
Chapter 8
Valuations on Lattice Polytopes

Károly J. Böröczky and Monika Ludwig

Abstract This survey is on classification results for valuations defined on lattice
polytopes that intertwine the special linear group over the integers. The basic real
valued valuations, the coefficients of the Ehrhart polynomial, are introduced and
their characterization by Betke and Kneser is discussed. More recent results include
classification theorems for vector and convex body valued valuations.

8.1 From the Pick Theorem to the Ehrhart Polynomial

A (full-dimensional) lattice � � R
n is a discrete subgroup spanned by n indepen-

dent vectors. Given a basis of �, the automorphisms of � are transformations of
the form x 7! Ax C b with b 2 � and A 2 GLn.Z/, that is, A is an n � n integer
matrix with determinant ˙1. Such transformations are called unimodular. A lattice
polytope is the convex hull of a finite subset of � and we writeP.�/ for the family
of lattice polytopes. Since every lattice is a linear image of Zn, in general we just
consider the lattice Zn.

This section concentrates on the lattice point enumerator L.P/ for a bounded set
P � R

n, where

L.P/ WD
X

x2P\Zn

1: (8.1)
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Hence, L.P/ is the number of lattice points in P and P 7! L.P/ is a valuation on
P.Zn/. For basic properties of lattices related to this chapter from various aspects,
see Barvinok [3], Beck and Robins [4], Gruber [20] or Gruber and Lekkerkerker
[21].

The starting point is a formula [51] due to Georg Alexander Pick (1859–1942).
For P 2 P.Z2/, write B.P/ for the number of lattice points on the boundary of P if
P is two-dimensional, and B.P/ WD 2jP\Z

2j � 2 if P is a segment or a point, where
j � j denotes the cardinality of a finite set. Note that P 7! B.P/ is a valuation.

Theorem 8.1 (Pick) For P 2 P.Z2/ non-empty,

L.P/ D V2.P/ C 1

2
B.P/ C 1:

Here V2.P/ is the two-dimensional volume of the polytope P. The core fact behind
Pick’s theorem is that if P 2 P.Z2/ is a triangle with L.P/ D 3, then V2.P/ D 1=2.
Thus the essential two-dimensional case can be proved for example by induction
on L.P/, dissecting P into triangles sharing a common vertex if L.P/ � 4. The Pick
theorem has various proofs (see e.g. [9, 22]).

In higher dimensions, there is no simple formula as in Pick’s theorem, as was
noted by Reeve [54, 55]. The reason is that the volume of an n-dimensional simplex
S 2 P.Zn/ with L.S/ D n C 1 can be any non-negative integer multiple of 1=nŠ

However, Eugène Ehrhart (1906–2000), a French high school teacher, found the
following fundamental formula in [17] which works in all dimensions. We write N0

for the set of non-negative integers and call a valuation unimodular if it is invariant
with respect to unimodular transformations.

Theorem 8.2 (Ehrhart) There exist rational numbers Li.P/ for i D 0; : : : ; n such
that

L.kP/ D
nX

iD0

Li.P/ki

for every k 2 N0 and P 2 P.Zn/. For each i, the functional Li W P.Zn/ ! Q is a
unimodular valuation which is homogeneous of degree i.

Note that Ln.P/ is the n-dimensional volume Vn.P/ and that L0.P/ is the Euler
characteristic of P, that is, L0.P/ WD 1 for P 2 P.Zn/ non-empty and L0.;/ WD 0.
Also note that Li.P/ D 0 for i > dimP, where dimP is the dimension (of the
affine hull) of P.

Let detn�1 � denote the determinant of an .n � 1/-dimensional sublattice of Zn.
In addition, for an n-dimensional polytope P 2 P.Zn/, let Fn�1.P/ be the family
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of .n � 1/-dimensional faces and write aff for affine hull. For n � 2, we have

Ln�1.P/ D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1
2

P
F2Fn�1.P/

Vn�1.F/

detn�1.Zn \ affF/
if dim.P/ D n;

Vn�1.P/

detn�1.Zn \ affP/
if dim.P/ D n � 1;

0 if dim.P/ � n � 2:

Thus Ln�1.P/ is a lattice surface area of P. Note, in particular, that L1.P/ D 1
2
B.P/

in accordance with Pick’s Theorem for n D 2.
The coefficient Li.P/ may not be an integer for i D 1; : : : ; n, but nŠLi.P/ 2 Z

for P 2 P.Zn/. There seems to be no known “geometric interpretation” for Li.P/

if n � 3 and 1 � i � n � 2, and actually Li.P/ might be negative in this case
(see [30] for a strong result in this direction). If P 2 P.Zn/ is n-dimensional and
i D 1; : : : ; n � 1, then good bounds of the form

a.n; i/Vn.P/ C b.n; i/ � Li.P/ � c.n; i/Vn.P/ C d.n; i/

involving the so-called Stirling numbers are known. Here the optimal upper bound
on Li.P/ for i D 1; : : : ; n � 1 is due to Betke and McMullen [8]. A lower bound is
due to Henk and Tagami [29] and Tsuchiya [64], and it is known to be optimal if
i D 1; 2; 3; n � 3; n � 2, and if n � i is even.

There is a representation of the Ehrhart polynomial via projective toric varieties
associated to a lattice polytope (see, e.g., [13, 15, 18]). Using this representation,
or combinatorial analogues of the algebraic geometric approach, formulas for Li.P/

were established by Pommersheim [52] in terms of Dedekind sums if P 2 P.Z3/

is a tetrahedron, by Kantor and Khovanskii [32] if n D 3; 4, by Brion and Vergne
[12] if P is simple, by Diaz and Robins [16] using Fourier analysis for any P and by
Chen [14] if P is a simplex.

We note that inspired by the algebraic geometric representation of the Ehrhart
polynomial, Barvinok [2] provided a polynomial time algorithm to calculate Li.P/

for P 2 P.Zn/ and i D 1; : : : ; n, if the dimension n is fixed.
Ehrhart’s Theorem 8.2 was extended to non-negative integer linear combinations

of lattice polytopes by Bernstein [5] and McMullen [46].

Theorem 8.3 Let P1; : : : ;Pm 2 P.Zn/ be given. If k1; : : : ; km 2 N0, then L.k1P1 C
� � � C kmPm/ is a polynomial in k1; : : : ; km of total degree at most n. Moreover, the
coefficient of kr11 � � � krmm in this polynomial is a translation invariant valuation in Pi

which is homogeneous of degree ri.

To prove this result, McMullen [46] uses induction on the number of summands,
while Bernstein [5] considers intersections of algebraic hypersurfaces in .Cnf0g/n
determined by Laurent polynomials with given Newton polytope. Here the Newton
polytope associated to a Laurent polynomial is the convex hull of the lattice points
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corresponding to the exponents of its non-zero coefficients. Note that Theorems 8.2
and 8.3 imply that L1 is additive.

Corollary 8.4 If P;Q 2 P.Zn/, then L1.P C Q/ D L1.P/ C L1.Q/.

For the lattice point enumerator, the following important reciprocity relation was
established by Ehrhart [17] and Macdonald [45]. For P 2 P.Zn/, write relintP for
the relative interior of P (with respect to the affine hull of P).

Theorem 8.5 If P 2 P.Zn/, then L.relintP/ D .�1/dimP
Pn

iD0 Li.P/.�1/i:

This is also called the Ehrhart-Macdonald reciprocity law. The right side of the
formula in Theorem 8.5 is, up to multiplication with the factor .�1/dimP, the Ehrhart
polynomial k 7! L.k P/ evaluated at k D �1. For a multivariate version, that is, a
version using the polynomial from Theorem 8.3, see [31].

One may choose other bases for the vector space of polynomials of degree at
most n instead of the monomials and obtains other representations for the Ehrhart
polynomial. In particular, for k 2 N0,

L.kP/ D
nX

iD0

H�
i .P/

 
k C n � i

n

!
:

For i D 0; : : : ; n, the functional H�
i is a unimodular valuation on P.Zn/ (which is

not homogeneous). More commonly used are the functionals h�
i , defined by

L.kP/ D
mX

iD0

h�
i .P/

 
k C m � i

m

!
(8.2)

for k 2 N0, where m D dimP. The vector .h�
0 .P/; : : : ; h�

n .P//, where we set
h�
i .P/ WD 0 for i > dimP, is called the Ehrhart h�-vector of P. Stanley [61]

showed that the Ehrhart h�-vector of P coincides with the combinatorial h-vector
of a unimodular triangulation of P, if such a triangulation exists. Betke [6] and
Stanley [61] showed that for i D 0; : : : ; n, the functional h�

i is integer-valued and
non-negative onP.Zn/. Stanley [62] showed that each h�

i is monotone with respect
to set inclusion. Clearly, we have H�

i .P/ D h�
i .P/ for n-dimensional polytopes P.

However, the functionals h�
i are not valuations on P.Zn/ while the valuations H�

i
are not monotone or non-negative.

Another representation of the Ehrhart polynomial, introduced by Breuer [11], is

L.kP/ D
nX

iD0

f �
i .P/

 
k � 1

i

!
(8.3)

for k 2 N0. For i D 0; : : : ; n, the functional f �
i is a unimodular valuation on

P.Zn/ (which again is not homogeneous). Note that f �
i .P/ D 0 for i > dimP. The

vector .f �
0 .P/; : : : ; f �

n .P// is called the Ehrhart f �-vector of P and coincides with the
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combinatorial f -vector of a unimodular triangulation of P, if such a triangulation
exists. Breuer [11] showed that for i D 0; : : : ; n, the valuation f �

i is integer-
valued and non-negative on P.Zn/ and that these properties extend to polyhedral
complexes.

8.2 The Inclusion-Exclusion Principle

The inclusion-exclusion principle is a fundamental property of valuations on lattice
polytopes, which was first established in the case of translation invariant and
real valued valuations by Stein [63] and for general real valued valuations by
Betke (Das Einschließungs-Ausschließungsprinzip für Gitterpolytope. Unpublished
manuscript). The first published proof is by McMullen [48], who also established
the more general extension property. Since the family of lattice polytopes is not
intersectional, that is, the intersection of two lattice polytopes is in general not a
lattice polytope, results for valuations on polytopes (see Theorem 1.3) could not
easily be generalized.

For m � 1, we write PJ WD \i2JPi for ; ¤ J � f1; : : : ;mg and given polytopes
P1; : : : ;Pm 2 P.Zn/. Let G be an abelian group. The inclusion-exclusion formula
for lattice polytopes is the following result.

Theorem 8.6 If Z W P.Zn/ ! G is a valuation, then for lattice polytopes
P1; : : : ;Pm,

Z.P1 [ � � � [ Pm/ D
X

;¤J�f1;:::;mg
.�1/jJj�1 Z.PJ/:

whenever P1 [ � � � [ Pm 2 P.Zn/ and PJ 2 P.Zn/ for all ; ¤ J � f1; : : : ;mg.
It is often helpful to extend valuations defined on lattice polytopes to finite unions

of lattice polytopes whose intersections are again lattice polytopes. McMullen [48]
showed that this is always possible. This is the extension property.

Theorem 8.7 If Z W P.Zn/ ! G is a valuation, then there exists a function
NZ defined on finite unions of lattice polytopes such that for lattice polytopes
P1; : : : ;Pm,

NZ.P1 [ � � � [ Pm/ D
X

;¤J�f1;:::;mg
.�1/jJj�1 Z.PJ/;

whenever PJ 2 P.Zn/ for all ; ¤ J � f1; : : : ;mg.
For a given valuation Z, we denote its extension by NZ and will use this notation
throughout the chapter.

The inclusion-exclusion formula and the extension property are frequently
needed for cell decompositions. We call a dissection of the polytope Q into
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polytopes P1; : : : ;Pm a cell decomposition if Pi \ Pj is either empty or a common
face of Pi and Pj for every 1 � i < j � m. The faces of the cell decomposition are
the faces of all Pi for i D 1; : : : ;m.

Theorem 8.8 If Z W P.Zn/ ! G is a valuation and Q 2 P.Zn/, then

NZ.Q/ D .�1/dimQ
X

F2F
F\intQ¤;

.�1/dimF Z.F/;

whereF is the set of all faces of a cell decomposition of Q.

In particular, Theorem 8.7 implies the following. Write F .P/ for the family of
all non-empty faces of P 2 P.Zn/ (including the face P) and set NZ.relintP/ D
Z.P/ � NZ.relbdP/, where relbd stands for relative boundary. Expressing relbdP as
the union of its faces, we obtain

NZ.relintP/ D .�1/dimP
X

F2F .P/

.�1/dimF Z.F/ (8.4)

for P 2 P.Zn/.
For a valuation Z W P.Zn/ ! G, Sallee [56] introduced the associated function

Zı W P.Zn/ ! G defined by

Zı.P/ WD
X

F2F .P/

.�1/dimF Z.F/ (8.5)

for P 2 P.Zn/, which by (8.4) is closely related to NZ.relintP/. He showed that
Zı is a valuation on P.Zn/ (while P 7! NZ.relintP/ is not a valuation) and that
.Zı/ı D Z. McMullen [46] gave simple proofs for these facts. We will use the
notation (8.5) and the valuation property of Zı throughout the chapter. Using this,
we can write the Ehrhart-Macdonald reciprocity law (Theorem 8.5) also as

Lı.P/ D
nX

iD0

Li.P/.�1/i (8.6)

for P 2 P.Zn/.
We note that many of the results related to the inclusion-exclusion principle have

a variant if Z W P.Zn/ ! A is a valuation with A a cancellative abelian semigroup.
For example, the analogue of Theorem 8.6 is that if Z W P.Zn/ ! A is a valuation,
and P1; : : : ;Pm 2 P.Zn/ satisfy that P1 [ � � � [ Pm 2 P.Zn/ and PJ 2 P.Zn/ for
all ; ¤ J � f1; : : : ;mg, then

Z.P1 [ � � � [ Pm/ C
X

;¤J�f1;:::;mg
jJj even

Z.PJ/ D
X

;¤J�f1;:::;mg
jJj odd

Z.PJ/:
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A typical case when A is only a semigroup is the case of Minkowski valuations,
which will be discussed in Sect. 8.5.

8.3 Translation Invariant Valuations

Let V be a vector space over Q. A valuation Z W P.Zn/ ! V is translation
invariant if Z.P C x/ D Z.P/ for every P 2 P.Zn/ and x 2 Z

n. Translation
invariant valuations on P.Zn/ behave similarly to the lattice point enumerator in
many ways, as was proved by McMullen [46]. The paper [46] assumes that the
valuation Z on P.Zn/ satisfies the inclusion-exclusion principle, which always
holds by Theorem 8.6.

Theorem 8.9 Let Z W P.Zn/ ! V be a translation invariant valuation. There exist
Zi W P.Zn/ ! V for i D 0; : : : ; n such that

Z.kP/ D
nX

iD0

Zi.P/ki

for every k 2 N0 and P 2 P.Zn/. Moreover, Zi.P/ D 0 for i > dimP.

The corresponding result for valuations on polytopes is described in Theorem 1.13.
Combining results in McMullen [46] and [48] leads to an analogue of the

Ehrhart-Macdonald reciprocity law (8.6).

Theorem 8.10 If Z W P.Zn/ ! V is a translation invariant valuation, then

Zı.�P/ D
nX

iD0

Zi.P/.�1/i

for P 2 P.Zn/.

The Ehrhart-Macdonald reciprocity law (8.6) is easily deduced from Theorem 8.10
because in addition to translation invariance, the lattice point enumerator also
satisfies L.relint.�P// D L.relintP/.

Taking Theorem 8.9 as starting point, Jochemko and Sanyal [31] consider
analogues of the coefficients h�

i .P/ in (8.2) for translation invariant valuations. For
a translation invariant valuation Z W P.Zn/ ! R and P 2 P.Zn/, they define
hZ0 .P/; : : : ; hZn .P/ by

Z.kP/ D
mX

iD0

hZi .P/

 
k C m � i

m

!
;
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where m D dimP. A translation invariant valuation Z is called h�-nonnegative, if
hZi � 0 onP.Zn/ for i D 0; : : : ; n. It is called h�-monotone if hZi is monotone (with
respect to set inclusion) on P.Zn/ for i D 0; : : : ; n. Using the extended valuation
NZ, Jochemko and Sanyal [31] establish a version of Stanley’s theorem on the non-
negativity and monotonicity of h�

i for any translation invariant valuation.

Theorem 8.11 For a translation invariant valuation Z W P.Zn/ ! R, the follow-
ing three statements are equivalent.

1. Z is h�-nonnegative.
2. Z is h�-monotone.
3. NZ.relintP/ � 0 for every P 2 P.Zn/.

Since for the lattice point enumerator we have L.relintP/ � 0 for every P 2 P.Zn/,
the non-negativity and monotonicity of h�

i on P.Zn/ is a simple consequence of
Theorem 8.11. Jochemko and Sanyal [31] also obtain the following result.

Theorem 8.12 A functional Z W P.Zn/ ! R is a unimodular and h�-nonnegative
valuation if and only if there exist constants c0; : : : ; cn � 0 such that

Z.P/ D c0 f
�
0 .P/ C � � � C cn f

�
n .P/

for every P 2 P.Zn/.

In the proof, essential use is made of the Betke-Kneser theorem, which is described
in the following section.

8.4 The Betke-Kneser Theorem

The classical classification result for valuations on lattice polytopes concerns real
valued and unimodular valuations and is due to Betke [6]. It was first published in
Betke and Kneser [7]. It shows that the coefficients of the Ehrhart polynomial form
a basis of the vector space of unimodular valuations.

Theorem 8.13 (Betke) A functional Z W P.Zn/ ! R is a unimodular valuation if
and only if there exist constants c0; : : : ; cn 2 R such that

Z.P/ D c0 L0.P/ C � � � C cn Ln.P/

for every P 2 P.Zn/.

We remark that by Corollary 8.16 below, it is sufficient to assume that Z is an SLn.Z/

and translation invariant valuation to obtain the same result, where SLn.Z/ denotes
the group of n � n integer matrices with determinant 1.
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The Euclidean counterpart of Theorem 8.13 is the celebrated classification of
rigid motion invariant and continuous valuations on convex bodies by Hadwiger
[27] (see Theorem 1.23). A classification of SLn.R/ invariant, Borel measurable
valuations on convex polytopes containing the origin in their interiors was recently
established by Haberl and Parapatits [24] extending results from [25, 33]. For
a complete classification of SLn.R/ invariant valuations on convex polytopes,
see [38].

We say that a j-dimensional S 2 P.Zn/ is a unimodular simplex if j D 0 or
S D Œx0; : : : ; xj� for j � 1 and fx1 � x0; : : : ; xj � x0g is part of a basis of Zn. Here
Œ: : : � stands for convex hull. We define a particular set of unimodular simplices by
setting T0 WD f0g and Tj WD Œ0; e1; : : : ; ej� for j D 1; : : : ; n, where e1; : : : ; en is the
standard basis of Zn. Betke and Kneser [7] also established the following result for
an abelian groupG.

Theorem 8.14 (Betke-Kneser) Every unimodular valuation Z W P.Zn/ ! G is
uniquely determined by its values on T0; : : : ;Tn and these values can be chosen
arbitrarily in G.

Again, by Corollary 8.16 below, it is sufficient to assume that Z is an SLn.Z/ and
translation invariant valuation.

The following statement is the core of the argument in Betke and Kneser [7]. It is
proved using dissection into simplices and suitable complementation by simplices.

Proposition 8.15 For P 2 P.Zn/, there exist unimodular simplices S1; : : : ; Sm and
integers l1; : : : ; lm such that for any abelian group G,

Z.kP/ D
mX

jD1

lj Z.kSj/

for every valuation Z W P.Zn/ ! G and k 2 N0.

This proposition implies Ehrhart’s theorem. Just note that for k � 1,

L.kTi/ D
 
k C i

i

!
for i D 0; : : : ; n;

that each unimodular simplex Sj is an image under a unimodular transformation of
some Ti, and that for each i, the above binomial coefficient is a polynomial in k of
degree i.

The following statement is another direct consequence of Proposition 8.15.

Corollary 8.16 If Z W P.Zn/ ! G and Z0 W P.Zn/ ! G are SLn.Z/ and
translation invariant valuations such that

Z.Ti/ D Z0.Ti/ for i D 0; : : : ; n;

then Z.P/ D Z0.P/ for every P 2 P.Zn/.
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8.5 Minkowski Valuations

Let F be a family of subsets of Rn and write K n for the set of convex bodies, that
is, compact convex sets, in R

n. The subset of convex polytopes is denoted by Pn.
An operator Z W F ! K n is a Minkowski valuation if Z satisfies

ZK C ZL D Z.K [ L/ C Z.K \ L/

for all K;L 2 F with K[L;K\L 2 F and addition onK n is Minkowski addition;
that is,

K C L WD fx C y W x 2 K; y 2 Lg:

Let SLn.R/ be the special linear group on R
n, that is, the group of real matrices

of determinant 1. An operator Z W F ! K n is called SLn.R/ equivariant if

Z.�P/ D � ZP for � 2 SLn.R/ and P 2 F :

Define SLn.Z/ equivariance of operators on P.Zn/ analogously. For recent results
on SLn.R/ equivariant operators on convex bodies and their associated inequalities,
see, for example, [26, 40–43].

For SLn.R/ equivariant and translation invariant Minkowski valuations defined
on convex polytopes, the following complete classification was established in [35].
It provides a characterization of the difference body operator

P 7! P � P WD fx � y W x; y 2 Pg;

which assigns to P its difference body. For more information on difference bodies
and their associated inequalities, see [19, 59]. Let n � 2.

Theorem 8.17 An operator Z W Pn ! K n is an SLn.R/ equivariant and trans-
lation invariant Minkowski valuation if and only if there exists a constant c � 0

such that

ZP D c.P � P/

for every P 2 Pn.

Further results on the classification of SLn.R/ equivariant Minkowski valuations
can be found, for example, in [23, 36, 50, 65].

The following result, taken from [10], is an analogue for lattice polytopes of
Theorem 8.17.
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Theorem 8.18 An operator Z W P.Zn/ ! K n is an SLn.Z/ equivariant and
translation invariant Minkowski valuation if and only if there exist a, b � 0 such
that

ZP D a.P � `1.P// C b.�P C `1.P//

for every P 2 P.Zn/.

Here for a lattice polytope P, the point `1.P/ is its discrete Steiner point that was
introduced in [10]. See Sect. 8.6 for the definition and characterization theorems.
The proof of Theorem 8.18 uses constructions from Betke and Kneser [7] as well as
results on Minkowski summands and it also exploits the large symmetry group of
the standard simplex Tn.

For operators mapping P.Zn/ to P.Zn/, the following result was established
in [10]. Write LCM for least common multiple.

Theorem 8.19 An operator Z W P.Zn/ ! P.Zn/ is an SLn.Z/ equivariant and
translation invariant Minkowski valuation if and only if there exist integers a, b � 0

with b � a 2 LCM.2; : : : ; n C 1/Z such that

ZP D a.P � `1.P// C b.�P C `1.P//

for every P 2 P.Zn/.

Here it is used that the discrete Steiner point of a lattice polytope is a vector with
rational coordinates.

An operator Z W F ! K n is SLn.R/ contravariant if

Z.�P/ D ��t ZP for � 2 SLn.R/ and P 2 F ;

where ��t is the inverse of the transpose of �. We define SLn.Z/ contravariance
of operators on P.Zn/ analogously. For recent results on SLn.R/ contravariant
operators on convex bodies, see, for example, [26, 41, 44].

An important SLn.R/ contravariant operator on K n is the operator K 7! …K,
that associates with a convex body its projection body. To define this operator,
we describe a convex body L by its support function h.L; � / W S

n�1 ! R where
h.L; u/ WD maxfu � x W x 2 Lg.

For a convex body K, the projection body …K is given by

h.…K; u/ D Vn�1.Kju?/;

for u 2 S
n�1, where Kju? is the orthogonal projection of K onto the hyperplane

orthogonal to u. We refer to [19, 59] for more information on projection bodies
and their associated inequalities. For a polytope P with facets (that is, .n � 1/-
dimensional faces) F1; : : : ;Fm, the projection body …P is given as the following
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Minkowski sum,

…P D 1
2

�
Œ�v1; v1� C � � � C Œ�vm; vm�

�
;

where vi is the scaled normal corresponding to the facet Fi, that is, vi is a normal
vector to the facet Fi with length equal to Vn�1.Fi/. Here Œ�vi; vi� is the segment
with endpoints �vi and vi.

For SLn.R/ contravariant Minkowski valuations on Pn, the following complete
classification was established in [35]. Let n � 2.

Theorem 8.20 An operator Z W Pn ! K n is an SLn.R/ contravariant and trans-
lation invariant Minkowski valuation if and only if there exists a constant c � 0

such that

ZP D c…P

for every P 2 Pn.

Further classification theorems for SLn.R/ contravariant Minkowski valuations on
convex bodies can be found in [23, 34, 36, 37, 49, 60].

The following analogue of Theorem 8.20 for lattice polytopes is from [10].

Theorem 8.21

(i) An operator Z W P.Z2/ ! K 2 is an SL2.Z/ contravariant and translation
invariant Minkowski valuation if and only if there exist constants a; b � 0 such
that

ZP D a %�=2.P � `1.P// C b %�=2.�P C `1.P//

for every P 2 P.Z2/.
(ii) For n � 3, an operator Z W P.Zn/ ! K n is an SLn.Z/ contravariant and

translation invariant Minkowski valuation if and only if then there exists a
constant c � 0 such that

ZP D c…P

for every P 2 P.Zn/.

Here %�=2 denotes the rotation by an angle �=2 in R
2. Note that for n D 2, the

projection body is obtained from the difference body by applying this rotation.
The projection body of a lattice polytope is a rational polytope. For operators

mappingP.Zn/ to P.Zn/, the following result was established in [10].
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Theorem 8.22

(i) An operator Z W P.Z2/ ! P.Z2/ is an SL2.Z/ contravariant and translation
invariant Minkowski valuation if and only if there exist integers a; b � 0 with
b � a 2 6Z such that

ZP D a %�=2.P � `1.P// C b %�=2.�P C `1.P//

for every P 2 P.Z2/.
(ii) For n � 3, an operator Z W P.Zn/ ! P.Zn/ is an SLn.Z/ contravariant and

translation invariant Minkowski valuation if and only if there exists a constant
c 2 .n � 1/ŠN0 such that

ZP D c…P

for every P 2 P.Zn/.

8.6 Vector Valuations

In analogy to (8.1), for P 2 P.Zn/, the discrete moment vector was introduced in
[10] as

`.P/ WD
X

x2P\Zn

x: (8.7)

The discrete moment vector ` W P.Zn/ ! Z
n is a valuation that is equivariant with

respect to unimodular linear transformations. In addition, if y 2 Z
n, then

`.P C y/ D `.P/ C L.P/ y: (8.8)

In general, a valuation Z W P.Zn/ ! R
n is called translation covariant if for all

P 2 P.Zn/ and y 2 Z
n,

Z.P C y/ D Z.P/ C Z0.P/y

with some Z0 W P.Zn/ ! R. Note that it easily follows from this definition that the
associated functional Z0 is also a valuation.

McMullen [46] established the following analogue of Theorem 8.9.
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Theorem 8.23 Let Z W P.Zn/ ! Q
n be a translation covariant valuation. There

exist Zi W P.Zn/ ! Q
n for i D 0; : : : ; n C 1 such that

Z.kP/ D
nC1X

iD0

Zi.P/ki

for every k 2 N0 and P 2 P.Zn/. For each i, the function Zi is a translation
covariant valuation which is homogeneous of degree i.

Note that if the valuation Z is SLn.Z/ equivariant, then so are Z0; : : : ;ZnC1. Using
this homogeneous decomposition, McMullen [46] established the following more
general result.

Theorem 8.24 Let Z W P.Zn/ ! Q
n be a translation covariant valuation and let

P1; : : : ;Pm 2 P.Zn/ be given. If k1; : : : ; km 2 N0, then Z.k1P1 C � � � C kmPm/ is a
polynomial of total degree at most .n C 1/ in k1; : : : ; km. Moreover, the coefficient
of kr11 � � � krmm in this polynomial is a translation covariant valuation in Pi which is
homogeneous of degree ri.

The discrete moment vector is a translation covariant valuation. Hence, we obtain
as a special case of Theorem 8.23 the following result.

Corollary 8.25 There exist `i W P.Zn/ ! Q
n for i D 1; : : : ; n C 1 such that

`.kP/ D
nC1X

iD1

`i.P/ki

for every k 2 N0 and P 2 P.Zn/. For each i, the function `i is a translation
covariant valuation which is equivariant with respect to unimodular linear trans-
formations and homogeneous of degree i.

Note that `nC1.P/ is the moment vector of P, that is, `nC1.P/ D R
P x dx. We call

the vector `1.P/ the discrete Steiner point of P. From Theorem 8.24, we deduce as
in Corollary 8.4 the following result.

Corollary 8.26 The function `1 W P.Zn/ ! Q
n is additive.

It is shown in [10] that the discrete Steiner point of a unimodular simplex is its
centroid. Hence, by using suitable dissections and complementations, it is possible
to obtain `1.P/ for a given lattice polytope P.

The following results, Theorems 8.27 and 8.29, both from [10], are the reason
for calling `1 the discrete Steiner point map. A function Z W P.Zn/ ! R

n is called
translation equivariant if Z.P C x/ D Z.P/ C x for x 2 Z

n and P 2 P.Zn/.

Theorem 8.27 A function Z W P.Zn/ ! R
n is SLn.Z/ and translation equivariant

and additive if and only if Z is the discrete Steiner point map.
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Theorem 8.27 corresponds to the following characterization of the classical
Steiner point by Schneider [57]. The classical Steiner point, s.K/, is defined by

s.K/ WD 1

�n

Z

Sn�1

u h.K; u/ du;

where �n is the n-dimensional volume of the n-dimensional unit ball and du denotes
integration with respect to .n � 1/-dimensional Hausdorff measure on the unit
sphere.

Theorem 8.28 A function Z W K n ! R
n is continuous, rigid motion equivariant

and additive if and only if Z is the Steiner point map.

Note that Wannerer [66] recently obtained a corresponding characterization of
vector valuations in the Hermitian setting (see Corollary 6.15).

The discrete Steiner point is also characterized in the following result.

Theorem 8.29 A function Z W P.Zn/ ! R
n is an SLn.Z/ and translation equi-

variant valuation if and only if Z is the discrete Steiner point map.

This theorem corresponds to the following characterization of the classical Steiner
point by Schneider [58].

Theorem 8.30 A function Z W K n ! R
n is a continuous and rigid motion equi-

variant valuation if and only if Z is the Steiner point map.

By (8.8), the discrete moment vector is translation covariant. Note that

`i.P C x/ D `i.P/ C Li�1.P/ x

for i D 1; : : : ; n C 1, where the case i D 1 is just the translation equivariance of `1.
Hence `i is translation covariant for each i. The following result is from [39].

Theorem 8.31 A function Z W P.Zn/ ! R
n is an SLn.Z/ equivariant and trans-

lation covariant valuation if and only if there exist constants c1; : : : ; cnC1 2 R such
that

Z.P/ D c1`1.P/ C � � � C cnC1 `nC1.P/

for every P 2 P.Zn/.

The Euclidean counterpart of this result is the classification of rotation equi-
variant and translation covariant, continuous valuations Z W K n ! R

n by Hadwiger
and Schneider [28] (see Theorem 2.4). A classification of SLn.R/ equivariant, Borel
measurable vector valuations on convex polytopes containing the origin in their
interiors was recently established by Haberl and Parapatits [25].
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8.7 Polynomial Valuations

To discuss polynomial valuations, let us review what we mean by polynomial in our
context. Let G be an abelian group and � a lattice in R

n. We say that p W � ! G is
polynomial of degree 0, if p is constant on �. We say that p is polynomial of degree
d � 1 if for any y 2 �, the map x 7! p.x C y/ � p.x/ is polynomial of degree at
most d � 1. If w1; : : : ;wn form a basis of �, then this implies that there are bi 2 G

and integer polynomials pi W Zn ! Z of degree at most d for i D 1; : : : ; r such that
for ki 2 N0

p.k1w1 C � � � C knwn/ D
rX

iD1

pi.k1; : : : ; kn/ bi:

Now a valuation Z W P.�/ ! G is polynomial of degree d if for every P 2 P.�/,
the function, defined on � by x 7! Z.P C x/ is a polynomial of degree d.

Clearly, a valuation Z W P.Zn/ ! G is translation invariant if and only if it is
polynomial of degree 0. If q W Zn ! G is a polynomial of degree at most d, then
Z W P.Zn/ ! G defined by

Z.P/ WD
X

x2P\Zn

q.x/ (8.9)

is a polynomial valuation of degree at most d.
McMullen [46] considered polynomial valuations of degree at most one and

Pukhlikov and Khovanskii [53] proved Theorem 8.32 in the general case. Another
proof, following the approach of [46], is due to Alesker [1]. These papers assume
that the valuation Z on P.Zn/ satisfies the inclusion-exclusion principle, which
holds by Theorem 8.6.

Theorem 8.32 Let Z W P.Zn/ ! G be a polynomial valuation of degree at most d
and let P1; : : : ;Pm 2 P.Zn/ be given. If k1; : : : ; km 2 N0, then Z.k1P1C� � �CkmPm/

is a polynomial of total degree at most .dCn/ in k1; : : : ; km. Moreover, the coefficient
of kr11 � � � krmm in this polynomial is a polynomial valuation in Pi of degree at most d
which is homogeneous of degree ri.

This result implies that a homogeneous decomposition for polynomial valuations
exists. Let V be a vector space overQ.

Corollary 8.33 Let Z W P.Zn/ ! V be a polynomial valuation of degree at most d.
There exist valuations Zi W P.Zn/ ! V for i D 0; : : : ; n C d which are polynomial
of degree at most d C n and homogeneous of degree i such that

Z.kP/ D
dCnX

iD0

Zi.P/ki

for every k 2 N0 and P 2 P.Zn/.
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If a polynomial valuation Z W P.Zn/ ! V respects the action of linear unimodular
transformations, then so do Z0; : : : ;ZnCd. Important cases include SLn.Z/ invariant
valuations and SLn.Z/ equivariant as well as SLn.Z/ contravariant valuations.

A version of the Ehrhart-Macdonald reciprocity law for polynomial valuations
of type (8.9) was established by Brion and Vergne [12]. The following more general
result is from [39] and was proved along the lines of reciprocities laws from [46].

Theorem 8.34 If Z W P.Zn/ ! V is a polynomial valuation which is homo-
geneous of degree j, then

Zı.�P/ D .�1/ j Z.P/

for P 2 P.Zn/.

8.8 Tensor Valuations

In analogy to (8.1) and (8.7), for P 2 P.Zn/, we define for r 2 N0, the discrete
moment tensor of rank r by

Lr.P/ WD 1

rŠ

X

x2P\Zn

xr;

where xr denotes the r-fold symmetric tensor product of x. Let Tr denote the vector
space of symmetric tensors of rank r on Rn. Note that T0 D R and L0 D L and that
T

1 D R
n and L1 D `.

We view each element of Tr as a symmetric r linear functional on .Rn/r. So, in
particular,

Lr.P/.v1; : : : ; vr/ D 1

rŠ

X

x2P\Zn

.x � v1/ � � � .x � vr/

for v1; : : : ; vr 2 R
n, where x � v is the inner product of x and v.

The discrete moment tensor Lr W P.Zn/ ! T
r has the following behavior with

respect to unimodular linear transformations. For v1; : : : ; vr 2 R
n,

Lr.�P/.v1; : : : ; vr/ D Lr.P/.� tv1; : : : ; � tvr/

for all � 2 GLn.Z/ and P 2 P.Zn/. In general, a tensor valuation Z W P.Zn/ ! T
r

is called SLn.Z/ equivariant if for v1; : : : ; vr 2 R
n,

Z.�P/.v1; : : : ; vr/ D Z.P/.� tv1; : : : ; � tvr/

for all � 2 GLn.Z/ and P 2 P.Zn/.
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In addition, if y 2 Z
n, then

Lr.P C y/ D
rX

mD0

Lr�m.P/
ym

mŠ
;

where we use the convention that y0 D 1 2 R. Following McMullen [47], a
valuation Z W P.Zn/ ! T

r is called translation covariant if there exist associated
functions Zm W P.Zn/ ! T

m for m D 0; : : : ; r such that

Z.P C y/ D
rX

mD0

Zm.P/
yr�m

.r � m/Š

for all y 2 Z
n and P 2 P.Zn/. It follows from this definition that Zm is a valuation

for m D 0; : : : ; r and that Zr D Z. Note that the associated valuation Zm is
translation covariant for m D 0; : : : ; r, since we have

Zm.P C y/ D
mX

jD0

Zj.P/
ym�j

.m � j/Š
:

For given v1; : : : ; vr 2 R
n, associate with the translation covariant tensor

valuation Z W P.Zn/ ! T
r , the real valued valuation P 7! Z.P/.v1; : : : ; vr/, which

is easily seen to be polynomial of degree at most r. Hence we obtain the following
result from Theorem 8.32.

Theorem 8.35 Let Z W P.Zn/ ! T
r be a translation covariant valuation and let

P1; : : : ;Pm 2 P.Zn/ be given. If k1; : : : ; km 2 N0, then Z.k1P1 C � � � C kmPm/ is a
polynomial of total degree at most .n C r/ in k1; : : : ; km. Moreover, the coefficient
of kr11 � � � krmm in this polynomial is a translation covariant valuation in Pi which is
homogeneous of degree ri.

As a special case, we obtain the following homogeneous decomposition.

Theorem 8.36 Let Z W P.Zn/ ! T
r be a translation covariant valuation. There

exist Zi W P.Zn/ ! T
r for i D 0; : : : ; n C r such that

Z.kP/ D
nCrX

iD0

Zi.P/ki

for every k 2 N0 and P 2 P.Zn/. For each i, the function Zi is a translation
covariant valuation which is homogeneous of degree i.

Note that if Z is SLn.Z/ equivariant, then so are the homogeneous components
Z0; : : : ;ZnCr.

We apply these results to the discrete moment tensor and obtain the following
result.
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Corollary 8.37 There exist Lri W P.Zn/ ! T
r for i D 1; : : : ; n C r such that

Lr.kP/ D
nCrX

iD1

Lri .P/ki

for every k 2 N0 and P 2 P.Zn/. For each i, the function Lri is a translation
covariant valuation which is equivariant with respect to unimodular linear trans-
formations and homogeneous of degree i.

Note that LrnCr.P/ is the rth moment tensor of the lattice polytope P, that is,
LrnCr.P/ D 1

rŠ

R
P x

rdx [cf. (2.4)]. See [39], for results on the classification of tensor
valuations.

Using the approach from [46], we can extend the reciprocity laws to tensor
valuations and obtain the following result, which is proved in [39].

Theorem 8.38 If Z W P.Zn/ ! T
r is a translation covariant valuation which is

homogeneous of degree j, then

Zı.P/ D .�1/ j Z.�P/

for P 2 P.Zn/.

Since Zı is again a translation covariant valuation, Theorem 8.36 implies that
there are homogeneous decompositions for Z and Zı. Hence the following result is
a simple consequence of Theorem 8.38.

Corollary 8.39 If Z W P.Zn/ ! T
r is a translation covariant valuation, then

Zı.P/ D
nCrX

iD0

.�1/i Zi.�P/

for P 2 P.Zn/.

So, in particular, using that Lr.�P/ D .�1/rLr.P/, we obtain

Corollary 8.40 For P 2 P.Zn/,

Lr.relintP/ D .�1/mCr
mCrX

iD1

.�1/iLri .P/;

where m D dimP.
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