
Michael Griebel
Marc Alexander Schweitzer Editors

Meshfree Methods 
for Partial Diff erential 
Equations VIII

Editorial Board
T. J. Barth

M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

115



Lecture Notes
in Computational Science
and Engineering

115

Editors:

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick



More information about this series at http://www.springer.com/series/3527

http://www.springer.com/series/3527


Michael Griebel • Marc Alexander Schweitzer
Editors

Meshfree Methods for Partial
Differential Equations VIII

123



Editors
Michael Griebel
Institut fRur Numerische Simulation
UniversitRat Bonn
Bonn, Germany

Fraunhofer Institute for Algorithms
and Scientific Computing SCAI

Sankt Augustin, Germany

Marc Alexander Schweitzer
Institut fRur Numerische Simulation
UniversitRat Bonn
Bonn, Germany

Fraunhofer Institute for Algorithms
and Scientific Computing SCAI

Sankt Augustin, Germany

ISSN 1439-7358 ISSN 2197-7100 (electronic)
Lecture Notes in Computational Science and Engineering
ISBN 978-3-319-51953-1 ISBN 978-3-319-51954-8 (eBook)
DOI 10.1007/978-3-319-51954-8

Library of Congress Control Number: 2017938169

Mathematics Subject Classification (2010): 65N30, 65N35, 65N75, 65M60, 65M70, 65M75

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The Eighth International Workshop on Meshfree Methods for Partial Differential
Equations was held from September 7 to September 9, 2015, in Bonn, Germany. It
was dedicated to the memory of Ted Belytschko, who passed away in September
2014. Ted Belytschko was one of the leading experts in meshfree methods and co-
organized the workshop series over many years. He is dearly missed.

This workshop series was installed in 2001 to bring together European, American
and Asian researchers working in this exciting field of interdisciplinary research
on a regular basis. To this end, Ivo Babuška, Jiun-Shyan Chen, Michael Griebel,
Antonio Huerta, Wing Kam Liu, Marc Alexander Schweitzer and Harry Yserentant
invited scientist from all over the world to Bonn to strengthen the mathematical
understanding and analysis of meshfree discretizations but also to promote the
exchange of ideas on their implementation and application.

The workshop was again hosted by the Institut für Numerische Simulation at
the Rheinische Friedrich-Wilhelms-Universität Bonn with the financial support of
the Sonderforschungsbereich 1060 The Mathematics of Emergent Effects and the
Hausdorff Center for Mathematics.

This volume of LNCSE now comprises selected contributions of attendees of
the workshop. The selected papers cover a wide range of topics from applied
mathematics to physics and engineering and even industrial applications which
clearly indicates the maturity meshfree methods have reached in recent years.
Meshfree methods have a diverse and rich mathematical background and their
flexibility renders them particularly interesting for challenging applications in which
classical mesh-based approximation techniques struggle or even fail.

Bonn, Germany Michael Griebel
Bonn, Germany Marc Alexander Schweitzer
October 2016
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A Two-Level Additive Schwarz Domain
Decomposition Preconditioner for a Flat-Top
Partition of Unity Method

Susanne C. Brenner, Christopher B. Davis, and Li-yeng Sung

Abstract We investigate a two-level additive Schwarz domain decomposition
preconditioner for a flat-top partition of unity method. We establish condition
number estimates for the biharmonic problem and present numerical results that
confirm our analysis.

1 Introduction

Let � be a polygonal domain in R
2 and f 2 L2.�/. Consider the following model

problem: Find u 2 H2
0.�/ such that

a.u; v/ D .f ; v/ for all v in H2
0.�/ (1)

where

a.w; v/ D
Z
�

.D2w W D2v/dx D
2X

i;jD1

Z
�

@2w

@xi@xj

@2v

@xi@xj
dx (2)

and .f ; v/ D
Z
�

fv dx.
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2 S.C. Brenner et al.

Let Vh be a finite dimensional subspace of H2
0.�/. The Ritz-Galerkin method

for (1) is to find uh 2 Vh such that

a.uh; v/ D .f ; v/ 8 v 2 Vh: (3)

In this paper we will investigate a two-level additive Schwarz domain preconditioner
[8, 30] for the discrete problem (3), where Vh is constructed by a flat-top partition
of unity method.

The conditioning of partition of unity methods is an important topic that has
recently received some attention. Stable generalized finite element methods whose
condition numbers are comparable to standard finite element methods are discussed
in [1, 22, 23, 29, 33]. Preconditioners for extended finite element methods have
also been investigated. (See [4, 24, 31] and references therein for a non-exhaustive
list.) The focus of the aforementioned work is on the ill-conditioning of the discrete
problem due to the choice of the enrichment functions. As far as we know, there is
only one paper [14] in the literature where an additive Schwarz preconditioner for
partition of unity methods is treated, and the preconditioner considered there is a
hierarchical multilevel preconditioner.

One of the important features of the partition of unity method is its ability to
generate a smooth approximation space with ease, making it a good candidate
for higher order problems. While there is a substantial literature on domain
decomposition preconditioners for finite element methods for fourth order problems
[6, 7, 9, 10, 18, 19, 25, 26, 32], to our knowledge domain decomposition precondi-
tioners for the partition of unity method have not been studied. Our goal is to fill
this gap.

The rest of the paper is organized as follows. We present the flat-top partition
of unity method and the additive Schwarz preconditioner in Sects. 2 and 3. The
condition number estimates are carried out in Sect. 4, followed by numerical results
in Sect. 5. The paper ends with some concluding remarks in Sect. 6.

2 A Flat-Top Partition of Unity Method

In this section we describe the construction of Vh using a flat-top partition of unity.

2.1 Partition of Unity

First we recall the definition of a W21 partition of unity.

Definition 1 Letƒ D f�igniD1 be an open cover of N� satisfying a pointwise overlap
condition

9M 2 N such that cardfijx 2 �ig � M 8 x 2 �:
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Let f'igniD1 be a family of functions in W21.R2/ satisfying

supp 'i � N�i 1 � i � n;
nX

iD1
'i � 1 on �;

j'ijWm
1.R2/ � Cm

.diam �i/m
0 � m � 2; 1 � i � n;

where Cm are constants. We will refer to f'igniD1 as a W21 partition of unity
subordinate to the coverƒ and the covering sets �i 2 ƒ as patches.

We will use a variant of the partition of unity in [11–13, 16, 28] and we
refer the interested reader to these articles for a more thorough description of the
construction. Below we briefly describe our approach for a rectangular domain.
Other domains can be treated in a similar fashion.

We begin by choosing two small positive parameters �1 and �2, and construct the
domain �� by enlarging � by a distance of �j in the ˙xj directions for j D 1 and
2. We then subdivide�� into congruent rectangles Ri for 1 � i � n. The lengths of
the sides of these rectangles are denoted by h1 and h2, which are proportional to �1
and �2 respectively. The mesh parameter h is the maximum of h1 and h2.

The patches �i are formed by enlarging the rectangles Ri by a distance of �j
in the ˙xj directions for j D 1 and 2. There is a rectangular region in the center
of each �i denoted by �flat

i . The partition of unity function 'i is a C1 piecewise
polynomial function such that 'i D 1 on �flat

i and smoothly decreases to 0 on @�i.
The construction of the flat-top partition of unity is illustrated in Fig. 1.

Fig. 1 The construction of the flat-top partition of unity:� is expand to�� (left);�� is subdivided
into congruent rectangles (middle); �flat

i are the dark shaded regions (right)
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2.2 Generalized Finite Element Space

Let Vi be a subspace of the tensor product Lagrange finite element space Q2 defined
on �i whose members satisfy the homogeneous Dirichlet conditions on @�. The
interpolation nodes for Vi are placed inside the flat-top region�flat

i . The generalized
finite element space Vh � V is given by

Vh D
nX

iD1
'iVi:

The interpolation operator…h W C. N�/ ! Vh is defined by

…hv D
nX

iD1
.…iv/'i; (4)

where…i is the local nodal interpolation operator forVi. The following interpolation
error estimate can be established by combining standard interpolation error esti-
mates for the Q2 finite element and the estimates for the partition of unity functions
'1; : : : ; 'n (cf. [27, 28] for details):

2X
mD0

hmjv �…hvjHm.�/ � ChsjvjHs.�/ 8 v 2 Hs.�/ and 2 � s � 3: (5)

2.3 Discretization Error Estimate and Conditioning

According to elliptic regularity theory [5, 15, 21] for polygonal domains, we know
that u 2 H2C˛.�/, where the index of elliptic regularity ˛ depends only on the
angles at the corners of �. If � is convex, we can take ˛ to be 1, otherwise ˛
belongs to .1=2; 1/. It follows from (5) that

ju � uhjH2.�/ D inf
v2Vh

ju � vjH2.�/ � ju �…hujH2.�/ � Ch˛jujH2C˛.�/: (6)

Let V 0h be the dual of Vh, h�; �i be the canonical bilinear form on V 0h � Vh, and the
linear operator Ah W Vh ! V 0h be defined by

hAhw; vi D a.w; v/ 8 w; v 2 Vh: (7)

We can then rewrite (3) as

Ahx D fh; (8)
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where fh 2 V 0h is defined by

hfh; vi D
Z
�

fv dx 8 v 2 Vh:

It can be shown that the condition number of Ah satisfies

�.Ah/ � O.h�4/; (9)

which is similar to the condition number for standard finite element methods.

3 A Two-Level Additive Schwarz Preconditioner

The two-level additive Schwarz preconditioner was introduced by Dryja and
Widlund in [17]. It involves a coarse problem and local problems.

3.1 Coarse Problem

Let V0 � V be the generalized finite element space associated with a coarse mesh
with mesh parameter H. We assume there are J coarse patches �j;H (1 � j � J/ in
the construction of V0.

The coarse space V0 is connected to Vh by the operator I0 W V0 �! Vh, which is
the restriction of the interpolation operator …h to V0. The operator A0 W V0 �! V 00
is then given by

hA0w; vi D a.I0w; I0v/ 8w; v 2 V0: (10)

3.2 Local Problems

The overlapping subdomains Q�j of � are obtained by enlarging the coarse patch
�j;H (1 � j � J) by the amount of ıj.	 0/ in the ˙xj directions for j D 1 and 2. This
means that the overlap of the subdomains is given by ı D maxfı1C�1;H ; ı2C�2;Hg.
By adjusting ıj and �j;H , we can align @ Q�j with the boundaries of the patches for Vh

and also control the overlap among the subdomains.
The local space Vi � Vh is taken to be

Vj D fv 2 Vh W v D 0 on �n Q�jg

and it is connected to Vh by the natural injection Ij W Vj �! Vh.
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The operator Aj W Vj �! V 0j is given by

hAjw; vi D a.w; v/ 8w; v 2 Vj: (11)

3.3 The Preconditioner

The two-level additive Schwarz preconditioner is defined by

BTL D
JX

jD0
IjA
�1
j ITj ;

where the transpose operator ITj W V 0h �! V 0j is given by

hITj �; vi D h�; Ijvi 8� 2 V 0h; v 2 Vj:

Since Vh D PJ
jD0 IjVj, the operator BTL is symmetric positive definite and we

have the following characterizations of the maximum and minimum eigenvalues of
BTLAh (cf. [8, Theorem 7.1.20]).

�max.BTLAh/ D max
v2Vh
v¤0

hAhv; vi
min

vDPJ
jD0 Ijvj

vj2Vj

PJ
jD0hAjvj; vji

(12)

�min.BTLAh/ D min
v2Vh
v¤0

hAhv; vi
min

vDPJ
jD0 Ijvj

vj2Vj

PJ
jD0hAjvj; vji

(13)

4 Condition Number Estimates

To avoid the proliferation of constants, we will use the notation A . B (or B & A) to
represent the inequality A � .constant)B, where the positive constant is independent
of h, H, ı and J. The notation A � B is equivalent to A . B and A & B.

4.1 Estimate for �max.BTLAh/

The following lemma will lead to an upper bound for �max.BTLAh/.
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Lemma 1 Let vj 2 Vj for 0 � j � J and v D PJ
jD0 Ijvj. Then the following

estimate holds W

hAhv; vi .
JX

jD0
hAjvj; vji: (14)

Proof Since Ij for 1 � j � J are natural injections, we derive from (2), (7) and (10)

hAhv; vi D
Z
�

D2
 

JX
jD0

Ijvj

!
W D2

 
JX

kD0
Ikvk

!
dx

� 2

Z
�

jD2I0v0j2 dx C 2

Z
�

D2
 

JX
jD1

Ijvj

!
W D2

 
JX

kD1
Ikvk

!
dx

D 2hA0v0; v0i C 2

JX
j;kD1

Z
�

D2vj W D2vk dx: (15)

Let the constant cj;k .1 � j; k � J/ be defined by

cj;k D
(
1 if Q�j \ Q�k ¤ ;;
0 otherwise:

Note that cj;k D ck;j.
Let N be the maximum number of subdomains that can have nonempty intersec-

tion with a subdomain. Then we have

JX
kD1

cj;k � N for 1 � j � J

and hence, in view of (11),

JX
j;kD1

Z
�

.D2vj W D2vk/ dx D
JX

j;kD1
cj;k

Z
�

.D2vj W D2vk/ dx

D
JX

j;kD1
cj;kjvjjH2.�/jvkjH2.�/

�
� JX

j;kD1
cj;kjvjj2H2.�/

� 1
2
� JX

j;kD1
cj;kjvkj2H2.�/

� 1
2
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D
JX

jD1
jvjj2H2.�/

JX
kD1

cj;k

� N
JX

jD1
jvjj2H2.�/ D N

JX
jD1

hAjvj; vji: (16)

The estimate (14) follows by combining (15) and (16). ut
Combining (12) and (14), we have an upper bound for the eigenvalues of BTLAh W

�max.BTLAh/ . 1: (17)

4.2 Estimate for �min.BTLAh/

The following lemma will lead to a lower bound for �min.BTLAh/.

Lemma 2 Given any v 2 Vh; there exists a decomposition

v D
JX

jD0
Ijvj (18)

where vj 2 Vj for 1 � j � J and

JX
jD0

hAjvj; vji .
"
1C

�
H

ı

�3#
hAhv; vi: (19)

Proof It follows from (5) (with s D 2) that

1X
kD0

hkjv �…hvjHk.�/ C h2j…hvjH2.�/ . h2jvjH2.�/ 8 v 2 H2.�/: (20)

Similarly, we have

1X
kD0

Hkjv �…HvjHk.�/ C H2j…HvjH2.�/ . H2jvjH2.�/ 8 v 2 H2.�/; (21)

where…H is the analog of …h for VH.
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Let v0 D …Hv 2 V0; w D v�I0v0 D v�…hv0 and vj D …h.�jw/, where f�jgJjD1
is a W21 partition of unity subordinate to the overlapping subdomains Q�j such that

j�jjWk
1
.R2/ . ı�k for 0 � k � 2: (22)

It is easy to check that vj 2 Vj for 0 � j � J and (18) holds.
In view of (2), (7), (10), (20) and (21), we have

hA0v0; v0i D jI0v0j2H2.�/ D j…hv0j2H2.�/
. jv0j2H2.�/ (23)

D j…Hvj2H2.�/ . jvj2H2.�/ D hAhv; vi:

Next we consider

hAjvj; vji D jvjj2H2. Q�/ D j…h.�jw/j2H2.�/
for 1 � j � J. In view of (20), we have

hAjvj; vji . j�jwj2H2.�/
.
Z
Q�j

.w/2jD2�jj2 dx C
Z
Q�j

jD�jj2jDwj2 dx (24)

C
Z
Q�j

.�j/
2jD2wj2 dx

and it only remains to estimate the three terms on the right-hand side of (24).
Observe that (20) and (21) imply

kwkL2.�/ D kv �…hv0kL2.�/
� kv �…hvkL2.�/ C kv �…HvkL2.�/

C k.v �…Hv/ �…h.v �…Hv/kL2.�/ (25)

. h2jvjH2.�/ C H2jvjH2.�/ C h2jv �…HvjH2.�/

. H2jvjH2.�/;

and similarly

jwjH1.�/ . HjvjH2.�/; (26)

jwjH2.�/ . jvjH2.�/: (27)
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It follows from (22) that

Z
Q�j

jD�jj2jDwj2 dx . ı�2jwj2
H1. Q�j/

; (28)

Z
Q�j

.�j/
2jD2wj2 dx . jwj2

H2. Q�j/
: (29)

Note that D2�j vanishes except on a strip near @ Q�j with width � ı. Therefore it
follows from (22) and [6, Lemma 8.1] that

Z
Q�j

.w/2jD2�jj2 dx .
�
1

ı3H

�
kwk2

L2. Q�j/
C
�
H

ı

�3
jwj2

H2. Q�j/
: (30)

Combining (2), (7), (24), (25) and (28)–(30), we find

JX
jD1

hAjvj; vji .
�
1

ı3H

� JX
jD1

kwk2
L2. Q�j/

C
�
1

ı2

� JX
jD1

jwj2
H1. Q�j/

C
"
1C

�
H

ı

�3# JX
jD1

jwj2
H2. Q�j/

.
�
1

ı3H

�
kwk2L2.�/ C

�
1

ı2

�
jwj2H1.�/ C

"
1C

�
H

ı

�3#
jwj2H2.�/

.
"
1C

�
H

ı

�3#
jvj2H2.�/ D

"
1C

�
H

ı

�3#
hAhv; vi: (31)

The estimate (19) follows from (23) and (31) ut
Combining (13) and (19), we have a lower bound for the eigenvalues of BTLAh W

�min.BTLAh/ &
"
1C

�
H

ı

�3#�1
: (32)

4.3 Estimate for �.BTLAh/

Putting (17) and (32) together, we have the following result on the condition number
of the preconditioned system.
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Theorem 1 There exists a constant C independent of h, H, ı and J such that

�.BTLAh/ D �max.BTLAh/

�min.BTLAh/
� C

"
1C

�
H

ı

�3#
:

5 Numerical Results

We have applied the two-level Schwarz preconditioner to the model problem on
the unit square and an L-shaped domain. The numerical results presented here
were obtained using PETSc [2, 3] and Supermike II, one of the high performance
supercomputers at the Louisiana State University.

Throughout these numerical examples we will use the following notation:

– �; the estimated condition number of the preconditioned system
– its, the number of iterations until the relative residual falls below 10�6
– tsolve; amount of (wall) time, in seconds, required to solve the preconditioned

system
– H; the maximum width of the coarse mesh
– ı; the amount of overlap among the overlapping subdomains
– h; the maximum width of the fine mesh
– kehkenergy; the error in energy norm given by juh � �hujH2.�/

We run two numerical experiments for each domain to observe the scalability.
The first experiment, the case of small overlap, measures strong scalability. This is
carried out by keeping the amount of overlap among the subdomains fixed and small,
and then refining the coarse mesh. The second experiment, the case of generous
overlap, measures weak scalability. This is carried out by keeping the quantity H=ı
bounded, and then refining the fine mesh.

The local and coarse problems are solved by using a Cholesky factorization (on
their own processors) and the global problem is solved using the preconditioned
conjugate gradient method.

5.1 Results for the Unit Square

Let � be the unit square .�0:5; 0:5/2. We take the exact solution to be

u.x/ D 35

2
.x21 � 0:25/2.x22 � 0:25/2:

The generalized finite element space Vh is constructed through a flat-top partition
unity with a background uniform mesh. An example of a fine mesh, a coarse mesh,
and typical overlapping subdomains are shown in Fig. 2.
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Fig. 2 A coarse mesh (left), a fine mesh (middle) and overlapping subdomains (right) for the unit
square

Table 1 Small overlap results for the unit square

nsub H � Rate Its tsolve

4 6.0000�10�1 9.1306�10C6 – 1498 3.8989�10C3

16 2.7273�10�1 6.5953�10C5 3.33 1409 5.5002�10C2

64 1.3043�10�1 7.4148�10C4 2.96 400 4.2519�10C1

256 6.3830�10�2 1.0755�10C4 2.70 165 7.5584�10C0

1024 3.1579�10�2 1.4248�10C3 2.87 63 4.2420�10C0

5.1.1 Small Overlap

In the case of small overlap, the number of fine elements is fixed so that h �
3:9113 � 10�3: The amount of overlap among the subdomains is also fixed so that
ı � 6:5189 � 10�4.

The numerical results are presented in Table 1. We observe that

�.BTLAh/ � .H=ı/rate

where the rate is roughly 3, which agrees with Theorem 1. The scalability of the
algorithm is also evidenced by the data in the last column.

5.1.2 Generous Overlap

In the case of generous overlap, the total number of subdomains is kept fixed (nsub D
64) so that H D 1:3043 � 10�1. The fine mesh is then refined in such a way that
H=ı � 3.

The numerical results are presented in Table 2. We observe that �.BTLAh/

is uniformly bounded, which agrees with Theorem 1. We also observe O.h/
convergence in the energy error, which agrees with the estimate (6).
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Table 2 Generous overlap results for the unit square

h � Its tsolve kehkenergy Rate

3.1579�10�2 3.6247�10C1 23 4.6185�10�1 5.6660�10�2 –

1.5707�10�2 3.1383�10C1 23 9.2236�10�1 2.6070�10�2 1.11

7.8329�10�3 2.7025�10C1 21 5.8779�10C0 1.2454�10�2 1.06

3.9113�10�3 2.5732�10C1 21 7.6505�10C1 6.0795�10�3 1.03

1.9544�10�3 2.4748�10C1 21 1.1662�10C3 3.0027�10�3 1.01

5.2 An L-Shaped Domain

Let � be the L-shaped domain .�0:5; 0:5/2 n Œ0; 0:5	2. The exact solution u of the
biharmonic problem is given by

u D .r2 cos2.�/ � 0:25/2.r2 sin2.�/ � 0:25/2r1C˛g.�/;

where the polar coordinate system .r; �/ is centered at the origin so that � D 0

corresponds to the positive y�axis and � D 3�=2 corresponds to the positive
x�axis, and the function g (cf. [20, pp. 107–108]) is given by

g.�/ D Œcos..˛ � 1/!/� cos..˛ C 1/!/	

� Œ.˛ C 1/ sin..˛ � 1/�/� .˛ � 1/ sin.˛ C 1/�/	

� Œcos..˛ � 1/�/ � cos..˛ C 1/�/	

� Œ.˛ C 1/ sin..˛ � 1/!/� .˛ � 1/ sin.˛ C 1/!/	 :

Here ! D 3�=2 is the angle of the reentrant corner and

˛ � 0:544483736782464 (33)

is the index of elliptic regularity.
The generalized finite element space Vh is constructed using a background mesh

of quasi-uniform rectangles such that the reentrant corner is inside one of the
rectangles. An example of a fine mesh, a coarse mesh, and typical overlapping
subdomains are shown in Fig. 3.

5.2.1 Small Overlap

In the case of small overlap, the number of fine elements is fixed so that h �
3:9164 � 10�3: The amount of overlap between the subdomains is also fixed so
that ı � 6:5104� 10�4:
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Fig. 3 A coarse mesh (left), a fine mesh (middle) and overlapping subdomains (right) for the
L-shaped domain

Table 3 Small overlap results for the L-shaped domain

nsub H � Rate Its tsolve

3 6.6667�10�1 8.8975�10C6 – 1974 4.5449�10C3

12 2.9167�10�1 5.5286�10C6 0.58 4816 1.5500�10C3

48 1.3542�10�1 1.0507�10C6 2.16 1587 1.3981�10C2

192 6.5104�10�2 1.3655�10C5 2.79 529 1.8855�10C1

768 3.1901�10�2 1.4414�10C4 3.15 199 9.8830�10C0

Table 4 Generous overlap results for the L-shaped domain

h � Its tsolve kehkenergy Rate

3.1901�10�2 9.5077�10C1 46 6.4991�10�1 3.1239�10�3 –

1.5788�10�2 1.1376�10C2 47 1.2841�10C0 2.0686�10�3 0.59

7.8532�10�3 1.2383�10C2 41 6.8940�10C0 1.3966�10�3 0.56

3.9164�10�3 1.2052�10C2 37 8.0453�10C1 9.5070�10�4 0.55

1.9557�10�3 1.2187�10C2 37 1.1779�10C3 6.4955�10�4 0.55

The numerical results are presented in Table 3. Again we observe that

�.BTLAh/ � .H=ı/3:

The scalability of the algorithm is also supported by the data in the last column.

5.2.2 Generous Overlap

In the case of generous overlap, the total number of subdomains is kept fixed (nsub D
48) so that H D 1:3542 � 10�1: The fine mesh is then refined in such a way that
H=ı � 3:

The numerical results in Table 4 show that �.BTLAh/ is uniformly bounded as
predicted by Theorem 1, and that the energy error is O.h0:55/ as predicted by (6)
and (33).
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6 Concluding Remarks

We have extended the classical results for two-level additive Schwarz precondition-
ers to a flat-top partition of unity method for the biharmonic problem.

In the case of nonconvex domains, optimal convergence for the partition of
unity method can be restored by including known corner singularities in the local
approximation spaces. The preconditioner developed in this paper is also relevant
for such methods.

The extension of the results in this paper to partition of unity methods for
variational inequalities [11–13] and to partition of unity methods for sixth order
problems are ongoing projects.
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Extraction of Fragments and Waves After
Impact Damage in Particle-Based Simulations

Patrick Diehl, Michael Bußler, Dirk Pflüger, Steffen Frey, Thomas Ertl,
Filip Sadlo, and Marc Alexander Schweitzer

Abstract The analysis of simulation results and the verification against exper-
imental data is essential to develop and interpret simulation models for impact
damage. We present two visualization techniques to post-process particle-based
simulation data, and we highlight new aspects for the quantitative comparison with
experimental data. As the underlying simulation model we consider the particle
method Peridynamics, a non-local generalization of continuum mechanics. The
first analysis technique is an extended component labeling algorithm to extract the
fragment size and the corresponding histograms. The distribution of the fragment
size can be obtained by real-world experiments as demonstrated in Schram and
Meyer (Simulating the formation and evolution of behind armor debris fields. ARL-
RP 109, U.S. Army Research Laboratory, 2005), Vogler et al. (Int J Impact Eng
29:735–746, 2003). The second approach focuses on the visualization of the stress
after an impact. Here, the particle-based data is re-sampled and rendered with
standard volume rendering techniques to address the interference pattern of the
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stress wave after reflection at the boundary. For the extraction and visual analysis,
we used the widely-used Stanford bunny as a complex geometry. For a quantitative
study with a simple geometry, the edge-on impact experiment (Schradin, Scripts
German Acad Aeronaut Res 40:21–68, 1939; Strassburger, Int J Appl Ceram
Technol 1:1:235–242, 2004; Kawai et al., Procedia Eng 103:287–293, 2015) can be
applied. With these new visualization approaches, new insights for the quantitative
comparison of fragmentation and wave propagation become intuitively accessible.

1 Introduction

Peridynamics is a generalization of traditional continuum mechanics. It is a
particle-based approach and targeted towards the modeling of fractures and similar
phenomena. The fundamental equations are integral equations. Damage is modeled
by a force function that acts between two particles each.

Using peridynamic simulations, a vast range of materials with different prop-
erties, from polymethyl methacrylate to titanium alloy can be simulated [5].
The results significantly depend on the models and numerical schemes that are
employed. Different models for bonds, time integration schemes and the summation
of forces between particles are employed. Furthermore, several parameters such as
the interaction horizon of particles can be tuned.

To study a certain material, the simulation results have to be validated and
verified [3]. However, this is not a trivial task in itself. A common experimental
benchmark is the Kalthoff-Winkler experiment [7], which was studied in [18, 23].
First, and where available or possible, simulation results can be verified against
experiments [1, 2, 4]. Second, and much more frequent in the literature, met-
rics obtained in the simulation are compared against analytic results [11]—once
again, only where possible—or against simulation results using different modeling
approaches. It is obvious that characteristic numbers that can be measured by
experiments cannot necessarily be obtained by analytic equations and vice versa.

Simulations, in contrast, have the advantage that metrics for both worlds can
be obtained. Of course, this poses extra challenges. It is easy to obtain the size of
fragments in scattering scenarios; characterizing their shapes requires significantly
more effort. And the extraction of continuous measures such as the speed of stress
propagation in a discrete and three-dimensional simulation world requires good
interpolation techniques and careful analysis.

To provide a first, fast validation to simulation results, instructive visual feedback
is more than helpful. A typical approach to quickly examine the effect of changes in
the model or its parameters is to plot the particles and to color them depending
on the local damage, for example. While this gives a quick impression on the
damage behavior, it is restricted to the surface. It neither shows where a crack
penetrates through the whole material, nor provides insight into what happens
within the material. This basic visualization approach is already sufficient to study
crack branching or the velocity at the crack tip, as demonstrated in the experiments
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in [9, 21]. For complex structures and other metrics, more advanced techniques are
required.

In this work, we have developed and adapted methods to analyze impact damage
in particle-based simulations [10, 12, 15]. Furthermore, we show their illustrative
visualization and demonstrate its instructive power. This is a major step towards the
future verification and validation of our models. We have focused on the analysis of
fragmentation via fragment analysis and on impact damage via the propagation of
stress waves.

1.1 Fragmentation

An important validation for particle-based methods is the identification of fragments
after impacts, like a stone impacting the front window of a car. Here the size
of the fragments is an important metric to estimate the medical harm to the
occupants. Obtaining the relevant quantities, such as the size, mass and velocity
of each fragment is still difficult in experiments. The experiment [26] provides a
distribution for the number of fragments with respect to the fragment mass. The
setup is a tungsten-alloy projectile perforating a steel armor plate with a velocity of
1020 m s�1. This experimental data is used as a benchmark for the smoothed particle
hydrodynamics (SPH) model in [29] and for a Lagrangian approach in [17]. Another
experiment covered in the literature is the fragmentation of a cylindrical steel tube
using a gas gun impact with the velocity of 1920 m s�1 [28]. This experimental
data is used as a benchmark for SPH [13]. All of these benchmarks show that
fragmentation obtained by the simulations are qualitatively reasonable, but that the
quantitative modeling of the material needs some improvement.

1.2 Impact Damage and Wave Propagation

For the safety of crashes with electric/hybrid cars, the impact damage in the ceramic
core of the battery is essential. A common benchmark for the impact damage and
wave propagation in ceramic material is the edge-on impact (EOI) experiment [8, 20,
27], which was developed in the 1980s for the visualization of impact damage and
wave propagation. Different particle-based material models were verified against
this experiment [2, 19]. Here, the reflection and interference of the impact shock
wave is of high importance to understand where the damage in the ceramic core
occurs.

In the remainder, we will first describe peridynamics in Sect. 2 and our visual-
ization approaches in Sect. 3. In Sect. 4 we introduce experiments and explain their
(visual) analysis. Finally, Sect. 5 concludes the work.
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2 Peridynamics

As a reference particle-based method we consider peridynamics (PD), which is a
non-local generalization of continuum mechanics, with a focus on discontinuous
solutions as they arise in fracture mechanics. In this section, we present the essential
ingredients that are important for the visualization techniques. The principle of
this theory is that particles interact with other particles at a finite horizon ı by
exchanging forces. This is very similar to SPH and MD approaches. The bond-
based peridynamics equation of motion [22] for the acceleration at time t is given
by the integral equation

%.X/A.t;X/ D
Z

Bı .X/

f .t; x.t;X0/� x.t;X/;X0 � X/dX0C b.t;X/, (1)

with the mass density %.X/, f as the pair-wise force function which models the
interaction of particles X and X0 with respect to the initial reference configuration
�0, and with b.t;X/ denoting the external force. The internal forces between
particles are exchanged within the finite interaction zone Bı.X/, see Fig. 1. As the
constitutive law we use the Prototype Brittle Microelastic (PMB) material law [24]
and for the simulations we use LAMMPS [16]. The bond-based PD, where a bond
between two particles X and X0 responds independently of all other bonds inside the
interaction zone Bı.X/, implies that the Poisson ratio of the isotropic linear elastic
solid is restricted to 
 D 1=4 for 3D and 1=3 for 2D. Within the state-based PD,
all other bonds connected to the endpoints of particle X influence the stretch and
thus, any material, which is described by the classical continuum mechanic, can be

Fig. 1 The reference
configuration �0 at time
t D 0 with the finite
interaction zone of length ı
for particle at position X. All
particle inside the interaction
zone Bı.X/ of particle X are
connected with bonds to
exchange forces
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Table 1 Attributes per
particle X, which where used
in the post-processing
pipeline for the extraction of
the fragments and fracture
surface

Attribute Symbol Unit

Acceleration a.t;X/ 2 R
3 ms−2

Actual position x.t;X/ 2 R m

Density %.X/ 2 R kg m�3

Damage c.t;X/ 2 R %

Displacement D.t;X/ WD jX � x.t;X/j 2 R
3 m

Initial position X 2 R
3 m

Force f .t;X/ 2 R
3 N

Velocity v.t;X/ 2 R
3 ms−1

Volume V.X/ 2 R m3

Stress �.t;X/ 2 R
6 Pa

modeled [25]. For the state-based PD, the equation of motion (1) is replaced by the
following integral equation

%.X/A.t;X/ D
Z

Bı

˚
TŒt;X	hX0 � Xi � TŒt;X0	hX � X0i� dX0 C b.t;X/ (2)

where T is the force vector state field. Cracks and fractures are modeled by the
breaking of bonds between particles. Here a critical stretch sc for bond breaking is
predefined for all particles, and the bond between two particle breaks irreversibly
if the stretch surpasses the predefined critical value. The ratio of the existing
bonds inside the interaction zone Bı.X/ and the amount of bonds inside Bı.x/ at
the reference configuration �0 describes the damage c.t;X/ of a particle. For the
simulation we used an extended version of Peridigm [14] and the elastic material
model.

Table 1 shows for each particle at position X in the reference configuration �0

the attributes available at each time step for the post-processing in the visualization
pipeline. We extended Peridigm with a compute class for the adjacency matrix Mt,
so that all bonds between particles are available as an additional information for the
post-processing pipeline. Fore more details about peridynamics and material models
we refer to [22, 24, 25].

3 Visualization Techniques

We present two visualization techniques for the analysis of data resulting from
peridynamics simulations. The first technique discusses how the data describing
fractures can be separated into fragments, revealing the shape and size of the
fragments. The second technique describes the visualization of the stress tensor and
is used to visualize the wave propagation after impact damage.
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3.1 Clustering

For the visualization, it is important to identify each individual fragment. We
therefore apply a connected components labeling (Algorithm 1). It iterates over
all particles in a given time step t and identifies fragments by specifying a label
for each particle, so that particles that belong to the same fragment share a common
label. We use two criteria in the algorithm to identify connectivity between particles,
the maximum damage value s and the maximum bond length r. Thus, the initial
displacement between two particles X and X0 is not larger than kX0 � Xk � r for
connected components. Note, that the maximum bond length and critical damage s
are parameters to influence the fragmentation of the algorithm and the horizon ı and
the critical stretch sc are independent model parameters.

Algorithm 1: Component labeling
Input: particles P, bonds B, max damage value s, max bond length r, time t
Output: every particle labeled by piece id of connected component
for every particle n do

label[n] 0 ;
visited[n] false ;

n 0 ;
while n < jPj and c.t;Xn/ > s do

visited[n] true;
n nC 1;

currentLabel = 1;
Stack S;
while n < jPj do

label[n] currentLabel ;
visited[n] true;
S n ;
while S ¤ ; do

n0  S;
C getConnectedParticles(n0 , B);
for n00 2 C do

if not visited[n00] and distance(n0 ,n00) < r and c.t;Xn00 / < s then
label[n00] currentLabel;
visited[n00] true;
S n00;

while n < jPj and (visited[n] or c.t;Xn/ > s) do
visited[n] true;
n nC 1;

currentLabel currentLabel + 1;
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By specifying the maximum bond length, we can restrict the search of connected
components to those particles that are in direct neighborhood to each other. The
maximum damage value s is required, as the given set of bonds contains both
active and broken bonds. Therefore, we could not rely for our analysis of connected
components solely on the connections of particles through bonds, as this would
require a set of bonds containing only the active part. Still, we found that filtering
out particles by a user-specified maximum damage value gives good results for the
identification of fragments. For our experiments, we used a maximum damage value
of s D 0:2 and a maximum bond length of r D 0:001.

All particle labels are initialized with id 0 (Line 1). This id is also used to
identify particles that do not belong to a fragment, as their label id is not altered
by the algorithm. We also store a flag for each particle (Line 1), which specifies
whether the particle was already visited to avoid infinite loops while traversing
through the connections. In Lines 1–1, the algorithm iterates over all particles to find
the first particle whose damage value is below the given threshold s. This particle
belongs to the first fragment and is labeled with the current label id (Line 1). Next,
the particle is pushed on a stack (Line 1), which is used to traverse all particles
connected to the given particle. The traversal, Lines 1–1, is done by testing for each
connected particle to see whether it has not been visited and meets the criteria for
maximum distance r and damage threshold s (Line 1). If so, the particle is labeled
with the current label id and also pushed on the stack. This step is repeated until the
stack is empty and all connected particles have been visited. In Lines 1–1, the next
component is identified by searching for a particle that has not been visited yet and
that meets the damage criterion s. These steps are repeated until all particles have
been visited and a label specified for each particle.

3.2 Visualization of the Stress Tensor

To highlight the waves after an impact damage, we visualize the stress tensor �.t;X/,
defined for each particle position X and time step t, by means of the spectral norm
of the stress tensor. The scalar-valued spectral norm of a tensor A is given as the
square root of the largest eigenvalue �max of A�A,

kAk2 D
p
�max.A�A/; (3)

where A� denotes the transpose of A.
The first step in the visualization pipeline is to calculate and store the spectral

norm of the stress tensor for each particle. In the next step, the resulting scalar
values given at the particle positions are resampled on a Cartesian grid using inverse
distance weighting to obtain a continuous distribution of the spectral norm over the
whole domain. For the resampling step, we use a grid resolution of 200� 200� 200
and a maximum distance of 0.005. The resulting scalar field is visualized using
standard volume rendering techniques.
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4 Experiments and Their Visual Analysis

4.1 Fragments and Histograms

Figure 2 shows the geometry of a thin plate with a material density % of
2200 kg m�3, a bulk modulus K of 14:9 � 109 Pa, and a shear modulus G of
8:9 � 109 Pa. The spherical projectile is modeled as steal with a material density
% of 7700 kg m�3, a bulk modulus K of 160 � 109 Pa, and a shear modulus G of
78:3 � 109 Pa, and it hits the target with a velocity of 200 m s�1. For the simulation
with Peridigm, we use the elastic material model, the critical stretch damage model
with a critical stretch sc D 0:0025, and for the interaction of the sphere and the
plate a contact model with a spring constant of 1 � 1012.

Figure 3 shows a common visualization of particle-based simulations in the first
column. Here, spheres are placed at the center of the actual position x.t;X/ of the
particles over the time t. These spheres are colorized with the scalar damage value
c.t;X/ of the particle. Blue indicates that there is no damage, and red indicates that
all bonds inside the interaction zone Bı.X/ are broken. After the impact, the damage
develops radially from the center of the plate and starts to bifurcate twice before
hitting the boundary of the plate. At the final time step t D8:27 � 10�7, there are
plenty of “free” particles in the center of the plate that have no neighbors inside
the interaction zone any more. Additionally, there are some “free” particles between
these non-damaged particles. This somehow indicates that the crack resides and
that the plate is scattered in different parts. With this particle-based visualization
approach we can study how the damage develops through the material and observe
different bifurcations of the cracks.

A plain visualization of the particles does not expose information about the shape
of fragments or where exactly the crack path develops. Therefore Algorithm 1 is
applied on the particle data to cluster the particles to fragments and label them.
In the second column of Fig. 3, fragments that have been extracted this way are
colored by their label. This exposes the shape of the fragments and visualizes the
crack pattern in a clear way, see Fig. 3d.

Fig. 2 Blueprint of the thin
plate and the spherical
projectile
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(a) (b)

(c) (d)

Fig. 3 Impact of a spherical projectile on a thin plate with a velocity of 200 m s�1. The nine
figures at the left-hand side (above and below) show the visualization of the particles as spheres
colorized with their damage c.t;X/. The right-hand side shows the particles colorized according
to the extracted fragments. (a) t D 0. (b) t D 0 (c) t D 1:27 � 10�7 (d) t D 1:27 � 10�7 . (e)
t D 1:91 � 10�7 s. (f) t D 1:91 � 10�7 s. (g) t D 2:55 � 10�7 s. (h) t D 2:55 � 10�7 s. (i)
t D 3:18 � 10�7 s. (j) t D 3:18 � 10�7 s. (k) t D 3:82 � 10�7 s. (l) t D 3:82 � 10�7 s. (m)
t D 4:45� 10�7 s. (n) t D 4:45 � 10�7 s. (o) t D 8:27 � 10�7 s. (p) t D 8:27� 10�7 s
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(e) (f)

(g) (h)

(i) (j)

Fig. 3 (continued)
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(k) (l)

(m) (n)

(o) (p)

Fig. 3 (continued)
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Furthermore, auxiliary attributes like the mass or the velocity at the center
of mass of the fragments are of interest. Figure 4 shows the histograms of the
fragments’ sizes delivered by the algorithm. Here, the algorithm needs to be
extended to estimate the mass of the fragment via the density % of the particles
and their volumes V . With this additional information, the histograms could be
compared to the examples [26, 28] described in Sect. 1.1. Furthermore, a study of the
sensitivity of the initial positions X of the particles with respect to the fragment size
is important, because the crack pattern looks slightly different for different initial
placements of the particles X [6]. Here, the histograms could be used to verify if the
distribution of the size is sensitive to the initial position of the particles.

To compare with experiments, the algorithm needs to be improved. For example,
the computational effort for the extraction of the fragments needs to be reduced.
The geometry of the projectile and the specimen are more complex than in our
experiment here and the amount of particles increases. Due to the slow convergence
of particle-based methods, the run-time is then not negligible any more.

4.2 Impact Damage and Wave Propagation

The understanding of wave propagation after impact damage is important to see
how the damage front propagates through the specimen and reflects at the boundary.
The interference pattern after the reflection of the wave at the boundary is of great
interest. Figure 5a shows the reconstructed surfaces of the Stanford bunny, a data set
of the Stanford 3D scanning repository,1 scanned from a ceramic figurine of a rabbit.
For this complex geometry, the visualization of the particles and the scalar damage
value c.t;X/ is not sufficient to see the propagation of the wave through the material
(See, Fig. 5b). For the simulation in LAMMPS, we scattered the surface data set of
the bunny with 1,787,245 particles and defined the material with a material density
% of 3369 kg m�3, a bulk modulus K of 210 � 109 Pa and a critical stress intensity
factor KIc of 2 � 106 Pa

p
m.

Figure 6 shows the development of the wave after the impact through the
bunny visualized with the technique described in Sect. 3.2. The visualization of the
spectral norm of the stress �.t;X/ provides a more global view of the propagation,
reflection and interference of the wave after the impact damage. Figure 6f shows the
development of the wave after the impact of the projectile. The arrival of the wave
at the back of the bunny is visible in Fig. 6h (colored in red). The interference of the
reflected wave is shown in Fig. 6l, and in Fig. 6u artifacts at the occiput and the lugs
of the bunny are clearly evident.

1http://graphics.stanford.edu/data/3Dscanrep/.

http://graphics.stanford.edu/data/3Dscanrep/
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Fig. 4 Distribution of the fragments with respect to the amount of particles per fragment. (a)
t D 6:36 � 10�8 s. (b) t D 1:27 � 10�7 s. (c) t D 1:91 � 10�7 s. (d) t D 2:55 � 10�7 s. (e)
t D 3:18 � 10�7 s. (f) t D 3:82 � 10�7 s. (g) t D 4:45� 10�7 s. (h) t D 8:27 � 10�7 s
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Fig. 5 Figure (a) shows the extracted surfaces of the Stanford bunny as a complex geometry for
the simulation and analysis, and Figure (b) shows the impact damage where the spheres at the
actual positions x.t;X/ are colorized by the damage c.t;X/

5 Conclusion

We presented an approach to extract fragments from particle-based peridynamics
simulations. The algorithm delivers fragments as connected components of the
particles. Our results show details about the cracks’ branches between the fragments,
and they provide additional information about the resulting fragments, which
are much less obvious in straightforward visualizations. The histograms of the
fragment sizes are essential to compare the simulations results to experiments.
In the experiments in [26, 28], the mass of the fragments or the velocity at the
center of mass of each fragment are provided. To compare the simulations to
these experiments, the algorithm needs to be slightly extended to determine the
mass of the fragments and the center of mass of a fragment. With these additional
attributes, the sensitivity of the initial positions to the distribution of the mass could
be addressed. We planing such a comparison as future work.

Capturing the impact damage and wave propagation in brittle materials is done
with high-speed cameras [8, 20, 27]. Here, the benchmark with particle-based
simulations is a challenge, because the velocity is available per particle. The results
of these experiments are the velocity at the wave front or damage front. With our
visualization technique , the propagation and inference of the waves after the impact
is visualized in the volume of the geometry. Thus, a more “global” view of the waves
can be achieved compared to standard visualization. However, the propagation of
the waves is not qualitatively comparable with the shadow graphs provided in
the experiment with the high-speed cameras. For a quantitative comparison to the
experiments, the visualization techniques need to be extended to obtain the velocity
at the wave front.

For both approaches, the visualization delivers new intuitive and instructive
aspects for analyzing the simulation results qualitatively with new insights in
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Fig. 6 Visualization of the stress in the Stanford bunny (1,787,245 particles) with a spherical
projectile with an impact velocity of 100 m s�1 and a time step size of 10�8 . (a) t D 0 s. (b)
t D 10�8 s. (c) t D 5� 10�8 s. (d) t D 7 � 10�8 s. (e) t D 9� 10�8 s. (f) t D 12� 10�8 s. (g)
t D 14�10�8 s (h) t D 20�10�8 s. (i) t D 25�10�8 s. (j) t D 30�10�8 s. (k) t D 35�10�8 s.
(l) t D 40 � 10�8 s. (m) t D 45 � 10�8 s. (n) t D 50 � 10�8 s. (o) t D 55 � 10�8 s. (p)
t D 60�10�8 s. (q) t D 65�10�8 s. (r) t D 70�10�8 s (s) t D 75�10�8 s (t) t D 80�10�8 s
(u) t D 85� 10�8 s (v) t D 90� 10�8 s (w) t D 95� 10�8 s (x) t D 100� 10�8 s
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(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

Fig. 6 (continued)
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the fragmentation and the propagation of the wave after the impact damage.
Both approaches have to be slightly extended for a quantitative comparison of
experiments in the future.
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Abstract This work concerns the development of a meshfree semi-implicit numer-
ical scheme based on the Smoothed Particle Hydrodynamics (SPH) method, here
applied to free surface hydrodynamic problems governed by the shallow water
equations. In explicit numerical methods, a severe limitation on the time step is
often due to stability restrictions imposed by the CFL condition. In contrast to
this, we propose a semi-implicit SPH scheme, which leads to an unconditionally
stable method. To this end, the discrete momentum equation is substituted into
the discrete continuity equation to obtain a linear system of equations for only
one scalar unknown, the free surface elevation. The resulting system is not only
sparse but moreover symmetric positive definite. We solve this linear system by
a matrix-free conjugate gradient method. Once the new free surface location is
known, the velocity can directly be computed at the next time step and, moreover,
the particle positions can subsequently be updated. The resulting meshfree semi-
implicit SPH method is validated by using a standard model problem for the shallow
water equations.
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1 Introduction

In this work, we propose a meshfree semi-implicit SPH scheme for two-dimensional
inviscid hydrostatic free surface flows. These flows are governed by the shallow
water equations which can be derived either vertically or laterally averaged from
the three dimensional incompressible Navier-Stokes equations with the assumption
of a hydrostatic pressure distribution (see [5, 6]).

Several methods have been developed for both structured and unstructured
meshes using finite difference, finite volume and finite element schemes [5–8, 19].
Explicit schemes are often limited by a severe time step restriction, due to the
Courant-Friedrichs-Lewy (CFL) condition. In contrast, semi-implicit methods lead
to stable discretizations allowing large time steps at reasonable computational costs.
In staggered grid methods for finite differences and finite volumes, discrete variables
are often defined at different (staggered) locations. The pressure term, which is the
free surface elevation, is defined in the cell center, while the velocity components
are defined at the cell interfaces. In the momentum equation, both the pressure term,
due to the gradients in the free surface elevations, and the velocity term, in the mass
conservation, are discretized implicitly, whereas the nonlinear convective terms
are discretized explicitly. In mesh-based schemes, the semi-Lagrangian method
discretizes these terms explicitly (see [3, 12, 13]).

In this work a new semi-implicit Smoothed Particle Hydrodynamics (SPH)
scheme for the numerical solution of the shallow water equations in two space
dimensions is proposed, where the flow variables are the particle free surface eleva-
tion, the particle total water depth, and the particle velocity. The discrete momentum
equations are substituted into the discretized mass conservation equation to give a
discrete equation for the free surface leading to a system in only one single scalar
quantity, the free surface elevation location. Solving for one scalar quantity in a
single equation distinguishes our method, in terms of efficiency, from other methods.
The system is solved for each time step as a linear algebraic system. The components
of the momentum equation at the new time level can directly be computed from
the new free surface, which we conveniently solve by a matrix-free version of the
conjugate gradient (CG) algorithm [11, 17]. Consequently, the particle velocities
are computed at the new time step and the particle positions are then updated. In
this semi-implicit SPH method, the stability is independent of the wave celerity.
Therefore, large time steps can be permitted to enhance the numerical efficiency [5].

The rest of this paper is organized as follows. The problem formulation, including
the two-dimensional shallow water equations and the utilized models for the particle
approximations, is given in Sect. 2. Our meshfree semi-implicit SPH scheme is
constructed in Sect. 3. Numerical results, to validate the proposed semi-implicit
SPH scheme, are presented in Sect. 4. Concluding remarks are given in Sect. 5.
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2 Problem Formulation and Models

This section briefly introduces the utilized models and particle approximations.
Vectors are defined by reference to Cartesian coordinates. Latin subscripts are
used to identify particle locations, where subscript i refers to the focal particle and
subscript j denotes the neighbor of particle i.

2.1 The Kernel Function

We use a mollifying function W, a positive decreasing radially symmetric function
with compact support, of the generic form

W.r; h/ D 1

hd
W

�krk
h

�
for r 2 Œ0;1/ and h > 0:

In our numerical examples, we work with the B-spline kernel of degree 3 [15], given
as

W.r; h/ D Wij D K �

8̂
ˆ̂<
ˆ̂̂:

1 � 3

2

� r
h

�2 C 3

4

� r
h

�3
for 0 � r

h � 1

1

4

�
2 � r

h

�3
for 1 � r

h � 2

0 for r
h > 2

where the normalisation coefficient K takes the value 2=3 (for dimension d D 1),
10=.7�/ (for d D 2), or 1=� (for d D 3). For the mollifier W 2 W3;1.Rd/, h > 0

is referred to as the smoothing length, being related to the particle spacing �P by
h D 2�P. The smoothing length h can vary locally according to

hij D 1

2
Œhi C hj	 where hi D � d

r
mj


j
: (1)

In this study, we use the smoothing length in (1). Moreover, � is in Œ1:5; 2:0	,
which ensures approximately a constant number of particle neighbors of between
40–50 in the compact support of each kernel. A popular approach for the kernel’s
normalisation is by Shepard interpolation [18], where

W 0ij D WijPN
jD1

mj


j
Wij

:

Normalisation is of particular importance for particles close to free surfaces,
since this will reduce numerical instabilities and other undesired effects near the
boundary.
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The gradient of the kernel function is corrected by using the formulation
proposed by Belytschko et al. [1]. For the sake of notational convenience, we will
from now refer to the kernel function W 0ij as Wij and to its gradient rW 0ij as rWij.

2.2 Governing Equations

The governing equations considered in this work are nonlinear hyperbolic conser-
vation laws of the form

Lb.ˆ/C r � .F.ˆ; x; t// D 0 for t 2 R
C;ˆ 2 R (2)

together with the initial condition

ˆ.x; 0/ D ˆ0.x/ for x 2 � � R
d;ˆ0 2 R

where Lb is the transport operator given by

Lb.ˆ/ D @ˆ

@t
C r � .bˆ/

and

x D .x1; : : : ; xd/; F D .F1; : : : ;Fd/; b D .b1; : : : ; bd/;

where b is a regular vector field in R
d, F is a flux vector in R

d, and x is the position.
Figure 1 gives a sketch of the flow domain, i.e., the free surface elevation and

the bottom bathymetry. In this configuration, the vertical variation is much smaller

Fig. 1 Sketch of the flow domain: the free surface (light) and the bottom bathymetry (thick)



A Meshfree Semi-implicit SPH Method for Free Surface Flow 39

than the horizontal variation, as typical for rivers flowing over long distances of
e.g. hundreds or thousands of kilometers. We consider the frictionless, inviscid two
dimensional shallow water equations in Lagrangian derivatives, given as

D�

Dt
C r � .Hv/ D 0 (3)

Dv

Dt
C gr� D 0 (4)

Dr
Dt

D v (5)

where � D �.x; y; t/ is the free surface location,

H.x; y; t/ D h.x; y/C �.x; y; t/

is the total water depth with bottom bathymetry h.x; y/, and where v D v.x; y; t/
is the particle velocity, r D r.x; y; t/ the particle position, and g the gravity
acceleration.

2.3 Hydrostatic Approximation

In geophysical flows, the vertical acceleration is often small when compared to the
gravitational acceleration and to the pressure gradient in the vertical direction. This
is the case in our flow model shown in Fig. 1. If we consider, for instance, tidal flows
in the ocean, the velocity in the horizontal direction is of the order of 1 m/s, whereas
the velocity in the vertical direction is only of the order of one meter per tidal cycle.
Therefore, the advective and viscous terms in the vertical momentum equation of the
Navier-Stokes equation are neglected, in which case the pressure equation becomes

dp

dz
D �g; (6)

with normalised pressure, i.e., the pressure is divided by a constant density. The
solution of (6) is given by the hydrostatic pressure

p.x; y; z; t/ D p0.x; y; t/C gŒ�.x; y; t/ � z	;

where p0.x; y; t/ is the atmospheric pressure at the free surface, taken as constant.
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3 Construction of a Meshfree Semi-implicit SPH Scheme

There are several numerical methods for solving Eqs. (3)–(5), including finite differ-
ences, finite volumes or finite elements, explicit or implicit methods, conservative
or non-conservative schemes, mesh-based or meshfree methods. The meshfree
SPH scheme of this work relies on the semi-implicit finite difference method of
Casulli [4].

Explicit numerical methods are often, for the sake of numerical stability, limited
by the CFL condition. The resulting stability restrictions are usually leading to very
small time steps, in contrast to implicit methods. In fact, fully implicit discretisations
lead to unconditionally stable methods. On the down side, they typically require
solving a large number of coupled nonlinear equations. Moreover, for the sake
accuracy, the time step size in implicit methods cannot be chosen arbitrarily large.
Semi-implicit methods, e.g. that of Casulli [4], aim to reduce the shortcomings of
explicit and fully implicit methods. Following along the lines of [4], we achieve
to balance accuracy and stability, at reasonable time step sizes, by a semi-implicit
SPH scheme for the two-dimensional shallow water equations, as supported by our
numerical results.

3.1 The Smoothed Particle Hydrodynamics Method

Let us briefly recall the basic features of the smoothed particle hydrodynamics
(SPH) method. The SPH method is regarded as a powerful tool in computational
fluid dynamics. Due to the basic concept of SPH, numerical simulations for fluid
flow are obtained by discretisations of the flow equations with using finite sets of
particles. Moreover, the target flow quantity, say A.t; x/, e.g., the velocity field or
water height, is smoothed by a suitable kernel function W.x; x0; h/, by smoothing
parameter h > 0, w.r.t. the measure that is associated with the mass density 
.t; x/
of the flow, i.e.,

A.t; x/ D
Z
�

A.t; x0/

.t; x0/

W.x � x0; h/
.t; x0/dx0 for h > 0:

Due to the Lagrangian description of SPH, the smoothed quantities are approxi-
mated by a set of Lagrangian particles, each carrying an individual mass mi, density

i and field property Ai. Accordingly, for a given point x in space, the field property
Ai, defined at the particles, located at xj, can be interpolated from neighboring
points:

A.t; x/ �
NX
jD1

mj
Aj.t/


j.t/
W.x � xj; h/;
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i.e., the field property A at point x is approximated by the sum of contributions from
particles at xj surrounding x, being weighted by the distance from each particle. The
smoothing kernel W.x � x0; h/ is required to satisfy the following properties.

• Unit mass:
Z
�

W.x � x0; h/dx0 D 1 for all x and h > 0:

• Compact support:

W.x � x0; h/ D 0 for jx � x0j > ˛h;

where the scaling factor ˛ > 0 determines the shape (i.e., flatness) of W.
• Positivity:

W.x � x0; h/ 	 0 for all x; x0 and h > 0:

• Decay:W.x � x0; h/ should, for any h > 0, be monotonically decreasing.
• Localisation:

lim
h&0

W.x � x0; h/ D ı.x � x0/ for all x; x0;

where ı denotes the usual Dirac point evaluation functional.
• Symmetry:W.x � x0; h/ should, for any h > 0, be an even function.
• Smoothness: W should be sufficiently smooth (yet to be specified).

3.2 Classical SPH Formulation

The standard SPH formulation discretizes the computational domain�.t/ by a finite
set of N particles, with positions ri. According to Gingold and Monaghan [10], the
SPH discretization of the shallow water equations (3)–(5) are given as

�nC1i � �ni
�t

C
NX
jD1

mj


j
Hn

ijv
n
j rWij D 0 (7)

vnC1
i � vn

i

�t
C g

NX
jD1

mj


j
�nj rWij D 0 (8)

rnC1i � rni
�t

D vn
i (9)
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where the particles are advected by (9), with �t being the time step size, mj

the particle mass, 
j the particle density, and rWij is the gradient of kernel Wij

w.r.t. xi. In the scheme [10, 15] of Gingold and Monaghan, r � .Hv/ and r� are
explicitly computed. We remark that Eqs. (7)–(9) follow from a substitution of the
flow variable with corresponding derivatives, using integration by parts, and the
divergence theorem.

3.3 SPH Formulation of Vila and Ben Moussa

In the construction of our proposed semi-implicit SPH scheme, we use the concept
of Vila and Ben Moussa [2, 21], whose basic idea is to replace the centered
approximation

.F.vi; xi; t/C F.vj; xj; t// � nij
of (2) by a numerical flux G.nij; vi; vj/, from a conservative finite difference scheme,
satisfying

G.n.x/; v; v/ D F.v; x; t/ � n.x/
G.n; v; u/ D �G.�n; u; v/:

With using this formalism, the SPH discretization of Eqs. (7)–(8) becomes

�nC1i � �ni
�t

C
NX
jD1

mj


j
2Hn

ijv
n
ijrWij D 0;

vnC1
i � vn

i

�t
C g

NX
jD1

mj


j
2�nijrWij D 0:

In this way, we define for a pair of particles, i and j, the free surface elevation �i,
�j and the velocity vi, vj, respectively (see Fig. 2). In our approach, we, moreover,

Fig. 2 Staggered velocity defined at the midpoint of two pair of interacting particles i and j
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use a staggered velocity vij between two interacting particles i and j as

vij D 1

2
.vi C vj/ � nij

in the normal direction ndD1;2ij at the midpoint of the two interacting particles, where

n1ij D xj � xi
kxj � xik and n2ij D yj � yi

kyj � yik

for the two components of vector nij. Moreover,

ı1ij D kxj � xik and ı2ij D kyj � yik

gives the distance between particles i and j. Since the velocities at the particles’
midpoint are known, we can use kernel summation for velocity updates.

3.4 Semi-implicit SPH Scheme

For the derivation of the semi-implicit SPH scheme, let us regard the governing
equations (3)–(5). Writing Eqs. (3)–(5) in a non-conservative quasi-linear form by
expanding derivatives in the continuity equation and momentum equations (with
assuming smooth solutions), this yields

ut C uux C vuy C g�x D 0 (10)

vt C uvx C vvy C g�y D 0 (11)

�t C u�x C v�y C H.ux C vy/ D �uhx � vhy: (12)

Rewriting (10)–(12) in matrix form, we obtain

Qt C AQx C BQy D C; (13)

where

A D

0
B@

u 0 g

0 u 0

H 0 u

1
CA B D

0
B@
v 0 0

0 v g

0 H v

1
CA

Q D
0
@uv
�

1
A C D

0
@ 0

0

�uhx � vhy

1
A :
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Equation (13) is a strictly hyperbolic system with real and distinct eigenvalues. The
characteristic equation, given by

det.qI C rA C sB/ D 0 ; (14)

can be simplified as

.q C ru C sv/
�
.q C ru C sv/2 � gH.r2 C s2/

� D 0 ; (15)

where the solution .r; s; q/ of Eq. (15) are the directions normal to a characteristic
cone at the cone’s vertex. We split Eq. (15), whereby we obtain

q C ru C sv D 0

and

.q C ru C sv/2 � gH.r2 C s2/ D 0 ; (16)

with the characteristic curves u D dx=dt and v D dy=dt. If the characteristic cone
has a vertex at .x; y; t/, then this cone consist of the line passing through vertex
.x; y; t/ and parallel to the vector .u; v; 1/, satisfying

..x � x/� u.t � t//2 C ..y � y/� v.t � t//2 � gH.t � t/2 D 0: (17)

In particular, the gradient of the left hand side of (17) satisfies (16) on the cone
surface. After solving (14), the solution yields

�1 D v �p
gH; �2 D v; �3 D v Cp

gH:

When the particle velocity v is far smaller than the particle celerity
p
gH, i.e., jvj 
p

gH, the particle flow is said to be strictly subcritical and thus the characteristic
speeds �1 and �3 have opposite directions. The maximum wave speed is given as

�max D max.
p
gHi;

p
gHj/:

In this case,
p
gH represents the dominant term which originates from the off

diagonal terms g and H in the matrix A and B.
We now have tracked back where the term

p
gH originates from in the governing

equations. We remark that the first part of the characteristic cone in (15) depends
only on the particle velocity u and v. Equation (16), defining the second part of the
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characteristic cone, depends only on the celerity
p
gH. As we can see, gH in (15)

comes from the off-diagonal terms g and H in the matrices A and B. The terms g
and H represent the coefficients of the derivative of the free surface elevation �x
in (10), the coefficient of the derivative �y in (11) for the momentum equations, and
the coefficient of velocity ux and vy in the volume conservation Eq. (12). We want
to avoid the stability to depend on the celerity

p
gH, therefore we discretize the

derivatives �x, �y and ux, vy implicitly.
Further along the lines of the above analysis, we now develop a semi-implicit

SPH scheme for the two-dimensional shallow water equations. To this end, the
derivatives of the free surface elevation �x and �y in the momentum equation and the
derivative of the velocity in the continuity equation are discretized implicitly. The
remaining terms, such as the nonlinear advective terms in the momentum equation,
are discretized explicitly, so that the resulting equation system is linear.

Let us consider the continuity equation in the original conservative form, given
as

�nt C r � .HnvnC1/ D 0:

The velocity v is discretized implicitly, whereas the total water depthH is discretized
explicitly. In our following notation, for implicit and explicit discretization, we use
n C 1 and n for the superscript, respectively, i.e.,

vn
t C g � r�nC1 D 0

�nt C r � .HnvnC1/ D 0:

We discretize the particle velocities and free surface elevation in time by the ‚
method, for the sake of time accuracy and computational efficiency, i.e., n C 1 D
n C‚, and so

vn
t C g � r�nC‚ D 0 (18)

�nt C r � .HnvnC‚/ D 0 (19)

where the ‚-method notation reads as

�nC‚ D ‚�nC1 C .1 �‚/�n

vnC‚ D ‚vnC1 C .1 �‚/vn:
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The implicitness factor‚ should be in Œ1=2; 1	, according to Casulli and Cattani [5].
The general semi-implicit SPH discretization of (18)–(19) then takes the form

vnC1
ij � Fvn

ij

�t
C g

ıij
‚.�nC1j � �nC1i /C g

ıij
.1 �‚/.�nj � �ni / D 0 (20)

�nC1i � �ni
�t

C‚

NX
jD1

mj


j
.2Hn

ijv
nC1
ij /rWij � nij

C .1 �‚/
NX
jD1

mj


j
.2Hn

ijv
n
ij/rWij � nij D 0

(21)

where

Hn
ij D max.0; hnij C �ni ; h

n
ij C �nj /:

In a Lagrangian formulation, the explicit operator Fvn
ij in (20) has the form

Fvnij D 1

2
.vi C vj/;

where vi and vj denote the velocity of particles i and j at time tn. The velocity at
time tnC1 is obtained by summation,

vnC1i D vni C
NX
jD1

mj


j
.vnC1ij � vni /Wij: (22)

Note that in (20) we have not used the gradient of the kernel function for the
discretization of the gradient of �. We rather used a finite difference discretization
for the pressure gradient. This increases the accuracy, since F in (20) corresponds to
an explicit spatial discretization of the advective terms. Since SPH is a Lagrangian
scheme, the nonlinear convective term is discretized by the Lagrangian (material)
derivative contained in the particle motion in (9). Equation (22) is used to interpolate
the particle velocities from the particle location to the staggered velocity location.

3.5 The Free Surface Equation

Let the particle volume !i in (21) be given as !i D mi=
i. Irrespective of the
form imposed on F, Eqs. (20)–(21) constitute a linear system of equations with
unknowns vnC1

i and �nC1i over the entire particle configuration. We solve this system
at each time step for the particle variables from the prescribed initial and boundary
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conditions. To this end, the discrete momentum equation is substituted into the
discrete continuity equation. This reduces the model to a smaller model, where �nC1i
is the only unknown.

Multiplying (21) by !i and inserting (20) into (21), we obtain

!i�
nC1
i � g‚2�t2

ıij

NX
jD1

2!i!j

h
Hn

ij.�
nC1
j � �nC1i /rWij � nij

i
D bni ; (23)

where the right hand side bni represents the known values at time level tn given as

bni D !i�
n
i ��t

NX
jD1

2!i!jH
n
ijFvnC‚

ij rWij � nij

C g‚.1�‚/�t2

ıij

NX
jD1

2!i!j
�
Hn

ij.�
n
j � �ni /rWij � nij

�
;

(24)

with FvnC‚
ij D ‚Fvn

ij C .1 � ‚/vn
ij. Since Hn

ij, !i, !j are non-negative numbers,

Eqs. (23)–(24) constitute a linear system of N equations for �nC1i unknowns.
The resulting system is symmetric and positive definite. Therefore, the system

has a unique solution, which can be computed efficiently by an iterative method.
We obtain the new free surface location by (23), and (20) yields the particle
velocity vnC1

i .

3.6 Neighboring Search Technique

The geometric search for neighboring particles j around a focal particle i at some
specific position xi can be done efficiently. To this end, we create a background
Cartesian grid (see Fig. 3). This background grid contains the fluid with a mesh
size of 2L, and the grid is kept fixed throughout the simulation. The grid comprises
macrocells which consist of particles (see [16] for computational details), quite
similar to the book-keeping cells used in [14].

To compute the free surface elevation � and the fluid velocity v, only particles
inside the same macro cell or in the surrounding macro cells contribute. Ferarri et
al. [9] explain the neighboring search in detail: The idea is to build a list of particles
in a given macro cell and, vice versa, to keep a list of indices, one for each particle,
pointing to macro cells containing that particle. We store the coordinates of each
particle to reduce the time required for the neighbor search. In our neighbor search,
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Fig. 3 Fictitious Cartesian
grid: neighboring search is
done within the nine cells in a
two-dimensional space. The
smoothing length is constant
and the support domain for
the particles is 2L

a particle can only interact with particles in its macro cell or in neighboring macro
cells. For the two-dimensional case of the present study we only need to loop over
the bounding box of nine macro cells (see Fig. 3).

4 Numerical Results

Now we evaluate the performance of the proposed semi-implicit SPH scheme. This
is done by employing a standard test problem for the 2d shallow water equations. In
this model problem, we assume a smooth solution, i.e., a collapsing Gaussian bump.

4.1 A Collapsing Gaussian Bump

We consider a smooth free surface wave propagation, by the initial value problem

�.x; y; 0/ D 1C 0:1e
�
1

2

0
@ r2

�2

1
A
;

u.x; y; 0/ D v.x; y; 0/ D h.x; y/ D 0;

in the domain � D Œ�1; 1	 � Œ�1; 1	 with a prescribed flat bottom bathymetry, i.e.,
h.x; y/ D 0, where � D 0:1 and r2 D x2 C y2. The computational domain � is
discretized with 124;980 particles. The final simulation time is t D 0:15, and the
time step is chosen to be �t D 0:0015. We have used the implicitness factor ‚ D
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Fig. 4 3d surface plot of the free-surface: SISPH solution at times t D0.0 s, 0.05 s, 0.10 s, 0.15 s
with 124,980 particles

0:65. The smoothing length is taken as hi D ˛.!i/
1=d, where ˛ D Œ1:5; 2	 and d D 2.

The obtained numerical solution is shown in Fig. 5. The profiles in Fig. 4 show the
three dimensional surface plots of the free surface elevation at times t D0.0 s, 0.05 s,
0.10 s, 0.15 s. Due to the radial symmetry of the problem, we obtain a reference
solution by solving the one-dimensional shallow water equations with a geometric
source term in radial direction: a method based on the high order classical shock
capturing total variation diminishing (TVD) finite volume scheme is employed for
computing the reference solution using 5000 points and the Osher-type flux for the
Riemann solver, see [20] for details. The comparison between our numerical results
obtained with semi-implicit SPH scheme and the reference solution is shown. A
good agreement between the two solutions is observed in Fig. 5. We attribute the
(rather small) differences in the plots to the fact that the SPH method has a larger
effective stencil, which may increase the numerical viscosity. The cross section of
the free surface elevation and the velocity in the x-direction is shown in Fig. 5. We
have used a higher resolution of particle numbers of 195;496, the cross section of
the free surface elevation and the velocity at final time t D 0:15 s can be seen in
Fig. 6. We observe similar results compared to particle numbers 124,980.
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Fig. 5 Cross section of semi-implicit solution (green) versus reference solution (red): Free-surface
(left), velocity (right) in the x-direction at times t D 0.0 s, 0.05 s, 0.10 s, 0.15 s
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Fig. 6 Cross section of semi-implicit solution (green) versus reference solution (red): Free-surface
(left), velocity (right) in the x-direction at times t D 0.15 s with a higher resolution of 195,496
particles

5 Conclusion

We have proposed a meshfree semi-implicit smoothed particle hydrodynamics
(SPH) method for the shallow water equations in two space dimensions. In our
scheme, the momentum equation is discretized by a finite difference approximation
for the gradient of the free surface and the SPH approximation for the mass
conservation equation. By the substitution of the discrete momentum equations into
the discrete mass conservation equations, this leads to a sparse linear system for the
free surface elevation. We solve this system efficiently by a matrix-free version of
the conjugate gradient (CG) algorithm.

The key features of the proposed semi-implicit SPH method are briefly as
follows: The method is mass conservative; efficient; time steps are not restricted
by a stability condition (coupled to the surface wave speed), thus large time steps
are permitted.

Ongoing research is devoted to nonlinear wetting and drying problems, applica-
tion to shock problems, and extension of the scheme to the fully three-dimensional
case.
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AMeshfree Method for the Fractional
Advection-Diffusion Equation

Yanping Lian, Gregory J.Wagner, and Wing Kam Liu

Abstract “Non-local” phenomena are common to problems involving strong
heterogeneity, fracticality, or statistical correlations. A variety of temporal and/or
spatial fractional partial differential equations have been used in the last two decades
to describe different problems such as turbulent flow, contaminant transport in
ground water, solute transport in porous media, and viscoelasticity in polymer
materials.

The study presented herein is focused on the numerical solution of spatial
fractional advection-diffusion equations (FADEs) via the reproducing kernel par-
ticle method (RKPM), providing a framework for the numerical discretization of
spacial FADEs. However, our investigation found that an alternative formula of the
Caputo fractional derivative should be used when adopting Gauss quadrature to
integrate equations with fractional derivatives. Several one-dimensional examples
were devised to demonstrate the effectiveness and accuracy of the RKPM and the
alternative formula.

1 Introduction

A diversity of deterministic and stochastic partial differential equations [3, 12, 13]
have been developed with fractional-order derivative operators built-in to describe
“non-local” phenomena due to strong heterogeneity, fracticality, or statistical
correlations. In particular, the spatial and/or temporal fractional advection-diffusion
equations have been shown to to be useful in the description of anomalous diffusion
phenomena [1, 8, 11].
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The one dimensional spatial fractional advection-diffusion equation is defined as

@�.x; t/

@t
C u

@�.x; t/

@x
� 
 @

@x
�.˛/.x; t/ D f .x; t/ (1)

where � represents the solute concentration, f .x; t/ is a source term, u stands
for the advective velocity, 
 is a coefficient of the fractional diffusion term, and
˛ 2 .0; 1	 stands for the fractional derivative order associated with a left-sided
Caputo fractional derivative. The left-sided Caputo fractional derivative is defined
for a general function  .x/ as

 .˛/.x/ D 1

�.1 � ˛/
Z x

0

.x � y/�˛ 0.y/dy (2)

where �.1 � ˛/ D R1
0

z�˛e�zdz is Gamma function, and prime notation stands for
first order derivative with respect of y.

Equation (2) can be discretized by different numerical methods. Here, we
focus on the ability of the reproducing kernel particle method (RKPM) [9, 10] to
approximate the above equation by performing a parametric study. In RKPM the
approximation of the general function  .x/ is made by a set of scattered particles
used to discretize the material domain� as

 R.x/ D
Z
�

‰
.xI x � Nx/ .Nx/dNx (3)

the superscript R stands for reconstruction or approximation, and subscript 
 is
called the dilation parameter and used to determine the size of support domain of a
point. ‰
.xI x � Nx/ is a kernel function defined as

‰
.xI x � Nx/ D C
.xI x � Nx/!
.x � Nx/ (4)

where C
.xI x � Nx/ is the correction function, and !
.x � Nx/ is the weight function,
both of which are defined as follows.

C
.xI x � Nx/ D PT.x � Nx/b.x; 
/ (5)

where PT.x/ D �
1 x x2 � � � xk � is the kth-order polynomial basis with unknown

coefficients collected by the vector function b.x; 
/ D Œb0 b1 b2 � � � bk 	. An
example for the weight function is the quartic spline function as follows.

!
.x � Nx/ D 5

4


	
1 � 6r2 C 8r3 � 3r4 0 � r < 1

0 r 	 1

with r D jx � Nxj =
.
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After some algebra and using the Einstein summation convention when repeated
indices are present, Eq. (3) can be rewritten as:

 R.x/ D NI.x/ .xI/ (6)

with

NI.x/ D PT.0/M.x/�1P.x � xI/!
.x � xI/�VI (7)

and M�1 being the inverse matrix of M defined by

M.x/ D
LX

JD1
!
.x � xJ/P.x � xJ/PT.x � xJ/�VJ (8)

with L the total number of particles that have contribution to the particle I, and�VJ

a measure of the sub-domain represented by particle J.

2 RKPM Approximation for the Fractional Derivative

Approximating the fractional derivative of the function  at a discretization point
xI through Eq. (6) requires the computation of the fractional derivative of the
shape function NI.x/. For simplicity and demonstration purposes, let us assume a
uniformly spaced grid where n particles are evenly spaced by �x. The position of
particle I is then xI D I�x for I D 0; � � � ; n�1. By choosing a first-order polynomial
basis, k D 1, and 
 D 2�x the global internal particle I has a nonlinear shape
function given by

NI.x/ D 5

8

	
1 � 6r2 C 8r3 � 3r4 0 � r < 1

0 r 	 1
(9)

From Eq. (2) the fractional derivative for the above shape function becomes:

N.˛/I .x/ D 1

�.1 � ˛/
Z x

0

.x � y/�˛N0I.y/dy (10)

Substituting Eq. (9) into Eq. (10) yields

N.˛/I .x/ D �.˛/

8̂
<̂
ˆ̂:

0 x 2 Œx0; xI�2	
H.x � xI�2I x � xI/ x 2 ŒxI�2; xI	
Hm.x/C G.x � xII x � xI/� G.0I x � xI/ x 2 ŒxI ; xIC2	
Hm.x/C Gm.x/ x 2 ŒxIC2; xN 	

(11)



56 Y. Lian et al.

with �.˛/ D 15
2
2�.2�˛/ , Hm.x/ D H.x � xI�2I x � xI/ � H.x � xII x � xI/, Gm.x/ D

G.x � xI�2I x � xI/� G.x � xII x � xI/, and

H.�I �/ D ��1�˛ C 1�˛
2�˛ �

2�˛

� 1

2

h
�2�1�˛ C 2�.1�˛/

2�˛ �2�˛ C 1�˛
3�˛ �

3�˛
i

C 1

2

h
�3�1�˛ C 3�2.1�˛/

2�˛ �2�˛ C 3�.1�˛/
3�˛ �3�˛ C 1�˛

4�˛ �
4�˛
i (12)

and

G.�I �/ D ��1�˛ C 1�˛
2�˛ �

2�˛

C 1

2

h
�2�1�˛ C 2�.1�˛/

2�˛ �2�˛ C 1�˛
3�˛ �

3�˛
i

C 1

2

h
�3�1�˛ C 3�2.1�˛/

2�˛ �2�˛ C 3�.1�˛/
3�˛ �3�˛ C 1�˛

4�˛ �
4�˛
i (13)

Figure 1 depicts the N.˛/I .x/ for selected values of ˛ 2 .0; 1	 within a material
domain x D Œ0; 15	 with a particle spacing �x D 1.
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Fig. 1 Non-locality of N.˛/I .x/ with ˛ D 0.1, 0.5, and 0.9, where the support domain is extended
to the right side of the domain, and can shrink back to compact domain for ˛ D 1, namely the
support domain is equal to that of the shape function
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Fig. 2 The curves of kernel function with different value of ˛: (a) .x� y/�˛ , (b) .x� y/1�˛

2.1 Alternative Approximation for the Fractional Derivative
Using RKPM

The approximation of Eq. (2) requires numerical integration, such that a random
distribution of particles and the effect of boundary conditions can be taken into
account. However the presence of the kernel function .x � y/�˛ inside the integral
of Eq. (2) can lead to numerical issues when using Gauss quadrature. This can be
explained by the fact that this kernel function becomes steeper as ˛ approaches 1,
see Fig. 2a. In practice, the problem could be alleviated by including a large quantity
of quadrature points to guarantee accuracy, but there is an alternative solution that
reduces the computational burden.

If we use integration by parts on Eq. (2) so that the order of the kernel function
is increased by 1, then we get

 .˛/.x/ D 1

�.2� ˛/



 0.0/.x/˛ �

Z x

a
.x � y/1�˛ 00.y/dy

�
(14)

This was plotted in Fig. 2b, where it is clear that the kernel function .x � y/1�˛
becomes relatively smoother than the original formulation given by Eq. (2).
Equation (14) is denoted henceforth as the alternative formula of Caputo fractional
derivative and is used in the remaining of this article.

3 Spatial Fractional Advection-Diffusion Equation via
RKPM

As shown in the Introduction, the steady state spatial FADE can be written within a
material domain� D Œ0; 1	 as

d�.x/

dx
� 


d

dx
�.˛/.x/ D f .x/ (15)
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with essential or Dirichlet boundary conditions given by

�.0/ D N�.0/; �.1/ D N�.1/ (16)

where N�.x/ is a given function.
Using a Petrov-Galerkin (P-G) formulation, the trial function takes the form

�h.x; t/ D NI.x/�I.t/ (17)

where �I.t/ indicates the value of function � at node xI , and NI.x/ is defined by
Eq. (7). The test function is then,

w� D w C �w0 (18)

Here w0 leads to the difference between test and trial function. The constant � D
ˇ



2
acts like a viscosity coefficient, and ˇ is a dimensionless stabilization parameter

that can affect the central difference scheme for the advection term such that it
becomes closer to a forward difference scheme and achieving a stabilized solution.
If � is set as 0, then the P-G formulation is reduced to a Galerkin formulation.

Following the standard steps, a weak form of the FADE (15) yields

Z
�

uw��0.x//dx C
Z
�


w0�.˛/.x//dx �
Z
�

�
w0�.1C˛/.x//dx D
Z
�

w�f .x/dx
(19)

where �.1C˛/.x/ D d
dx�

.˛/.x/. Substituting the above trial function into Eq. (19),
yields the Petrov-Galerkin RKPM discrete equation as

�
u
�
�K�.1/� K�.0/


C 
K�.˛/ � �
K�.1C ˛/
�

ˆ D F (20)

where ˆ D �
�0 � � � �J � � � �T is the nodal value vector, FI D R

�

�
NI C �N0I

�
f .x/dx,

and

K�
IJ.ˇ/ D

Z
�

N0IN
.ˇ/
J dx (21)

where ˇ takes the value of 0,1,˛, and 1 C ˛. It should be noted that the alternative
formula of Caputo fractional derivative is used for K�.˛/, which reads:

K�.˛/ D Kb C Km.˛/ (22)

with

Kb
IJ D 1

�.2 � ˛/
Z
�

N0I.x/N0J.0/x1�˛dx (23)
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and

Km
IJ D 1

�.2 � ˛/
Z
�

N0I.x/
�Z x

�

.x � y/1�˛N00J .y/dy
�
dx (24)

Due to the non-local fractional differential operator, the induced stiffness matrix is
no-longer compact but dense.

Before solving illustrative examples, the stabilization parameter ˇ needs to be
chosen appropriately, due to its crucial role in the Petrov-Galerkin formulation.
For the integer derivative advection-diffusion equation [2, 4–7], the stabilization
parameter is usually calculated by

ˇ D coth.Pe/� 1=Pe (25)

where Pe is the element Peclet number, and defined by Pe D 2u4x



which is used in
the finite element method. However, by this definition, the element Peclet number is
no longer a dimensionless number as ˛ < 1, because the dimension of 
 takes the
form of L1C˛=T [1], where L and T is the length and time dimensions, respectively.
Therefore, Eq. (25) is not suitable to calculate the stabilization parameter for the
case of ˛ < 1. A theoretical study about the correct definition of element Peclet
number for FADE will be presented in an upcoming contribution. In the work
presented herein, Eq. (25) is applied directly as an approximation of the stabilization
parameter for the cases with strong advection propensity, meanwhile the element
Peclet number is approximately determined by Pe D 2u




to taking into account the

effect of dilation parameter. For cases with lower advection propensity, Galerkin
formulation is used.

4 Illustrative Examples

Several examples including steady state and time-dependent problems are studied.
For the time dependent example, forward time integration is implemented with
lumped mass matrix approximation. The Lagrange multiplier method is used to
impose the Dirichlet boundary conditions.

4.1 Steady State Examples

Two cases will be considered: homogeneous and non-homogeneous boundary
conditions. Starting with the homogeneous boundary conditions, and for a material
domain of x 2 Œ0; 2	, the steady state fractional advection-diffusion equation is
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given as

u
d

dx
�.x/ � 


d

dx
�.˛/.x/ D f .x/ (26)

with

�.0/ D 0; �.2/ D 0 (27)

and

f .x/ D �

�
24x3�˛

�.4 � ˛/
� 24x2�˛

�.3 � ˛/ C 8x1�˛

�.2 � ˛/

�
C u

�
4x3 � 12x2 C 8x



(28)

The analytic solution reads

�.z/ D x2 .2� x/2 (29)

Two different values of ˛D0.7 and 0.2 are considered herein, while the other
parameters are chosen to be as u D 0:2, 
 D 0:4, �x D 0:1, and 
 D 3�x.
For this homogeneous boundary condition problem, Galerkin formulation is used.
Numerical results from RKPM with the alternative and original Caputo fractional
formula denoted by RKPM1 and RKPM2, respectively, are shown in Figs. 3 and 4.
Both figures demonstrate that the numerical results with the alternative Caputo
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0.8

1

1.2

f

RKPM1
RKPM2
Exact

Fig. 3 Comparison between numerical results and analytic result to case of ˛ D 0:7, where
RKPM1 and RKPM2 stand for the result from RKPM with alternative and original Caputo
fractional formulas, respectively
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Fig. 4 Comparison between numerical results and analytic result to case of ˛ D 0:2, where
RKPM1 and RKPM2 stand for the result from RKPM with alternative and original Caputo
fractional formulas, respectively

fractional formula are in good agreement with the analytic solution, while the
numerical results with the original formula deviate from the analytic solution when
˛ increasing and using Gauss quadrature.

Now considering the problem with non-homogeneous boundary conditions and
for a material domain of x 2 Œ0; 1	, the Dirichlet boundary conditions are set as

�.0/ D 0; �.1/ D 1 (30)

with f .x/ D x.
The analytic solution reads

�.x/ D �.0/C c



u

h
E˛;1.

u



x˛/� 1

i
� 1

u
f .x/ �

h
E˛;1.

u



x˛/� 1

i
(31)

where c is determined by the right Dirichlet B.C, and E˛;1.z/ is a two parameter
Mittag-Leffler function defined by

E˛;1.z/ D
1X
kD0

zk

�.˛k C 1/
(32)

For illustrative purposes we chose two sets of parameters: (1) ˛ D 0:9, 
 D
0:0439, and u D 1; and (2) ˛ D 0:1, 
 D 1:4515 and u D 1. For both cases, two



62 Y. Lian et al.

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

f
Galerkin
P-G
Exact

Fig. 5 Comparison between numerical results and analytic result for case of ˛ D 0:9 with �x D
0:1, where Galerkin and P-G stand for the numerical result from Galerkin RKPM and Petrov-
Galerkin RKPM, respectively

discretization spacings, �x D 0:1 and �x D 0:01, were considered with 
 D 3�x.
Both Petrov-Galerkin and Galerkin RKPM are used.

In the first case, �x D 0:1 induces a strong advection propensity. Therefore, as
shown in Fig. 5, spurious oscillations are present in numerical result by the Galerkin
RKPM, while the numerical result utilizing Petrov-Galerkin RKPM is in better
agreement with analytic solution, although showing some oscillatory behavior. The
finer particle spacing of �x D 0:01 reduces the advection propensity and then the
numerical results become in good agreement with the analytic solution as shown in
Fig. 6.

However, when considering the second set of parameters where ˛ D 0:1

the oscillations present in the solutions cannot be eliminated, regardless of using
the stabilization formulation given by the Petrov-Galerkin RKPM or even by the
particle spacing refinement, as shown in Figs. 7 and 8. The fractional order ˛
dictates the difference in the observed behavior. Note that the stabilization parameter
used here is only taking into account the advection term. Hence, decreasing the
fractional order controls how strong the advection effect is in the fractional diffusion
term. This explains why the stabilization parameter formula from the integer
advection-diffusion equation does not work for this case, although improving the
numerical solution from the Galerkin RKPM when considering high element Peclet
number. A suitable stabilization parameter formula which can take into account
both advection and fractional diffusion terms will be presented in an upcoming
contribution.
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Fig. 6 Comparison between numerical results and analytic result for case of ˛ D 0:9 with
�x D 0:01, where Galerkin and P-G stand for the result from Galerkin RKPM and Petrov-Galerkin
RKPM, respectively
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Fig. 7 Comparison between numerical results and analytic result for case of ˛ D 0:1 with �x D
0:1, where Galerkin and P-G stand for the result from Galerkin RKPM and Petrov-Galerkin RKPM,
respectively
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Fig. 8 Comparison between numerical results and analytic result for case of ˛ D 0:1 with
�x D 0:01, where Galerkin and P-G stand for the result from Galerkin RKPM and Petrov-Galerkin
RKPM, respectively

4.2 Time-Dependent Examples

Within a material domain of x 2 Œ0; 100	, a time-dependent fractional advection-
diffusion equation is given by

@

@t
� .x; t/C u

@

@x
� .x; t/ � 


@

@x
�.˛/.x; t/ D 0 (33)

with Dirichlet B.C.

�.0; t/ D 0; �.100; t/ D 0 (34)

and an initial condition

�.x; 0/ D f e
�0:05.x�32:5/2 x 2 Œ30; 35	
0 otherwise

(35)

Three fractional order parameter values are considered herein: ˛ D 0:5, ˛ D 0:9

and ˛ D 1. The remaining parameters are u D 0:25,
 D 0:1, �x D 0:25 and

 D 3�x for all three values of ˛. We note that the parameters ˛ and �x are
chosen so that oscillations will not be present in the numerical solutions for all
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Fig. 9 Numerical results for time-dependent advection-diffusion equation at time of t D 3 with
�x D 0:25

three cases when using Galerkin RKPM. Numerical solutions of three cases at
time t D 3 are shown in Fig. 9. Two characteristics of the FADE solution can be
observed when considering the different fractional orders. First, the peak value is
inversely proportional to the fractional order, while the peak position moves slower
for decreasing values of the fractional order. This demonstrates that the advection
effect arises from the fractional diffusion term and in the direction opposite to
that of the given advection term. Second, the spread of the domain of the plume
described by the FADE is larger than that of the traditional advection-diffusion
equation as shown in the close-up portion of Fig. 9. This demonstrates that a so-
called anomalous diffusion in terms of spatial correlation can be described by a
non-locality of the fractional derivative operator, which also leads to the lower peak
value.

5 Conclusion

The approximation of the spatial fractional advection-diffusion equation that arises
in many physical and engineering applications is studied using the reproducing
kernel particle method. An alternative form of the Caputo fractional derivative is
recommended when using Gauss quadrature to integrate expressions with fractional
derivative. The numerical results demonstrate the effectiveness and accuracy of the
proposed alternative formula for RKPM. We also concluded that the fractional
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derivative order ˛ has a direct influence on the diffusion term, which can also
represent advective effect and has a spatial correlation effect. Therefore, the
stabilization parameter formula determined for the traditional advection-diffusion
equation with integer derivative order cannot be directly used for the fractional
advection-diffusion equation. In addition, the traditional definition of element Peclet
number does not lead to a dimensionless number. These two observations will be
further investigated in an upcoming contribution.
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Meshless Multi-Point Flux Approximation

Alexander A. Lukyanov and Cornelis Vuik

Abstract The reservoir simulation of the complex reservoirs with anisotropic
permeability, which includes faults and non-orthogonal grids, with a fully discontin-
uous permeability tensor in the discretization is a major challenge. Several methods
have already been developed and implemented within industry standard reservoir
simulators for non-orthogonal grids (e.g., Multi-Point Flux Approximation (MPFA)
“O” method). However, it has been noticed that some of the numerical methods
for elliptic/parabolic equations may violate the maximum principle (i.e., lead to
spurious oscillations), especially when the anisotropy is particularly strong. It has
been found that the oscillations are closely related to the poor approximation of the
pressure gradient in the flux computation. Therefore, proposed methods must cor-
rectly approximate underlying operators, satisfy a discrete maximum principle and
have coercivity properties. Furthermore, the method must be robust and efficient.
This paper presents the meshless multi-point flux approximation of second order
elliptic operators containing a tensor coefficient. The method is based on a pressure
gradient approximation commonly used in meshless methods (or Smoothed Particle
Hydrodynamics method—SPH method). The proposed discretization schemes can
be written as a sum of sparse positive semidefinite matrix and perturbation matrix.
We show that convergence rates are retained as for finite difference methods
O.h˛/; 1 � ˛ < 2, where h denotes the maximum particle spacing. The results
are presented, discussed and future studies are outlined.

A.A. Lukyanov (�)
Schlumberger-Doll Research, One Hampshire Street, Cambridge, MA 02139, USA
e-mail: alukyanov@slb.com

C. Vuik
Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft Institute
of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands
e-mail: c.vuik@tudelft.nl

© Springer International Publishing AG 2017
M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations VIII, Lecture Notes in Computational Science and Engineering 115,
DOI 10.1007/978-3-319-51954-8_5

67

mailto:alukyanov@slb.com
mailto:c.vuik@tudelft.nl


68 A.A. Lukyanov and C. Vuik

1 Introduction

The multi-point flux approximation, MPFA, is a discretization method developed
by the oil industry to be the next generation method in reservoir simulations and it
can be applied to different types of mesh, for example using quadrilateral meshes as
in Aavatsmark et al. [2, 3], Aavatsmark [1], Edwards and Rogers [12], Klausen and
Russell [17] or unstructured grids as in Edwards [11] to approximate the following
operator:

L .p .r// D �r .M .r; p .r//rp .r//� g .r/ ; 8r 2 � � R
n (1)

where p .r/ is the pressure, M .r; p .r// D �
m˛ˇ



is the mobility tensor, g .r/ is the

known sink / source term, n D 1; 2; 3 is the spatial dimension. Consider the operator
in the expression (1) with a piecewise constant mobility M .r; p .r// 2 L2 .�/.

Several methods have already been developed and implemented within an
industry standard reservoir simulator for non-orthogonal grids. The methods are
known as the O-method, U-method and the L-method for quadrilateral meshes in
two and three dimensions (see [1, 12, 18]. The MPFA methods are not restricted to
quadrilateral meshes and have been investigated in Edwards [11]. It has been noticed
that some of the numerical methods for elliptic/parabolic equations may violate the
maximum principle (i.e. lead to spurious oscillations). Therefore, proposed methods
must satisfy a discrete maximum principle to avoid any spurious oscillations. The
discrete maximum principle for MPFA methods was discussed, e.g., in Edwards and
Rogers [12], Mlacnik and Durlofsky [28], Lee et al. [19].

However, non-physical oscillations can appear in the developed multi-point flux
approximations when the anisotropy is particularly strong. It has been found that the
oscillations are closely related to the poor approximation of the pressure gradient in
the flux computation. In this paper, the meshless multi-point flux approximation for
the general fluid flow in porous media is proposed. The discretization scheme is
based both on the generalized Laplace approximation and on a gradient approxima-
tion commonly used in the Smoothed Particle Hydrodynamics (SPH) community for
thermal, viscous, and pressure projection problems and can be extended to include
higher-order terms in the appropriate Taylor series. The proposed discretization
scheme is combined with mixed corrections, which ensure linear completeness. The
mixed correction utilizes Shepard Functions in combination with a correction to
derivative approximations. Incompleteness of the kernel support combined with the
lack of consistency of the kernel interpolation in conventional meshless methods
results in fuzzy boundaries. In corrected meshless methods, the domain boundaries
and field variables at the boundaries are approximated with the improved accuracy
comparing to the conventional SPH method. The resulting schemes improve the
particle deficiency (kernel support incompleteness) problem. Although, the analysis
of the different discretization schemes in this paper is restricted to 2D (i.e., n D 2),
the results can be applied in any space.
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2 Fluid Flow Modelling Using SPH

To calculate the second derivatives of F, several methods were proposed (Chen et al.
[7]; Bonet and Kulasegaram [4]; Colin et al. [9]). However, second-order derivatives
can often be avoided entirely if the PDE is written in a weak form. It is important
to note that approximations using second-order derivatives of the kernel are often
noisy and sensitive to the particle distributions, particularly for spline kernels of
lower orders.

Brookshaw [6] proposed an approximation of the Laplacian for an inhomoge-
neous scalar field m .r/ that only includes first order derivatives:

hr .m .rI/rF .rI//i D
D
X
�rI ;h

VrJ ŒF .rJ/ � F .rI/	
.rJ � rI/ � .mJ C mI/rW .rJ � rI ; h/

krJ � rIk2
(2)

where VrJ is the volume of a particle J, k�k is the Euclidean norm throughout this
paper, F .r/ is the unknown scalar or vector field (e.g., pressure p) 8r 2 � � R

n,
mI D m .rI/, rI 2 � � R

n and mJ D m .rJ/, rJ 2 � � R
n are the field coefficients,

W .rJ � rI ; h/ is the Kernel.
This Laplacian approximation was used by Brookshaw [6], Cleary and Mon-

aghan [8], Jubelgas et al. [16] for thermal conduction, Morris et al. [29] for
modelling viscous diffusion, Cummins and Rudman [10] for a vortex spin-down
and Rayleigh-Taylor instability, Shao and Lo [33] for simulating Newtonian and
non-Newtonian flows with a free surface, Moulinec et al. [20] for comparisons of
weakly compressible and truly incompressible algorithms, Hu and Adams [15] for
macroscopic and mesoscopic flows, Zhang et al. [34] for simulations of the solid-
fluid mixture flow. There are several numerical SPH schemes commonly used in
numerical simulations for a scalar inhomogeneous field m .r/. High order accuracy
approximations can also be derived by using SPH discretization based on higher
order Taylor series expansions [13, 14, 22, 31]. However, it is usually required
that the discrete numerical schemes can reproduce linear fields [5, 23, 27, 30] or
polynomials up to a given order [21].

The correction terms to Brookshaw’s formulation, which improve the accuracy
of the Laplacian operator near boundaries, were proposed by Schwaiger [31]:

hr .m .rI/rF .rI//i D
��1ˇˇ
n

8<
:
X
�rI ;h

VrJ ŒF .rJ/ � F .rI/	
.rJ � rI/ � .mJ C mI/rW .rJ � rI ; h/

krJ � rIk2

9=
;�

��
�1
ˇˇ

n
fŒhr˛.m .rI/F .rI//i � F .rI/ hr˛m .rI/i C m .rI/ hr˛F .rI/i	N˛g

(3)
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N˛ .rI/ D
2
4X
�rI ;h

VrJr˛W .rJ � rI; h/

3
5 (4)

hr˛F .rI/i D
X
�rI ;h

VrJ ŒF .rJ/ � F .rI/	r �̨W .rJ � rI ; h/ (5)

r �̨W D A�1˛ˇrˇW; A˛ˇ D
2
4X
�rI ;h

VrJ

�
r˛J � r˛I

�rˇW .rJ � rI; h/

3
5 (6)

where n D 1; 2; 3 is the spatial dimension, the gradient approximation hr˛F .rI/i is
computed using (5) and the tensor �˛ˇ is defined by

�˛ˇ .rI/ D
X
�rI ;h

VrJ

�
r�J � r�I


r�W .rJ � rI; h/

krJ � rIk2
�
r˛J � r˛I


 �
rˇJ � rˇI

�
(7)

Throughout this paper, the summation by repeated Greek indices is assumed. For
multi-dimensional problems, the correction tensor�˛ˇ .rI/ is a matrix. If the particle
rI has entire stencil support (i.e., the domain support for all kernels W .rJ � rI; h/
is entire and symmetric) then �˛ˇ .rI/ � ı˛ˇ , ı˛ˇ is the Kronecker symbol.
Unfortunately, �˛ˇ .rI/ deviates from ı˛ˇ for the provided algorithm and, hence,
it is important to minimize this deviation from ı˛ˇ in the new methods.

Remark 1 It is important to note that correction tensors �˛ˇ and A˛ˇ are the same
tensors. Indeed, using the following identity:

�
r˛J � r˛I

� �r�J � r�I

r�W .rJ � rI; h/

krJ � rIk2
D

D ˙1

h

dW

dz

�
r˛J � r˛I

�
krJ � rIk D r˛W .rJ � rI ; h/ ; 8˛

(8)

where z D krJ � rIk =h, 8rJ ; rI 2 � � R
n, the following relations can be

established:

�˛ˇ .rI/ D
X
�rI ;h

VrJ

�
r�J � r�I


r�W .rJ � rI ; h/

krJ � rIk2
�
r˛J � r˛I


 �
rˇJ � rˇI

�
D

D
X
�rI ;h

VrJ

�
r˛J � r˛I

�rˇW .rJ � rI; h/ D A˛ˇ .rI/
(9)

To calculate coefficients in the scheme (3)–(7) is a trivial task. However, in general,
it should be performed at each Newton-Raphson iteration in the non-linear case
(i.e., m D m .F/). It also requires additional efforts to invert the correction matrix
A˛ˇ (inversion of n � n matrices per each particle, where n D 1; 2; 3 is the
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spatial dimension) and storage cost of r˛W .rJ � rI; h/, r �̨W .rJ � rI; h/, and
corresponding ��1˛˛ D A�1˛˛ per each particle.

2.1 Kernel Property

A central point of the SPH formalism is the concept of the interpolating function (or
kernel) through which the continuum properties of the medium are recovered from
a discrete sample of N points with prescribed mass mI (for conventional Lagrangian
methods) or volume VI (for fully Eulerian methods). In the Lagrangian description,
these points move according to the specified governing laws, whereas these points
are fixed in space for the Eulerian description. A good interpolating kernel must
satisfy a few basic requirements: it must tend to the delta function in the continuum
limit and has to be a continuous function with definite first derivatives at least. From
a more practical point of view it is also advisable to deal with symmetric finite
range kernels, the latter is to avoid N2 calculations. In this paper, the cubic spline is
used:

W.z; h/ D „

hn

8̂
ˆ̂<
ˆ̂̂:

1 � 3

2
z2 C 3

4
z3; 0 � z � 1

1

4
.2 � z/3; 1 � z � 2

0; z > 2

(10)

where z D ��r0 � r
�� =h, 8r; r0 2 � � R

n and „ D 3

2
;
10

7�
;
1

�
in 1D (i.e., n D 1),

2D (i.e., n D 2) and 3D (i.e., n D 3), respectively.

3 Meshless Transmissibilities

The well-known two-point flux approximation (TPFA) is a numerical scheme used
in most commercial reservoir simulators for the pressure Eq. (1): L .p/ D 0.
The net flow rate of a fluid (single phase and component fluid) from a cell I
into neighbouring cells is obtained by summing fluxes over the neighbouring
cells J:

q D
X
J

eTJI Œp .rJ/� p .rI/	 ; TJI 	 0 (11)

where eTJI is the transmissibility between cells J and I, q is the total flux through
the boundary of the control volume located at the point rI . The transmissibilityeTJI
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defined at an interior face f between cells J and I is calculated as

eTJI D 1" ��rf ;J��2
SfMrf ;J

C
��rf ;I��2
SfMrf ;I

# (12)

where rf ;J and rf ;I are the vectors from centres of cells J and I to the face f
respectively, Sf is the area vector of the face f . In the case of M-orthogonal
mesh, when MSf and ŒrJ � rI 	 are collinear, the expression (11) reduces to the
form of the central finite difference scheme and approximates the flux with
O �h2
 order of accuracy for any mobility tensor field M. The expression (12)
ensures that the flux into the adjoining region is continuous [8]. The TPFA
scheme (11) is unconditionally monotone scheme. It is clear that the expression
(3) cannot be written in the form (11) due to terms hr˛ .m .rI/F .rI//iN˛ and
F .rI/ hr˛m .rI/iN˛. Hence, it is only possible in this case to introduce a definition
of a partial meshless transmissibility between particles rJ and rI as follows:

T .rJ; rI/ D TJI D ��1ˇˇ
n

�8<
:
X
�rI ;h

VrJ
.rJ � rI/ � .mJ C mI/ � rW .rJ � rI; h/

krJ � rIk2
� VrJmIrW .rJ � rI; h/N˛

9=
;
(13)

It is important to note that transmissibilities TJI andeTJI have different physical units.
Furthermore, it raises the question wherever the proposed scheme (3) is monotone.
Hence, let � be a bounded domain in R

n (a compact) with a piecewise boundary
@� D N�D [ N�N , N�D \ N�N D ;, where measure � .�D/ ¤ 0, �D is the part of the
boundary corresponding to the Dirichlet boundary condition, �N is the part of the
boundary corresponding to the Neumann boundary condition. In the following sec-
tions this question will be analysed in details for some modified schemes by stating
that the solution of the equation for M .r; p .r// D m .r; p .r// � I, m .r; p .r// 	 0:

� r .M .r; p .r//rp .r// D g .r/ ; 8r 2 � � R
n (14)

is non-negative subject to its existence and that the solution pk for each kth—Picard
iteration is a non-negative vector and the linear system is solved exactly, I is the
unit tensor. Modifications were introduced due to the following theorem.

Theorem 1 The discretization scheme ((3)–(7)) is at least O .h!/ ; 1 � ! < 2

order of accuracy in average for any scalar mobility field m .r; p .r// 2 C2 .�/ 	 0

everywhere within the numerical domain� sufficiently far away from the boundary
@�.
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Proof Using Taylor series expansions about a point rI and the relation (5), the
following relations can be written:

F .rJ/ D F .rI/C F;˛ .rI/
�
r˛J � r˛I

�C
C1

2
F;˛� .rI/

�
r˛J � r˛I

� �
r�J � r�I

�C O �h3
 (15)

m .rJ/ D m .rI/C m;˛ .rI/
�
r˛J � r˛I

�C O �h2
 (16)

mI hF .rI/i˛ D mIF;˛ .rI/C O �h2
 (17)
X
�rI ;h

VrJ

�
r�J � r�I

�r �̨W .rJ � rI; h/ D ı�˛; 8�; ˛ (18)

�
r˛J � r˛I

� �r�J � r�I

r�W .rJ � rI; h/

krJ � rIk2
D r˛W .rJ � rI; h/ ; 8˛ (19)

Substituting relations ((15)–(17)) into the scheme (3) and taking into account the
relations (18) and (19), it leads to the following relations:

X
�rI ;h

VrJ ŒF .rJ/ � F .rI/	
.rJ � rI/ � .mJ C mI/ � rW .rJ � rI; h/

krJ � rIk2
D

D 2m .rI/F;˛ .rI/
X
�rI ;h

VrJ

�
r˛J � r˛I

� .rJ � rI/ � rW .rJ � rI ; h/

krJ � rIk2
C

Cm .rI/F;˛� .rI/
X
�r;h

VrJ

�
r˛J � r˛I

� �
r�J � r�I

� .rJ � rI/ � rW .rJ � rI ; h/

krJ � rIk2

Cm;˛ .rI/F;� .rI/
X
�rI ;h

VrJ

�
r˛J � r˛I

� �
r�J � r�I

� .rJ � rI/ � rW .rJ � rI ; h/

krJ � rIk2
CO �h2


(20)

Œhr˛ .m .rI/F .rI//i � F .rI/ hr˛m .rI/i C m .rI/ hr˛F .rI/i	 D
D 2m .rI/F;˛ .rI/C O �h2
 (21)

The claim of the theorem can be seen from the comparison of relations (20) and (21)
and the fact is that

X
�rI ;h

VrJ

�
r˛J � r˛I

� �r�J � r�I

r�W .rJ � rI; h/

krJ � rIk2
D N˛; 8˛ (22)
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and

��1ˇˇ
n

�
0
@X
�rI ;h

VrJ

�
r�J � r�I

� �
r˛J � r˛I

�
�
rˇJ � rˇI

�
rˇW .rJ � rI; h/

krJ � rIk2

1
A D

D ı�˛ C O .h!/ ; 1 � ! < 2; 8�; ˛
(23)

for all points rI located sufficiently far away from the boundary @�. The order
of accuracy O .h!/ has to be understood in statistical average sense with some
dispersion around the average value. The scheme ((3)–(7)) does not require exact
expressions for the gradient (i.e., spatial derivatives) of the mobility field r�m .r; p/
to keep a higher order of accuracy for any mobility field. Hence, this scheme can be
used with the a discontinuous (or piece-wise) mobility field m .r; p .r// 2 L2 .�/.
The case of a discontinuous mobility field is considered below.

4 Discontinuous Mobility Case

Using the same idea behind the expression (13) and heterogeneous discontinues
mobility field m .r/, it can be shown that the effect of requiring the flux into
the adjoining region to be continuous leads to the equivalent to the expression
(13) in terms of the effective mobility between particle rI and rJ (clearly and
Monaghan [8]):

meff D
�

m .rJ/ � m .rI/
m .rJ/C m .rI/

�
(24)

It can be seen that the effective mobility .m .rJ/C m .rI// does not guarantee the
continuity of the flux between the particles with discontinuous mobilities. Taking
this into account and applying the relation (24), the final discretization scheme for
the discontinuous scalar mobility field can be written as

hr˛ .m .rI/r˛F .rI//i D
4 � ��1ˇˇ

n

8<
:
X
�rI ;h

VrJ � meff � ŒF .rJ/� F .rI/	

�
r˛J � r˛I


 � r˛W .rJ � rI; h/

krJ � rIk2

9=
;

�2 � ��1ˇˇ
n

8<
:
0
@X
�rI ;h

VrJ � mI � ŒF .rJ/ � F .rI/	r �̨W .rJ � rI ; h/

1
AN˛

9=
;

(25)

This numerical scheme is the final one for the heterogeneous discontinuous isotropic
scalar mobility field, which is used for numerical tests throughout this paper.
It ensures that the flux is automatically continuous between particles with the
reasonable accuracy. Multiple regions with substantially different fluid properties
and specific mobilities can then be simulated.



Meshless Multi-Point Flux Approximation 75

The analytical analysis of the aforementioned scheme for a fully anisotropic
mobility tensor field is complicated. However, the numerical analysis reveals that
these schemes do not produce a reasonable approximation for a linear pressure field
for the anisotropic mobility tensor field. The following section describes a scheme
applicable to a fully anisotropic mobility tensor field.

4.1 Anisotropic Case

Generally speaking, any second order tensor can be decomposed into the spherical
and deviatorical parts. In the case of continuum mechanics, the decomposition of
the second order tensor (e.g., stress tensor or strain tensor) into their volumetric
and deviatoric components have certain physical justifications. This step is done in
order to distinguish between volumetric and shear responses. Hence, any mobility
field M .r; p .r// can also be split as:

M .r; p .r// D MS .r; p .r// �ICMD .r; p .r// ; MS .r; p .r// D 1

3
tr .M .r// (26)

where MS .r; p .r// � I is the spherical part of the mobility tensor, MD .r; p .r// is the
deviatoric part of the mobility tensor. In addition, the Darcy velocity can be written
as

v .r/ D vS .r/C vD .r/ ;
vS .r/ D �MS .r; p .r//rp .r/ ;
vD .r/ D �MD .r; p .r//rp .r/

(27)

where vS .r/ is the volumetric velocity, vD .r/ is the deviatoric velocity. The problem
discussed in this paper is the discretization of the elliptic operator:

rv .r/ D rvS .r/C rvD .r/ D g .r/ ; 8r 2 � � R
n (28)

Hence, the discretization scheme can be constructed in two steps. The first step is to
discretize the volumetric term rvS .r/ following the scheme (25):

�hrvS .r/i D
4 � ��1ˇˇ

n

8<
:
X
�rI ;h

VrJ � MS
eff � ŒF .rJ/� F .rI/	

�
r˛J � r˛I


 � r˛W .rJ � rI; h/

krJ � rIk2

9=
;

�2 � ��1ˇˇ
n

8<
:
0
@X
�rI ;h

VrJ � MS .rI/ � ŒF .rJ/ � F .rI/	r �̨W .rJ � rI; h/

1
AN˛

9=
;

(29)
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where MS
eff is defined as

MS
eff D

�
MS .rJ/ � MS .rI/
MS .rJ/C MS .rI/

�
(30)

The second step is to discretize the deviatoric term rvD .r/ as follows:

hrvD .r/i D
X
�rI ;h

VrJ

�hvD .rJ/i � hvD .rI/i
�r�W .rJ � rI; h/ (31)

hvD .rI/i D �MDhrp .rI/i;
hrp .rI/i D

X
�rI ;h

VrJ Œ p .rJ/� p .rI/	r�W .rJ � rI ; h/ (32)

The numerical scheme (31)–(32) can be directly applied to discretize the original
Laplace operator (1) with the anisotropic mobility tensor M .r; p .r// 2 L2 .�/.
This scheme provides an exact answer for the linear pressure distribution in
both homogeneous and heterogeneous (linear) mobility fields. Figure 1 shows the
comparison between numerical and analytical values of the generalized Laplace
operator for the linear pressure distribution p .r/ D 11 � x C 5 � y C 17 and for
mobility tensors defined as

.a/ M .r/ D
�
6 3

3 5

�
;

.b/ M .r/ D
�
10C 10 � x C 6 � y 2C 2 � x C 2 � y
2C 2 � x C 2 � y 4C 4 � x C y

� (33)

The observed error is of a machine tolerance, which confirms theoretical claims
by numerical experiments. Incompleteness of the kernel support combined with the

Fig. 1 Comparison between analytical and numerical values for the generalized Laplace operator
for the linear pressure and (a) homogenous mobility field, and (b) heterogeneous mobility field
defined in (33)
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Fig. 2 Comparison between analytical and numerical values for the generalized Laplace operator
for the quadratic pressure and homogenous mobility field defined in (33) case (a)

lack of consistency of the kernel interpolation in conventional meshless method
results in fuzzy boundaries. For the scheme (31)–(32), the error starts occurring
at the boundary particles for quadratic and higher polynomials of the pressure
distribution. Figure 2 demonstrates the values of the generalized Laplace operator
for the homogeneous mobility field in (33) case (a) for the quadratic pressure

distribution p .r/ D 1

2

�
11 � x2 C 5 � y2 C 17



. In spite of perfectly adequate general

discretization properties, the numerical scheme (31)–(32) is not unconditionally
monotone. Knowledge of the capabilities and limitations of these different numeri-
cal schemes leads to a better understanding of their impact on various applications
and future research on improving and extending modeling capabilities. Hence, it is
important to make here a few remarks.

Remark 2 The aforementioned schemes (25) and (31)–(32) can be written in the
form:

hL .p .r//i D
X
S

NTM
SI pS;

X
S

NTM
SI D 0 (34)

where operator L is defined by either MS or MD and NTM
SI is the meshless transmissi-

bilities. In the case of the conventional Laplace operator r2p (i.e., m .rI/ � 1 ), it
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can be derived 8rI:

.a/
X
S

NTM
SI D 0;

.b/
X
S

NTM
SI ŒrS � rI	 D 0;

.c/
1

2

X
S

NTM
SI ŒrS � rI 	 � ŒrS � rI	

T ¤ I

(35)

This follows from the fact that the Taylor expansion of the pressure around the point
rI can be written as

p .rS/ D p .rI/C rp .rI/ � ŒrS � rI 	C
C1

2
ŒrS � rI	

T � r ˝ rp .rI/ � ŒrS � rI 	C O �h3
 (36)

The constraints (35) lead to significant differences between proposed meshless
multi-point flux approximation schemes and meshfree finite difference approxima-
tion schemes (see, Seibold [32]). It is important to recall here that meshfree finite
difference approximation schemes, which satisfy the constraints (a)–(b) and

1

2

X
S

NTM
SI ŒrS � rI 	 � ŒrS � rI 	

T D I

are based on the following steps: (1) to define the neighbours list for each point (it is
important to choose more neighbours than constraints); (2) to select unique stencil
which can be satisfied addition requirements (e.g., monotonicity Seibold [32]).

Remark 3 The scheme (31)–(32) can be applied directly to the Darcy velocity (27)
with the full mobility tensor. Furthermore, the following theorem is valid for the full
mobility tensor:

Theorem 2 The discretization scheme (31)–(32) is at least of O �h2
 order of
accuracy for any differentiable heterogeneous full mobility tensor field everywhere
within the numerical domain�.

The proof of Theorem 2 can be seen from the construction of the scheme (31)–(32).
However, the scheme (31)–(32) is not unconditionally monotone but as was shown
by Seibold [32] in case of meshfree finite difference methods, it is possible to have
positive stencils in the scheme (31)–(32), i.e. all neighbor entries are of the same
sign.

Remark 4 The schemes (25) and (31)–(32) do not require exact expressions for
the gradient (i.e., spatial derivatives) of the mobility field r�M˛ˇ .r; p .r// D
M˛ˇ;� .r; p .r// to keep O.h˛/; 1 � ˛ < 2 order of accuracy) for any mobility
field M .r; p .r// 2 L2 .�/. Hence, an important feature of reservoir simulations
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that the mobility field M .r; p .r// is to be a discontinuous (or piece-wise function)
is allowed in this scheme.

Remark 5 Applying aforementioned meshless discretization schemes to the elliptic
problem L .p/ D 0 results in formulating a general non-linear system which can be
solved by iterative Newton-Raphson or Picard methods leading to the sequence of
linear systems with the matrix A D �

aij


1�i�n;1�j�n 2 R

n�n:

Ap D b (37)

where the pressure vector p contains approximations to the pressure p .r/. It is
assumed that L .p .r// D 0 admits a unique solution with a discontinuity perme-
ability tensor. The I-th row of the matrix A consists of the stencil corresponding to
the point rI . Let the unknowns be labeled by an index set N same as particles labels.
We consider square matrices A 2 R

n�n .

Definition 1 A matrix A is called essentially irreducible if every point is connected
to a Dirichlet boundary point.

The matrix A resulting from the meshless discretization is a essentially irreducible,
which is guaranteed by selecting Kernel supports and the Heine-Borel theorem.

Remark 6 Meshless multi-point flux approximation matrices are in general non-
symmetric. Consider two points rI and rJ with the corresponding smoothing lengths
hI and hJ. Since each stencil entry depends on the smoothing length, the point rJ
influences the matrix entry aij if krJ � rIk � � � hI whereas rI does not influence
the matrix entry aji if krJ � rIk > � � hJ, where � is the scaling factor defined
by the shape of the Kernel function. A number of symmetrization methods can be
used to overcome this problem. In this paper, the homogeneous smoothing length
hI D hJ ; 8I; J is used.

This ends the derivation of a meshless multi-point flux approximation method
that can be used to solve different boundary value problems.

5 Numerical Experiments

The verification process is intended to provide, and quantify, the confidence in
numerical modelling and the results from the corresponding simulations. Therefore,
in order to be confident that the proposed meshless multi-point flux approximation
provides the announced accuracy of the elliptic operator (1), it was tested for several
functions and different media (diagonal and non-diagonal mobility tensors).

In this section, the results of the numerical experiments using the proposed
scheme in Sect. 2.1 are presented, which confirm some of the theoretical results
from the previous sections. The problems are solved using 2D (i.e., n D 2) square
domains (see Fig. 3) with Dirichlet boundary conditions. Following the work by
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Fig. 3 Numerical domains with different particle distributions

Lukyanov [24–26], the inhomogeneous Dirichlet test cases are considered for the
verification purpose in this paper subject to the assumption that g .r/ D 0; 8r 2
� � R

2, linear and quadratic pressure boundary conditions:

p .r/ D 10 � x C 12 � y C 1;8r D .x; y/ 2 @� � R
2;

p .r/ D 1

2
� �11 � x2 C 12 � y2 C 1



;8r D .x; y/ 2 @� � R

2 (38)

The rectangular 2D (i.e., n D 2) domain � D f.x; y/ 2 Œ0IL	 � Œ0IH	g � R
n of

width L D 4:9 m and height H D 4:9 m with and without a circle inclusion are
considered (see, Fig. 3 cases (a) and (b), respectively).

The components of the heterogeneous mobility field in SI units are defined using
the normal distribution with the mean mobility tensor M .r/ and standard deviation
matrix D .r/:

M .r/ D
�
12 5

5 12

�
; D .r/ D

�
0:1 0:2

0:2 0:1

�
(39)

It is clear that the pressure field depicted at Figs. 4 and 5 does not have any spurious
oscillations and, hence, satisfies a discrete maximum principle. This suggests that
the meshless multi-point flux approximation provides a good approximation of the
pressure gradient in the flux computation at least for this study.

Convergence rates are established by running for five levels of particles refine-
ment, starting with the particle distance h D 0:245 m on level 1 and refining by
a factor of 2 for each successive level. Assuming that the error takes the form
Cph˛p , where Cp and ˛p are determined to give the best least square fit the data.
We consider two types of particle distributions: (a) uniform particle distribution and



Meshless Multi-Point Flux Approximation 81

Fig. 4 Single-phase incompressible problem with full-permeability tensor (Cartesian grid)

Fig. 5 Different approximate solutions of Dirichlet boundary value problems with the Laplace
operator (1) and nonlinear boundary conditions: (a) boundary and internal pressure distribution,
(b) comparison of solutions for different particle distributions

(b) non-uniform particle distribution that is a random perturbation of the uniform
particles. The results for the Dirichlet problems using the numerical domain Fig. 3
cases (a) are presented in Table 1. Quadrature rules are used for calculating the error:

kp � phk2 D
X
�K

V�K .p .�K/ � ph .�K//
2 (40)

that is, the results presented for the pressure. The approximation rate for the pressure
is between O .h/ and O �h2
. Although, there is no solid proof that the proposed
scheme is unconditionally monotone. Numerical results indicate that a relatively
small spacing between particles leads to the unconditional monotonicity condition.
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Table 1 Approximation
rates for the relatively simple
Dirichlet problem
kp� phk � Cph˛p

Tensor Particle distribution Cp ˛p

Diagonal Uniform 0.348 1.991

Diagonal Weakly distorted 0.231 1.923

Diagonal Highly distorted 0.257 1.732

Non-diagonal Uniform 0.391 1.990

Non-diagonal Weakly distorted 0.272 1.919

Non-diagonal Highly distorted 0.293 1.727

6 Conclusion

Several methods have been proposed to address the difficulties involved in calculat-
ing second-order derivatives with SPH for heterogeneous scalar mobility fields by
calculating the Hessian or requiring that the discrete equations exactly reproduce
quadratic or higher order polynomials. In this paper, the proposed method provides
a simple discretization of the generalized Laplace operator occurring in modeling
fluid flows in anisotropic porous media, anisotropic viscous fluids.

The resulting meshless multi-point flux scheme not only ensures first order
consistency O.h/ but also improves the particle deficiency (kernel support incom-
pleteness) problem. The proposed scheme was tested by solving an inhomogeneous
Dirichlet boundary value problem for the generalized Laplacian equation with good
accuracy. Furthermore, including gradient corrections significantly improves the
Laplacian approximation near boundaries, although this requires an n � n matrix
inversion for each particle.

The discretization was tested for several boundary value problems using a variety
of boundary conditions. Approximation rates of the discretization scheme is smaller
with particle disorder; however, the solution remains robust. It is possible that these
rates may be improved with different approximations of the spherical part of the
Darcy velocity.
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Multiscale Petrov-Galerkin Method for
High-Frequency Heterogeneous Helmholtz
Equations

Donald L. Brown, Dietmar Gallistl, and Daniel Peterseim

Abstract This paper presents a multiscale Petrov-Galerkin finite element method
for time-harmonic acoustic scattering problems with heterogeneous coefficients in
the high-frequency regime. We show that the method is pollution-free also in the
case of heterogeneous media provided that the stability bound of the continuous
problem grows at most polynomially with the wave number k. By generalizing
classical estimates of Melenk (Ph.D. Thesis, 1995) and Hetmaniuk (Commun.
Math. Sci. 5, 2007) for homogeneous medium, we show that this assumption of
polynomially wave number growth holds true for a particular class of smooth
heterogeneous material coefficients. Further, we present numerical examples to
verify our stability estimates and implement an example in the wider class of
discontinuous coefficients to show computational applicability beyond our limited
class of coefficients.

1 Introduction

The time-harmonic acoustic wave-propagation is customarily described by the
Helmholtz equation, which is of second-order, elliptic, but indefinite. Its numerical
solution therefore exhibits severe difficulties especially in the regime of high wave
numbers k. It is well-known that the mesh size h required for the stability of a
standard finite element method must be much smaller than a mesh size H which
would be sufficient for a reasonable representation of the solution. The phenomenon

D.L. Brown (�)
School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham,
UK
e-mail: donald.brown@nottingham.ac.uk

D. Gallistl
Dietmar Gallistl, Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für
Technologie, Englerstr. 2, 76131 Karlsruhe, Germany
e-mail: gallistl@kit.edu

D. Peterseim
Institut für Numerische Simulation, Universität Bonn, Wegelerstr. 6, 53115 Bonn, Germany
e-mail: peterseim@ins.uni-bonn.de

© Springer International Publishing AG 2017
M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations VIII, Lecture Notes in Computational Science and Engineering 115,
DOI 10.1007/978-3-319-51954-8_6

85

mailto:donald.brown@nottingham.ac.uk
mailto:gallistl@kit.edu
mailto:peterseim@ins.uni-bonn.de


86 D.L. Brown et al.

that the ratio H=h tends to infinity as k grows, is known as the pollution effect [1].
A method is referred to as pollution-free, if h and H have the same order of
magnitude and so proper resolution of the solution—usually a certain fixed number
of grid points per wave length—implies quasi-optimality of the method.

When studying acoustic wave-propagation, it is often assumed to have constant
material properties such as density and speed of sound, while in real complex
materials, such as composites, these may be heterogeneous. Therefore, in this paper
we study a multiscale Petrov-Galerkin method for the Helmholtz equation with large
wave numbers k and possibly heterogeneous material coefficients as a generalization
of [7, 16]. Standard first-order piecewise polynomials on the scale H serve as trial
functions in this method, whereas the test functions involve a correction by solutions
to coercive cell problems on the scale h. The size of the cells is proportional to
H, where the proportionality constant m—the oversampling parameter—can be
adjusted. Typically m � log k, depending on the stability of the problem, leads to a
quasi-optimal method. These local problems are translation invariant. Therefore, in
periodic media only a small number of corrector problems must be solved depending
on the number of local mesh configurations.

The stability of the method requires that the stability constant of the continuous
operator depends polynomially on k. Such results are very rare in the literature even
for the case of homogeneous media. We shall emphasize that such an assumption
does not hold true in general [2]. The first positive estimates of this type go back
to [14] for convex planar domains with pure Robin boundary. They were later
generalized to other settings and three spatial dimensions in [4, 11]. For instance,
in the particular case of pure impedance boundary conditions with @� D �R, it
was proved in [4, 6, 14], by employing a technique of Makridakis et al. [12], that
the inf-sup constant is bounded, i.e. �.k; �;A;V2/ . k. Further setups allowing
for polynomially well-posedness in the presence of a single star-shaped sound-
soft scatterer are described in [11]. For multiple scattering and, in particular, for
scattering in heterogeneous media, the situation is completely open. To show that
the assumption is satisfiable for non-trivial heterogeneous media, in this work we
determine a class of smooth heterogeneous coefficients that allow for explicit-in-k
stability estimates.

1.1 Heterogeneous Helmholtz Problem

We begin with some standard notation on complex-valued Lebesgue and Sobolev
spaces that applies throughout this paper. The bar indicates complex conjugation
and i is the imaginary unit. The L2 inner product is denoted by .v;w/L2.�/ WDR
�
v Nw dx. The Sobolev space of complex-valued Lp functions over a domain !

whose generalized derivatives up to order l belong to Lp is denoted by Wl;p.!/ and
Hl.!/ WD Wl;2.!/. Further, the notation A . B abbreviates A � CB for some
constant C that is independent of the mesh-size, the wave number k, and all further
parameters in the method like the oversampling parameter m or the fine-scale mesh-
size h; A � B abbreviates A . B . A.
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We now begin with some notation and problem setting. Let � � R
d be an open

bounded Lipschitz domain with polyhedral boundary for d 2 f1; 2; 3g. We wish to
find a solution u that satisfies

� divA.x/ru � k2V2.x/u D f in �; (1)

along with the boundary conditions

u D 0 on �D; (2a)

A.x/ru � 
 D 0 on �N ; (2b)

A.x/ru � 
 � ikˇ.x/u D g on �R: (2c)

Here, 
 denotes the outer normal to @� D �D [ �N [ �R, where the boundary
sections are assumed disjoint. We suppose that j�Rj > 0, but allow the other portions
of the boundary to have measure zero. Although the results in this paper hold for a
weaker dual space here we suppose f 2 L2.�/ and g 2 L2.�R/. For the coefficients,
we suppose A.x/;V2.x/ 2 W1;1.�/, and ˇ.x/ 2 L1.�/ are real valued. Moreover,
we suppose there exist positive constants Amin;Amax; ˇmin; ˇmax;Vmin, and Vmax

independent of k such that for almost all x 2 � we have

Amin �A.x/ � Amax; (3a)

ˇmin �ˇ.x/ � ˇmax; (3b)

V2min �V2.x/ � V2max: (3c)

We denote the space

V WD fu 2 H1.�/ j u D 0 on �Dg

and denote the norm weighted with A.x/;V.x/; and k to be for ! � �

kukV;! WD
s

kkVuk2L2.!/ C
���A 1

2 ru
���2
L2.!/

; (4)

where if ! D �; we simply write kukV . We have the following variational form
corresponding to (1): Find u 2 V such that

a.u; v/ D . f ; v/L2.�/ C .g; v/L2.�R/ for all v 2 V; (5)

where the complex-valued sesquilinear form a W V � V ! C is given by

a.u; v/ D .A.x/ru;rv/L2.�/ � .k2V2.x/u; v/L2.�/ � .ikˇ.x/u; v/L2.�R/: (6)

Here we write .u; v/L2.�/ D R
�
u Nvdx and similarly .u; v/L2.�R/ D R

�R
u Nvds.
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1.2 Motivation for a Multiscale Method and Stability Analysis

It is well known [1] that the pollution effect cannot be avoided in standard methods.
However, it may be overcome by coupling the polynomial degree of the method
with the wave number k [15]. Therefore, multiscale methods appear to be a natural
tool to incorporate fine-scale features in a low-order discretization. Moreover,
the parameters of this method must be coupled logarithmically with the wave
number and therefore require the stability constant of the continuous problem to be
polynomially dependent of k to arrive at a computationally efficient method. Hence,
the stability of the continuous heterogeneous problem (1) is critical to the analysis of
the related algorithms. In general, it is often shown (or possibly assumed) that there
exists some constant Cstab.k; �;A;V2/ > 0; which depends on k, the geometry, and
the coefficients, such that

kukV � Cstab.k; �;A;V
2/
�kfkL2.�/ C kgkL2.�R/



: (7)

Further, turning to the inf-sup type lower bound, it is often shown, or
possibly assumed, that there exists some constant �.k; �;A;V2/, related to
Cstab.k; �;A;V2/, such that

�.k; �;A;V2/�1 � inf
v2Vnf0g

sup
w2Vnf0g

Re a.v;w/

kvkVkwkV : (8)

As noted, it is often the case that these constants depend merely polynomially on k.
However, it has been demonstrated that there are special instances of exponential k
dependence on Cstab.k; �;A;V2/ [2], and thus, highly unstable inf-sup constants
�.k; �;A;V2/.

2 Stability of the Heterogeneous Helmholtz Model

As discussed in Sect. 1, the stability and regularity of the continuous problem
has been investigated for constant coefficients in various contexts. In this section,
we shall investigate the stability of the continuous problem with respect to wave
number in the case of heterogeneous coefficients. We proceed using the variational
techniques with geometric constraints [11].

As noted in Sect. 1, in the case of constant coefficients, there exist various
methods to bound �.k; �;A;V2/ from (8) in terms of k. Most importantly, the
possible exponential dependence discussion in [2], will be excluded here. We will
show in this section, that for certain classes of coefficients, we are able to obtain
a favorable polynomial bound for �.k; �;A;V2/. To this end, we will employ
variational techniques and so-called Rellich type identities with restrictions on the
types of geometries similar to the work of Hetmaniuk [11] and references therein.
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As we use the variational techniques we will make the geometric assumptions
made by Hetmaniuk [11]. That is we suppose that there exists a x0 2 R

d and a
� > 0 such that

.x � x0/ � 
 � 0 on �D; (9a)

.x � x0/ � 
 D 0 on �N ; (9b)

.x � x0/ � 
 	 � on �R: (9c)

For a summary of such possible domains, we refer the reader to [11]. However, to
get some sense of a geometry the reader may envision a convex domain with pure
impedance boundary conditions. This of course may be weakened.

2.1 Statement of Stability, Connections to Inf-Sup Constants,
and Boundedness

In this section we present our main stability result. The variational techniques
employed require assumptions on the class of coefficients to remain valid. We out-
line these constraints and obtain a bounded-in-k result. We further relate these to the
inf-sup constants and explore the boundedness of the non-constant coefficient case.

We assume throughout that (5) has a unique solution for any L2 right-hand side f
and focus on quantified stability.

Theorem 1 Suppose � � R
d, is a bounded connected Lipschitz domain and

satisfies the geometric assumptions (9). Let u be a solution of (1) with the boundary
conditions (2), coefficients satisfying the bounds (3), and k 	 k0 > 0, for some k0.
Further, we suppose the regularity u 2 H3=2Cı.�/ for some ı > 0.

Define the following function

S.x/ WD div

��
V2.x/

A.x/

�
.x � x0/

�
(10)

and further, we will denote CG to be the minimal constant so that

2

ˇ̌
ˇ̌Z
�

�rA

A

�
ru..x � x0/ � r Nu/dx

ˇ̌
ˇ̌ � CG

����
�rA

A

�����
L1.�/

kruk2L2.�/: (11)

We suppose that

Smin D min
x2� S.x/ > 0; (12a)

Smin �
 
.d � 2/C CG

����
�rA

A

�����
L1.�/

!
V2max
Amin

> 0: (12b)
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We then have the following estimate

kuk2V � C�
�
1C 1

k2

��
kfk2L2.�/ C kgk2L2.�R/

�
; (13)

where C� depends only on the (3) and�, but not on k.

Proof See Appendix below. ut
Remark 1 The assumption from Theorem 1 that u satisfy the regularity u 2
H3=2Cı.�/ is an assumption on the configuration of the boundary decomposition
into �D, �N , �R. It is not a further restriction on the coefficients A or V2.

Now that we have an explicit bound for a class of constant variable coefficients,
we now will relate the constant Cstab.k; �;A;V2/ WD C�

�
1C 1

k2



to �.k; �;A;V2/

given by (8).

Theorem 2 Supposing the assumptions in Theorem 1, we have the following
estimate

k�1 .e��1 . inf
v2Vnf0g

sup
w2Vnf0g

Re a.v;w/

kvkVkwkV : (14)

Where,e� WD .1C C�
�
k C 1

k



V2max/.

Proof We proceed by a standard argument from [6], adapted to the heterogeneous
case. Given u 2 H1.�/, define z 2 H1.�/ as the solution of

2k2.v;V2u/L2.�/ D a.v; z/; for all v 2 V: (15)

Then, from the estimate (13), we have

kzkV � C�
�
1C 1

k2

�
V2maxk

2 kukL2.�/ : (16)

Note that

Re a.u; u/ D .A.x/ru;ru/L2.�/ � .k2V2.x/u; u/L2.�/
and using (15) and taking v D u C z implies

Re a.u; v/ D Re a.u; u/C Re a.u; z/ D kuk2V : (17)

Using (16) we obtain

kvkV � kukV C kzkV � kukV C C�
�
1C 1

k2

�
V2maxk

2 kukL2.�/

� .1C C�
�
k C 1

k

�
V2max/ kukV :
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Hence, Re a.u; v/ D kuk2V 	 .1C C�
�
k C 1

k



V2max/

�1 kvkV kukV ; taking

e� WD .1C C�
�
k C 1

k

�
V2max/ � k

yields the result. ut
Finally, for completeness, we include a brief proof of the boundedness of the
variational from.

Theorem 3 Supposing the assumptions in Theorem 1, the variational form (6) has
the following boundedness property

ja.u; v/j � Ca kukV kvkV : (18)

Here Ca may depend on the bounds (3), multiplicative trace constants, and �, but
not k.

Proof From the variational form we have

ja.u; v/j �
ˇ̌
ˇ.A 1

2 ru;A
1
2 rv/L2.�/

ˇ̌
ˇC ˇ̌

.kVu; kVv/L2.�/
ˇ̌

C
ˇ̌
ˇ..ˇk/ 12 u; .ˇk/ 12 v/L2.�R/

ˇ̌
ˇ

�
���A 1

2 ru
���
L2.�/

���A 1
2 rv

���
L2.�/

C kkVukL2.�/kkVvkL2.�/

C
���.ˇk/ 12 u

���
L2.�R/

���.ˇk/ 12 v
���
L2.�R/

. kukV kvkV C
���.ˇk/ 12 u

���
L2.�R/

���.ˇk/ 12 v
���
L2.�R/

:

We have from the multiplicative trace inequality

���k 12 u
���2
L2.�R/

� CM

����k 12 u
���
L2.�/

ˇ̌
ˇk 12 u

ˇ̌
ˇ
H1.�/

C diam.�/�1
���k 12 u

���2
L2.�/

�

� CM

�
kkuk2L2.�/ C juj2H1.�/ C diam.�/�1

���k 12 u
���2
L2.�/

�

. CM

�
kukV C diam.�/�1kkuk2L2.�/

�
. CM kuk2V

since k 	 1. Applying this to the �R terms we arrive at (18). ut
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2.2 Example Coefficients

In this subsection, we will provide a few examples that satisfy the assumptions
on the coefficients (12). Hence, the set of bounded smooth coefficients that yields
polynomial-in-k bounds is non-trivial. We show that for some coefficients, as the
oscillations become more frequent we violate the conditions (12). In particular,
it appears that the restriction on the amplitude of the coefficients is related to the
restrictions on the frequency of oscillations.

To simplify things, yet provide non-trivial coefficients, we will only consider
radially symmetric conditions in R

2. Indeed, even with this symmetry, we are able
to highlight the complexities and restrictiveness in these conditions. We will see that
the frequency of oscillations play a considerable role in violation of these conditions,
as well as the amplitude.

We take � � R
2 to be given by the unit circle � WD f.x; y/ 2 R

2 j x2 C y2 � 1g
and @� D f.x; y/ 2 R

2 j x2 C y2 D 1g. Further, we will take �N D �D D ;; so that
�R D @�. We take x0 D .0; 0/ 2 �, and so m D .x � x0/ D rOr, where r2 D x2 C y2

and Or is the standard unit normal in radial coordinates. Then, clearly, m � 
 D 1

on �R and so the geometric assumptions (9) are satisfied with this domain. We will
take ˇ.x/ D 1, g.x/ D 0, and suppose that f WD f .r/, is a given radially symmetric
forcing. We finally suppose that the heterogeneities are radially symmetric, V2.x/ D
V2.r/; and A.x/ D A.r/: We briefly recall in radial coordinates that for a function A
and a vector field � D .�r; �� /

div.�/ D 1

r

@

@r
.r�r/C 1

r

@��

@�
:

rA D @A

@r
Or C 1

r

@A

@�
O�:

Z
�

Adxdy D
Z 2�

0

Z 1

0

Ardrd�;

where O� is the standard angular coordinate. By examining the conditions (12), we
are able to produce a few interesting examples.

Case 1: A D 1 Note that from condition (12b), that if A D 1 (or constant), we
see that the conditions simplify slightly since the gradient terms in A will vanish.
Indeed, now we see that only condition (12a) must be satisfied. In this setting,
we must have that div.V2m/ > 0 for our estimates to hold, or rewritten in radial
coordinates as

1

r

@

@r

�
V2.r/r2



> 0: (19)
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From this condition we may choose a few possible coefficients for V.r/. A trivial
example is when V2.r/ D r C 1. Clearly,

1

r

@

@r

�
r3 C r2


 D 1

r
.3r2 C 2r/ D 3r C 2 > 0:

Many such polynomial in r choices exist as long as they do not violate boundedness
and positivity.

More interesting examples come from oscillatory coefficients. Suppose, for
� > 0, we take now the innocent looking example

V2.r/ D 1

2
sin

�
2�r

�

�
C 5; (20)

and so

1

r

@

@r

�
r2

2
sin

�
2�r

�

�
C 5r2

�
D sin

�
2�r

�

�
C r�

�
cos

�
2�r

�

�
C 10: (21)

A quick investigation shows that if � D 1; then (19) is satisfied, however, when
� D 0:1 it is violated. Hence, if the coefficient becomes highly oscillatory, the
stability condition is not satisfied. Also note that if we fix � D 1, but extend the
domain from a unit circle to one of radius R, we will eventually enter a negative
region. Hence, the domain size also may have an effect on stability from the
viewpoint of conditions (12).

Case 2: A D V2 Turning to the definition of S.x/ in (10), we see that if A D V2,
the functions simplifies to S.x/ D d. Thus, condition (12a) is always satisfied. For
d D 2, (12b) becomes

2 �
 
CG

����
�rA

A

�����
L1.�/

!
Amax

Amin
> 0: (22)

Taking a closer look at the terms related to CG from Theorem 1, we have in radial
coordinates

2

ˇ̌
ˇ̌Z
�

�rA

A

�
ru..x � x0/ � r Nu/dx

ˇ̌
ˇ̌

D 2

ˇ̌
ˇ̌
ˇ
Z 2�

0

Z 1

0

�
r2

A.r/

@A.r/

@r

� ˇ̌
ˇ̌@u.r/
@r

ˇ̌
ˇ̌2 drd�

ˇ̌
ˇ̌
ˇ

� 2

���� 1

A.r/

@A.r/

@r

����
L1.�/

kruk2L2.�/ :
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Hence, we may take here CG D 2. Noting that

@

@r
ln.A/ D 1

A.r/

@A.r/

@r
;

then the condition (22) becomes

1 �
����� @@r ln.A/

����
�
Amax

Amin
> 0: (23)

Taking

V2.r/ D A.r/ D exp
�
˛
�

sin
� r
�

�
C ı

��
; (24)

for �; ˛; and ı positive, then

���� @@r ln.A/

����
L1.�/

D
���˛
�

cos
� r
�

����
L1.�/

D ˛

�
:

Note further that Amax D exp.˛.ı C 1// and Amin D exp.˛.ı � 1//, and so Amax
Amin

D
exp.2˛/. Hence,

1 �
����� @@r ln.A/

����
�
Amax

Amin
D 1 � ˛

�
exp.2˛/ > 0 (25)

or ˛ exp.2˛/ < �: We see from this calculation that the frequency of oscillation in
the coefficients is related to the amplitude as far as the conditions (12) are concerned.
The more oscillatory the function, the smaller the amplitude must be in this example.

3 The Multiscale Method

In this section, we will introduce the notation on finite element spaces and
meshes that define the multiscale Petrov-Galerkin method (msPGFEM) for the
heterogeneous Helmholtz problem. This method is based on ideas in an algorithm
developed for homogenization problems in [3, 9, 13] also known as Localized
Orthogonal Decomposition. The ideas have been adapted to the Helmholtz problem
for homogeneous coefficients in [16], and later presented in the Petrov-Galerkin
framework [7, 17]. We will stay in line with the notation and presentation of [7], as
this is the basis for the algorithm applied to a heterogeneous medium. We begin by
defining the basic components needed, then define the multiscale method as well as
some computational aspects. Finally, we will briefly discuss the error analysis for
the method, however, this will not differ too far from the homogeneous coefficient
algorithm and as thus, will refer the reader to technical proofs in [7].
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3.1 Meshes and Data Structures

We begin with the basic notation needed regarding the relevant mesh and data
structures. For the sake of clarity and completeness, we will briefly recall the
notation used in [7]. Let GH be a regular partition of� into intervals, parallelograms,
parallelepipeds for d D 1; 2; 3, respectively, such that

SGH D � and any two
distinct T;T 0 2 GH are either disjoint or share exactly one lower-dimensional
hyper-face (that is a vertex or an edge for d 2 f2; 3g or a face for d D 3). We
suppose the mesh is quasi-uniform. For simplicity, we are considering quadrilaterals
(resp. hexahedra) with parallel faces, this guarantees the non-degeneracy of the
elements in GH . Again, the theory of this paper carries over to partitions satisfying
suitable non-degeneracy conditions or even to meshless methods based on proper
partitions of unity [10].

Given any subdomain S 
 �, we define its neighborhood to be

N.S/ WD int
�

[ fT 2 GH W T \ S ¤ ;g
�
:

Furthermore, we introduce for any m 	 2 the patch extensions

N1.S/ WD N.S/ and Nm.S/ WD N.Nm�1.S//:

Note that the shape-regularity implies that there is a uniform bound denotedCol;m, on
the number of elements in the mth-order patch, #fK 2 GH W K 
 Nm.T/g � Col;m

for all T 2 GH . We will abbreviate Col WD Col;1. The assumption that the coarse-
scale mesh GH is quasi-uniform implies that Col;m depends polynomially on m. The
global mesh-size is H WD maxfdiam.T/g for all T 2 GH .

We will denote Qp.GH/ to be the space of piecewise polynomials of partial
degree less than or equal to p. The space of globally continuous piecewise first-
order polynomials is given by S1.GH/ WD C0.�/ \ Q1.GH/; and by incorporating
the Dirichlet condition we arrive at the standard Q1 finite element space denoted
here as

VH WD S1.GH/\ V:

The set of free vertices, or the degrees of freedom, is denoted by

NH WD fz 2 � W z is a vertex of GH and z … �Dg:

To construct our fine-scale and, thus, multiscale spaces we will need to define a
coarse-grid quasi-interpolation operator. For simplicity of presentation,we suppose
here that this quasi-interpolation is also projective. This assumption may be lifted
c.f. [10] and references therein. We let IH W V ! VH be a surjective quasi-
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interpolation operator that acts as a stable quasi-local projection in the sense that
I2H D IH and that for any T 2 GH and all v 2 V the following local stability result
holds

H�1kv � IHvkL2.T/ C krIHvkL2.T/ � CIHkrvkL2.N.T//: (26)

Under the mesh condition that

kH . 1

is bounded by a generic constant, this implies stability in the k � kV norm

kIHvkV � CIH ;VkvkV for all v 2 V; (27)

with a k-independent constant CIH ;V . However, CIH ;V , will depend on the constants
in (3).

One possible choice and which we use in our implementation of the method, is
to define IH WD EH ı …H, where …H is the piecewise L2 projection onto Q1.GH/

and EH is the averaging operator that maps Q1.GH/ to VH by assigning to each free
vertex the arithmetic mean of the corresponding function values of the neighbouring
cells, that is, for any v 2 Q1.GH/ and any free vertex z 2 NH ,

.EH.v//.z/ D
X
T2GH

with z2T

vjT.z/
�

#fK 2 GH W z 2 Kg:

Note that with this choice of quasi-interpolation, EH.v/j�D D 0 by construction.
For this choice, the proof of (26) follows from combining the well-established
approximation and stability properties of…H and EH shown in [5].

3.2 Definition of the Method

The multiscale method is determined by three parameters, namely the coarse-scale
mesh-size H, the fine-scale mesh-size h, and the oversampling parameter m. We
assign to any T 2 GH its m-th order patch�T WD Nm.T/, m 2 N, and define for any
v;w 2 V the localized sesquilinear forms of (6) to �T as

a�T .u; v/

D .A.x/ru;rv/L2.�T / � .k2V2.x/u; v/L2.�T / � .ikˇ.x/u; v/L2.�R\@�T /:
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and to T, we have

a�T .u; v/ D .A.x/ru;rv/L2.T/ � .k2V2.x/u; v/L2.T/ � .ikˇ.x/u; v/L2.�R\@T/:

Let the fine-scale mesh Gh; be a global uniform refinement of the mesh GH over �
and define

Vh.�T/ WD fv 2 Q1.Gh/ \ V W v D 0 outside �Tg:

Define the null space

Wh.�T/ WD fvh 2 Vh.�T/ W IH.vh/ D 0g

of the quasi-interpolation operator IH defined in the previous section. This is the
space often referred to as the fine-scale or small-scale space. Given any nodal basis
functionƒz 2 VH , let �z;T 2 Wh.�T/ solve the subscale corrector problem

a�T .w; �z;T/ D aT.w; ƒz/ for all w 2 Wh.�T/: (28)

Let �z WD P
T2GH

�z;T and define the multiscale test function

eƒz WD ƒz � �z:

The space of multiscale test functions then reads

eVH WD spanfeƒz W z 2 NHg:

We emphasize that the dimension of the multiscale space is the same as the original
coarse space, dimVH D dimeVH. Moreover, it is independent of the parameters m
and h. Finally, the multiscale Petrov-Galerkin FEM seeks to find uH 2 VH such that

a.uH; QvH/ D . f ; QvH/L2.�/ C .g; QvH/L2.�R/ for all QvH 2 eVH: (29)

As in [7], the error analysis and the numerical experiments will show that the
choice H . k�1, m � log.k/ will be sufficient to guarantee stability and quasi-
optimality properties, provided that k˛h . 1 where ˛ depends on the stability and
regularity of the continuous problem. This constant ˛ was the subject of Sect. 2. The
conditions on h are the same as for the standard Q1 FEM on the global fine scale.
For example, in two dimensions, in the case of pure Robin boundary conditions on
a convex domain, it is required that k3=2h . 1 for stability [18] and k2h . 1 for
quasi-optimality [14] is satisfied.
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4 Error Analysis

The error analysis for the algorithm presented in Sect. 3, is very similar to that
developed in [16] and references therein, and in particular for the Petrov-Galerkin
formulation we discuss now in [7]. It is clear the proofs are unaffected by the
coefficients as the arguments rely on very general constants being bounded such as
Ca, Cstab.k; �;A;V2/, and �.k; �;A;V2/, for example. This is primarily due to the
upper and lower boundedness on the coefficients (3). However, we will highlight the
main themes of the analysis here as this will be useful to refer to in our discussion
on Numerical Examples in Sect. 5 as well as general completeness of the discussion.

We begin the error analysis with some notation. We denote the global finite
element space on the fine scale by Vh WD Vh.�/ D S1.Gh/ \ V . We denote the
solution operator of the truncated element corrector problem (28) by CT;m. Then,
any z 2 NH and any T 2 GH satisfy �z;T D CT;m.ƒz/ and we refer to CT;m as the
truncated element correction operator. The map ƒz 7! �z described in Sect. 3.2
defines a linear operator Cm via Cm.ƒz/ D �z for any z 2 NH , referred to as
correction operator.

For the analysis we introduce idealized counterparts of these correction operators
where the patch�T equals�. These global corrections are never computed and are
merely used in the analysis. We define the null space

Wh WD fv 2 Vh W IH.v/ D 0g;

also referred to as the fine-scale space on the global domain. For any v 2 V , the
idealized element corrector problem seeks CTv 2 Wh such that

a.w;CTv/ D aT.w; v/ for all w 2 Wh: (30)

Furthermore, define

Cv WD
X
T2GH

CTv: (31)

Recall, we proved in Sect. 2 that the form a with heterogeneous coefficients given
by (6), is continuous and there is a constant Ca such that

a.v;w/ � CakvkVkwkV for all v;w 2 V:

The following result implies the well-posedness of the idealized corrector problems.
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Lemma 1 (Well-Posedness for Idealized Corrector Problems) Provided

CIH

p
ColHk � 1; (32)

we have for all w 2 Wh equivalence of norms

A
1
2

minkrwkL2.�/ � kwkV � �
V2max C Amax


 1
2 krwkL2.�/;

and coercivity

�
V2max C Amax


 krwk2L2.�/ � Re a.w;w/:

Proof The lower bound is trivial, indeed we have that

kwk2V D kkVwk2L2.�/ C kA 1
2 rwk2L2.�/ 	 Aminkrwk2L2.�/:

For the upper bound, we note for any w 2 Wh the property (26) implies

k2kVwk2L2.�/ D k2kV.1 � IH/wk2L2.�/ � V2maxC
2
IH
ColH

2k2krwk2L2.�/:

Thus, using (32) we arrive at

kwk2V D kkVwk2L2.�/ C kA 1
2 rwk2L2.�/

� V2maxC
2
IHColH

2k2krwk2L2.�/ C Amaxkrwk2L2.�/
� �

V2max C Amax

 krwk2L2.�/:

Note from this we have

kkVwk2L2.�/ � �
V2max C Amax


 krwk2L2.�/ � kA 1
2 rwk2L2.�/

� �
V2max C Amax � Amin


 krwk2L2.�/;

and so

Re a.w;w/ D kA 1
2 rwk2L2.�/ � kkVwk2L2.�/

	 �
V2max C Amax


 krwk2L2.�/:

Thus, equivalence and coercivity is proven. ut
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Lemma 1 implies that the idealized corrector problems (31) are well-posed and
the correction operator C is continuous in the sense that

kCvHkV � CCkvHkV for all vH 2 VH

for some constant CC � 1. Since the inclusion Wh.�T/ 
 Wh holds, the well-
posedness result of Lemma 1 carries over to the corrector problems (28) in the
subspace Wh.�T/ with the sesquilinear form a�T .

Again as with the homogeneous coefficient case [7], the proof of well-posedness
of the Petrov-Galerkin method (29) is based on the fact that the difference .C �
Cm/.v/ decays exponentially with the distance from supp.v/. In the next theorem,
we quantify the difference between the idealized and the discrete correctors. As the
proof is a bit technical and does not differ fundamentally from the homogeneous
case, we refer the reader to Appendix of [7] and references therein. The proof is
based on the exponential decay of the corrector Cƒz and requires the resolution
condition (32), namely kH . 1.

Theorem 4 Under the resolution condition (32), there exist constants C1 � 1 � C2
and 0 < � < 1 such that any v 2 VH, any T 2 GH and any m 2 N satisfy

kr.CTv � CT;mv/kL2.�/ � C1�
mkrvkL2.T/; (33)

kr.Cv � Cmv/kL2.�/ � C2
p
Col;m�

mkrvkL2.�/: (34)

Proof See Appendix of [7]. ut
Provided we choose the fine-mesh h small enough, the standard finite element

over the mesh Gh is stable in the sense that there exists a constant CFEM such that
with �.k; �;A;V2/ from (8) it holds that

�
CFEM�.k; �;A;V

2/

�1 � inf

v2Vhnf0g
sup

w2Vhnf0g
Re a.v;w/

kvkVkwkV : (35)

Recall, this is actually a condition on the fine-scale parameter h. In general, the
requirements on h depend on the stability of the continuous problem [14]. We now
recall the conditions on the oversampling parameter for the well-posedness of the
discrete problem. Again, the proof here does not rely heavily on the coefficients,
just the general boundedness and ellipticity constants etc. Thus, we again refer the
reader to [7].

Theorem 5 (Well-Posedness of the Discrete Problem) Under the resolution
conditions (32) and (35) and the following oversampling condition

m & jlog
�
CFEM�.k; �;A;V

2/

j.jlog.�/j; (36)
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problem (29) is well-posed and the constant CPG WD 2CIH ;VCCCFEM satisfies

�
CPG�.k; �;A;V

2/

�1 � inf

vH2VHnf0g
sup

QvH2eVHnf0g

Re a.vH; QvH/
kvHkVk QvHkV :

Proof See [7]. ut
The quasi-optimality requires the following additional condition on the oversam-

pling parameter m,

m & jlog
�
CPG�.k; �;A;V

2/
�
j
.

jlog.�/j: (37)

Theorem 6 (Quasi-Optimality) The resolution conditions (32) and (35) and the
oversampling conditions (36) and (37) imply that the solution uH to (29) with
parameters H, h, and m and the solution uh of the standard Galerkin FEM on the
mesh Gh satisfy

kuh � uHkV . k.1 � IH/uhkV � min
vH2VH

kuh � vHkV :

Proof See [7]. ut
The following consequence of Theorem 6 states an estimate for the error u� uH.

Corollary 1 Under the conditions of Theorem 6, the discrete solution uH to (29)
satisfies with some constant C � 1 that

ku � uHkV � ku � uhkV C C min
vH2VH

kuh � vHkV :

For the class of coefficients described in Theorem 1, this leads to the following
convergence rates. Provided that the geometry allows for H2 regularity of the
solution and that h is sufficiently small such that the standard FEM is quasi-optimal
on the fine scale h and the error is dominated by the coarse-scale part, we have

ku � uHkV � O.kH/:

5 Numerical Examples

In this section, we present the results from our numerical experiments on a
smooth coefficient for both cases when the conditions are satisfied and when it is
violated. Further, we implement the method on discontinuous periodic coefficients
to highlight broader applicability of the method. We give three example coefficients;
based on (20), (24), and a discontinuous example. In all three experiments we took
� D .�1; 1/2 to be the unit square. We use triangular meshes and continuous P1
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finite elements as trial functions. We used k D 25, g D 0; and the approximate point
source

f .x/ D
8<
:

exp
�
� 1
1�.20jxj/2

�
for jxj < 1=20

0 else:

The coarse-scale mesh-sizes are H D 2�3; 2�4; 2�5; 2�6 and the fine-scale mesh-
size is h D 2�8.

The convergence history plots display the errors in the k � kV norm as well as
L2 norms. We compare the multiscale Petrov-Galerkin method for oversampling
parameters m D 1; 2; 3 with the standard P1 finite element method and the best-
approximation. To compute the error quantity we take the standard finite element
solution at the fine scale h to be the overkill solution.

For the first example, we take A D 1 and V2 as (20), with � D 1 and refer to this
as example 1. Note that this does not violate the stability condition. The coefficient
V2 is displayed in Fig. 1a and the corresponding computational solution is displayed
in Fig. 1b. We note the spurious oscillation in Fig. 1b that breaks the rotational
symmetry of the problem. However, this is due to the Robin boundary condition
on the square domain being a poor choice for an absorbing boundary condition. The
normal vector on the square is a crude approximation to Or. Computing on a circular
domain would yield radially symmetric results.

Figure 2a, b display the convergence history in the V-norm and the L2 norm for
Example 1. In general, we see that the multiscale method appears to perform much
better than the corresponding standard P1 finite element. However, there appears
to be some resonance effects of some sort that is particularly pronounced in the V
norm just before the resolution condition is satisfied. This is not in contradiction
with the theory. It has been demonstrated in [7] that there is no decay of the

Fig. 1 Plots for Example 1. (a) The coefficient V2 for Example 1. (b) Plot of the solution for
Example 1
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Fig. 2 Convergence history for Example 1. (a) Convergence in V norm: Example 1. (b) Conver-
gence in L2 norm: Example 1

Fig. 3 Plots for Example 2. (a) The coefficient V2 for Example 2. (b) Plot of the solution for
Example 2

corrector functions if the resolution condition is not satisfied, so that in this regime
the localization is not justified and leads to unreliable results.

For the second example, we take A D V2 and V2 as (24), and refer to this as
Example 2. For the parameters we took ı D 1, � D 0:1, ˛ D 0:08, and note
that the corresponding stability condition ˛ exp.2˛/ < � is narrowly satisfied. The
coefficient V2 is displayed in Fig. 3a and the computational solution is displayed in
Fig. 3b. Figure 4a, b display the convergence history in the V-norm and the L2 norm
for Example 2. We see that in this example, we achieve faster convergence and do
not see the resonance effects. This is also the case for the standard finite elements.
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Fig. 4 Convergence history for Example 2. (a) Convergence in V norm Example 2. (b) Conver-
gence in L2 norm Example 2

Fig. 5 Plots for Example 3. (a) The coefficient V2 for Example 3. (b) Plot of the solution for
Example 3

We now present a numerical example outside of our stability theory. We take
V2 D 2 except at periodically placed blocks where V2 D 1 and plot the function
in Fig. 5a. We refer to this as Example 3. The computational solution is displayed
in Fig. 5b. Figure 6a, b display the convergence history in the V-norm and the L2

norm for Example 3. We observe that the method performs particularly well in this
example, especially when compared against the corresponding P1 finite element.
We do not see the resonances as with Example 1.
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Fig. 6 Convergence history for Example 3. (a) Convergence in V norm Example 3. (b) Conver-
gence in L2 norm Example 3

6 Conclusions

ptIn this work, we developed a multiscale method to efficiently solve the het-
erogeneous Helmholtz equation at high frequency. The primary challenge was
establishing k-explicit bounds for the continuous problem as these are critical
in the analysis of the patch truncation parameter. We established these bounds
for a class of smooth coefficients given some restrictions that appear to depend
heavily on the frequency of oscillations and the amplitude of the coefficients. We
then presented our multiscale method whose error analysis is not significantly
modified by the heterogeneities assuming standard upper and lower boundedness.
Finally, we implemented the algorithm on two coefficients that fit inside the class
of coefficients in our main theorem and one that is discontinuous. We see that
the method performs well in these cases. Future work includes exploring if these
stability estimates apply to a greater class of more heterogeneous coefficients with
less smoothness.
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Appendix: Proof of Stability

Technical and Auxiliary Lemmas

We will now proceed by recalling and demonstrating a few technical and auxiliary
Lemmas used in the proof of Theorem 1. We begin with two critical technical
lemmas that remain unchanged from the homogeneous case examined in [11] and
are repeated here for completeness.

Lemma 2 Let m 2 W1;1.�/d and for all q 2 H1.�/ we have

Z
@�

jqj2m � 
ds D
Z
�

div.m/jqj2dx C 2Re
Z
�

qm � r Nqdx: (38)

Proof See [11], Lemma 3.1. ut
Lemma 3 Let m 2 W1;1.�/d and for all q 2 H1

�D
.�/ \ H3=2Cı; ı > 0; we have

Z
@�n�D

jrqj2m � 
ds �
Z
�D

j@
qj2m � 
ds

D
Z
�

div.m/jrqj2dx � 2Re
Z
�

rq � .r Nqr/mdx

� 2Re
Z
�

�q.m � r Nq/dx C 2Re
Z
@�n�D

@
q.m � r Nq/ds (39)

Proof See [8]. ut
Here we will present a few auxiliary Lemmas.

Lemma 4 Let � � R
d be a bounded connected Lipschitz domain. Let u 2 H1.�/

be a weak solution of (1), with f 2 L2.�/ and g 2 L2.�R/. Then, we have for any
� > 0

k2kuk2L2.�R/ � 1

ˇmin

�
1

�
kfk2L2.�/ C k2�kuk2L2.�/ C 1

ˇmin
kgk2L2.�R/

�
: (40)

Proof Taking v D u into the variational form (5) and looking at the imaginary part
we have

=.a.u; u// D �.kˇ.x/u; u/ D =..g; u/L2.�R/ C . f ; u/L2.�//;
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and so

kˇminkuk2L2.�R/
� kukL2.�/kfkL2.�/ C kukL2.�R/kgkL2.�R/
� 1

2k�1
kfk2L2.�/ C k�1

2
kuk2L2.�/ C 1

2�2
kgk2L2.�R/ C �2

2
kuk2L2.�R/:

Multiplying by k, dividing by ˇmin, and setting �2 D ˇmink we obtain

k2kuk2L2.�R/ � 1

ˇmin

�
1

2�1
kfk2L2.�/ C k2�1

2
kuk2L2.�/

C 1

2ˇmin
kgk2L2.�R/ C k2ˇmin

2
kuk2L2.�R/

�
;

and we obtain

k2

2
kuk2L2.�R/ � 1

ˇmin

�
1

2�1
kfk2L2.�/ C k2�1

2
kuk2L2.�/ C 1

2ˇmin
kgk2L2.�R/

�
:

Taking �1 D � > 0 we arrive at the estimate. ut
We will also need the estimate below.

Lemma 5 Let � � R
d be a bounded connected Lipschitz domain. Let u 2 H1.�/

be a weak solution of (1) with f 2 L2.�/ and g 2 L2.�R/. Then, we have

kruk2L2.�/

� 1

Amin



k2
�
V2max C �4

ˇmin
C �3

2

�
kuk2L2.�/

C
�

1

2k2�3
C 1

ˇmin�4

�
kfk2L2.�/ C

�
1

ˇ2min
C 1

4k2

�
kgk2L2.�R/

�
:

(41)

for any �3; �4 > 0.

Proof Taking v D u into the variational form (5) and looking at the real part we
have

Re.a.u; u// D .A.x/ru;ru/L2.�/ � .k2V2.x/u; u/L2.�/
D Re..g; u/L2.�R/ C . f ; u/L2.�//;
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and so we have

���A 1
2 ru

���2
L2.�/

� k2kVuk2L2.�/ C kukL2.�/kfkL2.�/ C kukL2.�R/kgkL2.�R/:

Using the maximal and minimal values we have for any �3 > 0 that

Aminkruk2L2.�/ � k2kVuk2L2.�/ C kukL2.�/kfkL2.�/ C kukL2.�R/kgkL2.�R/

�
�
k2V2max C k2�3

2

�
kuk2L2.�/ C 1

2k2�3
kfk2L2.�/

C 1

4k2
kgk2L2.�R/ C k2kuk2L2.�R/: (42)

Using estimate (40) we may write for any � > 0

k2kuk2L2.�R/ � 1

ˇmin

�
k2�kuk2L2.�/ C 1

�
kfk2L2.�/ C 1

ˇmin
kgk2L2.�R/

�
: (43)

Inserting the above inequality into (42) we obtain

Aminkruk2L2.�/

�
�
k2V2max C k2�3

2

�
kuk2L2.�/ C 1

2k2�3
kfk2L2.�/ C 1

4k2
kgk2L2.�R/

C 1

ˇmin

�
k2�kuk2L2.�/ C 1

�
kfk2L2.�/ C 1

ˇmin
kgk2L2.�R/

�
:

Taking � D �4 the above inequality becomes

Aminkruk2L2.�/ � k2
�
V2max C �4

ˇmin
C �3

2

�
kuk2L2.�/

C
�

1

2k2�3
C 1

ˇmin�4

�
kfk2L2.�/ C

�
1

ˇ2min
C 1

4k2

�
kgk2L2.�R/:

Thus, we obtained our estimate. ut

Proof of Main Stability Result

We are now in a position to prove Theorem 1. The key observation is that the
Laplacian may be rewritten using (1) and combined with the technical and auxiliary
lemmas. This leads to the conditions on the coefficients (12).
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Proof (Proof of Theorem 1)
Using (39) where we write

��u D 1

A
. f C k2V2u C rA � ru/;

@
u D 0 on �N , and @
u D ikˇu C g on �R, we obtain

Z
@�n�D

jruj2m � 
ds �
Z
�D

j@
uj2m � 
ds

D
Z
�

div.m/jruj2dx � 2Re
Z
�

ru � .r Nur/mdx

C 2Re
Z
�

1

A
. f C k2V2u C rA � ru/.m � r Nu/dx

C 2Re
Z
�R

.ikˇu C g/.m � r Nu/ds:

(44)

Using (38) with the transform m ! V2

A m, we have

k2
Z
@�

juj2
�
V2

A

�
m � 
ds

D k2
Z
�

div

�
V2

A
m

�
juj2dx C 2k2 Re

Z
�

u

�
V2

A

�
m � r Nudx:

Using this to replace the term Re
R
�

�
V2

A

�
u.m � r Nu/dx, we have

Z
@�n�D

jruj2m � 
ds �
Z
�D

j@
uj2m � 
ds

D
Z
�

div.m/jruj2dx � 2Re
Z
�

ru � .r Nur/mdx

C 2Re
Z
�

�
f

A

�
.m � r Nu/dx C 2Re

Z
�

�rA

A

�
� ru.m � r Nu/dx

C 2Re
Z
�R

.ikˇu C g/.m � r Nu/ds

� k2
Z
�

div

�
V2

A
m

�
juj2dx C k2

Z
@�

juj2
�
V2

A

�
m � 
ds:
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Expanding out the boundary terms in each of the portions we have

�
Z
�D

j@
uj2m � 
ds C
Z
�N

jruj2m � 
ds

C
Z
�R

jruj2m � 
ds C k2
Z
�

div

�
V2

A
m

�
juj2dx

D
Z
�

div.m/jruj2dx � 2Re
Z
�

ru � .r Nur/mdx

C 2Re
Z
�

�
f

A

�
.m � r Nu/dx C 2Re

Z
�

�rA

A

�
� ru.m � r Nu/dx

C k2
Z
�N

juj2
�
V2

A

�
m � 
ds C k2

Z
�R

juj2
�
V2

A

�
m � 
ds

C 2Re
Z
�R

.ikˇu C g/.m � r Nu/ds:

(45)

Now we suppose we make the geometric assumptions made by Hetmaniuk [11]
outlined in (9). Recall, we have for m D x � x0, thus we compute

div.x � x0/ D d in �;

ru � .r Nur/.x � x0/ D jruj2 in �;

.x � x0/ � 
 � 0 on �D;

.x � x0/ � 
 D 0 on �N ;

.x � x0/ � 
 	 � on �R:

Using the above relations in (45) we obtain

�

Z
�R

jruj2ds C k2
Z
�

div

�
V2

A
.x � x0/

�
juj2dx

� .d � 2/
Z
�

jruj2dx C 2Re
Z
�

�
f

A

�
..x � x0/ � r Nu/dx

C 2Re
Z
�

�rA

A

�
ru..x � x0/ � r Nu/dx

C k2
Z
�R

juj2
�
V2

A

�
.x � x0/ � 
ds C 2Re

Z
�R

.ikˇu C g/.m � r Nu/ds:

(46)
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Recall, (10), where we define the following function

S.x/ WD div

��
V2.x/

A.x/

�
.x � x0/

�

D d

�
V2.x/

A.x/

�
C
�
2
V.x/rV.x/

A.x/
� V2.x/rA.x/

A2.x/

�
� .x � x0/;

(47)

and from (12), we have a minimum for S.x/ exists and is positive

Smin D min
x2� S.x/ > 0:

Further, from (12), we have CG to be the minimal constant so that

2

ˇ̌
ˇ̌
Z
�

�rA

A

�
ru..x � x0/ � r Nu/dx

ˇ̌
ˇ̌ � CG

����
�rA

A

�����
L1.�/

kruk2L2.�/: (48)

Returning to inequality (46), we obtain

�kruk2L2.�R/ C k2Sminkuk2L2.�/

� .d � 2/kruk2L2.�/ C CG

����
�rA

A

�����
L1.�/

kruk2L2.�/

C C1

�
1

Amin
kfkL2.�/krukL2.�/ C kgkL2.�R/krukL2.�R/

�

C C1

�
k2
�
V2max
Amin

�
kuk2L2.�R/ C k kˇkL1.�R/

kukL2.�R/krukL2.�R/
�
;

(49)

where C1 is independent of k and the bounds (3). Note that on the right hand side
we have for any �5; �6 > 0 the terms

k kˇkL1.�R/
kukL2.�R/krukL2.�R/ � k2

2�5
kuk2L2.�R/ C �5

2
kˇk2L1.�R/

kruk2L2.�R/

kgkL2.�R/krukL2.�R/ � 1

2�6
kgk2L2.�R/ C �6

2
kruk2L2.�R/:

We choose �5; �6 so that

�

2
D C1

�5

2
kˇk2L1.�R/

D C1
�6

2
;
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and so

k2

2�5
� C1
2�

kˇk2L1.�R/
k2:

We then obtain

k2Sminkuk2L2.�/ � C1

��
C1
2�

kˇk2L1.�R/
C V2max

Amin

�
k2kuk2L2.�R/

�

C C1

�
1

Amin
kfkL2.�/krukL2.�/ C C1

2�
kgk2L2.�R/

�

C .d � 2/kruk2L2.�/ C CG

����
�rA

A

�����
L1.�/

kruk2L2.�/:

(50)

Taking Cbd
2 D C1

�
C1
2�

kˇk2L1.�R/
C V2max

Amin

�
and letting � D ˇmin�7=Cbd

2 in the

inequality (40) we have the relation

Cbd
2 k2kuk2L2.�R/ � .Cbd

2 /
2

ˇ2min�7
kfk2L2.�/ C k2�7kuk2L2.�/ C Cbd

2

ˇ2min
kgk2L2.�R/: (51)

Applying this above inequality to (50), we obtain

k2.Smin � �7/kuk2L2.�/

� C1

�
1

Amin
kfkL2.�/krukL2.�/ C C1

2�
kgk2L2.�R/

�

C
 
.d � 2/C CG

����
�rA

A

�����
L1.�/

!
kruk2L2.�/

C .Cbd
2 /

2

ˇ2min�7
kfk2L2.�/ C Cbd

2

ˇ2min
kgk2L2.�R/:

(52)

Recall the estimate (41), with Cbd
3 D

�
.d � 2/C CG

���rA
A


��
L1.�/

�
, and taking

�4 D �3
2

D �8

Cbd
3 kruk2L2.�/

� Cbd
3 k2

Amin

�
V2max C �8

ˇmin
C �8

�
kuk2L2.�/

C Cbd
3

Amin

�
1

4k2�8
C 1

ˇmin�8

�
kfk2L2.�/ C Cbd

3

Amin

�
1

ˇ2min
C 1

4k2

�
kgk2L2.�R/:
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and so, using the above estimate (52)we obtain

k2.Smin � �7 � Cbd
3

Amin

�
V2max C �8

ˇmin
C �8

�
/kuk2L2.�/

� C1

�
1

Amin
kfkL2.�/krukL2.�/ C C1

2�
kgk2L2.�R/

�

C Cbd
3

Amin

�
1

4k2�8
C 1

ˇmin�8

�
kfk2L2.�/ C Cbd

3

Amin

�
1

ˇ2min
C 1

4k2

�
kgk2L2.�R/

C .Cbd
2 /

2

ˇ2min�7
kfk2L2.�/ C Cbd

2

ˇ2min
kgk2L2.�R/:

(53)

Finally to deal with the remaining term on the right hand side that contains ru, we

note using (41), letting �4
ˇmin

D �3
2

D V2max
2

, and multiplying by �9=.2Amin/; �9 > 0;

we obtain

�9

2Amin
kruk2L2.�/

� �9

2A2min



2V2maxk

2kuk2L2.�/ C
�

2

ˇ2minV
2
max

C 1

2k2V2max

�
kfk2L2.�/

C
�
1

ˇ2min
C 1

4k2

�
kgk2L2.�R/

�
;

and so

1

Amin
kfkL2.�/krukL2.�/

� 1

2�9Amin
kfk2L2.�/ C �9

2Amin
kruk2L2.�/

� �9V2max
A2min

k2kuk2L2.�/

C
�

1

2Amin�9
C �9

2A2min

�
2

ˇ2minV
2
max

C 1

2k2V2max

��
kfk2L2.�/

C �9

2A2min

�
1

ˇ2min
C 1

4k2

�
kgk2L2.�R/:
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Applying this into (53), we obtain

k2.Smin � �7 � Cbd
3

Amin

�
V2max C �8

ˇmin
C �8

�
� C1�9V2max

A2min
/kuk2L2.�/

� C1

�
1

2Amin�9
C �9

2A2min

�
2

ˇ2minV
2
max

C 1

2k2V2max

��
kfk2L2.�/

C C1

�
C1
2�

C �9

2A2min

�
1

ˇ2min
C 1

4k2

��
kgk2L2.�R/

C Cbd
3

Amin

�
1

4k2�8
C 1

ˇmin�8

�
kfk2L2.�/

C Cbd
3

Amin

�
1

ˇ2min
C 1

4k2

�
kgk2L2.�R/ C .Cbd

2 /
2

ˇ2min�7
kfk2L2.�/ C Cbd

2

ˇ2min
kgk2L2.�R/:

(54)

Hence, we see that the critical term is Smin � Cbd
3 V2max
Amin

: Recall,

Cbd
3 WD

 
.d � 2/C CG

����
�rA

A

�����
L1.�/

!
;

thus, from (12), we have

Smin �
 
.d � 2/C CG

����
�rA

A

�����
L1.�/

!
V2max
Amin

> 0: (55)

Since (55) is assumed to hold, we take �7; �8; and �9; so that

�
Smin � Cbd

3 V2max
Amin

� �7 � Cbd
3 �8

Amin

�
1

ˇmin
C 1

�
� C1�9V2max

A2min

�
> ı

for some ı > 0, and taking Cbd
4 to be the global constant bound for (54) we obtain

k2kuk2L2.�/ � Cbd
4

ı

�
1C 1

k2

��
kfk2L2.�/ C kgk2L2.�R/

�
; (56)

and using (41), and taking Cbd
5 to be the global constant bound we obtain

kruk2L2.�/ � Cbd
5

�
1C 1

k2

��
kfk2L2.�/ C kgk2L2.�R/

�
; (57)

as desired. ut
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Error Analysis of Nodal Meshless Methods

Robert Schaback

Abstract There are many application papers that solve elliptic boundary value
problems by meshless methods, and they use various forms of generalized stiffness
matrices that approximate derivatives of functions from values at scattered nodes
x1; : : : ; xM 2 � � R

d. If u� is the true solution in some Sobolev space S allowing
enough smoothness for the problem in question, and if the calculated approximate
values at the nodes are denoted by Qu1; : : : ; QuM, the canonical form of error bounds is

max
1�j�M ju�.xj/ � Qujj � �ku�kS

where � depends crucially on the problem and the discretization, but not on the solu-
tion. This contribution shows how to calculate such � numerically and explicitly, for
any sort of discretization of strong problems via nodal values, may the discretization
use Moving Least Squares, unsymmetric or symmetric RBF collocation, or localized
RBF or polynomial stencils. This allows users to compare different discretizations
with respect to error bounds of the above form, without knowing exact solutions,
and admitting all possible ways to set up generalized stiffness matrices. The error
analysis is proven to be sharp under mild additional assumptions. As a byproduct, it
allows to construct worst cases that push discretizations to their limits. All of this is
illustrated by numerical examples.

1 Introduction

Following the seminal survey [5] by Ted Belytschko et al. in 1996, meshless
methods for PDE solving often work “entirely in terms of values at nodes”. This
means that large linear systems are set up that have values u.x1/; : : : ; u.xM/ of an
unknown function u as unknowns, while the equations model the underlying PDE
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problem in discretized way. Altogether, the discrete problems have the form

MX
jD1

akju.xj/ � fk; 1 � k � N (1)

with N 	 M, whatever the underlying PDE problem is, and the N � M matrix A
with entries akj can be called a generalized stiffness matrix.

Users solve the system somehow and then get values Qu1; : : : ; QuM that satisfy

MX
jD1

akj Quj � fk; 1 � k � N;

but they should know how far these values are from the values u�.xj/ of the true
solution of the PDE problem that is supposed to exist.

The main goal of this paper is to provide tools that allow users to assess the
quality of their discretization, no matter how the problem was discretized or how
the system was actually solved. The computer should tell the user whether the
discretization is useful or not. It will turn out that this is possible, and at tolerable
computational cost that is proportional to the complexity for setting up the system,
not for solving it.

The only additional ingredient is a specification of the smoothness of the true
solution u�, and this is done in terms of a strong norm k:kS, e.g. a higher-order
Sobolev norm or seminorm. The whole problem will then be implicitly scaled by
ku�kS, and we assert an absolute bound of the form

max
1�j�M ju�.xj/ � Qujj � �ku�kS

or a relative bound

max1�j�M ju�.xj/ � Qujj
ku�kS � �

with an entity � that can be calculated. It will be a product of two values caring
for stability and consistency, respectively, and these are calculated and analyzed
separately.

Section 2 will set up the large range of PDE or, more generally, operator equation
problems we are able to handle, and Sect. 3 provides the backbone of our error
analysis. It must naturally contain some versions of consistency and stability, and
we deal with these in Sects. 5 and 7, with an interlude on polyharmonic kernels
in Sect. 6. For given Sobolev smoothness order m, these provide stable, sparse,
and error-optimal nodal approximations of differential operators [8]. Numerical
examples follow in Sect. 8, demonstrating how to work with the tools of this
paper. It turns out that the evaluation of stability is easier than expected, while the
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evaluation of consistency often suffers from severe numerical cancellation that is to
be overcome by future research, or that is avoided by using special scale-invariant
approximations, e.g. via polyharmonic kernels along the lines of Sect. 6.

2 Problems and Their Discretizations

We have to connect the system (1) back to the original PDE problem, and we do this
in an unconventional but useful way that we use successfully since [30] in 1999.

2.1 Analytic Problems

For example, consider a model boundary value problem of the form

Lu D f in � � R
d

Bu D g in � WD @�
(2)

where f ; g are given functions on � and � , respectively, and L; B are linear
operators, defined and continuous on some normed linear space U in which the true
solution u� should lie. Looking closer, this is an infinite number of linear constraints

Lu.y/ D f .y/ for all y 2 � � R
d

Bu.z/ D g.z/ for all z 2 � WD @�

and these can be generalized as infinitely many linear functionals acting on the
function u, namely

�.u/ D f� for all � 2 ƒ � U� (3)

where the set ƒ is contained in the topological dual U� of U, in our example

ƒ D fıy ı L; y 2 �g [ fız ı B; z 2 �g: (4)

Definition 1 An admissible problem in the sense of this paper consists in finding
an u from some normed linear space U such that (3) holds for a fixed set ƒ � U�.
Furthermore, solvability via f� D �.u�/ for all � 2 ƒ � U� for some u� 2 U is
always assumed.

Clearly, this allows various classes of differential equations and boundary condi-
tions. in weak or strong form. For examples, see [29]. Here, we just mention that
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the standard functionals for weak problems with L D �� are of the form

�v.u/ WD
Z
�

.ru/Trv (5)

where v is an arbitrary test function from W1
0 .�/.

2.2 Discretization

The connection of the problem (3) to the discrete linear system (1) usually starts
with specifying a finite subsetƒN D f�1; : : : ; �Ng � ƒ of test functionals. But then
it splits into two essentially different branches.

The shape function approach defines functions uj W � ! R with the Lagrange
property ui.xj/ D ıij; 1 � i; j � M and defines the elements akj of the stiffness
matrix as akj WD �k.uj/. This means that the application of the functionals �k on
trial functions

u.x/ D
MX
jD1

u.xj/uj.x/

is exact, and the linear system (1) describes the exact action of the selected test
functionals on the trial space. Typical instances of the shape function approach are
standard applications of Moving Least Squares (MLS) trial functions [2, 3, 32]. Such
applications were surveyed in [5] and incorporate many versions of the Meshless
Local Petrov Galerkin (MLPG) technique [4]. Another popular shape function
method is unsymmetric or symmetric kernel-based collocation, see [10, 12, 13, 17].

But one can omit shape functions completely, at the cost of sacrificing exactness.
Then the selected functionals �k are each approximated by linear combinations of
the functionals ıx1 ; : : : ; ıxM by requiring

�k.u/ �
MX
jD1

akjıxju D
MX
jD1

akju.xj/; 1 � k � N; for all u 2 U: (6)

This approach can be called direct discretization, because it bypasses shape
functions. It is the standard technique for generalized finite differences (FD) [23],
and it comes up again in meshless methods at many places, starting with [24, 31]
and called RBF-FD or local RBF collocation by various authors, e.g. [11, 34]. The
generalized finite difference approximations may be calculated via radial kernels
using local selections of nodes only [26, 35, 36], and there are papers on how
to calculate such approximations, e.g. [7, 19]. Bypassing Moving Least Squares
trial functions, direct methods in the context of Meshless Local Petrov Galerkin
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techniques are in [21, 22], connected to diffuse derivatives [24]. For a mixture of
kernel-based and MLS techniques, see [18].

This contribution will work in both cases, with a certain preference for the direct
approach. The paper [29] focuses on shape function methods instead. It proves that
uniform stability can be achieved for all well-posed problems by choosing a suitable
discretization, and then convergence can be inferred from standard convergence
rates of approximations of derivatives of the true solution from derivatives of trial
functions. The methods of [29] fail for direct methods, and this was the main reason
to write this paper.

2.3 Nodal Trial Approximations

In addition to Definition 1 we now assume that U is a space of functions on some set
�, and that point evaluation is continuous, i.e. ıx 2 U� for all x 2 �. We fix a finite
set XM of M nodes x1; : : : ; xM and denote the span of the functionals ıxj by DM .

For each � 2 ƒ we consider a linear approximation Q� to � from DM , i.e.

�.u/ �
MX
jD1

aj.�/u.xj/ DW Q�.u/ (7)

Note that there is no trial space of functions, and no shape functions at all, just nodal
values and approximations of functionals from nodal values. It should be clear how
the functionals in (4) can be approximated as in (7) via values at nodes.

In the sense of the preceding section, this looks like a direct discretization, but it
also covers the shape function approach, because it is allowed to take aj.�/ D �.uj/
for shape functions uj with the Lagrange property.

2.4 Testing

Given a nodal trial approximation, consider a finite subset ƒN of functionals
�1; : : : ; �N and pose the possibly overdetermined linear system

�k.u
�/ D f�k D

MX
jD1

aj.�k/uj (8)

for unknown nodal values u1; : : : ; uM that may be interpreted as approximations to
u�.x1/; : : : ; u�.xM/. We call ƒN a test selection of functionals, and remark that we
have obtained a system of the form (1).



122 R. Schaback

For what follows, we write the linear system (8) in matrix form also

f D Au (9)

with

A D .aj.�k//1�k�N;1�j�M 2 R
N�M

f D . f�1 ; : : : ; f�N /
T 2 R

N

u D .u.x1/; : : : ; u.xM//T 2 R
M:

Likewise, we denote the vector of exact nodal values u�.xj/ by u�, and Qu will be the
vector of nodal values Quj that is obtained by some numerical method that solves the
system (8) approximately.

It is well-known [15] that square systems of certain meshless methods may
be singular, but it is also known [29] that one can bypass that problem by
overtesting, i.e. choosing N larger than M. This leads to overdetermined systems,
but they can be handled by standard methods like the MATLAB backslash in a
satisfactory way. Here, we expect that users set up their N � M stiffness matrix A
by sufficiently thorough testing, i.e. by selecting many test functionals �1; : : : ; �N
so that the matrix has rank M � N. Section 7 will show that users can expect
good stability if they handle a well-posed problem with sufficient overtesting. Note
further that for cases like the standard Dirichlet problem (2), the set ƒN has to
contain a reasonable mixture of functionals connected to the differential operator
and functionals connected to boundary values. Since we focus on general worst-
case error estimates here, insufficient overtesting and an unbalanced mixture of
boundary and differential equation approximations will result in error bounds that
either cannot be calculated due to rank loss or come out large. The computer should
reveal whether a discretization is good or not.

3 Error Analysis

The goal of this paper is to derive useful bounds for ku� � Quk1, but we do not care
for an error analysis away from the nodes. Instead, we assume a postprocessing step
that interpolates the elements of Qu to generate an approximation Qu to the solution u�
in the whole domain. Our analysis will accept any numerical solution Qu in terms of
nodal values and provide an error bound with small additional computational effort.

3.1 Residuals

We start with evaluating the residual r WD f�A Qu 2 R
N no matter how the numerical

solution Qu was obtained. This can be explicitly done except for roundoff errors, and
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needs no derivation of upper bounds. Since in general the final error at the nodes
will be larger than the observed residuals, users should refine their discretization
when they encounter residuals that are very much larger than the expected error in
the solution.

3.2 Stability

In Sect. 2.4 we postulated that users calculate an N � M stiffness matrix A that has
no rank loss. Then the stability constant

CS.A/ WD sup
u¤0

kukp
kAukq (10)

is finite for any choice of discrete norms k:kp and k:kq on R
M and R

N , respectively,
with 1 � p; q � 1 being fixed here, and dropped from the notation. In principle,
this constant can be explicitly calculated for standard norms, but we refer to Sect. 7
on how it is treated in theory and practice. We shall mainly focus on well-posed
cases where CS.A/ can be expected to be reasonably bounded, while norms of A
get very large. This implies that the ratios kukp=kAukq can vary in a wide range
limited by

kAk�1q;p � kukp
kAukq � CS.A/: (11)

If we assume that we can deal with the stability constant CS.A/, the second step of
error analysis is

ku� � Qukp � CS.A/kA.u� � Qu/kq
� CS.A/.kAu� � fkq C kf � A Qukq/
� CS.A/.kAu� � fkq C krkq/

(12)

and we are left to handle the consistency term kAu� � fkq that still contains the
unknown true solution u�. Note that f is not necessarily in the range of A, and we
cannot expect to get zero residuals r.

3.3 Consistency

For all approximations (7) we assume that there is a consistency error bound

j�.u/� Q�.u/j � c.�/kukS (13)
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for all u in some regularity subspace US of U that carries a strong norm or seminorm
k:kS. In case of a seminorm, we have to assume that the approximation Q� is an exact
approximation to � on the nullspace of the seminorm, but we shall use seminorms
only in Sect. 6 below. If the solution u� has plenty of smoothness, one may expect
that c.�/ku�kS is small, provided that the discretization quality keeps up with the
smoothness. In Sect. 5, we shall consider cases where the c.�/ can be calculated
explicitly.

The bound (13) now specializes to

kAu� � fkq � kckqku�kS
with the vector

c D .c.�1/; : : : ; c.�N//
T 2 R

N ;

and the error in (12) is bounded absolutely by

ku� � Qukp � CS.A/
�kckqku�kS C krkq




and relatively by

ku� � Qukp
ku�kS � CS.A/

�
kckq C krkq

ku�kS
�
: (14)

This still contains the unknown solution u�. But in kernel-based spaces, there are
ways to get estimates of ku�kS via interpolation. A strict but costly way is to
interpolate the data vector f by symmetric kernel collocation to get a function u�f
with ku�f kS � ku�kS, and this norm can be plugged into (14). In single applications,
users would prefer to take the values of u�f in the nodes as results, since they are
known to be error-optimal [28]. But if discretizations with certain given matrices A
are to be evaluated or compared, this suggestion makes sense to get the right-hand
side of (14) independent of u�.

3.4 Residual Minimization

To handle the awkward final term in (14) without additional calculations, we impose
a rather weak additional condition on the numerical procedure that produces Qu as an
approximate solution to (9). In particular, we require

kA Qu � fkq � K.A/kAu� � fkq; (15)

which can be obtained with K.A/ D 1 if Qu is calculated via minimization of the
residual kAu � fkq over all u 2 R

M , or with K.A/ D 0 if f is in the range of A.
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Anyway, we assume that users have a way to solve the system (9) approximately
such that (15) holds with a known and moderate constant K.A/.

Then (15) implies

krkq D kA Qu � fkq
� K.A/kAu� � fkq
� K.A/kckqku�kS

and bounds krkq in terms of ku�kS.

3.5 Final Relative Error Bound

Theorem 1 Under the above assumptions,

ku� � Qukp
ku�kS � .1C K.A//CS.A/kckq: (16)

Proof We can insert (15) directly into (12) to get

ku� � Qukp � CS.A/.1C K.A//kAu� � fkq
� .1C K.A//CS.A/kckqku�kS

and finally (16), where now all elements of the right-hand side are accessible.

This is as far as one can go, not having any additional information on how u� scales.
The final form of (16) shows the classical elements of convergence analysis, since
the right-hand side consists of a stability term CS.A/ and a consistency term kckq.
The factor 1C K.A/ can be seen as a computational accuracy term.

Examples in Sect. 8 will show how these relative error bounds work in practice.
Before that, the next sections will demonstrate theoretically why users can expect
that the ingredients of the bound in (16) can be expected to be small. For this
analysis, we shall assume that users know which regularity the true solution has,
because we shall have to express everything in terms of ku�kS.

At this point, some remarks on error bounds should be made, because papers
focusing on applications of meshless methods often contain one of the two standard
crimes of error assessment.

The first is to take a problem with a known solution u� that supplies the data,
calculate nodal values Qu by some hopefully new method and then compare with u�
to conclude that the method is good because ku� � Quk is small. But the method
may be intolerably unstable. If the input is changed very slightly, it may produce a
seriously different numerical solution Ou that reproduces the data as well as Qu. The
“quality” of the result Qu may be just lucky, it does not prove anything about the
method used.
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The second crime, usually committed when there is no explicit solution known,
is to evaluate residuals r D A Qu � f and to conclude that ku� � Quk is small
because residuals are small. This also ignores stability. There even are papers that
claim convergence of methods by showing that residuals converge to zero when the
discretization is refined. This reduces convergence rates of a PDE solver to rates
of consistency, again ignoring stability problems that may counteract against good
consistency. Section 8 will demonstrate this effect by examples.

This paper will avoid these crimes, but on the downside our error analysis is a
worst-case theory that will necessarily overestimate errors of single cases.

3.6 Sharpness

In particular, if users take a specific problem (2) with data functions f and g and a
known solution u�, and if they evaluate the observed error and the bound (16), they
will often see quite an overestimation of the error. This is due to the fact that they
have a special case that is far away from being worst possible for the given PDE
discretization, and this is comparable to a lottery win, as we shall prove now.

Theorem 2 For all K.A/ > 1 there is some u� 2 US and an admissible solution
vector Qu satisfying (15) such that

.K.A/� 1/CS.A/ku�kSkck1 � ku� � Quk1 � .K.A/C 1/CS.A/ku�kSkck1
(17)

showing that the above worst-case error analysis cannot be improved much.

Proof We first take the worst possible value vector uS for stability, satisfying

kuSk1 D CS.A/kAuSk1
and normalize it to kuSk1 D 1. Then we consider the worst case of consistency,
and we go into a kernel-based context.

Let the consistency vector c attain its norm at some index j; 1 � j � N, i.e.
kck1 D c.�j/. Then there is a function uj 2 US with

j�j.uj/ � Q�j.uj/j D c.�j/kujkS D c.�j/
2;

namely by taking the Riesz representer uj WD .�j� Q�j/xK.x; �/ of the error functional.
The values of uj at the nodes form a vector uj, and we take the data f as exact values
of uj, i.e. fk WD �k.uj/; 1 � k � N to let uj play the role of the true solution u�, in
particular u� D uj and ku�kS D kujkS D c.�j/ D kck1.
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We then define Qu WD u�C ˛CS.A/uS as a candidate for a numerical solution and
check how well it satisfies the system and what its error bound is. We have

kA Qu � fk1 D kA .u� C ˛CS.A/uS/ � fk1
� kAu� � fk1 C j˛jCS.A/kAuSk1
D j˛j C kAu� � fk1
D K.A/kAu� � fk1

if we choose

˛ D .K.A/� 1/kAu� � fk1:

Thus Qu is a valid candidate for numerical solving. The actual error is

ku� � Quk1 D .K.A/� 1/kAu� � fk1CS.A/
D .K.A/� 1/CS.A/max1�k�N j�k.uj/ � Q�k.uj/j
	 .K.A/� 1/CS.A/j�j.uj/ � Q�j.uj/j
D .K.A/� 1/CS.A/kujkSkck1

(18)

proving the assertion.

We shall come back to this worst-case construction in the examples of Sect. 8.

4 Dirichlet Problems

The above error analysis simplifies for problems where Dirichlet values are given
on boundary nodes, and where approximations of differential operators are only
needed in interior points. Then we have N approximations of functionals that are
based on MI interior nodes and MB boundary nodes, with M D MI C MB. We now
use subscripts I and B to indicate vectors of values on interior and boundary nodes,
respectively. The linear system now is

BuI D fI � CgB

while the previous section dealt with the full system

A
�
uI
uB

�
D
�

fI
gB

�
with A D

�
B C
0 IB

�

that has trivial approximations on the boundary. Note that this splitting is standard
practice in classical finite elements when nonzero Dirichlet boundary conditions are
given. We now use the stability constant CS.B/ for B, not for A, and examples will
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show that it often comes out much smaller than CS.A/. The consistency bounds (13)
stay the same, but they now take the form

kBu�I C Cu�B � fIkq D kBu�I C CgB � fIkq � kcIkqku�kS:

The numerical method should now guarantee

kB QuI C CgB � fIkq � K.B/kBu�I C CgB � fIkq
with a reasonable K.B/ 	 1. Then the same error analysis applies, namely

ku�I � QuIkp � CS.B/kB.u�I � QuI/kq
� CS.B/kBu�I � CgB � fIkq C CS.B/kB QuI � CgB � fI/kq
� CS.B/.1C K.B//kBu�I � CgB � fIkq
� CS.B/.1C K.B//kcIkqku�kS:

5 Consistency Analysis

There are many ways to determine the stiffness matrix elements aj.�k/ arising in (9)
and (7), but they are either based on trial/shape functions or on direct discretizations
as described in Sect. 2.2. We do not care here which technique is used. As a by-
product, our method will allow to compare different approaches on a fair basis.

To make the constants c.�/ in (13) numerically accessible, we assume that the
norm k:kS comes from a Hilbert subspace US of U that has a reproducing kernel

K W � �� ! R:

The squared norm of the error functional � � Q� of the approximation Q� in (7) then
is the value of the quadratic form

Q2.�; Q�/ WD k� � Q�k2
U�

S

D �x�yK.x; y/� 2
MX
jD1

aj.�/�
x
j�

yK.x; y/

C
MX

j;kD1
aj.�/ak.�/�

x
j�

y
kK.x; y/

(19)

which can be explicitly evaluated, though there will be serious numerical cancella-
tions because the result is small while the input is not. It provides the explicit error
bound

j�.u�/� Q�.u�/j2 � Q2.�; Q�/ku�k2S
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such that we can work with

c.�/ D Q.�; Q�/:

As mentioned already, the quadratic form (19) in its naïve form has an unstable
evaluation due to serious cancellation. In [7], these problems were partly overcome
by variable precision arithmetic, while the paper [19] provides a very nice stabiliza-
tion technique, but unfortunately confined to approximations based on the Gaussian
kernel. We hope to be able to deal with stabilization of the evaluation of the quadratic
form in a forthcoming paper.

On the positive side, there are cases where these instabilities do not occur, namely
for polyharmonic kernels. We shall come back to this in Sect. 6.

Of course, there are many theoretical results bounding the consistency error (13),
e.g. [7, 22] in terms of ku�kS, with explicit convergence orders in terms of powers
of fill distances

h WD sup
y2�

min
xj

ky � xjk2:

We call these orders consistency orders in what follows. Except for Sect. 6, we do
not survey such results here, but users can be sure that a sufficiently fine fill distance
and sufficient smoothness of the solution will always lead to a high consistency
order. Since rates increase when more nodes are used, we target p-methods, not h-
methods in the language of the finite element literature, and we assume sufficient
regularity for this.

Minimizing the quadratic form (19) over the weights aj.�/ yields discretizations
with optimal consistency with respect to the choice of the space US [7]. But their
calculation may be unstable [19] and they usually lead to non-sparse matrices unless
users restrict the used nodes for each single functional. If they are combined with
a best possible choice of trial functions, namely the Riesz representers vj.x/ D
�
y
j K.x; y/ of the test functionals, the resulting linear system is symmetric and

positive definite, provided that the functionals are linearly independent. This method
is symmetric collocation [10, 12, 13], and it is an optimal recovery method in the
space US [28]. It leads to non-sparse matrices and suffers from severe instability, but
it is error-optimal. Here, we focus on non-optimal methods that allow sparsity.

Again, the instability of optimal approximations can be avoided using polyhar-
monic kernels, and the next section will describe how this works.

6 Approximations by Polyharmonic Kernels

Assume that we are working in a context where we know that the true solution u�
lies in Sobolev space Wm

2 .�/ for� � R
d, or, by Whitney extension also in Wm

2 .R
d/.

Then the consistency error (13) of any given approximation should be evaluated in
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that space, and taking an optimal approximation in that space would yield a system
with optimal consistency.

But since the evaluation and calculation of approximations in Wm
2 .R

d/ is rather
unstable, a workaround is appropriate. Instead of the full norm in Wm

2 .R
d/ one takes

the seminorm involving only the order m derivatives. This originates from early
work of Duchon [9] and leads to Beppo-Levi spaces instead of Sobolev spaces (see
e.g. [33]), but we take a summarizing shortcut here. Instead of the Whittle-Matérn
kernel reproducing Wm

2 .R
d/, the radial polyharmonic kernel

Hm;d.r/ WD
	
.�1/dm�d=2er2m�d; 2m � d odd
.�1/1Cm�d=2r2m�d log r; 2m � d even

�
(20)

is taken, up to a scalar multiple

8̂
<
:̂

�.m � d=2/

22m�d=2.m � 1/Š
2m � d odd

1

22m�1�d=2.m � 1/Š.m � d=2/Š
2m � d even

9>=
>; (21)

that is used to match the seminorm in Sobolev space Wm.Rd/. We allow m to be
integer or half-integer. This kernel is conditionally positive definite of order k D
bm � d=2c C 1, and this has the consequence that approximations working in that
space must be exact on polynomials of al least that order (= degree plus one). In
some sense, this is the price to be paid for omitting the lower order derivatives in
the Sobolev norm, but polynomial exactness will turn out to be a good feature, not
a bug.

As an illustration for the connection between the polyharmonic kernel Hm;d.r/
and the Whittle-Matérn kernel Km�d=2.r/rm�d=2 reproducing Wm

2 .R
d/, we state the

observation that (up to constants) the polyharmonic kernel arises as the first term
in the expansion of the Whittle-Matérn kernel that is not an even power of r. For
instance, up to higher-order terms,

K3.r/r
3 D 16 � 2r2 C 1

4
r4 C 1

24
r6 log.r/

containing H4;2.r/ D r6 log.r/ up to a constant. This seems to hold in general for
Kn.r/rn and n D m � d=2 for integer n and even dimension d. Similarly,

1p
2�

K5=2.r/r
5=2 D 3 � 1

2
r2 C 1

8
r4 � 1

15
r5

contains H4;3.r/ D r5 up to a constant, and this generalizes to half-integer n with
n D m � d=2. The upshot is that the polyharmonic kernel, if written with r D
kx � yk2, differs from the Whittle-Matérn kernel only by lower-order polynomials
and higher-order terms, being simpler to evaluate. A rigid proof is in [8].
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If we have an arbitrary approximation (7) that is exact on polynomials of order
k, we can insert its coefficients aj into the usual quadratic form (19) using the
polyharmonic kernel there, and evaluate the error. Clearly, the error is not smaller
than the error of the optimal approximation using the polyharmonic kernel, and let
us denote the coefficients of the latter by a�j .

We now consider scaling. Due to shift-invariance, we can assume that we have
a homogeneous differential operator of order p that is to be evaluated at the origin,
and we use scaled points hxj for its nodal approximation. It then turns out [8] that
the optimal coefficients a�j .h/ scale like a�j .h/ D h�pa�j .1/, and the quadratic form
Q of (19) written in terms of coefficients as

Q2.a/ D �x�yK.x; y/� 2
MX
jD1

aj.�/�
x
j�

yK.x; y/

C
MX

j;kD1
aj.�/ak.�/�

x
j�

y
kK.x; y/

scales exactly like

Q.a�.h// D h2m�d�2pQ.a�.1//;

proving that there is no approximation of better order in that space, no matter how
users calculate their approximation. Note that strong methods (i.e. collocation) for
second-order PDE problems (2) using functionals (4) have p D 2 while the weak
functionals of (5) have p D 1. This is a fundamental difference between weak
and strong formulations, but note that it is easy to have methods of arbitrarily high
consistency order.

In practice, any set of given and centralized nodes xj can be blown up to points
Hxj of average pairwise distance 1. Then the error and the weights can be calculated
for the blown-up situation, and then the scaling laws for the coefficients and the error
are applied using h D 1=H. This works for all scalings, without serious instabilities.

Now that we know an optimal approximation with a simple and stable scaling,
why bother with other approximations? They will not have a smaller worst-case
consistency error, and they will not always have the scaling property aj.h/ D
h�paj.1/, causing instabilities when evaluating the quadratic form. If they do have
that scaling law, then

Q.a.h// D h2m�d�2pQ.a.1// 	 h2m�d�2pQ.a�.1// D Q.a�.h//

can easily be proven, leading to stable calculation for an error that is not smaller
than the optimal one. In contrast to standard results on the error of kernel-based
approximations, we have no restriction like h � h0 here, since the scaling law is
exact and holds for all h.
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If the smoothness m for error evaluation is fixed, it will not pay off to use
approximations with higher orders of polynomial exactness, or using kernels
with higher smoothness. They cannot beat the optimal approximations for that
smoothness class, and the error bounds of these are sharp. Special approximations
can be better in a single case, but this paper deals with worst-case bounds, and then
the optimal approximations are always superior.

The optimal approximations can be calculated for small numbers of nodes, lead-
ing to sparse stiffness matrices. One needs enough points to guarantee polynomial
exactness of order k D bm � d=2c C 1. The minimal number of points actually
needed will depend on their geometric placement. The five-point star is an extremely
symmetric example with exactness of order 4 in d D 2, but this order will normally
need 15 points in general position because the dimension of the space of third-degree
polynomials in R

2 is 15.
The upshot of all of this is that, given a fixed smoothness m and a dimension

d, polyharmonic stencils yield sparse optimal approximations that can be stably
calculated and evaluated. Examples are in [8] and in Sect. 8 below. See [16] for
an early work on stability of interpolation by polyharmonic kernels, and [1] for an
example of an advanced application.

7 Stability Analysis

We now take a closer look at the stability constant CS.A/ from (10). It can be
rewritten as

CS.A/ D supfkukp W kAukq � 1g (22)

and thus 2CS.A/ is the p-norm diameter of the convex set fu 2 R
M W kAukq � 1g.

In the case p D q D 1 that will be particularly important below, this set is a
polyhedron, and the constant CS.A/ can be calculated via linear optimization. We
omit details here, but note that the calculation tends to be computationally unstable
and complicated. It is left to future research to provide a good estimation technique
for the stability constant CS.A/ like MATLAB’s condest for estimating the L1
condition number of a square matrix.

In case p D q D 2 we get

CS.A/�1 D min
1�j�M �j

for the M positive singular values �1; : : : ; �M of A, and these are obtainable by
singular value decomposition.
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To simplify the computation, one might calculate the pseudoinverse A� of A and
then take the standard .p; q/-norm of it, namely

kA�kp;q WD sup
v¤0

kA�vkp
kvkq :

This overestimates CS.A/ due to

kA�kp;q 	 sup
vDAu¤0

kA�Aukp
kAukq D sup

u¤0
kukp

kAukq D CS.A/

since CS.A/ is the norm of the pseudoinverse not on all of RN , but restricted to the
M-dimensional range of A in R

N . Here, we again used that A has full rank, thus
A�A D IM�M .

Calculating the pseudoinverse may be as expensive as the numerical solution if
the system (8) itself, but if a user wants to have a close grip on the error, it is worth
while. It assures stability of the numerical process, if not intolerably large, as we
shall see. Again, we hope for future research to produce an efficient estimator.

A simple possibility, restricted to square systems, is to use the fact that
MATLAB’s condest estimates the 1-norm-condition number, which is the L1
condition number of the transpose. Thus

QCS.A/ WD condest.A0/
kAk1 (23)

is an estimate of the L1 norm of A�1. This is computationally very cheap for sparse
matrices and turns out to work fine on the examples in Sect. 8, but an extension to
non-square matrices is missing.

We now switch to theory and want to show that users can expect CS.A/ to be
bounded above independent of the discretization details, if the underlying problem
is well-posed. To this end, we use the approach of [29] in what follows.

Well-posed analytic problems of the form (3) allow a stable reconstruction of
u 2 U from their full set of data f�.u/; � 2 ƒ. This analytic stability can often be
described as

kukWP � CWP sup
�2ƒ

j�.u/j for all u 2 U; (24)

where the well-posedness norm k:kWP usually is weaker than the norm k:kU . For
instance, elliptic second-order Dirichlet boundary value problems written in strong
form satisfy

kuk1;� � kuk1;@� C CkLuk1;� for all u 2 U WD C2.�/\ C.�/ (25)

see e.g. [6, (2.3), p. 14], and this is (24) for k:kWP D k:k1.
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The results of [29] then show that for each trial space UM � U one can find a test
set ƒN such that (24) takes a discretized form

kuk1 � 2CWP sup
�k2ƒN

j�k.u/j for all u 2 UM;

and this implies

ju.xj/j � 2CWP sup
�k2ƒN

j�k.u/j for all u 2 UM

for all nodal values. This proves a uniform stability property of the stiffness matrix
with entries �k.ui/. The functional approximations in [29] were of the form aj.�/ D
�.uj/, and then

kuk1 � 2CWP sup�k2ƒN
j�k.u/j

D 2CWP sup�k2ƒN
j�k

�PM
iD1 u.xi/ui

�
j

D 2CWP sup�k2ƒN
jPM

iD1 u.xi/�k.ui/j
D 2CWPkAuk1

and thus

CS.A/ � 2CWP:

This is a prototype situation encouraging users to expect reasonably bounded norms
of the pseudoinverse, provided that the norms are properly chosen.

However, the situation of [29] is much more special than here, because it is
confined to the trial function approach. While we do not even specify trial spaces
here, the paper [29] relies on the condition aj.�/ D �.uj/ for a Lagrange basis of
a trial space, i.e. exactness of the approximations on a chosen trial space. This is
satisfied in nodal methods based on trial spaces, but not in direct nodal methods.
In particular, it works for Kansa-type collocation and MLS-based nodal meshless
methods, but not for localized kernel approximations and direct MLPG techniques
in nodal form.

For general choices of aj.�/, the stability problem is a challenging research area
that is not addressed here. Instead, users are asked to monitor the row-sum norm of
the pseudoinverse numerically and apply error bounds like (16) for p D q D 1.
Note that the choice of discrete L1 norms is dictated by the well-posedness
inequality (25). As pointed out above, chances are good to observe numerical
stability for well-posed problems, provided that test functionals are chosen properly.
We shall see this in the examples of Sect. 8. In case of square stiffness matrices, users
can apply (23) to get a cheap and fairly accurate estimate of the stability constant.

For problems in weak form, the well-posedness norm usually is not k:k1;� but
k:kL2.�/, and then we might get into problems using a nodal basis. In such cases,
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an L2-orthonormal basis would be needed for uniform stability, but we refrain from
considering weak formulations here.

8 Examples

In all examples to follow, the nodal points are x1; : : : ; xM in the domain � D
Œ�1;C1	2 � R

2, and parts of them are placed on the boundary. We consider the
standard Dirichlet problem for the Laplacian throughout, and use testing points
y1; : : : ; yn 2 � for the Laplacian and z1; : : : ; zk 2 @� for the Dirichlet boundary
data in the sense of (4). Note that in our error bound (16) the right-hand sides of
problems like (2) do not occur at all. This means that everything is only dependent
on how the discretization works, it does not depend on any specific choice of f and g.

We omit detailed examples that show how the stability constant CS.A/ decreases
when increasing the number N of test functionals. An example is in [29], and (22)
shows that stability must improve if rows are added to A. Users are urged to make
sure that their approximations (6), making up the rows of the stiffness matrix, have
roughly the same consistency order, because adding equations will then improve
stability without serious change of the consistency error.

We first take regular points on a 2D grid of sidelength h in � D Œ�1;C1	2 � R
2

and interpret all points as nodes. On interior nodes, we approximate the Laplacian
by the usual five-point star which is exact on polynomials up to degree 3 or order
4. On boundary nodes, we take the boundary values as given. This yields a square
linear system. Since the coefficients of the five-point star blow up like O.h2/ for
h ! 0, the row-sum norm of A and the condition must blow up like O.h�2/, which
can easily be observed. The pseudoinverse does not blow up since the Laplacian
part of A just takes means and the boundary part is the identity. For the values of h
we computed, its norm was bounded by roughly 1.3. This settles the stability issue
from a practical point of view. Theorems on stability are not needed.

Consistency depends on the regularity space US chosen. We have a fixed classical
discretization strategy via the five-point star, but we can evaluate the consistency
error in different spaces. Table 1 shows the results for Sobolev space W4

2 .R
d/. It

clearly shows linear convergence, and its last column has the major part of the worst-
case relative error bound (16). The estimate QCS.A/ from (23) agrees with CS.A/ to
all digits shown. Note that for all methods that need continuous point evaluations of
the Laplacian in 2D, one cannot work with less smoothness, because the Sobolev
inequality requires Wm

2 .R
2/ with m > 2C d=2 D 3. The arguments in Sect. 6 show

that the consistency order then is at most m � d=2 � p D m � 3 D 1, as observed.
Table 2 shows the improvement if one uses the partial matrix B of Sect. 4.

We now demonstrate the sharpness of our error bounds. We implemented the
construction of Sect. 3.6 for K.A/ D 2 and the situation in the final row of Table 1.
This means that, given A, we picked values of f and g to realize worst-case stability
and consistency, with known value vectors u� and Qu. Figure 1 shows the values of
uS and uj D u� in the notation of the proof of Theorem 2, while Fig. 2 displays Qu.
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Table 1 Results for five-point star on the unit square, for W4
2 .R

2/ and the full matrix A

M D N h CS.A/ kck1 CS.A/ kck1
25 0.5000 1.281250 0.099045 0.126901

81 0.2500 1.291131 0.051766 0.066837

289 0.1250 1.293783 0.026303 0.034030

1089 0.0625 1.294459 0.013222 0.017116

Table 2 Results for five-point star on the unit square, for W4
2 .R

2/ and the partial matrix B

MI D NI h CS.B/ kcIk1 CS.B/ kcIk1
9 0.5000 0.281250 0.099045 0.027856

49 0.2500 0.291131 0.051766 0.015071

225 0.1250 0.293783 0.026303 0.007727

961 0.0625 0.294459 0.013222 0.003893

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Worst case function for stability

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

x 10−5

Worst case function for consistency

Fig. 1 Stability and consistency worst case

The inequality (17) is in this case

0:000226 D CS.A/ku�kSkck1 � ku� � Quk1 D 0:000226 � 3CS.A/ku�kSkck1 D 0:000679

and the admissibility inequality (15) is exactly satisfied with K.A/ D 2. Even
though this example is worst-case, the residuals and the error ku� � Quk1 are small
compared to the last line of Table 1, and users might suspect that the table has a
useless overestimation of the error. But the explanation is that the above bounds
are absolute, not relative, while the norm of the true solution is ku�kS D kck1 D
0:0132. The relative form of the above bound is

0:0171 D ku� � Quk1
ku�kS � 0:0513;
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Fig. 2 Solution for joint
worst case
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showing that the relative error bound 0.0171 in Table 1 is attained by a specific
example. Thus our error estimation technique covers this situation well. The lower
bound in the worst-case construction is attained because this example has equality
in (18).

Note that our constructed case combines worst-case consistency with worst-case
stability, but in practical situations these two worst cases will rarely happen at the
same time. Figure 1 shows that the worst case for stability seems to be a discretiza-
tion of a discontinuous function, and therefore it may be that practical situations
are systematically far away from the worst case. This calls for a redefinition of the
stability constant by restricting the range of A in an appropriate way. The worst case
for stability arises for vectors of nodal values that are close to the eigenvector of the
smallest eigenvalue of A, but the worst case for consistency might systematically
have small inner products with eigenvectors for small eigenvalues.

If we take the polyharmonic kernel H4;2.r/ D r6 log r (up to a constant), the five-
point star is unique and therefore optimal, with consistency order 1, see Sect. 6. This
means that for given smoothness order m D 4 and gridded nodes, the five-point star
already has the optimal convergence order. Taking approximations of the Laplacian
using larger subsets of nodes might be exact on higher-order polynomials, and will
have smaller factors if front of the scaling law, but the consistency and convergence
order will not be better, at the expense of losing sparsity.

To see how much consistency can be gained by using non-sparse optimal
approximations by polyharmonic kernels, we worked at h D 1, approximating
the error of the Laplacian at the origin by data in the integer nodes .m; n/ with
�1 � m; n � K for increasing K. This models the case where the Laplacian
is approximated in a near-corner point of the square. Smaller h can be handled
by the scaling law. The consistency error in W4

2 .R
2/ goes down from 0.07165 to

0.070035 when going from 25 to 225 neighbors (see Fig. 3), while 0.08461 is the
error of the five-point star at the origin. The gain is not worth the effort. The optimal
stencils decay extremely quickly away from the origin. This is predicted by results
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Fig. 3 Consistency error as a function of points offered, and stencil of optimal approximation for
225 nodes, as a function on the nodes

of [20] concerning exponential decay of Lagrangians of polyharmonic kernels, as
used successfully in [14] to derive local inverse estimates. See [25] for an early
reference on polyharmonic near-Lagrange functions.

We now show how the technique of this paper can be used to compare very
different discretizations, while a smoothness order m is fixed, in the sense that the
true solution lies in Sobolev space Wm

2 .�/. Because we have p-methods in mind,
we take m D 6 for the standard Dirichlet problem for the Laplacian in 2D and can
expect an optimal consistency order m � d=2 � 2 D 3 for a strong discretization.
Weak discretizations will be at least one order better, but we omit such examples.
The required order of polynomial exactness when using the polyharmonic kernel
is 1 C m � d=2 D 6, which means that one should use at least 21 nodes for
local approximations, if nodes are in general position, without symmetries. The
bandwidth of the generalized stiffness matrix must therefore be at least 21. For
convenience, we go to the unit square and a regular grid of meshwidth h first, to
define the nodes. But then we add uniformly distributed noise of ˙h=4 to each
interior node, keeping the boundary nodes. Then we approximate the Laplacian
at each interior node locally by taking n 	 25 nearest neighbor nodes, including
boundary nodes, and set up the reduced generalized square stiffness matrix B using
the optimal polyharmonic approximation based on these neighboring nodes. On the
boundary, we keep the given Dirichlet boundary values, following Sect. 4.

Table 3 shows results for local optimal approximations based on the polyhar-
monic kernel H6;2.r/ D r10 log r and n D 30 nearest neighbors. The stability
constant was estimated via (23), for convenience and efficiency. One cannot expect
to see an exact h3 behavior in the penultimate column, since the nodes are
randomly perturbed, but the overall behavior of the error is quite satisfactory. The
computational complexity is roughly O.Nn3/, and note that the linear system is not
solved at all, because we used MATLAB’s condest. Comparing with Table 4,
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Table 3 Optimal polyharmonic approximations using 30 neighbors

N D M NI D MI h QCS.B/ kcIk1 CS.B/kcIk1
81 49 0.2500 2.3244 0.00075580 0.00175682

289 225 0.1250 0.3199 0.00005224 0.00001671

1089 961 0.0625 0.2964 0.00000872 0.00000259

4225 3969 0.0313 0.2961 0.00000147 0.00000044

Table 4 Optimal polyharmonic approximations using 25 neighbors

N D M NI D MI h QCS.B/ kcIk1 CS.B/kcIk1
81 49 0.2500 8:0180 0.00318328 0.02552351

289 225 0.1250 66:7176 0.00039055 0.02605641

1089 961 0.0625 417:8094 0.00003877 0.01620053

4225 3969 0.0313 75:5050 0.00000663 0.00050082

Table 5 Backslash approximation on 25 neighbors

N D M NI D MI h QCS.B/ kcIk1 CS.B/kcIk1
81 49 0.2500 9:0177 0.00354151 0.03193624

289 225 0.1250 25:6153 0.00058952 0.01510082

1089 961 0.0625 73:9273 0.00005482 0.00405249

4225 3969 0.0313 19:6458 0.00001186 0.00023305

it pays off to use a few more neighbors, and this also avoids instabilities. Users
unaware of instabilities might think they can expect a similar behavior as in Table 3
when taking only 25 neighbors, but the third row of Table 4 should teach them
otherwise. By resetting the random number generator, all tables were made to work
on the same total set of points, but the local approximations still yield rather different
results.

The computationally cheapest way to calculate approximations with the required
polynomial exactness of order 6 on 25 neighbors is to solve the linear 20�25 system
describing polynomial exactness via the MATLAB backslash operator. It will return
a solution based on 21 points only, i.e. with minimal bandwidth, but the overall
behavior in Table 5 may not be worth the computational savings, if compared to the
optimal approximations on 30 neighbors.

A more sophisticated kernel-based greedy technique [27] uses between 21 and
30 points and works its way through the offered 30 neighbors to find a compromise
between consistency error and support size. Table 6 shows the results, with an
average of 23.55 neighbors actually used.

For these examples, one can plot the consistency error as a function of the nodes,
and there usually is a factor of 5–10 between the error in the interior and on the
boundary. Therefore it should be better to let the node density increase towards
the boundary, though this may lead to instabilities that may call for overtesting,
i.e. to use N >> M. For the same M and N as before, but with Chebyshev point
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Table 6 Greedy polyharmonic approximations using at most 30 neighbors

N D M NI D MI h QCS.B/ kcIk1 CS.B/kcIk1
81 49 0.2500 3.6188 0.00104016 0.00376411

289 225 0.1250 0.6128 0.00006821 0.00004180

1089 961 0.0625 0.3061 0.00000961 0.00000294

4225 3969 0.0313 0.2980 0.00000123 0.00000037

Table 7 Greedy polyharmonic approximations using at most 30 neighbors, but in Chebyshev node
arrangement

N D M NI D MI h QCS.B/ kcIk1 CS.B/kcIk1
81 49 0.2500 111:1016 0.00433490 0.48161488

289 225 0.1250 0:4252 0.00006541 0.00002781

1089 961 0.0625 1:2133 0.00000677 0.00000821

4225 3969 0.0313 0:4353 0.00000120 0.00000052
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distribution, see Table 7. The additive noise on the interior points was 0.01, and we
used the greedy method for up to 30 neighbors. This leads to a larger bandwidth
near the corners, and to a consistency error that is now small at the boundary, see
Fig. 4. The average number of neighbors used was 23.3. Unfortunately, the scaling
laws of stencils go down the drain here, together with the proven consistency order,
but the results are still unexpectedly good.

For reasons of space and readability, we provide no examples for local approx-
imations to weak functionals, and no comparisons with local approximations
obtained via Moving Least Squares or the Direct Meshless Petrov Galerkin Method.
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9 Conclusion and Outlook

The tables of the preceding section show that the numerical calculation of relative
error bounds for PDE solving in spaces of fixed Sobolev smoothness can be
done efficiently and with good results. This provides a general tool to evaluate
discretizations in a worst-case scenario, without referring to single examples
and complicated theorems. Further examples should compare a large variety of
competing techniques, the comparison being fair here as long as the smoothness
m is fixed.

Users are strongly advised to use the cheap stability estimate (23) anytime to
assess the stability of their discretization, if they have a square stiffness matrix.
And, if they are not satisfied with the final accuracy, they should evaluate and plot
the consistency error like in Fig. 4 to see where the discretization should be refined.
For all of this, polyharmonic kernels are an adequate tool.

It is left to future research to investigate and improve the stability estimation
technique via (23), and, if the effort is worth while, to prove general theorems on
sufficient criteria for stability. These will include assumptions on the placement of
the trial nodes, as well as on the selection of sufficiently many and well-placed test
functionals. In particular, stabilization by overtesting should work in general, but the
examples in this paper show that overtesting may not be necessary at all. However,
this paper serves as a practical workaround, as long as there are no theoretical
cutting-edge results available.
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Generalizations of Simple Kriging Methods
in Spatial Data Analysis

Qi Ye

Abstract In this article, we use the theory of meshfree approximation to generalize
the simple kriging methods by kernel-based probabilities. The main idea is that the
new kriging estimations are modeled by the Gaussian fields indexed by bounded
linear functionals defined on Sobolev spaces. Moreover, the covariances of the
Gaussian fields at the observed functionals can be computed by the given covariance
kernels with respect to the related functionals, for example, Gaussian kernels
evaluated at points and gradients. This guarantees that the generalized kriging
estimations can be obtained by the same techniques of the simple kriging methods
and the generalized kriging estimations can cover many kinds of the complex
observed information. By the generalized kriging methods, we can model the
geostatistics with the additional observations of gradients at the uncertain locations.

1 Introduction

The kriging method is a modern statistical tool to recover values at unknown
locations by observed data, for example, application in geostatistics in [5, 14, 15].
In this article, we will generalize the simple kriging methods combining with
the knowledge and techniques of approximation theory and numerical analysis in
[4, 6, 16].

In the simple kriging methods, we will model the kriging estimations by the
Gaussian field S with the mean 0 and the given covariance kernel K, for example, a
Gaussian kernel

K.x; y/ WD e��2kx�yk
2
2 ; for x; y 2 R

d;
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with a shape parameter � > 0. Generally speaking, we observe the locations

x1; : : : ; xn;

to obtain the observed data values

f1; : : : ; fn;

which can be viewed as the realizations of the multivariate normal random variables

Sx1 ; : : : ; Sxn ; (1)

that is, the discretization of the Gaussian field S at the data points x1; : : : ; xn. Thus,
we can compute the prediction at the unknown location x0 by the covariance kernel
K in Eqs. (15)–(16). We know that the kriging estimation can be also seen as a spline
function for the interpolation. In approximation theory, the interpolation is related
to the point evaluation functions

ıx1 ; : : : ; ıxn :

Here, the point evaluation function ıx is defined by ıxf WD f .x/. Thus, we can
rewrite the multivariate normal random variables in Eq. (1) as

ıx1S; : : : ; ıxnS; (2)

In this article, we have a new idea to generalize the simple kriging models such
as the generalization of classical interpolation to Hermite-Birkhoff interpolation.
Since the Sobolev imbedding theorem guarantees that the point evaluation function
ıx is a bounded linear functional L defined on the Sobolev spaces, we will extend
the multivariate normal random variables in Eq. (2) into another multivariate normal
random variables which are introduced by the general bounded linear functionals

L1; : : : ;Ln

defined on the Sobolev spaces, that is,

L1S; : : : ;LnS: (3)

Here, we call a real-scalar linear operator a linear functional, for example, a
derivative and a integral in Remark 3. In Theorem 1, we have the Gaussian field LS
indexed by the bounded linear functional L of which covariances can be computed
by the given positive definite kernel K with the related functional L. We can observe
that the covariance matrix AK;L of L1S; : : : ;LnS in Eq. (8) is the generalization of
the classical covariance matrix AK;X of Sx1 ; : : : ; Sxn in Eq. (5). This provides that
the covariances of the multivariate normal random variables in Eq. (3) are known
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to construct the generalized kriging models by the same techniques of simple
kriging method and Bayesian estimation; hence we can obtain the new kernel-based
estimators given in Eq. (11) and Eqs. (12)–(13) to model the generalized kriging
estimation.

Moreover, we can also apply the generalized kriging methods into the geostatis-
tics with more kinds of observed information at uncertain data points in Sect. 4.
To be more precise, the uncertain data points mean that the observed data values
are missed at these locations. Sometimes we may still have the increasing or
decreasing rates at some uncertain data points. For the typical example, we can
not observe the heights at some locations of the mountains while we know whether
the heights increase or decrease along some directions at these locations, that is,
the mathematical model is that the value f .x/ is unknown at the observed point
x while the range of the gradient rf .x/ along the direction e is given such as

eTrf .x/ 	 0 or eTrf .x/ � 0, where r WD
�
@
@x1
; � � � ; @

@xd

�T
. This shows that the new

geostatistical model will be set up by the Gaussian fields indexed by the bounded
linear functionals composed of L WD ıx and L WD ıx ıeTr same as the constructions
of the generalized kriging estimations, that is, Eqs. (32)–(33). Different from the
classical geostatistical models, the covariance matrix in Eq. (20) is also set up by the
gradient and the preconditioned observed data values in Eq. (31) are the averages
of possible observed data values by kernel-based probabilities. By the numerical
example in Sect. 5, we find that the generalized kriging estimation is better than
the simple kriging estimation. In this article, we mainly show the big picture of the
new idea of the kriging methods. So, we only discuss the comparisons of the simple
kriging methods and the classical geostatistics. In our next research proposals, we
will investigate another kriging methods by the same ideas and methods shown here.

2 Initial Ideas

Let us look at a simple example of the one-dimensional interpolation in Fig. 1 such
as we have the observed data values f1; : : : ; f7 2 R at the data points x1; : : : ; x7 2
Œ0; 1	 
 R. Our target is to predict the value at the unknown location x0 2 Œ0; 1	

based on the interpolation conditions by the statistical and numerical techniques.
In the spatial statistics, we can predict the value at the unknown location x0 by

the simple kriging method in [14], that is, the simple kriging model set up by the
Gaussian field S with the mean 0 and the covariance kernel K, where K is a Gaussian
kernel defined on Œ0; 1	 � Œ0; 1	.
Remark 1 A stochastic field S W D � � ! R defined on a probability space
.�;F ;P/ is called a Gaussian field with a mean 0 and a covariance kernel K W
D � D ! R if, for any x 2 D 
 R

d, the random variable Sx is a normal random
variable with the mean 0 and the variance K.x; x/ in [3, Definition 3.28].
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Fig. 1 The 1D example: The red circles represent the observed data values f1; : : : ; f7 at the data
points x1; : : : ; x7 shown in the blue circles, and the blue square represents the unknown location x0.
The covariance kernel of the Gaussian field S is the Gaussian kernel K with the shape parameter
� D 6. The best prediction s.x0/ of Sx0 conditioned on the observed data is shown in the red square.
The kriging estimations shown in the green curve run along the means of the normally distributed
confidence intervals of 99% shown in gray

For example in Fig. 1, the simple kriging method provides the best linear
unbiased prediction s.x0/, that is,

s.x0/ WD E .Sx0 jSx1 D f1; : : : ; Sx7 D f7/ D
7X

kD1
wk.x0/fk;

where the elements w1.x0/; : : : ;w7.x0/ are uniquely solved by the linear system

0
B@
K.x1; x1/ � � � K.x1; x7/

: : :

K.x7; x1/ � � � K.x7; x7/

1
CA
0
B@
w1.x0/
:::

w7.x0/

1
CA D

0
B@
K.x0; x1/

:::

K.x0; x7/

1
CA :

Recently, the meshfree methods (radial basis functions) give a numerical tool to
construct the kernel-based interpolant u by the non-polynomial basis in [6, 16], for
example, the kernel-based interpolant u is a linear combination of the Gaussian-
kernel basis, that is,

u.x/ WD
7X

kD1
ckK.x; xk/; for x 2 Œ0; 1	;
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Fig. 2 The example of the initial ideas: The observed data f1; : : : ; f7 and x1; : : : ; x7 (red and blue
circles) are the same as in Fig. 1. The blue, green, and black curves represent the piecewise linear
spline u1, the polynomial interpolant u2, and the kernel-based interpolant u3, respectively. The red
and pink squares represent the different estimate values v1; v2 at the location x0

where the coefficients c1; : : : ; c7 are uniquely solved by the linear system

0
B@
K.x1; x1/ � � � K.x1; x7/

: : :

K.x7; x1/ � � � K.x7; x7/

1
CA
0
B@
c1
:::

c7

1
CA D

0
B@
f1
:::

f7

1
CA :

We also find that u.x0/ is equal to s.x0/ for any x0 2 Œ0; 1	 (see the green curve in
Fig. 1).

Moreover, the paper [13] and the book [7] show that the formulas of the simple
kriging method and the meshfree approximation are the same for the general positive
definite kernels. Based on the new discoveries of Scheuerer et al. [13], we renew
the kernel-based methods combing with the knowledge of statistics and probability,
stochastic analysis, approximation theory, and numerical analysis in the recent
papers [17, 18].

Now let us look at the initial idea of this article in Fig. 2. In numerical analysis,
many choices of the continuous functions satisfy the interpolations such as the
piecewise linear spline u1, the polynomial interpolant u2, and the kernel-based
interpolant u3 in Fig. 2; hence we will have the different estimate values, for
example, the values v1; v2 at the unknown location x0 in Fig. 2. In stochastic
analysis, we will view the interpolating paths u1; u2; u3 as the sample events. Thus,
the estimate values v1; v2 are supported by the interpolating paths u1; u2; u3 such
that the probabilities p1; p2 at v1; v2 are endowed with 2=3; 1=3, respectively in
Table 1. Based on the similar techniques of the Bayesian estimation in [2], the
best estimator Ov is the average of v1; v2 weighted by the probabilities p1; p2, that
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Table 1 The probabilities of the estimate values v1; v2 at the location x0 in Fig. 2

Location Probability at v1 in red Probability at v2 in pink Best estimator

x0 WD 0:4 p1 WD 2=3 (supported by u2; u3) p2 WD 1=3 (supported by u1) Ov WD v1p1 C v2p2

is, Ov WD v1p1Cv2p2. Here, we obtain the best estimators by the global interpolating
paths and the best estimators are solved by the local averages. This indicates that
a probability structure of the interpolating paths is needed to measure the estimate
values.

Fortunately, the construction of the Brownian motion inspires the connection of
the interpolating paths and the Gaussian fields. It is well-known that the standard
Brownian motion W is a Gaussian field with the mean 0 and the covariance kernel
K.t; s/ WD min ft; sg. [11, Chap. 2] provides that the Brownian motion is defined
on the continuous function space CŒ0;1/ and that the Wiener measure P� is well-
posed on the sample space .��;F�/ composed of the function space CŒ0;1/ and
the Borel �-algebra B .CŒ0;1//. By [11, Theorem 4.20], the coordinate mapping
processWt.!/ WD !.t/ for t 2 Œ0;1/ and! 2 �� is a standard Brownian motion on
the probability space .��;F�;P�/. Moreover, we find that the initial condition Y0 D
y0 of the simple stochastic ordinary differential equation dYt D dWt is equivalent
to the interpolation at the origin. This indicates that we can extend the interpolating
paths u1; u2; u3 in Fig. 2 to all interpolating paths in CŒ0;1/ such that

A. f / WD f! 2 CŒ0;1/ W !.x1/ D f1; : : : ; !.x7/ D f7g ;

can be equivalently measured by the multivariate normal random variables

Wx1 ; : : : ;Wx7 :

Then we can make a connection of the interpolations and the Gaussian fields, that
is,

A. f / D f! 2 �� W Wx1 .!/ D f1; : : : ;Wx7 .!/ D f7g : (4)

In numerical analysis, we can extend the interpolations at the points to the
Hermite-Birkhoff interpolations at the derivatives, for example, meshfree approx-
imation for partial differential equations in [6]. The idea of Eq. (4) let us generalize
the kriging methods for the Hermite-Birkhoff data with the differential operators
similar as the equivalent formulas of the kriging methods and the meshfree
approximation in the previous example. In the papers [17, 18], we extend the
initial idea in Fig. 2 to all interpolating paths in the Sobolev spaces such that the
generalized Hermite-Birkhoff interpolations are connected to the Gaussian fields
indexed by the bounded linear functionals in Theorem 1. Therefore, we can obtain
the best estimators by Gaussian fields at the observed linear functionals in the
following sections.
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3 Kernel-Based Approximations via Kernel-Based
Probabilities

In this section, we will study the kernel-based approximation by the kernel-
based probabilities. These kernel-based probabilities are introduced by the positive
definite kernels such that we can construct the normal random variables on the
Sobolev spaces by the bounded linear functionals.

Remark 2 The positive definite kernel K W D � D ! R is defined same as in [16,
Definition 6.24], that is, the quadratic form

Pn
j;kD1 cjckK.xj; xk/ > 0, for any n 2 N,

any distinct points X WD fx1; : : : ; xng 
 D, and any c WD .c1; � � � ; cn/T 2 R
n n f0g.

This is equivalent that all matrixes

AK;X WD

0
B@
K.x1; x1/ � � � K.x1; xn/

: : :

K.xn; x1/ � � � K.xn; xn/

1
CA ; (5)

are strictly positive definite.

Firstly, we review the theorems of the constructions of normal random variables
over kernel-based probabilities in the recent paper [18].

Theorem 1 ([18, Theorem 2.1]) Suppose that D 
 R
d is a regular and compact

domain and the positive definite kernel K 2 C2m;1 .D � D/ for m > d=2. Let L be a
bounded linear functional on the L2-based Sobolev spaceHm.D/. Then there exists
a probability measure PK on the measurable space

.�m;Fm/ WD .Hm.D/;B .Hm.D/// ;

such that the normal random variable

LS.!/ WD L!; for ! 2 �m;

is well-defined on the probability space
�
�m;Fm;PK



and that this random variable

LS has the mean 0 and the variance LxLyK.x; y/. Moreover, the probability measure
PK is independent of the bounded linear functional L.

Remark 3 In Theorem 1, the Sobolev spaceHm.D/ is endowed with the inner prod-
uct .!1; !2/Hm.D/ WD P

j˛j�m
R
D D˛!1.x/D˛!2.x/dx, the collection B .Hm.D//

represents the Borel �-algebra in the Sobolev space Hm.D/, the element ! 2
�m represents the sample path (trajectory), and the space C2m;1 .D � D/ 

C2m .D � D/ consists of all functions which have the continuous derivatives up
to the order 2m and of which the 2mth partial derivatives satisfy the Lipschitz
condition. A linear functional L W Hm.D/ ! R is called bounded if there exists
a constant C > 0 such that jL!j � C k!kHm.D/ for all ! 2 Hm.D/. Its equivalent
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concept is that a bounded linear functional L is continuous on Hm.D/. Moreover,
the notations Lx and Ly denote the linear functional L associated to the first and
second arguments of x and y, respectively, that is, LxK.x; y/ D L .K.�; y// and
LyK.x; y/ D L .K.x; �//.

In Theorem 1, the Sobolev space Hm.D/ and the Borel �-algebra B .Hm.D//
are thought as the sample space .�m;Fm/ of the probability space, and this .�m;Fm/

is endowed with the probability measure PK . Since the Sobolev space Hm.D/ and
its dual space Hm.D/0 are isometrically isomorphic, there exists a unique element
gL 2 Hm.D/, which is equivalent to the given L 2 Hm.D/0, such that

LS.!/ D L! D .!; gL/Hm.D/ ; for ! 2 �m D Hm.D/I

hence the probability measure PK is also a Gaussian measure in [3, Definition 3.29].
Moreover, the probability measure PK is only dependent of the positive definite
kernel K. When the kernel K is fixed, then the probability space

�
�m;Fm;PK



will

not be changed by any L 2 Hm.D/0. In another hand, the probability distributions of
the normal random variable LS are affected by the linear functional L and the kernel
K, for example, the variance of LS. So, we can call PK the kernel-based probability
measure of K.

In this article, we will not discuss the choices of the best kernels and the
positive definite kernel K 2 C2m;1 .D � D/ is always given and fixed such that
the probability measure PK is uniquely defined on the Sobolev space Hm.D/ by
Theorem 1. Here, the degree m is always larger than d=2 for the Sobolev imbedding
theorem [1, Theorem 4.12].

Let the collection G be composed of all normal random variables LS given in
Theorem 1, that is, G WD fLS W L 2 Hm.D/0g. Clearly, the dual space Hm.D/0 is a
Hilbert spaces; hence G is a Gaussian Hilbert space and the linear isometry L 7! LS
is a Gaussian field indexed by the Hilbert space Hm.D/0 in [10, Definition 1.18
and 1.19]. By the Sobolev imbedding theorem, the point evaluation function ıx at
any x 2 D is a bounded linear functional on Hm.D/, where ıx! D !.x/ for all
! 2 Hm.D/. Thus, the normal random variable ıxS is well-defined for any x 2
D. We can also observe that fıxS W x 2 Dg is equivalent to a classical Gaussian
field with the mean 0 and the covariance kernel K. This indicates that the Gaussian
fields indexed by the bounded linear functionals give a new tool to construct the
generalized kriging models.

Kernel-Based Approximation: Now let us look at the generalized Hermite-
Birkhoff interpolation. Suppose that we have the observed data values

f1; : : : ; fn 2 R;

evaluated by some unknown function f 2 Hm.D/ at the bounded linear functionals

L1; : : : ;Ln 2 Hm.D/0;
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on the Sobolev space Hm.D/, that is,

f1 WD L1f ; : : : ; fn WD Lnf :

Denote that the vector data value and the vector bounded linear operator

f WD .f1; � � � ; fn/T 2 R
n; L WD .L1; � � � ;Ln/T 2 n

k̋D1
Hm.D/0:

Then Lf D f . By the observed data L and f , we will predict the unknown value

f0 WD L0f 2 R;

evaluated at another bounded linear functional L0 2 Hm.D/0. For example, if the
bounded linear functionals are the evaluation functions at the unknown data point
x0 2 D and the observed data points X WD fx1; : : : ; xng 
 D, that is,

L0 WD ıx0 ; L1 WD ıx1 ; : : : ;Ln WD ıxn ;

then this typical interpolation is the same as the classical geostatistical problem.
Since a lot of functions in Hm.D/ satisfy the interpolation conditions, we will

construct the estimators based on the collection of all interpolating paths in Hm.D/,
that is,

AL . f / WD f! 2 Hm.D/ W L! D fg :

Obviously, the unknown function f always belongs to the subset AL . f /. Actually,
there are many choices of the prediction v 2 R of the unknown value f0 such that
we need to investigate the different subset

AL0 .v/ WD f! 2 Hm.D/ W L0! D vg :

If we can confirm that f belongs to AL0 . Ov/ \ AL . f / for some prediction Ov, then
Ov D f0. But, it is so difficult to check which prediction Ov satisfies the sufficient
condition of f 2 AL0 . Ov/\ AL . f /.

The kernel-based probability measure PK given in Theorem 1 provides a new
numerical tool to measure the probability of f 2 AL0 .v/ \ AL . f / for the different
prediction v, that is, PK .AL0 .v/ \ AL . f //. We also find that

PK .AL0 .v/ \ AL . f // D PK .AL0 .v/ jAL . f //PK .AL . f // :

Since the observed data L and f are already given, the interpolation AL . f /
is thought to happen; hence the prediction v can be equivalently weighted by
the conditional probability PK .AL0 .v/ jAL . f //. By the same techniques of the
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Bayesian estimation, the best estimator OvK;L0jL;f is the average of the prediction v
weighted by the conditional probability PK .AL0 .v/ jAL . f //, that is,

OvK;L0jL;f WD
X
v2R

vPK .AL0 .v/ jAL . f // : (6)

Theorem 1 guarantees that the normal random variables

L0S; L1S; : : : ;LnS;

are well-defined on the probability space .�m;Fm;PK/. We denote the multivariate
normal random vector

LS WD .L1S; � � � ;LnS/T :

According to the constructions of L0S and LS, we have

AL0 .v/ D f! 2 �m W L0S.!/ D vg ; AL . f / D f! 2 �m W LS.!/ D fg :

Thus, the conditional probability PK .AL0 .v/ jAL . f // can be computed by the
normal random variables L0S and LS, that is,

PK .AL0 .v/ jAL . f // D PK .L0S D vjLS D f / I

hence

X
v2R

PK .AL0 .v/ jAL . f // D
X
v2R

PK .L0S D vjLS D f / D 1;

such that the best estimator OvK;L0jL;f in Eq. (6) can be rewritten as the conditional
mean

OvK;L0jL;f D
X
v2R

vPK .L0S D vjLS D f / D E .L0SjLS D f / : (7)

Since L0S has the mean 0 and the covariance L0;xL0;yK.x; y/ and LS has the
vector mean 0 and the covariance matrix

AK;L WD LxLT
yK.x; y/ D

0
B@
L1;xL1;yK.x; y/ � � � L1;xLn;yK.x; y/

: : :

Ln;xL1;yK.x; y/ � � � Ln;xLn;yK.x; y/

1
CA ; (8)
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the conditional probability density function pK;L0jL of L0S given LS be represented
as

pK;L0jL.vjf / WD 1

�K;L0jL
p
2�

exp

 
�
�
v � mK;L0jL;f


2
2�2K;L0jL

!
;

where the mean

mK;L0jL;f WD L0kTK;LA
�
K;Lf ;

and the standard deviation

�K;L0jL WD
q
L0;xL0;yK.x; y/ � L0kTK;LA

�

K;LL0kK;L; (9)

such as the proofs of Ye [18, Corollaries 2.7 and 2.8]. Here, the vector

L0kK;L D �
L0;xL1;yK.x; y/; � � � ;L0;xLn;yK.x; y/


T
;

is computed by the kernel basis

kK;L.x/ WD LyK.x; y/ D �
L1;yK.x; y/; � � � ;Ln;yK.x; y/


T
; for x 2 D:

Therefore, the conditional mean OvK;LjL;f in Eq. (7) can be computed by the condi-
tional probability density function pK;L0jL, that is,

OvK;L0jL;f D
Z
R

pK;L0jL.vjf /dv D mK;L0jL;f D L0kTK;LA
�

K;L . f � L�/ : (10)

Remark 4 Since the covariance matrix AK;L is always positive definite, the pseudo
inverse A�K;L of AK;L is well-defined by the eigen-decomposition of AK;L.

We know that the kriging estimations can be modeled by a kernel-based function.
Now we show that the best estimator OvK;L0jL;f in Eq. (10) can be computed by a
function sK;L;f such as

OvK;L0jL;f D L0sK;L;f : (11)

Observing Eq. (10), the function sK;L;f can be represented as

sK;L;f .x/ WD kK;L.x/Tc; for x 2 D; (12)

where the coefficient c is uniquely solved by the linear system

AK;Lc D f : (13)
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Here, when the covariance matrix AK;L is singular, then c is the least-square
solution of linear system (13). Thus, we call this estimation L0sK;L;f the kernel-
based estimator for the observed data L and f . The kernel-based estimators can be
viewed as the general estimation in [12].

In particular, when L0 WD ıx0 and L WD .ıx1 ; � � � ; ıxn/T , then

kK;ıX .x/ D kK;X.x/ WD

0
B@
K.x; x1/

:::

K.x; xn/

1
CA ; for x 2 D; (14)

and

AK;ıX D AK;X I

hence the kernel-based estimator L0sK;L;f can be rewritten as

L0sK;L;f D sK;X;f .x0/ D wK;X .x0/
T f ; (15)

where the Lagrange basis wK;X .x/ is solved by the linear system

AK;XwK;X .x/ D kK;X.x/; for x 2 D: (16)

It is clear that the kernel-based estimator L0sK;L;f in Eqs. (15)–(16) is equivalent
to the simple kriging estimation. So, we call the general kernel-based estimator
L0sK;Ln;fn in Eq. (11) and Eqs. (12)–(13) the generalized kriging estimation.

Convergence: Finally, we look at the convergence of the kernel-based
estimators by the same techniques in [18]. Suppose that the vector operator
L1 WD .L1; � � � ;Ln; � � � /T composes of the countable bounded linear functionals
L1; : : : ;Ln; : : : on the Sobolev space Hm.D/ and the observed data values
f1 WD .f1; � � � ; fn; � � � /T composes of the countable values f1; : : : ; fn; : : : such that
there exists a unique solution f 2 Hm.D/ satisfying the interpolation conditions,
that is, L1f D f1. For example, the vector operatorL1 composes of the countable
point evaluation functions ıx1 ; : : : ; ıxn ; : : : at the data points X1 WD fxng1nD1 which
is dense in the domain D. Let Ln WD .L1; � � � ;Ln/T and f n WD .f1; � � � ; fn/T for all
n 2 N. Then we have

AL1 . f 1/ � � � � � ALn . f n/ � � � � � 1\
nD1ALn . f n/ D AL1

. f1/ D ˚
f
�I

hence we can obtain the convergence of the kernel-based estimators such as

lim
n!1L0sK;Ln;fn D lim

n!1E .L0SjLnS D f n/ D lim
n!1E .L0SjALn . f n//

DE .L0SjAX1
. f1// D L0f ;
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for any bounded linear functional L0 on Hm.D/. It is obvious that the convergence
is independent of the bounded linear functional L0. Therefore, we have:

Proposition 1 Let L0 be any bounded linear functional onHm.D/. If there exists a
unique solution f 2 Hm.D/ satisfying the interpolation conditions for all observed
dataLn and f n discussed above such asL1f D f1, then the kernel-based estimator
L0sK;Ln;fn in Eq. (11) and Eqs. (12)–(13) converges to the unknown value L0f when
n ! 1.

In particular, when L0 is the point evaluation function ıx0 at any x0 2 D, then

lim
n!1 sK;Ln;f n .x0/ D lim

n!1 ıx0sK;Ln;f n D ıx0 f D f .x0/ :

Remark 5 We compute the conditional mean square

E
�ˇ̌
L0S � L0sK;Ln;fn

ˇ̌2 ˇ̌ˇLnS D f n
�

D �2K;L0jLn
;

where the conditional standard deviation �K;L0jLn is given in Eq. (9). We can also
check that �K;L0jLn is equivalent to the (generalized) power function in meshfree
approximation in [16, Sects. 11.1 and 16.1]. The details of the error bounds of the
kernel-based estimators will be discussed in our next paper.

4 Applications in Geostatistics

In this section, we apply the kernel-based approximation to model the geostatistics.
In the classical geostatistical problems, we have the observed data values

f1; : : : ; fn 2 R;

at the known locations

x1; : : : ; xn 2 D 
 R
d;

that is,

f1 WD f .x1/; : : : ; fn WD f .xn/;

for some function f 2 Hm.D/. Let

ıX WD

0
B@
ıx1
:::

ıxn

1
CA ; f WD

0
B@
f1
:::

fn

1
CA ; X WD fx1; : : : ; xng :
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Same as in Sect. 3, the positive definite kernel K 2 C2m;1.D � D/ is fixed
here to construct the kernel-based estimators (kriging estimations), for example,
the Gaussian kernel K.x; y/ WD e��2kx�yk22 belongs to C1.D � D/.

By the simple kriging method, we can obtain the best prediction

sK;X;f .x0/ D wK;X .x0/
T f D kK;X .x0/

T ˛; (17)

in Eqs. (15)–(16) to measure the value at the unknown location x0 2 D, where the
coefficients ˛ are uniquely solved by the linear system

AK;X˛ D f : (18)

Usually, we may not have the observed data values at another locations

z1; : : : ; zt 2 D 
 R
d:

But, we can still observe the rates of the changes along the directions

e1; : : : ; et 2 R
d subjected to ke1k2 D � � � D ketk2 D 1;

at these locations z1; : : : ; zt. To be more precisely, we have the additional rates of
the changes

g1; : : : ; gt 2 R;

along the directions e1; : : : ; et at z1; : : : ; zt, that is,

g1 WD eT1rf .z1/; : : : ; gt WD eTt rf .zt/;

where r is the gradient composing of the partial derivatives @
@x1
; : : : ; @

@xd
. Let

ıZ ıEr WD

0
B@
ız1 ı eT1r

:::

ızt ı eTt r

1
CA ; g WD

0
B@
g1
:::

gt

1
CA ; Z WD fz1; : : : ; ztg ; E WD .e1 � � � et/T :

Here ız ı eTr is the gradient along the direction e at any z 2 D, that is, ız ı eTrf D
eTrf .z/. Usually, we can not obtain the exact values of the gradients. But, we can
easily obtain the positive or negative (increasing or decreasing) rates of the gradients
along the observed directions, for example,

eTrf .z/ 	 0 or eTrf .z/ � 0:
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For convenience, we give a new notation of the equality “,” in this article for 0C
and 0�. We define the equalities of c 2 R and 0C; 0� in the following way:

u , c; u , 0C; u , 0�;

are equivalent to

u D c; u 	 0; u � 0:

So, we further suppose that g1; : : : ; gt are endowed with 0C or 0�, that is,

g1 WD 0C or 0�; : : : ; gt WD 0C or 0�:

In this section, we assume the degree

m > 1C d=2;

such that the point evaluation function ıx and the point gradient ızıeTr are bounded
on the Sobolev space Hm.D/ for any x; z 2 D by the Sobolev imbedding theorem.

Thus, the vector bounded linear operator and the vector observed value are well-
defined by

L WD
�

ıX

ıZ ı Er
�
; � WD

�
f
g

�
:

According to Theorem 1, the normal random variable ıx0S and the multivariate
normal random vector LS are well-defined on the probability space .�m;Fm;PK/.
In this section, we will construct the kernel-based estimator sK;L;� .x0/ D ıx0sK;L;�
same as in Eq. (7) to measure the prediction at the unknown location x0 based on
the observed data L and �.

Since some elements of the data values � include 0C or 0� such as g, we need to
recompute the conditional mean

sK;L;� .x0/ D ıx0sK;L;� D E
�
ıx0S

ˇ̌
ˇLS , �

�
; (19)

by the same techniques of Eq. (10). Here, when k D 1; : : : ; n then LkS , �k is
equivalent to ıxkS D fk, and when k D n C 1; : : : ; n C t then LkS , �k is equivalent
to ızk�n ı eTk�nrS 	 0 or ızk�n ı eTk�nrS � 0 dependent of gk�n D 0C or 0�. For
computing the conditional mean, we need the probability density function pK;L of
LS, that is,

pK;L.u/ WD 1p
det� .2�AK;L/

exp

�
�1
2
uTA�K;Lu

�
;
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where det� is the pseudo determinant, that is, the product of all nonzero eigenvalues
of a positive definite matrix. Here, the covariance matrix AK;L can be precisely
written as

AK;L D
�
AK;X B0TK;XZ
B0K;XZ A00K;Z

�
; (20)

where

A00K;Z WD AK;ıZıEr D

0
B@
eT1rxrT

z e1K.z1; z1/ � � � eT1rxrT
z etK.z1; zt/

: : :

eTt rxrT
z e1K.zt; z1/ � � � eTt rxrT

z etK.zt; zt/

1
CA ; (21)

and

B0K;XZ WD

0
BB@
eT1rxK.z1; x1/ � � � eT1rxK.z1; xn/

: : :

eTt rxK.zt; x1/ � � � eTt rxK.zt; xn/

1
CCA D

0
BB@
eT1rT

z K.x1; z1/ � � � eTt rT
z K.x1; zt/

: : :

eT1rT
z K.xn; z1/ � � � eTt rT

z K.xn; zt/

1
CCA

T

:

(22)

For simplifying the complexities of the notations, we redefine some notations of the
integrals as follows:

Z
u,c

�.u/du D �.c/;
Z
u,0C

�.u/du D
Z C1
0

�.u/du;

Z
u,0�

�.u/du D
Z 0

�1
�.u/du:

Then the conditional mean sK;L;� .x0/ in Eq. (19) can be rewritten as

sK;L;� .x0/ D 1

Oq
Z
R

Z
u,�

vpK;ıx0 ;L.v;u/dudv; (23)

where pK;ıx0 ;L is the joint probability density function of ıx0S and LS, and

Oq WD
Z
u,�

pK;L.u/du:

(Here Oq is not the probability.) Since

pK;ıx0 ;L.v;u/ D pK;ıx0 jL.vju/pK;L.u/;
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we have
Z
R

vpK;ıx0 ;L.v;u/dv D pK;L.u/
Z
R

vpK;ıx0 jL.vju/dv D kK;L .x0/T A
�

K;Lu; (24)

where the kernel basis kK;L.x/ can be represented as

kK;L.x/ WD
�
kK;X.x/
k0K;Z.x/

�
; for x 2 D;

and

k0K;Z.x/ WD kK;ıZıEr.x/ D

0
B@
eT1rzK.x; z1/

:::

eTt rzK.x; zt/

1
CA ; for x 2 D: (25)

Putting Eq. (24) into Eq. (23), we have that

sK;L;� .x0/ D kK;L .x0/T A
�

K;L O�; (26)

where

O� WD 1

Oq
Z
u,�

upK;L.u/dz D E
�
LSjLS , �

�
: (27)

Clearly, the kernel-based estimator sK;L;� .x0/ is a linear combination of the kernel
basis kK;L .x0/, that is,

sK;L;� .x0/ D kK;L .x0/T c; (28)

where the coefficients c are uniquely solved by the linear system

AK;Lc D O�: (29)

Moreover, we simply the right-hand side O� of linear system (29). When k D
1; : : : ; n, then �k D fk; hence

O�k D
R
u1,�1 � � � RukDfk

� � � RunCt,�nCt
ukpK;L.u/duR

u1,�1 � � � RukDfk
� � � RunCt,�nCt

pK;L.u/du
D fk:

When k D n C 1; : : : ; n C t, then �k D gk D 0C or 0�; hence

O�k D
R
u1,�1 � � � Ruk�0 or uk�0 � � � RunCt,�nCt

ukpK;L.u/duR
u1,�1 � � � Ruk�0 or uk�0 � � � RunCt,�nCt

pK;L.u/du
DW Ogk�n:
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Thus,

O� D
�
f
Og
�
; where Og WD

0
B@

Og1
:::

Ogt

1
CA : (30)

We will also simplify the computation of Og by the conditional probability density
function pK;ıZıErjıX of ıZ ı ErS given ıXS, that is,

pK;ıZıErjıX .vjf / WD 1q
det�

�
2�†K;ıZıErjıX


 exp

�
�1
2

�
v � mK;ıZıErjıX ;f


T

�†�K;ıZıErjıX
�
v � mK;ıZıErjıX ;f


 �
;

where

mK;ıZıErjıX ;f WD B0K;XZA�1K;Xf ;

and

†K;ıZıErjıX WD A00K;Z � B0K;XZA�1K;XB0
T
K;XZ:

Since

pK;L.v; f / D pK;ıZıErjıX .vjf /pK;ıX . f /;

we have

Og D
R

v,g vpK;ıZıErjıX .vjf /dvR
v,g pK;ıZıErjıX .vjf /dv

: (31)

Approximation of the preconditioned Og: Finally, we will study the efficient
algorithm to approximate Og. We generalize the multivariate normal random vectors

v1; : : : ; vs � i.i.d.N �
mK;ıZıErjıX ;f ; †K;ıZıErjıX



;

and we choose all random vectors vs1 ; : : : ; vsr 2
n
vk W vk , g; k D 1; : : : ; s

o
; hence

we have

Og � 1

r

rX
jD1

vsj :
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Remark 6 We compare the observed data values g and the preconditioned data
values Og. The data values g and Og have the same sizes. The elements of g are chosen
from

˚
0C; 0�

�
while the elements of Og are chosen from R. Thus, the equality of

v , g represents the range, that is, vk 	 0 if gk D 0C or vk � 0 if gk D 0�
for k D 1; : : : ; t. In the other hand, the equality of v , Og represents the point.
Moreover Og can be viewed as the average of g over the area of v , g by the weight
pK;ıZıErjıX .vjf /dv.

In conclusions, we can combine Eqs. (28)–(30) to obtain the generalized kriging
method to measure the prediction at the unknown location x0 2 D by the kernel-
based model

sK;X;Z;f ;g .x0/ WD sK;L;� .x0/ D kK;X .x0/
T ˛ C k0K;Z .x0/

T ˇ; (32)

where the coefficients ˛ and ˇ are uniquely solved by the linear system

�
AK;X B0TK;XZ
B0K;XZ A00K;Z

��
˛

ˇ

�
D
�
f
Og
�
: (33)

Here, the kernel bases kK;X .x/ ; k0K;Z .x/, the matrixes AK;X ;A00K;Z ;B0K;XZ , and the
vector Og are defined in Eqs. (14), (25), (5), (21), (22), and (31), respectively.

5 Numerical Examples

In this section, we will study the numerical example of the generalized kriging
method in geostatistics given in Eqs. (32)–(33). For convenience, we look at an
example given by the Franke test function f 2 C1.R2/ given in [6]. Then we can
obtain the observed data y1; : : : ; yr 2 Œ0; 1	2 and f .y1/; : : : ; f .yr/ 2 R in the left side
of Fig. 3.

It is well known that the Gaussian kernel K 2 C1.R2 �R
2/ is a positive definite

kernel. Therefore, the geostatistical models given in Sect. 4 are well-defined for the
Gaussian kernels. In this section, all numerical tests of the (generalized) kriging
methods are set up by the Gaussian kernel

K.x; y/ WD e��2kx�yk
2
2 ; for x; y 2 Œ0; 1	2;

with the shape parameter � WD 3. Many other positive definite kernels can be
found in the papers [8, 9] such as Sobolev-spline kernels, cubic-spline kernels, and
(generalized) min kernels.

By the simple kriging method, we can obtain the kriging estimations at the
unknown location x0 2 Œ0; 1	2 in Eqs. (17)–(18) dependent of the observed data
y1; : : : ; yr and f .y1/; : : : ; f .yr/, for example in the right side of Fig. 3.
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Fig. 3 In the left panel, the blue circles represent the Halton points y1; : : : ; yr and the red circles
represent the data values f .y1/; : : : ; f .yr/ given by the Franke function f , where r D 81. The right
panel is the 2D example of the simple kriging method. The kriging estimations given in Eqs. (17)–
(18) are calculated by the observed data yk and f .yk/ for k D 1; : : : ; r. The bottom color bar
represents the values of the absolute errors

Now we study the numerical example for the missing observed data values at
the data points z1; : : : ; zt 2 Œ0; 1	2. But, we still have the positive or negative rates
g1; : : : ; gt 2 ˚

0C; 0�
�

of the gradient r along the directions e1; : : : ; et at z1; : : : ; zt,

where e1 D � � � D et WD .1; 0/T and r WD
�

@
@x1
; @
@x2

�T
. Here gk WD 0C if eTk rf .zk/ 	

0 or gk WD 0� if eTk rf .zk/ � 0 for k D 1; : : : ; t. In the following numerical tests,
we only have the observed data values f .x1/; : : : ; f .xn/ 2 R at the data points
x1; : : : ; xn 2 Œ0; 1	2 such that nCt D r and fx1; : : : ; xng[fz1; : : : ; ztg D fy1; : : : ; yrg,
for example in the left side of Fig. 4.

Therefore, we can obtain the generalized kriging models given in Eqs. (32)–(33)
for the data x1; : : : ; xn; z1; : : : ; zt and f .x1/; : : : ; f .xn/; g1; : : : ; gt, for example in the
right side of Fig. 4. Comparing the right sides of Figs. 4 and 3, we find that the
generalized kriging estimations are closed to the simple kriging estimations even
though more than 30% observed data values are missed at z1; : : : ; zt.

Finally, we look at the root-mean-square errors of the simple and generalized
kriging methods for the different observed data points in Table 2. By the compu-
tational results, the generalized kriging method is better than the simple kriging
method. The reason is that the generalized kriging method can cover the observed
gradients at the uncertain data points which the simple kriging method can not
process. More numerical tests will appear in the personal website of the author.
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Fig. 4 The left panel shows the observation locations. The blue circles represent the data point
x1; : : : ; xn with the observed data values. The green circles represent the data points z1; : : : ; zt
without the observed data values but with the gradients observation. Here n D 56 and t D 25. All
data points x1; : : : ; xn and z1; : : : ; zt are the same as the Halton points y1; : : : ; yr in Fig. 3. The right
panel is the 2D example of the generalized kriging method. The generalized kriging estimations
given in Eqs. (32)–(33) are calculated by the discrete observation of the Franke function f at the
data points x1; : : : ; xn and z1; : : : ; zt. The bottom color bar represents the values of the absolute
errors

Table 2 The root-mean-square errors of the simple and generalized kriging methods for the
different observed data evaluated by the Franke function f

Simple kriging Generalized kriging Simple kriging Generalized kriging

Data points n D 56 n D 56 and t D 25 n D 45 n D 45 and t D 36

Errors 0:0196 0:0184 0:0294 0:0288

6 Final Remarks

In this article, we generalize the kriging methods to estimate the predictions at
the unknown locations by the mixtures of the observed data values and observed
gradients at the chosen data points. Same as the ideas of the papers [17, 18], we
combine the knowledge of regression analysis, stochastic analysis, approximation
theory, and numerical analysis to obtain the kernel-based estimators induced by the
Gaussian fields indexed by bounded linear functionals defined on Sobolev spaces.
Therefore, we can obtain the new models in geostatistics.

To reduce the complexities of the discussions, we only consider the generaliza-
tion of the simple kriging methods for the non-noised data in this article. So, we can
always obtain the exact information of the positive or negative rates of the changes at
the uncertain data points. Actually, the generalized kriging methods can also cover
the noised data. In our next paper, we will show that the kernel-based estimators
in Eq. (11) and Eqs. (12)–(13) can be updated to solve the inverse problems for the
noised data. Moreover, the Gaussian fields given in Theorem 1 can be endowed with
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the nonzero means such as the polynomial mean provided in [18, Theorem 6.1];
hence another generalized kriging methods can be also introduced similar as the
universal kriging method and the IRFk-kriging method in [5].
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Evaluation of Local Multiscale Approximation
Spaces for Partition of Unity Methods

Marc Alexander Schweitzer and Sa Wu

Abstract The simulation of the behavior of heterogeneous and composite materials
poses a number of challenges to numerical methods e.g. due to the presence of
discontinuous material coefficients. Moreover, the material properties of fibers and
inclusions are significantly different from those of the surrounding matrix. Thus,
the gradients of the solution feature a substantial discontinuity at the material
interface between inclusions and matrix. Hence, materials with many fine scale
inclusions need a very high resolution mesh in the context of traditional finite
element (FE) analysis. However, many approaches within the context of numerical
homogenization have been proposed to tackle and overcome this need for a large
number of degrees of freedom. To this end, either discontinuous coefficients are
replaced by smooth effective coefficients or, standard FE shape functions are
replaced by more complex, numerically computed shape functions while the overall
quality of the approximation is retained. In this paper we study two-dimensional
examples of heat transfer and (linear) elasticity in composite materials using a
number of different homogenization approaches with the overall goal of evaluating
and comparing their performance when used for the construction of multiscale
enrichment functions for a partition of unity method (PUM).
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1 Introduction

In a classical FE analysis approach to the simulation of heterogeneous and compos-
ite materials, a major challenge is the need for a very high resolution mesh i.e., a
large number of degrees of freedom, to resolve the discontinuities of the material
parameters associated with the heterogeneity of the material. Thus, the resulting
linear systems are very large and often numerically challenging to solve due to a
large variation of the material parameters. A number of approaches [2, 7–9, 11, 16]
have been proposed over the years to overcome these issues. Typically, in these
so-called numerical homogenization techniques, the global heterogeneous problem
is tackled by a two-step approach: First, we either construct simplified effective
material parameters (an homogenized model) or we construct more effective
multiscale basis functions that respect the material’s heterogeneity implicitly. Then,
the global material response is approximated either via the homogenized model
using standard FE basis functions or the heterogeneous model is approximated
directly with the help of the constructed multiscale basis functions. Note that the
second step, the so-called online phase, requires a much smaller number of degrees
of freedom to attain the required accuracy than the much more involved offline phase
in the first step.

Even though all numerical homogenization approaches share this general pro-
cedure their specific goals may be quite different. For instance, some techniques
[2, 7, 11] aim at the construction of multiscale basis functions that provide spectral
convergence properties while most other approaches settle for linear convergence
with respect to the energy norm. Note, however, that for most practical purposes the
asymptotic behavior of the considered construction are of limited value since we
seek to employ a very small number of degrees of freedom in the online phase only.
Thus, we usually stay in the pre-asymptotic regime in the online phase in practice
and there it is not clear which homogenization approach provides the most efficient
approximation overall to the global problem.

The goal of our work is the evaluation of various numerical homogenization
techniques for the construction of multiscale basis functions with respect to
their effectiveness in the context of so-called generalized finite element methods
(GFEM), i.e., partition of unity methods (PUM). To this end, we compare the
approximation properties of the considered numerical homogenization approaches
using tools from approximation theory (Kolmogorov n-widths and sup � infs), the
computational costs associated with the construction of the respective multiscale
basis functions as well as their performance within a PUM in this paper. In
particular, we consider a bi-material composite with circular/spherical inclusions
and study the robustness of the different multiscale basis functions with respect to
the contrast of the material parameters and the distribution of the inclusions.

The remainder of the paper is structured as follows. First, we describe the
considered model problem in Sect. 1.1 before we shortly review the PUM frame-
work for the discretization of the global model problem in Sect. 2. Then, we
discuss the approximation theoretic tools employed for the comparison of different
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multiscale basis systems and present the respective general construction principles
in Sect. 4 before we introduce the concrete approximation spaces from numerical
homogenization considered in our numerical experiments. Here, we focus on the
numerical computation of two quantities, the n-widths, which characterizes the
accuracy that can be obtained using an optimal choice of n basis functions, and the
sup � infs, which characterize the accuracy that is obtained with a specific choice of
n particular basis functions. We summarize the results of our numerical experiments
in Sect. 6. Finally, we close with some remarks in Sect. 7.

1.1 Model Problem

To introduce our model problem, we consider a heterogeneous or composite bi-
material defined via two disjoint open sets �1;�2 such that

� D �1 [�2 � R
2; � W � ! R; �.x/ D

(
1 x 2 �1;

C x 2 �2;
(1)

where �1 denotes the matrix phase and �2 the union of all inclusions, compare
Fig. 1. When we study the elastic response of the material, we assume a Poisson
ratio of 
 D 0:3 in both phases and choose the Young modulus by E.x/ WD �.x/
given in (1). Thus, the Lamé coefficients are given by

�.x/ D 
�.x/

.1C 
/.1� 2
/ ; �.x/ D �.x/

2.1C 
/
:

Fig. 1 Square domain�with Dirichlet boundary �D (red), Neumann boundary �N (magenta) and
121 randomly distributed circular inclusion of random size, 2500 randomly distributed and 2597
regularly distributed circular inclusions of the same size (light green circles). The gray lines depict
the internal patch boundaries @!l n @� of a 3 � 3 PUM cover. We will refer to these material
configurations as cases A, B, C (left to right)
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The equations for both heat transfer and linear elasticity can be written within the
same notation

�r � �.u/ D f in �;
u D g on �D � @�;

�.u/ � n D h on �N D @� n �D

(2)

with outer normal n. For ease of notation we do not differentiate explicitly between
the scalar solution u W � ! R to the heat equation, where

�.u/ WD ru; �.u/ WD ��.u/; h�.u/; �.u/i WD �.u/ � �.u/;

and the vector-valued linear elastic response u W � ! R
2 with

�.u/ WD 1

2

�ru C ruT


; �.u/ WD 2��.u/C� tr �.u/I; h�.u/; �.u/i WD �.u/ W �.u/:

But, we rather employ a more abstract notation that encompasses both cases by
defining

H1.�/ WD H1.�/ for the heat equation and

H1.�/ WD �
H1.�/


2
for the linear elasticity equation.

(3)

Then, with the standard approach of handling the boundary and load data by
particular solutions, see Sect. 4.1, we arrive at the weak form of (2): Find a solution
u 2 H1

D.�/ with

H1
D.�/ WD ˚

v 2 H1.�/ W vj�D D 0
�
; (4)

such that
Z
�

h�.u/; �.v/i dx
„ ƒ‚ …

DWa.u;v/

D
Z
�

fv dx C
Z
�N

hv ds

„ ƒ‚ …
DWb.v/

8v 2 H1
D.�/: (5)

In the case of a pure Neumann problem, i.e. �D D ;, the solution of the boundary
value problem (2) is only unique up to so-called rigid body modes

R WD ˚
v 2 H1.�/ W a.v; v/ D 0

� D span f
r W r < Rg (6)

with r;R 2 N0. A basis of R is for instance given by


0 D .1; 0/; 
1 D .0; 1/; 
2 D .�y; x/

for the two-dimensional linear elasticity equation.
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In the remainder of this work we focus on rectangular domains with circular
inclusions

� D Œ�A;A	 � Œ�B;B	; �2 D [i<IBıi.xi/

with i; I 2 N0. In our experiments we consider e.g. I D 121, I D 2500 (randomly
distributed inclusions of different size), I D 2567 (identical inclusions on grid), see
also Fig. 1. Note that we assume that all inclusions are separated by some minimum
distance ı > 0, i.e.

dist.Bıi.xi/;Bıj.xj// > ı 8i ¤ j :

Moreover, we assign Dirichlet and Neumann boundary conditions on

�D WD f�A;Ag � Œ�B;B	; �N WD Œ�A;A	 � f�B;Bg:

respectively, see also Fig. 1.
For the global discretization of these model problems in the online step we

employ the PUM scheme discussed in the following section.

2 Partition of Unity Method

The notion of a partition of unity method (PUM) was coined in [3, 4] and is based
on the special finite element methods developed in [5]. The abstract ingredients of
a PUM are a partition of unity (PU) f'l W l D 0; : : : ;Ng (compare Definition 1)
and a collection of local approximation spaces Vl.!l/ WD spanh#m

l im defined on the
patches !l WD supp.'l/ for l D 0; : : : ;N (Fig. 2). With these two ingredients we
define the PUM space

VPU WD
NX
lD0

'lVl D spanh'l#m
l iI (7)

i.e., the shape functions of a PUM space are simply defined as the products of the PU
functions 'l and the local approximation functions #m

l . For PUM spaces (7) which
employ a PU f'lg satisfying Definition 1 there hold the error estimates of Theorem 1
due to [4, 20].

Definition 1 (Partition of Unity) Let � � R
d be an open set and let f'l W l D

0; : : : ;Ng be a collection of N Lipschitz functions with

NX
lD0

'l � 1 on �; k'lkL1.Rd/ � C1; kr'lkL1.Rd/ � Cr
diam.!l/

;
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where C1 and Cr are two positive constants and !l WD supp.'l/ı is a Lipschitz
domain. The collection of functions f'l W l D 0; : : : ;Ng is referred to as a partition
of unity (PU). The sets !l are called patches and their collection is referred to as a
cover C� WD f!l W l D 0; : : : ;Ng of the domain�.

Theorem 1 Let � � R
d be a Lipschitz domain. Let f'l W l D 0; : : : ;Ng be a

partition of unity according to Definition 1 which is moreover non-negative, i.e.

0 � 'l.x/ � 1 for all x 2 �; l D 0; : : : ;N:

Let us further introduce the covering index �C� W � ! N such that

�C�.x/ WD card.f!l 2 C� W x 2 !lg/

and let us assume that

�C�.x/ � ƒ 2 N for all x 2 �

withƒ independent of the number of patches N. Let a collection of local approxima-
tion spacesVl D spanh#n

l i � H1.!l/ be given. Let u 2 H1.�/ be the function to be
approximated. Assume that the local approximation spaces Vl have the following
approximation properties: On each patch�\!l, the function u can be approximated
by a function vl 2 Vl such that

ku � vlkL2.�\!l/ � O�l and kr.u � vl/kL2.�\!l/ � Q�l (8)

hold for all l D 0; : : : ;N. Then, the function

vPU WD
NX
lD0

'lvl 2 VPU � H1.�/

satisfies the global estimates

ku � vPUkL2.�/ �
p
C1

� NX
lD0

O�2l
�1=2

;

kr.u � vPU/kL2.�/ � p
2
� NX

lD0
ƒ
� Cr

diam.!l/


2 O�2l C C1 Q�2l
�1=2

:

Thus, the PU functions provide the locality and global regularity of the product
functions whereas the local spaces Vl, which are all independent of each other,
equip VPU with its approximation power. Thus, the standard choice of Vl for
the approximation of a smooth function u with PUM are classical polynomial
approximation spaces Ppl D Vl of degree pl on the patches !l. If the function
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Fig. 2 Overlapping patches !l � !
C

l from 3 � 3 grid for material configuration A, depicted
are �2 \ !l (light green circles) and �2 \ .!C

l n !l/ (red circles), matrix �1 \ !l (blue) and
�1\ .!C

l n!l/ (green), Dirichlet boundaries �l;D (red), Neumann boundaries �l;N (magenta). We
have !4 (first, no bc), !1 (second, Neumann bc), !3 (third, Dirichlet bc), !0 (last, mixed bc)

u, however, has some irregular features such as singularities or discontinuities
locally these polynomial spaces are often enriched by appropriate non-smooth basis
functions, i.e. Vl D Ppl C El for some patches !l, see e.g. [19]. In our setting,
where we are concerned with the approximation of solutions of (2) with highly
oscillatory and discontinuous material coefficients, such irregular features however
arise everywhere in the domain and thus we will employ enrichment on every patch
!l.1 Unfortunately, appropriate enrichment spaces El for heterogeneous materials
are in general not known analytically and depend e.g. on the distribution of the
inclusions and the material properties. Thus, the major challenge here is to pre-
compute enrichment spaces with good approximation properties, i.e. allowing for
small local errors O�l and Q�l in (8), for a particular material configuration efficiently
and to identify the most cost effective approach overall.

For the construction of such local enrichment spaces Ei we employ a number
of different numerical homogenization techniques and compare their approximation
properties and the computational cost involved in the construction. Moreover, we
are concerned with the robustness of the resulting enrichments with respect to
varying loading conditions, distribution of inclusions and the contrast of the material
parameters. Note that the local enrichment spaces Ei on different patches !i are
completely independent of each other and thus can be computed in parallel using
an arbitrary homogenization approach. Throughout this paper, however, we will use
the same homogenization technique for all patches and we consider in particular the
approaches from [2, 7, 11]. To evaluate and compare the approximation qualities of
the enrichment spaces arising from these homogenization techniques we employ
tools from approximation theory which we shortly introduce in the following
section.

1Note that we consider so-called flat-top PU functions only since they allow to control the stability
of an enriched basis withe arbitrary enrichments [18].
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3 Quality Measures for Approximation Spaces

For a comparison of local approximation spaces Vl we employ the framework of
sup � infs and n-widths introduced by Kolmogorov [14] to attain upper bounds for
the approximation error ku�vlk!l on a patch !l where u denotes the global solution
to the original boundary value problem (2) on �, i.e. O�l and Q�l in (8). To this end,
we essentially follow the notation employed in [2, 6, 7, 12] and moreover introduce
uj!l to denote the local restriction of the global solution u to a particular patch !l

and assume that these local restrictions satisfy uj!l 2 Wl.!l/ for some local Hilbert
space .Wl; .�; �/Wl

/ given on !l.
Then, we can characterize the quality of a local approximation space Vl for its

use in our PUM, suitable for the approximation of (2), also by studying the best-
approximation vl 2 Vl to any element of the unit ball

BWl WD ˚
u 2 Wl W .u; u/Wl

D 1
�
:

in Wl with respect to any desired norm k � k. We fix this arbitrary norm for the
measurement of the error kuj!l � vlk via the assumption that Wl � Hl is contained
in a larger Hilbert space .Hl; .�; �/Hl

/ and consider its induced norm for the error
kuj!l � vlkHl in the following, i.e. we assume Vl � Hl. Then, there holds the
obvious upper bound for the best-approximation from Vl to data in Wl measured
in Hl

inf
v2Vl

kv � uj!lkHl
D kuj!lkWl

inf
v2Vl

�����
v

kuj!lkWl

� uj!l
kuj!lkWl

�����
Hl

D kuj!lkWl
inf
v2Vl

�����v � uj!l
kuj!lkWl

�����Hl

� kuj!lkWl
sup

kwkWlD1
inf
v2Vl

kv � wkHl

D kuj!lkWl
‰.Vl/

where

‰.Vl/ D ‰
�Vl;Wl; .�; �/Wl

;Hl; .�; �/Hl


 WD sup
kwkWlD1

inf
v2Vl

kw � vkHl
: (9)

With the help of (9) we can moreover identify the best local approximation space
for a fixed dimension n via

V�l;n WD arg inf
Vl�Hl dimVlDn

‰.Vl;Wl; .�; �/Wl
;Hl; .�; �/Hl

/ (10)
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and introduce the so-called Kolmogorov n-width2

dn.Wl; .�; �/Wl
;Hl; .�; �/Hl

/ WD inf
Vl�Hl dimVlDn

‰.Vl;Wl; .�; �/Wl
;Hl; .�; �/Hl

/:

(11)

These abstract quantities can in fact be computed via the solution of generalized

eigenvalue problems [14, 17] if Wl
C
,! Hl is dense and compactly embedded. The

eigenpairs .�l;k; �l;k/ 2 Wl � R of

.�l;k; v/Hl
D �l;k .u; v/Wl

8v 2 Wl (12)

are comprised of orthogonal eigenvectors �l;k [12] with respective eigenvalues �l;k
such that

�l;0 	 �l;1 	 : : : & 0

holds if Wl
C
,! Hl. Thus, we can directly compute the n-width as

dn.Wl; .�; �/Wl
;Hl; .�; �/Hl

/ WD p
�l;n (13)

and identify the associated optimal approximation space by

V�l;n WD span f�l;k W k < ng :

Note, however, that the optimal subspace V�l;n which realizes the Kolmogorov n-
width is not unique [14]. Thus, there might be another subspace Vl with comparable
approximation properties which may be determined with less computational work.
In particular, its construction might not require the solution of a generalized
eigenvalue problem such as (12).

We can employ a similar technique to compute the sup � infs (9). To this end,
let I denote the identity operator and �Vl;.�;�/Hl

the .�; �/Hl
-orthogonal projection onto

Vl. Then, for any w 2 Wl the best approximation from Vl is given by �Vl ;.�;�/Hl
w.

Thus, the non-vanishing eigenvalues  of

�
.I � �Vl;.�;�/Hl

/w; .I � �Vl;.�;�/Hl
/v
�
Hl

D  .w; v/Wl
8v 2 Wl (14)

2In the literature the inner products usually not part of the definitions of the sup� inf and n-width
but assumed to be fixed for Hl;Wl. We want to point out this dependence and later on characterize
the approximation in energy norm, H1- and L2-norms and will, thus, employ different definitions
for the inner product .�; �/Hl

on Hl.
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satisfy [12]

 0 	  1 	 : : : & 0

and it holds

 0 D sup
w2Wl

���w � �Vl;.�;�/Hl
w
���2
Hl

kwk2Wl

such that

‰.Vl;Wl; .�; �/Wl
;Hl; .�; �/Hl

/ D p
 0: (15)

Note that for an actual computation of (13) and (15) by solving (12) and (14) we
need access to the basis functions of Vl and Wl as well as the inner product .�; �/Hl

and its induced norm k�kHl
. Yet, there is no need for an explicit access to basis

of Hl.

4 Construction of Spaces Wl andHl

Thus, let us now consider the construction of appropriate spaces Wl and Hl on
a particular patch !l, compare [2, 6, 7, 12, 14, 17]. To this end, we first restrict
our global problem (2) on � to the patch !l. Moreover, we reduce this localized
problem to a homogeneous problem to allow for a direct comparison of different
constructions of local approximation spaces Vl � Hl irrespective of the employed
treatment of the data f ; g; h, compare [2, 8, 9].

4.1 Hl via Reduction to Homogeneous Problem

Therefore, we employ the following reduction to a homogeneous problem on a patch
!l. Let us assume the existence of a solution u on � to (2) such that

uj!l D ul;f C ul;g C ul;h C ul

holds, where ul;f , ul;g, ul;h denote particular solutions for the load f and the boundary
data g, h. Thus, the particular solutions ul;f satisfy

r � �.ul; f / D f in !l;

ul; f D 0 on �l;D WD @!l \ �D;

�.ul; f / � n D 0 on �l;N WD @!l \ �N :
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Similarly, the equations

r � �.ul;g/ D 0 r � �.ul;h/ D 0 in !l;

ul;g D g ul;h D 0 on �l;D

�.ul;g/ � n D 0 �.ul;h/ � n D h on �l;N ;

hold for ul;g and ul;h. Assume that these particular solutions are known, then it
remains to solve either the Neumann problem

r � �.ul/ D 0 in !l; �.ul/ � n D 0 on �l;N ;

ul D 0 on �l;D; �.ul/ � n D hl on �l;0
(16)

with an unknown traction hl WD �.u�ul; f �ul;g�ul;h/ �n on �l;0 WD @!ln.�D [ �N/,
or the Dirichlet problem

r � �.ul/ D 0 in !l; �.ul/ � n D 0 on �l;N ;

ul D 0 on �l;D; ul D gl on �l;0
(17)

with unknown trace gl WD u � ul; f � ul;g � ul;h on �l;0. Thus, with known particular
solutions ul; f , ul;g and ul;h, it is sufficient to consider the construction of a suitable
approximation space Vl for the homogeneous problems (16) or (17). Throughout
this paper, we will employ this approach and will be concerned with the construction
of spaces Vl for the efficient approximation of solutions ul to (16) or (17).

In analogy to (3) and (4), we then have ul 2 H1
l;D where

H1
l;D WD ˚

v 2 H1.!l/ W vj�l;D D 0
�
: (18)

Given a suitable traction hl on �l;0 the weak form of (16) is to find ul 2 H1
l;D such

that
Z
!l

h�.ul/; �.v/i dx

„ ƒ‚ …
DWal.ul;v/

D
Z
�l;0

hlv ds

„ ƒ‚ …
DWbl.v/

8v 2 H1
l;D: (19)

Note that this problem, however, does not admit a unique solution in the case of
�l;D D ;, i.e. H1

l;D D H1.!l/. We therefore restrict ourselves to H1.!l/=R in this
case.

The space of all solutions to (16) up to rigid body modes (6), i.e., the space of all
so-called L-harmonic functions, obviously is a suitable space Hl, i.e.,

Hl WD ˚
v 2 H1

l;D W L.v/ D �r � �.v/ D 0
�
;
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see (19). With rigid modes removed al defines an inner product on Hl and induces
a norm

kvkHl WD kvkal WD p
al.v; v/ (20)

so that the closure of .Hl; k�kHl
/ gives our desired Hilbert space. In the remainder

of the paper, we will be concerned with the following three choices of Hl

.u; v/Hl
D .u; v/l;E WD al.u; v/; kukHl

D kukl;E WD
p
al.u; v/; (21)

.u; v/Hl
D .u; v/l;1 WD

Z
!l

hru;rvi dx; kukHl
D kukl;1 WD

q
.u; u/l;1 (22)

and

.u; v/Hl
D .u; v/l;0 WD

Z
!l

uv dx; kukHl
D kukl;0 WD

q
.u; u/l;0 (23)

for a comparison of spaces Vl with respect to the energy norm k�kl;E, H1-norm k�kl;1
and the L2-norm k�kl;0 on a particular patch !l.

4.2 Wl via Oversampling

We now define the space Wl of target functions (cmp. Sect. 3) for which we then
want to construct appropriate approximation spaces Vl � Hl. To this end, we follow
the approach of Babuška and Lipton [2], Babuška et al. [7] which is based on the
observation that the global solution u of the underlying boundary value problem (2)
is in general more regular than the solutions to the local homogeneous problems (16)
or (17), compare also Theorem 1 and (8). Hence, we only need to be concerned with
the construction of a good approximation space for (16) or (17), i.e. for all local
solutions ul which admit an L-harmonic extension to the whole domain �. This
approach, however, requires global operations on � and thus is computationally
too expensive. Therefore, we employ a so-called oversampling approach, i.e., we
localize this construction from the global domain � to an enlarged patch !Cl � !l

(Fig. 2) and consider the L-harmonic extension to !Cl � � only. To this end, let us
introduce the following notation

!Cl WD ˇ!l; �Cl;D WD �D \ @!Cl ;
�Cl;N WD �N \ @!Cl ; �Cl;0 WD @!Cl n .�l;D [ �l;N/;

(24)
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where we make the assumption that �l;D D ; , �Cl;D D ; to avoid any artificial
influence of essential boundary conditions on �D \ .!Cl n !l/ when �l;D D �D \
!l D ;. Moreover, we employ the following construction to define the overlapping
patches !l and their extension !Cl . We define !l by overlaying the cells CH.xl/
of a regular grid of meshwidth H of our domain � centered at xl with extended
concentric cells B˛H.xl/ � CH.xl/ with ˛ > 1. Then, the enlarged patches !Cl are
obtained by scaling these patches !l WD B˛H.xl/ by ˇ > 1, i.e., !Cl WD Bˇ˛H.xl/. In
our numerical experiments we employ ˛ D 1:25 and ˇ D 2.

Altogether, we consider (16), which is defined on !l, and its extension to !Cl in
the following. Let us introduce the convention, that a super-script C indicates that
we refer to the extended problem on !Cl , e.g., we denote the respective trial and test
space on !Cl as

H1;C
l;D WD

n
v 2 H1.!Cl / W vj

�
C

l;D
D 0

o
: (25)

Moreover, we introduce the restriction operator

Tl W V.!Cl / ! W.!l/ (26)

which operates on any function space V.!Cl / defined on the extended patch !Cl and
restricts its elements v 2 V.!Cl / to the patch !l, i.e. Tl.v/ D vj!l 2 W.!l/.

From [2, 7] we have the compactness and denseness of the image of Tl that is
required for the generalized eigenvalue characterization of the sup � inf and n-width
with respect to the energy norm. Thus, for the analysis with respect to the H1- and
L2-norm, we need the inequalities kukl;1 � C1 kukl;E and kukl;0 � C2 kukl;E to hold
for some constants C1 and C2.

For the scalar heat equationC1 is readily obtained from the boundedness of al and
aCl with respect to k�kl;1. For C2 we additionally need the Poincaré- or Friedrichs-

inequality for W1;p
0 , see [15, Theorem 12.17] or [10, Theorem 6.1-2], for �l;D ¤

0 and the classical Poincaré- or Poincaré-Wirtinger inequality for W1;p, see [15,
Theorem 12.23] or [10, Theorem 6.1-8], for �l;D D ;. In the case of linear elasticity,
C1 is directly obtained from Korn’s inequality, see [13] or [10, Theorem 6.3-3] and
C2 is provided by the Poincaré-type inequalities [10, 15] as in the scalar case. Thus,
we may consider the best-approximation with respect to the energy-, the H1- and
the L2-norm via the restriction operator Tl of (26) with V.!Cl / D .HCl ; .�; �/Cl;E/ and
W.!l/ one of the spaces .Hl; .�; �/l;E/, .Hl; .�; �/l;1/, .Hl; .�; �/l;0/.

Hence, HCl
C
,! Hl holds in all cases and we can set

Wl WD HCl ; and .�; �/Wl
WD aCl .�; �/;

so that the resulting generalized eigenvalue problem (12) for the n-widths turns into

al
�
Tl�

E;C
l;k ;Tlv

�
D �

E;C
l;k aCl .�

E;C
l;k ; v/; 8v 2 HCl (27)
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for the characterization with respect to k�kl;E ,

�
Tl�

1;C
l;k ;Tlv

�
l;1

D �
1;C
l;k aCl .�

1;C
l;k ; v/; 8v 2 HCl (28)

for the characterization with respect to k�kl;1 and

�
Tl�

0;C
l;k ;Tlv

�
l;0

D �0;Cl;k aCl .�
0;C
l;k ; v/; 8v 2 HCl (29)

for the characterization with respect to k�kl;0. Similarly, for the computation of the
sup � inf we get the generalized eigenvalue problems

al ..I � �Vl;al/Tlu; .I � �Vl;al /Tlv/ D  aCl .u; v/ 8v 2 HCl (30)

for the characterization with respect to k�kl;E ,

�
.I � �Vl;.�;�/l;1 /Tlu; .I � �Vl;.�;�/l;1/Tlv



l;1

D  aCl .u; v/ 8v 2 HCl (31)

for the characterization with respect to k�kl;1 and

�
.I � �Vl;.�;�/l;0 /Tlu; .I � �Vl;.�;�/;0/Tlv



l;0

D  aCl .u; v/ 8v 2 HCl (32)

for the characterization with respect to k�kl;0.
Having defined Wl;Hl and the inner products necessary for our analysis, we

further define, for fixed N 3 n WD dimVl

‰E
l .Vl/ WD ‰.Vl;HCl ; aCl ;Hl; al/; VE

l WD V�l;n.HCl ; aCl ;Hl; al/;

dEl;n WD dn.HCl ; aCl ;Hl; al/; ƒE
l .Vl/ WD ‰E

l .Vl/

dEl;n
(33)

and

‰1
l .Vl/ WD ‰.Vl;HCl ; aCl ;Hl; .�; �/l;1/; V1

l WD V�l;n.HCl ; aCl ;Hl; .�; �/l;1/;

d1l;n WD dn.HCl ; aCl ;Hl; .�; �/l;1/; ƒ1
l .Vl/ WD ‰1

l .Vl/

d1l;n
(34)
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and

‰0
l .Vl/ WD ‰.Vl;HCl ; aCl ;Hl; .�; �/l;0/; V0

l WD V�l;n.HCl ; aCl ;Hl; .�; �/l;0/;

d0l;n WD dn.HCl ; aCl ;Hl; .�; �/l;0/; ƒl
0.Vl/ WD ‰0

l .Vl/

d0l;n
(35)

where we refer to ƒE
l ; ƒ

1
l ; ƒ

0
l 	 1 as optimality ratios.

4.3 Practical Construction ofWl

Note that, our definitions of Hl;Wl and their respective norms do not enable us
to perform computations in practical applications since we only assume to have
Vl D span f�l;k W k < ng � Hl from some homogenization approach given via some
basis �l;k; k < n. Yet, for the computation of the sup � infs ‰E

l ; ‰
1
l ; ‰

0
l and the n-

widths dEl;n; d
1
l;n; d

0
l;n we in fact need to have a basis for Wl D HCl as well.

Throughout this paper, we employ classical FE discretizations with linear
elements on simplicial meshes to approximate the respective function spaces. Here,
we construct the respective meshes on the enlarged patches !Cl independently of
each other, i.e., we do not assume the overlapping meshes to be aligned. Moreover,
we assume that the meshwidth of these meshes is small enough to resolve all
inclusions and desired features of the solution with sufficient accuracy. We denote
the respective FE spaces defined on these meshes by VFE;C

l and refer to the standard
nodal basis functions of VFE;C

l as �Cl;m. Moreover, we introduce the subspace

VFE;C
l;0 � VFE;C

l defined by the nodal basis functions �Cl;m associated with the
boundary nodes xl 2 �l;0 on the free boundary. Finally, we make the assumption
that the restrictions Tl.VFE;C

l / are given by a subspace VFE
l of VFE;C

l , i.e., that
the mesh on !Cl resolves the patch !l and its boundary @!l. With the help of these
discrete spaces we can now construct approximate spaces Wl D HCl and respective
basis functions.

Let us first consider a rather expensive brute force approach. Here, we simply
follow the definition of HCl and either compute all solutions uCl;N , see (16), to the
boundary value problem

r � �.uCl;N/ D 0; in !Cl ; �.uCl;N/ � n D 0; on�Cl;N ;

uCl;N D 0; on �Cl;D; �.uCl;N/ � n D hCl on�Cl;0
(36)
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with solution operator hCl 7! uCl;N D HCl;Nh
C
l and an exhaustive set of tractions hCl

on �Cl;0 or all solutions uCl;D, see (17) to

r � �.uCl;D/ D 0; in !Cl ; �.uCl;D/ � n D 0; on �Cl;N ;

uCl;D D 0; on �Cl;D; uCl;D D gCl on �Cl;0
(37)

with solution operator gCl 7! uCl;D D HCl;Dg
C
l and an exhaustive set of traces gCl on

�Cl;0. Thus, we can formally define

HCl WD hHCl;N�l;m W �l;n 2 VFE;C
l;0 i

containing all FE approximations of (37).
Note that we employ this rather expensive construction for the computation of all

sup � infs and n-widths throughout this paper. Moreover, we employ this definition
of HCl for the construction of the optimal approximation spaces VE

l ;V1
l ;V0

l .
To reduce the computational effort involved in the definition of approximate

spaces HCl , we also consider the much cheaper approach of Babuška and Lipton
[2], Babuška et al. [7]. Here, the basic idea is to find a subspace HC;sl � HCl with
dimHCl � dimHC;sl 	 nl � n that approximates the first n eigenvectors of
the n-width problems (27)–(29) sufficiently well. We then use this subspace HC;sl
instead of HCl in the construction of the respective local approximation spaces
VE;s

l ;V1;s
l ;V0;s

l . In the remainder of this work, we choose

nl D � max
Vl

n D � max
Vl

dimVl (38)

with � D 2 to be twice the maximum dimension of employed local spaces n D
dimVl. Note, however, that the choice of � is not obvious and may impact the
results substantially.

Let us now consider the concrete choice of this subspace HC;sl . To this end,
we consider polynomials Pd of degree � d which provide a spectral basis for
problems with smooth coefficients. Moreover, for the scalar heat equation with
constant coefficients, its polynomial solutions, the so-called harmonic polynomials,
are explicitly known. They span the 2d C 1 dimensional space

P�;d WD fv 2 Pd W �v D 0g D span f<.x C iy/e;=.x C iy/e W e � dg : (39)

In the vectorial elasticity case, we simply take each component to be a harmonic
polynomial and obtain a 4d C 2 dimensional space P�;d, respectively. We now
consider hCl 2 P�;d with d large enough such that dimP�;d 	 nl to define

HC;sl WD ˚
HCl;Nh

C
l W hCl 2 P�;d

�
: (40)
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5 Concrete Choices ofVl

With all necessary definitions for the spaces Hl and Wl available, let us now shortly
summarize the choices we consider for the local approximation spaces Vl in the
following.

• Optimal spaces of eigenvectors �E;Cl;k ; �
1;C
l;k ; �

0;C
l;k 2 HCl associated with the n

largest eigenvalues

VE
l WD fTl�E;Cl;k ; k < ng ; al.Tl�

E;C
l;k ;Tlv

C/ D �aCl .�
E;C
l;k ; v

C/ 8vC 2 HCl ;

V1
l WD fTl�1;Cl;k ; k < ng ; .Tl�

1;C
l;k ;Tlv

C/l;1 D �aCl .�
1;C
l;k ; v

C/ 8vC 2 HCl ;

V0
l WD fTl�0;Cl;k ; k < ng ; .Tl�

0;C
l;k ;Tlv

C/l;0 D �aCl .�
0;C
l;k ; v

C/ 8vC 2 HCl :

• Cheaper approximation of optimal spaces of eigenvectors �
E;C;s
l;k ; �

1;C;s
l;k ;

�l; k0;C;s 2 HC;sl associated with the n largest eigenvalues

VE;s
l WD fTl�E;C;sl;k ; k < ng ; al.Tl�

E;C;s
l;k ; Tlv

C/ D �aCl .�
E;C;s
l;k ; vC/ 8vC 2 HC;sl ;

V1;s
l WD fTl�1;C;sl;k ; k < ng ; .Tl�

1;C;s
l;k ;TlvC/l;1 D �aCl .�

1;C;s
l;k ; vC/ 8vC 2 HC;sl ;

V0;s
l WD fTl�0;C;sl;k ; k < ng ; .Tl�

0;C;s
l;k ;Tlv

C/l;0 D �aCl .�
0;C;s
l;k ; vC/ 8vC 2 HC;sl :

• In analogy to [8, 9], the harmonic polynomials HC;sl

Vh
l WD fTlHCl;NhCl W hCl 2 P�;d� ; dimP�;d� D ng � HC;sl :

• The multiscale spaces introduced in [11] can be interpreted as optimal spaces

for H1.!l/
C
,! L2.!l/ and thus fit into our framework. From a computational

point of view, it is more convenient to construct these spaces via the eigenvectors
�el;k 2 VFE

l of

Ve
l WD f�el;k; k < ng ; al.�

e
l;k; v/ D �

�
� �el;k; v



l;0

8v 2 VFE
l

associated with the smallest non-vanishing eigenvalues. Moreover, we study the
effects of oversampling with !Cl � !l we also consider the eigenvectors �e;Cl;k
associated with the smallest non-vanishing eigenvalues of

Ve;C
l WD f�e;Cl;k ; k < ng ; aCl .�

e;C
l;k ; v

C/ D �
�
� �

e;C
l;k ; v

C�
l;0

8vC 2 VFE;C
l :
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6 Numerical Results

Let us now summarize the results of our numerical experiments using the local
approximation spaces Vl defined in the previous section. Here, we used the FE
framework FEniCS [1] to these spaces, i.e. the multiscale basis functions, which
are then used to enrich the PUM framework PUMA [21] developed by Fraunhofer
SCAI. All eigenvalue problems . . .10�7 ALEXALEXALEX.

We consider the three different configurations of inclusions (denoted as A, B, C
in the following) depicted in Fig. 1 in our experiments to study the robustness of
the considered homogenization approaches with respect to inclusion distribution
and the material contrast C, see (1). Moreover, we study the computational
costs associated with the different approaches and the overall performance of the
constructed enrichments within a global PUM approximation of our model problem
introduced in Sect. 1.1.

Besides these issues we also consider more fundamental topics such as: How
many degrees of freedom do we need in the optimal case to achieve a certain local
approximation error � (according to the n-widths dEl;n and d1l;n; d

0
l;n)? In particular, we

are interested to see if this number is robust with respect to the contrast C and the
distribution of the inclusions.

In all numerical experiments, we compute the n-widths and sup � infs for space
dimensions up to n � 100 in the scalar case and n � 200 for the linear elasticity
model problem. Recall also that we use dimHC;sl D � n D 2n, compare Sect. 4.3.
The employed meshes defined on the extended patches !Cl are sufficiently refined
to resolve all features of interest. For instance, the center patch !4 for the most
complex pattern of random inclusions of varying sizes was meshed using 514;912
cells and M D 258;096 nodes, yielding dimHCl D 1278, compare Sect. 4.3.

6.1 General Observations

At first, we focus on the sup � infs obtained for all considered homogenization
approaches and the optimal n-width for material configuration A, see Fig. 3.
Comparing the depicted plots for the scalar model problem and the two-dimensional
elasticity problem, we find essentially an identical behavior with the only difference
that the approximation of a two-dimensional vector field obviously requires twice
as many degrees of freedom as the approximation of a scalar field.

Moreover, we see that for a qualitative comparison we can restrict ourselves to
the plots with respect to the energy norm. This is in accordance with the equivalence
of k�kl;E and k�kl;1 and with k�kl;0 being bounded by k�kl;E.

Note also, that the optimal spaces VE
l ;V1

l ;V0
l seem to perform equally well for

all quality measures ‰fE;1;0gl , i.e., with our particular choice of Wl D HCl and Hl

there appears to be no benefit of computing an optimal basis for, say, k�kl;1 instead
of k�kl;E, as both bases will perform equally well for both norms. Thus, to remove
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Fig. 3 Computed sup� infs ‰E
l , ‰1

l and ‰0
l (top to bottom) for the central patch !4 for our scalar

model problem (left) and the linear elasticity equation (right) for material configuration A with
121 randomly distributed inclusions of random size. Note that in the ‰0

l plots we find values of

‰0
l .V

fE;1;0g
l / below the computed n-width d0l;n. This is a result of using two different numerical

generalized eigenvalue problems for the computation of d0l;n and ‰0
l . In some sense this shows that

the numerical computation of d0l;n via the basis of eigenvectors V0l is less affected by round-off than

using HC

l
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clutter from the plots, we restrict ourselves in the following to the presentation of
results for the optimal spaces VE

l and VE;s
l only.

For the spaces Ve
l and Ve;C

l constructed according to [11] we find that
oversampling is required to attain an acceptable convergence behavior, i.e., only
Ve;C

l provides good approximation with respect to k�kCl;E.

6.2 Contrast Independence and Mesh Dependence of n-Widths

A natural question is whether for a fixed microstructure the contrast C influences
not only the optimal shape functions �fE;1;0gl;k but also dEl;n, i.e., if the contrast and the
microstructure influence the minimal amount of shape functions needed to achieve
a certain accuracy. In Fig. 4 we give plots of the computed n-widths obtained for
different values of C on material configuration A on different patches !l. From
these plots we can observe that there is only a slight variation in the obtained n-
width indicating that the number of basis functions necessary to obtain a prescribed
accuracy is rather robust against changes in the microstructure and the contrast. Yet,
it is obvious that the computed n-widths will be much more dependent on the quality
of the meshes employed on the extended patches !Cl , see Fig. 5.

6.3 Influence of Microstructure and Patch !l on dEl;n

We have already seen that for the microstructure given by material configuration
A the contrast C has little influence on the n-width dEl;n from Fig. 4. In fact, further
numerical experiments gave similar results for all considered microstructures, i.e.,
the n-width dEl;n depends only on mesh resolution and the shape of !Cl , in particular
@!Cl n @�.

From the plots depicted in Fig. 6, we see that the qualitative behavior of ‰E
l is

not dependent on the microstructure for all spaces except for Ve
l ;Ve;C

l and the plots
given in Fig. 7 show that the behavior of dEl;n is qualitatively the same for each chosen
microstructure and depends mostly on the particular patch!Cl . This is in accordance
with the construction of HCl using the degrees of freedom on �Cl;0 D @!Cl n @�.
Moreover, the exact type of boundary condition on @!Cl \@� (Dirichlet, Neumann,
or mixed) appears to play little role in the behavior of the n-widths.

The computed n-widths dEl;n given in Fig. 8 clearly show that dEl;n is actually
quantitatively the same for each microstructure up to machine accuracy.
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Fig. 4 Computed n-widths dEl;n for patches !4, !1,!3, and!0 (top to bottom) for different contrasts
C for our scalar model problem (left) and linear elasticity (right)
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Fig. 5 Computed n-widths dEl;n for the smooth case C D 1 (i.e. no inclusions) for patches !4, !1,
!3, and !0 (top to bottom) on four different meshes for our scalar model problem (left) and linear
elasticity (right)
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Fig. 6 Computed sup � infs ‰E
l for !4 and our scalar model problem with no inclusions and the

three material configurations A, B and C with contrast C D 1
2

(top left to bottom right). dEl;n and
‰E

l .Vl/ show similar behavior in all four plots, i.e. there is little dependence on the microstructure

6.4 Contrast Dependence ofVl

Another important issues is the robustness of particular spaces Vl with respect
to the contrast. In Fig. 9 we show plots of the computed sup � infs ‰E

l .Vl/ for
different contrasts obtained for the optimal space VE

l , the optimal space VE;s
l

using the cheaper construction with HC;sl instead of HCl , the space of L-harmonic
polynomials Hh

l � HC;sl , and the space Ve;C
l of Efendiev et al. [11] with

oversampling. From these plots we can clearly see that the spaces VE
l ;VE;C

l
are rather robust with respect to varying contrast C whereas Vh

l shows slight
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Fig. 7 Computed n-widths dEl;n for our scalar model problem with no inclusions and the three
material configurations A, B and C with contrast C D 1

2
(top left to bottom right) for different

patches !l. The plots are essentially independent of the considered microstructure

fluctuations. This is probably due to the smoothing and stabilizing effect of the
generalized eigenvalue problem that turns Vh

l � HC;sl into VE;s
l which is much

more robust with regards to C. The space Ve;C
l shows more dependence on C

which, however, seems to be related to results on the dependence of the eigenvalues
�el;k; �

e;C
l;k on the contrast C and the number of inclusions, see [11].

6.5 Optimality and Costs ofVl

From Fig. 10 we see that Vh
l is a very cost effective close to optimal space, which

can be lightly improved on via a generalized eigenvalue problem yielding VfE;1;0g;sl .
This, however, leads to fixed costs in the construction of HC;sl . Moreover, Ve;C

l
yields a cost effective space of shape functions, albeit, as seen in other plots,
requiring more shape functions.
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Fig. 8 Computed n-widths dEl;n for our scalar model problem with contrast C D 1
2

obtained for the
patches !4, !1 , !3, !0 (top left to bottom right) for different material configurations

From Fig. 11, where we give the optimality ratio ƒE
l , we see that up to

mesh precision we have optimality of VfE;1;0gl and VfE;1;0g;sl and a very similar
performance of Vh

l while Ve andVe;C do not perform comparably well with respect
to this measure.

6.6 Example of Global PUM Solution

Finally, we present some first results using the computed multiscale basis functions
as enrichments in a PUM discretization of the global problem. Here, we consider our
scalar model problem on material configuration B and consider two different types
of refinements of the global PUM space. Obviously, we can keep the number of
PUM patches !l fixed and consider an increasing number of enrichment functions,
i.e. a p-type refinement. However, we may also consider a cheaper h-type refine-
ment, where we increase the number of PUM patches and restrict the employed
enrichments to the refined patches. The p-type refinement should of course yield
a spectrally convergent method whereas the convergence behavior of the described
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Fig. 9 Computed sup � infs ‰E
l .Vl/ for the spaces VE

l , VE;s
l , Vh

l , Ve;C
l (top to bottom) for

our scalar model problem (left) and linear elasticity (right) on the center patch !4 and material
configuration A with different contrasts C
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Fig. 10 Construction time of Vl plotted against ‰E
l for the patches !4 , !1, !3, and !0 (top left to

bottom right) for our scalar model problem on material configuration B and contrast C D 1
2
.

h-refinement should yield an algebraic rate. The plots depicted in Fig. 12 clearly
shows the anticipated behavior of our p-type refined PUM with respect to the L2-
norm whereas for the H1-norm the observed error reduction stalls. Similarly, we find
that the h-refined PUM in the L2-norm shows an algebraic convergence behavior as
anticipated and essentially no error reduction in H1. Note, however, that we have
to use a numerically determined reference solution to compute the errors and thus
may observe a numerical artifact only. Here, a more detailed study is necessary to
identify the issue. From the contour plots depicted in Figs. 13 and 14 at least we find
no obvious flaw in our PUM approximation.
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Fig. 11 Optimality ratios ƒE
l for the patches !4, !1 , !3, and !0 (top left to bottom right) for our

scalar model problem on material configuration B and contrast C D 1
2

Fig. 12 Computed global errors for our scalar model problem on material configuration B with
contrast C D 104 using an h-refined PUM (left) using a fixed number of local enrichments (nl D
4; 8; 12; 20) and a p-refined PUM on two different covers with 9 and 36 patches
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Fig. 13 Contour plots of the absolute error on three h-refinement levels (left to right) using
4; 8; 12; 20 enrichments (top to bottom)
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Fig. 14 Contour plots of the magnitude of the gradient of the error on three h-refinement levels
(left to right) using 4; 8; 12; 20 enrichments (top to bottom)
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7 Concluding Remarks

We have presented a framework to compare the approximation power of local spaces
Vl via the computation of the respective sup � infs ‰�l.Vl/ and a comparison of
‰�l.Vl/ to the optimal n-width d�l;n D min‰�l.Vl/. We focused on heterogeneous
materials with the overall goal of determining high quality enrichments for a
global PUM discretization via numerical homogenization techniques. Here, we
considered microstructures induced by well separated circular inclusions only. The
quality measures and local approximation spaces constructed in this study are both
applicable to the scalar heat equation and vectorial linear elastic equation.

Our numerical results with respect to the n-widths indicate that d�l;n and the
corresponding optimal spaces of eigenvectorsV�l can in fact be computed in a stable
fashion provided the employed approximation space (in our case the FE mesh) is
sufficiently refined. Moreover, our results show that the minimal number of shape
functions n needed for dEl;n < � is independent of the microstructure �2 and the
contrast C. Note, however, that this requires that all shape functions are computed
for this particular value of the contrast C and the considered microstructure, i.e., are
perfectly adapted to the problem.

The obtained results for the sup � infs showed that the optimal spaces VfE;1;0gl

are all optimal for all three measures ‰fE;1;0gl .Vl/ but rather expensive to compute.
Here, however, the major factor in the computation cost is the construction of Wl D
HCl and not the solution of the generalized eigenvalue problem. Moreover, we found
that the construction of Wl � HC;sl based on aCl -harmonic extensions of harmonic

polynomials yields spaces VfE;1;0g;Cl that are of similar quality but much cheaper to
construct. In fact, it appears to be the case that using the aCl -harmonic extensions of
polynomials Vh

l � HC;sl directly yields almost optimal performance even without
the need to solve a generalized eigenvalue problem.

Finally, we found that the space Ve;C
l also appears to yield a cost-effective

approximation which only requires the solution of a generalized eigenvalue problem
that is readily obtained from the global stiffness matrix and a weighted mass matrix.
Even though this approach requires roughly 2–3 times the minimal number of shape
functions to achieve the same accuracy, the overall computational cost is far smaller
than for the construction of optimal shape functions.

Acknowledgements This work was in part sponsored by the Sonderforschungsbereich 1060 of
the Deutsche Forschungsgemeinschaft.
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Embedding Enriched Partition of Unity
Approximations in Finite Element Simulations

Marc Alexander Schweitzer and Albert Ziegenhagel

Abstract In this paper we present a general approach to embed arbitrary approxi-
mation spaces into classical finite element simulations in a non-intrusive fashion. To
this end, we employ a global partition of unity method to splice the two independent
approximation spaces together. The main goal of this research is to enable the
timely evaluation of novel discretization approaches and meshfree techniques in
an industrial context by embedding them into large scale finite element simulations.
We present some numerical results showing the generality and effectiveness of our
approach.

1 Introduction

Even though the classical finite element method (FEM) is the work horse of com-
putational science and engineering today it has several limitations and drawbacks.
Some of these issues were the initial starting points for research on meshfree meth-
ods (MM), generalized or extended finite element methods (GFEM/XFEM) and the
partition of unity method (PUM) in the early 1990s. A number of developments in
these fields by now found their way back into commercial finite element packages.
However, the full spectrum of experimental and even well-established techniques
in MM, GFEM/XFEM and PUM are not available in large scale commercial FEM
packages which renders the evaluation of the developed techniques in industrial
applications unfeasible at the moment.
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In this paper we present a very simple and non-intrusive strategy which in
principle allows for the embedding of any approximation technique in any FEM
simulation thereby enabling the timely evaluation of novel discretization techniques
in an industrial context. Our approach is based on the PUM and can be viewed as a
generalization of [5–7]. To document the flexibility and generality of our approach
we present numerical results of a FEM simulation with an embedded enriched
PUM approximation near re-entrant corners where we employ various enrichment
schemes with singular and higher order polynomial enrichment functions. These
results clearly show that we attain optimal convergence rates for the global
FEM with embedded enriched approximation spaces without any adaptive mesh
refinement or numerical artefacts.

2 Partition of Unity Method

The Partition of Unity Method (PUM) was introduced in [2, 3] and is based on [4].
The abstract ingredients which make up a PUM space

VPU WD
NX
iD1

'iVi D spanh'i#m
i iI (1)

are a partition of unity (PU) f'i W i D 1; : : : ;Ng and a collection of local

approximation spaces Vi WD Vi.!i/ WD spanh#m
i idVimD1 defined on the patches

!i WD supp.'i/ for i D 1; : : : ;N. Thus, the shape functions of a PUM space are
simply defined as the products of the PU functions 'i and the local approximation
functions #m

i . The PU functions provide the locality and global regularity of the
product functions 'i#m

i whereas the functions #m
i equip VPU with its approximation

power. Note that there are no constraints imposed on the choice of the local spaces
Vi, i.e. they are completely independent of each other. Thus, the PUM approach
allows to utilize a priori information about the sought solution locally by using so-
called enrichment functions or physics-based basis functions in general [11]. Here,
we usually employ local approximation spaces Vi of the form

Vi D Pi C Ei D spanh t
i i C spanh�si i;

where Pi denotes a space of local polynomials and Ei accounts for non-smooth local
features such as kinks, discontinuities and singularities of the solution on the patch
!i. In our setting, however, we will not follow this local approach which focusses on
approximation properties but we take a more global point of view which is in spirit
closer to a domain decomposition line of thought, see e.g. [12]. To this end, let us
consider a very simple cover of the domain � into just two overlapping patches
�0 and �1 with respective PU functions ˆ0 and ˆ1, i.e. ˆo C ˆ1 � 1 on � �
�0 [ �1. Then, let us choose the local approximation space V0 on the patch �0
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to be a classical FE space defined on a respective mesh �0;h which discretizes �0.
On the other patch �1 we can choose any other approximation spaces V1 since it is
completely independent of V0 by construction; for instance we could choose another
FE space on a non-matching mesh �1;H [5, 6]. Throughout this paper we will use a
secondary enriched PUM as described above to demonstrate that any approximation
space can be embedded in a classical FE simulation in a non-intrusive fashion by
our approach, compare also [7].

3 Embedding PUM into Finite Element Simulations

Using this PU, the global approximation space VPU on �, according to (1), is
given by

VPU WD ˆ0V0 Cˆ1V1 D spanhˆ0�ji C spanhˆ1'i#m
i i; (2)

where �j denote the nodal FE basis functions given on the mesh �0;h and the 'i#m
i

denote the basis functions of the local PUM space V1 on the patch �1. At first
sight, it seems that we actually need to access each FE basis function �j to multiply
it by the PU function ˆ0 which obviously would not be possible when using a
commercial FE package. Fortunately, this is not the case when we employ a so-
called flat-top PU [8, 9], i.e. we choose fˆ0;ˆ1g such that there exist

Q�0 � �0 such that ˆ0j Q�0 � 1; Q�0 \�1 D ;;
Q�1 � �1 such that ˆ1j Q�1 � 1; Q�1 \�0 D ;;

and to this end we define

O� WD �0 \�1; Q�0 WD �0 n O�; and Q�1 WD �1 n O�:
For simplicity, let us furthermore assume that Q�0 is already resolved by the mesh
�0;h, i.e. Q�0 is discretized by a subset Q�0;h of elements of the original mesh�0;h on
�0. Then, we can rewrite our approximation space (2) as

VPU WD spanh�Qji C spanhˆ0�ji C spanh'Qi#m
Qi i C spanhˆ1'i#m

i i; (3)

where the first term now involves only those FE basis functions with supp�Qj � Q�0

whereas in the second term we consider the FE basis functions with supp�j\ O� 6D ;.
Analogously, the third term in (3) accounts for 'Qi#m

Qi with supp'Qi � Q�1 and the

last term for 'i#m
i which satisfy supp'i \ O� 6D ;. Thus, the first and third terms

in (3), i.e.,

VFE
0 WD spansupp�

Qj� Q�0h�Qji and VPU
1 WD spansupp'

Qi#
m
Qi
� Q�1h�Qii; (4)
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are completely agnostic to the construction described above and thus we can employ
any FE package, commercial or academic, (or any other method) to discretize our
model on Q�0 and Q�1 without any intrusion into the respective code or access to its
implementation. We must essentially be concerned with the implementation of the
discretization by

OV WD spansupp�j\ O� 6D;hˆ0�ji C spansupp 'i#m
i \ O�6D;hˆ1'i#

m
i i (5)

on the overlapping region O� D �0 \ �1 only. Here, we need to have access to
the employed FE mesh �0;h and the respective element types as well as to the
implementation of the method we wish to embed into the FE simulation, i.e. V1 on
�1. To this end, our implementation of the proposed embedding scheme provides a
number of classical finite elements so that we can use an arbitrary FE package on
Q�0, our original PUM implementation on Q�1 and this new interface implementation
on the overlap O� for the discretization. Then, we can assemble the overall stiffness
matrix K and the load-vector f

K WD
0
@KFE

0
OK0 0

OKT
0

OK OK1
0 OKT

1 KPU
1

1
A ; f WD

0
@ f FE

0Of
f PU
1

1
A ;

where KFE
0 , f FE

0 and KPU
1 , f PU

1 are the stiffness matrices and load-vectors obtained
directly from the two non-overlapping spaces (4) and the other terms OK0, OK, OK1, Of
involve the space (5) on the overlap O�.

For the iterative solution of the resulting global linear system we can obviously
employ available solvers SFE

0 and SPU
1 for the two blocks KFE

0 and KPU
1 to define a

simple preconditioner for the global stiffness K via

P WD
0
@SFE

0 OS
SPU
1

1
A ;

where we may use a direct solver to construct OS for OK (since the overlap O� is
typically small compared with Q�0 and Q�1) or any other approximate inverse OS.

4 Numerical Results

In this section we present some results of our numerical experiments using the
embedded enriched PUM within a classical FE simulation as discussed above.
To this end, we introduce some shorthand notation for various norms of the error
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u � uPU, i.e., we define

eL2 WD ku � uPUkL2
kukL2

; eH1 WD kr.u � uPU/kL2
krukL2

: (6)

For each of these error norms we compute the respective algebraic convergence rate

 by considering the error norms of two consecutive refinement levels l � 1 and l


 WD �
log

� ku�uPU
l k

ku�uPU
l�1k

�

log. DOF.l/
DOF.l�1/ /

; where DOF.k/ WD DOF0.k/C DOF1.k/; (7)

DOF0.k/ WD dimV0;k and DOF1.k/ D dimV1;k, which corresponds to the classical
h� notation for uniform h-refinement where

� WD
log

� ku�uPU
l k

ku�uPU
l�1k

�

log. 1
2
/

(8)

such that � D 
d in R
d, i.e. � D 2
 in two space dimensions.

The model problem considered in the following is the simple Poisson problem

��u D f in � � R
2;

u D g on �D � @�;
@u

@n
D h on �N D @� n �D;

(9)

on an L-shaped domain � WD Œ�1; 1	2 n Œ0; 1	2, compare Fig. 1. Prescribing
vanishing Dirichlet boundary conditions at the re-entrant corner, i.e. on �D WD

Fig. 1 Sketch of domain � and the sub-domains Q�0 and �1 (left). A coarse mesh �0;h defined
on �0 and the overlapping patches !i defined on �1 (center). A contour plot of the solution (11)
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@� \ Œ0; 1	2, the solutions to (9) exhibit the singular behavior

us.r; �/ WD r
2
3 sin

�2� � �
3

�
(10)

near the origin. In our experiment, we choose the data f , g and h such that the
solution to (9) is given by

u D .x2 C xy � y2 C 1/us (11)

which would usually require an adaptive mesh refinement (AMR) near the re-entrant
corner when using classical FEM to obtain an optimal convergence rate of 
L2 D 1

and 
H1 D 1=2. Instead of employing AMR near the re-entrant corner, we will embed
an enriched PUM approximation at the origin, compare Fig. 1, to account for the
singular behavior (10). Thus, we anticipate that a uniform refinement of the FE
mesh �0;h will already yield these optimal convergence rates if the enriched PUM
space V1 resolves the singular solution (11) with sufficiently accuracy.

We consider three different enriched PUM spaces V1 in our experiments to
demonstrate that our approach is truely suitable to embed an arbitrary approximation
scheme into a FE simulation. First, we choose as local approximation spaces Vi on
the patches !i linear Legendre polynomials Pi and the one-dimensional enrichment
space Ei D spanh�ii with �i WD usj!i to define the space

V1Cus
1 WD

NX
iD1

'i.P1i C Ei/ D spanh'i t
i ; 'i�ii (12)

which is known to yield optimal approximation to solutions of the form (11) by
uniform refinement of the patches !i, see e.g. [10]. Then, we consider the somewhat
larger space

V1�us1 WD
NX
iD1

'iP1i .1C Ei/ D spanh'i t
i ; 'i 

t
i�ii (13)

which includes more non-polynomial enrichment functions than V1Cus
1 and thus

should yield smaller errors on �1 than V1Cus
1 yet comparable convergence rates.

Finally, we consider cubic Legendre polynomials in combination with the additive
enrichment space Ei

V3Cus
1 WD

NX
iD1

'i.P3i C Ei/ D spanh'i t
i ; 'i�ii (14)
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which is also larger than V1Cus
1 but contains additional higher order polynomials and

should also attain smaller errors on �1 than V1Cus
1 .

To control the refinement of the two independent local approximation spaces V0
and V1 we compute norms of the true errors u � uPU on the subdomains Q�0, O� and
Q�1, i.e. we compute

Oe WD ku � uPUk O�; Qe0 WD ku � uPUk Q�0; Qe1 WD ku � uPUk Q�1: (15)

Our simple refinement scheme is based on balancing the error in the subdomains,
i.e. we aim at attaining

Qe0 � 3Qe1 and Oe � Qe0: (16)

Since we anticipate that all enriched spaces V1 provide high-quality approximations
to (11) with at least the convergence rates 
L2 D 1 and 
H1 D 1=2, we refine only the
classical FE space V0 on �0 by uniform mesh refinement if (16) is satisfied. If (16)
is not satisfied we refine both V0 and V1 by uniform refinement.

The results of our numerical experiments are given in Tables 1, 2 and 3,
compare also Fig. 2. From the computed convergence rates (7) it is obvious that
all three embedded schemes attain show an optimal error reduction, i.e. the global
convergence rate is limited by the classical FE part. With respect to the performance
of the three different enriched spaces V1 we find that V3Cus

1 requires the least amount
of refinement in �1. Just 132 degrees of freedom in V3Cus

1 are sufficient to obtain

Table 1 Measured errors (6) and (15) and the respective convergence rates (7) using V1Cus
1 (12)

l DOF DOF0 DOF1 eL2 
L2 eH1 
H1 e0
L2

e0
H1

OeL2 OeH1 e1
L2

e1
H1

1 158 110 48 1:673�2 2:5 1:489�1 1:2 2:13�2 4:20�1 3:50�3 6:10�2 3:89�3 8:29�2

2 335 287 48 5:267�3 1:5 7:738�2 0:9 4:99�3 2:05�1 2:83�3 4:05�2 3:87�3 8:26�2

3 1;204 1;015 189 1:143�3 1:2 3:702�2 0:6 1:20�3 9:93�2 4:63�4 1:71�2 7:69�4 3:75�2

4 4;487 3;737 750 3:313�4 0:9 1:887�2 0:5 3:36�4 5:03�2 1:19�4 8:99�3 2:49�4 1:99�2

5 17;447 14;489 2;958 8:892�5 1:0 9:550�3 0:5 8:77�5 2:53�2 3:11�5 4:57�3 7:06�5 1:04�2

6 68;772 57;039 11;733 2:253�5 1:0 4:765�3 0:5 2:20�5 1:26�2 7:70�6 2:27�3 1:82�5 5:23�3

7 273;048 226;360 46;688 5:666�6 1:0 2:379�3 0:5 5:48�6 6:28�3 1:95�6 1:14�3 4:64�6 2:65�3

8 1;085;230 899;123 186;107 1:421�6 1:0 1:191�3 0:5 1:37�6 3:14�3 4:87�7 5:76�4 1:17�6 1:33�3

Table 2 Measured errors (6) and (15) and the respective convergence rates (7) using V1�us
1 (13)

l DOF DOF0 DOF1 eL2 
L2 eH1 
H1 e0
L2

e0
H1

OeL2 OeH1 e1
L2

e1
H1

1 389 110 279 1:811�2 0:9 1:458�1 0:5 2:37�2 4:21�1 2:09�3 4:97�2 1:03�3 1:08�2

2 566 287 279 4:397�3 3:8 7:095�2 1:9 5:74�3 2:05�1 5:33�4 2:07�2 2:91�4 7:05�3

3 1;294 1;015 279 1:013�3 1:8 3:446�2 0:9 1:32�3 9:93�2 1:35�4 1:10�2 1:08�4 6:20�3

4 4;016 3;737 279 2:726�4 1:2 1:756�2 0:6 3:45�4 5:03�2 4:54�5 6:11�3 8:32�5 5:88�3

5 15;587 14;489 1;098 6:713�5 1:0 8:817�3 0:5 8:64�5 2:53�2 1:23�5 3:40�3 1:29�5 1:75�3

6 61;305 57;039 4;266 1:888�5 0:9 4:448�3 0:5 2:16�5 1:26�2 8:40�6 2:10�3 8:83�6 1:86�3

7 243;091 226;360 16;731 4:966�6 1:0 2:230�3 0:5 5:37�6 6:28�3 2:37�6 1:12�3 2:84�6 1:12�3

8 965;059 899;123 65;936 1:364�6 0:9 1:125�3 0:5 1:35�6 3:14�3 7:03�7 5:69�4 9:39�7 6:96�4



206 M.A. Schweitzer and A. Ziegenhagel

Table 3 Measured errors (6) and (15) and the respective convergence rates (7) using V3Cus
1 (14)

l DOF DOF0 DOF1 eL2 
L2 eH1 
H1 e0
L2

e0
H1

OeL2 OeH1 e1
L2

e1
H1

1 242 110 132 1:807�2 4:0 1:458�1 2:1 2:4�2 4:2�1 2:1�3 5:1�2 1:0�3 1:2�2

2 419 287 132 4:375�3 2:6 7:101�2 1:3 5:7�3 2:1�1 5:4�4 2:2�2 3:1�4 7:3�3

3 1;147 1;015 132 9:906�4 1:5 3:446�2 0:7 1:3�3 9:9�2 1:4�4 1:2�2 1:4�4 4:7�3

4 3;869 3;737 132 2:531�4 1:1 1:749�2 0:6 3:2�4 5:0�2 4:4�5 6:7�3 9:3�5 2:8�3

5 14;621 14;489 132 8:109�5 0:9 8:838�3 0:5 6:8�5 2:5�2 1:9�5 3:7�3 8:0�5 2:1�3

6 57;564 57;039 525 1:609�5 1:2 4:369�3 0:5 2:0�5 1:3�2 2:0�6 1:4�3 6:4�6 4:1�4

7 228;398 226;360 2;038 4:030�6 1:0 2:177�3 0:5 5:2�6 6:3�3 5:1�7 7:0�4 8:5�7 1:7�4

Fig. 2 Contour plots of the attained approximation errors ku� uPU
l k using V1Cus

1 (12), i.e. linear
polynomials with additive enrichment (top), using V1�us

1 (13) with multiplicative enrichment

(center) and V3Cus
1 (14), i.e. cubic polynomials with additive enrichment (bottom), on the

respective refinement levels l D 2; 4; 6 (left to right)
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a global error of less than 1%, whereas V1�us needs DOF D 1098 and the most
commonly employed space V1Cus

1 must employ DOF D 2958. Note however that
the classical FE space V0 must be a lot finer with DOF D 14489 even though the
solution in �0 is smooth to yield the global accuracy of less than 1%. Moreover,
a global FE approach would require AMR and a much larger number of degrees
of freedom near the origin to resolve the singularity of the solution (11). Overall
these results clearly show the effectiveness of using an embedding of physics-
based basis functions into a FE simulation to reduce the total number of degrees of
freedom substantially and that the presented approach is able to embed an arbitrary
approximation space into a FE simulation. From the contour plots depicted in Fig. 2
we can also see that our embedding approach is free from any artefacts in the overlap
O�. The distribution of the errors in O� is essentially determined by the choice of
V1 (since V0 is fixed). Recall that V1�us contains more non-polynomial enrichment
functions which should provide better approximation near the origin whereas the
spaceV3Cus

1 is more effective further away from the origin. This anticipated behavior
can clearly be observed from the contour plots of the respective errors depicted in
Fig. 2.

5 Concluding Remarks

In the paper we presented a simple technique which enables the timely evaluation
of novel discretization techniques by embedding them into classical FE simulations.
Our approach is non-intrusive and thus can be employed also in conjunction with
large scale commercial FEM packages so that novel discretization techniques may
be evaluated in industrial applications. So far we have used the presented technique
successfully to embed enriched PUM spaces into the academic code FEniCS [1] and
the commercial package Abaqus (http://www.3ds.com/products-services/simulia/
products/abaqus/).
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Building a Numerical Framework to Model
Gas-Liquid-Solid Interactions Using Meshfree
Interpolation Methods

Chu Wang and Lucy T. Zhang

Abstract In this work, we present a numerical framework that can model and
simulate gas-liquid-solid three-phase interactions. A non-boundary-fitted approach
is developed to simultaneously accommodate the moving gas-liquid interfaces and
deforming solid. The connectivity-free front tracking method (CFFT) is adopted
to track the gas-liquid interface, where an approximation-correction step is used
to construct an indicator field without requiring the connectivity of the interfacial
points. Therefore, topological change such as free surfaces with bubble breaking up
and coalescing can be handled more easily and robustly. The fluid-solid interactions
are modeled using the modified immersed finite element method (mIFEM). A more
realistic and accurate solid movement and deformation are achieved by solving the
solid dynamics, rather than been imposed as in the original IFEM. The coupling
of the two algorithms is achieved using a meshfree interpolation function, the
reproducing kernel particle method. The concept of constructing the indicator
function to distinguish gas from liquid and fluid from solid naturally combines the
CFFT and mIFEM algorithms together, and simulate the complex 3-phase physical
system in a cohesive manner.

1 Introduction

The interactions among gas, liquid, and solid is an important physical phenomenon
that appears in nature and many engineering applications. Due to the complex
entities involved in the multiphase flows, namely, gas bubbles, liquid drops and solid
particles, accurate analysis using either experimental or analytical techniques maybe
hindered. Despite numerous efforts in the past decades, researchers are still actively
working on developing numerical algorithms that can be efficient, accurate, and
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easily implementable. One of the most notable challenges is the interface tracking,
where a robust numerical scheme that can handle large interface deformation and
topological changes is desired.

Various numerical schemes have been developed to treat gas-liquid multiphase
flows. The most commonly used computational approaches are: the front capturing
method and the front tracking method. Volume of fluid (VOF) method [3, 8] and
level-set method [7, 38] root from the front capturing approach. The interface is
implicitly modeled as an isosurface of a scalar function such as the indicator (color)
function in VOF or signed distance function in level-set. They are relatively easy
to implement and the interface topology change is naturally handled. However,
the VOF method can form discontinuities at interfaces between grid boundaries
when the interface is highly deformed in an un-resolved grid, whereas the level-
set method may result in unphysical total mass change in a long simulation [28].
The front tracking method [23, 31, 32, 37], on the other hand, models the interface
as markers or points that are connected using Lagrangian interface elements,
therefore the interface is explicitly represented. This approach results in good
total volume conservation and accurate moving interface capturing. However, the
required logical connectivities of the interfacial points bring numerical difficulties
in treating interface topology changes, especially for three dimensional cases.
Therefore, it would be of a great improvement if a numerical algorithm can combine
the merit of both front tracking and front capturing approaches. The connectivity-
free front tracking method (CFFT) [36] combines the merits of both the front
tracking and front capturing techniques where the interface is explicitly represented
by interfacial points to achieve better volume conservation and the topology change
of the interface is handled without considering the logical connectivity of the
interfacial points. A curvature projection scheme is adopted to minimized the effect
of spurious currents coming from the irregular curvature calculations.

Besides gas-liquid multiphase flows, modeling the fluid-structure interactions is
also a fascinating topic in three-phase interaction problems. Since the fluid may
involve two phases (gas and liquid), their interactions with the solid phase can
raise many numerical difficulties and complexity. Many numerical approaches have
been developed to deal with fluid-structure interactions. In general, they can be
grouped into two categories: boundary-fitted and non-boundary-fitted approaches.
One of the commonly used boundary fitted approach is the Arbitrary Lagrangian
Eulerian (ALE) [9, 11, 12, 15, 16, 41] method. The fluid-solid interface is explicitly
tracked using a boundary-fitted mesh. This approach can capture the interface and
interfacial solution relatively accurately However, re-meshing or mesh-updating
processes when mesh is severely distorted can be computationally expensive. To
tackle this problem, the non-boundary-fitted approach can be used to avoid the
re-meshing process. A widely used method following this approach is called the
immersed boundary (IB) method, which was initially proposed by Peskin to study
the blood flow around heart valves [22, 24–26]. The problem with the IB approach
is the lack of more realistic representations of the solid, which hinders the accurate
assessment of the material behavior and its deformation, or even the surrounding
fluid solutions. The immersed finite element method [6, 14, 20, 40, 42] resolves



Meshfree Framework for Gas-Liquid-Solid Interactions 211

this issue by allowing the solid domain to be constructed independently with a
Lagrangian mesh and be described using a more detailed constitutive model such as
linear elastic, hyperelastic and viscoelastic materials. However, the original IFEM
method relies on the ‘soft material’ assumption that the solid follows the movement
of the fluid, where the dynamics of the solid is not been solved, but rather, imposed
based on the dynamics of the fluid. Therefore, an improvement of the method is
needed when the solid behaves very different from the fluid, or in the cases that
the movement of the solid dominates and changes the fluid flow. This leads to
the development of the modified IFEM method (mIFEM) [35], which yields more
accurate solid solution by solving the dynamics of the solid.

In this study, we are presenting a fully coupled numerical algorithm that can
model gas-liquid-solid multiphase flows using the non-boundary-fitted approach
by meticulously integrating the aforementioned CFFT and mIFEM methods. The
indicator function naturally unites the two algorithms together without defining
simultaneously different levels as it would be required in level-sets. The indicator
function is constructed using the interpolation function of the reproducing kernel
particle method (RKPM) for its high order and non-connectivity features.

The outline of this paper is listed as follows. In Sect. 2, the numerical framework
for 3-phase modeling that couples CFFT and modified IFEM are presented. This
framework is not specific to CFFT and IFEM, rather it is applicable to any combi-
nation of existing multiphase and fluid-structure interaction solvers. In Sect. 2.3,
several 2-D and 3-D numerical examples are studied to validate the numerical
approach. Finally, conclusions are drawn in Sect. 3.

2 Numerical Framework

In this section, we first briefly review the mathematical formulations for
connectivity-free front tracking method and the modified immersed finite element
method, respectively. The coupling scheme of the two methods through the indicator
setup and the interpolation function is then introduced.

2.1 Multi-Fluid Interface Tracking Using the
Connectivity-Free Front Tracking Method

The governing equations for an isothermal multiphase flow can be described using
a single set of Navier-Stokes equations with fluid properties varying across the
interface. The multi-fluid is treated as ‘one-fluid’ without the need to handle the
jump condition across the interface [10]. The surface tension force can be treated as
a singular source term which is included in the momentum equation.
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Together, the continuity and momentum equations for incompressible fluid can
be expressed as follows:

r � u D 0; (1)



@u
@t

C 
.u � r/u D �rp C �r2u C 
g C F� ; (2)

where u.x; t/ is the velocity, p.x; t/ is the pressure, 
 and � are the fluid density
and viscosity, respectively, g is gravity, and F� is the surface tension force. To
evaluate the surface tension, interfacial properties such as unit normal, curvature,
and surface area of each interfacial point are required. The traditional front
tracking method relies on the connectivity of the interfacial points to obtain these
properties. However, when the interface undergoes topological changes such as
bubble coalescing and breaking up reconstructing this interface connectivity is also
required. This leads to the development of our recent CFFT algorithm [36] which
does not require the interface connectivity by constructing the indicator field with a
correction step.

2.1.1 Indicator Construction

An indicator function I is defined as 1 and 0, respectively, for each fluid,

I D
	
1 for fluid 1,
0 for fluid 2.

(3)

Fluid parameters such as the density and viscosity for a given location with
coordinate x can be expressed using the indicator function accordingly such that:


.x/ D I.x/ � 
1 C .1 � I.x// � 
2; (4)

�.x/ D I.x/ � �1 C .1 � I.x// � �2: (5)

In the front tracking method with connectivity [32], the indicator is obtained
by solving Poisson’s equation r2I.x/ D r � R

�
nˆ.x � x�/d� , where n is the

unit normal of the interface, � is the interface between the two phases, x� are
the points on the interface, and ˆ is the interpolation function. This step requires
the unit normal of the interfacial points to be computed a priori. However, without
connectivity the unit normal, and thus the indicator field has to be constructed using
an alternative way.
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Fig. 1 Schematics for fluid mesh, ghost points, and indicator function set up

An approximation-correction procedure is developed to construct the indicator
field: (1) obtain an approximate indicator field based on ghost points; (2) correct
this indicator field based on the current updated position of the interfacial points.
To achieve this, we first define a set of ghost points .xg/ that are placed in each
background fluid element. Here, we choose the center of each fluid element or cell
as the ghost points, see Fig. 1. One can use more points within each fluid element to
achieve better resolution.

The initial position of the interface is given based on the initial configuration
of the problem setup, the approximate indicator for the ghost points is, therefore,
known (either 1 or 0). As time marches forward, the indicator or signed distance
function, is advected by solving an advection equation at each current time step:

dI

dt
C u � rI D 0: (6)
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Solving the advection equation implicitly as in the front capturing methods causes
issues in stability and volume conservation. However, it can be used to acquire the
approximate indicator field Ia for each ghost point at the current time step n explicitly
by evaluating the indicator based on the indicator field and interface velocity from
the previous time step n � 1:

Ina.xg/ D In�1.xg/ ��tun�1 � rIn�1.xg/: (7)

Since it is explicitly solved, it can be used to evaluate the indicator for any point,
which gives the possibility and flexibility to increase or lower the ghost points
resolution without any difficulty. Points can be added at any location where high
resolution is required.

Once the approximate indicator field, Ia, is obtained for the ghost points, we can
interpolate the indicator field from the ghost points, xg to any point x, such as the
fluid nodes and the interfacial points, through a proper interpolation function, ˆ,
which can then be used to solve the N-S equations in the continuum sense:

I.x/ D
Z
g
Iaˆ.x � xg/d�g: (8)

To also ensure the interpolation is performed accurately for near wall region
where the influence domain is incomplete, a reproducing kernel particle method
(RKPM) [17, 18, 21] is adopted for the interpolation scheme which is enforced to
satisfy the reproducing conditions for accurate normal and curvature evaluations.
For detailed implementation, please refer to [36].

Adopting the basic idea of the level-set method that the level contour represents
the interface, we set the interface to have a constant indicator value. To accomplish
this, a correction term ıI should be added to the indicator function, I, to ensure
that the interface coincides exactly with a constant indicator contour. Combining
the interpolated approximate indicator, Eq. (8), with the correction term, ıI, the
indicator function for any points can be written as:

I.x/ D
NpX
pD1

ıIpˆ.x � xp/C
Z
g
Iaˆ.x � xg/d�g; (9)

where the subscript p denotes the interfacial points, Np is the number of interfacial
points. The correction term needs to be solved for every interfacial point, p. If the
indicator of all the interfacial points is set to be 0:5, i.e. I.xp/ D 0:5, then

NpX
p0D1

ıIp0ˆ.xp � xp0/ D 0:5 �
Z
g
Iaˆ.xp � xg/d�g: (10)
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Here the subscript p0 is used to differentiate from p in the summation. Repeating
Eq. (10) for every interfacial point would generate a linear system with RANK D Np.
Solving the linear system yields the correction value ıIp for each interfacial point.
Typically, the number of interfacial points is much less than the number of fluid
nodes, therefore the computational cost of Eq. (10) is negligible. Once the correction
of the indicator function is solved, the final indicator field for the fixed fluid mesh
can be obtained using Eq. (9).

2.1.2 Surface Tension Force Without Connectivity

Once the indicator field is known, the unit normal, n, and curvature, k can be
calculated by differentiating the indicator function:

n D � rI

jrIj ; (11)

k D r � n: (12)

In order to solve the N-S equation, the surface tension force which is a singular
source term in the momentum equation, Eq. (2), should be distributed to the
fixed fluid grid properly. Here we compute the singular surface tension force by
converting a point force into a volume force using a continuum surface tension force
(CSF) approach [2]:

Fsv.x/ D �k.x/
rI.x/
ŒI	


.x/
< 
 >

; (13)

where ŒI	 is the jump of the indicator function, 
.x/ is the weighted density, and
< 
 > is the average density at the interface. The advantage of using this approach
is to avoid the calculation of arc length or surface area, which is difficult to obtain
without connectivity.

One issue in the CSF approach is the spurious currents (irregular velocity field)
generated by the inaccurate curvature calculation near the interface [29]. The CSF
converts the surface force into a volume force by evaluating Eq. (13). Directly
calculating curvature at fluid nodes instead of the interfacial points can only get
a first order accuracy at best [7]. Also, when the curvature is calculated at a fluid
node with the indicator approaches to 1 or 0, the curvature is more likely to be
inaccurate due to the noise in the indicator. Therefore, we adopt another approach,
the curvature projection scheme presented in [7], to evaluate the curvature at the
fluid node that any surface variable (such as curvature k) can be projected to the
whole fluid domain by solving:

rk � rI D 0: (14)
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Gas-liquid
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direction of the 
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Indicator transition 
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Fluid mesh 

Fig. 2 Schematics for curvature projection

Figure 2 shows the schematics for the curvature projection scheme. The first
step is to construct an indicator transition zone, which is a narrow band spanning
several fluid elements across the interface. The results of Eq. (14) let the curvature
on the interface which is more accurately evaluated to be projected along the normal
direction of the indicator within this indicator transition zone. By imposing the
same constant curvature in the transition zone, it eliminates the inaccurate curvature
evaluation caused by the noise in the indicator. As the mesh resolution increases near
the interface which results in the bandwidth of the transition zone to approach zero,
the curvature on the interface can be accurately reproduced. Since the interfacial
points are not coinciding with the fluid nodes, Eq. (14) cannot be solved directly on
the fluid domain. The detailed implementation can be found in [33]. To overcome
this issue, we develop the following numerical procedure: (1) identify all the fluid
elements that contain the interfacial points; (2) project the nodal points of these
elements to the interface using the projection scheme (which will be discussed in
Sect. 2.2.2) along the direction of rI to find out the projected points; (3) evaluate
the curvature of the projected points, and set the corresponding nodal points to have
the same curvature; (4) set the curvature of the nodal points as a boundary condition
and solve Eq. (14) to project the curvature to the fluid domain.

Here, we demonstrate the spurious currents effect yielded from both with
and without the curvature projection scheme. Dimensionless units are used for
all parameters. The computational domain is a 6 � 6 rectangular box, which is
discretized with 4096 uniform quadrilateral elements. The box is filled with gas.
A circular liquid drop with a radius of 1.0 is placed in the center of the domain.
Both the gas and liquid have the same density, 
g D 
l D 4:0, and viscosity
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Fig. 3 Spurious currents for with and without curvature projection scheme. (a) Without curvature
projection scheme. (b) With curvature projection scheme

�g D �l D 1:0. The surface tension is set to be � D 0:357. The box has no-
slip boundary on all sides. The simulation is carried out for 200 time steps with a
time step size of�t D 10�4. Since the initial velocity field is zero, the exact solution
of the velocity should be zero at all time.

Figure 3 shows the spurious currents for both with and without curvature
projection scheme calculations. The scales of the velocity vectors for both cases are
the same. It is evident that with curvature projection scheme, the spurious currents
are significantly decreased. In fact, the value of the spurious currents are expected to
be in the order of 0:01�=� D 3:57�10�3 [4, 5, 13, 27]. In our study, the `1, which
is defined as `1 D .maxjjujj/, for without and with curvature projection scheme
are 2:22 � 10�3 and 7:60 � 10�5, respectively. Both solutions behave well in terms
of the spurious currents magnitude (less than 3:57� 10�3). However, our improved
curvature method reduces the spurious currents by two orders of magnitude, which
dramatically increases the accuracy of the calculation.

2.1.3 Interface Advection and Points Regeneration Scheme

After properly incorporating the surface tension force, the N-S equations (1)
and (2) can be solved to obtain the velocity and pressure fields using stabilized
finite element method by adding streamline-upwind/Petrov-Galerkin (SUPG) and
pressure-stablizing/Petrov-Galerkin (PSPG) stabilization terms [1, 42]. The velocity
for each interfacial point is interpolated from the fluid mesh through the interpola-
tion functionˆ. The interface position, xp, is then advected using the velocity of the
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interfacial point u.xp/ interpolated from the fluid nodes:

dxp
dt

D u.xp/: (15)

In order to maintain sufficient number of points to represent the interface, the
interfacial points need to be regenerated periodically. The indicator of the interface
is enforced to be 0.5 by the construction of the indicator function. A projection
scheme is used to project a selection of candidate points near the interface onto
indicator of 0.5 using Newton’s iteration. The candidate points are pre-defined in
the fluid elements that contain the interfacial points.

Consider a candidate point at position x with indicator value I.x/. To project this
point onto the interface along the normal direction, we allow x to move ıx so that
the indicator of the candidate point is 0.5.

I.x C ıx/ D 0:5: (16)

If we perform a first order Taylor expansion, we obtain:

I.x/C ıx � rI.x/ � 0:5: (17)

Since the projection is along the normal direction n D rI.x/
jrI.x/j , we have

ıx � rI.x/ D 0: (18)

Based on Eqs. (17) and (18), ıx is solved and the candidate point is projected to a
new position x0 D x C ıx. This scheme is performed several times until jI.x0/ �
0:5j < �, where � is a set tolerance, then a new interfacial point is regenerated.
However, if the distance between the newly regenerated point and those have already
been regenerated is less than a set value, then the newly regenerated point would not
be used. This procedure is to avoid too many unnecessary interfacial points within
a short interface segment.

To treat the interface topology change such as deleting points when two interface
is merging, the candidate points must be carefully selected. Torres et al. [30]
suggests to pre-select the candidate points from either side of the interface, say
I.x/ > 0:5 C � or I.x/ < 0:5 � �. Since the points near the contacting surface do
not belong to this range, these points as well as the contact surface are deleted. An
indicator field can be constructed based on the newly regenerated points.
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2.2 Fluid-Solid Interactions Using the Modified Immersed
Finite Element Method

The kinematics of the computational domain that contains both fluid and solid is
shown in Fig. 4. Let us consider a computational domain, �, which is consisted
of gas domain (�g), liquid domain (�l) and solid domain (�s), such that � �
�l [ �g [ �s. The gas and liquid domains together can be treated as the fluid
domain such that �f � �g [ �l. The gas-liquid interface is denoted as �gl. The
solid and fluid domains are intersected by a common interface � s.

Several assumptions are made as follows:

1. The solid structure is fully immersed in the entire domain. Following this
assumption, the solid cannot move out of the fluid domain. The fluid-solid
interface needs to be within the computational domain in order to evaluate the
interactions correctly.

2. The fluid exists everywhere in the domain, �. This assumption allows us to
generate independent mesh for the fluid and the solid, which avoids frequent
mesh updating schemes. This approach is considered as non-boundary fitted
technique, as mentioned earlier. Since the solid is immersed in the fluid and
the fluid exists in the whole domain �, an overlapping region forms. This
overlapping region is ‘artificial’ because it physically does not exists. Therefore
its effects (viscous and inertial) must be eliminated.

3. The fluid-solid interface abides the no-slip and/or traction boundary conditions.
These two boundary conditions can co-exist, but cannot overlap. The solid
material can be described using various solid constitutive laws, which provides
feasibility to model different materials.

Fig. 4 Kinematics of the computational domain
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2.2.1 Solid and Fluid Domains

The original IFEM let the solid follow the movement of the artificial fluid by
applying the no-slip condition within the entire solid domain which includes the
interface and the interior. The solid governing equation is only used to evaluate the
interaction force that influences the solution of the fluid. In this modified IFEM
(mIFEM) technique, we let the solid dynamics to be solved by applying boundary
conditions that are evaluated based on the fluid velocity and stress on the fluid-solid
interface. This algorithm takes into account the dynamics of the solid where the
solid interior deformation is been solved rather than been imposed. This is more
reasonable approach since the artificial fluid is not real anyway, we can manipulate
it to behave more like a solid.

In solid domain�s, the solid governing equation can be described as


sDv
s
i

Dt
D 
sus

i;tt D � s
ij;j C 
sgi; (19)

where us is the solid displacement, vs is the solid velocity, the total derivative
operator D is used to evaluate the acceleration of the solid, 
s is the solid density, g
is gravity, the solid stress � s

kl D cijkl�s
ij C �ijkl�

s
ij;t, �

s
ij D 1

2
.us

i;j C us
j;i/. By choosing

different combinations of cijkl and �ijkl, the solid can be modeled as linear elastic,
visco-linear elastic, hyper-elastic and etc.

The Dirichlet and Neumann boundary conditions for the solid can be defined as
follows:

us
i D qi D vf

i�t on � sq; (20)

� s
ijn

s
j D hi D �� f

ijn
f
j on � sh: (21)

where vf is the fluid velocity that is interpolated onto the essential boundary � sq, � f
ij

is the fluid stress that is interpolated onto the natural boundary � sh, �t is the time
size, ns is the outward normal of the solid on the fluid-structure interface, and nf is
the outward normal of the fluid on the fluid-structure interface. The essential and
natural boundary conditions obey the no-slip and traction boundary on the fluid-
structure interface, respectively. At the beginning of each time step, the boundary
conditions for the solid structure are obtained by interpolating velocity and stress
from the fluid solution of the previous time step.

2.2.2 Coupling Between Solid and Fluid

When the fluid is consisted of gas and liquid phases, the fluid indicator function If is
used to differentiate the gas and liquid (If D 1:0 in liquid domain�l and If D 0:0 in
gas domain �g), the real fluid can be treated as ‘one fluid’ with properties varying
across the gas-liquid interface. The gas-liquid indicator function can be obtained
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following the CFFT method as shown in Sect. 2.1. The density and viscosity of the
real fluid are calculated as follows:


f D 
lIf C 
g.1 � If/; �f D �lIf C �g.1 � If/: (22)

Similarly, when treating the fluid-solid interactions, a new independent set of
solid indicator function Is is defined where Is D 1:0 in solid domain�s and Is D 0:0

in fluid domain�f. Since the normal of the solid boundary can be easily calculated
from the solid mesh, a smooth indicator field is achieved by solving Poisson’s
equation near the fluid-solid interface following the front tracking method.

The adoption of fluid and solid indicator makes it natural to couple the multi-
fluid and fluid-structure treatments together. The gas, the liquid, and the artificial
fluid which follows the dynamics of the solid, are treated as one single fluid with
properties described as follows:

N
 D 
sIs C 
f.1 � Is/; N� D �sIs C �f.1 � Is/: (23)

The coupling of the fluid and the solid is easier to be explained using the
concept of virtual work (or weak form). With a test function ıv, the weak form
for momentum equation of the entire computational domain is,

Z
�f
ıvi

�

fDv

f
i

Dt
� � f

ij;j � 
fgi � F�i

�
d�C

Z
�s
ıvi

�

s Dv

s
i

Dt
� � s

ij;j � 
sgi

�
d� D 0:

(24)

The first integral is the virtual work done by the real fluid, whereas the second
integral is the virtual work done by the solid.

Since the fluid is filled in the entire computational domain (based on Assumption
2), Eq. (24) needs to be re-arranged to account for that, but in the meantime the
effects of the artificial fluid must be eliminated.

Re-arranging Eq. (24) yields,

Z
�f
ıvi

�

f Dv

f
i

Dt
� � f

ij;j � 
fgi � F�i

�
d�C

Z
�s
ıvi

�

sDv

f
i

Dt
� � f

ij;j � 
sgi

�
d�C

Z
�s
ıvi

�

s

�
Dvs

i

Dt
� Dvf

i

Dt

�
� �
� s
ij;j � � f

ij;j


�
d� D 0:

(25)

The second integral is the virtual work done by the artificial fluid in the solid
domain. Re-arranging Eq. (25) is to include the artificial fluid terms in the solid
domain without contradicting the equilibrium. Combining the first two integral
terms then yields the total work done by the entire computational domain that
includes both real and artificial fluid. The work done by the artificial fluid is then
subtracted in the third term from the work done by the solid.
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We define the integrand in the third integral, the balance of the forces in the
artificial fluid and the solid, as the fluid-structure interaction force on the solid
nodes:

FFSI
i D �

� s
ij;j � � f

ij;j


� 
s

�
Dvs

i

Dt
� Dvf

i

Dt

�
in �s: (26)

The interaction force FFSI
i defined in Eq. (26) involves the calculation of the

solid acceleration Dvs
i

Dt , the artificial fluid acceleration Dvf
i

Dt , and the derivatives of the
solid and fluid stresses, � s

ij;j and � f
ij;j, under current solid configuration. These four

terms act as an external force on top of the solid domain to control the movement
of artificial fluid. Once the evaluation of the fluid-structure interaction force is
completed, it is used as an external force in the fluid to ‘feel’ the existence of the
solid. The artificial fluid is driven by the solid motion, which means the velocity of
the artificial fluid should be as close to the solid (vf D vs in �s) as possible. To
enforce the artificial fluid to be very similar to the solid, we can further assume the
artificial fluid is pseudo-compressible with same bulk modulus �s as the solid.

Together with the density with indicator function defined in Eq. (23), Eq. (25)
becomes:

Z
�

ıvi

�
N
Dv

f
i

Dt
� � f

ij;j � N
gi � FFSI
i � F�i

�
d� D 0: (27)

Its strong form is,

N
Dv
f
i

Dt
� � f

ij;j � N
gi � FFSI
i � F�i D 0 in � � �f [�s: (28)

The interpolation functions are important in coupling the three phases. In this
algorithm, the interpolation functions are used in three places.

1. When using connectivity-free gas-liquid interfacial points, as we do in CFFT, the
approximate indicator values will be first interpolated from the ghost points onto
the fluid grid, Eq. (8), as explained previously in Sect. 2.1.

2. Interpolating the fluid velocity and the fluid stress onto the solid domain
when evaluating the fluid-solid interaction force fFSI as described in Eq. (26) in
Sect. 2.2:

vs
i .x

s; t/ D
Z
�s
vf
i .x

f; t/ˆ.xf � xs/d�; (29)

� s
ij.x

s; t/ D
Z
�s
� f
ij.x

f; t/ˆ.xf � xs/d�: (30)
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The interpolated values are also used for the solid boundary condition.
Boundary conditions for the solid are interpolated from the fluid velocity and
fluid stress onto the solid boundary � , as described in Eqs. (20) and (21) in
Sect. 2.2.

3. Finally, the fluid-solid interaction force evaluated on the solid nodes is distributed
back to the fluid domain:

FFSI;f
i .xf; t/ D

Z
�

FFSI;s
i .xs; t/ˆ.xf � xs/d�: (31)

This two-way interpolation between the fluid and the solid is also done in the
IB and IFEM methods. To obtain accurate interpolations, a high-order interpolation
function,ˆ is adopted, which is acquired through the RKPM procedure [18]. There
are different choices for the interpolation functions [34]. Here we choose the RKPM
interpolation for its capability in dealing with gas-liquid interfaces near a boundary
for free surfaces and dealing with non-uniform background fluid grid.

The following lists the numerical framework for simulating the three-phase
interactions. The CFFT multiphase gas-liquid solver is wrapped inside the mIFEM
fluid-structure interaction solver. The overall solution procedure can be summarized
as follows:

1. Solve solid dynamic governing equation, given solid boundary conditions inter-
polated from the velocity and stress from the previous time step.

2. Construct the fluid and solid indicator field.
3. Evaluate fluid-structure interaction forces on solid nodes.
4. Distribute the fluid-structure interaction force to the background fluid.
5. Solve multiphase gas-liquid using CFFT:

(a) Construct the fluid indicator based on the gas-liquid interface.
(b) Calculate the surface tension force using continuum surface tension force

approach.
(c) Evaluate the weighted density and viscosity using the indicator function.
(d) Solve Navier-Stokes equations to obtain the velocity and pressure solutions.
(e) Advect the gas-liquid interface based on the fluid velocity.

6. Interpolate the fluid velocity and stress onto the solid domain, proceed to next
time step.

2.3 Numerical Examples

2.3.1 Rayleigh-Taylor Instability Test

The first validation case is the Rayleigh-Taylor instability study to verify the
accuracy and the CFFT implementation. The Rayleigh-Taylor instability is to
examine the instability of an interface between two fluid where the heavier fluid
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lies upon the lighter fluid with gravity. If the interface is disturbed initially by a
small perturbation, the instability will drive the interface to grow exponentially with
time. The linear analysis shows that the growth rate n can be predicted as [2, 19, 39]:

n2 D Kg

�
A � K2�

g.
1 C 
2/

�
; (32)

where K is the wavenumber of the perturbation, constant A D .
2 � 
1/=.
1 C

2/, g is the gravity acceleration which is perpendicular to the interface, � is the
surface tension force, and 
1 and 
2 are the densities of lighter and heavier fluid,
respectively.

The simulation is carried out in a 6 � 1 rectangular domain with 50,000 uniform
quadrilateral elements. The simulation parameters are chosen as: 
1 D 1:225, 
2 D
0:1694, viscosities are the same �1 D �2 D 0:00313, � D 0:05 and g D 9:8. The
initial interface is placed in the center of the domain and is perturbed as:

y D 0:001 cos.2�x/: (33)

In this example, the wave number is K D 2� , and the analytical growth rate
calculated from Eq. (32) is found to be n D 6:14. Ideally, the interface should grow
following h D 0:001ent, where h is defined as the maximum height of the interface
with respect to the initial interface position.

Figure 5 shows the interface shapes obtained from the simulation at different
times. Figure 6 compares the interface development, which tracks the maximum
height of the interface at different times, between the linearized analytical solution
and our numerical results. It can be clearly seen that for most of the simulation time
(t < 1) the numerical result matches the analytical solution very well. For later stage
(t > 1), because the interface undergoes large deformation, the linear assumption
from the analytical solution is no longer valid. Therefore, the simulation result starts
to deviate from the analytical solution.

2.3.2 3-D Floating Object on a Breaking Dam

In this example, a 3-D simulation of a dam breaking problem with a floating
deformable solid object placed on the gas-liquid interface (free-surface) is carried
out to show the capability of the coupled algorithm to solve complex gas-liquid-
solid 3-phase flows. The geometrical setup is shown in Fig. 7. The simulation is
performed in a 2 cm � 0.5 cm � 1 cm computational domain with a rigid column of
size 0.2 cm � 0.2 cm � 1 cm placed in the center of the domain as an obstacle to add
into the complexity. The domain is discretized with 119,500 hexahedral elements.
All the boundaries are slip walls. The liquid column is initially placed at the left
lower corner, with all sides to be all 0.5 cm that has a fillet radius of 0.1 cm. The
density and viscosity of the liquid are 1.0 g/cm3 and 0.01 P; they are 0.001 g/cm3

and 0.0001 P for the gas phase, respectively. A solid sphere with a diameter of
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Fig. 5 Interface shapes at different times for Rayleigh-Taylor instability. (a) t=0.5. (b) t=0.9. (c)
t=1.0. (d) t=1.1. (e) t=1.2. (f) t=1.3. (g) t=1.4. (h) t=1.5

0.2 cm is placed on top of the liquid column and is discretized with 2768 hexahedral
elements. The distance between the center of the sphere and the left wall is 0.25 cm,
and 0.35 cm from the front wall. The density of the solid is 0.5 g/cm3, which is half
of the liquid, making it stay afloat. The sphere is deformable described with linear
elastic material that has Young’s modulus of 104 dyn/cm2 and Poisson’s ratio of 0.3.
The damping factor is 100 P. The gravity is set as 5.0 cm/s2 acting in the negative
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Fig. 7 Schematics of a floating solid object on a breaking dam

vertical or z-direction. The surface tension is neglected here since we consider a
large scale problem where the surface tension force is negligible. The time step
size is 2 � 10�3 s. The simulation is carried out for 2500 time steps which provides
sufficient amount of time for the liquid column to hit the right wall and reflect back.

Figures 8 and 9 show the snapshots of the sphere floating along a breaking liquid
column at different time steps from different view points. The collapsing liquid
column falls down and moves forward due to gravity, and bifurcates as it hits the
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Fig. 8 Snapshots of a floating solid sphere on a breaking dam (horizontal view). (a) t=0.2. (b)
t=0.4. (c) t=0.8. (d) t=1.0. (e) t=1.2. (f) t=1.6. (g) t=2.0. (h) t=2.8. (i) t=3.6. (j) t=4.8
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Fig. 9 Snapshots of a floating solid sphere on a breaking dam (vertical view). (a) t=0.2. (b) t=0.4.
(c) t=0.8. (d) t=1.0. (e) t=1.2. (f) t=1.6. (g) t=2.0. (h) t=2.8. (i) t=3.6. (j) t=4.8

rigid column obstacle placed in the center. The separated streams then merge back
together after bypassing the obstacle and climb onto the right wall. Upon hitting
the wall, the liquid front is then reflected back and breaks into small liquid drops.
During the whole process, the solid sphere floats on the liquid surface and follows
the movement of the interface. Since it is initially placed closer to the back wall,
the sphere tries to go through the space between the column and the back wall.
An interesting phenomenon we observe is that the sphere encounters two rounds
of ‘push-back’. At t D 1:2, Fig. 9e, the liquid that is reflected back from the
obstacle hinders the sphere to move further down. The second push-back happens
when the liquid wave generated from the right wall travels back and pushes the
sphere away from traveling forward, Fig. 9g, h. Eventually, as the whole system
reaches an equilibrium, the sphere stops moving and sits still on the free surface.
The pressure contours of the liquid surface are shown in Fig. 10. We can observe
that high pressure regions occur when the liquid front hits the obstacle and the
right wall, see Fig. 10b, d. The topology changes of the gas-liquid interface and
the floating sphere also affect the surface pressure drastically, which suggests the
complex nature of the problem.
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Fig. 10 Snapshots of a floating solid sphere on a breaking dam (pressure field on the liquid
surface). (a) t=0.2. (b) t=0.4. (c) t=0.8. (d) t=1.0. (e) t=1.2. (f) t=1.6. (g) t=2.0. (h) t=2.8. (i) t=3.6.
(j) t=4.8

3 Conclusions

In this work, we have presented a robust framework that can model the complex gas-
liquid-solid three-phase interactions. The connectivity-free front tracking method
(CFFT) that models gas-liquid multiphase flows is integrated into the fluid-structure
interaction algorithm, the mIFEM, seamlessly through the construction of an
indictor field. The CFFT adopts an approximation-correction step to build the
indicator field without the connectivity of the interfacial points. This strategy
significantly reduces the complexity in reconstructing the interface when topology
changes occur. A curvature projection scheme helps minimize the spurious currents
that are generated from the irregular curvature calculation which is commonly seen
in other algorithms. The fluid-solid interactions are handled using the modified
immersed finite element method, which provides more realistic solid movement
and deformation by solving the solid dynamics. The non-boundary-fitted approach
that is used in the algorithm avoids the re-meshing procedure. RKPM interpolation
functions are used throughout the framework to accommodate the connectivity-free
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feature of the gas-liquid interface and the quantities interpolated among different
phases from interactions. The example cases demonstrate the great accuracy and
robustness of the coupled framework in handling complicated gas-liquid-solid three-
phase interactions.
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