilometers Travelled considered in [18]. The second function is
the classical egalitarian social cost function E(σ) defined as maxi∈N ci(σ), which
is also the maximum distance travelled by a single bus if the distance between s
and the first client is neglected.

For every f ∈ {D,E} and any given instance, σ∗ denotes a state for which
f(σ∗) is minimum. The (pure) price of anarchy (PoA for short) is the largest
ratio f(σ)/f(σ∗), over all instances of the game, where σ is a pure NE [19]. The
(pure) price of stability (PoS for short) is the largest ratio f(σ)/f(σ∗), over all
instances of the game, where σ is the best NE with respect to f [1]. Therefore
PoA ≥ PoS.

Proposition 3. For every n ≥ 3, the PoS is unbounded for D or E if the distance
is not metric, even if all the permutations are identical.

4.1 Function D with Metric Distances

Due to Proposition 3, from now on, we assume that the distances are metric.

Lemma 1. If d is metric, d(x, y) ≤ D(σ∗) holds for all nodes x, y ∈ N ∪ {t}.
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Proof. If x and y are covered by the same bus in σ∗, then suppose wlog. that
the bus visits x before y. Therefore, D(σ∗) is at least the distance covered by
the bus between x and y, while the latter is at least d(x, y), by the triangle
inequality. Hence, suppose x and y are covered by two different buses in σ∗, and
denote them by bx and by, respectively. Therefore, D(σ∗) is at least the distance
covered by bx between x and t plus the distance covered by by between y and t.
The latter is at least d(x, y), by the triangle inequality. ��
Proposition 4. If d is metric, then D(σ) ≤ nD(σ∗) holds for every state σ.

Corollary 1. The PoA with respect to D of the transportation game on n players
with metric distances and m ≥ 2 resources is upper bounded by n.

Proposition 5. For any n ≥ 2, there are metric instances of the transportation
game on n players and m ≥ 2 resources where the PoS is asymptotically n, even
if all the resources have the same permutation.

4.2 Function E Without Metric

Lemma 2. d(x, y) ≤ 2E(σ∗) holds for every pair of nodes (x, y) ∈ N , and
d(x, t) ≤ E(σ∗) holds for every node x ∈ N .

Lemma 3. In any pure Nash equilibrium, the cost of a player is at most (2
 n
m�−1)

E(σ∗).

Proof. By contradiction, suppose there is a pure NE σ and a player i such that
ci(σ) > (2
 n

m� − 1)E(σ∗). Let k denote the number of players that the bus
selected by i picks between i and t (this includes i). Using Lemma 2 we have
ci(σ) ≤ (2k − 1)E(σ∗). These bounds on ci(σ) give k > 
 n

m�. But if more than

 n

m� players use the same bus, then there must be another bus, say b, selected
by less than n

m players. Even if player i appears last in the permutation of b, her
cost if she moves to b would be less than (2 n

m − 1)E(σ∗) (Lemma 2). We get a
contradiction with the fact that σ is a NE. ��
Corollary 2. The PoS with respect to E of the transportation game is O( n

m ).

Proposition 6. For the transportation game, PoA= 2
 n
m� − 1 if n > m and

PoA= 1 if n ≤ m.

We can also bound the PoA according to the parameters dmin = minx�=y

d(x, y) and dmax = max d(x, y). As an immediate corollary, we obtain that PoS =
PoA = 2 for distances 1 and 2.

Proposition 7. PoS = PoA = dmax/dmin for the transportation game.
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5 Future Directions

In this work we supposed that the route of the buses are prescribed by a permuta-
tion that is independent of the current state. There is an interesting challenge of
proposing different ways to define the route of the buses. This modification would
induce a different structure of the individual costs and possibly provide better
PoA and PoS, under the constraint that a pure equilibrium exists. This challenge
is similar to the search of coordination mechanisms in scheduling games.

In transportation problems, it is important to predict the situation so it
would be interesting to identify the cases where the equilibrium is unique. In the
future, the model of transportation can be extended in several natural aspects.
Each bus may have a capacity, its own speed and dedicated roads. The players
may have different sizes (e.g. a player is a group of persons).
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11. Drèze, J.H., Greenberg, J.: Hedonic coalitions: optimality and stability. Economet-
rica 48(4), 987–1003 (1980)

http://dx.doi.org/10.1007/978-0-387-30162-4_397
http://dx.doi.org/10.1007/978-0-387-30162-4_397


Selfish Transportation Games 187

12. Engevall, S., Lundgren, M., Värbrand, P.: The heterogeneous vehicle - routing
game. Transp. Sci. 38(1), 71–85 (2004)

13. Fekete, S.P., Fleischer, R., Fraenkel, A., Schmitt, M.: Traveling salesmen in the
presence of competition. Theor. Comput. Sci. 313(3), 377–392 (2004). Algorithmic
Combinatorial Game Theory

14. Feldman, M., Lewin-Eytan, L., Naor, J.: Hedonic clustering games. In: Blelloch,
G.E., Herlihy, M. (eds.) 24th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2012, Pittsburgh, PA, USA, June 25–27, pp. 267–276. ACM
(2012)

15. Gairing, M., Savani, R.: Computing stable outcomes in hedonic games. In: Kon-
togiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386,
pp. 174–185. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16170-4 16

16. Kamar, E., Horvitz, E.: Collaboration, shared plans in the open world: studies
of ridesharing. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI, Pasadena, California, USA, July 11–
17, p. 187 (2009)

17. Kendall, G., Li, J.: Competitive travelling salesmen problem: a hyper-heuristic
approach. J. Oper. Res. Soc. 64, 208–216 (2013)

18. Kleiner, A., Nebel, B., Ziparo, V.A.: A mechanism for dynamic ride sharing based
on parallel auctions. In: Walsh, T. (ed.) Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, IJCAI, Barcelona, Catalonia, Spain,
July 16–22, pp. 266–272. IJCAI/AAAI (2011)

19. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).
doi:10.1007/3-540-49116-3 38

20. Lau, H.C., Agussurja, L., Cheng, S.-F., Tan, P.J.: A multi-objective memetic algo-
rithm for vehicle resource allocation in sustainable transportation planning. In:
Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, IJCAI, Beijing, China, August 3–9. IJCAI/AAAI (2013)

21. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
22. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Society for Industrial and

Applied Mathematics, Philadelphia (2001)

http://dx.doi.org/10.1007/978-3-642-16170-4_16
http://dx.doi.org/10.1007/3-540-49116-3_38


Decomposable Relaxation for Concurrent
Data Structures

Chao Wang1,2(B), Yi Lv1,2, and Peng Wu1,2

1 State Key Laboratory of Computer Science,
Institute of Software, CAS, Beijing, China

{wangch,lvyi,wp}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. We propose a relaxation scheme for defining specifications of
relaxed data structures. It can produce a relaxed specification parame-
terized with a specification of a standard data structure, a transition cost
function and a relaxation strategy represented by a finite automaton. We
show that this relaxation scheme can cover the known specifications of
typical relaxed queues and stacks.

We then propose a method to reduce a relaxed specification defined
under the relaxation scheme into a finite number of finite automata called
witness automata. By applying this method we prove that the specifica-
tions of typical relaxed queues and stacks can be equivalently character-
ized by a finite number of witness automata. Thus, the problem whether
a relaxed queue or stack is linearizable with respect to its relaxed specifi-
cation can be efficiently checked through automata-theoretic approaches.
Moreover, all these witness automata can be generated automatically. In
this way, our relaxation scheme can well balance the expressiveness of
relaxation strategies with the complexity of verification.

1 Introduction

Developing concurrent data structures often requires subtle synchronization
mechanisms, e.g., non-blocking or fine-grained synchronization, to support for
concurrency. Hence, concurrent data structures are often error-prone and noto-
riously hard to verify. Recent developments of concurrent data structures even
relax their correctness requirements for better performance and scalability
[3,6,7,10,11].

However, the correctness requirements of relaxed data structures have been
far less studied. Recently, quantitative relaxation frameworks have been proposed
in [3,7] for relaxed data structures. These frameworks can characterize relaxation
strategies for typical relaxed data structures, but inevitably raise the complexity
of verification.

This work is partially supported by the National Natural Science Foundation of
China under Grants No. 60721061, No. 60833001, No. 61672504, No. 61572478,
No. 61672503, No. 61100069, and No. 61161130530.

c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 188–202, 2017.
DOI: 10.1007/978-3-319-51963-0 15



Decomposable Relaxation for Concurrent Data Structures 189

We observe that there have been two classes of relaxation strategies for spec-
ifications of typical relaxed data structures in the literature: one concerns the
bounded cost of an individual operation; while the other concerns the bounded
costs of a bounded number of certain operations. A cost of an operation is the
distance of the operation from a “normal” one. For instance, a deq operation
of cost k for a queue removes from the queue an element that is k elements
away from the head of the queue. Such bounded relaxation strategies can be
equivalently characterized by specific finite automata.

Based on this observation, we propose a relaxation scheme to define specifi-
cations of relaxed data structures (or relaxed specifications for short). A relaxed
specification is parameterized with a quantitative specification [7] and a relax-
ation strategy represented by a specification automaton. A quantitative specifica-
tion is a labeled transition system (LTS) obtained from a sequential specification
by determining the cost of each transition. A specification automaton is a finite
automaton that uses predicates over the costs as parts of its transition labels to
represent the permitted costs of the transitions in the quantitative specification.
Herein, we pre-assume that relaxed data structures have been instrumented with
linearization points. Under this assumption, the linearizability problem of such
a relaxed specification, i.e., the problem of whether a relaxed data structure is
linearizable with respect to the relaxed specification, can be characterized as the
inclusion problem between the set of the operation sequences derived by execut-
ing the relaxed data structure and the relaxed specification itself. Our relaxation
scheme can cover typical relaxed queue specifications [3,6,7,10,11] and relaxed
stack specifications [7].

The advantage of our relaxation scheme is that many relaxed specifications
defined under the relaxation scheme can be reduced into a finite number of
finite automata, called witness automata. Moreover, these witness automata can
be generated automatically. Thus, although such a relaxed specification and its
violations may be far beyond the scope of a regular language, its corresponding
witness automata can be exploited for linearizability checking through automata-
theoretic approaches.

The reduction of such a relaxed specification can be achieved in two steps.
Firstly, we reduce the violations of the relaxed specification into either ill-formed
operation sequences, or several violations languages. An ill-formed operation
sequence is an operation sequence that contains some operation with ∞ cost,
such as dequeuing (deq) an element from a queue that is not in the queue at the
moment. A violation language is a regular language on predicates over opera-
tions and their costs. Second, we devise witness automata for checking ill-formed
operation sequences, and for checking whether there is a differentiated opera-
tion sequence that satisfies some violation language. A differentiated operation
sequence is an operation sequence in which each value is added at most once. The
correctness of both steps need to be proved case-by-case for individual relaxed
data structures and their relaxed specifications.

We then demonstrate the applicability of our relaxation scheme with two
typical relaxed queue specifications [3,6,7,10,11]. We adopt the notion of
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data-independence [16] to handle the operations with an unbounded data
domain, over which any value can be safely renamed. Although a relaxed queue
specification and its violations may not be regular, the first reduction step essen-
tially partitions the violations of the relaxed queue specification into different
classes: ill-formed operation sequences, or operation sequences that satisfies a
violation language. This reduction is feasible due to the non-increasing condi-
tion, a common feature of specification automata of relaxed queue specifications.
A consequence of the non-increasing condition is that a bounded number of deq
operations with bounded costs are enough for capturing the violations. These
violation scenarios are represented by violation languages. Then, the second
reduction step requires to devise witness automata for the violation languages.
Given an operation sequence that satisfies a violation language, we can effectively
find a witness sequence, which is a minimal sequence that contains the same num-
ber of deq operations with their costs satisfying the corresponding predicates in
the violation language. Due to the data-independence of relaxed queue specifi-
cations, from a witness sequence we can generate a witness automaton by safely
assuming that other operations use fresh arguments and return values. Since wit-
ness sequences have a bounded number of operations, these witness automata
can be automatically generated by enumeration.

Related Work. Quasi-linearizability [3] was the first relaxation scheme for
sequential specifications of concurrent data structures. A quantitative relaxation
framework [7] was then proposed. As preliminary attempts, verification tools
have been adapted to model checking relaxed data structures [2,17]. However, the
motivations of the quantitative relaxation frameworks in [3,7] are to characterize
as many relaxed data structures as possible, while our relaxed scheme aims
to balance the expressiveness of relaxation strategies with the complexity of
verification.

The idea of reducing a linearizability problem with the aids of specific finite
automata or simple properties has been studied in [1,4,8] for the standard queue
and stack specifications (i.e., the specifications with cost 0). Specifically, [1]
requires linearization points to be instrumented à priori, while [4,8] do not.
All these work do not consider relaxed data structures, and the construction
and correctness proofs of the finite automata or simple properties have to be
carried out manually. On the contrast, our approach applies to relaxed queue
and stack specifications with the aids of witness automata, which can be gener-
ated automatically. When applying our approach to standard queue and stack
specifications, the finite automata in [1] can be essentially obtained. [4] uses
more complicated finite automata, and hence can deal with the cases where
linearization points are not instrumented.

2 Notations and Terminologies

For sequences l and l′, let l · l′ denote their concatenation. Let l ↑Σ denote the
projection of l onto Σ. Let denote an item, of which the value is irrelevant,
and ε denote the empty sequence. A labelled transition system (LTS) is a tuple
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A = (Q,Σ,→, q0), where Q is a set of states, Σ is an alphabet of transition
labels, →⊆ Q × Σ × Q is a transition relation and q0 is the initial state. A path
of A is a finite transition sequence q0

α1−→ q1
α2−→ . . .

αk−→ qk with k≥0. A finite
sequence t = α1 · α2 · . . . · αk with k ≥ 0 is a trace of A if there exists a path
q0

α1−→ q1
α2−→ . . .

αk−→ qk of A.

2.1 Concurrent Data Structures and Their Specifications

A concurrent data structure (implementation) encapsulates a collection of meth-
ods for accessing a possibly shared instance of the concurrent data structure. We
presume a potential infinite data domain D and a finite set M of methods. We
identify a set of input methods that takes one input argument, such as the typi-
cal enq method of queue and push method of stack. Let Minp be the set of input
methods in M and Moth = M − Minp. Each method declares its local vari-
ables and method body, which is built from atomic commands (e.g., write, read,
assignment, compare-and-swap, malloc and free) using the standard control-flow
constructs (including the sequential composition, selection and loop constructs).
The execution of a method is started by an invocation with arguments in D and
terminated by executing a return command, which may return values in D. For
simplicity, we assume that each method has only one parameter and one return
value (if it returns).

An operation m(a, b) represents that method m is called with argument a
and returns value b. A (sequential) specification of a concurrent data structure
is defined as a prefix-closed set of sequences over {m(a, b)|m ∈ M, a, b ∈ D}.

2.2 Linearizability with Linearization Points

Linearizability [9] is the de facto standard correctness condition for concurrent
data structures. In this paper we consider a concurrent system that consists
of an unbounded number of concurrent processes, each of which may at any
time invoke any method in M with any argument in D. An execution of the
concurrent system is modeled by a history, which is a finite sequence of call and
return actions. A call action happens when a method is called by a process.
A return action happens when a called method returns to the calling process.

Intuitively, a history is linearizable with respect to its sequential specification,
if every method of the history appears to take effect instantaneously at some
point between the call and the return action of the method, and the sequence of
taking effect belongs to its sequential specification. A concurrent data structure
is linearizable with respect to its sequential specification, if each of its history is.
The time point when a method takes effect is called a linearization point, and
locating linearization points is an intuitive approach for proving linearizability.

In this paper, we assume that the linearization points of each method have
already been instrumented. When a command, which is introduced as the lin-
earization point between a call action of method m with argument a and the
corresponding return action with value b, is being executed, it will generate an
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operation m(a, b). Such instrumentation process may not be that straightfor-
ward, since for some concurrent data structures, the linearization points of one
method may vary and depend on future interleaving of a history, which is unpre-
dictable, or locate in other methods [12]. Thus, each execution of the concurrent
system can generate a sequence of such operations. Let OpSeq(L) be the set of
all the sequences of the operations generated by the concurrent system with con-
current data structure L. Then, the notion of linearizability with linearization
points is defined as follows:

Definition 1 (linearizability with linearization points). A concurrent
data structure L, which has been instrumented with linearization points, is
linearizable with respect to a specification Spec for an unbounded number of
processes, if OpSeq(L) ⊆ Spec.

3 Specifications of Relaxed Data Structures

In this section we propose our relaxation scheme for defining specifications of
relaxed data structures. We use the k-FIFO queues [10] as the running example to
intuitively introduce relaxed data structures, and then instantiate the relaxation
scheme to define the relaxed queue specification for k-FIFO queues.

3.1 k-FIFO Queues

1

Head

deq(2)
deq(3) 3

2
7
8

4
5 enq(8)

enq(9)6 9

Tail

Fig. 1. 3-FIFO queue

k-FIFO [10] queues are a typical relax-
ation of FIFO queues. A k-FIFO queue
maintains a linked list of segments, each
of which is an array of k cells. Each enq
operation attempts to put an element into
an empty cell of the tail segment, while
each deq operation attempts to remove an
element from the head segment. k-FIFO
queues scatter the contention for both enq and deq operations, and hence exhibit
better performance than Michael-Scott queue [13] at the expense of relaxing cor-
rectness. Figure 1 shows a 3-FIFO queue, which contains three 3-cell segments.
k-FIFO queues may exhibit behaviors that violate the FIFO order, because the
values in the same segments may be removed in an arbitrary order. For example,
suppose in Fig. 1 values are enqueued in the increasing order. Then, 1, 2 and 3
may be dequeued in an arbitrary order. However, a k-FIFO queue additionally
requires that a deq(null) operation happens only when the queue is empty. Here
null is the special value denoting that a data structure contains no data item.

3.2 Relaxation Strategies

An operation has cost r, if it has distance r from a corresponding “normal”
operation, such as dequeuing an element from a queue that is r elements away
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from the head of the queue. According to [3,7], the specifications of relaxed data
structures are obtained by relaxing the specifications of standard data structures
(where each operation has cost 0). We observe that there have been two relax-
ation strategies for specifications of typical relaxed data structures. Take queue
specifications for example. Given sequence s = (o1, r1) · · · · · (ol, rl), where oi is
an enq or deq operation with cost ri for 1 ≤ i ≤ l. Roughly speaking, s can be
accepted under either of the following relaxation strategies (conditions):

– Each enq operation has cost 0, while each deq operation has cost no greater
than some constant k ∈ N, or is well-formed, i.e., having cost in N.

– s must adhere to the segment mechanism as in k-FIFO queues. Specially, as
in [3,7], we use an “over-approximation” of this sort of relaxation strategies,
i.e., (1) the maximal length of successive but not necessarily adjacent deq
operations that do not return null and have non-0 costs is k-1, where k is the
length of a segment, and (2) the maximal permitted cost of the i-th successive
deq operation is k-i.

The first and second relaxation strategies capture the specifications of the
relaxed data structures defined in [3,6,11] and in [3,7,10], respectively.

3.3 Relaxed Specifications

The above relaxation strategies consider only costs of individual operations or a
bounded number of certain operations, which subject to simple conditions such
as “no greater than some constant k”, “in N” and “equal to 0”. By representing
these conditions as predicates, these relaxation strategies can be equivalently
captured by finite automata. Based on this intuition, in this subsection we pro-
pose a relaxation scheme for defining specifications of relaxed data structures
(or relaxed specifications for short).

A relaxed specification is obtained by relaxing a specification of a standard
data structure with a relaxation strategy specified in the form of a finite automa-
ton, called a specification automaton. The relaxation scheme is divided into two
steps. Similar to [7], the first step is to semantically point out the costs of each
operation in the specification of the standard data structure. This results in a
quantitative specification. In the second step, the relaxed specification is obtained
by filtering the quantitative specification with the specification automaton.

Quantitative Specifications: Given a specification Spec, we semantically rep-
resent it as an LTS LTS(Spec) = (Q,Σ,→, q0), with the only requirement that
the set of traces of LTS(Spec) must be Spec. A quantitative specification is
a tuple QLTS(Spec, f) = (Q,Σ,Q × Σ × Q, q0, f), which makes transitions
between all the pairs of the states of LTS(Spec) with all the operations as labels.
f : Q × Σ × Q 	→ N ∪ {∞} is a transition cost function, where ∞ is the special
number that is greater than any natural number. It is used to determine the
costs of the transitions between every pair of states of LTS(Spec). Specially, f
maps only the transitions of LTS(Spec) to 0. This process of determining costs
for transitions is same as that in [7].
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Specification Automata: The operations with methods in Minp are referred
to as Minp operations, while the operations with methods in Moth that do not
return null (respectively, that return null) are referred to as Mv

oth (respectively,
Mn

oth) operations.
Given k ∈ N, let Nat, E(k), N(k), LE(k) and G(k) represent predicate

“is a natural number (not ∞)”, “equal to k”, “not equal to k”, “less than or
equal to k” and “greater than k”, respectively. Let Mp

inp, Mp-v
oth and Mp-n

oth repre-
sent the predicate that identifies Minp operations, Mv

oth operations and Mn
oth

operations, respectively. Then, a specification automaton is a finite automaton
A = (QA, FA, ΣA,→A, qinit), where

– QA is the finite set of states; qinit ∈ QA is the initial state, and FA ⊆ QA is
the set of final states.

– ΣA is a finite set of transition labels, each of which is represented as a pair
(po, pc) of predicates. po ∈ {Mp

inp,M
p-v
oth ,Mp-n

oth } is used to select certain opera-
tions; while pc ∈ {Nat, N(0), E(0)}∪{LE(i),LE(i)∧N(0), G(i)|i ∈ N} is used
to select certain costs.

– →A⊆ QA × ΣA × QA is the transition relation.

Relaxed Specifications: A sequence (o1, r1)·. . .·(ol, rl) is said to be accepted by
QLTS(Spec, f) and A, if it is a trace of QLTS(Spec, f), and there exist transitions

q1
(po1,pc1)−−−−−−→A q2, . . . , ql

(pol,pcl)−−−−−→A ql+1 of A from the initial state qinit ≡ q1 to
a final state ql+1 in FA, such that for each 1 ≤ i ≤ l, oi satisfies poi, ri ∈ N

satisfies pci. Then, the relaxed specification SpecA,f is obtained by filtering the
traces of QLTS(Spec, f) with A, as defined below:

Definition 2 (relaxed specification). Given specification Spec, transition
cost function f and specification automaton A, the relaxed specification SpecA,f

is defined such that an operation sequence s = o1 · . . . · ol is in SpecA,f , if there
exist costs r1, . . . , rl, such that (o1, r1) · . . . · (ol, rl) is accepted by QLTS(Spec, f)
and A.

Since an operation with ∞ cost often means an ill-formed operation, we do not
consider operations with ∞ cost in Definition 2.

3.4 Relaxed Queue Specifications

In this subsection we instantiate the above relaxation scheme for defining specifi-
cations of relaxed queues. The definition of a relaxed stack specification is rather
similar and can be found in the technical report version of this paper [14].

Specification of FIFO Queues as an LTS: An FIFO queue has typically
two methods: enq and deq, among which enq is the input method. Since enq
has no return value and deq has no input argument, we abbreviate operation
enq(a, ) and deq( , b) as enq(a) and deq(b), respectively. The set of operations
for an FIFO queue is {enq(d)|d ∈ D} ∪ {deq(d′)|d′ ∈ D ∪ {null}}. Let Queue
be the specification of an FIFO queue, whose definition is obvious and hence
omitted here. LTS(Queue) is constructed as follows as in [7]:
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– Each state is a sequence over {enq(d)|d ∈ D}; specially, the initial state is ε;
each transition label is an enq or deq operation;

– s
enq(d)−−−−→ s·enq(d) for each state s; s

deq(d)−−−−→ s′ if s = enq(d)·s′; and s
deq(null)−−−−−−→ s

if s = ε.

Quantitative Specification of FIFO Queues: A quantitative specification
QLTS(Queue, fseg) can be constructed by using the segment cost function fseg
in [7] as the transition cost function. fseg maps a transition between s and s′

with label o to cost r, if r is the length of a minimum sequence v such that

– s = u ·v ·w, s′ = u′ ·v ·w and u ·w o−→ u′ ·w is a transition of LTS(Queue), or
– s = u · v · w, s′ = u · v · w′ and u · w o−→ u · w′ is a transition of LTS(Queue);

or r = ∞ if such v does not exist. Intuitively, the segment cost of a transition is
the length of the shortest word v whose removal enables a transition.

Specification Automata for k-FIFO Queues: We abbreviate sets {enq},
{deq}v, {deq}n, and predicates {enq}p, {deq}p-v and {deq}p-n as enq, deqv, deqn,
enqp, deqp-v and deqp-n, respectively. We require each enq operation to have cost
0. Let Kn represent the maximal permitted cost of a deqn operation, and k be
the length of a segment. Figure 2 shows the specification automaton Aq

seg−(3,0)

for the second relaxation strategy with k = 3 and Kn = 0 (which is the case
of 3-FIFO queues). Here c1 = (enqp, E(0)), (deqp-v, E(0)), (deqp-n, E(0)), c2 =
(enqp, E(0)), (deqp-n, E(0)), and qtrap is the trap state which is not a state in FA
and has no outgoing transitions.

Aq
seg−(3,0) requires that deqv operations is relaxed according to the segment

mechanism, while enq and deqn operations have cost 0. It also requires that
the maximal length of successive but not necessarily adjacent deqv operations
with non-0 cost is 2, and the maximal permitted cost of the first (respectively,
second) successive deqv operation is 2 (respectively, 1). This represents a “shrink-
ing window” of size up to 3, while the values in a shrinking window can be
removed in an arbitrary order.

Please refer to the technical report version of this paper [14] for a detailed
definition of the specification automaton Aq

seg−(k,Kn) for the second relaxation
strategy. In [14] we also define the specification automaton Aq

max−(Kv,Kn) for
the first relaxation strategy, where Kv represents the maximal permitted cost

(deqv,LE(2) ∧ N(0))
qinit q2

(deqv,LE(1) ∧ N(0))
q3 qtrap

(deqv, N(0))

(deqv, E(0))

(deqv, G(2))

(deqv, G(1))

(deqv, E(0))

c1 c2 c2

Fig. 2. Specification automaton Aq
seg−(3,0)
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of a deqv operation. In the rest of this paper, let QueueAmax
(respectively,

QueueAseg
) denote the relaxed specification generated from QLTS(Queue, fseg)

and Aq
max−(Kv,Kn) (respectively, Aq

seg−(k,Kn)).

4 Reducing Relaxed Specifications into Witness
Automata

In this section, we present our method for reducing a relaxed specification into
a finite number of finite automata. We would need the following notions to
capture counterexamples of a relaxed specification. An operation sequence s is
differentiated, if for all m ∈ Minp and all a ∈ D, |s ↑{m(a,b)|b∈D} | ≤ 1. A set of
operation sequences is differentiated if each of the operation sequences is. For a
quantitative specification QLTS(Spec, f), an operation sequence s = o1 · . . . · ol

is well-formed, if there exist costs r1, . . . , rl ∈ N, such that (o1, r1) · . . . · (ol, rl)
is a trace of QLTS(Spec, f); otherwise, s is ill-formed. Obviously, each sequence
in SpecA,f is well-formed. Then, our reduction method proceeds in the following
two steps.

Step 1: In the first step, we construct a finite number of regular languages
VioLang(A) from the specification automaton A. Each regular language in
VioLang(A) is called a violation language, of which the alphabet is {(po, pc)|po ∈
{Mp

inp,Mp-v
oth,Mp-n

oth}, pc ∈ {Nat, N(0)} ∪ {G(k)|k ∈ N}}. Each violation lan-
guage represents a category of executions that carries cost and can cause viola-
tions to the relaxed specification. An operation sequence s = o1 · . . . · ol satis-
fies a violation language lan, if there exist costs r1, . . . , rl ∈ N and sequence
(po1, pc1) · . . . · (pol, pcl) ∈ lan, such that (o1, r1) · . . . · (ol, rl) is a trace of
QLTS(Spec, f), and for each 1 ≤ i ≤ l, oi satisfies poi and ri satisfies pci. Then,
this step needs to ensure the following condition:

Condition 1: Given concurrent data structure L, OpSeq(L) � SpecA,f , if and
only if there exists an ill-formed sequence s ∈ OpSeq(L), or a well-formed dif-
ferentiated sequence s ∈ OpSeq(L), such that s satisfies some violation language
lang ∈ VioLang(A).

Step 2: In the second step, we construct a finite set IllAut of finite automata
for capturing ill-formed sequences, and a finite set Aut(lang) of finite automata
for each violation language lang in VioLan(A). Let Aut(A) be the union of the
finite automata constructed for each violation language in VioLan(A). We call
each automaton in Aut(A) ∪ IllAut a witness automaton. Furthermore, this step
needs to ensure the following condition:

Condition 2: There exists an ill-formed sequence s ∈ OpSeq(L), or a well-
formed differentaited s ∈ OpSeq(L), such that s satisfies some violation language
lang ∈ VioLang(A), if and only if there exists a sequence s′ ∈ OpSeq(L), such
that s′ is accepted by some automaton in Aut(A) ∪ IllAut.

Conditions 1 and 2 need to be proved case-by-case for individual concurrent
data structures and their relaxed specifications. Once the above two steps are
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accomplished with the corresponding conditions established, it can be seen that
SpecA,f is equivalently characterized by Aut(A) ∪ IllAut, as indicated by the
following theorem:

Theorem 1. If Condition 1 and Condition 2 hold, then OpSeq(L) ⊆ SpecA,f , if
and only if no sequence in OpSeq(L) is accepted by any automaton in Aut(A) ∪
IllAut.

By Definition 1 the linearizability problem of a relaxed data structure with
respect to its relaxed specification can be considered as the sequence inclusion
problem between the set of the operation sequences derived by executing the
relaxed data structure and the relaxed specification itself. However, relaxed spec-
ifications are often far beyond the scope of regular languages. By Theorem1
checking the linearizability of a relaxed data structure can be reduced to the
emptiness problem of the intersection between the set of the operation sequences
derived by executing the relaxed data structure and the languages of a finite
number of witness automata. This renders the possibility of using automata-
theoretic approaches for linearizability checking based on witness automata, as
shown in [1] for standard queue and stack specifications.

5 Equivalent Characterizations of Relaxed Queues

In this section, we use the relaxed specifications QueueAseg
of 3-FIFO queues as

the running examples to demonstrate the process of reducing typical relaxed queue
specifications into a finite number of witness automata, according to the reduc-
tion method introduced in Sect. 4. Along this process, it can be seen that these
witness automata can be generated automatically. The case for relaxed stack spec-
ifications is rather similar, and hence omitted here. The detailed definitions and
proofs can be found in the technical report version of this paper [14].

5.1 Data-Independence

Data-independence [16] is a practical feature in many real-life data structures.
Each value added into a data-independent data structure can be considered
as a unique one and can be safely renamed. A renaming function σ : D →
D can be applied to an operation sequence s, resulting in the sequence σ(s),
where each value d in s is replaced with σ(d). A set S of operation sequences is
data-independent, if for each s ∈ S,

– There exists a differentiated operation sequence s′ ∈ S with s = σ(s′) for some
renaming function σ.

– σ(s) ∈ S for any renaming function σ.

A concurrent data structure L is data-independent, if OpSeq(L) is. We prove
in [14] that the relaxed queue specifications QueueAmax

and QueueAseg
are data-

independent. Herein, we rely on the notion of data-independence (1) to generate
differentiated operation sequences by renaming operation sequences, and (2) to
generate operation sequences with a finite data domain by renaming differenti-
ated operation sequences that potentially uses an unbounded data domain.
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5.2 Violation Languages of Relaxed Queue Specifications

In this subsection we define the violation languages for the relaxed specification
QueueAseg

with Kn = 0 and k = 3, and prove that these violation languages
satisfy Condition 1.

Let 
 = (Mp-v
oth + Mp-n

oth ,Nat) + (Mp
inp, E(0)) represent a placeholder for enq

and deq operations. Let 
′ = (Mp-n
oth ,Nat)+(Mp

inp, E(0)) represent a placeholder
for enq and deqn operations. The violation languages of Aq

seg−(3,0) include the
following two languages: the first language is 
∗ · ((deqp-n, N(0)) · 
∗, and is
used to capture deqn operations that have non-0 cost; while the second language
contains vlseg−(3,i) (1 ≤ i ≤ 3) and is used to capture deqv operations that
violate the segment mechanism. Here vlseg−(k,i) denotes the violation language

∗ · ((deqp-v, N(0)) · 
′∗)i-1 · (deqp-v, G(k-i)) · 
∗.

We now explain why the above violation languages satisfy Condition 1. Note
that in Aq

seg−(3,0), the maximal permitted costs of deqv transitions from qinit
to q2, from q2 to q3, and from q3 to qinit are in the decreasing order. This
feature is called the non-increasing property. Due to the non-increasing property,
a bounded number of deqv operations with certain costs are enough for capturing
violations to the relaxed specification, while costs of any other operations are
not relevant any more. For example, if a deqv operation with cost 2 is captured
in a differentiated operation sequence, then this operation sequence violates the
relaxed specification for sure. In [14] we show in details how to generate violation
languages for the relaxed queue specifications. The following lemma states that
such violation languages satisfy Condition 1:

Lemma 1. Assume that L is data-independent. OpSeq(L) � QueueAmax
(respec-

tively, QueueAseg
), if and only if there exists an ill-formed sequence s ∈

OpSeq(L), or a well-formed differentiated sequence s ∈ OpSeq(L), such that
s satisfies some violation language lang ∈ VioLang(Aq

max−(Kv,Kn)) (respectively,
VioLang(Aq

seg−(k,Kn))).

5.3 Witness Automata for Ill-Formed Sequences

In this subsection, we present witness automata Aq
cre and Aq

dup to detect the
existence of an ill-formed sequence. Let d1, d2, . . . , be distinct constants in D,
and if D = N, then d1, d2, . . . can just be 1, 2, . . ., respectively. Aq

cre and Aq
dup are

shown in Fig. 3(a) and (b), respectively, where c = enq(d1), deq(d1), deq(null).

qin
deq(d2)

qfin

c

qin
enq(d2)

q2
wa

deq(d2) q3
wa

deq(d2) qfin

c c c

(a) Aq
cre (b) Aq

dup

Fig. 3. Witness automaton Aq
cre and Aq

dup.
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For any state s of QLTS(Queue) and a enq or deqn operation o, we can
always find state s′ and cost r ∈ N, such that the operation o from s to s′ has
cost r. But this does not hold for deqv operations. Therefore, Aq

cre and Aq
dup

only focus on deqv operations. Aq
cre monitors whether a deqv transition returns

a value d2 that has never been enqueued before, while Aq
dup monitors whether a

value d2 has been enqueued only once but is dequeued twice. Similar automata
have been used in [1,4] for FIFO queues. The following lemma states that the
set IllAutq = {Aq

cre,Aq
dup} captures exactly ill-formed sequences in accessing a

data-independent relaxed data structure.

Lemma 2. Assume that L is data-independent. There exists an ill-formed
sequence in OpSeq(L), if and only if some sequence of OpSeq(L) is accepted
by automata in IllAutq.

5.4 Witness Automata for Violation Languages

A well-formed sequence ws is a witness sequence of a violation language
vlseg−(3,j), if (1) ws contains j deqv operations but no deqn operations; (2) the
first j-1 deqv operation have non-0 cost, while the last deqv operation has cost
greater than 3-j; (3) ws is a minimal sequence having the above two conditions,
i.e., ws contains the minimum number of enq operations for the above two condi-
tions to hold. Additionally, the i-th enq operation in ws uses distinct di for each
i > 0. Each witness sequence is well-formed and differentiated. It can be seen
that the number of enq operations in a witness sequence is bounded with respect
to segment length k. For example, for violation language vlseg−(3,2), its witness
sequence contains two deqv operations, the maximal number of enq operations
before the first (or second) deq operation is 4, and after the second deq operation
there is no enq operation.

Given witness sequence ws, a witness automaton Aws can be constructed as
follows: a chain of nodes from qin to qfin is created through connections labeled
with operations in ws one by one; qin is then connected to itself with multiple
labels, including a deqn operation, and an enq and a deqv operation with the fresh
value that is distinct from values in Aws; each intermediate node is also connected
to itself with multiple labels, including a deqn operation and an enq operation
with the fresh value. For example, ws = enq(d1) · enq(d2) · enq(d3) · enq(d4) ·
deq(d2) ·deq(d4) is a witness sequence of violation language vlseg−(3,2), and Fig. 4
shows the witness automaton for ws, where c1 = enq(d5), deq(d5), deq(null), c2 =
enq(d5), deq(null) and d5 is the fresh value.

qin
enq(d1) enq(d2) enq(d3) enq(d4)

c1

deq(d2) deq(d4)
qfinq3

wa q4
wa q5

wa q6
wa

c2 c2 c2 c2 c2

q2
wa

Fig. 4. Witness automaton for enq(d1) · enq(d2) · enq(d3) · enq(d4) · deq(d2) · deq(d4)
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Similarly, we can construct a witness automaton from violation language

∗ · ((deqp-n, N(0)) · 
∗. We prove that these witness automata are able to
capture well-formed differentiated sequences that satisfy the violation languages
defined in Sect. 5.2, as indicated by the following lemma:

Lemma 3. Assume OpSeq(L) is data-independent. There exists a well-formed
differentiated s ∈ OpSeq(L), such that s satisfies some violation language lang ∈
VioLang(Aq

max−(Kv,Kn)) (or VioLang(Aq
seg−(k,Kn))), if and only if there exists a

sequence s′ ∈ OpSeq(L), such that s′ is accepted by some automaton in Aut(lang).

Lemmas 2 and 3 make Condition 2 hold. Therefore, Aut(Aq
max−(Kv,Kn)) ∪

IllAutq (respectively, Aut(Aq
seg−(k,Kn)) ∪ IllAutq) constitutes an equivalent

characterization of the relaxed queue specification QueueAmax
(respectively,

QueueAseg
).

Theorem 2. Assume OpSeq(L) is data-independent. OpSeq(L) � QueueAmax

(respectively, QueueAseg
), if and only if some sequence in OpSeq(L) is

accepted by some automaton in Aut(Aq
max−(Kv,Kn)) ∪ IllAutq (respectively,

Aut(Aq
seg−(k,Kn)) ∪ IllAutq).

It can be seen that a witness sequence has bounded length, because the num-
ber of deqv and deqn operations in a witness sequence is fixed, while the number
of enq operations in a witness sequence is bounded. Thus, we can automatically
generate witness sequences by enumeration. In [14] we show that the number of
witness automata for QueueAseg

is at least exponential to the length of a segment.
Take violation language vlseg−(k,k) as an example. We get a subset of 2k witness
sequences of vlseg−(k,k). The i-th (1 ≤ i ≤ k) deqv operation in each of these
witness sequences can have either cost 1 or cost 2. This implies the lower bound
of the number of witness sequences (and hence the number of witness automata)
is at least exponential. The number of witness automata for QueueAmax

is four:
two for ill-formed operation sequences, one for deqv operations with non-0 costs
and one for deqn operations with non-0 costs. The standard FIFO queue spec-
ification is a special case of QueueAmax

with Kv = Kn = 0, and the number of
witness automata for it is exactly four.

6 Conclusion and Future Work

Many relaxed data structures have been implemented for the sake of performance
and scalability, while their verification problems were often left untouched or less
concerned. Quasi-linearizability [3] and the quantitative relaxation framework [7]
can characterize many of these relaxed implementations. However, we proved in
[15] that quasi-linearizability is undecidable. The quantitative relaxation frame-
work [7] indeed subsumes quasi-linearizability and can be proved undecidable.
On the contrast, our relaxation scheme can be proved decidable, and equivalently
characterized by a finite number of witness automata.
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Our relaxation scheme achieves a balance between the expressiveness of quan-
titative relaxation and the complexity in verifying the correctness of relaxed data
structures. We have shown that our relaxation scheme is expressive enough to
cover typical relaxed queues and stacks. We also have proposed the methodology
of reducing a relaxed specification defined under our relaxation scheme into a
finite number of witness automata, and applied it to relaxed queues and stacks.
We conjecture that the state-of-the-art safety verification tools, such as [1], can
then be applied to verify the linearizability of relaxed data structures through
automata-theoretic approaches. Note that the number of witness automata for
QueueAseg

is exponential to the length of a segment while the number of witness
automata for FIFO queues is constant. This reveals the inherent complexity of
verifying relaxed specifications.

It is interesting for future work to further investigate automata-theoretic
approaches for non-data-independent concurrent data structures. We would also
like to study the linearizability problem of relaxed data structures without instru-
menting their linearization points explicitly, as in [4,8].
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Abstract. Let G be a connected graph on n vertices. Let σk(G) be
the least possible value that is obtained as the sum of the degrees of k
pairwise distinct and non-adjacent vertices. We show that if one of the
following conditions is satisfied:
– σ3(G) ≥ n and there is a longest cycle in G which is not a dominating

cycle,
– σ2(G) ≥ 2

3
n and G is K1,4-free (i.e. without induced K1,4),

– each triple of pairwise non-adjacent vertices contains two vertices u
and v such that degG(u) + degG(v) ≥ n − 1,

then G contains a Hamiltonian path.

Keywords: Combinatorial problems · Connected graphs · Hamiltonian
path · Degree

1 Introduction

The Hamiltonian problem: determining conditions under which a graph contains
a spanning path or cycle, has long been fundamental in graph theory. Named
after Sir William Rowan Hamilton (and his Icosian game), this problem traces
its origins to the 1850s. Today, however, the constant stream of results in this
area continues to supply us with new and interesting theorems and still further
questions.

There are three fundamental results that we feel deserve special attention
here; both for their contribution to the overall theory and for their effect on the
development of the area. In many ways, these three results are the foundation
of much of today’s work.

Let G be an undirected and simple graph. For 1 ≤ k ≤ |VG| we define

σk(G) = min

{∑
v∈H

degG(v) : H ⊆ VG stable set in G with |H| = k

}
,

with the convention min ∅ = +∞, where a stable set is a set of vertices all
pairwise non-adjacent.

Theorem 1 (Dirac - 1952 - [6]). A graph G on n ≥ 3 vertices in which
σ1(G) ≥ n

2 contains a Hamiltonian cycle.
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 205–216, 2017.
DOI: 10.1007/978-3-319-51963-0 16
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Theorem 2 (Ore - 1960 - [15]). A graph G on n ≥ 3 vertices in which
σ2(G) ≥ n contains a Hamiltonian cycle.

Theorem 3 (Bondy-Chvátal -1976 - [2]). A graph G on n vertices contains
a Hamiltonian cycle if and only if the graph uniquely constructed from G by
repeatedly adding a new edge connecting a pair of non-adjacent vertices with
sum of their degrees at least n until no more pairs with this property can be
found, contains a Hamiltonian cycle.

These original results started a new approach to develop sufficient conditions
on degrees for a graph to have a Hamiltonian path or cycle. A lot of effort has
been made by various people in obtaining generalizations of these theorems and
this area is one of the core subjects in Hamiltonian graph theory and extremal
graph theory. For more results, see [10–13].

It is natural to ask if strengthening the connectivity conditions would allow
us to lower the degree conditions. We shall not attempt to survey paths and
cycles in k-connected graphs (graph who has more than k vertices and remains
connected whenever fewer than k vertices are removed) with k ≥ 1 (most of the
results are in the texts cited above and in [9]) but we can see that Dirac’s and
Ore’s general results (Theorems 1 and 2) may be strengthened when conditions
are added.

An induced subgraph of a graph G is a subset of VG together with any edges
both of whose endpoints are in this subset. For a graph F , we say that G is
F -free if it does not contain an induced subgraph isomorphic to F .

Theorem 4 (Zhang - 1988 - [16]). Let k ≥ 2 and G be a k-connected, K1,3-
free graph on n vertices with σk+1(G) ≥ n − k. Then G contains a Hamiltonian
cycle.

Theorem 5 (Markus - 1993 - [14]). Let G be a 2-connected, K1,4-free graph
on n vertices with σ1(G) ≥ n+2

3 . Then G contains a Hamiltonian cycle.

Theorem 6 (Chen-Schelp - 1995 - [4]). Let k ≥ 2 and G be a k-connected,
K1,4-free graph on n ≥ 3 vertices such that σk+1(G) ≥ n + k. Then G contains
a Hamiltonian cycle.

We will concentrate our efforts on problems and results dealing with spanning
paths in connected graphs. For this problem, the only result we know is the
following:

Theorem 7 (Duffus-Jacobson-Gould - 1982 - [7] or [11]). A connected,
{K1,3, N}-free graph contains a Hamiltonian path.

K1,3 K1,4 N
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In this paper, we show that if a connected graph G on n vertices satisfies one
of the following conditions:

– σ3(G) ≥ n and there is a longest cycle in G which is not a dominating cycle
(A cycle C in a graph G is called dominating if every edge of G has at least
one vertex on C.),

– σ2(G) ≥ 2
3n and G is K1,4-free,

– each triple of pairwise non-adjacent vertices contains two vertices u and v such
that degG(u) + degG(v) ≥ n − 1,

then G contains a Hamiltonian path.

2 Preliminary Definitions

We refer to [3] or [5] for undefined notations. The graphs G = (VG, EG) consid-
ered in this paper are undirected and simple. The size of a graph is its number
of vertices. For a graph G = (VG, EG) and u, v ∈ VG we define

G + uv = (VG, EG ∪ {uv}) and G − uv = (VG, EG \ {uv}).

A path P = (VP , EP ) in G is a nonempty subgraph P of the form

VP = {v1, . . . , vk} ⊆ VG and EP = {vivi+1 : i ∈ {1, . . . , k − 1}} ⊆ EG

where the vertices vi are all distinct. A cycle C in G is a subgraph of the form
P + v1vk where P is a path. We often use the notations P = v1, v2, . . . , vk and
C = v1, v2, . . . , vk, v1. A path or a cycle is Hamiltonian if k = |VG|. The neigh-
bourhood of a vertex v in a graph G is NG(v) = {u : uv ∈ EG}. The degree of v
is degG(v) = |NG(v)|.

For a path P = v1, . . . , vk in G we define

LP (v1) = {vi−1 ∈ VP | vi ∈ NG(v1)}
and

RP (vk) = {vi+1 ∈ VP | vi ∈ NG(vk)}.

3 Some Lemmas and the Proof That, if σ3(G) ≥ n
and There is a Longest Cycle in G Which Is Not a
Dominating Cycle, Then G Contains a Hamiltonian
Path

The proof of the following result is straightforward.

Lemma 1. Let G be a connected graph on n vertices and k ≤ n−1. If G contains
a cycle of size k, then it contains a path of size k + 1.
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Lemma 2. Let G be a graph on n vertices and 1 ≤ k ≤ n − 1. We have

σk+1(G) ≥ k + 1
k

σk(G).

Proof. If σk+1(G) = +∞ the result is true. Else, let v1, . . . , vk+1 be pairwise
non-adjacent vertices of G. We have

k

k+1∑
i=1

degG(vi) =
∑

I⊂{1,...,k+1}
|I|=k

∑
i∈I

degG(vi) ≥
(

k + 1
k

)
σk(G) = (k + 1)σk(G),

and by dividing by k

k+1∑
i=1

degG(vi) =
k + 1

k
σk(G).

Finally, as this is true for all pairwise non-adjacent vertices v1, . . . , vk+1, we have

σk+1(G) ≥ k + 1
k

σk(G).

This concludes the proof. 	

Lemma 3. Let P = v1, . . . , vk be a longest path in a graph G without Hamil-
tonian path and v ∈ VG \ VP . Then

NG(v) ∩ (LP (v1) ∪ RP (vk)) = ∅.

Proof. Indeed, if there is vi ∈ NG(v) ∩ LP (v1), then P + vvi + v1vi+1 − vivi+1

(P + vv1 if i = 1) is a path of size k + 1 in G, which contradicts the maximality
of k.

v1

...
vi vi+1

...
vk

v

P + vvi + v1vi+1 − vivi+1

Symmetrically, we show that NG(v) ∪ RP (vk). This concludes the proof. 	

For a graph G, let p(G) be the size of a longest path in G and c(G) the size

of a longest cycle in G. Enomoto et al. [8] prove the following result.

Theorem 8 (Enomoto - van den Heuvel - Kaneko - Saito - 1995 -[8]).
Let G be a connected graph on n vertices with σ3(G) ≥ n. Then G satisfies
c(G) ≥ p(G) − 1 or G is in one of six families of exceptional graphs.
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For the case p(G) ≤ n − 1, the converse of Lemma 1 is also true when
σ3(G) ≥ n, and we have this interesting result:

Lemma 4. Let G be a connected graph on n vertices with σ3(G) ≥ n and such
that p(G) ≤ n − 1. Then:

1. c(G) = p(G) − 1
2. If C is a longest cycle of G, then for all v in VG \ VC we have NG(v) ⊂ VC .

Proof. 1. Let P = v1 . . . , vk be a longest path in G. As G is connected and
k ≤ n − 1 we have n ≥ 4 and k ≥ 3.
Suppose that there is a cycle of size at least k in G. If the cycle is Hamiltonian,
then we have a path of size n > k in G. Else, by Lemma 1 we have a path of
size k + 1 in G. In the two cases, the maximality of k is contradicted. So we
have c(G) ≤ p(G)−1 and v1vk /∈ EG. Let v ∈ VG \VP . As P is a longest path,
we have vv1 /∈ EG and vvk /∈ EG. So, as σ3(G) ≥ n and v1vk, vv1, vvk /∈ EG

we have
degG(v) + degG(v1) + degG(vk) ≥ n. (1)

By Lemma 3 we have NG(v) ∩ (LP (v1) ∪ RP (vk)) = ∅ and therefore

degG(v) ≤ n − 1 − |LP (v1) ∪ RP (vk)|
≤ n − 1 − |LP (v1)| − |RP (vk)| + |LP (v1) ∩ RP (vk)|.

Since |LP (v1)| = degG(v1) and |RP (vk)| = degG(vk) we have

degG(v) + degG(v1) + degG(vk) − n + 1 ≤ |LP (v1) ∩ RP (vk)|,

and with Eq. (1) we obtain

|LP (v1) ∩ RP (vk)| ≥ 1.

Let vj ∈ LP (v1)∩RP (vk). The subgraph P +v1vj+1+vj−1vk−vj−1vj −vjvj+1

is a cycle of size k − 1 in G, and therefore as c(G) ≤ p(G) − 1, we have
c(G) = p(G) − 1.

v1

...
vj−1 vj vj+1

...
vk

P + v1vj+1 + vj−1vk − vj−1vj − vjvj+1

2. If there is a vertex v ∈ VG \ VC such that NG(v) ∩ (VG \ VC) 
= ∅, then there
is a path of size at least 2 in the subgraph of G induced by VG \ VC . By
connectivity there is a path P of size 2 in VG \ VC with an edge e between
VC and VP . By removing an edge e′ adjacent to e of C, we obtain a path
C + P + e − e′ of size at least k + 1 in G which contradicts the maximality
of k.
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e

C P

e

This concludes the proof. 	

Theorem 9 (Bondy - 1981 - [1]). Let G be a 2-connected graph on n vertices
with σ3(G) ≥ n + 2. Then each longest cycle of G is a dominating cycle.

In line with this result, we consider the case of connected graphs. We easily
derive from Lemma 4 the following result.

Theorem 10. Let G be a connected graph on n vertices with σ3(G) ≥ n. Then
either there is a Hamiltonian path in G or each longest cycle of G is a dominating
cycle.

4 If σ2(G) ≥ 2
3
n and G is K1,4-free, then G Contains

a Hamiltonian Path

From the result of Ore (Theorem 2) we can easily deduce:

Corollary 1. If G is a graph on n vertices with σ2(G) ≥ n− 1, then it contains
a Hamiltonian path.

In line with this result, we consider the case of connected graphs. Let G be a
connected graph on n vertices with σ2(G) ≥ 2

3n and without Hamiltonian path.
See Remark 13 for an example of such a graph.

By Lemma 2 we have σ3(G) ≥ n, and by Lemma 4 there is a longest cycle
C = c1, . . . , ck, c1 of size k ≤ n − 2 in G and two vertices u and v in VG \ VC

such that

NG(u) ⊂ VC and NG(v) ⊂ VC ,

and therefore

uv /∈ EG.

We often use the identifications c0 = ck and ck+1 = c1. As degG(u) + degG(v) ≥
2
3n, by symmetry we can suppose that degG(v) ≥ n

3 . We define:

SC(u) = {ci+1 | ci ∈ NG(u)}.
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Let

{cα(1) , cα(2) , . . . , cα(|VC\SC (u)|)} = VC \ SC(u)

and assume α(i) ≤ α(i+1) for 1 ≤ i ≤ |VC \ SC(u)| − 1 and

α(|VC\SC(u)|+1) = α(1).

Lemma 5. There is j ∈ {1, . . . , |VC \ SC(u)|} such that vcα(j) ∈ EG and
vcα(j+1) ∈ EG.

Proof. Firstly, we have
NG(v) ⊂ VC \ SC(u). (2)

Indeed, if there is
cl+1 ∈ NG(v) ∩ SC(u)

then
C + ucl + vcl+1 − clcl+1

is a path of size at least k + 2 in G which contradicts the maximality of k.

v

u

C + ucl + vcl+1 − clcl+1

cl+1

cl

Secondly, we have

|NG(v)| ≥ |VC \ SC(u)|
2

+ 1. (3)

Indeed, as |SC(u)| = |NG(u)| we have

|VC \ SC(u)| ≤ n − 2 − |SC(u)| = n − 2 − |NG(u)|.

Using degG(u) + degG(v) ≥ 2
3n we obtain

|VC \ SC(u)| ≤ n − 2 − 2
3
n + |NG(v)| =

n

3
+ |NG(v)| − 2.

Now, with degG(v) ≥ n
3 we find

|VC \ SC(u)| ≤ 2|NG(v)| − 2.



212 B. Momège

Inequality (3) is obtained by dividing by 2.

Now, if for all j ∈ {1, . . . , |VC \ SC(u)|} we have

vcα(j) ∈ EG ⇒ vcα(j+1) /∈ EG,

then by Inclusion (2)

|NG(v)| ≤ |VC \ SC(u)| − |NG(v)|
i.e.

|NG(v)| ≤ |VC \ SC(u)|
2

which contradicts Inequality (3). Finally, there is j ∈ {1, . . . , |VC \ SC(u)|} such
that vcα(j) ∈ EG and vcα(j+1) ∈ EG. This concludes the proof. 	

Lemma 6. We have α(j+1) − α(j) = 2.

Proof. - If α(j+1) − α(j) = 1, then C + vcα(j) + vcα(j+1) − cα(j)cα(j+1) is a cycle
of size k + 1 in G which contradicts the maximality of k.

v

C + vcα(j) + vcα(j+1) − cα(j)cα(j+1)

cα(j)

cα(j+1)

- If α(j+1) − α(j) ≥ 3, then as cα(j)+1 ∈ SC(u), cα(j)+2 ∈ SC(u), we have
cα(j) ∈ NG(u), cα(j)+1 ∈ NG(u) and C +ucα(j) +ucα(j)+1 − cα(j)cα(j)+1 is a cycle
of size k + 1 in G which contradicts the maximality of k.

u v

C + ucα(j) + ucα(j)+1 − cα(j)cα(j)+1

cα(j)

cα(j)+1

cα(j+1)

...

This concludes the proof. 	
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Lemma 7. The graph G contains K1,4.

Proof. By Lemma 5, there is a j ≥ 1 such that vcα(j) ∈ EG and vcα(j+1) ∈ EG.
By Lemma 6, α(j+1) − α(j) = 2. So we have cα(j)+1 ∈ SC(u) and therefore
ucα(j) ∈ EG. See the following figure.

u

v

cα(j)−1

cα(j)

cα(j)+1

cα(j+1)

We consider the subgraph H induced by u, v, cα(j)−1, cα(j) and cα(j)+1. We
have ucα(j) ∈ EG, vcα(j) ∈ EG, cα(j)−1cα(j) ∈ EG and cα(j)+1cα(j) ∈ EG. If there
is no other edge between the vertices of H, then H ∼= K1,4.

– As NG(u) ⊆ VC , we have uv /∈ EG.
– As cα(j) /∈ SC(u), we have ucα(j)−1 /∈ EG.
– As cα(j+1) /∈ SC(u) and α(j+1) − α(j) = 2, we have ucα(j)+1 /∈ EG.
– If vcα(j)−1 ∈ EG, then C + vcα(j)−1 + vcα(j) − cα(j)−1cα(j) is a cycle of size

k + 1 in G, which contradicts the maximality of k.

v

cα(j)−1

cα(j)

cα(j)+1

cα(j+1)

C + vcα(j)−1 + vcα(j) − cα(j)−1cα(j)

– If vcα(j)+1 ∈ EG, then C + vcα(j) + vcα(j)+1 − cα(j)cα(j)+1 is a cycle of size
k + 1 in G, which contradicts the maximality of k.

v

cα(j)−1

cα(j)

cα(j)+1

cα(j+1)

C + vcα(j) + vcα(j)+1 − cα(j)cα(j)+1
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– If cα(j)−1cα(j)+1 ∈ EG, then C+vcα(j) +vcα(j+1) +cα(j)−1cα(j)+1−cα(j)−1cα(j) −
cα(j)+1cα(j+1) is a cycle of size k + 1 in G, which contradicts the maximality
of k.

v

cα(j)−1

cα(j)

cα(j)+1

cα(j+1)

C + vcα(j) + vcα(j+1) + cα(j)−1cα(j)+1 − cα(j)−1cα(j) − cα(j)+1cα(j+1)

Finally, we have H ∼= K1,4. This concludes the proof. 	

Theorem 11. If G is a K1,4-free connected graph on n vertices with σ2(G) ≥
2
3n, then G contains a Hamiltonian path.

Remark 12. The bound from Theorem 11 is sharp for the class of K1,4-free
graphs, as seen by K1,3.

Remark 13. There are connected graphs G on n vertices with σ2(G) ≥ 2
3n

and without Hamiltonian path. For example, for p ≥ 2 the graph G = Kp,p+2

contains K1,4 and is a connected graph on n = 2p + 2 vertices with σ2(G) ≥ 2
3n

and without Hamiltonian paths. The largest value of σ2(G) compared to |VG| in
this family is achieved for p = 2, and it is 2

3 .

K2,4

5 If Each Triple of Pairwise Non-adjacent
Vertices Contains Two Vertices u and v s.t.
degG(u) + degG(v) ≥ n − 1, Then G Contains
a Hamiltonian Path

Theorem 14. If G is a connected graph on n vertices such that each triple of
pairwise non-adjacent vertices contains two vertices u and v satisfying degG(u)+
degG(v) ≥ n − 1, then G contains a Hamiltonian path.



Sufficient Conditions for a Connected Graph to Have a Hamiltonian Path 215

Proof. For n = 1, 2 or 3 the result is true. If n ≥ 4, let P = v1 . . . , vk be a longest
path in G. We want to prove that k = n. As G is connected we have k ≥ 3.
Suppose that k < n and take v ∈ VG \ VP .

If v1vk ∈ EG, then by Lemma 1 we have a path of size k + 1 in G, which
contradicts the maximality of k.

If vv1 ∈ EG or vvk ∈ EG, then there is a path of size k + 1 in G, which
contradicts the maximality of k + 1.

So v1, vk and v are pairwise non-adjacent vertices.
By Lemma 3, we have NG(v) ⊆ VG \ (LP (v1) ∪ {v, vk}) and therefore

degG(v) ≤ n − 2 − |LP (v1)| = n − 2 − degG(v1),

i.e
degG(v) + degG(v1) ≤ n − 2. (4)

Similarly, by Lemma 3, we have NG(v) ⊆ VG\(RP (vk)∪{v, v1}) and therefore

degG(v) ≤ n − 2 − |RP (vk)| = n − 2 − degG(vk),

i.e.
degG(v) + degG(vk) ≤ n − 2. (5)

If there are two vertices vi and vi+1 of P such that v1vi+1 ∈ EG and vkvi ∈
EG, then P + v1vi+1 + vivk − vivi+1 is a cycle of length k in G. By Lemma 1
there is a path of length k + 1 in G, which contradicts the maximality of k.

v1

...
vi vi+1

...
vk

P + vvi+1 + vivk − vivi+1

So we have NG(v1) ⊆ VP \ (RP (vk) ∪ {v1}), hence

degG(v1) ≤ |VP | − |RP (vk) ∪ {v1}| = n − 2 − degG(vk),

i.e.
degG(v1) + degG(vk) ≤ n − 2. (6)

Finally, (4), (5) and (6) contradict the hypothesis that for each triple of
pairwise non-adjacent vertices contains two vertices u and v such that degG(u)+
degG(v) ≥ n − 1. Thus k = n. This concludes the proof. 	

Remark 15. The bound from Theorem 14 is sharp as seen by Kp,p+2 with p ≥ 1.
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Abstract. Enumerating objects of a specified type is one of the prin-
cipal tasks in algorithmics. In graph algorithms one often enumerates
vertex subsets satisfying a certain property. The optimization problem
Tropical Connected Set is strongly related to the Graph Motif problem
which deals with vertex-colored graphs and has various applications in
metabolic networks and biology. A tropical connected set of a vertex-
colored graph is a subset of the vertices which induces a connected sub-
graph in which all colors of the input graph appear at least once; among
others this generalizes steiner trees. We investigate the enumeration of
the inclusion-minimal tropical connected sets of a given vertex-colored
graph. We present algorithms to enumerate all minimal tropical con-
nected sets on colored graphs of the following graph classes: on split
graphs in running in time O∗(1.6402n), on interval graphs in O∗(1.8613n)
time, on cobipartite graphs and block graphs in O∗(3n/3). Our algorithms
imply corresponding upper bounds on the number of minimal tropical
connected sets in graphs on n vertices for each of these graph classes.
We also provide various new lower bound constructions thereby obtain-
ing matching lower bounds for cobipartite and block graphs.

1 Introduction

Algorithmic enumeration deals with the construction and analysis of algorithms
to enumerate, generate or list all objects of specified type and property. It has
important applications in various domains of computer science, such as data
mining, machine learning, and artificial intelligence, as well as in biology. The
classical approach in algorithmic enumeration (also called output-sensitive) mea-
sures the running time of an enumeration algorithm in dependence of the length
of its input and output. The (most) efficient algorithms of this approach are algo-
rithms of polynomial delay. Recently an approach via exact exponential algo-
rithms, sometimes called input-sensitive, constructing enumeration algorithms
whose running time is measured in the length of the input only, has attracted a
lot of attention. The reason for this is two-fold. Firstly, many exact exponential-
time algorithms for the solution of NP-hard problems rely on such enumeration

This work is supported by the French National Research Agency (ANR project
GraphEn / ANR-15-CE40-0009).

c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 217–228, 2017.
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algorithms. Sometimes the fastest known algorithm to solve an optimization
problem is by simply enumerating all minimal or maximal feasible solutions
(e.g., for subset feedback vertex sets [12]), whereas other times the enumera-
tion of some objects is useful for algorithms solving completely different prob-
lems (e.g., enumeration of maximal independent sets in triangle-free graphs for
computing graph homomorphisms [11]). Secondly, the running times of such
exponential-time enumeration algorithms imply an upper bound on the maxi-
mum number of enumerated objects a graph can have. This may help to establish
results of combinatorial nature in a new way. Various classical examples exist in
this direction; a well-known example was achieved by Moon and Moser [23] who
showed that the maximum number of maximal independent sets in a graph on
n vertices is exactly 3n/3.

Unfortunately, for many graph properties such matching lower and upper
bounds are not known, and hence for the maximum number of such objects
there is a sometimes large gap between the currently best known lower and upper
bounds in general n-vertex graphs. This motivates the study of enumeration of
objects in graphs restricted to belong to a certain graph classes. For example,
due to a cornerstone result by Fomin et al. the maximum number of minimal
dominating sets in graphs is at most 1.7159n [10], however no graph having more
than 1.5704n minimal dominating sets is known. On the other hand, matching
lower and upper bounds have been established for the maximum number of
minimal dominating sets on many graph classes [4,6]. As a consequence, there
has been extensive research in this direction recently, both on general graphs
and on graph classes. Algorithms for the enumeration and combinatorial lower
and upper bounds on graph classes for various objects in graphs have been
established in the last years, among them minimal feedback vertex sets, minimal
dominating sets, minimal separators, minimal transversals, minimal connected
vertex covers and minimal steiner trees [4–6,8,9,12,14–18,25].

Problems on vertex-colored graphs have been widely studied in the last
20 years, notably the Graph Motif problem which was introduced in 1994 by
McMorris et al. [22] and motivated by applications in biology and metabolic
networks [21,24]. We revisit the Tropical Connected Set problem which takes as
input a vertex-colored graph G = (V,E) and asks to find a tropical connected
set, i.e. a connected subset S ⊆ V such that each color of G appears in S, and
is of minimum cardinality. The notion ‘tropical’ is due to Manoussakis et al.,
see [1] which shows various NP-compleness results for the problem, even when
restricted to colored trees. In [3] an O(1.2721n) time algorithm for trees is pro-
vided as well as an O(1.5359n) time algorithm for general graphs. It is also not
hard to see that Tropical Connected Set generalizes the well-known NP-complete
Steiner Tree problem with unit edge weights.

In this paper we initiate the study of input-sensitive enumeration and the
maximum number of minimal tropical connected sets (abbreviated mtcs) in
n-vertex colored graphs. Interestingly, the best known upper bound for the max-
imum number of mtcs in an arbitrary graph and even for chordal graphs is the
trivial one which is 2n. The best lower bound we achieve in this paper is 1.4916n,
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and thus the gap between the known lower and upper bounds is huge on chordal
and arbitrary graphs. Our results are summarized in the following table, where
n is the number of vertices of an input graph belonging to the given class.

Graph class Lower bound Upper bound Enumeration

Chordal graphs 1.4961n 2n O∗(2n)

Split graphs 1.4766n 1.6042n O(1.6042n)

Cobipartite graphs 3n/3 n2 · 3n/3 + n2 O∗(3n/3)

Interval graphs 3n/3 1.8613n O(1.8613n)

Block graphs 3n/3 3n/3 O∗(3n/3)

2 Preliminaries

For graph-theoretic notions not defined in the paper we refer to the monograph
of Diestel [7]. Throughout this paper, we denote by G = (V,E) an undirected
graph with n = |V | and m = |E|. The (open) neighborhood of a vertex v is
denoted by N(v) and its closed neighborhood N(v)∪{v} is denoted by N [v]. For
a given vertex subset X, we define NX(v) = N(v) ∩ X and NX [v] = N [v] ∩ X.
The degree of a vertex v is denoted by d(v) and we define d(v) = |NX(v)|. Finally
X ⊆ V is a clique (respectively, an independent set) of G = (V,E) if all vertices
of X are pairwise adjacent (respectively, non adjacent).

Let G = (V,E) be a (not necessarily properly) vertex-colored graph. We
denote by c, the function assigning to each vertex a color. For any color, we
call the set of all vertices of G having this color a color class. Given a subset
of vertices X, we define C(X) = {c(v) : v ∈ X} as the set of different colors
assigned to the vertices of X. The set C(V ) is simply denoted by C. A tropical
set of a graph G is a subset X of its vertices such that C(X) = C; such a set is
a tropical connected set (abbreviated tcs) if additionally, the graph induced by
X, denoted by G[X], is connected. A tcs X is a minimal (abbreviated mtcs) if
there is no proper subset of X being tropical connected.

For an introduction and further reading on branching algorithms we refer
the reader to the book “Exact exponential algorithms” [13] (Chaps. 1, 2 and 6).
We mention a few important notations. The O∗ hides polynomials, i.e. we write
f(n) = O∗(g(n)) if f(n) = O(p(n) · g(n)) where p is a polynomial in n. Branch-
ing vectors and branching numbers are crucial for the time analysis of branching
algorithms. We denote the branching number of a branching vector (t1, t2, . . . , tr)
by α(t1, t2, . . . , tr).

Informations on the studied graph classes will given in the corresponding
sections. For further informations on structural and algorithmic properties of
graph classes we refer to the monographs [2,19].

Finally we mention an observation which implies a lower bound of 3n/3 apply-
ing to all graph classes in this paper.

http://dx.doi.org/10.1007/978-3-319-51963-0
http://dx.doi.org/10.1007/978-3-319-51963-0
http://dx.doi.org/10.1007/978-3-319-51963-0
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Lemma 1. Complete graphs on n vertices in which each color appears exactly
three times have 3n/3 minimal tropical connected sets. Hence, for all graph classes
containing all complete graphs there is a graph having 3n/3 mtcs.

To see this note that in a complete graph each set containing exactly one vertex
of each color is an mtcs, and hence one out of three vertices is chosen for each
color class.

3 Split Graphs

Split graphs are those graphs for which their vertex set V can be partitioned
into a clique C and an independent set I. We denote such a split graph by
G = (C, I,E). Note that all split graphs are chordal graphs. In this section we
construct a branching algorithm to enumerate all mtcs of a given split graph.
Its running time analysis uses Measure & Conquer. Upper and lower bounds on
the maximum number of mtcs in split graphs are given. A correctness proof is
postponed to the full paper.

3.1 An Enumeration Algorithm

We consider a recursive branching algorithm called Enumtcs(K,S, F,X) that
enumerates all mtcs T of G such that X ⊆ T , where K ⊆ C is a clique, {S∪F} ⊆
I is an independent set and initial call K = C, S = I and F = ∅. The basic idea
is that when we select x ∈ K, we add it immediately to X; however when we
select y ∈ S, we move it first to F , and only when at least one of its neighbors is
selected we add it to X. This way we guarantee that G[X] is always connected.
In our algorithm X,K, S, F ⊆ V (G) are disjoint such that a) X ⊆ T and b)
T \ X ⊆ K ∪ S ∪ F , and c) F ⊆ T ∩ I. We denote by H = G[K ∪ S ∪ F ]. In
each step of the algorithm, we either reduce the considered instance or branch
and call in each branch the corresponding subroutine. We denote by nc(x,H ′)
the number of vertices of color c(x) in the induced subgraph H ′ of G.

Enumtcs(K,S, F,X)

1. If K = ∅, then check whether X is a minimal tropical connected sets of G
and output it if it holds; then stop.

2. If there is y ∈ F such that dK(y) = 0, then discard X and stop.
3. If there is x ∈ K such that d(x) = |K| − 1 and nc(x,X) ≥ 1 , then call

Enumtcs(K \ {x}, S, F,X).
4. If there is x ∈ S:

If nc(x,H) = 1, then call Enumtcs(K,S \ {x}, F ∪ {x},X).
If nc(x,H) = 2, then let y be the other vertex such that c(x) = c(y) :
– If y ∈ S, then branch:

(i) call Enumtcs(K,S \ {x, y}, F ∪ {x},X)
(ii) call Enumtcs(K,S \ {x, y}, F ∪ {y},X)

– If y ∈ K, then branch:
(i) call Enumtcs(K \ {y}, S \ {x}, F,X ∪ {y})
(ii) call Enumtcs(K \ {y}, S \ {x}, F ∪ {x},X)
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If nc(x,H) ≥ 3, then branch:
(i) call Enumtcs(K \ {v : c(v) = c(x)}, S \ {v : c(v) = c(x)}, F ∪ {x},X)
(ii) call Enumtcs(K,S \ {x}, F,X)

5. If there is x ∈ K such that dF (x) ≥ 2, then branch:
(i) call Enumtcs(K \ {x}, S, F \ NF (x),X ∪ {x} ∪ NF (x))
(ii) call Enumtcs(K \ {x}, S, F,X)

6. If there is y ∈ F such that dK(y) = 1 and x is the unique neighbor of y in
K, then call Enumtcs(K \ {x}, S, F \ {y},X ∪ {x, y}).

7. If there is x ∈ K such that dF (x) = 1 and nc(x,X) ≥ 1, then let {y} = NF (x)
and branch:
(i) call Enumtcs(K \ Nk(y), S, F \ {y},X ∪ {x, y})
(ii) call Enumtcs(K \ {x}, S, F,X)

8. If there is x ∈ K such that nc(x,H) = 1:
If dF (x) = 0 , then call Enumtcs(K \ {x}, S, F,X ∪ {x}).
If dF (x) = 1, then let {y} = NF (x) and call Enumtcs(K\{x}, S, F \{y},X∪
{x, y}).

9. If there is y ∈ F and x1, x2 ∈ NK(y) such that c(x1) = c(x2): If dK(y) = 2,
then branch:
(i) call Enumtcs(K \ {x1, x2}, S, F \ {y},X ∪ {x1, y})
(ii) call Enumtcs(K \ {x1, x2}, S, F \ {y},X ∪ {x2, y})
If dK(y) ≥ 3, then branch:
(i) call Enumtcs(K \ {x1, x2}, S, F \ {y},X ∪ {x1, y})
(ii) call Enumtcs(K \ {x1, x2}, S, F \ {y},X ∪ {x2, y})
(iii) call Enumtcs(K \ {x1, x2}, S, F,X)

10. If there is y ∈ F such that dK(y) = 2, then let N(y) = {x1, x2} and branch:
(i) call Enumtcs(K \({u : c(u) = c(x1)}∪{v : c(v) = c(x2)}), S, F \{y},X∪

{x1, x2, y})
(ii) call Enumtcs(K \ {x1, x2}, S, F \ {y},X ∪ {x1, y})
(iii) call Enumtcs(K \ {x1, x2}, S, F \ {y},X ∪ {x2, y})

11. If there is y ∈ F such that dK(y) = 3, then let N(y) = {x1, x2, x3} and
branch:
(i) call Enumtcs(K \ {x1}, S, F \ {y},X ∪ {x1, y})
(ii) call Enumtcs(K \ {x1, x2}, S, F \ {y},X ∪ {x2, y})
(iii) call Enumtcs(K \ {x1, x2, x3}, S, F \ {y},X ∪ {x3, y})

12. If there is y ∈ F such that dK(y) = 4, then let N(y) = {x1, x2, x3, x4} and
branch:
(i) call Enumtcs(K \ NK(y), S, F \ {y},X ∪ {x1, y})
(ii) call Enumtcs(K \({u : c(u) = c(x1)}∪{v : c(v) = c(x2)}), S, F \{y},X∪

{x1, x2, y})
(iii) call Enumtcs(K \ ({u : c(u) = c(x1)} ∪ {v : c(v) = c(x3)} ∪ {x2}), S, F \

{y},X ∪ {x1, x3, y})
(iv) call Enumtcs(K\({u : c(u) = c(x1)}∪{v : c(v) = c(x4)}∪{x2, x3}), S, F\

{y},X ∪ {x1, x4, y})
(v) call Enumtcs(K \ {x1}, S, F,X)
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13. If there is x1, x2,∈ K such that dF (x1) = 1, dF (x2) = 1 and c(x1) = c(x2),
then let {y1} = NF (x1), {y2} = NF (x2) and branch:
(i) call Enumtcs(K \ (NK(y1)∪NK(y2)), S, F \{y1, y2},X ∪{x1, x2, y1, y2})
(ii) call Enumtcs(K \ {x1, x2}, S, F \ {y1},X ∪ {x1, y1})
(iii) call Enumtcs(K \ {x1, x2}, S, F \ {y2},X ∪ {x2, y2})
(iv) call Enumtcs(K \ {x1, x2}, S, F,X)

14. If there is x ∈ K such that dF (x) = 1, then let {y} = NF (x) and branch:
(i) call Enumtcs(K \ {u : c(u) = c(x)}, S, F \ {y},X ∪ {x, y})
(ii) for each v ∈ {u : c(u) = c(x)} \ {x}, call Enumtcs(K \ {u : c(u) =

c(x)}, S, F,X ∪ {v})
15. If there is x ∈ K, then branch:

(i) for each v ∈ {u : c(u) = c(x)}, call Enumtcs(K \ {u : c(u) = c(x)}, S, F,
X ∪ {v})

To analyze the running time of the algorithm, we compute the branching
vectors for all branching steps of the algorithm. We set the measure of an instance
(K,S, F,X) to |K|+ |S|+ |F |w where w = 0.533244. Notice that in Steps 1–3,6,8
we reduce an input without branching (reduction rules). Hence, to analyze the
time, we only have to analyze Steps 4,5,7,9–15 (branching rules)
Step 4. By moving a vertex from S to F , we gain 1−w = 0.466756. So the three
branching vectors in Step 4 are (2−w, 2−w), (2, 2−w) and (3−w, 1) respectively.
The maximum value of the branching numbers is achieved for (2−w, 2−w) and
thus α4 < 1.6042.
Step 5. The branching vector is (1 + 2w, 1) and thus α5 < 1.6042.
Step 7. Due to Step 6 we have dK(y) ≥ 2, thus we the branching vector is
(2 + w, 1) and thus α7 < 1.5241.
Step 9. For its two subcases, we have the branching vectors (2 + w, 2 + w) and
(2 + w, 2 + w, 2). The maximum value of the branching numbers is achieved for
the second vector and thus α9 < 1.5991.
Step 10. Notice that |{u : c(u) = c(x1)}| ≥ 2, |{v : c(v) = c(x2)}| ≥ 2, and
c(x1) �= c(x2) because Step 8 and 9 do not apply. Thus the branching vector is
(4 + w, 2 + w, 2 + w) and α10 < 1.4329.
Step 11. We have the branching vector (1 + w, 2 + w, 3 + w) and thus α11 <
1.5860.
Step 12. Notice that for all i ∈ {1, . . . , 4} we have |{u : c(u) = c(xi)}| ≥ 2 and
that for all i �= j, c(xi) �= c(xj) because Step 8 and 9 do not apply. Thus the
branching vector is (4 + w, 4 + w, 5 + w, 6 + w, 1) and α12 < 1.5891.
Step 13. For all i ∈ {1, 2} we have dK(yi) ≥ 5. Thus the branching vector is
(10 + 2w, 2 + w, 2 + w, 2) and α13 < 1.6029.
Step 14. Let t = nc(x,K)−1. Notice that t ≥ 1 because Step 8 does not apply.
Thus the branching vector is (t+1+w, t + 1, . . . , t + 1

︸ ︷︷ ︸
t

). The maximum value of

their branching numbers is achieved for t = 2 and thus α14 < 1.4147.
Step 15. Let t = nc(x,K) with t ≥ 2. We obtain the vector (t, . . . , t

︸ ︷︷ ︸
t

). The

maximum value of the branching number is achieved for t = 3 and thus α15 =
31/3 < 1.4423.
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The largest branching number is (majorized by) 1.6042 (attained by Steps 4
and 5). Thus we may conclude with the following theorem.

Theorem 1. A split graph has at most 1.6042n minimal tropical connected sets,
and these can be enumerated in time O(1.6042n).

3.2 A Lower Bound

Since all complete graphs are split graphs by Lemma 1 there is a lower bound
of 3n/3. To improve upon it, first consider a split graph G̃ = (C, I,E) where
the clique is C = {vi, 1 ≤ i ≤ 5} and the independent set is I = {xj , yj , zj , 1 ≤
j ≤ 5}. In addition to the edges implied by the clique, the set E also contains
all possible edges between vi and xj , yj , zj , for any i, j ∈ {1, . . . , 5} except for
i = j. Note that the graph G̃ has 20 vertices. Suppose that each vertex vi has
color 0 (1 ≤ i ≤ 5) and for each j (1 ≤ j ≤ 5) the three vertices xj , yj , zj have
color j. Observe that by the construction of G̃, any of its mtcs S is obtained
by choosing precisely one vertex of {xj , yj , zj} for all j (1 ≤ j ≤ 5) and, to
make S connected, two vertices of C. Thus the total number of mtcs of G̃ is
35 · (

5
2

)
= 2430. Consider now a split graph over n vertices, where n = 20 · k for

some integer k. The graph is constructed by taking k disjoint copies of G̃, where
each copy has distinct colors, and by then making one (big) clique of all the
vertices of cliques in the copies of G̃. Such a graph has at least 2430n/20 mtcs,
and thus at least 1.4766n mtcs.

Theorem 2. There exist split graphs with at least 1.4766n minimal tropical con-
nected sets.

4 Cobipartite Graphs

A graph G is a cobipartite graph if its vertex set can be partitioned into two
cliques X1 and X2 and we denote such a graph by G = (X1,X2, E). Suppose
that S ⊆ X1 ∪ X2 is a minimal tropical connected set of G. Observe that one
of the following cases occurs : Either S ⊆ Xi for some i ∈ {1, 2} (type 1), or
S ∩Xi �= ∅ for any i ∈ {1, 2} (type 2). The algorithm we present first enumerates
all mtcs of type 1 and then those of type 2.

Type 1. For i ∈ {1, 2} all mtcs S of type 1 are obtained by choosing exactly one
vertex v of each color in Xi.

Type 2. For each edge {v1, v2} such that v1 ∈ X1 and v2 ∈ X2, let S be the set
consisting of v1, v2 and exactly one vertex of each color different from c(v1) and
c(v2). If S is minimal then S is a mtcs of type 2.

Our algorithm simply enumerates all possible mtcs of either type 1 or type 2.
Clearly, for any mtcs of type 1, as Xi is a clique, it is sufficient to pick exactly
one vertex per color class. As any tcs of type 2 is connected, there should be a
pair of adjacent vertices v1, v2 such that vi ∈ Xi (for i ∈ {1, 2}). To enumerate
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all tcs of type 2 our algorithm generates all sets S consisting of such a pair v1, v2

and one vertex of each color different from c(v1) and c(v2). Such a tcs S might
not be minimal only if c(v1) = c(v2) and S − {v1} or S − {v2} is a tcs and for
any S this can be checked in time O(n + m).

We now provide an upper bound on the number of mtcs. Let T (n) be the
maximum number of mtcs in a cobipartite graph. Consider a color class having
d vertices. As exactly one vertex of the class has to be chosen, whenever a vertex
is picked, the other vertices of the color class can be removed from the graph.
Thus, we obtain the recurrence : T (n) = d · T (n − d). Standard computations
(see e.g. [13]) show that T (n) = O(3n/3) (the maximum is reached for d = 3,
when d is an integer). As a consequence, there are at most 3n/3 mtcs of Type 1
and at most n2 ·3n/3 ofType 2 (where a pair v1, v2 has first to be selected) which
implies an upper bound of n2 · 3n/3. Since all complete graphs are cobipartite a
lower bound of 3n/3 follows from Lemma 1.

Theorem 3. The number of minimal tropical connected sets in a cobipartite
graph is at most n2 · 3n/3 and all mtcs can be enumerated in time O∗(3n/3).
Moreover there exist cobipartite graphs with 3n/3 mtcs.

5 Interval Graphs

An interval graph is an intersection graph of intervals on the real line. Let G
be an interval graph and let S be any mtcs of G. Suppose that I is an interval
model of G (see e.g. [2,19]) such that the interval assigned to a vertex v has
left endpoint l(v)andrightendpointr(v). Let vmin = argminv∈Sl(v) and vmax =
argmaxv∈Sr(v). As G[S] is connected, there exists a path P between vmin and
vmax in G[S] and, by definition of vmin and vmax, each vertex of S has at least
one neighbor in P .

To enumerate all mtcs of G, our algorithm proceeds as follows: it first guesses
a pair vmin, vmax and then computes all possible induced paths P between these
two vertices (Step 1). Then for each color class with no vertices in P , one vertex is
chosen (Step 2). To analyse the running time of our algorithm and thus to achieve
an upper bound on the number of mtcs, the Measure &Conquer technique is
used with a single weight (see e.g. Chapter 6 in [13]). Formally, given an interval
graph G = (V,E) with B and R disjoint subsets of V , we define its measure
μ = μ(G) = |B| + w|R| where w is a weight later to be chosen in [0, 1]. Note
that μ ≤ |V |. Let T (μ) be the maximum number of mtcs in an interval graph of
measure at most μ. We are now ready to describe our algorithm and its running
time analysis.

Consider algorithm mintcs on the next page. For each pair of vertices vmin,
vmax ∈ V such that C = C(B), call mintcs(G,B, ∅, [vmin], vmin, vmax), where
B := {v : l(vmin) ≤ l(v) ≤ r(v) ≤ r(vmax)}. The output of this call are all mtcs
S in G[B] containing both vmin and vmax. Hence the algorithm produces all mtcs
of G when called for all the O(n2) vertex pairs vmin, vmax.

To analyze the running time, note that initially R is empty and B contains
at most n vertices; thus μ ≤ n. First, consider Step 1 in the algorithm. As long

http://dx.doi.org/10.1007/978-3-319-51963-0
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Algorithm mintcs(G,B,R, P, vmin, vmax)
if vmax /∈ P then /* Step 1 */

Let vlast be the last vertex added to P
if vmax ∈ NB(vlast) then

mintcs(G,B \NB(vlast), R∪ (NB(vlast)\{vmax}), P ∪{vmax}, vmin, vmax)

else
foreach v ∈ NB(vlast) do

mintcs(G,B \ NB(vlast), R ∪ (NB(vlast) \ {v}), P ∪ {v}, vmin, vmax)

else /* Step 2 */

if C(R) \ C(P ) is non empty then
Let col be a color in C(R) \ C(P )
T ← {v ∈ R s.t. c(v) = col}
foreach v ∈ T do

mintcs(G,B,R \ T, P ∪ {v}, vmin, vmax)

else if P is a mtcs then
output “P is a mtcs.”

as P is not an induced path between vmin and vmax, the last vertex added to
P , named vlast, is considered. Exactly one vertex v from NB(vlast) is added to
P and removed from B, and the other ones are moved from B to R. Note that
t = |NB(vlast)|, thus we obtain the following recurrence for the running time on
Step 1: T (μ) ≤ t · T (μ − (1 + (t − 1)(1 − w))). Note that if vmax belongs to the
neighborhood of vlast, the algorithm add vmax to P and only one recursive call
is made in such a case. Consider Step 2. For each color class whose color does
not yet appear in P , exactly one vertex of that color is added to P and all the
vertices of the color class are removed from R. Thus, if we denote by s the size
of the color class, the recurrence T (μ) ≤ s · T (μ − s · w) for the running time of
Step 2 is obtained.

Choosing w = 0.5895, the solutions of both recurrences are bounded by
1.8613µ. (The maximum is reached for t = 4 in the recurrence of Step 1 and for
s = 3 in the recurrence of Step 2.) This establishes the following theorem.

Theorem 4. The number of minimal tropical connected sets in an interval
graph is at most n2 · 1.8613n and they can be enumerated in time O(1.8613n).

6 Block Graphs

A graph G = (V,E) is a block graph if it is connected and every maximal
2-connected subgraph (called a block) is a clique [20]. One useful characterization
of connected block graphs is that they are precisely graphs in which there is a
unique induced path between any pair of vertices; an immediate consequence of
the definition. This suggests a simple algorithm to enumerate all mtcs in block
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graphs. Pick one vertex in each color class to obtain a set S of vertices, and then
make S connected. As there is a unique induced path between each two vertices
of S, it is sufficient to add to S all vertices of each of these induced paths. Clearly
S is a tcs and it finally remains to check that S is indeed minimal. In this way,
it is possible to enumerate all at most 3n/3 mtcs of the block graph. The upper
bound of 3n/3 is then established by an analysis similar to the one of Sect. 4.
The upper bound is sharp by Lemma 1.

Theorem 5. A block graph has at most 3n/3 minimal tropical connected sets,
and they can be enumerated in O∗(3n/3) time. There exist block graph with 3n/3

mtcs.

7 A Lower Bound for Chordal Graphs

We prove a lower bound of 1.4916n on the maximum number of mtcs in chordal
graphs. To show this bound, we describe a graphs which achieve such a number
of mtcs. Our construction might be viewed as a full rooted tree T of height h,
where the root is of degree 5, and each node has 4 children.
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In fact, each internal node v is replaced by a K5 (denoted Kv
5 ) and each leaf

is replaced by a K3. For each Kv
5 , there is a one-to-one correspondence between

the vertices of the corresponding K5 and the 5 neighbors of v in the tree T .
Let v be an internal node of T and u its parent. Let Kv

5 (resp. Ku
5 ) be the K5

associated to v (resp. to u). Let xu be the vertex of Kv
5 mapped to the parent u

of v and let xv be the vertex of Ku
5 mapped to the child v of u in T . We add an

edge between any pair of vertices (y, z) such that y ∈ Kv
5 , z ∈ Ku

5 , y �= xu and
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z �= xv. (See the figure below.) Given a leaf v and its parent u in T , we denote
by Kv

3 the K3 associated to v and by Ku
5 the K5 associated to u. We add to the

graph all possible edges (y, z) such that y ∈ Ku
5 , z ∈ Kv

3 and y �= xv, where xv

is the vertex of Ku
5 mapped to the child v of u in T .

Regarding the colors, all five vertices of any K5 as well as all three vertices
of any K3 obtain the same color which is unique to the K5 respectively K3. This
implies that any tcs of the resulting graph must contain at least one vertex of
each K5 and of each K3. Observe that for each K5 precisely two vertices are
necessary to ensure the connectivity of the tcs. Indeed, since each x of a tcs
belonging to a K5 is non-adjacent to either one child or to the parent, at least
one other vertex y of the K5 must belongs to this tcs. In fact one additional
vertex suffices as x and y are then connected to all children and to the parent
in this tcs. Regarding the K3 leaves, it is sufficient to take only one vertex. It is
not hard to verify that the graph constructed is chordal.

Let us consider the number of mtcs in such a chordal graph. Recall that the
tree T is of height h. At level i = 0, there is only one K5 (corresponding to the
root), and two vertices have to be picked from that set. For each i, 1 ≤ i ≤ h,
the number of K5 or K3 at level i is 5 · 4i−1. Thus the number of mtcs and the
number of vertices of the graph are

#TCS(h) =
(

5
2

)

·
(

5
2

)∑h−1
i=1 5·4i−1

·35·4h−1
and n(h) = 5+

h−1∑

i=1

52 ·4i−1+5·4h−1 ·3.

For h = 9, computations show that #TCS(h)1/n(h) ≈ 1.4916... Since disjoint
copies of chordal graphs result in a chordal graph, the maximum number of mtcs
of a chordal graph is at least 1.4916n. (Note that choosing a larger value for h
gives a larger chordal graph with at least 1.4916n mtcs.)

Theorem 6. There exist chordal graphs with at least 1.4916n minimal tropical
connected sets.
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Abstract. A garden G is populated by n ≥ 1 bamboos b1, b2, ..., bn with
the respective daily growth rates h1 ≥ h2 ≥ · · · ≥ hn. It is assumed that
the initial heights of bamboos are zero. The robotic gardener or sim-
ply a robot maintaining the bamboo garden is attending bamboos and
trimming them to height zero according to some schedule. The Bamboo
Garden Trimming Problem, or simply BGT, is to design a perpetual
schedule of cuts to maintain the elevation of bamboo garden as low as
possible. The bamboo garden is a metaphor for a collection of machines
which have to be serviced with different frequencies, by a robot which
can service only one machine during a visit. The objective is to design a
perpetual schedule of servicing the machines which minimizes the maxi-
mum (weighted) waiting time for servicing.

We consider two variants of BGT. In discrete BGT the robot is allowed
to trim only one bamboo at the end of each day. In continuous BGT the
bamboos can be cut at any time, however, the robot needs time to move
from one bamboo to the next one and this time is defined by a weighted
network of connections.

For discrete BGT, we show a simple 4-approximation algorithm and,
by exploiting relationship between BGT and the classical Pinwheel
scheduling problem, we obtain also a 2-approximation and even a closer
approximation for more balanced growth rates. For continuous BGT, we
propose approximation algorithms which achieve approximation ratios
O(log(h1/hn)) and O(log n).
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1 Introduction

In this paper we consider a perpetual scheduling problem in which a collection
of (possibly virtual) machines need to be attended with very often known but
possibly different frequencies, i.e., some machines need to be attended more often
than others. We model such scheduling problems as Bamboo Garden Trimming
(BGT) Problem. A collection (garden) G of n bamboos b1, b2, . . . , bn with
known respective daily growth rates h1 ≥ h2 ≥ · · · ≥ hn > 0 is given. Initially
the height of each bamboo is set to zero. The robotic gardener maintaining the
garden trims bamboos to height zero according to some schedule. The height of
a bamboo bi after t ≥ 0 days is equal to (t− t′)hi, where t′ is the last time when
this bamboo was trimmed, or t′ = 0, if it has never been trimmed by time t.
The main task in BGT is to design a perpetual schedule of cuts to keep the
highest bamboo in the garden as low as possible, while complying with some
specified constraints on the timing of cutting. The basic constraints considered
in this paper are that the gardener can cut only one (arbitrary) bamboo at the
end of each day and is not allowed to attend the garden at any other times.
Once the gardener has decided which bamboo to trim in the current round
(at the end of the current day), the action of actual trimming is instantaneous.
The problem, while of inherent combinatorial interest, originates from perpetual
testing of virtual machines in cloud systems [1]. In such systems frequency in
which virtual machines are tested for undesirable symptoms vary depending on
importance of dedicated cloud operational mechanisms.

BGT is also a natural extension of several classical algorithmic problems with
the focus on monitoring and mobility, including the Art Gallery Problem [17] and
its dynamic extension called the k-Watchmen Problem [20]. In a more recent
work on fence patrolling [9,10] the studies focus on monitoring vital (possibly
disconnected) parts of a linear environment where each point is expected to be
attended with the same frequency. The authors of [11] study monitoring linear
environments by robots prone to faults. Our paper focuses on the case where
each vital part of the environment has its own, possibly unique urgency factor,
which makes it related to periodic scheduling [19], a series of papers on the
Pinwheel problems [6,7,13] including the periodic Pinwheel problem [14,16] and
the Pinwheel scheduling problem [18], as well as the concept of P-fairness in
sharing multiple copies of some resource among various tasks [2,3].

We consider two variants of the BGT problem. The constraints that only
one bamboo is cut at the end of each day define discrete BGT. In the second
variant, continuous BGT, we assume that for any two bamboos bi and bj , we
know the time ti,j > 0 that the robot needs to relocate from bi to bj . In this
variant the time when the next bamboo is trimmed depends on how far that
bamboo is from the bamboo which has just been trimmed. As in discrete BGT,
when the robot arrives at the bamboo which is to be trimmed, the actual action
of trimming is instantaneous. We assume that the travel times are symmetric,
that is, ti,j = tj,i, and can be fractional. Previous work on problems of similar
nature as the continuous BGT includes recent work on patrolling [9–11,15].
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In related research on minimizing the maximum occupancy of a buffer in
a system of n buffers, the usual setting is a game between the player and the
adversary [4,5,8]. The adversary decides how the fixed total increase of data in
each round is distributed among the buffers and tries to maximize the maximum
occupancy of a buffer. The player decides which buffer (or buffers, depending on
the variant of the problem) should be emptied next and tries to minimize the
maximum buffer size. The upper bounds developed in this more general context
can be translated into upper bounds for our BGT problems, but our aim is to
derive tighter bounds for the case when the rates of growth of bamboos are fixed
and known.

Probably the most natural strategy to keep the elevation of the bamboo
garden low is the greedy approach of always cutting next the highest bamboo.
This approach, called Reduce-Max, was considered recently in the context of
periodic testing of virtual machines in cloud systems [1], and was also studied
in the adversarial setting of the buffer minimization problems mentioned above.
The results presented in [5] imply a tight bound of H(Hn−1 + 1) = Θ(H log n)
on the performance of Reduce-Max for discrete BGT when the adversary keeps
changing the growth rates of bamboos, where H is the sum of the daily growth
rates (the adversary cannot change this sum) and Hk =

∑k
i=1

1
k = Θ(log k) is

the k-th harmonic number. While the O(H log n) upper bound applies obviously
also to our setting of the discrete BGT, when the growth rates are fixed, it is
not clear whether there are instances which force Reduce-Max to leave bamboos
of height Ω(H log n). On the contrary, the experimental work presented in [1]
indicates possibility that Reduce-Max keeps the maximum bamboo height within
O(H). The upper bound of O(H log n) on Reduce-Max for discrete BGT implies
an O(DH log n) upper bound on the same approach for continuous BGT, where
D is the diameter of the set of bamboos (the largest travel time between any
pair of bamboos), but again this upper bound from the adversarial setting does
not help us in analyzing how well we can do for given growth rates.

In both cases, discrete and continuous, we consider algorithms A which for
an input instance I (of the form 〈hi : 1 ≤ i ≤ n〉 in the discrete case and
[〈hi : 1 ≤ i ≤ n〉, 〈ti,j : 1 ≤ i, j ≤ n〉] in the continuous case) produce a perpetual
(trimming) schedule A(I), that is, a sequence of indices of bamboos (i1, i2, . . .)
which defines the order in which the bamboos are trimmed. We are mainly
interested in the approximation ratios of such algorithms, which are defined in
the usual way. For an input instance I and a trimming schedule S for I, let
MH(S) denote the supremum of the heights of bamboos over all times t ≥ 0
when the trimming proceeds according to schedule S, and let OPT(I) denote
the infimum of MH(S) over all schedules S for I. The upper bounds on Reduce-
Max imply that OPT(I) is finite. The approximation ratio of a schedule S is
defined as MH(S)/OPT(I) and the approximation ratio of an algorithm A is
the supremum of MH(A(I))/OPT(I) over all input instances I. While our main
goal is a low approximation ratio, we are also interested in the time complexity
of BGT algorithms and try to keep low both the time of any preprocessing and
the time needed to compute the index of the next bamboo in the schedule.
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For each instance of discrete BGT with the sum of the growth rates H =
h1 +h2 + · · ·+hn, OPT(I) ≥ H, as shown below. Thus the approximation ratio
of Reduce-Max is O(log n) but it remains an open questions whether this upper
bound is tight. In Sect. 2, we show that a simple modification of Reduce-Max has
the approximation ratio at most 4. We also show more complicated algorithms,
which are based on the relation between discrete BGT and the Pinwheel problem
and have approximation ratios of 2, for any growth rate sequence, and (1 + δ),
for a constant 0 < δ < 1 and “balanced” growth rate sequences.

In Sect. 3, we show algorithms for continuous BGT with approximation ratios
O(log(h1/hn)) and O(log n). In the full version of our paper, we show also some
hard instances of the continuous BGT problem such that for any schedule the
maximum bamboo height is greater than our lower bounds by a Θ(log n) factor.
Thus for these input instances our O(log n)-approximation algorithm computes
in fact constant-approximation schedules. We also leave to the full version of the
paper a O(1)-approximation algorithm for continuous BGT for the case when
h1 = Θ(H).

Lower Bound on Discrete BGT. We note a natural lower bound of H =
h1 + h2 + · · · + hn on the maximum height of a bamboo in the discrete
BGT problem. Thus neither Reduce-Max nor any other algorithm for the
discrete BGT problem can keep the bamboos within the height H, that is,
max{MH(A(I)) : sum of growth rates in I is H}/H is an upper bound on the
approximation ratio of an algorithm A. This bound can be proved by contra-
diction. Assume there exists a perpetual schedule that keeps the heights of all
bamboos below HMAX < H. During each day the total height T of the bam-
boos, that is, the sum of the current heights of all bamboos, increases at least
by H − HMAX > 0. Thus after �nHMAX/(H − HMAX)� + 1 days the height of
at least one bamboo is greater than HMAX – a contradiction. A similar lower
bound argument can be obtained via density restrictions in Pinwheel problem,
discussed later in Sect. 2.2.

2 Discrete BGT

We consider two types of algorithms for the discrete variant of BGT. An online
algorithm is based on simple queries of type “what is the tallest bamboo?” (as
in Reduce-Max), or “what is the fastest growing bamboo with the height above
some threshold?” (as below in Reduce-Fastest). Such queries can be answered
without knowing the whole distribution of growth rates. Online scheduling is
more flexible since its performance can adapt, if the growth rates change. On
the downside, the performance analysis of online scheduling is more complex and
the approximation bounds tend to be weaker. In contrast, an offline algorithm
determines which bamboo is to be trimmed during a particular round by produc-
ing, based on the knowledge of the whole distribution of growth rates, the full
perpetual schedule during preprocessing. This reduces the flexibility of the solu-
tion, but leads to stronger approximation bounds. We note that our online-offline
characterization is to indicate only a general nature of possible BGT algorithms.
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2.1 Constant Approximation of BGT by Online Scheduling

We obtain our first constant-approximation algorithm by the following simple
modification of Reduce-Max. We cut next the fastest growing bamboo among
those with the current heights at least x · H, for some constant x > 1. We call
this algorithm Reduce-Fastest(x) and show the following approximation bound.

Theorem 1. Reduce-Fastest(2) is a 4-approximation algorithm for discrete
BGT.

Proof. Without loss of generality, we assume that if there are two or more
bamboos with the same fastest growth rate among the bamboos with the cur-
rent height at least x · H, then Reduce-Fastest chooses for trimming the bam-
boo with the smallest index. Thus the largest height of bamboo b1 is at most
xH + h1 ≤ (x + 1)H.

We consider now a bamboo bi, for some arbitrary 2 ≤ i ≤ n, and assume that
it reaches the height at least C ·H for some constant C ≥ x+1. At any time the
heights of bamboos belong to two disjoint regions: the lower region [0, x ·H) and
the upper region [x · H,∞). At some point bamboo bi must stay in the upper
region for at least � (C−x)·H

hi
� consecutive rounds to reach the height C · H.

We consider a period of t = � (C−x)·H
hi

� consecutive rounds when bamboo bi

remains in the upper region. At each of these rounds, trimming of bamboo bi

“is blocked” by trimming of another bamboo bj for some j < i. The number
of times when bamboo bj can block bamboo bi during this period is at most
tj = 1 + � t

fj
�, where fj = 	x·H

hj

 is the number of rounds needed by bamboo bj

to climb back to the upper region after trimming. Thus the number of rounds
when bamboo bi is blocked is at most

i−1∑

j=1

tj =
i−1∑

j=1

(

1 +

⌊
� (C−x)H

hi
�

	xH
hj




⌋)

≤
⌊

(C − x) · H

hi

⌋
⎛

⎝ i − 1

� (C−x)·H
hi

�
+

i−1∑

j=1

1
	x·H

hj



⎞

⎠

Using hi ≤ H/i and
∑i−1

j=1 hj < H, we obtain

i − 1

� (C−x)·H
hi

�
+

i−1∑

j=1

1
	x·H

hj

 <

1
C − x

+
1
x

.

Bamboo bi is blocked in all � (C−x)·H
hi

� rounds, so

i−1∑

j=1

tj ≥
⌊

(C − x) · H

hi

⌋

,

implying that
1

C − x
+

1
x

> 1.

The above inequality is equivalent to C < 2 + (x − 1) + 1/(x − 1). This
bound is minimized for x = 2, giving C < 4. Thus the approximation ratio
of Reduce-Fastest(2) is at most 4. ��
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2.2 Offline Scheduling

In this section we focus on off-line scheduling which permits tighter approx-
imation results. We recall first classical Pinwheel scheduling problem which is
closely related to BGT. This is followed by the presentation of a 2-approximation
algorithm for any distribution of the growth rates and a (1 + δ)-approximation
algorithm for instances with more balanced growth rates in BGT.

Pinwheel. The Pinwheel problem [13] is defined as follows. Given a set V =
f1, f2, . . . , fn of positive integers called Pinwheel frequencies. One is asked to
create an infinite sequence S of indices drawn from the set 1, 2, . . . , n, s.t., any
sub-sequence of fi ∈ V consecutive elements in S includes at least one index
i. The density of set V is defined as D =

∑n
i=1

1
fi

. It has been coined in [13]
that Pinwheel is NP-hard assuming succinct representation of the problem. It is
also known [13] that all instances of Pinwheel with the density exceeding value
1 cannot be scheduled. On the other hand any instance of Pinwheel with the
density at most 3

4 can be scheduled, however, finding such a schedule may require
a substantial time [12].

In order to determine the relationship between BGT and Pinwheel problems
we show first how to relate the daily growth rates in BGT with the frequencies in
Pinwheel. We define the set of frequencies fi = H/hi, for i = 1, 2, . . . , n, which
form a pseudo-instance of Pinwheel with frequencies as real numbers (rather
than integers) and with the density

D =
n∑

i=1

1
fi

=
n∑

i=1

hi

H
= 1.

Note that one can replace H by H ′ = (1 + δ)H, for any δ > 0 to reduce the
density of the respective pseudo-instance to

D′ =
n∑

i=1

1
f ′

i

=
n∑

i=1

hi

(1 + δ)H
=

1
(1 + δ)

n∑

i=1

1
fi

=
1

(1 + δ)
D.

In other words, by manipulating δ one can obtain another pseudo-instance I ′(δ)
of Pinwheel with the density 1

(1+δ) lower than one. For example, by adopting
δ = 1

3 one can obtain a pseudo-instance I ′( 1
3 ) of Pinwheel with the density 3

4 .
Furthermore, having a pseudo-instance I ′(δ) with sufficiently low density

1
(1+δ) , for δ > 0, enables replacement of non-integral frequencies by their floors
to create a proper instance I(δ) of Pinwheel with the density below one.

Lemma 1. A solution (if feasible) to the proper instance I(δ) of Pinwheel results
in a (1 + δ)-approximation schedule for the original BGT problem.

Proof. In I(δ) the frequence fi ≤ H(1+δ)
hi

is an upper bound on the number of
rounds between two consecutive visits to bi in BGT. And since the height of bi

is limited to hi · fi we get the upper bound H(1 + δ) on the height of each bi. ��
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A 2-approximation algorithm. According to Lemma 1 the main challenge in
BGT, i.e., keeping all bamboos as low as possible can be reduced to finding the
smallest value of δ for which the relevant proper instance of Pinwheel problem
can be scheduled. The main idea behind our solution refers to the result from [13]
indicating that any instance of Pinwheel with frequencies being powers of 2 and
the density at most 1 can be scheduled efficiently. By adopting H ′ = 2H one
can first translate any instance of BGT to a pseudo-instance of Pinwheel with
the density 1

2 , and later by reducing each frequency to the nearest power of 2
produce a proper instance of Pinwheel with the density at most 1.

Corollary 1. The algorithm described above provides a 2-approximation for the
BGT problem.

A (1 + δ)-approximation algorithm for more balanced growth rates. In
search for more tight approximation one cannot reduce frequencies to just the
closest power of 2. Instead, to obtain greater granularity we start with reduction
of frequencies (in the respective pseudo-instance of Pinwheel) to the closest val-
ues of the form 2k(1 + j

C ), where C = 2a, for some integer constant a ≥ 0, and
j ∈ [0, C). We make the following two observations.

Observation 1. Any two frequencies of the form 2k(1 + j
C ) can be combined

via their equidistant superposition into a shorter frequency 2k−1(1 + j
C ). For

example, for k = 4, C = 4 and j = 3 we obtain two frequencies f1, f2 of size
2k(1 + j

C ) = 24(1 + 3
4 ) = 28 which can be combined into a shorter frequency

2k−1(1+ j
C ) = 23(1+ 3

4 ) = 14 by alternating f1 and f2 in a round robin fashion.

Observation 2. One can combine mj = C + j frequencies 2k(1 + j
C ) into one

frequency 2k/C which is also a power of 2, since 2k(1 + j
C )/mj = 2k/C.

We say that an instance of BGT is α-balanced, if h1 ≤ α · H, for some
constant α < 1.

The Main Algorithm. Given an α-balanced instance of BGT with growth
rates h1, h2, . . . , hn.

1. Adopt H ′ = (1 + δ)H, and form the respective pseudo-instance of Pinwheel
with the frequencies f1, f2, . . . , fn > 2min, for the largest possible integer
min, and the density 1

1+δ .
2. Reduce each frequency fi to the closest value of the form 2k(1+ j

C ), for some
k ≥ min and j ∈ [0, C).
[This increases the density by a factor of 1 + 1

C to the value (1 + 1
C )/

(1 + δ).]
3. Use Observation 1 for as long as possible to combine pairs of the same fre-

quencies pushing them down towards the range [2min, 2min+1).
[On the conclusion of this step there is at most one frequency 2k(1 + j

C ),
for k > min and j ∈ [0, C).]

4. Apply the transformation from Observation 2 in the range [2min, 2min+1)
until there are at most C + j −1 frequencies 2k(1+ j

C ) left, for any j ∈ (0, C).
[After this step, there are at most C+j−1 frequencies in each group j in
the range [2min, 2min+1).]
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5. In each range reduce all remaining frequencies (different to powers of two)
group by group starting from the top group j = C − 1 and apply the trans-
formation from Observation 2 whenever possible.
[Wegain an extra density ΔD.Wemust ensure that

1+ 1
C

1+δ +ΔD≤1. This can
be done by the appropriate selection of parameters C and δ, see below.]

The following theorem about the approximation of the above algorithm is
proven in the full version of the paper.

Theorem 2. For any δ > 0, the Main Algorithm produces (1+δ)-approximation
BGT schedules for α-balance instances, if α ≤ δ2(1+δ)

(2+δ)2
.

3 Continuous BGT

We consider now the continuous variant of the BGT problem. Since this variant
models scenarios when bamboos are spread over some geographical area, we will
now refer not only to bamboos b1, b2, . . . , bn but also to the points v1, v2, . . . , vn

(in the implicit underlying space) where these bamboos are located. We will
denote by V the set of these points.

Recall that input I for the continuous BGT problem consists of the rates
of growth of bamboos (hi : 1 ≤ i ≤ n) and the travel times between bamboos
(ti,j : 1 ≤ i, j ≤ n). We assume that h1 ≥ h2 ≥ . . . ≥ hn, as before, and
normalize these rates, for convenience, so that h1 + h2 + . . . + hn = 1 (this is
done without loss of generality, since the exact unit of the heights of bamboos
is irrelevant). We assume that the travel distances are symmetric and form a
metric on V . (In the scenarios which we model, if ti,j was greater than ti,k + tk,j ,
then the robot would travel between points vi and vj via the point vk.)

For any V ′ ⊆ V , the minimum growth rate among all points in V ′ is denoted
by hmin(V ′), and the maximum growth rate among all points in V ′ is denoted
by hmax(V ′). Let hmin = hmin(V ) = hn, and hmax = hmax(V ) = h1.

The diameter of the set V is denoted by D = D(V ) = max{ti,j : 1 ≤
i, j ≤ n}. For any V ′ ⊆ V , MST(V ′) denotes the minimum weight of a Steiner
tree on V ′. Recall that for an algorithm A and input I, MH(A(I)) denotes the
maximum height that any bamboo ever reaches, if trimming is done according
to the schedule computed by A, and OPT(I) is the optimal (minimal) maximum
height of a bamboo over all schedules.

3.1 Lower Bounds

We first show some simple lower bounds on the maximum height of a bamboo.
For notational brevity, we omit the explicit reference to the input I. For example,
the inequality MH(A) ≥ Dhmax in the lemma below is to be understood as
MH(A(I)) ≥ D(V (I)) · hmax(V (I)), for each input instance I.

Lemma 2. MH(A) ≥ Dhmax, for any algorithm A.
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Algorithm 1. An O(hmax/hmin)-approximation algorithm for continuous BGT.

1. Calculate a minimum spanning tree T of the point set V .
2. Repeatedly perform an Euler-tour traversal of T .

Proof. The robot must visit another point x in V at distance at least D/2 from
v1. When the robot comes back to v1 after visiting x (possibly via a number of
points in V ), the bamboo at v1 has grown at least to the height of Dh1. ��
Lemma 3. MH(A) = Ω(hmin(V ′)·MST(V ′)), for any algorithm A and V ′ ⊆ V .

Proof. Let v be the point in V ′ visited last: all points in V ′\{v} have been visited
at least once before the first visit to v. The distance traveled until the first visit
to v is at least MST(V ′), so the bamboo at v has grown to the height at least
hv · MST(V ′). ��

3.2 Approximation Algorithms

We describe our Algorithms 1, 2 and 3 for the continuous BGT problem in
pseudocode and give their approximation ratio in the theorems below.

Theorem 3. Algorithm 1 is an O(hmax/hmin)-approximation algorithm for the
continuous BGT problem.

Proof. Let A1 denote Algorithm 1. Every point vi ∈ V is visited by A1 at least
every 2 · MST(V ) time units. Hence,

MH(A1) = O(hmax(V ) · MST(V )). (1)

According to Lemma 3,

OPT = Ω(hmin(V ) · MST(V )). (2)

Combining the two bounds (1) and (2), it follows that Algorithm 1 is an
O(hmax/hmin)-approximation algorithm for BGT. ��
Theorem 4. Algorithm 2 is an O(log(hmax/hmin))-approximation algorithm for
the continuous BGT problem.

Proof. Consider any point v ∈ Vi, for any i ∈ {1, 2, . . . , s}. The distance traveled
between two consecutive visits to v is at most

O

(

D · log
(

hmax

hmin

)

·
⌈
MST(Vi)

D

⌉)

= O

(

log
(

hmax

hmin

)

· max{D,MST(Vi)}
)

.

Hence, the height of the bamboo at v is never larger than

O

(

hmax(Vi) · log
(

hmax

hmin

)

· max{D,MST(Vi)}
)

. (3)
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Algorithm 2. An O(log(hmax/hmin))-approximation algorithm for continuous BGT.

1. Let s = �log2(hmax/hmin)�.
2. For i ∈ {1, 2 . . . , s}, let Vi = {vj ∈ V | 2i−1 · hmin ≤ hj < 2i · hmin}, let Ti be an

O(1)-approximation of the minimum Steiner tree on Vi, and let Ci be an Euler-tour
traversal of Ti.

3. For i ∈ {2, . . . , s}, define an arbitrary point on Ci as the last visited point on Ci.
4. Start at an arbitrary point on C1.
5. repeat forever
6. for i = 1 to s − 1 do
7. Walk distance D on Ci in clockwise direction.
8. Walk to the last visited point on Ci+1.
9. for i = s to 2 do

10. Walk distance D on Ci in clockwise direction.
11. Walk to the last visited point on Ci−1.

On the other hand, using Lemmas 2 and 3, we obtain

OPT = Ω(hmin(Vi) · max{D,MST(Vi)}). (4)

Combining the two bounds (3) and (4), and observing that hmax(Vi) ≤ 2 ·
hmin(Vi), we see that Algorithm 2 is an O(log(hmax/hmin))-approximation algo-
rithm for BGT. ��
Theorem 5. Algorithm 3 is an O(log n)-approximation algorithm for the con-
tinuous BGT problem.

Proof. Consider any point v ∈ Vi, for any i ∈ {1, 2, . . . , s}. Then, the distance
traveled between two consecutive visits of v is at most

O(D · log n ·
⌈
MST(Vi)

D

⌉

) = O(log n · max{D,MST(Vi)}).

Hence, the height of the bamboo at v is never larger than

O(hmax(Vi) · log n · max{D,MST(Vi)}). (5)

On the other hand, using Lemmas 2 and 3, we obtain

OPT = Ω(hmin(Vi) · max{D,MST(Vi)}). (6)

Since hmax(Vi) ≤ 2hmin(Vi), then the height of the bamboo at v is always
O(OPT · log n).

Consider a point v ∈ V0. Then, the distance traveled between two consecutive
visits of v is at most

O(|V0| · D · log n) = O(n · D · log n).
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Algorithm 3. An O(log n)-approximation algorithm for continuous BGT.

1. Let s = �2 · log2 n�.
2. Let V0 = {vi ∈ V | hi ≤ n−2}.

For i ∈ {1, 2, . . . , s}, let Vi = {vj ∈ V | 2i−1 · n−2 < hj ≤ 2i · n−2}.
For i ∈ {1, 2, . . . , s}, let Ti be an O(1)-approximation of the minimum Steiner tree
on Vi, and let Ci be an Euler-tour traversal of Ti.

3. For i ∈ {2, 3, . . . , s}, define an arbitrary point on Ci as the last visited point on
Ci. Let V0 = {v′

0, v
′
1, . . . , v

′
�−1}.

4. Start at an arbitrary point on C1.
5. j = 0.
6. repeat forever
7. for i = 1 to s − 1 do
8. Walk distance D on Ci in clockwise direction.
9. Walk to the last visited point on Ci+1.

10. for i = s to 2 do
11. Walk distance D on Ci in clockwise direction.
12. Walk to the last visited point on Ci−1.
13. Walk to v′

j mod � and back.
14. j = j + 1.

Hence, the height of the bamboo at v is never larger than

O(n · hmax(V0) · D · log n) = O(n · n−2 · D · log n) = O(hmax · D · log n). (7)

On the other hand, using Lemma 2, we obtain

OPT = Ω(hmax · D), (8)

so the height of the bamboo at a point in V0 is also always O(OPT · log n). Thus
Algorithm 3 is an O(log n)-approximation algorithm for BGT. ��

4 Open Problems

There are several interesting open questions about approximation algorithms for
the BGT problems, including better understanding of the approximation ratio
of Reduce-Max for discrete BGT. For continuous BGT, we do not know whether
our Algorithm 3 or any other algorithm achieves an approximation ratio o(log n).
There are also questions about efficient implementation of BGT algorithms. For
example, how can we select the highest bamboo in Reduce-Max faster than in
linear time per round, if the growth rates are known to the gardener?
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Abstract. In the exact quantum query model a successful algorithm
must always output the correct function value. We investigate the func-
tion that is true if exactly k or l of the n input bits given by an oracle
are 1. We find an optimal algorithm (for some cases), and a nontrivial
general lower and upper bound on the minimum number of queries to
the black box.

1 Introduction

In this paper we study the computational complexity of Boolean functions in
the quantum black box model. It is a generalization of the decision tree model,
where we are computing an n-bit function f : {0, 1}n → {0, 1} on an input
x ∈ {0, 1}n that can only be accessed through a black box by querying some bit
xi of the input. In the quantum black box model the state of the computation
is described by a quantum state from the Hilbert space HQ ⊗ HW ⊗ HO where
HQ = {|0〉 , |1〉 , . . . , |n〉} is the query subspace, HW is the working memory and
HO = {|0〉 , |1〉} is the output subspace. A computation using t queries consists
of a sequence of unitary transformations Ut ·Ox ·Ut−1 ·Ox ·. . .·Ox ·U0 followed by a
measurement, where the Ui’s are independent of the input and Ox = OQ,x⊗I⊗I
with

OQ,x |i〉 =

{
(−1)xi |i〉 = x̂i |i〉 , if i ∈ [n],
|0〉 , if i = 0,

is the query transformation, where xi ∈ {0, 1} or equivalently, x̂i ∈ {−1, 1}. The
final measurement is a complete projective measurement in the computational
basis and the output of the algorithm is the result of the last register, HO. We
say that a quantum algorithm computes f exactly if for all inputs x the output of
the algorithm always equals f(x). Let us denote by QE(f) the minimum number
of queries over all quantum algorithms that compute f exactly.

For quite a long time the largest known separation between the classical
decision tree complexity D(f) and QE(f) was only by a factor of two — the
XOR of two bits can be computed exactly using only 1 quantum query [7–9].
However, in 2012 Ambainis gave the first asymptotic separation that achieved
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 243–255, 2017.
DOI: 10.1007/978-3-319-51963-0 19
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QE(f) = O(D(f)0.8675) for a class of functions f [1]. Next, in 2015 Ambainis
et al. used pointer functions to show a near-quadratic separation between these
two measures: QE(f) = Õ(

√
D(f)) [2]. On the other hand Midrijānis has proved

that the maximum possible separation between QE(f) and D(f) is at most
cubic [12].

However, the techniques for designing exact quantum algorithms are rudi-
mentary compared to the bounded error setting. Other than the well known
XOR trick — constructing a quantum algorithm from a classical decision tree
that is allowed to “query” the XOR of any two bits — there are few alternate
approaches. In addition to the asymptotic separations of [1,2], Montanaro et al.
[13] gave a 2-query quantum algorithm for the symmetric 4-bit function

EXACT4
2(x) =

{
1, if x1 + x2 + x3 + x4 = 2,

0, otherwise,

and showed that it could not be computed optimally using the XOR trick.
Afterwards Ambainis et al. gave an algorithm [4] for two classes of symmetric
functions:

EXACTn
k (x) =

{
1, if |x| = k,

0, otherwise
; QE(EXACTn

k ) ≤ max{k, n − k},

and the threshold function

THn
k (x) =

{
1, if |x| ≥ k,

0, otherwise
; QE(THn

k ) ≤ max{k, n − k + 1}.

For partial functions quantum algorithms with superpolynomial speedup are
known [6,8]. Our work is somewhat connected to the results of Qiu and Zheng
on partial functions based on the Deutsch-Jozsa problem [14], in particular, our
algorithm from Sect. 3.1 also achieves claim (3) from [14].

1.1 Our Results

We consider exact quantum algorithms for symmetric total Boolean functions,
i.e., functions for which permuting the input bits does not change its value.
For symmetric functions, the largest known separation remains a factor of 2.
We know from von zur Gathen’s and Roche’s work on polynomials [10] and
quantum lower bounds using polynomials [5] that for symmetric f : QE(f) ≥
n
2 − O(n0.548), thus the largest known separation is either optimal or close to
being optimal.

However, many of the known exact algorithms are for symmetric functions
(for example, XOR, EXACT and TH functions mentioned in the previous
section). Because of that, we think that symmetric functions may be an inter-
esting ground to explore new methods for developing more exact quantum algo-
rithms.

In Sect. 3.1 we present an algorithm achieving up to D(f) = 2QE(f) for a
certain class of symmetric functions.
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Definition 1. Let EXACTn
k,l for 0 ≤ k ≤ l ≤ n, be an n-argument symmetric

Boolean function that returns 1 if and only if the input contains exactly k ones
or exactly l ones.

EXACTn
k,l(x) =

{
1, if |x| ∈ {k, l};
0, otherwise.

Let us denote by d the separation between l and k: d = l − k. In general a
symmetric Boolean function SYMa on n input bits can be defined by a list
a = (a0, . . . , an) ∈ {0, 1}n+1 such that SYMa(x) = a|x|. When d > 0 it may be
convenient to think of EXACTn

k,l in this way. In this representation EXACTn
k,l

corresponds to lists a of length n+1 with two 1s and the number of zeroes before
the first, after the last 1, and distance between 1s correspond to parameters k,
n − l, and d respectively.

The boundary cases, d = 0 and d = n, have been solved previously. When
d = n, the function is usually referred to as EQUALITYn. It can be solved
with n − 1 quantum queries using the well-known XOR trick. The case d = 0 is
also known as the EXACTn

k function which has been analyzed in [4] where it
was shown that QE(EXACTn

k ) = max {k, n − k}. In this paper, we completely
solve the d ∈ {2, 3} cases and partially solve the d = 1 case and d ≥ 4 case.

The first of our results is

Theorem 1. If d = 1, l = n−k and k > 0, then for EXACTn
k,l = EXACT2k+1

k,k+1

QE(EXACT2k+1
k,k+1) = k + 1.

The algorithm we provide in the proof works also when l �= n − k by padding
the function. Unfortunately, the algorithm is then only an upper bound on
QE(EXACTn

k,k+1). For example, QE(EXACT3
2,3) = 2 because EXACT3

2,3 is
the MAJORITY function on 3 bits. Instead, our algorithm uses 3 queries for
the padded version of the function (if we pad the input with two zeroes, we end
up computing EXACT5

2,3). Furthermore, the computations by Montanaro et al.
[13] suggest that QE(EXACT5

3,4) = 3 and QE(EXACT6
4,5) = 4. There, unlike

the EXACT3
2,3 case, we don’t know what the optimal algorithm looks like.

Next, we have a complete understanding of the d ∈ {2, 3} case,

Theorem 2. If d ∈ {2, 3}, then

QE(EXACTn
k,l) = max{n − k, l} − 1.

In particular, when d = 2 and l = n−k, we have l = k+2 and n = 2k+2, meaning
l = n

2 + 1, giving us QE(EXACTn
k,l) = n

2 whereas the deterministic query com-
plexity is D(EXACTn

k,l) = n, hence we exhibit a factor of 2 gap between QE(f)
and D(f) which is the largest known gap for a symmetric Boolean function.

For larger values of d, we provide an exact quantum algorithm and a lower
bound that is 2 queries less than the complexity of the algorithm:
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Theorem 3. If d ≥ 4, then

max{n − k, l} − 1 ≤ QE(EXACTn
k,l) ≤ max{n − k, l} + 1,

We conjecture that our lower bound is tight, i.e., that

Conjecture 1. If d ≥ 2, then

QE(EXACTn
k,l) = max {n − k, l} − 1.

The lower bound of Theorem 3 combined with Theorem 1 implies that

QE(EXACTn
k,l) ≥ n

2
.

Interestingly, the algorithm of Theorem 3 can be used to compute a wide
variety of symmetric functions with asymptotically optimal number of queries.
Namely, in the extended version of the paper [3] we show

Theorem 4. Let a ∈ {0, 1}n+1 be a binary string with no 1-s far from its center,
i.e. there exists some g(n) ∈ o(n) such that |i − n

2 | > g(n) =⇒ ai = 0. Then,

QE(SYMa) =
n

2
+ o(n).

Since D(SYMa) = n for any such non-constant function SYMa, we obtain a
factor-(2 − o(1)) advantage for exact quantum algorithms for any such SYMa.

The outline for the rest of the paper is as follows. We describe the lower
bound parts of Theorems 1, 2 and 3 in Sect. 2 and the algorithms for these
theorems in Sect. 3.

2 The Lower Bounds

2.1 Proofs of the Lower Bound Theorems

Theorem 5. If d ≥ 1, then

QE(EXACTn
k,l) ≥ max {n − k, l} − 1.

This theorem provides the lower bound part for Theorems 2 and 3.

Proof (of Theorem 5). Consider the function EXACTn
k,l with l ≤ n−k (l ≥ n−k

is symmetric and gives the l − 1 result in the theorem). If the first k input
bits are ones, a quantum algorithm computing EXACTn

k,l must be computing
EXACTn−k

0,l−k on the remaining n − k input bits. Next we proceed similarly as
in the lower bound via polynomials for ORn function [5]. There must exist a
state |ψ(x)〉 ∈ HQ ⊗ HW ⊗ |1〉 which for x = (0, . . . , 0) is non-zero at the end of
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the computation. If the algorithm performs t queries, then the amplitude of the
state |ψ(x)〉 can be expressed as a degree ≤t multilinear polynomial in x̂:

p(x̂1, . . . , x̂n) =
∑

S:S⊆[n]
|S|≤t

αS

∏

i∈S

x̂i.

Let psym(x̂1, . . . , x̂n) =
∑

π∈Sn

p(x̂π(1),...,x̂π(n))

n! . Crucially, for the inputs x ∈
{(0, . . . , 0)} ∪ {x|EXACTn−k

0,l−k(x) = 0}: psym(x̂1, . . . , x̂n) = p(x̂1, . . . , x̂n). Fol-
lowing [5, Lemma 3.2] we can obtain a polynomial q(s) with deg q ≤ deg psym

that for all x̂ ∈ {−1, 1}n: q
(

n−(x̂1+...+x̂n)
2

)
= psym(x̂1, . . . , x̂n). The polynomial

q is therefore non-zero on s = 0 and zero on s ∈ {0, 1, . . . , n−k}\{0, l−k}. Thus
deg q ≥ n − k − 1. On the other hand the degree of q is at most the number of
queries t. Thus n − k − 1 ≤ deg q ≤ t. ��
This lower bound is not tight when d = 1 and l = n − k. In this case we use a
more sophisticated approach and give a different proof.

Theorem 6. If d = 1, n > 1 and l = n−k, then for EXACTn
k,l = EXACT 2k+1

k,k+1

QE(EXACT2k+1
k,k+1) ≥ k + 1.

Theorem 6 yields a lower bound that is better by one query than Theorem 5,
which yields a lower bound of k.

To show Theorem 6, we use an unpublished result by Blekherman.

Theorem 7 (Blekherman). Let q(x̂) be the symmetrization of a polynomial
p2(x̂1, . . . , x̂n) where p(x̂) is a polynomial of degree t ≤ n

2 . Then, over the Boolean
hypercube x̂ ∈ {−1, 1}n,

q(x̂) =
t∑

j=0

pt−j(|x|)
⎛

⎝
∏

0≤i<j

(|x| − i)(n − |x| − i)

⎞

⎠

where pt−j is a univariate polynomial that is a sum of squares of polynomials of
degree at most t − j and |x| denotes the number of variables i : x̂i = −1.

See [11] for a proof of Blekherman’s theorem. Furthermore, we provide a consid-
erably shorter proof in the extended version of this paper [3].

Proof (of Theorem 6). Let NOT-EXACT2k+1
k,k+1 denote the negation of the func-

tion. Assume, towards a contradiction, that there exists a quantum algorithm
computing the function with k queries. Then there exists a sum of squares rep-
resentation of NOT-EXACT2k+1

k,k+1: NOT-EXACT2k+1
k,k+1(x) =

∑
i r2

i (x̂), such
that deg ri ≤ k. Since the function is symmetric, the symmetrization is also
a valid representation. Since Sym(

∑
i r2

i (x̂)) =
∑

i Sym(r2
i (x̂)), it follows from

Blekherman’s theorem that there is a univariate polynomial of the form

q(|x|) =
k∑

j=0

pk−j(|x|)
(

j−1∏

i=0

(|x| − i)(n − |x| − i)

)

, (1)
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where q(|x|) = NOT-EXACT2k+1
k,k+1(x) on the Boolean hypercube and pk−j are

sum of squares polynomials with deg pk−j ≤ 2k − 2j. The polynomial q(|x|) is
non-negative in the interval |x| ∈ [k − 1, k + 2]. Since the polynomial is 0 at
|x| = k and |x| = k + 1, it must have at least 3 local extrema in the interval
|x| ∈ [k, k + 1]. Additionally, it is 1 when |x| ∈ {0, 1, . . . , 2k + 1}\{k, k + 1},
hence it has 2k − 2 more extrema — at least one in each of the intervals (0, 1),
(1, 2), . . . , (k − 2, k − 1) and (k + 2, k + 3), (k + 3, k + 4), . . . , (2k, 2k + 1). In
total the polynomial has at least 2k + 1 local extrema, therefore its degree is
at least 2k + 2. On the other hand by our assumption deg q ≤ 2k which is a
contradiction. ��

3 The Algorithms

In Sect. 3.1 we now provide the algorithm for d ≤ 3 (the algorithm part of
Theorems 1 and 2) which we know to be optimal for d = 1 with l = n − k, and
for d = 2, 3 and any k, l. Next, in Sect. 3.4 we present the sub-optimal algorithm
that works for all d, resulting in a general upper bound on QE(EXACTn

k,l) (the
algorithm part of Theorem 3). Throughout Sect. 3 we will refer to x̂1 + . . . + x̂n

as the unbalance of the input or simply unbalance, in other words, the unbalance
increases as the difference between ones and zeroes in the input increases. When
l = n − k, the condition EXACTn

k,n−k(x) = 1 is equivalent to the requirement
that the unbalance is ±d, i.e., |x̂1 + . . . + x̂n| = n − 2k = d. Hence we will refer
to EXACTn

k,n−k as testing for unbalance d = n − 2k.

3.1 The Algorithm for Unbalance d ≤ 3

For the upper bound, we now provide a quantum algorithm for the l = n − k
case which can be extended to the l �= n − k case. Let us introduce the function
UNBALANCEn

d = EXACTn
n−d

2 , n+d
2

. When l = n − k then d = n − 2k and so
n and d have the same parity.

Theorem 8

QE(UNBALANCEn
d ) ≤

{
n+d

2 if d = 1,
n+d

2 − 1 if d ∈ {2, 3}.

We can compute EXACTn
k,l for l �= n−k by reducing it to UNBALANCEn′

d′ :

Lemma 1

QE(EXACTn
k,l) ≤ QE

(
UNBALANCE

n+max {n−l−k,l+k−n}
l−k

)

Proof. For the l < n − k case (l > n − k, respectively) simply pad the input bits
with n − l − k ones (l + k − n zeroes, resp.) and run UNBALANCE

n+|n−l−k|
d

on the padded input. The complexity of the algorithm on the padded problem
will be QE(EXACTn

k,l) ≤ QE

(
UNBALANCE

n+|n−l−k|
d

)
. ��
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From Lemma 1 and Theorem 8, the upper bounds of Theorems 1 and 2
follow:

QE(EXACTn
k,l) ≤

{
max {n − k, l}, if d = 1,

max {n − k, l} − 1, if d ∈ {2, 3}.

3.2 The Structure of the Algorithm

The algorithm of Theorem 8 will use two kinds of subroutines to calculate the
function:

– The main routine UNBn
d will start in a quantum state independent of the input

and compute a UNBALANCEn
d instance;

– The subroutine UNB-Rn
d will require a precomputed state in the form

∑

i∈[n]

x̂i |S〉 +
√

γ
∑

i,j∈[n]
i<j

(x̂i − x̂j) |i, j〉. (2)

S in the basis state |S〉 refers to the amplitude being a sum of x̂i’s.

Let us denote by γ(UNB-Rn
d ) the constant coefficient γ of the algorithm UNB-Rn

d .
Let us denote by T (S) the number of queries performed by algorithm S.

Lemma 2 (Recursive step for UNB-Rn
d). If d < n, n ≥ 3, and there exists a

quantum algorithm UNB-Rn−2
d computing the function UNBALANCEn−2

d start-
ing in an unnormalized quantum state of the form (2) on n − 2 inputs with
γ(UNB-Rn−2

d ) < 1 then there exists an algorithm UNB-Rn
d using UNB-Rn−2

d as a
subroutine, and computing UNBALANCEn

d , starting in the state (2) where

γ(UNB-Rn
d ) =

1
(n2 − d2)2

(

n2(n − 2)2
γ(UNB-Rn−2

d )
1 − γ(UNB-Rn−2

d )
+ d4

)

(3)

and using one more query, i.e., T (UNB-Rn
d ) = T (UNB-Rn−2

d ) + 1.

For a sketch of the proof of Lemma 2 see Sect. 3.3 and the full proof is in the
extended version [3, Sect. 3.2].

The main routine UNBn
d will also be recursive and make use of UNB-Rn

d .

Lemma 3 (Recursive step for UNB-Rn
d). If there exists UNBn−2

d and UNB-Rn
d

with γ(UNB-Rn
d ) ≤ 1, then there exists UNBn

d such that

T (UNBn
d ) = 1 + max{T (UNBn−2

d ), T (UNB-Rn
d )}.

See extended version for the proof of Lemma 3 [3, Sect. 3.3].
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Now we are ready to prove Theorem 8:

Proof (of Theorem 8). We can draw the subroutine dependency graph like so:

UNBd
d ← UNBd+2

d ← UNBd+4
d ← · · · ← UNBd+2k

d

↓ ↓ ↓
UNB-Rd

d ← UNB-Rd+2
d ← UNB-Rd+4

d ← · · · ← UNB-Rd+2k
d

Each subroutine performs one query and calls one of the subroutines in the
dependency graph based on the result of the measurement. Using Lemma 2 start-
ing with an algorithm UNB-Rd+2k0

d we can build chains of algorithms UNB-Rd+2k0
d ,

UNB-R
d+2(k0+1)
d , . . . , UNB-Rd+2k

d as long as γ(UNB-Rd+2ki

d ) < 1. Notice that we
may use multiple chains to cover all k > 0. Fortunately, as we will show for
d ∈ {1, 2, 3}, a single infinite chain will suffice.

Then, using Lemma 3 we can build algorithms UNBd+2k
d for all k > 0 if we

additionally have an initial base algorithm for UNBd
d. The query complexity of

UNBd+2k
d built in this way on a chain of UNB-Rd+2k

d starting at k0 ∈ {0, 1} will
have

T (UNBd+2k
d ) = max{k + T (UNBd

d), T (UNB-Rd+2k0
d ) + k − k0 + 1}.

Since UNBd
d is computing EQUALITYd, it uses d − 1 queries, so we can

disregard k + T (UNBd
d), since k = n−d

2 and therefore k + T (UNBd
d) ≤ n+d

2 − 1.
To finish the proof we now need to show that there exists a chain of UNB-Rd+2k

d

starting at k0 with γ(UNB-Rn
d ) < 1 and

T (UNB-Rd+2k0
d ) + k − k0 + 1 ≤

{
n − k, if d = 1,

n − k − 1, if d ∈ {2, 3}.

When d = 1, we will have k0 = 0 and show that T (UNB-Rd
d) ≤ n−2k+k0−1 =

d + k0 − 1 = 0. Since the function UNBALANCE1
1 does not depend on input

variables, there exists UNB-R1
1 with γ(UNB-R1

1) = 0 using 0 queries.
When d = 2 we will again have k0 = 0 and T (UNB-Rd

d) ≤ d + k0 − 2 = 0. The
subroutine UNB-R2

2 is essentially required to compute XOR(x1, x2) starting in a
non-normalized state (x̂1 + x̂2) |S〉 +

√
γ · (x̂1 − x̂2) |1, 2〉. If γ = 0 we can only

measure |S〉 if XOR = 0 and no queries are necessary.
When d = 3 a single infinite chain starting at k0 = 0 does not exist. It does

exist starting at k0 = 1 and T (UNB-Rd+2
d ) ≤ d+k0 −2 = 2. We give an algorithm

for UNB-R5
3 in the extended version of the paper [3, Abstract A]:

Lemma 4. There exists a 2-query subroutine UNB-R5
3 with γ(UNB-R5

3) = 1
112 .

To show that the chains of algorithms UNB-Rd+2k
d obtained by repeated appli-

cations of Lemma 2 never have γ(UNB-Rd+2k
d ) ≥ 1, we use the recursive identity

(3). It would be sufficient to show that ∃ninit∀n ≥ ninit : γ(UNB-Rn
d ) ≤ 1

n . For
small n the condition γ(UNB-Rn

d ) ≤ 1
n can be verified through explicit computa-

tion. To establish the condition for all sufficiently large n it would be sufficient
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to show that ∃ninit : γ(UNB-Rninit

d ) ≤ 1
ninit

∧ ∀n > ninit : γ(UNB-Rn−2
d ) ≤ 1

n−2 →
γ(UNB-Rn

d ) ≤ 1
n . The implication holds whenever

n2(n−2)2

n−3 + d4

(n2 − d2)2
≤ 1

n
,

or equivalently, n4 + (−2d2 − 4)n3 + (6d2 − d4)n2 + 4d4n − 3d4 ≥ 0. When
d = 1 the inequality holds for n ≥ 5. We can then numerically verify that
γ(UNB-R5

1) ≈ 0.008 ≤ 1
5 . When d = 2 the inequality holds onwards from n ≥ 12.

For our base case γ(UNB-R12
2 ) ≈ 0.039 ≤ 1

12 . When d = 3 the inequality holds
onwards from n ≥ 23. For our chain γ(UNB-R23

3 ) ≈ 0.030 ≤ 1
23 . ��

3.3 Proof Sketch of Lemma 2

Proof. Our algorithm will utilize the following two unitaries and their inverses:

– Rα works on basis vectors |0〉, |L〉 , and |R〉. It is a unitary completion of the
following transformation:

Rα |0〉 =
√

α |L〉 +
√

1 − α |R〉 , ∀α : 0 ≤ α ≤ 1.

– Un works on basis vectors {|1〉 , |2〉 , . . . , |n〉 , |S〉 , |1, 2〉 , |1, 3〉 , . . . , |n − 1, n〉}.
It is a unitary completion of the following transformation:

Un |i〉 =
1√
n

(

|S〉 −
i−1∑

j=1

|j, i〉 +
n∑

j=i+1

|i, j〉
)

. (4)

Note that on a superposition of input vectors Un acts as:

Un

∑

i∈[n]

αi |i〉 =
1√
n

(
∑

i∈[n]

αi |S〉 +
∑

i,j∈[n]
i<j

(αi − αj) |i, j〉
)

.

Let γ = γ(UNB-Rn
d ) and γ′ = γ(UNB-Rn−2

d ). The algorithm starts in the state:
∑

i∈[n]

x̂i |S〉 +
√

γ
∑

i,j∈[n]
i<j

(x̂i − x̂j) |i, j〉.

Through certain applications of Un and Rα, their inverses and one query, it is
possible to transform it into state

c1

( ∑

i,j∈[n]

x̂ix̂j − d2

)

|S〉

+c2

∑

i,j∈[n]
i<j

(x̂i − x̂j) |i, j〉
( ∑

l∈[n]
l/∈{i,j}

x̂l |S〉 +
√

γ′
∑

u,v∈[n]
u,v/∈{i,j}

u<v

(x̂u − x̂v) |u, v〉
)

(5)
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for some non-negative constants c1, c2, provided that γ, n, d and γ′ satisfy the
relationship (3) in the statement of the lemma. See the extended version for how
to achieve this [3].

Finally, we measure whether the state of (5) is in subspace {|S〉}. Whenever
UNBALANCEn

d (x) = 1 or equivalently x̂1 + . . . + x̂n = ±d, the amplitude of
|S〉 is zero. If on the other hand the state is not in subspace |S〉, we end up
measuring |i, j〉 in the first register. Without loss of generality we may assume
that the result is {n − 1, n}. Thus we have learned that {x̂n−1, x̂n} = {−1, 1} is
a balanced pair that can be removed from consideration. Furthermore, we ended
up in a useful (unnormalized) state

∑

i∈[n−2]

x̂i |S〉 +
√

γ′
∑

i,j∈[n−2]
i<j

(x̂i − x̂j) |i, j〉.

Therefore, we can call UNB-Rn−2
d recursively, since

UNBALANCEn
d (x1, . . . , xn) = UNBALANCEn−2

d (x1, . . . , xn−2). ��

3.4 The General Upper Bound

We now present a general upper bound to Q(EXACTn
k,l). The algorithm we

present is worse (by at most 2 queries) than the one in Sect. 3.1 when l − k =
d ≤ 3. However, it works for any k, l and thus also for any d.

First, for the special case l = n − k, we claim

Theorem 9
QE(EXACTn

k,n−k) ≤ n − k + 1.

Second, for the general case l �= n−k, we obtain the upper bound of Theorem3
using the reduction of Lemma 1:

QE(EXACTn
k,l) ≤ max{n − k, l} + 1.

Proof (of Theorem 9: an algorithm for unbalance ±d)
Our goal is to find an algorithm deciding whether the number of 1’s in the
function values is k or n − k. Equivalently, this problem can be also called
UNBALANCEn

d with d = l − k = n − 2k: does the input x have “unbalance”∑
i x̂i = ±d or not?
We start our algorithm with two registers prepared in the unnormalized state

(
d

n
|0〉 + |1〉

)

|S〉,

with d the unbalance we test for. Conditioned on the first register being |1〉, we
transform the second register to a uniform superposition of states 1√

n

∑n
i=1 |i〉.

We then query the oracle. This gives us

d

n
|0〉 |S〉 +

1√
n

|1〉
∑

i

x̂i |i〉.
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Controlled by the first register, we apply the operation Un from (4) to the second
register (this is where another factor of 1√

n
comes from), producing

d

n
|0〉 |S〉 +

1
n

|1〉
∑

i

x̂i |S〉 +
1
n

|1〉
∑

i,j∈[n],i<j

(x̂i − x̂j) |i, j〉 .

As we are looking at unnormalized states, we can now omit the common pref-
actor 1

n . Finally, we apply a Hadamard to the first (ancilla) register and get the
unnormalized state
((

d +
∑

i

x̂i

)

|0〉 +

(

d −
∑

i

x̂i

)

|1〉
)

|S〉 + (|0〉 − |1〉)
∑

i,j∈[n],i<j

(x̂i − x̂j) |i, j〉 .

Finally, we measure the second register. Whenever we get a pair |i, j〉, we know
that it is an unbalanced one, with x̂i = −x̂j . We can get rid of it, and continue
solving a smaller problem with n′ = n − 2. On the other hand, if we get |S〉
in the second register, we need to look at the ancilla (first) register as well. If
the ancilla is |0〉, we learn that the overall unbalance is not −d. On the other
hand, if the ancilla is |1〉, we learn that the overall unbalance is not d. Thus, by
using a single query, our problem changes from UNBALANCEn

d to EXACTn
k

or EXACTn
n−k. Switching to the optimal algorithm for EXACTn

k , this reduced
problem can be solved in ≤ n − k, i.e. ≤ n+d

2 queries.
Therefore, by iterating the above steps, we reduce the problem size by 2

several times, and then at some point reduce the problem to EXACTn′
k′ or

EXACTn′
n′−k′ . The worst option in terms of the number of queries is when we

never reduce the problem size, and use the very first query just to rule out one of
the options d or −d for the unbalance. We then end up having to solve EXACTn

k

or EXACTn
n−k, that each can use another n − k queries. Altogether, we require

QE(EXACTn
k,n−k) ≤ n − k + 1 queries. ��

4 Conclusion

We have shown that the exact quantum query complexity for EXACTn
k,l is

QE(EXACTn
k,l) =

{
max{n − k, l}, if d = 1 and l = n − k,

max{n − k, l} − 1, if d ∈ {2, 3}.

where d = l − k. When d = 2 and l = n − k, this provides another example of a
symmetric function with D(f) = 2QE(f) which is the largest known gap between
D(f) and QE(f) for symmetric functions f . To show that QE(EXACT2k+1

k,k+1) >
k we use an approach based on representation theory. We do not know if this
lower bound method is sufficient to prove QE(f) ≥ n

2 for all symmetric f . In
particular, it seems difficult to apply it for the symmetric function SYMa that
has, for example, a = 0515051505.
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We also give a general algorithm and a lower bound, for all l, k, showing that:

max{n − k, l} − 1 ≤ QE(EXACTn
k,l) ≤ max{n − k, l} + 1.

Previously known quantum algorithms for symmetric functions (e.g., the
well known algorithm for PARITY and the algorithms for EXACTn

k [4]) typi-
cally measure the quantum state after each query. In contrast, our algorithm for
d ∈ {1, 2, 3} does not have this structure. Moreover, our numerical simulations
suggest that there is no algorithm for EXACTn

k,l that uses an optimal number
of queries and measures the state completely after each query. We think that it
is an interesting problem to study the power of quantum algorithms with the
restriction that after each query the state must be measured completely and the
limits of what can be achieved with such algorithms.
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Abstract. Quantum walks have been useful for designing quantum algo-
rithms that outperform their classical versions for a variety of search
problems. Most of the papers, however, consider a search space con-
taining a single marked element only. We show that if the search space
contains more than one marked element, their placement may drastically
affect the performance of the search. More specifically, we study search
by quantum walks on general graphs and show a wide class of configura-
tions of marked vertices, for which search by quantum walk needs Ω(N)
steps, that is, it has no speed-up over the classical exhaustive search. The
demonstrated configurations occur for certain placements of two or more
adjacent marked vertices. The analysis is done for the two-dimensional
grid and hypercube, and then is generalized for any graph.

Keywords: Quantum walks · Stationary states · Multiple marked ver-
tices · Quantum search · Exceptional configurations · General graphs ·
Hypercube · Two-dimensional grid

1 Introduction

Quantum walks are quantum counterparts of classical random walks [1]. Simi-
larly to classical random walks, there are two types of quantum walks: discrete-
time quantum walks, first introduced by Aharonov et al. [2], and continuous-time
quantum walks, introduced by Farhi et al. [3]. For the discrete-time version, the
step of the quantum walk is usually given by coin and shift operators, which are
applied repeatedly. The coin operator acts on the internal state of the walker
and rearranges the amplitudes of going to adjacent vertices. The shift operator
moves the walker between the adjacent vertices.

Quantum walks have been useful for designing algorithms for a variety of
search problems [4–6]. To solve a search problem using quantum walks, we intro-
duce the notion of marked elements (vertices), corresponding to elements of the
search space that we want to find. We perform a quantum walk on the search
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space with one transition rule at the unmarked vertices, and another transition
rule at the marked vertices. If this process is set up properly, it leads to a quan-
tum state in which marked vertices have higher probability than the unmarked
ones. This method of search using quantum walks was first introduced in [7],
which describes a quantum search in the hypercube, and has been used many
times since then.

Not many papers in the literature consider search by quantum walks with
multiple marked vertices. Wong [8] analyzed the spatial search problem solved by
continuous-time quantum walk on the simplex of complete graphs and showed
that the location of marked vertices can dramatically influence the required
jumping rate of the quantum walk. Wong and Ambainis [9] analysed the discrete-
time quantum walk on the simplex of complete graphs and showed that if one
of the complete graphs is fully marked then there is no speed-up over classi-
cal exhaustive search. Nahimovs and Rivosh [10] studied the dependence of the
running time of the AKR algorithm [4] on the number and the placement of
marked locations. They found some “exceptional configurations” of marked ver-
tices, for which the probability of finding any of the marked vertices does not
grow over time. Another previously known exceptional configuration for the two-
dimensional grid is the “diagonal construction” by Ambainis and Rivosh [11].

In this paper, we extend the work of Nahimovs and Rivosh [12]. We study
search by quantum walks on general graphs with multiple marked vertices and
show a wide class of configurations of marked vertices, for which the probability
of finding any of the marked vertices does not grow over time. These configu-
rations occur for certain placements of two and more adjacent marked vertices.
We prove that for such configurations the state of the algorithm is close to a
stationary state.

We start by reviewing the simple example of the two-dimensional grid
from [12] by showing that any pair of adjacent marked vertices forms an excep-
tional configuration. The same construction is valid for the hypercube. We extend
the proof to general graphs by showing that any pair of adjacent marked ver-
tices having the same degree d forms an exceptional configuration, for which
the probability of finding a marked vertex is limited by const · d2/N . Then, we
prove that any k-clique of marked vertices forms an exceptional configuration.
Additionally, we formulate general conditions for a state to be stationary given
a configuration of marked vertices. Our results greatly extend the class of known
exceptional configurations.

2 Two-Dimensional Grid

2.1 Quantum Walk on the Two-Dimensional Grid

Consider a two-dimensional grid of size
√

N × √
N with periodic (torus-like)

boundary conditions. Let us denote n =
√

N . The locations of the grid define
a set of state vectors, |x, y〉, which span the Hilbert space, HP , associated to
the position. Additionally, we define a 4-dimensional Hilbert space with the set
of states {|c〉 : c ∈ {←,→, ↑, ↓}}, HC , associated with the direction. We refer
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to it as the direction or the coin subspace. The quantum walk has associated
Hilbert space HP ⊗ HC with basis states |x, y, c〉 for x, y ∈ {0, . . . , n − 1} and
c ∈ {↑, ↓,←,→}.

The evolution of a state of the walk is driven by the unitary operator U =
S · (I ⊗ C), where S is the flip-flop shift operator

S|i, j, ↑〉 = |i, j + 1, ↓〉 (1)
S|i, j, ↓〉 = |i, j − 1, ↑〉 (2)

S|i, j,←〉 = |i − 1, j,→〉 (3)
S|i, j,→〉 = |i + 1, j,←〉, (4)

and the coin operator is given by the Grover’s diffusion transformation C =
2|s〉〈s| − I, where |s〉 is the uniform superposition of the basis states in the coin
subspace.

The spatial search algorithm uses the unitary operator U ′ = S·(I⊗C)·(Q⊗I),
where Q is the query transformation which flips the sign of marked vertices, that
is, Q|x, y〉 = −|x, y〉, if (x, y) is marked and Q|x, y〉 = |x, y〉, otherwise. The initial
state of the algorithm is

|ψ(0)〉 =
1√
4N

n−1∑

i,j=0

(|i, j, ↑〉 + |i, j, ↓〉 + |i, j,←〉 + |i, j,→〉). (5)

Note that |ψ(0)〉 is a 1-eigenvector of U but not of U ′. If there are marked
vertices, the state of the algorithm starts to deviate from |ψ(0)〉. In case of one
marked vertex, after O(

√
N log N) steps the inner product 〈ψ(t)|ψ(0)〉 becomes

close to 0. If we measure the state at this moment, we will find the marked
vertex with O(1/ log N) probability [4]. This gives the total running time of
O(

√
N log N) steps with amplitude amplification.

By analyzing the quantum search algorithm for a group of marked vertices of
size

√
k × √

k, Ref. [12] identified that the algorithm does not work as expected
when k is even, meaning that the overlap of the initial state with the state at
time t, 〈ψ(0)|ψ(t)〉, stays close to 1. Moreover, the same effect holds for any
block of size 2k × l or k × 2l, with l and k being positive integers. The reason
for such behavior is that blocks of marked vertices form stationary states, as we
are going to see below.

2.2 Stationary States for the Two-Dimensional Grid

Consider a two-dimensional grid with two marked vertices (i, j) and (i + 1, j).
Let |φa

stat〉 be a state having amplitudes of all basis states equal to a except for
|i, j,→〉 and |i + 1, j,←〉, which have amplitudes equal to −3a (see Fig. 1), that
is,

|φa
stat〉 =

n−1∑

x,y=0

∑

c

a|x, y, c〉 − 4a|i, j,→〉 − 4a|i + 1, j,←〉. (6)

Then, this state is not changed by a step of the algorithm.
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(i+ 1, j)(i, j)

−3a

−3a

a

...

a

a

a
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a

a
a
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. . .

a

...

a

a
a

...

. . .

Fig. 1. The amplitudes of the state |φa
stat〉. The vertices (i, j) and (i+1, j) are marked.

Lemma 1. Consider a grid of size
√

N ×√
N with two adjacent marked vertices

(i, j) and (i + 1, j). Then the state |φa
stat〉, given by Eq. (6), is not changed by

the step of the algorithm, that is, U ′|φa
stat〉 = |φa

stat〉.
Proof. Consider the effect of a step of the algorithm on |φa

stat〉. The query trans-
formation changes the signs of all the amplitudes of the marked vertices. The coin
transformation performs an inversion about the average: for unmarked vertices,
it does nothing, as all amplitudes are equal to a; for marked vertices, the average
is 0, so applying the coin results in sign flip. Thus, (I⊗C)(Q⊗I) does nothing for
the amplitudes of the non-marked vertices and twice flips the sign of the ampli-
tudes of the marked vertices. Therefore, we have (I ⊗C)(Q⊗ I)|φa

stat〉 = |φa
stat〉.

The shift transformation swaps the amplitudes of near-by vertices. For |φa
stat〉,

it swaps a with a and −3a with −3a. Thus, we have S(I ⊗ C)(Q ⊗ I)|φa
stat〉 =

|φa
stat〉. ��
The initial state of the algorithm, given by Eq. (5), can be written as

|ψ(0)〉 = |φa
stat〉 + 4a(|i, j,→〉 + |i + 1, j,←〉), (7)

for a = 1/
√

4N . Therefore, the only part of the initial state which is changed by
the step of the algorithm is 2√

N
(|i, j,→〉 + |i + 1, j,←〉).

Let us establish an upper bound on the probability of finding a marked vertex,

pM = 〈ψ(t)|
(

∑

v∈M

|v〉〈v| ⊗ I

)

|ψ(t)〉, (8)

where M is the set of marked vertices.

Lemma 2. Consider a grid of size
√

N ×√
N with two adjacent marked vertices

(i, j) and (i, j + 1). Then for any number of steps, the probability of finding a
marked vertex pM is O

(
1
N

)
.

Proof. Follows from the proof of Theorem 2 by substituting d = 4 and m = 2N .
��

Figure 2 shows the absolute value of the overlap, |〈ψ(0)|ψ(t)〉|, and the prob-
ability of finding a marked vertex, pM , during the first 100 steps of the walk for
a grid of size 50 × 50 and two different sets of marked vertices. In the first case
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Fig. 2. Probability of finding a marked vertex, pM , and absolute value of the overlap,
|〈ψ(0)|ψ(t)〉|, for the first 100 steps of the quantum walk on a grid of size 50×50. (Solid
line) We have two adjacent marked vertices, (0, 0) and (0, 1). (Dashed line) We have
two non-adjacent marked vertices, (0, 0) and (0, 2).

(solid line), we have two adjacent marked vertices, M = {(0, 0), (0, 1)} and in
the second case (dashed line), we have M = {(0, 0), (0, 2)}. Clearly, one can see
the effect of the stationary state on the evolution. If the two marked vertices are
adjacent, the overlap stays closes to 1 and the probability of finding a marked
vertex stays close to the probability in the initial state. If the two marked ver-
tices are not adjacent, the quantum walk behaves as expected (as in the single
marked vertex case).

Note that if we have a block of marked vertices of size k×m, we can construct
a stationary state as long as we can tile it by blocks of size 1 × 2 and 2 × 1. For
example, consider M = {(0, 0), (0, 1), (2, 0), (3, 0)} for n ≥ 3. Then the stationary
state is given by

|φa
stat〉 =

n−1∑

x,y=0

∑

c

a|x, y, c〉−4a|0, 0,→〉−4a|0, 1,←〉−4a|2, 0, ↑〉−4a|3, 0, ↓〉. (9)

More details on alternative constructions of stationary states for blocks of
marked vertices on the two-dimensional grid can be found in [12].

3 Hypercube

3.1 Quantum Walk on the Hypercube

The n-dimensional hypercube is a graph with N = 2n vertices where each vertex
has degree n. The discrete-time quantum walk has associated Hilbert space H2n⊗
Hn. The evolution operator is given by U = S ·(I ⊗C), where the shift operator,
S, acts as S|v〉|c〉 = |v ⊕ ec〉|c〉, with v being the binary representation of v and
ec being the binary vector with 1 in the c-th position. Note, that vertices are
connected to each other if their binary representations have Hamming distance
1 (differ in only one position). The coin transformation is the Grover coin C =
2|s〉〈s| − I, where |s〉 = 1√

n

∑n−1
i=0 |i〉.
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Searching for marked vertices in the hypercube is done by using the unitary
operator U ′ = S · (I ⊗ C) · (Q ⊗ I), where Q is the query transformation, which
flips the sign of marked vertices. The initial state of the algorithm is given by

|ψ(0)〉 =
1√
nN

N−1∑

v=0

n−1∑

c=0

|v〉|c〉. (10)

In case of algorithm with one marked vertex [7], if we measure the state of
the quantum walk after O(

√
N) time steps, we will find the marked vertex with

probability 1/2 − O(1/n). Hence, we expect to repeat the algorithm a constant
number of times, which gives the total running time of O(

√
N) steps.

3.2 Stationary States for the Hypercube

Consider a hypercube with two adjacent marked vertices i and j. Without loss
of generality, suppose i and j differ in the first bit. Let |φa

stat〉 be a state having
amplitudes of all basis states equal to a except for |i, 0〉 and |j, 0〉 which have
amplitudes equal to −(n − 1)a (see Fig. 3), that is,

|φa
stat〉 = a

N−1∑

v=0

n−1∑

c=0

|v, c〉 − an (|i, 0〉 + |j, 0〉) . (11)

Lemma 3. Consider an n-dimensional hypercube with two adjacent marked ver-
tices i and j. Then |φa

stat〉, given by Eq. (11), is not changed by a step of the
algorithm, that is, U ′|φa

stat〉 = |φa
stat〉.

Proof. Similar to proof of Lemma 1. ��
The probability of finding a marked vertex is bounded as follows.

Lemma 4. Consider an n-dimensional hypercube with two adjacent marked ver-
tices i and j. Then for any number of steps, the probability of finding a marked
vertex pM is O

(
n2

N

)
.

Proof. Follows from the proof of Theorem 2 by substituting d = n and m =
(nN)/2. ��

i j
−(n− 1)a

−(n− 1)a

. . .

. . .

. . .

. . .

. . .

. . .

a
a

a

.

.

.

a
a

a

.

.

.

Fig. 3. Amplitudes of the stationary state in an n-dimensional hypercube with two
adjacent marked vertices i and j.
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Fig. 4. Probability of finding a marked vertex, pM , and absolute value of the overlap,
|〈ψ(0)|ψ(t)〉|, for 100 steps of the quantum walk on hypercube with N = 210 vertices.
(Solid line) We have two adjacent marked vertices, 0 and 1. (Dashed line) We have two
non-adjacent marked vertices, 0 and 3.

Figure 4 shows the probability of finding a marked vertex and the absolute
value of the overlap, |〈ψ(0)|ψ(t)〉|, for a hypercube of dimension n = 10 for the
first 100 steps of the algorithm. We consider two different sets of marked vertices.
In the first case (solid line), we have two adjacent marked vertices M = {0, 1}.
In this case, the overlap stays close to 1 and the probability stays close to the
probability in the initial state, because the quantum walk has a stationary state.
In the second case (dashed line), we have two non-adjacent marked vertices
M = {0, 3}. As one can see, the behavior in the second case is very different
from the behavior in the first case.

4 General Graphs

4.1 Quantum Walks on General Graphs

Consider a graph G = (V,E) with a set of vertices V and a set of edges E. Let
n = |V | and m = |E|. The discrete-time quantum walk on G has associated
Hilbert space H2m with the set of basis states {|v, c〉 : v ∈ V, 0 ≤ c < dv}, where
dv is the degree of vertex v. Note, that the state |v, c〉 cannot be written as
|v〉 ⊗ |c〉 unless G is regular.

The evolution operator is given by U = SC. The coin transformation C
is the direct sum of coin transformations for individual vertices, i.e. C =
Cd1

⊕ · · · ⊕ Cdn
with Cdi

being the Grover diffusion transformation of dimen-
sion di. The shift operator S acts in the following way: S|v, c〉 = |v′, c′〉, where v
and v′ are adjacent, c and c′ represent the directions that points v to v′ and v′

to v, respectively.
Searching for marked vertices is done by using the unitary operator U ′ =

SCQ, where Q is the query transformation, which flips the signs of the ampli-
tudes at the marked vertices, that is,

Q = I − 2
∑

w∈M

dw−1∑

c=0

|w, c〉〈w, c|, (12)
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with M being the set of marked vertices. The initial state of the algorithm is
the equal superposition over all vertex-direction pairs:

|ψ(0)〉 =
1√
2m

n−1∑

v=0

dv−1∑

c=0

|v, c〉. (13)

It can be easily verified that the initial state stays unchanged by the evolution
operator U , regardless of the number of steps.

The running time of the algorithm depends on both the structure of the
graph as well as the placement of marked vertices.

4.2 Stationary States for General Graphs

Two Adjacent Marked Vertices. Consider a graph G = (V,E) with two
adjacent marked vertices i and j with the same degree, that is, di = dj = d.
Let |φa

stat〉 be a state having all amplitudes equal to a except of the amplitude
of vertex i pointing to vertex j and amplitude of vertex j pointing to vertex i,
which are equal to −(d−1)a. Figure 5 shows the configuration of the amplitudes
in the marked vertices. Then, this state is not changed by a step of the algorithm.

Theorem 1. Let G = (V,E) be a graph with two adjacent marked vertices i and
j with di = dj = d, and let

|φa
i,j〉 = −ad

(|i, c(i,j)〉 + |j, c(j,i)〉
)
, (14)

where c(i,j) represents the direction which points vertex i to vertex j. Then,

|φa
stat〉 = a

n−1∑

v=0

dv−1∑

c=0

|v, c〉 + |φa
i,j〉, (15)

is not affected by a step of the algorithm, that is, U ′|φa
stat〉 = |φa

stat〉.
Proof. Consider the effect of a step of the algorithm. The query transformation
changes the sign of all amplitudes of the marked vertices. The coin flip performs
an inversion about the average of these amplitudes: for unmarked vertices, it
does nothing as all amplitudes are equal to a; for marked vertices, the average
is 0, so it results in sign flip. Thus, CQ does nothing for the amplitudes of
the unmarked vertices and twice flips the sign of amplitudes of the marked
vertices. Therefore, we have CQ|φa

stat〉 = |φa
stat〉. The shift transformation swaps

amplitudes of adjacent vertices. For |φa
stat〉, it swaps a with a and −(d−1)a with

−(d − 1)a. Thus, we have SCQ|φa
stat〉 = |φa

stat〉. ��
The initial state of the algorithm |ψ(0)〉, given by Eq. (13), can be written as

|ψ(0)〉 = |φa
stat〉 − |φa

i,j〉, for a = 1/
√

2m. Therefore, the only part of the initial
state which is changed by a step of the algorithm is |φa

i,j〉. From this fact, we
can establish an upper bound for the probability of finding a marked vertex.
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i j
−(d− 1)a

−(d− 1)a

a

a

a

...

a

a

a

...
d− 1d− 1

Fig. 5. The amplitudes for the stationary state with two adjacent marked vertices
i and j.

Theorem 2. Let G = (V,E) be a graph with two adjacent marked vertices i and
j with di = dj = d, and let the probability of finding a marked vertex be given by

pM = 〈ψ(t)|
(

∑

v∈M

dv−1∑

c=0

|v, c〉〈v, c|
)

|ψ(t)〉, (16)

where |ψ(t)〉 = U t|ψ(0)〉. Then, pM = O
(

d2

m

)
, where m is the number of edges

of the graph.

Proof. The only part of the initial state |ψ(0)〉 which is changed by the step of
the algorithm is |φa

i,j〉 = −ad
(|i, c(i,j)〉 + |j, c(j,i)〉

)
, for a = 1/

√
2m. Since the

evolution is unitary, this part will keep its norm unchanged. In this way, we want
to find how big amplitudes can get in order to maximize the value of pM . This
means we want to maximize the function

2(d − 1)(a + x1)2 + 2(−(d − 1)a − x2)2, (17)

subject to 2(d − 1)x2
1 + 2x2

2 = |||φa
i,j〉||2 = 2a2d2. Note that x1 represents the

amplitudes going from the marked vertices to unmarked vertices and x2 represents
the amplitudes going from one marked vertex to the other. Then, we obtain

pM ≤ 2a2(2
√

(d − 1)d3 + d(2d − 1)) = O

(
d2

m

)

. (18)

��
One of corollaries of Theorem 2 is that if the degree of the marked vertices is

constant or if it does not grow as a function of n, then for large n, the probability
of finding a marked vertex will stay close to the initial probability.

Three Adjacent Marked Vertices. Now, consider a graph G = (V,E) with
three adjacent marked vertices i, j and k, that is, a marked triangle. The station-
ary state for this case will have the amplitudes in the marked vertices as depicted
in Fig. 6. Note that in order to have a stationary state the sum of amplitudes of
each marked vertex should be 0, so the action of the coin operator will be a sign
flip. By solving the following system of equations:

⎧
⎪⎨

⎪⎩

lij + lik = di − 2
lij + ljk = dj − 2
lik + ljk = dk − 2

(19)
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aa
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· · ·

dj − 2

dk − 2

di − 2

Fig. 6. Sketch of amplitudes for the stationary state with three adjacent marked ver-
tices i, j and k.

we obtain,

lij =
di + dj − dk

2
− 1, lik =

di + dk − dj
2

− 1 and ljk =
dj + dk − di

2
− 1.

(20)

Theorem 3. Let G = (V,E) be a graph with three adjacent marked vertices i,
j and k; and let

|φa
i,j,k〉 = − a(lij + 1)

(|i, c(i,j)〉 + |j, c(j,i)〉
) − a(lik + 1)

(|i, c(i,k)〉 + |k, c(k,i)〉
)

− a(ljk + 1)
(|i, c(j,k)〉 + |k, c(k,j)〉

)
,

(21)
where lij , lik, and ljk are defined in (20). Then,

|φa
stat〉 = a

n−1∑

v=0

dv−1∑

c=0

|v, c〉 + |φa
i,j,k〉, (22)

is not affected by a step of the quantum walk on G.

Proof. Similar to Theorem 1. ��

k-clique of Marked Vertices. Next, we generalize the previous result for any
complete subgraph of marked vertices.

Theorem 4. Let G = (V,E) be a graph with k marked vertices v1, . . . , vk form-
ing a k-clique. Then it forms an exceptional configuration.

Proof. Let dvj
= (k − 1) + d′

j , where d′
j is the number of edges of vj outside the

clique. To construct a stationary state, we need to assign amplitudes to internal
edges of the clique, so that the amplitudes in vertex vj sum up to d′

j . Without
a loss of generality let d′

1 < d′
2 < · · · < d′

k. We set the amplitude of the edge
(v1, v2) to −ad′

1 and amplitudes of other edges within the clique outgoing from
v1 to 0. By this, we have satisfied the condition for the vertex v1 and reduced
the problem from size k to k − 1. I.e. now we have a (k − 1)-clique with degrees
(d′

2 − d′
1), d

′
3, . . . , d

′
k. Next, we recursively repeat the previous step until we get

a 3-clique, which always have an assignment. In this way, we have constructed
a stationary state for a k-clique of marked vertices. ��
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Note that any set of marked vertices which can be divided into unique blocks
of two adjacent marked vertices with the same degree and/or k-clique marked
vertices will result in a stationary state.

General Conditions

Theorem 5 (General conditions). Let |ψ〉 be a state with the following prop-
erties:

1 All amplitudes of the unmarked vertices are equal;
2 The sum of the amplitudes of any marked vertex is 0;
3 The amplitudes of two adjacent vertices pointing to each other are equal.

Then, |ψ〉 is not changed by a step of the quantum walk, that is, U |ψ〉 = |ψ〉.
Proof. Item 1 is required in order for the coin transformation to have no effect on
the unmarked vertices. It is easy to see that Cn|u〉 = |u〉, where |u〉 = a

∑n−1
i=0 |i〉

for some constant a. Item 2 is necessary so the coin transformation can flip the
signs of the amplitudes in the marked vertices. Note that previously the sign of
these amplitudes were inverted by the query transformation. Item 3 is necessary
for the shift transformation to have no effect on the state. ��

Note, that the aforementioned conditions are established for the case
CQ|ψ〉 = |ψ〉 and S|ψ〉 = |ψ〉. There might be even more general conditions
for the case SCQ|ψ〉 = |ψ〉.

5 Conclusions

In this paper, we have demonstrated a wide class of exceptional configurations
of marked vertices for the quantum walk based search on various graphs. The
above phenomenon is purely quantum. Classically, additional marked vertices
result in the decrease of the number of steps of the algorithm and the increase
of the probability of finding a marked location. Quantumly, the addition of a
marked vertex can drastically drop the probability of finding a marked location.

An open question is whether the found phenomenon has analogs for other
models of quantum walks (continuous time quantum walks [3], Szegedy’s
quantum walk [13], staggered quantum walks [14], etc.) as well as for alternative
coin operators.

Another open question is algorithmic applications of the found effect. For
example, in case of two-dimensional grid the search algorithm can “distinguish”
between odd-times-odd and even-times-even groups of marked locations. More-
over, if there are multiple odd-times-odd and even-times-even groups of marked
locations, the algorithm will find only odd-times-odd groups and will “ignore”
even-times-even groups. Nothing like this is possible for classical random walks
without adding additional memory resources and complicating the algorithm.
Another example is the general graphs where the algorithm “ignores” complete
subgraphs of marked vertices.
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Abstract. In this paper we study decidability and complexity of decision
problems on matrices from the special linear group SL(2,Z). In particu-
lar, we study the freeness problem: given a finite set of matrices G gener-
ating a multiplicative semigroup S, decide whether each element of S has
at most one factorization over G. In other words, is G a code? We show
that the problem of deciding whether a matrix semigroup in SL(2,Z) is
non-free is NP-hard. Then, we study questions about the number of fac-
torizations of matrices in the matrix semigroup such as the finite freeness
problem, the recurrent matrix problem, the unique factorizability prob-
lem, etc. Finally, we show that some factorization problems could be even
harder in SL(2,Z), for example we show that to decide whether every
prime matrix has at most k factorizations is PSPACE-hard.

Keywords: Matrix semigroups · Freeness · Decision problems · Decid-
ability · Computational complexity

1 Introduction

In general, many computational problems for matrix semigroups are proven to
be undecidable starting from dimension three or four [3,5,8,16,25]. One of the
central decision problems for matrix semigroups is the membership problem.
Let S = 〈G〉 be a matrix semigroup generated by a generating set G. The
membership problem is to decide whether or not a given matrix M belongs to
the matrix semigroup S. In other words the question is whether a matrix M can
be factorized over the generating set G or not.

Another fundamental problem for matrix semigroups is the freeness problem,
where we want to know whether every matrix in the matrix semigroup has a
unique factorization over G. Mandel and Simon [22] showed that the freeness
problem is decidable in polynomial time for matrix semigroups with a single
generator for any dimension over rational numbers. Indeed, the freeness problem
for matrix semigroups with a single generator is the complementary problem of
the matrix torsion problem which asks whether there exist two integers p, q ≥ 1
such that Mp = Mq+p. Klarner et al. [17] proved that the freeness problem in
dimension three over natural numbers is undecidable.
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Decidability of the freeness problem in dimension two has been already an open
problem for a long time [7,8]. However the solutions for some special cases exist. For
example Charlier and Honkala [10] showed that the freeness problem is decidable
for upper-triangular matrices in dimension two over rationals when the products
are restricted to certain bounded languages. Bell and Potapov [4] showed that the
freeness problem is undecidable in dimension two for matrices over quaternions.

The study in [8] revealed a class of matrix semigroups formed by two 2 × 2
matrices over natural numbers for which the freeness in unknown, highlighting
a particular pair: (

2 0
0 3

)

and
(

3 5
0 5

)

.

The above case was simultaneously solved in two papers [9,14], where authors
were providing new algorithms for checking freeness at some subclasses.

However the status of the freeness problem for natural, integer and complex
numbers is still unknown. The decidability of the freeness problem for SL(2,Z)
was shown in [9] following the idea of solving the membership problem in SL(2,Z)
shown in [11].

The effective symbolic representation of matrices in SL(2,Z) leads recently
to several decidability and complexity results. The mortality, identity and vector
reachability problems were shown to be NP-hard for SL(2,Z) in [1,6]. For the
modular group, the membership problem was shown to be decidable in polyno-
mial time by Gurevich and Schupp [15]. Decidability of the membership problem
in matrix semigroups in SL(2,Z) and the identity problem in Z

2×2 was shown to
be decidable in [11] in 2005. Later in 2016, Semukhin and Potapov showed that
the vector reachability problem is also decidable in SL(2,Z) [27].

In this paper we study decidability and complexity questions related to free-
ness and various other factorization problems in SL(2,Z). The new hardness
results are interesting in the context of understanding complexity in matrix
semigroups in general and the decidability results on factorizations in SL(2,Z)
can be important in other areas and fields. In particular, the special linear
group SL(2,Z) has been extensively exploited in hyperbolic geometry [12,32],
dynamical systems [24], Lorenz/modular knots [21], braid groups [26], high
energy physics [30], M/en theories [13], music theory [23], and so on.

In this paper, we show that the question about non-freeness for matrix semi-
groups in SL(2,Z) is NP-hard by finding a different reduction than the one used
in [1,6]. Then we show both decidability and hardness results for the finite free-
ness problem: decide whether or not every matrix in the matrix semigroup has a
finite number of factorizations. Also we prove NP-hardness of the problem whether
a given matrix has more than one factorization in SL(2,Z) and undecidability of
this problem in Z

4×4, or more specifically in SL(4,Z). Then it is shown that both
problems whether a particular matrix has an infinite number factorizations or it
has more than k factorizations are decidable and NP-hard in SL(2,Z) while they
are undecidable in Z

4×4. Finally we show that some of the factorizations problems
could be even harder in SL(2,Z), for example we show that to decide whether every
prime matrix has at most k-factorizations is PSPACE-hard.
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2 Preliminaries

In this section we formulate several problems, provide important definitions and
notation as well as several technical lemmas used throughout the paper.

Basic Definitions. A semigroup is a set equipped with an associative binary
operation. Let S be a semigroup and X be a subset of S. We say that a semigroup
S is generated by a subset X of S if each element of S can be expressed as a
composition of elements of X. Then, we call X the generating set of S. Then,
X is a code if and only if every element of S has a unique factorization over X.
A semigroup S is free if there exists a subset X ⊆ S which is a code and S = X+.

Given an alphabet Σ = {1, 2, . . . ,m}, a word w is an element of Σ∗. For a
letter a ∈ Σ, we denote by a the inverse letter of a such that aa = ε where ε is
the empty word.

A nondeterministic finite automaton (NFA) is a tuple A = (Σ,Q, δ, q0, F )
where Σ is the input alphabet, Q is the finite set of states, δ : Q×Σ → 2Q is the
multivalued transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set
of final states. In the usual way δ is extended as a function Q×Σ∗ → 2Q and the
language accepted by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 	= ∅}. The automaton
A is a deterministic finite automaton (DFA) if δ is a single valued function
Q × Σ → Q. It is well known that the deterministic and nondeterministic finite
automata recognize the class of regular languages [29].

Factorization and Freeness Problems. Let S be a matrix semigroup gener-
ated by a finite set G of matrices. Then we define a matrix M is k-factorizable
for k ∈ N if there are at most k different factorizations of M over G. In the
matrix semigroup freeness problem, we check whether every matrix in S is
1-factorizable.

Problem 1. Given a finite set G of n × n matrices generating a matrix semi-
group S, is S free? (i.e., does every element M ∈ S have a unique factorization
over G?)

The above problem is well-known as the freeness problem. Clearly, the non-
freeness problem is to decide whether the matrix semigroup S is not free.

For a matrix M , if there exists k < ∞ where M is k-factorizable, then we say
that M is finitely factorizable. In other words, a finitely factorizable matrix M
has finitely many different factorizations over G. We define a matrix semigroup S
is finitely free if every matrix in S is finitely factorizable and define the finite
freeness problem as follows:

Problem 2. Given a finite set G of n × n matrices generating a matrix semi-
group S, does every element M ∈ S have a finite number of factorizations
over G?

Freeness and finite freeness problems are asking about factorization proper-
ties for all matrices in the semigroup. In case where a semigroup is not free or
not finitely free, instead of asking whether the semigroup is free or finitely free,
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it is possible to define problems for a given particular matrix in the semigroup
as follows:

Problem 3. Given a finite set G of n × n matrices generating a matrix semi-
group S and a matrix M in S, does M have

a. a unique factorization over G? (matrix unique factorizability problem)
b. at most k factorizations over G? (matrix k-factorizability problem)
c. an infinite number of factorizations over G? (recurrent matrix problem)

Group Alphabet Encodings. Let us introduce several technical lemmas that
will be used in encodings for NP-hardness and undecidability results. Our orig-
inal encodings require the use of group alphabet and the following lemmas for
showing the transformation from an arbitrary group alphabet into a binary group
alphabet and later into matrix form that is computable in polynomial time.

Lemma 4. Let Σ = {z1, z2, . . . , zl} be a group alphabet and Σ2 = {a, b, a, b} be
a binary group alphabet. Define the mapping α : Σ → Σ∗

2 by:

α(zi) = aibai, α(zi) = aibai,

where 1 ≤ i ≤ l. Then α is a monomorphism. Note that α can be extended to
domain Σ∗ in the usual way.

Lemma 5 (Lyndon and Schupp [20]). Let Σ2 = {a, b, a, b} be a binary group
alphabet and define f : Σ∗

2 → Z
2×2 by:

f(a) =
(

1 2
0 1

)

, f(a) =
(

1 −2
0 1

)

, f(b) =
(

1 0
2 1

)

, f(b) =
(

1 0
−2 1

)

.

Then f is a monomorphism.

The composition of Lemmas 4 and 5 gives us the following lemma that ensures
that encoding the subset sum problem (SSP) and the equal subset sum problem
(ESSP) instances into matrix semigroups can be completed in polynomial time.

Lemma 6 (Bell and Potapov [6]). Let zj be in Σ and α, f be mappings as
defined in Lemmas 4 and 5, then, for any i ∈ N,

f(α(zij)) = f((ajbaj)i) =
(

1 + 4ij −8ij2

2i 1 − 4ij

)

.

Symbolic Representation of Matrices from SL(2,Z). Here we pro-
vide another technical details about the representation of SL(2,Z) and their
properties [2,28]. It is known that SL(2,Z) is generated by two matrices

S =
(

0 −1
1 0

)

and R =
(

0 −1
1 1

)

,
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which have respective orders 4 and 6. This implies that every matrix in SL(2,Z)
is a product of S and R. Since S2 = R3 = −I, every matrix in SL(2,Z) can be
uniquely brought to the following form:

(−I)i0Ri1SRi2S · · ·SRin−1SRin , (1)

where i0 ∈ {0, 1}, i1, in ∈ {0, 1, 2}, and ij 	= 0 mod 3 for 1 < j < n.
The representation (1) for a given matrix in SL(2,Z) is unique, but it is very

common to present this result ignoring the sign, i.e. considering the projective
special linear group. Let ΣSR = {s, r} be a binary alphabet. We define a map-
ping ϕ : ΣSR → SL(2,Z) as follows: ϕ(s) = S and ϕ(r) = R. Naturally, we
can extend the mapping ϕ to the morphism ϕ : Σ∗

SR → SL(2,Z). We call a
word w ∈ Σ∗

SR reduced if there is no occurrence of subwords ss or rrr in w.
Then, we have the following fact.

Theorem 7 (Lyndon and Schupp [20]). For every matrix M ∈ SL(2,Z),
there exists a unique reduced word w ∈ Σ∗

SR in form of (1) such that either
M = ϕ(w) or M = −ϕ(w).

Following Theorem 7, all word representations of a particular matrix M in
SL(2,Z) over the alphabet ΣSR can be expressed as a context-free language.

Lemma 8. Let M be a matrix in SL(2,Z). Then, there exists a context-free
language over ΣSR which contains all representations w ∈ Σ∗

SR such that
ϕ(w) = M .

3 Matrix Semigroup Freeness

The matrix semigroup freeness problem is to determine whether every matrix in
the semigroup has a unique factorization. Note that the decidability of the matrix
semigroup freeness in SL(2,Z) has been shown by Cassaigne and Nicolas [9] but
the complexity of the problem has not been resolved yet despite various NP-
hardness results on other matrix problems [1,6]. Here we show that the problem
of deciding whether the matrix semigroup in SL(2,Z) is not free is NP-hard by
encoding different NP-hard problem comparing to the one used in [1,6].

Theorem 9. Given a matrix semigroup S in SL(2,Z) generated by the set G of
matrices, the problem of deciding whether S is not free is NP-hard.

Proof. We use an encoding of the equal subset sum problem (ESSP), which is
proven to be NP-hard, into a set of two-dimensional integral matrices [31]. The
ESSP is, given a set U = {s1, s2, . . . , sk} of k integers, to decide whether or not
there exist two disjoint nonempty subsets U1, U2 ⊆ U whose elements sum up to
the same value. Namely,

∑
s1∈U1

s1 =
∑

s2∈U2
s2.

Define an alphabet Σ = {0, 1, . . . , k − 1, 1, 2, . . . , (k − 2), (k − 1), k, a}. We
define a set W of words which encodes the ESSP instance.

W = {i · ai+1 · (i + 1), i · ε · (i + 1) | 0 ≤ i ≤ k − 1} ⊆ Σ∗.
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0 1 2 · · · k − 2 k − 1 k
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ε
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ask−1

ε
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ε

Fig. 1. Structure of the matrix semigroup encoded by the set W . Each matrix in the
generating set of the matrix semigroup corresponds to each transition of the automaton
structure.

We define ‘border letters’ as letters from Σ \{a} and the inner border letters
of a word as all border letters excluding the first and last. We call a word a
‘partial cycle’ if all inner border letters in that word are inverse to a consecutive
inner border letter. Moreover, we note that for any partial cycle u ∈ W+ the first
border letter of u is strictly smaller than the last border letter if we compare
them as integers. Figure 1 shows the structure of our encoding of the ESSP
instance.

First we prove that if there is a solution to the ESSP instance, then the
matrix semigroup generated by matrices encoded from the set W is not free.
Let us assume that there exists a solution to the ESSP instance, which is two
sequences of integers where each of two sequences sums up to the same integer x.
Then, the solution can be represented by the following pair of sequences:

Y = (y1, y2, . . . , yk−1, yk) and Z = (z1, z2, . . . , zk−1, zk),

where yi, zi ∈ {0, si}, 1 ≤ i ≤ k and
∑k

i=1 yi =
∑k

i=1 zi = x. Note that yi 	= zi
in at least one index i for 1 ≤ i ≤ k.

For a sequence Y , there exists a word wY = w1w2 · · · wk ∈ W+ such that
wi = (i − 1) · ayi · i. Since

∑k
i=1 yi = x, the reduced representation of wY is

r(wY ) = 0 · sx · k as all inner border letters are cancelled. Analogously, we have
a word wZ for a sequence Z and its reduced representation r(wZ) is equal to
r(wY ) as the sum of integers in the sequence Z is equal to the sum of integers
in Y . As we have two words in W+ whose reduced representations are equal, the
semigroup generated by matrices encoded from the set W is not free.

Now we prove the opposite direction: if there is no solution to the ESSP
instance, then the matrix semigroup is free. Assume that there is no solution
to the ESSP instance and the matrix semigroup is not free. Since the matrix
semigroup is not free, we have two different words w,w′ ∈ W+ whose reduced
representations are equal, namely, r(w) = r(w′).

For a word w, we decompose w into subwords w = u1u2 · · · um such that each
ui ∈ W+, 1 ≤ i ≤ m is a partial cycle of maximal size. Similarly, we decompose
w′ into subwords of maximal partial cycles as follows: w′ = u′

1u
′
2 · · · u′

n. Since
r(w) = r(w′), it follows that r(ui) = r(u′

i) should hold for 1 ≤ i ≤ m and m = n.
On the other hand, since w 	= w′, there exists i, 1 ≤ i ≤ m where ui 	= u′

i. Note
that the maximal partial cycles ui and u′

i should have the same number of a’s
since r(ui) = r(u′

i) and the letter a cannot be cancelled by the reduction of
words. As we mentioned earlier, the first border letter and last border letter of
a partial cycle are integers where the first border letter is strictly smaller than
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the last border letter. Let us say that i1 is the first border letter and i2 is the
last border letter of ui and u′

i. Then, the number of a’s in ui and u′
i is the sum

of subset of integers from the set {si1+1, si1+2, . . . , si2}. It follows from the fact
that ui 	= u′

i that we have two distinct subsets of the set {si1+1, si1+2, . . . , si2}
whose sums are the same. This contradicts our assumption since we have two
disjoint subsets of equal subset sum. 
�

Recently, Bell et al. proved that the problem of deciding whether the identity
matrix is in S, where S is an arbitrary regular subset of SL(2,Z), is in NP [2].
Since we can show that the matrix semigroup S is not free by showing that the
equation M1MM2 = M3M

′M4 is satisfied where M1 	= M3, M2 	= M4, and
Mi,M,M ′ ∈ S for 1 ≤ i ≤ 4. We can show that S is not free by showing that
the matrix M1MM2M

−1
4 M ′−1M−1

3 is the identity matrix.
Let M1M

∗M2M
−1
4 (M−1)∗M−1

3 be a regular subset of SL(2,Z) subject to
M1 	= M3, M2 	= M4 and M ∈ S. Then, we can decide whether or not S is free
by deciding whether or not a regular subset of SL(2,Z) contains the identity
matrix. Therefore, we can conclude as follows:

Corollary 10. Given a matrix semigroup S in SL(2,Z) generated by the set G
of matrices, the problem of deciding whether S is not free is NP-complete.

If the matrix semigroup is not free (not every matrix have unique factoriza-
tion) we still have a question whether each matrix in a given semigroup has only
a finite number of factorizations. Next we show that the problem of checking
whether there exists a matrix in the semigroup which has an infinite number of
factorizations is decidable and NP-hard in SL(2,Z).

Theorem 11. Given a matrix semigroup S in SL(2,Z) generated by the set G
of matrices, the problem of deciding whether S contains a matrix with an infinite
number of factorizations is decidable and NP-hard.

Proof. Let us consider a matrix semigroup S which is generated by the set G =
{M1,M2, . . . ,Mn} of matrices. Let w1, w2, . . . , wn ∈ Σ∗

SR be words encoding
the generators, such that ϕ(wi) = Mi for 1 ≤ i ≤ n. Then, we can define a
regular language LS corresponding to S as LS = {w1, w2, . . . , wn}+. Let A =
(Q,Σ, δ,Q0, F ) be an NFA accepting LS constructed based on S. For states q
and p, where the state p is reachable from q by reading ss or rrr, we add an
ε-transition from q to p. We repeat this process until there is no such pair of
states following to the procedure proposed in [11].

If there exists a matrix M which can be represented by infinitely many fac-
torizations over G, then there is an infinite number of accepting runs for the
matrix M in A. It is easy to see that we have an infinite number of accepting
runs for some matrix M ∈ S if and only if there is a cycle only consisting of
ε-transitions. As we can compute the ε-closure of states in A, the problem of
deciding whether there exists a matrix with an infinite number of factorizations
is decidable.

For the NP-hardness of the problem, we modify and adapt the NP-hardness
proof of the identity problem in SL(2,Z) [6]. We use an encoding of the subset
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Fig. 2. Structure of the matrix semigroup encoded by the set W .

sum problem (SSP), which is, given a set U = {s1, s2, . . . , sk} of k integers, to
decide whether or not there exists a subset U ′ ⊆ U whose elements sum up to
the given integer x. Namely,

∑
s∈U ′ s = x.

Define an alphabet Σ = {0, 1, . . . , 2k + 1, 1, 2, . . . , (2k + 1), a, b, a, b}. We
define a set W of words which encodes the SSP instance.

W = {i · ai+1 · (i + 1), i · ε · (i + 1) | 0 ≤ i ≤ k − 1} ∪
{i · bi+1 · (i + 1), i · ε · (i + 1) | k + 1 ≤ i ≤ 2k} ∪
{k · ax · (k + 1)} ∪ {(2k + 1) · b

x · 0} ⊆ Σ∗.

(2)

Figure 2 shows the structure of the word encoding of the SSP instance. The
full proof for showing that the matrix semigroup S corresponding to W+ has a
matrix with an infinite number of factorizations if and only if the SSP instance
has a solution can be found in the archive version [18] of the paper. 
�

4 Matrix Factorizability Problems

In the matrix semigroup freeness problem, we ask whether every matrix in the
semigroup has a unique factorization. Instead of considering a question about
every matrix in the semigroup, we restrict our question to a given particular
matrix, which may have a unique factorization, a finite number of unique fac-
torizations or even an infinite number of unique factorizations.

4.1 Unique Factorizability Problem

In the matrix unique factorizability problem, we consider the problem of deciding
whether or not a particular matrix M in S has a unique factorization over G.
We first establish the decidability and NP-hardness of the problem.

Theorem 12. Given a matrix semigroup S in SL(2,Z) generated by the set G
of matrices and a particular matrix M in S, the problem of deciding whether the
matrix M has more than one factorization over G is decidable and NP-hard.
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Proof. From Lemma 8, we can represent a set of all unreduced representations
for M over ΣSR = {s, r} as a context-free language LM .

We can also obtain a regular language that corresponds to the matrix semi-
group S. Let G = {M1,M2, . . . ,Mn} be the generating set of S. Namely,
S = 〈M1,M2, . . . ,Mn〉. Let w1, w2, . . . , wn ∈ Σ∗

SR be words encoding the gener-
ators, such that ϕ(wi) = Mi for 1 ≤ i ≤ n. Then, we can define a regular lan-
guage LS corresponding to S as LS = {w1, w2, . . . , wn}+. Then, the intersection
of LM ∩ LS contains all words that correspond to the matrix M in the semi-
group S. If the cardinality of LM ∩ LS is larger than one, we immediately have
two different factorizations for the matrix M over G. Therefore, let us assume
that |LM ∩ LS | = 1 and w be the only word in LM ∩ LS . Clearly, ϕ(w) = M
and M can be generated by the set G. Note that each accepting path of w in LS

corresponds to a unique factorization of M over G. Now we can decide whether
or not M has a unique factorization over G by counting the number of accepting
paths of words in LM ∩ LS from an NFA accepting LS .

The NP-hardness can be proven by the reduction from the SSP in a similar
manner to the proof of Theorem 11. See Eq. (2) for the word encoding of the
SSP instance. Let us pick the word w = 0 · ε · 1 in W and notice that the matrix
M = f(α(w)) which is encoded from w is in the matrix semigroup S. We will
show that the matrix M in S has at least two factorizations over the generating
set {f(α(w)) | w ∈ W} of S if and only if the SSP instance has a solution. The
full proof can be found in the archive version [18]. 
�

We reduce the fixed element PCP (FEPCP) [3] which is proven to be unde-
cidable to the unique factorizability problem over Z

4×4 for the following unde-
cidability result.

Theorem 13. Given a matrix semigroup S over Z
4×4 generated by the set G

of matrices and a particular matrix M in S, the problem of deciding whether the
matrix M has more than one factorization over G is undecidable.

4.2 Recurrent Matrix Problem

We first tackle the problem of deciding whether or not a particular matrix in the
semigroup has an infinite number of factorizations. Note that we call this decision
problem the recurrent matrix problem instead of the matrix finite factorizabil-
ity problem as we named for the other variants. The recurrent matrix problem
has been introduced by Bell and Potapov [3] and proven to be undecidable for
matrices over Z

4×4 based on the reduction from FEPCP.
We show that the recurrent matrix problem is decidable and NP-hard for

matrix semigroups in SL(2,Z). We first mention that the recurrent matrix prob-
lem is different with the identity problem. One may think that the recurrent
matrix problem is equivalent to the identity problem since it is obvious that if
the identity matrix exists then every matrix in the semigroup has an infinite
number of factorizations. However, the opposite does not hold as follows:
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Proposition 14. Let S be a matrix semigroup generated by the generating set G
and M be a matrix in S. Then, the matrix M has an infinite number of factor-
izations over G if the identity matrix exists in S. However, the opposite does not
hold in general.

Now we establish the results for the recurrent matrix problem in SL(2,Z).

Theorem 15. The recurrent matrix problem in SL(2,Z) is decidable and in
fact, NP-hard.

We also consider the matrix k-factorizability problem which is to decide
whether a particular matrix M in the semigroup has at most k factorizations
over the generating set G.

Lemma 16. Given a matrix semigroup S in SL(2,Z) generated by the set G of
matrices, a particular matrix M ∈ S, and a positive integer k ∈ N, the problem
of deciding whether the matrix M has more than k factorizations over G is
decidable and NP-hard.

We mention that the matrix k-factorizability problem is also undecidable
over Z

4×4 following Theorem 13.

5 On the Finite Number of Factorizations

Recall that the matrix semigroup freeness problem examines whether or not
there exists a matrix in the semigroup has more than one factorization. The
finite freeness problem asks whether there exists a matrix in the semigroup
which has an infinite number of factorizations. In that sense, we may interpret
these problems as the problems asking whether the number of factorizations in
the semigroup is bounded by one (the freeness problem) or unbounded (the finite
freeness problem).

In this section, we are interested in finding a number k ∈ N by which the
number of factorizations of matrices in the matrix semigroup is bounded. In
other words, we check whether every matrix in the semigroup is k-factorizable.
However, it is not easy to define the k-freeness problem as we define the general
freeness problem by the following observation.

Let S be a matrix semigroup generated by the set G of matrices and M be
a k-factorizable matrix over G. Let us denote the number of factorizations of M
by dec(M). Thus, we can write dec(M) = k. It is easy to see that S is free if
for every matrix M in S, dec(M) = 1. Let us assume that dec(M1) = m and
dec(M2) = n for m,n ∈ N. Then, dec(M1M2) = k where k ≥ mn. This means
that if S is not free, then there is no finite value k such that every matrix in S
is k-factorizable.

In that reason, we define the following notion which prevents the multi-
plicative property of the number of factorizations. We say that a matrix M
is prime if it is impossible to decompose M into M = M1M2 such that
dec(M) = dec(M1) × dec(M2), dec(M1) 	= 1, and dec(M2) 	= 1. We define a
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matrix semigroup S to be k-free if every prime matrix M in S has at most k
different factorizations over G. Formally, a matrix semigroup S is k-free if and
only if max{dec(M) | M ∈ S,M is prime} ≤ k.

This definition gives rise to the following problem which is a generalized
version of the matrix semigroup freeness problem.

Problem 17. Given a finite set G of n × n matrices generating a matrix semi-
group S, does every prime element M ∈ S have at most k factorizations over G?

In this paper, we leave the decidability of the k-freeness problem open but
establish the PSPACE-hardness result as a lower bound of the problem, which
is interesting compared to the NP-hardness of the other freeness problems.

Theorem 18. Given a matrix semigroup S in SL(2,Z) generated by the set G
of matrices and a positive integer k ∈ N, the problem of deciding whether or not
every prime matrix in S has at most k factorizations is PSPACE-hard.

Proof. For the PSPACE-hardness of the problem, we reduce the DFA intersec-
tion emptiness problem [19] to the k-freeness problem. Note that given k DFAs,
the DFA intersection emptiness problem asks whether the intersection of k DFAs
is empty. The full proof can be found in the archive version [18]. 
�
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Abstract. This paper considers 1-string representations of planar
graphs that are order-preserving in the sense that the order of crossings
along the curve representing vertex v is the same as the order of edges in
the clockwise order around v in the planar embedding. We show that this
does not exist for all planar graphs (not even for all planar 3-trees), but
show existence for some subclasses of planar partial 3-trees. In particu-
lar, for outer-planar graphs it can be order-preserving and outer-string in
the sense that all ends of strings are on the outside of the representation.

1 Introduction

String representations recently received a lot of attention, especially for planar
graphs. Scheinerman [21] had asked in 1984 whether every planar graph can be
represented as the intersection graph of segments in the plane. This was settled
partially by Chalopin, Gonçalves and Ochem [7], who showed that every planar
graph has a 1-string representation, i.e., a representation as an intersection graph
of strings such that any two strings may cross at most once. Extending their
result, in 2009 Chalopin and Gonçalves finally settled Scheinerman’s conjecture
in the positive [6]. We later showed that 1-string representations of planar graphs
can be achieved even with orthogonal curves with at most 2 bends [3]. A number
of other papers gave string representations for subclasses of planar graphs that
are simpler to build and/or have other useful properties, see for example [2,9,10,
12,15]. Testing whether a graph has a string representation is NP-hard [16,19]
and in NP [20]; the latter is not obvious because string representations may
require exponentially many bends for non-planar graphs [17].

Our Results: In this paper, we study the following question: Does every planar
graph have a 1-string representation where the order of crossings along curves
preserves the planar embedding in the sense that the order of crossings along
the curve of v corresponds to the cyclic order of edges around v in some planar
embedding? This is motivated by that we found string representations quite
hard to read; during our work on [3] we struggled to verify correctness in some
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cases because the crossing of curves for an edge occurred at unexpected places.
Furthermore, having an order-preserving string representation could make it
easier to create such representations by using the typical incremental approach
that adds one vertex on the outer-face at a time; for this it would be especially
helpful if such representations were also outer-string in the sense that ends of
strings are on the infinite region defined by the representation. We show the
following:

– Not all planar graphs have order-preserving 1-string representations. In fact,
we can construct a planar 3-tree that has no such representation.

– For some subclasses of planar partial 3-trees, we construct order-preserving
1-string representations. For outer-planar graphs, these are additionally outer-
string (and use segments), while for the other graph classes we show that
order-preserving outer-1-string representations do not always exist.

We are not aware of any previous results on order-preserving 1-string repre-
sentations. (On the other hand, string-representations of planar graphs obtained
from contact representations are usually order-preserving, but strings then inter-
sect twice, at least for some edges.) The closest related results are on the abstract
graph realizability problem [16,19], which asks to draw a graph such that only a
given set of edge-pairs are allowed to cross.

2 Definitions

A string representation R assigns a curve v in the plane to every vertex v in a
graph in such a way that (v, w) is an edge if and only if v intersects w. (Through-
out the paper, bold-face x always denotes the curve assigned to vertex x.) We
demand that u and v intersect only if there is a proper crossing, i.e., any suf-
ficiently small circle centered at an intersection-point crosses u, v, u, v in that
order. (In particular no curve u should end on another curve v, though such
a touching-point could always be resolved into a proper crossing by extending
u a bit.) We also do not allow three curves to share a point. A 1-string rep-
resentation is a string representation such that any two curves cross at most
once. A segment representation uses straight-line segments in place of strings. A
Bk-VPG-representation uses orthogonal curves with at most k bends as strings.

A string representation R divides the plane into connected regions. The con-
tour is the infinite region of R2−R. A string representation is called weakly outer-
string if all vertex curves are incident to the contour. It is called outer-string if
all vertex curves have an end incident to the contour.1 A weakly outer-string
representation can be made outer-string by “doubling back” along the curve of
each vertex, but this does not work for an outer-1-string representation, because

1 One could distinguish this further by whether both ends must be on the contour or
whether one end suffices. All our outer-string constructions have both ends on the
contour, while all our impossibility-results hold even if only one end is required to
be on the contour, so the distinction does not matter for the results in our paper.
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doubling back along the curve would make some curves cross twice. See [5,14]
and the references therein for more on outer-string representations.

In this paper, we only consider connected graphs. A graph is called planar if
it can be drawn in the plane without crossing. Such a planar drawing Γ defines,
by enumerating edges around vertices in clockwise order, a rotation scheme,
i.e., an assignment of a cyclic order of edges at each vertex. From the rotation
scheme, one can read the faces, i.e., the vertices and edges that are incident to
each connected piece of R2 − Γ . A plane graph is a planar graph with a fixed
rotation scheme. An outer-planar graph is a planar graph that has a rotation
scheme such that all vertices are incident to one face. An outer-plane graph is
a plane graph with the rotation system that describes such an embedding. A
k-tree (used here only for k = 2, 3) is a graph that has a vertex order v1, . . . , vn
such that v1, . . . , vk is a clique, and each vi for i > k has exactly k neighbours in
v1, . . . , vi−1, and they form a clique. A partial k-tree is a subgraph of a k-tree.
Every outer-planar graph is a partial 2-tree.

Fix a rotation scheme of a graph. We say that a 1-string representation is
order-preserving with respect to the rotation scheme if for any vertex v, we can
walk along curve v from one end to the other and encounter the crossings with
w1, . . . ,wk in the same order in which the neighbours w1, . . . , wk of v appear in
the cyclic order of edges around v. This leaves open the choice which neighbour
of v should be w1, since the order at v is cyclic while the order along v is not.2

3 Graphs with No Order-Preserving Representations

In this section, we show that there exist planar graphs that have no 1-string
representation that preserves the order of any planar embedding. To define them,
we need the following graph operation: Given a plane graph G, the stellation
of G is obtained by inserting a new vertex into every face of G, and making it
adjacent to all vertices incident to that face. The triple-stellation of G is obtained
by stellating G to get G′, stellating G′ to get G′′, and finally stellating G′′.

Lemma 1. Let G be a plane graph with minimum degree 3 and at least |V (G)|+
1 faces that are triangles. Then the triple-stellation G′′′ of G has no order-
preserving 1-string representation with respect to this rotation scheme.

Proof. Assume for contradiction we had such a 1-string representation R, and let
RG be the induced 1-string representation of G, which is also order-preserving.
The following notation will be helpful: If a, c are neighbours of b, then let b[a, c]
be the stretch of b between the intersection with a and c.

Consider a face-vertex-incidence in G, which can be described by giving a
vertex b and two neighbours a, c of b that are consecutive in the clockwise order

2 Once we fix how to break up the cyclic order at all vertices, there is a construction
that describes the order-preserving 1-string representation as a graph H and so that
it can be realized if and only if H is planar. Hence the problem is interesting only if
we keep this choice.
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Fig. 1. For the proof of Lemma 1.

at b. We call such a face-vertex-incidence unbroken if (in RG) b[a, c] contains
no other crossing, else we call it broken. Since RG is order-preserving, for every
vertex b in G only one face-vertex-incidence at b is broken. Since G has at least
|V (G)| + 1 triangular faces, there exists a face T = {u, v, w} of G such that all
face-vertex-incidences at T are unbroken. We will find a contradiction at the
stellation vertices that were placed in T . See also Fig. 1.

Let x be the vertex that (during the stellation of G to get G′) was placed in
face T . We claim that x must intersect u in u[v, w]. To see this, recall that
degG(u) ≥ 3, hence u has at least one other neighbour u′ in G. Since the
face-incidence at u is unbroken, u[v, w] contains no other crossing of RG, so
u′ intersects u outside this stretch. Since T is a face in G, the (clockwise or
counter-clockwise) order of neighbours at u in G′ contains u′, v, x, w. To main-
tain this order in the string representation, the intersection between x and u (in
R) must be on u[v, w]. Similarly one argues that x intersects v[u,w] and w[u, v].

Let C be the region bounded by u[v, w]∪w[u, v]∪v[w, u]. Curve x intersects
δC three times, and no more since curves intersect at most once in a 1-string
representation. So x starts (say) inside C, crosses δC to go outside, crosses δC
to go inside, and then crosses δC again to end outside. Between the second and
third crossing, x contains a stretch that is inside C; after possible renaming of
{u, v, w} we assume that this is x[v, w]. This stretch splits C into two parts, say
C ′ (incident to parts of u) and Cr (incident to the crossing of v and w).

Let y be the vertex that (during the stellation of G′ to get G′′) was placed in
the face {v, w, x} of G′. Since v, w, x all have degree 3 or more in G′, as before
one argues that y must intersect x[v, w], w[x, v] and v[w, x]. Curve y intersects
δC ′ (in x[v, w]), but cannot intersect δC ′ a second time, else it would cross u
(but (u, y) �∈ E) or would cross one of x,v,w twice (which is not allowed).
Hence y starts inside C ′, then crosses x, and then crosses one of v and w. Up to
renaming of {v, w} we may assume that y crosses v first. Hence y[x, v] splits Cr

into two parts, say C ′′ (incident to parts of w) and C ′′′ (incident to the crossing
of v and x).

Now finally consider the vertex z that was placed in {x, y, v} when stellating
G′′ to obtain G′′′. As before one argues that z has an end inside C ′, because it
crosses x in stretch x[v, y] ⊂ x[v, w], and it cannot cross C ′ again. But we can
also see that z has an end inside C ′′, since it crosses y[x, v] and crosses no other
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curve on the boundary of C ′′. But this means that z has both ends outside C ′′′,
contradicting that it must intersect the boundary of C ′′′ three times to respect
the edge-orders at x, y, v. Contradiction, so G′′′ does not have an order-preserving
1-string representation. ��
Theorem 1. There exists a planar 3-tree that has no order-preserving 1-string
representation.

Proof. Start with an arbitrary planar 3-tree G with n ≥ 6 vertices; this has mini-
mum degree 3 and 2n−4 ≥ n+2 triangular faces in its (unique) rotation scheme.
Stellating a 3-tree gives again a 3-tree, so by Lemma 1 the triple-stellation of G
is a 3-tree that has no order-preserving 1-string representation. ��

4 Order-Preserving Outer-1-String Representations

Now we turn towards positive results and show that every outer-plane graph has
an order-preserving outer-1-string representation. We first discuss one existing
result that does not quite achieve this. It is easy to show that every outer-planar
graph can be represented as touching-graph of line segments (see e.g. [15] for
much broader results). The standard way to do this (see also Fig. 2) results,
after extending the segments a bit, in a segment-representation that is order-
preserving and weakly outer-string. However, this does not quite achieve our
goal, because the ends of segments are not necessarily on the outer-face.

We instead give two other constructions. The first one uses that any outer-
planar graph is a circle graph, i.e., the intersection graph of chords of a
circle [22]. This obviously gives an end-outer-segment representation, but it need
not be order-preserving (see Fig. 2). Our first construction hence re-proves this
result and maintains invariants to ensure that the representation is indeed order-
preserving.

The resolution in this representation could be very bad, and we therefore
give a second construction where the curves are orthogonal instead. We use one
bend for each vertex curve here, and so obtain a B1-VPG-representation. Since
there are n vertices and at most n bends, the representation can be embedded
into a grid of size O(n) × O(n).
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b c

d

e

a

b
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d

e
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c

d
e

b c

b

a
e

d

Fig. 2. An outer-planar graph, a weakly segment-representation that is not outer-
segment at e, and a representation as circle graph that is not order-preserving at c.
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In our proofs, we use that any 2-connected outer-planar graph G can be built
up as follows [13, Lemma 3]: Fix an edge (u, v). Now repeatedly add an ear, i.e.,
a path P = u0, u1, . . . , uk, uk+1 with k ≥ 1 where (u0, uk+1) is an edge on the
outer-face of the current graph G′, and u1, . . . , uk are new vertices that induce
a path and have no edges to G′ other than (u0, u1) and (uk, uk+1).

A crucial requirement of the constructed representation R of such a sub-
graph is the following order-condition: If w and w′ are the counterclockwise and
clockwise neighbours of v on the outer-face, then we encounter the neighbours
of v in order, starting with w and ending with w′, while walking along v. Put
differently, the broken face-vertex-incidence is the one with the outer-face. We
consider v to be directed so that it intersects first w and last w′.

The second crucial ingredient for both proofs is to reserve for edges (some-
what similar as was done for faces in [2,3,7,10]) a region that can be used to
attach subgraphs. Thus define a private region Suv of edge (u, v) to be a region
that contains an end of u and an end of v and does not intersect any other curve
or private regions of R. Both constructions maintain such a private region Suv

for every outer-face edge (u, v). Moreover, if v is the clockwise neighbour of u,
then Suv contains the tail of u and the head of v.

4.1 Circle-Chord Representation

We now re-prove that outer-planar graphs are circle graphs, and show that fur-
thermore the order can be preserved.

Theorem 2. Every outer-plane graph has an order-preserving representation as
intersection graph of chords of a circle C.

Proof. It suffices to prove the claim for a 2-connected outer-planar graph G since
every outer-planar graph G′ is an induced subgraph of a 2-connected outer-planar
graph G, and therefore a string representation for G also yields one for G′ by
deleting curves of vertices in G − G′.

We create a representation R while building up the graph via adding ears,
and maintain curve directions and private regions as explained before. Each
private region Suv is bounded by parts of circle C and a chord of C and does
not contain the crossing of u and v. Further, the tail of u and the head of v are
in the interior of the circular arc that bounds Suv.

In the base case, G is an edge (u, v) which can be represented by two chords
through the center of C. See Fig. 3. We reserve two private regions for (u, v),
because the outer-face of a single-edge graph should be viewed as containing
this edge twice (we can add ears twice at it). All conditions are easily verified.

For the induction step, let us assume that G was obtained by adding an ear
P = u, x1, . . . , xk, v at some edge (u, v), with u the counter-clockwise neighbour
of v on the outer-face. Let C[u, v] be the arc of C between the tail of u and the
head of v that lies inside Suv. Let u′ and v′ be two points on C just outside
C[u, v] but still within Suv. If k = 1, then we add x1 by using chord u′v′ for
x1. If k > 1, then we insert 2k − 2 points on the interior of C[u, v] and create
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Fig. 3. The base case, and adding chords for an ear for k = 2.

chords for x1, . . . ,xk so that everyone intersects as required. See Fig. 3, which
also shows the private regions that we define for the new outer-face edges.

Since Suv was convex, all new curves are inside it and do not intersect any
other curves. The orientation of these new curves is determined by the order-
condition: xi should be oriented so that it intersects first xi+1 (where x0 := u)
and then xi−1 (where xk+1 := v). In particular this means that the private
region Sxixi+1

contains the tail of xi and the head of xi+1, and hence satisfies
the condition on private regions.

It remains to check that the order-condition is satisfied for u. Since Suv

contained the tail of u, this means that x1 becomes the first curve to be inter-
sected by u, which is correct since x1 is the clockwise neighbour of u on the
outer-face. Likewise one argues that the order-condition holds for v. Hence all
conditions hold, and after repeating for all ears we obtain an order-preserving
representation as intersection graph of chords of a circle. ��

4.2 B1-VPG Representation

Now we create, for any outer-planar graph, a B1-VPG representation that is
order-preserving and outer-string. However, the ends will not be on a circle;
instead they will lie on a closed curve S that we maintain throughout the con-
struction and that surrounds the entire representation R without truly intersect-
ing any curve. All vertices are 1-bend poly-lines with slopes ±1 (after rotating by
45◦ this gives the B1-VPG representation); this allows us to use an orthogonal
curve for S. Figure 4 illustrates types of private regions that we will use for this
construction: Suv contains no bend of u or v, and it is an isosceles right triangle
whose hypotenuse lies on S.

Fig. 4. Three types of private regions (three more can be obtained by flipping horizon-
tally), and the base case.
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Fig. 5. Adding a single node if u and v have different slopes.

Theorem 3. Every outer-planar graph G has an order-preserving outer-1-string
B1-VPG-representation R.

Proof. As before it suffices to prove the claim for 2-connected outer-planar
graphs G. We proceed by induction on the number of vertices, building R while
adding ears. In the base case, G is an edge (u, v) which can be represented by
two 1-bend curves positioned and oriented as shown in Fig. 4, which also shows
the private region. We use a horizontal segment for S (this can be expanded into
a closed curve surrounding R arbitrarily).

For the induction step, let us assume that G was obtained by adding an ear
P = u, x1, . . . , xk, v at some edge (u, v), with u the counter-clockwise neighbour
of v on the outer-face. After possible rotation the hypotenuse of the private
region Suv is horizontal with Suv above it. We distinguish cases:

1. u and v have different slopes in Suv and k = 1 (i.e. we add one vertex x). We
add a 1-bend curve x with the bend pointing downwards. See Fig. 5, which
also shows the private regions that we define for (u, x) and (x, v). Curve x fits
entirely inside Suv by placing the bend in the interior of Suv and shortening
u and v appropriately so that the ends of x are vertically aligned with those
of u and v. We can now easily find a new curve S′ by adding “detours” to
S that reach the hypotenuses of the new private regions. These detours are
inside Suv and hence intersect no other curves (since we shortened u and v).
So the new curve S′ is a closed curve that surround the new representation
as desired.

The orientation of x is again determined by the order-condition, and exactly
as in Theorem 2 one argues that this respects the order-condition at u and
v, since our choice of curve for x ensures that it crosses u after the crossing
of u with v.

2. u and v have different slopes in Suv and k > 1 (i.e. we add at least two
vertices x1, . . . , xk.) We add a path of 1-bend curves x1,x2, . . . ,xk with their
bends at the top, and define private regions as illustrated in Fig. 6. Each curve
xi is oriented as required by the order-condition, and again one verifies the
order-condition for u and v. We can re-use the same S.

3. u and v have the same slope inside Suv. We add a path of 1-bend curves
x1,x2, . . . ,xk (possibly k = 1) with their bends at the top, and define private
regions as illustrated in Fig. 7. Each curve xi is oriented as required by the
order-condition, and one verifies all conditions using the same S.
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Fig. 6. Adding 2 or more nodes if u and v have different slopes.

Fig. 7. Adding one or more vertices if u and v have the same slope. We only show two
of the four possible configurations.

After having represented the entire graph in this way, we are order-preserving
due to the order-condition, outer-string due to poly-line S, and B1-VPG (after
a 45◦-rotation) since every curve has one bend. ��

In our B1-VPG-representation, every vertex-curve is an in one of the four
possible rotations , , , . (All four may be used, since private regions get
rotated in Case 1.) We would have preferred a representation that uses (or the
two shapes and ), because then the stretching-techniques by Middendorf and
Pfeiffer [18] could have been applied to obtain another segment-representation. It
is easy to create a representations with only if we need not be order-preserving
(use in Case 1) or need not be outer-string (see also Lemma 2), but finding
an outer-string order-preserving representation using only s remains open.

5 Beyond Outer-Planar Graphs?

One wonders what other graph classes might have order-preserving 1-string rep-
resentations, preferably outer-string ones. We study this here for some graph
classes. We start with the series-parallel graphs, which are the same as the par-
tial 2-trees, and hence generalize outer-planar graphs.

Lemma 2. Every series-parallel graph G has a 1-string representation with s
that is order-preserving for some planar embedding of G.

Proof. It is easy to show that every 2-tree has a representation by touching true
s, i.e., each vertex is assigned an (not rotated and not degenerated into a line

segment), curves are disjoint except at ends, and (u, v) is an edge if and only if
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Fig. 8. Representing series-parallel graphs by touching s, and converting this into a
planar drawing with the same order.

the end of u lies on the interior of v or vice versa.3 See also Fig. 8. Extending
the s slightly gives a 1-string representation, and it is order-preserving for a
planar embedding easily derived from the touching representation. Details are
provided in the long version [4]. ��

It would be interesting to know whether this result can be extended to the
so-called planar Laman-graphs, which have a representation by touching s [15],
but not all s are necessarily in the same rotation and so it is not clear whether
this is order-preserving. Of particular interest would be planar bipartite graphs,
which can even be represented by horizontal and vertical touching line segments
[12], but again it is not clear how to make this order-preserving.

As for having strings additionally end at the contour for series-parallel graphs:
this is not always possible. Let H be the graph obtained by subdividing every
edge in a K2,3; one verifies that H is series-parallel. It is easy to see (see also
[5]) that H cannot be outer-string, since K2,3 is not outer-planar. So H has no
outer-string representation, much less one that is 1-string and order-preserving.

Now we turn to partial 3-trees. We showed in Theorem 1 that there exist
planar 3-trees (hence partial 3-trees) that do not have an order-preserving 1-
string representation. We now study some subclasses of partial 3-trees that are
superclasses of outer-planar graphs.

An IO-graph is a planar graph G that has an independent set I such that
G − I is a 2-connected outer-planar graph O for which all vertices in I are
inside inner faces of O. A Halin-graph is a graph that consists of a tree T and a
cycle C that connects all leaves of T . Both types of graphs are well-known to be
partial 3-trees. In [2], we gave 1-string representations for both Halin graphs and
IO-graphs; the latter uses only unrotated s. Independently, Francis and Lahiri
also constructed 1-string representations of Halin-graphs, using only unrotated
s [11]. Inspection of both constructions shows that these respect the standard

planar embedding (where O respectively C is one face). We hence have:

Theorem 4 (based on [2,11]). Every IO-graph and every Halin-graph has an
order-preserving 1-string representation in which every vertex is an .
3 We have not been able to find a direct reference for this, but it follows for example

from the works of Chaplick et al. [8] or with an iterative approach similar to the
6-sided contact representations in [1].
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In these constructions, the ends of the strings are not on the outer-face, and
we now show that this is unavoidable. This is obvious for Halin-graphs, since
the subdivided K2,3 is an induced subgraph of a Halin-graph. As for IO-graphs,
define the wheel Wn to be the graph that consists of a cycle C = {v1, . . . , vn}
with n vertices and one universal vertex c connected to all of them. Let the
extended wheel-graph W+

n be the wheel-graph Wn with additionally a vertex wi

incident to vi and vi+1 for i = 1, . . . , n (and wn+1 := w1). Notice that W+
n is an

IO-graph. The proof of the following is presented in the long version [4].

Theorem 5. For n ≥ 7, the IO-graph W+
n has no order-preserving outer-1-

string representation.

6 Final Remarks

In this paper, we studied 1-string representations that respect a planar embed-
ding. As for open problems, what other graph classes have order-preserving
1-string representations? A natural candidate to investigate would be the
2-outer-planar graphs, for which Lemma 1 cannot be applied since a triple-
stellation is never 2-outer-planar. Other interesting candidates would be planar
bipartite graphs (or more generally planar Laman-graphs), or planar 4-connected
graphs.

Secondly, what is the complexity of testing whether an order-preserving
1-string representation exists? Given the NP-hardness of the abstract graph real-
ization problem [16,19], this is very likely NP-hard if we are allowed to prescribe
an arbitrary rotation scheme (not from a planar drawing). But is it NP-hard for
plane graphs?

One unsatisfactory aspect of our definition of “order-preserving” is that
graphs with an end-contact representation (i.e., with disjoint strings where for
every edge one string ends on the other string) do not automatically have an
order-preserving 1-string representation: We can obtain a 1-string representation
by extending the strings slightly, but it does not need to be order-preserving.
A reviewer hence suggested to us the following alternate model: Thicken each
string slightly, and consider the cyclic order of intersections while walking around
the thickened string. Let now “order-preserving” mean that the cyclic order of
neighbours around a vertex forms a subsequence of the intersections encountered
while walking “around” its string. With this, any end-contact representation
becomes an order-preserving 1-string representation after extending the curves
a bit. This includes for example planar bipartite graphs and Laman graphs. Since
this model’s restriction is weaker, all our positive results transfer, but the proofs
of the negative results no longer hold. Are there plane graphs that do not have
an order-preserving 1-string representation in this new model?
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Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp.
139–151. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45043-3 13

9. Chaplick, S., Ueckerdt, T.: Planar graphs as VPG-graphs. J. Graph Algorithms
Appl. 17(4), 475–494 (2013)

10. Felsner, S., Knauer, K.B., Mertzios, G.B., Ueckerdt, T.: Intersection graphs of
L-shapes and segments in the plane. Discrete Appl. Math. 206, 48–55 (2016)

11. Francis, M.C., Lahiri, A.: VPG and EPG bend-numbers of Halin graphs (2015).
CoRR abs/1505.06036

12. de Fraysseix, H., de Mendez, P.O., Pach, J.: Representation of planar graphs by
segments. Intuitive Geom. 63, 109–117 (1991)

13. Govindan, R., Langston, M.A., Yan, X.: Approximating the pathwidth of outer-
planar graphs. Inf. Process. Lett. 68(1), 17–23 (1998)

14. Keil, J.M., Mitchell, J.S., Pradhan, D., Vatshelle, M.: An algorithm for the maxi-
mum weight independent set problem on outerstring graphs. Comput. Geom. 60,
19–25 (2016)

15. Kobourov, S.G., Ueckerdt, T., Verbeek, K.: Combinatorial and geometric proper-
ties of planar Laman graphs. In: SIAM Symposium on Discrete Algorithms (SODA
2013), pp. 1668–1678 (2013)

16. Kratochv́ıl, J.: String graphs II recognizing string graphs is NP-hard. J. Comb.
Theor. Ser. B 52(1), 67–78 (1991)
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Abstract. We study the problem of computing straight-line drawings
of non-planar graphs with few crossings. We assume that a crossing-
minimization algorithm is applied first, yielding a planarization, i.e.,
a planar graph with a dummy vertex for each crossing, that fixes the
topology of the resulting drawing. We present and evaluate two different
approaches for drawing a planarization in such a way that the edges of
the input graph are as straight as possible. The first approach is based
on the planarity-preserving force-directed algorithm ImPrEd [18], the
second approach, which we call Geometric Planarization Drawing, itera-
tively moves vertices to their locally optimal positions in the given initial
drawing.

1 Introduction

In his seminal paper “How to Draw a Graph” [20], Tutte showed that every pla-
nar graph admits a planar straight-line drawing. His result has been strengthened
in various ways, e.g., improving the running time and the required area [3]. In
practice, however, many graphs are non-planar and we are interested in finding
straight-line drawings with few crossings. Unfortunately, crossing minimization
for straight-line drawings (rectilinear crossing number) is ∃R-complete, i.e., as
hard as the existential theory of the reals [16]. We thus need to relax either the
condition of minimizing the number of crossings or the requirement of straight
edges. Approximating the rectilinear crossing number seems difficult, and for
complete graphs Kn, it is only known for n ≤ 27 [1]. We thus follow the second
approach, i.e., we insist on a small (though not necessarily minimal) number of
crossings and optimize the straightness of the edges in the drawing.

In contrast to the geometric setting, the crossing number for topological
drawings has received considerable attention and there is a plethora of results
on crossing minimization; see [2] for a survey. The output of these algorithms
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typically is a planarization Gp of the input graph G together with a planar
embedding. To profit from the results in this area, we focus on the problem of
drawing Gp such that for each edge of G the corresponding planarization path
in the drawing of Gp is as straight as possible.

This type of problem is prototypical for several fundamental problems in
graph drawing that ask for a geometric realization of a given combinatorial
description of a drawing. The most prominent examples are the topology-shape-
metrics framework for orthogonal graph drawing [19] and the fundamental (∃R-
complete) problem Stretchability, which asks whether a given arrangement
of pseudo-lines can be realized by geometric lines [14]. There have been sev-
eral other works that consider the problem of realizing a given combinatorial
description of a drawing geometrically. Hong et al. [9] give a characterization and
testing algorithm for 1-planar graphs that admit a straight-line drawing. Grilli
et al. [7] study the problem of realizing a given simultaneous planar embedding
of two (or more) graphs with few bends per edge. Feng et al. [6] study trade-offs
between straightness and area of drawings of clustered graphs where clusters are
represented by convex drawings. The algorithm of Dwyer et al. [5] minimizes
the stress of a layout while preserving the topology of the drawing. Didimo
et al. [4] present an algorithm that is able to preserve the topology unless chang-
ing the topology improves the number of crossings. Simonetto et al. [18] improve
a known force-directed layout algorithm for planar graphs that preserves the
combinatorial embedding of the input drawing.

Contribution and Outline. We study the problem of finding a drawing of a given
planarization Gp of a graph G such that the planarization paths corresponding
to the edges of G are drawn as straight as possible. Throughout, we assume
without loss of generality that Gp is biconnected; see Appendix. We present two
approaches, one is based on an adaption of ImPrEd that includes additional
forces to facilitate straightening the planarization paths (Appendix). The second
is a geometric framework that iteratively moves the vertices of a given drawing
one by one to locally optimal positions such that (i) the planarization and its
planar embedding are preserved and (ii) the angles on planarization paths influ-
enced by that vertex are optimized (Sect. 3). This framework has several degrees
of freedom, such as the vertex processing order and the exact placement strat-
egy for vertices. We experimentally evaluate the modified ImPrEd algorithm
(ImPrEd++) and several configurations of the Geometric Planarization Draw-
ing approach in a quantitative study (Sect. 4). We show that all our methods
significantly increase the straightness compared to the initial drawing and that
the geometric algorithms typically outperform ImPrEd++ in terms of quality.
Statistical tests are used to show that these results are significant with 95%
confidence.

2 Preliminaries

Intuitively, a planarization of a graph G is the graph resulting from placing
dummy vertices at the intersections of edges in a drawing of G. More formally,
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Fig. 1. (a) An initial drawing (left) that is difficult to repair using the force-directed
algorithm although v could be moved to an optimal position without violating planarity
(right). (b) The closer v lies to the edge uw, the better are the v-active angles. (c) The
(green) planarity region of v. (Color figure online)

let G = (V,E) be a graph and let Gp = (V ∪̇Vp, E
′∪̇Ep) be a planar graph

such that every edge in Ep is incident to at least one vertex in Vp. The vertices
in Vp are dummy vertices. Then Gp is a planarization of G if the following
conditions hold. (i) Dummy vertices have degree 4, (ii) E′ ⊆ E, (iii) for every
edge e = uw ∈ E\E′, Gp contains a planarization path from u to w whose
edges are in Ep and whose internal vertices are in Vp, (iv) for any two distinct
edges e, e′ ∈ E\E′ the paths pe and pe′ are edge-disjoint, and (v) the paths pe,
e ∈ E\E′ cover all edges in Ep. We call the planarization Gp k-planar if the
longest planarization path has k dummy vertices.

A dissected pair (u, v, w) is a pair uv, vw ∈ Ep of edges that belong to the
same planarization path. The crossing angle cr-α(u, v, w) of (u, v, w) is the angle
cr-α(u, v, w) = π − ∠(u, v, w); A crossing angle is active with respect to v (also
called v-active) if moving v can alter that angle. For a dissected pair (u, v, w), v
is a dummy vertex and u and w are tail vertices. A dummy that is not a tail is
called pure dummy and a tail that is not a dummy is called pure tail. Vertices
that are both, tail and dummy, are called hybrid. A vertex that is neither a
dummy nor a tail vertex is called independent .

Let P be a polygon and let v be a vertex of P . A point p in the interior of
P is visible from v if the straight line connecting p with v does not intersect an
edge of P . The visibility region is the set of all points in P that are visible from
v. The size of a polygon P is the number of its vertices.

A shrinked polygon P ′ of a polygon P is the result of moving the vertices
towards the interior of a polygon P with constant speed along the straight skele-
ton of P [10]. A geometric center of a polygon P is obtained by shrinking P to
a single point.

3 Geometric Planarization Drawing

The spring embedder described in the appendix restricts the movement of each
vertex in a very conservative manner, i.e., the restrictions ensure a preservation
of the given planar embedding. This may waste a lot of potential; see Fig. 1a. The
approach presented in this section aims to tap the full potential by making each
movement locally optimal. As the simultaneous movement of multiple vertices
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leads to non-trivial and non-local dependencies, we move only a single vertex in
each step.

To make this precise, we need to answer two questions. First, to which points
can a vertex v be moved such that the planar embedding is preserved? Second,
which of these points is the best position for v? Concerning the first question, we
call the set of points satisfying this property the planarity region of v and denote
it by PR(v). The (non-convex) planarity region is independent of the geometric
position of v within it surrounding. We show in Sect. 3.1 how to compute PR(v)
efficiently. Concerning the second question, we define the cost of a point p ∈
PR(v) to be the maximum of all v-active crossing angles when placing v to
p. A point in PR(v) is a locally optimal position for v if PR(v) contains no
other point with strictly smaller cost. In Sect. 3.2, we show how to compute an
arbitrarily exact approximation of the locally optimal position.

The overall algorithm can be described as follows. We iterate over all vertices
of the graph. In each step, the current vertex is moved to its locally optimal
position. We repeat until we reach a drawing that is stable or up to a limited
number of iterations.

One important degree of freedom in this algorithm is the order in which we
iterate over the vertices. Another choice we have not fixed so far is the placement
of independent vertices. As an independent vertex has no active angle, each point
in its planarity region is equally good. We propose and evaluate different ways
of filling these degrees of freedom in Sect. 4.

For a tail or dummy vertex v, it can happen that there exists no locally
optimal position due to the fact that PR(v) is an open set. The cost may for
example go down, the closer we place v to an edge connecting two other vertices;
see Fig. 1b. We therefore shrink PR(v) slightly and consider it to be a closed
set; see Sect. 4 for more details.

3.1 Planarity Region

Let Gp be a planarization with a given drawing and let v be a vertex of Gp.
Let N(v) be the neighbors of v and let fv be the face of Gp − v that con-
tains the current position of v. Assume for now that fv is bounded by a simple
polygon surr(v), which we call the surrounding of v. Consider a point p in the
interior of fv and assume that we use p as the new position for v. Clearly, the
resulting drawing is planar if and only if p is visible from each of v’s neighbors;
see Fig. 1c. Thus, the planarity region PR(v) is the intersection of all visibility
regions in surr(v) with respect to the neighbors of v. It follows that the planarity
region can be obtained by first computing the visibility polygons of v’s neigh-
bors in surr(v), and then intersecting these visibility polygons. Let nv be the
number of vertices of the surrounding polygon surr(v) and let dv be the degree
of v. Computing the dv visibility polygons takes O(dvnv) time [12]. To intersect
these dv visibility polygons (each having size O(nv)), one can use a sweep-line
algorithm [15] consuming O((k + dvnv) log nv) time, where k is the number of
intersections between segments of the visibility polygons. As there are at most
dvnv segments, k ∈ O(d2

vn
2
v) holds, yielding the running time O(d2

vn
2
v log nv) for
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computing the planarity region. We can improve this running time as stated in
the following theorem; see Appendix for a proof.

Theorem 1. PR(v) has size O(nv) and can be computed in O(dvnv log nv)
time.

Now assume surr(v) is not a simple polygon. As we assume Gp to be bicon-
nected, surr(v) has a single connected component. It may, however, have cutver-
tices with multiple incidences to the interior of surr(v). We eliminate this issue
by slightly shrinking surr(v), yielding a simple polygon. Another special case is
the outer face. However, we can treat it like an interior face by basically placing
the whole drawing in a box.

3.2 Finding a Locally Optimal Position

In this section, we are given a vertex v together with its planarity region PR(v)
and we want to compute a locally optimal position. We consider the two cases
where v is a pure tail-vertex and the one where v is a pure dummy-vertex. These
two cases can be combined to also handle hybrid vertices. For both cases, our
approach is the following. For a given angle α, we show how to test whether
PR(v) contains a point with cost less or equal to α. For any ε > 0 we can then
apply O(log(1/ε)) steps of a binary search over the domain α ∈ [0, 2Π) to find
a position in PR(v) whose cost is at most ε larger than the cost of a locally
optimal position.

Placing a Pure Tail Vertex. Let v be a pure tail vertex and let D(v) ⊆ N(v)
be the set of dummy neighbors of v; see Fig. 2a. For each dummy neighbor
q ∈ D(v) there is a dissected pair (wq, q, v) whose angle is active. Note that
these are the only active angles of a pure tail vertex. Consider the (oriented) line
�(t) = q + t ·dq with the direction vector dq = q −wq. Clearly, placing v onto �(t)

v

+α
−α

qdq

wq

(a) �(t)

wq3q3

wq2

wq1

q1

q2

v

(b)

β

b

v
a

β

a

b

v

(c)

Fig. 2. (a) A cone with respect to one neighbor q of v. (b) The intersection of all cones
with the planarity region (dashed) includes possible positions for the vertex v. (c) The
angle ∠avb is at least β for β > 90◦ (β < 90◦) if and only if v lies in the intersection
(union) of two discs (including its boundary, but excluding a and b).
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(for t > 0) results in the crossing angle cr-α(wq, q, v) = 0. Moreover, all points
in the plane that yield cr-α(wq, q, v) ≤ α lie in a cone, i.e., in the intersection
(union if α ≥ π/2) of two appropriately chosen half planes.

It follows, that v can be moved to a position with cost α if and only if the
intersection of all cones has a non-empty intersection with the planarity region
PR(v); see for example Fig. 2b. As v has at most dv dummy neighbors (recall
that dv is the degree of v), the intersections of all cones can be computed in
O(d2

v log dv) time using a sweep-line algorithm [15]. Let C be the resulting inter-
section of the cones. Testing whether C and PR(v) have non-empty intersection
can be done in O((nv + d2

v) log nv) time.

Lemma 1. Let v be a pure tail vertex and assume PR(v) has already been
computed. For any ε > 0, an absolute ε-approximation of the locally optimal
position can be computed in time O(log(1/ε)(nv + d2

v) log nv).

Placing a Pure Dummy Vertex. A pure dummy vertex v has only two active
crossing angles. Let N(v) = {a, p, b, q} be the neighbors of v so that (a, v, b) and
(p, v, q) are dissected pairs. Consider the angle β = ∠avb. By a generalization
of Thales’ Theorem, β does not change when moving v on a circular arc with
endpoints a and b. Thus, to make sure that β is at least π − α (i.e., to ensure
that cr-α(a, v, b) ≤ α), one has to place v in the intersection of two discs (union
if α > π/2); see Fig. 2c. These two disks must have a and b on their boundary
and basic geometry shows that their radii has to be |ab|/(2 sin(π − α)) (which
uniquely defines the two disks).

The same applies for ∠pvq. Thus, requiring both active crossing angles
cr-α(a, v, b) and cr-α(p, v, q) to be at most α restricts the possible positions of
the dummy vertex v either to the intersection of four disks, or to the intersection
of the union of two disks with the union of two other disks. The check whether
this intersection is empty requires time linear in the size of the planarity region.

Lemma 2. Let v be a pure dummy vertex and assume PR(v) has already been
computed. For any ε > 0, an absolute ε-approximation of the locally optimal
position can be computed in time O(log(1/ε)nv).

Placing a Hybrid Vertex. Let v be a dummy vertex with at least one dummy
neighbor. Combining the techniques from the two previous sections, we have to
check whether PR(v) has a non-empty intersection with the intersection of up to
four cones and up to four disks. This can again be done in linear time in the size
of the planarity region. We can thus conclude (for all three types of vertices)
with the following theorem.

Theorem 2. Let v be a vertex and assume PR(v) has already been computed.
For any ε > 0, an absolute ε-approximation of the locally optimal position can
be computed in time O(log(1/ε)(nv + d2

v) log nv).
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Overall Running Time. We have seen that the planarity region for a vertex v can
be computed in O(dvnv log nv) time (Theorem 1) and that a locally optimal posi-
tion can be approximated in O(log(1/ε)(nv + d2

v) log nv) time. In the following,
we assume that ε is a small constant and omit it from the running time.

As the degree dv of a vertex v is a lower bound for the size nv of its
surounding, the running time of computing the planarity region dominates
the time for computing the locally optimal position. Each iteration thus needs
O(

∑
v∈V dvnv log nv) time. Bounding vertex face degrees improve the running

time; see appendix.

Theorem 3. One iteration of Geometric Planarization Drawing takes
O(n3 log n) time.

4 Evaluation

We present an empirical evaluation of our planarization drawing methods. We
first discuss the remaining degrees of freedom in our Geometric Planarization
Drawing framework. Afterwards, we describe our experimental setup and the sta-
tistical tests we use for the evaluation. The first part of our evaluation focuses
on the quality of different configurations of our Geometric Planarization Draw-
ing approach. The second set of experiments focuses on the running time. The
first set of experiments has a limited time contingent and the second runs until
convergence limited by 100 iterations.

4.1 Degrees of Freedom in the Geometric Framework

As pointed out above, our algorithmic framework offers quite a number of degrees
of freedom and possibilities for tweaking the outcome of the algorithm.

Initial Drawing. Both, our geometric approach and our implementation of
ImPrEd, improve an initial drawing of a planarization. While in principle an
arbitrary planar straight-line drawing may be used for creating the initial draw-
ing, we restrict ourselves to algorithms implemented within OGDF1, which offers
two algorithms: TutteLayout [20] and PlanarStraightLayout [13]. The
former may generate drawings with exponentially bad resolution (creating prob-
lems with the floating point arithmetic). Hence, we cannot use these layouts as
initial drawing. To gain a broader set of initial drawings we applied 100 iterations
of the following two algorithms to the PlanarStraightLayout: (i) ImPrEd

without the forces to optimize the planarization, (ii) the Geometric Center

heuristic places every vertex in the geometric center of its planarity region. Due
to space constraints we only present the results with ImPrEd as initial drawing.
For these drawings we observe the worst initial crossing-angles but result in the
potentially best overall quality. The results for the other initial drawings.

1 The Open Graph Drawing Framework: ogdf.net.

http://www.ogdf.net
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Vertex Orders. We propose different orders for processing the vertices. An
Outer Shell is obtained by iteratively removing the vertices of the outer face.
An Inner Shell order is the reverse of an Outer Shell, and an Alternating

Shell order is obtained by alternating between the two orders.

Placement of Independent Vertices. For independent vertices, every position in
the planarity region is equally good since all crossing angles are inactive. To
reduce the restrictions imposed by independent vertices on their neighbors, we
suggest two placement strategies for them: Randomized Placement, which
puts v at a random position in PR(v), and Geometric Center, where v is
placed in the geometric center of PR(v).

Shrinking the Planarity Region. As mentioned before, a locally optimal position
for a vertex v may not exists as PR(v) is an open set; see Fig. 1b. Moreover, it
is visually unpleasant when vertices are placed too close to non-incident edges.
We thus shrink PR(v) as follows. Let DB be the length of the smallest side of
the planarity region’s bounding box and let Dv be the distance of v from the
boundary of PR(v). We offset by the minimum of μDB and Dv, where μ is a
parameter. In our experiments we used μ = 0.1. Note that shrinking by at most
Dv ensures that the previous position of v remains valid. Thus, we do not have
to move v to a worse position due to the shrinking.

Angle Relaxation. While the placement of the tail and hybrid vertices introduced
in Sect. 3.2 works independently from the vertex order, it is natural to require
that unplaced vertices (i.e., vertices that will be moved later in the same itera-
tion) should have a smaller influence on positioning decisions. When performing
the binary search in the cone construction, we replace the opening angle α of
the cones of unplaced vertices by (1 − γ)α + γπ, where γ ∈ [0, 1] is the angle
relaxation weight, thus widening their cone depending on the value of γ.

Configurations. The presented degrees of freedom allow for many different con-
figurations of our algorithm. Due to space constraints, we focus on the three
configurations shown in Table 1 (see Appendix for additional configurations).

Table 1. Configurations for our geometric graph drawing approach.

Configuration Vertex order Angle relax. weight

Alternating Shell Alternating-Shell 0.0

Shell Outer-Shell 0.0

Relax-1 Alternating-Shell 0.1

The drawing area is always limited by a box that is twice as large as the
bounding box of the initial drawing and use the Geometric Center heuristic
for independent vertices.

To allow a fair comparison between all algorithms, each algorithm gets
exactly 5n s to optimize the drawings. For experiments regarding the running
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Fig. 3. (a): Initial drawing, (b): Final drawing computed with the Shell configura-
tion (c) Drawing with the optional post processing step; see Appendix. Unfilled disks
represent dummies.

time, we measure the time until convergence limited by 100 iterations. Figure 3
shows an example, where our geometric algorithm finds a nearly optimal solu-
tion; also see Appendix.

4.2 Experimental Setup

For a set of graphs G we want to compare the quality of two sets of drawings
Γ1, Γ2 of these graphs. We use the crossing-angles to measure the quality of a
drawing. Aggregating the crossing-angles per graph yields a loss of information,
thus we compare the crossing-angles directly. Let D be the set of all dissected-
pairs in G and {cr-αi(u, v, w) | (u, v, w) ∈ D} the set of all crossing-angles in
drawing Γi, i = 1, 2. The drawings Γ1 have an advantage of Δ ∈ N0 over the
drawing Γ2 if for more then 50% of the dissected pairs (u, v, w) the inequality
cr-α1(u, v, w) + Δ < cr-α2(u, v, w) holds.

Further, we are interested in the smallest angle δ ∈ N0 such that the angles
in our drawings of a graph Gp are smaller then δ. We define a hypothetical
drawing called δ-drawing where each crossing angle is δ. For each algorithm, we
seek the smallest angle δ such that the resulting drawing has an advantage over
the δ-drawing.

To take the lengths of the planarization paths into account, we a priori define
three classes of instances: Low(L), Medium(M) and High(H). A planarization
belongs to L and to H if it is at most 4- and at least 9-planar, respectively.
Instances in the class M are k-planar with 4 < k < 9.

We ran the algorithms on 100 randomly selected non-planar Rome graphs2.
For each of them, we used the (single) non-planar biconnected component. There
are 68 graphs with in total 604 dummy vertices in L, 26 graphs with in total
959 dummy vertices in M, and 6 graphs with in total 443 dummy vertices in H.
We compare the crossing angles directly and do not aggregate them per graph.
Thus, we have 4012 samples in total (twice the number of dummy vertices). We
partitioned the set of samples into a training set, containing 20% of the samples,
and a verification set containing the remaining 80%.
2 graphdrawing.org/data.html.

http://www.graphdrawing.org/data.html
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We use OGDF3 to planarize the graphs [8] and to compute the initial
drawing [13]. We use the libraries CGAL

4 to compute line arrangements,
STALGO [10,11] to shrink polygons, and GMP5 to represent coordinates.

4.3 Statistical Test

Our evaluation focuses on the comparison of crossing angles in different draw-
ings of the same graph, e.g., the initial drawing vs. the final drawing of some
algorithm. Since the underlying distribution of the angles is unknown and not
likely to be, e.g., normal, the median and quantiles are not useful to compare
two drawings. Instead we use a binomial test, which compares two dependent
samples and is independent of the underlying distribution [17].

For each dissected pair (u, v, w) we compare the crossing angles cr-α1(u, v, w)
and cr-α2(u, v, w) generated by two different algorithms. The comparison
cr-α1(u, v, w) + Δ < cr-α2(u, v, w) yields a sequence of 0 s and 1 s. With the
binomial test we check whether 1 s occur significantly more often than 0 s at a
significance level of α = 0.05.

In order to formulate our hypothesis we compute the maximum Δ such that
the binomial test shows significance on the training set. In order to get a robust
and likely hypothesis we choose 3/4 · Δ as the conjectured value. Hypothesis
regarding the δ drawings conjecture that the angles are smaller then 4/3 · δ,
where δ was computed on the training set.

4.4 Quality of the Drawings

In this Section we discuss the quality of our drawings. The evaluation is guided
by the following hypotheses.

(I) Geometric Planarization Drawing approach and ImPrEd++ advantage of
at least 4◦ over the initial drawing.

(II) Geometric Planarization Drawing has an advantage of at least 6◦ over
ImPrEd++.

(III) In class H, Relax-1 has an advantage over Alternating-Shell (due to
the weakened influence of unplaced vertices).

We use Figs. 4 and 5a to show whether or not the binomial tests support our
hypotheses. A value Δ in a cell in Fig. 4 shows that the algorithm on the x-axis
has an hypothetical advantage of Δ over the algorithm on the y-axis. These
values are computed on the training set. A green cell means that we can accept
the hypothesis with a confidence of 95%. On the contrary, with a red cell we
have to reject the hypothesis. An empty cell, indicates that the algorithm did
not have an advantage on the training set.

3 ogdf.net.
4 cgal.org.
5 gmplib.org.

http://www.ogdf.net
http://www.cgal.org
http://www.gmplib.org
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Fig. 4. Advantage of each configuration (x-axis) compared to each configuration
(y-axis), factored by the classes L, M, and H.

For example, in the class H (see Fig. 4d), we conjecture, based on the obser-
vation in the training set, that the drawings of the Shell configuration have
an advantage of 9◦ over the drawings of ImPrEd++. Recall, that having an
advantage means that 50% of the crossing angles, plus an additional buffer of
9◦, of the first drawings are smaller then the crossing angles of the second. Since
the cell is green, the binomial test on the verification set says that we can accept
the hypothesis with a confidence of 95%.

By Fig. 5a, for class L we can say with 95% confidence that 50% of the
crossing angles of the Shell configuration are smaller then the crossing-angles
of a drawing where each crossing angle is 2◦. We now discuss our hypotheses.

Hypothesis (I) Advantage over the Initial drawing. The binomial tests support
this hypothesis for every configuration and for ImPrEd++; see Fig. 4. Note that
the advantage over the Initial drawing decreases with the length of the longest
planarization path in a drawing. The Figure indicates, that ImPrEd++ does
not have an advantage over the Initial drawing on long planarization paths.
Figure 4a indicates that there is support for the hypothesis when considering all
instances (not separated into classes).

Hypothesis (II) Advantage over ImPrEd++. Figure 4 shows that for Δ = 6 we
have can accept the hypothesis with high confidence for every configuration and
class.

Hypothesis (III) Angle relaxation helps with long planarization paths. Figure 4d
shows for instances of the class H that the Relax-1 configurations has a (small)
advantage. Figure 5a further shows that this configuration tends to produce
smaller crossing angle in instances of H in comparison to the other configu-
rations.

4.5 Running Time

We conclude the Section with a running time analysis. Table 2 shows a descrip-
tive evaluation of the running time of our Geometric Planarization Drawing
approach.
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Fig. 5. (a) The minimum δ for each configuration (x-axis) such that it has an advan-
tage over a δ-drawing, factored by the classes L, M, and H (y-axis). (b) Time until
convergence versus the δ-value. Symbol sizes indicate the classes L, M, and H. Note:
the δ-values of both figures are not coincident due to different experimental setups.
The setup for the quality assessment does not allow a running time analysis.

Table 2. Running time measurements for each configuration.

Configuration Time per iteration # iterations Total time

L M H L M H L M H
Alternating

Shell

8.3 s 15.0 s 24.8 s 20.2 82.4 93.0 2.9 min 20.6 min 39.6 min

Shell 8.1 s 18.0 s 25.1 s 5.5 22.4 66.6 0.7 min 6.4 min 28.4 min

Relax-1 8.2 s 20.3 s 33.5 s 59.8 100.0 100.0 9.5 min 33.6 min 55.3 min

Running Time vs. Quality. We use the δ-values to compare the quality of the
drawings with respect to the running time. Each point in Fig. 5b represents final
drawings of a different configuration, divided into the introduced classes. The
figure compares the average running time required to compute the final drawing
against the smallest δ computed with the introduced methodology; all δ-value
can be accepted with high confidence. For class L the configuration the (Alter-

nating) Shell configurations have small angles and require only few minutes
to finish. With increasing complexity of the drawings the relevance of the angle
relaxation increases. For class M the Alternating Shell configuration has
the smallest δ-value but is slower then the Shell configuration. For drawings
of class H, there is no clear dominance. In class H the Relax-1 configuration
yields the best results but the Shell configuration requires less time. We suggest
to use the Shell configuration for less complex drawings and when computing
time is relevant and for drawings with increasing complexity the Relax-1 con-
figuration.

5 Conclusion

We presented two approaches for drawing planarizations such that the edges of
the original (non-planar) graph are as straight as possible. Our experiments show
that the Geometric Planarization Drawing approach has an significant advantage
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over our adaption of the force-directed algorithm ImPrEd. For instances with
short planarization paths, we get very good crossing angles. Even though the
crossing angles are worse for instances with longer planarization paths, our Geo-
metric Planarization Drawing approach still significantly improves the angles
of the initial drawing. Concerning future research, it would be interesting to
investigate the effect of different initial drawings and to see how our geometric
approach in Sect. 3 performs when additional optimization criteria such as the
angular resolution are incorporated.
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Abstract. Finding the common structural features of two molecules is
a fundamental task in cheminformatics. Most drugs are small molecules,
which can naturally be interpreted as graphs. Hence, the task is formal-
ized as maximum common subgraph problem. Albeit the vast majority
of molecules yields outerplanar graphs this problem remains NP-hard.

We consider a variation of the problem of high practical relevance,
where the rings of molecules must not be broken, i.e., the block and
bridge structure of the input graphs must be retained by the common
subgraph. We present an algorithm for finding a maximum common con-
nected induced subgraph of two given outerplanar graphs subject to this
constraint. Our approach runs in time O(Δn2) in outerplanar graphs
on n vertices with maximum degree Δ. This leads to a quadratic time
complexity in molecular graphs, which have bounded degree. The exper-
imental comparison on synthetic and real-world datasets shows that our
approach is highly efficient in practice and outperforms comparable state-
of-the-art algorithms.

1 Introduction

The maximum common subgraph problem arises in many application domains,
where it is necessary to elucidate common structural features of objects repre-
sented as graphs. In cheminformatics this problem has been extensively studied
[5,12,13] and is often referred to as maximum or largest common substructure
problem. Two variants of the problem can be distinguished: The maximum com-
mon induced subgraph problem (MCIS) is to find isomorphic induced subgraphs
of two given graphs with the largest possible number of vertices. The maxi-
mum common edge subgraph problem (MCES) does not require that common
subgraphs are induced and aims at maximizing the number of edges. Both vari-
ants can be reduced to a maximum clique problem in the product graph of the
two input graphs [12]. In cheminformatics MCES is used more frequently since
it (i) reflects the notion of chemical similarity more adequately [12], and (ii)
can reduce the running time of product graph based algorithms [11]. Although
such algorithms still have exponential running time in the worst case, they are
commonly applied to molecular graphs in practice [12].
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However, there are several restricted graph classes which render polynomial
time algorithms possible [1,2,15]. The seminal work in this direction is attributed
to J. Edmonds [10], who proposed a polynomial time algorithm for the maxi-
mum common subtree problem. Here, the given graphs and the desired common
subgraph must be trees. Recently, it was shown that this problem can be solved
in time O(Δn2) for (unrooted) trees on n vertices with maximum degree Δ [3].
The (induced) subgraph isomorphism problem (SI) is to decide if a pattern graph
is isomorphic to an (induced) subgraph of another graph and is generalized by
MCIS and MCES, respectively. Both variants of SI are NP-complete, even when
the pattern is a forest and the other graph a tree [6]; just as when the pattern is
a tree and the other is outerplanar [14]. On the other hand, when both graphs
are biconnected and outerplanar, induced SI can be solved in time O(n2) [14]
and SI in O(n3) [9]. These complexity results and the demand in cheminfor-
matics lead to the consideration of MCES under the so-called block and bridge
preserving (BBP) constraint [13], which requires the common subgraph to retain
the local connectivity of the input graphs. BBP-MCES is not only computable
in polynomial-time, but also yields meaningful results for cheminformatics. A
polynomial-time algorithm was recently proposed for BBP-MCIS, which requires
time O(n6) in series-parallel and O(n5) in outerplanar graphs [7].

Most of the above mentioned polynomial time algorithms are either not
applicable to molecular graphs or impractical due to high constants. A positive
exception is the BBP-MCES approach of [13], which has been shown to outper-
form state-of-the-art algorithms on molecular graphs in practice. This algorithm
is stated to have a running time of O(n2.5), but in fact leads to a running time
of Ω(n4) in the worst case [3].

Our Contribution. We take up the concept of BBP and propose a novel BBP-
MCIS algorithm with running time O(Δn2) in outerplanar graphs with n vertices
and maximum degree Δ. We obtain this result by combining ideas of [3] for the
maximum common subtree problem with a new algorithm for biconnected MCIS
in biconnected outerplanar graphs. For this subproblem we develop a quadratic
time algorithm, which exploits the fact that the outerplanar embedding of a
biconnected outerplanar graph is unique. Moreover, the algorithm allows to list
all solutions in quadratic total time. Our approach supports to solve BBP-MCIS
w.r.t. a weight function on the mapped vertices and edges. The experiments show
that BBP-MCIS in almost all cases yields the same results as BBP-MCES for
molecular graphs under an adequate weight function. Our method outperforms
in terms of efficiency the BBP-MCES approach of [13] by orders magnitude.

2 Preliminaries

We consider simple undirected graphs. Let G = (V,E) be a graph, we refer to the
set of vertices V by V (G) or VG and to the set of edges by E(G) or EG. An edge
connecting two vertices u, v ∈ V is denoted by uv or vu. The order |G| of a graph
G is its number of vertices. Let V ′ ⊆ V , then the graph G[V ′] = (V ′, E′) with
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E′ = {uv ∈ E | u, v ∈ V ′} is called induced subgraph. For U ⊆ V we write G\U
for G[V \U ]. A graph is connected if there is a path between any two vertices.
A connected component of a graph G is a maximal connected subgraph of G. A
graph G = (V,E) with |V | ≥ 3 is called biconnected if G\{v} is connected for
any v ∈ V . A maximal biconnected subgraph of a graph G is called block. If an
edge uv is not contained in any block, the subgraph ({u, v}, {uv}) is called a
bridge. A vertex v of G is called cutvertex, if G\{v} consists of more connected
components than G. A graph is planar if it admits a drawing on the plane such
that no two edges cross. The connected regions of the drawing enclosed by the
edges are called faces, the unbounded region is referred to as outer face. An edge
and a face are said to be incident if the edge touches the face. Two faces are
adjacent if they are incident with a common edge. A graph is called outerplanar
if it admits a drawing on the plane without crossings, in which every vertex
lies on the boundary of the outer face. A matching in a graph G = (V,E) is a
set of edges M ⊆ E, such that no two edges share a vertex. A matching M is
maximal if there is no other matching M ′

� M and perfect, if 2|M | = |V |. A
weighted graph is a graph endowed with a function w : E → R. A matching M in
a weighted graph has weight by W (M) :=

∑
e∈M w(e); it is a maximum weight

matching (MWM) if there is no matching M ′ of G with W (M ′) > W (M).
An isomorphism between two graphs G and H is a bijection φ : V (G) →

V (H) such that uv ∈ E(G) ⇔ φ(u)φ(v) ∈ E(H). A common (induced) sub-
graph isomorphism is an isomorphism between (induced) subgraphs G′ ⊆ G
and H ′ ⊆ H. A subgraph G′ ⊆ G is block and bridge preserving (BBP) if (i)
each bridge in G′ is a bridge in G, (ii) any two edges in different blocks in
G′ are in different blocks in G. A common subgraph isomorphism φ is BBP
if both subgraphs are BBP, it is maximal if it cannot be extended. Molecu-
lar graphs are typically annotated with atom and bond types, which should be
preserved under isomorphisms. More general, we allow for a weight function
ω : (VG × VH) ∪ (EG × EH) → R

≥0 ∪ {−∞}. The weight W(φ) of an isomor-
phism φ between G and H under ω is the sum of the weights ω(v, φ(v)) and
ω(uv, φ(v)φ(v)) for all vertices v and edges uv mapped by φ. A common sub-
graph isomorphism φ is maximum if its weight W(φ) is maximum. A maximum
isomorphism does not map any vertices or edges contributing weight −∞ and
we call these pairs forbidden. We further define [1..k] := {1, . . . , k} for k ∈ N.

3 Biconnected MCIS in Outerplanar Graphs

In this section we present an algorithm to determine the weight of a maximum
common biconnected induced subgraph isomorphism (2-MCIS) of two bicon-
nected outerplanar graphs. First we show how to compute the maximal common
biconnected subgraph isomorphisms. Since these may contain forbidden vertex
and edge pairs, we then describe how to obtain the weight of a maximum solution
from them. Finally we show how to output one or all maximum solutions.

Outerplanar graphs are well-studied and have several characteristic proper-
ties, see [14] for further information. In particular, our algorithm exploits the fact
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that biconnected outerplanar graphs have a unique outerplanar embedding in
the plane (up to the mirror image). In these embeddings, every edge is incident
to exactly two faces that are uniquely defined. We observe that the mapping is
determined by starting parameters, i.e., an edge of both input graphs together
with the mapping of their endpoints and incident faces.

We say a face is mapped by an isomorphism φ if all the vertices border-
ing the face are mapped by φ. We distinguish four cases to describe the map-
ping of an edge uv ∈ E(G) to an edge u′v′ ∈ E(H) by an isomorphism φ
between biconnected induced subgraphs. Assume the edge uv is incident to the
faces A and B in G and u′v′ is incident to A′ and B′ in H, see Fig. 1(a). At
least one face incident to uv must be mapped by φ, since the common sub-
graph must be biconnected. For the sake of simplicity of the case distinction,
we also associate the two other faces, regardless of whether they are mapped
or not. The isomorphism may map the endpoints of the edges in two different
ways—just as the two incident faces. We can distinguish the following four cases:
(1) u 	→ u′, v 	→ v′, A 	→ A′, B 	→ B′, (2) u 	→ v′, v 	→ u′, A 	→ A′, B 	→ B′,
(3) u 	→ u′, v 	→ v′, A 	→ B′, B 	→ A′, (4) u 	→ v′, v 	→ u′, A 	→ B′, B 	→ A′.

Given an isomorphism φ between biconnected common induced subgraphs
that maps the two endpoints of an edge e, let the function type(e, φ) ∈ [1..4]
determine the type of the mapping as above. The following result is the key to
obtain our efficient algorithm.

Lemma 1. Let φ and φ′ be maximal isomorphisms between biconnected common
induced subgraphs of the biconnected outerplanar graphs G and H. Assume e ∈
E(G) is mapped to the same edge e′ ∈ E(H) by φ and φ′, then

type(e, φ) = type(e, φ′) ⇐⇒ φ′ = φ.

Proof. It is obvious that the direction ⇐= is correct. We prove the implication
=⇒. Since the common subgraph is required to be biconnected, the isomorphisms
φ and φ′ both must map at least one face of G incident to the edge e to a face
of H incident to e′. The two faces as well as the mapping of endpoints of the
two edges are uniquely determined by the type of the mapping. We consider the
mapping of the vertices on the cyclic border of these faces. Since the mapping
of the endpoints of e are fixed, the mapping of all vertices on the border of the
face is unambiguously determined. Since the common subgraph is required to be
biconnected, every extension of the mapping must include all the vertices of a
neighboring face. For this face, again, the mapping of the endpoints of the shared
edge implicates the mapping of all vertices on the cyclic border and the extension
is unambiguous. Therefore, the mapping can be successively extended to an
unmapped face. Consequently φ(u) = φ′(u) holds for all u ∈ dom(φ) ∩ dom(φ′).
Since φ and φ′ are maximal it is not possible that one of them can be extended
and, hence, we must have dom(φ) = dom(φ′) and the result follows. 
�

The proof of Lemma 1 constructively shows how to obtain a maximal solution
given two edges uv ∈ E(G), u′v′ ∈ E(H) and a type parameter t ∈ [1..4]. We
assume that this approach is realized by the procedure MaximalIso(uv, u′v′, t),
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which returns the unique maximal isomorphism that maps the two given edges
according to the specified type. The algorithm can be implemented by means
of a tree structure that encodes the neighboring relation between inner faces,
e.g., SP-trees as in [7,8] or weak dual graphs similar to the approach of [14].
The running time to compute a maximal solution φ then is O(|φ|) ⊆ O(n). Note
that for some edge pairs not all four types of mappings are possible. The type
t ∈ [1..4] is valid for a pair of edges if at least one incident face can be mapped
according to type t, i.e., the edges are incident to faces that are bordered by the
same number of vertices.

A maximal solution φ may map vertex and edge pairs that are forbidden
according to the weight function. In order to obtain the maximum weight, we
split φ into split isomorphisms φ1, . . . , φk such that each (i) has non-negative
weight and (ii) again is an isomorphism between biconnected induced common
subgraphs. The split isomorphisms can be obtained in time O(|φ|) as follows. We
consider the graph G′ = G[dom(φ)]. For every forbidden edge uv that is incident
to two inner faces in G′, we split the graph into G′

i[V (Ci) ∪ {u, v}], where Ci

is a connected component of G′\{u, v}, i ∈ [1..2]. In these graphs we delete
the forbidden vertices and edges and determine the blocks B1, . . . , Bk. Then φ,
restricted to the vertices V (Bi) of a block Bi, yields the split isomorphism φi

for i ∈ [1..k]. This approach is realized by the function SplitIso(φ) used in
the following. Every edge e ∈ E(G) is mapped by at most one of the resulting
isomorphisms, referred to by φe. Every 2-MCIS is a split isomorphism obtained
from some maximal solution.

Algorithm 1 uses a table D(e, f, t), e ∈ E(G), f ∈ E(H), t ∈ [1..4] storing
the weight of a 2-MCIS under the constraint that it maps e to f according to
type t. The size of the table is 4|E(G)||E(H)| ∈ O(nm), where n = |V (G)|
and m = |V (H)|. The algorithm starts with all pairs of edges and all valid
types of mappings between them. For each, the maximal isomorphism between
biconnected common induced subgraphs is computed by extending this initial
mapping. By splitting the maximal solution, multiple valid isomorphisms with
non-negative weight are obtained. These weights are then stored in D for all
pairs of edges contained in φ considering the type of the mapping. This includes
the −∞ weights occurring if there are forbidden vertices or edges. Keeping these
values allows to avoid generating the same isomorphism multiple times. The
main procedure loops over all pairs of edges and the four possible mappings for
each pair. Note that a mapping φ and its split isomorphisms are computed in
time O(|φ|) ⊆ O(n). Improved analysis gives the following result.

Theorem 1. Algorithm 1 computes the weight of a 2-MCIS between biconnected
outerplanar graphs G and H in time O(|G||H|).
Proof. We allocate the costs for a call of MaximalIso followed by SplitIso
to cells of the table D. A mapping φ containing k edges is computed in time
O(k) and as a result exactly k cells of the table D are filled with a value. The
value of a cell is computed at most once: Line 2 assures that an edge mapping
of a specific type is not used as initial mapping when the corresponding cell is
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Algorithm 1. 2-MCIS in outerplanar graphs
Input : Biconnected outerplanar graphs G and H.
Output : Weight of a maximum common biconnected subgraph isomorphism.
Data : Table D(e, f, t), e ∈ E(G), f ∈ E(H), t ∈ [1..4] storing the weight of

a 2-MCIS φ mapping e to f with type(e, φ) = t.
1 forall the uv ∈ E(G), u′v′ ∈ E(H) and t ∈ [1..4] do
2 if type t valid for uv and u′v′ and D(uv, u′v′, t) undefined then
3 φ ← MaximalIso(uv, u′v′, t)
4 (φ1, . . . , φk) ← SplitIso(φ)
5 forall the edges e ∈ E(G) mapped to f ∈ E(H) by φ do

6 D(e, f, type(e, φ)) ←
{

W (φe) if e is mapped by the split iso. φe

−∞ otherwise.

7 return maximum entry in D

already filled. Every initial mapping that is extended must lead to an isomor-
phism containing only edge mappings associated with undefined cells according
to Lemma 1. Therefore the total costs of the algorithm can be allocated to cells
of D, such that each cell pays a constant amount. This proves that the total
running time is bounded by the size of the table, which is O(|G||H|). 
�

We can easily modify the algorithm to enumerate all maximum isomorphisms
without affecting the total running time. First we run Algorithm1 once to obtain
the maximum weight Wmax. Then we run a modified version of Algorithm1 that
outputs every split isomorphism φi of size W (φi) = Wmax as soon as it is found,
right after SplitIso(φ) is called in line 4.

4 Solving BBP-MCIS in Outerplanar Graphs

In the previous section we have presented an algorithm to compute a 2-MCIS
between two biconnected outerplanar graphs. In this section we will generalize
it to compute a BBP-MCIS between two outerplanar graphs G and H. In the
following we assume the isomorphisms to be BBP. We require the input graphs
to be connected. Otherwise we compute a BBP-MCIS for all pairs of connected
components and select an isomorphism of maximum weight.

We proceed as follows. First, we give insight into the BC-tree data structure,
which helps to partition the set S of all BBP common subgraph isomorphisms
between G and H into subsets w.r.t. certain conditions. Then we compute an
isomorphism of maximum weight in each of the subsets using a dynamic pro-
gramming approach similar to the one used in [3] to solve the maximum common
subtree problem. Among the computed isomorphisms we output one with max-
imum weight, thus a BBP-MCIS.

The BC-tree Data Structure. Given a BBP-MCIS, we can observe that
bridges of G are mapped to bridges of H and that edges in one block of G can
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Fig. 1. A biconnected outerplanar graph (a) with an edge uv incident to the faces A
and B; a connected outerplanar graph (b) and its BC-tree (c). Block nodes have a gray
background, while bridge nodes are not filled. The solid black nodes are the cutvertices.
The corresponding subgraphs of G are shown above the block and bridge nodes.

only be mapped to edges contained in exactly one block of H, such that the
mapped edges form a biconnected common subgraph. For a connected graph G
let CG denote the set of cutvertices, BlG the set of blocks and BrG the set of
bridges and BG := BlG ∪ BrG. The BC-tree BCG of G is the tree with nodes
BG ∪ CG and edges between nodes b ∈ BG and c ∈ CG iff c ∈ V (b). We refer
to the vertices of the BC-tree as B- and C-nodes and distinguish block nodes
from bridge nodes. An example of a graph G and its BC-tree BCG is shown in
Fig. 1. For any graph G, we define CC(V ′, U) as the connected component of
G[V ′] that includes at least one vertex of U . We allow only such sets U , where
the component is unambiguous. For example, in Fig. 1, CC(VG\Vb2 , Vb4) is the
graph G[{c3, u, v}].

Partitioning of all BBP Isomorphisms S into S =
⋃

xSx . First, we define
S1 and S2. Let b ∈ BG be an arbitrary block or bridge in G. We define S1

to contain all isomorphisms φ where at least one edge in b is mapped by the
isomorphisms, i.e., |dom(φ)∩V (b)| ≥ 2. S2 is defined to contain all isomorphisms
where exactly one vertex in b is mapped by the isomorphism. We can observe
that S1 and S2 are disjoint and all other isomorphisms between G and H do
not contain any vertices of b. Let N = {b1, . . . , bk} ⊆ BG be the blocks and
bridges that share a cutvertex with b, i.e., bi ∈ N iff there is a node c ∈ CG with
bc and cbi edges in the BC-tree BCG. Any isomorphism φ that maps no vertex
of b, maps vertices of at most one node bi, because G[dom(φ)] is connected by
definition. For every bi we recursively define sets Sx of isomorphisms as described
above that map only vertices of CC(VG\Vb, Vbi).

As example consider Fig. 1(c) and let b := b2. S1 consist of isomorphisms
which map at least one edge of b2 to an edge in H. The isomorphisms in S2 map
exactly one vertex of V (b) to H. The recursion continues on N = {b1, b3, b4}.
Three additional sets consist of isomorphisms which map at least one edge (and
three more for exactly one vertex) of V (bi), i ∈ {1, 3, 4}, but no vertex of V (b2),
operating on CC(VG\Vb2 , Vbi). The recursion for b := b4 continues with N = {b5}
and two additional sets. Some of the sets Sx are empty.
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Partitioning of Sx into Sx =
⋃

yPxy . Before computing an isomorphism of
maximum weight in a set Sx, we partition Sx into subsets Px1,Px2, . . .. The
focus for the separation now is on the graph H. We distinguish two cases. If Sx

is a set, where at least one edge of a certain block (bridge) b is mapped, then Sx

is partitioned into |BlH | (|BrH |) subsets. The meaning is that for each B-node
b̄ ∈ BlH (b̄ ∈ BrH) the mapped vertices of the B-node b ∈ BG are mapped only
to V (b̄). In terms of BBP this is block (bridge) preserving between b and b̄, as
intended. If Sx is a set, where exactly one vertex of b is mapped, the subsets are
defined as follows. For each (v, v̄) ∈ V (b) × V (H), where ω(vv̄) �= −∞ and v is
in the CC we operate on, we define a subset with the restriction φ(v) = v̄.

Computing a Maximum Isomorphism in a Subset Pxy . We now describe
how to compute an isomorphism φ of maximum weight in a subset Pxy ⊆ Sx.
The idea is to recursively extend mappings between some vertices of two single
bridges or two single blocks along all pairs of mapped cutvertices into other B-
nodes determined by MWMs, while preserving bridges and blocks. Between the
computed isomorphisms we select one of maximum weight.

First, let Pxy be a subset, where at least one edge of a B-node b ∈ BG

has to be mapped to an edge of a B-node b̄ ∈ BH . If b and b̄ are bridges,
the two possible mappings V (b) → V (b̄) are considered. If both are blocks,
all maximal common biconnected subgraph isomorphisms between the blocks
are considered (cf. Algorithm 1). We may have given a fixed mapping v 	→ v̄
(cf. (i) below). We call a considered isomorphism valid, if it respects the possible
fixed mapping and contains only vertices of the CC we are operating on. We
extend all the valid isomorphisms φ along all pairs φ(c) = c̄, c �= v of mapped
cutvertices as follows. Let Bc := {b1, . . . bk}, be the B-nodes of BG, where bcbi
is a path, and B̄c := {b̄1, . . . b̄l}, be the B-nodes of BH , where b̄c̄b̄j is a path, i ∈
[1..k], j ∈ [1..l]. For each pair (bi, b̄j) ∈ Bc × B̄c we recursively calculate a BBP-
MCIS ϕij under the following restrictions: (i) The cutvertices must be mapped:
c 	→ c̄. (ii) bi and b̄j are both bridges or both blocks. (iii) At least one other
vertex in the block (bridge) bi must be mapped, but only to V (b̄j). Restriction
(iii) assures that at least one vertex is added to the isomorphism. Therefore,
the recursion to compute ϕij is the method described in this paragraph. After
computing ϕij for each pair (bi, b̄j), we construct a weighted bipartite graph with
vertices Bc � B̄c for each pair of mapped cutvertices. The weight of each edge
bib̄j is determined by the weight of a BBP-MCIS under the above restrictions,
subtracted by ω(c, c̄) for the appropriate cutvertices c and c̄. If there in no
such restricted BBP-MCIS, there is no edge. Computing a MWM on each of
the bipartite graphs determines the extension of φ. For each matching edge the
corresponding computed isomorphisms are merged with φ. After extending all
valid isomorphisms, we select one of maximum weight.

Second, let Pxy be a subset, where exactly one vertex v of V (b) is mapped,
and let φ(v) = v̄. If v is no cutvertex, the only possible expansion is within V (b),
which is not allowed in this subset. Therefore this subset contains exactly one
isomorphism, v 	→ v̄. Next, assume v is a cutvertex. If v̄ is a cutvertex, we may
extend φ similar to the previous paragraph. In doing so, c := v, c̄ := v̄ and Bc
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as before. The only difference is B̄c, which is defined by all B-nodes containing
v̄ = c̄. The reason is that we have not mapped any other vertices yet, therefore
we may expand in all directions in H. If v̄ is no cutvertex, then v̄ is contained in
exactly one b̄ ∈ BH . We are interested in BBP isomorphisms only. This means,
all vertices that are mapped to V (b̄) must be in the same block or bridge b′ ∈ BG.
Therefore, for each b′ ∈ BG, where bvb′ is a path and b′ and b̄ are of the same
type (bridge/block), we compute an isomorphism with fixed mapping v 	→ v̄,
where at least one edge of b′ is mapped to b̄. This falls back to the method of
the above paragraph as well. Among the computed isomorphisms we select one
of maximum weight. The pseudocode of the method described above is available
in the extended version of this paper [4].

Time Complexity. The time to compute a BBP-MCIS essentially depends
on the time to compute the BC-trees, the biconnected isomorphisms between
the blocks of G and H, and the time to compute all the MWMs. The time to
compute a BC-tree is linear in the number of edges and vertices. Considering
all pairs of blocks and Theorem 1 we can bound the time for computing all the
biconnected isomorphisms by O(

∑
b

∑
b̄ |Vb||Vb̄|) ⊆ O(|G||H|). We only need to

compute MWMs for the pairs of cutvertices of the two graphs. It follows from
the result of [3, Theorem 7] for the maximum common subtree problem, that the
total time for this is O(|G||H|(min{ΔG,ΔH} + log max{ΔG,ΔH})), where ΔG

is the maximum degree of a C-node in BCG . This proves the following theorem.

Theorem 2. BBP-MCIS between two outerplanar graphs G and H can be solved
in time O(|G||H|Δ(G,H)), where Δ(G,H) = 1 iff G or H is biconnected or both
are of bounded degree; otherwise Δ(G,H) = min{ΔG,ΔH}+log max{ΔG,ΔH}.

5 Experimental Evaluation

In this section we evaluate our BBP-MCIS algorithm experimentally and com-
pare to the BBP-MCES approach of [13].1 Both algorithms were implemented
in C++ and compiled with GCC v.4.8.4 as 64-bit application. Running times
were measured on an Intel Core i7-3770 CPU using a single core. The available
memory of 16 GB was sufficient for all the computations.

We are interested in answering the following questions:

(H1) To what extent differs BBP-MCIS from BBP-MCES on molecular graphs?
(H2) How large is the difference in terms of running time on molecular graphs?
(H3) How is the running time affected by specific properties of the input graphs?

To answer (H1) and (H2) we extracted 29000 randomly chosen pairs of
outerplanar molecular graphs from a large chemical database.2 The molecules
in the database contain up to 104 vertices and 22 vertices on an average.

1 We are grateful to Leander Schietgat for providing the implementation used in [13].
2 NCI Open Database, GI50, http://cactus.nci.nih.gov.

http://cactus.nci.nih.gov
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The weight function ω was set to 1 for each pair of vertices and edges with
the same label and −∞ otherwise. This matches the setting in [13].

To answer (H3) we compared the algorithms on randomly generated con-
nected outerplanar graphs. Our graph generator takes several parameters as
input. With them we evaluated three different properties: the graph size, the
average ratio |E |/|V | of edges to vertices, and the average block size. For any
outerplanar graphs the ratio of edges to vertices is less than 2. While evaluating
the effect of one property, we preserved the other two. This procedure allows
to verify whether our theoretical findings are consistent with the running times
observed in practice. We set the weight function ω to 1 for each pair of vertices
and edges, which corresponds to uniformly labeled graphs.

(H1). While comparing the weight of the isomorphisms computed by the two
algorithms we observed a difference for only 0.40 % of the 29 000 tested mole-
cule pairs. This suggests that BBP-MCIS yields a valid notion of similarity for
outerplanar molecular graphs as it was shown for BBP-MCES [13].

(H2). Our algorithm computed the solutions on average 84 times faster. The
dots in Fig. 2 represent the computation times of the two algorithms. The results
are summarized in Table 1. Schietgat et al. [13] compared their BBP-MCES
algorithm to a state-of-the-art algorithm for general MCIS. Their algorithm had

Fig. 2. Running times in ms for 28 399 BBP-MCIS computations. Each black dot
represents a BBP-MCIS computation on two randomly chosen outerplanar molecular
graphs. It directly compares the running time of our algorithm (MCIS, x-axis) and
the implementation from [13] (MCES, y-axis). The running times of another 601 BBP-
MCIS computations did not fit into the borders.
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Table 1. Upper half: running times for our implementation (MCIS) and the imple-
mentation from [13] (MCES). Lower half: relative differences in computation times.

Algorithm Average time Median time 95% less than Maximum time

MCIS 1.97 ms 1.51 ms 5.28 ms 40.35 ms

MCES 207.08 ms 41.43 ms 871.48 ms 26 353.68 ms

Comparison Average factor Median factor Minimum factor Maximum factor

MCES/MCIS 83.8 25.6 1.8 28912.5

Table 2. Average time ± SD over 100 BBP-MCIS computations on random outerpla-
nar graphs, varying one property (graph size, ratio of edges to vertices, block size BS).
Note the units of measurement; timeout—total time exceeds 3 days.

Size 10 20 40 80 160

MCIS 0.7 ± 0.3 ms 2.3 ± 0.8 ms 8.2 ± 1.6 ms 33.5 ± 3.6 ms 133.2 ± 10.1 ms

MCES 207 ± 118 ms 3.4 ± 6.0 s 38.6 ± 90.6 s 234.2 ± 420.9 s Timeout

|E |/|V | 0.98 1.10 1.24 1.46 1.78

MCIS 3.8 ± 0.3 ms 4.0 ± 1.1 ms 8.2 ± 1.6 ms 30.8 ± 4.0 ms 110.3 ± 11.6 ms

MCES 223 ± 16 ms 2.2 ± 2.6 s 38.6 ± 90.6 s 111.0 ± 213.8 s 216.1 ± 288.3 s

BS 3 5 10 20 40

MCIS 27 ± 6.4 ms 13.3 ± 2.4 ms 8.4 ± 1.7 ms 5.5 ± 1.4 ms 4.5 ± 0.9 ms

MCES 132 ± 14 ms 689 ± 548 ms 83.7 ± 118.7 s 30.4 ± 27.8 min Timeout

similar computation times on small graphs and was much faster on large graphs.
The maximum time of the general MCIS algorithm was more than 24 h. In
contrast, our computation time never exceeded 41 ms. This clearly indicates that
our algorithm is orders of magnitude faster than the general approach.

(H3). We first varied the size of the input graphs, while preserving an aver-
age ratio of edges to vertices of 1.24 and an average block size of 8. Based on
Theorem 2 we expected the average time to increase by a factor of a bit more than
4, if we double the size. The results in Table 2 closely match this expectation.

Next, we evaluated different ratios of edges to vertices. The graph size was set
to 40 and the average block size to 8. A higher ratio results in a higher number
of faces in the blocks and consequently affects the time required by Algorithm 7.
In particular, the table size and, thus, the running time is expected to show a
quadratic growth. The increase in running time exceeds our expectation. This
might be explained by the increasing size of the data structure used to represent
the faces of the blocks.

Finally, we evaluated different average block sizes. The graph size was set to
40 and the average ratio of edges to vertices to 1.24. Higher block sizes mean less
MWMs to compute, which are the most costly part in the BBP-MCIS compu-
tation. Therefore we expected the running time to decrease. The results shown
in Table 2 support this.
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6 Conclusion

We have developed an algorithm, which computes a well-defined, chemical mean-
ingful largest common substructure of outerplanar molecular graphs in a fraction
of a second. Hence, our method makes the graph-based comparison in large mole-
cular datasets possible. As future work, we would like to extend our approach
to more general graph classes with a focus on efficiency in practice.
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Abstract. We propose two strategies for Presenter in the on-line inter-
val graph coloring games. Specifically, we consider a setting in which each
interval is associated with a d-dimensional vector of weights and the col-
oring needs to satisfy the d-dimensional bandwidth constraint, and the
k-cardinality constraint. Such a variant was first introduced by Epstein
and Levy and it is a natural model for resource-aware task scheduling
with d different shared resources where at most k tasks can be scheduled
simultaneously on a single machine.

The first strategy forces any on-line interval coloring algorithm to
use at least (5m − 3) d

log d+3
different colors on an m

(
d
k

+ log d + 3
)
-

colorable set of intervals. The second strategy forces any on-line inter-
val coloring algorithm to use at least

⌊
5m
2

⌋
d

log d+3
different colors on an

m
(
d
k

+ log d + 3
)
-colorable set of unit intervals.

Keywords: On-line coloring · Interval graphs · Unit interval graphs

1 Introduction

A proper coloring of a graph G is an assignment of colors to the vertices of the
graph such that adjacent vertices receive distinct colors. A k-bounded coloring
of G is a proper coloring of G such that the number of vertices that receive any
single color is at most k. For a graph G, let χ(G) denote the chromatic number
of G, that is the minimum number of colors in a proper coloring of G, and let
ω(G) denote the clique number of G, that is, the maximum size of a subset of
vertices such that any two vertices in the subset are adjacent.

An on-line graph coloring game is a two-person game, played by Presenter
and Algorithm. In each round Presenter introduces a new vertex of a graph
with its adjacency status to all vertices presented earlier. Algorithm assigns a
color to the incoming vertex in such a way that the coloring of the presented
graph is proper. The color of the new vertex is assigned before Presenter intro-
duces the next vertex and the assignment is irrevocable. The goal of Algorithm
is to minimize the number of different colors used during the game. In the
k-bounded variant of the game, the coloring constructed by Algorithm needs
to be a k-bounded coloring of the presented graph.
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For an interval I = [l, r] on the real line, we say that l is the left endpoint, and
r is the right endpoint of I. The length of interval I is the difference between its
right endpoint and its left endpoint. A set of intervals on the real line represents
a graph in the following way. Each interval represents a vertex and any two
vertices are joined by an edge whenever the corresponding intervals intersect.
A graph which admits such a representation is an interval graph.

An on-line interval coloring game is a two-person game, again played by
Presenter and Algorithm. In each round Presenter introduces a new interval on
the real line. Algorithm assigns a color to the incoming interval in such a way
that the coloring of the presented interval graph is proper, i.e. all intervals of
the same color are pairwise disjoint. The color of the new interval is assigned
before Presenter introduces the next interval and the assignment is irrevocable.
The goal of Algorithm is to minimize the number of different colors used during
the game.

We consider a few variants of the on-line interval coloring game. In the unit
variant of the game, all intervals presented by Presenter are of length exactly 1.
In the d-dimensional variant of the game, Presenter associates a d-dimensional
vector of weights from [0, 1] with each presented interval. Moreover, the coloring
constructed by Algorithm needs to satisfy a different condition. The condition
is that for each color γ and any point p on the real line, the sum of weights of
intervals containing p and colored γ does not exceed 1 in any of the coordinates.
In the k-cardinality variant of the game, the coloring constructed by Algorithm
needs to satisfy that for each color γ and any point p on the real line, the number
of intervals containing p and colored γ does not exceed k.

We are most interested in the on-line (k, d) interval coloring, a variant in
which each interval has a d-dimensional vector of weights and the coloring must
satisfy constraints of both d-dimensional and k-cardinality variant. That is, for
each color γ and any point p, the number of intervals containing p and colored
γ does not exceed k, and the sum of weights of those intervals does not exceed
1 in any coordinate.

In the context of various on-line coloring games, the measure of the quality
of a strategy for Algorithm is given by competitive analysis. A coloring strategy
for Algorithm is r-competitive if it uses at most r · c colors for any c-colorable
graph, or set of intervals, presented by Presenter. The competitive ratio for a
problem is the infimum of all values r such that there exists an r-competitive
strategy for Algorithm for this problem. In this paper we give lower bounds on
competitive ratios for different problems. We obtain these results by presenting
explicit strategies for Presenter that force any Algorithm strategy to use many
colors while the presented graph, or set of intervals, is colorable with a smaller
number of colors.

We say that a strategy for Presenter in an on-line coloring problem is trans-
parent if after each time Algorithm assigns a color to a vertex, or interval, Pre-
senter colors the vertex with his own color and reveals that color to Algorithm.
The coloring constructed by Presenter must satisfy the same conditions as the
coloring constructed by Algorithm. The number of colors used by a transparent
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strategy for Presenter gives an upper bound on the minimum number of colors
that can be used in a coloring.

1.1 Previous Work

There is a simple strategy for Presenter in on-line graph coloring game that
forces Algorithm to use any number of colors while the constructed graph is
2-colorable. Thus, the competitive ratio for this problem is unbounded. Nev-
ertheless, it is an interesting question what is the competitive ratio when the
on-line game is played only for at most n rounds. Halldórsson and Szegedy [4] pre-
sented a transparent strategy for Presenter that forces Algorithm to use at least
2 n

log n (1 + o(1)) different colors in n rounds of the game while the constructed

graph is log n(1 + o(1))-colorable. The best known upper bound of O
(

n
log∗ n

)
on

the competitive ratio for the n-round on-line graph coloring problem was given
by Lovasz, Saks and Trotter [6].

The competitive ratio for the on-line interval coloring problem was estab-
lished by Kierstead and Trotter [5]. They constructed a strategy for Algorithm
that uses at most 3ω − 2 colors while the clique size of the constructed graph
is ω. They also presented a matching lower bound – a strategy for Presenter
that forces Algorithm to use at least 3ω − 2 colors. Unit variant of the on-line
interval coloring problem was studied by Epstein and Levy [2]. They presented a
strategy for Presenter that forces Algorithm to use at least

⌊
3ω
2

⌋
colors while the

clique size of the constructed graph is ω. Moreover, they showed that First-Fit
algorithm uses at most 2ω − 1 colors. Epstein and Levy [3] introduced many
variants of the on-line interval coloring problem. The best known lower bound
on the competitive ratio for the on-line (k, d) interval coloring is 3 for small k
and 24

7 for large k. For unit variant of this problem the best known lower bound
is 3

2 .
Halldórsson and Szegedy ideas were adopted by Azar et al. [1] to show

lower bounds on competitive ratio for on-line d-vector bin packing. This prob-
lem is equivalent to a variant of d-dimensional on-line interval coloring where
all presented intervals are the interval [0, 1] with different vectors of weights.
Their strategy for Presenter shows that the competitive ratio for the on-line
d-dimensional unit interval coloring problem is at least 2 d

log2 d
(1 + o(1)).

1.2 Our Results

We generalize Halldórsson and Szegedy [4] strategy into the setting of the
k-bounded coloring, and using the technique similar to the one by Azar et al. [1]
we adopt it to the on-line (k, d) interval coloring problem. We present how to
combine this technique with classical results by Kierstead and Trotter [5], and by
Epstein and Levy [2,3] to obtain a new lower bound of 5 d

log d( d
k+log d) (1 + o(1))

on the competitive ratio for the on-line (k, d) interval coloring, and a lower bound
of 5

2
d

log d( d
k+log d) (1 + o(1)) for unit variant of this problem.
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2 Graph Coloring

Theorem 1. For every n � 2 and k ∈ N+, there is a transparent strategy for
Presenter that forces Algorithm to use at least 2 n

log n+3 different colors in the
n-round, k-bounded on-line graph coloring game and uses n

k + log n + 3 colors.

Proof. Let b = �log n� + 3. The state of a k-bounded on-line graph coloring
game is represented by a progress matrix M . Each cell M [i, j] is either empty
or it contains exactly one vertex. At the beginning of the game, all cells are
empty. A vertex in M [i, j] is colored by Algorithm with color j and by Presenter
with color i. Each player can use a single color γ to color at most k vertices,
so there are at most k vertices in any column, and in any row of the progress
matrix. We say that a row with k vertices is depleted. Presenter can no longer
use colors corresponding to depleted rows. Presenter maintains a set of exactly
b active rows, denoted A, that contains all nonempty non-depleted rows and
additionally some empty rows ({i : 1 � |∪jM [i, j]| < k} ⊂ A and |A| = b). At
the beginning of the game there are no depleted rows and A = {1, . . . , b}. When
some row becomes depleted then it is removed from A and a new empty row is
added to A. A pattern is a subset of rows. We say that a pattern p represents a
column j if ∀i : i ∈ p ⇐⇒ M [i, j] 
= ∅. A pattern p is active if it is a nonempty
subset of A such that |p| �

⌊
b
2

⌋
. An active pattern p is present in M if at least

one column of M is represented by p.
Table 1 shows a possible state of the progress matrix M after 15 rounds

of the 4-bounded on-line graph coloring game with n = 4 and b = 4. In this
example, the last introduced vertex v15 is colored by Algorithm with color 2 and
by Presenter with color 3. Rows 1 and 3 are depleted and the set of active rows
is A = {2, 4, 5, 6}. There are 10 different active patterns, but only 2 of them are
present in M : pattern {2, 5} in column 6, and pattern {5} in column 9.

The transparent strategy for Presenter for round t is as follows:

1. Choose an active pattern pt that is not present in M .
2. Introduce a new vertex vt that is adjacent to all vertices colored by Presenter

with colors not in pt.

Table 1. Example of a progress matrix after 15 rounds

1 2 3 4 5 6 7 8 9 10 . . .

1 v1 v3 v5 v7

2∗ v2 v10 v12

3 v15 v4 v9 v13

4∗ v6 v11

5∗ v8 v14

6∗

7

. . .
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3. Algorithm colors vt with color γ.
4. Color vt with any color � such that � ∈ pt and M [�, γ] = ∅.

We claim that Presenter can follow this strategy as long as there is an active
pattern not present in the progress matrix. To prove that, we need to show that
in step (4) Presenter always can choose an appropriate color �, and that the
coloring constructed by Presenter is a k-bounded coloring of the constructed
graph.

Let q be a pattern that represents column M [∗, γ] of the progress matrix
before round t. We claim that q � pt. Assume to the contrary that i ∈ q � pt.
It follows, that there is a vertex v in cell M [i, γ] and by rule (2) v is adjacent to
vt. Thus, Algorithm cannot color vertex vt with color γ. Pattern q is present in
M before round t and by rule (1) pattern pt is not present in M before round t.
It follows that q is a strict subset of pt and Presenter has at least one choice for
color � in step (4).

When Presenter assigns color � to vertex vt, we have that � ∈ pt; pt is an
active pattern; � is an active row, and there are less than k vertices colored by
Presenter with �. Rule (2) asserts that none of the vertices adjacent to vt is
colored with any of the colors in pt. Thus, we have that Presenter can follow the
strategy as long as there is a choice of an appropriate pattern in step (1).

We claim that the game can be played for at least n rounds. Indeed, there
are

(
b
x

)
different patterns of size x and each one of them must represent a column

of the progress matrix with exactly x vertices. Thus, when all active patterns
represent some column of the progress matrix, the game has been played for at
least

∑
1�x�� b

2� x
(

b
x

)
� n rounds.

After n rounds, Presenter used colors corresponding to depleted and active
rows. There are at most

⌊
n
k

⌋
depleted rows and exactly �log n� + 3 active rows.

Thus, Presenter uses at most n
k + log n + 3 colors in the first n rounds.

Let qj be a pattern representing column M [∗, j] after n rounds. Let t be the
last round when a vertex was added to column j. We have that qj is a subset of
pattern pt which was an active pattern before round t, and the size of qj is at
most

⌊
b
2

⌋
. Thus, there are at least 2 n

log n+3 nonempty columns after n rounds. 
�
For fixed parameters n and k, denote a generalized Halldórsson and Szegedy

strategy by HSk,n. Note that for k = +∞, there are no depleted rows in matrix
M and k-bounded coloring is simply a proper coloring. In this case we get the
original Halldórsson and Szegedy result for the on-line graph coloring problem.

Theorem 2 (Halldórsson, Szegedy [4]). For every integer n � 2, there is a
transparent strategy for Presenter that forces Algorithm to use at least 2 n

log n+3
colors in the n-round on-line graph coloring game and uses log n + 3 colors.

3 Interval Coloring

In the proof of the following theorem, we use strategy HSk,d to show a lower
bound on the competitive ratio for the on-line (k, d) interval coloring problem.
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Theorem 3. For every d � 2 and k,m ∈ N+, there is a strategy for Presen-
ter that forces Algorithm to use at least (5m − 3) d

log d+3 different colors in the
on-line (k, d) interval coloring game while the constructed set of intervals is
m

(
d
k + log d + 3

)
-colorable.

Proof. For any fixed parameters k ∈ N+, d � 2, L < R, ε ∈ (0, 1
d ) we describe

an auxiliary strategy HSk,d(ε, L,R). Let α = 1 − 1
2ε, δ = 1

2dε. In the t-th round
of the on-line (k, d) interval coloring game, Presenter uses HSk,d strategy to
get a new vertex vt. Then, presents an interval [L,R] with weights wt, where
wt = (x1, . . . , xd) is a d-dimensional vector with xt = α, xi = ε for all i < t such
that vi is adjacent to vt, and xi = δ in every other coordinate. Figure 1 shows
an example of w6 for a vertex v6 that is adjacent to v2 and v5.

([L,R], wt) is colored by Algorithm with color γt. Then, γt is forwarded to
HSk,d as the color of vt. HSk,d colors vt with �t, but Presenter discards that
information. See Fig. 2 for a diagram of the strategy HSk,d(ε, L,R), and Fig. 3
for an example encoding of a graph.

We claim that the encoding strategy ensures that any intervals Ii and Ij can
get the same color iff vertices vi and vj are not adjacent. First, assume that i < j
and vi is adjacent to vj . Vector wi has α in the i-th coordinate, vector wj has ε
in the i-th coordinate, and α + ε > 1. Thus, intervals Ii and Ij must be colored
with different colors. Let J ⊂ {I1, ..., It−1} be the set of intervals colored with

1 2 3 4 5 6 7 8 . . . d

δ

ε

δ δ

ε

α

δ δ δ

Fig. 1. Encoding of v6 in a d-dimensional vector of weights

A
lg

o
ri

th
m

en
co

d
e

HSk,d

vt
[L, R], wt

γt

t

Fig. 2. Encoding of HSk,d strategy
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v1

v2

v3

v4

v5

v6

w1 α δ δ δ δ δ

w2 ε α δ δ δ δ

w3 δ ε α δ δ δ

w4 ε δ ε α δ δ

w5 δ ε ε δ α δ

w6 δ δ δ ε ε α

Fig. 3. Example of a graph and vectors of weights corresponding to the vertices

γ before round t � d. Assume that vt is not adjacent to any of the vertices in
J . Denote the l-th coordinate of the sum of vectors of weights of intervals in J
by Wl. For any 1 � l � d, if Il ∈ J then Wl = α + δ(|J | − 1) < 1 − δ. In this
case we have that vt is not adjacent to vl, and that the l-th coordinate of the
vector of weights of vt is δ. If Il /∈ J then Wl � ε|J | < 1 − ε. For l = t, we have
Wl � δ|J | � 1−α. Thus, the sum of vector of weights of the intervals in the set
J ∪ {It} does not exceed 1 in any coordinate and It can be colored with γ.

Consider a sequence of parameters {εi}i∈N+
defined as εi :=

(
1
2d

)i. See that
for every i ∈ N+ we have εi ∈ (0, 1

d ) and we can use HSk,d(εi, L,R) strategy.
Let αi = 1 − 1

2εi and δi = 1
2dεi = εi+1.

Let Ji be a set of intervals constructed by HSk,d(εi, Li, Ri) strategy and
Jj be a set of intervals constructed by HSk,d(εj , Lj , Rj) strategy. Assume that
i < j, [Li, Ri] ∩ [Lj , Rj ] 
= ∅ and that the construction of Ji is finished before
the construction of Jj starts. Any interval I ∈ Jj has weight αj in one of
the coordinates and every interval in Ji has weight either αi, εi or δi in that
coordinate. In any case, sum of those weights exceeds 1 and no two intervals,
one in Ji, other in Jj can be colored with the same color.

The rest of the proof uses a technique similar to the one by Kierstead and
Trotter [5]. For m ∈ N+, let cm = (5m − 3) d

log d+3 , and om = m
(

d
k + log d + 3

)
.

By induction on m, we show a strategy Sm for Presenter such that: all introduced
intervals are contained in a fixed region [A,B]; all intervals come from calls of
strategies HSk,d(ε, L,R) with ε in {ε1, . . . , ε3m}; Algorithm uses at least cm

different colors; constructed set of intervals is om-colorable. For m = 1 and a
fixed region [A,B], Presenter uses strategy HSk,d(ε1, A,B). This strategy forces
Algorithm to use at least c1 different colors, and the constructed set of intervals
is o1-colorable. Thus, in this case we are done.

Let c̄ = 3
(
cm+1
cm

)
+ 1. Presenter splits the fixed region [A,B] into c̄ disjoint

regions [l1, r1], . . . , [lc̄, rc̄]. By induction, in each region Presenter can use strategy
Sm independently. As a result, in each region [li, ri], we get a set of intervals Ji.
If during the construction Algorithm uses at least cm+1 colors, we are done.
Otherwise, let Ci be a cm-element subset of colors used by Algorithm to color
Ji. Some cm-element set of colors C∗ appears on the list (C1, . . . , Cc̄) at least 4
times. Let a, b, c, d ∈ {1, . . . , c̄}, a < b < c < d be indices such that Ca = Cb =
Cc = Cd = C∗. Define pi = 1

2 (ri + li+1) for i = a, b, c.
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la ra

Ca

lb rb

Cb

lc rc

Cc

ld rd

Cd

pa pb pc

D1 D2

D3

Fig. 4. Construction in case |D1 ∩ D2| � 1
2
c1

Presenter uses strategy HSk,d(ε3m+1, la, pa) to get a set of intervals K1 and
then strategy HSk,d(ε3m+1,

rc+pc

2 , rd) to get a set of intervals K2. Let D1 be
a c1-element subset of colors used by Algorithm to color K1, and D2 be a
c1-element subset of colors used to color K2. The construction of Ja and Jd

is finished before the construction of K1 and K2 started and region [la, pa] covers
[la, ra], and region

[
rc+pc

2 , rd

]
covers [ld, rd]. Thus, none of the colors in C∗ can

be used to color any interval in K1 or K2. Now, the strategy splits into two cases:
we either have |D1 ∩ D2| � 1

2c1 or |D1 ∩ D2| > 1
2c1.

Case 1. |D1 ∩ D2| � 1
2c1. Presenter uses strategy HSk,d(ε3m+2,

ra+pa

2 , pc) to
get a set of intervals K3. Let D3 be the set of colors used to color K3. See Fig. 4
for a diagram of the construction. Region

[
ra+pa

2 , pc

]
covers [lb, rb] and we get

C∗ ∩D3 = ∅. Moreover, any interval in K3 intersects any interval in K1, and any
interval in K2. Thus, D3 ∩ D1 = ∅, D3 ∩ D2 = ∅, and Algorithm uses at least
|C∗ ∪ D1 ∪ D2 ∪ D3| � cm + c1 + 1

2c1 + c1 = cm+1 colors. Each set of intervals
J1, . . . ,Jc̄ intersects with intervals in at most one of the sets K1, K2, or K3. Thus,
all presented intervals can be colored with max{2,m + 1}( d

k + log d + 3) = om+1

colors and in this case we are done.

Case 2. |D1 ∩ D2| > 1
2c1. Presenter uses strategy HSk,d(ε3m+2,

rb+pb

2 , pc) to get
a set of intervals K4 and then strategy HSk,d(ε3m+3,

ra+pa

2 , pb) to get K5. Let
D4 be a c1-element subset of colors used by Algorithm to color K4, and D5 be
the set of colors used to color K5. See Fig. 5 for a diagram of the construction.
Similar argument as in the previous case gives C∗ ∩ D4 = ∅, C∗ ∩ D5 = ∅,
D2 ∩ D4 = ∅, D1 ∩ D5 = ∅, and D4 ∩ D5 = ∅. Set D2 contains at least 1

2c1

la ra

Ca

lb rb

Cb

lc rc

Cc

ld rd

Cd

pa pb pc

D1 D2

D4

D5

Fig. 5. Construction in case |D1 ∩ D2| ≥ 1
2
c1
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elements from the set D1. Thus, we have |D4 ∩ D1| � 1
2c1. Algorithm uses at

least |C∗ ∪ D1 ∪ D4 ∪ D5| � cm+c1+ 1
2c1+c1 = cm+1 colors. Each set of intervals

J1, . . . ,Jc̄ intersects with intervals in at most one of the sets K1, K2, K4, or K5.
Thus, all intervals can be colored with max{2,m + 1}( d

k + log d + 3) = om+1

colors. 
�

4 Unit Interval Coloring

Theorem 4. For every d � 2 and k,m ∈ N+, there is a strategy for Pre-
senter that forces Algorithm to use at least

⌊
5m
2

⌋
d

log d+3 different colors in the
on-line (k, d) unit interval coloring game while the constructed set of intervals
is m

(
d
k + log d + 3

)
-colorable.

Proof. The proof combines strategy HSk,d(ε, L,R) introduced in the proof of
Theorem 3 with technique similar to the one by Epstein and Levy [2,3]. Assume
that the sequence of encoding parameters {εi}i∈N+ is defined the same way as
in the proof of Theorem 3.

The strategy consists of 3 phases. In the initial phase Presenter uses strategy
HSk,d(εi, 0, 1) for i = 1, . . . ,

⌊
m
2

⌋
sequentially. There is a coloring of all intervals

introduced in the initial phase using
⌊

m
2

⌋(
d
k + log d + 3

)
colors, but Algorithm

uses at least
⌊

m
2

⌋
2d

log d+3 colors. Let Cinit be a
⌊

m
2

⌋
2d

log d+3 -element subset of colors
used by Algorithm in the initial phase.

For L < R < L + 1, let Sep(L,R) be the separation strategy that introduces
d unit intervals in the following way. Initialize l = L, and r = R. To get next
interval, calculate p = 1

2 (l+r) and introduce interval I = [p, p + 1]. If Algorithm
colors I with color in Cinit, then update r = p. Otherwise, mark interval I and
update l = p. Observe that to the left of p there are only left endpoints of marked
intervals. Moreover, all introduced intervals have nonempty intersection.

The separation phase consists of 2
⌊

m
2

⌋
subphases. We fix L1 = 3

2 and R1 = 2.
For i = 2, . . . , 2

⌊
m
2

⌋
, points Li and Ri are established after the (i − 1)-th sub-

phase. Denote by Subi, the strategy for the i-th subphase being a combination
of the HSk,d(εi, 0, 1) strategy and the Sep(Li, Ri) strategy. Strategy Subi intro-
duces d intervals. The position of each interval is determined using Sep(Li, Ri)
strategy, and the d-dimensional vector of weights associated with each interval is
determined according to HSk,d(εi, 0, 1). See Fig. 6 for a diagram of the strategy
Subi.

At the end of each subphase, Presenter decides whether the subphase is
marked or not. The set of marked subphases is denoted by M. Let Ci be the
set of colors used by Algorithm in the i-th subphase and not present in the set
Cinit. Subphase i is marked if and only if one of the following conditions holds:

1. the number of remaining subphases including the i-th is
⌊

m
2

⌋ − |M|.
2. |Ci| � d

log d+3 and |M| <
⌊

m
2

⌋
,

Observe that at the end of the separation phase we have exactly
⌊

m
2

⌋
marked

subphases.
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Fig. 6. Strategy Subi for a single subphase

Let L∗ be the left endpoint of the leftmost interval introduced in the i-th
subphase. Let L be the left endpoint of the rightmost interval introduced in the
i-th subphase and colored by Algorithm with a color c /∈ Cinit. Set L = Li if
such an interval does not exist. Let R be the left endpoint of the leftmost interval
introduced in the i-th subphase and colored by Algorithm with a color c ∈ Cinit.
Set R = Ri if such an interval does not exist. If subphase i is marked then
Li+1 = L and Ri+1 = R. Otherwise, Li+1 = Li and Ri+1 = L∗. This completes
the definition of the separation phase.

Let m′ = 2
⌊

m
2

⌋
and P = 1

2 (Lm′+1 + Rm′+1). Observe that every interval
introduced in the separation phase with the left endpoint to the left of P belongs
to a marked subphase and is colored with a color c /∈ Cinit. Let Csep be the set
of colors used in the separation phase to color intervals with the left endpoint
to the left of P .

In each subphase Algorithm uses at least 2d
log d+3 different colors, so in the

separation phase Algorithm uses at least 2
⌊

m
2

⌋
2d

log d+3 colors in total. Because
|Cinit| =

⌊
m
2

⌋
2d

log d+3 , Algorithm, in the separation phase, uses at least
⌊

m
2

⌋
2d

log d+3
colors not in Cinit. The set of marked subphases M contains x subphases in which
Algorithm used at least d

log d+3 such colors and
⌊

m
2

⌋ − x last subphases. From
the first

⌊
m
2

⌋
+ x subphases only x subphases are marked. By the definition,

in an unmarked subphase i for i �
⌊

m
2

⌋
+ x, Algorithm uses less than d

log d+3

colors not in Cinit. Thus, at most
⌊

m
2

⌋
d

log d+3 such colors from subphases 1 up to
⌊

m
2

⌋
+ x are not in the set Csep. All colors not in Cinit used in the subphase i

for i >
⌊

m
2

⌋
+ x are in the set Csep. Thus, |Csep| �

⌊
m
2

⌋
d

log d+3 .
In the final phase, Presenter uses strategy HSk,d(εi, P − 1, P ) for i =

m + 1, . . . , m +
⌈

m
2

⌉
sequentially. Every interval introduced in the final phase

intersects with every interval from the initial phase and every interval from the
separation phase with the left endpoint to the left of P . Thus, each color used in
the final phase belongs neither to Cinit nor to Csep. In the final phase, Algorithm
uses at least

⌈
m
2

⌉
2d

log d+3 colors.
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In total, Algorithm uses at least
(
2
⌊

m
2

⌋
+

⌊
m
2

⌋
+ 2

⌈
m
2

⌉)
d

log d+3 =
⌊

5m
2

⌋
d

log d+3
different colors. On the other hand, the presented set of intervals can be easily
colored using

(⌊
m
2

⌋
+

⌈
m
2

⌉)(⌊
d
k

⌋
+ log d + 3

)
= m

(⌊
d
k

⌋
+ log d + 3

)
colors. 
�

Note that for k = +∞, the strategy HS∞,d becomes independent of
k-cardinality constraint. This gives two new bounds on the competitive ratio
for on-line d-dimensional interval coloring problems.

Theorem 5. For every d � 2 and n ∈ N+, there is a strategy for Presenter
that forces Algorithm to use at least (5m − 3) d

log d+3 different colors in the on-
line d-dimensional interval coloring game while the constructed set of intervals
is m(log d + 3)-colorable.

Theorem 6. For every d � 2 and n ∈ N+, there is a strategy for Presenter
that forces Algorithm to use at least

⌊
5m
2

⌋
d

log d+3 different colors in the on-line
d-dimensional unit interval coloring game while the constructed set of intervals
is m(log d + 3)-colorable.
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Parameterized and Exact Algorithms for Class
Domination Coloring
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Abstract. A class domination coloring (also called as cd-coloring) of
a graph is a proper coloring such that for every color class, there is
a vertex that dominates it. The minimum number of colors required
for a cd-coloring of the graph G, denoted by χcd(G), is called the class
domination chromatic number (cd-chromatic number) of G. In this work,
we consider two problems associated with the cd-coloring of a graph
in the context of exact exponential-time algorithms and parameterized
complexity. (1) Given a graph G on n vertices, find its cd-chromatic
number. (2) Given a graph G and integers k and q, can we delete at most
k vertices such that the cd-chromatic number of the resulting graph is at
most q? For the first problem, we give an exact algorithm with running
time O(2nn4 log n). Also, we show that the problem is FPT with respect
to the number of colors q as the parameter on chordal graphs. On graphs
of girth at least 5, we show that the problem also admits a kernel with
O(q3) vertices. For the second (deletion) problem, we show NP-hardness
for each q ≥ 2. Further, on split graphs, we show that the problem is
NP-hard if q is a part of the input and FPT with respect to k and q.
As recognizing graphs with cd-chromatic number at most q is NP-hard
in general for q ≥ 4, the deletion problem is unlikely to be FPT when
parameterized by the size of deletion set on general graphs. We show
fixed parameter tractability for q ∈ {2, 3} using the known algorithms
for finding a vertex cover and an odd cycle transversal as subroutines.

1 Introduction

A dominating set is a set of vertices whose closed neighbourhood contains the
vertex set of the graph. A proper coloring of a graph is a partition of its vertex
set into independent sets. That is, the graph induced by all the vertices of any
partition is an independent set. The minimum number of colors in any proper
coloring is called as the chromatic number of the graph. Given a graph G, the
Dominating Set problem is to find a minimum dominating set of G and the
Graph Coloring or Chromatic Number problem is to compute a coloring
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that uses the minimum number of colors. Dominating Set and Graph Col-
oring are two classical problems in the field of combinatorics and combinatorial
algorithms. Being notoriously hard problems, they have been studied extensively
in algorithmic realms like exact algorithms [3,17,18,23,24,32], approximation
algorithms [4,21,22,25], and parameterized algorithms [1,2,5,14]. Further, the
complexity of variants of these two problems like Edge-Chromatic Number,
Achromatic Number, b-Chromatic Number, Independent Dominating
Set and Connected Dominating Set have also been widely investigated in
the literature.

Dominator Coloring and Class Domination Coloring are two prob-
lems that have the flavour of both Dominating Set and Chromatic Number.
The former problem, introduced in [20], is the task of determining a minimum
proper coloring of the graph such that every vertex contains at least one color
class in its neighbourhood. The latter problem, also known as cd-Coloring,
is to obtain a minimum proper coloring such that every color class is contained
in the neighbourhood of some vertex. The decision versions of both the prob-
lems are known to be NP-complete when the number of colors is at least four
and polynomial-time solvable otherwise [19,35]. Characterization of graphs that
admit such colorings using at most 3 colors are also known [6,35]. In this paper,
we study Class Domination Coloring which is formally defined as follows.

cd-Coloring
Input: A graph G, an integer q.
Question: Can G be properly colored using at most q colors such that every
color class is contained in the neighbourhood of some vertex?

The minimum number of colors needed in any cd-coloring of G is called
the class domination chromatic number (cd-chromatic number) and is denoted
by χcd(G). Also, G is said to be q-cd-colorable if χcd(G) ≤ q. The problem
has also been studied on many restricted graph classes like split graphs, P4-free
graphs [35] and middle and central graphs of K1,n, Cn and Pn [36]. We study this
problem in the context of exact exponential-time algorithms and parameterized
complexity. The field of exact algorithms typically deal with designing algorithms
for NP-hard problems that are faster than brute-force search while the goal
in parameterized complexity is to provide efficient algorithms for NP-complete
problems by switching from the classical view of single-variate measure of the
running time to a multi-variate one. In parameterized complexity, we consider
instances (I, k) of parameterized a problem Π ⊆ Σ∗ × N, where Σ is a finite
alphabet. Algorithms in this area have running times of the form f(k)|I|O(1),
where k is an integer measuring some part of the problem. This integer k is
called the parameter, and a problem that admits such an algorithm is said to
be fixed-parameter tractable (FPT). The running time f(k)|I|O(1) where f is an
exponential function is also specified as O∗(f(k)) suppressing the polynomial
factors. In most of the cases, the solution size is taken to be the parameter,
which means that this approach results in efficient (polynomial-time) algorithms
when the solution is of small size. A kernelization algorithm for a parameterized
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problem Π is a polynomial time procedure which takes as input an instance
(x, k) of Π and returns an instance (x′, k′) such that (x, k) ∈ Π if and only if
(x′, k′) ∈ Π and |x′| ≤ h(k) and k′ ≤ g(k), for some computable functions h, g.
The returned instance is called as the kernel for Π and h(k) + g(k) is said to
be the size of the kernel. We say that Π admits a polynomial kernel if h and g
are polynomial. For more background on parameterized complexity, we refer the
reader to the monographs [11,13,15,29].

We first observe that parameterizing cd-Coloring by the solution size
(which is the number of colors) does not help in designing efficient algorithms
as the problem is para-NP-hard (NP-hard even for constant values of the para-
meter). Hence, this problem is unlikely to be FPT when parameterized by the
solution size. Then, we describe an O(2nn4 log n)-time algorithm for finding the
cd-chromatic number of a graph using polynomial method. Next, we show that
cd-Coloring is FPT when parameterized by the number of colors and the
treewidth of the input graph. Further, we show that the problem is FPT when
parameterized by the number of colors on chordal graphs. Kaminski and Lozin
[28] showed that determining if a graph of girth at least g admits a proper color-
ing with at most q colors or not is NP-complete for any fixed q ≥ 3 and g ≥ 3. In
particular, Chromatic Number is para-NP-hard for graphs of girth at least 5.
In contrast, we show that cd-Coloring is FPT on this graph class and admits
a kernel with O(q3) vertices.

On a graph G that is not q-cd-colorable, a natural optimization question is
to check if we can delete at most k vertices from G such that the cd-chromatic
number of the resultant graph is at most q? We define this problem as follows.

cd-Partization
Input: Graph G, integers k and q
Question: Does there exist S ⊆ V (G), |S| ≤ k, such that χcd(G − S) ≤ q?

If q is fixed, then we refer to the problem as q-cd-Partization. Once again,
from parameterized complexity point of view, this question is not interesting
on general graphs for values of q greater than three, as in those cases, an FPT
algorithm with deletion set (solution) size as the parameter is a polynomial-time
recognition algorithm for q-cd-colorable graphs. Hence, the deletion question is
interesting only on graphs where the recognition problem is polynomial-time
solvable. We show that q-cd-Partization is NP-complete for each q ≥ 2, and
that for q ∈ {2, 3}, the problem is FPT with respect to the solution size as the
parameter. Our algorithms use the known parameterized algorithms for finding
a vertex cover and an odd cycle transversal as subroutines. We also show that
cd-Partization remains NP-complete on split graphs and is FPT when para-
meterized by the number of colors and solution size. Due to space constraints,
proofs of results marked † have been omitted. They will appear in the full version
of the paper.
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2 Preliminaries

The set of integers {1, 2, . . . , k} is denoted by [k]. All graphs considered in this
paper are finite, undirected and simple. For the terms which are not explicitly
defined here, we use standard notations from [12]. For a graph G, its vertex set is
denoted by V (G) and its edge set is denoted by E(G). For a vertex v ∈ V (G), its
(open) neighbourhood NG(v) is the set of all vertices adjacent to it and its closed
neighborhood is the set NG(v) ∪ {v}. We omit the subscript in the notation for
neighbourhood if the graph under consideration is implicitly clear. The degree
of a vertex v is the size of its open neighborhood.

For a set S ⊆ V (G), the subgraph of G induced by S, denoted by G[S], is
defined as the subgraph of G with vertex set S and edge set {(u, v) ∈ E(G) :
u, v ∈ S}. The subgraph of G obtained after deleting S (and the edges incident
on it) is denoted as G−S. The girth of a graph is the length of a smallest cycle.
A set D ⊆ V (G) is said to be a dominating set of G if every vertex in V (G)\D
is adjacent to some vertex in D. A dominating set is called total dominating set
if every vertex in V (G) is adjacent to some vertex in it.

A proper coloring of G with q colors is a function f : V (G) → [q] such
that for all (u, v) ∈ E(G), f(u) �= f(v). For a proper coloring f of G with q
colors and i ∈ [q], f−1(i) ⊆ V (G) is called a color class in the coloring f . The
chromatic number χ(G) of G is the minimum number of colors required in a
proper coloring of G. A clique is a graph which has an edge between every pair
of vertices. The clique number ω(G) of G is the size of a largest clique which is
a subgraph of G. A vertex cover is a set of vertices that contains at least one
endpoint of every edge in the graph. An independent set is a set of pairwise
nonadjacent vertices. A graph is said to be a bipartite graph if its vertex set
can be partitioned into 2 independent sets. An odd cycle transversal is a set of
vertices whose deletion results in a bipartite graph. A tree-decomposition of a
graph G is a pair (T,X = {Xt}t∈V (T)) such that

–
⋃

t∈V (T) Xt = V (G),
– for every edge (x, y) ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and
– for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt}

is connected.

The width of a tree decomposition is maxt∈V (T) |Xt| − 1 and the treewidth of
G, denoted by tw(G), is the minimum width over all tree decompositions of
G. The syntax of Monadic Second Order Logic (MSO) of graphs includes the
logical connectives ∨, ∧, ¬, ⇒, ⇔, variables for vertices, edges, sets of vertices,
sets of edges, the quantifiers ∀, ∃ that can be applied to these variables and the
following five binary relations.

– u ∈ U where u is a vertex variable and U is a vertex set variable;
– e ∈ F where e is an edge variable and F is an edge set variable;
– inc(e, u), where e is an edge variable, u is a vertex variable, and the interpre-

tation is that the edge e is incident with the vertex u;
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– adj(u, v), where u and v are vertex variables and the interpretation is that u
and v are adjacent;

– equality of variables representing vertices, edges, sets of vertices, and sets of
edges.

For a MSO formula φ, ||φ|| denotes the length of its encoding as a string.

Theorem 1 (Courcelle’s theorem, [9,10]). Let φ be a graph property that
is expressible in MSO. Suppose G is a graph on n vertices with treewidth tw
equipped with the evaluation of all the free variables of φ. Then, there is an
algorithm that verifies whether φ is satisfied in G in f(||φ||, tw) ·n time for some
computable function f .

We end the preliminaries section with following simple observations.

Observation 1. If G1, . . . , Gl are the connected components of G, then
χcd(G) =

∑l
i=1 χcd(Gi).

Observation 2. If G is q-cd-colorable, then G has a dominating set of size at
most q.

3 Exact Algorithm for cd-Chromatic Number

Let G denote the input graph on n vertices. Given a coloring of V (G), we can
check in polynomial time whether it is a cd-coloring or not. Therefore, to com-
pute χcd(G), we can iterate over all possible colorings of V (G) with at most n
colors and return the valid cd-coloring that uses the minimum number of colors.
This brute force algorithm runs in 2O(n log n) time. In this section we present
an algorithm which runs in O(2nn4 log(n)) time. The idea for this algorithm is
inspired by an exact algorithm for b-Chromatic Number presented in [30]. We
first list some preliminaries on polynomials and Fast Fourier Transform following
the framework of [30].

A binary vector φ is a finite sequence of bits and val(φ) denotes the integer
d of which φ is the binary representation. All vectors considered here are binary
vectors and are synonymous to binary numbers. Further, they are the binary
representations of integers less than 2n and are assumed to consist of n bits.
φ1+φ2 denotes the vector obtained by the bitwise addition of the binary numbers
(vectors) φ1 and φ2. Let U = {u1, u2, . . . , un} denote a universe with a fixed
ordering on its elements. The characteristic vector of a set S ⊆ U , denoted by
ψ(S), is the vector of length |U | whose jth bit is 1 if uj ∈ S and 0 otherwise.
The Hamming weight of a vector φ is the number of 1s in φ and it is denoted by
H(φ). Observe that H(ψ(S)) = |S|. The Hamming weight of an integer is define
as hamming weight of its binary representation. To obtain the claimed running
time bound for our exponential-time algorithm, we make use of the algorithm
for multiplying polynomials based on the Fast Fourier Transform.
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Lemma 1 [33]. Two polynomials of degree at most d over any commutative ring
R can be multiplied using O(d·log d·log log d) additions and multiplications in R.

Let z denote an indeterminate variable. We use the monomial zval(ψ(S)) to rep-
resent the set S ⊆ U and as a natural extension, we use univariate polynomials
to represent a family of sets.

Definition 1 (Characteristic Polynomial of a Family of Sets). For a
family F = {S1, S2, . . . , Sq} of subsets of U , the characteristic polynomial of F
is defined as pψ(F) =

∑q
i=1 zval(ψ(Si)).

Definition 2 (Representative Polynomial). For a polynomial p(z) =∑q
i=1 ai · zi, we define its representative polynomial as

∑q
i=1 bi · zi where bi = 1

if ai �= 0 and bi = 0 if ai = 0.

Definition 3 (Hamming Projection). The Hamming projection of the poly-
nomial p(z) =

∑q
i=1 ai · zi to the integer h is defined as Hh(p(z)) :=

∑q
i=1 bi · zi

where bi = ai if H(i) = h and bi = 0 otherwise.

Next, for two sets S1, S2 ⊆ U , we define a modified multiplication operation (�)
of the monomials zψ(S1) and zψ(S2) in the following way.

zval(ψ(S1)) � zval(ψ(S2)) =

{
zval(ψ(S1))+val(ψ(S2)) if S1 ∩ S2 = ∅
0 otherwise

For a polynomial function p(z) of z and a positive integer 	 ≥ 2, we induc-
tively define the polynomial p(z)� as p(z)� := p(z)�−1 � p(z). Here, coefficients
of monomials follow addition and multiplications defined over underlying field.
We now describe an algorithm for implementing the � operation using the stan-
dard multiplication operation and the notion of Hamming weights of bit strings
associated with exponents.

Algorithm 3.1. Compute (�) product of two polynomials
Input: Two polynomials q(z), r(z) of degree at most 2n

Output: q(z) � r(z)
1 Initialize polynomials t(z) and t′(z) to 0
2 for each ordered pair (i, j) such that i + j ≤ n do
3 Compute si(z) = Hi(q(z)) and sj(z) = Hj(r(z))
4 Compute sij(z) = si(z) ∗ sj(z) using Lemma 1
5 t′(z) = t(z) + Hi+j(sij(z))
6 Set t(z) as the representative polynomial of t′(z)

7 return t(z)

Lemma 2 (†). Let F1 and F2 be two families of subsets of U . Let F denote the
collection {S1 ∪ S2| S1 ∈ F1, S2 ∈ F2 and S1 ∩ S2 = ∅}. Then, pψ(F1) � pψ(F2)
computed by Algorithm3.1 is pψ(F).
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Corollary 1 (†). Given a polynomial p(z) of degree at most 2n, there is an
algorithm that computes p(z)� in O(2nn3 log n · l) time.

We now prove a result which correlates the existence of a partition of a set with
the presence of a monomial in a polynomial associated with it.

Lemma 3. Consider a universe U and a family F of its subsets with charac-
teristic polynomial p(z). For any W ⊆ U , W is the disjoint union of 	 sets from
F if and only if there exists a monomial zval(ψ(W )) in p(z)�.

Proof. Let W be the disjoint union of S1, S2, . . . , S� such that Si ∈ F for all
i ∈ [	]. For any j ∈ [n], the jth bit of ψ(W ) is 1 if and only if there is exactly one
Si such that jth bit of ψ(Si) is 1. Thus, val(ψ(W )) = val(ψ(S1))+ val(ψ(S2))+
· · · + val(ψ(S�)). Now, for every Si there is a term zval(ψ(Si)) in p(z). Further,
as the Si’s are pairwise disjoint, the monomial zval(ψ(S1)) � zval(ψ(S2)) � · · · �
zval(ψ(S�)) which is equal to zval(ψ(W )) is present in p(z)�. We prove the converse
by induction on 	. For 	 = 1, the statement is vacuously true and for 	 = 2, the
claim holds from the proof of Lemma2. Assume that the claim holds for all the
integers which are smaller than 	, i.e. if there exists a monomial zval(ψ(W )) in
p(z)�−1 then W can be partitioned into 	 − 1 disjoint sets from F .

If there exists a monomial zval(ψ(W )) in p(z)� = p(z)�−1 � p(z) then it is
the product of two monomials, say zval(ψ(W1)) in p(z)�−1 and zval(ψ(W2)) in p(z)
respectively with W1∩W2 = ∅. By induction hypothesis, W1 is the disjoint union
of S1, S2, . . . , S�−1 such that Si ∈ F for all i ∈ [	−1]. Also, W2 is in F and since
W1 ∩ W2 = ∅, Si ∩ W2 = ∅ for each i. Therefore, W can be partitioned into sets
S1, S2, . . . , S�−1,W2 each of which belong to F . ��
We now are in a position to state the main theorem of this section.

Theorem 2. Given a graph G on n vertices, there is an algorithm which finds
its cd-chromatic number in O(2nn4 log n) time.

Proof. Fix an arbitrary ordering on V (G). With V (G) as the universe, we define
the family F as {X ⊆ V (G)| X is an independent set and ∃ y ∈ V (G) s.t. X ⊆
N(y)}. Every set in F is an independent set and there exists a vertex which
dominates it. That is, F is the collection of the possible color classes in any
cd-coloring of G. Let p(z) be the characteristic polynomial of F . By Lemma 3,
if there exists a monomial zval(ψ(V (G))) in p(z)� then V (G) can be partitioned
into 	 sets each belonging to F . Hence the smallest integer 	 for which there
exists a monomial zval(ψ(V (G))) in p(z)� is χcd(G). By Corollary 1, p(z)� can be
computed in O(2nn3 log n · l) time. As the cd-chromatic number of a graph is
upper bounded by n, the claimed running time bound follows. ��

4 FPT Algorithms for cd-Chromatic Number

Determining whether a graph G has cd-chromatic number at most q is NP-
hard on general graphs for q ≥ 4. This implies that the cd-Coloring problem
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parameterized by the number of colors is para-NP-hard on general graphs. Thus
this necessitates the search for special classes of graphs where cd-Coloring
is FPT. In this section we give FPT algorithms for cd-Coloring on chordal
graphs and graphs of girth at least 5.

We start by proving that cd-Coloring parameterized by the number of
colors and treewidth of graph is FPT. Towards this, we will use Courcelle’s
powerful theorem which interlinks the fixed parameter tractability of a certain
graph property with its expressibility as an MSO formula. We can write many
graph theoretical properties as an MSO formula. Following are three examples
which we will use in writing an MSO formula to check whether a graph has
cd-chromatic number at most q.

– To check whether V1, V2, . . . , Vq is a partition of V (G).

Part(V1, V2, . . . , Vq)≡∀u ∈ V (G)[∃i ∈ [q][(u ∈ Vi) ∧ (∀j ∈ [q][i�=j ⇒ u �∈ Vj)]]]

– To check whether a given vertex set Vi is an independent set or not.

IndSet(Vi) ≡ ∀u ∈ Vi[∀v ∈ Vi[¬adj(u, v)]]

– To check whether given vertex set Vi is dominated by some vertex or not.

Dom(Vi) ≡ ∃u ∈ V (G)[∀v ∈ Vi[adj(u, v)]]

We use φ(G, q) to denote the MSO formula which states that G has cd-chromatic
number at most q. We use the formulas defined above as macros in φ(G, q).

φ(G, q) ≡∃V1, V2, . . . , Vq ⊆ V (G)[Part(V1, V2, . . . , Vq)∧
IndSet(V1) ∧ · · · ∧ IndSet(Vq) ∧ Dom(V1) ∧ · · · ∧ Dom(Vq)]

It is easy to see that the length of φ(G, q) is upper bounded by a linear function
of q. By applying Theorem 1 we obtain the following result.

Theorem 3. cd-Coloring parameterized by the number of colors and the
treewidth of the input graph is FPT.

4.1 Chordal Graphs

As the graph gets more structured, we expect many NP-hard problems to get
easier in some sense on the restricted class of graphs having that structure.
For example, Chromatic-Coloring is NP-hard on general graphs but it is
polynomial time solvable on chordal graphs. However, cd-Coloring is NP-hard
even on the chordal graphs [34] and we show that it is FPT when parameterized
by the number of colors.

Theorem 4. cd-Coloring parameterized by the number of colors is FPT on
chordal graphs.
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4.2 Graphs with Girth at Least 5

In this section, we show that cd-coloring on graphs of girth at least 5 is FPT
with respect to the solution size as the parameter. By Observation 1, we can
assume that the input graph G is connected. We can define cd-coloring of a
connected graph as a proper coloring such that every color class is contained
in the open neighbourhood of some vertex. In other words, we do not allow a
vertex to dominate itself. One can verify that the two definitions of cd-coloring
are identical on connected graphs. We now define the notion of a total-dominating
set of a graph G. A set S ⊆ V (G) is called a total-dominating set if V (G) =⋃

v∈S N(v). That is, for every vertex v ∈ V (G), there exists a vertex u ∈ S,
u �= v, such that v ∈ N(u). Our interest in total-dominating set is because of its
relation to cd-coloring in graphs that do not contain triangles, that is, graphs of
girth at least 4. In particular, we show the following lemma.

Lemma 4. If g(G) ≥ 4, then the size of a minimum total dominating set is
equal χcd(G).

Lemma 4 shows that to prove that cd-Coloring is FPT on graphs of g(G) ≥ 4
it suffices to show that finding a total dominating set of size at most k is FPT
on these graphs. This leads to the Total Dominating Set problem. Given a
graph G and an integer k, the Total Dominating Set problem asks whether
there exists a total dominating set of size at most k. Observe that we can test
whether G has a total dominating set of size at most k by enumerating all
subsets S of V (G) of size at most k and checking whether it forms a total-
dominating set in polynomial time. This immediately gives an algorithm with
running time nO(k) for cd-Coloring on graphs with girth at least 4. It is not
hard to modify the reduction given in [31] to show that Total Dominating
Set is W [2] hard on bipartite graphs. Thus, Lemma4 implies that even cd-
Coloring is W [2] hard on bipartite graphs. Hence, if we need to show that
cd-Coloring is FPT, we must assume that the girth of the input graph is at
least 4. In the rest of the section, we show that cd-Coloring is FPT on graphs
with girth at least 5 by showing that Total Dominating Set is FPT on those
graphs. Before proceeding further, we note some simple properties of graphs with
girth at least 5.

Observation 3. For a graph G, if g(G) ≥ 5 then for any v in V (G), N(v) is
an independent set and for any u, v in V (G), |N(v) ∩ N(u)| ≤ 1.

Raman and Saurabh [31] defined a variation of Set Cover problem, namely,
Bounded Intersection Set Cover. An input to the problem consists of a
universe U , a collection F of subsets of U and a positive integer k with the
property that for any two Si, Sj in F , |Si ∩ Sj | ≤ c for some constant c and
the objective is to check whether there exists a sub-collection F0 of F of size
at most k such that

⋃
S∈F0

= U . In the same paper, the authors proved that
the Bounded Intersection Set Cover is FPT when parameterized by the
solution size. Total Dominating Set on (G, k) where G has girth at least 5
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can be reduced to Bounded Intersection Set Cover with U = V (G) and
F = {N(v)| ∀v ∈ V (G)}. By Observation 3, we can fix the constant c to be 1.
Hence we have the following lemma.

Lemma 5. On graphs with girth at least 5, Total Dominating Set is FPT
when parameterized by the solution size.

We now prove that the problem has a polynomial kernel and use it to design
another FPT algorithm.

Lemma 6. Total Dominating Set admits a kernel of O(k3) vertices on the
class of graphs with girth at least 5.

Proof. Let G be a graph with girth atleast 5. We first show that every vertex
of degree at least k + 1 should be included in any total dominating set of size
at most k. Suppose there exists a total dominating set X of G of size at most
k which does not contain such a vertex u. Since N(u) (having size at least
k +1) is dominated by X and no vertex can dominate itself, by the Pigeon Hole
Principle, there exists a vertex, say w, in X which is adjacent to at least two
vertices, say, v1, v2 in N(u). This implies that w, v1, v2, u forms a cycle of length
4, contradicting the fact that girth of G is at least 5.

Suppose G has a total dominating set of size at most k. Construct a tri-
partition of V (G) as follows:

H = {u ∈ V (G) | |N(u)| ≥ k + 1};
J = {v ∈ V (G) | v /∈ H, ∃u ∈ H such that (u, v) ∈ E(G)};
R = V (G)\(H ∪ J)

By the above claim, H is contained in every total dominating set of size at
most k. Hence, the size of H is upper bounded by k. Note that there is no edge
between a vertex in H and a vertex in R. Thus, R has to be dominated by at
most k vertices from J ∪R. However, the degree of vertices in J ∪R is at most k
and hence |R| ≤ O(k2) and |J ∩N(R)| is upper bounded by O(k3). We will now
bound the size of J� = J\N(R). For that, we first apply the following reduction
rule on the vertices in J�.

Reduction Rule 1. For u, v ∈ J�, if N(u) ∩ H ⊆ N(v) ∩ H then delete u.

The correctness of this reduction follows from the observation that all the vertices
in J have been dominated by the vertices in H. The only reason any vertex in
J� is part of a total dominating set is because that vertex is used to dominate
some vertex in H. If this is the case then the vertex u in the solution can be
replaced by the vertex v. In the reverse direction, if X is a total dominating set
of G − {u} and |X| ≤ k, then H ⊆ X. Hence u is dominated by x ∈ X ∩ H in
G too. That is, X is a total dominating set of G.

All that remains is to bound the size of J�. We partition J� into two sets
namely J1 and J2. The set J1 is the set of vertices which are adjacent to exactly
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one vertex in H whereas each vertex in J2 is adjacent to at least two vertices
in H. After exhaustive application of Reduction Rule 1, no two vertices in J1

can be adjacent to one vertex in H and hence |J1| ≤ |H| ≤ k. Any vertex in J2

is adjacent to at least two vertices in H. For every vertex u in J2, we assign a
pair of vertices in H to which u is adjacent. By Observation 3, no two vertices in
J2 can be assigned to the same pair and hence the size of J2 is upper bounded
by

(
k
2

) ≤ k2. Combining all the bounds, we get a kernel with O(k3) number of
vertices. ��
Combining Lemmas 4 and 6 we obtain the following theorem.

Theorem 5. On graphs with girth at least 5, cd-Coloring admits an algo-
rithm running in O(2O(q3)q12 log q3) time and an O(q3) sized vertex kernel,
where q is number of colors.

5 Complexity of CD-Partization

In this section, we study the complexity of cd-Partization. As recognizing
graphs with cd-chromatic number at most q is NP-hard on general graphs for
q ≥ 4, the deletion problem is also NP-hard on general graphs for such values of
q. For q = 1, the problem is trivial as χcd(G) = 1 if and only if G is the graph
on one vertex. In this section, we show NP-hardness for q ∈ {2, 3}. We remark
that G = {G | χcd(G) ≤ q} is not a hereditary graph class and so the generic
result of Lewis and Yannakakis [26] does not imply the claimed NP-hardness.

5.1 Para-NP-Hardness in General Graphs

Given a graph G, integers k and q, the Partization problem is the task of
determining whether there exists S ⊆ V (G), |S| ≤ k, such that χ(G − S) ≤ q or
not. Once again if q is fixed, we refer to the problem as q-Partization. Observe
that the classical NP-complete problems Vertex Cover [16] and Odd Cycle
Transversal [16] are 1-Partization and 2-Partization, respectively. Now,
we proceed to show the claimed hardness.

Theorem 6 (†). q-cd-Partization is NP-complete for q ∈ {2, 3}.

5.2 NP-Hardness and Fixed-Parameter Tractability in Split Graphs

A graph is a split graph if its vertex set can be partitioned into a clique and
an independent set. As split graphs are perfect (clique number is equal to the
chromatic number for every induced subgraph), it follows that a split graph G is
r-colorable if and only if ω(G) ≤ r. From [8,37], Partization on Split Graphs
is known to be NP-complete. This hardness was shown by a reduction from Set
Cover [16]. We modify this reduction to show that cd-Partization is NP-
complete on split graphs. The problem is in NP as the cd-chromatic coloring of
a split graph can be verified in polynomial time [35].
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Theorem 7 (†). cd-Partization on split graphs is NP-hard.

Further, as Set Cover parameterized by solution size is W[2]-hard [11], we have
the following result.

Corollary 2. cd-Partization on split graphs parameterized by q is W[2]-hard.

Now, we show that the problem is FPT with respect to q and k.

Theorem 8 (†). cd-Partization on split graphs is FPT with respect to para-
meters q and k. Furthermore, the problem does not admit a polynomial kernel
unless NP ⊆ coNP/poly.

6 Deletion to 3-cd-Colorable Graphs

We use the characterization of 3-cd-colorable graphs known from [35] and the
following well-known results on Vertex Cover and Odd Cycle Transver-
sal to show the main result of this section. Given a graph G and a positive
integer k, there is an algorithm running in O∗(1.2738k) time that determines
if G has a vertex cover of size at most k or not [7] and there is an algorithm
running in O∗(2.3146k) time that determines if G has an odd cycle transversal
of size at most k or not [27].

As we would subsequently show, our algorithms reduce the problem of finding
an optimum deletion set into finding appropriate vertex covers and constrained
odd cycle transversals. The current best parameterized algorithm for finding a
vertex cover can straightaway be used as a subroutine in our algorithm while the
one for finding an odd cycle transversal requires the following results. Consider
a graph G and let v be a vertex in G. Define the graph G′ to be the graph
obtained from G by deleting v and adding a new vertex vij for each pair vi, vj

of neighbors of v; further vij is adjacent to vi and vj .

Lemma 7 (†). G has a minimal odd cycle transversal of size at most k that
excludes vertex v if and only if G′ has a minimal odd cycle transversal of size at
most k.

Let P,Q ⊆ V (G) be two disjoint sets. Let G′′ be the graph constructed from G
by adding an independent set IP of k + 1 new vertices each of which is adjacent
to every vertex in P and an independent set IQ of k + 1 new vertices each of
which is adjacent to every vertex in Q. Further, every vertex in IP is adjacent
to every vertex in IQ.

Lemma 8 (†). G has a minimal odd cycle transversal O of size at most k such
that G − O has a bipartition (X,Y ) with P ⊆ X and Q ⊆ Y if and only if G′′

has a minimal odd cycle transversal of size at most k.

This leads to the following result.

Theorem 9 (†). Given a graph G and an integer k, there is an algorithm that
determines if there is a set S of size k whose deletion results in a graph H with
χcd(H) ≤ 3 in O∗(2.3146k) time.
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7 Concluding Remarks

In this work, we described exact and FPT algorithms for problems associated
with cd-coloring. We also explored the complexity of finding the cd-chromatic
number in graphs of girth at least 5 and chordal graphs. On the former graph
class, we described a polynomial kernel. The kernelization complexity on other
graph classes and whether the problem is FPT parameterized by only treewidth
are natural directions for further study.
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Abstract. Motivated by applications in risk management of computa-
tional systems, we focus our attention on a special case of the partial
vertex cover problem, where the underlying graph is assumed to be a
tree. Here, we consider four possible versions of this setting, depend-
ing on whether vertices and edges are weighted or not. Two of these
versions, where edges are assumed to be unweighted, are known to be
polynomial-time solvable. However, the computational complexity of this
problem with weighted edges, and possibly with weighted vertices, has
not been determined yet. The main contribution of this paper is to resolve
these questions by fully characterizing which variants of partial vertex
cover remain intractable in trees, and which can be efficiently solved.
In particular, we propose a pseudo-polynomial DP-based algorithm for
the most general case of having weights on both edges and vertices,
which is proven to be NP-hard. This algorithm provides a polynomial-
time solution method when weights are limited to edges, and combined
with additional scaling ideas, leads to an FPTAS for the general case.
A secondary contribution of this work is to propose a novel way of using
centroid decompositions in trees, which could be useful in other settings
as well.

1 Introduction

The General Setting. In the partial vertex cover problem we are given an
undirected graph G = (V,E) on n vertices, as well as a coverage requirement
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P ≥ 0, standing for the number of edges to be covered. In this context, a feasible
solution corresponds to a vertex set U ⊆ V that covers at least P edges, where
an edge (u, v) is said to be covered by U when the latter contains at least one of
the vertices u and v. The objective is to compute a minimum cardinality vertex
set that covers at least P edges.

The above-mentioned setting is a well-studied generalization of the classical
vertex cover problem, where we wish to cover all edges. The latter is known to
be APX-complete [18], and moreover, cannot be approximated within a fac-
tor smaller than 1.3606 unless P = NP [6]. In addition, assuming the unique
games conjecture, the vertex cover problem cannot be approximated within fac-
tor 2 − ε, for any fixed ε > 0 [14]. These hardness results apply to partial vertex
cover as well since it is a generalization of vertex cover. On the positive side,
however, several polynomial-time algorithms have been devised for computing
approximate partial vertex covers in general graphs. These algorithms attain a
performance guarantee of 2 [2,15], or slightly improve on this constant by lower
order terms [1,3,12]. Other results on the topic can be found in [11,19].

The Case of Tree Networks. In this paper, we focus our attention on a special
case of the partial vertex cover problem where the underlying graph is assumed
to be a tree. We consider four possible versions of this setting, depending on
whether vertices and edges are weighted or not. Specifically, in the most general
version, to which we refer as weighted partial vertex cover on trees (WPVCT),
each vertex is associated with a cost, specified by an integer-valued function
c : V → N. Similarly, each edge is associated with a coverage profit, given
by p : E → N. With these definitions, our goal is to compute a vertex set of
minimum cost, such that the collective profit of all edges covered is at least
P . The three additional versions are obtained by restricting all edges to take
unit profits (VPVCT), all vertices to take unit costs (EPVCT), and having both
restrictions at the same time (PVCT).

In contrast to the intractability of computing partial vertex covers in gen-
eral graphs, on tree networks the simplest version (i.e., PVCT) can be solved to
optimality by means of dynamic programming. It turns out that a result sim-
ilar to this holds for VPVCT, meaning that VPVCT is polynomial-time solv-
able. In fact, Gandhi, Khuller, and Srinivasan [8] showed that this problem can
be solved in linear time even on graphs of bounded treewidth, with arbitrary
vertex costs and with unit-profit edges, meaning in particular that VPVCT is
polynomial-time solvable. However, to our knowledge, the computational com-
plexity of WPVCT and EPVCT has not been determined yet and cannot be
directly inferred from existing work in this direction.

Finally, let us note that in [5], the partial vertex cover problem is solved for
bipartite graphs that satisfy the MNC property. In [5], a graph G is said to be
MNC, if for each k ≥ 1, OPTG(k+2)−OPTG(k+1) ≤ OPTG(k+1)−OPTG(k).
Here OPTG(k) denotes the maximum number of edges of G that can be covered
by a subset of k vertices of G. In [5], it is claimed that PVCT can be solved
in polynomial time since all trees are MNC. However, the latter statement is
incorrect: for example, the tree T from Fig. 1 is not MNC.
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Fig. 1. In this example OPTT (1) = 3, OPTT (2) = 4 and OPTT (3) = 6, hence
OPTT (3) − OPTT (2) �≤ OPTT (2) − OPTT (1).

1.1 Our Results

The main contribution of this paper is to resolve the above-mentioned questions
by fully characterizing which variants of partial vertex cover remain intractable in
trees and which can be efficiently solved. Our findings can be briefly summarized
as follows:

1. We propose an exact algorithm for EPVCT, showing that this problem can
be solved to optimality in polynomial time.

2. We observe that WPVCT is NP-hard and design a fully polynomial-time
approximation scheme (FPTAS) for this problem.

From a technical perspective, a secondary contribution of this work is to
propose a novel way of using centroid decompositions in trees. At first glance,
it appears as if our approach leads to a dynamic-programming algorithm run-
ning in quasi-polynomial time1. However, additional insight allows us to argue
that there are only polynomially-many states to be evaluated throughout the
overall computation, while all other states are actually irrelevant for our partic-
ular purposes. We believe that ideas in this spirit could be useful in additional
settings.

1.2 Practical Motivation

Our interest towards partial vertex covers is motivated by recent applications in
risk management of computational systems or devices [17]. Consider internet-
accessible devices, such as servers, personal computers, or smartphones, routinely
facing a large number of attacks on stored data, on their operating system, or
on a specific software. In such scenarios, it is impossible to expect a manual
response to each and every attack. Instead, such devices need to be configured
in a way that enables automated response to potential attacks, which is a major
technological challenge.

From a conceptual perspective, the risk to most devices of this nature depends
on three factors: threats and their occurrence probabilities, existing weaknesses
of the system, and the undesirable effects experienced after a successful attack.
While threats cannot be controlled by system designers, the other two factors
1 That is, having an exponent of poly-logarithmic order (in the input size).
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can typically be handled by decreasing functionality. Therefore, there is constant
tension between the desired levels of security and functionality, and the main
approach is to allow users to have maximum functionality, subject to a predefined
level of risk.

Such problems were modeled by Caskurlu et al. [4] as network flows in tri-
partite graphs G = (T ∪ V ∪ A,E), whose vertex partition represented threats
(T ), vulnerabilities (V ), and the system assets (A). An edge joining two vertices
represents a contribution to the overall risk, as shown in Fig. 2. In this model,
the objective is to reduce the system risk, measured as the total flow between
T and A, below a given threshold level by either restricting user permissions,
or encapsulating the system assets. In graph-theoretic terms, these strategies
correspond to deleting a minimum weight subset of V ∪ A, so that the flow
between T and A reduces beyond some predefined level. As shown by Caskurlu
et al. [4], the vertex set T can be merged into V by scaling each vulnerability
weight appropriately. Their transformation establishes the equivalence between
the above-mentioned risk management problem and the partial vertex cover
problem on bipartite graphs, arguing in particular that trees form an important
special case for real-life instances. We refer the reader to an additional paper in
this context [10] for further discussion on risk management models in this spirit.

T

V

A

Fig. 2. The tripartite graph of threats (T ), vulnerabilities (V ), and system assets
(A). In this example, each edge has unit capacity. It is easy to notice that the initial
(maximum) flow from T to A is of value 4; removing the two circled vertices decreases
this value to 2.
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2 Preliminaries

In what follows, we define a closely-related variant of WPVCT, which lends itself
better to the divide-and-conquer approach proposed in Sect. 3. We explain how
algorithms for this variant can be converted into ones for WPVCT and vice
versa, and we prove that both problems are NP-hard.

The BMVCT Problem. An instance of budgeted maximum vertex cover on
trees (BMVCT, for short) consists of an undirected graph G = (V,E), where
each vertex is associated with a cost given by c : V → N, and each edge has a
coverage profit specified by p : E → N. Given a budget B ≥ 0, the objective is
to compute a vertex set of cost at most B such that the combined profit of all
covered edges is maximized.

It is not difficult to verify that an exact algorithm A for BMVCT can be
utilized as a subroutine, in order to obtain an exact algorithm for WPVCT. For
this purpose, it is sufficient to identify the minimal budget B(P ) needed to meet
the coverage requirement P . This task can be accomplished by making use of
A in a binary search for B(P ) over the interval [Cmax, n · Cmax]. Here, Cmax is
the maximum cost of a vertex belonging to the optimal vertex set that attains
the coverage requirement. This quantity is not known in advance, but can be
found by trying all vertex costs as potential values for Cmax. Overall, we perform
O(n · log n) subroutine calls for A. Similarly, analogous arguments show that, in
order to obtain an exact algorithm for BMVCT, O(n · log n) calls to an exact
algorithm for WPVCT are sufficient.

NP-hardness. We proceed by describing a polynomial-time reduction from the
classical knapsack problem to BMVCT. Based on the preceding discussion, it
follows that both BMVCT and WPVCT are computationally intractable.

Theorem 1. WPVCT and BMVCT are NP-hard.

Proof. In the knapsack problem, we are given n items, each of which has a value
vi and a weight wi, both are assumed to be positive integers. Given a weight
bound of W , we wish to find a maximum-value subset of items I whose total
weight is at most W . In other words, the goal is to maximize

∑
i∈I vi subject to

the packing constraint
∑

i∈I wi ≤ W . This problem is NP-hard [9,13].
Given a knapsack instance, we construct an instance of BMVCT as follows.

We initially set up a matching M that consists of n edges, (x1, y1), . . . , (xn, yn),
corresponding to the items 1, . . . , n, respectively. For every i, the profit of (xi, yi)
is vi, while the vertex costs of the endpoints xi and yi are wi. The matching M
is now augmented into a tree by adding an auxiliary vertex z, which is joined
by edges to each of the vertices y1, . . . , yn. This vertex has a zero cost, while all
edges of the form (z, yi) have zero profits. Finally, the total budget for picking
vertices is W . This construction is sketched in Fig. 3.

Notice that, if I is a subset of items with total weight at most W , then the
subset of vertices UI = {yi : i ∈ I} has exactly the same weight (cost). Therefore,
UI meets the budget constraint, and covers edges with identical value (profit).
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Fig. 3. The tree obtained in the reduction.

Conversely, suppose that U is a subset of vertices with total cost at most W .
Then, by defining the subset of items {i : {xi, yi}∩U 	= ∅}, we can only decrease
the combined cost (weight), while preserving the total profit (value).

3 DP-Based Algorithm

In this section, we devise a divide-and-conquer method for computing an exact
solution to BMVCT in pseudo-polynomial time. By converting the suggested
method into a dynamic programming algorithm, we will argue that the resulting
running time is O(B2 · nO(1)). Based on the discussion in Sect. 2, we immedi-
ately obtain a pseudo-polynomial algorithm for WPVCT whose running time is
O(C2 · nO(1)), where C =

∑
v∈V c(v). This claim follows by observing that each

subroutine call to BMVCT is testing a candidate budget in [Cmax, n ·Cmax], and
Cmax ≤ C.

3.1 Divide-and-Conquer Algorithm

Our method makes use of a well-known result regarding nearly-balanced decom-
positions of tree networks, stating that any tree can be partitioned into two
edge-disjoint subtrees with roughly the same number of edges.

Definition 1. Let T = (V,E) be a tree. A centroid decomposition of T is a
partition of T into two edge-disjoint subtrees (sharing an intersection vertex)
such that each subtree contains between |E|

3 and 2|E|
3 edges.

Theorem 2 ([7]). Let T = (V,E) be a tree with |E| ≥ 2. A centroid decompo-
sition of T exists and can be found in linear time.

Now suppose we are given an instance of BMVCT, consisting of a tree T =
(V,E) with integer vertex costs and edge profits, as well as an integer budget
B ≥ 0. For purposes of analysis, we focus attention on a fixed optimal solution
U∗, i.e., a vertex set that satisfies the budget constraint

∑
v∈U∗ c(v) ≤ B and

maximizes the combined profit of all covered edges. Our algorithm proceeds as
follows.
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Trivial Scenario: |E| = 1. In this case, we simply compute an optimal solution
by trying all 4 possible subsets of vertices as candidate solutions.

General Scenario: |E| ≥ 2. By employing Theorem 2, we compute a centroid
decomposition (T1, T2) of T , and denote by r the single intersection vertex of
these subtrees. We proceed by guessing two attributes of the optimal vertex
set U∗, as it relates to the decomposition (T1, T2), in order to break the cur-
rent instance into two mutually independent instances, I1 and I2, one for each
subtree:

– We first guess whether the intersection vertex r belongs to the optimal solution
U∗ or not.

– We then guess, by means of exhaustive enumeration, how much of the bud-
get B is spent on picking vertices (for U∗) in the subtree T1, other than
r. In other words, by trying all B + 1 possible options, we assume that
B∗

1 =
∑

v∈U∗\T2
c(v) is known.

Note that the overall number of guesses is O(B). Having this information at
hand, we create two independent instances as follows:

– Case 1: When r /∈ U∗, in the instance I1 we would have T1 as the underlying
tree, with budget B∗

1 . Similarly, in I2 the tree is T2, with budget B −B∗
1 . Fur-

thermore, from this point on, we will keep an additional piece of information
for each of these instances, stating that the vertex r has not been picked. This
means, in particular, that the edges adjacent to r have not been covered yet.

– Case 2: When r ∈ U∗, in the instance I1 we would have T1 as the underlying
tree, with budget B∗

1 , similar to the previous case. For the instance I2 we need
a small modification: While the tree is still T2, since r has to be paid for, the
budget is now B − B∗

1 − c(r). The additional piece of information for each
instance would be that the vertex r has been picked. So, in particular, the
edges adjacent to r have already been covered.

As an immediate consequence of the above discussion, it follows that in order
to compute an optimal solution, it remains to recursively solve the instances
I1 and I2. From a running-time perspective, we make O(B) guesses in each
step, and recurse (for every possible guess) into two subproblems, each with an
underlying tree consisting of at most 2|E|

3 edges. This corresponds to a recursion
tree with node degree O(B) and depth O(log n), implying that our algorithm
runs in O((n · B)O(log n)) time.

3.2 Dynamic Programming Implementation

We now explain how to efficiently implement the divide-and-conquer algorithm
suggested above by means of dynamic programming. To this end, we will first
solve all instances corresponding to single-edge subtrees, which constitute the
leaves of the recursion tree. These will be utilized in turn to solve instances
located one level up the recursion tree, consisting of two edges, which will then be
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recombined into subtrees with three or four edges, so forth and so on. Formally,
each of these instances is a state of the dynamic program, characterized by the
following properties2:

1. Subtree S ⊆ T , created during our recursive application of centroid decom-
positions.

2. Remaining budget BS ≥ 0, for picking vertices in S.
3. Two subsets of vertices, U+ and U−, summarizing the additional information

accumulated in higher levels of the recursion. That is, U+ are the vertices in
S that have already been picked (Case 2), and similarly, U− are the vertices
that should not be picked (Case 1).

To bound the relevant number of states, note that the number of subtrees that
result from recursively breaking the original tree T via centroid decompositions is
O(n). Furthermore, the remaining budget BS is clearly restricted to take integer
values in [0, B]. Now, as far as the vertex sets U+ and U− are concerned, one can
naively argue that |U+| + |U−| = O(log n), since in each step of the recursion
a single vertex is added, either to U+ or to U−. Therefore, without additional
insight, the number of possible subsets could be as large as O(nO(log n)).

However, the important observation is that the collection of vertices for which
a decision has been made in the divide-and-conquer algorithm has a special
structure. Letting T1 be the subtree considered one level above S in the recursion,
we know that the intersection vertex r1 in the centroid decomposition of T1 (into
S and some other subtree) is the one added to either U+ or U−. Similarly, letting
T2 be the subtree considered one level above T1, we know that the intersection
vertex r2 in the centroid decomposition of T2 (into T1 and some other subtree)
is added to either U+ or U−, so on and so forth. For this reason, focusing
on the subtree S, our recursive decomposition determines a unique sequence
of intersection vertices r1, r2, . . . which comprises U+ and U−. Consequently,
we can equivalently represent these two subsets as a binary sequence of length
O(log n), corresponding to whether each of the vertices r1, r2, . . . is picked or
not. The number of such sequences is only O(2O(log n)) = O(nO(1)).

In summary, it follows that the overall number of states is B ·nO(1), and since
each one can be evaluated in O(n ·B) time, we obtain an improved running time
of O(B2 ·nO(1)). Based on the relation between BMVCT and WPVCT, discussed
at the beginning of this section, we have just proven the following.

Theorem 3. The WPVCT problem can be solved to optimality in O(C2 ·nO(1))
time, where C =

∑
v∈V c(v).

As an immediate corollary, note that when all vertices are associated with
unit costs, we obtain the EPVCT problem, where C = n. Therefore, Theorem 3
allows us to resolve the open question regarding the tractability of this variant
(see Sect. 1).

Theorem 4. The EPVCT problem can be solved to optimality in polynomial
time.
2 In addition to vertex costs and edge profits, which are common to all states.
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4 Fully Polynomial-Time Approximation Scheme

In what follows, we show that standard scaling arguments can be used to ensure
that the sum of vertex costs C becomes polynomial in the number of vertices
n, with only negligible loss in optimality. Specifically, given an error parameter
ε > 0, we define a rounded cost function c̃ : V → N satisfying the next two
properties:

1. C̃ =
∑

v∈V c̃(v) = O(n3

ε ).
2. The optimal vertex set U w.r.t. c̃ has a near-optimal cost w.r.t. c, that is,

∑

v∈U

c(v) ≤ (1 + ε) · OPTc.

Combined with the pseudo-polynomial algorithm given in Theorem 3, we com-
plement the NP-hardness proof of WPVCT (see Theorem 1) with a fully
polynomial-time approximation scheme.

Theorem 5. The WPVCT problem admits an FPTAS, with a running time
of O( 1

ε2 · nO(1)).

Defining c̃. To construct the rounded cost function c̃, as before, let Cmax be the
maximum cost of a vertex belonging to the optimal vertex set that attains the
coverage requirement. This parameter can be assumed to be known in advance,
by trying all vertex costs as potential values for Cmax. Now, for each vertex v,
its rounded cost is determined according to two cases:

– If c(v) > Cmax, then c̃(v) = �n2

ε � + 1.
– Otherwise, c̃(v) = �n

ε · c(v)
Cmax

�.
Note that this definition indeed satisfies property 1, since

C̃ =
∑

v∈V

c̃(v) ≤ n ·
(⌈

n2

ε

⌉

+ 1
)

= O

(
n3

ε

)

.

In addition, to establish property 2, we can upper bound the cost of the optimal
vertex set U w.r.t. c̃ by relating it to that of the optimal set U∗ w.r.t. c as follows:



The Approximability of Partial Vertex Covers in Trees 359

∑

v∈U

c(v) ≤ ε · Cmax

n
·
∑

v∈U

c̃(v)

≤ ε · Cmax

n
·

∑

v∈U∗
c̃(v)

≤
∑

v∈U∗

(

c(v) +
ε · Cmax

n

)

=
∑

v∈U∗
c(v) +

|U∗|
n

· ε · Cmax

≤ (1 + ε) · OPTc.

Here, the first and third inequalities are implied by the definition of c̃, and by the
observation that U cannot contain any vertex v with c(v) > Cmax. The second
inequality is implied by the optimality of U w.r.t. c̃. The final inequality holds
since Cmax ≤ OPTc.

5 Conclusion

In this paper, we considered four variants of the partial vertex cover problem
restricted to trees. We have fully characterized which variants of partial vertex
cover remain intractable in trees, and which can be efficiently solved. In particu-
lar, we proposed a pseudo-polynomial DP-based algorithm for the most general
case of having weights on both edges and vertices, which we observed to be
NP-hard. This algorithm provided a polynomial-time solution method when
weights were limited to edges, and combined with additional scaling ideas, led
to an FPTAS for the general case. A secondary contribution of this work was
the novel way of using centroid decompositions in trees, which could be useful
in other settings as well.

The following directions of research appear worth pursuing:

– The extension of the algorithm of Sect. 3.1 from trees to graphs of bounded
treewidth.

– Comparing the performance of our pseudo-polynomial DP-based algorithm
with performances of alternative (DP-based) algorithms for the partial vertex
cover problem restricted to trees.
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Abstract. We consider the longest common subsequence (LCS) prob-
lem with the restriction that the common subsequence is required to
consist of at least k length substrings. First, we show an O(mn) time
algorithm for the problem which gives a better worst-case running time
than existing algorithms, where m and n are lengths of the input strings.
Furthermore, we mainly consider the LCS in at least k length order-
isomorphic substrings problem. We show that the problem can also be
solved in O(mn) worst-case time by an easy-to-implement algorithm.

Keywords: Longest common subsequence · Dynamic programming ·
Order-isomorphism · Order-preserving matching

1 Introduction

The longest common subsequence (LCS) problem is fundamental and well stud-
ied in computer science. The most common application of the LCS problem is
measuring similarity between strings, which can be used in many applications
such as the diff tool, the time series data analysis [12], and in bioinformatics.

One of the major disadvantages of LCS as a measure of similarity is that
LCS cannot consider consecutively matching characters effectively. For example,
for strings X = ATGG, Y = ATCGGC and Z = ACCCTCCCGCCCG, ATGG is the LCS of
X and Y , which is also the LCS of X and Z. Benson et al. [2] introduced the
longest common subsequence in k length substrings (LCSk) problem, where the
subsequence needs to be a concatenation of k length substrings of given strings.
For example, for strings X = ATCTATAT and Y = TAATATCC, TAAT is an LCS2

since X[4 : 5] = Y [1 : 2] = TA and X[7 : 8] = Y [5 : 7] = AT, and no longer
one exists. They showed a quadratic time algorithm for it, and Deorowicz and
Grabowski [7] proposed several algorithms, such as a quadratic worst-case time
algorithm for unbounded k and a fast algorithm on average.

Pavetić et al. [15] considered the longest common subsequence in at least
k length substrings (LCSk+) problem, where the subsequence needs to be a
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 363–374, 2017.
DOI: 10.1007/978-3-319-51963-0 28
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concatenation of at least k length substrings of given strings. They argued
that LCSk+ would be more appropriate than LCSk as a similarity measure of
strings. For strings X = ATTCGTATCG, Y = ATTGCTATGC, and Z = AATCCCTCAA,
LCS 2(X,Y ) = LCS 2(X,Z) = 4, where LCS 2(A,B) denotes the length of an
LCS2 between A and B. However, it seems that X and Y are more similar than
X and Z. Instead, if we consider LCS2+ , we have LCS 2+(X,Y ) = 6 > 4 =
LCS 2+(X,Z), that better fits our intuition. The notion of LCSk+ is applied to
bioinformatics [16].

Pavetić et al. showed that LCSk+ can be computed in O(m + n + r log r +
r log n) time, where m,n are lengths of the input strings and r is the total number
of matching k length substring pairs between the input strings. Their algorithm
is fast on average, but in the worst case, the running time is O(mn log(mn)).
Independently, Benson et al. [2] proposed an O(kmn) worst-case time algorithm
for the LCSk+ problem.

In this paper, we first propose an algorithm to compute LCSk+ in O(mn)
worst-case time by a simple dynamic programming. Secondly, we introduce the
longest common subsequence in at least k length order-isomorphic substrings (op-
LCSk+) problem. Order-isomorphism is a notion of equality of two numerical
strings, intensively studied in the order-preserving matching problem1 [13,14].
op-LCSk+ is a natural definition of similarity between numerical strings, and can
be used in time series data analysis. The op-LCSk+ problem cannot be solved as
simply as the LCSk+ problem due to the properties of the order-isomorphism.
However, we will show that the op-LCSk+ problem can also be solved in O(mn)
worst-case time by an easy-to-implement algorithm, which is one of the main
contributions of this paper. Finally, we report experimental results.

2 Preliminaries

We assume that all strings are over an alphabet Σ. The length of a string X =
(X[1],X[2], · · · ,X[n]) is denoted by |X| = n. A substring of X beginning at
i and ending at j is denoted by X[i : j] = (X[i],X[i + 1], · · · ,X[j − 1],X[j]).
We denote X〈i,+l〉 = X[i : i + l − 1] and X〈j,−l〉 = X[j − l + 1 : j]. Thus
X〈i,+l〉 = X〈i + l − 1,−l〉. We write X[: i] and X[j :] to denote the prefix
X[1 : i] and the suffix X[j : n] of X, respectively. Note that X[: 0] is the empty
string. The reverse of a string X is denoted by XR, and the operator · denotes
the concatenation. We simply denote a string X = (X[1],X[2], · · · ,X[n]) as
X = X[1]X[2] · · · X[n] when clear from the context.

We formally define the LCSk+ problem as follows.

Definition 1 (LCSk+ problem [2,15]2). Given two strings X and Y of length
m and n, respectively, and an integer k ≥ 1, we say that Z is a common
1 Since the problem is motivated by the order-preserving matching problem, we abbre-

viate it to the op-LCSk+ problem.
2 The formal definition given by Pavetić et al. [15] contains a minor error, i.e., they do

not require that each chunk is identical, while Benson et al. [2] and we do (confirmed
by F. Pavetić, personal communication, October 2016).
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subsequence in at least k length substrings of X and Y , if there exist i1, · · · , it
and j1, · · · , jt such that X〈is,+ls〉 = Y 〈js,+ls〉 = Z〈ps,+ls〉 and ls ≥ k for
1 ≤ s ≤ t, and is + ls ≤ is+1, js + ls ≤ js+1 and ps+1 = ps + ls for 1 ≤ s < t,
p1 = 1 and |Z| = pt + lt − 1. The longest common subsequence in at least k
length substrings (LCSk+) problem asks for the length of an LCSk+ of X and Y .

Remark that the LCS1+ problem is equivalent to the standard LCS problem.
Without loss of generality, we assume that n ≥ m through the paper.

Example 1. For strings X = acdbacbc and Y = aacdabca, Z = acdbc is
the LCS2+ of X and Y , since X〈1,+3〉 = Y 〈2,+3〉 = acd = Z〈1,+3〉 and
X〈7,+2〉 = Y 〈6,+2〉 = bc = Z〈4,+2〉. Note that the standard LCS of X and Y
is acdabc.

The main topic of this paper is to give an efficient algorithm for computing
the longest common subsequence under order-isomorphism, defined below.

Definition 2 (Order-isomorphism[13,14]). Two strings S and T of the same
length l over an ordered alphabet are order-isomorphic if S[i] ≤ S[j] ⇐⇒ T [i] ≤
T [j] for any 1 ≤ i, j ≤ l. We write S ≈ T if S is order-isomorphic to T , and
S 	≈ T otherwise.

Example 2. For strings S = (32, 40, 4, 16, 27), T = (28, 32, 12, 20, 25) and U =
(33, 51, 10, 22, 42), we have S ≈ T , S 	≈ U , and T 	≈ U .

Definition 3 (op-LCSk+ problem). The op-LCSk+ problem is defined as
the problem obtained from Definition 1 by replacing the matching relation
X〈is,+ls〉 = Y 〈js,+ls〉 = Z〈ps,+ls〉 with order-isomorphism X〈is,+ls〉 ≈
Y 〈js,+ls〉 ≈ Z〈ps,+ls〉.
Example 3. For strings X = (14, 84, 82, 31, 74, 68, 87, 11, 20, 32) and Y = (21, 64,
2, 83, 73, 51, 5, 29, 7, 71), Z = (1, 3, 2, 31, 74, 68, 87) is an op-LCS3+ of X and Y
since X〈1,+3〉 ≈ Y 〈3,+3〉 ≈ Z〈1,+3〉 and X〈4,+4〉 ≈ Y 〈7,+4〉 ≈ Z〈4,+4〉.

The op-LCSk+ problem does not require that (X〈i1,+l1〉 · X〈i2,+l2〉 · · · · ·
X〈it,+lt〉) ≈ (Y 〈j1,+l1〉 · Y 〈j2,+l2〉 · · · · ·Y 〈jt,+lt〉). Therefore, the op-LCS1+

problem makes no sense. Note that the op-LCSk+ problem with this restriction
is NP-hard already for k = 1 [3].

3 The LCSk+ Problem

In this section, we show that the LCSk+ problem can be solved in O(mn) time
by dynamic programming. We define Match(i, j, l) = 1 if X〈i,−l〉 = Y 〈j,−l〉,
and 0 otherwise. Let C[i, j] be the length of an LCSk+ of X[: i] and Y [: j],
and Ai,j = {C[i − l, j − l] + l · Match(i, j, l) : k ≤ l ≤ min{i, j}}. Our algorithm
is based on the following lemma.
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Lemma 1 ([2]). For any k ≤ i ≤ m and k ≤ j ≤ n,

C[i, j] = max ({C[i, j − 1], C[i − 1, j]} ∪ Ai,j) , (1)

and C[i, j] = 0 otherwise.

The naive dynamic programming algorithm based on Eq. (1) takes O(m2n)
time, because for each i and j, the naive algorithm for computing maxAi,j takes
O(m) time assuming n ≥ m. Therefore, we focus on how to compute max Ai,j

in constant time for each i and j in order to solve the problem in O(mn) time.
It is clear that if Match(i, j, l1) = 0 then Match(i, j, l2) = 0 for all valid l2 ≥ l1,
and C[i′, j′] ≥ C[i′ − l′, j′ − l′] for all valid i′, j′ and l′ > 0. Therefore, in order to
compute max Ai,j , it suffices to compute maxk≤l≤L[i,j]{C[i − l, j − l] + l}, where
L[i, j] = max{l : X〈i,−l〉 = Y 〈j,−l〉}.

We can compute L[i, j] for all 0 ≤ i ≤ m and 0 ≤ j ≤ n in O(mn) time by
dynamic programming because the following equation clearly holds:

L[i, j] =

{
L[i − 1, j − 1] + 1 (if i, j > 0 and X[i] = Y [j])
0 (otherwise).

(2)

Next, we show how to compute maxk≤l≤L[i,j]{C[i − l, j − l] + l} in constant
time for each i and j. Assume that the table L has already been computed. Let
M [i, j] = maxk≤l≤L[i,j]{C[i − l, j − l] + l} if L[i, j] ≥ k, and −1 otherwise.

Lemma 2. For any 0 ≤ i ≤ m and 0 ≤ j ≤ n, if L[i, j] > k then M [i, j] =
max{M [i − 1, j − 1] + 1, C[i − k, j − k] + k}.
Proof. Let l = L[i, j]. Since L[i, j] > k, we have L[i − 1, j − 1] = l − 1 ≥ k,
and M [i − 1, j − 1] 	= −1. Therefore, M [i − 1, j − 1] = maxk≤l′≤l−1{C[i − 1 −
l′, j − 1 − l′] + l′} = maxk+1≤l′≤l{C[i − l′, j − l′] + l′} − 1. Hence, M [i, j] =
maxk≤l′≤l{C[i − l′, i − l′] + l′} = max{M [i − 1, j − 1] + 1, C[i − k, j − k] + k}. ��
By Lemma 2 and the definition of M [i, j], we have

M [i, j] =

⎧⎪⎨
⎪⎩

max{M [i − 1, j − 1] + 1, C[i − k, j − k] + k} (if L[i, j] > k)
C[i − k, j − k] + k (if L[i, j] = k)
−1 (otherwise).

(3)

Equation (3) shows that each M [i, j] can be computed in constant time if L[i, j],
M [i − 1, j − 1], and C[i − k, j − k] have already been computed.

We can fill in tables C, L and M of size (m + 1) × (n + 1) based on Eqs. (1),
(2) and (3) in O(mn) time by dynamic programming. An example of computing
LCS3+ is shown in Fig. 1(a). We note that LCSk+ itself (not only its length)
can be extracted from the table C in O(m + n) time, by tracing back in the
same way as the standard dynamic programming algorithm for the standard
LCS problem. Our algorithm requires O(mn) space since we use three tables of
size (m + 1) × (n + 1). Note that if we want to compute only the length of an
LCSk+ , the space complexity can be easily reduced to O(km). Hence, we get the
following theorem.
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Fig. 1. Examples of computing LCS3+ and op-LCS2+

Theorem 1. The LCSk+ problem can be solved in O(mn) time and O(km)
space.

4 The op-LCSk+ Problem

In this section, we show that the op-LCSk+ problem can be solved in O(mn)
time as well as the LCSk+ problem. We redefine C[i, j] to be the length of an
op-LCSk+ of X[: i] and Y [: j], and Match(i, j, l) = 1 if X〈i,−l〉 ≈ Y 〈j,−l〉,
and 0 otherwise. It is easy to prove that Eq. (1) also holds with respect to the
order-isomorphism. However, the op-LCSk+ problem cannot be solved as simply
as the LCSk+ problem because Eqs. (2) and (3) do not hold with respect to the
order-isomorphism, as follows. For two strings A,B of length l such that A ≈ B,
and two characters a, b such that A · a 	≈ B · b, the statement “(A · a)[i :] 	≈
(B · b)[i :] for all 1 ≤ i ≤ l + 1” is not always true. For example, for strings
A = (32, 40, 4, 16, 27), B = (28, 32, 12, 20, 25), A′ = A · (41) and B′ = B · (26),
we have A ≈ B, A′ 	≈ B′, and A′[3 :] ≈ B′[3 :]. Moreover, for A′′ = A · (15)
and B′′ = B · (22), we have A′′[5 :] ≈ B′′[5 :]. These examples show that
Eqs. (2) and (3) do not hold with respect to the order-isomorphism. Therefore,
we must find another way to compute maxk≤l′≤l{C[i − l′, j − l′] + l′}, where
l = max{l′ : X〈i,−l′〉 ≈ Y 〈j,−l′〉} in constant time.

First, we consider how to find max{l : X〈i,−l〉 ≈ Y 〈j,−l〉} in constant time.
We define the order-preserving longest common extension (op-LCE) query on
strings S1 and S2 as follows.

Definition 4 (op-LCE query). Given a pair (S1, S2) of strings, an op-LCE
query is a pair of indices i1 and i2 of S1 and S2, respectively, which asks
opLCES1,S2

[i1, i2] = max{l : S1〈i1,+l〉 ≈ S2〈i2,+l〉}.
Since max{l : X〈i,−l〉 ≈ Y 〈j,−l〉} = opLCEXR,Y R [m − i + 1, n − j + 1],

we can find max{l : X〈i,−l〉 ≈ Y 〈j,−l〉} by using op-LCE queries on XR and
Y R. Therefore, we focus on how to answer op-LCE queries on S1 and S2 in
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constant time with at most O(|S1||S2|) time preprocessing. Hereafter we write
opLCE [i1, i2] for opLCES1,S2

[i1, i2] fixing two strings S1 and S2.
If S1 and S2 are strings over a polynomially-bounded integer alphabet

{1, · · · , (|S1| + |S2|)c} for an integer constant c, op-LCE queries can be answered
in O(1) time and O(|S1| + |S2|) space with O((|S1| + |S2|) log2 log(|S1| +
|S2|)/ log log log(|S1| + |S2|)) time preprocessing, by using the incomplete gen-
eralized op-suffix-tree [6] of S1 and S2 and finding the lowest common ances-
tor (LCA) [1] in the op-suffix-tree. The proof is similar to that for LCE queries
in the standard setting [10].

However, implementing the incomplete generalized op-suffix-tree is quite dif-
ficult. Therefore, we introduce another much simpler method to answer op-LCE
queries in O(1) time with O(|S1||S2|) time preprocessing. In a preprocessing
step, our algorithm fills in the table opLCE [i1, i2] for all 1 ≤ i1 ≤ |S1| and
1 ≤ i2 ≤ |S2| in O(|S1||S2|) time. Then, we can answer op-LCE queries in
constant time.

In the preprocessing step, we use the Z-algorithm [10,11] that calculates the
following table efficiently.

Definition 5 (Z-table). The Z-table ZS of a string S is defined by ZS [i] =
max{l : S〈1,+l〉 ≈ S〈i,+l〉} for each 1 ≤ i ≤ |S|.
By definition, we have

opLCE [i1, i2] = min
{
Z(S1·S2)i1 [|S1| − i1 + i2 + 1], |S1| − i1 + 1

}
. (4)

If we use the Z-algorithm and Eq. (4) naively, it takes O((|S1| +
|S2|)2 log(|S1| + |S2|)) time to compute opLCE [i1, i2] for all 1 ≤ i1 ≤ |S1| and
1 ≤ i2 ≤ |S2|, because the Z-algorithm requires O(|S| log |S|) time to compute
ZS for a string S. We extend the Z-algorithm to compute ZSi for all 1 ≤ i ≤ |S|
totally in O(|S|2) time.

In order to verify the order-isomorphism in constant time with preprocessing,
Hasan et al. [11] used tables called PrevS and NextS . For a string S where all
the characters are distinct3, PrevS and NextS are defined as

PrevS [i] = j if there exists j = argmax
1≤k<i

{S[k] : S[k] < S[i]}, and −∞ otherwise

NextS [i] = j if there exists j = argmin
1≤k<i

{S[k] : S[k] > S[i]}, and ∞ otherwise

for all 1 ≤ i ≤ |S|. Their algorithm requires O(|S| log |S|) time to compute the
tables PrevS and NextS , and all operations except computing the tables take
only O(|S|) time. Therefore, if we can compute tables PrevSi and NextSi for
each 1 ≤ i ≤ |S| in O(|S|) time with O(|S| log |S|) time preprocessing, ZSi for

3 Hasan et al. [11] assume that characters in a string are distinct. If the assumption
is false, use Lemma 4 in [4] in order to verify the order-isomorphism, that is, modify
line 10 of Algorithm 4 in [11] and line 7 and 12 in Algorithm 1. Note that Prev and
Next are denoted as LMax and LMin in [4], respectively, with slight differences.
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Algorithm 1. The algorithm for computing op-LCE queries
1 Function preprocess(S, i, S′, S′′)
2 Let s and t be empty stacks that support push, top, and pop operations;
3 Let Prev and Next be tables of size |S| − i + 1;
4 for j ← 1 to |S| do
5 if S′[j] ≥ i then
6 while s �= ∅ and s.top() > S′[j] do s.pop();
7 if s = ∅ then Prev [S′[j] − i + 1] ← −∞;
8 else Prev [S′[j] − i + 1] ← s.top() − i + 1;
9 s.push(S′[j]);

10 if S′′[j] ≥ i then
11 while t �= ∅ and t.top() > S′′[j] do t.pop();
12 if t = ∅ then Next [S′′[j] − i + 1] ← ∞;
13 else Next [S′′[j] − i + 1] ← t.top() − i + 1;
14 t.push(S′′[j]);

15 return (Prev ,Next);

16 Function Z-function(S, i1, S
′, S′′)

17 (Prev ,Next) ← preprocess(S, i1, S
′, S′′); S ← S[i1 :];

18 Do the same operations described in line 3-17 of Algorithm 4 in [11];
19 return Z;

20 Function preprocess-opLCE(S1, S2)

21 Let opLCE be a table of size |S1| × |S2|; S ← S1 · S2;
22 Let S′ and S′′ be stably sorted positions of S with respect to their elements

in ascending and descending order, respectively;
23 for i1 ← 1 to |S1| do
24 Z ← Z-function(S, i1, S

′, S′′);
25 for i2 ← 1 to |S2| do
26 opLCE [i1, i2] ← min

{
Z[|S1| − i1 + i2 + 1], |S1| − i1 + 1

}
;

27 return opLCE ;

all 1 ≤ i ≤ |S| can be computed in O(|S|2) time. We also assume that all the
characters in S are distinct (see footnote 3).

In order to compute the tables PrevSi and NextSi, we modify a sort-based
algorithm presented in Lemma 1 in [14] instead of the algorithm in [11] that
uses a balanced binary search tree. First, for computing PrevS (resp. NextS),
we stably sort positions of S with respect to their elements in ascending (resp.
descending) order. We can compute PrevSi and NextSi for each 1 ≤ i ≤ |S| in
O(|S|) time by using the sorted tables and the stack-based algorithm presented
in [14], ignoring all elements of the sorted tables less than i.

Algorithm 1 shows the pseudocode of the op-LCE algorithm based on the
Z-algorithm. The push(x) operation inserts x on the top of the stack, top()
returns the top element in the stack, and pop() removes it. Algorithm 1 takes
O(|S1||S2|) time as discussed above. The total space complexity is O(|S1||S2|)
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Algorithm 2. The algorithm for the op-LCSk+ problem
Input: A string X of length m, a string Y of length n, and an integer k
Output: The length of an op-LCSk+ between X and Y

1 Let C be a table of size (m + 1) × (n + 1) initialized by 0;
2 Let Ri for −n + k ≤ i ≤ m − k be semi-dynamic RMQ data structures;

3 opLCE ← preprocess-opLCE(XR, Y R);
4 for i ← 0 to m − k do
5 if i < k then n′ ← n − k;
6 else n′ ← k − 1;
7 for j ← 0 to n′ do Ri−j .prepend(C[i, j] − min{i, j});

8 for i ← k to m do
9 for j ← k to n do

10 l ← opLCE [m − i + 1, n − j + 1];
11 if l ≥ k then M ← Ri−j .rmq(k, l) + min{i, j};
12 else M ← 0;
13 C[i, j] ← max{C[i, j − 1], C[i − 1, j],M};
14 Ri−j .prepend(C[i, j] − min{i, j});

15 return C[m,n];

because the Z-algorithm requires linear space [11], and the table opLCE needs
O(|S1||S2|) space. Hence, we have the following lemma.

Lemma 3. op-LCE queries on S1 and S2 can be answered in O(1) time and
O(|S1||S2|) space with O(|S1||S2|) time preprocessing.

Let opLCE(i, j) be the answer to the op-LCE query on XR and Y R with
respect to the index pair (i, j). We consider how to find the maximum value of
C[i− l, j − l]+ l for k ≤ l ≤ opLCE(m− i+1, n− j +1) in constant time. We use
a semi-dynamic range maximum query (RMQ) data structure that maintains a
table A and supports the following two operations:

• prepend(x): add x to the beginning of A in O(1) amortized time.
• rmq(i1, i2): return the maximum value of A[i1 : i2] in O(1) time.

The details of the semi-dynamic RMQ data structure will be given in Sect. 5.
By using the semi-dynamic RMQ data structures and the following obvious

lemma, we can find maxk≤l≤opLCE(m−i+1,n−j+1){C[i−l, j−l]+l} for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n in totally O(mn) time.

Lemma 4. We may assume that i ≥ j without loss of generality. Let A[l] =
C[i − l, j − l] + l and A′[l] = C[i − l, j − l] − j + l for each 1 ≤ l ≤ j. For
any 1 ≤ i1, i2 ≤ |A|, we have maxi1≤l≤i2 A[l] = (maxi1≤l≤i2 A′[l]) + j and
argmaxi1≤l≤i2 A[l] = argmaxi1≤l≤i2 A′[l].

Algorithm 2 shows our algorithm to compute op-LCSk+ . An example of com-
puting op-LCS2+ is shown in Fig. 1(b). As discussed above, the algorithm runs
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Fig. 2. An example of searching for the RMQ by using a 2d-Min-Heap and the ±1RMQ
algorithm [1]. The tree shows the 2d-Min-Heap of X = (4, 6, 5, 7, 3, 4, 5, 3) represented
by arrays E and D. The gray node 8 in the tree and gray numbers in the table are
added when the last character X[8] = 3 is processed. The boxes with the dashed lines
show the answers of RMQs rmq(2, 4) and rmq(5, 7).

in O(mn) time. Each semi-dynamic RMQ data structure requires linear space
and a total of O(mn) elements are maintained by the semi-dynamic RMQ data
structures. Therefore, the total space of semi-dynamic RMQ data structures is
O(mn). Consequently, the total space complexity is O(mn). Hence, we have the
following theorem.

Theorem 2. The op-LCSk+ problem can be solved in O(mn) time and space.

5 The Semi-dynamic Range Minimum/Maximum Query

In this section we will describe the algorithm that solves the semi-dynamic RMQ
problem with O(1) query time and amortized O(1) prepend time. To simplify the
algorithm, we consider the prepend operation as appending a character into the
end of array. In order to solve this problem, Fischer [8] proposed an algorithm
that uses a 2d-Min-Heap [9] and dynamic LCAs [5]. However, the algorithm for
dynamic LCAs is very complex to implement. Therefore, we propose a simple
semi-dynamic RMQ algorithm that can be implemented easily if the number of
characters to be appended is known beforehand. This algorithm uses a 2d-Min-
Heap and the ±1RMQ algorithm proposed by Bender and Farach-Colton [1].

Let X be a string of length n and let X[0] = −∞. The 2d-Min-Heap H of
X is an ordered tree of n + 1 nodes {0, 1, · · · , n}, where 0 is the root node, and
the parent node of node i > 0 is max{j < i : X[j] < X[i]}. Moreover, the order
of the children is chosen so that they increase from left to right (see Fig. 2 for
instance). Note that the vertices are inevitably aligned in preorder. Actually, the
tree H is represented by arrays E and D that store the sequences of nodes and
their depths visited in an Euler tour of H, respectively. In addition, let Y be an
array defined as Y [i] = min{j : E[j] = i} for each 1 ≤ i ≤ n.

For two positions 1 ≤ i1 ≤ i2 ≤ n in X, rmq(i1, i2) can be calculated by
finding lca(i1, i2), the LCA of the nodes i1 and i2 in H. If lca(i1, i2) = i1,
then rmq(i1, i2) = i1. Otherwise, rmq(i1, i2) = i3 such that i3 is a child of
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lca(i1, i2) and an ancestor of i2. The lca(i1, i2) can be computed by performing
the ±1RMQ query rmq1(Y [i1], Y [i2]) on D, because D[j + 1] − D[j] = ±1 for
every j. It is known that ±1RMQs can be answered in O(1) time with O(n) time
preprocessing [1]. Therefore, we can calculate rmq(i1, i2) as follows,

rmq(i1, i2) =

{
E[rmq1(Y [i1], Y [i2])] (if E[rmq1(Y [i1], Y [i2])] = i1)
E[rmq1(Y [i1], Y [i2]) + 1] (otherwise).

Figure 2 shows an example of calculating the RMQ. From the property of
a 2d-Min-Heap, arrays E and D are always extended to the end when a new
character is appended. Moreover, the ±1RMQ algorithm can be performed semi
dynamically if the size of sequences is known beforehand, or by increasing the
arrays size exponentially. Therefore, this algorithm can be performed online and
can solve the semi-dynamic RMQ problem, as we intended.

6 Experimental Results

In this section, we present experimental results. We compare the running
time of the proposed algorithm in Sect. 3 to the existing algorithms [2,15].
Furthermore, we show the running time of Algorithm2. We used a machine
running Ubuntu 14.04 with Core i7 4820 K and 64 GB RAM. We imple-
mented all algorithms in C++ and compiled with gcc 4.8.4 with -O2 opti-
mization. We used an implementation of the algorithm proposed by Pavetić
et al., available at github.com/fpavetic/lcskpp. We denote the algorithm pro-
posed by Pavetić et al. [15] and the algorithm proposed by Benson et al. [2] as
PŽŠ and BLMNS, respectively.

We tested the proposed algorithm in Sect. 3, PŽŠ, and BLMNS in the follow-
ing three conditions: (1) random strings over an alphabet of size |Σ| = 4 with
n = m = 1000, 2000, · · · , 10000 and k = 1, 2, 3, 4 (2) random strings over alpha-
bets of size |Σ| = 1, 2, 4, 8 with n = m = 1000, 2000, · · · , 10000 and k = 3 (3)
DNA sequences that are available at www.ncbi.nlm.nih.gov/nuccore/346214858
and www.ncbi.nlm.nih.gov/nuccore/U38845.1, with k = 1, 2, 3, 4, 5. The experi-
mental results under the conditions (1), (2) and (3) are shown in Fig. 3(a), (b),
and (c), respectively.

The proposed algorithm in Sect. 3 runs faster than PŽŠ for small k or small
alphabets. This is due to that PŽŠ strongly depends on the total number of
matching k length substring pairs between input strings, and for small k or small
alphabets there are many matching pairs. In general BLMNS runs faster than
ours. The proposed algorithm runs a little faster for small k or small alphabets,
except |Σ| = 1. We think that this is because for small k or small alphabets the
probability that L[i, j] ≥ k is high, and this implies that we need more operations
to compute M [i, j] by definition. In Fig. 3(b), it is observed that the proposed
algorithm with |Σ| = 1 runs faster than with |Σ| = 2. Since |Σ| = 1 implies that
X = Y if X and Y have the same length, L[i, j] > k almost always holds, which
leads to reduce branch mispredictions and speed up execution.

https://github.com/fpavetic/lcskpp
www.ncbi.nlm.nih.gov/nuccore/346214858
www.ncbi.nlm.nih.gov/nuccore/U38845.1
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(a) Random data; |Σ| = 4; k = 1, 2, 3, 4 (b) Random data; k = 3; |Σ| = 1, 2, 4, 8

(c) DNA data (d) Algorithm 2, random data, |Σ| = 100

Fig. 3. Running times of the proposed algorithm in Sect. 3, PŽŠ, and
BLMNS (Fig. 3(a), (b) and (c)), and Algorithm 2 (Fig. 3(d)). In Fig. 3(a), (b), and
(c), the line styles denote algorithms. The line markers in Fig. 3(a) and (b) represent
the parameter k and the alphabet size, respectively.

We show the running time of Algorithm2 in Fig. 3(d). We tested Algorithm 2
on random strings over Σ = {1, 2, · · · , 100} with n = m = 1000, 2000, · · · , 10000
and k = 2, 3, 4, 5. It is observed that the algorithm runs faster as the parameter
k is smaller. We suppose that the hidden constant of the RMQ data structure
described in Sect. 5 is large. Therefore, the running time of Algorithm2 depends
on the number of times the rmq operation is called, and for small k the number
of them increases since the probability that l ≥ k is high.

7 Conclusion

We showed that both the LCSk+ problem and the op-LCSk+ problem can be
solved in O(mn) time. Our result on the LCSk+ problem gives a better worst-
case running time than previous algorithms [2,15], while the experimental results
showed that the previous algorithms run faster than ours on average. Although
the op-LCSk+ problem looks much more challenging than the LCSk+ , since the
former cannot be solved by a simple dynamic programming due to the prop-
erties of order-isomorphisms, the proposed algorithm achieves the same time
complexity as the one for the LCSk+ .
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Abstract. We introduce new types of approximate palindromes called
single-arm-gapped palindromes (SAGPs). A SAGP contains a gap in
either its left or right arm, which is in the form of either wgucuRwR or
wucuRgwR, where w and u are non-empty strings, wR and uR are their
reversed strings respectively, g is a gap, and c is either a single character
or the empty string. We classify SAGPs into two groups: those which
have ucuR as a maximal palindrome (type-1), and the others (type-2).
We propose several algorithms to compute all type-1 SAGPs with longest
arms occurring in a given string using suffix arrays, and them a linear-
time algorithm based on suffix trees. We also show how to compute type-2
SAGPs with longest arms in linear time. We perform some preliminary
experiments to evaluate practical performances of the proposed methods.

1 Introduction

A palindrome is a string that reads the same forward and backward. Discovering
palindromic structures in strings is a classical, yet important task in combina-
torics on words and string algorithmics (e.g., see [1,3,8,14]). A natural extension
to palindromes is to allow for a gap between the left and right arms of palin-
dromes. Namely, a string x is called a gapped palindrome if x = wgwR for some
strings w, g with |w| ≥ 1 and |g| ≥ 0. Finding gapped palindromes has applica-
tions in bioinformatics, such as finding secondary structures of RNA sequences
called hairpins [9]. If we further allow for another gap inside either arm, then
such a palindrome can be written as wg2ug1u

RwR or wug1u
Rg2w

R for some
strings w, g1, g2, u with |u| ≥ 1, |g1| ≥ 0, |g2| ≥ 0, and |w| ≥ 1. These types of
palindromes characterize hairpins with bulges in RNA sequences, known to occur
frequently in the secondary structures of RNA sequences [16]. Notice that the
special case where |g1| ≤ 1 and |g2| = 0 corresponds to usual palindromes, and
the special case where |g1| ≥ 2 and |g2| = 0 corresponds to gapped palindromes.

In this paper, we consider a new class of generalized palindromes where
|g1| ≤ 1 and |g2| ≥ 1, i.e., palindromes with gaps inside one of its arms. We
call such palindromes as single-arm-gapped palindromes (SAGPs). For instance,
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 375–386, 2017.
DOI: 10.1007/978-3-319-51963-0 29
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string abb|ca|cb|bc|bba is an SAGP of this kind, taking w = abb, g1 = ε (the
empty string), g2 = ca, and u = cb.

We are interested in occurrences of SAGPs as substrings of a given string
T . For simplicity, we will concentrate on SAGPs with |g1| = 0 containing a gap
in their left arms. However, slight modification of all the results proposed in
this paper can easily be applied to all the other cases. For any occurrence of
an SAGP wguuRwR beginning at position b in T , the position b + |wgu| − 1
is called the pivot of the occurrence of this SAGP. This paper proposes var-
ious algorithms to solve the problem of computing longest SAGPs for every
pivot in a given string T of length n. We classify longest SAGPs into two
groups: those which have uuR as a maximal palindrome (type-1 ), and the others
(type-2 ). Firstly, we show a näıve O(n2)-time algorithm for computing type-1
longest SAGPs. Secondly, we present a simple but practical O(n2)-time algo-
rithm for computing type-1 longest SAGPs based on simple scans over the
suffix array [15]. We also show that the running time of this algorithm can
be improved by using a dynamic predecessor/successor data structure. If we
employ the van Emde Boas tree [4], we achieve O((n+occ1) log log n)-time solu-
tion, where occ1 is the number of type-1 longest SAGPs to output. Finally, we
present an O(n + occ1)-time solution based on the suffix tree [17]. For type-2
longest SAGPs, we show an O(n+ occ2)-time algorithm, where occ2 is the num-
ber of type-2 longest SAGPs to output. Combining the last two results, we obtain
an optimal O(n + occ)-time algorithm for computing all longest SAGPs, where
occ is the number of outputs. We performed preliminary experiments to compare
practical performances of our algorithms for finding type-1 longest SAGPs. All
proofs are omitted due to lack of space. A full version of this paper is available
at arXiv:1609.03000.

Related work. For a fixed gap length d, one can find all gapped palindromes
wgwR with |g| = d in the input string T of length n in O(n) time [9]. Kolpakov
and Kucherov [13] showed an O(n + L)-time algorithm to compute long-armed
palindromes in T , which are gapped palindromes wgwR such that |w| ≥ |g|.
Here, L denotes the number of outputs. They also showed how to compute, in
O(n + L) time, length-constrained palindromes which are gapped palindromes
wgwR such that the gap length |g| is in a predefined range. Recently, Fujishige
et al. [6] proposed online algorithms to compute long-armed palindromes and
length-constrained palindromes from a given string. A gapped palindrome wgwR

is an α-gapped palindrome, if |wg| ≤ α|w| for α ≥ 1. Gawrychowski et al. [7]
showed that the maximum number of α-gapped palindromes occurring in a string
of length n is at most 28αn + 7n. Since long-armed palindromes are 2-gapped
palindromes for α = 2, L = O(n) and thus Kolpakov and Kucherov’s algo-
rithm runs in O(n) time. Gawrychowski et al. [7] also proposed an O(αn)-time
algorithm to compute all α-gapped palindromes in a given string for any pre-
defined α ≥ 1. Hsu et al. [10] showed an O(kn) time algorithm that finds all
maximal approximate palindromes uvw in a given string such that |v| = q and
the Levenshtein distance between u and wR is at most k, for any q ≥ 0 and
k > 0. We emphasize that none of the above algorithms can directly be applied
to computing SAGPs.

https://arxiv.org/abs/1609.03000
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2 Preliminaries

Let Σ = {1, . . . , σ} be an integer alphabet of size σ. An element of Σ∗ is called a
string. For any string w, |w| denotes the length of w. The empty string is denoted
by ε. Let Σ+ = Σ∗ − {ε}. For any 1 ≤ i ≤ |w|, w[i] denotes the i-th symbol of
w. For a string w = xyz, strings x, y, and z are called a prefix, substring, and
suffix of w, respectively. The substring of w that begins at position i and ends
at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|, i.e., w[i..j] = w[i] · · · w[j].
For j > i, let w[i..j] = ε for convenience. For two strings X and Y , let lcp(X,Y )
denote the length of the longest common prefix of X and Y .

For any string x, let xR denote the reversed string of x, i.e. xR = x[|x|] · · · x[1].
A string p is called a palindrome if p = pR. Let T be any string of length n. Let
p = T [b..e] be a palindromic substring of T . The position i = � b+e

2 � is called the
center of this palindromic substring p. The palindromic substring p is said to be
the maximal palindrome centered at i iff there are no longer palindromes than
p centered at i, namely, T [b − 1] �= T [e + 1], b = 1, or e = n.

A string x is called a single-arm-gapped palindrome (SAGP) if x is in the form
of either wgucuRwR or wucuRgwR, with some non-empty strings w, g, u ∈ Σ+

and c ∈ Σ ∪ {ε}. For simplicity and ease of explanations, in what follows we
consider only SAGPs whose left arms contain gaps and c = ε, namely, those of
form wguuRwR. But our algorithms to follow can easily be modified to compute
other forms of SAGPs occurring in a string as well.

Let b be the beginning position of an occurrence of a SAGP wguuRwR in T ,
namely T [b..b + 2|wu| + |g| − 1] = wguuRwR. The position i = b + |wgu| − 1
is called the pivot of this occurrence of the SAGP. This position i is also the
center of the palindrome uuR. An SAGP wguuRwR for pivot i in string T is
represented by a quadruple (i, |w|, |g|, |u|) of integers. In what follows, we will
identify the quadruple (i, |w|, |g|, |u|) with the corresponding SAGP wguuRwR

for pivot i.
For any SAGP x = wguuRwR, let armlen(x) denote the length of the arm

of x, namely, armlen(x) = |wu|. A substring SAGP y = wguuRwR for pivot i in
a string T is said to be a longest SAGP for pivot i, if for any SAGP y′ for pivot
i in T , armlen(y) ≥ armlen(y′).

Notice that there can be different choices of u and w for the longest
SAGPs at the same pivot. For instance, consider string ccabcabbace. Then,
(7, 1, 3, 2) = c|abc|ab|ba|c and (7, 2, 3, 1) = ca|bca|b|b|ac are both longest
SAGPs (with arm length |wu| = 3) for the same pivot 7, where the under-
lines represent the gaps. Of all longest SAGPs for each pivot i, we regard those
that have longest palindromes uuR centered at i as canonical longest SAGPs for
pivot i. In the above example, (7, 1, 3, 2) = c|abc|ab|ba|c is a canonical longest
SAGP for pivot 7, while (7, 2, 3, 1) = ca|bca|b|b|ac is not. Let SAGP(T ) be the
set of canonical longest SAGPs for all pivots in T . In this paper, we present
several algorithms to compute SAGP(T ).

For an input string T of length n over an integer alphabet of size σ = nO(1),
we perform standard preprocessing which replaces all characters in T with inte-
gers from range [1, n]. Namely, we radix sort the original characters in T , and
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replace each original character by its rank in the sorted order. Since the original
integer alphabet is of size nO(1), the radix sort can be implemented with O(1)
number of bucket sorts, taking O(n) total time. Thus, whenever we speak of a
string T over an integer alphabet of size nO(1), one can regard T as a string over
an integer alphabet of size n.

Tools: Suppose a string T ends with a unique character that does not appear
elsewhere in T . The suffix tree [17] of a string T , denoted by STree(T ), is a path-
compressed trie which represents all suffixes of T . Then, STree(T ) can be defined
as an edge-labelled rooted tree such that (1) Every internal node is branching;
(2) The out-going edges of every internal node begin with mutually distinct
characters; (3) Each edge is labelled by a non-empty substring of T ; (4) For each
suffix s of T , there is a unique leaf such that the path from the root to the leaf
spells out s. It follows from the above definition of STree(T ) that if n = |T |
then the number of nodes and edges in STree(T ) is O(n). By representing every
edge label X by a pair (i, j) of integers such that X = T [i..j], STree(T ) can be
represented with O(n) space. For a given string T of length n over an integer
alphabet of size σ = nO(1), STree(T ) can be constructed in O(n) time [5]. For
each node v in STree(T ), let str(v) denote the string spelled out from the root
to v. According to Property (4), we sometimes identify each position i in string
T with the leaf which represents the corresponding suffix T [i..n].

Suppose the unique character at the end of string T is the lexicographically
smallest in Σ. The suffix array [15] of string T of length n, denoted SAT , is an
array of size n such that SAT [i] = j iff T [j..n] is the ith lexicographically smallest
suffix of T for 1 ≤ i ≤ n. The reversed suffix array of T , denoted SA−1

T , is an
array of size n such that SA−1

T [SAT [i]] = i for 1 ≤ i ≤ n. The longest common
prefix array of T , denoted LCPT , is an array of size n such that LCPT [1] = −1
and LCPT [i] = lcp(T [SAT [i − 1]..n], T [SAT [i]..n]) for 2 ≤ i ≤ n. The arrays
SAT , SA−1

T , and LCPT for a given string T of length n over an integer alphabet
of size σ = nO(1) can be constructed in O(n) time [11,12].

For a rooted tree T , the lowest common ancestor LCAT (u, v) of two nodes
u and v in T is the deepest node in T which has u and v as its descendants.
It is known that after a linear-time preprocessing on the input tree, querying
LCAT (u, v) for any two nodes u, v can be answered in constant time [2].

Consider a rooted tree T where each node is either marked or unmarked. For
any node v in T , let NMAT (v) denote the deepest marked ancestor of v. There
exists a linear-space algorithm which marks any unmarked node and returns
NMAT (v) for any node v in amortized O(1) time [18].

Let A be an integer array of size n. A range minimum query RMQA(i, j)
of a given pair (i, j) of indices (1 ≤ i ≤ j ≤ n) asks an index k in range [i, j]
which stores the minimum value in A[i..j]. After O(n)-time preprocessing on A,
RMQA(i, j) can be answered in O(1) time for any given pair (i, j) of indices [2].

Let S be a set of m integers from universe [1, n], where n fits in a single
machine word. A predecessor (resp. successor) query for a given integer x to S
asks the largest (resp. smallest) value in S that is smaller (resp. larger) than x.
Let u(m,n), q(m,n) and s(m,n) denote the time for updates (insertion/deletion)
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of elements, the time for predecessor/successor queries, and the space of a
dynamic predecessor/successor data structure. Using a standard balanced binary
search tree, we have u(m,n) = q(m,n) = O(log m) time and s(n,m) = O(m)
space. The Y-fast trie [19] achieves u(m,n) = q(m,n) = O(log log n) expected
time and s(n,m) = O(m) space, while the van Emde Boas tree [4] does
u(m,n) = q(m,n) = O(log log n) worst-case time and s(n,m) = O(n) space.

3 Algorithms for Computing Canonical Longest SAGPs

In this section, we present several algorithms to compute the set SAGP(T ) of
canonical longest SAGPs for all pivots in a given string T .

A position i in string T is said to be of type-1 if there exists a
SAGP wguuRwR such that uuR is the maximal palindrome centered at posi-
tion i, and is said to be of type-2 otherwise. For example, consider T =
baaabaabaacbaabaabac of length 20. Position 13 of T is of type-1, since
there are canonical longest SAGPs (13, 4, 4, 2) = abaa|baac|ba|ab|aaba and
(13, 4, 1, 2) = abaa|c|ba|ab|aaba for pivot 13, where ba|ab is the maximal palin-
drome centered at position 13. On the other hand, Position 6 of T is of type-2;
the maximal palindrome centered at position 6 is aaba|abaa but there are no
SAGPs in the form of wgaaba|abaawR for pivot 6. The canonical longest SAGPs
for pivot 6 is (6, 1, 1, 3) = a|a|aba|aba|a.

Let Pos1(T ) and Pos2(T ) be the sets of type-1 and type-2 positions in T ,
respectively. Let SAGP(T, i) be the subset of SAGP(T ) whose elements are
canonical longest SAGPs for pivot i. Let SAGP1(T ) =

⋃
i∈Pos1(T ) SAGP(T, i)

and SAGP2(T ) =
⋃

i∈Pos2(T ) SAGP(T, i). Clearly SAGP1(T ) ∪ SAGP2(T ) =
SAGP(T ) and SAGP1(T )∩SAGP2(T ) = ∅. The following lemma gives an useful
property to characterize the type-1 positions of T .

Lemma 1. Let i be any type-1 position of a string T of length n. Then, a SAGP
wguuRwR is a canonical longest SAGP for pivot i iff uuR is the maximal palin-
drome centered at i and wR is the longest non-empty prefix of T [i + |uR| + 1..n]
such that w occurs at least once in T [1..i − |u| − 1].

We define two arrays Pals and LMost as follows:

Pals[i] = {r | T [i − r + 1..i + r] is a maximal palindrome in T for pivot i}.

LMost [c] = min{i | T [i] = c} for c ∈ Σ.

By Lemma 1, a position i in T is of type-1 iff LMost [i+Pals [i]+1] < i−Pals[i].

Lemma 2. Given a string T of length n over an integer alphabet of size nO(1),
we can determine whether each position i of T is of type-1 or type-2 in a total
of O(n) time and space.

By Lemmas 1 and 2, we can consider an algorithm to compute SAGP(T )
by computing SAGP1(T ) and SAGP2(T ) separately, as shown in Algorithm 1.
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Algorithm 1. computing SAGP(T )
Input: string T of length n
Output: SAGP(T )

1 compute Pals;
2 for i = n downto 1 do
3 c = T [i]; NextPos[i] = LMost [c]; LMost [c] = i;

4 for i = 1 to n do
5 if LMost [i + Pals[i] + 1] < i − Pals[i] then
6 Pos1(T ) = Pos1(T ) ∪ {i}; /* position i is of type-1 */
7 else
8 Pos2(T ) = Pos2(T ) ∪ {i}; /* position i is of type-2 */

9 compute SAGP1(T ); /* Sect. 3.1 */
10 compute SAGP2(T ); /* Sect. 3.2 */

In this algorithm, we also construct an auxiliary array NextPos defined by
NextPos[i] = min{j | i < j, T [i] = T [j]} for each 1 ≤ i ≤ n, which will be
used in Sect. 3.2.

Lemma 3. Algorithm 1 correctly computes SAGP(T ).

In the following subsections, we present algorithms to compute SAGP1(T )
and SAGP2(T ) respectively, assuming that the arrays Pals, LMost and NextPos
have already been computed.

3.1 Computing SAGP1(T ) for Type-1 Positions

In what follows, we present several algorithms corresponding to the line 9 in
Algorithm 1. Lemma 1 allows us greedy strategies to compute the longest prefix
wR of T [i + Pals[i] + 1..n] such that w occurs in T [1..i − Pals[i] − 1].

Näıve Quadratic-Time Algorithm with RMQs. Let T ′ = T$TR#. We
construct the suffix array SAT ′ , the reversed suffix array SA−1

T ′ , the LCP array
LCPT ′ for T ′, and the array RMQLCPT ′ to support RMQ on LCPT ′ .

For each Pals[i] in T , for each gap size G = 1, . . . , i−Pals [i]−1, we compute
W = lcp(T [1..i−Pals [i]−G]R, T [i+Pals[i]+1..n]) in O(1) time by RMQLCPT ′ .
Then, the gap sizes G with largest values of W give all longest SAGPs for pivot
i. Since we test O(n) gap sizes for every pivot i, it takes a total of O(n2) time
to compute SAGP1(T ). The working space of this method is O(n).

Simple Quadratic-Time Algorithm Based on Suffix Array. Given a
string T , we construct SAT ′ , SA−1

T ′ , and LCPT ′ for string T ′ = T$TR# as
in the previous subsection. Further, for each position n + 2 ≤ j ≤ 2n + 1 in the
reversed part TR of T ′ = T$TR#, let op(j) denote its “original” position in the
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string T , namely, let op(j) = 2n − j + 2. Let e be any entry of SAT ′ such that
SAT ′ [e] ≥ n + 2. We associate each such entry of SAT ′ with op(SAT ′ [e]).

Let SAT ′ [k] = i+Pals[i]+1, namely, the kth entry of SAT ′ corresponds to the
suffix T [i + Pals[i] + 1..n] of T . Now, the task is to find the longest prefix wR of
T [i+Pals[i]+1..n] such that w occurs completely inside T [1..i−Pals [i]−1]. Let
b = i−Pals[i]+1, namely, b is the beginning position of the maximal palindrome
uuR centered at i. We can find w for any maximal SAGP wguuRwR for pivot i
by traversing SAT ′ from the kth entry forward and backward, until we encounter
the nearest entries p < k and q > k on SAT ′ such that op(SAT ′ [p]) < b − 1 and
op(SAT ′ [q]) < b − 1, if they exist. The size W of w is equal to

max{min{LCPT ′ [p + 1], . . . ,LCPT ′ [k]},min{LCPT ′ [k + 1], . . . ,LCPT ′ [q]}}.
(1)

Assume w.l.o.g. that p gives a larger lcp value with k, i.e. W = min{LCPT ′ [p +
1], . . . ,LCPT ′ [k]}. Let s be the largest entry of SAT ′ such that s < p and
LCPT ′ [s + 1] < W . Then, any entry t of SAT ′ such that s < t ≤ p + 1
and op(SAT ′ [t]) < b − 1 corresponds to an occurrence of a longest SAGP
for pivot i, with gap size b − op(SAT ′ [t]) − 1. We output longest SAGP
(i,W, b−op(SAT ′ [t])−1, |u|) for each such t. The case where q gives a larger lcp
value with k, or p and q give the same lcp values with k can be treated similarly.

We find p and s by simply traversing SAT ′ from k. Since the distance from k
to s is O(n), the above algorithm takes O(n2) time. The working space is O(n).

Algorithm Based on Suffix Array and Predecessor/Successor Queries.
Let occ1 = |SAGP1(T )|. For any position r in T , we say that the entry j of SAT ′

is active w.r.t. r iff op(SAT ′ [j]) < r − 1. Let Active(r) denote the set of active
entries of SAT ′ for position r, namely, Active(r) = {j | op(SAT ′ [j]) < r − 1}.

Let t1 = p, and let t2, . . . , th be the decreasing sequence of entries of SAT ′

which correspond to the occurrences of longest SAGPs for pivot i. Notice that
for all 1 ≤ � ≤ h we have op(SAT ′ [t�]) < b − 1 and hence t� ∈ Active(b), where
b = i−|u|+1. Then, finding t1 reduces to a predecessor query for k in Active(b).
Also, finding t� for 2 ≤ � ≤ h reduces to a predecessor query for t�−1 in Active(b).

To effectively use the above observation, we compute an array U of size n
from Pals such that U [b] stores a list of all maximal palindromes in T which
begin at position b if they exist, and U [b] is nil otherwise. U can be computed
in O(n) time e.g., by bucket sort. After computing U , we process b = 1, . . . , n
in increasing order. Assume that when we process a certain value of b, we have
maintained a dynamic predecessor/successor query data structure for Active(b).
The key is that the same set Active(b) can be used to compute the longest SAGPs
for every element in U [b], and hence we can use the same predecessor/successor
data structure for all of them. After processing all elements in U [b], we insert all
elements of Active(b+1)\Active(b) to the predecessor/successor data structure.
Each element to insert can be easily found in constant time.

Since we perform O(n + occ1) predecessor/successor queries and O(n) inser-
tion operations in total, we obtain the following theorem.
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Theorem 1. Given a string T of size n over an integer alphabet of size σ =
nO(1), we can compute SAGP1(T ) in O(n(u(n, n)+q(n, n))+occ1 ·q(n, n)) time
with O(n + s(n, n)) space by using the suffix array and a predecessor/successor
data structure, where occ1 = |SAGP1(T )|.

Since every element of Active(b) for any b is in range [1, 2n + 2], we can
employ the van Emde Boas tree [4] as the dynamic predecessor/successor data
structure using O(n) total space. Thus we obtain the following theorem.

Theorem 2. Given a string T of size n over an integer alphabet of size σ =
nO(1), we can compute SAGP1(T ) in O((n+occ1) log log n) time and O(n) space
by using the suffix array and the van Emde Boas tree, where occ1 = |SAGP1(T )|.

Optimal-Time Algorithm Based on Suffix Tree. In this subsection, we
show that the problem can be solved in optimal time and space, using the fol-
lowing three suffix trees regarding the input string T . Let T1 = STree(T$TR#)
for string T$TR# of length 2n + 2, and T2 = STree(TR#) of length n + 1.
These suffix trees T1 and T2 are static, and thus can be constructed offline,
in O(n) time for an integer alphabet. We also maintain a growing suffix tree
T ′

2 = STree(TR[k..n])#) for decreasing k = n, . . . , 1.

Lemma 4. Given T2 = STree(TR#), we can maintain T ′
2 = STree(TR[k..n]#)

for decreasing k = n, . . . , 1 incrementally, in O(n) total time for an integer
alphabet of size nO(1).

Theorem 3. Given a string T of length n over an integer alphabet of size σ =
nO(1), we can compute SAGP1(T ) in optimal O(n + occ1) time and O(n) space
by using suffix trees, where occ1 = |SAGP1(T )|.
Proof. We first compute the array U . Consider an arbitrary fixed b, and let
uuR be a maximal palindrome stored in U [b] whose center is i = b + |u| − 1.
Assume that we have a growing suffix tree T ′

2 for string TR[n− b+1..n]# which
corresponds to the prefix T [1..b] of T of size b. We use a similar strategy as the
suffix array based algorithms. For each position 2n − b + 2 ≤ j ≤ 2n + 1 in
string T ′ = T$TR#, 1 ≤ op(j) ≤ b − 2. We maintain the NMA data structure
over the suffix tree T1 for string T ′ so that all the ancestors of the leaves whose
corresponding suffixes start at positions 2n − b + 2 ≤ j ≤ 2n + 1 are marked,
and any other nodes in T1 remain unmarked at this step.

As in the suffix-array based algorithms, the task is to find the longest prefix
wR of T [i + |uR| + 1..n] such that w occurs completely inside T [1..b − 2] =
T [1..i−|u|−1]. In so doing, we perform an NMA query from the leaf i+ |uR|+1
of T1, and let v be the answer to the NMA query. By the way how we have
maintained the NMA data structure, it follows that str(v) = wR.

To obtain the occurrences of w in T [1..b−2], we switch to T ′
2 , and traverse the

subtree rooted at v. Then, for any leaf � in the subtree, (i, |str(v)|, b− op(�), |u|)
is a canonical longest SAGP for pivot i.
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After processing all the maximal palindromes in U [b], we mark all unmarked
ancestors of the leaf 2n − b of T1 in a bottom-up manner, until we encounter
the lowest ancestor that is already marked. This operation is a preprocessing for
the maximal palindromes in U [b + 1], as we will be interested in the positions
between 1 and op(2n−b) = b−1 in T . In this preprocessing, each unmarked node
is marked at most once, and each marked node will remain marked. In addition,
we update the growing suffix tree T ′

2 by inserting the new leaf for TR[n− b..n]#.
We analyze the time complexity of this algorithm. Since all maximal palin-

dromes in U [b] begin at position b in T , we can use the same set of marked
nodes on T1 for all of those in U [b]. Thus, the total cost to update the NMA
data structure for all b’s is linear in the number of unmarked nodes that later
become marked, which is O(n) overall. The cost for traversing the subtree of T ′

2

to find the occurrences of w can be charged to the number of canonical longest
SAGPs to output for each pivot, thus it takes O(occ1) time for all pivots. Updat-
ing the growing suffix tree T ′

2 takes overall O(n) time by Lemma 4. What remains
is how to efficiently link the new internal node introduced in the growing suffix
tree T ′

2 , to its corresponding node in the static suffix tree T1 for string T ′. This
can be done in O(1) time using a similar technique based on LCA queries on
T1, as in the proof of Lemma 4. Summing up all the above costs, we obtain
O(n + occ1) optimal running time and O(n) working space. ��

3.2 Computing SAGP2(T ) for Type-2 Positions

In this subsection, we present an algorithm to compute SAGP2(T ) in a given
string T , corresponding to the line 10 in Algorithm 1.

Lemma 5. For any type-2 position i in string T , every (not necessarily longest)
SAGP for i must end at one of the positions between i + 2 and i + Pals[i].

Lemma 6. For any type-2 position i in string T , if wguuRwR is a canonical
longest SAGP for pivot i, then |w| = 1.

For every type-2 position i in T , let u = T [i..i + Pals[i]]. By Lemma 6, any
canonical longest SAGP is of the form cguuRc for c ∈ Σ. For each 2 ≤ k ≤
Pals[i], let ck = uR[k], and let uR

k be the proper prefix of uR of length k − 1.
Now, observe that the largest value of k for which LMost [ck] ≤ i − |uk| − 1
corresponds to a canonical longest SAGP for pivot i, namely, ckgkukuR

k ck is a
canonical longest SAGP for pivot i, where gk = T [LMost [ck] + 1..i − |uk|]. In
order to efficiently find the largest value of such, we consider a function findR(t, i)
defined by

findR(t, i) = min{r | t ≤ r < i and T [l] = T [r] for some 1 ≤ l < r} ∪ {+∞}.

Lemma 7. For any type-2 position i in T , quadruple (i, 1, r−LMost [T [r]], i−r)
represents a canonical longest SAGP for pivot i, where r = findR(i − Pals[i] +
1, i) �= ∞. Moreover, its gap is the longest among all the canonical longest SAGPs
for pivot i.
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Algorithm 2. constructing the array FindR
Input: string T of length n
Output: array FindR of size n

1 Let Occ1 and Occ2 be arrays of size ΣT initialized by +∞;
2 Let FindR be an arrays of size n, and let Stack be an empty stack;
3 minin = +∞;
4 for i = n downto 1 do
5 c = T [i]; Occ2[c] = Occ1[c]; Occ1[c] = i;
6 minin = min{minin,Occ2[c]};
7 Stack .push(i);
8 while Stack is not empty and LMost [T [Stack .top]] ≥ i do Stack .pop();
9 minout = Stack .top if Stack is not empty else +∞;

10 FindR[i] = min{minin,minout}

By Lemma 7, we can compute a canonical longest SAGP for any type-2 pivot
i in O(1) time, assuming that the function findR(t, i) returns a value in O(1)
time. We define an array FindR of size n by

FindR[t] = min{r | t ≤ r and T [l] = T [r] for some 1 ≤ l < r} ∪ {+∞}, (2)

for 1 ≤ t ≤ n. If the array FindR has already been computed, then findR(t, i)
can be obtained in O(1) time by findR(t, i) = FindR[t] if FindR[t] < i, and +∞
otherwise. Algorithm 2 shows a pseudo-code to compute FindR.

Lemma 8. Algorithm 2 correctly computes FindR in O(n) time and space.

By Lemma 8, we can compute SAGP2(T ) for type-2 positions as follows.

Theorem 4. Given a string T of length n over an integer alphabet of size nO(1),
we can compute SAGP2(T ) in O(n + occ2) time and O(n) space, where occ2 =
|SAGP2(T )|.
Proof. For a given T , we first compute the array FindR by Algorithm 2. By
Lemma 7, we can get a canonical longest SAGP x1 = (i, 1, |g1|,Pals [i]) if any, in
O(1) time by referring to LMost and FindR. Note that x1 is the one whose gap
|g1| is the longest. Let b1 = i − Pals[i] − |g1| be the beginning position of x1 in
T . Then the next shorter canonical longest SAGP for the same pivot i begins at
position b2 = NextPos[b1]. By repeating this process bj+1 = NextPos[bj ] while
the gap size |gj | = i−Pals[i]−|bj | is positive, we obtain all the canonical longest
SAGPs for pivot i. Overall, we can compute all canonical longest SAGPs for all
pivots in T in O(n + occ2) time. The space requirement is clearly O(n). ��

We now have the main theorem from Theorems 3, 4 and Lemmas 2, 3 as
follows.

Theorem 5. Given a string T of length n over an integer alphabet of size nO(1),
Algorithm 1 can compute SAGP(T ) in optimal O(n+occ) time and O(n) space,
where occ = |SAGP(T )|.
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4 Experiments

In this section, we show some experimental results which compare performance of
our algorithms for computing SAGP1(T ). We implemented the näıve quadratic-
time algorithm (Näıve), the simple quadratic-time algorithm which traverses
suffix arrays (Traverse), and three versions of the algorithm based on suffix array
and predecessor/successor data structure, each employing red-black trees (RB
tree), Y-fast tries (Y-fast trie), and van Emde Boas trees1 (vEB tree), as the
predecessor/successor data structure. We implemented all these algorithms with
Visual C++ 12.0 (2013), and performed all experiments on a PC (Xeon W3565,
12 GB of memory) running on Windows 7.

We tested these programs on randomly generated strings of lengths from 106

to 107 with |Σ| = 10. Figure 1 shows the average running times of 10 executions,
where Näıve is exculded because it was too slow. As one can see, Traverse was the
fastest for all lengths. We also conducted the same experiments varying alphabet
sizes as 2, 4, and 20, and obtained similar results as the case of alphabet size 10.

To verify why Traverse runs fastest, we measured the average numbers of
suffix array entries which are traversed, per pivot and output (i.e., canonical
longest SAGP). Figure 2 shows the result. We can observe that although in
theory O(n) entries can be traversed per pivot and output for a string of length
n, in both cases the actual number is far less than O(n) and grows very slowly
as n increases. This seems to be the main reason why Traverse is faster than
RB tree, vEB tree, and Y-fast trie which use sophisticated but also complicated
predecessor/successor data structures.

We also tested Traverse, RB tree, vEB tree, and Y-fast trie on a genome of
M.tuberculosis H37Rv (size: 4411529 bp, GenBank accession: NC 000962). The
running times were Traverse: 4304.8, RB tree: 12126.7, vEB tree: 9729.8, Y-fast
trie: 17862.6, all in milli-seconds. Here again, Traverse was the fastest.

1 We modified a van Emde Boas tree implementation from https://code.google.com/
archive/p/libveb/ so that it works with Visual C++.

https://code.google.com/archive/p/libveb/
https://code.google.com/archive/p/libveb/
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Abstract. We study the edit-distance between two visibly pushdown
languages. It is well-known that the edit-distance between two context-
free languages is undecidable. The class of visibly pushdown languages is
a robust subclass of context-free languages since it is closed under inter-
section and complementation whereas context-free languages are not.
We show that the edit-distance problem is decidable for visibly push-
down languages and present an algorithm for computing the edit-distance
based on the construction of an alignment PDA. Moreover, we show that
the edit-distance can be computed in polynomial time if we assume that
the edit-distance is bounded by a fixed integer k.

Keywords: Visibly pushdown languages · Edit-distance · Algorithm ·
Decidability

1 Introduction

The edit-distance between two words is the smallest number of operations
required to transform one word into the other [9]. We can use the edit-distance
as a similarity measure between two words; the shorter distance implies that
the two words are more similar. We can compute this by using the bottom-
up dynamic programming algorithm [15]. The edit-distance problem arises in
many areas such as computational biology, text processing and speech recogni-
tion [11,13,14]. This problem can be extended to a problem of computing the
similarity or dissimilarity between languages [4,5,11].

The edit-distance between two languages is defined as the minimum edit-
distance of two words, where one word is from the first language and the
other word is from the second language. Mohri [11] considered the problem
of computing the edit-distance between two regular languages given by finite-
state automata (FAs) of sizes m and n and showed that it is computable in
O(mn log mn) time. He also proved that it is undecidable to compute the edit-
distance between two context-free languages [11] using the undecidability of the
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 387–401, 2017.
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intersection emptiness of two context-free languages. As an intermediate result,
Han et al. [5] considered the edit-distance between a regular language and a
context-free language. Given an FA and a pushdown automaton (PDA) of sizes
m and n, they proposed a polynomial-time algorithm that computes the edit-
distance between their languages [5].

Here we study the edit-distance problem between two visibly pushdown
languages. Visibly pushdown languages are recognizable by visibly pushdown
automata (VPAs), which are a special type of pushdown automata for which
stack behavior is driven by the input symbols according to a partition of
the alphabet. Some literature call these automata input-driven pushdown
automata [10].

The class of visibly pushdown languages lies in between the class of reg-
ular languages and the class of context-free languages. Recently, there have
been many results about visibly pushdown languages because of nice closure
properties. Note that context-free languages are not closed under intersection
and complement and deterministic context-free languages are not closed under
union, intersection, concatenation, and Kleene-star. On the other hand, visibly
pushdown languages are closed under all these operations. Moreover, language
inclusion, equivalence and universality are all decidable for visibly pushdown
languages whereas undecidable for context-free languages.

Visibly pushdown automata are useful in processing XML documents [1,12].
For example, a visibly pushdown automaton can process a SAX representation
of an XML document, which is a linear sequence of characters along with a
hierarchically nested matching of open-tags with closing tags. Note that the
edit-distance between two visibly pushdown languages is undecidable if two lan-
guages are defined over different visibly pushdown alphabets since the intersec-
tion emptiness is undecidable [8]. Therefore, we always assume that two visibly
pushdown languages are defined over the same visibly pushdown alphabet.

We show that the edit-distance between visibly pushdown languages is decid-
able and present an algorithm for computing the edit-distance. Moreover, the
edit-distance can be computed in polynomial time if we assume that the edit-
distance is bounded by a fixed integer k.

2 Preliminaries

Here we recall some basic definitions and fix notation. For background knowledge
in automata theory, the reader may refer to textbooks [6,16].

The size of a finite set S is |S|. Let Σ denote a finite alphabet and Σ∗ denote
the set of all finite words over Σ. For m ∈ N, Σ≤m is the set of words over Σ
having length at most m. The ith character of a word w is denoted by wi for
1 ≤ i ≤ |w|, and the subword of a word w that begins at position i and ends at
position j is denoted by wi,j for 1 ≤ i ≤ j ≤ |w|. A language over Σ is a subset
of Σ∗. Given a set X, 2X denotes the power set of X. The symbol λ denotes the
null word.

A (nondeterministic) finite automaton (FA) is specified by a tuple A =
(Q,Σ, δ, s, F ), where Q is a finite set of states, Σ is an input alphabet, δ :
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Q × Σ → 2Q is a multi-valued transition function, s ∈ Q is the start state and
F ⊆ Q is a set of final states. If F consists of a single state f , we use f instead
of {f} for simplicity. When q ∈ δ(p, a), we say that state p has an out-transition
to state q (p is a source state of q) and q has an in-transition from p (q is a
target state of p). The transition function δ is extended in the natural way to a
function Q × Σ∗ → 2Q. A word x ∈ Σ∗ is accepted by A if there is a labeled
path from s to a state in F such that this path spells out the word x, namely,
δ(s, x) ∩ F �= ∅. The language L(A) is the set of words accepted by A.

A (nondeterministic) pushdown automaton (PDA) is specified by a tuple
P = (Q,Σ, Γ, δ, s, Z0, F ), where Q is a finite set of states, Σ is a finite input
alphabet, Γ is a finite stack alphabet, δ : Q × (Σ ∪ {λ}) × Γ → 2Q×Γ ≤2

is a
transition function, s ∈ Q is the start state, Z0 is the initial stack symbol and
F ⊆ Q is the set of final states. Our definition restricts that each transition of P
has at most two stack symbols, that is, each transition can push or pop at most
one symbol. We use |δ| to denote the number of transitions in δ. We define the
size |P | of P as |Q| + |δ|. The language L(P ) is the set of words accepted by P .

A (nondeterministic) visibly pushdown automaton (VPA) [2,10] is a restricted
version of a PDA, where the input alphabet Σ consists of three disjoint classes,
Σc, Σr, and Σl. Namely, Σ = Σc ∪ Σr ∪ Σl. The class of the input alphabet
determines the type of stack operation. For example, the automaton always
pushes a symbol onto the stack when it reads a call symbol in Σc. If the input
symbol is a return symbol in Σr, the automaton pops a symbol from the stack.
Finally, the automaton neither uses the stack nor even examine the content of
the stack for the local symbols in Σl. Formally, the input alphabet is defined as
a triple Σ̃ = (Σc, Σr, Σl), where three components are finite disjoint sets.

A VPA is formally defined by a tuple A = (Σ̃, Γ,Q, s, F, δc, δr, δl), where
Σ = Σc ∪ Σr ∪ Σl is the input alphabet, Γ is the finite set of stack symbols,
Q is the finite set of states, s ∈ Q is the start state, F ⊆ Q is the set of final
states, δc : Q × Σc → 2Q×Γ is the transition function for the push operations,
δr : Q × (Γ ∪ {⊥}) × Σr → 2Q is the transition function for the pop operations,
and δl : Q × Σl → 2Q is the local transition function. We use ⊥ /∈ Γ to denote
the top of an empty stack.

A configuration of A is a triple (q, w, v), where q ∈ Q is the current state,
w ∈ Σ∗ is the remaining input, and v ∈ Γ ∗ is the content on the stack. Denote
the set of configurations of A by C(A) and we define the single step computation
with the relation �A⊆ C(A) × C(A).

– Push operation: (q, aw, v) �A (q′, w, γv) for all a ∈ Σc, (q′, γ) ∈ δc(q, a), γ ∈
Γ,w ∈ Σ∗ and v ∈ Γ ∗.

– Pop operation: (q, aw, γv) �A (q′, w, v) for all a ∈ Σr, q
′ ∈ δr(q, γ, a), γ ∈

Γ,w ∈ Σ∗ and v ∈ Γ ∗; furthermore, (q, aw, ε) �A (q′, w, ε), for all a ∈ Σr, q
′ ∈

δr(q,⊥, a) and w ∈ Σ∗.
– Local operation: (q, aw, v) �A (q′, w, v), for all a ∈ Σl, q

′ ∈ δl(q, a), w ∈ Σ∗

and v ∈ Γ ∗.

An initial configuration of a VPA A = (Σ̃, Γ,Q, s, F, δc, δr, δl) is (s, w, ε),
where s is the start state, w is an input word and ε implies an empty stack.
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A VPA accepts a word if A arrives at the final state by reading the word from
the initial configuration. Formally, we write the language recognized by A1 as

L(A) = {w ∈ Σ∗ | (s, w, ε) �∗
A (q, ε, v) for some q ∈ F, v ∈ Γ ∗}.

We call the languages recognized by VPAs the visibly pushdown languages.
The class of visibly pushdown languages is a strict subclass of deterministic
context-free languages and a strict superclass of regular languages. While many
closure properties such as complement and intersection do not hold for context-
free languages, visibly pushdown languages are closed under most operations
including other basic operations such as concatenation, union, and Kleene-star.

3 Edit-Distance

The edit-distance between two words is the smallest number of operations that
transform a word to the other. People use different edit-operations according
to own applications. We consider three basic operations, insertion, deletion and
substitution for simplicity. Given an alphabet Σ, let Ω = {(a → b) | a, b ∈
Σ ∪ {λ}} be a set of edit-operations. Namely, Ω is an alphabet of all edit-
operations for deletions (a → λ), insertions (λ → a) and substitutions (a → b).
We say that an edit-operation (a → b) is a trivial substitution if a = b. We call
a word ω ∈ Ω∗ an edit string [7] or an alignment [11].

Let the morphism h between Ω∗ and Σ∗ × Σ∗ be h((a1 → b1) · · · (an →
bn)) = (a1 · · · an, b1 · · · bn), where ai, bi ∈ Σ ∪ {λ} for 1 ≤ i ≤ n. For example, a
word ω = (a → λ)(b → b)(λ → c)(c → c) over Ω is an alignment of abc and bcc,
and h(ω) = (abc, bcc). Thus, from an alignment ω of two words x and y, we can
retrieve x and y using h: h(ω) = (x, y).

We associate a non-negative edit cost to each edit-operation ωi ∈ Ω as a
function C : ωi → R+. We can extend the function to the cost C(ω) of an
alignment ω = ω1 · · · ωn as follows: C(ω) =

∑n
i=1 C(ωi).

Definition 1. The edit-distance d(x, y) of two words x and y over Σ is the
minimal cost of an alignment ω between x and y: d(x, y) = min{C(ω) | h(ω) =
(x, y)}. We say that ω is optimal if d(x, y) = C(ω).

Note that we use the Levenshtein distance [9] for edit-distance. Thus, we
assign cost 1 to all edit-operations (a → λ), (λ → a), and (a → b) for all
a �= b ∈ Σ. We can extend the edit-distance definition to languages.

Definition 2. The edit-distance d(L1, L2) between two languages L1, L2 ⊆ Σ∗

is the minimum edit-distance of two words, one is from L1 and the other is from
L2: d(L1, L2) = min{d(x, y) | x ∈ L1 and y ∈ L2}.

Mohri [11] revealed that the edit-distance between two context-free lan-
guages is undecidable from the undecidability of the intersection emptiness of
two context-free languages. Moreover, he presented an algorithm to compute
the edit-distance between two regular languages given by FAs of size m and n
in O(mn log mn) time. Han et al. [5] considered the intermediate case where one
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language is regular and the other language is context-free. Given a PDA and an
FA for the languages, it is shown that the problem is computable in polynomial
time while computing an optimal alignment corresponding to the edit-distance
requires an exponential runtime.

4 Edit-Distance Between Two VPLs

First we study the decidability of the edit-distance between two visibly pushdown
languages. We notice that the edit-distance between two context-free languages
is undecidable, whereas the edit-distance between two regular languages can be
computed in polynomial time.

Interestingly, it turns out that the edit-distance between two visibly push-
down languages is decidable. Here we show that we can compute the edit-distance
between two visibly pushdown languages L1 and L2 given by two VPAs by
constructing the alignment PDA [5], which accepts all the possible alignments
between two languages of length up to k. By setting k to be the upper bound of
the edit-distance between given two visibly pushdown languages L1 and L2, we
can compute the edit-distance between L1 and L2 by choosing the minimum-cost
alignment accepted by the alignment PDA.

The alignment PDA is first proposed by Han et al. [5] to compute the edit-
distance between a regular language and a context-free language. Given an FA A
and a PDA P , we can construct an alignment PDA A(A,P ) that accepts all
possible alignments that transform a word accepted by the FA A to a word
accepted by the PDA P . After we construct an alignment PDA for two languages,
we can compute the edit-distance between the two languages by computing the
length of the shortest word accepted by the alignment PDA. Furthermore, we
can obtain an optimal alignment between two languages by taking the shortest
word.

An interesting point to note is that the construction of the alignment PDA
does not imply that we can compute the edit-distance. For example, the edit-
distance between two context-free languages is undecidable even though it is
possible to construct an alignment PDA with two stacks that accepts all possible
alignments between two PDAs [11]. This is because we cannot compute the
length of the shortest word accepted by a two-stack PDA, which can simulate a
Turing machine [6]. Here we start from an idea that we do not need to consider
all possible alignments between two visibly pushdown languages to compute
the edit-distance and an optimal alignment. If we know the upper bound k of
the edit-distance between two visibly pushdown languages, we can compute the
edit-distance and an optimal alignment by constructing an alignment PDA that
accepts all possible alignments of cost up to k between two visibly pushdown
languages. This can be done because the stack operation of VPAs is determined
by the input character.

Assume that we have two VPAs A1 and A2 over the same alphabet Σ. Then,
the alignment PDA A(A1, A2) of A1 and A2 simulates all possible alignments
between the two languages L(A1) and L(A2). Note that A(A1, A2) simulates two
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stacks from two VPAs simultaneously by reading each edit-operation. Whenever
A(A1, A2) simulates a trivial edit-operation (a → a), a ∈ Σ which substitutes
a character into the same one, the difference in height of two stacks does not
change since two VPAs read characters in the same class. The height of two stacks
becomes different when A(A1, A2) reads insertions of call (or return) symbols,
deletions of call (or return) symbols, or substitutions between two characters in
different classes. For example, the height of two stacks becomes different by 1
when A(A1, A2) read an insertion (λ → a) of a call symbol a ∈ Σc since A1

does not change its stack while A2 is pushing a stack symbol onto its stack. The
height of two stacks becomes different the most when A(A1, A2) reads an edit-
operation that substitutes a call (resp. return) symbol into a return (resp. call)
symbol since A1 pushes (resp. pops) a stack symbol while A2 pops (resp. pushes)
a stack symbol. Therefore, if the upper bound of the edit-distance between two
visibly pushdown languages is k, the maximum height difference between two
stacks can be at most 2k whenever we simulate an alignment that costs up to k.
Note that we can easily compute the upper bound of the edit-distance between
two visibly pushdown languages by computing the shortest words from each
visibly pushdown language. Let lsw(L) be the length of the shortest word in L.

Proposition 3. Let L ⊆ Σ∗ and L′ ⊆ Σ∗ be the languages over Σ. Then,
d(L,L′) ≤ max{lsw(L), lsw(L′)} holds.

Now we give the alignment PDA construction for computing the edit-distance
between two visibly pushdown languages. The basic idea of the construction is
to remember the top stack symbols from two stacks by using the states of the
alignment PDA. Intuitively, we store the information of the top 2k stack symbols
from both stacks in the states instead of pushing into the stack of the alignment
PDA.

Let Ai = (Σ̃, Γi, Qi, si, Fi, δi,c, δi,r, δi,l) for i = 1, 2 be two VPAs. We con-
struct the alignment PDA A(A1, A2) = (QE , Ω, ΓE , sE , FE , δE), where

– QE = Q1 × Q2 × Γ≤2k
1 × Γ≤2k

2 is the set of states,
– Ω = {(a → b) | a, b ∈ Σ ∪ {λ}} is the alphabet of edit-operations,
– ΓE = (Γ1 ∪ {λ}) × (Γ2 ∪ {λ}) \ {(λ, λ)} is a finite stack alphabet,
– sE = (s1, s2, λ, λ) is the start state, and
– FE = F1 × F2 × Γ≤2k

1 × Γ≤2k
2 is the set of final states.

Now we define the transition function δE . There are seven cases to consider
as follows. The alignment PDA A(A1, A2) reads an edit-operation that

(i) pushes on two stacks simultaneously,
(ii) pushes on the first stack,
(iii) pushes on the second stack,
(iv) pops from two stacks simultaneously,
(v) pops from the first stack,
(vi) pops from the second stack, and
(vii) not perform stack operation.
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Assume that x ∈ Γ≤2k
1 and y ∈ Γ≤2k

2 . Simply, x and y are words over the
stack alphabet of A1 and A2 whose lengths are at most 2k. For a non-empty
word x over Γ1, recall that we denote the first character and the last character
of x by x1 and x|x|, respectively. We also denote the subword that consists of
characters from xi to xj by xi,j , where i < j.

Suppose that there are transitions defined in VPAs A1 and A2 as follows:

– (q′, γ) ∈ δ1,c(q, ac), [push operation in A1]
– q′ ∈ δ1,l(q, al), [local operation in A1]
– q′ ∈ δ1,r(q, γ, ar), [pop operation in A1]
– (p′, μ) ∈ δ2,c(p, bc), [push operation in A2]
– p′ ∈ δ2,l(p, bl), and [local operation in A2]
– p′ ∈ δ2,r(p, μ, br). [pop operation in A2]

By reading an edit-operation (ac → bc), we define δE to operate as follows:

– (q′, p′, xγ, yμ) ∈ δE((q, p, x, y), (ac → bc)) if |x| < 2k and |y| < 2k,
– ((q′, p′, x2,|x|γ, y2,|y|μ), (x1, y1)) ∈ δE((q, p, x, y), (ac → bc)) otherwise.

By the above transitions, we simulate the push operations on the stacks
of A1 and A2 at the same time. We store the information of the top 2k stack
symbols in the states instead of using “real” stack. If a state already contains the
information of 2k symbols, we start using the stack by pushing the bottommost
pair of stack symbols onto the stack.

We also define δE to operate as follows by reading an edit-operation (ac → bl):

– (q′, p′, xγ, y) ∈ δE((q, p, x, y), (ac → bl)) if |x| < 2k,
– ((q′, p′, x2,|x|γ, y2,|y|), (x1, y1)) ∈ δE((q, p, x, y), (ac → bl)) otherwise.

Similarly, we define δE for an edit-operation (ac → λ) as follows:

– (q′, p, xγ, μ) ∈ δE((q, p, x, y), (ac → λ)) if |x| < 2k,
– ((q′, p, x2,|x|γ, y2,|y|), (x1, y1)) ∈ δE((q, p, x, y), (ac → λ)) otherwise.

Note that the cases of reading (al → bc) or (λ → bc) are completely symmetric
to the previous two cases. We also consider the cases when we have to pop at
least one of two stacks by reading an edit-operation. First, we define δE for the
case when we read an edit-operation (ar → br) that pops from both stacks at
the same time.

– (q′, p′, γtopx1,|x|−1, μtopy1,|y|−1) ∈ δE((q, p, x, y), (γtop, μtop), (ar → br)) if
x|x| = γ, y|y| = μ and the top of the stack is (γtop, μtop),

– (q′, p′, x1,|x|−1, y1,|y|−1) ∈ δE((q, p, x, y), (ar → br)) if x|x| = γ, y|y| = μ and
the stack is empty.

When we simulate pop operations on A(A1, A2), we remove the last stack
symbols stored in the state. Then, we pop off the top of the stack, say (γtop, μtop),
and move the pair to the front of the stored stack symbols in the state.

For the case when we have to pop only from the first stack, we define δE to
be as follows:
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– (q′, p′, γtopx1,|x|−1, μtopy) ∈ δE((q, p, x, y), (γtop, μtop), (ar → bl)) if |x| = 2k,
|y| < 2k, and the top of the stack is (γtop, μtop),

– (q′, p′, x1,|x|−1, y) ∈ δE((q, p, x, y), (ar → bl)) otherwise.

Note that x|x| = γ should hold for simulating pop operations on the first
stack. We also define the transitions for the edit-operations of the form (ar → λ)
similarly. Again, the pop operations on the second stack are completely sym-
metric. Lastly, we define δE for the case when we do not touch the stack at all.
There are three possible cases as follows:

– (q′, p′, x, y) ∈ δE((q, p, x, y), (al → bl)),
– (q′, p, x, y) ∈ δE((q, p, x, y), (al → λ)), and
– (q, p′, x, y) ∈ δE((q, p, x, y), (λ → bl)).

Now we prove that the constructed alignment PDA A(A1, A2) simulates all
possible alignments of cost up to k between L(A1) and L(A2).

Lemma 4. Given two VPAs A1 and A2, it is possible to construct the alignment
PDA A(A1, A2) that accepts all possible alignments between L(A1) and L(A2)
of cost up to the constant k.

Proof. Let us consider the simulations of two VPAs A1 and A2 for an align-
ment ω. Given h(ω) = (x, y), the VPA A1 has to simulate a word x while the
VPA A2 is simulating a word y. Suppose that x has 2k call symbols and y has
k′ call symbols, where k′ < 2k, and no return symbols. Then, the stack contents
of A1 and A2 should be γ1γ2 · · · γ2k and μ1μ2 · · · μk′ , respectively, where γi ∈ Γ1

for 1 ≤ i ≤ 2k and μj ∈ Γ2 for 1 ≤ j ≤ k′. See Fig. 1 for illustration of this
example.

γ2k

γ2k−1

...
γ2

γ1

⊥

μk

...
μ2

μ1

⊥ ⊥

On state q
in VPA A1

On state p
in VPA A2

On state (q, p, γ1γ2 · · · γ2k, μ1μ2 · · · μk )
in alignment PDA A(A1, A2)

Fig. 1. Illustration of how we store the information of two stacks in the states of the
alignment PDA A(A1, A2).

After this, we push the pair (γ1, μ1) of two stack symbols in the bottom of
two stacks onto the stack of A(A1, A2) if we read an edit-operation (a → b)
where a is a call symbol of A1. Let us assume that A1 pushes γ2k+1 by reading
a and A2 pushes μk′+1 by reading b. Then, we push two stack symbols γ2k+1
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γ2k+1

γ2k

...
γ2

γ1

⊥

μk +1

μk

...
μ2

μ1

⊥

γ1, μ1

⊥

q

q

In VPA A1 In VPA A2
p

p

In alignment
PDA A(A1, A2)

(q, p, γ1 · · · γ2k,
μ1 · · · μk )

(q , p , γ1 · · · γ2k+1,
μ1 · · · μk +1)

a b

(a → b)

Fig. 2. Illustration of how we store the information of two stacks in the states of the
alignment PDA A(A1, A2). Underlined stack symbols γ2k+1 and μk′+1 are pushded by
the current transitions of VPAs.

and μk′+1 onto the simulated stacks stored in the state. See Fig. 2 to see what
happens after reading (a → b).

In this way, we can make the stack of A(A1, A2) to be always synchronized.
Note that we only push stack symbols onto the stack of A(A1, A2) when we need
to push a stack symbol onto the stack where the simulated stack stored in the
state is full. Therefore, the stack of A(A1, A2) should be empty if the maximum
height of two stacks stored in the state is less than 2k. When we read an edit-
operation that pops a stack symbol from A1 or A2, we pop the stack symbols
from the stack contents stored in the states. If the height of the stack in the
state is 2k before we pop a stack symbol, we pop a stack symbol from the top
of the real stack of A(A1, A2) and move to the bottom of the simulated stack
stored in the state of A(A1, A2).

By storing stack information in the states instead of real stacks, A(A1, A2)
accepts alignments where the height difference of two stacks during the simula-
tion can be at most 2k. We mention that A(A1, A2) also accepts alignments of
cost higher than k if the simulation of the alignments does not require the stack
height difference to be larger than 2k.

Now we prove that the alignment PDA A(A1, A2) accepts an alignment ω,
where C(ω) ≤ k if and only if ω is an alignment satisfying C(ω) ≤ k and h(ω) =
(x, y), where x ∈ L(A1) and y ∈ L(A2).

(=⇒) Since A(A1, A2) accepts an alignment ω, where C(ω) ≤ k, there exists
an accepting computation Xω of A(A1, A2) on ω ending in a state (f1, f2) where
f1 ∈ F1, f2 ∈ F2. We assume that ω = w1 · · · wl, where wi ∈ Ω for i ≤ i ≤ l.
Denote the sequence of states of A(A1, A2) appearing in the computation Xω just
before reading the lth symbol of ω as C0, . . . , Cl−1, and denote the state (f1, f2)
where the computation ends as Cl. Consider the first component qi ∈ Q1 of the
state Ci ∈ QE , for 0 ≤ i ≤ l, and the first component aj ∈ Σ ∪ {λ} of the
edit-operation wj , for 1 ≤ j ≤ l. From the construction of A(A1, A2), it follows
that
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– (qi+1, γ) ∈ δA,c(q, ai+1), if ai+1 ∈ Σc

– qi+1 ∈ δA,l(q, ai+1), if ai+1 ∈ Σl

– qi+1 ∈ δA,r(q, γ, ai+1), and if ai+1 ∈ Σr

– qi+1 = qi. if ai+1 = λ

for 0 ≤ i ≤ l − 1. Note that the transitions of δE reading an “insertion opera-
tion” (λ → b) do not change the first components of the states. Thus, the first
components of the state C0, . . . , Cl spell out an accepting computation of A1

on the word x = a1 · · · al obtained by concatenating the first components of
the edit-operations of ω. Using a similar argument for the word y obtained by
concatenating the second components of ω, we can show that the computation
yields an accepting computation of A2 on y.
(⇐=) Let ω = (ωL(1) → ωR(1))(ωL(2) → ωR(2)) · · · (ωL(l) → ωR(l)) be
an alignment of length l for x = ωL(1)ωL(2) · · · ωL(l) ∈ L(A1) and y =
ωR(1)ωR(2) · · · ωR(l) ∈ L(A2). Let C = C0C1 · · · Cm,m ∈ N, be a sequence of
configurations of the VPA A1 that traces an accepting computation XA,x on the
word x. Assuming that Ci is (qi, γi), the configuration Ci+1 is obtained from Ci

by applying a transition (qi+1, γi+1) ∈ δA(qi, a, γi), where a ∈ Σ∪{λ}. Note that
ωL(j) or ωR(j) may be the empty word if (ωL(j) → ωR(j)) is an edit-operation
representing an insertion or a deletion operation. Suppose that the computa-
tion step Ci → Ci+1 consumes h empty words. Then in the sequence C after
the configuration Ci, we add h − 1 identical copies of Ci. Then, we denote the
modified sequence of configurations C′ = C ′

0C
′
1 · · · C ′

l , l ∈ N. Analogously, let
D = D′

0D
′
1 · · · D′

l be a sequence of configurations of the VPA A2 that traces an
accepting computation XB,y on the word y.

From the sequences C′ and D, we obtain a sequence of configurations of
A(A1, A2) describing an accepting computation on the alignment ω. For the
deletion operations (ωL(j) → λ), the state is changed just in the first component
and the configuration of A2 remains unchanged. Recall that we have added the
identical copies of configurations for simulating this case. The deletion operations
can be simulated symmetrically. For the substitution operations (ωL(j) → ωR(j)),
the computation step simulates both a state transition of A1 on ωL(j) and a state
transition of A2 on ωR(j).

This implies that two modified sequences of configurations of A1 and A2 can
be combined to yield an accepting computation of A(A1, A2) on ω. ��

Let us consider the size of the constructed alignment PDA A(A1, A2). Let
mi = |Qi|, ni = |δi,c| + |δi,r| + |δi,l|, and li = |Γi| for i = 1, 2.

Note that each state contains an information of a pair of states from A1 and
A2, and a stack information of at most 2k stack symbols of A1 and A2. If we
represent a stack where the height of the stack is restricted to 2k with a word
over the stack alphabet Γ1, we have

l′1 =
2k∑

i=0

li1 = 1 + l1 · l2k
1 − 1
l1 − 1
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possible words. Similarly, we define l′2 to be the number of possible words over
Γ2. Therefore, the number of states in A(A1, A2) is in

m1m2 · l′1l
′
2 = m1m2 ·

(
2k∑

i=0

li1

)

·
(

2k∑

i=0

li2

)

.

The size of the stack alphabet ΓE is l1l2 since we use all pairs of the stack
symbols where the first stack symbol is from Γ1 and the second stack symbol is
from Γ2. The size of the transition function δE is

m1m2 · n1n2 ·
(

2k∑

i=0

li1

)

·
(

2k∑

i=0

li2

)

.

By Lemma 4, we can obtain an alignment PDA from two VPAs A1 and A2

to compute the edit-distance d(L(A1), L(A2)). Recently, Han et al. [5] studied
the edit-distance between a PDA and an FA. The basic idea is to construct an
alignment PDA from a PDA and an FA and compute the length of the shortest
alignment from the alignment PDA. As a step, they present an algorithm for
obtaining a shortest word and computing the length of the shortest word from
a PDA. For the sake of completeness, we include the following proposition.

Proposition 5 (Han et al. [5]). Given a PDA P = (Q,Σ, Γ, δ, s, Z0, FP ),
we can obtain a shortest word in L(P ) whose length is bounded by 2m2l+1 in
O(n · 2m2l) worst-case time and compute its length in O(m4nl) worst-case time,
where m = |Q|, n = |δ| and l = |Γ |.

Now we establish the following runtime for computing the edit-distance
between two VPAs.

Theorem 6. Given two VPAs Ai = (Σ,Γi, Qi, si, Fi, δi,c, δi,r, δi,l) for i = 1, 2,
we can compute the edit-distance between L(A1) and L(A2) in O((m1m2)5 ·n1n2 ·
(l1l2)10k) worst-case time, where mi = |Qi|, ni = |δi,c|+ |δi,r|+ |δi,l|, li = |Γi| for
i = 1, 2 and k = max{lsw(L(A1)), lsw(L(A2))}.

If we replace k with the length 2|Q|2·|Γ |+1 of a shortest word from a VPA
from the time complexity obtained in Theorem 6, we have double exponential
time complexity for computing the edit-distance between two VPAs. It is still
an open problem to find a polynomial algorithm for the problem or to establish
any hardness result. Instead, we can observe that the edit-distance problem for
VPAs can be computed in polynomial time if we limit the edit-distance to a
fixed integer k.

Corollary 7. Let A1 and A2 be two VPAs and k be a fixed integer such that
d(L(A1), L(A2)) ≤ k.Then, we can compute the edit-distance between L(A1) and
L(A2) in polynomial time.
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As a corollary of Theorem 6, we can also establish the following result. A
visibly counter automaton (VCA) [3] can be regarded as a VPA with a single
stack symbol. It is interesting to see that we can compute the edit-distance
between two VCAs in polynomial time when we are given t.

Corollary 8. Given two VCAs A1, A2 and a positive integer k ∈ N in unary
such that d(L(A1), L(A2)) ≤ k, we can compute the edit-distance between L(A1)
and L(A2) in polynomial time.

Appendix

Context-free grammar (CFG). A context-free grammar (CFG) G is a four-
tuple G = (V,Σ,R, S), where V is a set of variables, Σ is a set of terminals,
R ⊆ V × (V ∪ Σ)∗ is a finite set of productions and S ∈ V is the start variable.
Let αAβ be a word over V ∪ Σ, where A ∈ V and A → γ ∈ R. Then, we say
that A can be rewritten as γ and the corresponding derivation step is denoted
αAβ ⇒ αγβ. A production A → t ∈ R is a terminating production if t ∈ Σ∗. The
reflexive, transitive closure of ⇒ is denoted by ∗→ and the context-free language
generated by G is L(G) = {w ∈ Σ∗ | S

∗→ w}. We say that a variable A ∈ V is
nullable if A

∗→ λ.

Proposition 3. Let L ⊆ Σ∗ and L′ ⊆ Σ∗ be the languages over Σ. Then,

d(L,L′) ≤ max{lsw(L), lsw(L′)}
holds.

Proof. Assume that lsw(L) = m and lsw(L′) = n where n ≤ m. It is easy to see
that the edit-distance between two shortest words can be at most m since we can
substitute all characters of the shortest word of length n with any subsequence
of the longer word and insert the remaining characters. ��

Proposition 5 (Han et al. [5]). Given a PDA P = (Q,Σ, Γ, δ, s, Z0, FP ), we
can obtain a shortest word in L(P ) whose length is bounded by 2m2l+1 in O(n ·
2m2l) worst-case time and compute its length in O(m4nl) worst-case time, where
m = |Q|, n = |δ| and l = |Γ |.
Proof. Recall that we can convert a PDA into a CFG by the triple construc-
tion [6]. Let us denote the CFG obtained from P by GP . Then, GP has |Q|2·|Γ |+1
variables and |Q|2 · |δ| productions. Moreover, each production of GP is of the
form A → σBC,A → σB,A → σ or A → λ, where σ ∈ Σ and A,B,C ∈ V . Since
we want to compute the shortest word from GP , we can remove the occurrences
of all nullable variables from GP . Then, we pick a variable A that generates the
shortest word t ∈ Σ∗ among all variables and replace its occurrence in GP with t.
We can compute the shortest word of L(P ) by iteratively removing occurrences
of such variables. We describe the algorithm in Algorithm 1.
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Since a production of GP has at most one terminal followed by two variables,
the length of the word to be substituted is at most 2m − 1 when we replace mth
variable. Since we replace at most |Q|2 · |Γ | variables to have the shortest word,
the length of the shortest word in L(P ) can be at most 2|Q|2·|Γ |+1. Since there
are at most 2|R| occurrences of variables in R and |V | variables, we replace
2|R|
|V | occurrences of a given variable on average. Therefore, the worst-case time

complexity for finding a shortest word is O(n · 2m2l). We also note that we can
compute only the length of the shortest word in O(m4nl) worst-case time by
encoding a shortest word to be substituted with a binary number. ��

Algorithm 1. ShortestLength(P )
Input: A PDA P = (Q, Σ, Γ, δ, s, Z0, FP )
Output: lsw(L(P ))
1: convert P into a CFG GP = (V, Σ, R, S) by the triple construction
2: eliminate all nullable variables
3: for B → t ∈ R, where t ∈ Σ∗ and |t| is minimum among all such t in R do
4: if B = S then
5: return |t|
6: else
7: replace all occurrences of A in R with t
8: remove A from V and its productions from R
9: end if

10: end for

Theorem 6. Given two VPAs Ai = (Σ,Γi, Qi, si, Fi, δi,c, δi,r, δi,l) for i = 1, 2,
we can compute the edit-distance between L(A1) and L(A2) in O((m1m2)5 ·n1n2 ·
(l1l2)10k) worst-case time, where mi = |Qi|, ni = |δi,c|+ |δi,r|+ |δi,l|, li = |Γi| for
i = 1, 2 and k = max{lsw(L(A1)), lsw(L(A2))}.

Proof. In the proof of Lemma 4, we have shown that we can construct an align-
ment PDA A(A1, A2) = (QE , Ω, ΓE , sE , FE , δE) that accepts all possible align-
ments between two VPAs A1 and A2 of length up to k. From Proposition 5, we
can compute the edit-distance in O(m4nl) time, where m = |QE |, n = |δE | and
l = |ΓE |. Recall that

m = m1m2 ·
(

2k∑

i=0

li1

)

·
(

2k∑

i=0

li2

)

, n = m1m2 · n1n2 ·
(

2k∑

i=0

li1

)

·
(

2k∑

i=0

li2

)

,

and l = l1l2. Note that
(

2k∑

i=0

li1

)

∈ O(l2k
1 ) and

(
2k∑

i=0

li2

)

∈ O(l2k
2 )
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if l1, l2 > 0.
Therefore, the time complexity of computing the edit-distance between two

VPAs A1 and A2 is

(m1m2)5 · n1n2 ·
(

2k∑

i=0

li1

)5

·
(

2k∑

i=0

li2

)5

· l1l2 ∈ O((m1m2)5 · n1n2 · (l1l2)10k),

where k is the maximum of the length of the two shortest words from L(A1) and
L(A2). ��

Corollary 8. Given two VCAs A1, A2 and a positive integer k ∈ N in unary
such that d(L(A1), L(A2)) ≤ k, we can compute the edit-distance between L(A1)
and L(A2) in polynomial time.

Proof. If l1 = l2 = 1,
(

2k∑

i=0

li1

)

∈ O(k) and

(
2k∑

i=0

li2

)

∈ O(k).

If we replace l2k
1 and l2k

2 by k from the time complexity, we obtain the time
complexity O((m1m2)5 · n1n2 · k10) which is polynomial in the size of input.
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Abstract. A crucial success factor in information systems development is the
alignment of the final software product with business goals, business semantics
and business processes. Developers should be freed from programming concerns
and be able to concentrate on these alignment problems. To assess that the right
capabilities are used, sound Conceptual Modeling (CM) techniques within a
Model-driven system development (MDD) must be applied in order to provide a
structured and systematic approach to systems development, where developers
can successfully use model transformation technologies to derive models of a
lower abstraction level that can be further refined, even generating software code
automatically. From the experience got with the use of advanced MDD plat-
forms, this keynote will show how to use a Capability-driven Development
(CDD) strategy in order to integrate business process modelling (BPM),
requirements engineering (RE) and object-oriented conceptual modelling with
the objective of leveraging MDD capabilities. The current state of the art on
modelling methods and code generation tools will be discussed to explore dif-
ferent ways to match an information system with business requirements. Con-
crete principles, concepts and common practices of MDD will be presented with
a special focus on model-driven requirements engineering, meaning by it how
BPM and requirements models can be embedded in a complete CM-based
software production process.

1 Introduction

A sound software development process must guarantee that the final software product
corresponds accurately to the system requirements and conforms to the organizational
rules of the analyzed system. To assess the required traceability between source models
and target products, precise conceptual models have to be elaborated, together with
well-defined model transformations.

This “conceptual trip” between requirements and code involves different types of
conceptual models, that work at different levels of abstractions (requirements models,
business process models, conceptual schemas, code, …). The sound software devel-
opment process commented before must determine what conceptual models to use, and
what model transformations are to be defined. This Model-based Software Develop-
ment Process presented in this paper has two main components: the notion of capability
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applied in a CM context, and the use of the Model-driven Architecture (MDA) standard
to structure the template of the proposed software process.

Firstly, the notion of capability is going to be used in order to characterize the
relevant modeling components to be specified, especially at the earliest steps of a
software process where goal models, organizational models, process models, require-
ments models, context models… are to be defined. In a business context, the notion of
capability mainly refers to the resources and expertise that an enterprise needs to offer
its functions. As pointed out by Zdravkovic et al. ([1]), it is a notion that has gained
more and more attention in the last years because it directs business investment focus, it
can be used as a baseline for business planning and it leads directly to service speci-
fication and design. It has been intensively argued that capabilities help to determine
relevant changing business contexts and how to integrate applications designed for
different execution contexts that are part of a common business process. This has an
immediate application over the intention of providing a sound conceptual modeling
framework for modeling requirements and business processes, using the most conve-
nient method components and connecting with advanced model-driven development
(MDD) practices.

Linking capabilities with a MDD approach can provide a rigorous approach where
the relevant components of the software process are precisely identified with a clear
purpose, and where the software components of the final software application are
accurately connected with the source RE and BPM perspectives. This connection has
not been analyzed in a clear and convincing way. This is why we focus here on this link
between a CDD-based approach and the methodological guidance required to design a
sound software production process.

Secondly, the Model Driven Architecture OMG standard (MDA) ([2]) is used in the
definition of the desired software process, in order to provide a conceptual template
intended to structure the different types of conceptual models to be used in the con-
ceptual trip from requirements to code that we introduce.

This work aims to explore this integration aspect by using an open framework to
model capabilities, assuming that different views require different modeling approa-
ches. The holistic framework should make possible to incorporate the most accurate
techniques for modeling a particular component, always following the conceptual path
that MDA provides. Different conceptual models are needed to specify a conceptual
map to be used for building a global software production process where the relevant
different modeling views (i.e., requirements, conceptual schema, code) and their sub-
sequent models transformations must be properly integrated.

According to this line of argumentation, after this introduction, we present in
Sect. 2 the software development process that can be designed combining
capabilities-based modeling with the MDA approach. In Sect. 3 we introduce a con-
crete instantiation of the proposed software process template, to close the work with
conclusions and references.
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2 The Software Development Process

We start from the definition of capability used in the FP7 CaaS project ([3]), as “the
ability and capacity that enables an enterprise to achieve a business goal in a certain
operational context”. We use it to determine what essential system information must be
captured in order to being able to design a complete and correct requirements model.
A capability meta-model (CMM) determines the main conceptual primitives that
characterize the corresponding, starting conceptual modeling platform. How to specify
the different modeling perspectives that are present in this CMM becomes the essential
decision to instantiate it in a particular method. Three main aspects must be considered
(see Fig. 1): context, enterprise modelling and reuse and variability, each one requiring
a particular conceptual modeling approach, but all of them integrated under the same,
unified modeling perspective. These three aspects provides an effective conceptual
coverage to face the RE - BPM connection problem that conforms the earliest step of
the proposed software process.

To have an open architecture, it should be possible to select different modeling
proposals to cover those modeling perspectives that are delimited with the meta-model.
Once the most suitable modeling approaches are selected, a precise model transfor-
mation process must be introduced in order to guide how to represent correctly the
information specified in these models in lower-level models finish by deploying the
application code that constitutes the final product.

Fig. 1. The three main aspects of the capability meta-model
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This leads us to the second component of the presented approach: the MDA per-
spective, intended to provide a concrete template where the different components
needed to put in practice the selected software process, are determined. Figure 2 shows
it graphically. Depending on what capabilities are selected and what conceptual
modeling approaches are subsequently used, what models are used to accomplish the
elaboration of the different conceptual models at the different abstraction levels must be
fixed.

Complementary, once the involved conceptual models are determined, the corre-
sponding model transformation must be designed, with the final objective of keeping
the system expressiveness while the level of abstraction moves to the final application
code direction.

3 A Concrete, Full MDD Software Process Instantiation

Once the software process template is introduced, the next step is to materialize it into a
concrete software process by fulfilling its different steps with the selected modeling
components. Depending on the problem domain and on the modeling purposed, dif-
ferent approaches can be considered more appropriate for a particular problem, leading
to the possibility of adapting the software process to the characteristics of the working
problem under consideration.

As a concrete example, we can use a requirements modeling strategy based on
Communicational Analysis for the CIM component, such as the one proposed in [4].

Fig. 2. A MDA-based template to characterize a software production process, based on
conceptual modeling and model transformations.
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How to model organizational goals and system context within such an approach would
make the modelers to analyze what kind of model extensions should be done. An
example of such an effort can be seen in [5], where a well-known goal-oriented
requirements modeling approach is used (i*, [6]), and how to transform it into a
CA-based requirements model is explained.

Having a concrete CIM, the next step is include a PIM approach, and to define the
link between the two models by designing an adequate conceptual models transfor-
mation. In our proposed example, an OO-Method conceptual model could be an
appropriate answer. As OO-Method models are executable ([7]), this strategy will
provide a software process where the PSM will be represented by the conceptual model
compiler, and the final code will be the result of a complete model compilation process,
what assures desired traceability between requirements and code.

In connection with the method engineering discipline, the proposed framework
provides an effective solution to design a sound MDD-based software process able to:

• Provide a holistic perspective for the different method components that are required
to go from requirements to code.

• Materialize a concrete starting point for capability-based design in the scope of
RM/BPM by using as conceptual modeling strategy a communicational
analysis-based approach.

• Connect the selected conceptual models for performing the RM/BPM steps with the
model transformation properties of tools that can generate the final application code,
making true the MDD goal of going from requirements to code following a process
that is as much automated as possible ([8]). This strategy is based on using con-
ceptual model compilers that can make true the statement “the model is the code”
(instead of the conventional one “the code is the model”).

4 Conclusions

This keynote presents an approach that combines a fundamental notion of capability
from a conceptual modeling perspective, with a MDA-based software process template
intended to select the most adequate modeling components that a concrete, materialized
software process requires. Capabilities help to determine what kind of expressiveness
to use, while MDA provides a framework to design a software process whose com-
ponents at the different MDA levels are carefully selected according to the particular
modeling needs of the system under consideration.

This association constitutes a sound basis to design a model-driven development
approach intended to make true the objective of going from requirements to code
following a precise strategy, where the right conceptual models are selected to be used
in the right order –following the proposed MDA-based template- and with the corre-
sponding conceptual model transformations that are defined to assess that traceability
between requirements and code is fully achieved.
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Abstract. One of the key elements of a website are Web menus, which
provide fundamental information about the topology of the own website.
Menu detection is useful for humans, but also for crawlers and indexers
because the menu provides essential information about the structure and
contents of a website. For humans, identifying the main menu of a website
is a relatively easy task. However, for computer tools identifying the
menu is not trivial at all and, in fact, it is still a challenging unsolved
problem. In this work, we propose a novel method for automatic Web
menu detection that works at the level of DOM.

Keywords: Information retrieval · Web template detection · Menu
detection

1 Introduction

A webpage menu (in the following just menu) is a fundamental component in a
website whose main objective is providing navigation among the main webpages
that form the website. In this paper, we focus on HTML-structured webpages
(ignoring those webpages built with alternative technologies such as Flash, or
those whose structure is constructed by means of JavaScript). From an engineer-
ing perspective, a webpage is a set of Document Object Model (DOM) nodes.
Thus, a menu is a subset of those nodes, and it provides essential information
about the structure of a website, including its main sections, and implicit infor-
mation about the sitemap of the website.

Our approach to menu detection is based on the DOM [4] structures that
represent webpages. Roughly, given a webpage of a website, (1) we first compute
the relevance (a weight) of each DOM node in the webpage, and then, (2) we
use the relevance to identify those DOM nodes that are more likely to be part of
the menu. (3) Finally, we analyse recursively the parents of those nodes to infer
the complete menu. In practice, we input a webpage and we output the set of
DOM nodes that correspond to the main menu.

This work has been partially supported by the EU (FEDER) and the Span-
ish Ministerio de Economı́a y Competitividad under grant TIN2013-44742-C4-1-
R and TIN2016-76843-C4-1-R, and by the Generalitat Valenciana under grant
PROMETEO-II/2015/013 (SmartLogic).
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2 Related Work

Menu extraction is a topic directly related to template extraction. Template
detection and extraction are key topics due to their direct application to Web
mining, searching, indexing, and Web development. Content Extraction is a dis-
cipline very close to template extraction. Content extraction tries to isolate the
pagelet that contains the main content of the webpage. It is an instance of a
more general discipline called Block Detection that tries to isolate every pagelet
in a webpage. There are many works in these fields (see, e.g., [3,5,6,12]), and all
of them are directly related to menu extraction.

Menu extraction techniques are often classified as page-level or site-level. In
both cases, the objective is the same, detecting the menus of a given webpage;
but they use different information. While page-level techniques only use the
information contained in the target webpage, site-level techniques also use the
information contained in other webpages, typically of the same website.

In the areas of menu extraction and template extraction, there are three
main different ways to solve the problem: (i) using the textual information of
the webpage (the HTML code) [7,9,12], (ii) using the rendered image of the
webpage [2,8], and (iii) using the DOM tree of the webpage [1,11,13].

A webpage menu is a pagelet [1]. Pagelets were defined as a region of a
webpage that (1) has a single well-defined topic or functionality; and (2) is not
nested within another region that has exactly the same topic or functionality.
One of the first template extraction approaches [1] proposed two algorithms that
rely on the identification of identical pagelets occurring in a densely linked page
collection.

Some works try to identify template pagelets analyzing the DOM tree with
heuristics [1]. However, others try to find common subtrees in the DOM trees
obtained from a collection of webpages of the website [11,13]. None of these
methods tries only to isolate the menu pagelet, but they also try to find the whole
template of the webpage. The main goal of [10] is not template extraction, but it
is a webpage segmentation method based on detecting the layout of the webpage.
Detecting the layout may help to detect the menu because the webpage is divided
into functional blocks (i.e., header, footer, sidebar, main content, advertisements,
images, etc.).

3 Menu Detection

Our technique inputs a webpage and outputs its main menu. It is a page-level
technique, thus, it only needs to analyze the information contained in the target
webpage. Because we work at the level of DOM, and due to the DOM tree
properties, a menu can be represented with just one DOM node: the node whose
subtree contains the menu. In our approach, we first identify a set of DOM nodes
that are more likely to be the menu and then we analyze them to select the best
candidate. Our approach is divided into three phases:
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1. The algorithm visits some DOM nodes in the webpage and, for each node
excluding the leaves, it computes and assigns the node a weight. Then, it
selects a set of DOM nodes with the higher weight. We say that the webpage
menu is a node of this set or an ancestor of it.

2. For each node in the set, we check its ancestors and we evaluate their weights.
If the weight of an ancestor is higher than a computed value, we replace the
node in the set obtained in phase 1 with that ancestor.

3. The menu node (the node that represents the menu) is extracted by compar-
ing the set of selected DOM nodes. Recall that some of the nodes may be
ancestors of the original DOM nodes selected in phase 1. For each node in
the set, we analyse the average weight of its descendants. The one with the
best average weight is the menu node.

These three phases are explained in the following sections.

3.1 Rating DOM Nodes

This section proposes a metric applied to DOM nodes that helps to identify a
set of nodes that probably belong to the menu. Roughly, we explore the DOM
tree of the webpage and we assign a weight to each DOM node that meets the
following criteria: (1) It is not a leaf of the DOM tree. (2) It is an element node.
Any other type (e.g., text nodes, comments, etc.) are not considered.

In order to provide a definition of menu, we first need to state a formal
definition of webpage, website and node’s hyperlinks.

Definition 1 (Webpage). A webpage P is a pair (N,E) with a finite set of
nodes N . Every node contains either an HTML tag (including its attributes) or
text. The root node is the node corresponding to the body tag. E is a finite set
of edges such that (n → n′) ∈ E, with n, n′ ∈ N if and only if the tag or text
associated with n′ is inside the tag associated with n, and there does not exist an
unclosed tag between them.

Given a node n in a webpage, we often use descendants(n) to refer to those
nodes that belong to the subtree of n. We use characters(n) to refer to the
total number of characters in descendants(n) excluding those characters that
belong to hyperlinks. And we use target(n) to refer to the webpage pointed by
the hyperlink of node n.

Definition 2 (Node’s hyperlinks). Given a webpage P = (N,E) and a
node n ∈ N , hyperlinks(n) is the set containing all the hyperlink nodes in
descendants(n). hyperlinks(P ) is the set containing all the hyperlink nodes in
N . links(P ) is a set of pairs {(P, target(n′)) | n′ ∈ hyperlinks(P )}

A website is composed of webpages such that all of them are reachable from
the main webpage. Hence, all of them (possibly except the main webpage) are
pointed by at least one hyperlink in another webpage of the website (i.e., all
webpages have an indegree greater than 0).
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Definition 3 (Website). A website S is a set of webpages such that ∃ P ∈
S, ∀ P ′ ∈ S, P �= P ′ : (P, P ′) ∈ links(S)∗, where links(S) = ∪Q∈S links(Q)
and links(S)∗ represents the reflexive and transitive closure of links(S).

We can now define webpage menu. Roughly, a menu is a DOM node whose
subtree is the smallest subtree that contains at least two hyperlinks pointing to
webpages on the same website and, moreover, because a menu provides naviga-
tion to the website, the same menu must appear in at least another webpage of
the website. Formally,

Definition 4 (Webpage menu). Given a website S, and a webpage P =
(N,E) ∈ S, a webpage menu of P is a node n ∈ N such that

– ∃ n′, n′′ ∈ N | (n, n′), (n, n′′) ∈ E+ ∧ n′, n′′ ∈ hyperlinks(P ) ∧
target(n′), target(n′′) ∈ S, and

– � m ∈ N | (n,m), (m,n′), (m,n′′) ∈ E+, and
– ∃ P ′ = (N ′, E′) ∈ S | n ∈ N ′.

Clearly, the webpage menu cannot be a leaf node because it must contain
nodes with hyperlinks to different webpages of the website. On the other hand,
the element node is the only kind of DOM node that can contain enumerations
of hyperlinks. Thus, a webpage menu must be an internal DOM node of type
element.

One of the main objectives of a template is to provide navigation to the web-
page, thus almost all menus provide a large number of hyperlinks, shared by all
webpages implementing the template. Hence, to locate menus we identify those
DOM nodes with a high concentration of hyperlinks among their descendants.
These nodes very likely belong to the webpage menu.

However, a high hyperlink density is only one of the properties of menus but,
often, it is not enough to identify them. We now propose several other properties
that must be taken into account to properly detect menus. All these properties
are objectively quantifiable and, appropriately combined, they form a weighted
arithmetic mean that can be used to uniquely identify menus.

Definition 5 (Node properties). In a webpage P = (N,E), every node n ∈
N ∧ descendants(n) �= ∅ is rated according to the following properties:

– Node amplitude: The amplitude of node n is computed considering its num-
ber of children: children(n) = |{n′ ∈ N | (n, n′) ∈ E}|. It is defined as:

Node amplitude(n) = 1 − 1
children(n)

– Link ratio: The link ratio of n ∈ N is computed with the following function:

Link ratio(n) =
{

0 if |hyperlinks(n)| < 2
|hyperlinks(n)|+|descendants(n)|

2∗|descendants(n)| if |hyperlinks(n)| ≥ 2
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– Text ratio: It is computed considering the amount of characters of a DOM
node and its descendants:

Textratio(n) = 1 − characters(n)
√

characters(P)
– UL ratio: It checks whether the HTML tagName of the node is “ul” or not.

ULratio(n) =
{

0 if n.tagName �= “ul”
1 if n.tagName = “ul”

– Representative tag: It evaluates some attributes of the node:

ULtag(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if n.tagName = “nav”
1 if n.className = “menu”
1 if n.className = “nav”
1 if n.id = “menu”
1 if n.id = “nav”
0 otherwise

– Node position: The position of n in the webpage P is evaluated using the
function:

Node position(n) = 1 − pos(n)
|N |

where function pos(n) is the position of node n in P , if all nodes are sorted
with a depth first traversal.

The Node amplitude property takes into account the amount of children of
a DOM node. The more children a node has, the higher the probability is that
the node belongs to the menu. Usually, the menu nodes have a large amount of
children that can be either ‘link’ nodes or ‘element’ nodes whose descendants
contain ‘link’ nodes. We defined a function that promotes the nodes with more
children and penalizes the nodes with less children. A node with a high amount
of children will have a node amplitude value close to 1. However, a node with
few children will have a node amplitude value close to 0.

The Link ratio property counts the amount of hyperlinks a DOM node and its
descendants have. The more hyperlinks, the higher the link ratio is. We define a
metric that examines all the descendants of a DOM node and counts the number
of hyperlink nodes.

The Text ratio property evaluates the amount of text the descendants of a
DOM node have in comparison to the total amount of text in the webpage.
Usually, menu nodes do not contain text among their descendants except for the
text of the hyperlinks. Therefore, we do not consider the text of the hyperlinks
when counting the amount of text. The text ratio metric penalizes the nodes
with more text in its descendants.

The UL ratio property is used to promote those nodes that use the UL1

HTML tag because webpage menus are usually lists of links constructed with
1 HTML Unordered List.
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this HTML tag. In particular, we observed than more than 60% of the websites
in our benchmarks use the UL tag for the node containing the menu.

The Representative tag property is used to promote the use of other par-
ticular HTML tags. We also observed in our benchmarks some other attributes
that are frequently used in the webpage menu nodes. We have not considered
them together with the UL tag because they are not as frequent. These HTML
attributes are:

– Nav tag: HTML5 defines the nav tag to represent a set of navigation links.2

– Node’s id : Some nodes representing the menu have the nav or menu identifier.
For instance, id=“nav” or id=“menu”.

– Node’s classname: Some webpages represent the menu with a node whose
classname contains the menu or nav classes.

The Node position property is used to consider the fact that menus are usually
located at the top or in the top left corner of the webpage. This means that the
node containing the menu should be at the beginning of the DOM tree. We
established a ponderation where the first nodes of the DOM tree get higher
values than the last ones.

With these properties we can assign each node in the DOM tree a weight that
represents the probability that this node is the main menu of the webpage. The
exact ponderation used to combine all these node properties must be determined
with empirical evaluation. Thus we conducted experiments to determine the best
ponderation of these metrics. This is discussed in detail in Sect. 4.1.

3.2 Selection of Candidates

Once we have calculated the weight of all the nodes in the webpage, we select
the heaviest nodes. These nodes are considered as candidates to be elected as
the main menu. This process is simple: an algorithm visits all the nodes in the
DOM tree, checks their weights, and selects the ones with highest weights. Only
the nodes with a weight over a specified threshold are selected. This threshold
has been calculated based on experimentation and it is worth 0.85.

3.3 Selection of Root Nodes

The selection of candidates only considers individual information based on the
properties of the nodes. The candidates are nodes with a high concentration of
links, with little or no text, etc. but they are not necessarily a menu. In fact,
they are very often a part of the menu. For instance, in a menu that contains
a submenu “Products” with a high density of hyperlinks, the DOM node repre-
senting the menu option “Products” is probably a candidate. Nevertheless, the
DOM node representing the complete menu could not be selected as a candidate.
2 We consider the nav tag because it is the specific tag (and recommendation) in

HTML5 for representing menus. However, note that it can be changed if we want to
focus on other technologies.
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Algorithm 1. Selection of the root node

Input: A DOM node n and a threshold t.
Output: A DOM node rootNode representing a candidate to be the whole menu.

begin
rootNode = n;
currentNode = n;
baseWeight = n.weight ;
found = false;
while (∃ currentNode.parentNode ∧ found == false)

parent = currentNode.parentNode
nodeCount = |{node | node ∈ parent .children ∧ node.weight > t ∗baseWeight}|;
if (2 ∗ nodeCount > |parent .children|)

currentNode = parent ;
if (parent .children > 1)

rootNode = parent ;
else found = true

return rootNode;
end

The real menu is usually an ancestor of a candidate. It usually combines two or
more candidates and possibly other nodes such as, e.g., images. This phenom-
enon usually happens in complex or large menus. Moreover, in menus with a
set of submenus, the selection of candidates process usually detects only one of
these submenus.

Algorithm 1 explores the ancestors of a candidate node to find the node that
really represents the whole menu. The algorithm recursively explores each ances-
tor node of the candidate and checks whether more than half of their children,
which are element nodes, have a weight higher than a given threshold t, called
root threshold. When it finds a node for which this criterion does not hold, the
algorithm stops and selects the last ancestor as the root node.

Example 1. Consider the DOM tree in Fig. 1. The “UL” node with a dotted
border is one of the candidates because it has a weight higher than 0.85. Nev-
ertheless, this node represents only a portion of the main menu, so we have to
analyze its ancestors in order to locate the root node of the main menu.

By using Algorithm 1, we first explore its parent node (the “LI” node with
grey background) and we check that more than half of its children have a weight
higher than the root threshold multiplied by the weight of the candidate node
“UL”, so we can continue exploring its ancestors. Next, we explore the parent of
the “LI” node, which is the “UL” node with black background. Again, we check
that more than half of its children have a weight higher than the root threshold
multiplied by the weight of the candidate node “UL”, so we continue exploring
its parent. Then, we do the same with the parent of the “UL” node (a “DIV”
node with a dashed shape). In this case, the algorithm continues exploring the
parent, but it keeps a pointer to the “UL” node as the menu node because the
“DIV” node has only one child. Finally, we check its parent, which is another
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Fig. 1. Example of the selection of root node candidates

“DIV” node. It has two children, one is the “DIV” node with a dashed shape and
the other is a “P” node. Both nodes have a weight lower than the root threshold
multiplied by the weight of the candidate node “UL”, so, in this case, the “DIV”
node does not meet the criterion. The last node that satisfies the condition is the
“UL” node (black background), thus the algorithm returns it as the root node.

3.4 Selection of the Menu Node

Algorithm 1 inputs one candidate and outputs a node that could be the main
menu. Because we often have more than one candidate, the application of Algo-
rithm 1 over the set of candidates produces another set of nodes. Hence, we
need a mechanism to determine which of them represents the real menu of the
webpage. This mechanism is implemented by Algorithm 2. For each node in the
set, it counts the number of descendants that have a weight over a specified
threshold, called menu threshold. Then, the average weight of these nodes is
computed. The node with the highest average weight is selected as the menu of
the webpage. We established this criterion because the menu node often has a
high concentration of nodes with a high weight.
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Algorithm 2. Menu node selection

Input: A set of DOM nodes N and a threshold weight.
Output: A DOM node menuNode representing the main menu.

begin
max = 0;
bestWeight = 0;
foreach (n ∈ N )

heavyChildren = {child | child ∈ n.children ∧ child .weight > weight};
nodeCount = |heavyChildren|;
nodeWeight =

∑
child∈heavyChildren child.weight;

if (nodeWeight/nodeCount > bestWeight)
menuNode = n;
bestWeight = nodeWeight/nodeCount ;

return menuNode;
end

4 Implementation

The technique presented in this paper, including all the algorithms, has been
implemented as a Firefox add-on. In this tool, the user can browse on the Internet
as usual. Then, when they want to extract the menu of a webpage, they only need
to press on the “Extract Menu” button and the tool automatically (internally)
rates the DOM nodes, analyzes them, and selects the menu node. The menu is
then displayed on the browser as any other webpage.

Example 2. Figure 2 shows the output of the tool with a real webpage. The
left image is the main webpage of the foodsense.is website. Once the menu is
extracted, we can see it in the right image.

Fig. 2. Example of the detection of a webpage menu

4.1 Training Phase: Determining the Best Parameters Through
Empirical Evaluation

In our theoretical formalization, we presented our technique in an abstract way.
Some parameters of our algorithms, however, have been left open. In this section,
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we calculate the value of these parameters based on an experimental analysis.
Firstly, we need to define a weighted arithmetic mean to combine the properties
proposed in Definition 5. Moreover, Algorithm 1 explores the ancestors of a node
to determine which of them is the webpage menu. This process depends on a
parameter called root threshold that sets the stop condition. Another parameter
to take into consideration is the one used to select the menu node among all
the possible candidates in the set. Algorithm 2 explores the menu nodes in the
set and, for each one, it computes the number of children with a weight over a
specified threshold called menu threshold.

Our method to approximate the best combination of values for the two
thresholds (root threshold and menu threshold) and for the weighted arithmetic
mean of node properties, follows these steps:

1. First, prior to the development of our technique, we constructed a suite of
benchmarks prepared for menu detection.3

2. Second, we executed our system with a training subset of the benchmark
suite. For this, we evaluated the precision and recall obtained for each different
combination of values for the properties and thresholds. We performed more
than 1.5 million experiments, with a total computing time equivalent to 85
days in an Intel i7 4770k processor.

3. Third, we selected the best combination of properties and thresholds, and
evaluated it against an evaluation subset of the benchmark suite.

Our suite of benchmarks is the first suite of benchmarks prepared for menu
detection. This means that each benchmark has been labelled with HTML classes
indicating what parts of the webpage belong to the menu. This allows any tech-
nique to automatically validate their recall and precision. Our suite is composed
of 50 benchmarks, and it is not only prepared for menu detection, but also for
content extraction and template detection (i.e., the template and the main con-
tent of the webpages are also labelled with specific HTML classes). This is one of
the main contributions of our work. Any interested researcher can freely access
and download our dataset from:

http://www.dsic.upv.es/∼jsilva/retrieval/teco/

The suite is composed of a collection of Web domains with different layouts
and page structures. To measure our technique, we randomly selected an evalua-
tion subset and we performed several experiments with our menu detector, which
implements the proposed technique. Once the algorithm detected the menu, we
compared it with the real menu, and we computed the precision, recall and F1
scores of the algorithm. For each node, we computed its final weight evaluat-
ing different weighted arithmetic means (weight = A ∗ Node amplitude + B ∗
Link ratio +C ∗Text ratio + ..., where A+B+C + ... = 1). We repeated all the
experiments with these possible values for the weighted arithmetic means used:

3 We designed and implemented the suite of benchmarks before we constructed our
technique to avoid their interference.

http://www.dsic.upv.es/~jsilva/retrieval/teco/
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Node amplitude : [0, 00 − 0, 20] in steps of 0, 05.
Link ratio : [0, 05 − 0, 40] in steps of 0, 05.
T ext ratio : [0, 25 − 0, 60] in steps of 0, 05.
UL ratio : [0, 00 − 0, 20] in steps of 0, 05.
Representative tag : [0, 00 − 0, 20] in steps of 0, 05.
Node position : [0, 00 − 0, 25] in steps of 0, 05.

Moreover, for each possible weighted arithmetic mean, we also evaluated the
Root threshold and the Menu threshold with the following values:

Menu threshold : [0, 80 − 0, 90] in steps of 0, 05.
Root threshold : [0, 70 − 0, 90] in steps of 0, 10.

After having evaluated all possible combinations against all the benchmarks,
the fastest combination that produces the best F1 metric is:

Menu Root Amplit. Link Text UL Repres. Position Recall Precision F1 Time

0,80 0,70 0,20 0,10 0,30 0,20 0,10 0,10 94,10% 97,91% 94,09% 4.77 s

Once the best combination was selected in the training phase, we evaluated
our technique against a suite of 50 benchmarks (accesible in the website of the
project). The technique achieved a precision of 98.21%, a recall of 94.13%, and
a F1 of 94.46%. In 74% of the experiments, the menu was perfectly detected
(F1=100%). The average computation time was 5.38 s.

5 Conclusions

Menu detection is useful for many systems and tools such as, e.g., indexers and
crawlers. It is particularly useful for template extraction because many tech-
niques use the menu to detect webpages that share the template.

This work presents a new technique for menu detection. This technique is a
page-level technique and, thus, our algorithms only need to load and analyze one
single webpage (the webpage from which we want to extract the menu). This is
specially important from the performance point of view, because loading other
webpages is costly.

We have proposed a set of features that should be considered in the menu
detection process. We empirically evaluated these features to define a weighted
arithmetic mean that can be used in the menu detection process. The obtained
results are quite successful, almost 75% of the experiments perfectly retrieved
the menu of the webpage, and we obtained an average precision of 98.21% and
an average F1 metric of 94.46%.
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Abstract. Automated online profiling consists of the accurate identification and
linking of multiple online identities across heterogeneous online social networks
that correspond to the same entity in the physical world. The paper proposes a
hybrid profile correlation model which relies on a diversity of techniques from
different application domains, such as record linkage and data integration, image
and text similarity, and machine learning. It involves distance-based comparison
methods and the exploitation of information produced by a social network
identification process for use as external knowledge towards searches on other
social networks; thus, the remaining identification tasks for the same individual
are optimized. The experimental study shows that, even with limited resources,
the proposed method collects and combines accurate information effectively
from different online sources in a fully-automated way. The mined knowledge
then becomes a powerful toolkit to carry out social engineering and other
attacks, or for profit and decision-making data mining purposes.

Keywords: Online identities linkage � Online social network profiles data
similarity and linkage model � Profile matching formulas � Machine learning

1 Introduction

The social web keeps generating swathes of publicly available personal data despite the
documented implications of voluntarily exposing personal data on online social net-
works (OSNs). The methodologies to circumvent traditional privacy preserving
countermeasures cover the use of either text analysis for author identification [1],
re-identification algorithms on graph-structured data [2], or diverse linkages of the
users’ footprints in different online data sources [3], and so on.

This study focuses on the concept of online user profiling [4] that can be defined as the
cross correlation of publicly available personal information for the successful identifi-
cation and linking of online social profiles across heterogeneous social networking ser-
vices that correspond to the same individual in the real world. The same problem in a
wider setting is known as record linkage, entity resolution, profile matching, etc. [5].
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A hybrid model is proposed that combines data analysis techniques (i.e. from record
linkage to text mining) to select information from online data sources in an unsupervised
fashion and to weave together the different online social identities of an individual. The
model can be adopted in diverse data mining application domains, from security eval-
uation tools that focus on privacy risks assessments (e.g. physical identification,
de-anonymization attacks, password recovery attacks), to data warehousing technolo-
gies for building repositories of OSN data from multiple heterogeneous online sources.

Section 2 develops around the proposed methodology for comparing and linking
the users’ social identities across heterogeneous OSNs. Section 3 describes the
implementation and experimental performance efficiency of a prototype system to
identify and link together the different profiles of targeted individuals. Section 4
analyses the advantages and limitations of the related work, and argues in favour of the
proposed model. Section 5 summarizes and makes suggestions for future research.

2 The Proposed Model

The proposed model collects publicly available personal information from various
OSNs. This personal information is inferred by exploiting their weaknesses e.g. using
the email querying functionality offered by some networks, if the targeted individual
(from now on called “the target”) has been registered with an email address known to
the attacker, and by exploiting hidden personal information extracted by applying
machine learning techniques on openly available information on the OSNs e.g. the
gender inference of a user on Twitter. Its effectiveness increases with every piece of
accurate personal information collected during runtime, which, after its collection, is
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used dynamically to strengthen the search for the target from one OSN to the next.
Should the profile of a targeted OSN user be uniquely identified, the proposed method
takes into account this verified personal information to expand the set of valid data
already available for that individual and uses it in combination with all the remainder of
the known personal attribute values of that individual to search for her/his profile in
other OSNs. The description of the model follows.

2.1 The Main Routine

The pseudo-code of the main routine of the proposed OSN identity identification and
correlation model is presented in Algorithmic blocks 1 and 2, with the first initiating the
process and the second being the main part of the process.

The algorithm in Lines 1–2 records the personal attributes published online in every
OSN under consideration producing a vector v of personal attributes in the form
v = (v1,v2,…,vd). For example, if the first OSN provides the attributes (username,
firstname, lastname, work, education, bio/cv, hometown, country, image, friend) and
the second OSN provides the attributes (username, fullname, gender, organization,
summary, location, email, follows, followedby), then the vector v has the form
v = (username, firstname, lastname, fullname, gender, work, organization, education,
bio/cv, summary, hometown, country, location, email, image, friend). If an OSN pro-
vides the ‘follows’ and ‘followedby’ attributes (e.g. Twitter and Instagram) only the
users that belong in both these sets will be considered as friends. This ‘friends’
selection can be approached from a different perspective.

Fig. 1. A sample of compatible personal attributes for the matching process (The existence of
two or more ‘+’ indicators in a horizontal line means that the attributes on the corresponding
columns need to be combined to be compared against the attribute on the horizontal line).
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In Line 3 the attacker evaluates the weight coefficient of every personal attribute in
the vector v, to specify the attribute’s importance in the profile identification process in
relation to the other attributes. The attacker needs to provide the values to a vector λ of
weights of the form λ = (λ1, …,λd), where 8i2 [1, d]: λi ≤ 1, λ1 + … + λd = 1, and
with the exception that λemail = λimage = NULL. Practical experimentation can also fine
tune these weights (e.g., λfullname = 0.15, λsummary = 0.01). In Line 4 the attacker
evaluates the attributes’ compatibility by filling a three-value table as in Fig. 1: the last
name of a target can be found in the fullname attribute; the full name of an individual
can be constructed as the combination of the values of the attributes firstname and
lastname, etc.

In Line 5 the attacker provides the values of the personal attributes of the target that
are known from external sources (Fig. 2). Every personal attribute in the profile vector
v of a target’s digital identity is a list of values (implementation as non-normalized
database relational table or as XML document).

Algorithm 2 implements the main process. For every OSN under consideration, it
examines (Lines 8–10) whether it is possible to uniquely identify the target using the
email functionality provided by some OSNs. If this test succeeds, the targeted profile

Fig. 2. A sample of personal information of an individual that may be available to the attacker.
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has been uncovered and all information published on that OSN is copied and enriches
the vector v of personal information known to the attacker. Otherwise, in Line 12 of the
algorithm the OSN is queried using its own search functionality (e.g., through its API),
using prior knowledge obtained (e.g. using the values of the first and last names and the
home town, or using any other combination of attributes). This search may select
t profiles from the OSN, one of which may potentially correspond to the target.
Therefore, these t profiles are considered for further examination.

Using a high image-similarity threshold Θimage (e.g. ≥0.90), an image comparison
function in Lines 14–15 (implemented on the basis of any known image similarity
measurement [6]) can conclude whether any of the previously known to the attacker
profile images for the target coincides with a profile image in any of these t profiles in
the OSN under consideration. In the negative, in Line 17 a profile-comparison function
– see Algorithm 3 – compares the prior knowledge obtained with the related infor-
mation about every single one of the t profiles. Then in Line 18 an overall weighted
similarity score W (normalized with regard to the attributes available on the OSN)
between every selected profile from the OSN and the personal information known to
the attacker is calculated; if the highest score W exceeds the corresponding predefined
similarity threshold Θoverall, then in Line 21 this profile is recognized as the corre-
sponding profile of the target in the OSN under consideration.

The process of Lines 6–21 is repeated for every OSN. Where the identification
process has not yet yielded positive results (i.e., if matchedInOSN[i] = FALSE),
this process is repeated using the enriched information previously gathered from other
OSNs. The process terminates if Line 22 indicates that no additional new information
can be identified.

2.2 Identification via the OSN Profile Attributes

The identification of a profile in an OSN via the values of its profile attributes (Line 17
of Algorithm 2) is based on a record linkage method that computes the similarities
between the known values of an individual’s personal attributes and the corresponding
attributes on a potential matched profile in the OSN. The pseudo-code of this profile
linkage method is illustrated in Algorithm 3.

If the attacker knows the target’s gender, the AttributeComparison function (Line 4
of the algorithm) checks whether the gender has been provided by the examined user in
the OSN under consideration. If not, a text mining technique method for gender
inference is used [7]. If this approach confidently concludes on the value of the OSN
user’s gender, then this value will be compared against the gender, and a corresponding
similarity score of 1 or 0 will be provided. Should at least one friend of the target be
known to the attacker, the AttributeComparison function for the friend attribute takes
the form of Algorithm 4, discussed in the sequel.

Since fine-tuned and extensively tested similarity comparison methods in matching
problems can perform poorly in new and different matching problems [8], the com-
parison performance of compatible text attributes with different representations was
tested. In case of a name, the text similarity comparison function may need to overcome
lexical heterogeneities between any two compared strings, as with ‘Federico García
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Lorca’ and ‘García Lorca’. This study developed and tested several string comparison
functions, such as the similarity functions Jaro-Winkler [9] and Jaccard [10, 11]. Two
versions were developed for the Jaccard function: a character-based similarity function
and a token-based one; the first to compare strings using a character-based similarity
metric; the second using a word-based similarity metric.

As illustrated in Fig. 3, both the character-based and the token-based similarity
metrics produce the same results if the strings under comparison are identical (a score
of 1.0 indicates a perfect match). In this case the character-based metrics perform more
comparisons than the token-based metrics; in the case of the comparison of two strings
distinguished by few different characters (e.g. two quite similar usernames), the
potentially low similarity scores produced by the Jaccard token-based function make it
unsuitable. The optimistically high scores, which both the Jaro-Winkler and Jaccard

Source of information username firstname city country organization

The attacker’s knowledge: consba Constantin Linz Austria Johannes Kepler University 
An OSN: consbakery Constantin - Linz, Austria University of Southern 

California, Johannes Kepler 
University 

(a) 
Comparison function  username firstname city country organization 

Jaro-Winkler(character-based): 0.78 1.0 0.0 0.41 0.61 
Jaccard (character-based): 0.56 1.0 0.0 0.64 0.76 
Jaccard (token-based): 0.0 1.0 0.0 0.33 0.43 
Hybrid (2-grams & tokens): 0.55 1.0 0.0 0.50 0.50 

(b) 

Fig. 3. (a) Two vectors of personal attributes, (b) The results of the comparison of the
compatible attributes of these vectors with four different text similarity comparison functions.
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character-based metrics produced, are not always realistic. As the Hybrid method
performed more accurately in most of the preliminary tests carried out, it was selected
for the implementation of the attributes-comparison function in Line 3 of Algorithm 3.

With respect to the attribute’s lexical heterogeneity, every personal attribute in the
profile vector of a target’s digital identity that is already known to the attacker might
have more than one single value, e.g. for the city attribute’s values, ‘Paris, France’ and
‘Paris’. This means that the attributes-comparison function (Line 3 of Algorithm 3)
needs to check for a match of every possible alternative known value for a personal
attribute and to select the highest possible similarity score.

Besides lexical heterogeneity, a structural heterogeneity needs to be dealt with
since most of the OSNs represent user profiles differently and use different database
schemas. If an OSN provides values to the attribute fullname instead of the attributes
firstname and lastname that might be known to the attacker, the attributes-comparison
function needs to take into account the predetermined combinations of compatible
attributes (Line 4 of Algorithm 1).

2.3 The Friends-Comparison Function

The pseudo-code of the function that examines whether the profile of any friend of a
target matches the profile of an online friend of an examined user in an OSN is
illustrated in Algorithm 4 (for simplicity, the friends of the friends of the target are not
considered for examination by the algorithm). The function finally calculates and
returns in Line 6 the ratio of the matched friends between the target and the examined
user in the OSN.

A Hybrid Model for Linking Multiple Social Identities 429



3 Experimental Study

3.1 The Model’s Preparation Phase

It is assumed that an attacker who aims to construct the digital profile of a group of
researchers appearing as authors in articles indexed by the DBLP service compiles a
digital dossier by searching the OSNs: Facebook, Twitter, LinkedIn, Google+ and
MySpace. A web crawler is developed to access these five OSNs and construct the
vector Q.v of personal attributes found online in these data sources for every target Q.

Then a SAX parser is developed to extract the first and last name as well as the
publications and the co-authors of every researcher in the DBLP website, by using its
XML-based API. The set of co-authors for every researcher is the primary source for
finding real-life friends of the researcher. The parser also extracts all the web links that
point to external digital libraries, such as the SpringerLink, the IEEE’s Xplore, the
ACM Digital Library (DL), the Elsevier’s ScienceDirect, etc., and adds them to the list
of external URLs for browsing to uncover more personal information about the targets.
A crawling of the above major digital libraries is performed to gather additional
identifiable personal information such as the city and country of residence, institutional
affiliation/place of work, email, telephone number, postal address, postcode, etc. The
more recent publications stored in the DBLP are considered first, since they might
provide more accurate personal information (the SpringerLink and the IEEE’s Xplore
at the time activated processes to prevent webbots from crawling).

In the absence of gender information, the Baby Name Guesser service1 is queried
and the gender attribute is obtained via probabilistic estimation. If this response is
accompanied by a high degree of confidence (e.g., ‘John’/‘Joanna’), it is considered
that the researcher’s gender is known to the attacker. The Geonames service2 is queried
to perform a cleaning process (e.g., by correcting misspellings) and a verification of the
names of cities, countries and locations. The target group produced is a subset of 4,324
researchers for which as much identifiable personal information as possible was
gathered via external web sources.

The weight coefficients of the importance of the available personal attributes were
empirically selected (e.g., λfirstname = 0.15, λlastname = 0.15, λgender = 0.05, λeduca-
tion = 0.05, λhometown = 0.075, λcountry = 0.075, etc.) by performing some preliminary tests
and the values for the three thresholds appearing in the identification process were
manually set as follows: Θoverall = 0.60, Θimage = 0.90 and Θattribute = 0.20.

3.2 The Model’s Execution Phase

The next step is to carry out a search, one at a time, for these 4,324 individuals on the
five OSNs to uncover all the publicly available information from their profiles. An XML
parser, a JSON parser, an HTML parser and an aggregator module were developed for
crawling and collecting this accessible information from the OSNs APIs or via

1 http://www.gpeters.com/names/.
2 http://www.geonames.org/.
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‘screen-scraping’. The aggregator module performs additional data warehousing func-
tionalities, such as data cleaning, data transformation, data integration, data mining (for
gender inference), etc. For every target, the final goal of the proposed model is to
identify and correlate at most one social identity from every OSN that possibly belongs
to this individual. In the performance evaluation phase, the Accuracy metric for mea-
suring the effectiveness of the proposed model in every examined OSN is defined as:

Accuracy ¼
number of targets for which themodel correctly identified their OSN profile

or correctly identified that no suchOSN profile exists
total number of targets in the dataset

in which the model is considered to correctly identify an OSN profile or to correctly
point to no existing OSN profile if this is also validated by manual inspection.

Figure 4 shows the accuracy of the proposed profile identification model in every
examined OSN for the selected group of 4,324. The accuracy of the profile matching
algorithm on Facebook reaches 0.71, and consists of an almost equal percentage of true
positives (TP) and true negatives (TN). The cause of the unexpected error ratio of 0.29
is the rather low overall profile matching threshold Θoverall = 0.60, which was selected
for such a high number of user profiles of Facebook (which exceeded 1.71 billion as of
June 30, 20163), with many users unavoidably sharing the same first, last, or their full
name, and other personal attributes, producing a rather high percentage of 28.1% of
false positives (FP). This result, however, leads to the expectation that, with an
exclusively customized-for-Facebook tuning of the attributes weight coefficients, the
model’s performance can be markedly improved.

On LinkedIn the accuracy level of the model is 0.90, consisting of the majority (i.e.,
about 72%) of TP, as expected, due to the nature of the targeted group of individuals
which was selected on the basis of their occupation. Here, most of the targets take care
of ensuring that their profile fields are accurate and comprehensive, which contributes
to the profile identification process. In the case of Google+ the model’s accuracy rate is
0.889, consisting however in the majority (i.e., about 65%) of TN. The number of FN
in Google+ (which is 3.1%) is higher than in Facebook (0.9%) and LinkedIn (0.3%),
which can be explained by the higher number of user profiles in Google+ with partial
or missing personal information.

On Twitter and MySpace the model also achieves very high accuracy ratings. In
these OSNs the number of TP is much smaller than the number of TN, which is
explained by the nature of the targeted group. Also, about 30% of the number of TP in

OSN: Facebook LinkedIn Google+ Twitter MySpace 
Accuracy: 0.710 0.900 0.889 0.926 0.956 

Fig. 4. The accuracy of the proposed profile identification model for the selected set of OSNs.

3 https://newsroom.fb.com/company-info/.
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MySpace has been successfully encountered by a unique identification via a known
email address. Notably, in most of these cases the values for `the remainder of the
personal attributes (emails excepted) in the verified MySpace profiles would not cor-
relate correctly with the profiles of the targets due to missing personal data or deliberate
misinformation in the profiles. The percentage % of the targets with identified (by our
model) online presence in one, two, three and four of the OSNs under consideration is
recorded in Fig. 5. As expected, most of the researchers in the DBLP dataset, and who
have an online presence in OSNs, maintain personal profiles mainly in LinkedIn and/or
in Facebook.

4 Related Work

The term record linkage [12] refers to the task of identifying tuples that represent the
same entity in one or more, possibly heterogeneous, data sources. In recent years, this
concept shifted to matching users’ profiles across different OSNs, whereby the iden-
tification process detects and weaves together the multiple online social identities of the
same entity. Different methodologies have been developed to establish whether a user
profile in an OSN belongs to a targeted physical entity: by using the user’s email
address in [13]; the user’s pseudonyms in [3]; the username in [14]; the < username,
name, location > attributes in [2]; the Google search service together with the < oc-
cupation, education > attributes in [15]; the < firstname, lastname, email > attributes
together with three friends in [16]; the < instance-messenger-identifier, personal
websiteurl, name, hometown, birthday, university, highschool, gender, email,
friends > attributes in [17]; machine learning techniques on several personal attributes
and the friends’ list in [18, 19]; the user’s social behavior across time and the close to
the user social network structure in [20], etc.

The linking task is made difficult by the high degree of heterogeneity of the
information available. The methodologies with a limited degree of effectiveness are the
simplified approach in [15], relying solely on Google search results on the basis of a
predefined set of known personal attributes of the targets to uniquely identify their OSN
profiles, and the approaches that rely on the similarity of one or of a small subset of
personal attributes (e.g. [3, 14]). While the approach proposed in [13] is effective in a
few individual cases, the OSNs which offer the desired friends-finder functionality
using their known email addresses are not many because this feature threat ensuser
privacy. Closer to the method proposed in this paper are the matching algorithm
approach in [17] which takes into account a static predefined set of 10 attributes for the
OSN profile identification process, and the work based on supervised learning on
several profile attributes and the friends’ list in [18]. The main advantages of our model

 Presence in 
one OSN

Presence in 
two OSNs

Presence in 
three OSNs

Presence in 
four OSNs

Presence in 
five OSNs 

Percentage of indivi-
duals in the dataset: 44.080% 9.968% 0.902% 0.046% 0% 

Fig. 5. The identified presence of the targets in the five OSNs under consideration.
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are that: firstly, the set of personal attributes to be utilized in the identification process is
practically unlimited(since every possible personal attribute on an OSN can provide
valuable data input for the matching process in other OSNs); secondly, the selection of
these attributes and the identification operation provided by the model are
fully-automated tasks (not manual or supervised tasks for the attacker); and, thirdly, the
amount of personal data available to the attacker increases during the identification
process, which means that an examined OSN may be accessed several times during this
process, every time with an increased pool of prior knowledge, increasing the likeli-
hood of positive results.

Figure 6 summarizes the performance achievements of previous work, setting out
the best reported performance ratings, including those achievable only under signifi-
cantly restricted conditions. The proposed model appears at the bottom indicating that
it outperforms most of the earlier work in OSNs profile identification and matching
and, to the best of the authors’ knowledge, it appears to be the first to address the
problem by combining a number of different methodologies, such as machine learning
techniques, a variety of linkage methods and, very importantly, by exploiting the
verified knowledge produced during the runtime of the identification process in an
unsupervised fashion.

5 Conclusions and Future Research

The model proposed for identifying and linking the multiple online social identities of
the same physical entity across OSN services combines methodologies to collect, infer
and integrate accurate personal information from heterogeneous OSN sources to build a
warehouse of digital footprints that can be used in several application domains. This
hybrid architecture is built upon four different methods for OSNs profiles matching,

OSNs’ profiles linkage model Accuracy Precisiona Recallb

Narayanan &Shmatikov[2] 0.308 – –
Irani et al. [3] 0.600 – –
Balduzzi et al. [13] 0.049 – –
Wang et al. [14] – 0.862 0.685 
Vosecky et al. [17] 0.930 – –
Peled et al. [18] 0.959 – –
Zhang et al. [19] – 0.860 0.867 
Liu et al. [20] – 0,968 0.908 
Wondracek et al. [21] 0.577 – –
Goga et al. [22] – 0.950 0.290 
Human inspection [22] – 0.960 0.400 

589.0409.0659.0repapsihT

Fig. 6. The best provided Accuracy, Precision and Recall by several OSNs profiles linkage
models. (aPrecision is defined as TP/(TP+FP) and represents the ratio of correct user profiles
identifications in an OSN. bRecall is defined as TP/(TP+FN) and represents the ratio of correct
user profiles identifications to the total number of existing user profiles to be identified in an
OSN.)
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and operates using a limited amount of prior knowledge about the target. Every piece of
accurate information from one OSN is exploited in other OSNs for the remaining
matching tasks, dynamically increasing the model’s efficiency. Additionally, the model
is operational without any modification in any OSN4 and in any language.

The empirical performance evaluation of the proposed framework with a dataset of
4,324 individuals indicated that it can successfully retrieve and link together the social
identities of the targets across multiple OSN services, regardless of their different
database schemas and of lexical and structural heterogeneity. It also indicates that this
model outperforms most of the earlier work.

Scope for further exploration includes developing increasingly sensitive modules
for measuring the similarity between OSN profiles attributes of textual, date, image, or
any other specialized data type. For example, the traditional syntactic-based text
similarity metrics might not be able to capture a valuable similarity between two
attribute values that are semantically related [23] while lexicographically different (e.g.
“MS Corporation” and “Microsoft Inc.”). Besides, the effectiveness of our method
could be increased by fine-tuning several operational parameters (such as the attributes
weight coefficients and the similarity thresholds). An extension of the proposed model
could aim to establish links with any information that may be of value for the purpose
of targeting individuals from any existing online footprint that can be uncovered and
from any trustworthy source.
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Abstract. The database (DB) is one of the active communities dealing
with the non-functional requirements (NFRs) when designing advanced
applications. The fulfillment of the NFRs is usually performed along the
phases of DB life cycle in an isolated way. The physical design phase
took the lion’s share of these studies, because it is an important fac-
tor for a successful DB deployment in terms of performance metrics.
By carefully analyzing these studies, we figure out that target DBs are
assumed to be already deployed, meaning that their logical models are
frozen. This assumption surely becomes questionable, since it ignores the
chained aspect of the life cycle. Knowing that many variants of a logical
schema may exist due to the presence of dependencies and hierarchies
among attributes; it is worth studying the impact of this variation on
the physical design. In this paper, we firstly identify the dimensions of
the variability of a logical schema and their modeling. Secondly, we pro-
pose a methodology, by highlighting the efforts that designers have to
make, to evaluate the impact of the logical schema variability on the
physical design (by considering logical or physical optimization), where
both energy consumption and query performance are considered. Finally,
intensive experiments are conducted to evaluate our proposal and the
obtained results show the real impact of variability on data warehouses
(DW) eco-design.

1 Introduction

The development of advanced DB applications such as Business Intelligence
goes through a well identified life cycle that includes: functional/non-functional
requirements analysis, conceptual design, logical design, ETL (Extract, Trans-
form, Load), deployment modeling, physical design and exploitation. Note that
non functional requirements (NFRs) express desired qualities of the underlying
DB applications. They cover both observable qualities such as DB performance
and availability, but also internal characteristics such as maintainability and
portability [1]. The physical design is the crucial phase of the DB life cycle,
since it can be seen as a funnel of the other phases. It should be noticed that the
majority of NFRs are evaluated during this phase that takes logical and deploy-
ment phases as inputs to be mapped to the target DBMS specific features and
functions such as Oracle, DB2, PostgreSQL. Besides, optimization structures
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 436–449, 2017.
DOI: 10.1007/978-3-319-51963-0 34
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like materialized views, indexes, and so forth are herein selected to satisfy one
or several NFRs such as query performance and energy consumption [11,17].

Formally, the physical design problem (PDP) is defined as follows: given: a
DB/DW deployed in a given DBMS, a workload, a set of optimization structures
(OS) supported by the target DBMS, a set of constraints C related to these OS
such as the storage cost, and a set of NFRs. PDP consists in providing logical and
physical optimizations satisfying NFRs and respecting C, and it is known to be
NP-hard [13]. Note that logical and physical optimizations respectively include
operations performed on query plans (e.g. join ordering) and access methods
(e.g. indexes and materialized views) [8]. In order to further optimize the NFRs,
the DB community spent a lot of efforts in varying the elements of each entry of
the PDP and evaluate its impact on satisfying the desired NFRs. This is best
illustrated by commercial and academic tools (e.g., Tuning Advisor of Microsoft
SQL Server [7], and Parinda for PostgreSQL [12]) which offer designers the
possibility to evaluate the performance of a workload by varying the supported
OS. Other efforts have been elaborated to evaluate the impact of DBMS storage
layouts, used to store semantic DBs instances, on query performance [10].

Satisfying some requirements by configuring some variation points (entries)
has been widely studied by the community of software engineering in the so-
called Variability Management (VM) field [2]. It is defined as the ability of a
product or artifact to be changed, customized or configured for use in a particular
context. An analogy can be immediately drawn between VM and PDP. In fact,
this latter owns different variation points (dimensions, entries), as depicted in
Fig. 1. Each variation point is seen as a complex search problem, often using a
mathematical NFR-driven cost model to evaluate and select “best” solutions.

Based on this Figure, we can easily identify the dependencies among these
dimensions. Actually, varying the logical schema strongly impacts the following
entries: workload, the OS and the constrains. Nevertheless, designers still intu-
itively fix a logical solution out of a panoply, hence omitting eventual more relevant
alternatives (VM aspect). Bearing this in mind, we fix some objectives to handle
this missing piece in PDP puzzle: (i) capturing variability, (ii) studying the impact
of variability on dependent components, as well as efforts in terms of modeling and
coding to be spent by designers to manage this variability, and (iii) validating our
methodology.

Fig. 1. Variation points of physical design problem.
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To show the impact of the variability of the logical phase on the physi-
cal model, we consider the following entries of our PDP: (a) a Star Schema
Benchmark (SSB) as DW logical schema, (b) query performance and energy
consumption as NFRs, (c) SSB workload, (d) materialized views and logical
optimizations offered by the target DBMS as OS, (e) the storage constraint
dedicated to this OS. To the best of our knowledge, our proposal is the sole that
studies the variation of the logical dimension, and hence the majority of PDP
dimensions, according to both energy and performance.

The paper is organized as follows: Sect. 2 provides some definitions about
variability and its contributions in the context of DB design. Section 3 describes
our methodology. Section 4 presents our results. Finally, Sect. 5 concludes the
paper by summarizing the main results and suggesting future work.

2 Background

In order to cope with the upward diversity in DB design research, the need for
managing variability is becoming real, if not urgent. In fact, designers need to
be assisted in their choice, increasingly hard to make, against the rising variety.
VM is defined as the ability of a product or artifact to be changed, customized
or configured for use in a particular context. By analogy, physical design of a
DB product, needs to be configured, using its entries, in order to reach high
performance assessed in terms of NFRs.

Indeed, there is an impressive body of research on variability-aware DB phys-
ical design (Table 1), where variability can be either: (i) implicitly handled
without borrowing the spectacular advances made by the SPL community in
terms of variability management (DBMS Advisors are perfect examples of these
approaches), or, on the opposite, (ii) explicitly handled [15], since designer can
generate its tailored artifacts by choosing features using appropriate techniques
such as SPL, FOP, AOP, etc.

Capturing Variability of Logical Design. There is a patent lack of considering
logical design variability in PDP. Yet while most problems can be solved by
fine-tuning the physical schema, some performance/NFR problems are caused
by a non-optimized logical schema. In fact, this latter is variable (can have
many variants) thanks to the so-called correlations: Functional dependencies,

Table 1. Overview of variability-aware DB physical design studies.

Target Technique

Query language SPL [14]

Query optimizer SPL [18]
Optimization [7,12] (implicit)

Deployment Layout [10,20] (implicit)

DBMS Preprocessors (implicit), FOP [3], SPL [15]
AOP [19], Component-based Approach [9]
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Multi-valued dependencies and hierarchies. In case of DW (a particular DB)
for instance, let LM = {F,D1,D2, ...,Dn} be the DW logical schema from
which different other schemes (star and snowflake) can be generated. F for fact
table, Di for dimensions. The search space (referred to as product line scope in
variability jargon) can be estimated around

∏n
{d=1} 2hd−1 possible LMs, such

that hd is the number of hierarchical levels of a dimension d/d ∈ {1..n}. The
generation process is based on attributes correlations [4];

On the other hand, VM can be organized in two stages: (i) Modeling: con-
cerned with capturing and modeling the commonality and variability among final
products, and (ii) configuration tasked with developing final products by select-
ing and configuring shared artifacts and adding product specific extensions [2]. For
several reasons, feature modeling is one of the most popular variability modeling
techniques [2]. DB product feature model is depicted in Fig. 2. As for configura-
tion stage, Software Product Lines (SPL) is one of the most famous approaches for
implementing and automating software variability management. The basic idea
behind SPL is that products are built from a core asset base, a collection of arti-
facts that have been designed specifically for use across the portfolio. We proposed
a basic tool in [5] for modeling and configuring DB, to which, this new proposal,
adding power as NFR, can be plugged.

Fig. 2. Excerpt of the database feature model.

3 Variability Management in Physical Design

As we said before, our proposal considers the majority of dimensions of variability
axes. To show the real impact on physical design and reduce the complexity of
treating all dimensions at once, we incrementally integrate dimensions. We start
by evaluating the impact of logical schema variation on physical design when
executing a workload, without considering the impact on physical optimization:
only optimizations offered by target DBMS (referred to as logical optimization)
are considered. Secondly, we integrate the impact of logical variation on the
problem of materialized view selection. To show the impact of the variability on
the physical model, we consider our PDP with two objective functions, namely
query performance and energy1 consumption.

1 For the rest of the paper, we will use interchangeably the terms energy and power.



440 S. Bouarar et al.

3.1 Scenario 1: Impact of VM on Logical Optimizations

To study the impact of variability of the logical model on the physical phase,
we consider a naive scenario, where logical optimizations (e.g. join implemen-
tations, join ordering, etc.) are delegated to the query optimizer of the target
DBMS (Oracle 11gR2 in our case) and advanced optimizations structures such
as materialized views are absent. We consider the query performance and energy
consumption as two objective functions when executing the workload. In prac-
tice, for each variant of the initial logical schema of our DW, we compute both
metrics. Note that each variant requires rewriting efforts of the initial workload.
Algorithm 1 gives an overview of our approach:

Algorithm 1. Algorithm dedicated to Scenario 1.
Input: DW logical model: DW = {F,D1, D2, ..., Dn}; Q = {q1, q2, ..., qm};
Output: DW′: DW logical schema having the most suitable

performance/power-saving trade-off
Generate the different possible logical schemes;
for each generated schema do

Calculate the size of the schema;
for each query in the workload do

Rewrite the query conforming to the target schema;
Execute the query;
Record the overall query power & its execution time;

Calculate the time and power averages of queries;

Normalize power and time values;
Weight both objectives (power & time);
DW′ = Schema having the minimum of the weighted sum;

Our algorithm provides us both metrics. In order to help DB designers choose
the schema that best fits their requirements, we initially propose to use the
weighted sum of the objective functions method that allows formulating the
desired trade-off between target NFR. In this scalarization method, we calcu-
late the weighted sum of the normalized objective functions so as to aggregate
objectives and have an equivalent single objective function to be optimized. This
method is defined as follows [21]:

minimize y = f(x) =
k∑

i=1

ωi · fi(−→x )/
k∑

i=1

ωi = 1 (1)

Where ωi are the weighting coefficients representing the relative importance of
the k objective functions of the problem. For example, an eco-performing schema
would have an ωpow = ωperf = 0.5) while a performance-oriented schema would
have ωperf > ωpow, contrary to an eco-oriented schema (ωpow > ωperf ). This
technique is well suited when the Pareto front is convex, which is the case with
our curve, as further illustrated in Sect. 4.
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3.2 Scenario 2: Impact of VM on Physical Optimizations

In this scenario, we leverage the previous one by considering an optimization
structure representing materialized views [13]. In our study, we do not delegate
the selection of materialized views to advisors, we propose instead an algorithm
selecting them according to our previous metrics. This selection is proven to be
NP-hard problem, and has been subject to many studies [13]. The process of
selecting views requires three main components [6]:
(a) A data structure to capture the interaction among queries, like the And-Or

view graph or Multi-View Processing Plan [13]. It puts the algebraic opera-
tions of queries all together in a certain order as an acyclic graph. Starting
from base tables as leaf nodes to queries results as root nodes, through inter-
mediate nodes: unary operations (like selection/projection) and binary ones
(like join/union). Getting the optimal order between intermediate nodes -
join ones in particular- determines the efficiency of the structure.

(b) Algorithms (e.g. deterministic algorithms, randomized algorithms, etc. [6])
exploiting a such structure to pick the best configuration of materialized
views.

(c) Cost models estimating different NFRs.

(a) The construction of the Data Structure. Our proposal has the ability to con-
sider very large number of queries. This is due to the data structure borrowed
from hyper-graphs [6] representing the global plan of the workload as well as the
interaction among queries. The main steps of the process of selecting views are [6]:
– Step 1: Parse query workload to extract the different algebraic operations;
– Step 2: Construct the hypergraph He out of join nodes, such that every

He represents a query and thus contains its different join nodes modeled as
vertices;

– Step 3: Partition He into a set of connected components Hesub (disjoint
sub-hypergraphs), to put interacting nodes together;

– Step 4: Order the nodes of each Hesub according to a benefit function that
determines a pivot node at each pass;

– Step 5: Merge the resulting Hesub to generate the global structure.

Our contribution concerns the He construction, and the ordering of Hesub nodes
(2nd & 4th steps). In fact, only star schemes are handled by the baseline app-
roach [6], unlike ours that considers any multidimensional model (star, snowflake,
constellation). The difference lies in that there henceforth exists some extra-join
nodes not involving any-more the fact table (joins between dimensions and sub-
dimensions, which we have called extra-joins against fact-joins), and this leads
to a totally different situation. As depicted in Fig. 3, the 2nd and the 4th arrange-
ments are impossible configurations in the baseline approach and frequent ones
in ours. Indeed, we will have more than one starting nodes in one connected
component.

However, the extra-joins introduce a partial order since they have to precede
the fact-ones (sub-dimensions must be joined before their dimensions). This
order must be considered when ordering nodes of Hesub (step4) so that: (i) the
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Fig. 3. Possible join nodes arrangement in a global plan.

mother dimension must always appear after its extra-joins, (ii) the outer extra
joins must always figure before the inner ones. These rules are guaranteed thanks
to the below benefit functions, the purpose of which, is to find the pivot nodes
and thus order the Hesub nodes. Given: nfi a fact-join, nei an extra-join, k the
number of extra joins implied by a fact-join, nbr the number of queries using
the node in question, cost its processing cost ⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

costtotal(nfi) = cost(nfi) +
∑k

j=1 cost(nej )
benefit(nei) = (nbr − 1) ∗ cost(nei) − cost(nei)
benefit(nfi) = (nbr − 1) ∗ cost(nfi)+∑k

j=1(cost(nbr − 1) ∗ cost(nej ))
−cost(nfi) − ∑k

j=1 cost(nej )

(b) Materializing Nodes and Schema Selection (Algorithm). Our approach, as
summarized in Algorithm 2, is based on the hyper-graph based structure. In fact,
if designer looks primarily for optimizing query performance, we will create this
structure for each schema among the top-k performance-oriented schemes, mate-
rialize the pivot node of each one (the most advantageous node), execute queries
for each schema and finally compare results. The schema having the smallest exe-
cution time of its queries will be the selected one. Otherwise, if designer needs to
optimize both query performance and energy saving, the structures of the top-k
eco-oriented schemes (or trade-off-oriented according to designer needs) will be
generated.

Materializing the pivot node does not make sense anymore for saving power
(because it is performance-oriented), nor all the join nodes because this would
entail the highest power consumption [16]. Testing 2n possible configurations,
where n is the number of join nodes, to find Pareto solutions, is impossible
especially in DW workloads involving a lot of joins. A Pareto solution is a set of
nodes (a view configuration), that would give - when materialized - values that
can not be improved without making at least power or performance worse off.
They are the best alternative since there does not typically exist a solution that
minimizes all objective functions at once. Evolutionary Algorithms (EAs) are
indeed suitable for multi-objectives optimization problems where large search
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spaces can be handled and multiple alternative trade-offs can be generated in a
single optimization run [21]. The general idea behind EA is to investigate a set
of solutions that represent the Pareto optimal set as well as possible.

Algorithm 2. Algorithm dedicated to Scenario 2.
Input: NFR, LM: a set of logical schemes /

LMi = {F,Dj , SubDjk}/j ∈ {1..n}, k ∈ {1..nk},Qi = {qi1 , qi2 , ..., qim}a

Output: A set of join nodes to be materialized (view configuration)
for LMi ∈ LM do

Generate the Multi View Processing Plan corresponding to its queries Qi;
if NFR = performance then

Each pivot node of each connected component of the structure is
materialized;

else /* NFR = energy & performance */

Annotate each join node by its execution time and power consumption;
Apply an evolutionary algorithm to select candidate views to be
materialized optimizing performance as well as energy ;

Apply the weigthed sum on these candidates to select one view
configuration;

aLM and Q are generated from Algorithm 1.

(c) Energy Cost-Model. To evaluate the interest of the presence of a materi-
alized view, without deploying, each time, the DB (schema and optimization
structures), we adjust our mathematical cost model developed in [16]. In fact,
this cost model has been constructed by assuming a DW with star schema. As
a consequence, our adaptation consists in making it more generic to consider
all variants of the logical schemes. This adaption mainly concerns the training
phase that allows identifying the relevant parameters of our cost models using
polynomial multivariate regression model [16].

4 Experimental Study

To evaluate the logical variability impact on physical design, we conduct inten-
sive experiments related to our two scenarios. First, we present our development
environment including hardware, software, datasets, and results.

Hardware Setup. Our machine is equipped with a “Watts UP? Pro ES2” power
meter with one second as a maximum resolution. As commonly set up, the device
is directly placed between the power supply and the DB workstation under test
to measure the workstation’s overall power consumption. The power values are
logged and processed in a separate monitor machine (client-server architecture).
We used a Dell PowerEdge R210 II workstation having an Intel Xeon E3-1230
V2 3.30 GHz processor, 10GB of DDR3 memory and a 2x500GB hard drive.
2 https://www.wattsupmeters.com/.

https://www.wattsupmeters.com/
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Software Setup. Our workstation machine is installed with the latest version
of Oracle 11gR2 DBMS under Ubuntu 14.04 LTS with kernel 3.13 to minimize
spurious influences, with 8192 as block size. We also disable unnecessary back-
ground tasks, clear the system and oracle cache for each query execution. We
also disable unnecessary background tasks, clear the system and oracle cache for
each query execution.

Datasets. We use SSB datasets with a scale factor of 10. It illustrates deci-
sion support systems that examine large volumes of data, and execute dif-
ferent types of queries with a high degree of complexity. We have identified
the main hierarchies for each dimension table of the SSB multi-dimensional
model, applied our formula (H(Customer)∗H(Part)∗H(Supplier)∗H(Date) =
23−1 ∗ 22−1 ∗ 23−1 ∗ 24−1), and generated the resulting 256 possible schemes
thanks to attributes correlations. As for workload, we create 30 queries based on
SSB datasets, in such a way that two main categories must always be handled:
(i) queries with operations that exhaust the system processor (CPU intensive
queries) and (ii) queries with exhaustive storage subsystem resource operations
(I/O intensive queries). Note that the considered queries include: queries with
single table scan, others with multiple joins with different predicates. They also
contain sorting/grouping conditions and simple and advanced aggregation func-
tions. These queries are rewritten according to every schema [4].

4.1 Evaluation of Scenario 1

As already mentioned, the scenario 1 involved logical optimizations. In our case,
we use the default optimizations offered by Oracle 11gR2 DBMS query opti-
mizer. To conduct our experiments, we have deployed the different 256 schemes
obtained from varying the initial SSB schema of our DW. The initial queries
of our workload are rewritten for each schema (7680 queries all in all) and exe-
cuted. Execution time (from oracle) and power consumption (from power meter)
are recorded. We first analyze one objective function “power”, depicted in Fig. 4
that confirms power variation according to logical schema and, even better, shows
that star schema is far from being the most eco-model. We have noticed that
the co-normalization of the smallest dimension tables (supplier (2000*SF) and

Fig. 4. Impact of logical design on DW power consumption.
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dates (2556) in this case) in the presence of CPU-intensive operations clearly
disadvantages power consumption, but neither the number of joins (IO costs)
nor the number of CPU-intensive operations (e.g. aggregations/sorting) influence
directly the power consumption. A possible explanation is that most of query
time execution is spent in CPU processing because data is read quickly due to
the files small size. On the opposite, when most of query time execution is spent
in waiting until data is ready because of data swapping between memory/disk,
less power consumption is recorded.

In a second place, we consider two objective functions representing query
performance and power consumption. We then highlight the relation between
them which takes the form of a convex as illustrated in Fig. 5. This reveals
the existence of logical schemes optimizing both NFR (Pareto solutions), and
meanwhile, approves our choice of weighting method in selecting schemes.

Fig. 5. Impact of logical design on DW power and performance.

On the other hand, normalization process reduces storage space, especially
with large dimension tables and/or important size of hierarchies. Snowflake
schemes are hence appropriate for space-constrained applications as depicted
in Fig. 6. This storage gain could be also propagated to storage constraints of
optimization structures. These experiments show the limitations of the initial
SSB schema to satisfy our fixed NFRs.

Fig. 6. Impact of logical design on DW size.
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4.2 Evaluation of Scenario 2

The previous experiments took almost 10 days (7680 queries) what reveals the
necessity of using a simulator (cost model) for these and future experiments. We
focus in this scenario, on the problem of selecting materialized views by consid-
ering the variation of the logical schema (256 schemes), unlike current studies
dealing with only one schema. To generalize this, we develop a Java-simulator
tool that generates the global plan, using our hypergraph-based approach, for a
given workload following any DW logical schema, and assessed the NFRs cost for
the different schemes/workloads using pluggable cost models. Our simulator is
equipped with mathematical cost models estimating different metrics (query per-
formance, power consumption, etc.) [16]. Figure 7 presents our simulation results
of assessing performance (I/O) of the different workloads/schemes with/without
views. This attests to the relevance of: (i) materializing views to query perfor-
mance, which is quite expected. This partially proves the coherence of our cost
model, (ii) the impact of logical variability on physical design.

Fig. 7. Impact of VM on performance of physical optimizations.

Impact of VM on both Power and Performance of Physical Optimizations.
Rather than testing in combinatorial fashion all the configurations (256 schemes,
30 queries and n views generated by evolutionary algorithms, for each schema),
it would make more sense to first select three different logical schemes from our
first scenario (that can be hence done using our simulator): a performance, power
and trade-off oriented schemes. Using MOEA3 integrated to our tool, we select
the set of Pareto materializable global plan nodes for each schema. For each
materialized view configuration generated by MOEA Framework, the simula-
tor calculates performance and power consumption using cost models. Similarly,
it then needs to select a unique view configuration with the desired trade-off:
power-MV (MV for materialized views), time-MV, trade-off-MV, using weighted
sum method with corresponding ωi. Note that I/O costs were converted to time
values (ms).

3 Java library for multi-objective evolutionary algorithms. www.moeaframework.org.

www.moeaframework.org
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(a) Oriented-tradeoff logical schema

(b) Oriented-time logical schema (c) Oriented-power logical schema

Fig. 8. Impact of VM on both Power and Performance of Physical Optimizations.

Our experiments (some of which are depicted in Fig. 8) show that (i) logical
schemes intended to improve an NFR (performance/power), do not necessarily
give the optimal values in the presence of optimization structures. That said,
they do not give the worst values either, (ii) to orient a designer towards a given
NFR at earlier stages, she/he must combine the suitable tradeoff of both logical
schema and optimization structures, (iii) these results confirm the need for a
holistic variability-aware design process where such interdependences have to be
considered.

5 Conclusion

In this paper, we launched a think-tank about the impact of varying the logical
model of a given DW on the physical design, according to two NFRs: efficiency
of energy consumption and query performance. This think-tank is alimented by
(a) a debate on the analogy between SPL and DB design, (b) tools to iden-
tify/model the dimensions of our problem variability, (c) the efforts that design-
ers have to made to deal with this interesting issue. To show the consequences
of varying the logical schema on the physical design, we handled two scenarios:
(i) a physical schema without physical optimization and (ii) a physical schema
with the process of selecting materialized views. These two scenarios are eval-
uated using the SSB benchmark and specific hardware to capture Energy. The
obtained results shows the worthlessness of launching our think-tank that the
frozen logical schema, and star schema in particular, is not always the best one
to satisfy the fixed NFRs.

Currently, we are working on pushing back the variability to cover other
phases of the life cycle such as ETL and conceptual modeling.
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Abstract. Software Product Lines (SPLs) are families of similar soft-
ware products built from a common set of features. As the number of
products of an SPL is potentially exponential in the number of its fea-
tures, analysing SPLs is harder than for single software. In this invited
paper, we synthesise six years of efforts in alleviating SPL verification
and testing issues. To this end, we introduced Featured Transition Sys-
tems (FTS) as a compact behavioural model for SPLs. Based on this for-
malism, we designed verification algorithms and tools allowing to check
temporal properties on FTS, thereby assessing the correct behaviour of
all the SPL products. We also used FTS to define test coverage and gener-
ation techniques for model-driven SPLs. We also successfully employed
the formalism in order to foster mutation analysis. We conclude with
future directions on the development of FTS for SPL analysis.

1 The Software Product Line Challenge

Software product line engineering (SPLE) is an increasingly popular development
paradigm for highly customizable software. SPLE allows companies to achieve
economies of scale by developing several similar systems together.

SPLE is now widely embraced by the industry, with applications in a variety
of domains ranging from embedded systems (e.g., automotive, medical), sys-
tem software (e.g., operating systems) to software products and services (e.g.,
e-commerce, finance). However, the benefits of SPLE come at the cost of added
complexity: the (potentially large) number of systems to be considered at once,
and the need for managing their variability in all activities and artifacts.

This added complexity also applies to the verification of the products’ behav-
iour. A simple but cumbersome approach for product line verification consists
in applying classical model checking algorithms [37] on each individual prod-
uct of the family. However, for an SPL with n features, this would lead to 2n

calls of the model checking algorithm. This solution is clearly unsatisfactory
and should be replaced by new approaches that take the variability within the
family into account. Those approaches often rely on compact mathematical rep-
resentations on which a specialized model checking algorithm can be applied.
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 453–463, 2017.
DOI: 10.1007/978-3-319-51963-0 35
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The main difficulties are (1) to develop such a model checking algorithm, and
(2) to propose mathematical structures that are compact and flexible enough to
take the variability of the family and its specification into account.

In [10], we introduced Featured Transition Systems (FTS), an extension of
transition systems used to represent the behaviour of all the products of an SPL
in a single compact structure. We also showed how this representation can be
exploited to perform model checking of product lines in an efficient way. In the
rest of this paper, we briefly re-introduce FTS and summarize existing model
checking algorithms for them. We also briefly show that FTS can be exploited
to perform testing of software product lines. This is only a brief summary of
the work that is presented at SOFSEM’17. More details can be found in our
different papers cited below. Finally, we have to highlight that related work on
product-line verification is vast and varied. To the best of our knowledge, effort
in compiling related work on this topic can be found in the theses of Classen [5]
and Cordy [11]. Beohar et al. recently compared the expressiveness of different
SPL formalisms and found that FTS is the most expressive one [4].

2 Featured Transition Systems

Let us introduce Featured Transition Systems with a classical vending machine
example. The example is a short version of the one we presented in [8]. In its
basic version, the vending machine takes a coin, returns change, serves soda, and
eventually opens a compartment so that the customer can take her soda, before
closing it again. This behaviour is modelled by the transition system shown in
Fig. 1(a). There exist other variants of this vending machine. As an example,
consider a machine that also sells tea, shown in Fig. 1(b). Another variant lets
the customer cancel her purchase after entering a coin, see Fig. 1(c). A fourth
one offers free drinks and has no closing beverage compartment, see Fig. 1(d).
This variability hints that the vending machines could be developed as an SPL,

Fig. 1. Several variants of a vending machine.
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Fig. 2. FD for the vending machines of Fig. 1.

of which four features can be already identified: the sale of soda, the sale of tea,
the ability to cancel a purchase and the ability to offer drinks for free.

By combining these features differently, yet other vending machines can be
obtained. However, not every combination of features yields a valid system (e.g.,
a vending machine should at least sell a beverage). One can use variability models
to represent the sets of valid products. In SPLE, feature diagrams [30,36] are
the most common incarnation of variability models. The feature diagram for the
vending machine SPL is shown in Fig. 2. This feature digram formally describes
a set of vending machines; twelve of them. A model of the behaviour of a small
example such as this would already require twelve, largely identical, behavioural
descriptions, four of which are shown in Fig. 1.

FTS are meant to represent the behaviour of the myriad instances of an
SPL in a single transition system. In fact, the main ingredient of FTS is to
associate transitions with features that condition their existence. Consider again
our vending machine example. Figures 1(b) and (c) show the impact of adding
features Tea and CancelPurchase to a machine serving only soda: both add two
transitions. FreeDrinks replaces ➀pay−−→➁change−−−−→➂ by a single transition ➀free−−−→➂
and ➆open−−−→➇close−−−→➀ by ➆take−−−→➀. The FTS of the whole vending machine SPL
is given in Fig. 3. The feature label of a transition is shown next to its action
label, separated by a slash. In these labels (and by conveniency in the rets of
this paper), we use the abbreviated feature names from Fig. 2. The transitions
are coloured in the same way as the features in Fig. 2.

Fig. 3. FTS of the vending machine.
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3 Verifying SPLs with FTS

Over the years, we have developed a series of model checking algorithms that
exploit the compact structure of FTS to verify sets of requirements on product
lines. We first recap the meaning for product line requirements, and then briefly
summarise our results.

3.1 What Are Product Lines Requirements?

The requirements of an SPL are requirements imposed over a subset of its prod-
ucts. As such, they can be represented as a formula in temporal logic preceded
by a Boolean formula over the SPL features, which represents the set of prod-
ucts whose behaviour must satisfy the temporal formula. As an example, in
single systems one can check that “the system can never reach a bad state”.
The product-line counterpart of this property would be: “all valid products can
never reach a bad state”. The objective of an SPL verification algorithm is thus
to discover all products that do not satisfy a given property, and a proof of viola-
tion (i.e. a counterexample) for each of them. One can also extend our queries to
quantitative, real-time or even stochastic requirements. For example, the single-
product property “is the probability to satisfy the safety requirement greater
than 0.5” becomes “what are the products for which the probability to satisfy
the safety requirement is greater than 0.5” in the product-line realm.

3.2 How to Exploit the FTS Structure to Model Check
Requirements: A Sketch

Let us now illustrate how one can exploit the FTS structure to reason on a
classical verification problem: finding all the reachable states. Consider again the
vending machine FTS of Fig. 3. State ➀ is an initial state, and thus reachable
by all products. From there, the transition ➀pay−−→➁ can only be fired by products
in [[v ∧ ¬f ]]. Transition ➁change−−−−→➂ can be fired for all products in [[v]], and so
state ➂ is reachable by the same products as state ➁. Proceeding in this way,
we compute in one step the reachability relation of s for all the products. The
presence of the feature diagrams permits us to ignore products that are not part
of the product line. We also observe that if we find a state s reachable by a set
of products A and discover later that s can also be reached by a set of product
B ⊆ A, then it is enough to consider the superset A.

Considering sets of products during the verification makes us move from
an enumerative approach to a product line approach, which benefits from the
common behaviour of the products. Interestingly, the theoretical complexity of
our algorithms is higher than that of their enumerative counterpart. However,
due to the structure of the FTS, experiments show that in practice the former
is faster (see, e.g., [8] for extended comparisons). Observe that the efficiency of
our approach also rely on efficient representation of sets of products. In [8], we
showed that the best way is to represent them with Boolean formulas. We also
showed that our approach remains efficient in quantitative settings, e.g. when
properties are real-time [15] or in case the features are not Boolean [16].
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3.3 Summary of Our Results

Let us now briefly summarize the results we have obtained over those six last
years. Our first algorithms have mainly focused on extending model checking
properties of Linear Temporal Logic (LTL) to FTS [8,10]. We then moved to
CTL and symbolic algorithms [9]. We have then proposed extensions of FTS
that allow us to reason on more quantitative aspect of systems. This includes
real time to specify timing constraints in a timed automaton fashion [15], and
probabilities that allows us to make quantitative hypotheses via a combination
of FTS and Markov chains [34]. Behavioural relations such as simulation were
also extended to FTS. There, one tries to compute the set of products for which
two states are in simulation [12]. This allows us, among many other possibilities,
to define a CEGAR-based abstraction for FTS [14]. In all those algorithms, the
root has always been to efficiently represents pairs of (state,product).

Fig. 4. Features of proveline

Tool. Some of our results have been implemented in ProVeLines: a product line
of verification tools for QA on different types of product lines1. The structure of
the tool is that of an SPL, whose corresponding feature diagram is presented in
Fig. 4 (taken from [17]). One can observe that the tool provides several opportu-
nities to describe both systems (discrete, real-time) and requirements (reacha-
bility, simulation, LTL). The constraints on the top left of Fig. 4 informs us that
using the real-time specification for systems disables the possibility to use LTL
and simulation algorithms. Otherwise, this would require the use of dense-time
verification algorithms.

Any ProVeLines variant requires at least two artefacts from the user: an
FD and an fPromela model. For the former, we use TVL [6,16], one of the
latest incarnations of FDs, due to some of its advantages: high expressiveness,
formal semantics and tool support. fPromela is a feature-oriented extension of
Promela [27], which we defined as a high-level language on top of FTS. An
fPromela model thus describes the behaviour of all the products defined by the
FD [7,16].

1 Note that prototype tools exist for other results we developed.
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4 SPL Testing with FTS

FTSs, as concise models of SPLs behaviours, can also support model-based test-
ing (MBT) activities. In our research we investigated two directions: (i) coverage
and (ii) synergies between SPL testing and mutation analysis.

4.1 SPL Coverage Analysis

Extending Usual Coverage Criteria. Since FTS are extensions of tran-
sition systems, a natural research direction was to consider “usual” coverage
criteria (e.g., all-states, all-transitions) for product-line test generation [21].
In our work, we modelled test cases in terms of sequences of actions. There
are thus abstract by nature since in the FTS formalism, actions are simple
labels without any input or output. Additionally, an Abstract Test Case (ATC)
may not be executable. As we have seen, each transition can only be exe-
cuted by the set of products that match the associated feature expression. If
we consider a sequence of actions, we have to conjunct these feature expres-
sions and check the satisfiability of the resulting expression to know which
product(s) can execute this abstract test case. If the formula is not satisfi-
able, there is no product that can execute the behaviour described in this
abstract test case. For example, ATC = {pay, change, tea, serveTea, take} lead-
ing to the run ➀pay−−→➁change−−−−→➂tea−−→➅serveTea−−−−−−→➆take−−−→➀, is executable by products in
[[v ∧ ¬f ∧ v ∧ t ∧ t ∧ f ]], which in turn trivially maps to the empty set. Such a
negative test case can be useful to ensure whether an implementation does not
allow more products than specified.

Thus, to be executable, an ATC can be executed by at least one product
of the product line. We then extend this definition to executable test suites,
by stating that they should contain only executable test cases. Equipped with
such notions, we can defined product-line coverage as a function that takes a
FTS and abstract test suite as parameters and returns a value between 0 and 1.
This value represents the ratio between the number of actually covered elements
(states, transitions, etc.) and the number of possible ones in the FTS, if the
value is 1 then we obtain all-X coverage, where X is the set of elements under
consideration for this coverage criterion. When such elements involve transitions,
we impose that these transitions are executable by at least one product (see
[21] for formal definitions). In our coffee machine, the following test suite both
satisfies all-states and all-transitions coverage:

{(pay, change, soda, serveSoda, open, take, close)
(free, tea, serveTea, take); (free, cancel, return)}

We also experimented using another criteria that is not based on the model
structure but on the capture of usage model that describes usages of the system
[19]. There are two ways to capture such usages: either by extracting them from
logs (such as Apache logs) [20], and assign more importance to more frequent
usages or by assiging them directly using a dedicated modelling tool such as
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MaTeLO [2]. Technically, these usage models take the form of a Markov chain
that can be used to derive the most frequent test cases. There are then run on
the FTS to derive the associated product-line coverage metrics. This scenario
complements the one proposed by Samih et al. [35] who start by selecting a
product prior to generate test cases using statistical testing techniques [38]. For
more information about these dual scenarios, see [19].

Another interesting aspect that differs from “usual” coverage for single sys-
tems is the notion of P-coverage. P-coverage represent the ratio between the set
of products executable by a given abstract test suite and the set of products
derivable in the feature diagram that is [[FD]]. Since ATCs relates the two types
of coverage (products and their behaviours), their generation is de-facto a multi-
objective problem. The compactness of the FTS formalism makes it easy for the
SPL testing community to study different multi-objective scenarios and compare
different criteria.

Multi-objective Coverage. Continuing previous line of work that considered
coverage only a the structural (feature diagram) level [25,26,32], we initially
started with a rather strange question: “what is the behavioural coverage of
structural coverage?” [22]. The idea behind this question is that as some behav-
ioural coverage criteria may be difficult to compute in practice because of their
complexity, approximating them with less computationally expensive approaches
at the feature diagram level can be of interest. To investigate this question, we
measured the behavioural coverage (state, transitions and actions) of two FD
coverage criteria: (i) pairwise coverage [29,32] that covers any two combination
of features and (ii) similarity coverage that maximises distances between config-
urations [1,25]. Results [22] shown that it was indeed possible to cover large parts
of behaviour by sampling few configurations (e.g. only 2 products were neces-
sary to achieve all-transitions coverage for the Claroline SPL allowing more than
5,000,000 products). Nevertheless, the resulting test suites are not optimal and
more experiments are needed to generalise our results.

Recently, we considered extending similarity at the behavioural level to design
search algorithms that maximize both distances between configurations at the
FD level and distance between test cases [23]. We considered various distances
(Hamming, Anti-Dice, Jaccard, Levhenstein) and both single objective (oper-
ating on an initial random set of test cases) and bi-objective (also taking into
account distance between products). We seeded our models with random faults
to compare the various algorithms. In our models, being bi-objective is not nec-
essary an advantage, and the efficiency seems largely influenced by the choice
of the distance function we make. A threat to validity to these conclusions is
the fact that our feature diagrams are not heavily constrained, favouring the
accidental discovery of dissimilar products.

4.2 Mutation Analysis

A less expected application of FTSs in the field of software testing is mutation
analysis [18,23]. Mutation analysis (see [28] for a comprehensive survey) is a
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technique that assess the quality of test suites by mutating software artifacts
(program, models) called mutants and measuring the ability of such test suites
to distinguish them from the original (we also say that a test case kills a mutant)
ones. The underlying idea is to mimic a “competent programmer” that would
introduce a few mistakes in the implementation of a system. The mutation score
measures the ratio of the number of killed mutants divided by the number total
mutants for a given test suite. The contribution of FTS to mutation testing is
first to model mutants as families [18] and then to exploit the FTS formalism to
perform shared execution of the mutants “all-at-once” to speed up analysis [23].

Mutants as SPL Variants. We studied mutation analysis at the model level,
where the original system and its mutants can be expressed as transition sys-
tems. Model-based mutation complements program-based mutation as they tend
to exercise different faults. To generate mutants automatically we design so-
called mutation operators. For a transition system, these operators are model
transformations that for example remove a transition or replace an action by
another one. As we have seen, the features in a FTS add or remove transitions
in a similar way. Building on this analogy, we sketched a vision of managing
(model) mutants as a SPL to bring all the advantages of FTS and variabil-
ity modelling to mutation analysis [18]. We describe mutations as features and
organise them in a feature diagram, which allows a precise control on the type
and number of mutants we allow for analysis. From a behavioural perspective,
all the mutants are represented in a centralised model (the FTS), which each
eases their management and storage.

AcceleratingMutationAnalysis. As noted by Jia and Harman [28], one of the
practical obstacles to the development of mutation testing is the cost associated
to mutation analysis. Traditional mutation testing proceeds by running every test
case on every mutant. Since we need to have a large number of mutants to assess
test suites’ sensitivity in a meaningful way, analysis time can be huge. In fact, this
is equivalent as processing all mutants in isolation like the naive approach is doing
for product line model-checking. Of course, an important justification of using the
FTS formalism to model mutations is to avoid this naive approach and perform
family-based mutation analysis [18]. We implemented this featured model-based
mutation analysis recently [23]. The Featured Mutant Model (FMM) is thus com-
prised of a FTS modelling the mutant family and a feature diagram represent-
ing all the mutations supported by this family. To perform mutation analysis, we
simply run test cases on the FTS. As we have seen, this yields a boolean formula
describing all the mutants (in [[FD]]) that are killed by this test case. Therefore,
we only need to run each test case once on the FTS, rather than on the 2n individ-
ual transition systems associated to this mutant family. Our experiments showed
gains between 2.5 and 1,000 times than previous approaches. Additionally, the
FMM favours higher-order mutation. Higher-order mutation consists in apply-
ing several mutation operators on the same model. In the FMM scheme, higher-
order mutation is supported allowing certain features to be selected together in



On Featured Transition Systems 461

a mutant. If we want to restrict ourselves to the first order, we then need to spec-
ify that each feature excludes all the other ones. Computing the mutation score
require enumerating the instances satisfying the union of formulas gathered for
each test case and computing the total number of mutants from the feature dia-
gram. Computing such values may be tricky for large models (even with BDD
solvers) and optimisations require to be investigated [23].

4.3 ViBES: A Model-Based Framework for SPL Testing

All our research on model-based testing has been integrated in a framework called
ViBES [24]. We designed an XML representation for FTS while the feature dia-
grams are encoded in TVL [6]. The framework is implemented in JAVA and pro-
vides a domain-specific language to create mutations operators and mutant fam-
ilies in a programmer-friendly way. The framework also contains the implemen-
tations of test coverage and generation techniques discussed above. Finally, the
framework is open-source (MIT Licence) and can be downloaded here: https://
projects.info.unamur.be/vibes/.

5 Conclusion

In ths paper, we summarised six years of efforts in harnessing the central problem
of SPL analysis: the combinatorial explosion of the number of products to con-
sider. To this end, we introduced featured transiation systems as a compact and
efficient representation of the whole behaviour of a SPL. This unique representa-
tion of all the products served as a support to a family of verification algorithms
itself implemented as a software product-line [17]. We also employed FTS for
model-based testing activities such as coverage and test generation and prioriti-
sation. The FTS formalism demonstrated its universality to readily be applide
for mutation analysis of single systems, with substantial analysis speedups.

After having had a look on the past, let us have a look in the future. There
are several research directions worth of investigation. First we would like to
extend our verification algorithms to quantitative software product lines. This
requires to extend the FTS formalism to specify quantities [31]. Another interest-
ing information to specify in FTS is probabilities, in order to perform statistical
model-checking activities [33]. Such extended FTS formalism is also of interest
for testing [19,20]. As is the addition of inputs and outputs for ioco conformance
[3]. With respect to mutation, we would like to formally investigate the mutant
equivalence problem using exact or approximate simulation techniques [13].
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Abstract. Domain-specific languages (DSLs) assist a software devel-
oper (or end-user) in writing a program using idioms that are similar
to the abstractions found in a specific problem domain. Indeed, the
enhanced software productivity and reliability benefits that have been
reported from DSL usage are hard to ignore and DSLs are flourishing.
However, tool support for DSLs is lacking when compared to the capa-
bilities provided for standard General-Purpose Languages (GPLs). For
example, support for unit testing of a DSL program, as well as DSL
debuggers, are rare. A Systematic Mapping Study (SMS) has been per-
formed to better understand the DSL research field, identify research
trends, and any possible open issues. In this talk I will first introduce
DSLs by discussing when and how to develop DSLs, then results from
SMS will be presented along with open DSL problems such as lacking
tool support for DSLs and difficulties in combining DSLs.

1 Introduction

“Domain-specific languages (DSLs) are languages tailored to a specific appli-
cation domain. They offer substantial gains in expressiveness and ease of use
compared with general-purpose programming languages in their domain of appli-
cation [25].” As such, DSLs [10,13,19,25,26] become an emerging popular area
of research within the field of Software Engineering (SE), and one of the more
important constituents of software development methodologies such as: Genera-
tive Programming, Product Lines, Software Factories, Language-Oriented Pro-
gramming, and Model-Driven Engineering (MDE) [29,30]. Software Language
Engineering (SLE) [15] is a young engineering discipline with the aim of estab-
lishing systematic and rigorous approaches to the development, use, and main-
tenance of computer languages (including DSLs). As such, it is strongly believed
that DSL development should be properly engineered. The following develop-
ment phases are usually associated with DSLs: decision, domain analysis, design,
implementation, deployment, testing and maintenance. Each phase has their own
inputs and deliveries, which are discussed in more details in [6,25].

DSL researchers have published their works either under broader communities
such as programming language research, or within specific application domains
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for which DSLs were developed (e.g., embedded systems, high-performance com-
puting, electronic commerce, robotics). Furthermore, DSLs can be developed in
more varied ways than General-Purpose Languages (GPLs). For example, dur-
ing the design phase a new DSL can be based on already existing language (lan-
guage exploitation pattern [25]), or designed from scratch without any relationship
to an existing language (language invention pattern [25]). Whilst, independently
from a design phase a DSL can be implemented by different approaches (e.g.,
interpreter, compiler, preprocessing, embedding, extensible compiler/interpreter,
COTS, hybrid [25]), each having its own merits [18]. Due to the fact that research
on DSLs is spreading into many software development methodologies, vast areas
of application domains, and different development approaches, it is hard to obtain
a complete knowledge of the DSL research field, and foreseen DSL research trends.
Therefore, the main objective of the Systematic Mapping Study (SMS) on DSLs
[23] was of better understanding the DSL research field, identifying research
trends, and possible open issues. In this invited talk the results of SMS for DSLs
[23] have been summarized and open DSL problems are discussed.

2 Summary on SMS for DSLs and Its Results

A systematic review (SR) is a secondary study that reviews primary studies
with the aim of synthesizing evidence related to a specific research question.
Several forms of SRs exists [14], depending on the depth of reviewing the primary
studies (e.g., performing quality assessment of the primary studies), and on the
specificities of research questions:

– Systematic literature review (SLR): “A form of secondary study that uses a
well-defined methodology to identify, analyse and interpret all available evi-
dence related to a specific research question in a way that is unbiased and (to
a degree) repeatable [14].”

– Systematic mapping study (SMS): “A broad review of primary studies in
a specific topic area that aims to identify what evidence is available on the
topic [14].”

– Tertiary review (TR): “which is a systematic review of systematic reviews [14].”

Hence, SLRs are more driven by specific research questions (e.g., is one particular
approach better than other), whilst research questions in SMS are of a higher-
level (e.g., which empirical methods have been used, which research topics have
been addressed). A more detailed definition of SMS can be found in [28]: “The
main goal of systematic mapping studies is to provide an overview of a research
area, and identifing the quantity and type of research and results available within
it. Often one wants to map the frequencies of publication over time to see trends.”

SMS on DSLs [23] has been based on the guidelines presented in [14,28]
and using good practices from previous similar SMSs. The protocol is available
at [22]. The following simplified structure for performing SMS has been suggested
in [28] and was used in study [23], as well:
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– defining research questions,
– conducting a search for primary studies,
– screening primary studies based on inclusion/exclusion criteria,
– classifying the primary studies, and
– data extraction and aggregation.

The objective of study [23] was to obtain a comprehensive overview of DSL
research since the survey paper on DSLs [25] was published more than 10 years
ago. The following research questions were defined for elaborating on this overall
goal.

RQ1 Type of contribution: What is the main contribution of DSL studies
with respect to techniques/methods, tools, processes, and measurements? By
answering RQ1 we were able to assess whether the DSL community is more
focused on developing new techniques/methods for particular DSL development
phases, or on developing new tools for DSL development, or on DSL processes,
or on DSL measurements.

RQ2 Type of research: What types of research methods have been used
in DSL studies? By answering RQ2 we were able to assess maturity within the
field (e.g., whether DSL researchers have been using empirical or non-empirical
research methods; whether they are using controlled experiments).

RQ3 Focus area: Which research topics have been investigated in DSL stud-
ies? By answering RQ3 we were able to identify those DSL development phases
(domain analysis, design, implementation, validation, maintenance) that are cur-
rently underrepresented.

The following elementary search string was used in [23]:

(“domain− specific language” OR “DSL”)

AND year > 2005 AND year < 2013

The search string was applied on the following set of DLs (Table 1) after
following the protocol [22].

Table 1. Preliminary identification of relevant publications

Digital library Accessible at No. of publications

ISI web of science http://sub3.webofknowledge.com 792

ACM digital library http://dl.acm.org 361

Σ 1153

The following inclusion criteria were used:

– study must have addressed DSL research,
– peer reviewed studies had been published in journals, conferences, and work-

shops,

http://sub3.webofknowledge.com
http://dl.acm.org
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– study must be written in English,
– study must be accessible electronically, and
– computer science literature.

The exclusion criteria were:

– irrelevant publications that lay outside the core DSL research field, which
also excluded DSMLs, modelware, and MDE publications, visual/graphical
languages (based on graph-grammars or other formalisms) or those mentioning
DSL as future work;

– non-peer reviewed studies (abstracts, tutorials, editorials, slides, talks, tool
demonstrations, posters, panels, keynotes, technical reports);

– peer-reviewed but not published in journals, conferences, workshops (e.g., PhD
thesis, books, patents);

– publications not in English;
– electronically non-accessible; and
– non-computer science literature.

The inclusion and exclusion criteria were applied to the titles, keywords, and
abstracts. In those case where it wasn’t completely clear from the title, keywords,
and abstract that a publication really addressed the DSL research then such pub-
lications were temporarily included but might be excluded during the next phase
(classification phase) when the whole publication (not only the abstract) had been
read. Hence, only publications that were clearly outside the scope were excluded
during this phase. After the screening of 1153 publications (see Table 1) 713 pub-
lications satisfied the aforementioned criteria and entered into the next phase -
classification, where an additional 323 publications were then excluded. Hence,
altogether 390 primary studies were classified and the main findings were:

– The DSL community has been more interested in developing new tech-
niques/methods (79.3%) that supported different DSL development phases,
rather than investing in developing new DSL tools (6.9%). Primary stud-
ies about integration of DSLs into other SE processes have also been rare
(10.5%), whilst studies about measuring the effectiveness of DSL approaches
have been almost non-existent (3.3%). Indeed new DSL tools have rarely been
developed over the past 10 years (an example of a new tool is Neverlang [31]).
The matured tools (e.g., ANTLR [27], Stratego/XT [3]) have merely been
enhanced with new features. Recent comparisons between DSL tools has have
been discussed in [9]. Interestingly, a DSML tool Xtext [7] has been used for
grammar-based DSLs as well. Hence, a small percentage (6.9%) should not be
of great concern. On the other hand, it is quite clear that there is a lack of
DSL research regarding processes and measurements. More emphasis should
be placed in the near future on integrating DSLs into other SE processes, as
well as about measuring the effectiveness of DSL approaches.

– The empirical research (72.8%) has prevailed over non-empirical research
(27.2%). This is an indication of the maturity of DSL research. Opinion and
philosophical/conceptual primary studies have been rare (about 2.1%) in DSL
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research. The same is true for experience reports (9%). It can also be concluded
that the presented ideas have also been implemented at least at the level of a
prototype and hence only solution proposals have been rare (16.1%). Whilst
the ratio between empirical and non-empirical research (72.8% vs. 27.2%) has
been much higher than within some other research fields and hence satisfy-
ing, but this can’t be claimed for the ratio between validation and evaluation
DSL research (66.1% vs. 6.7%). There has been a clear lack of evaluation
research into all types of contribution (technique/method, tool, process, mea-
surement). A need for empirical evaluation in software modeling research is
discussed in [4], where it was found that the rigour of empirically-validated
research has been rather weak. In particular, the authors found only 4% of
controlled experiments within the research works published during the period
2006–2010 at conferences on Model Driven Engineering Languages and Sys-
tems. This number is even slightly higher than the number we found (1.3% of
controlled experiments) and further indicates, as in [4], that researchers within
the DSL community are more interested in creating new techniques than they
are in performing rigorous empirical evaluations (e.g., [20]).

– The primary studies usually discussed the following three DSL development
phases: domain analysis, design and implementation, whilst validation and
maintenance have been rarely presented. Indeed, in many primary studies we
found a brief section on domain analysis identifying the main concepts of DSL
under development followed by the design of DSL syntax and semantics and
finalising with implementation details. On the other hand, there has been a
lack of DSL research about domain analysis (only 1.3% of primary studies
have concentrated solely on domain analysis). Of particular concern should
be the lack of DSL research within the validation phase. DSLs had rarely
been validated (e.g., by end-users) assuming that the developed DSLs were
perfectly tailored for domains, as well as fitting end-users’ requirements [11].
However, this is far from true. DSL under development should have been
validated by empirical studies, involvement of end-users, or by the psychology
of programming research. Recent attempts in this direction is work [1].

– Only 5.7% of primary studies that included domain analysis had used a for-
mal domain analysis approach. Hence, formal domain analysis methods had
been rarely used in DSL development and domain analysis had usually been
done informally and probably in an incomplete manner. There is an urgent
need in DSL research for identifying the reasons for lack of using formal meth-
ods within domain analysis and possible solutions for improvement. The first
observation might be that information gathered during domain analysis can-
not be automatically used in the language design process. Another reason
might also be that complete domain analysis is too complex and outside of
software engineers’ capabilities. DSL researchers should look into available
domain analysis tool and investigate how they can be accommodated for sup-
porting the DSL domain analysis phase. Furthermore, only 1.3% of primary
studies used in our SMS concentrated solely on the domain analysis phase.
Investigating the domain analysis phase has clearly been insufficient.
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– Only 16.8% of primary studies that included the design phase used formal
approaches for describing syntax and semantics. Although internal DSLs,
which rarely require formal description as they rely on (formal) description
of existing language, comprised 47.8% out of 83.2% informal cases, the num-
ber of DSLs using formal syntax and especially semantic description had still
been low. Again, the DSL community should identify the reasons and works
towards improvement.

– Amongst the more frequently used implementation patterns have been the
embedding approach (34.3%) and the compiler approach (28.1%). Other
implementation approaches had been less frequently used: preprocessing
(15%), COTS (7.9%), interpreter (7.9%), hybrid (3.9%), and the extensible
compiler/interpreter approach (2.9%). Hence, this study doesn’t support some
claims that the embedding approach has prevailed over DSL implementation
approaches (e.g., “In fact, most of the common DSLs used today are designed
as pure embedded programs within the structure of an existing programming
language [12]”).

3 Some Open DSL Problems: Lack of DSL Tools
and Composability of DSLs

Software tools are indispensable in any software development paradigm; software
development using DSLs is not an exception. The construction of a DSL compiler
or interpreter is only the first piece of the toolchain needed to assist software
developers or end-user programmers. A DSL programmer also needs tools to
easily discover the existence of software errors and locate them in a DSL program.
The paucity of such tools can be one of the major factors that may prevent wider
acceptance of DSLs in the software industry. Building DSL tools from scratch for
each particular DSL can be time consuming, error prone, and costly. But, as can
be observed in the case of functional languages [32], the lack of debuggers and
profilers, inadequate support by Integrated Development Environments (IDEs),
and poor interoperability with mainstream languages can be contributing factors
for resistance of DSLs in the software industry. Up to now there has been little
evidence about building debuggers, profilers, automated testing and refactoring
tools for DSLs [23], although some attempts already exist [5,16,17,21,33,34].
Overall, the utility of a new DSL will be seriously diminished if supporting tools
needed by a software developer are not available.

Any language description, formal or informal, should be amenable for refine-
ment and composition. Unfortunately, this is usually not the case, making DSLs
harder to adopt to frequent changes [24]. To be able to design and implement
DSLs more easily, modular, extensible, and reusable language descriptions are
needed. A language engineer may want to include new language features incre-
mentally as a DSL evolves. Moreover, a language engineer may like to build a
DSL simply by reusing different language description modules (language compo-
nents, language fragments), such as modules for expressions, declarations, as well
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as to reuse and extend previous language descriptions. Thus, language descrip-
tion composition is a high level goal that still needs much work in the area of
SLE. In the paper [8] it has been pointed out that language composition has not
obtained enough attention, is still not well-understood, and associated terminol-
ogy is confusing. All of these points suggest that research in this area is not yet
mature. Language composability has been identified in [8] not as a property of
languages themselves, but as a property of language description (e.g., how lan-
guage specifications, formal or informal, can be composed together). To enable
language composition, a language description has to be reused as is; that is, any
changes to a language description are not allowed, but language descriptions
can be extended or additional glue code can be written. This is much harder
to achieve using informal language specifications [2] than using formal speci-
fications. But, the challenge in formal language description is still to support
modularity and abstraction in a manner that allows incremental changes to be
made as easily as possible. Only then the vision of language-oriented software
development will be achieved.

4 Conclusions

SMS on DSLs [23] is providing the DSL research community with an unbiased,
objective and systematic overview of DSL research done during period 2006–
2012. We strongly believe that within each research topic such SMSs should be
periodically performed to make researchers aware of the amount of work done,
the progress, and to find out possible gaps in the research. The main findings of
our SMS on DSLs are:

– Research about DSL integration with other SE process is lacking, as well as
measuring the effectiveness of DSL approaches.

– Clear lack of evaluation research, in particular controlled experiments.
– Amongst different DSL development phases the following phases have been

insufficiently investigated: domain analysis, validation and maintenance.
– Lack of use regarding formal methods within domain analysis and in the

semantic description of DSLs.

We encourage the DSL researchers to start addressing the identified gaps to
enable practitioners to understand the effectiveness and efficiencies of DSLs.
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Jana Št’astná(B) and Martin Tomášek
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Abstract. Current research trends concerning malicious software indi-
cate preferring malware behaviour over malware structure analysis.
Detection is heading to methods employing malware models on higher
level of abstraction, not purely on the level of program’s code. Spec-
ification of applicable level of abstraction for investigation and detec-
tion of malware may present a serious challenge. Many approaches claim
using high-level abstraction of malware behaviour but they are still based
on sequences of instructions which form the malicious program. Tech-
niques which rely on syntactic representation potentially fail whenever
malware writers employ mutation or obfuscation of malicious code. Our
work presents a different strategy. We utilised freely available informa-
tion about malicious programs which were already inspected and tried
to find patterns in malware behaviour, which are not bound to syntactic
representation of malicious samples and so should withstand malware
mutation on the syntactic level.

Keywords: Malware analysis · Behavioural patterns · High-level rep-
resentation · Syntax-independent

1 Introduction

Malware classes and description of their notable members form many computer
security publications, however, there are researchers, e.g. Obrst, Chase, and
Markeloff, who indicate that malware ontology based on classes is not useful in
some situations, e.g. for “malware instances that exhibit either behaviours from
multiple classes or novel behaviours not associated with any recognized class”
[11]. Hybrid malicious software that exhibits behaviour of several classes is how-
ever a quite common phenomenon these days. Gregio et al. emphasize that mal-
ware research community needs to address behavioural aspects of malware [7].

Instead of dealing with malware categorization, we believe looking at mali-
cious characteristics and behaviour is more important. As a matter of fact, mal-
ware is placed into categories based on its behaviour and specific features. The
problem is that distinguishing malware from harmless software is often done by
checking whether the analysed sample corresponds to some malware signature.

c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 473–484, 2017.
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Traditional malware signature is based on syntactic representation of malicious
features taken from analysed samples - a concentrated representation of a harm-
ful program. Malware authors adapted to detection techniques which use syntac-
tic signatures by employing code obfuscation and mutation. Computer security
specialists and malware analysts struggle with mutating malware which avoids
detection. In our opinion, they need to adapt to the situation and instead of
retaining research of malware’s syntactic features, they should try to turn their
attention to behavioural aspects of malware, which are harder to obfuscate and
less likely to mutate in new variants.

From the long-term perspective our research aims at formulating malware
models - behavioural signatures which will be independent from syntactic repre-
sentation of malicious samples and withstand code mutation, obfuscation, and
allow researchers to use any analytic tool they prefer to record malicious behav-
iour while letting them experiment with various detection mechanisms.

In this paper we address the problem of how detailed the behavioural analysis
of malware has to be in order to find the features relevant for distinguishing
various malware types or malware from harmless software (Sect. 2). We explored
number of actions performed by 34 099 unique software samples (malicious and
also harmless) and analysed whether those are manifested in some kind of pattern
(Sect. 3). While we try to answer one question, several other emerge, so we outline
them also (Sect. 4). As our contributions in this paper we state the following:

– We address malware behaviour research on an abstract level, by analysing
number of general actions performed by malicious samples (Sect. 3.2).

– We experimentally demonstrate whether such high-level malware analysis can
present characteristic features which differentiate malware infiltrations one
from another, and we suggest a notation for describing these behavioural pat-
terns (Sect. 3.3).

2 Related Work and Current Issues

There are several techniques for malware analysis and detection based on rather
behavioural aspects, which are described in a survey [6] by Egele et al.:

– Function call monitoring allows to record which specific functions (e.g. Win-
dows API and Windows Native API functions, system calls) were called by
analysed sample.

– Function Parameter Analysis is focused on current values of parameters of
called functions, and their relationship with return values of functions called
previously.

– Information Flow Tracking examines usage or manipulation of specified data,
which are tainted with labels, during execution of analysed program.

– Instruction Trace allows to examine details in behaviour of the sample at the
level of machine instructions.
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Mohd Shaid and Maarof summarised methods of observing malware behav-
iour [9], specifically as monitoring changes in resources of operating system at the
time of malware execution, extraction of system call sequences, input and output
requests initiated by malware, and network activity. They point out that some
malware samples perform minimum network actions or do not exhibit them at
all. That is why malware detection should not depend on one type of behaviour,
otherwise it would be inhibited because of missing data.

It seems that extraction of malicious behaviour from system calls is a fre-
quently used technique. In accordance with method used for system calls extrac-
tion, this type of detection technique is either static or dynamic. Static extraction
of system calls was investigated e.g. in a work of Ding et al. [5]. They collected
system calls from Windows PE file’s header, specifically from import table. How-
ever, not all system API calls are necessarily listed in PE header. For example,
encrypted or compressed malware does not have a complete list of used system
calls in the PE header or the list may not correspond to real system calls usage.
Authors [5] observed in their experiment that several frequent segments from
system calls sequences appeared beside malware also in harmless samples, and
discriminative power of these segments was quite high in both kinds of samples.

Wagener et al. described in their work [15] a method for creating models
of malware behaviour. Before they started analysing a malware sample, they
recorded the initial state of the virtual environment in which the sample was
going to execute. After the experiment, they again recorded state of the system.
By comparing the initial and final state of the system, they obtained a first
overview of how the investigated sample affected the system. In addition to
that, their analytic system generated reports about execution of the sample. At
the end, they were able to extract executed system calls from the collected data
and look for similarities among analysed samples based on system calls.

Dynamic system calls extraction is compared with the static technique in an
experiment of Yuxin et al. [17]. They explain that static extraction is carried
out in three stages: First the program is decompiled into assembly language,
next control-flow graphs (CFG) are extracted from symbolic instructions and
finally system calls are extracted from CFG. Dynamic method only analyses cur-
rently executed program’s trace, which is a disadvantage, but it is able to reveal
encrypted or compressed malware. Comparison of these two approaches showed
that static extraction of system calls is more precise than dynamic extraction,
but it consumes more time.

According to Lu et al. the modern way to represent malware behaviour is by
creating a behaviour graph, which shows how information flow between system
calls that the program executes [8]. Again, encryption and obfuscation of these
information complicates usage of this technique.

An approach presented by Alam et al. [1] utilises control-flow graph (CFG)
together with a certain level of code abstraction. A disassembled program’s code
is translated into optimized Malware Analysis Intermediate Language (MAIL).
The optimization lies e.g. in elimination of dead-code segments. MAIL program
is then annotated with patterns and from this representation CFGs are built
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for every function in the program. If a program matches predefined amount of
control-flow graphs from representative malicious sample at a predefined thresh-
old, then the program is detected as malicious. To test the system authors col-
lected 1020 malicious metamorphic samples and 2330 harmless (benign) pro-
grams. We deem it contributory that a large amount of harmless samples was
used, for this usually corresponds to a real-life situation of basic users. On the
other hand, malicious programs belonged to only 3 families of metamorphic
viruses. Samples used for training the detection engine were also chosen from
the same set and their amount was rather low (first 25 samples, in the second
stage 125 samples). In the end it is not surprising that the detection rate reached
99.6% and false positive ratio 4%. How successful it would be when testing mal-
ware from different families or even completely new kind of threat, we can only
speculate.

Obfuscation and packing is a common problem which obstructs mal-
ware’s code analysis. Based on statistics provided by Shadowserver, from total
73 267 493 malware samples1 they acquired during time period of 90 days2,
19 128 261 samples (which makes around 26%) were packed3 by some of 10
mostly popular packers of that time period. Only those top 10 packers are listed
for the statistic, so we expect that overall amount of packed samples was in fact
higher since much more packing software exists, even if with smaller represen-
tation of samples. In some cases packers remain unidentified because malware
writers implement custom packing solutions which do not correspond to any
known tool, as noted also by Shadowserver.

Concerning problems with packers, results of our previous work [14] showed
that distinguishing malicious software from harmless software based on the usage
of packers is non-viable, since several packers are preferred not only by malware
writers, but also by developers who provide their utility software on the internet.
Moreover, we observed numerous samples which were obscured by one packer
repeatedly in several layers or even diverse packers were employed to obstruct
analysis even of harmless samples.

Moser et al. showed that it is possible to inhibit analysis of control-flow and
data-flow in programs with obfuscation techniques which hide locations of data
and data usage [10].

With these anti-analysis measures applied, techniques based on observing
malware behaviour with static analysis, or methods employing other information
obtained solely by static analysis, may not present results of desired quality.
Defensive mechanisms of malware have to be considered in analysis and where
static analysis may fail, dynamic analysis or combination of both approaches
will handle malicious samples with no problem.

Also a level of abstraction on which malware behaviour is represented is a
matter of debate. Bailey et al. question adequacy of malware behaviour extrac-
tion based on system calls. They claim that system calls are too low-level to pro-

1 https://www.shadowserver.org/wiki/pmwiki.php/Stats/Malware.
2 Data obtained 01/08/2016.
3 https://www.shadowserver.org/wiki/pmwiki.php/Stats/PackerStatistics.

https://www.shadowserver.org/wiki/pmwiki.php/Stats/Malware
https://www.shadowserver.org/wiki/pmwiki.php/Stats/PackerStatistics
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vide meaningful information, and that their level of abstraction is not suitable
for comprehensive description of malware [2]. They describe malicious behaviour
by analysing changes of the state of a testing system.

3 Searching Malware Analysis Data for Behavioural
Patterns

Our intention is to study malware behaviour on as high level of abstraction as
possible and employ lower-level data like system calls or program traces only
when it becomes necessary.

3.1 Malware Behaviour Categories

Although dynamic analysis is not fully reliable, it allows to detect and observe
actual behaviour, which is deeply hidden when analysing the same program
through its obfuscated executable code. According to Wu et al., operations that
represent malware behaviour alter state (status) of the infected system [16].
Based on the type of alteration, they divided malware operations into 4 cate-
gories: (1) File actions, (2) Process actions, (3) Network actions, (4) Registry
actions.

Unfortunately, Wu et al. do not describe the environment in which malicious
samples were investigated nor the methods used to carry out the analysis. How-
ever, it turned out that these categories of malware operations are used also in
the work of Bailey et al. [2] aimed at malware analysis and classification, Rieck
et al. [12], Wagener et al. [15], and Bayer et al. [3]. The behaviour categorisation
mentioned by authors above became inspiration for our research.

3.2 Collecting Malware Analysis Reports

To find out whether patterns of behaviour are present among malicious pro-
grams, we needed to analyse as many samples as possible. However, dynamic
analysis requires that every sample is executed for at least several minutes and
static analysis requires coping with obfuscation, packing and other anti-reversing
measures. Since testing our assumption about behavioural patterns would take
very long time in that manner, we addressed gathering malware behavioural
data in a kind of crowd-sourcing approach.

Analytic reports available thanks to online malware analysis service Totalhash
[4] were used as a resource. Thousands of files have been submitted there for
analysis by malware researchers, analysts and also common users. Several similar
services exist but Totalhash allows to browse the database as a list of reports
in which every report is identified by a hash of analysed malware, so we did not
have to identify which sample exactly we were looking for, while, on the other
hand, different services require e.g. file name, name of malware signature, exact
hash code or other identifier when looking for an analytic report. We built a
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software tool that automates collecting reports from Totalhash online database
and helps us store, sort and analyse acquired data.

In order to look for malware behavioural patterns, we employed analytic
reports of 34 099 unique malicious and harmless samples. This number may
increase in future experiments.

Our exploration of malware behaviour commences with actions which cor-
respond to general categories of behaviour observed in malware (Sect. 3.1). We
attempted to detect patterns in number of actions executed by malicious samples
in order to evince whether such general information about program’s behaviour
are relevant in malware recognition. In analytic reports we particularly focused
on number of actions concerning: file creation (FC), file deletion (FD), mutex
creation (MC), process creation (PC), service creation (SC), service starting
(SS), registry entries (RE), DNS (D), Winsock DNS (WD), HTTP get (HG),
HTTP post (HP), TCP flows (TF).

3.3 Malware Behavioural Patterns

Results of malware analysis collected with our helper application were stored in
a database. To acquire desired data and test our hypotheses about behavioural
patters in a short time, we employed database scripts to filter the data. Data-
base environment DataGrip4 by JetBrains was a great help for the task. First we
listed names of malware signatures used for detection by one of antiviral engines
(we chose specifically Eset Nod32 as one of several reliable engines) and then
generated database queries which listed entries clustered by the name of the
signature. Each cluster of entries comprised data of syntactically different mal-
ware samples but detectable by the same signature. For each cluster we observed
number of actions executed - files created, files deleted, mutexes created, etc. and
counted maximal, minimal and average number of occurrences of these actions.
For example, if minimal and maximal number of file creations among samples
from one cluster were equal, it indicated that malware samples associated with
this signature are clearly defined by the number of file creations.

Our data suggest that not every sample of one malicious signature expresses
behaviour with respect to some pattern. For several signatures their samples’
behaviour (concerning number of executed actions) varies notably from sample
to sample and in several cases none of considered actions were recorded. How-
ever, there are malicious infiltrations which are clearly defined by discovered
behavioural pattern. For example, all samples detected with a signature labelled
internally in our experiment5 as signature A, performed 10 file creations, 2 file
deletions, 4 mutex creations, 1 process creation, 3 registry operations, 3 DNS and
Winsock DNS operations and 4 TCP flows, while the rest of observed actions
did not occur. Numbers of actions performed are visualised in a chart (Fig. 1).

4 https://www.jetbrains.com/datagrip/.
5 We avoid stating the real signature label because disclosing such details may nega-

tively influence employability of presented behavioural patterns in potential detec-
tion mechanisms.

https://www.jetbrains.com/datagrip/
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Fig. 1. Behavioural pattern of malicious programs with signature labelled internally
as A. Every distinct analysed sample detected with the signature A performed exactly
the same number of actions as presented in the chart.

It is important to note that the behavioural pattern illustrated in Fig. 1
matches samples of only one malicious signature, no other samples which corre-
spond to other signatures match the behavioural pattern. Consequently, we can
claim that the pattern is unique for the malware signature and can feature a
high-level malware behavioural signature in the future.

Alongside patterns which assuredly correspond to some malware signature,
we recognised partial patterns or patterns with limited variability of behaviour.
Figures 2, 3 and 4 illustrate this case.

Fig. 2. Behavioural pattern of malicious programs with signature labelled internally as
B. The pattern demonstrates slight variability of samples’ behaviour regarding actions:
DNS, HTTP GET and TCP flows
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Concerning actions with variable occurrences, relationships between behav-
iour types are sometimes observable, e.g. samples from signature labelled B
which performed 4 HTTP GET requests, exhibited also 4 TCP flows, and the
same was observed with 3 and 2 occurrences of mentioned behaviour.

Indication that occasional variability in number of executed actions is not
random was clearer in case of signature C. Variability is present in number of
Files created, DNS, Winsock DNS and TCP flows (Fig. 3). After analysing sam-
ples belonging to the signature, we noted two sub-groups of samples according
to behaviour variability: in the first sub-group samples showed 11 files created,
3 DNS, 3 Winsock DNS and 4 TCP flows, and the second sub-group had 12 files
created, 8 DNS, 6 Winsock DNS and 7 or 5 TCP flows.

Fig. 3. Behavioural pattern of malicious programs with signature labelled internally as
C. The pattern demonstrates slight variability of samples’ behaviour regarding actions:
Files created, DNS, Winsock DNS and TCP flows.

To describe unambiguous behavioural patterns and even groups of samples
with non-random variability in number of behaviour occurrences, a behavioural
pattern is denoted as 12-tuple plabel of elements

plabel = (nFC , nFD, nMC , nPC , nSC , nSS , nRE , nD, nWD, nHG, nHP , nTF ),
nFC , . . . , nTF ∈ N

0,
(1)

where nFC , . . . , nTF are numbers of occurrences of behaviours according to the
list from Sect. 3.2 and label is a name or an identifier of malicious signature with
which is the pattern plabel associated.

Variants of number of behaviour occurrences are formulated by a set Vlabel:
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Fig. 4. Behavioural pattern of malicious programs with signature labelled internally
as D. The pattern demonstrates moderate variability of samples’ behaviour regarding
only Files created.

Vlabel =

⎧
⎨

⎩

∅, iff no variability in behaviour is present,
{vl1, vl2, . . . , vlk|vlk = (x1, . . . , xn), x ∈ N

0, k, n ∈ {1, 2, . . . , 12}, l ∈ N
+}

otherwise.
(2)

Elements of the set Vlabel are n-tuples vlk describing variants of related behav-
iour occurrences. Members of n-tuples xn, where index n denotes n-th member
from the n-tuple, can be substituted into the behavioural pattern plabel. When
defining the variants we needed to consider that some of the behaviour actions
can be related, so they change together. To cope with that, variables from the
pattern can be divided into groups and each group will have its own description
for values’ variances. Index k identifies number of the independent group and
l identifies number of the variant for the particular group. The more groups of
values and their variants are defined in the set Vlabel, the less characteristic the
behavioural pattern becomes.

For example, in the pattern pB of sample B we identified 2 groups of variables:
The first group (k = 1) has 2 variants which will be denoted as v1

1 and v2
1 , the

second group (k = 2) has 3 variants denoted as v1
2 , v2

2 and v3
2 (Fig. 2).

As an illustration, formulas 1 and 2 are used to describe behaviour of malware
signatures A (Fig. 1), B (Fig. 2), C (Fig. 3) and D (Fig. 4) as follows:

pA = (10, 2, 4, 1, 0, 0, 3, 3, 3, 0, 0, 4)
VA = ∅ (3)
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pB = (10, 0, 4, 4, 0, 0, 3, vl1(1), 0, vl2(1), 0, vl2(2))
VB = {v1

1 , v
2
1 , v

1
2 , v

2
2 , v

3
2}

v1
1 = (3) v2

1 = (2) v1
2 = (4, 4) v2

2 = (3, 3) v3
2 = (2, 2)

(4)

pC = (vl1(1), 2, 4, 1, 0, 0, 3, vl1(2), vl1(3), 0, 0, vl1(4))
VC = {v1

1 , v
2
1 , v

3
1}

v1
1 = (11, 3, 3, 4) v2

1 = (12, 8, 6, 7) v3
1 = (12, 8, 6, 5)

(5)

pD = (vl1(1), 3, 8, 0, 0, 0, 10, 13, 1, 2, 0, 2)
VD = {v1

1 , v
2
1 , v

3
1 , v

4
1}

v1
1 = (22) v2

1 = (21) v3
1 = (18) v4

1 = (16)
(6)

When variable values for example in behavioural pattern pC are substituted,
in the first variation of substitution (l = 1) the first variable vl1(1) from the pat-
tern pC is substituted by the first member (number in parentheses) of quadruple
v1
1 ∈ VC , i.e. the variable vl1(1) is substituted by the value 11. The second vari-

able v1
1(2) is substituted by the second member of quadruple v1

1 , etc., until the
last variable in the pattern is substituted. The pattern pC after the substitution
with the first variation will be as follows:

pC = (11, 2, 4, 1, 0, 0, 3, 3, 3, 0, 0, 4)

In the second round of substitution (l = 2), variables in the pattern will be
substituted by the members of quadruple v2

1 :

pC = (12, 2, 4, 1, 0, 0, 3, 8, 6, 0, 0, 7),

and analogously for the last variation of substitution (l = 3) we use v3
1 :

pC = (12, 2, 4, 1, 0, 0, 3, 8, 6, 0, 0, 5).

Three variants of behavioural pattern pC describe which specific action
occurred how many times in malicious samples detected by signature internally
labelled as C. Formulas 1 and 2 can be employed to describe characteristic behav-
iour of any malicious signature. However, high numbers of independent groups of
related behaviour denoted by k and numbers of variants for the particular group
denoted by l lessen accuracy of the behavioural pattern, since k × l variants of
behavioural pattern come into consideration.

4 Discussion

Number of samples which corresponded to one malware signature varied greatly.
While there were signatures with hundreds or thousands of samples, other signa-
tures had tens or even less than 10 representatives. As a consequence, behavioural
patterns which we discovered among 34 099 samples are not equivalent in rele-
vance. For further employment of patterns we suggest that a pattern relevance
evaluation system should be designed. Alongside number of samples involved in
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formation of behavioural pattern also structure of the pattern needs to be con-
sidered. Types of behaviour which exhibit variability among samples decrease
exactness of the pattern. Certain repetitions in variability are better than com-
pletely random variability and they are possible to delineate, even if it means
increase in number of pattern’s corresponding variants.

The problem that may potentially arise is that malware writers start to
randomize number of performed actions in order to avoid the pattern - a variant
of dead-code insertion - “dead-action insertion”, e.g. creating empty or unused
files just to perform different amount of file actions. We hope that similarly as
dead-code insertion is detectable, also “dead-action insertion” would be possible
to cope with, but it would probably require engaging additional information, e.g.
purpose and usage of created files later in program execution.

Precision of presented behavioural patterns could be improved by combining
dynamic analysis with static analysis. It is possible to figure out which actions
can be potentially executed in the program by statically analysing its executable
code. These techniques are currently well developed and also address code obfus-
cation, e.g. [13]. However, while using data from online analytic service, we can
not influence how these data are obtained. Companies providing their analytic
engines to the service also do not disclose which techniques they employ - it is a
part of their know-how.

5 Conclusion

We believe that building malware behavioural models on patterns of program’s
executable code is a fast and perhaps simpler solution. The problem of malicious
code obfuscation and mutation on the level of code is however a significant com-
plication which, in the long term, may thwart reliability of detection techniques
which are tied with program’s code. We assume that we need to seek malware
definitions and models, which are not bound to specific executable code patterns
but are more abstract, so that they withstand code mutation and obfuscation.
Despite Bailey’s et al. scepticism about system calls [2], we do not exclude such
information from our future considerations about malware models, if research
proves they are required. Since not all malware samples that we analysed show
behaviour with respect to some detectable pattern, it is most likely that we will
analyse more details of behaviour, perhaps even on the level of system calls.

Behavioural patterns that we discovered are not yet suitable as malware
behavioural signature but in the future they probably will form a part of such
signatures. As it turned out, our approach to behaviour analysis is relevant
for distinguishing malicious infiltrations. We encourage malware researchers to
consider behavioural patterns presented here in their experiments and share their
results with research community.

Acknowledgments. This work has been supported by the Slovak Research and
Development Agency under the contract No. APVV-15-0055, and Grant No. FEI-2015-
18: Coalgebraic models of component systems.
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Abstract. AErlang is an extension of the Erlang programming language
which is enriched with attribute-based communication. In AErlang, the
Erlang send and receive constructs are extended to permit partner selec-
tion by relying on predicates over set of attributes. AErlang avoids the
limitations of the Erlang point-to-point communication making it possi-
ble to model some of the sophisticated interaction features often observed
in modern systems, such as anonymity and adaptation. By using our pro-
totype extension, we show how the extended communication pattern can
capture non-trivial process interaction in a natural and intuitive way. We
also sketch a modelling technique aimed at automatically verifying AEr-
lang systems, and discuss how it can be used to check some key properties
of the considered case study.

1 Introduction

Building distributed systems where large amounts of components interact
according to sophisticated mechanisms is challenging [1]. Functional program-
ming seems to address the size complexity of such systems, primarily by virtue of
its great modularisability, which in turn promises to boost development efficiency
and cut down maintenance efforts [2,3]. In addition, appropriate development
frameworks based on functional programming may offer extra features and thus
allow modelling richer classes of systems.

Erlang is a concurrent functional programming language originally designed
for building telecommunication systems [4] and successfully adapted to broader
contexts following its open source release. In particular, due to its native sup-
port for concurrency and distribution [5], and its lightweight concurrency model,
Erlang is a good candidate language for building very large distributed sys-
tems [6]. The Erlang point-to-point interprocess communication model, how-
ever, turns out to be too rigid and not expressive enough to render some of the
most increasingly often observed interaction features, including anonymity and
adaptation.

Recently, attribute-based communication has been proposed for modelling
complex interactions in distributed systems so to lift many of the limitations of
point-to-point communication [7]. Communication no longer takes place between
pairs of entities according to their identities, but between groups of them, only
c© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 485–497, 2017.
DOI: 10.1007/978-3-319-51963-0 38
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considering among their features the ones that are visible to the rest of the
system: their attributes. These typically encode characteristics that depend on
the problem domain and that are relevant with respect to the communication
pattern, local behaviour or system-level behaviour of interest. Predicate-based
send and receive communication primitives then can use logic expressions over
attributes, i.e., predicates, to dynamically select at interaction time the groups
of communicating entities.

To investigate the full potential of the new communication paradigm, and
more practically to make it possible to render more complex interaction, our first
effort has been devoted to extend Erlang with attribute-based communication
in our AErlang prototype [8].

In this paper, as a further step towards the same direction, we use our proto-
type extension to show how the extended communication primitives can indeed
capture non-trivial process interaction in a natural and intuitive way. We adopt
as a case study a classical algorithm that uses traditional component identifica-
tion to solve a well-known matching problem. We then use AErlang to extend the
traditional algorithm to two different attribute-based variants. The first variant
provides anonymity, and the other hints at adaptive behaviour. Additionally, we
argue that there may be further benefits when reasoning about system proper-
ties. We sketch a modelling technique aimed at automatically verifying AErlang
systems, and discuss how it can be used to check some key properties of the
considered programs.

The paper is organised as follows. We briefly overview AErlang in Sect. 2.
We introduce the case study and present the two variants in Sect. 3, and verify
some properties in Sect. 4. We conclude with related work and future research
directions.

2 Attribute-Based Erlang

AErlang [8] instantiates attribute-based communication (AbC) [7] on top of the
Erlang programming language, by extending its standard communication primi-
tives (send and receive) to the corresponding attribute-based versions. Our proto-
type currently implements attribute-based send and receive along with environ-
ment handling, predicate declaration and evaluation. This allows programmers
to write Erlang programs with the capability of attribute-based communication
in an intuitive and natural way. In the following we briefly overview AErlang
and its features, more details are provided in [8].

Processes, Attributes, and Predicates. AErlang processes are Erlang processes
equipped with attribute environments. The attribute environment of a process
is represented as a list of pairs, i.e., [{a1,V1},{a2,V2},...], where ai is an
Erlang atom denoting the attribute name and Vi is the corresponding value whose
type is an Erlang term. Predicate expressions are represented as Erlang strings.
Predicate terms can be attribute names, references to attribute values, constants
or variables. A basic predicate is a comparison between two terms. Compound
predicates are constructed from simpler ones using logical connectives.
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Interface. The basic functionalities of AErlang are shown in Fig. 1. A top-
level process starts AErlang by invoking the start function, which initializes
our message-passing environment for attribute-based communication. Parame-
ter Mode specifies the low-level message dispatching policy, and is essentially
used to trade off between efficiency and reliability. The available policies (i.e.,
broadcast, pushing, and pulling) are explained later.

Fig. 1. AErlang interface.

To communicate by means of predicates, Erlang processes need to register to
AErlang by invoking the register function, which takes as input the identifier
of the Erlang process and its attribute environment. Registered processes can
handle their own local environments by using functions getAtts and setAtts.
A process can leave the attribute-based message-passing environment by calling
function unregister. After unregistering, the process is no longer able to use
attribute-based send and receive.

Processes exchange messages by using attribute-based send and receive. Dif-
ferently from standard Erlang, in these constructs the source and destination
process identifiers are replaced by predicates. The extended send primitive has
the effect of sending a given message to all registered processes whose attributes
satisfy the given predicate. On the other hand, attribute-based receive is used to
receive a message from any sending process, provided that the message and the
sender’s attributes satisfy the predicate associated with the receive command. It
is worth mentioning that this pair of communication primitives should be used
at both sender and receiver sides to make the interaction possible.

Prototype Implementation. The design of AErlang follows a centralized archi-
tecture which consists of two main components: a process registry that stores
process details, such as the process identifier and the current status, and a mes-
sage broker that undertakes message dispatching.

As mentioned above, the behaviour of the message broker changes according
to the dispatching policy selected when initializing AErlang: (i) broadcast, i.e.,
the broker broadcasts all the predicate-based messages from senders, then they
are all filtered by the receiver according to sending and receiving predicates; (ii)
pushing, i.e., the broker checks the sending predicates and forwards messages
to selected receivers that will use the receiving predicates to decide whether to
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accept any incoming message; (iii) pulling, i.e., the broker checks the receiv-
ing predicates and forwards messages only from selected senders; the forwarded
messages are then filtered by the receiver according to the sending predicates.
Additional details can be found in [8].

In practice, the process registry is stored using an ETS (Erlang built-in term
storage)1 table and the message broker is a gen server 2 process waiting for
interactions from attribute-based communication primitives. To support these
user-friendly constructs, we have used parse transform 3 to translate the new
syntax into valid Erlang code before it is actually checked by the compiler. The
resulting messaging platform transparently mediates the communication, and at
the same time guarantees seamless integration of attribute-based communication
with common Erlang development practice.

3 Case Study

We now show how to use AErlang to implement a well-known algorithm that
solves a classical matching problem, namely the Stable Marriage Problem (SMP)
[9]. The problem is to find a matching between two disjoint equally-sized sets
of men and women, where each person has a strictly ordered preference list of
all members of the opposite sex. A matching is a one-to-one assignment between
the men and the women. A matching is said to be stable if there exists no pair
(m,w) such that man m prefers woman w to his matched partner and vice versa.

An algorithm to find a stable matching was proposed in [9] and can be
informally summarized as follows. Each man actively proposes to the favourite
woman extracted from his list of preferences; whenever a man is rejected, he
tries again with the next woman in the list. Each woman waits for incoming
proposals. If she is free then she becomes engaged, otherwise she compares the
proposer with her current partner according to her preference list and rejects
the least favored man. The algorithm terminates when there is no active man.

In the rest of the section, we present three algorithms to deal with stable
marriage. The first one (Fig. 2) implements a classical solution where processes
use their identity to communicate. A first extension replaces process identifiers
with attributes to provide anonymity (non-adaptive program, Fig. 3). Finally,
we introduce predicate lists to capture adaptive behaviour (Fig. 4).

Our AErlang implementation for the classical algorithm is shown in Fig. 2 (an
AbC encoding can be found in [10]). Men and women are interacting processes
associated with their own attributes: identifier, preference list, and current part-
ner. Those processes are spawned by a top-level process that initializes AErlang.
Their registration is done inside init functions. A simple initialization (for a
problem size of four men and four women) is reported hereafter:

1 http://erlang.org/doc/man/ets.html.
2 http://erlang.org/doc/man/gen server.html.
3 http://erlang.org/doc/man/erl id trans.html.

http://erlang.org/doc/man/ets.html
http://erlang.org/doc/man/gen_server.html
http://erlang.org/doc/man/erl_id_trans.html


AErlang at Work 489

smp() ->
aerl:start(pushing),

spawn(fun() -> man_init([{id,m1},{prefs,[w1,w2,w3,w4]},{partner,null}]) end),
%% spawn other three men ...

spawn(fun() -> woman_init([{id,w1},{prefs,[m2,m3,m1,m4]},{partner,null}]) end),
%% spawn other three women...

end.

where {id,. . .} is the identifier of men or women, {prefs,[. . . ]} is the pref-
erence list, {partner,null} is the current partner, initially nobody. Functions
man init and woman init register the spawned processes to AErlang; and call
functions man and woman, respectively. The code for man and woman is given in
Fig. 2. Process environments are handled by AErlang getter and setter functions
(lines 2, 3, 13, 17). A message tagged with propose means that the man is
proposing to the woman, while a no message means that the woman is reject-
ing a man. A woman takes her decision by using function bof to compare two
men. This function always returns true if parameter Part is an atom null, in
fact it means she was not engaged yet. A man specifies the sending predicate as
"id = this.partner" (line 4), and this has the effect of sending a message to
processes whose id equals to the value of attribute partner of the man. In the
woman code, we see that predicates can be over variables (line 20). This example
also shows two different uses of (receiving) predicates: (i) at line 10, a woman
wishing to consider any proposal uses "tt" as unrestricted receiving predicate;
(ii) at line 5, the predicate is instead over the message content ”$X = no”.

Fig. 2. Classical stable marriage in AErlang.

The program presented in Fig. 2 uses attributes but in essence the communi-
cation is still point-to-point because the sending predicates always map to unique
receivers. In the following we propose a problem variant where partners are not
selected according to preference lists, but by considering the characteristics that
women and men mutually expect to find in their partners.

Intuitively, we use attributes to encode the characteristics of women and
men (e.g., the hair color), and then introduce predicates over those attributes to
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express the partner selection preferences. For example, a man who is not inter-
ested in meeting dark-haired women might want to advertise his own interests
using the predicate hair =/= dark, which has the effect of sending a proposal
to all women whose hair is not dark.

Note that the increased expressiveness due to the use of predicates, still
includes the classical case based on preference lists, because these can always
be expressed by appropriate attributes and predicates. Hence, in general, the
attribute-based version can be cast into many variants of the stable marriage
problem which have been intensively studied in the literature [11].

It is worth to mention that men have no clue as to whether anybody will
actually receive their proposals, and multiple women may receive the same pro-
posal, a robust implementation for this algorithm would require that partners
use extra acknowledge messages [12]. In this paper we do not consider these
issues since our focus is to investigate the advantages of using attributes-based
communication in capturing non-trivial process interaction.

Anonymity. A first version of our extended algorithm is explained hereafter:

1. A man sends a proposal message using a predicate to express his own pref-
erences. The message includes the man’s identifier and characteristics. If he
receives a yes message, he becomes engaged, otherwise he remains single;

2. A woman that receives a proposal compares the characteristics of her current
partner against the proposer, and chooses the man who better meets her
expectations by sending him a yes, and a no to the other man.

Figure 3 shows the implementation of this extended version, where the prefer-
ences of men are used as sending predicates (lines 2–4), while the preferences
of women are used to filter out uninteresting proposals by mean of function
bof (lines 19, 23). An interesting property of this version is that it provides
anonymity, in fact women and men have no knowledge at all about the presence
of others, and therefore they do not use identifiers to explicitly specify their
communication targets.

Fig. 3. SMP - non-adaptive version.
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Interestingly, executing this program may result in some people left
unmatched when the predicates of men are particularly demanding. This hap-
pens for example when a number of men are interested in a smaller subset of
women, and hence, some of the men will inevitably be rejected. For the same
reason, some women may not receive any proposal.

Let us consider a specific instance of size four, where women and men have the
attributes and preferences shown in Table 1. In this dataset, men m1 and m4 both
compete for woman w1, and it turns out that eventually m1 gets rejected since w1
prefers m4. Meanwhile, w2 remains single because her attributes do not satisfy
any men’s predicates. To handle these situations, we discuss how to extend the
program in Fig. 3 so that men can progressively weaken their expectations upon
being refused, thus increasing their chances of finding a partner. This leads to
formulate an adaptive behaviour at the predicate level, as illustrated below.

Table 1. Attributes and predicates for women (left) and men (right).

Adaptive Behaviour. To achieve this behaviour, we introduce predicate lists for
men. Given a preference predicate for a man m, the corresponding predicate list
is iteratively constructed as follows. The first predicate fully reflects the desire of
m in interacting with his favourite women, as before. Subsequent predicates are
created by excluding from the previous predicate each of the favourite attributes
one by one, according to a fixed order of preferences on the attributes. The last

Fig. 4. SMP - adaptive behaviour version.
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predicate may not include any preference, so to guarantee that the man can
eventually have the chance to interact with at least one woman. For example,
assuming that a man gives more importance to the colour of the eyes rather
than hair, the predicate list for this man would be: ‘eyes=amber and hair=red’,
‘eyes=amber’, ‘hair=red’, ‘gender=w’, where gender is another attribute repre-
senting gender of people which is not shown in Table 1.

Figure 4 shows the AErlang program that uses predicate lists. The behaviour
of women is unchanged, while the behaviour of men is slightly altered: a man
extracts a predicate from the top of his predicate list, and sends a proposal mes-
sage using this predicate. After receiving a rejection, the man adds the identifier
of the woman who rejected him to a blacklist. He then proceeds with the next
predicate and excludes all women in the blacklist. Before a send (line 6), the
man’s predicate is combined with a predicate for excluding all the women who
rejected him in the past. Refusal is initially an empty string, and is updated
when the man receives a no message by using function blacklist (lines 15, 19).

4 Formal Verification of the Case Study

Attribute-based communication can potentially offer further benefits when rea-
soning about system properties. To support this claim, as a proof-of-concept,
we sketch a technique that from the two programs seen in the previous section
(Figs. 3 and 4) generates models to be formally and automatically analyzed.

System Modelling. Our verification approach consists in modelling AErlang
processes (including a standalone process for the message broker) as UML state
machines, and then using the UMC verification framework [13] for property
checking. UMC is particularly suited for our purpose because it uses doubly-
labelled transition systems on which it is possible to express state- as well as
event-based properties to model components attributes and actions4.

Message Broker. The message broker is modelled by class MessageBroker
(Fig. 5). It stores attributes of processes in vector attributes, and their names
in vector components. There is only one possible transition that loops back to
the initial state, to model the fact that the message broker is ready to accept
incoming signals at any time. This transition is triggered by the send(pred,msg)
signal by class objects corresponding to other AErlang processes, in our case they
are spawned from man and woman functions. A receive signal is then triggered
for each object whose attribute environment satisfies predicate pred, if any. For
simplicity, we assume that pred is a vector [[a1, v1], . . . ,[an,vn]] representing
the predicate a1 = v1 and . . . and an = vn.

4 UMC’s project homepage: http://fmt.isti.cnr.it/umc.

http://fmt.isti.cnr.it/umc
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Fig. 5. UMC class for component MessageBroker

Women and Men. For each function woman and man (as seen in Fig. 4) we create
a UMC class (Fig. 6) whose variables are the process attributes along with a class
instance of the message broker (for invoking send). Each class has a receive
signal to be called by the message broker. We model attribute-based send with
transitions without trigger signals, and gather the resulting actions within this
transition. The transition for an attribute-based receive is triggered by signal
receive. The receive(msg) signal is used to receive message msg.

The behaviour of a man is modelled by three transitions. The first one has
no trigger signals but is guarded by the non-emptiness of plist. The other two
are triggered by signal receive, that returns the message if the given condition
over its first element holds. With these transitions, we model exactly the same
basic actions that a man performs in the corresponding AErlang program.

Fig. 6. UMC classes for women and men.

The behaviour of a woman is represented by a single transition, triggered by
the message broker forwarding a propose message. Again, the actions within this
transition mimics the initial program. For conciseness we omit the bof function
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that compares two men. Interested readers can find implementation details of
running AErlang programs and their encoding in the online archive5.

Property Checking. We are now ready to check some key properties of our
two programs (Figs. 3 and 4) with respect to the dataset shown in Table 1:

– “at the end of the execution, everybody is engaged” (P1)
– “at the end of the execution, the matching is stable” (P2).

To check whether P1 holds we add some abstraction rules to our model:
Abstractions {

State w1.partner=$1 -> w1($1) State m1.partner=$1 -> m1($1)
... ...

}

which have the effect of extracting relevant information about the partners into
observable system state labels. Property P1 can then be expressed by the for-
mula:

AF AG (not w1(null) and not w2(null) and ... and not m4(null))

which amounts to saying that from the initial state, all the execution paths
eventually lead to the state where all the observed values of partner are non-
null.

Checking P2 is equivalent to check if the matching contains blocking pairs. We
introduce an extra transition for class Woman to communicate partner values to
the MessageBroker class. Once every woman has a partner, the MessageBroker
class performs the stability check. In our case, a man m is considered to prefer
a woman w to another woman w’ if the predicate satisfying attributes of w
appears before the predicate satisfying attributes of w’ in the predicate list of m.
A woman w prefers a man m to another man m’ if the attributes of m are closer to
w preferences than the attributes of m’ (see Sect. 3). A Boolean variable stable
is used to store the result of this check. Similar to the previous property, we
introduce an abstraction rule to observe the value of stable. Property P2 can
then be expressed as:

AF AG (not w1(null) and ... and not m4(null) and stable(true)).

The results of the verification of the two properties are summarised in Table 2.
P1 and P2 turn out to be true for the adaptive program (Fig. 4), and false for
the non-adaptive one (Fig. 3). Certainly, these results prove an interesting fact:
if the men are willing to relax their expectations, nobody stays single in the end.

5 https://github.com/ArBITRAL/sofsem-code/blob/master/archive.zip.

https://github.com/ArBITRAL/sofsem-code/blob/master/archive.zip
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Table 2. Formal verification results.

Program Observed final state labels P1 P2

Non-adaptive version m1(null), m2(4), m3(3), m4(1), w1(4),
w2(null), w3(3), w4(2), stable(false)

False False

Adaptive version m1(2), m2(4), m3(3), m4(1), w1(4), w2(1),
w3(3), w4(2), stable(true)

True True

5 Related Work

The AbC calculus has already been instantiated on an imperative programming
language. AbaCus [10] is a run-time environment supporting AbC communi-
cation primitives in Java language. AbaCus relies on a message forwarder for
message dispatching in a broadcast manner. Our prototype, instead, builds on
a distributed, concurrent, and functional language and different message dis-
patching policies are made available aiming at trading off between efficiency and
reliability. Currently, we do not have any evaluation for this trade off; it will be
the subject of investigations in the near future.

Existing tools to verify Erlang code [14,15] could be used for exhaustive
validation of AErlang implementations. Etomcrl [16] translates Erlang programs
into process algebraic specifications and applies a third-party model checker for
checking programs properties. McErlang [17] is a model checker written in Erlang
that reimplemented a part of Erlang runtime system for facilitating verification.
It supports a large subset of Erlang including distribution and fault-tolerance.
Soter [15] can be used for infinite-state model checking for a variant of Core
Erlang. For AErlang verification, our choice has been to rely on UMC because it
permits us to naturally obtain system models capturing the behaviour of AErlang
programs and to carry out formal analysis at this level. In fact, UML state
machines are particularly suitable to model AbC components and the formal
model based on doubly labelled transition systems (L2TS) and on the ACTL
logic of UMC permit naturally expressing properties of AbC programs.

6 Conclusion and Future Work

In this paper we have reported a practical application of our AErlang proto-
type, that enables attribute-based communication in Erlang. Although it only
implements a restricted set of primitives, we have demonstrated the usefulness
of our prototype in implementing a traditional solution for a well-known prob-
lem. We have also shown how natural it is to have two alternative, more flexible,
solutions that guarantee anonymity and adaptivity. Remarkably, for both new
solutions the key features were conveniently captured at the level of predicates,
while keeping the changes to other parts of the code essentially negligible.

We have argued that the benefits of attribute-based communication may have
a potential impact when reasoning about system properties. To support this
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intuition we have shown how to exploit a model checker for verifying some prop-
erties of the two flexible attribute-based program variants. We have exploited
the tight correlation between UML state machines and attribute-based com-
munication systems. In the near future, we plan to generalise and automate
the translation from the AbC syntax (thus not necessarily only from AErlang)
to the UMC specification language, in order to further investigate the advan-
tages of attributes from a formal verification perspective to a deeper extent. In
particular, judiciously combining attributes and predicates with doubly-labelled
transition systems may help pruning the state space and extending the verifica-
tion of other properties. Another research direction will aim at understanding
whether attributes can be exploited to enable the joint verification of functional
and non-functional properties (such as performance, reliability, security).

Acknowledgments. We thank Franco Mazzanti from ISTI-CNR, Pisa for provid-
ing valuable insights on modelling in UML and for supporting us in using the UMC
framework.
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Abstract. Independent software vendors (ISVs) are often faced with the need to
migrate their software products as software-as-a-service (SaaS) solutions to the cloud.
We document and evaluate four case studies by considering various factors that the
respective companies need to consider in a cloud migration process. We look at
migration project as a software re-engineering activity, involving project planning,
cloud architecture design and architecture transformation. Specifically for software
vendors, a cloud migration opens opportunities such as the possibility of modernising
their software through re-engineering their product architecture. However, small and
mid-size enterprises(SMEs)often do not have the required cloud expertise to plan and
implement a cloud migration.

While many experience reports exist, there is new impetus in the domain resulting
from the drive towards cloud-native architecture and other developments particularly
in the cloud PaaS space. This allows software modernisation as part of a wider soft‐
ware evolution strategy. We present such a modernising architecture evolution
process here. While there is a higher initial cost, the benefits of cloud-native architec‐
tures turn out to be advantageous in the long run.

Keywords: Cloud migration · Architecture evolution · Software modernisation
· Cost models · Cloud native · ISV · SME

1 Introduction

Migration to the cloud is done by Independent Software Vendors (ISVs) either because they
see advantages of providing their products as Software-as-a-Service solutions through the
cloud or are forced through change in customer demand and requirements to do so. The
problems for companies aiming to migrate to the cloud is that it is often difficult to scope and
determine the costs of a migration project [2] because of

• misconceptions about benefits and risks of cloud-based provisioning of software,
• unclear expectations resulting from different cloud service and deployment models.

From a software engineering perspective, which is at the core of the ISV’s business,
problems emerge. What of the existing architecture is migratable? What is the extent of re-
engineering necessary to make migration work? What target architecture is most benefi‐
cial? Specifically for software vendors, a cloud migration opens opportunities such as the
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possibility of modernising their product through re-engineering their legacy software archi‐
tecture through the replacement of existing code/architecture, but also of supporting tools/
services, and development processes. Sample concerns include webification or the use of
software product lines for bespoke products. Re-engineering might also simply be neces‐
sary due to non-suitable licenses for some components or the need to upgrade due to inter‐
operability concerns. SMEs, even though technology providers, often do not have the
required cloud expertise to plan and implement a migration.

Many experience reports investigate cloud benefits and risks for companies. Only a few
look at the software vendor perspective, where not only the existing on-premise IT system
needs to be moved, but where in addition

• Development and continuous maintenance and re-engineering in the cloud needs to
be considered as this is part of the core business for software developers.

• the costing needs to consider the costs for deploying software in the cloud, but also to
develop a monetisation model that reconciles these costs with income to be generated
from an entirely different revenue model for the software product.

Moreover, specifically in the cloud PaaS space there is a lot of activity that merits a fresh
look at software development and provisioning in and through the cloud. This includes the
trend towards cloud-native architectures [4] as a new architectural style suitable for the cloud
that help to better control quality and costs [23].

We present an incremental, pattern-based migration process that includes early experi‐
mentation and performance testing [21]. We analysefour case studies by considering various
factors that the respective companies need to consider in this context. These case studies are
from different sectors, including banking, document management, food and insurances. We
have been involved in the migrations as consultants in various stages from initial feasibility
analysis to full multi-stage system migration. The trend towards cloud-native architectures
is essentially a componentisation of the application architecture in terms of cloud infrastruc‐
ture and platform services such as storage (infrastructure) or databases and integrationware
(platform). We illustratehow re-engineering towards cloud-native architectures addresses‐
technical ISV concerns, but also costing to estimate and manage expenses for a cloud-
deployed solution.

We start with an introduction of a process model towards a cloud-native architecture in
Sect. 2. We then introduce and discuss the use cases in Sect. 3. In Sect. 4, we look at exper‐
imentation to determine the scope of the migration and re-engineering project and in Sect. 5,
we note observations, before discussing related work and concluding in Sects. 6 and 7.

2 Migration Framework–Towards Cloud-Native Architectures

As part of our studies, we have surveyed several consultants and solution providers in the
cloud platform (PaaS) space to define a common PaaS-specific migration process [6].
Figure 1 shows this process tailored to ISV needs. Central in this process are software archi‐
tecture concerns (such as stateless architectures) and re-engineering to modernise software
(driven by different reasons as discussed above).
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Fig. 1. PaaS Migration Process with four main Stages and individual Tasks.

For the architectural migration, we use a pattern-based approach using individual migra‐
tion patterns to define the migration process in several steps. We use a catalogue of migra‐
tion patterns that describe simple architectural transformations for specific scenarios (e.g.,
for simple cloudification in an IaaS solution). Each pattern defines a re-engineering step [6].
The 15 patterns can be broadly categorized into: (i) relocations of a single component into
the cloud, (ii) replacements of a component by a cloud-native service, (iii) distribution of
several components across several cloud service providers.

Many patterns directly address the introduction of a cloud-native service [22]. A sample
pattern is the Multi-cloud Relocation (Fig. 2), specified as follows:

• Definition: A component re-hosted (or relocated) on a cloud platform is enhanced by
using the environmental services of the other cloud platforms.

• Problem: Enhancing the availability of an application without the significant archi‐
tecture change, and without incurring capital expenditure for on-premise hardware.

• Solution: Leverage cloud platform environment services to improve availability, e.g.,
live migration from existing platform to the target in case of service outage.

• Benefits: As component re-hosting in multiple cloud platforms and improve availa‐
bility and avoid vendor lock-in.

• Risks: Cloud providers do not provide the necessary services to enable application
to run in multiple cloud platforms without re-architecting or rewriting the code.

The combination of patterns defines a staged process as a migration path which in the
individual steps is driven by selection criteria (e.g., time to market or introduction of new
capabilities) [18, 19]. Migration paths are sequential compositions of these patterns on a
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source architecture [17]. A cloud-native architecture as the target of this stepwise migration
is build up from individual services provided in the cloud, such as the cloud services indi‐
cated in the pattern above. Step-wise migration into cloud could happen as follows, if a fully
cloud-native solution is aimed at:

• The on-premise system can be packaged into VMs as a first non-native solution, i.e.,
license fees occur as usual. A business problem is scaling out, i.e. adding more VMs,
means adding more license fees for every replicated component. A technical problem is
copies of data storage that are not in sync if multiple VMs are in use.

• In order to address the problems, we can refactor and extract storage, i.e. use data-
as-a-service. This alleviates the technical problem of different copies of data.

• Another step is to package the whole DBMS into single machine, which alleviates
the licence fee issue for DBMS and simplifies data management. However, the busi‐
ness problem that other licence fees still occur multiple times remains.

• The final step(s) are then to fully move to PaaS services (e.g., Azure SQL server), which
alleviates as far as possible licensing fees issue.

This results in a so-called cloud-native architecture, which is generally characterised as
scalable and elastic due to cloud service support such as scaling engines, clusterable and
multi-tenant due to cloud virtualization principles being applied, and pay-per-use and self-
service as two other cloud principles. This has better scalability characteristics as platform
tools can be used to manage performance. It also allows better licensing and cost manage‐
ment. Thus, this addresses both technical and business problems.

3 Use Cases – Documentation of Four ISV Cloud Migrations

3.1 Description Framework

We document the use cases in two ways. Firstly, in a pre-migration view looking from an
analytical, pre-migration perspective at the companies, following the concerns from Table 1.
Table 1 provides a list of concerns that should be elicited prior to migration [1]. Then, for the

Fig. 2. Multi-Cloud Relocation
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migration execution, we report on the main actual migration stages that follows largely the
process outlined in Fig. 1.

Table 1. Migration Concerns

Concern Concern of the Respective Activity
Setting/Application Description of the sector &classification of the application in

question
Expectation/Driver The drivers and a distinction of migration benefits and expectations

that potential users are aware of (their vision)
Ignorance Factors that have been overlooked (their ‘ignorance’)
Concerns Specific problems/constraints that need to be addressed

The migration execution follows the process of Fig. 1, with the actual architecture
migration follows the migration path defined through the pattern application.

3.2 Pre-migration Analysis

Following Table 1, we summarise the case studies as in Table 2. The factors already indi‐
cate a need for re-engineering. A SaaS product requires cloud metering services to be added
to monitor consumption. Internationalisation is typically part of an expansion strategy that
needs to be supported by scalability. Cost as a concern requires equally individually moni‐
torable and adaptable services.

Table 2. Use Cases – Pre-migration categorisation of factors

UC1 – Banking UC2 – Insurance UC3 – Food UC4 – Doc.
Managemen

Setting and
Application

Sector: Financial
services
Application:
comprehensive
(ATM, Internet
banking)

Sector: Insurance
product
Application:
multiple products
with policy
database, CRM
and telephony
(call centre)
support

Sector: Food.
Application:
Sector-specific
ERP system

Sector: Business
Solution
Application:
Document
processing

Expectation
Drivers

Cloudification,
Internationalisati
on, SaaS product

Internationalisati
on, Scalability

Internationalisati
on, SaaS product

SaaS product

Concerns Data location,
Vendor lock-in

Data location Data location Data location

Ignorance Implications of
different layers

Cost Cost Implications of
different layers

As a staged migration process, we carried out the following tasks as described in
Table 3, following the outline from the process presented in Fig. 1.
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Table 3. Migration Tasks.

UC1
Banking

UC2
Insurance

UC3
Food

UC4 – Doc.
Management

Notes on
Architecture

Technology
Review

Available
technologies and
solutions for
cloud-based
transaction, card
and customer
storage and
processing

Available
technologies and
solutions for
cloud-based
insurance storage
and processing

Available
technologies and
solutions for
cloud-based ERP
solutions

Network concerns
for high-speed up/
download,
services for in-
cloud document
processing

Components such
as storage, high-
performant
networks, ERP
systems or
transaction
processing
indicate re-
engineering focus

Business analysis Investigate
security and
monitoring/
auditing options
for cloud-based
banking
processing

Investigate
security and
monitoring/
auditing options
for cloud-based
insurance
processing (focus
data integrity and
location as
products offered
cross-boarder)

Investigate legal
(rather than
linguistic)
localisation
requirements
regarding the
deployment (the
ERP system is
provided to
customers across
Europe, but also
China)

Business analysis
to investigate
security/data
privacy
regulations

Indicates the
benefits of cloud-
native
architectures

Migration &
Architecture

Focus on
feasibility and
efficacy of
process-aware
migration of
banking admin
and operations
management
systems into
scalable cloud
architecture

Focus
onimplementing
business process-
aware migration
of insurance
admin &
operations
management
(policy, accounts,
CRM, telephony)
into distributed
cloud architecture

Focus on
feasibility and
efficacy of
process-aware
migration of ERP
system features
(15 core modules)
into scalable cloud
architecture

Development of a
2-staged
incremental
migration plan
(IaaS and PaaS) to
migrate a
document
scanning, storage
and processing to
scalable cloud
architectures

Defines the scope
of a re-
engineering
process towards a
cloud-native
architecture

Test& Evaluation Evaluate
scalability of
cloud-based
integrated
banking service
configurations

Evaluate
scalability of
distributed cloud-
based integrated
insurance service
configurations

Evaluate
scalability of
cloud-based
integrated ERP
service
configuration for
different markets

Testing of cloud-
specific
properties:
Scalability,
Performance,
Integration,
Security

Explains why a
cloud-native
architecture is
useful for
technical and cost
reasons

3.3 Migration and Architecture Case Study

We detail two activities from the ‘Migration and Architecture’ task for the Document
Management case study. This illustrates the re-engineering process in more detail.

The first decision was to consider the configuration and management of both IaaS
and PaaS solutions for the Document Image Processing system (DIP) using MS Azure
as the default platform. Both solutions were part of a stage plan to make a first virtualized
version quickly available and then re-engineer properly in a second phase. The creation
of a virtualised DIP system for deployment on a cloud IaaS solution thus preceded the
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componentisation at PaaS level. Here specifically storage, document processing compo‐
nents and integration with other services was considered. This is essentially a stepwise
architecture evolution towards a cloud-native architecture.

Securing all parts of the system in both IaaS and PaaS configuration is another task.
Data (document) protection and tenant isolation is a strong requirement, as are authentica‐
tion, authorization, backup and recovery management. These requirements need decisions
regarding a private cloud setting (for isolation) and the use of additional services for ID
management and backup/recovery. Our patterns allow this to be modelled. Security poli‐
cies need to be defined for the cloud and security mechanisms configured.

4 Experimentation for Migration, Testing and Evaluation

Experimentation plays a major role during the migration and architecture re-engineering to
address the Testing and Evaluation task. Experimentation of prototypes of the partly or fully
cloud-native re-engineered architectures is required to evaluate options in a realistic setting.
As for instance scalability was an important concern, driven by the business aim of the
companies to expand, at early stages we did feasibility tests to validate a proposed architec‐
ture [7]. A motivation for experimentation was also to carry out a cost-vs-performance
experiment, i.e., to consider sometimes different options and compare them technically, but
rank them under consideration of the costs they would create. In the introduction of cloud-
native architecture, we have already pointed out the importance of financial concerns (e.g.,
licences) in the re-engineering process.

A key question for ISVs is to validate a cloud-based business model with expenses and
revenues prior to fully embarking on a cloud-based architecture. There is always a trade-off
between the quality, e.g., performance of services in the cloud, the income they generate and
the cost that these incur.

In Fig. 3, storage services are compared in terms of performance and consumption
(which is essentially a cost metric). It allows to decide which cloud-native service to use from
the options considered in the test. What experimentation shows in general is:

• the difference between PaaS/IaaS/SaaS solutions (as consumer and provider)
• scalability of different target architecture options
• integration and interoperation problems
• how to structure and cost a staged migration (plan derivation)

Experimental feasibility and validation studies have played a key role in our migration
process to validate re-engineering options before fully implementing these. How to do
experimental feasibility studies is outlined here. We have defined source and possible target
architectures and have selected critical components that can be replaced by cloud-native
service, e.g. high volume data processing to test scalability of storage (DB) or communica‐
tions infrastructure to test integration/communications scalability.

This experimentation often results in a prototype evaluation of a partly cloud-native
cloud architecture. Rather than just cloudifying a system in a virtual machine, we often
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selected a component such as data storage and have experimented with different cloud-
native storage options, including for instance a mix of traditional RDBM and other table/
blob storage formats as we have done for the document management system.

Partial experimentation with cloud-native prototypes allows to consider a fully
cloud-native architecture to be discussed with realistic technical (e.g. scalability) and
cost assumptions (storage, access). Only realistic costs for cloud operation allow a
charging model for their own product to be developed and validated.

5 Observations

Surveys of the participating companies in the migration projects have revealed the following
expectations and uncertainties. The drivers to consider a migration are the following expect‐
ations of improvement in relation to [6]: time to market improvement, inclusion of new
capabilities, reduce operational cost, leverage investments, free up on-premise resources,
scalability to support expansion, integration and access. These depend much on the sector
and product type. The observations on clarifying concerns are essentially confirmed by all
use cases considered.

While there was a clear business case at a high level to consider a cloud-based SaaS
product, some problems emerged during the migration:

Fig. 3. Experimental results for storage component options (performance at the top and
consumption at the bottom)
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• Clarity of vision: Business reasons to go to cloud did exist, such as internationalisation
and improve company value (being in the cloud). Technical reasons to go to cloud that
accompany this were also clear (e.g., scalability to support expansion). Awareness of
general concerns (business and technical) and barriers did exist, such as data protection.
This was not always matched by full clarity about architectural options and possible cloud
monetisation models.

• Understanding of cloud (all have impact on architecture and process selection): Tech‐
nical concerns were understood, such as scalability or data protection as a requirement.
However, the difference between provisioning models and cloud layers and their impact
on the management effort at I/P/SaaS level in comparison. A possible vendor lock-in
resulting from some architectural decisions (basic virtualisation versus fully cloud-native
implementation) was not clear either. The business concern that was incompletely under‐
stood was the business model, i.e., the required revenue model change. In legal/gover‐
nance terms, awareness of data protection and location issues was there, but needed
further clarification of architectural impact of this.

Our solution to rectify the lack of understanding was a combination of experimen‐
tation as part of a migration:

• exploration and documentation of scenarios through the migration patterns
• experiments help to clarify cloud architecture and quality options
• experiments help to address business model misconceptions

Experiments help identifying architecture options and the costing of migrated software
solutions. The architecture/cost mapping can be summarised as follows in Fig. 4. Compo‐
nents can be scaled, but this has a direct cost for the provider. This can increase the quality
and can result in a higher cost for the user, depending on the pricing model used. More
demand (for quality services) need to be fed back into a scaling engine to adapt the compo‐
nent and its infrastructure accordingly.

Fig. 4. Architecture-Quality-Cost Dependencies

The use cases have differed only with respect to two concerns: firstly, data protection
requirements, which are stronger in the banking, insurance and financial services industry
due to legal constraints. There are also legal constraints in the food section. These result in
traceabilty requirements (answered through monitoring etc.) rather than data location deci‐
sions as for financial services.

Going for cloud-native has not been a goal for all use case companies from the outset.
Many seek initially a simple cloudification to obtain some crucial cloud benefits quickly,
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without being aware of or considering the long-term cost perspective. The software solu‐
tions under consideration (see Table 3) are all reasonable complex and possible optimisa‐
tions of their complex architectures would justify the cost for modernisation in the long-term
from a software maintenance perspective. In order to properly manage the new revenue
streams coming from the cloud-based delivery of the SaaS product against the expenses of
development and operation, a cloud-native solution has clear advantages due to better
control and more transparency of the actual costs.

The costs for running the software in the cloud (essentially the TCO Total Cost of
Ownershop) can be predicted through experimentation with prototypical migration of
central components. Based on this TCO estimation, a guide exist to analyse the economic
viability of the software product in conjunction with the development of suitable payment
models for the software product in question, be that pay-per-use, pay-per-user or another
licence-oriented payment model for the end user.

6 Related Work

Cloud migration methodologies exist – see [2, 20] for an overview of academic research. In
industry, many consultants and service providers also offer support. For IaaS migration,
with the existence of VM packaging standards such as OVF, some simplifying mecha‐
nisms exist that allow virtualised software to be easily migrated into and between clouds.
Case studies do exist here, such as Li et al.’s coverage e of a partial migration [16]. For the
SaaS space, many service providers offer tool support, e.g., data loaders that exist for
instance for many products in the CRM space.

Less clear is the solution in the platform (PaaS) space. Here, general strategies for soft‐
ware evolution and re-engineering apply [11]. Methodologies and tool support are provided
to determine the impact of changes, refactor code and analyse the semantic equivalence to
software before and after evolution.

Specific to the cloud is Son’s proposal for service selection [3] that takes resource effi‐
ciency into account, i.e., already considers a mix of performance and cost concerns. Gilia
[13] also addresses service selection in this context. However, as Arshad et al. [5] and also
Al-Roomi et al. [9] note, more attention needs to be paid to costing/pricing models for cloud
services [10]. Wang et al. [14] also look at pricing strategies for companies to operate a
sustainable business model in the cloud. Xiong et al. [7] have made this interlinkage clear
in their investigation of performance and cost trade-offs.

Menychtas et al. [12] suggest a model-driven approach to migration on-premise soft‐
ware to SaaS, but none of these specifically target cloud-native architectures at the PaaS
level as we have done here. We have also used case studies to empirically support the value
of cloud-nativeness in the cloud migration process. While we have considered SMEs in
general, Giardino et al. [15] have also noted the difficulties that many companies, in their
case start-ups, caused by technological uncertainty arising from new technology environ‐
ments.
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7 Conclusions

Independent software vendors (ISVs) are a specific group of cloud users that require a
deeper understanding of architecture and cost concerns. In the cloud, an IaaS or PaaS
deployed software product is made available as a SaaS solution to their customers. Particu‐
larly, for SMEs without cloud experience this knowledge does often not exist. For ISVs, the
re-engineering of their software product for the cloud has turned out a critical aspect. Two
important aspects here are:

• Cloud-native: More than for many in-house used cloud migrations, there is a need to
componentise the product properly and implement this as far as possible as a cloud-native
solution to enable an effective SaaS provisioning.

• Cost model: Cloud-native architecture allows to better control the costs for the
provided software and align this with the charging and billing model for their product.

While cloud-nativeness is at the core an architectural concern, the fact that cloud-native
makes cloud-based software more predictable in terms of licensing costs and also costs for
scalability makes the link to cost an absolutely crucial one. Our solution towards cloud-
natives is a structured migration process with two core components:

• A pattern-based approach to determine and analyse migration plans
• Early-stage experimentation as a means to address quality and cost considerations

The mapping between costs for developing and operating software in the cloud and
income generated from providing the same software to customers through the cloud remains
still a major challenge. Through experimentation with selected components, costs can be
estimated in relation to varying demands and targeted quality of service.

What we have demonstrated through the use cases is the usefulness of cloud-native
architectures for both quality considerations as well as cost calculation and management.
However, due to the widely varying charging mechanisms, the development of a generic
model remains an open challenge that we aim to address in the future.
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Abstract. Model comparison and clustering are important for deal-
ing with many models in data analysis and exploration, e.g. in domain
model recovery or model repository management. Particularly in struc-
tural models, information is captured not only in model elements (e.g. in
names and types) but also in the structural context, i.e. the relation of
one element to the others. Some approaches involve a large number of
models ignoring the structural context of model elements; others handle
very few (typically two) models applying sophisticated structural tech-
niques. In this paper we address both aspects and extend our previous
work on model clustering based on vector space model, with a technique
for incorporating structural context in the form of n-grams. We compare
the n-gram accuracy on two datasets of Ecore metamodels in AtlanMod
Zoo: small random samples using up to trigrams and a larger one (∼100
models) up to bigrams.

Keywords: Model-driven engineering · Model comparison · Vector
space model · Hierarchical clustering · n-grams

1 Introduction

Models and metamodels, i.e. abstract representations of typically domain-specific
knowledge, are utilized in Model-Driven Engineering as central artefacts to deal
with the increasing complexity and size of software systems [12]. The advance of
MDE in the academic and industrial context has led to a similar issue: increase
in size, complexity and number of models. Of particular interest for this work,
it is difficult to manage a large number of models, whether they be assets of an
industrial software product line or family, part of an online model repository,
etc. In order to tackle this issue, many researchers have developed fundamental
model operations to identify the relations among models and integrate them.
Among those are model comparison and matching; with applications to model
merging and versioning.

The research leading to these results has been funded by EU programme FP7-NMP-
2013-SMALL-7 under grant agreement number 604279 (MMP).
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Most of these approaches employ complex techniques for pairwise comparison
of models (a notable example based on graph matching can be found in [10]).
Another interesting dimension of model comparison is for the case of a large
dataset with many models; it has been pointed out in [6,11] to be different from
pairwise comparison. Recent efforts such as [1–3] have proposed using clustering
techniques to analyse and compare a large number of (meta-)models; with the
common goal of identifying groups/subgroups and outliers among (meta-)models
(e.g. for model repository management).

We aim to develop a model clustering technique which incorporates the struc-
tural context in a generic way and acts as a compromise between contextless
techniques such as in [1] and expensive pairwise ones such as in [10] (see [3] for a
performance comparison of such a clustering approach vs. EMFCompare). While
using bigrams (i.e. n-grams with n = 2) as in [2,3] is promising, it is notewor-
thy to investigate the general case of using n-grams and its effect on clustering
precision. The scope of this work is concisely captured in two research questions:

– RQ1. How can we incorporate structural context into a vector space model
(VSM) for automated model clustering?

– RQ2. How do the proposed techniques affect clustering precision, for small
and larger datasets?

In this paper, we extend our previous work in [2] with n-gram extraction and
comparison. We propose extracting fixed-length n-grams from models, to pop-
ulate a VSM via extended and configurable comparison schemes. The resulting
VSM is fed into the agglomerative hierarchical clustering algorithm implemented
in the R statistical software1. We compare the clustering efficiency using n-grams
on two datasets as subsets of the Ecore metamodels in AtlanMod Metamodel
Zoo2: random samples (20–30 models × 50 runs) using up to trigrams (i.e. n = 3)
and a larger one (107 models) up to bigrams. We conclude that n-grams lead to
higher accuracy on average, though not monotonically with increasing n.

Related Work. Structural comparison has been studied in context of pairwise
model comparison in a lot of studies, e.g. in [10]. These techniques in general
develop elaborate pairwise techniques involving graph comparison/isomorphism
and aim to reach high accuracy for a small number of models to compare (typi-
cally two). On the other hand, there are a few techniques which consider multiple
models without pairwise comparisons, such as N-way merging in [11].

Recent approaches such as [1–3] propose using hierarchical clustering for a
large set of (meta-)models. Both use similar Information Retrieval (IR) tech-
niques for extracting term vectors out of models and using various similar-
ity measures such as cosine distance. The use of structural relations among
model elements is proposed in [2,3] encoded as bigrams of model elements; in [3]

1 https://cran.r-project.org/.
2 http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore.
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via external pairwise comparison operation provided by EMFCompare3; while
ignored in [1] altogether with the exclusive use of unigrams (i.e. n = 1). A final
application of n-grams is given by Bislimovska et al. [5] in the context of model
indexing and searching.

2 Preliminaries

We outline here the underlying concepts of our approach (see [1] for details).
Information Retrieval [7] deals with effectively indexing, analyzing and searching
various forms of content including natural language text documents. As a first
step for document retrieval in general, documents are collected and indexed via
some unit of representation. Index construction can be implemented using VSM
with the following major components: (1) a vector representation of occurrence
of the vocabulary in a document, named term frequency, (2) zones (e.g. ‘author’
or ‘title’), (3) weighting schemes such as inverse document frequency (idf), and
zone weights, (4) Natural Language Processing (NLP) techniques for handling
compound terms, detecting synonyms and semantically related words.

The VSM allows transforming each document into an n-dimensional vector,
thus resulting in an m × n matrix for m documents. Over the VSM, document
similarity can be defined as the distance (e.g. Euclidean or cosine) between vec-
tors. These can be used for identifying similar groups of documents in the vector
space. This unsupervised machine learning (ML) technique is called clustering.
Among many clustering methods [7], there is a major distinction between flat
clustering, where a flat cluster labelling is performed, and hierarchical clustering,
where a hierarchy of proximities is produced.

Finally, n-grams [8] are used in computational linguistics to build probabilis-
tic models of natural language text, e.g. for estimating the next word given a
sequence of words, or comparing text collections based on their n-gram profiles.
In essence, n-grams represent a linear encoding of structural context.

3 Motivation for Structural Comparison

As previously mentioned, model comparison taking structure information into
consideration has been studied in many pairwise comparison approaches (see [13]
for an overview). In this section we would like to motivate the problem from a
model clustering perspective. Several approaches in [1] and [3] propose extracting
identifier names as independent features to be used in a VSM. This effectively
ignores all the structural context of the model. Figure 1(a) illustrates one of the
shortcomings of using just unigrams for model clustering. It is trivial to see that
an approach as in [1] would treat those three models as the same.

Another point can be made, given the case that we extract model fragments
from three different models (Fig. 1(b)). The case depicts that the second frag-
ment has the vertex I inserted, while the third fragment has B replaced by its

3 https://www.eclipse.org/emf/compare/.
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Fig. 1. Motivating examples for using n-grams.

synonym B′. Ideally we would like our clustering technique to treat these three
model fragments as strongly similar beyond the unigram similarity of indepen-
dent A,B/B′ and C.

One way of encoding the structural context would be in the form of n-grams
of model elements; simpler and cheaper to compare than e.g. subgraphs. This
approach has been mentioned in [2] and [3] for n = 2. We would like to investigate
the general case of using n-grams and their effect on clustering accuracy.

4 Extending the Framework for n-grams

In this section we describe our approach for clustering structural models based
on n-gram representations. Since this work builds on top of our existing model
clustering framework [1], we start with the basic introduction of that framework.
The base framework (refer to [1] for details) is inspired by IR-based and statisti-
cal techniques for comparing document as summarized in Sect. 2. The approach
starts with the extraction of model element identifiers and types from a set of
input models, with a metamodel-based traversal of models using EMF Dynamic
API4. The resulting data, i.e. typed unigrams, are used to populate a VSM
after some NLP steps such as tokenization, filtering and synonym checking. As
a result, each model is represented in the VSM as a point in a high dimensional
space and similarity of models is reduced to a distance calculation. Hierarchical
clustering is applied on top of these distances. The framework allows config-
uring several matching schemes (e.g. whether types are ignored, synonyms are
checked) and weighting schemes (e.g. idf or type weights).

This work extends the framework in various ways as depicted in Fig. 2, with
modified features in red and disabled features in grey. The underlying concepts
of our approach are introduced in Sects. 4.1 to 4.3, while from Sect. 4.3 onwards
we describe the components in the workflow. The steps of this modified workflow
can be summarized as follows:

4 http://www.eclipse.org/modeling/emf/.
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Fig. 2. Overview of the modified model clustering framework. (Color figure online)

1. Obtaining a set of models with the same kind, e.g. Ecore metamodels,
2. Generating n-grams with an n > 0 and extraction scheme (Sect. 4.3),
3. Picking a vertex matching scheme: synonym matching using a compound-

word similarity measure (Sect. 4.5) and type matching [1],
4. Picking an n-gram matching scheme (Sect. 4.4),
5. Calculating the term frequency matrix (Sect. 4.5),
6. Picking a distance measure and calculating the vector distances,
7. Applying hierarchical clustering over the VSM,
8. Automatically extracting the clusters and comparing them against the refer-

ence clusters.

4.1 Models as Labelled Graphs

Fig. 3. Graph representation of an Ecore meta-
model.

Leaving the fully formal definition
for later, we consider Ecore mod-
els as M = 〈E, V 〉, where E is
the set of name-type pairs e =
(n1, t1) and V is the set of edges
(t2, es, et) with consecutively the
edge type (i.e. label of the edge
on the underlying labelled graph),
source and target of the edges.
We consider only a subset of the
Ecore, and ENamedEntity sub-
classes such as EPackage, EClass,
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EAttribute as vertices; and structural containment, reference type and super-
type relations as edges. Thus we omit several parts including: EAnnotations,
OCL constraints and various attributes such as abstract for classes, multiplici-
ties for ETypedElements, types of EAttributes and so on. This restriction yields
the domains for the corresponding types: t1 ∈ {EPackage,EClass, . . .} and
t2 ∈ {contains, typeof , supertype}. Traversing the model and filtering/extracting
the desired elements is relatively straightforward using the Dynamic EMF API.
Figure 3 shows a simple graph representation of an Ecore metamodel.

4.2 Revisiting Unigrams

Given the above definition for the simplified graph representation, the unigrams
as studied in [1] are simply the set of vertices (name-type pairs) of the extracted
graph. All the structural information captured in V is discarded. Checking
the similarity of unigrams is just vertex similarity; the framework implements
type/synonym matching, and weighting schemes (see [1] for details). For check-
ing the similarity for compound-word names, tokenization and expansion of the
unigrams for the tokens is applicable and effective to be used with regular syn-
onym checking mechanisms for simple words.

4.3 Extracting n-grams

We define n-grams using paths of length n− 1 on the extracted model graph: an
n-gram is a sequence of vertices v1, . . . , vn with n ≥ 1 where for each (vi, vi+1)
there exists some e ∈ E with type t such that e = (t, vi, vi+1). We further add
the restriction that the involved paths have to be simple paths, thus having no
cycles. With this basic definition, there exists an upper bound for the longest
n-gram that can be extracted from non-cyclic paths in the model.

Note that this is a simplified first-attempt formulation of n-grams where edge
labels are considered only for the calculation of paths, and are not part of the n-
gram itself. We treat edges simply as relations, to denote that there is structural
association between the vertices. Extending this simple formulation, possibly for
other type of structural models as well, is left as future work.

The above formulation treats the graph in a naive and general-purpose man-
ner. While we have implemented this naive extraction of n-grams in the frame-
work for genericness, we propose a domain-specific extraction exploiting the
actual semantics of the Ecore meta-metamodel. Involving the three types of
edges, the following shows how we tackle Ecore models:

– Rule 1: Edges of type contains are processed regularly in the path traversal.
– Rule 2: EReference types can be considered a placeholder for basic associa-

tion (e.g. consider UML associations). We thus fork the path traversal upon
encountering typeof. One way we include the n-gram up to the EReference
vertex and terminate the traversal in order to retain the information encoded
by the relation label, if any. The other way we further advance the traversal
jumping over that vertex.
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– Rule 3: For supertypes we exploit the inheritance semantics and fork the path
traversal recursively for every supertype. This way we cover for instance the
implicit associations of a subclass with the attributes of its superclass.

Table 1. n-gram extraction: some examples.

n n-grams Rules

3 (BIBTEX, LocatedElement, location) 1

(BIBTEX, Bibtex, entries) 1,2

(BIBTEX, Bibtex, Entry) 1,2

(Bibtex, Entry, key) 1,2

(Bibtex, Entry, location) 1,2,3

4 (BIBTEX, Bibtex, Entry, LocatedElement) 1,2,3

(BIBTEX, Bibtex, Entry, location) 1,2,3

In Table 1, we list some
illustrative results (types
omitted for simplicity) of n-
gram extraction from the
example in Fig. 3. Note the
application of Rules 2,3 for
a domain-specific extraction.

4.4 Defining n-gram Similarity

Now we would like to generalize the similarity scheme that was previously
applicable for unigrams only, to n-grams. Given two n-grams P1, P2 with size n,
we can think of the following similarity schemes:

– strict matching with all vertices equal: 1 if for every 1 ≤ i ≤ n, V i
1 = V i

2 , 0
otherwise.

– semi-relaxed matching: sum of vertex similarities, times context multiplier:

nSim(P1, P2) = ctxMult(P1, P2) ∗
n∑

i=1

vSim(V i
1 = V i

2 ) (1)

ctxMult(P1, P2) =
1 + |nonzero vSim matches|

1 + n
(2)

– relaxed matching, and using the maximum similar subsequence:

nSim′(P1, P2) = ctxMult′(P1, P2) ∗ score(mss(P1, P2)) (3)

ctxMult′(P1, P2) =
1 + length(mss(P1, P2))

1 + n
(4)

The function in Eq. 3, which call maximum similar subsequence (mss), is a
slight modification of the longest common subsequence algorithm, particularly
the standard implementation with dynamic programming [4]. We extended the
matching of equal elements to incorporate the relaxed vertex similarity schemes.
The function is given in Algorithm 1.

Context multipliers given in Eqs. 2 and 4 are introduced so that larger
percentages of matches contribute to higher similarity. We have implemented
variations of this multiplier in the framework, i.e. normalization (adding 1 to
numerator and denominator, inspired by [9]) and power (1 for linear and 2 for
quad- ratic, inspired by the implicit quadratic multiplier in [11]). According to
this formulation the multiplier in Eq. 4 is a normalized linear one. Readers should
assume the third scheme (Eqs. 3, 4) is used for the rest of the paper.
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4.5 Other Modifications to the Framework

Algorithm 1. Maximum similar subsequence.
function mss(P1, P2)
n1 ← size(P1)
n2 ← size(P2)
initialize array score[n1 + 1][n2 + 1]
initialize array length[n1 + 1][n2 + 1]
for i = n1 − 1 to 0 do {decrementing}

for j = n2 − 1 to 0 do {decrementing}
if vSim(Ei, Ej) > 0 then

score[i][j] = score[i + 1][j + 1] + vSim(Ei, Ej)
length[i][j] = length[i + 1][j + 1] + 1

else
score[i][j] = max(score[i + 1][j], score[i][j + 1])
length[i][j] = max(length[i+1][j], length[i][j+1])

end if
end for

end for
m,n ← i, j, where score[i][j] = max(score)
return (score[m][n], length[m][n])

Compared to [1], one
major modification to
the framework is on
the NLP techniques.
The previous tech-
nique uses tokeniza-
tion and filtering to
expand unigrams. For
instance the unigram
with the compound
name (LocatedElem-
ent, EClass) would
be expanded to two
separate unigrams
(Located, EClass) and
(Element, EClass).
Afterwards synonym
checking is performed
on the names of expa-
nded unigrams using
algorithms for single-words. While this works efficiently for unigrams, adopting
this directly for n-grams has some problems. Expanding an n-gram of size n, with
compound-word names of average t tokens leads to a combinatorial explosion (by
tn) of features in the VSM. An example would be the bigram (LocatedElement,
EClass)-(geographicalLocation, EAttribute) expanding into {(Located, EClass)-
(geographical, EAttribute), (Located, EClass)-(Location, EAttribute), (Element,
EClass)-(geographical, EAttribute), (Element, EClass)-(Location, EAttribute)}.
For unigrams, it has been reported in [1] that tokenization helps in reducing
the vector space as larger datasets tend to have a higher percentage of common
tokens. For n-grams, however, this is not the case given the limited dataset:
there are not enough common tokenized n-grams in the Ecore dataset used in
this paper and as a result the vector space explodes. For this reason, we have
integrated a simple compound-word vertex similarity measure synmulti. Given
two vertices with compound names l1 and l2, the similarity is the total sum of
maximum synonym matches for each token pair, divided by the largest of the
token set sizes:

synmulti(l1, l2) =

∑
i argmax

j
(synsingle(T i

1, T
j
2 ))

max(|T1|, |T2|) (5)

T1,2 = filter(tokenize(l1,2)) (6)

This technique, supported by a cached lookup for synonyms or an in-memory
dictionary, greatly improves the performance of checking synonyms (for n-grams
with n > 1) over the ‘tokenize & expand’ approach previously proposed.
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Another parameter we have built into the framework, is the calculation of
term frequencies, rather than incidences. During our experimental runs we have
encountered the fact that allowing synonym checks and relaxed type checks leads
to multiple non-zero matches across n-grams of different models. Hence two dif-
ferent calculations strategies are integrated into the framework when populating
the VSM. Given a model M consisting of n-grams {M1, . . . ,Mn} and vector
space cell for the n-gram Sj :

– incidence: valueAt(M,Sj) = argmax
i

(nSim(Mi, Sj)),

– frequency: valueAt(M,Sj) =
∑n

i=1 nSim(Mi, Sj).

We have empirically evaluated both calculations and observed higher accu-
racy with the latter strategy in the scope of the experiments in this paper. The
readers should thus assume the latter is applied throughout this paper. A final
modification to the framework is the use of automatic extraction of clusters from
the dendrogram. This will be detailed in the next section.

5 Case Studies and Results

In order to quantitatively compare the accuracy of using n-grams with n = 1
versus n > 1, we have designed two case studies. Before moving on to the case
studies themselves, we would like to list exhaustively the parameters of the
framework for these experiments. Note that we have deliberately aimed to disable
the features which are of relatively less importance for this work; to minimize
the overall set of parameters and focus on the ones related to the application of
n-grams. The framework settings are:

– n-gram extraction scheme: Ecore-specific scheme (Sect. 4.3), with n = {1, 2, 3}
for the first experiment, and n = {1, 2} for the second one.

– NLP features: compound-word synonym checking using internal tokeniza-
tion/filtering (Sect. 4.5) with basic NLP processing such as stemming and
Levenshtein distance.

– Type matching: relaxed for model elements with different types, i.e. allowing
non-exact type matches.

– n-gram similarity: the above vertex similarity settings (synonym and type
matching), with relaxed matching for equal order n-grams and maximum sim-
ilar subsequence (Sect. 4.4, Eqs. 3, 4).

– VSM calculation: Raw VSM with term frequencies (Sect. 4.5).
– Hierarchical clustering: hclust function is used with average linkage and

cosine distance (from lsa package5) to obtain the dendrogram.

The last step of the framework is enhanced in this work with the automatic
extraction or ‘cutting’ of the dendrogram. For this we design two scenarios.
In scenario 1, the user is assumed to be able to guess the number of clusters
5 https://cran.r-project.org/package=lsa.

https://cran.r-project.org/package=lsa
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in the dataset, say n, with ±20% accuracy. For all the integers in the range:
[floor(0.8 ∗ n), ceiling(1.2 ∗ n)], we apply the standard cutree function of R to
perform a straight horizontal cut on the dendrogram. As an external measure of
cluster validity, we employ the F0.5 measure (see [1] for details and the cluster
labels for ground truth).

For scenario 2, we assume that the number of clusters cannot be guessed;
rather a dynamic cut using the cutreeDynamic function in the dynamicTreeCut6

package in R has to be performed. For this function we use the permutation of
the following parameters for cutreeDynamic:

– maximum cut height ∈ {0.6, 0.7, 0.8, 0.9}; where to cut the tree into subtrees,
with height corresponding to the cosine distance in the range [0.0, 1.0].

– minimum cluster size = 2; not to end up with isolated single data points as
clusters,

– deep split ∈ {0, 1, 2}; the extent to which subtrees should be further cut into
smaller subtrees, i.e. clusters.

5.1 Case Study 1 - Random Small Datasets

Table 2. F0.5 measures of the runs with regular cut.

Run Unigram Bigram Trigram

1 0.693 ± 0.049 0.637 ± 0.154 0.783 ± 0.036

2 0.913 ± 0.064 0.891 ± 0.034 0.868 ± 0.049

3 0.796 ± 0.057 0.799 ± 0.136 0.781 ± 0.121

4 0.542 ± 0.064 0.688 ± 0.185 0.757 ± 0.045

5 0.576 ± 0.152 0.547 ± 0.118 0.634 ± 0.012

6 0.691 ± 0.052 0.679 ± 0.094 0.707 ± 0.037

7 0.958 ± 0.027 0.956 ± 0.026 0.936 ± 0.044

8 0.872 ± 0.180 0.872 ± 0.180 0.872 ± 0.180

9 0.912 ± 0.08 0.892 ± 0.077 0.936 ± 0.035

10 0.512 ± 0.12 0.582 ± 0.137 0.460 ± 0.031

. . . . . . . . . . . .

Avg 0.665± 0.203 0.682 ± 0.197 0.700 ± 0.175

This case study aims to
measure the accuracy of n-
grams for relatively small
datasets using up to tri-
grams (n = 3). Given the
subset of AtlanMod Meta-
model Zoo already speci-
fied in [1], consisting of 107
metamodels from 16 differ-
ent domains (ranging from
conference management to
state machines) we extract
random subsets of smaller
sizes. The only restriction
is that we pick individual
cluster items of size ≥2
from each domain/clus-
ter, hence avoid having a
dataset with too many isolated outliers. We run this random procedure 50 times,
obtaining 50 datasets of size 20–30. Doing this, we aim to avoid coincidental
results for specific corner cases. For each dataset we run the framework with the
same settings for unigrams, bigrams and trigrams.

6 https://cran.r-project.org/package=dynamicTreeCut.

https://cran.r-project.org/package=dynamicTreeCut
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Table 3. F0.5 measures of the runs with dynamic cut.

Run Unigram Bigram Trigram

1 0.693 ± 0.061 0.771 ± 0.060 0.726 ± 0.074

2 0.706 ± 0.055 0.758 ± 0.093 0.822 ± 0.107

3 0.548 ± 0.250 0.524 ± 0.142 0.574 ± 0.125

4 0.464 ± 0.143 0.693 ± 0.188 0.589 ± 0.135

5 0.520 ± 0.141 0.469 ± 0.084 0.515 ± 0.047

6 0.694 ± 0.090 0.813 ± 0.068 0.865 ± 0.069

7 0.671 ± 0.148 0.938 ± 0.061 0.749 ± 0.058

8 0.887 ± 0.079 0.958 ± 0.040 0.928 ± 0.097

9 0.742 ± 0.089 0.880 ± 0.071 0.814 ± 0.025

10 0.517 ± 0.117 0.542 ± 0.197 0.493 ± 0.137

. . . . . . . . . . . .

Avg 0.599± 0.200 0.679 ± 0.205 0.672 ± 0.182

We list the F0.5 mea-
sures of the runs in the
format mean ± standard
deviation for the ran-
dom runs: Table 2 for the
regular cut scenario and
Table 3 for the dynamic
cut scenario. In both
tables, the last row gives
the averages over 50 runs.
One immediate observa-
tion is that bigrams and
trigrams do not univer-
sally improve accuracy
over unigrams; counterex-
amples for this are run 10
in Table 2 and run 8 in
Table 3. Secondly, it also
cannot be claimed that picking higher n (e.g. trigrams vs. bigrams) leads to
monotonically higher accuracy. Indeed the goal of having so many random runs
is to come up with an approximate judgment on n-gram accuracy for Ecore mod-
els. Bigrams and trigrams perform differently (in comparison with each other)
for the two scenarios; nevertheless in the average case for both scenarios, n-grams
with n > 1 perform better than with n = 1.

Fig. 4. Cumulative averages for F0.5 over random runs.
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We further supply the line chart of the cumulative mean F0.5 measure over
the 50 runs in Fig. 4 for the two scenarios. The points on the diagram correspond
to the cumulative mean F0.5 values of all the random runs up to k (x axis). This
indicates a conclusive stabilization after a few runs. This improves our confidence
in the measurement, eliminating the chance of e.g. alternating averages over the
number of runs.

5.2 Case Study 2 - Larger Dataset

Fig. 5. Unigram vs bigram F0.5 measures.

With the first case study giv-
ing us some insight, we turn
to cluster the whole 107-
model dataset. We restrict
the upper bound for n-
grams to bigrams, as tri-
grams reduce the perfor-
mance to the point where at
least multi-core processing,
or high performance com-
puting would be required.
Nevertheless, as shown in
Fig. 5, bigrams lead to a
considerable increase in the
accuracy of the clustering
algorithm. The results are
given in a boxplot of the F0.5 measures with all the parameter permutations
for unigrams (left plot) and bigrams (right plot). It is fairly easy to see that
bigrams improve the worst case, mean and median; while there is a negligible
decrease in the best case (right plot only). Our findings here reinforce our con-
fidence on the average behaviour of bigrams, as pointed out in the first case
study.

6 Discussion

The two case studies indicate using n-grams with n > 1 is a promising technique
for incorporating structural context into model clustering. Our technique allows
the extraction of model elements together with (part of) their context in the
form of n-grams (RQ1) to overcome some difficulties of using just unigrams and
losing the context information for model elements (Sect. 3). We have relaxed
many of the framework parameters and in principle strived for reasoning based
on average measurements in order to avoid getting stuck on corner cases and
specific parameter settings. The clustering accuracy is shown in two case studies
to improve over unigrams on average (RQ2). Consequently we deduce that:



522 Ö. Babur and L. Cleophas

– On average, n-grams with n > 1 lead to higher accuracy than n = 1.
– The accuracy does not monotonically increase along with increasing n.
– Given the increasing complexity of clustering with larger n, using unigrams

remains the most scalable but inaccurate approach, while bigrams can be
considered as a safe middle ground for relatively large datasets.

– Depending on the type of the input models, size and nature of the dataset, and
for accuracy-oriented tasks, n-grams with n > 2 can be employed. However,
a preliminary consideration and experimentation should be performed as the
accuracy is not guaranteed to increase on average.

Our approach incorporates structural comparison to the N-way model com-
parison/clustering setting. It can be considered a compromise between the work
in [1], which ignores context, and approaches such as [10] which can exploit full
structural context for pairwise model comparison. There are further advantages
of using this technique, stemming from the underlying framework. For example,
the individual steps of the workflow such as the graph-based n-gram extraction
and clustering algorithms are generic and extendible for other types of structural
models (e.g. UML class diagrams). Furthermore using R brings in strong tool
support in terms of clustering, analysis and visualization techniques.

Complexity of Using n-grams. The complexity of clustering is omitted here;
readers are referred to [7]. The complexity of VSM construction for n-grams
is proportional to |n-grams|2 ∗ comparen; i.e. the number of extracted n-grams
and cost of comparing each n-gram. comparen is O(n2) with the maximum
similar subsequence implementation in Sect. 4.4. The number of extracted n-
grams in turn is proportionate with size of the input dataset N , average size of
models (underlying graph) s and a factor fn which depends on the n chosen. The
formal complexity analysis of fn would involve measuring the average number of
attributes, references and supertypes, plus the graph-theoretic path calculations
up to n. This may be difficult to calculate in the domain-specific extraction
scheme (Sect. 4.3) we adopt for this paper. Another approach would be to have a
larger and more representative dataset of Ecore models and deduce it empirically
using regression on the above mentioned metrics. We leave these as future work,
and report here a rough empirical observation on our dataset.

We can safely assume that the number of n-grams for one model is O(s)
in the case of unigrams; where s is the model size. For a rough comparison
of the n-gram sizes, we crawled 17000 + Ecore models from GitHub7 and ran
our n-gram extraction algorithm on them for n = 1, 2, 3. Figure 6 shows the
number of bigrams and trigrams (y axis) versus unigrams (x axis) per model.
Here we note some simple observations. Unigrams per model tend to be on
average in the range of 100 s, with bigrams in the 1000 s and trigrams growing
up to 10000 s. There are of course cases with many unigrams and dispropor-
tionately few bigrams/trigrams, i.e. presumably flat models with few super-
types/references, and also cases with the opposite; presumably smaller-sized
models with complex inheritance hierarchies and cross-references.
7 https://github.com.

https://github.com


Using n-grams for the Automated Clustering of Structural Models 523

Fig. 6. Empirical observation on the number of n-grams per model.

Threats to Validity. While we aimed for a transparent methodology avoiding
coincidental conclusions for corner cases, there are some threats to validity for
our work. Firstly, using n-grams should be validated on other and larger datasets
of different model types (e.g. UML class diagrams). Secondly, we take only the
average accuracies into consideration to conclude the usefulness of using n-grams
with n > 1, while individual cases (Sect. 5.1) are shown to reduce the accuracy.
A meta-analysis is required to find out the reasons, and if possible come up with
some heuristics for picking an optimal n considering certain characteristics of
the dataset (e.g. size or homogeneity/compactness of clusters and complexity of
models in terms of inheritance).

7 Conclusion and Future Work

In this paper, we have presented a technique using n-grams, originating from
computational linguistics, for clustering structural models. This work builds on
top of our model clustering framework, extending its features to incorporate
structural context into clustering. We have indicated a shortcoming of previous
approaches, i.e. ignoring the context of model elements, and have proposed a
flexible technique, which can be considered as the compromise between context-
less clustering approaches and advanced pairwise structural techniques. We have
tested our approach on an Ecore dataset from AtlanMod Metamodel Zoo. With
carefully devised case studies, avoiding coincidental conclusions for corner cases,
we show that n-grams improve the clustering accuracy on average. Picking an
n > 1 is shown to increase complexity and using larger n is suggested for smaller
datasets and precision-oriented tasks, though after preliminary consideration as
precision is not guaranteed to increase monotonically along with n.

As future work, we want to address the points listed as threats to validity.
The approach can be tested on larger datasets, and on different structural models
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such as UML class diagrams. We are in the process of obtaining further datasets
from the industry. Moreover, a meta-analysis of different settings can also be
performed, to find out the correlations of n-gram accuracies with dataset size,
homogeneity, nature of model types, etc.
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