Bernhard Steffen - Christel Baier

Mark van den Brand - Johann Eder
Mike Hinchey - Tiziana Margaria (Eds.)

SOFSEM 2017:
Theory and Practice
of Computer Science

43rd International Conference on Current Trends
in Theory and Practice of Computer Science
Limerick, Ireland, January 16-20, 2017, Proceedings

LNCS 10139 | ARCoSS

Lecture Notes in Computer Science 10139

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Bernhard Steffen - Christel Baier
Mark van den Brand - Johann Eder
Mike Hinchey - Tiziana Margaria (Eds.)

SOFSEM 2017:
Theory and Practice
of Computer Science

43rd International Conference on Current Trends

in Theory and Practice of Computer Science
Limerick, Ireland, January 16-20, 2017
Proceedings

@ Springer

Editors

Bernhard Steffen
TU Dortmund
Dortmund
Germany

Christel Baier
TU Dresden
Dresden
Germany

Mark van den Brand
Eindhoven University of Technology
Eindhoven

Johann Eder

Alpen Adria University Klagenfurt
Klagenfurt

Austria

Mike Hinchey

Lero - Irish Software Research Center
Limerick

Ireland

Tiziana Margaria
Lero - Irish Software Research Center
Limerick

The Netherlands Ireland

ISSN 0302-9743

Lecture Notes in Computer Science
ISBN 978-3-319-51962-3

DOI 10.1007/978-3-319-51963-0

ISSN 1611-3349 (electronic)

ISBN 978-3-319-51963-0 (eBook)

Library of Congress Control Number: 2016962027
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the invited and contributed papers selected for presentation at the
43rd Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2017), held January 16-20, 2017, in Limerick, Ireland.

SOFSEM (originally SOFtware SEMinar) is devoted to leading research and fosters
cooperation among researchers and professionals from academia and industry in all
areas of computer science. SOFSEM started in 1974 in the former Czechoslovakia as a
local conference and winter school combination. The renowned invited speakers and
the growing interest of the authors from abroad gradually turned SOFSEM in the mid-
1990s into an international conference with proceedings published in the Springer
LNCS series, in the last two years in their prestigious subline ARCoSS: Advanced
Research in Computing and Software Science. SOFSEM became a well-established
and fully international conference maintaining the best of its original winter school
aspects, such as a higher number of invited talks and an in-depth coverage of novel
research results in selected areas of computer science. SOFSEM 2017, accordingly,
was organized around the following three thematic tracks:

e Foundations of Computer Science (chaired by Christel Baier, TU Dresden)

e Software Engineering: Methods, Tools, Applications (chaired by Mark van den
Brand, TU Eindhoven)

e Data, Information, and Knowledge Engineering (chaired by Johann Eder,
U. Klagenfurt)

With its three tracks, SOFSEM 2017 covered the latest advances in research, both
theoretical and applied, in selected areas of computer science. The SOFSEM 2017
Program Committee consisted of 62 international experts from 22 different countries,
representing the track areas with outstanding expertise. After a detailed reviewing
process, 34 papers were selected for presentation, namely: 27 in the Foundations of
Computer Science, four in the Software Engineering, and three in the Data, Informa-
tion, and Knowledge Engineering tracks.

As usual, SOFSEM 2017 comprised seven invited talks There was unifying talk:

e “Dependable and Optimal Cyber-Physical Systems,” by Kim Guldstrand Larsen
(Aalborg University, Denmark)

And two talks for each thematic track:

e “Trends and Challenges in Predictive Analytics,” by Jaakko Hollmeén (Aalto
University, Finland)

e “On Featured Transition Systems,” by Axel Legay (Rennes University and Inria,
France)

e “Domain-Specific Languages: A Systematic Mapping Study,” by Marjan Mernik
(University of Maribor, Slovenia)

VI

Preface

“Model-Driven Development in Practice: From Requirements to Code,” by Oscar
Pastor Lopez (Polytechnic University of Valencia, Spain)

“Network Constructors: A Model for Programmable Matter,” by Paul G. Spirakis
(University of Liverpool, UK)

“Verifying Parametric Thread Creation,” by Igor Walukiewicz (Bordeaux Univer-
sity and CNRS, France).

An integral part of SOFSEM 2017 was the traditional SOFSEM Student Research

Forum (chaired by Anila Mjeda, University of Limerick and Lero, Ireland), organized
with the aim of presenting student projects in both the theory and practice of computer
science, and to give the students feedback on the originality of their results. The papers
presented at the Student Research Forum were published in separate local proceedings,
available as the Lero Technical Report.

In addition, this year’s edition introduced an industry track that included a full-day

track ASE@SOFSEM organized by Yaping Luo of Altran, The Netherlands, and
several demonstrations and presentations.

Moreover, five tutorials profiled emergent and established technologies:

“Cinco: A Simplicity-Focused Language Workbench for Domain-Specific Graph-
ical Modeling Environments,” by Stefan Naujokat, Johannes Neubauer, Bernhard
Steffen (TU Dortmund, Germany)

“Unifying Theories of Programming: Principles, Theories and Tools,” by Andrew
Butterfield (Trinity College Dublin and Lero, Ireland)

“Verification and Test-case Generation from Architectural Models of Automotive
Systems,” by Cristina Seceleanu (Mélardalen Technical University, Sweden)
“Plasma Lab Statistical Model Checker: Architecture, Usage, and Extension,” by
Axel Legay and Louis-MarieTraonouez (Rennes University and Inria, France)
“Becoming Goldilocks: Privacy and Data Sharing in ‘Just Right’ Conditions for
Software Engineering,” by Fayola Peters (University of Limerick and Lero, Ireland)
— the Early Career Researcher tutorial

As editors of these proceedings, we are grateful to everyone who contributed to the

scientific program of the conference, especially the invited speakers and all the authors
of contributed papers. We would like to express our special thanks to:

The members of the SOFSEM 2017 Program Committee and all external reviewers
for their careful reviewing of the submissions

e Anila Mjeda for her preparation and handling of the Student Research Forum
e The SOFSEM Steering Committee, chaired by Julius Stuller and supported by Jan

van Leeuwen, for guidance and support throughout the preparation of the
conference

The local Organizing Committee, chaired by Anna-Lena Lamprecht (University of
Limerick and Lero), with Pavel Tyl (TU Liberec, Czech Republic) as Website Chair
and the help and support of Susan Mitchell and Dara O’Connor (Lero), Andrew
Butterfield, Brian Fitzgerald, Clare Mclnerney and Brian O’Donnellan (Lero),
Gerard Mulligan and Denis Hogan (Lero, tech support), Colm Mc Gettrick and
Tony Irwin (CSIS, tech support)

Preface VII

e The OCS team in Dortmund for their support with the OCS conference management
system and their immediate reaction to requests

e Springer for their continued support of the SOFSEM conferences

e Lero for publishing the second volume of the proceedings (at conference)

We are greatly indebted to Easy Conferences, in particular Petros Stratis, Melita
Rolandi Stratis, Boyana Slavova, Sotia Demetriou, Marios Christou, and Kyriakos
Georgiadis, for the event management of SOFSEM 2017.

We received generous sponsoring: We thank the Science Foundation Ireland, whose
support through the SFI Conference and Workshops program made this rich program
and in particular the many keynotes possible, and Altran (Eindhoven, The Netherlands)
for their industrial sponsorship of the ASE@SOFSEM track. The generosity of the
Slovak Society for Computer Science sponsored again the Best Student Paper Award.

We hope the readers of the proceedings gain valuable new insights that hopefully
contribute to their research and its uptake.

November 2017 Bernhard Steffen
Christel Baier

Mark van den Brand

Johann Eder

Mike Hinchey

Tiziana Margaria

Program Chair

Bernhard Steffen
Track Chairs
Christel Baier

Johann Eder
Mark van den Brand

Program Committee

Alessandro Abate
Andreas Abel
Erika Abraham
Christel Baier
Marko Bajec

Ton Barosan
Ladjel Bellatreche
Maria Bielikova
Armin Biere
Hans Bodlaender
Patricia Bouyer
Gerth Stelting Brodal
Sergio Cabello
Barbara Catania
Loek Cleophas
Pedro D’ Argenio
Yuxin Deng
Uwe Egly
Gregor Engels
Zoltan Esik

Uli Fahrenberg
Bernd Fischer
Johann Gamper
Tibor Gyimothy
Gorel Hedin
Zoltan Horvath
Juraj Hromkovic
Theo Harder

Organization

TU Dortmund, Germany

TU Dresden, Germany
Alpen-Adria University Klagenfurt, Austria
Eindhoven University of Technology, The Netherlands

University of Oxford, UK

Gothenburg University, Sweden

RWTH Aachen University, Germany

TU Dresden, Germany

University of Ljubljana, Slovenia

Eindhoven University of Technology, The Netherlands
LIAS/ISAE-ENSMA, France

Slovak University of Technology in Bratislava, Slovakia
Johannes Kepler University Linz, Austria
University of Utrecht, The Netherlands
CNRS, France

Aarhus University, Denmark

University of Ljubljana, Slovenia

University of Genoa, Italy

TU Eindhoven, The Netherlands
Universidad Nacional de Cérdoba, Argentina
East China Normal University, China

TU Wien, Austria

Paderborn University, Germany

University of Szeged, Hungary

LIX, Ecole Polytechnique, France

University of Stellenbosch, South Africa
Free University of Bozen-Bolzano, Italy
University of Szeged, Hungary

Lund University, Sweden

Eo6tvos Lorand University, Hungary

ETH Zurich, Switzerland

University of Kaiserslautern, Germany

X Organization

Mirjana Ivanovic
Kazuo Iwama
Rolf Klein
Georgia Koutrika
Stanislav Krajci
Jan Kretinsky
Rastislav Kralovi¢
Antonin Kucera
Barbara Konig
Yannis Manolopoulos
Rainer Manthey
Kaminski Marcin
Elvira Mayordomo
Pierre-Etienne Moreau
Anca Muscholl
Boris Novikov
Claus Pahl
Alfonso Pierantonio
Evaggelia Pitoura
Andrei Popescu
Tomasz Radzik
Paolo Rosso
Serguei Roubtsov
Gunter Saake

Ina Schaefer

Bran Selic
Alexandra Silva
Jiri Srba

Miroslaw Staron
Krzysztof Stencel
Emma Soderberg
Morzy Tadeusz
Bogdan Vasilescu
Marina Waldén

Additional Reviewers

Dieky Adzkiya
Mustag Ahmed
Kadir Akbudak
Eric Badouel

Harsh Beohar
Benedikt Bollig
Guillaume Bonfante
Broiia Brejova

University of Novi Sad, Serbia

Kyoto University, Japan

University of Bonn, Germany

HP Labs, USA

UPJ, Slovakia

Technische Universitit Miinchen, Germany
Comenius University, Slovakia

Masaryk University, Czech Republic
Universitdt Duisburg-Essen, Germany
Aristotle University, Greece

University of Bonn, Germany

University of Warsaw, Poland
Universidad de Zaragoza, Spain
Université de Lorraine - LORIA, France
LaBRI, France

St. Petersburg State University, Russia
Free University of Bozen-Bolzano, Italy
University of L’Aquila and MDH, Italy
University of Ioannina, Greece
Middlesex University, London, UK
King’s College London, UK

Technical University of Valencia, Spain
Eindhoven University of Technology, The Netherlands
Otto-von-Guericke-University Magdeburg, Germany
TU Braunschweig, Germany

Malina Software Corp., Canada

UCL, UK

Aalborg University, Denmark

University of Gothenburg, Sweden
University of Warsaw, Poland

Google, Denmark

Poznan University of Technology, Poland
Carnegie Mellon University, USA

Abo Akademi University, Finland

Hans-Joachim

Bockenhauer
Jérémie Chalopin
Yu-Fang Chen
Dmitry Chistikov
Vincenzo Ciancia
Raymond Devillers
Tom Durrant

Seren Enevoldsen
Johan Ersfolk

Panos Giannopoulos
Thomas Given-Wilson
Luca Grilli

Magnus Halldorsson
Tomas Horvath
Rasmus Ibsen-Jensen

Atalay Ileri

Marko Jankovié¢

Stacey Jeffery

Peter Jensen

Sung-Shik Jongmans
Max Klimm

Dennis Komm

Natalia Kushik
Konstantinos Mamouras
Nicolas Markey

Ines Marusic

Hernan Melgratti
Benedikt Nordhoff
Andrea Peruffo
Martin Plesch

Daniel Poetzl
Elizabeth Polgreen
Vojtech Rehak
Philippe Schnoebelen
Ana Sokolova

Organization XI

Martin Stanek

Jakob Haahr Taankvist
Irek Ulidowski

Gregor Weiss

Max Whitby

Gerhard Woeginger
Bojian Xu

Illés Zoltan

Ronald de Wolf

Tibor Asvanyi

Trends and Challenges in Predictive Analytics
(Abstract of Invited Talk)

Jaakko Hollmén

Department of Computer Science, Helsinki Institute for Information Technology
(HIIT), Aalto University, P.O. Box 15400, FI-00076 Aalto, Espoo, Finland
jaakko.hollmen@aalto.fi

Abstract. Predictive analytics is one of the most popular areas in machine
learning and data mining. I will start by reviewing some fundamentals in data
science and then focus on time series analysis and prediction. In the talk, I will
present recent trends in predictive analytics, covering reducing dimensionality
of the data space, stream processing, learning interpretable models, and con-
nections to multi-label classification. I will also speak about patterns of missing
data and its implications on predictive analytics in stream processing where no
missing data imputation is possible. The solutions will be demonstrated in the
areas of environmental informatics, medical science and transportation areas.

Introduction

The research fields of machine learning [1] and data mining [3] have enjoyed increased
attention in recent years, thanks to their ability to generalize beyond recorded past
experience in the form of individual cases. The generalized laws can be deployed to
function as part of an operational data processing systems to make estimations of
unknown quantities or predictions.

In the talk, T will review fundamentals of data analysis, including the curse of
dimensionality and the concept of generalization. Then, I will speak about recent trends
in predictive analysis, including highlights from my own research. Making predictive
models transparent and understandable has high priority in many domains such as
medical diagnostics. One approach is to reduce the number of variables in the pre-
diction model, or to make the model representation compact, or sparse. Sparsity can be
enforced by a search procedure in the space of regressors [10, 12] or by optimizing a
penalized cost function that enforces sparsity [2, 11]. Reporting of results in a compact
and understandable form has been the topic our previous pattern mining research in the
context of cancer genomics application [4]. Prediction models could very well be
described in natural language [9] as well. Recent work in multi-label classification and
its connections to sequence prediction will be reviewed [5, 7, 8].

Although the popular discussion around Big Data has emphasized the power of
fusing data from many sources to improve results, the heterogeneity of the data poses
many challenges. The missing data found in many practical data sources is so prevalent
that only a rather small portion of the data contains valid values. If we select variables

XIV J. Hollmén

to be included in the analysis by the prevalence of missing data, we may end up with
only a handful of variables, despite the large number of original data sources. This
provides an immediate motivation for investigating missing data in the context of
predictive models. Our theoretical studies [13] and applications in predicting quantities
in environmental monitoring context [14] show how the prediction results rapidly
deteriorate when missing values are present and when missing value imputation [6] is
not possible. We provide novel optimization criteria for learning linear predictive
models, when the prevalence of missing data is known.

References

10.

11.

13.

14.

. David, B.: Bayesian Reasoning and Machine Learning. Cambridge University Press (2012)
. Bradley, E., Trevor, H., lain, J., Robert, T.: Least angle regression. Ann. Stat. 32(2), 407—

499 (2004)

. David, H., Heikki, M., Padhraic, S.: Principles of Data Mining. Adaptive Computation and

Machine Learning Series. MIT Press (2001)

. Jaakko, H., Jarkko, T.: Compact and understandable descriptions of mixture of Bernoulli

distributions. In: Berthold, M.R., Shawe-Taylor, J., Lavrac, N. (eds.) IDA 2007. LNCS, vol.
4723, pp. 1-12. Springer, Berlin (2007)

. Liisa, K., Jesse, R., Pekka, N., Cyrille, B.K.R., Henri, E.C., Jaakko, H., Harri, M.: Identi-

fying the main drivers for the production and maturation of scots pine tracheids along a
temperature gradient. Agric. For. Meteorol. 232, 210-224 (2017)

. Roderick, J.A.L., Donald, B.R.: Statistical Analysis with Missing Data. Wiley Series in

probability and mathematical statistics. John Wiley & Sons (1986)

. Jesse, R., Luca, M., Jaakko, H.: Multi-label methods for prediction with sequential data.

Pattern Recogn. 63, 45-55 (2017)

. Jesse, R., Indré, Z., Jaakko, H.: Labeling sensing data for mobility modeling. Inf. Syst. 57,

207-222 (2016)

. Ehud, R., Robert, D.: Building Natural Language Generation Systems. Cambridge Univer-

sity Press (1999)

Mika, S., Jarkko, T., Jaakko, H.: Sparse regression for analyzing the development of foliar
nutrient concentrations in coniferous trees. Ecol. Model. 191(1), 118-130 (2006)

Robert, T.: Regression shrinkage and selection via the lasso. J. J. Roy. Stat. Soc. B 58(1),
267-288 (1996)

. Jarkko, T., Jaakko, H.: A sequential input selection algorithm for long-term prediction of

time series. Neurocomputing 71(13-15), 2604-2615 (2008)

Indré, Z., Jaakko, H.: Optimizing regression models for data streams with missing values.
Mach. Learn. 99(1), 47-73 (2015)

Indré, Z., Jaakko, H., Heikki, J.: Regression models tolerant to massively missing data: a
case study in solar radiation nowcasting. Atmos. Meas. Tech. 7(12), 4387-4399 (2014)

Contents

Foundations in Computer Science

Dependable and Optimal Cyber-Physical Systems 3
Kim Guldstrand Larsen

Verifying Parametric Thread Creation 11
Igor Walukiewicz

Network Constructors: A Model for Programmable Matter. 15
Othon Michail and Paul G. Spirakis

Semantics, Specification and Compositionality

Logical Characterisations and Compositionality of Input-Output

Conformance Simulation 37
Luca Aceto, Ignacio Fabregas, Carlos Gregorio-Rodriguez,
and Anna Ingolfsdottir

A Linear-Time—Branching-Time Spectrum of Behavioral
Specification Theories 49
Uli Fahrenberg and Axel Legay

Symbolic Semantics for Multiparty Interactions in the Link-Calculus. 62
Linda Brodo and Carlos Olarte

Theory of Mobile and Distributed Systems

Different Speeds Suffice for Rendezvous of Two Agents

on Arbitrary Graphs e 79
Evangelos Kranakis, Danny Krizanc, Euripides Markou,
Aris Pagourtzis, and Felipe Ramirez

Deciding Structural Liveness of Petri Nets 91
Petr Jancar

Distributed Network Generation Based on Preferential Attachment in ABS. ... 103
Keyvan Azadbakht, Nikolaos Bezirgiannis, and Frank S. de Boer

Verification and Automated System Analysis

Completeness of Hoare Logic Relative to the Standard Model 119
Zhaowei Xu, Wenhui Zhang, and Yuefei Sui

http://dx.doi.org/10.1007/978-3-319-51963-0_1
http://dx.doi.org/10.1007/978-3-319-51963-0_2
http://dx.doi.org/10.1007/978-3-319-51963-0_3
http://dx.doi.org/10.1007/978-3-319-51963-0_4
http://dx.doi.org/10.1007/978-3-319-51963-0_4
http://dx.doi.org/10.1007/978-3-319-51963-0_5
http://dx.doi.org/10.1007/978-3-319-51963-0_5
http://dx.doi.org/10.1007/978-3-319-51963-0_6
http://dx.doi.org/10.1007/978-3-319-51963-0_7
http://dx.doi.org/10.1007/978-3-319-51963-0_7
http://dx.doi.org/10.1007/978-3-319-51963-0_8
http://dx.doi.org/10.1007/978-3-319-51963-0_9
http://dx.doi.org/10.1007/978-3-319-51963-0_10

XVI Contents

Configuration- and Residual-Based Transition Systems for Event Structures
with Asymmetric Conflict 132
Eike Best, Nataliya Gribovskaya, and Irina Virbitskaite

Hardness of Deriving Invertible Sequences from Finite State Machines 147
Robert M. Hierons, Mohammad Reza Mousavi,
Michael Kirkedal Thomsen, and Uraz Cengiz Tiirker

Petri Nets, Games and Relaxed Data Structures

A Graph-Theoretical Characterisation of State Separation. 163
Eike Best, Raymond Devillers, and Uli Schlachter

Selfish Transportation Games 176
Dimitris Fotakis, Laurent Gourves, and Jérome Monnot

Decomposable Relaxation for Concurrent Data Structures 188
Chao Wang, Yi Lv, and Peng Wu
Graph Theory and Scheduling Algorithms

Sufficient Conditions for a Connected Graph to Have a Hamiltonian Path . . . 205
Benjamin Momeége

Enumerating Minimal Tropical Connected Sets. 217
Dieter Kratsch, Mathieu Liedloff, and Mohamed Yosri Sayadi

Bamboo Garden Trimming Problem (Perpetual Maintenance of Machines

with Different Attendance Urgency Factors). 229
Leszek Ggsieniec, Ralf Klasing, Christos Levcopoulos, Andrzej Lingas,
Jie Min, and Tomasz Radzik

Quantum and Matrix Algorithms

Exact Quantum Query Complexity of EXACT} ;. 243
Andris Ambainis, Janis Iraids, and Daniel Nagaj

Adjacent Vertices Can Be Hard to Find by Quantum Walks. 256
Nikolajs Nahimovs and Raqueline A.M. Santos

Matrix Semigroup Freeness Problems in SL(2,Z). 268
Sang-Ki Ko and Igor Potapov

Planar and Molecular Graphs

Order-Preserving 1-String Representations of Planar Graphs. 283
Therese Biedl and Martin Derka

http://dx.doi.org/10.1007/978-3-319-51963-0_11
http://dx.doi.org/10.1007/978-3-319-51963-0_11
http://dx.doi.org/10.1007/978-3-319-51963-0_12
http://dx.doi.org/10.1007/978-3-319-51963-0_13
http://dx.doi.org/10.1007/978-3-319-51963-0_14
http://dx.doi.org/10.1007/978-3-319-51963-0_15
http://dx.doi.org/10.1007/978-3-319-51963-0_16
http://dx.doi.org/10.1007/978-3-319-51963-0_17
http://dx.doi.org/10.1007/978-3-319-51963-0_18
http://dx.doi.org/10.1007/978-3-319-51963-0_18
http://dx.doi.org/10.1007/978-3-319-51963-0_19
http://dx.doi.org/10.1007/978-3-319-51963-0_20
http://dx.doi.org/10.1007/978-3-319-51963-0_21
http://dx.doi.org/10.1007/978-3-319-51963-0_22

Contents XVII

How to Draw a Planarization 295
Thomas Bldsius, Marcel Radermacher, and Ignaz Rutter

Finding Largest Common Substructures of Molecules in Quadratic Time. ... 309
Andre Droschinsky, Nils Kriege, and Petra Mutzel

Coloring and Vertex Covers

Lower Bounds for On-line Interval Coloring with Vector and
Cardinality Constraints.ottt it e 325
Grzegorz Gutowski and Patryk Mikos

Parameterized and Exact Algorithms for Class Domination Coloring 336
R. Krithika, Ashutosh Rai, Saket Saurabh, and Prafullkumar Tale

The Approximability of Partial Vertex Covers in Trees 350
Vahan Mkrtchyan, Ojas Parekh, Danny Segev, and K. Subramani

Algorithms for Strings and Formal Languages

Longest Common Subsequence in at Least k Length

Order-Isomorphic Substrings 363
Yohei Ueki, Diptarama, Masatoshi Kurihara, Yoshiaki Matsuoka,
Kazuyuki Narisawa, Ryo Yoshinaka, Hideo Bannai, Shunsuke Inenaga,
and Ayumi Shinohara

Computing Longest Single-arm-gapped Palindromes in a String 375
Shintaro Narisada, Diptarama, Kazuyuki Narisawa, Shunsuke Inenaga,
and Ayumi Shinohara

Edit-Distance Between Visibly Pushdown Languages 387
Yo-Sub Han and Sang-Ki Ko

Data, Information and Knowledge Engineering

Model-Driven Development in Practice: From Requirements to Code 405
Oscar Pastor

Webpage Menu Detection Based on DOM. 411
Julian Alarte, David Insa, and Josep Silva

A Hybrid Model for Linking Multiple Social Identities Across
Heterogeneous Online Social Networks 423
Athanasios Kokkos, Theodoros Tzouramanis, and Yannis Manolopoulos

Eco-Data Warehouse Design Through Logical Variability 436
Selma Bouarar, Ladjel Bellatreche, and Amine Roukh

http://dx.doi.org/10.1007/978-3-319-51963-0_23
http://dx.doi.org/10.1007/978-3-319-51963-0_24
http://dx.doi.org/10.1007/978-3-319-51963-0_25
http://dx.doi.org/10.1007/978-3-319-51963-0_25
http://dx.doi.org/10.1007/978-3-319-51963-0_26
http://dx.doi.org/10.1007/978-3-319-51963-0_27
http://dx.doi.org/10.1007/978-3-319-51963-0_28
http://dx.doi.org/10.1007/978-3-319-51963-0_28
http://dx.doi.org/10.1007/978-3-319-51963-0_29
http://dx.doi.org/10.1007/978-3-319-51963-0_30
http://dx.doi.org/10.1007/978-3-319-51963-0_31
http://dx.doi.org/10.1007/978-3-319-51963-0_32
http://dx.doi.org/10.1007/978-3-319-51963-0_33
http://dx.doi.org/10.1007/978-3-319-51963-0_33
http://dx.doi.org/10.1007/978-3-319-51963-0_34

XVIIL Contents

Software Engineering: Methods, Tools, Applications

On Featured Transition Systemsttt .. 453
Axel Legay, Gilles Perrouin, Xavier Devroey, Maxime Cordy,
Pierre-Yves Schobbens, and Patrick Heymans

Domain-Specific Languages: A Systematic Mapping Study 464
Marjan Mernik

Characterising Malicious Software with High-Level Behavioural Patterns. . . . 473
Jana St’astnd and Martin Tomdsek

AErlang at Work. L 485
Rocco De Nicola, Tan Duong, Omar Inverso, and Catia Trubiani

Software System Migration to Cloud-Native Architectures for SME-Sized

Software Vendors 498
Frank Fowley, Divyaa Manimaran Elango, Hany Magar,
and Claus Pahl

Using n-grams for the Automated Clustering of Structural Models 510
Onder Babur and Loek Cleophas

Author Index e 525

http://dx.doi.org/10.1007/978-3-319-51963-0_35
http://dx.doi.org/10.1007/978-3-319-51963-0_36
http://dx.doi.org/10.1007/978-3-319-51963-0_37
http://dx.doi.org/10.1007/978-3-319-51963-0_38
http://dx.doi.org/10.1007/978-3-319-51963-0_39
http://dx.doi.org/10.1007/978-3-319-51963-0_39
http://dx.doi.org/10.1007/978-3-319-51963-0_40

Foundations in Computer Science

Dependable and Optimal Cyber-Physical
Systems

Kim Guldstrand Larsen(®)

Department of Computer Science, Aalborg University, Selma Lagerlofs Vej 300,
9220 Aalborg East, Denmark
kgl@cs.aau.dk

1 Cyber-Physical Systems

Cyber-Physical Systems (CPS) describe systems combining computing elements
with dedicated hardware and software having to monitor and control a particular
physical environment. This combination of the physical with a virtual world pro-
vides the digital foundation for smart solutions throughout society and within all
sectors. The constant demand for increased functionality and performance that
needs to be produced with tight time schedules and cost budges challenges with-
out compromising dependability of the final products constitutes a significant
challenge.

What is needed are improved, scalable methods, tools and techniques that
support the development of CPS. For this we propose a model-based approached
for the design of dependable and optimal CPS, powered by the tool UPPAAL
(www.uppaal.org) [8]. The underlying formalism of UPPAAL of timed automata
with support for so-called model checking. However, the most recent branches
of the UPPAAL tool suite — UPPAAL SMC and UPPAAL STRATEGO- allows for
performance evaluation as well as automatic synthesis of optimal and safe con-
trollers for the much richer formalisms of stochastic hybrid automata and games.

The importance of CPS is clear within the domains of energy and trans-
port with the emergence Smart Grid, Home Automation, Autonomous Driving
and Advanced Driver Assistance, where optimizing yet critical functionality is
provided by intelligent and flexible software components.

To illustrate the usage of UPPAAL STRATEGO within these two domains
we first describe in Sect.2 the formalism of (weighted and stochastic) timed
automata and games by means of a small Route Choosing Problem. In Sect. 3 we
summarize the application of UPPAAL STRATEGO to the synthesis of a safe and
optimal adaptive cruice control [7], and in Sect.4 we summarize the applicaiton
of UPPAAL STRATEGO to the synthesis of optimal floor heating system [6].

2 Stochastic Priced Timed Games

UPPAAL STRATEGO [2,3] is a novel branch of the UPPAAL tool suite that allows
to generate, optimize, compare and explore consequences and performance of

© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 3-10, 2017.
DOI: 10.1007/978-3-319-51963-0-1

www.uppaal.org

4 K.G. Larsen

strategies synthesized for stochastic priced timed games (SPTG) in a user-
friendly manner. In particular, UPPAAL STRATEGO comes with an extended
query language (see Table 1), where strategies are first class objects that may be
constructed, compared, optimized and used when performing (statistical) model
checking of a game under the constraints of a given synthesized strategy.

Table 1. Various types of UPPAAL STRATEGO queries: “strategy S =" means strategy
assignment and “under S” is strategy usage via strategy identifier S. Here the variables
NS, DS and SS correspond to non-deterministic, deterministic and stochastic strategies
respectively; bound is a bound expression on time or cost like x<=100 and n is the
number of simulations.

Strategy generators using [2]:

Minimize objective: strategy DS = minE (expr) [bound]: <> prop

Maximize objective: strategy DS = maxE (expr) [bound]: <> prop under NS

Strategy generators using UpPAAL TIGA:

Guarantee objective: strategy NS = control: A<> prop

Guarantee objective: strategy NS = control: A[] prop
Statistical Model Checking Queries:

Hypothesis testing: Pr[bound] (<> prop)>=0.1 under SS

Evaluation: Pr[bound] (<> prop) under SS

Comparison: Pr[bound] (<> propl) under SS1 >= Pr[<=20] (<> prop2) under SS2
Expected value: value E[bound;n] (min: prop) under SS

Simulations simulate n [bound] { exprl, expr2 } under SS

Symbolic model checking queries:

Safety: A[] prop under NS
Liveness: A<> prop under NS
Infimum of value: inf { condition } : expression

Supremum of value: sup { condition } : expression

To illustrate the features of UPPAAL STRATEGO, let us look at the example
in Fig. 1, providing an “extended” timed automata based model of a car, that
needs to make it from its initial position Start to the final position End. In fact
the model constitutes a timed game, where the driver of the car twice needs to
make a decision as to whether (s)he wants to use a high road (H1 and H2) or a
low road (L1 and L2). The four roads differ in their required travel-time (up to
100 min respectively 50 min as reflected by the invariants on the clock x). Also
the roads differ in fuel-consumption reflected by the difference in the rate of the
continuous variable fc (representing the total amount of fuel consumed).

Whereas the choice of road is up to the driver of the car to control (indicated
by the solid transitions), the actual travel-time of the road is uncontrollable
(indicated by the dashed transitions) reflecting the uncertainty of the amount of
traffic on the particular day. In one scenario, the objective of the car it to choose
the combination of roads that will ensure the shortest overall travel-time even

Dependable and Optimal Cyber-Physical Systems 5

fo==3 && fo==18&&
x<=100 X<=100
Start O x0 ~~__ End

H1 DTSN H2 -
© L1 -7 L2 /;CD

‘ -7 x=0 - fo'==
fc'==10 && fc'==8 &&
x<=50 x<=50

Fig. 1. The route choice problem for a car.

in the most hostile traffic situation on the four roads. Under this interpretation,
Fig. 1 represents a timed game. However, it may also be seen as a stochastic
priced timed game (SPTG), assuming that the travel-times of the four roads
are chosen by uniform distributions, and the objective of the control strategy
is to minimize the expected overall travel-time, or the expected overall fuel-
consumption (e.g. the rate or fuel-consumption fc’==3 on the first high road H1
indicates that the cost variable fc grows with rate 3in this location).

1.0
300 NTNOMrImm
-0.5
250
200 20] car.H1
o v-3.5 (] car.H2-2
2150 2 Elcarll-4
> 100 >-5.0 Elcarl2-6
50 65 E car.End-8
0 8.0 QI CTRIMMITT AT [T
0 50 100 150 200 0 50 100 150 200
time time
(a) fc trajectory samples. Fuel con- (b) Road choice samples.

sumption on the vertical axis

Fig. 2. Evaluation of strategy Opt via simulation.

We are interested in synthesizing strategies for various objectives. Being pri-
marily concerned with fuel-consumption, the query

strategy Opt = minE (fc) [<=200] : <> Car.End

will provide (by reinforcement learning!) the strategy Opt, that minimizes the
expected total fuel-consumption, learning from runs which are maximally 200
time units long. The relativized query E[<=200 ; 1000] (max: fc) under Opt,

! The reinforcement learning uses machine learning techniques to learn strategies from
sets of randomly generated runs. See [2] for more details.

6 K.G. Larsen

generates 1000 runs of length 200 time units and then averages the maximum
value of fc from each run. this is used to estimate the expected cost to be
200.39. Figure 2a summarizes 10 random runs according Opt illustrating fuel-
consumption. None of the runs had a fuel consumption of 400 indicating that we
always choose the energy-efficient roads. In Fig. 2b we see that this is actually the
case as the simulations always choose to go to locations H1 and H2, which models
the energy-efficient roads.

Now, assume that the task must be completed before 150 time-units. From
Fig.2 it can be seen that the strategy Opt unfortunately does not guarantee
this, as there are a few runs which exceeds 150 before reaching End. However,
the query

strategy Safe = control: A<> Car.End and time<=150

will generate the most permissive (non-deterministic) strategy Safe that guar-
antees this bound but unfortunately with a high expected total fuel-consumption
of 342.19. However, the relativized learning query

strategy OptSafe = minE (fc) [<=200] : <> Car.End under Safe

will provide a sub-strategy OptSafe that minimizes the expected total fuel-
consumption — here found to be 279.87 — subject to the constraints of
Safe. Figure3 summarizes 10 random runs according to SafeOpt, incidat-
ing that only road L1 is never choosen. Also, the failed model checking of
E<> Car.H2 and time>=51 and Car.x==0 under Safe reveals that the high
road H2 may only be choosen in case the first phase is completed before 50
time-units, confirming the observations from the simulations.

69 I
400 / -0.5
320 -2.0 EcarH1
240 g-3.5 [car.H2-2
2160 S50 T % e
T ar.Lz-
80 65 E car.End-8
o 8.0 I T T T
0 50 100 150 200 0 50 100 150 200
time time
(a) fc trajectory samples. (b) Road choice samples.

Fig. 3. Evaluation of strategy OptSafe via simulation.

In general, as shown in the overview Fig.4, UPPAAL STRATEGO will start
from a SPTG P. It can then abstract P into a timed game (TGA) G by simply
ignoring prices and stochasticity in the model. Using G, UPPAAL TIGA [1] may

Dependable and Optimal Cyber-Physical Systems 7

time automata

timed game () Strategy((statistical)model checking)
synthesis

g g
g : gl
abstractionT o E(0)
min
o ———— ° Plo°
(optimization)

Learning strategy stochastic timed automata
(statistical model checking)

stochastic priced timed game

Fig. 4. Overview of UPPAAL STRATEGO

now be used to (symbolically) synthesize a (most permissive) strategy o meet-
ing a required safety or (time-bounded) liveness constraint ¢. The TGA G under
o (denoted G|o) may now be subject to additional (statistical) model check-
ing using classical UPPAAL[S] and UppAAL SMC [4,5]. Similarly, the original
STGA P under o may be subject to statistical model checking. Now using rein-
forcement learning [2], we may synthesize near-optimal strategies that minimizes
(maximizes) the expectation of a given cost-expression cost. In case the learn-
ing is performed from P|o, we obtain a sub-strategy o° of o that optimizes the
expected value of cost subject to the hard constraints guaranteed by o. Finally,
given ¢°, one may perform additional statistical model checking of P|o°.

3 Adaptive Cruice Control

These days the Google Self-Driving car is about to become a reality: legislation
has been passed in several U.S. states allowing driverless cars, in April 2014,
Google announced that their vehicles had been logging nearly 1.1 million km, and
it is forecast that Google’s self-driving cars will hit the roads this summer. Also,
in Europe driverless cars have been actively pursued, both by the automotive
industry itself and within a number of national and European research projects
(e.g. FP7 and Horizon2020). With more and more traffic, European roads are
becoming increasingly congested, polluted and unsafe. One potential solution to
this growing problem is seen to be the use of small, automated, low-polluting
vehicles for driverless transport in (and between) cities. Within the last decade, a
number of European projects have been launched for making transport systems
capable of fully automated driving, energy efficient and environmentally friendly
while performing. In addition, many individual driving assistant systems based
on suitable sensors have been developed for cars.

In [7], we have considered a small part of lane-change manoeuvres, namely
the existence of a safe-distance controller (assumed in the above work of Olderog
et al.). In particular, we demonstrated how UPPAAL STRATEGO may be applied
to automatically obtain a safe yet optimal adaptive strategy safe for the cruice
control. Modelling the cruice control as a game with a car in front a safe strategy
was synthezed ensuring that the distance to the front care would never get
below 5m. In fact utilizing the distinct feature of UPPAAL STRATEGO- allowing

8 K.G. Larsen
140 — ‘ : ‘
O model
Q —— 6.00+2.50v2
120 —— 5.54+0,905v+0.0589y2+0.00177v3 -

100 -\ : @ 4
80 [Q : /gZS

infimum: distance
[=)]
o
T
|

20 L \ Cyﬁ? i
ol
OO
0 L L L L L L
-20 -10 0 10 20 30

v=(velocityFront - velocityEgo)

Fig. 5. Smallest distance possible under the safe strategy as a function of speed differ-
ence computed using inf{velocityFront-velocityEgo==v}: distance under safe
for each v value. Connecting lines are from linear regression analysis.

additional properties to be verified of a synthesized strategy — we may verify the
smallest distance possible to the front care which will not violate the safe as
shown in Fig. 5.

Now asking for a sub-strategy safeFast of safe that will minimize the
expected accumulated distance to the front care yields a substantial improve-
ment as seen in Fig. 6.

0.032

0.028 ‘
Z0.024 :
= o
5 0.020 i Bl safe
20.016 E [fastSafe
3 : Ed avgsafe
2 0.012 B avgFastsafe
2 0.008 :
o B

0.004 ’—’_‘

0] e [] ;

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
rDistance

Fig. 6. The probability density distribution over rDistance at time >= 100 thus after
100 time units under the strategies safe and safeFast. The (dark) red bars for safe
and the (light) green bars for safeFast. (Color figure online)

4 Home Automation

Home automation includes the centralized control of a number of functionalities
in a house such as lighting, HVAC (heating, ventilation and air conditioning),

Dependable and Optimal Cyber-Physical Systems 9

appliances, security locks of gates and doors as well as other systems. The overall
goal is to achieve improved convenience, comfort, energy efficiency as well as
security. The popularity of home automation has increased significantly in recent
years through affordable smartphone and tablet connectivity. Also the emergence
of “Internet of Things” has tied in closely with the popularization of home
automation.

In [6] we collaborated with the Danish company Seluxit within the
European project CASSTING?2. The focus was on the floorheating system of
a family house, where each room of the house has its own hot-water pipe circuit.
These are controlled through a number of valves based on information about
room temperatures communicated wirelessly (periodically due to energy consid-
erations) from a number of temperature sensors. In the existing system, a simple
“Bang-Bang”-like strategy is applied, however, there are though several problems
with this strategy, as experienced by the house owner: it completely disregards
the interaction between rooms in terms of heat-exchange, the impact of the out-
side temperature and weather forecast as well as information about movements
in the house. Taking this knowledge into account should potentially enable the
synthesis of significantly improved control strategies. Unfortunately, direct appli-
cation of UPPAAL STRATEGO does not scale: due to the enormous number of
control modes it is virtually impossible to learn optimal control. Instead, we
proposed a novel on-line synthesis methodology, where we periodically—and on-
line—learn the optimal controller for the near future based on the current sensor
readings. For additional scalability, we proposed and applied a novel composi-
tional synthesis approach.

In particular, the strategy provided by UPPAAL STRATEGO takes weather
information into account, as illustrated by Fig.7 showing the spring stability
scenario. From points of time between 0 and 500 min, the outside temperature
increases and exceeds the target temperature. We observe that since the con-
troller synthesized by UPPAAL STRATEGO is able to look at the weather forecast
for the next 45 min, it shuts down the valves much earlier than the other con-
trollers. This results in energy savings and increased comfort.

—T7 — T — T Ta —T7 —Tio
—Ts T [21 [— T Ts — Tg T
— T T3 —Tg — To
: 205 : : :
500 1000 1500 2000 0 500 1000 1500 2000
(a) Bang-Bang Controller (b) UpPAaAL STRATEGO Controller

Fig. 7. Room temperatures in the spring stability scenario

2 http://www.cassting-project.eu/.

http://www.cassting-project.eu/

10

K.G. Larsen

References

Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 121-125. Springer, Berlin (2007). doi:10.1007/
978-3-540-73368-3_14

David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sgrensen, M.G.,
Taankvist, J.H.: On time with minimal expected cost!. In: Cassez, F., Raskin,
J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129-145. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-11936-6_10

David, A., Jensen, P.G., Larsen, K.G., Miku¢ionis, M., Taankvist, J.H.: UPPAAL
STRATEGO. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206-211. Springer, Heidelberg (2015). do0i:10.1007/978-3-662-46681-0_16

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397415 (2015)

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for statisti-
cal model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349-355. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1_27

Larsen, K.G., Mikucionis, M., Muniz, M., Srba, J., Taankvist, J.H.: Online and
compositional learning of controllers with application to floor heating. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 244-259. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49674-9_14

Larsen, K.G., Mikuéionis, M., Taankvist, J.H.: Safe and optimal adaptive
cruise control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System
Design. LNCS, vol. 9360, pp. 260-277. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23506-6_17

Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134-152
(1997)

http://dx.doi.org/10.1007/978-3-540-73368-3_14
http://dx.doi.org/10.1007/978-3-540-73368-3_14
http://dx.doi.org/10.1007/978-3-319-11936-6_10
http://dx.doi.org/10.1007/978-3-662-46681-0_16
http://dx.doi.org/10.1007/978-3-642-22110-1_27
http://dx.doi.org/10.1007/978-3-642-22110-1_27
http://dx.doi.org/10.1007/978-3-662-49674-9_14
http://dx.doi.org/10.1007/978-3-319-23506-6_17
http://dx.doi.org/10.1007/978-3-319-23506-6_17

Verifying Parametric Thread Creation

Igor Walukiewicz

CNRS, LaBRI, University of Bordeaux, Bordeaux, France

Abstract. Automatic verification of concurrent systems is an active
area of research since at least a quater of a century. We focus here on
analyses of systems designed to operate with an arbitrary number of
processes. German and Sistla, already in 1992, initiated in depth investi-
gation of this problem for finite state systems. For infinite state systems,
like pushdown systems, extra care is needed to avoid undecidability, as
reachability is undecidable even for two identical pushdown processes
communicating via single variable. Kahlon and Gupta in 2006 have pro-
posed to use parametrization as means of bypassing this undecidability
barrier. Indeed when instead of two pushdown processes we consider some
unspecified number of them, the reachability problem becomes decidable.
This idea of parametrization as an abstraction has been pursued further
by Hague, who in 2011 has shown that the problem is still decidable
when one of the pushdown processes is made different from the others:
there is one leader process and many contributor processes. We discuss
how the idea of parametrization as an abstraction leads to decidability,
and in some cases even efficient algorithms, for verification of systems
which combine recursion with dynamic thread creation.

1 An Overview

We consider recursive programs with thread creation. A thread can be abstracted
as a pushdown process. Communication between threads is via global variables as
well as via local variables that are shared between a thread and its sub-threads.
This setting is an abstraction of a situation found today in many programming
languages such as Java, Scala, or Erlang.

While this setting can model many phenomena in programming languages, it
is not adapted to automatic verification. Reachability is not decidable even for
the case when there are two threads communicating over a 2-bit shared variable.
In absence of global variables, reachability becomes undecidable already for two
pushdown threads if a rendez-vous primitive is available [19]. A similar result
holds if finitely many locks are allowed [11].

We obtain a decidable setting by relaxing the semantics of thread creation
operation. Instead of creating one thread the operation creates some unspecified
number of threads. The general idea goes back to Kahlon, who observed that
various verification problems become decidable for multi-pushdown systems that
are parametric [10], i.e., systems consisting of an arbitrary number of indistin-
guishable pushdown threads. Later, Hague extended this result by showing that
© Springer International Publishing AG 2017

B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 11-14, 2017.
DOI: 10.1007/978-3-319-51963-0_2

12 1. Walukiewicz

an extra designated leader thread can be added without sacrificing decidability
[9]. All threads communicate here over a shared, bounded register without lock-
ing. It is crucial for decidability that only one thread has an identity, and that
the operations on the shared variable do not allow to elect a second leader.

The setting of Hague has attracted some attention in recent years. Esparza
et al. established the complexity of deciding reachability in that model [7]. La
Torre et al. generalized these results to hierarchically nested models for a fixed
nesting depth [14]. Durand-Gasselin et al. [6] have shown decidability of the live-
ness problem for this model. It turns out that the problem has a surprisingly low
complexity, namely it is PSPACE-complete [8]. Another problem that has been
considered is universal reachability: this is the question of deciding if on every
maximal execution trace of the system, the leader reaches some designated state.
In terms of temporal logics, reachability is about EF properties, while universal
reachability is about AF properties. While still decidable, this problem has very
different nature and it turns out to be coNEXPTIME-complete [8]. Indeed, gen-
eralizing this result we obtain that all stuttering LTL properties of the leader
process can be decided in cONEXPTIME.

The results above concern the case with one leader process that issues one
thread creation operation resulting in some number of sub-processes who do not
create any new sub-processes. It turns out that we can go even further and have
a decidable model for recursive programs with parametric thread creation [18].
Reachability is decidable for a very general class of processes. Every sub-process
can maintain a local pushdown store, spawn new sub-processes, and communi-
cate over global variables, as well as via local variables with its sub-processes
and with its parent. As in [7,9,14], all variables have bounded domains and no
locks are allowed.

The algorithm for deciding reachability in this expressive model relies on
well-quasi-orders, so its complexity is very high. Yet, there are simpler instances
where we know algorithms of a reasonable complexity [18]. As one such instance,
we consider the situation where communication between sub-processes is through
global variables only. We show that reachability for this model can be effectively
reduced to reachability in the model of Hague [7,9], giving us a precise char-
acterization of the complexity for pushdown threads as PSPACE. As another
instance, we consider a parametric variant of generalized futures where spawned
sub-processes may not only return a single result but create a stream of answers.
For that model, we obtain complexities between NP and DEXPTIME. This opens
the venue to apply e.g. SAT-solving to check safety properties of such programs.

2 Related Work

There are other approaches than parametrization to get a decidable model of
recursive programs with thread creation.

One approoach is to consider systems with locks. As we have mentioned,
the model with locks is undecidable even if there are no shared variables, no
rendez-vous, or other means of communication between processes. Interestingly,

Verifying Parametric Thread Creation 13

decidability is regained if locking is performed in a disciplined way. This is, e.g.,
the case for nested [11] and contextual locking [5]. These decidability results
have been extended to dynamic pushdown networks as introduced by Bouajjani
et al. [4]. This model combines pushdown threads with dynamic thread creation
by means of a spawn operation, while it ignores any exchange of data between
threads. Indeed, reachability of dedicated states or even regular sets of configu-
rations stays decidable in this model, if finitely many global locks together with
nested locking [15,17] or contextual locking [16] are allowed. Such regular sets
allow, e.g., to describe undesirable situations such as concurrent execution of
conflicting operations.

Another approach is to bound the number of switches of execution contexts.
A simple definition of an execution context is a part of an execution when only
one process reads from its stack. A context switch is when some other process
starts reading from its stack. So the reachability problem now asks for an exe-
cution with a given fixed number of context switches. Many decidability results
have been established in the last decade for more and more refined notions of
context switching [1-3,12,13]. In [1,3], dynamic thread creation is allowed.

References

1. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent
programs with dynamic creation of threads. Logical Meth. Comput. Sci. 7(4), 1-
48 (2011)

2. Bollig, B., Gastin, P., Schubert, J.: Parameterized verification of communicating
automata under context bounds. In: Ouaknine, J., Potapov, 1., Worrell, J. (eds.)
RP 2014. LNCS, vol. 8762, pp. 45-57. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11439-2_4

3. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348-359. Springer, Heidelberg (2005).
doi:10.1007/11590156_28

4. Bouajjani, A., Miller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 473-487. Springer, Heidelberg (2005). doi:10.1007/
11539452_36

5. Chadha, R., Madhusudan, P., Viswanathan, M.: Reachability under contextual
locking. In: Flanagan, C., Konig, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
437-450. Springer, Heidelberg (2012)

6. Durand-Gasselin, A., Esparza, J., Ganty, P., Majumdar, R.: Model checking para-
meterized asynchronous shared-memory systems. In: Kroening, D., Pasareanu, C.S.
(eds.) CAV 2015. LNCS, vol. 9206, pp. 67-84. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-21690-4_5

7. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous
shared-memory systems. J. ACM 63(1), 10 (2016)

8. Fortin, M., Muscholl, A., Walukiewicz, I.: On parametrized verification of asyn-
chronous, shared-memory pushdown systems. CoRR, abs/1606.08707 (2016)

http://dx.doi.org/10.1007/978-3-319-11439-2_4
http://dx.doi.org/10.1007/978-3-319-11439-2_4
http://dx.doi.org/10.1007/11590156_28
http://dx.doi.org/10.1007/11539452_36
http://dx.doi.org/10.1007/11539452_36
http://dx.doi.org/10.1007/978-3-319-21690-4_5
http://dx.doi.org/10.1007/978-3-319-21690-4_5

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

1. Walukiewicz

Hague, M.: Parameterised pushdown systems with non-atomic writes. In:
Chakraborty, S., Kumar, A. (eds.) IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 12-14, 2011,
Mumbai, India, vol. 13 of LIPIcs, pp. 457-468. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, December 2011

Kahlon, V.: Parameterization as abstraction: a tractable approach to the dataflow
analysis of concurrent programs. In: Proceedings of the Twenty-Third Annual
IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 , Pittsburgh,
PA, USA, pp. 181-192. IEEE Computer Society, June 2008

Kahlon, V., Ivanc¢ié, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505-518. Springer, Heidelberg (2005). doi:10.1007/11513988_49

La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concur-
rent programs using linear interfaces. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 629-644. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14295-6_54

La Torre, S., Madhusudan, P., Parlato, G.: Sequentializing parameterized pro-
grams. In: FIT 2012, EPTCS, vol. 87, pp. 34-47 (2012)

La Torre, S., Muscholl, A., Walukiewicz, I.: Safety of parametrized asynchro-
nous shared-memory systems is almost always decidable. In: Aceto, L., de Frutos-
Escrig, D. (eds.) 26th International Conference on Concurrency Theory, CON-
CUR, LIPIcs, Madrid, Spain, September 1.4, vol. 42, pp. 72-84. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik (2015)

Lammich, P., Miiller-Olm, M.: Conflict analysis of programs with procedures,
dynamic thread creation, and monitors. In: Alpuente, M., Vidal, G. (eds.) SAS
2008. LNCS, vol. 5079, pp. 205-220. Springer, Heidelberg (2008)

Lammich, P., Miiller-Olm, M., Seidl, H., Wenner, A.: Contextual locking
for dynamic pushdown networks. In: Logozzo, F., Fahndrich, M. (eds.) SAS
2013. LNCS, vol. 7935, pp. 477-498. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38856-9_25

Lammich, P., Miiller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 525-539. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02658-4_39

Muscholl, A., Seidl, H., Walukiewicz, I.: Reachability for dynamic parametric
processes. CoRR, abs/1609.05385 (2016)

Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416-430 (2000)

http://dx.doi.org/10.1007/11513988_49
http://dx.doi.org/10.1007/978-3-642-14295-6_54
http://dx.doi.org/10.1007/978-3-642-14295-6_54
http://dx.doi.org/10.1007/978-3-642-38856-9_25
http://dx.doi.org/10.1007/978-3-642-38856-9_25
http://dx.doi.org/10.1007/978-3-642-02658-4_39
http://dx.doi.org/10.1007/978-3-642-02658-4_39

Network Constructors: A Model
for Programmable Matter

Othon Michail2®) and Paul G. Spirakis!2

! Department of Computer Science, University of Liverpool, Liverpool, UK
{Othon.Michail,P.Spirakis}@liverpool.ac.uk
2 Computer Technology Institute and Press “Diophantus” (CT1I), Patras, Greece

Abstract. We discuss recent theoretical models for programmable mat-
ter operating in a dynamic environment. In the basic Network Construc-
tors model, all devices are finite automata, begin from the same ini-
tial state, execute the same protocol, and can only interact in pairs.
The interactions are scheduled by a fair (or uniform random) sched-
uler, in the spirit of Population Protocols. When two devices interact,
the protocol takes as input their states and the state of the connection
between them (on/off) and updates all of them. Initially all connections
are off. The goal of such protocols is to eventually construct a desired
stable network, induced by the edges that are on. We present protocols
and lower bounds for several basic network construction problems and
also universality results. We next highlight minimal strengthenings of
the model, that can be exploited by appropriate network-transformation
protocols in order to achieve termination and the mazimum computa-
tional power that one can hope for in this family of models. Finally, we
discuss a more applied version of these abstract models, enriched with
geometric constraints, aiming at capturing some first physical restrictions
in potential future programmable matter systems operating in dynamic
environments.

1 Introduction

The realization of computing systems and computer networks was indisputably
one of the most outstanding achievements of science and engineering of the last
century. The impact of Information and Communication Technologies on society,
industry, and everyday life was incomparable. Digital communications and the
Internet have made the world look much smaller, personal computers radically
changed office work, largely simplifying it, high processing speeds made it possi-
ble for the first time to simulate and accurately predict a wide range of physical
phenomena, from weather forecast to chemical reactions and whole-cell simula-
tions [KSM+12], and combined to increased storage capabilities, transformed the

Supported in part by the School of EEE/CS of the University of Liverpool, NeST
initiative, and the EU IP FET-Proactive project MULTIPLEX under contract no
317532.

© Springer International Publishing AG 2017

B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 15-34, 2017.
DOI: 10.1007/978-3-319-51963-0-3

16 O. Michail and P.G. Spirakis

world of paper to a world of digital information, where everything, from a data-
trace of successful collisions in CERN that produced the Higgs boson [CKS+12]
to the human genome, can be stored and retrieved. Computing and Informa-
tion Sciences have been extremely successful in revealing the laws underlying
all possible ways of manipulating information. Every possible object, system or
problem can be encoded in an appropriate binary representation, which can then
be stored, processed, retrieved and transmitted. It would be reasonable to say
that the 20th century was the century of information.

However, the story does not seem to end here. The established knowledge
of manipulating information seems to have opened the road towards a vision
that will further reshape society to an unprecedented degree. This vision con-
cerns our ability to manipulate matter via information-theoretic and computing
mechanisms and principles. It will be the jump from amorphous information
to the incorporation of information to the physical world. Information will not
only be part of the physical environment: it will constantly interact with the
surrounding environment and will have the ability to reshape it. Matter will
become programmable [GCMO5] which is a plausible future outcome of progress
in high-volume nanoscale assembly that makes it feasible to inexpensively pro-
duce millimeter-scale units that integrate computing, sensing, actuation, and
locomotion mechanisms. This will enable the astonishing possibility of trans-
ferring the discrete dynamics from the computer memory black-box to the real
world and to achieve a physical realization of any computer-generated object. “It
will have profound implications for how we think about chemistry and materi-
als. Materials will become user-programmed and smart, adapting to changing
conditions in order to maintain, optimize or even create a whole new function-
ality using means that are intrinsic to the material itself. It will even change the
way we think about engineering and manufacturing. We will for the first time
be capable of building smart machines that adapt to their surroundings, such
as an airplane wing that adjusts its surface properties in reaction to environ-
mental variables” [Zak07], or even further realize machines that can self-built
autonomously.

This vision is not a human invention. It is an inspiration from a property that
pervades the biological world. Every biological organism is a collection of rela-
tively simple units of matter (the cells) coupled with information storing, process-
ing, and transmission capabilities. Moreover, the effort to realize this vision has
already begun and the first outcomes are more than promising. For example, it
has been already demonstrated that it is possible to fold long, single-stranded
DNA molecules into arbitrary nanoscale two-dimensional shapes and patterns
[Rot06]. Also, a system was recently reported that demonstrates programmable
self-assembly of complex two-dimensional shapes with a thousand-robot swarm
[RCN14]. “This was enabled by creating small, cheap, and simple autonomous
robots designed to operate in large groups and to cooperate through local inter-
actions and by developing a collective algorithm for shape formation that is
highly robust to the variability and error characteristic of large-scale decentral-
ized systems” [RCN14]. Other systems for programmable matter include the

Network Constructors: A Model for Programmable Matter 17

Robot Pebbles [GKR10], consisting of 1cm cubic programmable matter mod-
ules able to form 2-dimensional (abbreviated “2D” throughout) shapes through
self-disassembly, and the Millimotein [KCL+12], a chain of programmable mat-
ter which can fold itself into digitized approximations of arbitrary 3-dimensional
(abbreviated “3D” throughout) shapes.

Apart from the fact that systems work is still in its infancy, there is also
an apparent lack of unifying formalism and theoretical treatment. The following
are some of the very few exceptions aiming at understanding the fundamental
possibilities and limitations of this prospective. The area of algorithmic self-
assembly tries to understand how to program molecules (mainly DNA strands)
to manipulate themselves, grow into machines and at the same time control their
own growth [Dot12]. The theoretical model guiding the study in algorithmic
self-assembly is the Abstract Tile Assembly Model (aTAM) [Win98, RW00] and
variations. Recently, a model, called the nubot model, was proposed for studying
the complexity of self-assembled structures with active molecular components
[WCG+13]. This model “is inspired by biology’s fantastic ability to assemble
biomolecules that form systems with complicated structure and dynamics, from
molecular motors that walk on rigid tracks and proteins that dynamically alter
the structure of the cell during mitosis, to embryonic development where large-
scale complicated organisms efficiently grow from a single cell” [WCG+13].
Another very recent model, called the Network Constructors model, studied
what stable networks can be constructed by a population of finite-automata
that interact randomly like molecules in a well-mixed solution and can estab-
lish bonds with each other according to the rules of a common small protocol
[MS16b]. Interestingly, the special case of the model that cannot create bonds
(known as the Population Protocol model [AAD+06]) is known to be formally
equivalent to chemical reaction networks (CRNs), which model chemistry in a
well-mized solution and are widely used to describe information processing occur-
ring in natural cellular regulatory networks [Dot14]. Also the recently proposed
Amoebot model, offers a versatile framework to model self-organizing particles
and facilitates rigorous algorithmic research in the area of programmable matter
[DDG+14,DGP+16].

At the same time, recent research in distributed computing theory and prac-
tice is taking its first timid steps on the pioneering endeavor of investigating the
possible relationships of distributed computing systems to physical and biological
systems. The first main motivation for this is the fact that a wide range of phys-
ical and biological systems are governed by underlying laws that are essentially
algorithmic. The second is that the higher-level physical or behavioral properties
of such systems are usually the outcome of the coexistence, which may include
both cooperation and competition, and constant interaction of very large num-
bers of relatively simple distributed entities respecting such laws. This effort, to
the extent that its perspective allows, is expected to promote our understanding
on the algorithmic aspects of our (distributed) natural world and to develop
innovative artificial systems inspired by them.

18 O. Michail and P.G. Spirakis

In the present paper, we shall focus on the Network Constructors model
and its existing variations. In Sect. 2, we present the basic Network Construc-
tors model and give the main definitions to be used in the sequel. In Sect. 3,
we present protocols for the spanning line construction problem and bounds for
other basic network construction problems. Section 4 goes one step further, show-
ing how one can establish universality results. In Sect. 5, we show how network-
transformation protocols can exploit minimal strengthenings of the basic model,
in order to maximize the computational power. Section 6 discusses a geometric
variant of the basic model, in which the nodes can be programmed to self-
assemble into complex 2D or 3D shapes. Finally, Sect. 7 highlights some promis-
ing directions for future research.

2 The Network Constructors Model

Suppose a set of tiny computational devices (possibly at the nanoscale) are
injected into a human circulatory system for the purpose of monitoring or even
treating a disease. The devices are incapable of controlling their mobility. The
mobility of the devices, and consequently the interactions between them, stems
solely from the dynamicity of the environment, the blood flow inside the circula-
tory system in this case. Additionally, each device alone is incapable of perform-
ing any useful computation, as the small scale of the device highly constrains
its computational capabilities. The goal is for the devices to accomplish their
task via cooperation. To this end, the devices are equipped with a mechanism
that allows them to create bonds with other devices (mimicking nature’s abil-
ity to do so). So, whenever two devices come sufficiently close to each other and
interact, apart from updating their local states, they may also become connected
by establishing a physical connection between them. Moreover, two connected
devices may at some point choose to drop their connection. In this manner, the
devices can organize themselves into a desired global structure. This network-
constructing self-assembly capability allows the artificial population of devices
to evolve greater complexity, better storage capacity, and to adapt and optimize
its performance to the needs of the specific task to be accomplished.

Our goal in [MS16b] was to study the fundamental problem of network con-
struction by a distributed computing system. The system consists of a set of n
processes that are capable of performing local computation (via pairwise inter-
actions) and of forming and deleting connections between them. Connections
between processes can be either physical or virtual depending on the applica-
tion. In the most general case, a connection between two processes can be in one
of a finite number of possible states. For example, state 0 could mean that the
connection does not exist while state i € {1,2,...,k}, for some finite k, that the
connection exists and has strength <. We considered the simplest case, which we
call the on/off case, in which, at any time, a connection can either exist or not
exist; that is, there are just two states for the connections, 1 and 0, respectively.
If a connection exists we also say that it is active and if it does not exist we say
that it is inactive. Initially all connections are inactive and the goal is for the

Network Constructors: A Model for Programmable Matter 19

processes, after interacting and activating/deactivating connections for a while,
to end up with a desired stable network. In the simplest case, the output-network
is the one induced by the active connections and it is stable when no connection
changes state any more.

Our aim in [MS16b] was to initiate this study by proposing and studying
a very simple, yet sufficiently generic, model for distributed network construc-
tion. To this end, we assumed the computationally weakest type of processes.
In particular, the processes are finite automata that all begin from the same
initial state and all execute the same finite program which is stored in their
memory (i.e., the system is homogeneous). The communication model that we
considered is also very minimal. In particular, we considered processes that are
inhabitants of an adversarial environment that has total control over the inter-
process interactions. Such an environment is modeled by an adversary scheduler
that operates in discrete steps, selecting in every step a pair of processes which
then interact according to the common program. This represents very well sys-
tems of (not necessarily computational) entities that interact in pairs whenever
two of them come sufficiently close to each other. When two processes interact,
the program takes as input the states of the interacting processes and the state
of their connection and outputs a new state for each process and a new state
for the connection. The only restriction that we imposed on the scheduler, in
order to study the constructive power of the model, is that it is fair, by which
we mean the weak requirement that, at every step, it assigns to every reachable
configuration of the system a non-zero probability to occur. In other words, a
fair scheduler cannot forever conceal an always reachable configuration of the
system. Note that under such a generic scheduler, we cannot bound the running
time of our constructors. To estimate the efficiency of our solutions, we assume a
uniform random scheduler, one of the simplest fair probabilistic schedulers. The
uniform random scheduler selects in every step independently and uniformly at
random a pair of processes to interact from all such pairs. What renders this
model interesting is, as we shall see, its ability to achieve complex global behav-
ior via a set of notably simple, uniform (i.e., with codes that are independent of
the size of the system), homogeneous, and cooperative entities.

We now give a simple illustration of the above. Assume a set of n very
weak processes that can only be in one of two states, “black” or “red”. Initially,
all processes are black. We can think of the processes as small particles that
move randomly in a fair solution. The particles are capable of forming and
deleting physical connections between them, by which we mean that, whenever
two particles interact, they can read and write the state of their connection. To
keep this first model as simple as possible, we assume that fairness of the solution
is independent of the states of the connections.! In particular, we assume, for

! This is in contrast to schedulers that would take into account the geometry of the
active connections and would, for example, forbid two non-neighboring particles of
the same component to interact with each other. Such a geometrically restricted
variant, studied in [Mic15], shall be discussed in Sect. 6.

20 O. Michail and P.G. Spirakis

the time being, that, throughout the execution, every pair of processes may be
selected for interaction.

Consider now the following simple problem. We want to identically program
the initially disorganized particles so that they become self-organized into a
spanning star. In particular, we want to end up with a unique black particle
connected (via active connections) to n—1 red particles and all other connections
(between red particles) being inactive. Conversely, given a (possibly physical)
system that tends to form a spanning star we would like to unveil the code
behind this behavior.

Consider the following program. When two black particles that are not con-
nected interact, they become connected and one of them becomes red. When
two connected red particles interact they become disconnected (i.e., reds repel).
Finally, when a black and a red that are not connected interact they become
connected (i.e., blacks and reds attract).

The protocol forms a spanning star as follows. As whenever two blacks inter-
act only one survives and the other becomes red, eventually a unique black will
remain and all other particles will be red (we say “eventually”, meaning “in finite
time”, because we do not know how much time it will take for all blacks to meet
each other, but, from fairness, we know that this has to occur in a finite number
of steps). As blacks and reds attract while reds repel, it is clear that eventually
the unique black will be connected to all reds while every pair of reds will be
disconnected. Moreover, no rule of the program can modify such a configuration,
so the constructed spanning star is stable (see Fig.1). It is worth noting that
this very simple protocol is optimal both with respect to (abbreviated “w.r.t.”
throughout) the number of states that it uses and w.r.t. the time it takes to
construct a stable spanning star under the uniform random scheduler.

. /
(a) (b) (©

Fig. 1. (a) Initially all particles are black and no active connections exist. (b) After
a while, only 3 black particles have survived each having a set of red neighbors (red
particles appear as gray here). Note that some red particles are also connected to red
particles. The tendency is for the red particles to repel red particles and attract black
particles. (¢) A unique black has survived, it has attracted all red particles, and all
connections between red particles have been deactivated. The construction is a stable
spanning star.

Network Constructors: A Model for Programmable Matter 21

Our model for network construction has been strongly inspired by the Popu-
lation Protocol model [AAD+06] and the Mediated Population Protocol model
[MCS11]. In the former, connections do not have states. States on the connections
were first introduced in the latter. The main difference to the present model is
that in those models the focus was on the computation of functions of some input
values and not on network construction. Another important difference is that we
now allow the edges to choose between only two possible states which was not the
case in [MCS11]. As already mentioned, when operating under a uniform ran-
dom scheduler, population protocols are formally equivalent to chemical reaction
networks (CRNs). “With upcoming advances in synthetic biology, CRNs are a
promising programming language for the design of artificial molecular control
circuitry” [Dot14]. However, CRNs and population protocols can only capture
the dynamics of molecular counts and not of structure formation. Our model
then may be also viewed as an extension of population protocols and CRNs
aiming to capture the stable structures that may occur in a well-mixed solution.
From this perspective, our goal is to determine what stable structures can result
in such systems (natural or artificial), how fast, and under what conditions (e.g.,
by what underlying codes/reaction-rules).

2.1 Definitions

Definition 1. A Network Constructor (NET) is a distributed protocol defined
by a 4-tuple (Q, go, Qout,0), where @ is a finite set of node-states, qo € Q is the
initial node-state, Qo C @ is the set of output node-states, and 6 : @ X Q X
{0,1} - @ x @ x {0,1} is the transition function.

The system consists of a population V; of n distributed processes/nodes. In
the generic case, there is an underlying interaction graph Gy = (Vi, Ey) spec-
ifying the permissible interactions between the nodes. Interactions are always
pairwise. In the basic model, G is a complete undirected interaction graph, i.e.,
Er = {uwv : u,v € Vy and u # v}, where uv = {u, v}. Initially, all nodes in V;
are in the initial node-state gg. A central assumption of the model is that edges
have binary states. An edge in state 0 is said to be inactive while an edge in
state 1 is said to be active. All edges are initially inactive.

Execution of the protocol proceeds in discrete steps. In every step, a pair of
nodes uv from FE7 is selected by an adversary scheduler and these nodes interact
and update their states and the state of the edge joining them according to the
transition function 4.

A configuration is a mapping C : V1 U Er — Q U {0,1} specifying the state
of each node and each edge of the interaction graph. An ezxecution is a finite or
infinite sequence of configurations Cy, C1, Cs, ..., where Cy is an initial configu-
ration and C; — C;11 (‘= meaning “goes via a single interaction to”), for all
1 > 0. A fairness condition is imposed on the adversary to ensure the protocol
makes progress. An infinite execution is fair if for every pair of configurations C
and C’ such that C — C’, if C occurs infinitely often in the execution then so

22 O. Michail and P.G. Spirakis

does C’. In what follows, every execution of a NET will by definition considered
to be fair.

Whenever we study the running time (counted in number of sequential inter-
actions) of a NET, we assume that interactions are chosen by a uniform random
scheduler which, in every step, selects independently and uniformly at random
one of the |Ey| = n(n —1)/2 possible interactions. In this case, the running time
becomes a random variable (abbreviated “r.v.” throughout) X and our goal is
to obtain bounds on the expectation E[X] of X. Note that the uniform random
scheduler is fair with probability 1. We say that an execution of a NET on n
processes constructs a graph (or network) G, if its output stabilizes to a graph
isomorphic to G. We say that a NET A constructs a graph language L with
useful space g(n) < n, if g(n) is the greatest function for which: (i) for all n,
every execution of A on n processes constructs a G € L of order at least g(n)
(provided that such a G exists) and, additionally, (ii) for all G € L there is an
execution of A on n processes, for some n satisfying |[V(G)| > g(n), that con-
structs G. Equivalently, we say that A constructs L with waste n — g(n). Define
REL(g(n)) to be the class of all graph languages that are constructible with
useful space g(n) by a NET. We call REL(:) the relation or on/off class. Also
define PREL(g(n)) in precisely the same way as REL(g(n)) but in the exten-
sion of the above model in which every pair of processes is capable of tossing an
unbiased coin during an interaction between them. In this case, we additionally
require that all graphs have the same probability to be constructed by the pro-
tocol. We denote by DGS(f (1)) (for “Deterministic Graph Space”) the class of
all graph languages that are decidable by a Turing Machine (abbreviated “TM”
throughout) of (binary) space f(1), where [is the length of the adjacency matrix
encoding of the input graph.

3 Basic Constructors

Probably the most fundamental network-construction problem, is the problem of
constructing a spanning line, i.e., a connected graph in which 2 nodes have degree
1 and n—2 nodes have degree 2. Its importance lies in the fact that a spanning line
provides an ordering on the processes which can then be exploited (as discussed
in Sect.4) to simulate a TM and, in this way, to establish universality of the
model.

We begin with a lower bound on the expected time required by any NET to
construct a spanning line.

Theorem 1 (Line Lower Bound [MS16b]). The expected time to conver-
gence of any protocol that constructs a spanning line is 2(n?).

Take any protocol A that constructs a spanning line and any execution of
A on n nodes. It suffices to show that any execution necessarily passes through
a “bottleneck” transition, by which we mean a transition that requires £2(n?)
expected number of steps to occur. Observe that, in any execution, the set of
active edges eventually stabilizes (in this case, to a spanning line), which implies

Network Constructors: A Model for Programmable Matter 23

that there is always a last activation/deactivation of an edge. The idea is to focus
on this last operation before stabilization, and show that either this operation
is a bottleneck transition or an immediately previous operation is a bottleneck
transition. In both cases, any execution passes through a bottleneck transition,
thus paying at that point an §2(n?) expected number of steps. Indeed, if the last
modification was an activation, then the construction just before this modifica-
tion was either a line on n — 1 nodes and an isolated node or two disjoint lines
spanning all nodes. In both cases, the expected number of steps until the last
edge becomes activated is 2(n?). On the other hand, if the last modification was
a deactivation, then this implies that the construction just before this modifica-
tion was a spanning line with an additional active edge between two nodes, u
and v, that are not neighbors on the line. The only interesting case is the one
in which the construction was actually a spanning ring. Then, by considering
the last modification of an edge that resulted in the ring, we obtain again an
expected number of £2(n?) interactions.
We present now our simplest protocol for the spanning line problem.

Simple'GlObal"Line' Q = {quqthalvw}? J: (QO7QO50) - (Q17la 1)7 (Z7QOaO) -
(Q2ala1)7 (l,l,O) - (q27w71)7 ('LU,Q2’]-) - (QQ,w,l), (waqla]-) - (q%la]—)'

In the initial configuration Cpy, all nodes are in state gy and all edges are
inactive, i.e., in state 0. Every configuration C' that is reachable from Cj consists
of a collection of lines and isolated nodes. Additionally, every line has a unique
leader which either occupies an endpoint and is in state [or occupies an internal
node, is in state w, and moves randomly along the line. Lines can expand towards
isolated nodes and two lines can connect their endpoints to get merged into a
single line (with total length equal to the sum of the lengths of the merged
lines plus one). Both of these operations only take place when the corresponding
endpoint of every line that takes part in the operation is in state [. A line resulting
from merging, has a w internal-leader and only waits until the random walk of
w reaches one endpoint and becomes an [leader. Figure 2 gives an illustration
of a typical configuration of the protocol.

1 qo0
! °—o °
q2 : Qo q0
a2 a O o
q1 I o—9° " ,
[e) qo 1 1
q0 o o—°9°
q w G2 q q1 “/%
! : q2 1
o—0—0—0—°0 o—©°
W o [/Fe) Yo

Fig. 2. A typical configuration of Simple-Global-Line (after some time has passed).

24 O. Michail and P.G. Spirakis

Theorem 2 ([MS16b]). Protocol Simple-Global-Line constructs a spanning
line. It uses 5 states and its expected running time is £2(n*) and O(n®).

For correctness, we have to prove two things: (i) there is a set S of output-
stable configurations whose active network is a spanning line, (ii) for every reach-
able configuration C' it holds that C' ~» Cy (‘~»’ meaning “goes in one or more
steps to”) for some Cs € S.

For the running time upper bound, we have an expected number of O(n?)
steps until progress is made (i.e., for another merging to occur given that at least
two I-leaders exist) and O(n?) steps for the resulting random walk (walk of state
w until it reaches one endpoint of the line) to finish and to have the system again
ready for progress. This is because the state actually walks only if it interacts
with one of its (at most) two neighbors on the line. As only 2 interactions over
the ©(n?) possible interactions allow the state to walk, the otherwise O(n?)-time
walk is delayed by a factor of O(n?). As progress must be made n — 2 times, we
conclude that the expected running time of the protocol is bounded from above
by (n — 2)[0(n?) + O(n")] = O(n®).

Next, it can be proved that we cannot hope to improve the upper bound on
the expected running time by a better analysis by more than a factor of n. For
this, we can prove by a Chernoff bound, that the protocol with high probability
(abbreviated “w.h.p.” throughout) constructs @(n) disjoint lines of length 1
during its course. A set of k disjoint lines implies that k¥ — 1 = ©(n) distinct
merging processes have to be executed in order to merge them all into a common
line and each single merging results in the execution of another random walk.
Let tyn be the first time at which there is a line L of length h > k/4. Tt
holds that k/4 < h < k/2 — 1, so there is a remaining length of at least k — h >
k—(k/2—1) = k/2+1 to get merged to L via distinct sequential mergings. Now,
if d; denotes the length of the ith line merged to L, Y the r.v. of the duration
of all random walks, and Y; the r.v. of the duration of the i-th random walk,
we have E[Y] = E}/_ Y] = Y7 _EVi] =Y/ _n*(h+di +...+di_1)d; >
n?Y7_ hd; =nPhY0_ d; > n? - (k/4) - (k/2+1) =n?-O(n)-O(n) = O(n).
This proves the desired £2(n*) lower bound.

By using more states, we can develop an alternative protocol that constructs
a spanning line much faster. The main difference between this and the previous
protocol is that we now totally avoid mergings as they seem to consume much
time. As before, when the leaders of two lines interact, one of them becomes
eliminated and the edge is activated. But now, the leader that has survived does
not initiate a merging process. Instead, it steals a node from the eliminated
leader’s line and disconnects the two new lines: its own line, which has increased
by one and is called awake, and the eliminated leader’s line, which has decreased
by one and is called sleeping. The code follows:

Fast-Global-Line. Q = {q()aql,qQaQévlallvlnaanfl}a J: (QO,(Iovo) - (qlvl,l)v
(laq070) - (q27la]-)7 (l,l,O) - (qévllal)a (l/7q2a1) - (l/,7f1a0)7 (ZI7Q1»1) -
(l”7f0a0>7 (l//aqé?1> - (laQQvl)a (l7f070) - (qQ7Za1)7 (laflvo) - (q/2’ll71)

Network Constructors: A Model for Programmable Matter 25

In more detail, when two lines L; and Lo interact via their [-leader endpoints,
one of the leaders, say w.l.o.g. that of Ly, becomes I’ and the other becomes ¢j.
We can interpret this operation as expanding L; on the endpoint of L, and
obtaining two new lines (still attached to each other): L} which is awake and

%, which is sleeping. Now, the I’-leader of L) waits to interact with its neighbor
from L5 (which is either a g2 or a ¢1) to deactivate the edge between them and
disconnect L} from L. This operation leaves L] with an {”-leader and L} with
a sleeping leader f; (it can also be the case that L} is just a single isolated fj,
in case Lo consisted only of 2 nodes). Then [’ waits to meet its g5 neighbor to
convert it to ¢o and update itself to [. This completes the operation of a line
growing one step towards another line and making the other line sleep. A sleeping
line cannot increase any more and only loses nodes to lines that are still awake
by a similar operation as the one just described. A single leader is guaranteed
to always win and this occurs quite fast. Then the unique leader does not need
much time to collect all nodes from the sleeping lines to its own line and make
the latter spanning.

Theorem 3 ([MS16b]). Protocol Fast-Global-Line constructs a spanning line.
It uses 9 states and its expected running time under the uniform random sched-
uler is O(n?).

A variant that backtracks many “sleeping” lines in parallel, is an immedi-
ate improvement of Fast-Global-Line. The improvement is due to the fact that
instead of having the awake leader backtrack sleeping lines node-by-node, we
now have any sleeping line backtrack itself, so that many backtrackings occur in
parallel. We have some first experimental evidence showing a small improvement
in the running time [ALMS15], but we do not yet have a proof of whether this
is also an asymptotic improvement. For example, is it the case that the run-
ning time of this improvement is O(n3/logn) (or even smaller)? This question
is open.

Table 1 summarizes a variety of protocols and the corresponding upper and
lower bounds that are known for several basic construction problems [MS16b].

4 Generic Constructors

An immediate next question is whether there is a generic constructor capable of
constructing a large class of networks. In [MS16b], we answered this in the affir-
mative by presenting constructors that simulate a TM. The idea is to program
the nodes to organize themselves into a network that can serve as a memory
of size O(n?), which is asymptotically maximum and can only be achieved by
exploiting the presence or absence of bonds between nodes as the bits of the
memory (if only the nodes’ local space was used, then the total memory could
not exceed O(n)). Then the population draws a random network and simulates
on the distributed memory a TM that decides whether the network belongs to
the target ones. If yes, the population stabilizes to it, otherwise the random

26 O. Michail and P.G. Spirakis

Table 1. Some established upper and lower bounds [MS16b]. kRC (standing for k-
regular connected) protocol solves a generalization of global ring in which every node
has degree k > 2, c-cliques partitions the processes into |n/c| cliques of order ¢ each,
and Graph-Replication constructs a copy of a given input graph.

Protocol # states | Expected time Lower bound
Simple-Global-Line | 5 2(n*) and O(n®) | 2(n?)
Fast-Global-Line |9 O(n?) 2(n?)
Cycle-Cover 3 6(n?) (opt.) (n?)
Global-Star 2 (opt.) | ©(n?logn) (opt.) | 2(n?logn)
Global-Ring 9 2(n?)

2RC 6 2(nlogn)
ERC 2(k+1) 2(nlogn)
c-cliques 5¢—3 2(nlogn)
Graph-Replication |12 6(n*logn)

experiment and the simulation are repeated (see Fig.3). What makes the con-
struction intricate is that all the sub-routines have to be executed in parallel
and potential errors due to this to be corrected by global resets throughout the
course of the protocol. This is summarized in the following theorem.

Theorem 4 (Linear Waste-Two Thirds [MS16b]). DGS(O(n?)+0(n)) C
PREL(|n/3]). In words, for every graph language L that is decidable by a
(O(n?) + O(n))-space TM, there is a protocol that constructs L equiprobably
with useful space |n/3].

Fig. 3. A partitioning into three equal sets U, D, and M. The line of set U plays the
role of an ordering that will be exploited both by the random graph drawing process
and by the TM-simulation. The line of set U uses the ©(n?) memory of set M as the
memory of the TM. Set D is the useful space on which the output-network will be
constructed. Sets U and M constitute the waste.

Network Constructors: A Model for Programmable Matter 27

5 Network Transformations

We shall now consider minimal strengthenings of network constructors that can
maximize their computational power, also rendering them capable to terminate.
To this end, we now assume that the initial configuration of the edges can be
any configuration in which the active edges form a connected graph spanning
the set of processes. This choice is motivated by the fact that, without some
sort of initial connectivity (or bounded disconnectivity) we can only hope for
global computations and constructions that are eventually stabilizing (and not
terminating), roughly because a component can guess neither the number of
components not encountered yet nor an upper bound on the time needed to
interact with another one of them.? The initial configuration of the nodes is
either, again, the one in which all nodes are initially in the same state, qg, or
(if needed) the one in which all nodes begin from gy apart from a pre-elected
unique leader that begins from a distinct initial leader-state [. Unfortunately,
even with the additional assumption of bounded initial disconnectivity, it can
be proved that non-trivial terminating computation is still impossible.

We now add to the picture a very minimal and natural, but extremely pow-
erful, additional assumption that, combined with our assumptions so far, will
lead us to a stronger model. In particular, we equip the nodes with the ability
to detect some small local degrees. For a concrete example, assume that a node
can detect when its active degree is equal to 0 (otherwise it only knows that its
degree is at least 1). A first immediate gain, is that we can now directly simulate
any constructor that assumes an empty initial network (like those presented in
the previous section): every node initially deactivates the active edges incident
to it until its local active degree becomes for the first time 0, and only when this
occurs the node starts participating in the simulation.

Our main finding in [MS16a], was that the initial connectivity guarantee
together with the ability to modify the network and to detect small local degrees
(combined with either a pre-elected leader or a natural mechanism that allows
two nodes to tell whether they have a neighbor in common), are sufficient to
obtain the mazimum computational power that one can hope for in this family
of models. In particular, the resulting model can compute with termination any
symmetric predicate® computable by a TM of space ©(n?), and no more than
this, i.e., it is an exact characterization. The symmetricity restriction can only
be dropped by UIDs or by any other means of knowing and maintaining an
ordering of the nodes’ inputs. This power is maximal because the distributed
space of the system is ©(n?), so we cannot hope for computations exploiting
more space. The substantial improvement is that the universal computations are
now terminating and not just eventually stabilizing. It is interesting to point out

2 Alternative ways to overcome this are to assume that the nodes know some upper
bound on this time [MS15], or, as we shall discuss in the next section, to assume a
uniform random scheduler and a unique leader and restrict correctness to be w.h.p..

3 Essentially, a predicate in this type of models is called symmetric (or commutative) if
permuting the input symbols does not affect the predicate’s outcome. This restriction
is imposed by the fact that, in general, the nodes cannot be distinguished initially.

28 O. Michail and P.G. Spirakis

that the additional assumptions and mechanisms are minimal, in the sense that
the removal of each one of them leads to either an impossibility of termination
or to a substantial decrease in computational power.

The approach to arriving at the above characterization is to develop protocols
that exploit the knowledge of the initial connectivity of the active topology
and try to transform it to a less symmetric and detectable active topology,
without ever breaking its connectivity. The knowledge of initial connectivity and
its preservation throughout the transformation process, ensure that the protocol
always has all nodes of the network in a single component. Still, if the target-
network is symmetric, then there might be no way for the transformation to
determine when it has managed to form the network. Instead, the protocols
transform any spanning connected initial topology into a spanning line while
preserving connectivity throughout the transformation process. The spanning line
has the advantage that it can be detected under the minimal assumption that
a node can detect whether its local degree is in {1,2} and that it is minimally
symmetric and, therefore, capable of serving as a linear memory. Preservation
of connectivity allows the protocol to be certain that the spanning line contains
all processes. So, the protocol can detect the formation of the spanning line
and then count (on the O(logn) cells, i.e., the nodes, of the linear distributed
memory) the size of the system. Then the protocol can use the spanning line as
it is, for simulating (on the nodes of the line) TMs of space ©(n). Going one
step further, it is not hard for a protocol to exploit all this obtained information
and perform a final transformation that increases the simulation space to ©(n?)
(in the spirit of the universal construction of the previous section).

In particular, given an initially connected active topology and the ability of
the protocol to transform it, the following set of results can be proved [MS16a]:

— The running time of any protocol that transforms any initial active topology
to a spanning line and terminates is £2(n?logn).

— If there is a unique leader and a node can detect whether its degree is equal
to 1, then there is a time-optimal protocol, with running time ©(n?logn)
(now defined as the maximum/worst-case expected running time over all pos-
sible initial active topologies), that transforms any initial active topology to
a spanning line and terminates. This implies a full-power TM simulation as
described above.

— If all nodes are initially identical (and even if small local degrees can be
detected) then there is no protocol that can transform any initial active topol-
ogy to an acyclic topology without ever breaking connectivity. The impossibil-
ity result is quite strong, proving that, for any initial topology G, there is an
infinite family G, such that if the protocol makes G acyclic then it disconnects
every G' € G in O(|V(G")|) parts. The latter implies that it is impossible to
transform to a spanning line with termination.

— There is a plausible additional strengthening that allows the problem to
become solvable with initially identical nodes. In particular, the assumption
that two interacting nodes can tell whether they have a neighbor in com-
mon (common neighbor detection mechanism). It can be proved that, with

Network Constructors: A Model for Programmable Matter 29

this additional assumption, initially identical nodes can transform any con-
nected spanning initial active topology to a spanning line and terminate in
time O(n?). This implies a full-power TM simulation as described above.

We now describe the aforementioned time-optimal protocol for the simplest
case in which there is initially a pre-elected unique leader that handles the trans-
formation. Recall that the initial active topology is connected and the goal is for
the protocol to transform the active topology to a spanning line and when this
occurs to detect it and terminate (called the Terminating Line Transformation
problem). Ideally, the transformation should preserve connectivity of the active
topology during its course (or break connectivity in a controlled way). The min-
imal additional assumption to make the problem solvable, is that a node can
detect whether it has local degree 1 or 2 (otherwise it knows that it has degree
in {0,3,4,...,n — 1} without being able to tell its precise value).

Line-Around-a-Star. There is initially a unique leader in state [and all other
nodes are in state qo. Nodes can detect when their degree is 1.

The leader starts connecting with the gos (by activating the connection
between them in case it was inactive and by preserving it in case it was already
active) and converts them to p’ trying to form a star with itself at the center.
When two p's interact, if the edge is active they deactivate it, trying to become
the peripherals of the star. Additionally, if after such a deactivation the degree
of a p’ is 1, then the p’ becomes p to represent the fact that it is now connected
only to the leader and has become a normal peripheral. The same occurs if after
the interaction of the leader with a gy, the degree of the qq is 1, i.e., the ¢g
immediately becomes a normal peripheral p.

When the leader first encounters a p, it starts constructing a line which has
as its “left” endpoint the center of the star and that will start expanding over
the peripherals until it covers them all. Whenever the leader interacts with an
internal node of the line, it disconnects from it (but it never disconnects from
the second node of the line, counting from the center; to ensure this, the protocol
has that node in a distinguished state ¢’ while all other internal nodes of the line
are in state 7). The protocol terminates when the degree of the center becomes
1 for the first time (note that it could be 1 also at the very beginning of the
protocol but this early termination can be trivially avoided).

Theorem 5 ([MS16a]). By assuming a pre-elected unique leader and the abil-
ity to detect local degree 1, Protocol Line-Around-a-Star solves the Terminating
Line Transformation problem. Its running time is ©(n?logn), which is optimal.

For correctness, observe that every ¢y eventually becomes p, because the
center forever attracts the ggs making them p’ and a p’ only disconnects from
other peripherals until it becomes p. This implies that eventually each non-leader
node will become available for the line to expand over it and thus the line will
eventually become spanning. Also, the protocol never disconnects the topology
because it performs only two types of edge eliminations, (p/,p’) and (center,
node 3 < i < k of the line of length k), which cannot lead to disconnection.

30 O. Michail and P.G. Spirakis

Finally it can be shown that the protocol terminates iff the active topology has
become a spanning line, by showing that after the line formation subroutine has
performed at least on step, the degree of the center first becomes 1 when the
active topology becomes a spanning line.

For the running time, the time needed for the leader to connect to every qq
(and convert all gg to p’), is equivalent to the time needed for a particular node
to meet every other node, which takes ©(n?logn) expected time. Next consider
the time for all peripherals to disconnect from one another and become p. If
we study this after the time all gg have become p’, it is the time (in the worst
case) needed for all edges to be picked by the scheduler, which takes ©(n?logn)
expected time. After the completion of both the above, we have a star with the
leader at the center and all peripherals are only connected to the leader. Next
consider the formation of the line over the peripherals. The right endpoint of the
line is always ready for expansion towards another available peripheral. The time
needed for the line to cover all peripherals is again the time to meet every other
node, therefore takes time ©(n?logn) to complete. We finally take into account
the time needed for the center to disconnect from the peripherals that are part
of the line. We can study this after the line has become spanning. This is simply
a star deformation, i.e., the time needed until the center meets all peripherals in
order to disconnect from them, taking again time ©(n?logn). Putting all these
together, we conclude that the running time of the protocol is ©(n? log n), which
matches the 2(n?logn) lower bound mentioned above, therefore the protocol is
time-optimal.

6 A Geometric Variant

We shall now discuss a more applied version of network constructors, that may
be obtained by adjusting some of the abstract parameters of the general model.
In particular, [Micl5] introduced some physical (or geometrical) constraints on
the connections that the processes are allowed to form. In the general network
constructors model, there were no such imposed restrictions, in the sense that,
at any given step, any two processes were candidates for an interaction, inde-
pendently of their relative positioning in the existing structure/network. For
example, even two nodes hidden in the middle of distinct dense components
could interact and, additionally, there was no constraint on the number of active
connections that a node could form (could be up to the order of the system).
This was very convenient for studying the capability of such systems to self-
organize into abstract networks and, as we discussed, it helped us show that
arbitrarily complex networks are in principle constructible. On the other hand,
this is not expected to be the actual mechanism of at least the first potential
implementations. First implementations will most probably be characterized by
physical and geometrical constraints. To capture this, it was assumed in [Micl5]
that each device can connect to other devices only via a very limited (finite
and independent of the size of the system) number of ports, usually four or six,
which implies that, at any given time, a device has only a bounded number of

Network Constructors: A Model for Programmable Matter 31

neighbors. Moreover, the connections are further restricted to be always made
at unit distance and to be perpendicular to connections of neighboring ports.
Though such a model can no longer form abstract networks, we will see that it is
still capable of forming very practical 2D or 3D shapes. This is also in agreement
with natural systems, where the complexity and physical properties of a system
are rarely the result of an unrestricted interconnection between entities.

It can be immediately observed that the universal constructors of Sect.4 do
not apply in this case. In particular, those constructors cannot be adopted in
order to characterize the constructive power of the present variant. The reason
is that they work by arranging the nodes in a long line and then exploiting
the fact that connections are elastic and allow any pair of nodes of the line to
interact independently of the distance between them. In contrast, no elasticity
is allowed in the more local model that we now consider, where a long line can
still be formed, but only adjacent nodes of the line are allowed to interact with
each other. As a result, new techniques have to be developed for determining the
computational and constructive capabilities of this model. Another main novelty
of [Micl15], concerns an alternative approach to overcome the inability of such
systems to terminate, by exploiting the ability of nodes to self-assemble into
larger structures that can then be used as distributed memories of any desired
length and the existence of a uniform random scheduler. Achieving termination
is crucial here, as it allows us to develop terminating subroutines that can be
sequentially composed to form larger modular protocols. Such protocols are more
efficient, more natural, and more amenable to clear proofs of correctness, com-
pared to protocols that are based on composing all subroutines in parallel and
“sequentializing” them eventually by perpetual reinitializations (like the one in
Sect. 4).

Now, every node has a bounded number of ports which it uses to interact
with other nodes. In the 2D case, there are four ports p,, p,, p—y, and p_,, which
for notational convenience are usually denoted u, r, d, and [, respectively (for
up, right, down, and left, respectively). Similarly, in the 3D case there are 6
ports. Neighboring ports are perpendicular to each other, forming local axes.
For example, in the 2D case, u 1L r,r L d,d L l,andl L w. An important
remark is that the above coordinates are only for local purposes and do not
necessarily represent the actual orientation of a node in the system. A node may
be arbitrarily rotated so that, for example, its x local coordinate is aligned with
the y real coordinate of the system or it is not aligned with any real coordinate.
Nodes may interact in pairs, whenever a port of one node w is at unit distance
and in straight line (w.r.t. to the local axes) from a port of another node v.

The transition function is now of the form 4 : (Q x P) x (@ x P) x {0,1} —
Q@ x Q x {0,1}, where P = {u,r,d,l} (P = {py,ps,Ps:P—y,;P—2,P—s}, TESPEC-
tively, for the 3D case) is the set of ports. In every step, a pair of node-ports
(v1,p1)(v2, p2) is selected by an adversary scheduler and these nodes interact
via the corresponding ports and update their states and the state of the edge
joining them according to the transition function §. A configuration is called
valid, if any connected component defined by it (when arranged according to the

32 O. Michail and P.G. Spirakis

geometrical constraints) is a subnetwork of the 2D grid network with unit dis-
tances. Valid configurations restrict the possible selections of the scheduler at
each step. In particular, (vi,p1)(ve,p2) € Er can be selected for interaction (or
is permitted) at step t iff the configuration that would result after an activation
between (v, p1) and (va,p2) is valid. The interactions are chosen by a uniform
random scheduler, which in every step selects independently and uniformly at
random one of the permitted interactions. The output shapes of a configura-
tion consist of those nodes that are in output or halting states and those edges
between them that are active. We are usually interested in obtaining a single
shape as the final output of the protocol. We say that an execution of a pro-
tocol on n processes constructs (stably constructs) a shape G, if it terminates
(stabilizes, resp.) with output G.

The following theorem gives a partial characterization of the constructive
power of the 2D version of this model.

Theorem 6 ([Micl5]). Let £ = (51,52, ...) be a connected 2D shape language,
such that L is TM-computable in space d*. Then there is a protocol that w.h.p.
constructs L. In particular, for all d > 1, whenever the protocol is executed on a

population of size n = d?, w.h.p. it constructs Sy and terminates. In the worst
case, the waste is (d — 1)d = O(d?) = O(n).

The idea is again to organize the population in such a way that it can simulate
appropriate TMs; in this case, a type of shape-constructing TMs that will realize
their output-shape in the distributed system. Such a TM M constructs a shape
on the pixels of a \/n x y/n square, which are indexed in a zig-zag way. M
takes as input an integer i € {0,1,...,n — 1} and the size n or the dimension
v/n of the square (all in binary) and decides whether pixel ¢ should belong
or not to the final shape, i.e., if it should be on or off, respectively. In order,
to self-organize and simulate the TM, the population first executes a counting
subroutine, which constructs w.h.p. a line of length @(logn), containing n in
binary. To do this, the protocol requires a pre-elected unique leader. The leader
maintains two distributed n-counters and uses them to implement two competing
processes, running in parallel. The first process counts the number of nodes that
have been encountered once by the leader and the second process counts the
number of nodes that have been encountered twice. The game ends when the
second counter catches up the first. It can be proved, via a probabilistic analysis
of random walks on lines with time and position dependencies, that when this
occurs, the leader will almost surely have already counted at least half of the
nodes.* Then the leader exploits its knowledge of n to construct a /n x /n
square and successfully detect termination of the construction. When it is done,
it simulates the TM on the square n distinct times, one for each pixel. As already
mentioned, the input to the TM is each time the index of the corresponding pixel
and +/n, in binary, while its output is an on or off decision for that pixel. Finally,

4 In practice, this estimation is expected to be much closer to n than to n /2. A first
indication is that, in all of our experiments for up to 1000 nodes the estimation was
always close to (9/10)n and usually higher.

Network Constructors: A Model for Programmable Matter 33

the protocol releases the connected shape consisting of the on pixels. It is worth
mentioning that it is still open whether the pre-elected leader assumption can
be dropped.

7 Further Research

An obvious first target is to achieve complete characterizations of the con-
structible networks both in the basic and in the geometric model. It is also
worth noting that existing results on universal construction indicate that the
constructive power increases as a function of the available waste. A complete
characterization of this dependence would be of special value. Another intrigu-
ing question is whether there exists a network constructor for global line that
is asymptotically faster than O(n?®). We also do not know yet whether count-
ing the size of the population w.h.p. and with termination is still possible if all
nodes are initially identical. Towards refining and extending the existing mod-
els, considering hybrid models of active and passive mobility seems interesting.
Also, it seems plausible, apart from geometric constraints, to take further phys-
ical considerations into account, like mass, strength of bonds, rigid and elastic
structure, and collisions. It would also be worth studying structures that opti-
mize some global property or that achieve a desired behavior or functionality.
Regarding fault-tolerance capabilities of programmable matter systems, proto-
cols that efficiently reconstruct broken parts of the structure would be of special
value. Moreover, we should draw more connections to natural processes and
to self-assembly and programmable matter models coming from other research
areas (e.g., by comparing the various models via formal simulations). Finally,
we believe that more real systems of collectives of large numbers of simple inter-
acting entities (e.g., devices) are needed in order to inspire theory and highlight
the feasible mechanisms and, thus, the realistic modeling assumptions.

References

[AAD+06] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computa-
tion in networks of passively mobile finite-state sensors. Distrib. Comput.
18(4), 235253 (2006)

[ALMS15] Amaxilatis, D., Logaras, M., Michail, O., Spirakis, P.G.: NETCS: a new
simulator of population protocols and network constructors (2015). arXiv
preprint arXiv:1508.06731

[CKS+12] Chatrchyan, S., Khachatryan, V., Sirunyan, A.M., Tumasyan, A., Adam,
W., Aguilo, E., Bergauer, T., Dragicevic, M., Er6, J., Fabjan, C., et al.:
Observation of a new boson at a mass of 125 GEV with the CMS experiment
at the LHC. Phys. Lett. B 716(1), 30-61 (2012)

[DDG+14] Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C.,
Strothmann, T.: Brief announcement: amoebot-a new model for program-
mable matter. In: Proceedings of the 26th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 220-222 (2014)

http://arxiv.org/abs/1508.06731

34 O. Michail and P.G. Spirakis

[DGP+16]

[Dot12]

[Dot14]

[GCMO5]

[GKR10]

[KCL+12]

[KSM+12]

[MCS11]

[Mic15]

[MS15]

[MS16a]
[MS16b)]
[RCN14]

[Rot06]

[RW00]

Derakhshandeh, Z., Gmyr, R., Porter, A., Richa, A.W., Scheideler, C.,
Strothmann, T.: On the runtime of universal coating for programmable
matter. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp.
148-164. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43994-5_10
Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55, 78-88
(2012)

Doty, D.: Timing in chemical reaction networks. In: Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 772—
784 (2014)

Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter.
Computer 38(6), 99-101 (2005)

Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: one centimeter modules
for programmable matter through self-disassembly. In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 2485-2492. IEEE
(2010)

Knaian, A.N., Cheung, K.C., Lobovsky, M.B., Oines, A.J., Schmidt-
Neilsen, P., Gershenfeld, N.A.: The milli-motein: a self-folding chain of
programmable matter with a one centimeter module pitch. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1447—
1453. TEEE (2012)

Karr, J.R., Sanghvi, J.C., Macklin, D.N.; Gutschow, M.V., Jacobs, J.M.,
Bolival Jr., B., Assad-Garcia, N., Glass, J.I., Covert, M.W.: A whole-cell
computational model predicts phenotype from genotype. Cell 150(2), 389—
401 (2012)

Michail, O., Chatzigiannakis, 1., Spirakis, P.G.: Mediated population pro-
tocols. Theor. Comput. Sci. 412(22), 24342450 (2011)

Michail, O.: Terminating distributed construction of shapes and patterns in
a fair solution of automata. In: Proceedings of the 34th ACM Symposium
on Principles of Distributed Computing (PODC), pp. 37-46. ACM (2015)
Michail, O., Spirakis, P.G.: Terminating population protocols via some min-
imal global knowledge assumptions. J. Parallel Distrib. Comput. 81, 1-10
(2015)

Michail, O., Spirakis, P.G.: Connectivity preserving network transformers.
Theor. Comput. Sci. (TCS) (2016). Elsevier. doi:10.1016/j.tcs.2016.02.040
Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed
stable network construction. Distrib. Comput. 29(3), 207-237 (2016)
Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795-799 (2014)

Rothemund, P.W.: Folding dna to create nanoscale shapes and patterns.
Nature 440(7082), 297-302 (2006)

Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-
assembled squares. In: Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing (STOC), pp. 459-468 (2000)

[WCG+13] Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.:

[Win98]

[Zak07]

Active self-assembly of algorithmic shapes and patterns in polylogarithmic
time. In: Proceedings of the 4th Conference on Innovations in Theoretical
Computer Science, pp. 353-354. ACM (2013)

Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis. California
Institute of Technology, June 1998

Zakin, M.: The next revolution in materials. In: DARPA’s 25th Systems
and Technology Symposium (DARPATech) (2007)

http://dx.doi.org/10.1007/978-3-319-43994-5_10
http://dx.doi.org/10.1016/j.tcs.2016.02.040

Semantics, Specification and
Compositionality

Logical Characterisations and Compositionality
of Input-Output Conformance Simulation

Luca Aceto', Ignacio Fébregas' 2™ Carlos Gregorio-Rodriguez?,
and Anna Ingélfsdéttirt

1 School of Computer Science, ICE-TCS, Reykjavik University, Reykjavik, Iceland
2 Departamento de Sistemas Informaticos y Computacion,
Universidad Complutense de Madrid, Madrid, Spain

fabregas@ucm.es

Abstract. Input-output conformance simulation (iocos) has been
proposed by Gregorio-Rodriguez, Llana and Martinez-Torres as a
simulation-based behavioural preorder underlying model-based testing.
This relation is inspired by Tretman’s classic ioco relation, but has better
worst-case complexity than ioco and supports stepwise refinement. The
goal of this paper is to develop the theory of iocos by studying logical
characterisations of this relation and its compositionality. More specif-
ically, this article presents characterisations of iocos in terms of modal
logics and compares them with an existing logical characterisation for
ioco proposed by Beohar and Mousavi. A precongruence rule format for
iocos and a rule format ensuring that operations take quiescence properly
into account are also given. Both rule formats are based on the GSOS
format by Bloom, Istrail and Meyer.

1 Introduction

Model-based testing (MBT) is an increasingly popular technique for validation
and verification of computing systems, and provides a compromise between for-
mal verification approaches, such model checking, and manual testing. MBT uses
a model to describe the aspects of system behaviour that are considered to be
relevant at some suitable level of abstraction. This model is employed to gener-
ate test cases automatically, while guaranteeing that some coverage criterion is
met. Such test cases are then executed on the actual system in order to check
whether its behaviour complies with that described by the model.

A formal notion of compliance relation between models (specifications)
and systems (implementations) provides a formal underpinning for MBT. The

Research partially supported by the Spanish projects DArDOS (TIN2015-65845-C3-
1-R), TRACES (TIN2015-67522-C3-3-R) and SICOMORo-CM (S2013/ICE-3006),
the project 001-ABEL-CM-2013 within the NILS Science and Sustainability Pro-
gramme and the project Nominal SOS (project nr. 141558-051) of the Icelandic
Research Fund.

© Springer International Publishing AG 2017

B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 37-48, 2017.
DOI: 10.1007/978-3-319-51963-0_4

38 L. Aceto et al.

de-facto standard compliance relation underlying MBT for labelled transition
systems with input and output actions is the classic ioco relation proposed by
Tretmans, for which a whole MBT framework and tools have been developed.
(See, for instance, [16] and the references therein.)

An alternative conformance relation that can be used to underlie MBT is
input-output conformance simulation (iocos). This relation shares with ioco many
of its ideas and rationale. However, iocos is a branching-time semantics based on
simulation, whereas ioco is a trace-based semantics. iocos has been introduced,
motivated and proved to be an adequate conformance relation for MBT in [8-10].

Since iocos has been proposed as an alternative, branching-time touchstone
relation for MBT, it is natural to investigate its theory in order to understand
its properties. The goal of this paper is to contribute to this endeavour by study-
ing the discriminating power of iocos and its compositionality. More precisely, in
Sect. 3, we provide modal characterisations of iocos in the style of Hennessy and
Milner [11]. We offer two modal chacterisations of iocos, which are based on the use
of either a ‘non-forcing diamond modality’ (Theorem 1) or of a ‘forcing box modal-
ity’ (Theorem 2), and compare them with an existing logical characterisation for
ioco proposed by Beohar and Mousavi in [3] (Sect. 4). We also show, by means of
an example, that, contrary to what is claimed in [13, Theorem 2], ioco and iocos do
not coincide even when implementations are input enabled (Sect. 4.1).

As argued in [2,17] amongst other references, MBT can benefit from a com-
positional approach whose goal is to increase the efficiency of the testing activity.
The above-mentioned references study compositionality of ioco with respect to
a small collection of well-chosen operations. Here we take a general approach
to the study of compositionality of iocos, which is based on the theory of rule
formats for structural operational semantics [1]. In Sect. 5, we present a congru-
ence rule format for iocos based on the GSOS format proposed by Bloom, Istrail
and Meyer [5] (Theorem4). Since operations preserving iocos need to take qui-
escence properly into account, we also propose a rule format guaranteeing that
operations preserve coherent quiescent behaviour (Theorem 5 in Sect. 5.1).

Section 6 concludes the paper and presents avenues for future research.

2 Preliminaries

The input-output conformance simulation preorder presented in [8-10,13]
(henceforth referred to as iocos) is a semantic relation developed under the
assumption that systems have two kinds of transitions: input actions, namely
those that the systems are willing to admit or respond to, and output actions,
which are those produced by the system and that can be seen as responses or
results.

We use I to denote the alphabet of input actions, which are written with a
question mark (a?,b?,¢?...). We call O the alphabet of output actions, which
are annotated with an exclamation mark (a!,d!,0!...). In many cases we want to
name actions in a general sense, inputs and outputs indistinctly. We will consider
the set L = I U O and we will omit the exclamation or question marks when
naming generic actions, a,b, z,y,z € L.

Logical Characterisations and Compositionality of Input-Output 39

A state with no output actions cannot proceed autonomously; such a state
is called quiescent. Following Tretmans (see, for instance, [14,16]), we directly
introduce the event of quiescence as a special output action denoted by é! € O
in the definition of our models.

Definition 1. A labelled transition system with inputs and outputs, LTS for
short, is a quadruple (S,I,0,—) such that

— S is a set of states, processes, or behaviours.
— I and O are disjoint sets of input and output actions, respectively. Output
actions include the quiescence symbol §! € O. We define L =1TU O.
— — C S x L xS is the transition relation. As usual we write p— q instead
of (p,x,q) € — and p—=>, for x € L, if there exists some q € S such that
x

p —— p—=q. Analogously, we will write p —b, for x € L, if there is no q such
that p— q.

In order to allow only for coherent quiescent systems, the set of transitions
o!

— should also satisfy the following requirement: p Lp’ iff p=p and p—F
for each ol € O\{d!}.

The extension of the transition relation to sequences of actions is defined as usual.

Contrary to the classic ioco testing theory, in the theory of iocos presented in
[8—10], all actions are assumed to be observable. In this paper, we follow those
references and consider only concrete actions.

In general we use p,q,p’,q ... for states or behaviours, but also 4,7, s and s’
when we want to emphasise the concrete role of a behaviour as an implementation
or a specification, respectively. We consider implementations and specifications,
or, more generally, behaviours under study, as states of the same LTS.

The following functions over states of an LTS will be used in the remainder
of the paper:

outs(p) ={o! | o' € O, p i»}, the set of initial outputs of a state p.

ins(p) ={a? |a? €I, p a—?>}, the set of initial inputs of a state p.

Definition 2. We say that a binary relation R over states in an LTS is an
iocos-relation if, and only if, for each (p,q) € R the following conditions hold:

1. ins(q) Cins(p).

2. For all a? €ins(q) and p’' € S, if p a—7>p’ then there exists some q' such that
qa—?>q’ with (p',q') € R.

3. For all ol € O and p' € S, ifpi>p’ then there exists some q' such that
qi»q’ with (p',q') € R.

We define the input-output conformance simulation (iocos) as the largest iocos-

relation. We write piocos q instead of (p,q) € iocos. As proven in [8], iocos is a
preorder.

40 L. Aceto et al.

Example 1. Consider the following processes:
N i Da? 5D 4!

It is easy to see that i iocos s. Indeed, ins(s) =) and therefore the specification

s does not prevent the implementation ¢ from offering the input transition ¢ LN

Throughout the paper we make extensive use of modal logics. A logic over
processes is defined by a language to express the formulae and a satisfaction
relation that defines when a process (that is, a state of an LTS) has the property
described by some formula. A classic example and a reference for the rest of the
paper is Hennessy-Milner Logic [11].

Definition 3. Hennessy-Milner Logic over the set of actions L (abbreviated to
HML) is the collection of formulae defined by the following BNF grammar:

pu=tt [[oNnQ|dVe]|[a]p]|(a)g,

where a € L. HML is interpreted over an LTS by defining a satisfaction relation
E relating states to formulae. The semantics of the boolean constants tt and
ff and of the boolean connectives N\ and V is defined as usual. The satisfaction
relation for the modalities (a) and [a] is as follows:

~ p = {(a) iff there exists some p' such that p——p' and p' |= .
~pElale iffp' = ¢ for all p' such that p—7p'.
Every subset of HML naturally induces a preorder on a given set of behaviours.

Definition 4. Given a logic L included in HML and a set S of states in an
LTS, we define <, as the binary relation over S given by

p<cq iff VoeLl (pEP=qkF).

Remark 1. Since the logics we use in this paper to give modal characterisations of
iocos have binary conjunctions and disjunctions, in what follows we will consider
only image-finite LTSs, that is, LT'Ss where for each p and each a € I UO there
are only finitely many p’ such that p = p’. Also, we will consider both I and O
to be finite sets.

3 Logic for iocos

In this section we present a logic that characterises the iocos relation. This
logic is a subset of Hennessy-Milner Logic (HML) and is rather minimal, but is
convenient to characterize clearly the discriminating power of the iocos relation.

Definition 5. The syntax of the logic for iocos, denoted by Liocos, 15 defined by
the following BNF grammar:

o=ttt |fF|pNP|OVP|(a?)o | (x)o,

where a? € I and x! € O. The semantics of the constants tt and ff, of the
boolean connectives A and V, and of the modality (x!) is defined as usual. The
satisfaction relation for the modality {(a?)) is given below:

Logical Characterisations and Compositionality of Input-Output 41

- pE(a?)e iﬁpiﬁ or p' = ¢ for some p-"5p.

The new modal operator (a?)) can be read as a non forcing diamond modality:
if the action specified in the modality is not possible in a given state then the
formula is satisfied. This operator can be expressed with the classic modalities
in HML; indeed, (a?)¢ is equivalent to (a?)¢ V [a? [ff. The need for this special
modality arises because, in order for iiocoss to hold, s need only match the input
transitions of ¢ that are labelled with input actions that s affords.

According to Definition 4, the logic Liocos induces the preorder <, .. Next
we prove that this logical preorder coincides with the input output conformance
simulation preorder, iocos, over an arbitrary (image-finite) LTS.

Theorem 1. For all states i,s in some LTS,
piocos s iff i Spie S-

The logic for iocos we have presented in Definition5 follows a stan-
dard approach to the logical characterisation of simulation semantics; see, for
instance, [6,18]. However, the iocos relation originated in the model-based test-
ing environment where the natural reading for a logical characterisation would
be ‘every property satisfied by the specification should also hold in the implemen-
tation’. Next we define an alternative logic that better matches this specifica-
tion/implementation view.

Definition 6. The syntax of the logic Zioc0§ is defined by the following BNF
grammar:

pu=tt[fF| oA OV O|[a?]o][2!]0,

where a? € I and x! € O. The semantics of the constants tt and ff, of the
boolean connectives A and V, and of the modality [x!] is defined as usual. The
satisfaction relation for the modalities [a?] is as follows:

~pE[a?16 iff p and o' | &, for cach p-Sp'.

The new modal operator, denoted by [a?], can be read as a forcing box modality:
the action specified in the modality must be possible in order for a process to
satisfy the formula. This operator can be described with the classic modalities
in HML: [a?]¢ is equivalent to (a?)tt A [a?]¢.

Now with this logic, we can define a preorder < Fo in terms of the formulae
i iff v¢€LiOCO§ (8':¢:>Z ':¢)

We note that the logics Liocos and ,/Eioco§ are dual. In fact, there exist mutual
transformations between both sets of formulae such that a behaviour satisfies

one formula if, and only if, it does not satisfy the transformed formula. These
statements are at the heart of the proof of the following result.

that the specification satisfies: s < o

os

Theorem 2. For all states i,s in some LTS, iiocos s iff s <z .

42 L. Aceto et al.

4 The Relation with a Logic for ioco

Input-output conformance (ioco) was introduced by Tretmans in [15]. The intu-
ition behind ioco is that a process i is a correct implementation of a specification
s if, for each sequence of actions o allowed by the specification, all the possible
outputs from i after having performed o are allowed by the specification. This
is formalized below in a setting in which all actions are observable.

Definition 7. Let (S,1,0,—) be an LTS with inputs and outputs. We define
the traces of a state p € S as traces(p) = {o | Ip'. p—2=p'}. Given a trace
o, we define p after o = {p' | p' € S, p-2=p'}. For each T C S, we set
Out(T") = U, outs(p). Finally, the relation ioco € S x S is defined as:

iioco s iff Out(i after o) C Out(s after o), for all o € traces(s).

As shown in [8, Theorem 1], iocos is included in ioco.

In the setting of Tretmans’ standard ioco theory [15], only input-enabled
implementations are considered. A state ¢ in an LTS is input enabled if every
state #' that is reachable from i is able to perform every input action, that is,

i <~ holds for each a? € I and for each state i’ that is reachable from i.

In [3] Beohar and Mousavi introduced an explicit logical characterization of
ioco. This characterization uses a non-standard modal operator reminiscent of
our [-], denoted by [-||'. However, output actions can also be used as labels of
|I-]J- This modality can be extended to traces o as follows: p |= ||o]|¢ if, and only
if, p—2+ and p’ |= ¢, for each p’ such that p —"-p’. (Note that, for the particular
case of input actions a?, the semantics of |a?] coincides with that of [a?].)

The explicit logical characterization of ioco given in [3] is defined by means
of two different subclasses of logical formulae. The first subclass permits only
formulae of the form ||o||[b]ff, where o is a trace and b is an output action.

For the second subclass of formulae, Beohar and Mousavi consider an exten-
sion of the operator [-] to traces, defined as: p = [o]¢ if, and only if, p’ = ¢
for each p’ such that p —— p’. This second subclass permits only formulae of the
form [o][b]fE, where o is a trace and b is an output action.

The formulae in each of these two subclasses characterize one defining prop-
erty of the ioco-relation. This intuition is made precise in the following lemma.

Lemma 1 ([3]). For each sequence of actions o, output action b and process p
the following statements hold:

1. o € traces(p) and b ¢ Out(p after o) iff p = |lo]][0]fF.
2. b¢ Out(p after o) iff p=[o][b]fE.

! In fact, the symbol used to denote the operator ||| in [3] is {-], but we prefer to use
an alternative notation in order to avoid confusion with our modal operator { -)).

Logical Characterisations and Compositionality of Input-Output 43

The resulting logical characterization theorem for ioco is as follows,

Theorem 3 ([3]). i ioco s iff, for all o € L*, b € O, if s = ||o]|[b]fE, then
i = [o][b]f

The above result is the counterpart of Theorem 2 in the setting of ioco. Note,
however, that Theorem 3 is not a classic modal characterization result (as it is
the case of, for example, Theorem 2) where if the implementation i is correct
with respect to the specification s and s satisfies a formula, then also i satisfies
it. Here the implementation does not need to satisfy the properties that hold for
the specification. By way of example, implementations need not exhibit all the
traces of a specification they correctly implement.

4.1 Relation with iocos

Theorem 2 in [13] states that if 4 is input enabled, i ioco s implies 4 iocos s. This
means that, when restricted to input-enabled implementations, ioco and iocos
coincide, and therefore the logics characterizing iocos presented in this paper
also characterize ioco over that class of LTSs. Unfortunately, however, Theorem 2
in [13] does not hold, as shown in the following example.

Ezample 2. Let s and ¢ be defined as follows, where we assume that I = {a?, b7}.

o o!

0 OV

S 1

A o

S1 S92 i,
U

b ol bl 7,57 al
t) t

s 1, a?,b?

Note that ¢ is input-enabled, as required by the theory of ioco. It is easy to see

that 7 ioco s. On the other hand, i iogbs s because each iocos relation containing
the pair (i,s) would also have to contain the pair (i’,s1) or the pair (7', s2).
However, no relation 1nclud1ng elther of those pairs is an iocos-relation because

i %5 and 4 —> but s; —ﬁand SQﬁé

As we will now argue, the logics for ioco and iocos are incomparable in
terms of their expressive power. First of all, note that, if we consider only
input-enabled implementations, the formulae of the form [c][b]ff, with o
a trace, can be expressed in Z:ioc0§ since in an input-enabled scenario [a?]
has the same semantics as [a?]. On the other hand, it is not possible to

44 L. Aceto et al.

define a formula ¢ € Ziocog that captures Lemmal(1). Indeed, by way of
example, consider ¢ = |[|a!]|[b!]ff. Any specification s would have to sat-

isfy ¢ iff s and E [b!fF, for all s " &', Now, assume that we have
in Liocos a formula 1) whose semantics coincides with that of ||z![|[0!]ff. Let
al s O x! al g

It is easy to see that ¢ iocos s, but s = 1 and i [~ ¢. In other words, v is a

formula that distinguishes processes related by iocos. Hence, such a formula
cannot be in any logic that characterizes iocos.

On the other hand, let us consider the two processes of Example2 and the
formula ¢ = [a?]([a!]ff V [b]fE) € Liocos- As we already stated in Example?2,
iioco s, but s = ¢ and i & ¢. Hence, ¢ can distinguish processes that are
ioco-related.

5 A Rule Format for Iocos

In this section we study compositionality for iocos and present a congruence
rule format for the input-output conformance simulation preorder based on the
GSOS format proposed by Bloom, Istrail and Meyer [5]. The restriction to GSOS
rules is partly justified by our wish to have a purely syntactic rule format and
by the undecidability results presented in [12]. In what follows, we assume that
the reader is familiar with the standard notions of signature and of term over a
signature.

We recall that a deduction rule for an operator f of arity n in some signature
3 is in the GSOS format if, and only if, it has the following form:

bik

{oi =Sy | 1<i<nl<j<m}u{e;—A1<i<n1<k<l}
f(z) == Clz,y]

where the x;’s and the y;;’s (I1<i<nandl<j<m,)are all distinct variables,
m; and ¢; are natural numbers, Clx, y] is a term over ¥ with variables including
at most the x;’s and y;;’s, and the a;;’s, b;;’s and a are actions from L. The above
rule is said to be f-defining and a-emitting. Its positive trigger for variable x;
is the set {a;; | 1 < j < m;} and its negative trigger for variable x; is the set
{bir | 1 <k < {;}. The source of the conclusion of the rule is f(x).

A GSOS language is a triple (X, L, D) where ¥ is a finite signature, L is a
finite set of labels and D is a finite set of deduction rules in the GSOS format.
In what follows, we assume, without loss of generality, that all f-defining rules
have the same source of their conclusions.

A GSOS language naturally defines a set of transitions over the variable-free
terms over ¥ by structural induction: for vectors of such terms p (with typical
entry p;) and g (with entries g;;), there is a transition f(p)—— CI[p, q] if, and
only if, there is an f-defining rule of the form (1) such that

Logical Characterisations and Compositionality of Input-Output 45

fpiﬂqij foreach 1 <i<nand1l<j<m;and
bik
— pi—pforeach 1 <i<nand 1<k <Y

Note that GSOS rules define operations over states in an arbitrary LTS with
inputs and outputs. In what follows, we apply derived operations built over the
signature of a GSOS language to states in the collection of LTSs with input and
output actions.

Definition 8. An operation f in a GSOS language is in iocos-format if the
collection of f-defining rules satisfies the following conditions:

1. Fach a?-emitting rule, where a? is an input action, has only output actions
as labels of negative premises and input actions as labels of positive premises.
2. For each input action a? and each pair of rules r = and v’ =

>
f(z1,. 7l7l)a_’t

H/ HI/
, there is a rule ' = ——2——— such that
f(zq,.. mn)*»t f(:rl, JTp) — t!

(a) for each 1 <1 < n, the positive tmgger for variable x; in v is included
in the positive trigger for variable x; in r;

(b) for each 1 < i < n, the negative trigger for variable x; in r" is included
in the negative trigger for variable z; in r;

(c) if x; Y%, 2 is contained in H" and z occurs in t', then x; 2,2 s also
contained in H'.

3. FEach al-emitting rule, where a! is an output action, has only input actions as
labels of negative premises and output actions as labels of positive premises.

A GSOS language is in iocos-format if so is each of its operations.
Theorem 4. iocos is a precongruence for each GSOS language in iocos format.

As an example of application of the above result, we show that the merge
operator from [2] can be expressed in our rule format.

Ezample 3. Merge, or conjunction, is a composition operator from the theory of
ioco. It acts as a logical conjunction of requirements, that is, it describes systems
by a conjunction of sub-systems, or sub-specifications. We denote by A, s; the
result of the merge of the states s;, with 1 < i < n. In [2] it is noted that, in
general, the merge of two systems can lead to invalid states (for example the
merge of a quiescent state with another with some output). The solution is to
add a pruning algorithm after calculating the merge. Here we just show the
merge operator and not that pruning algorithm. (See also Example4.)

The merge operator can be formalized using the following GSOS rules (one
such rule for each a € L):

{xl—>yz\1<z<n}
/\xz—>/\y1

It is immediate to check that the above rules are in iocos-format. Therefore
the above theorem yields that the merge operator preserves iocos.

46 L. Aceto et al.

5.1 A Rule Format for Coherent Quiescent Behaviour

Operators for constructing LTSs with inputs and outputs should ensure ‘coherent
quiescent behaviour’ in the sense of Definition 1. This means that each opera-
tor f, when applied to a vector of states p in an LTS, should satisfy the following

property:

a!

f(p) 5 ' iff ' = f(p) and, for cach al € O\[1}, f(p)—p. (2)

In what follows, we will isolate sufficient conditions on the GSOS rules that
define f that guarantee the above-mentioned property.

Definition 9. We say that the following sets of formulae contradict each other:

-~ {z %y} and {x#} forae L,
- {a:Ly} and {xiz} for bl € O\{d'}, and

b!
- H and H' when H and H' are non-empty and HU H' = {x —4| bl € O}.

a
Formulae © —y and x —+ are said to negate each other.
We say that two sets of formulae Hy and Hs are contradictory if there are
H{ C Hy and H) C Hy such that Hy and H} contradict each other.

Intuitively, two sets of contradictory formulae cannot be both satisfied by states

in an LTS. For example, in the light of the requirement on quiescent behaviour
b!
in Definition 1, there is no state p in an LTS such that p —#4 for each b! € O.

This observation motivates the third requirement in Definition 9.

Definition 10. We say that an operation f is quiescent consistent if the set of
rules for f satisfies the following two constraints:

[61] IfH/f(:z:)Lt is a rule for f then

1. for each f-defining rule H'/ f(x) v with bl € O\{d'}, the sets H and
H' are contradictory, and
2. t = f(y) for some vector of variables y such that, for each index i, either

Yi = X4 orxiimyi € H.
[62] Let {r1,...r,} be the set of output-emitting rules for f not having &! as
label of their conclusions. Then the set of rules for f contains all rules of

the form {l1,...,l,}/f(x) 2, f(x), where l; negates some premise of r; and
no two sets of formulae included in {l1,...1l,} contradict each other.

A GSOS language is quiescent consistent if so is each operation in it.

Theorem 5. If f is quiescent consistent then Eq. 2 holds for f.

Logical Characterisations and Compositionality of Input-Output 47

Ezample 4. Consider the merge, or conjunction, operator from [2] described in
Example 3. As remarked in [2, Example 2], the merge operator may produce an
invalid LTS when applied to states from an LTS. Note that the set of rules for the
n-ary merge operator satisfy constraint [41] in Definition 10, but not constraint
[02]. Constraint [d3] also suggests how to add rules to those of the merge operator
so that it preserves consistent quiescent behaviour. By way of example, consider
the binary version of the merge operator, and assume that a! and b! are the only
two output actions different from §!. Then one should add the following four
rules to those for the binary merge given in Example 3:

! b!
{Il Lyu Z2 —>y2} (

al #£bl) .

d!
T1 N Ty —— 21 N\ Xg

The resulting operation is quiescent consistent and, by Theorem 5, satisfies Eq. 2.

6 Conclusion

In this paper, we have developed the theory of iocos [8-10] by studying logical
characterisations of this relation and its compositionality. We have also compared
the proposed logical characterisation of iocos with an existing logical charac-
terisation for ioco proposed by Beohar and Mousavi. The article also offers a
precongruence rule format for iocos and a rule format ensuring that operations
take quiescence properly into account. Both rule formats are based on the GSOS
format by Bloom, Istrail and Meyer.

Avenues for future research we are currently pursuing include an extension
of the logic for iocos with fixed points, a characteristic formula construction for
finite-state behaviours with respect to iocos, an application of the divide and
congruence approach from [7] to the definition of a congruence rule format for
iocos (as done in [4] for the XY-simulation preorder) and a compositionality
result for the logic characterising iocos over languages in iocos format.

References

1. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In:
Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp.
197-292. Elsevier, Amsterdam (2001)

2. Benes, N., Daca, P., Henzinger, T.A., Kretinsky, J., Nickovic, D., Complete compo-
sition operators for IOCO-testing theory. In: Proceedings of the 18th International
ACM SIGSOFT Symposium on Component-Based Software Engineering, CBSE,
pp. 101-110 (2015)

3. Beohar, H., Mousavi, M.R.: Two logical characterizations for input-output confor-
mance. In: Preproceedings of EXPRESS/SOS 2014 (Short Paper), July 2014

4. Beohar, H., Mousavi, M.R.: A pre-congruence format for XY -simulation. In: Das-
tani, M., Sirjani, M. (eds.) FSEN 2015. LNCS, vol. 9392, pp. 215-229. Springer,
Heidelberg (2015)

48

10.

11.

12.

13.

14.

15.

16.

17.

18.

L. Aceto et al.

Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1),
232-268 (1995)

de Frutos-Escrig, D., Gregorio-Rodriguez, C., Palomino, M., Romero-Hernandez,
D.: Unifying the linear time-branching time spectrum of process semantics. Log.
Methods Comput. Sci. 9(2:11), 1-74 (2013)

. Fokkink, W., Glabbeek, R.J., Wind, P.: Compositionality of Hennessy-Milner logic

by structural operational semantics. Theor. Comput. Sci. 354(3), 421-440 (2006)
Gregorio-Rodriguez, C., Llana, L., Martinez-Torres, R.: Input-output conformance
simulation (iocos) for model based testing. In: Beyer, D., Boreale, M. (eds.)
FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 114-129. Springer, Berlin (2013).
doi:10.1007/978-3-642-38592-6_9

. Gregorio-Rodriguez, C., Llana, L., Martinez-Torres, R.: Effectiveness for input

output conformance simulation iocos. In: Abrahdm, E., Palamidessi, C. (eds.)
FORTE 2014. LNCS, vol. 8461, pp. 100-116. Springer, Berlin (2014). do0i:10.1007/
978-3-662-43613-4_7

Gregorio-Rodriguez, C., Llana, L., Martinez-Torres, R.: Extending mCRL2 with
ready simulation and iocos input-output conformance simulation. In: Wainwright,
R.L., Corchado, J.M., Bechini, A., Hong, J. (eds.) Proceedings of the 30th Annual
ACM Symposium on Applied Computing, Salamanca, Spain, 13-17 April 2015,
pp. 1781-1788. ACM (2015)

Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32, 137-161 (1985)

Klin, B., Nachyla, B.: Some undecidable properties of SOS specifications. J. Log.
Algebraic Methods Program. (2016). http://dx.doi.org/10.1016/j.jlamp.2016.08.
005

Llana, L., Martinez-Torres, R.: IOCO as a simulation. In: Counsell, S., Ninez, M.
(eds.) SEFM 2013. LNCS, vol. 8368, pp. 125-134. Springer, Cham (2014). doi:10.
1007/978-3-319-05032-4_10

Stokkink, G., Timmer, M., Stoelinga, M., Talking quiescence: a rigorous theory
that supports parallelcomposition, action hiding and determinisation. In: Petrenko,
A K., Schlingloff, H. (eds.) MBT. EPTCS, vol. 80, pp. 73-87 (2012)

Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Softw. Concepts Tools 17(3), 103-120 (1996)

Tretmans, J.: Model Based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1-38. Springer, Berlin (2008). doi:10.1007/978-3-540-78917-8_1

Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with 10C0. In: Petrenko,
A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86-100. Springer, Heidel-
berg (2004)

van Glabbeek, R.J.: The linear time -branching time spectrum I: the semantics of
concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.)
Handbook of Process Algebra, pp. 3-99. Elsevier, Amsterdam (2001)

http://dx.doi.org/10.1007/978-3-642-38592-6_9
http://dx.doi.org/10.1007/978-3-662-43613-4_7
http://dx.doi.org/10.1007/978-3-662-43613-4_7
http://dx.doi.org/10.1016/j.jlamp.2016.08.005
http://dx.doi.org/10.1016/j.jlamp.2016.08.005
http://dx.doi.org/10.1007/978-3-319-05032-4_10
http://dx.doi.org/10.1007/978-3-319-05032-4_10
http://dx.doi.org/10.1007/978-3-540-78917-8_1

A Linear-Time—Branching-Time Spectrum
of Behavioral Specification Theories

Uli Fahrenberg!®™) and Axel Legay?

1 Ecole polytechnique, Palaiseau, France
uli@lix.polytechnique.fr
2 Inria, Rennes, France

Abstract. We propose behavioral specification theories for most equiv-
alences in the linear-time—branching-time spectrum. Almost all previous
work on specification theories focuses on bisimilarity, but there is a clear
interest in specification theories for other preorders and equivalences. We
show that specification theories for preorders cannot exist and develop a
general scheme which allows us to define behavioral specification theo-
ries, based on disjunctive modal transition systems, for most equivalences
in the linear-time—branching-time spectrum.

1 Introduction

Models and specifications are central objects in theoretical computer science.
In model-based verification, models of computing systems are held up against
specifications of their behaviors, and methods are developed to check whether
or not a given model satisfies a given specification.

In recent years, behavioral specification theories have seen some popularity
[1,3,4,7,10-12,21,22,24,29]. Here, the specification formalism is an extension of
the modeling formalism, so that specifications have an operational interpretation
and models are verified by comparing their operational behavior against the spec-
ification’s behavior. Popular examples of such specification theories are modal
transition systems [3,11,21], disjunctive modal transition systems [7,10,24], and
acceptance specifications [12,29]. Also relations to contracts and interfaces have
been exposed [4,28], as have extensions for real-time and quantitative specifica-
tions and for models with data [5,6,8,13,14].

Except for the work by Vogler et al. in [10,11], behavioral specification the-
ories have been developed only to characterize bisimilarity. While bisimilarity is
an important equivalence relation on models, there are many others which also
are of interest. Examples include nested and k-nested simulation [2,17], ready or
2_simulation [23], trace equivalence [19], impossible futures [33], or the failure
semantics of [9-11,27,32] and others.

In order to initiate a systematic study of specification theories for different
semantics, we exhibit in this paper specification theories for most of the equiv-
alences in van Glabbeek’s linear-time-branching-time spectrum [31].

Most of this work was carried out while the first author was still employed at
Inria Rennes, France.
© Springer International Publishing AG 2017

B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 49-61, 2017.
DOI: 10.1007/978-3-319-51963-0_5

50 U. Fahrenberg and A. Legay

To develop our systemization, we first have to clarify what precisely is meant
by a specification theory. This is similar to the attempt at a uniform framework
of specifications in [4], but our focus is more general. Inspired by the seminal
work of Pnueli [27], Larsen [22], and Hennessy and Milner [18], we develop the
point of view that a behavioral specification theory is an expressive specification
formalism equipped with a mapping from models to their characteristic formu-
lae and with a refinement preorder which generalizes the satisfaction relation
between models and specifications.

We then introduce a general scheme of linear and branching relation families
and show that variants of these characterize most of the preorders and equiva-
lences in the linear-time—branching-time spectrum (notably also all of the ones
mentioned above). We transfer our scheme to disjunctive modal transition sys-
tems and use it to define a linear-time-branching-time spectrum of refinement
preorders, each giving rise to a specification theory for a different equivalence in
the linear-time—branching-time spectrum.

Specification theories as we define them here are useful for incremen-
tal design and verification, as specifications can be refined until a sufficient
level of detail is reached. The specification theories developed for bisimilarity
in [1,3,7,12,21,22,24,29] also include operations of conjunction and composi-
tion, hence allowing for compositional design and verification. What we present
here is a first fundamental study of specification theories for equivalences other
than bisimilarity, and we leave compositionality for future work.

To sum up, the contributions of this paper are as follows:

— a clarification of the basic theory of behavioral specification theories;

— a uniform treatment of most of the relations in the linear-time—branching-time
spectrum;

— a uniform linear-time—branching-time spectrum of specification theories.

The paper is accompanied by a technical report [16] which contains some of the
proofs of our results and extra material to provide context.

2 Specification Theories

We start this paper by introducing and clarifying some concepts related to mod-
els and specifications from [18,22,27].

Let Mod be a set (of models). A specification formalism for Mod is a structure
(Spec, =), where Spec is a set of specifications and = C Mod x Spec is the
satisfaction relation. The models in Mod serve to represent computing systems,
and the specifications in Spec represent properties of such systems. The model-
checking problem is, given Z € Mod and S € Spec, to decide whether Z = S.

For S € Spec, let [S] = {Z € Mod | Z |= S} denote its set of implementations,
that is, the set of models which adhere to the specification. Note that = and [-]
are inter-definable: for Z € Mod and S € Spec, Z = S iff 7 € [S].

There is a preorder of semantic refinement on Spec, denoted =<, defined by

S =S, iff [Si] C[Ss].

Behavioral Specification Theories 51

Hence &1 < &, iff every implementation of S is also an implementation of Ss,
that is, if it holds for every model that once it satisfies Sy, it automatically also
satisfies So. The corresponding equivalence relation & = <N > is called semantic
equivalence: S & Sy iff [S1] = [S2].

For a model Z € Mod, let Th(Z) = {S € Spec | T = S} denote its set of
theories: the set of all specifications satisfied by Z. As [22] notes, the functions
['] : Spec — 2M°d and Th : Mod — 25P can be extended to functions on sets
of specifications and models by [A] = g 4[S] and Th(B) = ;¢ Th(Z), and
then [-] : 25Pec = 2Mod : Th forms a Galois connection.

Let C be the preorder on Mod defined by

) C I, iff Th(Z;) € Th(Zy),

and let O = C N J. Hence 77 O 7y iff Th(Zy) = Th(Zz), that is, iff Z; and Z
satisfy precisely the same specifications.

In terminology first introduced in [18], the specification formalism (Spec, =)
is said to be adequate for O. In fact, the usual point of view is sightly different:
normally, Mod comes equipped with some equivalence relation ~, and then one
says that (Spec,) is adequate for (Mod,~) if O = ~. It is clear that ~ is
not needed to reason about specification formalisms; we can simply declare that
(Spec,) is adequate for whatever model equivalence O it induces.

Using the terminology of [27], a specification S € Spec is a characteristic
formula for a model Z € Mod if Z = S and for all Z/ = S, 7/ O Z. Hence S
characterizes precisely all models which are equivalent to Z.

Again following [27], the specification formalism (Spec, =) is said to be
expressive for Mod if every 7 € Mod admits a characteristic formula. Our first
result seems to have been overlooked in [18,22,27]: in an expressive specification
formalism, the preorder C is, in fact, an equivalence.

Proposition 1. If Spec is expressive for Mod, then C = O.

Proof. Let 71,75 € Mod and assume 77 C Z,. Let S; € Spec be a characteristic
formula for Z, then &; € Th(Zy). But Th(Z1) C Th(Zz), hence S; € Th(Zy),
i.e. Iy = S1. As 87 is characteristic, this implies Zo O 7. a

Example. A very simple specification formalism is Spec = 2M°9, that is, specifi-
cations are sets of models. In that case, | = € is the element-of relation, and
[[S]] = S, thus 81 j 52 iff 51 Q 82 and 81 ~ 52 iff 51 = 82. EVGI‘y 7 € Mod
has characteristic formula {Z} € Spec, hence 2M°¢ is expressive for Mod, so that
C = O. Further, if Z; O 7y, then Zy € {Z;}, hence Z; = Z,. We have shown that
oMed is adequate for equality =.

3 Behavioral Specification Theories

We are ready to introduce what we mean by a behavioral specification theory:
an expressive specification formalism with extra structure. This mainly sums up

52 U. Fahrenberg and A. Legay

and clarifies ideas already present in [4,22], but we make a connection between
specification theories and characteristic formulae which is new. Specifically, we
will see that a central ingredient in a specification theory is a function y which
maps models to their characteristic formulae.

Definition 2. A (behavioral) specification theory for Mod is a specification for-
malism (Spec, =) for Mod together with a mapping x : Mod — Spec and a pre-
order < on Spec, called modal refinement, subject to the following conditions:

— for every T € Mod, x(Z) is a characteristic formula for I;
— for all T € Mod and all S € Spec, T =S iff x(T) < S.

The equivalence relation = = < N > on Spec is called modal equivalence. Note
that specification theories are indeed expressive; also, = is fully determined by <.

Remark 3. In a categorical sense, the function x : Mod — Spec is a section of the
Galois connection [-] : 25P¢ = 2Mod : Th_ Indeed, we have x(Z) € Th(Z) for all
Z € Mod and Z' O 7 for all Z’ € [x(Z)], and these properties are characterizing
for x.

We sum up a few consequences of the definition: modal refinement (equiva-
lence) implies semantic refinement (equivalence), and on characteristic formulae,
all refinements and equivalences collapse.

Proposition 4. Let (Spec, x, <) be a specification theory for Mod.

1. For all 51,85 € Spec, §1 < Sy implies S1 = Sy and S1 = Sy implies S1 = Ss.
2. For all 71,75 € Mod, the following are equivalent: x(Z1) < x(Z2), x(Z2) <
X(Z1), x(Z1) 2 x(Z2), x(Z2) 2 x(T1), T, O Io.

Proof. The first claim follows from transitivity of <: if Z € [81], then x(Z) <
81 < 8o, hence x(Z) < Sy, thus 7 € [S2].
For the second claim, let Z7,Z> € Mod.

— If x(Z1) < x(Z2), then x(Z1) = x(Zz2) by the first part.

— If x(Z1) = x(Z2), then [x(Z1)] C [x(Z2)]- But Z; € [x(Z1)], hence Z; €
[x(Z2)], which, as x(Zz) is characteristic, implies 7y O Zy. Also, 77 € [x(Z2)]
implies x(Z1) < x(Z2).

— Assume Z; O 7, and let Z € [x(Z1)]. Then Z O Z;, hence Z O Z,, which
implies Z € [x(Z2)]. We have shown that x(Z1) =< x(Z2).

We have shown that x(Z1) < x(Z2) iff x(Z1) = x(Z2) iff Z; O Z,, and reversing
the roles of Z; and Z, gives the other equivalences. a

The second part of the proposition means that the mapping x : Mod — Spec
is an embedding up to equivalence: for all Z;,Z5 € Mod, Z; O Zs, iff x(Z1) = x(Z2)
iff x(Z1) = x(Z2). Because of this, most work in specification theories identifies
models Z with their characteristic formulae x(Z); for reasons of clarity, we will
not make this identification here.

We finish this section with a lemma which shows that the property of x(Z)
being characteristic formulae follows when < is symmetric on models.

Behavioral Specification Theories 53

Lemma 5. Let Spec be a set, x : Mod — Spec a mapping and < C Specx Spec a
preorder. If the restriction of < to the image of x is symmetric, then (Spec, x, <)
18 a specification theory for Mod.

Ezample. For our other example, Spec = 2M°d we can let x(Z) = {Z} and
<=C.ThenZ € Siff {Z} C S, i.e. T = S iff x(Z) < S. This shows that
(2Med 'y, C) is a specification theory for Mod (which is adequate and expressive
for equality).

4 Disjunctive Modal Transition Systems

We proceed to recall disjunctive modal transition systems and how these can
serve as a specification theory for bisimilarity. The material in this section is
well-known, but our definitions from the previous sections allow for much more
succinctness, for example in Proposition 6 below.

From now on, Mod will be the set LTS of finite labeled transition systems,
i.e. tuples (S,s°,T) consisting of a finite set of states S, an initial state s € S,
and transitions T C § x X x § labeled with symbols from some fixed finite
alphabet Y.

Recall [25,26] that two LTS (S1,s9,T1) and (S2, 89, T2) are bisimilar if there
exists a relation R C Sy x Sy such that (s9,s9) € R and for all (s, s2) € R,

— for all (s1,a,t1) € Ty, there is (s2,a,ts) € Tn with (¢1,t2) € R,
— for all (s2,a,ty) € Ty, there is (s1,a,t1) € Ty with (t1,t2) € R.

A disjunctive modal transition system (DMTS) [24] is a tuple D =
(8,89 --»,—) consisting of finite sets S O S of states and initial states, a
may-transition relation --» C .S x X' x S, and a disjunctive must-transition rela-
tion — C S x 2¥*5_ It is assumed that for all (s, N) € — and all (a,t) € N,
(s,a,t) € --». Note that we permit several (or no) initial states, in contrast
o [24]. The set of DMTS is denoted DMTS.

As customary, we write s --» ¢ instead of (s, a, t) € --» and s — N instead
of (s,N) € —. The intuition is that may-transitions s N specify which
transitions are permitted in an implementation, whereas a must-transition s —
N stipulates a disjunctive requirement: at least one of the choices (a,t) € N has
to be implemented.

A modal refinement [24] of two DMTS D; = (51,59, --+1,—1), Dy =
(S2, 59, --+2, —9) is a relation R C Sy x Sy for which it holds of all (s1,s2) € R
that

- Vs —?91 t1 : dso —292 to : (tl,tg) S R,
- VSQ —2 N2 : 381 —1 Nl ZV(a,tl) € Nl : H(Q,tQ) S NQ : (tl,tg) S R;

and such that for all s{ € S9, there exists s € S9 for which (s),59) € R. Let
< C DMTS x DMTS be the relation defined by D; < Ds iff there exists a modal
refinement as above (a witness for Dy < Ds). Clearly, < is a preorder.

54 U. Fahrenberg and A. Legay

LTS are embedded into DMTS as follows. For an LTS Z = (S,s°,7T), let
X(Z) = (5,{s"},--+,—) be the DMTS with --» =T and — = {(s,{(a,t)}) |
(s,a,t) € T}. The following proposition reformulates well-known facts about
DMTS and modal refinement.

Proposition 6. (DMTS, x, <) is a specification theory for LTS adequate for
bisimilarity.

ric on the image of x. Let 71,7y € LTS and assume x(Z;) < x(Zz). Write
= (81,88, T1), I = (82,53, T2), X(T1) = (S1,{s{},--»1,—1), and x(Z2) =
(527{82} "*2’—>2)

We have a relatlon R C S1 x5 such that (s9,s9) € R and for all (s, s2) € R,
Vsl ——-)1 tl : 382 ——#2 tQ : (tl,tg) € R and VSQ —2 N2 : 381 —1 N1 :
V(a,t1) € N1 : 3(a,t2) € Ny : (t1,t2) € R. Let (s1,s2) € R. We show that R is a
bisimulation.

Let (s1,a,t1) € T1. Then s; N t1, so that we have a transition ss Loty
with (t1,t2) € R. By definition of x(Z1), (s2,a,t2) € Ts.

Let (s2,a,ta) € To. Then s —o No = {(a,t2)}, hence there is s; —1 Ny
such that V(a,t1) € N1 : I(a,th) € Ny : (t1,t5) € R. But then ¢, = to, and by
definition of x(Z2), N1 = {(a,t1)} must be a one-element set, hence (s1,a,t1) €
T, and (tl,tg) € R.

We have shown that x(Z;) < x(Zz) implies that Z; and Z, are bisimilar; the
proof of the other direction is similar. a

Proof. In lieu of Lemma 5, we show that < is bisimilarity, hence symmet-

5 A Specification Theory for Simulation Equivalence

We want to construct specification theories for other interesting relations in
the linear-time—branching-time spectrum [31]. Given Proposition 1 and the fact
that specification theories are expressive, we know that it is futile to look for
specification theories for preorders in the spectrum. What we can do, however,
is find specification theories for the equivalences in the spectrum. To warm up,
we start out by a specification theory for simulation equivalence.

Recall [20] that a simulation of LTS (S1,sY,T1), (S2,s9,Ts) is a relation
R C S x Sy such that (s9,s9) € R and for all (s1,s2) € R,

— for all (s1,a,t1) € Ty, there is (sa,a,to) € Ty with (t1,t2) € R.

LTS (S1, 59, T1) and (S2, 89, T») are said to be simulation equivalent if there exist
a simulation R' C S x Sy and a simulation R? C S5 x S;.

Definition 7. Let Dl = (5175?,——91,—>1),D2 = (52,58,——-)2,—>2) S
DMTS. A simulation refinement consists of two relations Ry, Ry C Sy X So
such that

1. Vs) € 89 : 3§ € 59 - (51,52) € Rl and Vs € S9 : 35 € 59 : (s9,59) € Ry;
2. V(Sl,SQ) € Ry : Vs ——-)1 t1 1 dso ——«)2 to : (t1,t2) S R1,

Behavioral Specification Theories 55

3. ¥(s1,82) € Ry : ¥sg —9 Ny : ds; —1 Ny : V(a,t1) € Ny : I(a,t2) € No :
(tl,t2> € Rs.

Intuitively, Ry is a simulation of may-transitions from D; to Ds, whereas
R> is a simulation of disjunctive must-transitions from Dy to D;. Let <g C
DMTS x DMTS be the relation defined by D1 <g Dy iff there exists a simulation
refinement as above. Clearly, < is a preorder. A direct proof of the following
theorem, similar to the one of Proposition 6, is given in [16], but it also follows
from Theorem 12.

Theorem 8. (DMTS, x, <s) forms a specification theory for LTS adequate for
simulation equivalence.

6 Specification Theories for Branching Equivalences

We proceed to generalize the work in the preceding section and develop DMTS-
based specification theories for all branching equivalences in the linear-time—
branching-time spectrum. Examples of such branching equivalences include the
bisimilarity and simulation equivalence which we have already seen, but also
ready simulation equivalence [23] and nested simulation equivalence [2,17] are
important. We will treat the linear part of the spectrum, which includes rela-
tions such as trace equivalence [19], impossible-futures equivalence [33] or failure
equivalence [9-11,27,32], in the next section.

We start by laying out a scheme which systematically covers all branching
relations in the spectrum.

Definition 9. Let k € NU {oo} and I; = (S1,8),T1),Z2 = (So,89,T2) € LTS.
A branching k-switching relation family from Z; to Zy consists of relations
RY ... Rk C Sy x Sy such that (s9,59) € R® and

~ for all even j € {0,...,k} and (s1,s2) € RI:

° V(sl,a,tl) el : H(Sg,a,tg) ey (tl,tg) € Rj,'

° Zf] < k‘, then V(Sg,a,tQ) cTy: 3(51,a,t1) cT;: (tl,tg) S Rj+1,'
~ for all odd j € {0,...,k} and (s1,s2) € RI:

o V(sg,a,ty) € Ty : I(sy,a,ty) €Ty : (t1,t2) € RI;

o ifj <k, then V(s1,a,t1) € Ty : I(s2,a,tz) € Ty : (t1,t2) € RIFL.

Clearly, a simulation is the same as a branching 0-switching relation family.
Also, a branching 1-switching relation family is a nested simulation: the initial
states are related in R°; any transition in Z; from a pair (s1,82) € RO has to be
matched recursively in Z5; and at any point in time, the sense of the matching
can switch, in that now transitions in Z from a pair (s, s2) € R! have to be
matched recursively by transitions in Z;. In general, a branching k-switching
relation family is a k-nested simulation, see also [17, Definition 8.5.2] which is
similar to ours. A branching oo-switching relation family is a bisimulation: any
transition in Z; has to be matched recursively by one in Z, and vice versa. We
refer to [15] for more motivation.

56 U. Fahrenberg and A. Legay

Definition 10. Let k € NU{co} and Z; = (51,59, T1),Z2 = (S2, 83, T3) € LTS.
A branching k-ready relation family from Z; to Iy is a branching k-switching
relation family RC...,RF C Sy x S, with the extra property that for all
(81782) € Rk

— if k is even, then ¥(sa,a,ts) € Ty : I(s1,a,t1) € T1;
— if k is odd, then V(s1,a,t1) € Ty : I(s2,a,ta) € Ts.

Hence a branching 0-ready relation family is the same as a ready simulation:
any transition in Z; has to be matched recursively by one in Zs; and at any
point in time, precisely the same actions have to be available in the two states.
A branching 1-ready relation family would be a nested ready simulation, and
so on. Branching k-switching and k-ready relation families cover all branching
relations in the linear-time—branching-time spectrum.

Because of Proposition 1, we are only interested in equivalences. For k €
N U {oco} and 77,75 € LTS, we write 7y ~yj Zo if there exist a branching
k-switching relation family from 7Z; to Zy and another from Z, to Z;. We write
Iy ~}, Iy if there exist a branching k-ready relation family from Z; to Zp and
another from Z5 to Z;. Then ~ is simulation equivalence, ~1 is nested simulation
equivalence, ~, is bisimilarity, ~ is ready simulation equivalence, etc.

We proceed to devise specification theories for LTS which are adequate for ~y
and ~j..

Definition 11. Let k € N U {OO} and Dl = (Sl,S?, -=21, —>1>,D2 = (SQ,SS,
--+9,—9) € DMTS. A branching k-switching relation family from Dy to Ds
consists of relations RY,...,RY, RS, ..., RS C S x Sy such that

- Vs e 8): 355 € 89 : (s9,59) € RY and Vs§ € 59 :3sY € SV : (89, s9) € RY;
~ for all even j € {0,...,k} and (s1,s2) € R}:
® Vs —E->1 t1 : dso —(—192 to : (tl,tg) S R{,
o if j < k, then Vsg —9 Ny : sy —1 Ny : V(a,t1) € Ny : I(a,tz) € Ny :
(t1,t2) € R{™; ,
~ for all odd j € {0,...,k} and (s1,s2) € R}:
e Vsg —s9 Ny :dsy —1 Ny :V(a,tl) € Ny : H(Q,tg) € Ny : (tl,tg) S R{,
o if j <k, thenVsy -=»1 t1 : A5y —2ag to 1 (t1,12) € RITL,
~ for all even j € {0,...,k} and (s1,s2) € R}:
o Vsg —o No: sy —1 Ny :V(a,t;) € Ny : 3(a,ta) € Ny : (t1,t2) € Ré;
e if j <k, then Vs = PO (t1,t2) € R%'H.
~ for all odd j € {0,...,k} and (s1,s2) € R}:
° Vs —E->1 t1 : dso —(—192 to : (t1,t2) S R%,
o if j < k, then Vsg —9 Ny : sy —1 Ny : V(a,t1) € Ny : I(a,tz) € Ny :
(tl,tg) S RéJrl,'

A branching k-ready relation family from Dy to Ds is a branching k-switching
relation family as above with the extra property that if k is even, then

Behavioral Specification Theories 57

~ V(s1,52) € R¥ : Vsg —9 Ny :3s; —1 Ny :V(a,t1) € Ny : 3(a,tz) € Na;
- v(51,52) € RIQC :Vsl *g-)l tl . 382 *292 tg,‘

and if k is odd, then

- V(Sl,Sg) S R]f szl *g-)l tl : 382 *2-)2 tg,‘
- v<81,82) € RS :Vsg —9 Ny i dsy —1 N :V(a,tl) € Ny : H(G,tg) € Ns.

For k € NU {o0} and Dy, Dy € DMTS, we write D; < Dy if there exist
a branching k-switching relation family from D; to D,. We write Dy <}, Dy if
there exist a branching k-ready relation family from D; to D;. Note that < is
the relation < from the preceding section.

Theorem 12. For any k € N U {co}, (DMTS, x, <i) is a specification theory
for LTS adequate for ~y, and (DMTS, x, <}) is a specification theory for LTS
adequate for ~j..

Remark 13. There is a setting of generalized simulation games, based on Stir-
ling’s bisimulation games [30], which generalizes the above constructions and
gives them a natural context. We have developed these in a quantitative setting
in [15], and we provide an exposition of the approach in [16]. Generalized simu-
lation games can be lifted to games on DMTS which can be used to define the
relations of Definition 11, see again [16].

7 Specification Theories for Linear Equivalences

We develop a scheme similar to the one of the previous section to cover all linear
relations in the linear-time-branching-time spectrum. For Z = ($,s°,T) € LTS,
we let T* C S x X* x S be the reflexive, transitive closure of T'; a recursive
definition is as follows:

- (s,e,8) € T for all s € S
— for all (s,7,t) € T* and (t,a,u) € T, also (s,7.a,u) € T*.

Definition 14. Let k € N U {oo} and 71 = (S1,57,T1),Za = (52,53, T») €
LTS. A linear k-switching relation family from Z; to Iy consists of relations
RY... Rk C Sy x Sy such that (s9,s9) € R® and

— for all even j € {0,...,k} and (s1,s2) € R7:

[V(Sl,T,tl) S Tl* : H(SQ,T,tQ) S TQ*,'

o if j <k, thenV(s1,T,t1) € Tf : I(s2,7,t2) € Ty : (t1,t2) € RITL;
— for all odd j € {0,...,k} and (s1,s2) € R:

o V(SQ,T,tQ) S TQ* : H(Sl,T,tl) S Tl*;

o if j <k, then ¥(sa,T,to) € Ty : A(s1,7,t1) € T} : (t1,t2) € RITY;

Hence a linear 0-switching relation family is a trace inclusion, and a linear
1-switching relation family is a impossible-futures inclusion: any trace in Z; has
to be matched by a trace in Z, and then any trace from the end of the second
trace has to be matched by one from the end of the first trace.

58 U. Fahrenberg and A. Legay

Definition 15. Let k € NU{co} and Z; = (51,59, T1),Z2 = (Sa, 83, T3) € LTS.
A linear k-ready relation family from Iy to s is a linear k-switching relation
family RY,... Rk C Sy x So with the extra property that for all (s1,s2) € R¥:

—if k is even, then V(s1,7,t1) € Ty : I(s2,7T,t2) € T3 : Y(ta,a,uz) € Ty :
H(tl,a, ul) e Ty;

—if k is odd, then V(s2,7,t2) € To : I(s1,7,t1) € Ty : Y(t1,a,u1) € Ty :
H(tg,a, UQ) e1Ts.

Thus a linear 0O-ready relation family is a failure inclusion: any trace in 7
has to be matched by a trace in Z5 such that there is an inclusion of failure sets
of non-available actions. For k € N U {oo} and Z1,Z; € LTS, we write 77 =~ I
if there exist a branching k-switching relation family from Z; to Zs and another
from Z, to Z;. We write Z; =, I, if there exist a branching k-ready relation
family from Z; to Zo and another from Z5 to Z;.

For D = (S, 5%, --+,—) € DMTS, we define --+, —* C § x J* x S recur-
sively as follows:

~s-Z¥sands "ssforall sc S
T a T.Q
— for all s -+t and t --» u, also s -3 u;
~ for all s —t,t — N, and (a,u) € N, also s ~% u.

Definition 16. Let k € NU {cc} and Dy = (51,5, --+1,—1), Dy = (52,59,
--+9, —9) € DMTS. A linear k-switching relation family from Dy to Dy consists
of relations RY,...,R¥ Ry, ... R C Sy x Sy such that

- Vs e 59 Esg €59 :(s9,53) € RY and Vs € S9 : 30 € 59 : (s9,59) € RY;
— for all even j € {0,...,k} and (s1,s2) € R}:
T T

o Vsy —=¥ t1 1 dsg -+ to;

o if j <k, then Vs ——51 ty : Jsg ——% to ¢ (ty,ts) € RITY;
~ for all odd j € {0,...,k} and (s1,s2) € R}:

o Vsy — 55ty 1 dsy — ty; 4

o Zf] < k‘, then Vso L>*2 ty 1 dsy L>*1 t1‘2 (tl,tg) S R{J’_l;
— for all even j € {0,...,k} and (s1,s2) € R):

) VSQ ;;kg tQ : 381 ;>*1 tl; .

[] Zf] < k, then VSQ ;)*2 t2 : 351 L)*l tl : (tl,tg) c RJ1+1,'
— for all odd j € {0,...,k} and (s1,s2) € R):

o V) -1ty sy - to;

o if j <k, then Vsy —=51 t1 : Jsg —3% to : (t1,12) € RITL.

A linear k-ready relation family from Dy to Ds is a linear k-switching relation
family as above with the extra property that if k is even, then

- V(Sl,Sz) c R]f : Vsl *1—-)*1 tl . 382 *z--)*g t2 . vtg —9 N2 . E'tl —1 N1 :
V(a,ul) € Ny : El(a,u2) S NQ,'

- V(Sl, 82) € R’g ZVSQ L>*2 tg : 381 Lfkl Ifl :th —(—l->1 Uq - Htg —292 Ugy

Behavioral Specification Theories 59

and if k is odd, then

- v(51,52) S R]f ZVSQ ;;'(2 t2 . 351 ;)*1 tl :th *2-)1 Uq - 3t2 *g-)g Uz,
- v<81782) S RIQC 1 Vs —7—-9*1 t1 : dsg —I-fkg ty : Vto —9o No : Jt; —1 Ny :
V(a,u1) € Ny : I(a,us) € Nao;

For k € NU{co} and Dy,Dy € DMTS, we write Dy <, D5 if there exists a
linear k-switching relation family from D; to Dy and D; <}, Do if there exists a
linear k-ready relation family from D; to Ds.

Theorem 17. For any k € N U {oco}, (DMTS, x, <x) is a specification theory
for LTS adequate for =y, and (DMTS, x,=<},) is a specification theory for LTS
adequate for ~j,.

Remark 18. In the setting of generalized simulation games, cf. Remark 13, the
linear relations can be characterized by introducing a notion of blind strategy.
This gives a correspondence between linear and branching relations which splits
the linear-time—branching-time spectrum in two halves: trace inclusion corre-
sponds to simulation; failure inclusion corresponds to ready simulation, etc. We
refer to [15,16] for details. Whether a similar notion of blindness can yield the
linear relations of Definition 16 is open.

8 Conclusion

We have in this paper extracted a reasonable and general notion of (behavioral)
specification theory, based on previous work by a number of authors on concrete
specification theories in different contexts and on the well-established notions of
characteristic formulae, adequacy and expressivity.

Using this general concept of specification theory, we have introduced new
concrete specification theories, based on disjunctive modal transition systems,
for most equivalences in van Glabbeek’s linear-time—branching-time spectrum.
Previously, only specification theories for bisimilarity have been available, and
recent work by Vogler et al. calls for work on specification theories for failure
equivalence. Both failure equivalence and bisimilarity are part of the linear-
time—branching-time spectrum, as are nested simulation equivalence, impossible-
futures equivalence, and many other useful relations. We develop specification
theories for all branching equivalences in the spectrum, but we miss some of
the linear equivalences; notably, possible futures and ready trace equivalence are
missing. We believe that these can be captured by small modifications to our
setting, but leave this for future work.

Our new specification theories should be useful for example in the setting
of the failure semantics of Vogler et al., but also in many other contexts where
bisimilarity is not the right equivalence to consider. Using our own previous work
on the quantitative linear-time-branching-time spectrum and on quantitative
specification theories for bisimilarity, we also plan to lift our work presented
here to the quantitative setting.

60

U. Fahrenberg and A. Legay

Specification theories for bisimilarity admit notions of conjunction and com-

position which enable compositional design and verification, and also the spec-
ification theories of Vogler et al. have (different) such notions. Using the game-
based setting in [16], we believe one can define general notions of conjunction
and composition defined by games played on the involved disjunctive modal
transition systems. This is left for future work.

References

10.

11.

12.

13.

14.

15.

16.

. Aceto, L., Fabregas, 1., de Frutos-Escrig, D., Ingélfsdéttir, A., Palomino, M.: On

the specification of modal systems. Sci. Comput. Program. 78(12), 2468-2487
(2013)

Aceto, L., Fokkink, W., van Glabbeek, R.J., Ingdlfsdéttir, A.: Nested semantics
over finite trees are equationally hard. Inf. Comput. 191(2), 203-232 (2004)
Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. Bull. EATCS 95, 94-129 (2008)

Bauer, S.S., David, A., Hennicker, R., Guldstrand Larsen, K., Legay, A., Nyman,
U., Wasowski, A.: Moving from specifications to contracts in component-based
design. In: Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43-58.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28872-2_3

Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.:
Weighted modal transition systems. Form. Meth. Syst. Design 42(2), 193-220
(2013)

Bauer, S.S., Juhl, L., Larsen, K.G., Legay, A., Srba, J.: Extending modal transition
systems with structured labels. Math. Struct. Comput. Sci. 22(4), 581-617 (2012)
Benes, N., Cernd, I., Kretinsky, J.: Modal transition systems: composition and
LTL model checking. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol.
6996, pp. 228-242. Springer, Berlin (2011). doi:10.1007/978-3-642-24372-1_17
Bertrand, N., Legay, A., Pinchinat, S., Raclet, J.: Modal event-clock specifica-
tions for timed component-based design. Sci. Comput. Program. 77(12), 1212-1234
(2012)

Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560-599 (1984)

Bujtor, F., Sorokin, L., Vogler, W.: Testing preorders for dMTS: deadlock- and the
new deadlock/divergence-testing. In: IEEE Computer Society, ACSD (2015)
Bujtor, F., Vogler, W.: Failure semantics for modal transition systems. ACM Trans.
Embed. Comput. Syst. 14(4), 67 (2015)

Caillaud, B., Raclet, J.-B.: Ensuring reachability by design. In: Roychoudhury, A.,
D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 213-227. Springer, Berlin
(2012). doi:10.1007/978-3-642-32943-2_17

David, A., Larsen, K.G., Legay, A., Nyman, U., Traonouez, L., Wasowski, A.:
Real-time specifications. STTT 17(1), 17-45 (2015)

Fahrenberg, U., Legay, A.: General quantitative specification theories with modal
transition systems. Acta Inf. 51(5), 261-295 (2014)

Fahrenberg, U., Legay, A.: The quantitative linear-time-branching-time spectrum.
Theor. Comput. Sci. 538, 54-69 (2014)

Fahrenberg, U., Legay, A.: A linear-time branching-time spectrum of behavioral
specification theories (2016). http://arxiv.org/abs/1604.06503

http://dx.doi.org/10.1007/978-3-642-28872-2_3
http://dx.doi.org/10.1007/978-3-642-24372-1_17
http://dx.doi.org/10.1007/978-3-642-32943-2_17
http://arxiv.org/abs/1604.06503

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Behavioral Specification Theories 61

Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation
as a congruence. Inf. Comput. 100(2), 202-260 (1992)

Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137-161 (1985)

Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666—
677 (1978)

Larsen, K.G.: A context dependent equivalence between processes. Theor. Comput.
Sci. 49, 184-215 (1987)

Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232-246. Springer, Berlin (1990). doi:10.1007/3-540-52148-8_19

Guldstrand Larsen, K.: Ideal specification formalism = expressivity + composi-
tionality + decidability + testability +. In: Baeten, J.C.M., Klop, J.W. (eds.)
CONCUR 1990. LNCS, vol. 458, pp. 33-56. Springer, Heielberg (1990). doi:10.
1007/BFb0039050

Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: POPL, ACM
Press (1989)

Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS. IEEE Computer Society (1990)

Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25(3), 267—
310 (1983)

Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167-183. Springer, Heidelberg (1981). doi:10.
1007/BFb0017309

Pnueli, A.: Linear and branching structures in the semantics and logics of reactive
systems. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 15-32. Springer,
Heidelberg (1985). doi:10.1007/BFb0015727

Raclet, J., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A
modal interface theory for component-based design. Fund Inf 108(1-2), 119-149
(2011)

Raclet, J.-B.: Residual for component specifications. Electr. Notes Theor. Comput.
Sci. 215, 93-110 (2008)

Stirling, C.: Modal and temporal logics for processes. In Banff Higher Order Work-
shop. LNCS, 1043. Springer, Heidelberg (1995)

van Glabbeek, R.J.: The linear time - branching time spectrum I. In: Handbook
of Process Algebra, Chap. 1. Elsevier (2001)

Vogler, W.: Failures semantics and deadlocking of modular Petri nets. Acta Inf.
26(4), 333-348 (1989)

Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.
LNCS, vol. 625. Springer, Heidelberg (1992)

http://dx.doi.org/10.1007/3-540-52148-8_19
http://dx.doi.org/10.1007/BFb0039050
http://dx.doi.org/10.1007/BFb0039050
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1007/BFb0015727

Symbolic Semantics for Multiparty Interactions
in the Link-Calculus

Linda Brodo! and Carlos Olarte2®)

! Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria
dell’Informazione, Universita di Sassari, Sassari, Italy
brodo@uniss.it
2 ECT - Universidade Federal do Rio Grande do Norte, Natal, Brazil
carlos.olarte@gmail.com

Abstract. The link-calculus is a model for concurrency that extends
the point-to-point communication discipline of Milner’s CCS with mul-
tiparty interactions. Links are used to build chains describing how infor-
mation flows among the different agents participating in a multiparty
interaction. The inherent non-determinism in deciding both, the num-
ber of participants in an interaction and how they synchronize, makes
it difficult to devise efficient verification techniques for this language. In
this paper we propose a symbolic semantics and a symbolic bisimulation
for the link-calculus which are more amenable to automating reason-
ing. Unlike the operational semantics of the link-calculus, the symbolic
semantics is finitely branching and it represents, compactly, a possibly
infinite number of transitions. We give necessary and sufficient condi-
tions to efficiently check the validity of symbolic configurations. We also
implement an interpreter based on this semantics and we show how to
use such implementation for verification.

1 Introduction

Distributed systems are evolving in complex ways and adequate modeling lan-
guages are needed to specify and verify properties such as resources consuming,
security, privacy, among several others. Multiparty interactions are commonplace
in this new era of distributed systems. Take for instance an on-line payment ser-
vice where a shopper contacts the vendor’s webpage and fills a form with its
credit card information. Then, the vendor’s webpage automatically contacts the
cashier’s service that completes the payment and sends the needed confirmations.
At a certain abstract level, all the previous operations can be seen as a unique
multi-party communication, as if one of the steps fails, the whole transaction is
canceled.

In order to have a more comprehensive representation of the system’s dynam-
ics, it would be convenient to consider multiparty interactions instead of binary
ones. In the literature there are multi-way synchronization calculi [6,10,11] that
seem to be adequate to be applied in different areas such as distributed com-
puting, web applications and Systems Biology. Here we shall focus on the 1ink-
calculus [1,2] to model multiparty communications.

© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 62-75, 2017.
DOI: 10.1007/978-3-319-51963-0_6

Symbolic Semantics for Multiparty Interactions in the Link-Calculus 63

The 1link-calculus is a new multiparty process algebra where the number of
participants in each synchronization is not fixed a priori. It extends the binary
communication discipline of CCS [9] with links, e.g., *\,, that can be thought
of as the forwarding of a message received on channel a (the input channel) to
another channel b (the output channel). It could be the case that a link exposes
only an output (7\,), or an input (*_); these particular actions are the ends of
a link chain.

A link chain allows for the synchronize of several entities. Each entity must
offer a link that have to match with an adjacent link offered by another entity.
For instance, if three processes offer, respectively, the links *\,, b\C and ¢\ ;, they
can synchronize and produce the link chain “\z\i\ 4+ Where information flow from
a to d through b and c.

The multiparty synchronization mechanism of the link-calculus brings inter-
esting challenges for devising automatic reasoning tools. The main technical
problem is that the number of participants in an interaction is not known a
priori. Then, the operational semantics (SOS) must consider all the possible
synchronizations among the agents running in parallel. For instance, consider
two processes offering, respectively, the links *\, and o\ .- They may synchronize
and produce the link chain a\l;\a, but also ®\?\,. They may also produce the

link chain “\E\E\a, where the free space P\ (called virtual link) can be used
by a third participant offering the proper link.

We propose a symbolic semantics which is more amenable for reasoning about
link processes. The semantics collects together all the possible synchronizations
that can be composed with a multiset of links (e.g., (*\;,’\,) for the example
above). We thus abstract from the order of the links and we represent, compactly,
a possibly infinite number of transitions in the SOS. Moreover, unlike the SOS,
the proposed semantics is finitely branching (if guarded recursive definitions are
considered).

The presence of restricted names makes more interesting the definition of
symbolic configurations. In fact, internal (multiparty) synchronizations play an
important role in the definition of network bisimulation [1,2]. We give a symbolic
representation of transitions involving restricted names and we give efficient
procedures to check the validity of such configurations. Furthermore, we define a
symbolic bisimulation and we show that it is a congruence and it coincides with
network bisimulation.

Finally, we present a prototypical implementation of our semantics in Maude
(available at http://subsell.logic.at/links/). We illustrate the semantics and the
tool with the classical problem of the dining philosophers. We show that this
problem has a simple implementation in the link-calculus. Furthermore, we use
our tool to show that the model is deadlock free. We then contribute with a the-
oretical framework, that may help to better understand multiparty interactions,
and a tool to enact it.

Contributions and Plan of the Paper. Section 2 recalls the theory of the link-
calculus. In Sect.3 we define our symbolic semantics and we give polynomial

http://subsell.logic.at/links/

64 L. Brodo and C. Olarte

procedures to check whether a symbolic configuration is valid or not. We then
show that the symbolic semantics is sound and complete wrt the SOS. We define
a procedure to extract a symbolic configuration from a trace in the SOS and
we show that the resulting configuration is an upper bound for the symbolic
semantics. In Sect.3.3 we define a symbolic bisimulation that coincides with
network bisimulation and has the property to be a congruence. In Sect. 3.4 we
present the implementation of simulation and verification techniques for the
link-calculus based on the symbolic semantics. Section4 concludes the paper
and discusses related work. Due to space restrictions, auxiliary results and the
detailed proofs are given in the companion technical report of this paper available
at tool’s web page.

2 Background on Link-calculus

A linkis a pair *\ ; where o, # € CU{ 7,00 }. C denotes the set of channels, ranged
over by a,b,c,...; T is the silent action and O is a virtual action. Intuitively, *\,
is a prefix that executes an input on channel a and an output on b. The 7 action
is used to represent a link where no interaction is required (on the left or on the
right) as in ¢_. A virtual link Y\ represents a non specified interaction that
will be later completed. The link a\ﬁ is solid if o, 3 # 0O, and it is virtual if

a, 8 = [O. A link is valid if it is solid or virtual. For instance, D\D, N\, T\ O\
are valid links whereas D\a, "\ are not.

Links can be combined in link chains that record the source and the target
sites of each hop of the interaction. Formally, a link chain is a non-empty finite
sequence s = {;...0,, of valid links ¢; =i \ 5, such that:

a

1. forany i€ l.n—1, ¢ 707t €C : plies 5, G
Bi=T iff jiy =7

The first condition says that two adjacent solid links must match on their
adjacent sites. Moreover, the silent action 7 can not be matched by a virtual
action [J. This last condition is required since, as we shall see, a 7 action can
be only matched with 7 when processes synchronize on restricted channels. The
second condition says that a valid link must have at least one solid link. We shall
use VC to denote the set of valid chains and we write |s| to denote the length
of the chain s.

Some examples of valid link chains are: P\&\%\,, “\F\&\4, and 7\2\.. The
first chain represents an interaction where there is a pending synchronization
on the left of ®\,; similarly, the second chain represents an interaction where
a third-party process must offer a link joining b and ¢ (i.e., °\). Finally, the
last chain is the result of a binary interaction between a process performing the
output 7\, and a process performing the input ¢\ . Examples of non valid link
chains are: “\§\ 4, P\G\q, and “\¢\q.

Processes in the link-calculus are built from the syntax

PQ:=0|¢P | P+Q | PIQ| (va)P | A

Symbolic Semantics for Multiparty Interactions in the Link-Calculus 65

where £ is a solid link (i.e. £ =© \B with o, 8 # [O) and A is a process
identifier for which we assume a (possibly recursive) definition 4 £ P.

The nil process 0 does nothing. The process £.P first performs ¢ and then
behaves as P. The non-deterministic process P+) can either behave as P or Q.
Parallel composition is denoted as P | . The process (v a)P behaves as P but
it cannot exhibit any unmatched action a. Finally, A behaves as P if A £ P.

As usual, (v a) P binds the occurrences of a in P. The sets of free and of bound
names of a process P are defined in the obvious way and denoted, respectively,
by fn(P) and bn(P). Processes are taken up to alpha-conversion of bound names.
We shall often omit a trailing 0, e.g. by writing ¢\, instead of *\,.0.

Operational Semantics. The operational semantics is given by the labeled tran-
sition system (P, L, —) where states P are link-processes, labels £ are valid
chains (i.e., £L = VC) and the transition relation — is the minimal transition
relation generated by the rules in Fig. 1. In the following we explain the rules.

The presence of virtual links in a link chain suggests that an interaction is
not completed and it allows for more processes to synchronize by offering the
correct links. A process £.P can take part in any interaction where ¢ can be
placed in an admissible position of a (larger) chain. Hence, in order to join in a
communication, £.P should suitably enlarge its link ¢ to a link chain s including
¢ and some virtual links. Formally, Rule Act says that £.P = P for any link
chain s such that s »4 ¢ where p« is the least equivalence relation on valid link
chains closed under the following axioms:

SD\D >« s 31‘3\5\552 >« 5‘13\532
F\gs pas s19\J\Y\gs2 b s17\2\ 352

Note that the link 7\, (resp. *\) can be only enlarged with virtual links on
the right (resp. left). Moreover, if s»«4™_ then s =7\ .

Rules Lsum, Lpar and Ide are standard. If P is able to exhibit a transition
to P’ with label s, then P + @ —- P’ (Rule Lsum). Similarly for Q with Rule
Rsum omitted in Fig. 1. If P can exhibit a transition, it can also exhibit the same
transition when running in parallel with @ (Rules Lpar and Rpar). Finally, A
moves to P’ if its body definition P can move to P’ (Rule Ide).

The synchronization mechanism (Rule Com) works by merging two link
chains, say s and s’. We require that the chains are of the same length (i.e.,
|s| = |s’|) and that every solid link of s must correspond to a virtual link in s
in the same position, and vice versa. Then we make the two link chains collapse
in one link chain where some of the virtual links have been substituted with the
corresponding solid links. More precisely, let a, 8 be actions. We define

aefl =qaif g =0 aef =p0ifa=0 o e 3 = 1 otherwise Let
] =™ \ﬁ1 and [y =92 \B2 be valid links and a; @ as = zo, B1 @ B2 = x3. If
ZTo,xg 7 L, then [; e [y =% \xﬁ. Otherwise, [, @ ly = 1. Let s = ¢1...¢,, and

s' = £}...4;, be valid chains with ¢; =** \ 5 and £; =% \g/- I l; @1} # L for all
i€ l.nand (I; ®1})...(I, @ ;) is a valid chain, then se s’ = (I; o 1})...(1, o I,).
Otherwise, ses’ = 1.

66 L. Brodo and C. Olarte

spal P p P p PSP A2P

5 Act B Lsum < Lpar - Ide
L.P— P P+Q—= P PlQ=P|Q A= P
s / P i} P/ i’_} /
Res # Com
(va)P —— (va)P’ P|Q == P Q)

Fig. 1. SOS semantic rules. Rules Rsum and Rpar are omitted. All the rules have,
as a side condition, that the link chains in the conclusion and premises are valid (i.e.,
different from).

As an example, the chains P\B\&\; and °\\g cannot merge, as they have
different length; “\E\D and P\{\ ; cannot merge since %\}\ , is not a valid chain;
a chain s cannot merge with itself; finally, C\aD\l,’]\ 4 and D\E\E\D merges into

“\a\p\a-

We note that, contrary to CCS, the Rule Com can appear several times in
the proof tree of a transition since s e s’ can still contain virtual links (if s and
s' have a virtual link in the same position). Hence, s e s’ can possibly be merged
with other link chains. However, when s e s’ is solid, no further synchronization
is possible.

As usual in process calculi, names are restricted in order to force an interac-
tion. Let a be an action and a € C. Then,

Tifa=a

(v {a otherwise 0 @)M\g =\

Let s = 44...4,,, with {; = \ﬁi and ¢ € 1..n. We say that a is matched in s if:

1. a # a1, B, (i-e., a cannot occur in the extremes of the chain), and
2. for any i € 1..n — 1, either 8; = ;41 = a or B;, ;11 # a.

Otherwise, we say that a is unmatched (or pending) in s. We define,

_J((va)th)...((va)t,) if ais matched in s
(va)s = { 1 otherwise

As an example, all the names are matched in the valid link chain 7_. Instead,
neither a nor b are matched in \%\,. In s = "\?\F'\g, the name a can be
restricted and (va)s =" \:\E\D; whereas (vb)s is undefined since b is pending
in s.

The Rule Res can serve different aims: (i) floating, if a does not occur in s,
then (va)s = s and (va)P = (va)P’; (i) hiding, if a is matched in s, then all
occurrences of a in s are replaced with 7 in (v a)s; (iii) blocking, if a is pending
in s (i.e., there is some unmatched occurrence of a in s), then (va)s = L and
the rule cannot be applied.

Symbolic Semantics for Multiparty Interactions in the Link-Calculus 67

3 Symbolic Semantics

As mentioned in the introduction, the system ¢\;.0 | *\,.0 can synchronize in
different ways, i.e., we can use the rule Com to observe different link chains
such as a\g\a, N\, D\E\E\E\a, etc. In this section we propose a novel sym-
bolic semantics that represents, in a unique configuration, all these link-chains.
Hence, the non-determinism of the operational semantics (due to Com and Act)
is completely replaced with a deterministic transition collecting all the possi-
ble interactions the process may engage. We also give sufficient and necessary
conditions for testing the validity on configuration.

3.1 Symbolic Configurations

Definition 1 (Link configurations). Let L be a multiset of solid links. We
define the (symbolic) configuration (L) as the set

(LY ={s € VC'| there exists s;»al; for alll; €L s.t. s=510s20---05,}
We say that (L) is a valid configuration if the set above is not empty.

Intuitively, the configuration (L) accumulates the links that can be merged
in an application of the rule Com. As an example, the configuration (*\,) rep-
resents, for instance, \, (and the process does not interact any more), =\%\,

where there are no further interaction on b and a is still pending, D\E\E\D
where both a and b are pending. The configuration (*\,,”\) represents, e.g., the
following chains: “\Z\a, N\, b\?\g\%\b, D\E\Z\E\D etc. Finally, the config-
uration (7\,,%\.) contains the chains "*_, "\"\%\ , "\\B\&_, etc. (recall
that matched 7-actions can be only introduced by the restriction operator).

Next proposition gives us an algorithm, linear on the number of elements in
L, to check whether (L) is valid or not.

Proposition 1 (Valid Configurations). Let L be a non-empty multiset of
solid links. Then, (L) is valid iff T appears at most once in L as input and at
most once as output.

Definition 2 (Hiding). Let v be a configuration and a € C. We define the
configuration

(va)y={s € VC'| there exists s' € v and s = (va)s'}
We say that (va)y is valid if the set above is not empty.

If ~ is not valid, by definition, (ra)y is not valid. The other direction is not
necessarily true. For instance, Ly = (*\,) and Ly = (7\,,%\,,’\,.) are valid
configurations but neither (va)(Li) nor (va)(Ls) are valid. In the first case,
observe that (va)(s) is not valid for any s»«4®\, (since a cannot appear in the
extremes and it must be matched). In the second case, if s € (L), then s must

68 L. Brodo and C. Olarte

be of the shape T\?\D...D\E\E\D...D\E\T. Since a is not matched, (va)s = L
and (va)(Ls) is empty.

We shall use 7,7/, %, ¢’ to denote configurations (with and without restricted
names). Given a multiset L of solid links, we shall use names(L) to denote the
set of names occurring in the links in L. Let v = (vay)...(vay,)(L). We define
the free names of v as fn(vy) = names(L)\{a1,...,a,} and its bound names as
bn(vy) ={ai,...,a,}. Given a sequence of distinct names a = ay, ..., a,, we shall
use (vaq,...,a,){L) to denote the configuration (vay)...(va,){(L). If a is empty,
then we write (L) instead of (va)(L). Finally, we shall write v =5 7/ when v = +/
(i.e., y C+ and o' C).

As a direct consequence of the corresponding equivalences on chains [2], we
can show that (1) (va)y =5 v if a € fn(y) ; (2) (va)(wb)y =5 (vb)(va)y; (3)
(va)y =5 (vb)y[b/a] is b ¢ names(y) (a-conversion).

Now we give necessary and sufficient conditions for testing if a configuration
of the shape (ra)~y is valid or not. Such checking can be performed in linear time
on the number of links in the configuration ~.

Proposition 2 (Valid Configuration). Let v = (ve)(L) be a valid configura-
tion and a € fn(vy). (va)y is valid iff the three conditions below hold:

1. Matched: a occurs the same number of times as input and as output in L.
2. Extremes: there exist two links O‘\ﬁ,o‘ \ﬁ, i L where o, 3 # a.
3. Synchronizations: if both 7\, and *_ occur in L, then either names(L) =

{a, T} or there exist two links “\B,Bl \, in L st p,0 &{a,T}.

The following definition shows how to merge two valid configurations. This
definition will be useful to define the rule Com in the symbolic semantics.

Definition 3 (Merging). Let (vay,...,an){(L) and (vby,...by,) (L") be two valid
configurations. By alpha conversion, we assume that the names ay,...,a, (resp.
b1, ..., bm) do mot occur in L' (resp. L). We define

(va1, ..., an){L) ® (Vby1, ..b,, (L") = (vay, ..., an, b1, ..., by) (LW L")

where W denotes multiset union.

It is easy to see that e is a commutative and associative (partial) operator.

3.2 Semantic Rules

The rules of the symbolic semantics are given in Fig. 2 and explained below.

We note that the equivalence relation »« relates two valid link chains when
they only differ on the number of virtual links. This relation is central to the
definition of configurations. In fact, it is easy to see that if s € v, then s'p»as iff
s’ € v. Rule Act, builds a configuration containing only the solid link I. Then,
as we shall see, any move of the operational rule Act can be mimicked by Act,.

Rules Lsumg, Lpars and Ides are self-explanatory and Rule Resg, as
expected, makes use of the restriction operator on configurations.

Symbolic Semantics for Multiparty Interactions in the Link-Calculus 69

p =L~ p p —L—p P =——=P A2Pp
T — Lsums I ——— Lpars p” ; Ides
P+Q —— P PlQ — P |Q A —— P

2l / o ’
. p P P
wn Acts P o P Ress ﬁg, @ Coms
ep A2 p (va)P 22 (va) P! P|Q == P |

Fig. 2. Symbolic semantics for the link-calculus. All the rules have, as a side condition,
that the configurations in the conclusion and premises are valid. Rules Rpars and
Rsums are omitted.

Rule Com, merges the symbolic configurations v and +'. Recall that the
merge operator simply computes the union (resp. multiset union) of the bounded
names (resp. links) in v and ~'. Unlike the operational rule, Com, does not need
to know in advance the length of the chains to be merged. Instead, it only
checks whether v e/ is valid (by using the algorithms in Propositions 1 and 2).
Moreover, from the definition of the merge operator, we can show that,

1. Composition: if s € v, s’ € v/ and s e s’ is defined then se s’ € yeo /.
2. Splitting: if w € v e 4/ then there exist 5,5’ s.t. w = se® s’ and s € v and
sey.

Now we are ready to show the desired adequacy results.

Theorem 1 (Soundness). Let P be a process and assume that P - P’.
Then, there exists v s.t. P —=—> P’ and s € 7.

Theorem 2 (Completeness). Let P be a process and assume that P 1
P'. Then, for all s € v, P = P'.

The above results can be easily extended to sequences of transitions. Given
a sequence of symbolic configurations I' = 71, ...,v,, we say that the sequence
of chains sy, ..., s, is an instance of ' if s; € 7; for all ¢ € 1..n.

Corollary 1 (Adequacy). Let P be a process. Then,

Sn

1. if P25 P 22 Pyeoo 2 P, then there exists 41, ...,n s.t. P —2—
p ... == p and for all i € 1..n, s; € ;.
2. if P =L P ... =2 P.. Then, for all instance s1, ...,y Of Y1, -y Yn»

S1 S
we have P, — Py--- - P,.

Extraction and Soundness. We can strength Theorem 1 and give an upper
bound to 7. If P —=» P’, one may be tempted to think that such upper bound
is v = solid(s) where solid(s) denotes the multiset of solid links in s. We note
that this does not work under the presence of restriction. For instance, s =
(va)("\2\,) =7 \I\, if a valid label for a transition P - P’ but (7_,7\) is
not a valid configuration.

Next definition shows how to extract a valid configuration from a link chain,
that we later show to be a suitable over approximation of the symbolic semantics.

70 L. Brodo and C. Olarte

Definition 4 (Extraction). Let s ="! \if\;pg "\, be a valid chain and

a € C be a name not occurring in s. We define ext(s) = (v a)(L) where L is

the multiset of solid links of s subject to the following substitutions:
Viel...n—1, substitute x; and x;41 with « if x}, = zip1 = 7.

For instance, if s =* \"\¢\,; then ext(s) = (va)(*\,," \..“ \4)-

The ext(s) function satisfies the following properties: if s is a valid chain
without occurrences of matched 7’s, then ext(s) =, (solid(s)); if [s| = 1, i.e.,
s = £ for some solid link ¢, then ext(s) = (¢); for any valid chain s, s € ext(s).
Moreover,

— If se s’ is a valid chain then ext(s) e ext(s’) C ext(ses’).

— If (va)s be a valid chain. Then,
1. if ext(s) = (vB)(L) then ext((va)s) =5 (vB)(L[B/a]); and
2. (va)ext(s) C ext((ra)s).

Theorem 3 (Soundness). Let P be a process and assume that P - P’.
Then, there exists v C ext(s) s.t. P =—— P'.

We note that ext(s) over approximates the output of the symbolic
semantics since ext(s) identifies 7 actions that may come from dif-
ferent synchronizations. For instance, consider the operational transition

(ra)(\o*\y) | () ("\|\g) 2> 0 where
s=\a\g\o\ s =\aas w=ses =ANBV,

In the symbolic semantics we have (va)(®\,|*\,) | (ve)(4\.|¢\,) 27, 0 where
v=wa) "\, ") Y =L\ v =0y = a0\, "\)
Note that ext(w) = (v2)(*\,," \;,* \,," \,) and w’ =P \T\\T\, € ext(w). Note

also that w’ is not part of the operational semantics and w’ & .

Let v = (va)(L) and a = {ay,...,a,} be a set of names s.t. x Na = 0. We
say that (va)(L') is a v-variant of v if L’ is the least set satisfying:

if “\g € L, a,3 ¢ = then *\5 € L

—if*\; € Land a € x, B ¢ x then *\; € L’ for some a € a;
—if*\; € Land a ¢ x, B €x then *\, € L' for some a € a.
~if*\; € L and o, 8 € x then ¢\, € L’ for some a,d’ € a.

Intuitively, a v-variant of v may discriminate, using different local names, some
synchronizations in « (take for instance a,c¢ in ¥ and x in ext(w) in the example
above).

Theorem 4 (Soundness). Let P be a process and assume that P - P’.
Then, there exists a v-variant v of ext(s) s.t. P —— P

Symbolic Semantics for Multiparty Interactions in the Link-Calculus 71

3.3 Symbolic Bisimulation

In this section we show that network bisimulation, [1,2] coincides with the sym-
bolic bisimulation as defined below in Definition 7. Let us recall some definitions
from [1].

Let <1 be the least equivalence relation over VC closed under the inference

rules: ,
s pdas

s> s

s517\7 \gs2 > 57\ 552

The relation ><1 allows us to enlarge/contract chains by adding/removing
matched 7 actions (similar to »« for virtual actions). This means that ><
abstracts away also from internal (restricted) communications. A link chain is
essential if it is composed by alternating solid and virtual links, and has solid
links at its extremes. It is immediate to check that, by orienting the axioms of
>« and >< from left to right, we have a procedure to transform any link chain
s to a unique essential link chain s’ such that s ><0 s’. We write e(s) to denote
such unique representative.

Lemma 1 ([1]). For any link chains s,s’ we have s ><1 s" iff e(s) = e(s').

Definition 5. A network bisimulation [1] R is a binary relation over link
processes such that, if P R Q) then:

—if P2 P, then 3 8, Q' such that e(s) = e(s'), Q LN Q', and PP RQ';
—ifQ 5 @, then 3 s, P’ such that e(s) = e(s'), P >+ P', and P’ R Q'.

We let ~,, denote the largest network bisimulation and we say that P is
network bisimilar to Q if P ~,, Q.

Theorem 5 (Congruence [1]). Network bisimilarity is a congruence.

Symbolic Bisimulation. Let s = \T\ and s’ =% \,. We know that s><s’.
However, there is no a symbolic configuration v such that s € v and also s’ € ~.
On the other side, let v = (*\,) and 7' = (vb)(*\,,”\,). We know that v %, v/
but, if w € v and w’ € «/, it must be the case that wr<w’.

Next definition introduces the relation <1 on configurations.

Definition 6. Let <1 be the least symmetric relation on valid configurations
s.t. y><1y' iff for all s € v there exists s’ € v s.t. s'><1s.

Note that v =4 7/ implies, of course, that v><17'. Moreover, it is easy to see
that >< is an equivalence relation.

Intuitively, if y><1v/, then from v we can build the same chains as in 4" but
adding/removing 7 synchronizations. For instance, let v = (va)(*\,,”\,) and
v = (%\,). If s € v (vesp. s’ € v') then s must be of the shape ... 7\4\"\7\...

(resp. s’ must be of the shape ...D\GD\E\D...). Hence, y><1'.

72 L. Brodo and C. Olarte

Definition 7 (Symbolic Bisimulation). A symbolic network bisimulation R
s a binary relation over link processes such that, if PRQ then:

— If P == P, then, there exists v'><1y s.t. Q —=— Q' and P'RQ’.
~- IfQ === Q', then, there exists />y s.t. P == P’ and Q'RP".

We let ~4 be the largest symbolic network bisimulation and we say that P and
Q are bisimilar if P ~4 Q.

Testing whether y1><1v/, according to Definition 6, requires to check for every
sequence s € v the existence of s’ € 7' s.t. s'><1s and vice versa. It turns out
that there is a more efficient procedure to decide y><19’ using the next definition
and lemma.

Definition 8 (Capabilities). Let v = (vx)(L) be a valid configuration. Let
a,b ¢ x. We say that [a-b] is a capability of v, notation [a-b] € v, if *\, € L or, it
is possible to use the links in L to form a chain of the shape *\\ ---"=1\7"\,
where 1, ...,y € x. We shall use cap(y) to denote the multiset of capabilities

m .

Lemma 2. Let s € . For all solid link *\,, *\, € e(s) iff [a-b] € v. Moreover,
let v, be valid configurations. Then, vy><v' iff cap(vy) = cap(y’).

Therefore, checking v1><19’ can be done in polynomial time by extracting and
comparing the capabilities of the configurations.

Next theorem shows that network and symbolic bisimulations coincides.
Moreover, since network bisimulation is a congruence [1], so the symbolic bisim-
ulation.

Theorem 6. Let P and Q be processes. Then, P ~,, Q iff P ~4 Q.

Corollary 2. ~; is a congruence.

3.4 Implementation

As we saw in the previous sections, the symbolic semantics allows for simple
mechanisms to generate traces and check whether a configuration is valid or not.
Moreover, it is finitely branching (if guarded recursive definitions are considered)
unlike the operational semantics. We have implemented the symbolic semantics
in Maude (http://maude.cs.illinois.edu) and it is available at http://subsell.logic.
at/links. In this section, relaying on the multiparty synchronization mechanism
of the link-calculus, we model the classical problem of dining philosophers. We
show how the semantics, and our tool, allow for the verification of such system.

The dining philosophers is a classical example introduced to study interac-
tions between independent and distributed entities that want to share resources.
The problem relates n philosopher sitting around a table, where each one has
its own dish, and they can only eat or think. When they, independently, decide

http://maude.cs.illinois.edu
http://subsell.logic.at/links
http://subsell.logic.at/links

Symbolic Semantics for Multiparty Interactions in the Link-Calculus 73

to eat, they need two forks. On the table, there is only one fork between two
dishes, i.e. exactly n forks.

A solution to this problem in a binary synchronization calculus such as CCS
leads to a deadlock exactly when all the philosophers take the fork at their
left at the same time [8]. Hence, the system reaches a state where no further
transition is possible. The multiparty synchronization mechanism of the link-
calculus allows us to overcome this problem. The idea is that, atomically, the
philosopher willing to eat has to synchronize with both, the fork on his right and
the one on his left. Then he can eat. The 1link-calculus model is:

(v dwp,...,dwp_1,upg,...,upp—1)(Phily | --- | Phil,—1 | Forky | --- |
Fork,_1) where processes Phil; and Fork; are defined as:

Phil; \onink, Phili 7\, PhilEat;

L
. AN dw; .
PhilEat; =7\ ;.- \dw(-+1)mod .Phil;
Fork; é"\upi."\dwi.Forki + upi_.4wi\ _Fork;

Let us show a trace generated with our tool for the system with n = 2
philosophers:
(tau \ ’tk_1) --> (tau \ ’tk_0) --> (Pup_0 \ ’up_1 ; ’up_1 \ tau ; tau \ ’up_0) -->
(tau \ ’eat_0) --> (tau \ ’tk_1) --> (’dw_0 \ ’dw_1 ; ’dw_1 \ tau ; tau \ ’dw_0) -->

(Pup_0 \ tau ; ’up_1 \ ’up_0 ; tau \ ’up_1) --> (tau \ ’eat_1) --> (tau \ ’tk_0) -->
(’dw_0 \ tau ; ’dw_1 \ ’dw_0 ; tau \ ’dw_1)

In the first line, Phily thinks and then Phily thinks. Later, Phily
grabs the two forks, as shown in the last configuration of the first line.
Such output represents the symbolic configuration (vupg,up;)(L) where L =
{9 PP\ \upy 1+ This configuration is a three-party interaction involving
Phily and the two forks. Note that the chain (v upo, up1)™\ubo\ubt\ . =7 \7\7\ |
is the only chain that belongs to the configuration (due to the restriction on up;).
Hence, in one transition, we observe the atomic action of grabbing the two forks.
In the second line, we observe Phily eating, then Phil; thinking again and, in
the end of the line, Phily releases the two forks with a multiparty synchroniza-
tion. The third and forth lines represent the transitions where Phil; grabs the
forks, eats and then releases the forks.

Our tool can also compute the label transition system with all the reachable
states that, in the case of the dinning philosophers, is finite (note that this is not
always the case since the 1ink-calculus is a conservative extension of CCS where
Turing Machines can be encoded [4]). The output of the tool and the resulting
graph can be found at the tool’s site. The transition system is deadlock-free, i.e.,
all the states have at least one transition. Moreover, using the search procedures

in Maude, we can verify that the system cannot reach a configuration containing
both 7\ and T\

eatq eaty”

4 Concluding Remarks

We proposed a symbolic semantics and bisimulation for an open and multiparty
interaction process calculus. We gave efficient procedures to check whether a

74 L. Brodo and C. Olarte

symbolic configuration is valid or not and proved adequate our semantics wrt
the operational semantics. We implemented also a tool based on this semantics to
simulate and verify systems modeled in the calculus. We are currently implement-
ing a procedure to check (symbolic) bisimulation in the link-calculus. We are
also planning to use the extraction procedure (ext(s)), that over approximates
the semantics, as basis for abstract debugging and analysis of 1link-calculus
specifications.

Related Work. Multiparty calculi with different synchronization mechanisms
have been proposed, e.g., in CSP [7], PEPA [6] and full Lotos [3]. These calculi
offer parallel operators that exhibit a set of action names (or channel names),
and all the parallel processes offering that action (or an input/output action
along that channel) can synchronize by executing it. In [11], a binary form of
input allows for a three-way communication. MultiCCS [4] is equipped with a
new form of prefix to execute atomic sequences of actions and the resulting par-
allel operator allows for multi-synchronizations. The multiparty calculus most
related to the link-calculus is in [10], where links are named and are distinct
from usual input /output actions: there is one sender and one receiver (the output
includes the final receiver name).

Symbolic semantics in processes calculi are used to represent compactly the
possibly infinitely many transitions a process may exhibit. For instance, [5] pro-
poses a symbolic semantics for the m-calculus to avoid the problem of considering
the possibly infinite number of values a process can send/receive along a channel.
We are currently considering such techniques to give a symbolic semantics for
the link-calculus with value-passing [1]. The only symbolic semantics for a mul-
tiparty calculus we are aware of is [3,12] where the authors present the definition
of a symbolic semantics for the full Lotos language and its implementation.

References

1. Bodei, C., Brodo, L., Bruni, R.: Open multiparty interaction. In: Marti-Oliet, N.,
Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 1-23. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-37635-1_1

2. Bodei, C., Brodo, L., Bruni, R., Chiarugi, D.: A flat process calculus for nested
membrane interactions. Sci. Ann. Comp. Sci. 24(1), 91-136 (2014)

3. Calder, M., Shankland, C.: A symbolic semantics and bisimulation for full LOTOS.
In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) IFIP Conference Proceedings,
FORTE, vol. 197, pp. 185-200. Kluwer (2001)

4. Gorrieri, R., Versari, C.: Introduction to Concurrency Theory - Transition Systems
and CCS. Texts in Theoretical Computer Science. An EATCS Series. Springer,
Cham (2015)

5. Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353~
389 (1995)

6. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, New York (1996)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc,
Upper Saddle River (1985)

http://dx.doi.org/10.1007/978-3-642-37635-1_1

10.

11.

12.

Symbolic Semantics for Multiparty Interactions in the Link-Calculus 75

Lehmann, D.J., Rabin, M.O.: On the advantages of free choice: a symmetric and
fully distributed solution to the dining philosophers problem. In: White, J., Lipton,
R.J., Goldberg, P.C. (eds.) POPL, pp. 133-138. ACM Press (1981)

Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

Montanari, U., Sammartino, M.: Network conscious pi-calculus: a concurrent
semantics. In: Proceedings of Mathematical Foundations of Programming Seman-
tics (MFPS), Electronic Notes in Theoretical Computer Science, vol. 286, pp. 291—
306. Elsevier (2012)

Nestmann, U.: On the expressive power of joint input. Electron. Notes Theor.
Comput. Sci. 16(2), 145-152 (1998)

Verdejo, A.: Building tools for LOTOS symbolic semantics in maude. In: Peled,
D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 292-307. Springer,
Heidelberg (2002). doi:10.1007/3-540-36135-9-19

http://dx.doi.org/10.1007/3-540-36135-9_19

Theory of Mobile and Distributed
Systems

Different Speeds Suffice for Rendezvous of Two
Agents on Arbitrary Graphs

Evangelos Kranakis'®), Danny Krizanc?, Euripides Markou?,
Aris Pagourtzis*, and Felipe Ramirez?

1 School of Computer Science, Carleton University, Ottawa, ON, Canada
kranakis@scs.carleton.ca
2 Department of Mathematics and Computer Science, Wesleyan University,
Middletown, USA
{dkrizanc,framirez}@uesleyan.edu
3 Department of Computer Science and Biomedical Informatics,
University of Thessaly, Volos, Greece
emarkou@ucg.gr
4 School of Electronic and Computer Engineering,
National Technical University of Athens, Zografou, Greece
pagour@cs.ntua.gr

Abstract. We consider the rendezvous problem for two robots on an
arbitrary connected graph with n vertices and all its edges of length
one. Two robots are initially located on two different vertices of the
graph and can traverse its edges with different but constant speeds. The
robots do not know their own speed. During their movement they are
allowed to meet on either vertices or edges of the graph. Depending on
certain conditions reflecting the knowledge of the robots we show that a
rendezvous algorithm is always possible on a general connected graph.

More specifically, we give new rendezvous algorithms for two robots
as follows. (1) In unknown topologies. We provide a polynomial time
rendezvous algorithm based on universal exploration sequences, assuming
that n is known to the robots. (2) In known topologies. In this case we
prove the existence of more efficient rendezvous algorithms by considering
the special case of the two-dimensional torus.

Keywords: Graph - Mobile agents - Rendezvous - Speeds - Universal
exploration sequence

1 Introduction

Rendezvous is an important primitive in distributed computing which enables
remote and mobile entities in a distributed network to meet, coordinate and
exchange information. It is also important in robotics for establishing connec-
tivity and exchanging information in a geometric environment which is being
traversed by the robots. As such it has been the focus of numerous studies from
dynamic symmetry breaking problem [20], operations research [2], and distrib-
uted computing in general [16] and specific [15] distributed topologies.

© Springer International Publishing AG 2017

B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 79-90, 2017.
DOI: 10.1007/978-3-319-51963-0_7

80 E. Kranakis et al.

In this paper we study the rendezvous problem under a deterministic model
first introduced in [11] concerning rendezvous in a ring topology of two robots
which have different speeds but are otherwise identical. The authors in [11] give
an optimal time rendezvous algorithm (expressed as a function of the speed ratio
¢ and size n of the ring) in a ring network for two robots which do not know their
own speeds. This line of research has been extended to randomized rendezvous
in [14] and to deterministic rendezvous for many agents in a ring in [12]. In this
paper we study for the first time the rendezvous problem for two robots having
speed ratio ¢ > 1 in the most general setting of an arbitrary graph of n nodes.

1.1 Model

In the sequel the terms agent and robot will be considered interchangeable. We
generalize to arbitrary graphs the model first introduced in [11]. There are two
mobile agents placed at different nodes of an unknown arbitrary network. The
network is modelled as a simple undirected connected graph with all its edges
of equal length and the agents are deterministic mobile entities with unlimited
memory; from the computational point of view they are modelled as Turing
machines. The agents are anonymous (i.e., they do not have labels) and identical
except for their speeds which are unknown to them. Each agent moves at all times
at its own same fixed speed. The speed of an agent is the inverse of the time it
takes that agent to traverse one unit of length in the network. For simplicity we
set as unit speed, the speed required by the slow robot to traverse a unit length
edge of the graph, in which case, the length of an edge is also the time it takes
the slow robot to traverse it. Thus, without loss of generality, we normalize the
speed of the slowest agent to 1, and denote by ¢ > 1 the speed of the faster
agent.

The agents start the execution of the rendezvous algorithm simultaneously.
An agent can detect when it encounters another agent at a node or inside an edge.
The agents have to meet at a node or inside an edge of the graph. We consider
two situations below, one in which the topology of the network is unknown to
the agents and one in which it is known. They cannot mark the visited nodes in
any way. The nodes of the network are anonymous but the edges incident to a
node v have distinet labels in {0, ...,d — 1}, where d is the degree of v. Therefore,
every undirected edge {u, v} of the graph has two labels, which are called its port
numbers at v and at v. The port numbering is local, i.e., there is no relation
between port numbers at u and at v. An agent entering a node u learns the port
of entry and the degree of the node and can see the exit port-labels at u. An
agent at a node u can decide to stop or move to an adjacent node by selecting an
exit port-label leaving u. The movement of an agent is always at its own constant
speed. The edges of the network are of the same length which we normalize to 1.
As the agents move, they can count the visited nodes. We note here that in the
model of [11] each agent is equipped with a pedometer and by using it, an agent
is capable of measuring the distance travelled and take decisions depending on
its value. However, the algorithms in our model only use the agent’s capability
to count the visited nodes and detect whether an agent occupies a node or not

Different Speeds Suffice for Rendezvous of Two Agents on Arbitrary Graphs 81

(in order to select its next destination). Hence the agents in our model can only
take decisions (stop or change direction) at a node and not inside an edge. The
agents cannot communicate at all (except when they meet) and each agent does
not know either its own or the other agent’s speed.

When discussing running-time and feasibility of rendezvous, we take an
adversarial model where the adversary can choose the network, the initial posi-
tion of each agent and their speeds. The network can be considered as a graph
where all edges have the same length given by the adversary. Although, as we
mentioned above, we normalize the distance of every edge to 1 for the sake of
the presentation, our algorithms work when the edges of the network have been
associated with any (same) distance value.

The time complexity of an algorithm solving the rendezvous problem for two
agents with different speeds and ratio ¢ > 1 in an arbitrary network of size n,
is defined as the worst case time to rendezvous, taken over all pairs of initial
positions of the two agents, over all networks (of a particular type) of size n and
over all pairs of different speeds with ratio c.

1.2 Related Work

The rendezvous problem for mobile agents (or robots) has been studied exten-
sively in many topologies (or domains) and under various assumptions on system
synchronicity and capabilities of the agents [7-9,15]. A critical distinction in the
models is whether the agents must all run the same algorithm, which is generally
known as the symmetric rendezvous problem [3]. If agents can execute different
algorithms, generally known as the asymmetric rendezvous problem, then the
problem is typically much easier, though not always trivial.

In quite a few of those models, rendezvous cannot be achieved without sym-
metry breaking. For example, in the simple case of two deterministic identical
agents on a ring graph, rendezvous cannot be achieved since the agents, no mat-
ter how they move, they will always maintain the same distance apart. Even
in cases where rendezvous can be achieved without it, breaking symmetry often
leads to much more efficient algorithms. One studied method for breaking sym-
metry is to use random bits to make probabilistic choices. An extensive survey
of randomized rendezvous in various scenarios can be found in [4]. Although
such algorithms may provide reasonable expected time to rendezvous, in most
cases they have poor worst-case behaviour. Another studied symmetry breaking
mechanism is to let the agents drop tokens and count inter-token distances [18].
In arbitrary anonymous graphs with identical agents, the problem was solved
(when it is feasible) in [6], for synchronous agents. A third studied symmetry
breaking mechanism is to let agents have distinct labels [9,19]. In the asynchro-
nous case, an almost complete solution for rendezvous in networks using distinct
labels has been provided in [10].

In asynchronous scenarios the speed of any agent’s traversal is controlled by
an adversary. Hence even the traversals of the same edge by the same agent at
two different times, take finite, but maybe different times. Under this assumption
rendezvous in a node cannot be guaranteed even in very simple graphs, and

82 E. Kranakis et al.

therefore the rendezvous requirement in that case is usually relaxed to allow the
agents to meet at a node or inside an edge. In our model, although any two
traversals of the same edge by the same agent last the same fixed time, this
time is controlled by the adversary (by selecting the speed of the agent and the
length of the edges) and it is not the same for the two agents. It is easy to
see that rendezvous in the same node also cannot be guaranteed even in simple
networks (e.g., rings). Hence we also adopt in our model the relaxed requirement
for rendezvous, i.e., allow the agents to meet at a node or inside an edge. Note
that in our model since the agents initially have exactly the same information
about themselves and the network, they cannot assign to themselves distinct
labels. Hence the agents must exploit their different speeds (whose values are
unknown to the agents) in order to meet.

The difference in speed between two otherwise identical agents, is a source of
asymmetry that has recently received more attention. While agent speeds have
been considered as a problem parameter before, the traditional assumption for
synchronous agents has been that all agents move at a common fixed speed.
Even when agent speed has been allowed to vary, as in [5], agents have typically
had a uniform range of possible speeds and have been required to choose their
speed deterministically, maintaining the symmetry of the problem.

The rendezvous problem is also related to the exploration problem, since
both agents have to traverse (explore) some (the same) node or edge in order
to meet. The exploration problem of an anonymous arbitrary network by an
agent has been extensively studied. An important tool for exploration of anony-
mous arbitrary networks is the Universal Traversal Sequence (UTS) which has
been suggested in [1]. A UTS for n-vertex graphs is a predetermined sequence
of instructions that when executed on any n-vertex graph, from any starting
vertex, defines a walk that visits all the vertices of the graph. The authors of [1]
showed the existence of a UTS of a polynomial length for any graph of at most
n nodes. However, to date it remains unknown whether a UTS of a polyno-
mial length can be constructed in polynomial time. In [13] a tool closely related
to UTS was proposed, called Universal Exploration Sequence (UXS). Roughly
speaking, exploration sequences can replace traversal sequences when backtrack-
ing is allowed. Reingold showed in [17] that a UXS of a polynomial length can be
constructed in log-space and therefore in polynomial time. In [19], they defined
and constructed in polynomial time the so called strongly universal exploration
sequence, which is a possibly infinite sequence o with the property that every
contiguous subsequence of o of some fixed length p(n) (where p(n) is a polyno-
mial) is a UXS for any graph of at most n nodes.

1.3 Outline and Results of the Paper

Section 2 studies rendezvous in unknown topologies and includes preliminaries
on Universal Exploration Sequences in Subsect. 2.1, and a rendezvous algorithm
for known n in Subsect. 2.2. Section 3 deals with rendezvous when the network
topology is known; we discuss rendezvous in a torus.

Different Speeds Suffice for Rendezvous of Two Agents on Arbitrary Graphs 83

2 Rendezvous in Unknown Topologies

In this section we present algorithms for accomplishing rendezvous in unknown
graph topologies by using universal exploration sequences. We begin by men-
tioning relevant results on universal exploration sequences and then proceed to
give a new rendezvous algorithm that solves the problem in any graph consisting
of n nodes, when n is known.

2.1 Preliminaries on Universal Exploration Sequences

Let us briefly explain the notion of the universal exploration sequence. Let
(a1, az,...,ar) be a sequence of integers and let G be a graph and u be a node
of G. Let also w = succ(v,x) be the node reached by taking the exit-port x
from node v. A sequence of nodes (ug,...,urr+1) of G can be obtained as fol-
lows: ug = u, uy = succ(ug,0); for any 1 < ¢ < k, uj41 = suce(uy, (p + a;)
mod d(u;)), where p is the entry-port number at u; corresponding to the edge
{u;—1,u;}. A sequence (aj,as,...,a;) which can be applied to any node u of a
graph G and produces a sequence of nodes containing all nodes of G is called
a Undversal Exploration Sequence (UXS) for graph G. A UXS for a class of
graphs is a UXS for all graphs in this class. The following important result,
based on universal exploration sequences introduced by Koucky [13], is due to
Reingold [17].

Proposition 1 ([17]). For any positive integer n, a Universal Ezploration
Sequence Y (n) = (a1, az,...,apr) can be constructed in polynomial time with
respect to n (thus, the agents will be using O(logn) bits of memory) for the class
of all graphs with at most n nodes, where M is polynomial in n.

The length of such a log-space constructive universal exploration sequence is
on the order of at least n'% in Reingold’s [17] original implementation (though
still polynomial in n). Aleliunas et al. proved in [1] the existence of Universal
Traversal Sequences of shorter length.

Proposition 2 ([1]). For any positive integers n, d, d < n, there exists a uni-
versal traversal sequence of length O(n3d?logn) for the family of all graphs with
at most n nodes and maximum degree at most d.

Koucky has shown in [13] in exactly the same way as in Proposition 2, a sim-
ilar result for universal exploration sequences. Note that the traversal (or explo-
ration) sequences in Proposition 2 above are not necessarily constructible in
logarithmic memory! (and hence not constructible in polynomial time).

Given any positive integer n, the UXS leads one agent to visit all nodes of any
graph of size at most n, starting from any node of the graph, using at most 7'(n)
edge traversals, where T is some polynomial. Upon entering a node of degree d
by some port p, the agent can compute the port ¢ by which it has to exit; more
precisely ¢ = (p + x;) mod d, where x; is the corresponding term of the UXS.

! In fact they are (deterministically) constructible in polylogarithmic space, but to
date it is unknown whether a universal traversal (or exploration) sequence of length
O(n®d*logn) can be constructed in polynomial time.

84 E. Kranakis et al.

2.2 Rendezvous in Arbitrary Graphs When n is Known

Suppose that the two agents only know the size n of the graph. We will show that
they can rendezvous within at most polynomial time with respect to n. To this
end, we first need to convert a UXS U to a walk that traverses all edges of the
graph; let us call such a walk Full Edge Traversal (FET). This can be easily done
by having each robot traversing back and forth all incident edges of each node
visited by U before it continues with the next term of U. Let Sy be this modified
sequence. The total number of edge traversals in Sy is |Sy| < |U|+2(n— 1)|U].
If we additionally instruct the agents to traverse back and forth exactly n — 1
incident edges of each node (if a node has ¢ < n — 1 incident edges, then the
agent additionally traverses one edge, randomly chosen, back and forth (n—1)—¢
times), then the total number of edge traversals is exactly |U| + 2(n — 1)|U|.

Proposition 3. Given an arbitrary graph G consisting of n nodes and a univer-
sal exploration sequence U of G, of length |U|, an agent knowing U can construct
and follow a full edge traversal Sy of G of length O(n|U|).

We will now show how to achieve rendezvous between two robots of different
speeds that are able to compute and follow a full edge traversal with a known
bound on its length.

Theorem 1. Consider an arbitrary graph G consisting of n nodes, and two
anonymous agents that have different speeds and (except for their speeds) are
identical. The agents start moving at the same time on their own constant speeds
and they know n.

1. If the agents follow full edge traversals S. and Sy, respectively, where |S.| =
B(n)

|S1] = B(n), then rendezvous is always possible within time at most O (

c—1)°
2. If the agents can construct a universal exploration sequence of length T(n)
then rendezvous is always possible within time at most O (%@)

Proof. We present Algorithm 1; the idea is to make the slow robot stay long
enough at the first edge of its traversal during each round, so as to allow the fast
robot to arrive and rendezvous?.

Observe that on the one hand, the fast robot finishes its graph traversal in
time QB(")CHSC‘ = 3BC("). On the other hand, the slow robot finishes the back
and forth traversals of the chosen edge in time 2B(n). Therefore the fast robot
will catch up with slow robot while the latter is still traversing its chosen edge

provided that

3B(n)

Cc

2B(n) = (1)

If ¢ > 2 then relation (1) is satisfied, which means that the robots meet during
their first round within time %(”). Ife< %, then we have:
The slow robot proceeds in each round ¢ > 1 as follows:

2 This algorithm builds on an idea proposed (without its analysis) by an unknown
reviewer based on an algorithm appearing in an earlier version of this paper.

Different Speeds Suffice for Rendezvous of Two Agents on Arbitrary Graphs 85

Algorithm 1. Rendezvous Algorithm for n known. The two robots stop imme-
diately when they meet.
1: Input: Graph G, FETs S., 81 of G for robots R(c), R(1) respectively, where |S.| =

|S1| = B(n);
Goal: Rendezvous of the two robots;
repeat

let u be your current node; choose an adjacent node v;

zig-zag B(n) times between nodes u, v of edge {u,v};

traverse the edges of the graph in the order specified by your FET sequence;
until you meet the other robot

— zig-zags a chosen edge in the time interval [3iB(n),3iB(n) + 2B(n)],
— traverses the graph in the time interval [3iB(n) + 2B(n), 3iB(n) + 3B(n)],

The fast robot proceeds in each round j > 1 as follows:

— zig-zags a chosen edge in the time interval [22() 3jB(")+2B(")],

[3jB(n)c+2B(n) 3ng(n)+3B(n)}

— traverses the graph in the time interval

b

If during a round j the fast robot starts its FET after the slow robot (which
is at a round i) has started traversing back and forth its chosen edge and the
fast robot finishes its FET before the slow robot finishes its zig-zags, then the
two robots will meet. Hence the robots meet when:

37 +3 o< 37 +2
3i+2- T 3

(2)
The robots would meet at the same round if relation (2) is satisfied for i = j:

3143 e 31+ 2

3it2 == 3 ®)
It is easy to see that for every ¢ > 1 it holds:
3(i+1)+3<3i+3 3(@'+1)+2<3i+2 @)
3i+1)+2 3i+2 3(i+1) 3i

3043 3i42]
31427 37 D
Vi > 1, covers any value of ¢ when 1 < ¢ < % and therefore for any such value
of ¢ there is a round 4 for which relation (3) is satisfied. The number of rounds
needed for relation (3) to be satisfied (and thus the robots to meet) can be

calculated by the second part of relation (3):

. 2
lﬁm (5)

Therefore the meeting will occur within time 35 E”l)) + 3B§”) = O(]i(_”l)), since

¢ > 1. The second claim is obtained as a corollary of the first, using Proposition 3
with |U| = T'(n). This completes the proof of Theorem 1. O

The above relation (4) implies that the sequence of intervals |

86 E. Kranakis et al.

Combining Theorem 1 with the result of Proposition 2 we derive easily the
following corollary.

Corollary 1. Consider an arbitrary graph G consisting of n nodes, and two
anonymous agents having different speeds with ratio ¢ > 1. The agents start
mouving at the same time on their own constant speeds and they know n. There

is an algorithm which accomplishes rendezvous in at most O (%) time. O

Comments: One could possibly think of whether the algorithm could be mod-
ified in order to work for unknown n (e.g., by letting the agents test varying
values of n in an appropriate manner). Unfortunately, since the number of zig-
zags depends on B(n), there seems to be no obvious way to make the algorithm
work correctly; in particular, the agents would not generally test the same n at
the same time and therefore their delays due to zig-zags would vary considerably.

3 Rendezvous in a n X m Torus When the Agents Do
Not Know 1 or m

In this section we investigate whether rendezvous can be done faster when more
knowledge is available about the network topology. We focus on rendezvous in a
n X m torus when the agents do not know n or m. As usual there are two robots
with different speeds starting from arbitrary vertices. Let us imagine that the
two robots are located on a n x m torus with n rows, m columns, and thus a total
of nm vertices. The first result presented in this section assumes no knowledge of
n or m; the only requirement is ged(n,m) = 1. For the second result knowledge
of lem(n, m) and ged(n,m) is assumed.

3.1 Rendezvous in a n X m Torus When gcd(n,m) =1

Consider an n X m torus with n rows, m columns, and nm vertices. Further
assume that ged(n,m) = 1. Construct a sequence of coordinates starting from
any arbitrary vertex (x,y) as follows:

> X< XY < Y

>for :=0,1,... set
ZTit1 < x; + 1 mod m
Yit1 — ¥i + 1 mod n

For each i =0, 1,. .. consider the L-shaped walk (L-walk in short) L; defined
as follows: L; = ((x;,yi), (Tit1, i), (Tit1, Yit1)). That is, L; starts at point P; =
(24, y:), continues to point C; = (z;41,y;) and ends at point P;y1 = (41, Yit1),
thus traversing two edges, the first ‘horizontal’ and the second ‘vertical’.

Let us now consider the following simple algorithm: Each robot follows the
trajectory resulting from the concatenation of walks Lg, L1, Then the follow-
ing theorem holds:

Different Speeds Suffice for Rendezvous of Two Agents on Arbitrary Graphs 87

Theorem 2. Consider a n X m torus with n rows, m columns, and nm vertices.
Further assume that ged(n,m) = 1. Then rendezvous between two robots with
2nm

different speeds, 1 and ¢ > 1, can be accomplished in time =™ .

Proof. Suppose that each robot follows the trajectory resulting from the concate-
nation of walks Lg, L1, We will show that every vertex of the torus appears
in this trajectory as starting point of some L-walk, and as middle point of some
other L-walk. Indeed, by definition we get that (z;,y;) = (xo + 7 mod m,yg +
i mod n). Therefore, for any z;,z; € {0,...,m — 1}, y;,y; € {0,...,n — 1}
it holds (z;,y;) = (zj,y;) if and only if, ¢ = jmodm and ¢ = j modn.
Since ged(n,m) = 1, by applying the Chinese Remainder Theorem we get that
i = j mod (nm).

To sum up we have shown that the trajectory Lo, L1,..., Lymnm—1 starting
from the vertex (z,y) must traverse all the vertices of the torus and also return
to its original position. Moreover the length of this trajectory is exactly 2mn. In
fact, each vertex is visited twice, once as a starting point of some L-walk (and
ending point of the previous one) and once as middle point of some other L-walk.
This is not unnecessary; the fact that each point is visited as a starting of some
trajectory is crucial, as it guarantees that both robots follow exactly the same
trajectory, differing only in their starting point.

Therefore, both robots move along the same cycle of length 2mn, in the same
direction. Thus, directly applying the result of the analysis of this rendezvous
algorithm of [11] (i.e., when the robots move in the same direction, not knowing
the length of the cycle or ¢), we obtain the claimed bound QC"fT This concludes
the proof of Theorem 2. O

3.2 Rendezvous in a n X m Torus When gcd(n,m) > 1

Assuming ged(n, m) = 1, the previous trajectory passes from every vertex of the
torus (see the proof of Theorem 2) and the success of the previous algorithm
heavily relies on this.

If gcd(n,m) = d > 1 then the trajectory Lo, L1, ..., Licm(n,m)—1 returns to
the initial point Py. It thus visits only 2 lem(n, m) nodes (and an equal number of
edges). Therefore, the previous algorithm does not work in this case. A different
algorithm which works when ged(n, m) > 1 is presented below.

Consider coordinates similar to those previously defined (the superscript
refers to the round number, with respect to the algorithm defined below). Recall
that (x,y) are the initial coordinates of a robot.

>y — x5y —y

>for £=0,1,...,:=0,1,..., set

xgi)l — xz(-k) + 1 mod m

yg_’f_)l — ygk) + 1 modn
>for £=0,1,..., set

x((JkH) — xék) + 1 mod m

k k
vy g

88 E. Kranakis et al.

Let us also define the corresponding L-walk Lgk):

k k k k k
L = (@™ 4™, @y, @,y)

We denote the points of walk Lgk) by Pi(k)7 Ci(PZ(_~_)17 respectively. We propose
the following algorithm:

Algorithm 2. Rendezvous Algorithm for the torus n x m with ged(n,m) > 1

1: Input: lem(n, m), ged(n, m)(> 1);

2: Goal: Rendezvous of the two robots;

3: repeat

4 zig-zag ged(n, m)(2lem(n, m) + 1) times on edge PO(O), C’SO);
5: for round k£ = 0 to ged(n,m) — 1 do

6 follow trajectory T = Lgk), Lgk) Lk
7

8

lem(n,m)—1)

traverse edge Pék)) C(()k) ;

: until You meet the other robot

Theorem 3. Consider an nxm torus with n rows, m columns, and nm vertices.
Further assume that ged(n, m) and lem(n, m) are known and that ged(n,m) > 1.

nm

Two robots with different speeds, 1 and ¢ > 1, can rendezvous in time O (275

Proof. We will first show that the trajectories ™), 0 < k < d = ged(n, m),
partition the torus into d edge-disjoint cycles, and that the cycle corresponding
to T(®) coincides with the cycle corresponding to 7*+t%) . Indeed, we can extend
arguments used in the proof of Theorem 2 as follows. We first observe that

(x (.k)7yl(k)) = (z, () 1 mod m, y() + i mod n). Therefore for any x(k), gk) €
{0,...,m—1}, y(k),yj(k) €{0,...,n— 1} it holds (z; (k),yfk)) (x (k),y]) iff:
i=j (mod m)
1=j (mod n).
Since ged(n,m) = d > 1, by applying a more general form of the
Chinese Remainder Theorem (for non coprime moduli) we get that i = j

(mod lem(n, m)); therefore each T*) trajectory visits exactly lem(n, m) distinct
points as starting points of L-walks and exactly lem(n,m) distinct points as
middle points of L-walks.

Next, in order to have (starting) point coincidence among different tra-
jectories ™) T+ it should hold that (xﬁk),y§k)) = (xgk),yj(-k)) for some
1,7 €40,...,lem(n,m) — 1}. This in turn is equivalent to:

(xék) + ¢ mod m,yék) +imod n) = (z; k) |k & + j mod m7y(()k) + j mod n),

Different Speeds Suffice for Rendezvous of Two Agents on Arbitrary Graphs 89

where we use the fact that the z-coordinate of the starting point of T’ (*) is equal
to the z-coordinate of the starting point of 7'®) shifted by &’ — k mod m, while
their y-coordinates coincide. Clearly, the above condition holds iff:

i=k —k+j (modm)
i=j (mod n).

Since ged(n,m) = d > 1, by applying the general form of the Chinese
Remainder Theorem we get that this can happen iff £’ = k (mod d), and that
for given i, k, k" there is a unique solution j € {0,...,lem(n,m)—1} to the above
system.

This means that, as already mentioned, every d rounds a robot repeats the
same cycle, usually starting from a different point of the cycle each time (if
m = d, trajectories T*) and T(**+%) are completely identical). In addition, cycles
T®) and T*+1) with t mod d # 0 are completely disjoint with respect to starting
points of their L-walks, hence are edge-disjoint.

Consequently, during a number of d = ged(n, m) rounds a robot visits all
vertices of the torus twice (once as a starting point and once as a middle point
of some L-walk) and traverses all edges of the torus. Note that all edges are
traversed once, except for horizontal edges (Pél), élﬂ)) which are traversed
twice, the second time providing a transfer of the robot to a different cycle.

Therefore, the concatenation of trajectories 7,0 < i < d — 1 performed in
the second step of the algorithm is in fact a full edge traversal (FET) of length
ged(n, m)(2lem(n, m) + 1) = 2nm + ged(n, m), and by applying Theorem 1 we
get the claim.

Note that the fact that 7%) is not (in most cases) completely identical to
T (k+d) (due to different starting point) does not affect rendezvous time, since all
edges of the torus are traversed. This completes the proof of Theorem 3. O

4 Open Questions

It would be interesting to investigate rendezvous algorithms for two robots which
require even less knowledge. In particular, it would be nice to remove the require-
ment of knowledge of the size of the graph, potentially by using an appropriate
guessing strategy. Another important open question would be to address the case
of equal speeds, possibly by introducing delays after certain number of rounds.
Finally, the study of rendezvous for many robots of different speeds would also
be of great interest.

References

1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: FOCS, pp.
218-223. TEEE (1979)

90

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

E. Kranakis et al.

Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33(3),
673-683 (1995)

Alpern, S.: Rendezvous search: a personal perspective. Oper. Res. 50(5), 772-795
(2002)

Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Aca-
demic Publishers, New York (2002). International Series in Operations Research
and Management Science

Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Asynchronous deterministic
rendezvous in bounded terrains. TCS 412(50), 6926-6937 (2011)

Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165-178 (2012)
Czyzowicz, J., Kosowski, A., Pelc, A.: Deterministic rendezvous of asynchronous
bounded-memory agents in polygonal terrains. Theor. Comput. Syst. 52(2), 179-
199 (2013)

Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchro-
nous deterministic rendezvous in graphs. Theoret. Comput. Sci. 355(3), 315-326
(2006)

Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69-96 (2006)

Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial
cost. In: Proceedings of the ACM Symposium on Principles of Distributed Com-
puting, PODC 2013, pp. 92-99 (2013)

Feinerman, O., Korman, A., Kutten, S., Rodeh, Y.: Fast rendezvous on a cycle by
agents with different speeds. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum,
S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 1-13. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-45249-9_1

Huus, E., Kranakis, E.: Rendezvous of many agents with different speeds in a cycle.
In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp.
195-209. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19662-6_-14

Koucky, M.: Universal traversal sequences with backtracking. J. Comput. Syst. Sci.
65, 717-726 (2002)

Kranakis, E., Krizanc, D., MacQuarrie, F., Shende, S.: Randomized rendezvous on
a ring for agents with different speeds. In: Proceedings of the 15th International
Conference on Distributed Computing and Networking (ICDCN) (2015)
Kranakis, E., Krizanc, D., Markou, E.: The mobile agent rendezvous problem in
the ring: an introduction. Synthesis Lectures on Distributed Computing Theory
Series. Morgan and Claypool Publishers, San Rafael (2010)

Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks
59, 331-347 (2012)

Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17 (2008)
Sawchuk, C.: Mobile Agent Rendezvous in the Ring. Ph.D. thesis, Carleton Uni-
versity (2004)

Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, strongly uni-
versal exploration sequences. ACM Trans. Algorithms 10(3), 12 (2014)

Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In:
Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610-621. Springer,
Heidelberg (1996). doi:10.1007/3-540-61440-0-163

http://dx.doi.org/10.1007/978-3-642-45249-9_1
http://dx.doi.org/10.1007/978-3-319-19662-6_14
http://dx.doi.org/10.1007/3-540-61440-0_163

Deciding Structural Liveness of Petri Nets

Petr Jancar®)

Department of Computer Science, FEI, Technical University, Ostrava, Czech Republic
petr. jancar@vsb.cz

Abstract. Place/transition Petri nets are a standard model for a class
of distributed systems whose reachability spaces might be infinite. One
of well-studied topics is the verification of safety and liveness properties
in this model; despite the extensive research effort, some basic prob-
lems remain open, which is exemplified by the open complexity status of
the reachability problem. The liveness problems are known to be closely
related to the reachability problem, and many structural properties of
nets that are related to liveness have been studied.

Somewhat surprisingly, the decidability status of the problem if a net
is structurally live, i.e. if there is an initial marking for which it is live,
has remained open, as also a recent paper (Best and Esparza, 2016)
emphasizes. Here we show that the structural liveness problem for Petri
nets is decidable.

A crucial ingredient of the proof is the result by Leroux (LiCS 2013)
showing that we can compute a finite (Presburger) description of the
reachability set for a marked Petri net if this set is semilinear.

1 Introduction

Petri nets are a standard tool for modeling and analysing a class of distributed
systems; we can name [15] as a recent introductory monograph for this area.
A natural part of the analysis of such systems is checking the safety and/or
liveness properties, where the question of deadlock-freeness is just one example.

The classical version of place/transition Petri nets (exemplified by Fig. 1) is
used to model systems with potentially infinite state spaces; here the decidability
and/or complexity questions for respective analysis problems are often intricate.
E.g., despite several decades of research the complexity status of the basic prob-
lem of reachability (can the system get from one given configuration to another?)
remains unclear; we know that the problem is EXPSPACE-hard due to a classical
construction by Lipton (see, e.g., [4]) but the known upper complexity bounds
are not primitive recursive (we can refer to [12] and the references therein for
further information).

The liveness of a transition (modelling a system action) is a related problem;
its complementary problem asks if for a given initial marking (modelling an
initial system configuration) the net enables to reach a marking in which the
transition is dead, in the sense that it can be never performed in the future.

Supported by the Grant Agency of the Czech Rep., project GACR:15-137848S.

© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 91-102, 2017.
DOI: 10.1007/978-3-319-51963-0_-8

92 P. Jancar

A marked net (N, My), i.e. a net N with an initial marking My, is live if all its
transitions are live.

The close relationship of the problems of reachability and liveness has been
clear since the early works by Hack [8,9]. Nevertheless, the situation is different
for the problem of structural liveness that asks, given a net IV, if there is a mark-
ing My such that (N, Mp) is live. While semidecidability of structural liveness
is clear due to the decidability of (reachability and) liveness, the decidability
question has been open: see, e.g., the overview [16] and in particular the recent
paper [3] where this problem (STLP) is discussed in Concluding Remarks.

Here we show the decidability of structural liveness, by showing the semide-
cidability of the complementary problem. The idea is to construct, for a given net
N, a marked net (N', M])) (partly sketched in Fig.2) that works in two phases
(controlled by places added to N): in the first phase, an arbitrary marking M
from the set D of markings with at least one dead transition is generated, and
then N is simulated in the reverse mode from M. If N is not structurally live,
then the projection of the reachability set of (N’, M{)) to the set P of places of
N is the whole set N”: if N is structurally live, then there is M € N such that
the projection of any marking reachable from M differs from M.

In the first case (with the whole set N¥) the reachability set of (N, M}) is
semilinear, i.e. Presburger definable. Due to a result by Leroux [11], there is an
algorithm that finishes with a Presburger description of the reachability set of
(N’, M{)) when this set is semilinear (while it runs forever when not). This yields
the announced semidecidability.

The construction of the above mentioned (downward closed) set D is stan-
dard; the crucial ingredient of our proof is thus the mentioned result by Leroux.
Though we use the decidability of reachability (for semidecidability of the pos-
itive case), it is not clear if reachability reduces to structural liveness, and the
complexity of the structural liveness problem is left open for future research.

Section 2 provides the formal background, and Sect. 3 shows the decidability
result. In Sect. 4 a few comments are added, and in particular an example of a
net is given where the set of live markings is not semilinear.

2 Basic Definitions

By N we denote the set {0,1,2,...}. For a set A, by A* we denote the set of
finite sequences of elements of A, and ¢ denotes the empty sequence.

Nets. A Petri net, or just a net for short, is a tuple N = (P,T,W) where
P and T are two disjoint finite sets of places and transitions, respectively, and
W (P xT)U(T x P) — N is the weighted flow function. A marking M of N
is an element of N, a mapping from P to N, often also viewed as a vector with
|P| components (i.e., an element of NI”'1).,

Figure 1 presents a net N = ({p1, p2, 3}, {t1,t2,t3}, W) where W (p1,t1) = 2,
W(p1,t2) = 1, W(p1,t3) = 0, etc.; we do not draw an arc from z to y when
W(z,y) = 0, and we assume W (x,y) = 1 for the arcs (x,y) with no depicted

Deciding Structural Liveness of Petri Nets 93

Fig. 1. Example of a net N = (P, T, W), with marking M = (3,1,0)

numbers. Figure 1 also depicts a marking M by using black tokens, namely M =
(3,1,0), assuming the ordering (p1, p2,p3) of places.

Reachability. Assuming a net N = (P, T, W), for each ¢ € T we define the
following relation -, on NP

M -5 M eqVpe P M(p) > W(p,t) AM (p) = M(p) — W(p,t) + W(t,p).

By M ' we denote that ¢ is enabled in M, i.e., that there is M’ such that
M —%5 M’. The relations —— are inductively extended to — for all u € T™*:
M —S5 M;if M -5 M and M' -5 M”, then M - M". The reachability set
for a marking M is the set

[M) ={M' | M - M’ for some u € T*}.

to t1 t1

For the net of Fig.1 we have, eg., (3,1,0) — (4,0,1) — (2,0,1) —
(0,0,1) BER (1,1,0); we can check that the reachability set for (3,1,0) is

{(2,1,0) | z is odd } U{(y,0,1) | y is even}. (1)

Liveness. For a net N = (P, T, W), a transition t is dead in a marking M if

there is no M’ € [M) such that M’ —. (Such ¢ can be never performed in N
when we start from M.)
A transition t is live in My if there is no M € [My) such that ¢ is dead in

M. (Hence for cach M € [Mp) there is M’ € [M) such that M’ ——.) A set
T' C T of transitions is live in My if each t € T" is live in My. (Another natural
definition of liveness of a set 7" is discussed in Sect. 4.)

A marked net is a pair (N, My) where N = (P,T,W) is a net and M,
is a marking, called the initial marking. A marked net (N, My) is live if each
transition (in other words, the set T') is live in My (in the net N). A net N is
structurally live if there is My such that (N, Mp) is live.

94 P. Jancar

E.g., the net in Fig. 1 is structurally live since it is live for the marking (3, 1, 0),
as can be easily checked by inspecting the transitions enabled in the elements of

the reachability set (1). We can also note that the net is not live for (4, 1,0), we

even have that no transition is live in (4,1, 0), since (4,1,0) hty (0,1,0) where

all transitions are dead.

Liveness decision problems.

— The partial liveness problem, denoted PLP, asks, given a marked net (N, M)
and a set T” of its transitions, if 7" is live in M.

— The liveness problem, denoted LP, is a special case of PLP: it asks, given a
marked net (N, My), if (N, Mp) is live (i.e., if all its transitions are live in My).

— The partial structural liveness problem, denoted PSLP, asks, given a net N
and a set T” of its transitions, if there is M in which T” is live.

— The structural liveness problem, denoted SLP, is a special case of PSLP: it
asks, given a net N, if there is M such that (N, M) is live.

3 Structural Liveness of Nets Is Decidable

We aim to show the decidability of PSLP, and thus also of SLP:
Theorem 1. The partial structural liveness problem (PSLP) is decidable.

We prove the theorem in the rest of this section. We first recall the famous
decidability result for reachability. The reachability problem, denoted RP, asks
if M € [My) when given N, My, M.

Lemma 2. [13] The reachability problem (RP) is decidable.

In Petri net theory this is a fundamental theorem; we call it a “lemma”
here, since it is one ingredient used in proving the theorem of this paper (i.e.
Theorem 1). The first proof of Lemma?2 was given by E-W. Mayr (see [13] for
a journal publication), and there is a row of further papers dealing with this
problem; we can refer to a recent paper [12] and the references therein for further
information. As already mentioned, the complexity of the reachability problem
remains far from clear.

There are long known, and straightforward, effective reductions among the
reachability problem RP and the (partial) liveness problems (PLP and LP); we
can find them already in Hack’s works from 1970s [8,9]. This induces semide-
cidability of the partial structural liveness problem (PSLP): given N and T”,
we can systematically generate all markings of N, always deciding if T” is live
in the currently generated M (and halt when the answer is positive). Hence the
main issue is to establish the semidecidability of the complementary problem
of PSLP; roughly speaking, we need to find a finite witness when (N, M) is
non-live for all M.

We further assume a fixed net N = (P, T, W) if not said otherwise.

Deciding Structural Liveness of Petri Nets 95

Sets of “dead” markings are downward closed. A natural first step for
studying (partial) liveness is to explore the sets

Dr = {M € N¥' | some t € T' is dead in M}

for 7" C T. We note that the definition entails Dr» = (J,cqv Dyyy- E.g., in
the net of Fig.1 we have D,y = {(,0,0) | z < 1} U {(0,2,0) | z € N},
Dy, 15 = {(2,0,0) | z € N}, and

Dr = {(0,2,0) | z € N} U{(z,0,0) | z € N}. (2)

Due to the monotonicity of Petri nets (by which we mean that M —~ M’ implies
M+6 - M'+4 for all § € NP), each Dy is obviously downward closed. We
say that D C N¥ is downward closed if M € D implies M’ € D for all M’ < M,
where we refer to the component-wise order:

M' <M &4 Vpe P: M (p) < M(p).

It is standard to characterize any downward closed subset D of N¥ by the set of
its maximal elements, using the extension N, = NU {w} where w stands for an
“arbitrarily large number” satisfying w > n for all n € N. Formally we extend a
downward closed set D C N* to the set

D={Me N,)"|VM eN": M <M = M eD}.
We thus have
D ={M' €N’ | M < M for some M € Max(D)}

where MAX (D) is the set of maximal elements of D. By (the standard extension

of) Dickson’s Lemma, the set MAX(D) is finite. (We can refer, e.g., to [5] where
such completions by “adding the limits” are handled in a general framework.)

E.g., for the set Dy in (2) we have MAX(IS;) ={(0,w,0), (w,0,0)}.

Proposition 3. Given N = (P,T,W) and T" C T, the set Dr: is downward
closed and the finite set MAX(Dr1) is effectively constructible.

Proof. We consider a net N = (P,T,W) and a set 7" C T. As discussed above,
the set Dy is downward closed. -

Instead of a direct construction of the finite set MAX(Dy), we first show that
the set S7v = MIN(NF \ Dpv), i.e. the set of minimal elements of the (upward
closed) complement of Dy, is effectively constructible.

For each t € T”, we first compute S; = 1\/IIN(NP\D{,5})7 i.e. the set of minimal
markings in which ¢ is not dead. One standard possibility for computing S; is to
use the following backward algorithm, where

MINPRE(t', M) is the unique marking in MiN({M’ | IM" > M : M’ LR M"}).

(For each p € P, MINPRE(t', M)(p) = W(p,t') + max{M (p)—W(t',p),0}.)

96 P. Jancar

An algorithm for computing S;:
1. Initialize the variable S, containing a finite set of markings, by

S := {MINPRE(Z,0)}

where 0 is the zero marking (0(p) = 0 for each p € P).

2. Perform the following step repeatedly, as long as possible:
if for some ¢ € T and M € S the marking M’ = MINPRE(t, M) is
not in the upward closure of S (hence M’ # M" for each M" € S),
then put

S:=SU{M I~ {M" eS| M <M"}.

Termination is clear by Dickson’s Lemma, and the final value of S is obviously
the set S; (of all minimal markings from which ¢ can get enabled). We can remark
that related studies in more general frameworks can be found, e.g., in [1,6].

Having computed the sets S; = MIN(N? < Dyyy) for all t € T', we can surely
compute the set Spr = MIN(NF < Dp/) since

Srr=MIN{M e N” | (vt e T")(3M' € S;) : M > M'}).
This also entails that the maximum B € N of values M (p) where M € Sy (and
p € P) is bounded by the maximum value M (p) where M € S, for some t € T".

Since the finite (i.e., non-w) numbers M (p) in the elements M of MAX(YS;) are
obviously less than B, the set MAX(Dz/) can be constructed when given Sz. O

Remark. Generally we must count with at least exponential-space algorithms
for constructing MAX(Dz+) (or MIN(NY \ Drv)), due to Lipton’s EXPSPACE-
hardness construction that also applies to the coverability (besides the reacha-
bility). On the other hand, by Rackoft’s results [14] the maximum B mentioned
in the proof is at most doubly-exponential w.r.t. the input size, and thus fits in
exponential space. Nevertheless, the precise complexity of computing MAX(Dy)
is not important in our context.

Sets of “live” markings are more complicated. Assuming N = (P,T,W),
for 7" C T we define

Lrr={M € N | T' is live in M}.
The set L7+ is not the complement of Dps in general, but our definitions readily
yield the following equivalence:
Proposition 4. M € Ly iff [M) N Dy = 0.

We note that L7 is not upward closed in general. We have already observed
this on the net in Fig. 1, where Dy = {(0,2,0) | x € N}U{(2,0,0) | z € N} (i.e.,
MaX(Dr) = {(0,w,0), (w,0,0)}). It is not difficult to verify that in this net we
have

Ly ={M € NP} | M(py)+M(ps) > 1 and M(p1)+M (ps) is odd }. (3)

Proposition 4 has the following simple corollary:

Deciding Structural Liveness of Petri Nets 97

Proposition 5. The answer to an instance N = (P, T,W), T' of PSLP (the
partial structural liveness problem) is

1. YES if Lpr # 0, i.e., if {M € NP;[M) N Dy # (0} # NP,
2. NO if Lyr =0, i.e., if {M € N';[M) N Dy #)} = NP,

It turns out important for us that in the case 2 (NO) the set {M € NZ;[M) N
Dr: # 0} is semilinear. We now recall the relevant notions and facts, and then
we give a proof of Theorem 1.

Semilinear sets. For a fixed (dimension) d € N, a set £ C N? is linear if there
is a (basic) vector p € N¢ and (period) vectors my,7,...,m € N¢ (for some
k € N) such that

L ={p+aim +xame+ - +xpmL | T1,22,..., 25 €E N}

Such vectors p, 71, o, ..., constitute a description of the set .Z.

A set .7 C N% is semilinear if it is the union of finitely many linear sets; a
description of . is a collection of descriptions of .%;, i = 1,2,...,m (for some
m € N), where ¥ = £ U % U---U.%, and % are linear.

It is well known that an equivalent formalism for describing semilinear sets
are Presburger formulas [7], the arithmetic formulas that can use addition but no
multiplication (of variables); we also recall that the truth of (closed) Presburger
formulas is decidable. E.g., all downward (or upward) closed sets D C N are
semilinear, and also the above sets (1) and (3) are examples of semilinear sets.
Moreover, given the set MAX(D) for a downward closed set D, constructing a
description of D as of a semilinear set is straightforward.

It is also well known that the reachability sets [M) are not semilinear in
general; similarly the sets L/ (of live markings) are not semilinear in general.
(We give an example in Sect. 4.) But we have the following result by Leroux [11];
it is again an important theorem in Petri net theory that we call a “lemma” in
our context (since it is an ingredient for proving Theorem 1).

Lemma 6. [11] There is an algorithm that, given a marked net (N, My), halts
iff the reachability set [My) is semilinear, in which case it produces a description
of this set.

Roughly speaking, the algorithm guaranteed by Lemma 6 generates the reach-
ability graph for M, while performing certain “accelerations” when possible
(which captures repeatings of some transition sequences by simple formulas);
this process is creating a sequence of descriptions of increasing semilinear sub-
sets of the reachability set [Mo) until the subset is closed under all steps ——
(which can be effectively checked); in this case the subset (called an inductive
invariant in [11]) is equal to [Mp), and the process is guaranteed to reach such a
case when [My) is semilinear. (A consequence highlighted in [11] is that in such
a case all reachable markings can be reached by sequences of transitions from a
bounded language.)

98 P. Jancar

Proof of Theorem 1 (decidability of PSLP).
Given N = (P,T,W) and T" C T, we will construct a marked net (N’, M{)
where N' = (P U Pew, T U Tyew, W) so that we will have:

(a) if Ly» = @ in N (i.e., 7" is non-live in each marking of N) then [M]) is
semilinear and the projection of [M}) to P is equal to N’;

(b) if L7/ # (), then the projection of [M}) to P is not equal to N (and might
be non-semilinear).

This construction of (N', M) yields the required decidability proof, since we can
consider two algorithms running in parallel:

— One is the algorithm of Lemma6 applied to (N’, M[); if it finishes with a
semilinear description of [M{), which surely happens in the case (a), then we
can effectively check if the projection of [M{) to P is N¥_ i.e. if L7+ = 0. (A
projection of a semilinear set is effectively semilinear, the set-difference of two
semilinear set is also effectively semilinear [7], and checking emptiness of a
semilinear set is trivial.)

— The other algorithm generates all M € N and for each of them checks if
there is M’ € [M{) such that M’'p (i.e., M’ projected to P) is equal to M.
It thus finds some M with the negative answer if, and only if, L7 # 0 (the
case (b)). The existence of the algorithm checking the mentioned property
for M follows from a standard extension of the decidability of reachability
(Lemma 2); for our concrete construction below this extension is not needed,
and just the claim of Lemma 2 will suffice.

The construction of (N', M{) is illustrated in Fig. 2; we create a marked net that
first generates an element of Dy on the places P, and then simulates N in the
reverse mode. More concretely, we assume the ordering (p1, ps, . .., pn) of the set
P of places in N, and compute a description of the semilinear set Dy C NI
(by first constructing the set MAX(Dy); recall Proposition 3). We thus get

Dr =2 UL U---UL,

given by descriptions p;, w1, T2, . . ., Tk, of the linear sets .Z;, fori =1,2,...,m.

Remark. We choose this description of D/ to make clear that the construction
can be applied to any semilinear set, not only to a downward closed one.

The construction of (N', M), where N’ = (P U Py, T U Thew, W), is now
described in detail:

1. Given N = (P,T,W), create the “reversed” net N, = (P,T, Wy), where
Wiew(p,t) = W (t,p) and Wie,(t,p) = W(p,t) forallp e Pand t € T.
(By induction on the length of u it is easy to verify that M — M’ in N iff
M’ “2% M in Ny, where ., is defined inductively as follows: &,c, = € and
(tu)rev = urevt~)

2. To get N/, extend N,., as described below; we will have W' (p,t) = Wy, (p, t)
and W' (t,p) = Wyeo(t,p) forallp e Pand t € T.

Deciding Structural Liveness of Petri Nets 99

Nrev

Fig. 2. Construction of (N, M{) for deciding the (partial) structural liveness (PSLP)

3. Create the set Py, of additional places
P,y = {START, LIN7, LINg, ..., LIN,,, REVy }

and the set T, of additional transitions
Tnew:Uie{12 {pzvfu i1 7TL27"'7t7Tiki}

(as partly depicted in Fig. 2.)

4. Put Mj(sTART) = 1 and M/ (p) = 0 for all other places p € P U Pycp.

5. For each i € {1,2,...,m}, put W/(START,t,,) = W'(t,,,LIN;) = 1, and
W'(tp,,p;) = (ps); forall j € {1,2,...,n}, where (p;); is the j-th component
of the vector p; € N™. (We tacitly assume that the value of W’ is 0 for the
pairs (p,t) and (¢, p) that are not mentioned.)

6. For each tr, (i € {1,2,...,m}, £ € {1,2,...,k;}) put W’(LINl,th) =
W'(tr,,, LIN;) =1, and W' (tr,,,p;) = (Tie); for all je{1,2,...,n}.

7. For each f; put W/(LINy, f;) = W/(fi,REVN) = 1.

8. For each transition t € T' in N, put W/(REVy,t) = W/(¢,REVy) = 1.

100 P. Jancar

In the resulting (N’, M{)) we have only one token moving on P,,,,; more precisely,
the set [M() can be expressed as the union

[M6> = SSTART U SLINl J---u SLle U SI{EVN

of the disjoint sets S, = {M | M € [M{}) and M(p) = 1}, for p €
{START, LINy,...,LIN,,, REVN }. It is clear that each of the sets Sgrarr, Sumgs
..+, Sun,, 1s linear, and that the projection of Sppyy to P = {p1,p2,...,0n} I8
the set {M € N¥;[M) N Dz # (0} where [M) refers to the net N.

The constructed (N', M) clearly satisfies the above conditions (a) and (b).
In the algorithm verifying b), it suffices to generate the markings M of N’ that
satisfy M(REVy) = 1, M(START) = M(LIN;) = --- = M(LIN,,) = 0, and to
check the (non)reachability from M| for each of them (recall Lemma2).

Remark. We also have another option (than Lemma?2) for establishing the
non-reachability of M from M|, due to another result by Leroux (see, e.g., [10]):
namely to find a description of a semilinear set that contains M|, does not

contain M, and is closed w.r.t. all steps SN (being thus an inductive invariant
in the terminology of [10]).

4 Additional Remarks

Sets of live markings can be non-semilinear. In Petri net theory, there are
many results that relate liveness to specific structural properties of nets. We can
name [2] as an example of a cited paper from this area. Nevertheless, the general
structural liveness problem is still not fully understood; one reason might be the
fact that the set of live markings of a given net is not semilinear in general.

We give an example. If the set L7 of live markings for the net N = (P, T, W)
in Fig. 3 was semilinear, then also its intersection with the set {(x1,0,1,0,1, z¢) |
x1,2¢ € N} would be semilinear (i.e., definable by a Presburger formula). But
is is straightforward to verify that the markings in this set are live if, and only
if, ¢ > 2%1, which makes the set clearly non-semilinear. Indeed, any marking
M where p4 is marked (forever), i.e. M(ps) > 1, is clearly live, and we can get
at most 2¥! tokens in ps as long as ps is unmarked; if zg < 2%, then there
is a reachable marking where all transitions are dead, but otherwise p; gets
necessarily marked.

Another version of liveness of a set of transitions. Given N = (P, T, W),
we defined that a set T” of transitions is live in a marking M if each ¢t € T" is
live in M. Another option is to view T as live in M if in each M’ € [M) at least
one t € T is not dead. But the problem if T” is live in M in this sense can be
easily reduced to the problem if a specific transition is live. (We can add a place
P and a transition ¢, putting W (p,¢) = 1. For each t € T’ we then add ¢’ and
put W(t',p) = 1 and W(p,t') = W(t',p) = W(p,t) for each p € P. Then T" is
live in M in the new sense iff ¢ is live in M.) The above nuances in definitions
thus make no substantial difference.

Deciding Structural Liveness of Petri Nets 101

P1

Fig. 3. Sets of live markings can be non-semilinear

Open complexity status. We have not clarified the complexity of the (par-
tial) structural liveness problem (PSLP, SLP). The complexity of the (partial)
liveness problem (PLP, LP) is “close” to the complexity of the reachability
problem RP (as follows already by the constructions in [8]), but it seems nat-
ural to expect that the structural liveness problem might be easier. (E.g., the
boundedness problem, asking if [My) is finite when given (N, My), is EXPSPACE-
complete, by the results of Lipton and Rackoff, but the structural boundedness
problem is polynomial; here we ask, given N, if (N, Mp) is bounded for all My,
or in the complementary way, if (N, M) is unbounded for some M.)

Acknowledgement. I would like to thank Eike Best for drawing my attention to
the problem of structural liveness studied in this paper. I also thank the anonymous
reviewers for helpful comments.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inf. Comput. 160(1-2), 109-127 (2000).
http://dx.doi.org/10.1006/inco.1999.2843

2. Barkaoui, K., Pradat-Peyre, J.: On liveness and controlled siphons in Petri nets.
Application and Theory of Petri Nets 1996. LNCS, vol. 1091, pp. 57-72. Springer,
Heidelberg (1996). doi:10.1007/3-540-61363-3_4

3. Best, E., Esparza, J.: Existence of home states in Petri nets is decidable. Inf.
Process. Lett. 116(6), 423-427 (2016). http://dx.doi.org/10.1016/].ipl.2016.01.011

4. Esparza, J.: Decidability and complexity of Petri net problems—an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374-428.
Springer, Heidelberg (1998). doi:10.1007/3-540-65306-6_20

http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1007/3-540-61363-3_4
http://dx.doi.org/10.1016/j.ipl.2016.01.011
http://dx.doi.org/10.1007/3-540-65306-6_20

102

10.

11.

12.

13.

14.

15.

16.

P. Jancar

Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, Part II: complete
WSTS. Logical Methods Comput. Sci. 8(3) (2012). http://dx.doi.org/10.2168/
LMCS-8(3:28)2012

Finkel, A, Schnoebelen, P.: Well-structured transition Sys-
tems everywhere!. Theor. Comput. Sci. 256(1-2), 63-92 (2001).
http://dx.doi.org/10.1016,/S0304-3975(00)00102-X

Ginsburg, S., Spanier, E.H.: Semigroups, presburger formulas, and languages.
Pacific J. Math. 16(2), 285-296 (1966)

Hack, M.: The recursive equivalence of the reachability problem and the liveness
problem for Petri nets and vector addition systems. In: 15th Annual Symposium
on Switching and Automata Theory, New Orleans, Louisiana, USA, October 14—
16, 1974, pp. 156-164. IEEE Computer Society (1974). http://dx.doi.org/10.1109/
SWAT.1974.28

Hack, M.: Decidability Questions for Petri Nets. Outstanding Dissertations in the
Computer Sciences. Garland Publishing, New York (1975)

Leroux, J.: Vector addition systems reachability problem (A simpler solution). In:
Voronkov, A. (ed.) Turing-100 - The Alan Turing Centenary, Manchester, UK, June
22-25, 2012. EPiC Series in Computing, vol. 10, pp. 214-228. EasyChair (2012).
http://www.easychair.org/publications/?page=1673703727

Leroux, J.: Presburger vector addition systems. In: 28th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June
25-28, 2013, pp. 23-32. IEEE Computer Society (2013). http://dx.doi.org/10.
1109/L1CS.2013.7

Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, July 6-10, 2015, pp. 56-67. IEEE Computer Society (2015). http://
dx.doi.org/10.1109/LICS.2015.16

Mayr, E.W.: An algorithm for the general petri net reachability problem. SIAM J.
Comput. 13(3), 441-460 (1984). http://dx.doi.org/10.1137/0213029

Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6, 223-231 (1978)

Reisig, W.: Understanding Petri Nets (Modeling Techniques, Analysis Methods,
Case Studies). Springer, Heidelberg (2013). 230 pp

Wimmel, H.: Entscheidbarkeit bei Petri Netzen: Uberblick und Kompendium.
Springer, Heidelberg (2008). 242 pp

http://dx.doi.org/10.2168/LMCS-8(3:28)2012
http://dx.doi.org/10.2168/LMCS-8(3:28)2012
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1109/SWAT.1974.28
http://dx.doi.org/10.1109/SWAT.1974.28
http://www.easychair.org/publications/?page=1673703727
http://dx.doi.org/10.1109/LICS.2013.7
http://dx.doi.org/10.1109/LICS.2013.7
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1137/0213029

Distributed Network Generation
Based on Preferential Attachment in ABS

Keyvan Azadbakht®™), Nikolaos Bezirgiannis, and Frank S. de Boer

Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
{k.azadbakht,n.bezirgiannis,f.s.de.boer}@cwi.nl

Abstract. Generation of social networks using Preferential Attachment
(PA) mechanism is proposed in the Barabasi-Albert model. In this mech-
anism, new nodes are introduced to the network sequentially and they
attach to the existing nodes preferentially where the preference can be
based on the degree of the existing nodes. PA is a classical model with a
natural intuition, great explanatory power and interesting mathematical
properties. Some of these properties only appear in large-scale networks.
However generation of such extra-large networks can be challenging
due to memory limitations. In this paper, we investigate a distributed-
memory approach for PA-based network generation which is scalable and
which avoids low-level synchronization mechanisms thanks to utilizing a
powerful programming model and proper programming constructs.

Keywords: Distributed programming + Social network - Preferential
Attachment - Actor model - Synchronization

1 Introduction

Social networks appear in many domains, e.g., communication, friendship, and
citation networks. These networks are different from random networks as they
demonstrate structural features like power-law degree distribution. There exist
certain models which generate artificial graphs that preserve the properties of
real world networks (e.g., [1-3]), among which Barabasi-Albert model of scale-
free networks, which is based on Preferential Attachment (PA) [3], is one of the
most widely-used ones, mainly because of its natural intuition, great explanatory
power and simple mechanism [4].

Generating network based on PA is inherently a sequential task as there is a
sequence among the nodes in terms of their addition to the network. The nodes
are added preferentially to the graph. The preference is the node degrees in the
graph, i.e., the higher a node degree, the higher probability with which the new
node makes connection.

Massive networks are structurally different from small networks synthesized
by the same algorithm. Furthermore there are many patterns that emerge only
in massive networks [5]. Analysis of such networks is also of importance in many

© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 103-115, 2017.
DOI: 10.1007/978-3-319-51963-0_9

104 K. Azadbakht et al.

areas, e.g. data-mining, network sciences, physics, and social sciences [6]. Never-
theless, generation of such extra-large networks necessitates an extra-large mem-
ory in a single server in the centralized algorithms.

The major challenge is generating large-scale social networks utiliz-
ing distributed-memory approaches where the graph, generated by multiple
processes, is distributed among multiple corresponding memories. Few exist-
ing methods are based on a distributed implementation of the PA model among
which some methods are based on a version of the PA model which does not fully
capture its main characteristics. In contrast, we aim for a distributed solution
which follows the original PA model, i.e., preserving the same probability distri-
bution as the sequential one. The main challenge of a faithful distributed version
of PA is to manage the complexity of the communication and synchronization
involved.

In a distributed version, finding a target node in order for the new node to
make connection with may cause an unresolved dependency, i.e., the target itself
is not yet resolved. However this kind of dependencies must be preserved and the
to-be-resolved target will be utilized when it is resolved. How to preserve these
dependencies and their utilization give rise to low-level explicit management of
the dependencies or, by means of powerful programming constructs, high-level
implicit management of them.

The main contribution of this paper is a new scalable distributed implemen-
tation of an ABS (Abstract Behavioral Specification) [7] model of PA. The ABS
language is a high-level actor-based executable modeling language which is tai-
lored towards modeling distributed applications and which supports a variety of
tool-supported techniques for, e.g., verification [8] and resource analysis [9]. In
this paper, we show that ABS also can be used as a powerful programming lan-
guage for efficient implementation of cloud-based distributed applications. The
underlying runtime system and compiler are written in the Haskell language
integrating the Cloud Haskell APT [10].

The paper is organized as follows: The description of ABS language and
its Haskell backend is given in Sect.2. Section 3 elaborates on the high-level
proposed distributed algorithm using the notion of cooperative scheduling and
futures. In Sect. 4, implementation-specific details and experimental results are
presented. Finally, Sect.5 concludes the paper.

Related Work. Efficient implementation of PA model has been investigated in,
e.g., [4,11-15]. Some of these works still focus on the sequential approach (e.g.,
[4,11,12]). The main proposal of such methods is to adopt data structures which
improve time and memory complexity. There are also parallel and distributed
proposals: [13,14] do not fully capture the main properties expected in the orig-
inal model of graph generation; [15] also requires complex synchronization and
communication management.

Our work was inspired by the work in [15] where a low-level distributed
implementation of PA is given in MPI: the implementation code remains
closed source (even after contacting the authors) and, as such, we cannot
validate their presented results (e.g., there are certain glitches in their weak

Distributed Network Generation Based on Preferential Attachment in ABS 105

scaling demonstration), nor compare them to our own implementation. Since
efficient implementation of PA is an important and challenging topic, further
research is called for. Moreover, our experimental data are based on a high-level
model of the PA which abstracts from low-level management of process queues
and corresponding synchronization mechanism as used in [15].

In [16] a high-level distributed model of the PA in ABS has been presented
together with a high-level description of its possible implementation in Java.
However, as we argue in Sect. 4, certain features of ABS pose serious problems
to an efficient distributed implementation in Java. In this paper, we show that
these problems can be solved by a runtime system for ABS in Haskell and a cor-
responding source-to-source translation. We do so by providing an experimental
validation of a scalable distributed implementation based on Haskell.

2 ABS: The Modeling Framework

The Abstract Behavioral Specification language (ABS for short) [7] is a modeling
language for concurrent systems. Its formal operational semantics permit the
analysis [9], and verification [8] of complex concurrent models. Moreover, the
ABS language is executable which means the user can generate executable code
and integrate it to production—currently backends have been written to target
Java, Erlang and Haskell [17] and ProActive [18] software.

ABS at its core is a purely functional programming language, with support for
pure functions (functions that disallow side-effects), parametrically polymorphic
algebraic datatypes (e.g. Maybe<A>) and pattern matching over those types. At
the outside sits the imperative layer of the language with the Java-reminiscing
class, interface, method and attribute definitions. Unlike Java, the objects in ABS
are typed exclusively by interface with the usual nominal subtyping relations—
ABS does not provide any means for class (code) inheritance. It also attributes
the notion of concurrent object group, which is essentially a group of objects
which share control [7]. Note that a complement to this notion where the active
objects share the data, i.e., the message queue, instead of control is studied
in [19].

Besides the common synchronous method calls to passive objects o.m(é),
ABS introduces the notion of concurrent objects (also known as active objects).
These concurrent objects interact primarily via asynchronous method invoca-
tions and futures. An asynchronous method invocation is of the form f = olm(e),
where f is a future used as a reference to the return value of the asynchronous
method call m. The method call itself will generate a process which is stored in
the process queue of the callee object of the call. Futures can be passed around
and can be queried for the value they contain. The query r = f.get blocks the exe-
cution of the active object until the future f is resolved, and returns its value. On
the other hand, the statementawait f? additionally releases control. This allows
for scheduling of another process of the same active object and as such gives rise
to the notion of cooperative scheduling: releasing the control cooperatively so
another enabled process can be (re)activated. ABS provides two other forms of

106 K. Azadbakht et al.

releasing control: the await b statement which will only re-activate the process
when the given boolean condition b becomes true (e.g. await this.field==3),
and the suspend statement which will unconditionally release control to the
active object. Note that the ABS language specification does not fix a particular
scheduling strategy for the process queue of active objects as the ABS analysis
and verification tools will explore many (if all) schedulability options; however,
ABS backends commonly implement such process queues with FIFO ordering.

Since we are interested in the implementation of a distributed ABS model, we
utilize the cloud extension to the ABS standard language, as implemented in [17].
This extension introduces the Deployment Component (DC), which abstracts
over the resources for which the ABS program gets to run on. In the simplest
case, the DC corresponds to a Cloud Virtual Machine executing some ABS
code, though this could be extended to include other technologies as well (e.g.
containers, microkernels). The DC, being a first class citizen of the language, can
be created (DC dcl = new AmazonDC(cpuSpec,memSpec)) and called for (dc1 !
shutdown()) as any other ABS concurrent object. The DC interface tries to stay
as abstract as possible by declaring only two methods shutdown to stop the DC
from executing ABS code while freeing its resources, and load to query the
utilization of the DC machine (e.g. UNIX load). Concrete class implementations
to the DC interface are (cloud) machine provider specific and thus may define
further specification (cpu, memory, or network type) or behaviour.

Initially, the Deployment Component will remain idle until some ABS code
is assigned to it by creating a new object inside using the expression o = [DC:
dc1] new Class(...), where o is a so-called remote object reference. Such refer-
ences are indistinguishable to local object references and can be normally passed
around or called for their methods. The ABS language specification and its cloud
extension do not dictate a particular Garbage Collection policy, but we assume
that holding a reference to a remote object or future means that the object is
alive, if its DC is alive as well.

3 Distributed PA

In this section, we present a high-level distributed solution for PA which is
similar to the ones proposed for multicore architectures in [20] and distributed
architectures in [15,16], in a sense that they adopt copy model introduced in [21]
to represent the graph. To this aim, the description of the main data structure
used to model the graph which represents the social network is given. Next we
present the basic synchronization and communication mechanism underlying our
approach and its advantages over existing solutions.

3.1 Array Representation of the Network Graph

In this paper, the social network is represented by the notion of graph, where
the members of the network are the nodes and the connection between them are
the edges. Generating a network based on Preferential Attachment is realized

Distributed Network Generation Based on Preferential Attachment in ABS 107

by means of adding new nodes to the network preferentially. The preference
is usually the degree of the nodes, that is, the higher the degree of a node, the
higher probability that it makes connection with the new node. We assume there
is a sequence between the nodes to be added to the network starting from 1 to
n, each of which makes m connections with the nodes in the existing graph. It
implies that the initial state is a complete graph composed of the nodes 1 to
m + 1. m is usually a small number.

Suppose node u € [m + 2,n] is going to be attached to the existing graph
with the nodes [1,u— 1]. It is done by randomly selecting m distinct nodes from
1,...,u — 1, so that the probability of each node to be selected is proportional to
its degree (to follow the PA model), that is, respectively [p1, ..., pu—1] where

degree(i)
Pi= 7 < pi =
ijll degree(y) ;

Figure 1 illustrates the array representation of the graph. Given the number
of nodes n and the number of connections per node m, the size of the array is
known. As shown, 2m slots are allocated for the edges sourcing from a node, u
(in the figure, m = 3). The targets of u, represented by question mark (or later
in implementation with 0), are determined from the slots representing the edges
sourcing from the nodes [1,u — 1] which are located previous to the node u. In
order to generate the graph based on PA, the unresolved slots are resolved by
randomly selecting the slots previous to the current node. The obtained values
are then written as the targets of the current node, provided that there is no
conflict between them. In case of conflict, the algorithm simply retries until all
the targets are distinct for a specific node.

Node u
L

Nodes‘ 1tou-1

Fig. 1. The array representation of social network graph

The above-mentioned probability distribution is naturally applied through
randomly selecting the slots with a uniform chance, since the number of slots
keeping the value of a node is equal to its degree.

The sequential algorithm is fairly straightforward and the unresolved slots
of the array are resolved from left to right. The distributed algorithms however
introduce more challenges. First of all, the global array should be distributed over
multiple machines as local arrays. The indices of the global array are also mapped
to the ones in the local arrays according to the partitioning policy. Secondly,
there is the challenge of unresolved dependencies, the one marked by e in Fig. 2,
a kind of dependency where the target itself is not resolved yet since either

108 K. Azadbakht et al.

~~~~~~~

0 00| |

Fig. 2. Dependency and computation directions in the array

the process responsible for the target has not processed the target slot yet or
the target slot itself is dependent on another target slot (chain of dependencies).
Synchronization between the processes to deal with the unresolved dependencies
is the main focus of this paper.

3.2 The Distributed ABS Model of PA

Two approaches are represented in Fig. 3 which illustrate two different schemes
of dealing with the unresolved dependencies in a distributed setting. In order to
remain consistent with the original PA, both schemes must keep the unresolved
dependencies and use the value of the target when it is resolved. Scheme A
(used in [15]) utilizes message passing. If the target is not resolved yet, actor b
explicitly stores the request in a data structure until the corresponding slot is
resolved. Then it communicates the value with actor a. Actor b must also make
sure the data structure remains consistent (e.g., it does not contain a request
for a slot which is already responded).

In addition to message passing, scheme B utilizes the notion of cooperative
scheduling. Instead of having an explicit data structure, scheme B simply uses
the await statement on (target # 0). It suspends the request process until the
target is resolved. The value is then communicated through the return value
to actor a. The above-mentioned await construct eliminates the need for an
explicit synchronization of the requests. The following section describes an ABS
implementation of the scheme B and presents the performance results.

An ABS-like pseudo code which represents scheme B in the above section is
given in Fig.4. The main body of the program, which is not mentioned in the
figure, is responsible to set up the actors by determining their partitions, and
sending them other parameters of the problem, e.g., n and m. Each actor then
processes its own partition via run method. The function whichActor returns
the index of the actor containing the target slot. The request for the slot is then
sent asynchronously to the actor and the future variable is sent as a parameter to
the delegate function where the future value is obtained and checked for conflict.
If there is no conflict, i.e., the new target is not previously taken by the source,
then the slot is written with the target value. The request method is responsible
to map the global index of the target to the local index via whichLocal function
and await on it and returns the value once the slot is resolved.



Distributed Network Generation Based on Preferential Attachment in ABS 109

~ ” ~ 1
~ \Iﬂlgé‘[ _ - - = Dependency S~ current

N =~

2. The request process is
responsible to store and
retrieve the request for
target and to respond to a
when it is resolved

4. The response process
resolves current with
value, if there is no
conflict

1.

Request target for curren
b ! request(current, target)

3. Respond when zarger is resolved
a ! response(current, value)

(a) Simple message passing

I S P R - -
=~ Jarget = Dependency T ~< _ current
S(= T =~

3. The delegate process
then resolves current
when f'is resolved, if
there is no conflict

2. The request process
is responsible to await
on (array(target]!= 0)
and then return the
value

. Request rarget for current
Future f = b ! request(target)

2. this ! delegate(f, current)
process which first awaits

onf

(b) Message passing with futures and cooperative scheduling

Fig. 3. The process of dealing with unresolved dependencies in an actor-based distrib-
uted setting

4 Implementation

The distributed algorithm of Fig. 4 is implemented directly in ABS, which is sub-
sequently translated to Haskell code, by utilizing the ABS-Haskell [17] transcom-
piler (source-to-source compiler). The translated Haskell code is then linked
against a Haskell-written parallel and distributed runtime API. Finally, the
linked code is compiled by a Haskell compiler (normally, GHC) down to native
code and executed directly.

The parallel runtime treats ABS active objects as Haskell’s lightweight
threads (also known as green threads), each listening to its own concurrently-
modifiable process queue: a method activation pushes a new continuation to
the end of the callee’s process queue. Processes awaiting on futures are light-
weight threads that will push back their continuation when the future is resolved;
processes awaiting on boolean conditions are continuations which will be put
back to the queue when their condition is met. The parallel runtime strives
to avoid busy-wait polling both for futures by employing the underlying OS
asynchronous event notification system (e.g. epoll, kqueue), and for booleans by



110 K. Azadbakht et al.

1: Each actor O executes the following in parallel
2: Unit run(...)

3: for each node i in the partition do

4: for j=21to2m do j =7+ 2 step

5: target <« random([1..(¢ — 1) * 2m)]

6: current = (i — 1) *2m + j

7 x = whichActor(target)

8: Fut < Int > f = actor[z]! request(target)
9: this! delegate(f, current)
10:
11:

12: Int request(Int target)

13: localTarget = whichSlot(target)

14: await (arrflocalTarget] # 0)

15: > At this point the target is resolved
16: return arrflocalTarget]

17:

18:

19: Unit delegate(Fut < Int > f, Int current) :

20: await f7

21: wvalue = f.get

22: localCurrent = whichSlot(current)

23: if duplicate(value, localCurrent) then

24: target = random[1..current/(2m) x 2m)

25: > Calculate the target for the current again
26: x = whichActor(target)

27: Fut < Int > f = actor[x]! request(target)

28: this. delegate(f, current)

29: else

30: arr[localCurrent] = value > Resolved
31:

32:

33: boolean duplicate(Int value, Int localCurrent)

34: for each 4 in (indices of the node to which localCurrent belongs) do
35: if arrfi] == value then

36: return True

37: return False

Fig. 4. The sketch of the proposed approach

retrying the continuations that have part of its condition modified (by mutating
fields) since the last release point.

For the distributed runtime we rely on Cloud Haskell [10], a library frame-
work that tries to port Erlang’s distribution model to the Haskell language
while adding type-safety to messages. Cloud Haskell code is employed for remote
method activation and future resolution: the library provides us means to seri-
alize a remote method call to its arguments plus a static (known at compile
time) pointer to the method code. No actual code is ever transferred; the active



Distributed Network Generation Based on Preferential Attachment in ABS 111

objects are serialized to unique among the whole network identifiers and futures
to unique identifiers to the caller object (simply a counter). The serialized data,
together with their types, are then transferred through a network transport layer
(TCP, CCI, ZeroMQ); we opted for TCP/IP, since it is well-established and eas-
ier to debug. The data are de-serialized on the other end: a de-serialized method
call corresponds to a continuation which will be pushed to the end of the process
queue of the callee object, whereas a de-serialized future value will wake up all
processes of the object awaiting on that particular future.

The creation of Deployment Components is done under the hood by con-
tacting the corresponding (cloud) platform provider to allocate a new machine,
usually done through a REST API. The executable is compiled once and placed
on each created machine which is automatically started as the 1st user process
after kernel initialization of the VM has completed.

The choice of Haskell was made mainly for two reasons: the ABS-Haskell
backend seems to be currently the fastest in terms of speed and memory use,
attributed perhaps to the close match of the two languages in terms of language
features: Haskell is also a high-level, statically-typed, purely functional language.
Secondly, compared to the distributed implementation sketched in Java [16], the
ABS-Haskell runtime utilizes the support of Haskell’s lightweight threads and
first-class continuations to efficiently implement multicore-enabled cooperative
scheduling; Java does not have built-in language support for algebraic datatypes,
continuations and its system OS threads (heavyweight) makes it a less ideal
candidate to implement cooperative scheduling in a straightforward manner.
On the distributed side, layering our solution on top of Java RMI (Remote
Method Invocation) framework was decided against for lack of built-in support
for asynchronous remote method calls and superfluous features to our needs,
such as code-transfer and fully-distributed garbage collection.

4.1 Implementing Delegation

The distributed algorithm described in Sect. 3 uses the concept of a delegate for
asynchronicity: when the worker actor demands a particular slot of the graph
array, it will spawn asynchronously an extra delegate process (line 9) that will
only execute when the requested slot becomes available. This execution scheme
may be sufficient for preemptive scheduling concurrency (with some safe lock-
ing on the active object’s fields), since every delegate process gets a fair time
slice to execute; however, in cooperative scheduling concurrency, the described
scheme yields sub-optimal results for sufficient large graph arrays. Specifically,
the worker actor traverses its partition from left to right (line 3), spawning con-
tinuously a new delegate in every step; all these delegates cannot execute until
the worker actor has released control, which happens upon reaching the end of
its run method (finished traversing the partition). Although at first it may seem
that the worker actors do operate in parallel to each other, the accumulating del-
egates are a space leak that puts pressure on the Garbage Collector and, most
importantly, delays execution by traversing the partitioned arrays “twice”, one
for the creation of delegates and one for “consuming them”.



112 K. Azadbakht et al.

A naive solution to this space leak is to change lines 8, 9 to a synchronous
instead method call (i.e. this.delegate(f, current)). However, a new prob-
lem arises where each worker actors (and thus its CPU) continually blocks wait-
ing on the network result of the request. This intensely sequentializes the code
and defeats the purpose of distributing the workload, since most processors are
idling on network communication. The intuition is that modern CPUs operate
in much larger speeds than commodity network technologies. To put it differ-
ently, the worker’s main calculation is much faster than the round-trip time of a
request method call to a remote worker. Theoretically, a synchronous approach
could only work in a parallel setting where the workers are homogeneous proces-
sors and requests are exchanged through shared memory with memory speed
near that of the CPU processor. This hypothesis requires further investigation.

We opted instead for a middle-ground, where we allow a window size of del-
egate processes: the worker process continues to create delegate processes until
their number reaches the upper bound of the window size; thereafter the worker
process releases control so the delegates have a chance to execute. When only
the number of alive delegate processes falls under the window’s lower bound,
the worker process is allowed to resume execution. This algorithmic description
can be straightforwardly implemented in ABS with boolean awaiting and a inte-
ger counter field (named this.aliveDelegates). The modification of the run is
shown in Fig.5; Similarly the delegate method must be modified to decrease
the aliveDelegates counter when the method exits.

Interestingly, the size of the window is dependent on the CPU /Network speed
ratio, and the Preferential Attachment model parameters: nodes (n) and degree
(d). We empirically tested and used a fixed window size of [500,2000]. Finding
the optimal window size that keeps the CPUs busy while not leaking memory
by keeping too much delegates alive, for a specific setup (cpu, network, n, d) is
planned for future work.

1: Unit run(...)

2: for each node i in the partition do

3: for j=2to2m do j=j+ 2 step

target «— random/[l..(¢ — 1) % 2m)

current = (i — 1) * 2m + j

x = whichActor(target)

Fut < Int > f = actor[z]! request(target)

aliveDelegates = alive Delegates + 1

this! delegate(f, current)

if aliveDelegates == maxBoundW indow then
await aliveDelegates <= minBoundWindow

T B A

—_ =

Fig. 5. The modified run method with window of delegates.



Distributed Network Generation Based on Preferential Attachment in ABS 113

4.2 Experimental Results

We ran the ABS-Haskell implementation of the PA algorithm by varying the
graph size, on a distributed cloud environment kindly provided by the SURF
foundation. The hardware consisted of identical virtual machines interconnected
over a 10 Gbps ethernet network; each Virtual Machine (VM) was a single-core
Intel Xeon E5-2698, 16 GB RAM running Ubuntu 14.04 Server edition. The
runtime execution results are shown in Fig. 6; the execution time decreases while
we add more VMs to the distributed system, which suggests that the distributed
algorithm scales. However, still with 8 Virtual Machines the implementation
cannot “beat” the execution time of 1 VM running PA sequentially; to achieve
this we may need to include more VMs. The reason for this can be attributed to
the significant communication overhead, since each worker will send a network
packet for every request call made.

On the other hand, the memory consumption (Table1) is more promising:
a larger distributed system requires less memory per VM. For example with
the largest tested graph size, a distributed system of 8 VMs requires approx.
2.5 times less memory per VM than a local system. This allows the generation
of much larger PA graphs than would otherwise fit in a single machine, since
the graph utilizes and is “distributed” over multiple memory locations. Finally,
the repository at http://github.com/abstools/distributed-PA contains the ABS
code for PA and instructions for installing the ABS-Haskell backend.

16 70
14 60
12 0
13 @40
o
6 E 30
oW 20
é’ 2 10
o 0
1 2 4 8 1 2 4 8
Number of VMs Number of VMs
(a) (b)
200 800
150 700
140 600
120 500
100 400
@ 80 %300
o 60 (7]
E 20 é200
20 100
0 0
1 2 4 8 1 2 4 8
Number of VMs Number of VMs
(c) (d)

Fig. 6. Performance results of the distributed PA in ABS-Haskell for graphs of n = 10°
nodes with degree d = (a) 3, (b) 10 and n = 10" nodes with degree d = (c) 3, (d) 10.


http://github.com/abstools/distributed-PA

114 K. Azadbakht et al.

Table 1. Maximum memory residency (in MB) per Virtual Machine.

Graph size Total number of VMs
1 2 4 8
n=10°%d=3 | 306 423| 313| 229
n=10%d=10| 8991058 | 644 | 411
n=107,d =3 |1943|2859|1566 874
n=10",d =10 6380 | 9398 4939 | 2561

5 Conclusion and Future Work

In this paper, we have presented a scalable, high-level distributed-memory
algorithm that implements synthesizing artificial graphs based on Preferen-
tial Attachment mechanism. The algorithm avoids low-level synchronization
complexities thanks to ABS, an actor-based modeling framework, and its pro-
gramming abstractions which support cooperative scheduling. The experimental
results suggest that the implementation scales with the size of the distributed
system, both in time but more profoundly in memory, a fact that permits the
generation of PA graphs that cannot fit in memory of a single system.

For future work, we are considering combining multiple request messages in
a single TCP segment; this change would increase the overall execution speed by
having a smaller overhead of the TCP headers and thus less network communica-
tion between VMs, and better network bandwidth. In another (orthogonal) direc-
tion, we could utilize the many cores of each VM to have a parallel-distributed
hybrid implementation in ABS-Haskell for faster PA graph generation.

Acknowledgments. Partly funded by the EU project FP7-612985 UpScale (http://
www.upscale-project.eu) and the EU project FP7-610582 ENVISAGE (http://www.
envisage-project.eu). This work was carried out on the Dutch national HPC cloud
infrastructure, a service provided by the SURF Foundation (http://surf.nl).

References

1. Erdos, P., Rényi, A.: On the central limit theorem for samples from a finite popu-
lation. Publ. Math. Inst. Hungar. Acad. Sci 4, 49-61 (1959)

2. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440-442 (1998)

3. Barabdsi, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509-512 (1999)

4. Tonelli, R., Concas, G., Locci, M.: Three efficient algorithms for implementing
the preferential attachment mechanism in Yule-Simon stochastic process. WSEAS
Trans. Inf. Sci. Appl. 7(2), 176-185 (2010)

5. Leskovec, J.: Dynamics of Large Networks. ProQuest, Ann Arbor (2008)

6. Bader, D., Madduri, K., et al.: Parallel algorithms for evaluating centrality indices
in real-world networks. In: International Conference on Parallel Processing, ICPP
2006, pp. 539-550. IEEE (2006)


http://www.upscale-project.eu
http://www.upscale-project.eu
http://www.envisage-project.eu
http://www.envisage-project.eu
http://surf.nl

7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Distributed Network Generation Based on Preferential Attachment in ABS 115

. Johnsen, E.B., Hahnle, R., Schéfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., Boer, F.S., Bon-
sangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142-164. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-25271-6_8

Din, C.C., Bubel, R., Hahnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS, vol. 9195, pp. 517-526. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21401-6_35

Albert, E., Arenas, P., Correas, J., Genaim, S., Gémez-Zamalloa, M., Puebla, G.,
Romaén-Diez, G.: Object-sensitive cost analysis for concurrent objects. Softw. Test.
Verification Reliab. 25(3), 218-271 (2015)

Epstein, J., Black, A.P., Peyton-Jones, S.: Towards haskell in the cloud. In: ACM
SIGPLAN Notices, vol. 46, pp. 118-129. ACM (2011)

Atwood, J., Ribeiro, B., Towsley, D.: Efficient network generation under general
preferential attachment. Comput. Soc. Netw. 2(1), 1 (2015)

Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys.
Rev. E 71(3), 036113 (2005)

Yoo, A., Henderson, K.: Parallel generation of massive scale-free graphs. arXiv
preprint arXiv:1003.3684 (2010)

Lo, Y.C., Li, C.T., Lin, S.D.: Parallelizing preferential attachment models for gener-
ating large-scale social networks that cannot fit into memory. In: Privacy, Security,
Risk and Trust (PASSAT), 2012 International Conference on and 2012 Interna-
tional Confernece on Social Computing (SocialCom), pp. 229-238. IEEE (2012)
Alam, M., Khan, M., Marathe, M.V.: Distributed-memory parallel algorithms for
generating massive scale-free networks using preferential attachment model. In:
Proceedings of SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis, p. 91. ACM (2013)

Serbanescu, V., Azadbakht, K., de Boer, F.: A java-based distributed approach
for generating large-scale social network graphs. In: Pop, F., Kollodziej, J., Di
Martino, B. (eds.) Resource Management for Big Data Platforms, pp. 401-417.
Springer, Cham (2016)

Bezirgiannis, N., Boer, F.: ABS: a high-level modeling language for cloud-
aware programming. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 433-444. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8_35

Henrio, L., Rochas, J.: From modelling to systematic deployment of distrib-
uted active objects. In: Lluch Lafuente, A., Proenca, J. (eds.) COORDINATION
2016. LNCS, vol. 9686, pp. 208-226. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-39519-7_13

Azadbakht, K., de Boer, F.S., Serbanescu, V.: Multi-threaded actors. arXiv
preprint arXiv:1608.03322 (2016)

Azadbakht, K., Bezirgiannis, N., de Boer, F.S., Aliakbary, S.: A high-level and scal-
able approach for generating scale-free graphs using active objects. In: Proceedings
of the 31st Annual ACM Symposium on Applied Computing, pp. 1244-1250. ACM
(2016)

Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal,
E.: Stochastic models for the web graph. In: 2000 Proceedings of 41st Annual
Symposium on Foundations of Computer Science, pp. 57-65. IEEE (2000)


http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-319-21401-6_35
http://dx.doi.org/10.1007/978-3-319-21401-6_35
http://arxiv.org/abs/1003.3684
http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-319-39519-7_13
http://dx.doi.org/10.1007/978-3-319-39519-7_13
http://arxiv.org/abs/1608.03322

Verification and Automated System
Analysis



Completeness of Hoare Logic Relative
to the Standard Model

Zhaowei Xu2(®) Wenhui Zhang!, and Yuefei Sui®

! State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
xuzw@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China
3 Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Abstract. The general completeness problem of Hoare logic relative to
the standard model N of Peano arithmetic has been studied by Cook,
and it allows for the use of arbitrary arithmetical formulas as assertions.
In practice, the assertions would be simple arithmetical formulas, e.g.
of a low level in the arithmetical hierarchy. This paper further studies
the completeness of Hoare Logic relative to N with assertions restricted
to subclasses of arithmetical formulas. Our completeness results refine
Cook’s result by reducing the complexity of the assertion theory.

Keywords: Hoare logic + Peano arithmetic - Arithmetical hierarchy -
The standard model - Relative completeness

1 Introduction

Hoare logic, first introduced by Hoare [1] and further studied by Cook [2] and
many other researchers, lays the foundation of program verification [3-5]. For
an introduction to Hoare logic, the reader should refer to [6-9]. Let L be the
language of Peano arithmetic PA [10], let N be the standard model of PA, and
let Th(N) be the set of all true sentences in N. Hoare logic for the set WP of
while-programs with the language L and the assertion theory 7" C L is denoted
HL(T) [11]. The set {¢ € L : T I ¢} of all theorems of T' C L is denoted
Thm(T). By Cook’s completeness theorem, it follows that Th(N) is the only
extension T' of PA such that HL(T) is complete relative to N: for any p,q € L
and S € WP, if N = {p}S{q} then HL(Th(N)) F {p}S{q}; for any T" 2 PA
with Thm(T") G Th(N) (note that Thm(PA) & Th(N) follows from Godel’s
incompleteness theorem), there exist p,q € L and S € WP such that N |
{p}S{q} but HL(T") t/ {p}S{q}. Note that Th(N) is not recursively enumerable,
and even not arithmetical [12, Lemma 17.3]. That Th(N) is the only extension
of PA for this completeness result to hold is due to the fact that it allows for the
use of arbitrary arithmetical formulas as pre- and postconditions. In practice,
the pre- and postconditions would be simple arithmetical formulas, e.g. of a

© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 119-131, 2017.
DOI: 10.1007/978-3-319-51963-0_10



120 Z. Xu et al.

low level in the arithmetical hierarchy [13, Chap. IV]. The set {true, false} of
logical constants true and false is denoted Cnt. Apt’s survey paper [6, p. 437]
has shown that, for no recursively enumerable extension T' of PA, can HL(T)
derive all true Hoare’s triples with pre- and postconditions restricted to Cnt.
A natural question is whether there exists an arithmetical extension T of PA
such that HL(T) derives all true Hoare’s triples with pre- and postconditions
restricted to C'nt. Furthermore, we shall investigate the completeness of Hoare
logic relative to N with pre- and postconditions restricted to the arithmetical
hierarchy.

The rest of this paper is organized as follows: the related work is given in
Sect. 2; the basic preliminary results are presented in Sect.3; completeness of
HL(T) with pre- and postconditions restricted to Cnt is given in Sect.4; com-
pleteness of HL(T) with pre- and postconditions restricted to the arithmetical
hierarchy is shown in Sect. 5; Sect. 6 concludes the paper.

2 Related Work

We call a set of assertions A complete w.r.t. a class of programs C if for any
p,q € A and S € C, whenever {p}S{q} holds, then all intermediate assertions
can be chosen from A. Apt et al. [14] studied the problem which sets of assertions
are complete in the above sense. They have shown that X is complete w.r.t.
W P; A is not complete w.r.t. WP; and by allowing the use of an ‘auxiliary’
coordinate, A; is complete w.r.t. WP.

Clarke [15] exhibited programming language structures for which Hoare logic
is not complete relative to the finite structures, and observed that if a program-
ming language possesses a relatively complete Hoare logic for partial correct-
ness (relative to the finite structures) then the halting problem for finite inter-
pretations must be decidable (Clarke’s Observation). Lipton [16], Clarke et al.
[17], and Grabowski [18] investigated under what circumstances the converse of
Clarke’s Observation holds. For the detailed relationship among their results,
the reader refers to the Introduction of [18]. Note that their completeness results
hold under the assumption that the halting problem for finite interpretations
is decidable, whereas ours holds relative to the fixed structure N; and their
axiom systems for Hoare logic are determined by the decision (or enumeration)
procedures, while ours is given by Cook [2].

Bergstra and Tucker [19] studied the logical completeness of Hoare logic with
nonstandard inputs: Th(N) is the only extension T of PA such that HL(T) is
logically complete. Xu et al. [20] studied the logical completeness of Hoare logic
without nonstandard inputs: PA™ (cf. Definition 4.2.1) is the minimal extension
T of PA such that HL(T) is logically complete when inputs range over N. To
establish this completeness result, the technical line of reducing from HL(T) to
T (cf. Subsect. 3.3) has been adopted, which will also be followed in this paper.
Kozen and Tiuryn [21] investigated the completeness of propositional Hoare logic
with assertions and programs abstracted to propositional symbols.



Completeness of Hoare Logic Relative to the Standard Model 121

3 Preliminaries

First some notations are introduced: in syntax, we write -, A, V, —, <, V,
J to denote the negation, conjunction, disjunction, conditional, biconditional
connectives and the universal, existential quantifiers; in semantics, we write ~,
&, |, =, <, A, E to denote the corresponding connectives and quantifiers.

3.1 Peano Arithmetic

Let ¥ = {0,1,4+,-, <} be the signature of L. For simplicity, the sum of 1 with
itself n times is abbreviated n. We use n to denote both a closed term and a
natural number, and use M to denote both a model and its domain. Besides
the standard model N, PA has nonstandard models. From PA, one can deduce
the least-number principle 3z ¢(z,y) — Jz(p(z,y) AVu < z ~¢(u,y)), where
¢(z,y) € L.

Generalized X,-formulas and generalized IT,-formulas of L are defined as
follows: a generalized Xy-formula (or a generalized ITp-formula) is a formula
built up from atomic formulas using only negation, conjunction, disjunction,
and bounded quantifications Vx < ¢t and dz < ¢, where t is a term of L; a
generalized X, ;1-formula is a formula obtainable from generalized II,,-formulas
by conjunction, disjunction, bounded quantifications, and unbounded existen-
tial quantification; a generalized [T, ;i-formula is a formula obtainable from
generalized X,-formulas by conjunction, disjunction, bounded quantifications
and unbounded universal quantification. X, -formulas and IT,,-formulas of L are
defined as follows: a Xp-formula (or a ITp-formula) is a generalized Yo-formula;
a Y,41-formula is a formula of the form Iz ¢ with ¢ being a II,-formula; a
11, 1-formula is a formula of the form Vz v with 1 being a X, -formula. The
set of all X,-formulas is denoted X,,, and similarly for I1,. X,-sentences are
X p-formulas without free variables, and similarly for I7,-sentences. The set of
all true X,,-sentences in N is denoted Tr(X,), and similarly for Tr" (IT,,).

It holds, in PA, that every generalized X, -formula (resp. generalized IT,,-
formula) is logically equivalent to a X,-formula (resp. II,-formula) [13, Chap.
IV]. For the membership relation €, besides the standard meaning, we sometimes
adopt a nonstandard meaning: by ¢ € A (the nonstandard meaning) is meant
that there exists ¢ € A (the standard meaning) such that PA F ¢ < 1. Only
when the standard meaning of € is inapplicable, can the nonstandard meaning
be adopted. The reader should keep this in mind. Then ¢ € X, implies —p € II,,
and ¢ € I, implies —¢ € X,. Both X, and II, are closed under conjunction
and disjunction. For any i > 0, X;, IT; C X;41, 41, and X; ¢ II;, II; ¢ X;. For
the truth of these results, the reader refers to [13, Chap. IV].

We say that a set of natural numbers is X, (resp. IT,,) if it is arithmetically
definable (or arithmetical for short) by a X,-formula (resp. by a II,,-formula); a
set of natural numbers is A,, if it is both X, and IT,,. Note that a set of natural
numbers is recursively enumerable (or r.e. for short) iff it is X, and that a set
of natural numbers is recursive iff it is A; [12, Sect. 7.2]. Theorem 16.13 in [12]
says that for all X;-sentences ¢, N = ¢ iff PAF ¢. Let "¢ be a fixed Godel’s



122 Z. Xu et al.

numbering function [12, Chap. 15]. By arithmetical definability of the theory
T C L is meant that the set {"¢™ : ¢ € T'} of natural numbers is arithmetical.
Godel’s diagonal lemma [12, Lemma 17.1] says that for any T' D PA and any
p(x) € L there is a sentence G € L such that T+ G < o("G™).

3.2 Hoare Logic

Based on the language L, together with the program constructs { :=, ;, if, then,
else, fi, while, do, od }, a while-program S is defined by S::=x := E | S1;S2 |
if B then S else Sy fi | while B do Sy od, where an expression E is defined
by Ex:=0|1|x | E1 + E2 | E1 - Ea, and a boolean expression B is defined by
B::=FE; < Ey | 7By | By — Bs. The set of all such while-programs is denoted
W P. The set of all assignment programs x := E is denoted AP. For S € WP, the
vector (z1,Z2,...,Zy) of all m program variables x1, xa, ..., z,, occurring in S
will be denoted ; the vector (n1,na,...,n,,) of m natural numbers ny, na, ...,
n., € N will be denoted n; the connectives will be assumed to distribute over
the componentb of the vectors (for instance, n € N means ni, ng, ..., Ny, € N,
and £ = n means A", z; = n;). Let the program variables considered below
occur among x, the vector of all program variables of the target program. For
a model M of L, let v be an assignment over M for all the first order variables
(including ), let v(x) be the vector of elements of M assigned to  at v, and
let v(a/x) be an assignment as v except that v(a/z)(x) = a.

For any S € WP and any model M of L, the input-output relation Rgﬂ of S
in M is a binary relation on the set of all assignments over M defined as follows:

— (v,v") € RM_, & v = v(EM?/z), where EM:Y receives the standard mean-
ing;

— (v,0') € R%;SQ & (v,0) € Rg{ OR%, where (z,2') € RjoRy < E2"((2,2") €
R & ( ) S RQ)

( )eszBthenslelseSsz<:’\>MU':B&(UU)ER%‘M’U%B&

(v,0") € sg’

~ (0,0") € Rt B do s, 0a © Ei € N, Eao,...,a; € M (v(x) = ao & Aj <

i(M, v(a; /@) B & (vlag /@), v(azs1/w) € RY) & o = v(as/@) & Mo

B).

Given S € WP and a model M of L, R} defines in M a vectorial func-
tion y = f2(z) such that for every a,b € M, f¥(a) = b iff Ev,v'(v(z) =
a & v(x)=0b& (v,v') € RY¥). Given a model M of L and an asserted pro-
gram {p}S{q}, {p}S{q} is satisfied at M, denoted M |= {p}S{q}, iff Av[M,v E
p = AV ((v,0") € RM = M,v' |= q)]. Given a theory T C L and an asserted
program {p}S{q}, {p}S{q} is satisfied at T, denoted HL(T) = {p}S{q}, iff
AM(M =T = M E {p}S{q}). HL(T) has the usual axiom system [11]; the
derivability of {p}S{q} in HL(T) is denoted HL(T)  {p}S{q}. By the logi-
cal completeness of HL(T') we mean that for all asserted programs {p}S{q},
HL(T) + {p}S{q} it HL(T) |= {p}S{q}. We say that HL(T) is logically com-
plete when inputs range over N if for every S € W P with program variables x



Completeness of Hoare Logic Relative to the Standard Model 123

every p,q € L (p, ¢ could contain other first-order variables than those in ),
and everyn € N, HL(T)F {pAhx =n}S{q} if HL(T) = {p A x = n}S{q}.

Let P and @) denote respectively the levels of choices of preconditions and
postconditions (i.e. Cnt or Xy, II;, i > 0), and let R denote the sets of programs
(i.e. AP or WP). The completeness of HL(T) relative to N for {P}R{Q} is
defined as follows.

Definition 3.2.1. HL(T) is complete relative to N for {P}R{Q} if for any
peP,SeR,and g€ Q, N = {p}S{q} implies HL(T) - {p}S{q}.

3.3 Reduction from HL(T) to T

Let (z,y), L(z) and R(z) be the pairing functions with (L(z),R(z)) = z,
L({z,y)) = = and R((z,y)) = y [22, Theorem 2.1]. For notational convenience,
we denote (L(z),R(z)) by Z. The functions (z,y) and Z can be extended to
n-tuples (for each n € N) by setting (z1,za,...,2,) = (x1,{x2,...,2,)) and
(1,22, ..., xn) = (21, (T2,...,2Tn)). Let (x); be Gbdel’s S-function such that
for each finite sequence ag, a1, ..., a, of natural numbers, there exists a natural
number w such that (w); = a; for all i < n [22, Theorem 2.4]. Note that the
graph relations of these functions are all Y.

Definition 3.3.1 (The definition of ag, cf. [20, Definition 3.1.1]). For every S €
W P with program variables x, the generalized >;-formula ag(x,y) € L, where
vy = (y1,92,-..,ym) is disjoint from & = (x1,22,...,2Z;,), is defined inductively
as follows.

Assignment: S =z, .= F

J#i

as(z,y) = /\ Yj = Zj5

1<j<m

Composition: S = S7; 52
as(x,y) :=3z(as, (x, 2/y) A as, (z/T, y));

Conditional: S =if B then Sy else Sy fi

as(,y) = (B(x) Aas, (@,y)) V (-B(x) A as,(z, y));
Iteration: S = while B do Sy od. We first let

As(i,w, @, y) = @ = (w)o AVj < i(B((w);/@)

Nas,((w);/@, (W) j41/y)) Ay = (w);

then set
o, x,y) n=3w As(i,w, z,y)

and finally define

as(xz,y) =3 a5(i,z,y) AN -B(y/x).



124 Z. Xu et al.

Lemma 3.3.2 (Arithmetical definability of recursive functions, cf. [20, Lemma
3.1.2]). For every S € WP and every a,b € N, f¥(a)=b iff N & as(a,b).

Theorem 3.3.3 (Reduction from HL(T) to T, cf. [20, Theorem 3.1.3]). For
every T' O PA, every p,q € L and every S € WP,

HL(T) - A{p}S{q} ilf T+ p(®) A as(®,y) — q(y/z).
Corollary 3.3.4. HL(PA) is complete relative to N for {Cnt} AP{Cnt}.

Proof. Immediate from Definition 3.2.1 and Theorem 3.3.3. a

4 Completeness of HL(T) for {Cnt}W P{Cnt}

This section devotes to the completeness of HL(T') for {Cnt}W P{Cnt}: in Sub-
sect. 4.1, a particular extension PA* of PA is defined and, by using PA*, the
completeness of HL(T) relative to N for {Cnt}W P{Cnt} is established; in Sub-
sect. 4.2, the relationship of PA*, PA* and PA U Tr™ (II) is investigated.

4.1 Completeness of HL(T) for {Cnt}W P{Cnt}

Lemma 4.1.1. There exists S € WP such that N |EVa,y—-ag(x,y) and PAF¥
vwvy_‘aS(wa y)

Proof. Note that the set of Hoare’s triples {{true}S{false} : S € WP, N [
{true}S{false}} represents the complement of the halting problem, and hence
is not r.e. (cf. the Fact in [6, p. 437]). On the other hand, the set of Hoare’s
triples {{true}S{false} : S € WP,HL(PA) + {true}S{false}} is r.e. By
soundness of Hoare logic, it follows that {{true}S{false} : S € WP, HL(PA) \-
{true}S{false}} G {{true}S{false} : S € WP,N = {true}S{false}}. Then
we have that there exists S € WP such that N | {true}S{false} but
HL(PA) ¥ {true}S{false}. By Lemma 3.3.2, jointly with Theorem 3.3.3,
it follows that there exists S € WP such that N | Ve,y-as(z,y) and
PA¥ Yz, y-as(x,y). O

Definition 4.1.2. We define PA* to be

PA*:= PAU{Vx,y—-as(x,y): S € WP
& N | Vz,y-as(z,y) & PA¥ Vz,y-as(z,y)}

Proposition 4.1.3. PA* is Xs.

Proof. Consider the statement ¢ € PA* as follows: by definition of PA*, it
is equivalent to saying that ¢ € PA, or there exists S € WP such that
p = Ve, y-as(x,y), N ¥ -p and PAF ¢; since -Va,y—ag(x,y) is logically
equivalent to a X'i-sentence, and a X;-sentence is true in N iff it is a theorem
of PA, it is equivalent to saying that ¢ € PA, or there exists S € WP such



Completeness of Hoare Logic Relative to the Standard Model 125

that ¢ = Va,y-as(x,y), ¢ € Thm(PA) and ¢ ¢ Thm(PA). Note that the
set {¢ : ¢ =V, y—as(x,y) & S € WP} is Ay and hence X5. Since Thm(PA)
is X1, we have that the set {¢ : ¢ € Thm(PA)} is II; and hence Y5, and the
set {¢ : ~p & Thm(PA)} is I} and hence X5. By closure of X5 under con-
junction, it follows that the set {¢ : ¢ = Va,y-ag(z,y) & S € WP & —¢ ¢
Thm(PA) & ¢ ¢ Thm(PA)} is X5. Moreover, since PA is Ay, we have that the
set {¢: p € PA} is Y. By closure of X5 under disjunction, it follows that PA*
is 22. O

Definition 4.1.4. T’ is the minimal extension T of PA such that the property
p(T) of T holds if

(i) p(T") holds; and
(ii) for any 7" 2 PA with Thm(T") S Thm(T"), p(T") doesn’t hold.

Theorem 4.1.5. PA* is the minimal extension T of PA such that HL(T) is
complete relative to N for {Cnt}W P{Cnt}.

Proof. We first show that HL(PA*) is complete relative to N for
{Cnt}W P{Cnt}. By Definition 3.2.1, we have to prove that for any p, ¢ € Cnt,
and S € WP, N = {p}S{q} implies HL(PA*) F {p}S{q}. Let N = {p}S{q}
with p,q € Cnt and S € WP. It remains to prove that HL(PA*) F {p}S{q}.
For p = false or q = true, it’s easy to see that PA* F p(x) Aags(x,y) — q(y/x);
by Theorem 3.3.3, it follows that HL(PA*) + {p}S{q}. For p = true and
q = false, we have that N |= {true}S{ false}; by Lemma 3.3.2, it follows that
N | Va,y—as(x, y); by Definition 4.1.2, it follows that PA* + V&, y—as(x, y);
then PA* - p(x) Aas(z,y) — q(y/x) follows; by Theorem 3.3.3, it follows that
HL(PA") - {p}S{q}.

We then show that for any T' O PA with Thm(T) & Thm(PA*), HL(T)
is not complete relative to N for {Cnt}W P{Cnt}. By Definition 3.2.1, we
have to prove that for any 7' 2 PA with Thm(T) G Thm(PA*), there exist
p,q € Cnt, and S € WP such that N = {p}S{q} but HL(T) ¥¥ {p}S{q}.
Let T 2 PA with Thm(T) & Thm(PA*). By Definition 4.1.2, it follows that
there exists S € WP such that N | Va,y—ag(x,y) and T V Ve, y—ag(x,y).
Let p:=true, q::= false, and S € WP such that N E Va,y-as(z,y)
and T ¥/ Va,y-as(x,y); by Lemma 3.3.2, it follows that N = {p}S{q};
since T t/ p(x) A asg(z,y) — q(y/x), by Theorem 3.3.3, it follows that
HL(T) ¥/ {p}S{q}- O

4.2 Comparison of PA*, PAT and PA U Tr" (IT,)

In our previous work [20], a particular extension PA™ of PA has been defined,
and, by using PA™, the condition under which HL(T) is logically complete when
inputs range over N has been shown. For an explicit citation, PA" is redefined
as follows.



126 Z. Xu et al.

Definition 4.2.1 (cf. [20, Definition 3.2.2]). We define PA™ to be

PAT = PAU{Vy-as(n,y):neN&SecWP
& N EVy-as(n,y) & PA¥ Vy-as(n,y)}.

For the validity of Definition 4.2.1, the reader refers to [20, Theorem 3.2.1].
Note that the newly added formulas to PA* and PA™ are similar: both describe
nonterminating computations (one for all inputs while the other for one input)
and are logically equivalent to IT;-sentences. It would be interesting to relate
PA* to PA*. We achieve this by relating them to PA U Tr (IIy).

In what follows, for while-programs, we should distinguish between the input
variables and non-input variables. Let S € WP have the program variables
x = (p,q) with p and g being the vectors of input and non-input variables

respectively. Define ag) (p,y) by

oy (p,y) =g, y(as(@,y) Ay = ),
where y is the designated output variable.

Lemma 4.2.2. For every p(x,y) € X1 with PAFVa,y, z(p(x,y) A p(x,z) —
y = z), there exists S € WP such that PA - Vp7y(a(sl)(p, y) < o(p,y)).

Proof. Tt follows from recursion theory that for every p(x,y) € ¥ with N |
Ve, y, z(e(x,y) A o(x,z) — y = z), there exists S € WP such that N
Vp, y(ag)(p, y) < ©(p,y)). In order to extend this result from N to PA, partial
recursive functions should be redefined in PA, and recursion theory will be
rebuilt correspondingly. Due to space constraints, the detailed work is left to the
reader as an exercise. O

Theorem 4.2.3. Thm(PA*) = Thm(PAT) = Thm(PAU TrN(I1)).

Proof. Since Va,y—ag(x,y) and Yy—ag(n,y) are logically equivalent to I1;-
sentences, it follows that Thm(PA*), Thm(PA*) C Thm(PAUTrY (I1;)). Then
we have to prove that Thm(PA*), Thm(PAT) 2 Thm(PA U TrN(I,)). It
suffices to prove that PA* = Tr™ (I1) and PA* = TrN(I1}). Fix p € TrN (II}).
It remains to show that PA* - ¢ and PA* - ¢. By definition of 77" (I1;), there
exists ¥ (y) € Xy such that ¢ = Vy ¥(y) and N | Vy ¥ (y). Define ¢(z,y) € Xy
by ¢(z,y) =2 = x A "b(y) A Vi < y ¥(i). By the least number principle,
it follows that PA + Jy —(y) < Jy(—(y) A Vi < y (i)). Negating both
sides of «, we have that PA F Vy 9(y) < Yy-(—(y) AVi < y ¢(i)). By
inserting the valid formula x = z into the right side of <, it follows that PA F
Yy Y(y) « Yy—-(z = 2 A 9(y) AVi < y 1(i)). By definition of ¢ and ¢, it
follows that PA F ¢ < Vy—¢(z,y). On the other hand, it’s easy to see that
PA F Vz,y,z(¢(z,y) A ¢(x,z) — y = z). By Lemma 4.2.2, there exists S €
WP such that PA Va:,y(agl)(x,y) — ¢(z,y)). Then PA + Vyﬁag)(%y) —
Yy—¢(x,y) follows. Since PA F ¢ < Vy-¢(x,y), we have that PA F ¢ «

Vy—'agl)(x, y). By definition of ag)(x, y) (note that p = x), it follows that PA



Completeness of Hoare Logic Relative to the Standard Model 127

» « V,y-ag(z,y). By soundness of first-order logic, it follows that N |= ¢ <
Va,y—ag(x,y). Since N | ¢, we have that N | V&, y—as(x,y). By definition
of PA*, it follows that PA* F V&, y—ag(x,y). Since PAF ¢ < Vo, y-ags(x,y),
we have that PA* + ¢ < Va,y—ag(x,y). Then PA* I ¢ follows. Fix n € N.
Since N E Va,y—as(x,y), we have that N = Vy—ag(n,y). By definition of
PAT, it follows that PAT  Vy-ags(n,y). Since PA F ¢ < Vy-ag(n,y), we
have that PA' F ¢ < Vy—as(n,y). Then PA' I ¢ follows. O

Observe from Theorem 4.2.3 that PA*, PAT and PAUTr™ (II;) have the same
set of theorems. Hence Theorem 4.1.5 can be reformulated as an alternative
form: PA U TrN(I1;) (or PAY) is the minimal extension T of PA such that
HL(T) is complete relative to N for {Cnt}W P{Cnt}.

5 Completeness of HL(T) for {P}W P{Q}

We now turn our attention to the completeness of HL(T') with pre- and postcon-
ditions restricted to the arithmetical hierarchy: letting P, @ be X;, II;, i > 0, to
what extension T' of PA, HL(T') is complete relative to N for {P}WP{Q}. As
is established above, only for extension T of PA with Thm(PA U Tr™N(II)) C
Thm(T) C Th(N), can HL(T) be complete relative to N for {P}WP{Q}.
Note that if P or @ is expanded to a larger level in the arithmetical hierarchy,
then T will correspondingly be expanded to “a larger level in the hierarchy of
Th(N)”. Hence the hierarchy of Th(N) will be studied: whether T (%, . 1) and
TrN (I, 11) can be derived from PA U Tr(II,,). In Subsect. 5.1, the hierarchy
of Th(N) is given; in Subsect. 5.2, the completeness of HL(T) relative to N for
{P}WP{Q} is studied.

5.1 Hierarchy of Th(N)
Lemma 5.1.1. For anyn >0, PAUTrN(IL,) - Tr¥ (X,41).

Proof. Fix n > 0, and fix ¢ € Tr™(%,11). It remains to prove that PA U
TrN(I1,) F o. By definition of X, 1, there exists a v)(x) € II,, such that ¢ =
Jdx ¢(x). Since N = ¢, it follows that there exists m € N such that N |=
¥(m). Since 1(m) is a I,-sentence, it follows that PA U TrN(II,) F (m).
By introducing the existential quantifier 3z, it follows that PA U Tr™(II,,)
3z (x). By definition of ¢, we have that PA U Tr (IL,,) I . O

Lemma 5.1.2. For any n > 0, the sets of sentences Tr™¥ (X,,), TrN(I1,,), and
Thm(PAUTrN(I1,)) are X, I, and X, 1, respectively.

Proof. The argument can be done by using mathematical induction. Due to
space constraints, the detailed proof is omitted. a

Theorem 5.1.3. For anyn >0, PAUTrN(I1,) i TrN (IT,,41).



128 Z. Xu et al.

Proof. The case for n = 0 follows from Godel’s first completeness theorem,
together with the fact that PA = Tr (Ilj). It remains to consider the cases for
n > 0. Fix n > 0. By Lemma 5.1.2, Thm(PA U Tr™(II,,))) is X, +1. Then there
exists p(x) € X141 such that for any ¢ € L,

Y € Thm(PAUTrN(IT,)) iff N = o(Ty7). (1)
By Godel’s diagonal lemma, there exists a sentence G € L such that
PAUTrN(II,) - G « =p("G7). (2)

Assume for a contradiction that PA U TrY (I1,) + G. Then G € Thm(PA U
TrN(I1,)) and hence by assertion (1) we have N | »("G7). On the other
hand, by assertion (2), it follows that PA U Tr™ (II,)  —p("G7). Since N =
PAUTrN(II,), by soundness of first-order logic, we have that N = —¢("G™),
contrary to N = ¢("G7). So we have that PA U Tr™(I1,) I/ G. Then G ¢
Thm(PA U TrN(I1,)) follows. By assertion (1), it follows that N = —p("G™
Since =("G™) € II,,.1, we have that ~p("G™) € Tr (Il,,11). By assertion (2
together with the fact PA U TrV(II,) I/ G, it follows that PA U TrN (I1,,)
—¢("G™). Finally we have that PAUTrN (I1,,)) t/ Tr™ (IT,,41).

).
)

O

5.2 Completeness of HL(T) for {P}W P{Q}

To investigate the completeness of HL(T) relative to N for {P}WP{Q}, we
remark that if P or @ is too large, or Thm(T) is too small, then HL(T) might
not be complete relative to N for {P}WP{Q}.

Definition 5.2.1. If HL(T') is complete relative to N for {P}W P{Q}, then we
say that
(i) pre-P (resp. post-Q) is maximal w.r.t. T if for any P’ € P (resp. Q' Z Q),
HL(T) is not complete relative to N for { P’} W P{Q} (resp. for {P}WP{Q’}).
(ii) T is minimal w.r.t. pre-P (resp. w.r.t. post-Q) if for any 7/ O PA with
Thm(T') & Thm(T), HL(T') is not complete relative to N for { P}AP{Cnt}
(resp. for {Cnt}AP{Q}).

Note that in Definition 5.2.1 (ii), in case HL(T") is not complete relative
to N for {P}AP{Cnt} (resp. for {Cnt}AP{Q}), we can see that P (resp. Q)
is the only factor leading to this, since HL(PA) is complete relative to N for
{Cnt}AP{Cnt} (cf. Corollary 3.3.4).

Lemma 5.2.2. For any i > 0, HL(PA U TrN(I1,)) is complete relative to N
for { XYW P{I1,;}.

Proof. Fix i > 0. Let N E {p}S{q} with S € WP (having program vari-
ables x), p(u,z) € X; and ¢(u,x) € II;. By Definition 3.2.1, it remains to
prove that HL(PA U TrN(II;)) - {p}S{q}. By Lemma 3.3.2, it follows that
N EVu,z,y(p(u, ) Nas(z,y) — q(u,y/x)). By pure logic, we have that N =



Completeness of Hoare Logic Relative to the Standard Model 129

Yu, x,y(—p(u,z) V -as(z,y) V qlu,y/x)). Since p(u,x), as(x,y) € X;, it fol-
lows that —p(u, ), ~ag(x,y) € II;. By closure of II; under disjunction, it follows
that —p(u, ) V ~as(z, 9) V 4(4, y/) € ;. Then Yu, z, y(p(u, ©) A as(, y) —
q(u,y/x)) € Tr¥(II;) and hence PAUTTN (I1;) + Yu, z, y(p(u, z) Aas(z,y) —
q(u,y/x)). By Theorem 3.3.3, it follows that HL(PAUTrN(II,)) - {p}S{q}. O

Lemma 5.2.3. Let S::=y := 0;while y < x doy:=y+1 od, and let PA C
T C Th(N), ¥(x) € L such that N =V ¥(x) and T ¥ Vx (x). It is the case
that HL(T) ¥ {—(z)}S{ false}.

Proof. Follows from the proof of Theorem 4.3 of [19]. O
Lemma 5.2.4. Pre-X; (resp. post-II;) is mazimal w.r.t. PAUTrN (II;).

Proof. Proof of pre-X; being maximal w.r.t. PAUTr" (II;). Recalling Definition
5.2.1 (i), we have to prove that there exist p € IT; (the minimal level  X;), S €
WP, and q € II; such that N |= {p}S{q} but HL(PAU TrN(IL,)) t/ {p}S{q}.
By Theorem 5.1.3, it follows that PAUTr™ (I1;) I/ Tr™ (II;41). Then there exists
a II; 1 -sentence ¢ such that N = ¢ and PAU TrN (I1;) I/ ¢. By definition of
II; 11, we have that, for some ¢ (z) € X;, ¢ = Va ¢(z). Let p:=—(x) (€ II;),
Su=y:=0;whiley <z doy:=y+1 od, and q::= false. It’s easy to check that
N = {p}S{q}. By Lemma 5.2.3, it follows that HL(PAUTr™(II;)) ¥ {p}S{q}.

Proof of post-II; being maximal w.r.t. PA U Tr" (II;). Recalling Definition
5.2.1 (i), we have to prove that there exist p € X;, S € WP, and ¢ € X; (the
minimal level Z IT;) such that N = {p}S{q} but HL(PAUTr™ (II,)) t/ {p}S{q}.
Let p::=true, let S:=xz := x, and let ¢ ::=(z) with ¢)(x) being as defined in
the proof of pre-X; being maximal w.r.t. PAUTrY (I;). It’s easy to see that N |=
{p}S{q}. It remains to show that HL(PAUTrN(IL;)) t/ {p}S{q}. By Theorem
3.3.3, it suffices to prove that PA U TrN (II;) If Vz,y(true A as(x,y) — ¥(y)).
By definition of ag(x,y), it suffices to prove that PAUTT™ (II;) t/ Vx 1(x). This
is the case due to the choice of ¥(x). O

By Lemma 5.2.2, together with Definition 3.2.1, it follows that HL(PA U
TrN(IT;)) is complete relative to N for {II;_}WP{X;_;}.

Lemma 5.2.5. PA U TrN(II;) is minimal w.r.t. pre-II;_y (resp. w.r.t. post-
Ei—l)-

Proof. Proof of PA U Tr™(II;) being minimal w.r.t. pre-II;_;. Recalling Def-
inition 5.2.1 (ii), we have to prove that for any T 2> PA with Thm(T) &
Thm(PA U TrN(II;)), there exist p € II,_1, S € AP, and ¢ € Cnt such
that N = {p}S{q} but HL(T) ¥/ {p}S{q}. Let T 2 PA with Thin(T) G
Thm(PAUTrN(IT;)). Then there exists a II;-sentence ¢ such that N = ¢ and
T I/ ¢. By definition of IT;, we have that, for some ¥(x) € X;_1, ¢ = Va ¢(x).
Let pi:=—w(x) (€ H;—1), S::=z := x, and q::= false. It’s easy to see that
N E {p}S{q}. It remains to show that HL(T) t/ {p}S{q}. By Theorem 3.3.3,
it suffices to prove that T I/ Va,y(—(x) A as(x,y) — false). Since N | ¢

and T I/ ¢, by completeness of first-order logic, there exists nonstandard



130 7. Xu et al.

M E T such that M | 3z —)(x). Since M = Va3y ag(z,y), we have that
M W Ve, y(—¢(x) A as(z,y) — false). By completeness of first-order logic, it
follows that Tt/ Vx, y(—¢(z) A as(x,y) — false).

Proof of PAUTr™N (I1;) being minimal w.r.t. post-X;_;. Recalling Definition
5.2.1 (ii), we have to prove that for any T2 PA with Thm(T) & Thm(PAU
TrN(IT;)), there exist p € Cnt, S € AP, and ¢ € X;_; such that N = {p}S{q}
but HL(T) t/ {p}S{q}. Let T 2 PA with Thm(T) G Thm(PAUTrN (II;)). Then
there exists a IT;-sentence ¢ such that N |= ¢ and T' I/ . By definition of IT;, we
have that, for some ¥ (z) € X;_1, ¢ = Vz ¢(zx). Let p::=true, S::=x := z, and
q::=1(x). It’s easy to see that N |= {p}S{q¢}. It remains to show that HL(T) /
{p}S{q}. By Theorem 3.3.3, it suffices to prove that T I/ Va, y(true Aag(x,y) —
¥(y)). Since N | ¢ and T If ¢, by completeness of first-order logic, there exists
nonstandard M |= T such that M = 3z —p(z). Since M =V ag(x,x), we have
that M = Vo, y(true A ag(z,y) — ¥(y)). By completeness of first-order logic, it
follows that Tt/ Vz, y(true A as(z,y) — ¥(y)). O

Theorem 5.2.6. For any i > 0, it is the case that

(i) HL(PAUTrN (I1;)) is complete relative to N for {PYW P{Q} iff P C X;
and Q C II;;

(i) if 2; D P D I;—q or II; 2 Q 2D X;_1, then HL(T) is complete relative
to N for {PYWP{Q} iff Thm(T) 2 Thm(PA U Tr™(IL,)).

Proof. Follows from Definition 3.2.1, together with Lemmas 5.2.2, 5.2.4 and
5.2.5. O

6 Conclusion

In this paper, we have shown that PA U Tr™ (II;) is the minimal extension
T of PA such that HL(T) is complete relative to N for {Cnt}W P{Cnt}.
We have shown that for any i > 0, HL(PA U TrN(II;)) is complete rela-
tive to N for {PYWP{Q} iff P C X; and Q C II;; and if X¥; D P D II; 4
or II; O Q 2 X;_q, then HL(T) is complete relative to N for {P}WP{Q}
iff Thm(T) 2 Thm(PA U TrN(II;)). Considering Thm(PA) & Thm(PA U
TrN(11;)) & Th(N) and Th(N) = UU;2; Thm(PA U TrN(II;)), the complete-
ness gap between HL(PA) and HL(Th(N)) has been bridged.

Cook’s completeness result allows for the whole set of arithmetical formulas
as assertions, at the price of using Th(N) as an oracle for the assertion theory.
By restricting assertions to subclasses of arithmetical formulas, we show that
arithmetical extensions of PA suffice to act as the assertion theory, and the
lower the level of the assertions in the arithmetical hierarchy the lower the level
of the required assertion theory is. In conclusion, our completeness results refine
Cook’s one by reducing the complexity of the assertion theory.

Acknowledgement. The authors would thank the 973 Program of China (Grant
No. 2014CB340701), the National Natural Science Foundation of China (Grant Nos.
61672504 and 61472474), and the CAS-SAFEA International Partnership Program for
Creative Research Teams for the financial support.



Completeness of Hoare Logic Relative to the Standard Model 131

References

- W

10.
11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12, 576-580 (1969)

Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. STAM J. Comput. 7, 70-90 (1978)

Mirkowska, G., Salwicki, A.: Algorithmic Logic. Springer, Dordrecht (1987)
Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 5574 (2002)

Apt, K.R.: Ten years of Hoare’s logic: a survey - Part I. ACM Trans. Program.
Lang. Syst. 3(4), 431-483 (1981)

Apt, K.R.: Ten years of Hoare’s logic: a survey - Part II: nondeterminism. Theoret.
Comput. Sci. 28, 83-109 (1984)

Kleymann, T.: Hoare logic and auxiliary variables. Formal Aspects Comput. 11,
541-566 (1999)

Nipkow, T.: Hoare logics in Isabelle, HOL. In: Proof and System-Reliability, pp.
341-367, Kluwer Academic Publishers (2002)

Kaye, R.: Models of Peano Arithmetic. Oxford University Press, New York (1991)
Bergstra, J.A., Tucker, J.V.: Hoare’s logic and Peano’s arithmetic. Theoret. Com-
put. Sci. 22, 265-284 (1983)

Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic, 5th edn.
Cambridge University Press, Cambridge (2007)

Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)
Apt, K., Bergstra, J.A., Meertens, L.G.L.T.: Recursive assertions are not enough-or
are they? Theoret. Comput. Sci. 8, 73-87 (1979)

Clarke, E.M.: Programming language constructs for which it is impossible to obtain
good Hoare axiom systems. J. ACM 26, 129-147 (1979)

Lipton, R.J.: A necessary and sufficient condition for the existence of Hoare logics.
In: IEEE Symposium on Foundations of Computer Science, pp. 1-6 (1977)
Clarke, E.M., German, S.M., Halpern, J.Y.: Effective axiomatizations of Hoare
logics. J. ACM 30, 612-636 (1983)

Grabowski, M.: On relative completeness of Hoare logics. Inf. Control 66, 29-44
(1985)

Bergstra, J.A., Tucker, J.V.: Expressiveness and the completeness of Hoare’s logic.
J. Comput. Syst. Sci. 25, 267284 (1982)

Xu, Z., Sui, Y., Zhang, W.: Completeness of Hoare logic with inputs over the
standard model. Theoret. Comput. Sci. 612, 23-28 (2016)

Kozen, D., Tiuryn, J.: On the completeness of propositional Hoare logic. Inf. Sci.
139, 187-195 (2001)

Davis, M.: Computability & Unsovability. Courier Dover Publications, New York
(1982)



Configuration- and Residual-Based
Transition Systems for Event Structures
with Asymmetric Conflict

Eike Best'®™) | Nataliya Gribovskaya?, and Irina Virbitskaite??

! Department of Computing Science, Carl von Ossietzky Universitit Oldenburg,
26111 Oldenburg, Germany
eike.best@informatik.uni-oldenburg.de
2 A.P. Ershov Institute of Informatics Systems, SB RAS, 6, Acad. Lavrentiev av.,
630090 Novosibirsk, Russia
{gribovskaya,virb}@iis.nsk.su
3 Novosibirsk State University, 2, Pirogov av., 630090 Novosibirsk, Russia

Abstract. In order to associate a transition system with an event struc-
ture, it is customary to use configurations, constructing a transition sys-
tem by repeatedly adding executable events. It is also possible to use
residuals, constructing a transition system by repeatedly deleting non-
executable events. The present paper proposes a systematic investigation
of how the two methods are interrelated. The focus will be on asymmetric
versions of prime, bundle, and dual event structures. For each of them,
configuration-based and residual-based transition system semantics will
be defined. The pairwise bisimilarity of the resulting transition systems
will be proved, considering interleaving, multiset, and pomset semantics.

Keywords: Bisimilarity - Event structures with asymmetric conflict -
Labelled transition systems - Interleaving/Multiset/Pomset semantics

1 Introduction

Event structures, first defined in [16], consist of a set of events and three binary
relations between events: precedence, basically meant to be a transitive rela-
tion, understood in a causal (or temporal) way; conflict, broadly construed as
a symmetric relation, and understood as a relation of mutual exclusion; and
concurrency, which is generally symmetric and informally understood as the
absence of one of the other relationships. In the literature, several modifications
and generalisations of the original definition can be found, often depending on
the domain of application [6,7,9,19]. In this paper, we shall be particularly inter-
ested in event structures whose conflict relations are not necessarily symmetric

E. Best, N. Gribovskaya and I. Virbitskaite—Supported by DFG (German Research
Foundation) and by RFBR (Russian Foundation for Basic Research) through the
grant CAVER (Be 1267/14-1 and 14-01-91334, respectively).

© Springer International Publishing AG 2017

B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 132-146, 2017.
DOTI: 10.1007/978-3-319-51963-0_11



Configuration- and Residual-Based Transition Systems for Event Structures 133

(e.g., [1,8,15]), and which we shall uniformly call asymmetric. Such event struc-
tures allow, amongst other things, the description of weak causality.

Event structures are usually required to satisfy some basic properties. For
example, infinite pasts are generally disallowed. Hence there is always an initial
configuration, which can usually be taken as the empty set. By adding executable
events to a configuration, new configurations can be reached, until this is no
longer possible (or forever, if infinite executions are possible). In interleaving
semantics, only one executable event is added at a time; in multiset semantics,
a set of executable events (without any relation) is added; in step semantics, a
set of concurrently executable events is added; in pomset semantics, a partially
ordered set of executable events is added. This method is commonly used in
order to define transition system semantics of event structures. Another way of
associating a transition system to an event structure has a more “structural”
appeal. The entire event structure is initially considered as the initial state of
a transition system. Then, in each step, an initial part of the event structure is
executed, and the new state of the transition system consists of the residual event
structure, in which all parts that have become non-executable (e.g., all events
that are in conflict with an already executed one) are neglected. This method has
mostly been investigated in connection with operational and algebraic semantics.

The question, to be considered in the present paper, is whether the tran-
sition systems obtainable by these two methods are related, in some way. The
question has already been answered, for prime event structures with symmet-
ric binary conflict, by Majster-Cederbaum and Roggenbach in [12]. It is shown
there that for interleaving, step, and pomset semantics, bisimilar transition sys-
tems are obtained. [12] also demonstrates that such a result is not permitted by
(strong) history preserving semantics, and that one cannot, in general, expect
more than bisimilarity (in particular, no isomorphism). The authors know of
no other results of this kind, even though both types of semantics have been
defined in other circumstances, e.g., configuration semantics in [3-5,11,13,17],
and residual semantics in [2,8,14]. In this paper, we extend the work of [12] for
asymmetric versions of three types of event structures: prime event structures
[13,16], bundle event structures [9], and dual event structures [10]. Our main
results are that — with judicious but intuitively justifiable definitions, whenever
possible — bisimilarity can be achieved for three types of semantics: interleaving,
multisets, and pomsets. The proofs of the results can be found at www.iis.nsk.
su/virb/proofsketches-SOFSEM-FOCS-2017.

2 Models of Event Structures

A prime event structure is a set of events, together with a causality relation
(denoted by <) and a conflict relation (denoted by #) which satisfy the prin-
ciples of finite causes and hereditary conflict, respectively. Two events that
are neither in causality relation nor in conflict relation are considered to be
concurrent. Prime event structures are useful in order to study relationships
between different models of concurrent processes, such as Mazurkewicz trace


www.iis.nsk.su/virb/proofsketches-SOFSEM-FOCS-2017
www.iis.nsk.su/virb/proofsketches-SOFSEM-FOCS-2017

134 E. Best et al.

languages, pomsets, occurrence nets, Petri nets, configuration structures, and
Scott domains [5,13,16,17].

Definition 1. A (symmetric) prime event structure over L is a tuple & =
(B4, <,L,l), where E is a set of events; < C E X E is a partial order (the
causality relation), satisfying the principle of finite causes: Ve € E: |e] = {¢’ €
E | e < e} is finite; § C E X E is an irreflezive and symmetric relation (the con-
flict relation ), satisfying the principle of hereditary conflict: Ve,e’;e” € E: e < ¢
and e ft " then €' §€”; L is a set of labels; and | : E — L is a labeling function.

Let EY denote the class of prime event structures over L. In the graphical
representation of a prime structure, pairs of events related by a causality relation
are connected by arrows (for the pairs derivable from the transitivity property,
the arrows are not shown), and pairs of the events included in a conflict relation
are marked by a symbol f (for the pairs derivable from the hereditary conflict
principle, symbols # are not depicted).

e g © £
T CIN 2 o
a a ~h €——a ~ b
AN f ?
d b d d

Fig. 1. A symmetric (Lh.s.) and two asymmetric (r.h.s.) prime event structures

Ezample 1: Figure 1(1.h.s.) shows the prime event structure P over L = {a, b,
) d}’ with Egr = {avb’ Cy d}’ <er= {(da CL), (a,c), (d7 C)}a ﬁfp = {(avb)a (b7 Cl),
(¢,b), (b,c)}, and the identity labeling function lg».

The behavior of prime structures is described in terms of configurations,
subsets of conflict-free events left-closed with respect to the causality relation.
Call a set X C E a configuration of a prime event structure £ iff X is a finite
set, left-closed in E (i.e., [e] C X, for all e € X) and conflict-free (i.e., ~(e § ¢’),
for all e,e’ € X). The set of the configurations of £ is denoted as Conf(£). For
X, X' € Conf(€), we write X — X' iff X C X'. Further, for X € Conf (&), we
define the following sets:

f(X)={ecE|efe, forsomee € X} (strong syntactic conflict)
1(X)={ec E|3e € |e] st. e € §(X)} (weak syntactic conflict)
1(X)={ec E|AX' € Conf(£) containing X and e} (semantic conflict)

For symmetric prime event structures, these sets coincide:

Lemma 1. For a prime event structure € and X € Conf(E), §(X) = 1(X) =
1(X).



Configuration- and Residual-Based Transition Systems for Event Structures 135

In [12,14], for a prime event structure £ and a configuration X € Conf(£), a
removal operator being used in constructing residuals has been defined as follows:
E\X =(F,<NEXE),tN(E' xXE"), L, |g), with B/ = E\(X U#(X)). Due
to Lemma 1, we can use any of the conflict sets of X, in the removal operator.
We write E—x &' iff there exists X € Conf(€) such that & = E\X.

Based on Lemma 1 together with Lemma 1 of [12], the lemma below states
some correctness criteria for the removal operator with any conflict set. The
meaning of the correctness properties is that the obtained residuals are prime
event structures which do not allow configurations that are disallowed by an
original prime event structure. In some sense, this signifies some compositionality
properties of the removal operator.

Lemma 2. Let £ be a prime event structure.

(i) For any X € Conf(£), &' = E\X is a prime event structure.

(ii) For any &' = E\X with X€Conf(E) and " = ENX' with X'€ Conf (&),
(a) X UX'" € Conf(E),
() if X — X" in &, then X"\X € Conf (&),
(c) £ =E\(X UX').

The results in items (a)—(c) are crucial for establishing bilimilarities between
different kinds of transition systems obtained from prime event structures (see
Proposition 1 and Theorem 1).

Asymmetric prime event structures have a causal relation similar to that
of prime event structures, but replace the symmetric conflict with a relation,
denoted by ~», modelling asymmetric conflict or weak causality. Such a relation
allows one to represent a new kind of dependency between events arising in con-
textual nets [1] (an extension of place/transition Petri nets where transitions
can also have context conditions, modelling resources that can be read without
being consumed). Intuitively, ey ~> e; means that eg cannot occur once e; has
occurred, and if ey and e; both occur in a single system run, then ey causally
precedes e;. So, in this setting, the symmetric binary conflict is no more a prim-
itive relation, but it is represented via “cycles” of asymmetric conflict. As a
consequence, prime event structures can be identified with a special subclass of
asymmetric (prime) event structures where all conflicts are actually symmetric.

Definition 2. An asymmetric (prime) event structure over L is a tuple € = (E,
<, ~, L, 1), where E is a set of events; <C EX E is a partial order (the causality
relation ), satisfying the principle of finite causes: Ve € E': |e| ={e’ € E | ¢/ <e}
is finite; ~ C (Ex E) is a disabling relation such that Ve € E: an L is acyclic?,
with /= (~U<); L is a set of actions; and l: E — L is a labeling function.

Let E?” denote the class of asymmetric prime event structures over L. An
asymmetric prime event structure £ is called with hereditary conflict iff whenever

! For a set Y C X and a relation r C X x X, ry denotes the restriction of 7 to Y.
2 A relationr C X x X is acyclic if it has no “cycles” of the formegrei r ... re, r e,
withn > 1 and e; € X for all 0 < i <n.



136 E. Best et al.

e ~ € and e < €”, then ¢’ ~~ €. In the graphical representation of an
asymmetric prime structure, pairs of events related by a causality relation are
connected by arrows (for the pairs derivable from the transitivity property, the
arrows are not shown), and the pairs of the events included in a disabling relation
are connected by squiggly arrows.

Example 2: Figure 1(r.h.s.) shows the asymmetric prime event structures £
and &,". For instance, consider the syntax of £/ over L = {a,b,c,d}: Eger =
{a, b,c7 d}, <gar= {(d,a),( a,c), (d,c), (b,c)}; ~gar= {(a,b)}; and the labehng
function lgar is the identity.

A configuration of an asymmetric prime event structure £ is a finite set
C C E such that: (i) /¢ is well-founded,® and (ii) C is left-closed w.r.t. <,
i.e. for all e € C, ¢ < e implies ¢/ € C. Condition (i) guarantees that ,” has
no infinite descending chains in C, and thus ensures that in C' there are no -
cycles, i.e. excludes the possibility of having in C' a subset of conflicting events.
Condition (ii) requires that all the causes of each event are present. The set of
all configurations of £ is denoted by Conf(£). For X € Conf(E), the causality
relation on X, <y, is defined as the reflexive and transitive closure of "x.

Conventions. For a sequence t = e; ...e, of events, let t := {e1,...e,}, and
t;:=e1...e;, forall 1 <1i < n.we write t — t' iff ¢ is a prefix of ¢’ and, further,
t" =¥\t iff ¢ is a suffix of ¢/, with ¢ = ¢t".

A trace of an asymmetric prime event structure £ is a sequence t = e; ...e,
(n > 0) of distinct events from E such that for all 1 <i,j < n if e; ~ e;, then
i< j,and for all 1 <i<nife<e; for some e € E, then thereis 1 < j <n
such that e = e; and j < 4. The set of all traces of £ is denoted by Traces(E).
Clearly,  is a configuration of £, for any ¢ € Traces(£), and for any configuration
X € Conf(€) there is a trace t such that X = t. For X, X’ € Conf(£), we write
X — X' iff there are t,t' € Traces(€) such that X =¢, X' = 7, and t — ¢'. For
t € Traces(€), define the sets:

~ (t) ={e € E\t| e~ ¢ for some ¢’ €t} (strong syntactic conflict)
T(t) ={e€E|3e € le]st.e e ()} (weak syntactic conflict)
i1(t) ={ec E|Pt' € Traces(E) s.t. t —t' and e € '} (semantic conflict)

Crucially, we define the conflict sets for a trace, but not for a configuration,
because the former allows for keeping the order of event occurrences that is
essential for event structures with asymmetric conflict. The following lemma
establishes the interrelations between these sets.

Lemma 3. Let £ be an asymmetric prime event structure and t € Traces(E).
Then ~ (t) C t(t) = 1(t); and ~ (t) = 1(t) = 1(¢t), if € is with hereditary

conflict.

3 A relation » C X x X is well-founded if it has no infinite descending chains, i.e.,
(es)ien such that e;11 7 e;, €; # eit1, for all ¢ € N.



Configuration- and Residual-Based Transition Systems for Event Structures 137

Ezxample 3: To illustrate the C in this lemma, consider the asymmetric prime
event structures €77 and 57 shown in Fig. 1(r.h.s.). Clearly, &% is not with
hereditary conflict, but £5” is. It is easy to see that ~gar (t1) = {a} G {a,c} =
tear(t1), for the trace t1 = db, and ~ger (t2) = {a,c} = fear(t2), for the trace
to = db.

For an asymmetric prime event structure £, we say that t,t’ € Traces(E) are
equivalent if T = ¢/, and use [t] to denote the equivalence class of t. For £ and
t € Traces(€), define a removal operator as follows: E\[t] = (E',<'=< N(E' x
E'),~'=~ N(E' x E"), L, |g), with E' = E\(t U {(¢)). Notice that semantic
conflict can be used as well. We write £E—3&’ iff there exists ¢t € Traces(E) such
that & = E\[t].

Bundle event structures were introduced in [8,9] for the description of for-
mal semantics of the specification language LOTOS for parallel systems and the
corresponding algebra of processes. Unlike in prime event structures, the events
in bundle structures can be initiated by different sets of events. Causality is not
a binary relation anymore; instead, it is represented by the bundle relation —
between a finite set of pairwise conflicting events W and an event e. This relation
can be interpreted as follows: in the system’s functioning, an event e can occur
only if one of the events from the set W has already occurred. A pair (W, e) such
that W — e is called a bundle, and W is called a bundle set. In asymmetric
bundle event structures, the conflict relation f is replaced by a disabling rela-
tion ~». As in asymmetric prime structures, an event e; disabling another event
ep means that once e; occurs, ey cannot occur anymore. Clearly, asymmetric
bundle event structures are a generalisation of bundle event structures, since the
symmetric conflict can be modelled through mutual disabling (i.e., e ~ ¢’ and
e’ ~ ¢). Moreover, any asymmetric prime event structure £% can be consid-
ered as a special asymmetric bundle event structure £%°, with {e'} +za e, if
€ <gar €, and €' ~gab €, if € ~gap €; the irreflexivity of ~»gab is guaranteed by
the restriction on gap in the syntax of £.

Definition 3. An asymmetric bundle event structure over L is a tuple &€ = (E,
~, =, L, 1), where E is a set of events; ~ CE x E is an irreflexive disabling
relation; —C 2F x E is the causality relation such that W +— e = Vej,es € W
if 1 # ey then e; ~ ey (Stability?); L is a set of labels; and | : E — L is a
labeling function.

Let E% denote the class of asymmetric bundle event structures over L.

The above definition allows an empty bundle, ) — e, to be defined. The
interpretation of such a bundle is that e can never happen, i.e. e is an impossible
(self-conflicting) event. Notice that there are alternative ways to specify impos-
sible events, for example, {e} — e or {€'} — e ~» ¢€’. All the bundles can always
be eliminated while preserving the semantics. Notice that such impossible event
can not be specified in asymmetric prime event structures.

4 Stability ensures that two distinct events of a bundle set are in mutual disabling.



138 E. Best et al.

- d
gab [\ gad
a/:ﬁBb S,

i a—E-..
d

Fig. 2. An asymmetric bundle (Lh.s.) and an asymmetric dual (r.h.s.) event structure

In the graphical representation of an asymmetric bundle structure, bundles
(W,e) are indicated by drawing an arrow from each element of W to e and
connecting all the arrows by small arcs; pairs of the events included in a disabling
relation are associated by squiggly arrows; and pairs of the events included in
the symmetric conflict relation are marked by the symbol f.

Ezample 4: Figure2(1.h.s.) depicts an asymmetric bundle structure £%° over L =
{&, b) ) d} with EE“b = {a7 b7 C, d}a Mrgab= {(a‘a b)7 (ba a)? (CL, d)a (b7 d)}a gav=
{({a, b}, )}, and the identity labeling function lgas.

Next, we present an extension of asymmetric bundle event structures, called
asymmetric dual event structures [8,10]. Such structures are obtained by drop-
ping the stability condition. This may lead to causal ambiguity, in the sense
that, given a trace and one of its events, it is not always possible to determine
what caused this event.

Definition 4. An asymmetric dual event structure over L is a tuple £ = (F,
~, —, L, 1), where E is a set of events; ~C E X E is an irreflexive disabling
relation; —C 2F x E is the causality relation; L is a set of labels; andl: E — L
s a labeling function.

Let EaLd denote the class of asymmetric dual event structures over L. Asym-
metric dual event structures are represented graphically in the same way as
asymmetric bundle event structures.

Example 5: Figure2(r.h.s) shows an asymmetric dual structure £ over L =
{aa b7 ) d} with Egad = {a’a b7 ¢, d}7 M gad= {(aa d)? (Cv d)a (b7 d)7 (d7 b)}v Fgad=
{({a, b}, )}, and the identity labeling function lgaa.

An asymmetric bundle/dual event structure £ is called with hereditary con-
flict iff whenever e ~ €’ and 3W +— €” such that e € W, then e” ~ €.

A trace of an asymmetric bundle/dual event structure £ is a sequence ¢t =
e1...e, (n > 0) of distinct events from E such that for all 1 <i,5 < n if ¢; ~
ej, then ¢ < j, and for all 1 < ¢ < n if W ~ e¢;, then t;_1 N W # 0. We use
Traces(€) to denote the set of traces of £. Let imp(E) = {e € E | }t’ € Traces(&)
s.t. e € t'} denote the set of impossible events of £.

A set X C E'is a configuration of an asymmetric bundle/dual event structure
£ if there is a trace t such that X = ¢. The set of the configurations of £ is denoted



Configuration- and Residual-Based Transition Systems for Event Structures 139

as Conf(€). For X, X' € Conf (&), we write X — X' iff there are t,t’ € Traces(&)
such that X =7, X' =7, and t — .

In an asymmetric bundle event structure &, for a configuration X € Conf (&)
and d,e € X, we write d /x e iff d ~» e or there is a set W C E such that
d € W and W +— e. The causality relation on X, <y, is defined as the reflexive
and transitive closure of "x. For a trace t € Traces(€) and e € t, we use the set
le]: = {¢ €t]e =<ze} to denote the cause of the event e in the trace ¢, where
=7 is the reflexive and transitive closure of {(d,e) € t X t | there is aset W C F
such that d € W and W — e}. Let |e| = {|e]y | t' € Traces(€) and e € t'} be
the cause of e.

In (asymmetric) dual event structures, a configuration cannot be described
by a single poset anymore, because of the causal ambiguity—a configuration
may contain events whose causes are not determined uniquely. The authors of
[10] defined five different interpretations of causality in a trace: liberal, bundle
satisfaction, minimal, early and late posets. In all the interpretations, a cause
of an event (the set of “causal predecessors” that enable the event) in a trace is
not unique. Unlike [10], we are interested in maximal (w.r.t. —) causality being
based on the idea that the cause of an event in a trace should be maximal, in
the sense that the cause is not a subset of any other set which is also a cause of
the event in the trace. This requirement guarantees the uniqueness of the cause
of an event in a trace.

In an asymmetric dual event structure &, let t € Traces(E) and Wi —ee, .. .,
W +— e (m > 0) be all bundles pointing to e € . The 0-cause of e in t, |e]?,
is the singleton {e}. The I-cause of e in t, |e]}, is a set satisfying the following
conditions: (i) each e’ € |e]} occurs before e in t, (ii) W; N |e|} # 0, for all
1 <1< m,and (iii) |e|} is a maximal (in set-theoretical sense) set satisfying (i)
and (ii). Informally speaking, |e]; is the set of “immediate predecessors” of e in
t. For k > 0, define the k + 1-cause of e in t, [e]F !, as the set Ue'eLejf le']}. So,
the k£ + 1-cause of e in t is a set containing the 1-causes of all the events from

the k-cause of e in t. Let [ be the first index such that |e|! = (). Define the cause
of the event e in the trace ¢ as the set |e|; = Ué;t
a trace has a unique cause. Let |e] = {|e]s | ' € Traces(£) and e € '} be the
cause of e.

leJ7. Clearly, each event in

Ezample 6: Consider the asymmetric dual event structure £¢¢ over L = {a, b,
¢, d, e, f} with Egaa = {a, b, ¢, d, e, f}, ~gaa= 0, = gaa= {({b, ¢}, a), ({d},a),
({e},c), ({f},0)}, and the identity labeling function lgea. The l-cause of the

event a in the trace t = e f dbca is the set |a]} = {b,c,d} and 2-cause of a in t
is [a]? = {e, f}. The cause of a in t is |a]; = {a, b, ¢, d, e, f}.

For an asymmetric bundle/dual event structure £ and t € Traces(£), define
the sets:

~ (t) = {e € E\imp(E)\t | e ~ €' for some ¢’ € t} (strong syntactic conflict)
i(t) ={e € E\imp(&) | V]e]y € le]: Te’ € |e]y s.t. € €~ (1))}

(weak syntactic conflict)
1(t) = {e € E\imp(E) | B’ € Traces(E) s.t. t —t' Ne €'} (semantic conflict)



140 E. Best et al.

We claim that the definitions properly extend those for asymmetric prime
event structures:

Lemma 4. Let £ be an asymmetric bundle/dual event structure and
teTraces(E). Then ~ (t) C 1(t) = 1(t); and ~ (t) = t(t) = {(t), if € is
with hereditary conflict.

Notes on the proof. The inclusion ~(t) C 1(t) follows directly from the definitions
of ~+(t) and t(t), whereas the reasoning, when proving the equality t(t) = 1(¢),
is more involved and requires, in addition, the examination of the cause of an
event in the trace t. The inclusion () C ~~(t), i.e. if e € {(¢) then e € ~~(t), can
be restated, using the definitions of {(¢) and the cause of e, in such a way: if an
event ¢’ from the cause of e in some trace ¢’ such that e’ € ~(t), then e € ~~(¢);
but this is possible only in event structures with hereditary conflict.

Let £ be an asymmetric bundle/dual event structure. The equivalence class
of t € Traces(£), [t], is defined in an analogous way as for an asymmetric prime
event structure. For t € Traces(£), determine a removal operator in the following
way: E\[t] = (F', ~ N(E' x E'), —', L, | |g/), with £/ = E\(t U 1(t)) and
—'={(W'e) | e € E', I(Wye) € »: W =WnNE and WnNt = 0}. The
intuitive interpretation of the above definition is as follows. First, all the events
in ¢ and events conflicting with some event in ¢ (i.e. that cannot happen anymore)
are removed. Second, each bundle W +— e such that some event in W has already
happened in ¢ is removed but each other bundle is retained with the bundle set
containing only remaining events. Third, the conflicts between the remaining
events are kept. We stress that in the above removal operator, semantic conflict
can be used as well. The conflict sets are especially important for models without
impossible events.” We write £—3&’ iff there exists t € Traces(£) such that
& = E\[t].

The lemma below establishes correctness results for the removal operators in
the setting of asymmetric prime, bundle and dual event structures. This seems
identical to Lemma 2 but it should be stressed that the residuals obtained by the
removal operators are, respectively, asymmetric prime, bundle and dual event
structures, which do not allow traces that are disallowed by an original asym-
metric structure.

5 Notice that in [8], for asymmetric bundle/dual event structures the removal operator
has been defined in a different way, without removing conflict sets. All the events
in a trace t and bundles W + e such that W N# # () are removed. However, the
events conflicting with some event in ¢ are retained simply making them impossible
by adding empty bundles. There, the removal operator has been formally defined
as follows: E\[t] = (E', —', ~ N(E' X E'), L, | |g/), where E' = E\t and —'=
(—m \{(W,e) € = WNE#0}) U{(De)]|eecE, e~ ¢, for some e €t} We
say in advance that the “residual” transition systems constructed on the base of the
removal operator from [8] and our removal operator are isomorphic. This implies that
all bisimilarity results obtained in our paper are valid for event structures treated
within the process algebra PA in the work [8].



Configuration- and Residual-Based Transition Systems for Event Structures 141

Lemma 5. Let £ be an asymmetric prime/bundle/dual event structure.

(i) For any t € Traces(E), & = E\[t] is an asymmetric prime/bundle/dual
event structure.
(ii) For any &' = E\[t] with t€ Traces(E) and E" = ENt'] with t'€ Traces(E'),
(o) imp(E) Cimp(E’), if € is an asymmetric bundle/dual event structure,
(a) tt' € Traces(£),
(b) ift = t" in &, then t'\t € Traces(&'),
(c) Te(tt)) = Te(t) Ute (t),
(d) &" = E\[tY].

Notes on the proof. Ttems (o) and (c) are auxiliary and needed for the valid-
ity of items (a) and (d), while (a), (b), and (d) are crucial for establishing
bisimilarities between different kinds of transition systems from asymmetric
prime/bundle/dual event structures (see Proposition 2 and Theorem 1).

3 Associating Transition Systems with Event Structures

In this section, we first give some basic definitions concerning labeled transition
systems and then deal with two distinct kinds of transition systems associated
with an event structure from the classes under consideration. The distinction
appears in the choice of the states of the transition systems: either the configu-
rations of the event structure or the residual event structures (“what remains of
the event structure” after the computations of its configurations).

A transition system T = (S, —,4) over a set £ of labels consists of a set
of states S, a transition relation —C S x £ x S, and an initial state i € S.
Two transition systems over £ are isomorphic if their states can be mapped
one-to-one to each other, preserving transitions and initial states.

We call a relation R C S x S’ a bisimulation between transition systems T
and T” over L iff (i,4') € R, and for all (s,s') € R and [ € L: if (s,l,51) €—,
then (s',1,s]) €— and (s1,s]) € R, for some s} € S’; and if (s',1,s]) €—, then
(s,1,s1) €— and (s1,$)) € R, for some s; € S. A bisimulation R is backward-
forward iff for all (s1,s}) € Rand I € L: if (s,l,81) €—, then (s',1,s]) €—
and (s,s") € R, for some s’ € S, and if (¢',1,s]) €—, then (s,l,s1) €— and
(s,s') € R, for some s € S.

Conventions. From now on, we call an event structure £ € E} UE}” UIE‘ib UIE%d
simply an event structure over L. We say that £ is conflict-free if its disabling
(conflict) relation is empty.

We introduce some auxiliary notation. Let L;,; := L, and Ly,ser := Né (the
set of multisets over L, i.e. functions from L to the non-negative integers), and
Lyom := Pomy, (the set of isomorphic classes of partial orders labeled over L)
be sets of labels.

For an event structure £ over L and a set X' C X € Conf(£), we write:

—lit(X")=a € Liff X' ={e} and i(e) = q;
— Imset(X') = M € N} iff M(a) = [{e € X' |l(e) = a}|, for all a € L,



142 E. Best et al.

- pom(X’) = Y € Pomyp iff <x/ is defined and ¥ = [(X',<xs N(X’ x
|

X),0,1]x)]-

We are ready to define T'C-operators of an event structure over L.

Definition 5. For an event structure £ over L and x € {int,pom,mset},
TC.(E) is the transition system (Conf(E), —, 0) over L., where X . X" for

p€ L. iff X — X' and p = 1.(X'\X), with * € {int,mset}, if £ € E¢?
with * € {int,pom}, otherwise.
{d a,c}
EP\{d, a}
{d a} ¢
Tcpmn TEpom(gp) CLT \b\
e\l = &
o iy o - T
<
d+ ‘0\\& dT ‘0& 0
) —> {b} & — EP\{b}

Fig. 3. The transition systems T'Cpom (EP) and TE pom (EP)

@ a;p;
ﬁ a”ab -

TCpom(E®) (0 % {d} % {d,a} 2 (d,a,b) V< {d,a,b,c}

‘% b* a;b b ¢

{6} ’ {b,d} a; by c

d;a a; b

TEpom(€?) (€% L g\ g % g\ gq S P\ dab

Fig. 4. The transition systems TCpom (E;7) and TEpom (E77)

and



Configuration- and Residual-Based Transition Systems for Event Structures 143

b; c Td a;c

1 o) (e}~ (0 0 e = o)

i Y )\ N [0

{be,dt < {bd} {a,d} = {acd}

A “ (el

b;C 0/.50
ab ab ab ab ab
EPNfbe]  —— E\[] ;b— g - E%\lal —= &"\[ad

Fig. 5. The transition systems T'Cpom (£%%) and TEpom (£*°)

Ezample 7: Figures3, 4, and 5 (left hand sides or upper parts, respectively)
show the transition systems 7'C\pom (-) of the event structures 7, &1, and gab,
respectively, and Fig. 6(Lh.s.) depicts the transition system 7T'C,, et (E%4).5

We move to the definition of TE-operators of an event structure over L.
Definition 6. For an event structure & over L and * € {int, pom, mset},

~ ERLEiff E—~xE for some X € Conf(€) and p = 1.(X), with x €
{int,mset}, if € € E¥, and with x € {int,pom}, otherwise.

~ Reach, (&) = {F | 3&,...,& (k> 0) such that & = €, &, = F and §2.E11
for somep € L, (i <k)}.

— TE.(&) is the transition system (Reach.(£),—«,E) over L.

Ezxample 8: Figures3, 4, and 5 (lower parts or right-hand sides, respectively)
show the transition systems TEpom(+) of the event structures £P, £/, and £,
respectively, and Fig. 6(r.h.s.)—the transition system TFE,,s¢¢(£%?). It is easy to
see that even TC;p:(-) and TFE;,(-), for all our example event structures, are
not backward-forward bisimilar.

5 We allow a single arrow between two states to denote multiple transitions. For
instance, the arrow from £ to & in TEpom (EP) (Fig. 3) denotes two transitions.



144 E. Best et al.

Tcnwet(gad) TE’mset(gad) b

R gad _b>

£N\[b]

{a,c,d} :’ {a, c} b {a,b,c}

Fig. 6. The transition systems TCmset(é'“d) and TEmset(E"d)

The following is a direct consequence of Lemma 2 of this paper, together

with Lemma 1 of [12].

Proposition 1. Let £ be a prime event structure, and let x € {int,pom}.

GUds Lo do =

Reachni(€£) = Reachpom(£).

For any X € Conf(E), E\X € Reachint(E).

For any &' € Reachini(E), there exists X € Conf () such that &' = E\X.
For any X', X" € Conf(E), if X' 2. X", then E\X' 2, E\X".

For any &', £ € Reachi(E), if E'2.E", then there exist X', X" € Conf (&)
such that &' = E\X', & = E\X", and X' £, X".

Proposition 2. Let £ be an asymmetric prime/bundle/dual event structure,
and let x € {int, pom, mset}.

1.

ARSI

Reachini(£) = Reachpyset(E), if € € B3, and Reachini(£) = Reachpom(E),
otherwise.

For any t € Traces(£), E\[t] € Reachin:(E).

For any £ € Reachint(E), there exists t € Traces(E) such that £ = E\[t].
For any t', t" € Traces(E), if 217, then E\[t']2.E\[t"].

For any &', £" € Reachin:(E), if E'BLE" then there exist t' 1" € Traces(E)
such that &' = E\[t'], " = E\[t"], and t'— p,t".

Notes on the proof. The validity of items (1)—(3) can be proved using Lemma
5ii(a, b, d); the validity of (4) requires Lemma 5ii(a, d); (5) can in turn be
deduced from (1) and (3), using also Lemma b5ii(a, d).

More or less directly, Propositions 1 and 2 yield:

Theorem 1. Given an event structure & over L and = € {int,pom,mset},
TC.(E) and TE.(£) are bisimilar, with x € {int,mset}, if £ € B¢, and with
x € {int,pom}, otherwise.



Configuration- and Residual-Based Transition Systems for Event Structures 145

Corollary 1. Given a conflict-free event structure £ over L and * € {int, pom,
mset}, TC.(E) and TE.(E) are isomorphic, with x € {int,mset}, if £ € B,
and with x € {int,pom}, otherwise.

Since in asymmetric dual event structures, several pomsets may correspond
to a trace, our results in Proposition 2, Theorem 1, and Corollary 1 apply to
multisets rather than pomsets.

4 Concluding Remarks

In this paper, we have demonstrated that for asymmetric versions of prime, bun-
dle, and dual event structures, interleaving/pomset/multiset bisimilarity results
can be obtained between configuration-based and residual-based transition sys-
tem semantics. We have defined appropriate formal concepts underlying such
results, both for removal operators (necessary for residual semantics), and for
conflict sets of events in traces. Because of ambiguity of causality in asymmetric
dual event structures, it was especially difficult to understand how to define the
cause of an event in a trace needed in a weak syntactic conflict set, while this
was more straightforward for asymmetric prime event structures, where causal-
ity is given as a partial order in their syntax, and for asymmetric bundle event
structures, where partial order based causality can be defined in configurations.

Work on extending our approach to other types of event structures (from
extended prime event structures [2] to configuration structures [5]) is under way
and will be submitted elsewhere. It will be shown that the conflict set definition
given in the present paper can actually be re-used. Our main goal will be to
see how the results obtained in [3,5] for configuration-based transition systems
can be interpreted in the context of residual-based ones. As shown in [17], the
categories of occurrence nets (ONs) of safe Petri nets, prime event structures
(PES) and finitary prime algebraic Scott domains are equivalent. Therefore, on
the one hand, the results concerning different kinds of transitions systems for
PES can be extended to ONs. On the other hand, it is unclear which kinds of
domain correspond to residual-based transition systems, and it is worth noting
that TE-operators on PES do not evolve into functors from PES to a category
of transition systems [12], i.e., do not possess a categorical characterisation [18].
Also, it is a promising open question how our methods of constructing transition
systems — even for asymmetric prime event structures — can be used in the
context of occurrence contextual nets, because using a left adjoint functor, there
is a coreflection (but not an equivalence) between the corresponding categories,
as shown in [1].

References

1. Baldan, P., Corradini, A., Montanari, U.: Contextual petri nets, asymmetric event
structures, and processes. Inf. Comput. 171(1), 1-49 (2001)

2. Boudol, G., Castellani, I.: Concurrency and atomicity. Theor. Comput. Sci. 59,
25-84 (1989)



146

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

E. Best et al.

van Glabbeek, R.J.: History preserving process graphs (1995). http://boole.
stanford.edu/~rvg/pub/history.draft.dvi

van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37, 229-327 (2001)

van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
petri nets. Theor. Comput. Sci. 410(41), 4111-4159 (2009)

van Glabbeek, R.J., Vaandrager, F.: Bundle event structures and CCSP. In: Ama-
dio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 57-71. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45187-7_4

Gutierrez, J., Wooldridge, M.: Equilibria of concurrent games on event structures.
In: Proceedings of CSL-LICS 2014, pp. 46:1-46:10 (2014)

Katoen, J.-P.: Quantitative and qualitative extensions of event structures. Ph.D.
thesis. Twente University (1996)

Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS.
In: Formal Description Techniques V, IFIP Transactions, C-10 (1993)

Langerak, R., Brinksma, E., Katoen, J.-P.: Causal ambiguity and partial orders
in event structures. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR
1997. LNCS, vol. 1243, pp. 317-331. Springer, Heidelberg (1997). doi:10.1007/
3-540-63141-0_22

Loogen, R., Goltz, U.: Modelling nondeterministic concurrent processes with event
structures. Fundamenta Informatica XIV, 39-74 (1991)

Majster-Cederbaum, M., Roggenbach, M.: Transition systems from event struc-
tures revisited. Inf. Process. Lett. 67(3), 119-124 (1998)

Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains.
Theor. Comput. Sci. 13(1), 85-108 (1981)

Nielsen, M., Thiagarajan, P.S.: Regular event structures and finite petri nets: the
conflict-free case. In: Esparza, J., Lakos, C. (eds.) ICATPN 2002. LNCS, vol. 2360,
pp. 335-351. Springer, Heidelberg (2002). doi:10.1007/3-540-48068-4_20

Pinna, G.M., Poigné, A.: On the nature of events: another perspectives in concur-
rency. Theor. Comput. Sci. 138(2), 425-454 (1995)

Winskel, G.: Events in computation. Ph.D. thesis. University of Edinburgh (1980)
Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325-392. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2_31

Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of Logic in Com-
puter Science, vol. 4 (1995)

Winskel, G.: Distributed probabilistic and quantum strategies. Electron. Notes
Theor. Comput. Sci. 298, 403-425 (2013)


http://boole.stanford.edu/~rvg/pub/history.draft.dvi
http://boole.stanford.edu/~rvg/pub/history.draft.dvi
http://dx.doi.org/10.1007/978-3-540-45187-7_4
http://dx.doi.org/10.1007/3-540-63141-0_22
http://dx.doi.org/10.1007/3-540-63141-0_22
http://dx.doi.org/10.1007/3-540-48068-4_20
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1007/3-540-17906-2_31

Hardness of Deriving Invertible Sequences
from Finite State Machines

Robert M. Hierons!, Mohammad Reza Mousavi?, Michael Kirkedal Thomsen?,
and Uraz Cengiz Tiirker*™)

! Department of Computer Science, Brunel University London, Uxbridge, UK
rob.hierons@brunel.ac.uk
2 School of IT, Center for Research on Embedded Systems (CERES),
Halmstad University, Halmstad, Sweden
m.r.mousavi@hh.se
3 Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark
m.kirkedal@di.ku.dk
4 Computer Engineering, Faculty of Engineering, Gebze Technical University,
Kocaeli, Turkey
urazc@gtu.edu.tr

Abstract. Many test generation algorithms use unique input/output
sequences (UIOs) that identify states of the finite state machine spec-
ification M. However, it is known that UIO checking the existence of
UIO sequences is PSPACE-complete. As a result, some UIO generation
algorithms utilise what are called invertible sequences; these allow one
to construct additional UIOs once a UIO has been found. We consider
three optimisation problems associated with invertible sequences: decid-
ing whether there is a (proper) invertible sequence of length at least K;
deciding whether there is a set of invertible sequences for state set S’
that contains at most K input sequences; and deciding whether there is
a single input sequence that defines invertible sequences that take state
set S” to state set S’. We prove that the first two problems are NP-
complete and the third is PSPACE-complete. These results imply that
we should investigate heuristics for these problems.

1 Introduction

Software testing is an indispensable yet costly part of the development lifecycle
and this has led to interest in test automation. Model based testing (MBT) is
a high-profile approach to automation. It assumes the presence of a model that
represents the abstraction of some aspect of the expected behaviour of the system
under test (SUT). The model is usually represented as an extended finite state
machine, a finite state machine, or a labelled transition system.

In MBT, it is normal to generate test cases from a given model/specification
M. A test case is then applied to M and the response (the expected behaviour)
of M is recorded. The test case is then executed on the SUT N and the response

© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 147-160, 2017.
DOI: 10.1007/978-3-319-51963-0_12



148 R.M. Hierons et al.

(observed behaviour) is recorded. If the expected behaviour and observed behav-
iour differ then the tester declares that the SUT failed the test. Otherwise, the
tester declares that the SUT passed the test case.

A number of techniques have been developed for generating test cases from an
FSM, with this line of research dating back to the seminal papers of Moore [1] and
Hennie [2]. Although FSM-based test generation techniques vary, they typically
alm to test transitions, where a transition is a tuple (s, z,vy, s’) specifying that if
M receives input  when in state s then it moves to s’ and outputs y. In order
to test a transition 7 of SUT N, it is necessary to bring IV to a state from which
T can be executed, fire the transition, record its output and decide whether the
resultant state of the SUT is the expected state. Most such techniques use state
identification sequences for the last part of this procedure [2-8]. The most widely
used state identification sequences are distinguishing sequences (DSs) [9], unique
input output sequences (UIOs) [10] and characterising sets (CSs) [10].

There are two types of DSs. A Preset Distinguishing Sequence (PDS) and
an Adaptive Distinguishing Sequence (ADS) (also known as a Distinguishing
Set [11]). When applied, DSs lead to different output sequences from the different
states of M. One important property of DSs is that it has been known that it is
possible to construct test sequences in polynomial time [12].

However, it has been long known that an FSM need not have a DS and instead
one might use a UIO for a state s’: an input sequence that distinguishes s’ from
all other states of M but need not distinguish any other pairs of states of M.
Although not all FSMs have a UIO for every state, it has been reported that in
practice most FSMs do have such UIOs [3] and this has led to the development
of many FSM-based test generation methods that use UIOs [3,13-20]. However,
the problem of checking the existence of a UIO is PSPACE-hard [21].

A CS is a set of input sequences that distinguish all pairs of states and it
has been shown that every minimum FSM has a CS [4,22]. Another appealing
aspect of CSs is that one can compute a CS from a given FSM in polynomial
time [4,22,23]. However, experiments suggest that the use of CSs can lead to
relatively long tests [12].

1.1 Motivation and Problem Statement

When generating test cases from an FSM it is desirable to have techniques that
reduce the time spent on deriving state identification sequences and there has
thus been work on this problem [6,12,24-26]. One promising method is to use
invertible sequences® [27,28]. Despite this, to our knowledge there is no work
that investigates the problem of computing invertible sequences.

In this paper, we first extend the notion of invertibility to sets of states.
Then we introduce optimisation problems related to invertible sequences, with

! An invertible sequence is a walk p with the property that if one determines the
ending state of p then one also determines the starting state of p. In the following
sections we formally define invertible sequences.



Hardness of Deriving Invertible Sequences 149

these being motivated by a desire to reduce the cost of generating state identi-
fication sequences. Finally, we determine the computational complexity of these
problems.

1.2 Structure of the Paper

This paper is organised as follows. Section 2 defines FSMs and the corresponding
notation, while Sect. 3 defines invertible sequences and the decision problems in
which we are interested. In Sect. 4, we derive the bounds for the three decision
problems considered. In Sect. 5, we draw conclusions and discuss possible lines
of future work.

2 Preliminaries

In this section, we introduce some terminology related to finite state machines.

Definition 1. A deterministic FSM is defined by a tuple M = (S, s0, X, Y, 0, \),
where: S = {s1, $2,...,8n} is the finite set of states; so € S is the initial state;
X ={xy,x9,...,2,} is the finite set of inputs; Y = {y1,y2,...,Yu} is the finite
set of outputs (X is disjoint fromY ); § : S x X — S is the transition function;
and X : S x X =Y is the output function.

Throughout this paper, M = (5,59, X,Y,d, \) denotes an FSM from which
test sequences are to be generated. At any given time, M is in a state from S
and accepts one input at a time. If an input z € X is applied when M is in state
s then M changes its state to §(s,x) and produces output A(s,z). We say that
T = (s,xz,y,8') is a transition of M with starting state s, ending state s’, and
label x/y. The label x/y has input portion (in(z/y)) x and output portion y.

Given sequences T and 7', TZ' denotes the concatenation of T and Z’. We
use pre(.) (post(.)) to denote the set of prefixes (suffixes). Given input/output
pairs x1/y1, ..., Tk/Yr wWe use x1/y1 ... T /yx and also z1x2 ... 2k /11Y2 ... Yk tO
denote the corresponding input/output sequence. Further, we let x; ...z, and
Y1 ...y denote the input portion (in(x1/y1...xk/yx)) and the output portion
(out(xz1/y1 ... xk/yx)) of 1/y1 ... 2k /Yy respectively.

The transition and output functions are extended to a sequence of inputs as
follows, where £ denotes the empty sequence. For Z € X* and = € X, §(s,¢) = s,
0(s,2x) = 6(0(s,x),T), A(s,e) =&, A(s,2T) = A(s,2)A(0(s, x), T).

An FSM can be represented by a directed graph. A vertex represents a state
and a directed edge with label z/y that goes from a vertex with label s to a
vertex with label s’ represents the transition 7 = (s,x,y, s').

Ezample 1. Figure 1 represents an FSM M; with state set {s1, so, s3, 54}, inputs
{z1,x2}, and outputs {y1,y2,vs3}

The behaviour of an FSM M is defined in terms of the labels of walks that
leave the initial state of M. A walk w of M is a sequence of consecutive transitions



150 R.M. Hierons et al.

T1/Y2

1/

T1/y1
x2/y1

Fig.1. An FSM M,

w = (51,71,Y1,52) (52, T2,Y2,83) - - - (Sk—1, Th—1, Yk—1, 5k ) (Sk» Ths Y» Sk41). Walk
w has starting state s1, ending state siy1, and label x1/y122/y2 ... Tk /yr. Here
x1/y122/Ys . .. T /yx is a trace of M.

Ezample 2. For example p = (S4,21,Y2,51)(81,%1,%1,81)(81,T2,Y2,84) IS a
walk of M;. The walk p has starting state s;, ending state sy, and label
1 /Y221 /Y122 /yo. Here x1/ysx1/y122/y2 18 a trace of M.

An FSM M defines the language Lj; of labels of walks with starting state
so and we will use Ljys(s) to denote the language defined by making s the initial
state of M. More formally, Ly/(s) = {Z/g|z € X* A g = A(s,Z)}. Clearly,
Ly = Lp(so). Given S" C S, we let Lys(S’) denote the set of traces that can
be produced if the initial state of M is in S’, i.e., Lpr(S") = Uses Las(s).

States s and s" of M are equivalent if Lys(s) = Ly(s') and FSMs M and N
are equivalent if Lyy = L. FSM M is minimal if there is no equivalent FSM that
has fewer states. FSM M is strongly connected if for every ordered pair (s, s’) of
states of M, there is a walk that has starting state s and ending state s’. Note
that a strongly connected FSM M is minimal if and only if Lps(s) # Las(s)
for all s, € S with s # s’. Throughout this paper we only consider minimal
FSMs. This is not a significant restriction since one can convert an FSM into an
equivalent minimal FSM in low order polynomial time [29].

Assumption 1. We are testing from a minimal FSM M = (S, s9, X, Y, 5, \).
Many test generation techniques use input sequences that identify states.

Definition 2. An input sequence T defines a unique input output sequence for
s if for all s € S\{s} we have that \(s,%) # A(s',Z). Further, T defines a UIO
for state set 8" C S if T defines a UIO for all s € S'.

3 Invertible Sequences

In this section, we first define invertible sequences. We then discuss optimisation
problems with potential impact on MBT related to invertible sequences.



Hardness of Deriving Invertible Sequences 151

3.1 Definitions

Due to their potential role in test generation, we are interested in walks that are
invertible. A walk p with input/output label Z/7 that has ending state s is an
invertible sequence for s if no other walk with ending state s has label Z/3.

For testing purposes, we may want to find a set of invertible sequences with a
common input portion. Given a set I, of invertible sequences we use I; (respec-
tively, I,) to denote the set of input (respectively, output) portions of labels
of the walks in I'. We use I3, (respectively, I.,) to denote the sets of initial
(ending) states of walks in I'. Let us suppose that S’ is a set of states of M.
Then we say that I is an invertible sequence for S’ if Iy = {z}, S’ = Iy, and
all walks in I" are invertible sequences. An invertible transition is an invertible
sequence of length one.

Let us assume that we are given an input sequence T that defines an invertible
sequence for a set of states S’. Consider any partitioning of T as T = 7’2"z
where z, %', %", 2" € X+. If 2’2" also defines an invertible sequence for S’ then
Z is called a redundant invertible sequence for S’. In this paper, we consider only
irredundant invertible sequences. If an invertible sequence is redundant, then it
can be replaced by a shorter irredundant invertible sequence.

It has been shown that a suffix of an invertible sequence might not be an
invertible sequence but a prefix is; this fact is formally state in the following
lemma [27].

Lemma 1. If p = p'p” is an invertible sequence, then p’ is an invertible sequence
but p” might not be an invertible sequence.

We now define what it means for an invertible sequence to be proper. We
say that invertible sequence p is a proper invertible sequence for s, if every suffix
o of pis also an invertible sequence for s. An immediate consequence of the
definition of an invertible and an proper invertible sequence is that every proper
invertible sequence is an invertible sequence but an invertible sequence need not
be proper.

3.2 Invertible Sequences in Test Generation

It has been shown that invertible sequences can be used to extend the set of
UIOs [27].

Lemma 2 (From [27]). If /7 is a UIO for state s and p = T'/§’ is an invertible
sequence for s starting from s’ then 'z/y'y is a UIO for s'.

It should be noted that as every suffix of a proper invertible sequence p for s
is a proper invertible sequence for s, a UIO for s can be used to compute a UIO
for every state that a proper invertible sequence p visits.

Lemma 3. Let /g be a UIO for state s, p be a proper invertible sequence for
s and also let yp = {(s',p')|s' € S,p" € post(p) ands’ is the initial state of p'} be
the set of pairs of suffizes of p and states from which they originate, then for
each pair (s',p') in 1, in(p' )@ /out(p')y is a UIO for s'.



152 R.M. Hierons et al.

This result suggests that in computing UIOs, longer proper invertible
sequences are desirable, because longer invertible sequence lead to the derivation
of more UIOs.? Therefore we investigated the following problem.

Definition 3. Longest proper invertible sequence (LPIS): Let M be an
FSM and also let s be a state of M. The LPIS problem is to decide whether there
is a proper invertible sequence p for s such that |in(p)| > K.

In the next section, we show that the LPIS problem is NP-complete.

Assume that for a given set of states S’, we have computed a state identifying
sequence and this time our aim is to derive state identification sequences for a
specific set of states S” without actually computing them. Due to Lemma 3,
this can be achieved by using invertible sequences. However in order to reduce
the memory/test cost spend on the test sequences, we want to compute a preset
input sequence that takes S” to S’. These requirements lead us to the following
problem definition.

Definition 4. Preset reaching set invertible sequence (PRSIS): Let M
be an FSM and also let S’ and S” be sets of states of M of cardinality K. The
PRSIS problem is to decide whether there are invertible sequences with common
input portion T for S’ such that T takes S” to S’.

In the next section we show that the PRSIS problem is PSPACE-complete.

The following problem is also motivated by the fact that in some cases we
want to derive as many state identification sequences as possible from those
already computed. In other words, we would like to find a set of invertible
sequences to derive state identification sequences. However, considering the sim-
ilar motivation as PRSIS problem, we are looking for invertible sequences with
a minimum number of input portions.?

Definition 5. Minimum spanning invertible sequence (MINSIS): Let
M be an FSM and also let S" be a set of states of M. The MINSIS problem is
to decide whether there is a set I' of invertible sequences for S" where || < K
such that for all s € S\S’ there exists an invertible sequence in I that takes s
to a state s’ € S'.

We show that the MINSIS problem is NP-complete.

4 Complexity Results

We show that the LPIS problem is NP-complete by providing a polynomial time
reduction from the longest path problem (LPP) [30] to the LPIS problem. An
instance of the LPP can be defined as follows, where a path* (P) is said to wvisit
a vertex v, if v is the starting vertex or the ending vertex of an edge in the path
and the length of a path is the number of edges in the path.

2 Recall that we restrict attention to invertible sequences that are not redundant.

3 Recall that I is the set of input portions of labels of the walks in I".

4 A path is a sequence of consecutive edges that, between them, do not visit any vertex
more than once.



Hardness of Deriving Invertible Sequences 153

Definition 6. Longest path problem (LPP): Consider a strongly connected
directed graph G = (V, E) with vertex set V. = {v1,va,...,0,}, edge set E =
{e1,ea,...,em} and a positive integer K < n. The longest path problem for
(G, K) is to decide whether there exists a path of G that visits at least K vertices.

Let out(v) be the number of outgoing edges of a vertex v. We let the out-
degree (Out(G)) of the graph G be the maximum value of out(v) for G i.e.,
Maz({out(v)lv € V}).

Given an instance of the LPP (G, K), we construct an FSM M (G) = (S, so,
X,Y,4,A). Our aim is to arrange the transition structure of M (G) in such a way
that an invertible sequence of length K defines a solution to the LPP. We now
show how we construct M(G).

For each vertex of G we introduce a corresponding state of M(G) and we
copy over the edge structure; if there is an edge from vertex v, represented by
state s, to vertex v’, represented by state s’, then there is a transition from s
to s’. We also introduce an additional special state s,. Then for each transition,
we assign a unique integer 4 in the range [1, |E|] and use it as the output label
(yi) of the corresponding transition in M (G). In other words, the label of each
transition in M (G) will have a unique output portion.

The cardinality of the input alphabet of M (G) is Out(G),i.e., X = {x1, 29, ...,
Touw(q)}, for some arbitrary, yet pairwise distinct, z1, 2, . . ., Touy(q)- If sisastate
of FSM M (G) and the number of outgoing transitions is ¢, then for each transition
leaving s, we pick a unique element from the first ¢ elements of X (i.e., we pick
an element from {z1, 2, ...,2,}) and assign this symbol as the input label of the
corresponding transition. Note that different states may have different numbers
of outgoing edges, therefore the constructed M (G) could be partial. We complete
the missing transitions of state s; by adding transitions to s, with output y;. We
introduce a distinct input symbol * such that from every state s; of M (G), there
exists a transition to s, with common output y; (see Fig. 2). Finally, all transitions
from s, are self-loop transitions with output 0.

We now show how the longest path for a connected graph G relates to the
LPIS problem for M(G).

Proposition 1. The longest path problem instance (G, K) has a solution if and
only if state s, of M(G) has a proper invertible sequence p of length K + 1.

Theorem 1. The LPIS problem is NP-complete.

We now show that MINSIS problem is NP-complete by a reduction from the
minimum covering problem (MCP) [30].

Definition 7. Minimum covering problem (MCP): Consider a set of ele-
ments U = {1,2,...,u}, a set of sets of elements T = {I1,1Is,...,I7} (I; CU
foralll <i <T), and an integer K. The minimum covering problem is to decide
whether there is a subset of T that contains at most K sets whose union is U.

We show how FSM M (U,Z, K) can be constructed such that the MCP prob-
lem for (U, I, K) corresponds to the MINSIS problem for M (U,Z, K). For every



154 R.M. Hierons et al.

e ™
€1
T2 /Y1
U1 €2 V2
) S Q\/ /\p
*/ T, %/Ya
b &

ao,x/ys X/0 xa,%/ys

1)4\ es fvs G;/ 21/ys b

(a) Original longest path problem| (b) Constructed FSM M (G).
instance G. )

L

Fig. 2. Construction of an FSM from a given longest path problem instance.

I, € U, we introduce a single state s; and, in addition, we introduce a special
state s*. For every set I; in 7, we introduce an input symbol z; and an output
symbol y;. We also introduce a distinct output 0. The transition and output
functions of M (U,Z, K) are then defined as follows:

L ifiel;
6<si,zj>={s HiE S

si, otherwise

)\( ) Yis ifi e Ij
SiyLj) = .
/ 0, otherwise

The construction ends by setting S’ = {s,}. Please see Fig. 3 for an example.

Proposition 2. The minimum covering problem instance (G,Z,K) has a solu-
tion if and only if S’ = {s.} of M(U,Z, K) has a minimum spanning invertible
sequence I with |I;| < K.

Theorem 2. The MINSIS problem is NP-complete.

We show that the PRSIS problem is PSPACE-complete by a reduction from
the finite automata intersection problem (FA INT), which was introduced by
Kozen [31]. In the FA INT problem we are given a set of regular automata with
a common alphabet and our aim is to decide whether the automata accept a
common word. A regular automaton is defined as follows.

Definition 8. A regular automaton is defined by 5-tuple A = (Q, X, h,04, F)
where Q, X, h are a finite set of states, a finite set of inputs and a transition func-
tion, respectively. 04 € Q is the initial state and F C @ is the set of accepting
state. Automaton A accepts a word w € X* if h(04,w) € F.



Hardness of Deriving Invertible Sequences 155

/C@ e )

\N\Q w3l ¥®
‘%
w‘“’\@ )E/o 2 “1/y,
3 e
W % "2y,

;1;2/0® 210, 13/0(% 30 a

Fig. 3. Construction of a FSM M (U,Z, K) from a given minimum covering problem
instance U = {1,2,3,4,5,6}, T = {{1,2,4},{3,4,6},{1,2,5}} and K = 2.

Definition 9. Let A = {41, As,..., A.} be a set of reqular automata with a
common alphabet 3. The FA INT problem is to determine whether there is a
word w such that w € L(A;) for all1 <i < 2.

We show that the PRSIS problem is PSPACE-complete. We first show how
we construct an FSM from a given instance of the FA INT problem.

Without loss of generality, we assume that the finite automata in A have
disjoint sets of states. Given an instance of the FA INT problem defined by set
A ={A;, Ay,... A} of finite automata on common finite alphabet X' (A4; =
(Qi, X, hi, 05, F;)), we construct an FSM M (A) = (S, s9, X,Y, d, ) as follows.

We copy the states of each automaton A; = (Q;, X, d;,0;, C;) and given ¢; €
Q; we let s; denote the corresponding state in S. For each A; we also introduce
an additional state ;. The input alphabet of the FSM is given by X = X U{f, f'}
and the output alphabet of the FSM is given by Y = {0,1,2,...,z}. The state
transitions of the finite automata in A are inherited: if a € X' and ¢; € Q; for
1<i<zandl<j<|Q; then d(sj,a) = s if hi(¢;,a) = gx. In a state of the
form *;, an input from Y’ leads to no change in state and output 0.

Each transition with input « € X produces output 0. For each *;, we intro-
duce a transition from x; to 0; with label f/i; all other transitions with input f
have output 0. We also introduce states si",sl". ... sf and input f’; the input
of f' in a state from F; leads to state sI” and the input of f’ when the FSM is
in a state from some Q;\F; leads to state ;. The input of f’ always leads to
output 0.

Finally we set S = {%1,%a,...,%,} and S" = {sI",sl" ... s'}.

Theorem 3. PRSIS problem is PSPACE-complete.

5 Note that in some cases the initial state of each automaton is an accepting state.
Clearly, for such cases an empty input sequence defines a solution to the FA INT
problem instance, hence we do not consider such cases.



156 R.M. Hierons et al.

5 Conclusion

Many algorithms for generating test sequences from FSMs use UIOs but UIO exis-
tence is PSPACE-complete. As a result, UIO generation algorithms take advan-
tage of situations in which one can generate additional UIOs from a UIO that has
been found. The main such approach is to use invertible sequences [27,28].

This paper has explored three optimisation problems associated with invert-
ible sequences: deciding whether there is a (proper) invertible sequence of length
at least K; deciding whether there is a set of invertible sequences, for state set
S’, that contains at most K input sequences; and deciding whether there is a
single input sequence that defines invertible sequences that take state set S” to
state set S’. We proved that the first two problems are NP-complete and the
third is PSPACE-complete.

There are several lines of future work. First, in practice we might have an
upper bound on the length of an invertible sequence that is of interest; there is the
problem of deciding whether the complexity results change if one incorporates
such an upper bound. It would also be interesting to use experiments to explore
properties of invertible sequences and UlOs. Finally, there is potential to use
invertible sequences in generating other types of tests that distinguish states of
an FSM. One might, for example, consider problems associated with generating
adaptive distinguishing sequences for an FSM or a given set of states of an FSM.

Acknowledgments. This work is supported by the COST Action under Grant
#1C1405.

Appendix

Lemma 3. Let Z/g be a UIO for state s, p be a proper invertible sequence for
s and also let p = {(¢',p')|s' € S,p’ € post(p) ands’ is the initial state of p'} be
the set of pairs of suffizes of p and states from which they originate, then for
each pair (s',p') in o, in(p')x/out(p")y is a UIO for s'.

Proof. We use proof by contradiction. Let @ be the set of pairs of suffixes and
states of some invertible sequence p for state s. Consider a pair (', p’) and let us
suppose that in(p’)z/out(p’)y is not a UIO for s'. This implies that there exists
a state s # s’ such that there exists a walk from s” labeled with input/output
sequence in(p')Z/out(p’)y. Now consider the state s”’ reached from s” with walk
in(p’)/out(p’). As the underlying FSM is deterministic we have two options:

— we have s = s,
— or we have " € S\{s}.

In the first case, p’ cannot be an invertible sequence. Otherwise, if the second
case holds, then Z/§ cannot be a UIO for s. The result thus follows. O

Proposition 1. The longest path problem instance (G, K) has a solution if and
only if state s, of M(G) has a proper invertible sequence p of length K + 1.



Hardness of Deriving Invertible Sequences 157

Proof. First we prove that if G has a path P = ejes...ex of length K, then
M(G) has a proper invertible sequence for s, whose input portion has length
K + 1. First note that for every vertex and edge of G there exists a state and a
transition in M (G) respectively. Let p = x1/y122/y2 ...k /yx be the label of
the walk corresponding to P. Since every transition of M(G) is labelled with
unique input/output values, p = x1/y122/y2 ... 2Kk /yx defines an invertible
sequence for a state of M(G). Finally, if we concatenate p with some p’ = */y;,
which is the label of a walk that starts from the ending state of walk p, then
o = pp’ defines an invertible sequence for s,.

Now assume that s, has a proper invertible sequence p = z1/y122/y2 . ..
Zx+1/Yr+1 of length K + 1 and we are required to prove that G has a path of
length K. Note that since p is an invertible sequence for sy, the last input/output
pair belongs to a transition that takes M(G) to state s,. Besides, since p is a
proper invertible sequence, the first K symbols of the input portion of p should
visit K +1 different states of M (G). Since for every state and transition of M (G),
there exists a corresponding vertex and edge in G, the first K inputs of p define
a path of G with length K. Thus the result follows. O

Theorem 1. The LPIS problem is NP-complete.

Proof. We first show that the LPIS problem is in NP. A non-deterministic Turing
machine can guess an input sequence Z of length K. It can then apply Z to every
state and record the resultant output sequence and state reached. Afterwards,
it can compare the outputs to decide whether Z defines an invertible sequence
for a specific state s.

The problem is NP-hard due to Proposition 1 and the fact that the longest
path problem with directed graphs is NP-hard. Therefore the result follows. 0O

Proposition 2. The minimum covering problem instance (G,Z, K) has a solu-
tion if and only if S" = {s+} of M(U,Z, K) has a minimum spanning invertible
sequence I" with || < K.

Proof. First we prove that if U,Z,K has a minimum covering Z' =
{I,I2,...,Ix} then M(U,Z, K) has a set of invertible sequences I" for " = {s,}
such that I'; = {z1,x2,..., 2k }. Note that the transitions and output functions
of the FSM M(U,Z, K) dictates that for a given input x; and output y; pair,
there exists at most one transition with ending state s* and label z;/y;. There-
fore, each transition with ending state s, is an invertible transition and hence
there is a set I" of invertible sequences that take M from S\{s.} to s,. Further,
for every set I; in Z there exists a single corresponding input symbol z; and so
I; = {x1,...,zx}. Thus, I" defines a spanning invertible sequence for S’ with
|I;| = K as required.

Now we assume that S’ = {s,} has a maximum spanning invertible sequence
I' such that |I;| = K and we are required to prove that U has a minimum
covering with at most K sets. First note that as we only consider invertible
sequences that are not redundant, the length of each input sequence in set I is
one. Let I; = {Z1,Ta,...,Tx }. Therefore, there is a set 7' = {I1, I5,..., Ik} of
sets derived from I'7. The result thus follows. O



158 R.M. Hierons et al.

Theorem 2. The MINSIS problem is NP-complete.

Proof. The proof of being in NP is almost similar to that of Theorem 1. However
this time Turing machine should guess at most K input sequences. The problem
is NP-hard due to Proposition 2, thus the result follows. a

Theorem 3. PRSIS problem is PSPACE-complete.

Proof. We first show that the PRSIS problem is in PSPACE. The working princi-
ple of the Turing machine for the PRSIS problem is as follows. First note that a
non-deterministic Turing machine 7 can take S” to S’ input by input as follows:
Let w be the sequences of inputs guessed by 7 so far, and 7 guesses an input
x. After this point 7 applies z to states §(S”,w). 7 should then check whether
(a) 6(5",wz) = 5, and (b) For all s € §” and s’ € 5, if §(s,wz) = §(s', wx)
then A(s,wz) # A\(s',wx) If these three conditions hold 7 returns at accepting
state. Otherwise it returns at rejecting state.

To achieve this 7 maintains (and updates on each iteration) the following
information (given input sequence w): (1) a partition D of S” saying which pairs
of states from S” are not distinguished by w. (2) For each state s € S”, the pair
(s',8") where: s’ = §(s,w) is the current state corresponding to s and S" is
the set of current states from states in S\S” that are not distinguished from s.
Thus S = {§(s",w)|s"” € S\S" A A(s,w) = A\(s",w)}

Clearly, it is straightforward to update this information if we extend w to
wz (guessing z). It is also easy to spot when one should not extend further by
x (either the current states reached from states of S” not distinguished by w
‘converge’ or there is some (s, S”") such that s’ and a state from S” ‘converge’).

The above can clearly be stored in polynomial space. In addition to the
terminating conditions mentioned above, 7 should terminate when the upper
bound is reached. First note that the number of possible values for a pair (s, 5")
is bounded above by n.2" and so the number of possible such pairs is bounded
above by: (n2™)% = n 27K Second, initially D contains K sets. The only way
we can change D is by merging two or more sets, with this reducing the number
of sets in D. Thus, the value of D can change at most K — 1 times.

Therefore the upper bound for the PRSIS is (K —1).n%.2("%X)_ Note that this
information can be stored in polynomial space, i.e. O(log((K — 1).n.2(?K))) =
O(log(K — 1) + Klog(n) + nKlog(2)) space and the Turing machine 7 can hold
a counter and increment this by one after an input is guessed. Therefore when
the value stored in the counter exceeds the upper bound value, 7 terminates.

Therefore, the entire search in this way can be performed in NPSPACE. Based
on Savitch’s Theorem [32], the PRSIS problem is in PSPACE as required.

Now we prove that if the automata accept a common word w € X then M (A)
has an invertible sequence that takes S” to S’. Clearly the application of fwf’
from a state of S” brings M(A) to one of states in S’. As the output produced
as a response to input f is unique, fwf’ is a PRSIS for S’ as required.

Now we assume that there are invertible sequences with common input
sequence T that take S” to S’ and we are required to prove that there is a
common element for the automata in A. Note since T takes S” to S’, the input



Hardness of Deriving Invertible Sequences 159

sequence T should contain at least one f and must end with f’. Let &’ f’ be the
suffix of z after the first input f. After the application of f, the FSM is in a
state that corresponds to an initial state of the corresponding automaton. Since
Z takes S” to S’ ' f’ must takes set §(S”, f) to S’ and so T must take initial

states of the A; to final states. The result thus follows setting w = Z. O
References
1. Moore, E.P.: Gedanken-experiments. In: Shannon, C., McCarthy, J. (eds.)

2.

10.

11.

12.

13.

14.

15.

16.

Automata Studies. Princeton University Press (1956)

Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceedings
of Fifth Annual Symposium on Switching Circuit Theory and Logical Design,
Princeton, New Jersey, pp. 95-110, November 1964

Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.U.: An optimization technique for
protocol conformance test generation based on UIO sequences and rural chinese
postman tours. IEEE Trans. Commun. 39(11), 1604-1615 (1991)

Chow, T.S.: Testing software design modelled by finite state machines. IEEE Trans.
Soft. Eng. 4, 178-187 (1978)

Hierons, R.M., Ural, H.: Generating a checking sequence with a minimum number
of reset transitions. Autom. Softw. Eng. 17(3), 217-250 (2010)

Ural, H., Zhu, K.: Optimal length test sequence generation using distinguishing
sequences. IEEE/ACM Trans. Network. 1(3), 358-371 (1993)

Luo, G.L., von Bochmann, G., Petrenko, A.: Test selection based on communicat-
ing nondeterministic finite-state machines using a generalized Wp-method. IEEE
Trans. Softw. Eng. 20(2), 149-161 (1994)

Petrenko, A., Yevtushenko, N., von Bochmann, G.: Testing deterministic imple-
mentations from nondeterministic FSM specifications. In: Baumgarten, B.,
Burkhardt, H.-J., Giessler, A. (eds.) IFIP TC6 9th International Workshop on
Testing of Communicating Systems, Darmstadt, Germany, 9-11 September 1996,
pp. 125-141. Chapman and Hall (1996)

Gill, A.: Introduction to The Theory of Finite State Machines. McGraw-Hill,
New York (1962)

Kohavi, Z.: Switching and Finite State Automata Theory. McGraw-Hill, New York
(1978)

Boute, R.T.: Distinguishing sets for optimal state identification in checking exper-
iments. IEEE Trans. Comput. 23, 874-877 (1974)

Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences.
IEEE Trans. Comput. 46(1), 93-99 (1997)

Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.U.: An optimization technique for
protocol conformance test generation based on UIO sequences and rural chinese
postman tours. In: Protocol Specification, Testing, and Verification VIII, pp. 75—
86. Elsevier (North-Holland), Atlantic City (1988)

Chan, W.Y.L., Vuong, C.T., Otp, M.R.: An improved protocol test generation
procedure based on UlOs. SIGCOMM Comput. Commun. Rev. 19(4), 283-294
(1989)

Chen, W.-H., Ural, H.: Synchronizable test sequences based on multiple UIO
sequence. IEEE/ACM Trans. Netw. 3(2), 152-157 (1995)

Guyot, S., Ural, H.: Synchronizable checking sequences based on UIO sequences. In:
Protocol Test Systems, VIII, Evry, France, September 1995, pp. 385-397. Chapman
and Hall (1995)



160

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

R.M. Hierons et al.

Motteler, H., Chung, A., Sidhu, D.: Fault coverage of UIO-based methods for
protocol testing. In: Proceedings of Protocol Test Systems VI, pp. 21-33 (1994)
Ramalingam, T., Thulasiraman, K., Das, A.: A generalization of the multiple UTO
method of test sequence selection for protocols represented in FSM. In: The 7th
International workshop on Protocol Test Systems, Japan, pp. 209-224. Chapman
and Hall (1994)

Ural, H., Wang, Z.: Synchronizable test sequence generation using UIO sequences.
Comput. Commun. 16(10), 653-661 (1993)

Vuong, S.T., Chan, W.W.L., Ito, M.R.: The UIOv-method for protocol test
sequence generation. In: The 2nd International Workshop on Protocol Test Sys-
tems, Berlin (1989)

Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and
verification. IEEE Trans. Comput. 43(3), 306-320 (1994)

Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics 4, 653-665 (1973)
Hierons, R.M., Tiirker, U.C.: Parallel algorithms for generating harmonised state
identifiers, characterising sets (accepted). IEEE Trans. Softw. Eng. (2016)
Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans.
Comput. 19, 551-558 (1970)

Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE Trans.
Comput. 55, 618-629 (2006)

Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Trans. Comput.
51(9), 1111-1117 (2002)

Hierons, R.M.: Extending test sequence overlap by invertibility. Comput. J. 39(4),
325-330 (1996)

Naik, K.: Efficient computation of unique input/output sequences in finite-state
machines. IEEE/ACM Trans. Netw. 5(4), 585-599 (1997)

Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automa-
ton. In: Kohavi, Z. (ed.) The Theory of Machines and Computation, pp. 189-196.
Academic Press, New York (1971)

Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and
Company, New York (1979)

Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS 1977, pp. 254—266.
IEEE Computer Society, Washington (1977)

Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177-192 (1970)



Petri Nets, Games and Relaxed Data
Structures



A Graph-Theoretical Characterisation
of State Separation

Eike Best!, Raymond Devillers>®™), and Uli Schlachter!

! Department of Computing Science, Carl von Ossietzky Universitdt Oldenburg,
26111 Oldenburg, Germany
{eike.best,uli.schlachter}@informatik.uni-oldenburg.de
2 Département d’Informatique, Université Libre de Bruxelles,
Boulevard du Triomphe - C.P. 212, 1050 Bruxelles, Belgium
rdevil@Qulb.ac.be

Abstract. Region theory, as initiated by Ehrenfeucht and Rozenberg,
allows the characterisation of the class of Petri net synthesisable finite
labelled transition systems. Regions are substructures of a transition
system which come in two varieties: ones solving event/state separation
problems, and ones solving state separation problems. Linear inequation
systems can be used in order to check the solvability of these separa-
tion problems. In the present paper, the class of finite labelled transition
systems in which all state separation problems are solvable shall be char-
acterised graph-theoretically, rather than linear-algebraically.

Keywords: Cyclic behaviour - Labelled transition systems - Persistent
systems * System synthesis

1 Introduction

The linear algebra-based synthesis algorithm described in [1] allows to check
whether a given edge-labelled transition system is isomorphic to the state graph
of an unlabelled Petri net, and if so, to construct such a net. In this algorithm,
the computational onus is on solving state separation problems, because their
number is quadratic in the size of the state set, and the set of states tends to be
very large, as compared with the set of edge labels.

It may therefore be interesting to characterise the solvability of state separa-
tion problems in a linear algebra-independent way. The present paper describes
a purely graph-theoretical characterisation. Based on a generalised notion of
paths and cycles, an exact condition for a transition system to have only solv-
able state separation problems shall be presented. We shall also investigate how
such systems look like in the special, but interesting, case of persistent systems.

U. Schlachter—Supported by DFG (German Research Foundation) through grant
Be 1267/15-1 ARS (Algorithms for Reengineering and Synthesis).
© Springer International Publishing AG 2017

B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 163-175, 2017.
DOI: 10.1007/978-3-319-51963-0_13



164 E. Best et al.

The structure of the paper is as follows: after recalling some notions about
labelled transition systems and about regions in Sects.2 and 3, Sect. 4 presents
our graph-theoretical characterisation, and Sect.5 develops the persistent case.
Finally some concluding remarks are presented in Sect. 6.

2 Labelled Transition Systems

A labelled transition system can be understood as an edge-labelled directed
graph. In this paper, we shall make use both of directed and of general (not
necessarily directed) paths in such a graph. We shall call the latter generalised
paths, and we shall employ the prefix “g-” (thus: g-paths, or g-cycles) in order
to emphasise their use. If directed paths are meant, as a special case, we shall
use the prefix “d-” (thus: d-paths, or d-cycles) explicitly.

Definition 1. LTS, PATHS, REACHABILITY
A labelled transition system with initial state, abbreviated lts, is a quadruple
TS = (S,—,T,1) where S is a set of states, T is a set of labels, —» C (S x T x S)

is the transition relation, and » € S is an initial state. Let T be a copy of T

— «— — <(:
T ={t|teT}, withTNT =0; and also define ¢t =t forallteT

A g-path (d-path) is a sequence o € (T U ?)* (respectively, o € T*), where *
denotes the Kleene star. For s,s’ € S, a g-path 0 = a1 ...a,, leads from s to s’
(denoted by s[o)s’) if
Irg,r1,...,rm €S s=19 A Tip=25 A
Tj_1,a;,T;) € ifa; €T
Vie{l,....m}: {(J 1 agry) €= il

—
(Tj,C(L_j,’I"j_l) c— ifaj e’T

That is, s[o)s’ contains all t-edges of o (¢t € T') in forward direction, and all t-
edges in backward direction. (Note that s[e)s’ is tantamount to s = s’.) We can

extend the back-arrow notation to sequences in (T'U T')* inductively as follows:
— «—
T =cand Ga=a7o, forac TUT ando € (TUT)*

(Then s[o)s’ if and only if s'[7 )s.)

A d-path o € T* is called enabled in a state s, denoted by s[o), if there is some
state s’ such that s[o)s’. A state s’ is reachable from state s if 3o € T*: s[o)s/,
also denoted s’ € [s).! O

Definition 2. PARIKH VECTORS, CYCLES, AND LABEL-DISJOINTNESS
A T-vectorisafunction @: T' — Z; in linear algebra, it will usually be considered as
a column-vector; its support is the set of indices corresponding to nonnull values.

! Note that enabledness and reachability refer to d-paths, rather than to g-paths.



A Graph-Theoretical Characterisation of State Separation 165

For a g-path o € (T'U (T)*, the Parikh vector of o is a T-vector ¥ (o), defined
inductively as follows:2

¥(e) = 0 (the null vector)
()@ +1ift=aeT_
W(oa))(t) =4 @(e)(t)—1ift =a €T
o)) ift#a#t

Two finite sequences are Parikh-equivalent if they have the same Parikh vector.
A g-path s[o)s’ is called a g-cycle, or more precisely a g-cycle at (or around)
state s, if s = s'. Two d-paths o,7 € T* are called label-disjoint if their Parikh
vectors have disjoint supports. a

Definition 3. DETERMINISM, SPANNING TREE, EQUIVALENCES
TS is called finite if S and T (hence —) are finite, deterministic if Vs, s',s" € S,
teT: s[t)ys Aslt)s” = s =", and totally reachable if every state is reachable
from 2. An lts TS is called a tree (with root 2) if it is totally reachable and
|—| = |S]—1 (i.e., for each state, there is a single directed path from the root to
it in the corresponding unlabelled graph). A tree TS’ = (S’,—',T",4') is called
a spanning tree of TS if S’ =S, -'C—, T' C T, and 7' = 1. The language of TS
is the set L(TS) = {oc € T* | 2[o)}.

Two lts T'S1 = (S1,—1,T,%) and TSy = (S2,—2,T,12) are language-
equivalent if L(TS1) = L(TS2), and isomorphic if there is a bijection (: S; — So
with ((11) =122 and (s,1,5') €—1 < (((s),t,((s")) €2, for all s,s" € 5. O

As an example, consider the labelled transition system T'S; depicted in Fig. 1.
The d-path aba emanating from state « (more precisely, exhibiting all intermedi-
ate states, ¢[a)sy[b)e[a)s1), has Parikh vector (2,1) (two a’s, one b). The g-path
‘@ emanating from s; (i.e.: s1[‘@)2) has Parikh vector (—1,0).

1 a S1
TS1 TSQ TSgZ y
a u b b
7 O S1 I3 O S1 Y
b a 83 a S2
TSy4: TSs:
a
a b b a a /—\
* —r0—>0————>0—>0— >0 10— >0——> 0 S2
7 S1 S92 S3 S4 S5 b S1 a

Fig. 1. Five illustrative transition systems.

2 This definition generalises the classic notion of a Parikh vector to g-paths.



166 E. Best et al.

Here are a few simple observations about (generalised) paths and cycles.

(a) For any g-path o € (T U (1_“)* V(o) =-¥(7).

(b) For any two g-paths 01,09 € (T' U ?)* U(o102) =¥ (01) + ¥(02).

(c) Let ro[ar)ri[as)ra[as)ro and r1[B1)r3[B2)r2. Then, with k1 = ayasag, kg =
alﬂlﬁgag, and R3 = ﬂlﬂgbé_g, To[H1>T0, 1"0[[12>7’0, and T1 [Iig>7’1 are g—cycles,
and ¥(k3) = ¥(ka) — ¥(k1). (Proof: simple calculation).

(d) If TS is a tree, then any g-cycle in T'S has Parikh vector zero. (However,
there may also be non-cycles with Parikh vector zero).

(e) Let TSog = (S, —0,T0,t) be a spanning tree of TS = (S, —,T,2). For any
state s, let w5 denote the (unique) d-path from  to s in T'Sq (it is thus also
a d-path in TS). An edge (s,t,s") € (— \ —o) is called a chord. Every chord
(s,t,s") defines a g-cycle o[mst7r,)1; let this g-cycle be called (s ¢ ). Let

I'rs sy = {V(st,s) | (s,t,8") is a chord}

The set I'rs rs, is called a g-cycle basis (of TS, with regard to TSy), as
justified by the next point.
(f) The Parikh vector ¥ (k) of any g-cycle k in T'S can be written as

P = 3 kW)

YEI'TS, T3

for some coefficients k., € Z. (Proof: following the successive arcs s[t)s’ of
x and the corresponding g-cycles 2[m 7T, )2, each 7, will be cancelled out
by some 7, the arc yields a ~ if it is a chord, a reverse 7 if it is a reverse
chord, and if the arc is not a chord (nor a reverse one), it is easy to see that
U(msty) = 0).

In the remainder of this paper, we always assume that TS = (S, —,T,1) is
a finite, totally reachable, labelled transition system. Note that by total reach-
ability, T'S has at least one spanning tree T'Sy [2]. We pick one of them and let
I" = I'rs, s, denote the cycle basis defined by it.

3 Regions

Regions, to be defined next, mimick the properties of Petri net places at the
transition system level. Our nomenclature accords with this idea, even though
we shall not define Petri nets in the present paper: B and F' assign backward
and forward weights to labels ¢, so that these weights can serve as connecting
arcs between a transition ¢ (which realises the label t) and a place of a Petri net,
while R assigns a token count in each marking to that place.

Definition 4. REGIONS OF AN LTS, AND THE EFFECT OF A LABEL

Let T'S = (S,—,T,2) bean lts. A triplep = (R, B, F) € (S - N, T - N, T — N)
is a region of TS if for all s,s' € S and t € T, s[t)s’ implies R(s) > B(t)
and R(s") = R(s) — B(t) + F(t). The derived function E: T — 7Z defined by
E(t) = F(t) — B(t) is called the effect of t. O



A Graph-Theoretical Characterisation of State Separation 167

Definition 5. STATE AND EVENT/STATE SEPARATION PROPERTIES [1].
An Its TS = (S, —,T,1) satisfies SSP (state separation property) iff

Vs,s' € 1)): s#s = IJregion p=(R,B,F) with R(s) # R(s') (1)

meaning that if all regions agree on two states, then the latter are equal.
TS satisfies ESSP (event/state separation property) iff

VsepVteT: (-s[t)) = ITregion p= (R, B, F) with R(s) < B(t)
meaning that if all regions satisfy R(s) > B(¢), then s enables t. O

In usual parlance, two distinct (unordered) states s,s’ € S yield a state sep-
aration problem, denoted by SSP(s,s’), and if there is a region p as in (1),
then p is said to solve SSP(s, s). Intuitively, p differentiates between s and s’.
Event/state separation problems are similarly defined, but in the remainder of
this paper, we shall limit ourselves to state separation problems.

For example, in Fig. 1, T'S; satisfies both SSP and ESSP. Indeed, if we repre-
sent the three functions of a region p = (R, B, F') by their equivalent multisets,
p1 = ({s1},{b},{a}) and py = ({1}, {a}, {b}) are two regions such that p; solves
the event/state separation problem (—[b)) and ps solves the event/state sep-
aration problem (—sp[a)). Either of them solves the state separation problem
1 # $1. T'So and T'S3 (in Fig. 1) satisfy ESSP but not SSP, and T'S, satisfies SSP
but not ESSP. The significance of these properties is expressed by the following
result [1]. (Place/transition Petri nets are defined, e.g., in [9]).

Theorem 1. BASIC REGION THEOREMS FOR PLACE/TRANSITION NETS.

A totally reachable, finite lts is isomorphic to the reachability graph of some
place/transition Petri net if, and only if, it satisfies SSPA ESSP.

If a totally reachable, finite lts satisfies ESSP, then it is language-equivalent to
the reachability graph of some Petri net. a

For example, for T'S3 as shown in Fig. 1, even though there is no Petri net with an
isomorphic reachability graph, there is still a Petri net with a language-equivalent
reachability graph, for instance a net whose reachability graph is isomorphic to
TS,. Interestingly, a totally reachable, finite Its may be language-equivalent to
some Petri net without satisfying ESSP. This is the case, for instance, for system
TS5 shown in Fig. 1: it is easy to build a Petri net with two transitions {a, b}
and the language {¢,a,b,ba} = L(TS5), but since :[a)ss and s1[a)s2, any region
will assign the same token count to s; and %, so that it is not possible to allow
b at » and to exclude it from sy; as a consequence, neither ESSP nor SSP are
satisfied by this system.

Here are some observations about regions, g-paths and Parikh vectors. Let
a finite, totally reachable lts TS = (S,—,T,1) be given and let TSy be any
spanning tree of T'S with root 2.

3 SSP(s, s') equals SSP(s’, s), and thus, SSP(s, s) is solvable iff SSP(s, s) is solvable.



168 E. Best et al.

(¢) Any T-vector E: T — Z can be extended to g-paths in (T'U ?)* by defining

E(0) = ZE(t) - W(o)(t)=E"-w(o), foranyo e (TU ?)*
teT

(T means ‘transposed’, - is scalar product)
If p = (R, B, F) is a region with effect E, then for any g-path s;[r)ss2, we
obtain: R(s2) = R(s1) + E(7). (Proof: by easy induction on the length of
T.)

(h) In particular, by total reachability, for any state s € S, we have R(s) =
R(1)+ E(ms). This implies that knowing R(z) (and =) is sufficient for know-
ing R(s), for every state s.

(j) Also, suppose that s[k)s is a g-cycle in T'S. By (g) again, we have R(s) =
R(s) + E(k). This means that the effect is zero along g-cycles of TS, i.e.,
E(k) =0, for every g-cycle s[k)s in TS.

4 State Separability

The synthesis task is to find, for any given separation problem, a region that
solves it. The next definition describes a graph-theoretical property which will
later turn out to characterise the solvability of state separation problems.

Definition 6. MILD [4] AND G-MILD CYCLE-CONSISTENCY

Anlts TS = (S, —,T,) is called mildly cycle-consistent (mcc) if for all d-cycles
rlo)r and d-paths s[o’)s’ where there is a p € N\{0} such that ¥ (o) = p-¥(o’),
then s = §'. Tt is called g-mildly cycle-consistent (g-mec) if the same condition
is satisfied for all g-cycles r[o)r and g-paths s[o”)s’. O

In other words, if there is at least one cycle r[o)r, then any o’ whose Parikh
vector satisfies ¥ (o) = p-¥(¢’) for some integer number p # 0, also has a cyclic
effect whenever it is realised. The relevance of the factor p is shown by T7'Ss in
Fig. 1, which does not enjoy property mcc, since, for example, 2[0)1, 1[o”)s1, with
oc=aa,c =a,p=2,and 1 # s3.

The two variants of cycle-consistency differ only in which kinds of paths are
considered: d-paths in the plain version, and g-paths in the generalised version.
The difference is illustrated by T'Sg, as depicted in Fig. 2.

Proposition 1. A NECESSARY CONDITION FOR SSP SOLVABILITY.
Let TS = (S,—,T,1) be a totally reachable, finite lts.
If SSP(s,s') is solvable for any two different states (s,s’), then TS is g-mcc.

Proof: By contraposition.

Suppose that TS is not g-mildly cycle-consistent. Then there are states r, s, s,
a number p € N\{0} and g-paths o,0’ such that s # s, r[o)r, s[o’)s’, and
U(o)=p-¥(c’). Let p= (R, B, F) be any arbitrary region. Then

R(s'") = R(s) + ET-¥(o") (by s[o”)s’ and Item (g) above)

=R(s) + ET-(1/p)¥(0) (by¥(0) =p ¥(c"))
= R(s) (by r[o)r, hence ET-W (o) = 0, by Item (j))



A Graph-Theoretical Characterisation of State Separation 169

TS@Z 8.3 TS7:
a a
a
S
b
b [ ]
S4 b b

Fig. 2. T'Ss is mildly cycle-consistent but not g-mildly cycle-consistent, since there are
a g-cycle 1[b'a )2 and a non-cyclic g-path s3[‘a b)ss with the same Parikh vector (—1,1).
T'Se is deterministic, while T'S7 is deterministic, but not mcc.

It follows that R(s') = R(s), and since p was arbitrary, no region solving
SSP(s, s’) exists. Hence the claim. 0

For the converse, we shall need a classical result of linear algebra (one of the
many variants of the duality theorems):

Lemma 1. RATIONAL-INTEGER FREDHOLM ALTERNATIVE [7]

Let A,b be a rational (n,m)-matriz and a rational (n,1)-vector, respectively.
Exactly one of the following alternatives holds.

Either A-x = b has a rational solution x,

ory-A=0, y"-b# 0 has an integer solution y. O

Proposition 2. A SUFFICIENT CONDITION FOR SSP SOLVABILITY.
Let TS = (S,—,T,2) be a totally reachable, finite lts.
If TS is g-mcc, then SSP(s,s’) is solvable for any two different states s, s’.

Proof: By contraposition.

Assume that there are two states s, s’ with s # s’ such that SSP(s,s’) is not
solvable. We shall construct a pattern in 7'S which shows that TS is not g-mcc,
and we proceed in two steps.

Step 1: The non-solvability of SSP(s, s’) can be characterised as follows: SSP(s, s)
is not solvable if and only if there is no T-vector E': T — Z satisfying

0

(i) Vyel: ETW(y)=
2! ) (2)

(i) ET¥(ms) #FE
where I" is the cycle base defined before.

Proof: If SSP(s,s’) is solvable by some region p = (R, B, F), then the effect
function E': T — Z derivable from p clearly satisfies both (i) and (ii) of (2), from
TItems (j) and (h). Conversely, assume that (2) has a solution. Such a solution can
easily be transformed into a region (R, B, F') solving SSP(s, s’) by the following
procedure. Let us choose some R(z), and define for any s # + R(s) = R(z)+ E(my)
(this is compatible with the initial value since m, = ¢). For any arc §[t)§’, the
path o[mst73 )e is a g-cycle; from Item (f) and point (i) of (2), we have that



170 E. Best et al.

E(rmstrg) = 0, ie., E(ry) = E(ms) + E(t), so that R(3") = R(2) + E(ry) =
R(1) 4+ E(ms) + E(t) = R(5) + E(t), as requested for a region. In order to ensure
that all those values are non-negative, one just has to choose a value high enough
for R(+). For B and F', we can choose minimal non-negative values such that
E(t) = F(t) — B(t), for every t € T. The triple (R, B, F') so defined is then a
region, and it differentiates between s and s’ from point (ii) of (2).

Step 2: Now we show that the unsolvability of (2) implies that a pattern not
conforming to g-mild cycle-consistency is hidden somewhere inside T'S. Suppose
that (2) is unsolvable. Let G be a matrix whose columns are all the Parikh vectors
of cycles v in I'. The unsolvability of (2) is equivalent to the unsolvability (in
the integer domain) of

(i) ET-G=0 (in fact, this is just a shorthand of (2(i))) ()
(i) ET-(@(ry) —¥(ms)) #0  (just a rewriting of (2(ii)))

By Fredholm’s duality result (Lemma 1), the unsolvability of (2) thus implies
that the following system has a rational solution x:

(i) G- =V(ry)—¥(n,) (4)

(4) just means that the T-vector ¥(my ) — ¥(ms) — so to speak, the “difference”
between s’ and s, with respect to 2 — is a linear combination of cyclic Parikh
vectors from I

From x, we construct a counterexample to g-mild cycle-consistency as follows.

e First, note that for any ¢ € S and g-cycle q[y)q, 1[m,77,)2 is also a g-cycle,
but around 2, with ¥(7,y7,) = ¥ (7).

e The g-path ¢/ = T,7y leads from s to s’, and ¥(¢') = ¥(ry) — ¥(7s). More-
over, from (4), ¥(0") = >__ cp ¥,¥(7), where the x, can be (negative) rational
numbers. By multiplying this with a suitable natural number p > 0, we get
p-¥(o') =3 cryy¥(7), with integer numbers p-z, =y, € Z.

o Using every v exactly |y| times (backwards, if y, < 0), we can therefore
realise a cycle ¢[o)r with ¥ (o) =p-¥(0’). Put r = 1.

With the states r, s, s’, number p, and g-paths o, ¢’ just constructed, T'S is not
g-mildly cycle-consistent, since s # s’. This ends the proof. O

For instance, consider T'Sy as shown in Fig.1. The state separation problem
SSP(s,s') with s =2 and s’ = s; is not solvable. We obtain G = (¥(aa)") = 2
(a single component since T' = {a}) and ¥(7y) — ¥(ms) = 1 (idem), because of
t[a)sy; thus, x = 1/2 solves (4). Multiplying by p = 2 gives y = 1, and indeed,
U(o) =2 -¥(o') with 0 = aa and ¢’ = a.

Theorem 2. G-MILD CYCLE-CONSISTENCY CHARACTERISES SSP

For a totally reachable, finite lts TS = (S, —,T,1), the following are equivalent:

o TS is g-mcc.
e For any two different states s # s', SSP(s,s’) is solvable.

Proof: By Propositions 1 and 2, considering also that all previous proofs hold
for any chosen spanning tree of T'S (since the choice of T'Sy was arbitrary). O



A Graph-Theoretical Characterisation of State Separation 171

5 Persistent Systems

In this section, we shall show that in case TS is persistent, there exist some
useful variations of Theorem 2.

Definition 7. PERSISTENCE.

A labelled transition system (S, —,T,1) is called persistent if for all states
s,8,8" € S, and labels t,u € T with t # u, if s[t)s’ and s[u)s”, then there
is some state r € S such that both ¢'[u)r and s”[t)r (i.e., once two different
labels are both enabled, neither can disable the other, and this leads to the same
state, forming a characteristic diamond shape). O

For example, T'Sg, shown in Fig. 2, is not persistent, while 7'S7 (also shown in
that figure) is. Of course, g-mild cycle-consistency implies mild cycle-consistency.
We will show that the converse is true for persistent lts. First, we recall Keller’s
theorem, which is useful for arguing concisely about persistent systems. For
sequences 7,0 € T*, the residue =0 is defined inductively as follows:

ifo=ce: T2 =7

ifr(r)(t)y=0: 72t =171

ifw(r)(t)£0: 7=t = the sequence obtained by erasing the leftmost tin T
otherwise: T2(to) = (12t) %0

Theorem 3. KELLER [8].

Let (S,—,T,1) be a deterministic and persistent lts. Let 7 € T* and o € T*
be two d-paths activated at some state s. Then 7(c=7) and o(t20) are also
activated from s. Furthermore, =7 and 7%0 are label-disjoint, and the state
reached after T(0=7) equals the state reached after o(t%0). O

Lemma 2. G-PATHS AND SEMI-DIRECTED PATHS
In a deterministic and persistent lts, for any g-path r[a)s, there is a path

r[ﬁlb_g)s, where f1 and Ba are d-paths and ¥(a) = ¥(61) — ¥(B2).

Proof: Let us first assume that r[Y;)r'[y2)s for two d-paths 7; and 7,. From
Keller’s Theorem 3 and the definition of residues, since r'[y;)r and r'[y2)s, we

have r[ye=71)r" and s[y12v2)r” for some state v, i.e., r[(v2=71)(11272))s;

moreover ¥(v1(72*v1)) = max(¥ (1), ¥(72)) = ¥(72(71*72)), so that ¥ (5172) =
U (72) =¥ (1) = ¥ (72" ) =¥ (11*72) = ¥((72"71)(711%72))- (The max operation
on Parikh vectors is meant componentwise, and we also use the fact that v; v
and 22y, are label-disjoint.) The claimed property then arises from an iterative
application of this result, progressively pushing the backward paths to the right
of forward ones while keeping the same Parikh vector. O

A home state in an lts is a state § such that, for any state s € S, § € [s). It is well
known (see Corollary 4 of [3]) that, in a deterministic and persistent lts with a
home state 3, for any d-cycle s[a)s, there is a d-cycle §[3)§ with ¥(a) = ¥(0)
(i.e., cycles may be transported Parikh-equivalently to home states). Moreover



172 E. Best et al.

(see Corollary 2 of [3]), any finite, totally reachable, deterministic and persistent
Its has home states.

A non-empty d-cycle s[a)s in an lts is called small if there is no Parikh-
smaller non-empty d-cycle: s'[3)s" with ¥(8) < ¥(«) = 3 = € with o, 8 € T*.
An lts is said to satisfy the disjoint small cycles property if there is a set
{71, ...,7,} of natural T-vectors with disjoint supports such that {11,...,7,} =
{¥ ()| there is a small cycle s[a)s}.

Lemma 3. DISJOINT SMALL CYCLES BASIS

Let TS = (S,—,T,1) be a totally reachable, deterministic labelled transition
system which is finite, mildly cycle-consistent and persistent. Then TS satisfies
the disjoint small cycles property for some {Y1,...,1,}, and for any d-cycle
sla)s we have the decomposition W(a) = > | k; - T; for some ky, ..., k, € N.

Proof: This follows from Theorem 2 of [3] and Theorem 2 of [4] (since finiteness,
determinism, mild cycle-consistency and persistence easily imply the premises
of the latter). O

Lemma 4. D-CYCLE BASE OF G-CYCLES

Let TS = (S,—,T,1) be a totally reachable, deterministic labelled transition
system which is finite, mildly cycle-consistent and persistent. Then there is a set
{T1,..., 1} of natural T-vectors with disjoint supports such that for any g-cycle
sla)s, there is a unique set of integers kq, ..., ky, € Z with W(a) =Y 1 ki - 1;.

Proof: From Lemma 2, we know that, for some s; € S, s[ay)s; and s[asz)s;
with ag,as € T* and ¥(a) = ¥(a1) — ¥(az). Applying Keller’s theorem, we
get s1[f1)s2 and s1[B2)s2 for some sy € S, with /1 = a1 as, f2 = ax*ay,
V(o) —¥(az) =¥(61) —¥(02), 1 and Ba being label-disjoint. From the label-
disjointness, we may then continue, and form a sequence s3[31)ss, $2[02)s3, - - -
$nlB1)8n+1, SnlB2)Sn+t1, - .., but since S is finite, we must have i < j such that
Si = S5

Thus, we have cycles s;[(81)77%)s;, si[(82)77%)s;, but also s;[B2(31)7 " 1)s;
and s;[31(82)77"71)s;. By Lemma 3, the Parikh vector of each of them is a linear
combination of the 1;’s, and from the label-disjointness of 3, and (> on the one
side, and of the 77’s on the other side, we must have ¥((;) = 27:1 ki;-1; as
well as W(ﬁz) = Z?:l k‘g’l . Th with VI : kl,l 2 07 kg,l Z 0 and kl,l . ]{72’[ =0.Asa
consequence, ¥(a) = Y, (k1 — ko2,1)-77, and the claimed result is proved. O

Lemma 5. CYCLES MAY BE PUSHED TO HOME STATES [3]

Let TS = (S,—,T,2) be a totally reachable, deterministic labelled transition
system which is finite and persistent. Then there exists a home state § € [1) so
that for any cycle s[a)s there exists a cycle 5[@)§ with ¥(a) = ¥(&).

Theorem 4. PERSISTENT LTS ARE G-MCC IFF THEY ARE MCC.

Let TS = (S,—,T,1) be a finite, totally reachable, deterministic, persistent
labelled transition system. Then TS is g-mildly cycle-consistent iff it is mildly
cycle-consistent.



A Graph-Theoretical Characterisation of State Separation 173

Proof: It is clear that, if TS is g-mildly cycle-consistent, then it is mildly cycle-
consistent.

For the other direction, note first that by Lemma 3, TS satisfies the disjoint
small cycles property for some {77,...,7,} if T'S is mildly cycle-consistent.

Let us thus assume that s[a)s is a g-cycle, r[8)r’ is a g-path with p- ¥(3) =
V() for some p € Z\{0}: we need to show that r = r'.

From Lemmas 3 and 5 we know that there is a home state §, with small
cycles §[y;)8, such that Vi € {1,...,n}: ¥(y;) =71;.

Lemma 4 implies that ¥(a) = >, k; - 1;, where each k; € Z.

Since the lts is totally reachable, we have two d-paths 2[d;)r and [d3)r’. By
Keller’s theorem, there is a state 7 such that r[d2201 )7 and 7/[6; 2d2)7, and ;292
and d2>4; are label-disjoint.

Let us now consider the g-cycle r[3(d1 292 )(52 01))r. From Lemma 4 again,
we know that W(ﬂ(51152)(62151)) = W(ﬁ) (51 752) 7@(52151) = Z?:l h1 'T‘Z‘,
where each h; € Z.

Gathering all these relations, we get:

P [P(61%62) — ¥(6261)]

i=1
=S p b T —W(a)
i=1
:i[p'hz_kz] Tz
=1

From the label-disjointness of 41>, and d5d7, as well as of the various 1}’s, we
may express p-W (61 202) = > 1 l1;-Y; and p-¥(5261) = Y1 lo;+7; for some
l1;’s and l2;’s in N. As a consequence, since p - ¥(§;2d2) = W(vil 1’yél 2 75,1 ")
and s[’y B lfyll . 711’">§, from mild cycle consistency we have r = 7. Similarly,

¥ =7, and we get r =1’ as requested. O

Theorem 4 can be understood intuitively by comparing T'Sg and T'S7, shown in
Fig. 2. Any attempt to turn T'Sg into a persistent lts requires to extend the a/b
forks at states + and s, into persistent diamonds, which either yields an infinite
result, or creates cycles such as the ones in 7'S7, leading to a violation of mild
cycle-consistency (not just of g-mild cycle-consistency, as in T'Sg).

Finally, we use Theorems 2 and 4, together with previous results, in order to
prove the following theorem.

Theorem 5. FOR PERSISTENT SYNTHESIS, SSP CAN LARGELY BE NEGLECTED
Let TS be a finite, totally reachable, deterministic labelled transition system
which is mildly cycle-consistent and persistent. If TS satisfies ESSP, then it
is isomorphic to the reachability graph of some place/transition Petri net.



174 E. Best et al.

Proof: By Theorem 4, TS is g-mildly cycle-consistent. By Theorem 2, it satisfies
SSP. The claim then follows by Theorem 1 (first part, (<=)). O

For the reachability graphs of Petri nets, all premises of Theorem 5, except
finiteness and persistence, are satisfied. (The proof of this is easy; see, e.g., [4].)
For this reason, Theorem 5 can be paraphrased loosely as follows: “in the pres-
ence of persistence, SSP plays no role in finite Petri net synthesis”. This com-
plements Darondeau’s theorem [5] which states (loosely speaking) that “in the
presence of persistence, language equivalence is the same as isomorphism”. The-
orem 5 can also be viewed as a strengthened version of the second part of
Theorem 1 (under the premise of persistence).

6 Conclusion

The main results of this paper can be summarised as follows:

e State separability, as defined in Petri net synthesis [1], has a graph-theoretical
characterisation, using generalised — that is, not necessarily directed — paths
and cycles (Theorem 2).

e In the presence of persistence, (i): this characterisation can be replaced by a
simpler one, just using directed paths and cycles (Theorem 4); and (ii): state
separation problems are generally solvable (Theorem 5).

It should be observed that the g-mcc characterisation given by Theorem 2 does
not directly lead to a fast algorithm for checking the solvability of state separa-
tion problems. It remains to be found out (in future work) to what extent g-mild
cycle-consistency lends itself to useful algorithmic treatment.

Finally, we would like to emphasise that, while there may be less event /state
separation problems [1] in an lts than state separation problems, event/state
problems are much harder to characterise purely graph-theoretically. This is
true even for very simple (persistent, acyclic) transition systems [6].

Acknowledgments. We would like to thank the reviewers and Harro Wimmel for
their very useful comments.

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theo-
retical Computer Science, 339 pages. Springer, Heidelberg (2015). ISBN 978-3-662-
47967-4

2. Berge, C.: Graphs and Hypergraphs. North Holland Mathematical Library, Vol. 6,
528 pages. Elsevier, Oxford (1973)

3. Best, E., Darondeau, P.: A decomposition theorem for finite persistent transition
systems. Acta Informatica 46, 237-254 (2009)

4. Best, E., Devillers, R.: The power of prime cycles. In: Kordon, F., Moldt, D. (eds.)
PETRINETS 2016. LNCS, vol. 9698, pp. 59-78. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-39086-4_5


http://dx.doi.org/10.1007/978-3-319-39086-4_5
http://dx.doi.org/10.1007/978-3-319-39086-4_5

A Graph-Theoretical Characterisation of State Separation 175

. Darondeau, P.: Equality of languages coincides with isomorphism of reachable state
graphs for bounded and persistent petri nets. Inf. Process. Lett. 94, 241-245 (2005)
. Erofeev, E., Barylska, K., Mikulski, L., Piatkowski, M.: Generating all minimal
petri net unsolvable binary words. In: Proceedings of Stringology 2016. http://
www.stringology.org/event/

. Fredholm, I.: Sur une classe d’équations fonctionelles. Acta Math. 27(1), 365-390
(1903)

. Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In:
Feng, T. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102-112. Springer, Heidelberg
(1975). doi:10.1007/3-540-07135-0_113

. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science, vol.
4. Springer, Heidelberg (1985)


http://www.stringology.org/event/
http://www.stringology.org/event/
http://dx.doi.org/10.1007/3-540-07135-0_113

Selfish Transportation Games

Dimitris Fotakis'®), Laurent Gourves?, and Jéréme Monnot?

! National Technical University of Athens, 15780 Athens, Greece
fotakis@cs.ntua.gr
2 Université Paris-Dauphine, PSL Research University, CNRS UMR [7243],
LAMSADE, 75016 Paris, France

{laurent.gourves, jerome .monnot }@dauphine. fr

Abstract. We study a natural strategic situation arising from the selec-
tion of shared means of transportation. Some clients (the players) are
located on different nodes of a given graph and they want to be trans-
ported from their location to a common destination point (e.g. school,
airport). A fixed number of resources (also called buses) is available and
each client has to choose exactly one. Individual costs depend on the
route chosen by the buses and the distance between the nodes. We inves-
tigate the case where each bus has a static permutation which prescribes
the order by which the clients are visited. We identify the cases admitting
a pure strategy equilibrium and consider the construction of an equilib-
rium, via a dedicated algorithm, or a dynamics. We also determine the
price of anarchy and the price of stability for two natural social functions.

Keywords: Resource allocation game - Existence and computation of
equilibria + Price of anarchy/stability

1 Introduction

In many applications some entities compete for the use of shared resources (e.g.
processors, storage). These resources are typically rare enough to prevent the
existence of an ideal situation where every entity is fully satisfied with the
resources that it holds. Allocating scarce resources to a pool of agents is an
important problem in the AGT community. An allocation can be found by a
central planner who strives to optimize a prescribed social choice function. In
practice, this approach is often too rigid as some users, who disregard the social
cost and focus on their own individual cost, may not trust the planner’s global
solution. Therefore, one may prefer a more flexible mechanism, i.e. a decentral-
ized way for constructing an allocation with which the agents can interact and be
proactive. Unfortunately such a mechanism would fail if the agents were unable
to commit in a feasible allocation of the resources, or if every allocation that the
agents build has a high social cost. As a consequence, it is necessary to evaluate
the worth of a mechanism with respect to at least two criteria: (Stability) Can

Supported by the project ANR CoCoRICo-CoDec.

© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 176-187, 2017.
DOI: 10.1007/978-3-319-51963-0_14



Selfish Transportation Games 177

the agents reach a stable state where no one is capable to acquire more revenue?
(Performance) Are these stable states good from a social viewpoint?

We address these questions in a context where some agents, located on differ-
ent places of a map, compete for the use of some public means of transportation
(e.g. buses), so as to reach a common destination (e.g. an airport). Our work,
motivated by services like Dial-a-Ride, Lyft or Uber, uses strategic games to
model the situation. The models are called selfish transportation games because
every agent (also called player) controls a part of the entire solution (i.e. which
transportation means she decides to take) and this agent’s choice is solely guided
by her individual cost. Our study focuses on the existence of pure strategy equi-
libria, together with a worst-case analysis of the performance of the best (resp.,
worst) pure Nash equilibrium compared to configurations with minimum social
cost. Two natural, yet different, notions of social cost are used. More importantly
we concentrate on mechanisms where each bus visits and picks up the clients
according to a fixed order (possibly different for each bus).

1.1 The Model

Let G = (V, E) be an undirected graph with a source s and a destination ¢. The
graph is also endowed with a distance function d : V' x V' — R which is possibly
metric, i.e., symmetric and it obeys the triangle inequality. The transportation
game has a set N of n players, and each one is located on a vertex of V. The
goal of each player is to be transported from its location to the destination ¢
at the lowest cost. There is a set M of m > 2 resources (also called buses).
Each bus follows a path that starts from s, visits some players at their location,
and finally reaches the destination ¢. We suppose that each bus j has its own
algorithm A; which, given V' C V, determines its route, i.e. an s —t path whose
set of intermediate nodes is V'. Every algorithm A; is public. It is assumed that
a bus always takes the direct link with distance d(a,b) between two consecutive
clients a and b and all links between two distinct clients are possible.

We consider a strategic game in which each player chooses by which bus
it is picked. Thus, M is the strategy space of every player in N. There are
different ways to define ¢;(o), the individual cost of a player ¢ under strategy
profile o. In this work ¢;(o) is the distance travelled by o; (the bus selected by
player i) between the original location of ¢ (when player i is picked) and the
destination ¢. We suppose that each A;, for j € M, is based on a permutation
7+ {1,...,n} — N (independent of the current strategy profile). Actually 7,
indicates the reverse order by which the players are picked. This picking order
is never violated, even if a bus visits a player’s location more than once. The
permutation is an expression of preferences, or priorities, that a resource has
over the set of players (or their locations).

Ezample 1. Consider an instance with 4 players and 2 buses. The permutations
of the buses are (1234) and (142 3), respectively. Suppose player 1 chooses bus
1 whereas the others choose bus 2. Thus, bus 1 starts from s, visits 1 and goes
to t. Bus 2 starts from s, visits players 3, 2, 4 and goes to t. Individual costs are
c1(o) =d(1,t), ea(o) = d(4,1t), ca(0) = d(2,4)+c4(0) and e5(0) = d(3,2)+c2(0).



178 D. Fotakis et al.

In a totally equivalent model, every player is at ¢ and wants to reach her
location (e.g. airport to home). Each permutation 7; indicates by which order
the players are dropped. In Example 1, bus 1 transports player 1 to his home.
Bus 2 starts from ¢, drops player 4, then player 2, then player 3.

1.2 Motivation and Related Work

Transportation problems have a prominent place in operations research and com-
binatorial optimization (e.g. the Traveling Salesman Problem [2] or Vehicle Rout-
ing Problems [22]) because they present both practical and theoretical challenges
to the researchers.

Ridesharing systems (see e.g., [16,18]) are emerging transportation models
and tools where car owners can share a ride with other persons via a dedicated
application (e.g. avego, blablacar, carpoolworld, carticipate, etc.). Ridesharing
systems, as public transportation systems, are valuable initiatives for the reduc-
tion of traffic congestion, CO5 emissions and fuel expenditure.

In this article, we depart from the extensive literature dealing with centrally
computed solutions (see e.g., [20]) and focus on game theoretic approaches. Con-
cerning transportation models, numerous articles on vehicle-routing games deal
with cooperative games (see e.g., [5,6,12]). However, noncooperative and com-
petitive games are more closely related to our transportation game. For example,
[13] study a competitive traveling salesmen problem in which two salespeople
compete for visiting some clients earlier than their opponent. In this model, the
players make their decisions in turn like in a game in perfect-information exten-
sive form. A similar model, with possibly more than 2 salespersons, is considered
in [17].

Our model of transportation differs from the aforementioned works since it
is a strategic game. The literature on strategic games for routing problems can
be divided in two parts, whether the players are non-atomic or atomic. In the
mathematical models involving non-atomic players, there is traffic in a network
and each infinitesimal portion of this traffic is associated with an autonomous
agent (see e.g. [10] for the notion of Wardrop equilibrium). In this article, we
assume that the players are atomic. In comparison, an atomic player represents
a non-negligible portion of the traffic.

As resource selection games, transportation games are reminiscent of schedul-
ing games with coordination mechanisms [9]. In coordination mechanisms we
have a scheduling policy, which imposes a priority over players in each resource.
The scheduling policy may be described by some simple rule, such as shortest
(resp., largest) job first, or may be more sophisticated (see e.g., [4]). Moreover,
the same or different scheduling policies can be used for the resources. The goal
is to find natural coordination mechanisms that can significantly improve the
resulting price of anarchy (see e.g., [4,7,9]) or can ensure the existence of an
equilibrium in pure strategies or the fast convergence to it (see e.g., [4]). Thus,
coordination mechanisms modify (or enrich) the individual cost structure, aim-
ing at improved efficiency (or equilibrium existence).



Selfish Transportation Games 179

In transportation games, we employ a fixed player priority, possibly differ-
ent in each bus, to simplify the individual cost structure and to allow for an
efficient best response computation. Of course, one might think of more sophis-
ticated player priorities and bus routes, which is somewhat reminiscent to more
complex scheduling policies in coordination mechanisms. Such priorities may
naturally depend on the set of players in the same bus and on their distances to
each other and to the destination. But, if e.g., we pick the players in each bus
according to the shortest route starting from the source, going through all of
them, and ending up to the destination, determining such a route and the cor-
responding individual costs requires the solution to an NP-hard optimization
problem. Keeping the player priorities fixed and independent of their partition
into buses, we simplify the individual cost structure so that transportation games
are amenable to theoretical analysis.

Transportation games also bear some resemblance to (non-cooperative ver-
sions of) hedonic games (see e.g., [8,11]), where the players are partitioned into
coalitions and the individual cost of each player depends on the identities of
other players in the same coalition (but not on the identity of the coalition). In
transportation games, the players in each bus could be regarded as a coalition
and the individual cost of each player depends on the identities of other players
in the same bus (but in a more subtle way than in the hedonic games of e.g.,
[14,15]). The special case of transportation games with the same player permu-
tation for all buses could be regarded as a hedonic game, since the individual
cost of each player depends on the locations of other players in the same bus (but
not on the bus itself). However, to enrich the individual cost structure of trans-
portation games, we allow for different player permutations in the buses, which
makes the individual cost of each player also depend on the bus (in addition
to the locations of the players to be picked up after him). This is a significant
departure from variants of hedonic games studied in the literature and a source
of difficulty in establishing the existence of pure Nash equilibria.

1.3 Contribution

We conduct a theoretical analysis of the transportation game by providing
answers to the following questions. Which case admits an equilibrium? Can we
compute an equilibrium in polynomial time? Do the players naturally converge
to an equilibrium? How good is the best (or worst) equilibrium in comparison
with a social optimum?

This work only deals with pure strategy profiles (each player’s choice is deter-
ministic). A pure Nash equilibrium (NE) is a strategy profile (also called state)
o such that no player can unilaterally change her strategy and benefit [21].
A strong equilibrium (SE) is a refinement of the NE to group deviations. In a
SE, no group of players C' can jointly deviate in such a way that every member
of C benefits [3]. This article also deals with the dynamics of the transportation
game. We say that the dynamics converges if, starting from any strategy profile,
every series of improvement moves (better response) eventually reaches a sta-



180 D. Fotakis et al.

ble state. Depending on the context (unilateral or group deviations), this stable
state can be a NE or a SE.

Our results show that if all the resources have the same permutation then a
SE exists and it can be computed in polynomial time (Theorem 1). But if the
permutations are not identical, then there exists a simple 2-resource 3-player
instance without any NE (Proposition 2). If there are 2 resources and if the
distances is metric, then the dynamics converges to a NE (Theorem 2). Moreover,
this equilibrium can be computed in linear time (Theorem 3).

Section 3 is devoted to a special metric case where distances can be 1 or 2.
We provide an algorithm that computes a NE in O(nm).

In Section 4, we analyse the price of anarchy and stability of the transporta-
tion game under two natural social cost functions namely egalitarian and Vehi-
cle Kilometers Travelled. These notions are worst case comparisons of the worst
and best NE with a social optimum, respectively. Without metric, the price of
anarchy and stability of our transportation game are unbounded, but they are
bounded for metric distances. Some possible extensions and future works are
discussed in the last section.

2 Existence and Computation of an Equilibrium

At least two properties play an important role in the existence of an equilibrium:
(i) whether the permutations of the buses are identical or not, (i4) whether the
distances are metric or not.

2.1 Instances with Not Necessarily Metric Distances

Theorem 1. If all the resources have the same permutation 7, then the dynam-
ics converges to a SE. Moreover, a SE can be built in O(nm).

Theorem 1 cannot be extended to show the existence of a super strong equi-
librium (SSE), even with metric distances. A SSE is a refinement of the SE where
no group of players C' can jointly deviate in such a way that no member of C' is
worst off, while at least one member is better off.

Proposition 1. There ezists a metric instance of the transportation game with
m = 2 resources having identical permutations which does not admit any SSE.

Proposition 2. There exists a non-metric instance of the transportation game
with m = 2 resources and n = 3 players which does not admit any NE.

Proof. Let the resources be 1 and 2 and let the players be «, 8 and ~. The per-
mutations are («a, 3, ) for resource 1 and (v, 8, ) for resource 2. The distances
are depicted in Fig. 1, on the left. Let us see that the instance has no pure Nash
equilibrium. If 8 is alone on a resource (or she is the last to be picked before
traveling to t) then she wants to move. In Fig. 1, on the right, the 4 remaining
configurations are depicted. The player with a star on its right has incentive to
switch. Hence, this instance does not admit any pure Nash equilibrium. a



Selfish Transportation Games 181

states states

distances L T12] [ 2]

al B | v Y* ax
t]12]100] 1 o1l B g3 B
a0 0|0 o 5y
£(10] 0 |10 o2l B oa|| |B*
x|y ol y

Fig. 1. A non-metric instance of the transportation game with m = 2 resources and
n = 3 players that does not admit any pure Nash equilibrium (see also Proposition 2).

2.2 Instances with Metric Distances

Theorem 2. For the transportation game with m = 2 resources and metric
distances, better response dynamics converges to a NE.

Proof. Suppose for the sake of contradiction that there exists a cycle in the Nash
dynamics. Let Ny C N be the players who never change their strategy in the
cycle, whereas Ny := N \ Ny # 0. Note that there is some positive integer k;,
with j € {1,2}, such that the k; first players in the permutation of resource j
are in Ny and they play j. Indeed, it is a dominant strategy for the first player
in the permutation of resource j to play j, because metric distances, ie., the
triangle inequality imposes that the cost of that player cannot be lower (namely
her distance to t).

For j € {1,2}, let p; denote the player of N; coming first in the permutation
of resource j. Let d; be the player of Ny who is just before p; in the permutation
of resource j. Let cq; denote the cost of d; in the cycle which is invariant. In the
cycle, if p; plays resource j then her cost is equal to d(p;, d;) + ca;, whatever the
players of N1\{p;} play. It must be p; # ps, otherwise we get a contradiction
with p; € N because the cost of p; does not depend on the strategy adopted
by Ni\{p1}. Since the players do unilateral deviations in the cycle, there must
be a state of the cycle in which p; and py play the same strategy. Suppose wlog.
that at some point ps profitably moves from resource 2 to resource 1, where pq
is. The new cost of ps is at least her distance to p; plus the cost of p;. Hence,
d(pa,da)+ca, > d(pa,p1)+d(p1, di)+ca, - At some point in the cycle p; profitably
moves to resource 2 where its cost is at least its distance to ds plus the cost of ds.
Thus, d(p1,d1) + cq, > d(p1,dz) + cq,. Combine previous inequalities to get that
d(p2,ds) > d(ps, p1) + d(p1,dz), which is a violation of the triangle inequality. O

From this proof, we know that a potential function exists. Providing an
explicit potential function for metric transportation games with two resources
is an open question. Another open question asks whether the Nash dynamics
converges in polynomial time. We next show how to efficiently compute one
equilibrium with some central coordination (2 buses).

Theorem 3. For m = 2 resources and metric distances, the transportation
game has a NE that can be computed in O(n).



182 D. Fotakis et al.

Algorithm 1. Greedy algorithm for computing a NE

Input: set N of n players, set M of m resources, permutations 7; for all j € M (each
m; ends with <),
distance function d (we assume that d(u, <) = 00).
Output: assignment o : N — R that is a PNE
for all j € M do
cost(j) < 0; pj < t; nj < the first player in 7;;
for all v € N do
cost(v) « oo0; o(v) «— <
while 35 with n; # < do
k = argmin;{cost(j) + d(p;,nj)}; w « ng;
in case of ties, select resource k with minimum cost(k)
if o(u) = < then
assign u to resource k and set o(u) < k and c(u) « cost(k) + d(pk, u);
if o(u) # < and c(u) > cost(k) + d(pk,u) then
restore cost(o(u)) and p,(y) to their values before u’s assignment to o(u);
Ne(u) becomes the first player v after u in 7,(,) with c(v) > cost(o(u)) +
d(pa(u% U)§
reassign u from o(u) to k and set o(u) < k and c(u) < cost(k) + d(pk, u);
let nx be the next player after u in 7 (ny becomes < if u is the last player);
if o(u) =k then p, — u
return assignment o

3 Computing a Pure Nash Equilibrium for Distances
1 and 2

For the simplest case of metric distances i.e., corresponding to the case that all
distances are either 1 or 2, a NE exists for any number of resources and can be
computed in linear time by a natural greedy algorithm.In Algorithm 1, a player
is available for assignment to a resource if she is currently the first player in the
resource’s permutation. Among all available players, Greedy picks the player u
that can be assigned to a resource k at a minimum cost. Ties are broken in favor
of resources with minimum cost. If player u is not assigned to any resource, she is
assigned to k. Otherwise, if u prefers k to her current resource, she is reassigned
to k. In both cases, u is removed from the permutation of resource k and Greedy
continues. We next show that Greedy terminates with a pure NE assignment if
the distances are either 1 or 2.

Ezxample 2. Consider an instance with 8 players, pg, ..., pr, and 3 resources 71, ro
and r3. The permutations are (p7 ps ps pa p3 P2 P1 o), (Po P1 P2 P3 pa ps pe pr) and
(ps3 p2 Ps P7 Do P5 Pap1) for 1, ro and r3, respectively. The nodes are partitioned
in three sets: {¢, po, p1}, {p2,p3,p4} and {ps, ps, p7}. The nodes in the same set
are within distance 1 to each other. All other distances are 2. In Algorithm 1, at
the beginning, players p7, po and ps are available for assignment to r1, o and rs3,
respectively. In the first iteration, pg is assigned to 7o and p; becomes available
for r5. In the subsequent iterations, p; is assigned to 71, p3 to r3, and p; to rg



Selfish Transportation Games 183

(this takes place last due to the tie breaking rule). At this point, we have that
n1 = pg and ng = n3z = pa. Next, pg is assigned to r1, p2 to r3, po and ps3 are
considered for and not assigned to ro, ps is assigned to 79, and ps is assigned
to r1. From that point on, pg, p7, po, Ps, P4 and p; are considered for and not
assigned to r3, p4, P3, P2, p1 and py are considered for and not assigned to rq,
and ps, ps and p7 are not assigned to r3. The final assignment is (p7 pe ps) to r1,
(pop1p4a) to o, and (p3 p2) to r3, which is a NE.

Theorem 4. Algorithm 1 computes a NE in O(nm) time if the distances are
either 1 or 2. Moreover, each player is reassigned at most once through the
execution of the algorithm.

Proof. We refer to a player u as a candidate for resource j if either n; = u or u
appears in 7; after n; (so u will be considered for assignment or reassignment to
Jj in a subsequent iteration). For convenience, we let cost™** = max; cost(j) and
cost™™ = min; cost(j). We use induction on the number of iterations and show
that at the end of the current iteration: (i) no assigned player wants to deviate
to any resource j, unless she is a candidate for j; (i) cost™a* — cost™® < 2;
(iii) cost™™ does not decrease from one iteration to the next; and (iv) if player
u is reassigned from resource o(u) to resource k, her cost at o(u) is cost™®* =
cost™™ 42 and her cost at k is cost™™ +1. At the end of the algorithm, no player
is a candidate for any resource. Hence, (i) implies that if Greedy terminates, the
assignment ¢ is a pure NE.

Claims (i)-(iv) are true before the first iteration. We inductively assume that
(i)-(iv) hold at the end of any iteration. To establish (i)-(iv) hold at the end of
the next iteration, we distinguish between three cases: whether v is assigned for
the first time to k, whether w is reassigned to k, and whether u stays with o(u).
If u stays with o(u), nothing changes and (i)-(iv) remain true at the end of the
current iteration.

If u is assigned or reassigned to k, u does not want to deviate at the end
of the current iteration, because k minimizes u’s cost among all resources j
with n; = u. If u is assigned to k, other resources and assigned players are not
affected, and claim (i) remains true. If u is reassigned to k, the cost of resource
o(u) decreases. To maintain (i), we let n,(,) be the first player after u in 74,
that wants to be assigned to o(u) (this may involve some backtracking in 7y(y))-
Then, if an assigned player wants to deviate to o(u), so as to take advantage of
u’s move out of o(u), she has become a candidate for o(u). So, claim (i) holds
at the end of the current iteration.

As for claims (ii)-(iv), since all distances are either 1 and 2, and due to
the greedy choice of resource k and to the tie-breaking rule, k’s cost is equal
to cost™™, Hence, if u is assigned for the first time to k, u’s cost becomes at
most cost™™ + 2. Moreover, cost™" does not decrease and cost™®* either does
not change or becomes c(u) < cost™® + 2. Therefore, (ii)-(iv) hold after u’s
assignment.

If u is reassigned from o(u) to k, the cost of u at o(u) is ¢(u) = cost™®* =
cost™™® + 2. Furthermore, cost(k) = cost™" (just before u’s reassignment) and



184 D. Fotakis et al.

the cost of u at k (after u’s reassignment) is cost™™ 4 1. These follow from the
facts that cost™* — cost™™ < 2 at the end of the previous iteration, that c(u) >
cost(k) 4+ d(pg, ) and that all distances are 1 and 2. So, after u’s reassignment,
cost(k) is at most cost™®* and cost(o(u)) decreases by 2 and becomes cost™i.
These imply that (ii)-(iv) remain true after u’s reassignment.

Claims (iii) and (iv) imply that any player is reassigned at most once. Due
to (iv), if a player w is reassigned from resource o(u) to resource k, cost(o(u))
decreases from cost™®* to cost™" = cost™* — 2 and the new cost of u at k is
cost™™ + 1. Thus, if v is reassigned from resource k later on, the new cost™™
would be cost™" — 1, which contradicts (iii). Hence, Greedy terminates after n
assignments and at most n reassignments.

Each reassignment causes a backtrack of at most n players in 7, (,). But only
assigned players with cost cost™™ + 2 can be reassigned to o(u) after u moves
out. So, after u is reassigned to k, we need to insert at the beginning of 7, only
assigned players that appear after u in 7,(,) and have cost equal to cost™" + 2.
Since there are at most m such players, the additional running time due to each
reassignment is O(m). So the running time of Greedy is O(nm), i.e., linear in
the size of the input. |

4 The Price of Anarchy and the Price of Stability

We consider two different social functions. For a strategy profile o, D(o) is the
total distance travelled by the buses when they transport at least one client
(for each bus we neglect the distance between s and the first client). This func-
tion reflects the environmental impact of the solution and it corresponds to the
objective Vehicle Kilometers Travelled considered in [18]. The second function is
the classical egalitarian social cost function E(o) defined as max;en ¢;(0), which
is also the maximum distance travelled by a single bus if the distance between s
and the first client is neglected.

For every f € {D,E} and any given instance, c* denotes a state for which
f(o*) is minimum. The (pure) price of anarchy (PoA for short) is the largest
ratio f(o)/f(c*), over all instances of the game, where o is a pure NE [19]. The
(pure) price of stability (PoS for short) is the largest ratio f(o)/f(c*), over all
instances of the game, where o is the best NE with respect to f [1]. Therefore
PoA > PoS.

Proposition 3. For everyn > 3, the PoS is unbounded for D or E if the distance
s mot metric, even if all the permutations are identical.

4.1 Function D with Metric Distances
Due to Proposition 3, from now on, we assume that the distances are metric.

Lemma 1. If d is metric, d(z,y) < D(c*) holds for all nodes x,y € N U {t}.



Selfish Transportation Games 185

Proof. If x and y are covered by the same bus in ¢*, then suppose wlog. that
the bus visits = before y. Therefore, D(c*) is at least the distance covered by
the bus between x and y, while the latter is at least d(x,y), by the triangle
inequality. Hence, suppose x and y are covered by two different buses in ¢*, and
denote them by b, and by, respectively. Therefore, D(c*) is at least the distance
covered by b, between x and ¢ plus the distance covered by b, between y and t.
The latter is at least d(x,y), by the triangle inequality. O

Proposition 4. If d is metric, then D(c) < nD(c*) holds for every state o.

Corollary 1. The PoA with respect to D of the transportation game onn players
with metric distances and m > 2 resources is upper bounded by n.

Proposition 5. For any n > 2, there are metric instances of the transportation
game on n players and m > 2 resources where the PoS is asymptotically n, even
if all the resources have the same permutation.

4.2 Function E Without Metric

Lemma 2. d(z,y) < 2E(c*) holds for every pair of nodes (z,y) € N, and
d(x,t) < E(c*) holds for every node x € N.

Lemma 3. In any pure Nash equilibrium, the cost of a player is at most (2[ 2] —1)
E(c™).

Proof. By contradiction, suppose there is a pure NE ¢ and a player ¢ such that
ci(o) > (2[2] — 1)E(c*). Let k denote the number of players that the bus
selected by 7 picks between ¢ and ¢ (this includes ¢). Using Lemma 2 we have
ci(0) < (2k — 1)E(0™*). These bounds on ¢;(o) give k& > [-]. But if more than
[ =] players use the same bus, then there must be another bus, say b, selected
by less than 7> players. Even if player i appears last in the permutation of b, her

cost if she moves to b would be less than (22 — 1)E(c*) (Lemma 2). We get a
contradiction with the fact that o is a NE. O

Corollary 2. The PoS with respect to E of the transportation game is O(1%).

Proposition 6. For the transportation game, PoA= 2[2] — 1 if n. > m and
PoA=1 if n < m.

We can also bound the PoA according to the parameters dmin = ming,
d(x,y) and dpax = maxd(x,y). As an immediate corollary, we obtain that PoS =
PoA = 2 for distances 1 and 2.

Proposition 7. PoS = PoA = dmax/dmin for the transportation game.



186 D. Fotakis et al.

5 Future Directions

In this work we supposed that the route of the buses are prescribed by a permuta-
tion that is independent of the current state. There is an interesting challenge of
proposing different ways to define the route of the buses. This modification would
induce a different structure of the individual costs and possibly provide better
PoA and PoS, under the constraint that a pure equilibrium exists. This challenge
is similar to the search of coordination mechanisms in scheduling games.

In transportation problems, it is important to predict the situation so it
would be interesting to identify the cases where the equilibrium is unique. In the
future, the model of transportation can be extended in several natural aspects.
Each bus may have a capacity, its own speed and dedicated roads. The players
may have different sizes (e.g. a player is a group of persons).

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, E., Wexler, T., Roughgar-
den, T.: The price of stability for network design with fair cost allocation. In: 45th
Symposium on Foundations of Computer Science (FOCS 2004), 17-19 , Rome,
Italy, Proceedings, pp. 295-304. IEEE Computer Society, October 2004

2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Sales-
man Problem: A Computational Study. Princeton Series in Applied Mathematics.
Princeton University Press, Princeton (2007)

3. Aumann, R.J.: Acceptable points in general cooperative n-person games. In:
Tucker, A.W., Luce, R.D. (eds.) Contribution to the Theory of Games. Annals
of Mathematics Studies, 40 volume IV, pp. 287-324. Princeton University Press
(1959)

4. Azar, Y., Jain, K., Mirrokni, V.S.: (Almost) optimal coordination mechanisms
for unrelated machine scheduling. In: Shang-Hua Teng, (ed.) Proceedings of the
Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, San
Francisco, California, USA, January 20-22, pp. 323-332. STAM (2008)

5. Bistaffa, F., Farinelli, A., Ramchurn, S.D.: Sharing rides with friends: a coalition
formation algorithm for ridesharing. In: Bonet, B., Koenig, S. (eds.) Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
Austin, Texas, USA, pp. 608-614. AAAT Press (2015)

6. Borm, P., Hamers, H., Hendrickx, R.: Operations research games: a survey. Top
9(2), 139-199 (2001)

7. Caragiannis, I.: Efficient coordination mechanisms for unrelated machine schedul-
ing. Algorithmica 66(3), 512-540 (2013)

8. Cechldrovd, K.: Stable partition problem. In: Kao, M.-Y. (ed.) Encyclo-
pedia of Algorithms, pp. 1-99. Springer, New York (2008). doi:10.1007/
978-0-387-30162-4_397

9. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms.
Theor. Comput. Sci. 410(36), 3327-3336 (2009)

10. Correa, J.R., Stier-Moses, N.E.: Wardrop equilibria. Wiley Encyclopedia of Oper-
ations Research and Management Science (2011)

11. Dreze, J.H., Greenberg, J.: Hedonic coalitions: optimality and stability. Economet-
rica 48(4), 987-1003 (1980)


http://dx.doi.org/10.1007/978-0-387-30162-4_397
http://dx.doi.org/10.1007/978-0-387-30162-4_397

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Selfish Transportation Games 187

Engevall, S., Lundgren, M., Varbrand, P.: The heterogeneous vehicle - routing
game. Transp. Sci. 38(1), 71-85 (2004)

Fekete, S.P., Fleischer, R., Fraenkel, A., Schmitt, M.: Traveling salesmen in the
presence of competition. Theor. Comput. Sci. 313(3), 377-392 (2004). Algorithmic
Combinatorial Game Theory

Feldman, M., Lewin-Eytan, L., Naor, J.: Hedonic clustering games. In: Blelloch,
G.E., Herlihy, M. (eds.) 24th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2012, Pittsburgh, PA, USA, June 25-27, pp. 267-276. ACM
(2012)

Gairing, M., Savani, R.: Computing stable outcomes in hedonic games. In: Kon-
togiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386,
pp. 174-185. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16170-4_16
Kamar, E., Horvitz, E.: Collaboration, shared plans in the open world: studies
of ridesharing. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI, Pasadena, California, USA, July 11—
17, p. 187 (2009)

Kendall, G., Li, J.: Competitive travelling salesmen problem: a hyper-heuristic
approach. J. Oper. Res. Soc. 64, 208216 (2013)

Kleiner, A., Nebel, B., Ziparo, V.A.: A mechanism for dynamic ride sharing based
on parallel auctions. In: Walsh, T. (ed.) Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, IJCAI, Barcelona, Catalonia, Spain,
July 16-22, pp. 266-272. IJCAI/AAAI (2011)

Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404-413. Springer, Heidelberg (1999).
doi:10.1007/3-540-49116-3_38

Lau, H.C., Agussurja, L., Cheng, S.-F., Tan, P.J.: A multi-objective memetic algo-
rithm for vehicle resource allocation in sustainable transportation planning. In:
Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, IJCAI, Beijing, China, August 3-9. IJCAI/AAAI (2013)

Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286-295 (1951)

Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Society for Industrial and
Applied Mathematics, Philadelphia (2001)


http://dx.doi.org/10.1007/978-3-642-16170-4_16
http://dx.doi.org/10.1007/3-540-49116-3_38

Decomposable Relaxation for Concurrent
Data Structures

Chao Wang" 2™ Yi Lv'2, and Peng Wu'2

! State Key Laboratory of Computer Science,
Institute of Software, CAS, Beijing, China
{wangch,lvyi,wp}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. We propose a relaxation scheme for defining specifications of
relaxed data structures. It can produce a relaxed specification parame-
terized with a specification of a standard data structure, a transition cost
function and a relaxation strategy represented by a finite automaton. We
show that this relaxation scheme can cover the known specifications of
typical relaxed queues and stacks.

We then propose a method to reduce a relaxed specification defined
under the relaxation scheme into a finite number of finite automata called
witness automata. By applying this method we prove that the specifica-
tions of typical relaxed queues and stacks can be equivalently character-
ized by a finite number of witness automata. Thus, the problem whether
a relaxed queue or stack is linearizable with respect to its relaxed specifi-
cation can be efficiently checked through automata-theoretic approaches.
Moreover, all these witness automata can be generated automatically. In
this way, our relaxation scheme can well balance the expressiveness of
relaxation strategies with the complexity of verification.

1 Introduction

Developing concurrent data structures often requires subtle synchronization
mechanisms, e.g., non-blocking or fine-grained synchronization, to support for
concurrency. Hence, concurrent data structures are often error-prone and noto-
riously hard to verify. Recent developments of concurrent data structures even
relax their correctness requirements for better performance and scalability
[3,6,7,10,11].

However, the correctness requirements of relaxed data structures have been
far less studied. Recently, quantitative relaxation frameworks have been proposed
in [3,7] for relaxed data structures. These frameworks can characterize relaxation
strategies for typical relaxed data structures, but inevitably raise the complexity
of verification.

This work is partially supported by the National Natural Science Foundation of
China under Grants No. 60721061, No. 60833001, No. 61672504, No. 61572478,
No. 61672503, No. 61100069, and No. 61161130530.

© Springer International Publishing AG 2017

B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 188-202, 2017.
DOTI: 10.1007/978-3-319-51963-0_15



Decomposable Relaxation for Concurrent Data Structures 189

We observe that there have been two classes of relaxation strategies for spec-
ifications of typical relaxed data structures in the literature: one concerns the
bounded cost of an individual operation; while the other concerns the bounded
costs of a bounded number of certain operations. A cost of an operation is the
distance of the operation from a “normal” one. For instance, a deq operation
of cost k for a queue removes from the queue an element that is k elements
away from the head of the queue. Such bounded relaxation strategies can be
equivalently characterized by specific finite automata.

Based on this observation, we propose a relaxation scheme to define specifi-
cations of relaxed data structures (or relaxed specifications for short). A relaxed
specification is parameterized with a quantitative specification [7] and a relax-
ation strategy represented by a specification automaton. A quantitative specifica-
tion is a labeled transition system (LTS) obtained from a sequential specification
by determining the cost of each transition. A specification automaton is a finite
automaton that uses predicates over the costs as parts of its transition labels to
represent the permitted costs of the transitions in the quantitative specification.
Herein, we pre-assume that relaxed data structures have been instrumented with
linearization points. Under this assumption, the linearizability problem of such
a relaxed specification, i.e., the problem of whether a relaxed data structure is
linearizable with respect to the relaxed specification, can be characterized as the
inclusion problem between the set of the operation sequences derived by execut-
ing the relaxed data structure and the relaxed specification itself. Our relaxation
scheme can cover typical relaxed queue specifications [3,6,7,10,11] and relaxed
stack specifications [7].

The advantage of our relaxation scheme is that many relaxed specifications
defined under the relaxation scheme can be reduced into a finite number of
finite automata, called witness automata. Moreover, these witness automata can
be generated automatically. Thus, although such a relaxed specification and its
violations may be far beyond the scope of a regular language, its corresponding
witness automata can be exploited for linearizability checking through automata-
theoretic approaches.

The reduction of such a relaxed specification can be achieved in two steps.
Firstly, we reduce the violations of the relaxed specification into either ill-formed
operation sequences, or several violations languages. An ill-formed operation
sequence is an operation sequence that contains some operation with oo cost,
such as dequeuing (deq) an element from a queue that is not in the queue at the
moment. A violation language is a regular language on predicates over opera-
tions and their costs. Second, we devise witness automata for checking ill-formed
operation sequences, and for checking whether there is a differentiated opera-
tion sequence that satisfies some violation language. A differentiated operation
sequence is an operation sequence in which each value is added at most once. The
correctness of both steps need to be proved case-by-case for individual relaxed
data structures and their relaxed specifications.

We then demonstrate the applicability of our relaxation scheme with two
typical relaxed queue specifications [3,6,7,10,11]. We adopt the notion of



190 C. Wang et al.

data-independence [16] to handle the operations with an unbounded data
domain, over which any value can be safely renamed. Although a relaxed queue
specification and its violations may not be regular, the first reduction step essen-
tially partitions the violations of the relaxed queue specification into different
classes: ill-formed operation sequences, or operation sequences that satisfies a
violation language. This reduction is feasible due to the non-increasing condi-
tion, a common feature of specification automata of relaxed queue specifications.
A consequence of the non-increasing condition is that a bounded number of deq
operations with bounded costs are enough for capturing the violations. These
violation scenarios are represented by violation languages. Then, the second
reduction step requires to devise witness automata for the violation languages.
Given an operation sequence that satisfies a violation language, we can effectively
find a witness sequence, which is a minimal sequence that contains the same num-
ber of deq operations with their costs satisfying the corresponding predicates in
the violation language. Due to the data-independence of relaxed queue specifi-
cations, from a witness sequence we can generate a witness automaton by safely
assuming that other operations use fresh arguments and return values. Since wit-
ness sequences have a bounded number of operations, these witness automata
can be automatically generated by enumeration.

Related Work. Quasi-linearizability [3] was the first relaxation scheme for
sequential specifications of concurrent data structures. A quantitative relaxation
framework [7] was then proposed. As preliminary attempts, verification tools
have been adapted to model checking relaxed data structures [2,17]. However, the
motivations of the quantitative relaxation frameworks in [3,7] are to characterize
as many relaxed data structures as possible, while our relaxed scheme aims
to balance the expressiveness of relaxation strategies with the complexity of
verification.

The idea of reducing a linearizability problem with the aids of specific finite
automata or simple properties has been studied in [1,4,8] for the standard queue
and stack specifications (i.e., the specifications with cost 0). Specifically, [1]
requires linearization points to be instrumented ¢ priori, while [4,8] do not.
All these work do not consider relaxed data structures, and the construction
and correctness proofs of the finite automata or simple properties have to be
carried out manually. On the contrast, our approach applies to relaxed queue
and stack specifications with the aids of witness automata, which can be gener-
ated automatically. When applying our approach to standard queue and stack
specifications, the finite automata in [1] can be essentially obtained. [4] uses
more complicated finite automata, and hence can deal with the cases where
linearization points are not instrumented.

2 Notations and Terminologies

For sequences [ and I’, let [ - I’ denote their concatenation. Let [ Tx denote the
projection of [ onto X. Let _ denote an item, of which the value is irrelevant,
and e denote the empty sequence. A labelled transition system (LTS) is a tuple



Decomposable Relaxation for Concurrent Data Structures 191

A= (Q,X,—,q), where Q is a set of states, X is an alphabet of transition
labels, =C @ x X x @ is a transition relation and ¢g is the initial state. A path
of A is a finite transition sequence gy — q1 —> ... —% ¢ with £>0. A finite

sequence t = qq - Qg - ... a with k>0 is a trace of A if there exists a path
aq a2 Qg
Qo —q — ... — qg of A.

2.1 Concurrent Data Structures and Their Specifications

A concurrent data structure (implementation) encapsulates a collection of meth-
ods for accessing a possibly shared instance of the concurrent data structure. We
presume a potential infinite data domain D and a finite set M of methods. We
identify a set of input methods that takes one input argument, such as the typi-
cal eng method of queue and push method of stack. Let My, be the set of input
methods in M and My, = M — M;y,. Each method declares its local vari-
ables and method body, which is built from atomic commands (e.g., write, read,
assignment, compare-and-swap, malloc and free) using the standard control-flow
constructs (including the sequential composition, selection and loop constructs).
The execution of a method is started by an invocation with arguments in D and
terminated by executing a return command, which may return values in D. For
simplicity, we assume that each method has only one parameter and one return
value (if it returns).

An operation m(a,b) represents that method m is called with argument a
and returns value b. A (sequential) specification of a concurrent data structure
is defined as a prefix-closed set of sequences over {m(a,b)|m € M,a,b € D}.

2.2 Linearizability with Linearization Points

Linearizability [9] is the de facto standard correctness condition for concurrent
data structures. In this paper we consider a concurrent system that consists
of an unbounded number of concurrent processes, each of which may at any
time invoke any method in M with any argument in D. An execution of the
concurrent system is modeled by a history, which is a finite sequence of call and
return actions. A call action happens when a method is called by a process.
A return action happens when a called method returns to the calling process.
Intuitively, a history is linearizable with respect to its sequential specification,
if every method of the history appears to take effect instantaneously at some
point between the call and the return action of the method, and the sequence of
taking effect belongs to its sequential specification. A concurrent data structure
is linearizable with respect to its sequential specification, if each of its history is.
The time point when a method takes effect is called a linearization point, and
locating linearization points is an intuitive approach for proving linearizability.
In this paper, we assume that the linearization points of each method have
already been instrumented. When a command, which is introduced as the lin-
earization point between a call action of method m with argument a and the
corresponding return action with value b, is being executed, it will generate an



192 C. Wang et al.

operation m(a,b). Such instrumentation process may not be that straightfor-
ward, since for some concurrent data structures, the linearization points of one
method may vary and depend on future interleaving of a history, which is unpre-
dictable, or locate in other methods [12]. Thus, each execution of the concurrent
system can generate a sequence of such operations. Let OpSeq(L) be the set of
all the sequences of the operations generated by the concurrent system with con-
current data structure £. Then, the notion of linearizability with linearization
points is defined as follows:

Definition 1 (linearizability with linearization points). A concurrent
data structure L, which has been instrumented with linearization points, is
linearizable with respect to a specification Spec for an unbounded number of
processes, if OpSeq(L) C Spec.

3 Specifications of Relaxed Data Structures

In this section we propose our relaxation scheme for defining specifications of
relaxed data structures. We use the k-FIFO queues [10] as the running example to
intuitively introduce relaxed data structures, and then instantiate the relaxation
scheme to define the relaxed queue specification for k-FIFO queues.

3.1 k-FIFO Queues

k-FIFO [10] queues are a typical relax-
ation of FIFO queues. A k-FIFO queue
maintains a linked list of segments, each
of which is an array of k cells. Each eng
operation attempts to put an element into
an empty cell of the tail segment, while
each deq operation attempts to remove an Fig. 1. 3-FIFO queue
element from the head segment. k-FIFO

queues scatter the contention for both eng and deq operations, and hence exhibit
better performance than Michael-Scott queue [13] at the expense of relaxing cor-
rectness. Figure 1 shows a 3-FIFO queue, which contains three 3-cell segments.
k-FIFO queues may exhibit behaviors that violate the FIFO order, because the
values in the same segments may be removed in an arbitrary order. For example,
suppose in Fig. 1 values are enqueued in the increasing order. Then, 1, 2 and 3
may be dequeued in an arbitrary order. However, a k-FIFO queue additionally
requires that a deq(null) operation happens only when the queue is empty. Here
null is the special value denoting that a data structure contains no data item.

3.2 Relaxation Strategies

An operation has cost r, if it has distance r from a corresponding ‘“normal”
operation, such as dequeuing an element from a queue that is r elements away



Decomposable Relaxation for Concurrent Data Structures 193

from the head of the queue. According to [3,7], the specifications of relaxed data
structures are obtained by relaxing the specifications of standard data structures
(where each operation has cost 0). We observe that there have been two relax-
ation strategies for specifications of typical relaxed data structures. Take queue
specifications for example. Given sequence s = (01,71) - - - - (01,7), where o; is
an eng or deq operation with cost r; for 1 <4 < [. Roughly speaking, s can be
accepted under either of the following relaxation strategies (conditions):

— Each eng operation has cost 0, while each deq operation has cost no greater
than some constant k € N, or is well-formed, i.e., having cost in N.

— s must adhere to the segment mechanism as in k-FIFO queues. Specially, as
in [3,7], we use an “over-approximation” of this sort of relaxation strategies,
i.e., (1) the maximal length of successive but not necessarily adjacent degq
operations that do not return null and have non-0 costs is k-1, where £ is the
length of a segment, and (2) the maximal permitted cost of the i-th successive
deq operation is k-i.

The first and second relaxation strategies capture the specifications of the
relaxed data structures defined in [3,6,11] and in [3,7,10], respectively.

3.3 Relaxed Specifications

The above relaxation strategies consider only costs of individual operations or a
bounded number of certain operations, which subject to simple conditions such
as “no greater than some constant k”, “in N” and “equal to 0”. By representing
these conditions as predicates, these relaxation strategies can be equivalently
captured by finite automata. Based on this intuition, in this subsection we pro-
pose a relaxation scheme for defining specifications of relaxed data structures
(or relaxed specifications for short).

A relaxed specification is obtained by relaxing a specification of a standard
data structure with a relaxation strategy specified in the form of a finite automa-
ton, called a specification automaton. The relaxation scheme is divided into two
steps. Similar to [7], the first step is to semantically point out the costs of each
operation in the specification of the standard data structure. This results in a
quantitative specification. In the second step, the relaxed specification is obtained
by filtering the quantitative specification with the specification automaton.

Quantitative Specifications: Given a specification Spec, we semantically rep-
resent it as an LTS LTS(Spec) = (Q, X, —,qo), with the only requirement that
the set of traces of LTS(Spec) must be Spec. A quantitative specification is
a tuple QLTS(Spec, f) = (Q,X,Q x X x Q,qo, f), which makes transitions
between all the pairs of the states of LTS(Spec) with all the operations as labels.
f:Qx X xQ+— NU{oco} is a transition cost function, where oo is the special
number that is greater than any natural number. It is used to determine the
costs of the transitions between every pair of states of LTS(Spec). Specially, f
maps only the transitions of LTS(Spec) to 0. This process of determining costs
for transitions is same as that in [7].



194 C. Wang et al.

Specification Automata: The operations with methods in M, are referred
to as My, operations, while the operations with methods in M, that do not
return null (respectively, that return null) are referred to as MY, (respectively,
M?7,,) operations.

Given k € N, let Nat, E(k), N(k), LE(k) and G(k) represent predicate
“is a natural number (not c00)”, “equal to k”, “not equal to k”, “less than or
equal to &7 and “greater than k”, respectively. Let M . M!}" and M};" repre-
sent the predicate that identifies M,,, operations, M?,, operations and M7,
operations, respectively. Then, a specification automaton is a finite automaton

A = (Q.A7 FA> E.Au —A, Qim't), where

— Q4 is the finite set of states; ¢;n;¢ € Q.4 is the initial state, and F4 C Q4 is
the set of final states.

— X4 is a finite set of transition labels, each of which is represented as a pair

(po, pc) of predicates. po € {ME_ M ft;:, MP"} is used to select certain opera-

tions; while pe € {Nat, N(0), E(0 )}U{LE() LE(i) AN(0),G(i)|i € N} is used

to select certain costs.
— = AC Qa X Y4 X Q4 is the transition relation.

Relaxed Specifications: A sequence (01,71)-...-(0r, r7) is said to be accepted by
QLTS(Spec, f) and A, if it is a trace of QLTS(Spec, f), and there exist transitions

MA q2, .-, q MA qi4+1 of A from the initial state g = g1 to

a final state q;+; in Fl4, such that for each 1 < ¢ <[, o; satisfies po,, r;, € N
satisfies pc;. Then, the relaxed specification Specy ¢ is obtained by filtering the
traces of QLTS(Spec, f) with A, as defined below:

Definition 2 (relaxed specification). Given specification Spec, transition
cost function f and specification automaton A, the relazed specification Spec 4 ¢

is defined such that an operation sequence s =01 - ...- o0y is in Specy ¢, if there
exist costs ri,...,r;, such that (o1,71) ... (o1, r1) is accepted by QLTS(Spec, f)
and A.

Since an operation with oo cost often means an ill-formed operation, we do not
consider operations with co cost in Definition 2.

3.4 Relaxed Queue Specifications

In this subsection we instantiate the above relaxation scheme for defining specifi-
cations of relaxed queues. The definition of a relaxed stack specification is rather
similar and can be found in the technical report version of this paper [14].

Specification of FIFO Queues as an LTS: An FIFO queue has typically
two methods: eng and deq, among which eng is the input method. Since eng
has no return value and deq has no input argument, we abbreviate operation
eng(a,-) and deq(,b) as eng(a) and deg(b), respectively. The set of operations
for an FIFO queue is {eng(d)|d € D} U {deq(d')|d" € D U {null}}. Let Queue
be the specification of an FIFO queue, whose definition is obvious and hence
omitted here. LTS(Queue) is constructed as follows as in [7]:



Decomposable Relaxation for Concurrent Data Structures 195

— Each state is a sequence over {eng(d)|d € D}; specially, the initial state is ;
each transition label is an eng or deq operation;

eng(d) deq(null)
_ s N — s

s-eng(d) for each state s; s Aedld), s'if s = eng(d)-s'; and s
if s=ce.

Quantitative Specification of FIFO Queues: A quantitative specification
QLTS(Queue, fseqy) can be constructed by using the segment cost function fyeq
in [7] as the transition cost function. fs., maps a transition between s and s’
with label o to cost r, if r is the length of a minimum sequence v such that

o . o .
—s=uv-w, s =u-v-wand u-w — v -wis a transition of LTS(Queue), or
o . oy
—s=u-v-w, ¥ =u-v-w and u-w — u-w' is a transition of LTS(Queue);

or r = oo if such v does not exist. Intuitively, the segment cost of a transition is
the length of the shortest word v whose removal enables a transition.

Specification Automata for k-FIFO Queues: We abbreviate sets {eng},
{deq}?, {deq}™, and predicates {eng}?, {deq}?" and {deq}?™ as eng, deq’, deq",
eng’, deq’” and deg” ™", respectively. We require each engq operation to have cost
0. Let K,, represent the maximal permitted cost of a deq” operation, and %k be
the length of a segment. Figure2 shows the specification automaton Azeg—(s,o)
for the second relaxation strategy with ¥ = 3 and K,, = 0 (which is the case
of 3-FIFO queues). Here ¢; = (eng?, E(0)), (deg”™, E(0)), (de¢"™", E(0)), ¢ =
(eng?, E(0)), (deg”™, E(0)), and giyqp is the trap state which is not a state in Fiq
and has no outgoing transitions.

Al 9—(3,0) requires that deq” operations is relaxed according to the segment
mechanism, while enq and deq” operations have cost 0. It also requires that
the maximal length of successive but not necessarily adjacent deq” operations
with non-0 cost is 2, and the maximal permitted cost of the first (respectively,
second) successive deq” operation is 2 (respectively, 1). This represents a “shrink-
ing window” of size up to 3, while the values in a shrinking window can be
removed in an arbitrary order.

Please refer to the technical report version of this paper [14] for a detailed
definition of the specification automaton Azeg_ (k. Kn) for the second relaxation
strategy. In [14] we also define the specification automaton .Afnw_( Ko Kn)
the first relaxation strategy, where K, represents the maximal permitted cost

for

(deq”, G(2))

(deg’, G(1))

2
(deq”, LE(1) A N(O))q% (deg”, N(0))
\_/

(deq”, £(0))

c1

c2
(deg”, LE(2) A N(0))

(deq”, E£(0))

q

Fig. 2. Specification automaton Aseg7(3 0)



196 C. Wang et al.

of a deq” operation. In the rest of this paper, let Queue,  (respectively,
Queuey,, ) denote the relaxed specification generated from QLTS( Queue, fseq)

and Amaz_(K K, (respectively, .Aseg (kK))-

4 Reducing Relaxed Specifications into Witness
Automata

In this section, we present our method for reducing a relaxed specification into
a finite number of finite automata. We would need the following notions to
capture counterexamples of a relaxed specification. An operation sequence s is
differentiated, if for all m € M;,, and all a € D, [s Tim(p)peny | < 1. A set of
operation sequences is differentiated if each of the operation sequences is. For a
quantitative specification QLTS(Spec, f)7 an operation sequence s = 01 -...-0;
is well-formed, if there exist costs rq1,...,r; € N, such that (o1,71) - ... (0,77)
is a trace of QLTS(Spec7 f); otherwise, s is ill-formed. Obviously, each sequence
in Spec 4 ¢ is well-formed. Then, our reduction method proceeds in the following
two steps.

Step 1: In the first step, we construct a finite number of regular languages
VioLang(A) from the specification automaton A. Each regular language in
VioLang(A) is called a violation language, of which the alphabet is {(po, pc)|po €
{ME s M MY pe € {Nat, N(0)} U {G(k)|k € N}}. Each violation lan-
guage represents a category of executions that carries cost and can cause viola-

tions to the relaxed specification. An operation sequence s = o0y - ... - 0; satis-
fies a violation language lan, if there exist costs rq,...,7; € N and sequence
(poy,pcy) - ...+ (poj, pe;) € lan, such that (o1,71) - ... (o5, 77) is a trace of

QLTS(Spec, f), and for each 1 < i <, o; satisfies po, and r; satisfies pc;. Then,
this step needs to ensure the following condition:

Condition 1: Given concurrent data structure £, OpSeq(L) ¢ Spec 4 ¢, if and
only if there exists an ill-formed sequence s € OpSeq(L), or a well-formed dif-
ferentiated sequence s € OpSeq(L), such that s satisfies some violation language
lang € VioLang(A).

Step 2: In the second step, we construct a finite set IllAut of finite automata
for capturing ill-formed sequences, and a finite set Aut(lang) of finite automata
for each violation language lang in VioLan(A). Let Aut(.A) be the union of the
finite automata constructed for each violation language in VioLan(A). We call
each automaton in Aut(A) U IllAut a witness automaton. Furthermore, this step
needs to ensure the following condition:

Condition 2: There exists an ill-formed sequence s € OpSeq(L), or a well-
formed differentaited s € OpSeq(L), such that s satisfies some violation language
lang € VioLang(A), if and only if there exists a sequence s’ € OpSeq(L), such
that s’ is accepted by some automaton in Aut(A) U IllAut.

Conditions 1 and 2 need to be proved case-by-case for individual concurrent
data structures and their relaxed specifications. Once the above two steps are



Decomposable Relaxation for Concurrent Data Structures 197

accomplished with the corresponding conditions established, it can be seen that
Spec 4y is equivalently characterized by Au#(A) U IllAut, as indicated by the
following theorem:

Theorem 1. If Condition 1 and Condition 2 hold, then OpSeq(L) C Spec 4 ;, if
and only if no sequence in OpSeq(L) is accepted by any automaton in Aut(A) U
1llAut.

By Definition 1 the linearizability problem of a relaxed data structure with
respect to its relaxed specification can be considered as the sequence inclusion
problem between the set of the operation sequences derived by executing the
relaxed data structure and the relaxed specification itself. However, relaxed spec-
ifications are often far beyond the scope of regular languages. By Theorem 1
checking the linearizability of a relaxed data structure can be reduced to the
emptiness problem of the intersection between the set of the operation sequences
derived by executing the relaxed data structure and the languages of a finite
number of witness automata. This renders the possibility of using automata-
theoretic approaches for linearizability checking based on witness automata, as
shown in [1] for standard queue and stack specifications.

5 Equivalent Characterizations of Relaxed Queues

In this section, we use the relaxed specifications Queue Ay of 3-FIFO queues as
the running examples to demonstrate the process of reducing typical relaxed queue
specifications into a finite number of witness automata, according to the reduc-
tion method introduced in Sect. 4. Along this process, it can be seen that these
witness automata can be generated automatically. The case for relaxed stack spec-
ifications is rather similar, and hence omitted here. The detailed definitions and
proofs can be found in the technical report version of this paper [14].

5.1 Data-Independence

Data-independence [16] is a practical feature in many real-life data structures.
Each value added into a data-independent data structure can be considered
as a unique one and can be safely renamed. A renaming function ¢ : D —
D can be applied to an operation sequence s, resulting in the sequence o(s),
where each value d in s is replaced with o(d). A set S of operation sequences is
data-independent, if for each s € S,

— There exists a differentiated operation sequence s’ € S with s = o(s’) for some
renaming function o.
— o(s) € S for any renaming function o.

A concurrent data structure £ is data-independent, if OpSeq(L) is. We prove
in [14] that the relaxed queue specifications Queue, and Queue 4,., are data-
independent. Herein, we rely on the notion of data-independence (1) to generate
differentiated operation sequences by renaming operation sequences, and (2) to
generate operation sequences with a finite data domain by renaming differenti-
ated operation sequences that potentially uses an unbounded data domain.



198 C. Wang et al.

5.2 Violation Languages of Relaxed Queue Specifications

In this subsection we define the violation languages for the relaxed specification
Queue Ao with K,, = 0 and k = 3, and prove that these violation languages
satisfy Condition 1.

Let T = (MV, + MV, Nat) + (M7, E(0)) represent a placeholder for eng
and deg operations. Let T' = (M? " Nat)+ (M2, E(0)) represent a placeholder

inp?
for enq and deq” operations. The violation languages of A? include the

se 3,0
following two languages: the first language is T* - ((deg"™, ]g\f (( ))) T*, and is
used to capture deq” operations that have non-0 cost; while the second language
contains vlse,— (3, (1 < i < 3) and is used to capture deq’ operations that
violate the segment mechanism. Here vl (1 ;) denotes the violation language
T (deg?™, N(0)) - T'*) - (deg?™, G(k-1)) - T

We now explain why the above violation languages satisfy Condition 1. Note
that in Ageg (3.0 the maximal permitted costs of deq” transitions from ¢
to ¢o, from ¢o to g3, and from g3 to g are in the decreasing order. This
feature is called the non-increasing property. Due to the non-increasing property,
a bounded number of deg” operations with certain costs are enough for capturing
violations to the relaxed specification, while costs of any other operations are
not relevant any more. For example, if a deq’ operation with cost 2 is captured
in a differentiated operation sequence, then this operation sequence violates the
relaxed specification for sure. In [14] we show in details how to generate violation
languages for the relaxed queue specifications. The following lemma states that
such violation languages satisfy Condition 1:

Lemma 1. Assume that L is data-independent. OpSeq(L) ¢ Queuey  (respec-
tively, Queuey ) if and only if there exists an ill-formed sequence s €
OpSeq(L), or a "well -formed differentiated sequence s € OpSeq(L), such that
s satisfies some violation language lang € VzoLang(Amaz (Kv,Kn)) (respectively,

VzoLang(Aseg (kK )))

5.3 Witness Automata for Ill-Formed Sequences

In this subsection, we present witness automata A%, and A‘;up to detect the
existence of an ill-formed sequence. Let dy,ds, ..., be distinct constants in D,
and if D = N, then dy,ds, ... can just be 1,2, .. respectlvely Ad,, and A? ~are
shown in Fig. 3(a) and (b), respectively, where ¢ = eng(dy), deg(dy), deg(null).

c

c d c
@ deg(dy) 4@ eng(ds) w deg(dy) U/qi“ N deg(ds) @
o wa /!

(a) Abre (b) A

dup

Fig. 3. Witness automaton AZ,, and A7, .



Decomposable Relaxation for Concurrent Data Structures 199

For any state s of QLTS(Queue) and a eng or deq" operation o, we can
always find state s’ and cost r € N, such that the operation o from s to s’ has
cost r. But this does not hold for deq” operations. Therefore, A%, and A‘(Iiup
only focus on deq” operations. A%, monitors whether a deq” transition returns
a value dy that has never been enqueued before, while A% ~monitors whether a
value dy has been enqueued only once but is dequeued twice. Similar automata
have been used in [1,4] for FIFO queues. The following lemma states that the
set NlAut? = {AY A‘éup} captures exactly ill-formed sequences in accessing a

cre?

data-independent relaxed data structure.

Lemma 2. Assume that L is data-independent. There exists an ill-formed
sequence in OpSeq(L), if and only if some sequence of OpSeq(L) is accepted
by automata in IllAut?.

5.4 Witness Automata for Violation Languages

A well-formed sequence ws is a witness sequence of a violation language
Vlseg—(3,5), if (1) ws contains j deq” operations but no deq” operations; (2) the
first j-1 deq’ operation have non-0 cost, while the last deq” operation has cost
greater than 3-j; (3) ws is a minimal sequence having the above two conditions,
i.e., ws contains the minimum number of enq operations for the above two condi-
tions to hold. Additionally, the i-th eng operation in ws uses distinct d; for each
i > 0. Each witness sequence is well-formed and differentiated. It can be seen
that the number of enq operations in a witness sequence is bounded with respect
to segment length k. For example, for violation language vleq— (3, 2), its witness
sequence contains two deq’ operations, the maximal number of eng operations
before the first (or second) deq operation is 4, and after the second deq operation
there is no eng operation.

Given witness sequence ws, a witness automaton A,,; can be constructed as
follows: a chain of nodes from g¢;, to gsin is created through connections labeled
with operations in ws one by one; ¢;, is then connected to itself with multiple
labels, including a deq™ operation, and an enqg and a deq operation with the fresh
value that is distinct from values in A,,,; each intermediate node is also connected
to itself with multiple labels, including a deq" operation and an eng operation
with the fresh value. For example, ws = eng(dy) - eng(dz) - eng(ds) - eng(ds) -
deq(dy) - deq(dy) is a witness sequence of violation language vlseq— (3,2), and Fig. 4
shows the witness automaton for ws, where ¢; = eng(ds), deq(ds), deg(null), ca =
eng(ds), deq(null) and ds is the fresh value.

¢ co co ca co ca

4@ eng(dy) ) eng(da) \ enq(ds) ., eng(ds) i deq(ds) . deq(dy) .

Fig. 4. Witness automaton for eng(di) - eng(dz) - eng(ds) - eng(da) - deq(dz2) - deq(d4)




200 C. Wang et al.

Similarly, we can construct a witness automaton from violation language
T* - ((deg”™,N(0)) - T*. We prove that these witness automata are able to
capture well-formed differentiated sequences that satisfy the violation languages
defined in Sect. 5.2, as indicated by the following lemma:

Lemma 3. Assume OpSeq(L) is data-independent. There exists a well-formed
differentiated s € OpSeq(L), such that s satisfies some violation language lang €

VioLang(Aimmf(KmKn)) (or VioLang(Azegf(k,Kn))), if and only if there exists a

sequence s’ € OpSeq(L), such that s’ is accepted by some automaton in Aut(lang).

Lemmas?2 and 3 make Condition 2 hold. Therefore, Aut(.AfmI_( Ko k) Y
TIllAut? (respectively, Aut(.Ageq_(k Kn)) U [llAut?) constitutes an equivalent

characterization of the relaxed queue specification Queuey,  (respectively,
Queue ).
seg

Theorem 2. Assume OpSeq(L) is data-independent. OpSeq(L) € Queuey
(respectively, QueueAsgy), if and only if some sequence in OpSeq(L) is
accepted by some automaton in Aut(Afnazf(KmK”)) U TllAut? (respectively,
Aut( AL ore,y) Y TUAut?).

It can be seen that a witness sequence has bounded length, because the num-
ber of deq” and deq”" operations in a witness sequence is fixed, while the number
of eng operations in a witness sequence is bounded. Thus, we can automatically
generate witness sequences by enumeration. In [14] we show that the number of
witness automata for Queue Auy is at least exponential to the length of a segment.
Take violation language vleq— (1, as an example. We get a subset of 2% witness
sequences of vlgeg— 1 k). The i-th (1 < i < k) deq” operation in each of these
witness sequences can have either cost 1 or cost 2. This implies the lower bound
of the number of witness sequences (and hence the number of witness automata)
is at least exponential. The number of witness automata for Queue,  is four:
two for ill-formed operation sequences, one for deq” operations with non-0 costs
and one for deq" operations with non-0 costs. The standard FIFO queue spec-
ification is a special case of Queuey  with K, = K, = 0, and the number of
witness automata for it is exactly four.

6 Conclusion and Future Work

Many relaxed data structures have been implemented for the sake of performance
and scalability, while their verification problems were often left untouched or less
concerned. Quasi-linearizability [3] and the quantitative relaxation framework [7]
can characterize many of these relaxed implementations. However, we proved in
[15] that quasi-linearizability is undecidable. The quantitative relaxation frame-
work [7] indeed subsumes quasi-linearizability and can be proved undecidable.
On the contrast, our relaxation scheme can be proved decidable, and equivalently
characterized by a finite number of witness automata.



Decomposable Relaxation for Concurrent Data Structures 201

Our relaxation scheme achieves a balance between the expressiveness of quan-
titative relaxation and the complexity in verifying the correctness of relaxed data
structures. We have shown that our relaxation scheme is expressive enough to
cover typical relaxed queues and stacks. We also have proposed the methodology
of reducing a relaxed specification defined under our relaxation scheme into a
finite number of witness automata, and applied it to relaxed queues and stacks.
We conjecture that the state-of-the-art safety verification tools, such as [1], can
then be applied to verify the linearizability of relaxed data structures through
automata-theoretic approaches. Note that the number of witness automata for
Queue A.., 18 exponential to the length of a segment while the number of witness
automata for FIFO queues is constant. This reveals the inherent complexity of
verifying relaxed specifications.

It is interesting for future work to further investigate automata-theoretic
approaches for non-data-independent concurrent data structures. We would also
like to study the linearizability problem of relaxed data structures without instru-
menting their linearization points explicitly, as in [4,8].

References

1. Abdulla, P.A., Haziza, F., Holik, L., Jonsson, B., Rezine, A.: An integrated speci-
fication and verification technique for highly concurrent data structures. In: Piter-
man, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 324-338. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36742-7_23

2. Adhikari, K., Street, J., Wang, C., Liu, Y., Zhang, S.J.: Verifying a quantitative relax-
ation of linearizability via refinement. In: Bartocci, E., Ramakrishnan, C.R. (eds.)
SPIN 2013. LNCS, vol. 7976, pp. 24-42. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39176-7_3

3. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for
improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS
2010. LNCS, vol. 6490, pp. 395-410. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17653-1_29

4. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to
state reachability. In: Halldérsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 95-107. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47666-6_8

5. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 290-309. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6_17

6. Haas, A., Lippautz, M., Henzinger, T.A., Payer, H., Sokolova, A., Kirsch, C.M.,
Sezgin, A.: Distributed queues in shared memory: multicore performance and scal-
ability through quantitative relaxation. In: CF 2013, p. 17: 1-17: 9 (2013)

7. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative
relaxation of concurrent data structures. POPL 2013, 317-328 (2013)

8. Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-Oriented Linearizability Proofs.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp.
242-256. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40184-8_18


http://dx.doi.org/10.1007/978-3-642-36742-7_23
http://dx.doi.org/10.1007/978-3-642-39176-7_3
http://dx.doi.org/10.1007/978-3-642-39176-7_3
http://dx.doi.org/10.1007/978-3-642-17653-1_29
http://dx.doi.org/10.1007/978-3-642-17653-1_29
http://dx.doi.org/10.1007/978-3-662-47666-6_8
http://dx.doi.org/10.1007/978-3-642-37036-6_17
http://dx.doi.org/10.1007/978-3-642-37036-6_17
http://dx.doi.org/10.1007/978-3-642-40184-8_18

202

10.

11.

12.

13.

14.

15.

16.

17.

C. Wang et al.

Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463-492 (1990)

Kirsch, C.M., Lippautz, M., Payer, H.: Fast and scalable, lock-free k-FIFO queues.
In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 208-223. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-39958-9_18

Kirsch, C.M., Payer, H., Rock, H., Sokolova, A.: Performance, scalability, and
semantics of concurrent FIFO queues. In: ICA3p. 2012, Part I, pp. 273-287 (2012)
Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-
tion points. PLDI 2013, 459-470 (2013)

Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. PODC 1996, 267-275 (1996)

Wang, C., Lv, Y., Wu, P.: Decomposable relaxation for concurrent data structures.
Technical report ISCAS-SKL.CS-16-01, State Key Laboratory of Computer Science,
ISCAS, CAS (2016). http://lcs.ios.ac.cn/lvyi/files/ISCAS-SKLCS-16-01.pdf
Wang, C., Lv, Y., Liu, G., Wu, P.: Quasi-linearizability is undecidable. In: Feng, X.,
Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 369-386. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-26529-2_20

Wolper, P.: Expressing interesting properties of programs in propositional temporal
logic. POPL 18986, 184-193 (1986)

Zhang, L., Chattopadhyay, A., Wang, C.: Round-up: runtime checking quasi lin-
earizability of concurrent data structures. ASE 2013, 4-14 (2013)


http://dx.doi.org/10.1007/978-3-642-39958-9_18
http://lcs.ios.ac.cn/ lvyi/files/ISCAS-SKLCS-16-01.pdf
http://dx.doi.org/10.1007/978-3-319-26529-2_20

Graph Theory and Scheduling
Algorithms



Sufficient Conditions for a Connected Graph
to Have a Hamiltonian Path

Benjamin Momege™)

Inria, University of Lille, Villeneuve-d’Ascq, France
benjamin.momege@inria.fr

Abstract. Let G be a connected graph on n vertices. Let oy (G) be
the least possible value that is obtained as the sum of the degrees of k
pairwise distinct and non-adjacent vertices. We show that if one of the
following conditions is satisfied:
— 03(G) > n and there is a longest cycle in G which is not a dominating
cycle,
— 02(G) > 3n and G is Ky s-free (i.e. without induced K 4),
— each triple of pairwise non-adjacent vertices contains two vertices u
and v such that degg(u) + dega(v) > n—1,
then G contains a Hamiltonian path.

Keywords: Combinatorial problems - Connected graphs - Hamiltonian
path - Degree

1 Introduction

The Hamiltonian problem: determining conditions under which a graph contains
a spanning path or cycle, has long been fundamental in graph theory. Named
after Sir William Rowan Hamilton (and his Icosian game), this problem traces
its origins to the 1850s. Today, however, the constant stream of results in this
area continues to supply us with new and interesting theorems and still further
questions.

There are three fundamental results that we feel deserve special attention
here; both for their contribution to the overall theory and for their effect on the
development of the area. In many ways, these three results are the foundation
of much of today’s work.

Let G be an undirected and simple graph. For 1 < k < |Vz| we define

ok (G) = min { Z degc(v) : H C Vg stable set in G with |H| = k} ,
veEH

with the convention min() = +o0o, where a stable set is a set of vertices all
pairwise non-adjacent.

Theorem 1 (Dirac - 1952 - [6]). A graph G on n > 3 wvertices in which
01(G) > § contains a Hamiltonian cycle.

© Springer International Publishing AG 2017
B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 205-216, 2017.
DOI: 10.1007/978-3-319-51963-0_16



206 B. Momege

Theorem 2 (Ore - 1960 - [15]). A graph G on n > 3 wvertices in which
o2(G) > n contains a Hamiltonian cycle.

Theorem 3 (Bondy-Chvétal -1976 - [2]). A graph G on n vertices contains
a Hamiltonian cycle if and only if the graph uniquely constructed from G by
repeatedly adding a new edge comnecting a pair of non-adjacent vertices with
sum of their degrees at least n until no more pairs with this property can be
found, contains a Hamiltonian cycle.

These original results started a new approach to develop sufficient conditions
on degrees for a graph to have a Hamiltonian path or cycle. A lot of effort has
been made by various people in obtaining generalizations of these theorems and
this area is one of the core subjects in Hamiltonian graph theory and extremal
graph theory. For more results, see [10-13].

It is natural to ask if strengthening the connectivity conditions would allow
us to lower the degree conditions. We shall not attempt to survey paths and
cycles in k-connected graphs (graph who has more than k vertices and remains
connected whenever fewer than k vertices are removed) with k& > 1 (most of the
results are in the texts cited above and in [9]) but we can see that Dirac’s and
Ore’s general results (Theorems 1 and 2) may be strengthened when conditions
are added.

An induced subgraph of a graph G is a subset of Vi together with any edges
both of whose endpoints are in this subset. For a graph F, we say that G is
F-free if it does not contain an induced subgraph isomorphic to F'.

Theorem 4 (Zhang - 1988 - [16]). Let k > 2 and G be a k-connected, K 3-
free graph on n vertices with or1+1(G) > n—k. Then G contains a Hamiltonian
cycle.

Theorem 5 (Markus - 1993 - [14]). Let G be a 2-connected, K; 4-free graph
on n vertices with o1(G) > 2. Then G contains a Hamiltonian cycle.

Theorem 6 (Chen-Schelp - 1995 - [4]). Let k > 2 and G be a k-connected,
K1 4-free graph on m > 3 vertices such that o,4+1(G) > n + k. Then G contains
a Hamiltonian cycle.

We will concentrate our efforts on problems and results dealing with spanning
paths in connected graphs. For this problem, the only result we know is the
following:

Theorem 7 (Duffus-Jacobson-Gould - 1982 - [7] or [11]). A connected,
{Ki,3, N}-free graph contains a Hamiltonian path.

Ki3 Ky 4 N



Sufficient Conditions for a Connected Graph to Have a Hamiltonian Path 207
In this paper, we show that if a connected graph G on n vertices satisfies one
of the following conditions:

— 03(G) > n and there is a longest cycle in G which is not a dominating cycle
(A cycle C in a graph G is called dominating if every edge of G has at least
one vertex on C.),

- 02(G) > %n and G is K 4-free,

— each triple of pairwise non-adjacent vertices contains two vertices v and v such
that degg(u) + dega(v) > n — 1,

then G contains a Hamiltonian path.

2 Preliminary Definitions

We refer to [3] or [5] for undefined notations. The graphs G = (Vig, Eg) consid-
ered in this paper are undirected and simple. The size of a graph is its number
of vertices. For a graph G = (Vg, Eg) and u,v € Vi we define

G+w = Vg, Eq U{uw}) and G —uv = (Vg, Eg \ {uv}).
A path P = (Vp, Ep) in G is a nonempty subgraph P of the form
Vp :{’Ul,...ﬂ)k} C Vg and EP:{Ui’UiJrl 11 E {1,...,]{—1}} C Eg

where the vertices v; are all distinct. A cycle C in G is a subgraph of the form
P + vyv,, where P is a path. We often use the notations P = vy, vo,...,v; and
C =wvy,v,...,05,v1. A path or a cycle is Hamiltonian if k = |Vg|. The neigh-
bourhood of a vertex v in a graph G is Ng(v) = {u : wv € Eg}. The degree of v
is dega(v) = |Na(v)l.

For a path P = vy,...,v; in G we define
Lp(Ul) = {Ui—l S Vp | Vi € NG(’Ul)}
and

Rp(’l}k) = {Ui+1 eVp ‘ v; € Ng(vk)}.

3 Some Lemmas and the Proof That, if 03(G) > n
and There is a Longest Cycle in G Which Is Not a
Dominating Cycle, Then G Contains a Hamiltonian
Path

The proof of the following result is straightforward.

Lemma 1. Let G be a connected graph onn vertices and k < n—1. If G contains
a cycle of size k, then it contains a path of size k + 1.



208 B. Momege

Lemma 2. Let G be a graph on n vertices and 1 < k <n — 1. We have

E+1
k

O'k+1(G) > O'k(G)

Proof. If 0;41(G) = +o0o the result is true. Else, let vy,...,vx41 be pairwise
non-adjacent vertices of G. We have

k+1

ES degolv) = S Y degalv) > (k N 1>ok<G> — (k+ D)ox(G),
i=1 Ic{‘ll,.l;Z—i-l} iel

and by dividing by k

k+1

E+1
Zdegg(vi) = or(G).
i=1

Finally, as this is true for all pairwise non-adjacent vertices vy, ..., vg4+1, we have
k+1
op+1(G) > 3 ox(G).
This concludes the proof. O

Lemma 3. Let P = vy,...,v, be a longest path in a graph G without Hamil-
tonian path and v € Vg \ Vp. Then

Ng(’u) n (LP(’Ul) U Rp(vk)) = 0.

Proof. Indeed, if there is v; € Ng(v) N Lp(vy), then P + vv; + v10;41 — 030541
(P+wvy if i = 1) is a path of size k + 1 in G, which contradicts the maximality
of k.

v

N A A
) ) O

U1 Vi Vi+1 Uk

P+ VU; + V1Vi41 — ViUi+1
Symmetrically, we show that Ng(v) U Rp(vi). This concludes the proof. O

For a graph G, let p(G) be the size of a longest path in G and ¢(G) the size
of a longest cycle in G. Enomoto et al. [8] prove the following result.

Theorem 8 (Enomoto - van den Heuvel - Kaneko - Saito - 1995 -[8]).
Let G be a connected graph on n vertices with o3(G) > n. Then G satisfies
¢(G) > p(G) — 1 or G is in one of six families of exceptional graphs.



Sufficient Conditions for a Connected Graph to Have a Hamiltonian Path 209

For the case p(G) < m — 1, the converse of Lemma 1 is also true when
03(G) > n, and we have this interesting result:

Lemma 4. Let G be a connected graph on n vertices with o3(G) > n and such
that p(G) < n — 1. Then:

1. ¢(G) =p(G) -1
2. If C is a longest cycle of G, then for all v in Vg \ Vo we have Ng(v) C V.

Proof. 1. Let P = vy...,v; be a longest path in G. As G is connected and
k<n-—1wehaven >4 and k > 3.
Suppose that there is a cycle of size at least k in G. If the cycle is Hamiltonian,
then we have a path of size n > k in G. Else, by Lemma 1 we have a path of
size k + 1 in G. In the two cases, the maximality of k is contradicted. So we
have ¢(G) < p(G)—1 and viv; ¢ Eg. Let v € Vg \ Vp. As P is a longest path,
we have vvy ¢ Eg and vu, ¢ Eg. So, as 03(G) > n and vyvg, vvy,vv, € Fg
we have
degc (v) + degg (v1) + dege(ve) > n. (1)

By Lemma 3 we have Ng(v) N (Lp(v1) U Rp(vg)) = 0 and therefore

dega(v) <n—1—|Lp(v1) URp(vg)
<n—1—[Lp(v1)| = [Rp(v)| + [Lp(vi) N Rp(vk)|.

Since |Lp(v1)| = degg(v1) and |Rp(vg)| = dega(vy) we have
degc(v) + degg (v1) + dege(ve) —n+1 < [Lp(vi) N Rp(vy)l,
and with Eq. (1) we obtain
|Lp(v1) N Rp(vg)| > 1.
Let v; € Lp(vi)NRp(vg). The subgraph P+v1v;11 4010 —0j_10; —0;V;41

is a cycle of size k — 1 in G, and therefore as ¢(G) < p(G) — 1, we have
¢(G) =p(G) — 1.

—/ —/

U1 Vj—1 Uy Vji+1 Vk
P 4010541 + 01Uk — 0105 — U041

2. If there is a vertex v € Vg \ Vo such that Ng(v) N (Ve \ Vo) # 0, then there
is a path of size at least 2 in the subgraph of G induced by Vi \ V. By
connectivity there is a path P of size 2 in Vg \ Vo with an edge e between
Ve and Vp. By removing an edge €' adjacent to e of C, we obtain a path
C+ P+ e—¢ of size at least k + 1 in G which contradicts the maximality
of k.



o~
S

C P
This concludes the proof. O

Theorem 9 (Bondy - 1981 - [1]). Let G be a 2-connected graph on n vertices
with 03(G) > n+ 2. Then each longest cycle of G is a dominating cycle.

In line with this result, we consider the case of connected graphs. We easily
derive from Lemma 4 the following result.

Theorem 10. Let G be a connected graph on n vertices with o3(G) > n. Then
either there is a Hamiltonian path in G or each longest cycle of G is a dominating
cycle.

4 If 03(G) > %n and G is K 4-free, then G Contains
a Hamiltonian Path

From the result of Ore (Theorem 2) we can easily deduce:

Corollary 1. If G is a graph on n vertices with oo(G) > n— 1, then it contains
a Hamiltonian path.

In line with this result, we consider the case of connected graphs. Let G be a
connected graph on n vertices with o9(G) > %n and without Hamiltonian path.
See Remark 13 for an example of such a graph.

By Lemma 2 we have o5(G) > n, and by Lemmad4 there is a longest cycle
C =cy,...,cp,c of size k <nm—2in G and two vertices u and v in Vg \ Vo
such that

Ng(u) C Vo and Ng(v) C Ve,
and therefore
uwv ¢ Fg.

We often use the identifications ¢y = ¢ and cxy1 = ¢1. As degg(u) + degg(v) >
%m by symmetry we can suppose that degg(v) > 5. We define:

Sc(u) ={cis1 | ¢ € Na(u)}.



Sufficient Conditions for a Connected Graph to Have a Hamiltonian Path 211

Let
{cauwca(zw‘"’cauvc\sc(um} = Ve \ Sc(u)
and assume o ;y < aiqqy for 1 <i < [V \ So(u)| — 1 and

A(Ve\Sc (u)|+1) = (1)

Lemma 5. There is j € {1,...,[Vc \ Sc(u)|} such that veo,, € Ec and
VCay;yy, € FEq.

Proof. Firstly, we have
Ng(’l}) c Ve \ Sc(u) (2)

Indeed, if there is
Cl+1 € Ng(v) N Sc(u)

then
C + uc; + vepp1 — et

is a path of size at least k + 2 in G which contradicts the maximality of k.

(@/O“ N

K c U
O—0

C + ucy + vy — e

Secondly, we have

Vo \ Sc(u)

INg(v)| > 5

+ 1. (3)
Indeed, as |Sc(u)| = |[Ng(u)| we have
Vo \Sc(u)] <n—=2—|So(u)| =n—2—|Na(u)].
Using dega(u) + dege(v) > 2n we obtain
Vo \Sc(u)| <n—2- %n + |Ne(v)| = % + [Ne(v)] - 2.
Now, with degg(v) > % we find

Vo \ Sc(u)| < 2|Ng(v)| — 2.



212 B. Momege

Inequality (3) is obtained by dividing by 2.
Now, if for all j € {1,...,|Vc \ Sc(u)|} we have
VCq(;, € Eq = VCa(j ) ¢ Eg,
then by Inclusion (2)

INa(v)] < Ve \ Se(u)] = [Na(v)|

i.€.
Ve \ Sc(u
|NG(’U)‘ < | C\ZC( )‘
which contradicts Inequality (3). Finally, there is j € {1,..., |V \ Sc(u)|} such
that VCqy;, € FEq and VCayyy, € FEg. This concludes the proof. O

Lemma 6. We have a1y — o) = 2.

Proof. - 1f aj41) — a(;) = 1, then C' + VCa(;) t VCa(;y1) — CagyCagjyeny 1S @ Cycle
of size k + 1 in G which contradicts the maximality of k.

AN

Cagjr

O— O

Cavy)

N

C+vcag;) + Vo) = CagyCagn

- If a1y — gy > 3, then as co 11 € Sc(u), Cagyt2 € Sc(u), we have
Cagyy € Ng(u), Cagj+1 € N¢g(u) and C—i—ucam +UCq ;) +1 = Cagy) Cagy+1 18 @ cycle
of size k + 1 in G which contradicts the maximality of k.

O

.

This concludes the proof. a

C 4 ucq ;) +UCajy+1 = CagyCagy+1



Sufficient Conditions for a Connected Graph to Have a Hamiltonian Path 213

Lemma 7. The graph G contains K 4.

Proof. By Lemma 5, there is a j > 1 such that vca;, € Eg and veq,,,) € Eg.
By Lemma 6, a(jy1) — o) = 2. So we have cq;,+1 € Sc(u) and therefore
UCq(;, € Eg. See the following figure.

— O

Q Cayy
\ C‘J‘(a‘)—/

O—no

We consider the subgraph H induced by u,v,cq; ~1,Ca(;, and cqp,+1. We
have UCq;, € Eq, UCay;) € Eq, ca.(j)_lca(j) € Eg and Cagy+1Cag;, € FE¢. If there
is no other edge between the vertices of H, then H = K 4.

— As Ng(u) € Ve, we have uv ¢ Eq.

— As cq;, & Sc(u), we have ucy ;-1 ¢ Eg.

— As caj,yy & Sc(u) and aj11) — agj) = 2, we have ucq ;11 ¢ Eg-

— If vea ;-1 € Eg, then C + veg ;-1 + Ve, — Cag;y—1Cay;, 18 a cycle of size
k+ 1 in G, which contradicts the maximality of k.

O+ vea -1+ Vo) = Cagy—1Cay,

— If vCa ;41 € Eg, then C + VCa(;) + VCagjy+1 — Cagy)Cagjy+1 18 2 cycle of size
k41 in G, which contradicts the maximality of k.

C + vea;y + VCag+1 = CagyyCagyy+1



214 B. Momege

- I Cagy—1€ag)+1 € Eg, then C+”Ca<j>."'Uca<j+1>.+cam—1Ca5j>+1_CCY(J‘)—{C@(]‘)_
Ca;y+1Ca(;4,, 18 a cycle of size k + 1 in G, which contradicts the maximality

of k.
O

?/ Cag
N

Cay+1

O+ Veag;) +VCag i T Cagy—1Cag)+1 ~ Cagy~1Cag, ~ Cag+1Cag

Finally, we have H =2 K; 4. This concludes the proof.

O
Theorem 11. If G is a K; 4-free connected graph on n vertices with o2(G) >
%n, then G contains a Hamiltonian path.

Remark 12. The bound from Theorem 11 is sharp for the class of K a-free
graphs, as seen by Ki 3.

Remark 13. There are connected graphs G on n vertices with o3(G) > %n
and without Hamiltonian path. For example, for p > 2 the graph G = K, pyo
contains K14 and is a connected graph on n = 2p + 2 vertices with o2(G) > %n
and without Hamiltonian paths. The largest value of o2(G) compared to |Vg| in

this family is achieved for p = 2, and it is %

Ko 4

5 1If Each Triple of Pairwise Non-adjacent
Vertices Contains Two Vertices u and v s.t.
degg(u) + degg(v) > n — 1, Then G Contains
a Hamiltonian Path

Theorem 14. If G is a connected graph on n wvertices such that each triple of
pairwise non-adjacent vertices contains two vertices u and v satisfying dege(u)+
dega(v) > n—1, then G contains a Hamiltonian path.



Sufficient Conditions for a Connected Graph to Have a Hamiltonian Path 215

Proof. For n = 1,2 or 3 the result is true. If n > 4, let P = vy ..., v be a longest
path in G. We want to prove that k¥ = n. As G is connected we have k > 3.
Suppose that k£ < n and take v € Vi \ Vp.

If vyur € Eg, then by Lemma 1 we have a path of size k + 1 in G, which
contradicts the maximality of k.

If vv; € Eg or vv, € Eg, then there is a path of size k + 1 in G, which
contradicts the maximality of k + 1.

So vy, v, and v are pairwise non-adjacent vertices.

By Lemma 3, we have Ng(v) C Vi \ (Lp(v1) U {v,vi}) and therefore

degg(v) <n—2—1|Lp(vy)| =n—2—degg(v1),
i.e
degg(v) + degg(v1) <n — 2. (4)
Similarly, by Lemma 3, we have Ng(v) C Ve \ (Rp(vr)U{v,v1 }) and therefore
degg(v) <n—2—|Rp(vk)| =n — 2 — degg(vg),
i.e.
dega(v) + dega(vi) < n —2. (5)

If there are two vertices v; and v; 1 of P such that viv;41 € Eg and viv; €
Eg, then P 4 viv;1 + v;vx — v;0;41 is a cycle o