
Chapter 4
Integral Geometry and Algebraic Structures
for Tensor Valuations

Andreas Bernig and Daniel Hug

Abstract In this survey, we consider various integral geometric formulas for
tensor-valued valuations that have been obtained by different methods. Furthermore
we explain in an informal way recently introduced algebraic structures on the space
of translation invariant, smooth tensor valuations, including convolution, product,
Poincaré duality and Alesker-Fourier transform, and their relation to kinematic for-
mulas for tensor valuations. In particular, we describe how the algebraic viewpoint
leads to new intersectional kinematic formulas and substantially simplified Crofton
formulas for translation invariant tensor valuations. We also highlight the connection
to general integral geometric formulas for area measures.

4.1 Introduction

An important part of integral geometry is devoted to the investigation of integrals
(mean values) of the form

Z
G
'.K \ gL/ �.dg/;

where K;L � R
n are sets from a suitable intersection stable class of sets, G is

a group acting on R
n and thus on its subsets, � is a Haar measure on G, and

' is a functional with values in some vector space W. Common choices for W
are the reals or the space of signed Radon measures. Instead of the intersection,
Minkowski addition is another natural choice for a set operation which has
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been studied. The principle aim then is to express such integrals by means of
basic geometric functionals of K and L. Depending on the specific framework,
such as the class of sets or the type of functional under consideration, different
methods have been developed to establish integral geometric formulas, ranging
from classical convexity, differential geometry, geometric measure theory to the
theory of valuations. The interplay between the theory of valuations and integral
geometry, although a classical topic in convexity, has been expanded and deepened
considerably in recent years. In the present survey, we explore the integral geometry
of tensor-valued functionals. This study suggests and requires generalizations in the
theory of valuations which are of independent interest.

Therefore, we describe how some algebraic operations known for smooth
translation invariant scalar-valued valuations (product, convolution, Alesker-Fourier
transform) can be extended to smooth translation invariant tensor-valued valuations.
Although these extensions are straightforward to define, they encode various integral
geometric formulas for tensor valuations, like Crofton-type formulas, rotation sum
formulas (also called additive kinematic formulas) and intersectional kinematic
formulas. Even in the easiest case of translation invariant and O.n/-covariant
tensor valuations, explicit formulas are hard to obtain by classical methods. With
the present algebraic approach, we are able to simplify the constants in Crofton-
type formulas for tensor valuations, and to formulate a new type of intersectional
kinematic formulas for tensor valuations. For the latter we show how such formulas
can be explicitly calculated in the O.n/-covariant case. As an important byproduct,
we compute the Alesker-Fourier transform on a certain class of smooth valuations,
called spherical valuations. This result is of independent interest and is the technical
heart of the computation of the product of tensor valuations.

4.2 Tensor Valuations

The present chapter is based on the general introduction to valuations in Chap. 1
and on the description and structural analysis of tensor valuations contained in
Chap. 2. The algebraic framework for the investigation of scalar valuations, which
has already proved to be very useful in integral geometry, is outlined in Chap. 3. In
these chapters relevant background information is provided, including references to
previous work, motivation and hints to applications. The latter are also discussed in
other parts of this volume, especially in Chaps. 11–15.

Let us fix our notation and recall some basic structural facts. We will write V
for a finite-dimensional real vector space. Sometimes we fix a Euclidean structure
on V , which allows us to identify V with Euclidean space Rn. The space of compact
convex sets (including the empty set) is denoted by K .V/ (or K n if V D R

n).
The vector space of translation invariant, continuous scalar valuations is denoted
by Val.V/ (or simply by Val if the vector space V is clear from the context). The
smooth valuations in Val.V/ constitute an important subspace for which we write
Val1.V/; see Definition 3.5 and Remark 3.7, Definition 9.5 and Proposition 9.8, and
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Sect. 6.3. There is a natural decomposition of Val.V/ (and then also of Val1.V/) into
subspaces of different parity and different degrees of homogeneity, hence

Val.V/ D
nM

mD0
"D˙

Val"m.V/;

if V has dimension n, and similarly

Val1.V/ D
nM

mD0
"D˙

Val";1m .V/I

see Sects. 1.4, 3.1 and Theorem 9.1.
Our main focus will be on valuations with values in the space of symmetric

tensors of a given rank p 2 N0, for which we write Symp
R

n or simply Symp if the
underlying vector space is clear from the context (resp., Symp V in case of a general
vector space V). Here we deviate from the notation T

p used in Chaps. 1 and 2. The
spaces of symmetric tensors of different ranks can be combined to form a graded
algebra in the usual way. By a tensor valuation we mean a valuation on K .V/ with
values in the vector space of tensors of a fixed rank, say Symp.V/. For the space of
translation invariant, continuous tensor valuations with values in Symp.V/ we write
TValp.V/; cf. the notation in Chaps. 3, 6 and Definition 9.38. This vector space can
be identified with Val.V/ ˝ Symp.V/ (or Val ˝ Symp, for short). If we restrict to
smooth tensor valuations, we add the superscript 1, that is TValp;1.V/. It is clear
that McMullen’s decomposition extends to tensor valuations, hence

TValp.V/ D
nM

mD0
"D˙

TValp;"m .V/;

if dim.V/ D n. The corresponding decomposition is also available for smooth
tensor-valued valuations or valuations covariant (or invariant) with respect to a
compact subgroup G of the orthogonal group which acts transitively on the unit
sphere. The vector spaces of tensor valuations satisfying an additional covariance
condition with respect to such a group G is finite-dimensional and consists of
smooth valuations only (cf. Example 3.6 and Theorem 9.15). In the following, we
will only consider rotation covariant valuations (see Chap. 2).

4.2.1 Examples of Tensor Valuations

In the following, we mainly consider translation invariant tensor valuations. How-
ever, we start with recalling general Minkowski tensors, which are translation
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covariant but not necessarily translation invariant. For Minkowski tensors, and hence
for all isometry covariant continuous tensor valuations, we first state a general
Crofton formula. The major part of this contribution is then devoted to translation
invariant, rotation covariant, continuous tensor valuations. In this framework, we
explain how algebraic structures can be introduced and how they are related to
Crofton formulas as well as to additive and intersectional kinematic formulas.
Crofton formulas for tensor-valued curvature measures are the subject of Chap. 5.

For k 2 f0; : : : ; n � 1g and K 2 K n, let �0.K; � /; : : : ; �n�1.K; � / denote the
support measures associated with K (see Sect. 1.3). They are Borel measures on
˙n WD R

n � S
n�1 which are concentrated on the normal bundle ncK of K. Let �n

denote the volume of the unit ball and !n D n�n the volume of its boundary, the
unit sphere. Using the support measures, we recall from Sects. 1.3 or 2.1 that the
Minkowski tensors are defined by

˚
r;s
k .K/ WD 1

rŠsŠ

!n�k

!n�kCs

Z
˙n

xrus�k.K; d.x; u//;

for k 2 f0; : : : ; n � 1g and r; s 2 N0, and

˚ r;0
n .K/ WD 1

rŠ

Z
K
xr dx:

In addition, we define ˚ r;s
k WD 0 for all other choices of indices. Clearly, the tensor

valuations ˚0;s
k and ˚0;0

n , which are obtained by choosing r D 0, are translation
invariant. However, these are not the only translation invariant examples, since
e.g. ˚1;1

k�1, for k 2 f1; : : : ; ng, also satisfies ˚1;1
k�1.K C t/ D ˚

1;1
k�1.K/ for all K 2 K n

and t 2 R
n.

Further examples of continuous, isometry covariant tensor valuations are
obtained by multiplying the Minkowski tensors with powers of the metric tensor Q
and by taking linear combinations. As shown by Alesker [1, 2], no other examples
exist (see also Theorem 2.5). In the following, we write

˚ s
k.K/ WD ˚

0;s
k .K/ D 1

sŠ

!n�k

!n�kCs

Z
˙n

us�k.K; d.x; u//

D
 
n � 1

k

!
1

!n�kCssŠ

Z
Sn�1

us Sk.K; du/;

for k 2 f0; : : : ; n � 1g, where we used the k-th area measure Sk.K; � / of K, a Borel
measure on S

n�1 defined by

Sk.K; � / WD n�n�k�n
k

� �k.K;R
n � � /:
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In addition, we define ˚0
n WD Vn and ˚ s

n WD 0 for s > 0. The normalization is such
that ˚0

k D Vk, for k 2 f0; : : : ; ng, where Vk is the k-th intrinsic volume. Clearly, the
tensor valuations Qi˚ s

k , for k 2 f0; : : : ; ng and i; s 2 N0, are continuous, translation
invariant, O.n/-covariant, homogeneous of degree k and have tensor rank 2i C s.
We have ˚ s

n � 0 for s ¤ 0, and ˚ s
0.K/ is independent of K. Hence, we usually

exclude these trivial cases. Apart from these, Alesker showed that for each fixed
k 2 f1; : : : ; n � 1g the valuations

Qi˚ s
k ; i; s 2 N0; 2i C s D p; s ¤ 1;

form a basis of the vector space of all continuous, translation invariant, O.n/-
covariant tensor valuations of rank p which are homogeneous of degree k. The
fact that these valuations span the corresponding vector space is implied by
[1, Proposition 4.9] (and [2]), the proof is based in particular on basic representation
theory. A result of Weil [17, Theorem 3.5] states that differences of area measure of
order k, for any fixed k 2 f1; : : : ; d�1g, are dense in the vector space of differences
of finite, centered Borel measures on the unit sphere. From this the asserted linear
independence of the tensor valuations can be inferred. We also refer to Sect. 6.5
where the present case is discussed as an example of a very general representation
theoretic theorem.

The situation for general tensor valuations (which are not necessarily translation
invariant) is more complicated. As explained in Chap. 2, the valuations Qi˚

r;s
k

span the corresponding vector space, but there exist linear dependences between
these functionals. Although all linear relations are known and the dimension of the
corresponding vector space (for fixed rank and degree of homogeneity) has been
determined, the situation here is not perfectly understood.

In the following, it will often (but not always) be sufficient to neglect the metric
tensor powers Qi and just consider the tensor valuations ˚ s

k , since the metric tensor
commutes with the algebraic operations to be considered.

4.2.2 Integral Geometric Formulas

Let A.n; k/, for k 2 f0; : : : ; ng, denote the affine Grassmannian of k-flats in R
n, and

let �k denote the motion invariant measure on A.n; k/ normalized as in [13, 14]. The
Crofton formulas to be discussed below relate the integral mean

Z
A.n;k/

˚
r;s
j .K \ E/ �k.dE/

of the tensor valuation˚ r;s
j .K \E/ of the intersection of K with flats E 2 A.n; k/ to

tensor valuations of K. Guessing from the scalar case, one would expect that only
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tensor valuations of the form Qi˚ r0;s0

n�kCj.K/ are required. It turns out, however, that
for general r the situation is more involved.

The following Crofton formulas for Minkowski tensors have been established
in [7]. Since ˚ r;s

j .K \ E/ D 0 if k < j, we only have to consider the cases where
k � j.

We start with the basic case k D j, in which the Crofton formula has a particularly
simple form.

Theorem 4.1 For K 2 K n, r; s 2 N0 and 0 � k � n � 1,

Z
A.n;k/

˚
r;s
k .K \ E/ �k.dE/ D

8<
:

Q̨n;k;s Q s
2 ˚ r;0

n .K/; if s is even,

0; if s is odd,

where

Q̨n;k;s WD 1

.4�/
s
2
�
s
2

�
Š

�
�
n
2

�
�
�
n�kCs
2

�
�
�
nCs
2

�
�
�
n�k
2

� :

This result essentially follows from Fubini’s theorem, combined with a relation
due to McMullen, which connects the Minkowski tensors of K \ E and the
Minkowski tensors of K \ E, defined with respect to the flat E as the ambient space
(see (4.4) for a precise statement).

The main case j < k is considered in the next theorem.

Theorem 4.2 Let K 2 K n and k; j; r; s 2 N0 with 0 � j < k � n � 1. Then
Z

A.n;k/
˚ r;s

j .K \ E/ �k.dE/

D
b s
2 cX

zD0
�.1/n;j;k;s;zQ

z˚ r;s�2z
nCj�k.K/C

b s
2 c�1X
zD0

�.2/n;j;k;s;zQ
z

�
s�2z�1X
lD0

�
2�l˚ rCs�2z�l;l

nCj�k�sC2zCl.K/� Q˚ rCs�2z�l;l�2
nCj�k�sC2zCl.K/

�
; (4.1)

where �.1/n;j;k;s;z and �
.2/
n;j;k;s;z are explicitly known constants.

The constants �.1/n;j;k;s;z and �.2/n;j;k;s;z only depend on the indicated lower indices. It
is remarkable that they are independent of r. Moreover, the right-hand side of this
Crofton formula also involves other tensor valuations than ˚ r0 ;s0

n�kCj.K/. For instance,
in the special case where n D 3, k D 2, j D 0, r D 1 and s D 2, Theorem 4.2 yields
that

Z
A.3;2/

˚
1;2
0 .K \ E/ �2.dE/ D 1

3
˚
1;2
1 .K/C 1

24�
Q˚1;0

1 .K/C 1
6
˚
2;1
0 .K/:
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It can be shown that it is not possible to write ˚2;1
0 as a linear combination of ˚1;2

1

and Q˚1;0
1 , which are the only other Minkowski tensors of rank 3 and homogeneity

degree 2.
The explicit expressions obtained for the constants �.1/n;j;k;s;z and �.2/n;j;k;s;z in [7]

require a multiple (fivefold) summation over products and ratios of binomial
coefficients and Gamma functions. Some progress which can be made in simplifying
this representation is described in Chap. 5.

Since the tensor valuations on the right-hand side of the Crofton formula (4.1) are
not linearly independent, the specific representation is not unique. Using the linear
relation due to McMullen, the result can also be expressed in the form

Z
A.n;k/

˚
r;s
j .K \ E/ �k.dE/

D
b s
2 cX

zD0
�.1/n;j;k;s;zQ

z˚
r;s�2z
nCj�k.K/C

b s
2 c�1X
zD0

�.2/n;j;k;s;zQ
z

�
X

l�s�2z

�
Q˚ rCs�2z�l;l�2

nCj�k�sC2zCl.K/ � 2�l˚ rCs�2z�l;l
nCj�k�sC2zCl.K/

�
(4.2)

with the same constants as before. From (4.2) we now deduce the Crofton formula
for the translation invariant tensor valuations˚ s

j . For r D 0, the sum
P

l�s�2z on the
right-hand side of (4.2) is non-zero only if l D s � 2z. Therefore, after some index
shift (and discussion of the ‘boundary cases’ z D 0 and z D b s

2
c), we obtain

Z
A.n;k/

˚ s
j .K \ E/ �n

k.dE/ D
b s
2 cX

zD0
�.�/n;j;k;s;zQ

z˚ s�2z
nCj�k.K/ (4.3)

for j < k, where

�.�/n;j;k;s;z D �.1/n;j;k;s;z C �.2/n;j;k;s;z�1 � 2�.s � 2z/�.2/n;j;k;s;z:

Since the right-hand side of (4.3) is uniquely determined by the left-hand side
and the tensor valuations on the right-hand side are linearly independent, the
constant �.�/n;j;k;s;z is uniquely determined. Using the expression which is obtained
for �.�/n;j;k;s;z from the constants �.1/n;j;k;s;z and �.2/n;j;k;s;z provided in [7], it seems to be a
formidable task to get a reasonably simple expression for this constant. If j D k,
then Theorem 4.1 shows that (4.3) remains true if we define �n;k;k;s;b s

2 c WD Q̨n;k;s if
s is even, and as zero in all other cases. As we will see, the approach of algebraic
integral geometry to (4.3) will reveal that �.�/n;j;k;s;z has indeed a surprisingly simple
expression.
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To compare the algebraic approach with the one used in [7], and extended to
tensorial curvature measures in Chap. 5, we point out that the result of Theorem 4.2
is complemented by and in fact is based on an intrinsic Crofton formula, where the
tensor valuation ˚ r;s

j .K \ E/ is replaced by ˚ r;s
j;E.K \ E/. The latter is the tensor

valuation of the intersection K \ E, determined with respect to E as the ambient
space but considered as a tensor in R

n (see Sect. 5.2 or [7] for an explicit definition).
The two tensors are connected by the relation

˚
r;s
j .K \ E/ D

X
m�0

Q.E?/m

.4�/mmŠ
˚

r;s�2m
j;E .K \ E/; (4.4)

due to McMullen [11, Theorem 5.1] (see also [7]), where Q.E?/ is the metric tensor
of the linear subspace orthogonal to the direction space of E but again considered as
a tensor in R

n, that is, Q.E?/ D e2kC1C� � �Ce2n, where ekC1; : : : ; en is an orthonormal
basis of E?. Note that for s D 0 we get ˚ r;0

j .K \ E/ D ˚ r;0
j;E .K \ E/, since the

intrinsic volumes and the suitably normalized curvature measures are independent
of the ambient space.

The intrinsic Crofton formula for
Z

A.n;k/
˚ r;s

j;E.K \ E/ �k.dE/

has the same structure as the extrinsic Crofton formula stated in Theorem 4.2, but the
constants are different. Apart from reducing the number of summations required for
determining the constants, progress in understanding the structure of these (intrinsic
and extrinsic) integral geometric formulas can be made by localizing the Minkowski
tensors. This is the topic of Chap. 5.

Crofton and intersectional kinematic formulas for Minkowski tensors ˚ r;s
j with

s D 0 are special cases of corresponding (more general) integral geometric formulas
for curvature measures. For example, we have

Z
A.n;k/

˚
r;0
j .K \ E/ �k.dE/ D anjk ˚

r;0
nCj�k.K/ (4.5)

and

Z
Gn

˚
r;0
j .K \ gM/ �.dg/ D

nX
kDj

anjk ˚
r;0
nCj�k.K/Vk.M/; (4.6)

where Gn is the Euclidean motion group,� is the suitably normalized Haar measure
and the (simple) constants anjk are known explicitly. Therefore, we focus on the case
s ¤ 0 (and r D 0) in the following.
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A close connection between Crofton formulas and intersectional kinematic
formulas follows from Hadwiger’s general integral geometric theorem (see [14,
Theorem 5.1.2]). It states that for any continuous valuation ' on the space of convex
bodies and for all K;M 2 K n, we have

Z
Gn

'.K \ gM/ �.dg/ D
nX

kD0

Z
A.n;k/

'.K \ E/ �k.dE/Vk.M/: (4.7)

Hence, if a Crofton formula for the functional ' is available, then an intersectional
kinematic formula is an immediate consequence. This statement includes also
tensor-valued functionals, since (4.7) can be applied coordinate-wise. In particular,
this shows that (4.6) can be obtained from (4.5). In the same way, Theorem 4.2 and
the special case shown in (4.3) imply kinematic formulas for intersections of convex
bodies, one fixed the other moving. Thus, for instance, we obtain

Z
Gn

˚ s
j .K \ gM/ �.dg/ D

b s
2 cX

zD0

nX
kDj

�.�/n;j;k;s;z Q
z˚ s�2z

nCj�k.K/Vk.M/: (4.8)

These results are related to and in fact inspired general integral geometric
formulas for area measures (see [10]). The starting point is a local version of
Hadwiger’s general integral geometric theorem for measure-valued valuations. To
state it, let MC.Sn�1/ be the cone of non-negative measures in the vector space
M .Sn�1/ of finite Borel measures on the unit sphere.

Theorem 4.3 Let ' W K n ! MC.Sn�1/ be a continuous and additive mapping
with '.;; � / D 0 (the zero measure). Then, for K;M 2 K n and Borel sets A �
S
n�1,

Z
Gn

'.K \ gM;A/ �.dg/ D
nX

kD0
ŒTn;k'.K; � /�.A/Vk.M/; (4.9)

with (the Crofton operator) Tn;k on weakly continuous measure-valued valuations
given by

Tn;k'.K; � / WD
Z

A.n;k/
'.K \ E; �/ �k.dE/; k D 0; : : : ; n:

We want to apply this result to area measures of convex bodies, hence we need
a Crofton formula for area measures. The statement of such a Crofton formula is
based on Fourier operators Ip, for p 2 f�1; 0; 1; : : : ; ng, which act on C1 functions
on S

n�1. For f 2 C1.Sn�1/, let fp be the extension of f to R
n n f0g which is

homogeneous of degree �n C p, and let Ofp be the distributional Fourier transform
of fp. For 0 < p < n, the restriction Ip.f / of Ofp to the unit sphere is again a smooth
function. Let H n

s denote the space of spherical harmonics of degree s. Recall that a
spherical harmonic of degree s is the restriction to the unit sphere of a homogeneous
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polynomial p of degree s on R
n which satisfies 	p D 0 (and hence is called

harmonic), where 	 is the Laplace operator. We refer to [13] for more information
on spherical harmonics. Since Ip intertwines the group action of SO.n/, we have
Ip.fs/ D 
s.n; p/ fs for fs 2 H n

s and some 
s.n; p/ 2 C. It is known that


s.n; p/ D �
n
2 2p is

�
�
sCp
2

�

�
�
sCn�p
2

� :

Note that 
s.n; p/ is purely imaginary if s is odd, and real if s is even. See [10] for
a summary of the main properties of this Fourier operator and [8, 9] for a detailed
exposition.

Using the connection to mean section bodies (see [8]) and the Fourier opera-
tors Ip, the following Crofton formula for area measures has been established in [10,
Theorem 3.1].

Theorem 4.4 Let 1 � j < k � n and K 2 K n. Then
Z

A.n;k/
Sj.K \ E; � / �k.dE/ D a.n; j; k/IjIk�jSnCj�k.�K; � / (4.10)

with

a.n; j; k/ WD j

2n�.nCk/=2.n C j � k/

� . kC1
2
/� .n � j/

� . nC1
2
/� .k � j/

:

Let I� be the reflection operator .I�f /.u/ D f .�u/, u 2 S
n�1, for a function f

on the unit sphere. The operator Tn;j;k WD a.n; j; k/IjIk�jI�, for 1 � j < k � n, and
the identity operator Tn;j;n act as linear operators on M .Sn�1/ and can be used to
express (4.10) in the form

Z
A.n;k/

Sj.K \ E; � / �k.dE/ D Tn;j;kSnCj�k.K; � /: (4.11)

This is also true for k D j < n if we define

Tn;j;jSn.K; � / WD
 
n � 1

j

!�1
!n�j

!n
Vn.K/�;

where � is spherical Lebesgue measure. Combining Eqs. (4.9) and (4.11), we obtain
a kinematic formula for area measures. Using again the operator Tn;j;k, it can be
stated in the form

Z
Gn

Sj.K \ gM;A/ �.dg/ D
nX

kDj

ŒTn;j;kSnCj�k.K; � /�.A/Vk.M/;
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for j D 1; : : : ; n � 1. Since the Fourier operators act as multiplier operators on
spherical harmonics, it follows that Theorem 4.4 can be rewritten in the form

Z
A.n;k/

Z
Sn�1

fs.u/ Sj.K \ E; du/ �k.dE/

D as.n; j; k/
Z
Sn�1

fs.u/ SnCj�k.K; du/; (4.12)

where fs 2 H n
s and as.s; j; k/ WD a.n; j; k/bs.n; j; k/ with

bs.n; j; k/ WD 2k�n
�
�
sCj
2

�
�
�
sCk�j
2

�

�
�
sCn�j
2

�
�
�
sCn�kCj

2

� :

In addition to Crofton and intersectional kinematic formulas, there is another
classical type of integral geometric formula. Since they involve rotations and
Minkowski sums of convex bodies, it is justified to call them rotation sum formulas.
Let SO.n/ denote the group of rotations and let � denote the Haar probability
measure on this group. A general form of such a formula can again be stated for
area measures. Let K;M 2 K n be convex bodies and let ˛; ˇ � S

n�1 be Borel sets.
Then [13, Theorem 4.4.6] can be written in the form

Z
SO.n/

Z
Sn�1

1˛.u/1ˇ.
�1u/ Sj.K C 
M; du/ �.d
/

D 1

!n

jX
kD0

 
j

k

!
Sk.K; ˛/Sj�k.M; ˇ/: (4.13)

More generally, by the inversion invariance of the Haar measure �, by basic measure
theoretic extension arguments, and by an application of (4.13) to the coordinate
functions of an arbitrary continuous function f W Sn�1�S

n�1 ! Syms1 ˝ Syms2 , for
given s1; s2 2 N0, we obtain

Z
SO.n/

Z
Sn�1

f .u; 
u/ Sj.K C 
�1M; du/ �.d
/

D 1

!n

jX
kD0

 
j

k

!Z
.Sn�1/2

f .u; v/
�
Sk.K; � / � Sj�k.M; � /�.d.u; v//:

To simplify constants, we define

�s
k.K/ WD

Z
Sn�1

us Sk.K; du/: (4.14)
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Choosing f .u; v/ D us1 ˝ vs2 , we thus get

Z
SO.n/

.id˝s1 ˝ 
˝s2/�
s1Cs2
j .K C 
�1M/ �.d
/

D
Z

SO.n/

Z
Sn�1

us1 ˝ .
u/s2 Sj.K C 
�1M; du/ �.d
/

D 1

!n

jX
kD0

 
j

k

!Z
.Sn�1/2

us1 ˝ vs2
�
Sk.K; � / � Sj�k.M; � /� .d.u; v//;

(4.15)

and hence
Z

SO.n/
.id˝s1 ˝ 
˝s2 /�

s1Cs2
j .K C 
�1M/ �.d
/

D 1

!n

jX
kD0

 
j

k

!
�
s1
k .K/˝ �

s2
j�k.M/:

Up to the different normalization, this is the additive kinematic formula for tensor
valuations stated in [6, Theorem 5]. In particular,

Z
SO.n/

�s
j .K C 
M/ �.d
/ D 1

!n

jX
kD0

 
j

k

!
�s
k.K/Sj�k.M/;

where Si.M/ WD Si.M;Sn�1/ D n�n�i
�n
i

��1
Vi.M/.

In the following section, we develop basic algebraic structures for tensor
valuations and provide applications to integral geometry. From this approach, we
will obtain a Crofton formula for the tensor valuations ˚ s

k , but also for another set
of tensor valuations, denoted by � s

k , for which the Crofton formula has ‘diagonal
form’. Moreover, we will study more general intersectional kinematic formulas than
the one considered in (4.8) and describe the connection between intersectional and
additive kinematic formulas. In the course of our analysis, we determine Alesker’s
Fourier operator for spherical valuations, that is, valuations obtained by integration
of a spherical harmonic (or, more generally, any smooth spherical function) against
an area measure.

4.3 Algebraic Structures on Tensor Valuations

Recall that Val D Val.Rn/ denotes the Banach space of translation invariant
continuous valuations on V D R

n, and Val1 D Val1.Rn/ is the dense subspace of
smooth valuations; see Chaps. 3 and 9 for more information. In this section, we first



4 Integral Geometry and Algebraic Structures for Tensor Valuations 91

discuss the extension of basic operations and transformations from scalar valuations
to tensor-valued valuations. The scalar case is described in Chap. 3.

In the following, we usually work in Euclidean space R
n with the Lebesgue

measure and the volume functional Vn on convex bodies. Since some of the results
are also stated in invariant terms, we write vol for a volume measure on V , that is,
a choice of a translation invariant locally finite Haar measure on an n-dimensional
vector space V . Of course, in case V D R

n we always use Vn as a specific choice of
the restriction of a volume measure vol to K n (the corresponding choice is made
for V D R

n � R
n).

4.3.1 Product

Existence and uniqueness of the product of smooth valuations is provided by
the following result; see also Sect. 3.2 for the more general construction of an
exterior product between smooth scalar-valued valuations on possibly different
vector spaces.

Proposition 4.5 Let �1; �2 2 Val1 be smooth valuations on Rn given by

�i.K/ D vol.K C Ai/; K 2 K n;

where A1;A2 2 K n are smooth convex bodies with positive Gauss curvature at
every boundary point. Let 	 W Rn ! R

n � R
n be the diagonal embedding. Then

�1 � �2.K/ WD vol.	K C A1 � A2/; K 2 K n;

extends by continuity and bilinearity to a product on Val1.

The product is compatible with the degree of a valuation (i.e., if �i has degree ki,
then �1 � �2 has degree k1 C k2 if k1 C k2 � n), and more generally with the action
of the group GL.n/.

We can extend the product component-wise from smooth scalar-valued valua-
tions to smooth tensor-valued valuations. To see this, let V be a finite-dimensional
vector space, V D R

n say, and s1; s2 2 N0. Let ˚i 2 TValsi;1.V/ for i D 1; 2. Let
w1; : : : ;wm be a basis of Syms1V , and let u1; : : : ; ul be a basis of Syms2V . Then there
are �i;  j 2 Val1.V/, i 2 f1; : : : ;mg and j 2 f1; : : : ; lg, such that

˚1.K/ D
mX
iD1

�i.K/wi and ˚2.K/ D
lX

jD1
 j.K/uj
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for K 2 K .V/. Now we would like to define (omitting the obvious ranges of the
indices)

.˚1 � ˚2/.K/ WD
X
i;j

.�i �  j/.K/wiuj:

The dot on the right-hand side is the product of the smooth valuations �i;  j, and
wiuj 2 Syms1Cs2V denotes the symmetric tensor product of the symmetric tensors
wi 2 Syms1V and uj 2 Syms2V .

Let us verify that this definition is independent of the chosen bases. For this,
let w0

i D P
j cijwj with some invertible matrix .cij/, and let u0

i D P
j eijuj with an

invertible matrix .eij/.
If

˚1.K/ D
X
i

�0
i .K/w

0
i D

X
i

�i.K/wi;

then a comparison of coefficients yields that �0
i D P

j c
ji�j, where .cji/ denotes the

matrix inverse. Similarly, from

˚2.K/ D
X
i

 0
j .K/u

0
i D

X
i

 i.K/ui;

we conclude that  0
i D P

j e
ji j, where .eji/ denotes the matrix inverse. Therefore,

we have

X
i;j

.�0
i �  0

j /w
0
iu

0
j D

X
i;j;b1;b2

�X
a1;b1

ca1i�a1 � eb1j b1

�X
a2;b2

cia2wa2ejb2ub2

D
X

a1;a2;b1;b2

�X
i;j

ca1icia2e
b1jejb2

„ ƒ‚ …
Dıa1a2 ıb1b2

�
.�a1 �  b1 /wa2 � ub2

D
X
a;b

.�a �  a/wa � ub;

which proves the asserted independence of the representation.
Thus, recalling that TValsm.V/ denotes the vector space of translation invariant

continuous valuations on K .V/ which are homogeneous of degree m and take
values in the vector space Syms V of symmetric tensors of rank s over V , and that
TVals;1m .V/ is the subspace consisting of the smooth elements of this vector space,
we have

˚1 � ˚2 2 TVals1Cs2;1
kCl .V/; k C l � n;

for ˚1 2 TVals1;1k .V/, ˚2 2 TVals2;1l .V/ and k; l 2 f0; : : : ; ng.
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A similar description and similar arguments can be given for the operations
considered in the following sections.

4.3.2 Convolution

Similarly as for the product of valuations, an explicit definition of the convolution of
two valuations (as defined in [5]) is given only for a suitable subclass of valuations
(cf. Sect. 3.3).

Proposition 4.6 Let �1; �2 2 Val1 be smooth valuations on Rn given by

�i.K/ D vol.K C Ai/; K 2 K n;

where A1;A2 are smooth convex bodies with positive Gauss curvature at every
boundary point. Then

�1 	 �2.K/ WD vol.K C A1 C A2/; K 2 K n;

extends by continuity and bilinearity to a product (which is called convolution)
on Val1.

Written in invariant terms, the convolution is a bilinear map

.Val1.V/˝ Dens.V�// � .Val1.V/˝ Dens.V�// ! Val1.V/˝ Dens.V�/;

where Dens.V�/ is the one-dimensional space of translation invariant, locally finite
complex-valued Haar measures (Lebesgue measures, see Sect. 3.3) on the dual space
V�. It is compatible with the action of the group GL.n/ and with the codegree of a
valuation (i.e., if �i has degree ki, then �1 	�2 has degree k1Ck2�n if k1Ck2 � n).

The convolution can be extended component-wise to a convolution on the space
of translation invariant smooth tensor valuations. Hence we have

˚1 	 ˚2 2 TVals1Cs2;1
kCl�n .V/; k C l � n;

for ˚1 2 TVals1;1k .V/, ˚2 2 TVals2;1l .V/ and k; l 2 f0; : : : ; ng. This is analogous to
the definition and computation in the previous section.

4.3.3 Alesker-Fourier Transform

Alesker introduced an operation on smooth valuations, now called Alesker-Fourier
transform (cf. Sect. 3.4). It is a map F W Val1.Rn/ ! Val1.Rn/ which reverses the
degree of homogeneity, that is,

F W Val1k .Rn/ ! Val1n�k.R
n/;
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and which transforms product into convolution of smooth valuations, more pre-
cisely, we have

F.�1 � �2/ D F.�1/ 	 F.�2/: (4.16)

On valuations which are smooth and even, the Alesker-Fourier transform can
easily be described in terms of Klain functions as follows. Let � 2 Val1;C

k .Rn/ (the
space of smooth and even valuations which are homogeneous of degree k). Then the
restriction of � to a k-dimensional subspace E is a multiple Kl�.E/ of the volume,
and the resulting function (Klain function) Kl� determines �. Then

KlF�.E/ D Kl�.E?/

for every .n � k/-dimensional subspace E.
As an example (and consequence of the relation to Klain functions), the intrinsic

volumes satisfy

F.Vk/ D Vn�k; (4.17)

where V0; : : : ;Vn denote the intrinsic volumes on K n.
The description in the odd case is more involved and it is preferable to describe

it in invariant terms (i.e., without referring to a Euclidean structure).
Let V be an n-dimensional real vector space. Then

F W Val1k .V/ ! Val1n�k.V/˝ Dens.V�/;

where Dens denotes the one-dimensional space of densities (Lebesgue measures).
This map commutes with the action of GL.V/ on both sides. Applying it twice (and
using the identification Dens.V�/˝ Dens.V/ Š C), it satisfies the Plancherel type
formula

.F2�/.K/ D �.�K/; K 2 K .V/:

Working again on Euclidean space V D R
n, we can extend the Alesker-Fourier

transform component-wise to a map F W TVals;1 ! TVals;1 such that

F W TVals;1k ! TVals;1n�k :

It is not an easy task to determine the Fourier transform of valuations other than the
intrinsic volumes.

4.3.4 Example: Intrinsic Volumes

As an example, let us compute the Alesker product of intrinsic volumes V0; : : : ;Vn

in R
n. We complement the definition of the intrinsic volumes by Vl WD 0 for l < 0.

Let vol D Vn denote the volume measure on K n.
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Recall Steiner’s formula (1.16) which states that

vol.K C rB/ D
nX

iD0
Vn�i.K/�ir

i; r � 0:

Now we fix r � 0 and s � 0 and define the smooth valuations �1.K/ WD vol.KCrB/
and �2.K/ WD vol.K C sB/. Then

�1 	 �2.K/ D vol.K C rB C sB/ D vol.K C .r C s/B/

D
nX

kD0
Vn�k.K/�k.r C s/k;

hence

�1 	 �2 D
nX

i;jD0
Vn�i�j�iCj

 
i C j

i

!
ris j:

On the other hand, since �1 D Pn
iD0 Vn�i�iri and �2 D Pn

iD0 Vn�i�isi, we obtain

�1 	 �2 D
nX

i;jD0
Vn�i 	 Vn�j�i�jr

is j:

Now we compare the coefficient of ris j in these equations and get

Vn�i�j�iCj

 
i C j

i

!
D Vn�i 	 Vn�j�i�j:

Writing i instead of n � i and j instead of n � j, we obtain

Vi 	 Vj D
�
2n � i � j
n � i

�
ViCj�n; (4.18)

where we used the flag coefficient

�
n
k

�
WD
 
n

k

!
�n

�k�n�k
; k 2 f0; : : : ; ng:

Taking Alesker-Fourier transform on both sides yields

Vi � Vj D
�
i C j
i

�
ViCj: (4.19)
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The computation of convolution and product of tensor valuations follows the
same scheme: first one computes the convolution of tensor valuations, which can
be considered easier. Then one applies the Alesker-Fourier transform to obtain the
product. However, in the tensor-valued case it is much harder to write down the
Alesker-Fourier transform in an explicit way. This step is the technical heart of our
approach.

4.3.5 Poincaré Duality

The product of smooth translation invariant valuations as well as the convolution
both satisfy a version of Poincaré duality, which moreover are identical up to a sign.

To state this more precisely, recall that the vector spaces Valk D Valk.Rn/, k 2
f0; ng, are one-dimensional and spanned by the Euler-characteristic � D V0 and the
volume functional Vn D vol, that is, Val0 Š R � � and Valn Š R � vol. We denote by
�0; �n 2 R the component of � 2 Val of degree 0 and n, respectively.

Proposition 4.7 The pairings

Val1k � Val1n�k ! R; .�1; �2/ 7! .�1 � �2/n;

and

Val1k � Val1n�k ! R; .�1; �2/ 7! .�1 	 �2/0;

are perfect, that is, the induced maps

pdm; pdc W Val1k ! Val1;�
n�k

are injective with dense image. Moreover,

pdc D
(

pdm on ValCk ;
�pdm on Val�k :

To illustrate this proposition and to highlight the difference between the two
pairings, let us compute them on an easy example. Let �i.K/ WD vol.K C Ai/,
where Ai, i 2 f1; 2g, are smooth convex bodies with positive Gauss curvature. Then
�1 	 �2.K/ D vol.K C A1 C A2/, and hence .�1 	 �2/0 D vol.A1 C A2/.

On the other hand, �1 � �2.K/ D vol2n.	K C A1 � A2/. Using Fubini’s theorem,
one rewrites this as

�1 � �2.K/ D
Z
Rn
�2..x � A1/\ K/ dx:
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Taking for K a large ball reveals that .�1 � �2/n D �2.�A1/ D vol.A2 � A1/. If
A1 D �A1, then �1 is even and both pairings agree indeed.

The extension of Poincaré duality to tensor-valued valuations is postponed to
Sect. 4.4.1 where it is required for the description of the relation between additive
and intersectional kinematic formulas for tensor valuations.

4.3.6 Explicit Computations in theO.n/-Equivariant Case

In this section, we outline the explicit computation of product, convolution and
Alesker-Fourier transform in the O.n/-equivariant case. Depending on the situation,
we will either use the basis consisting of the tensor valuations Qi˚ s�2i

k or the basis
consisting of the tensor valuations Qi� s�2i

k . The latter are defined in the following
proposition.

Proposition 4.8 The following statements hold.

(i) For 0 � k < n and s ¤ 1, define

� s
k WD ˚ s

k C
b s
2 cX

jD1

.�1/ j� . n�kCs
2
/� . n

2
C s � 1 � j/

.4�/ jjŠ� . n�kCs
2

� j/� . n
2

C s � 1/Q
j˚

s�2j
k

and let �0
n WD ˚0

n . Then �
s
k is the trace free part of ˚

s
k . In particular, �

s
k � ˚ s

k
mod Q.

(ii) For 0 � k < n and s ¤ 1, ˚ s
k can be written in terms of � s0

k as

˚ s
k D � s

k C
b s
2 cX

jD1

�
�
n�kCs
2

�
� . n

2
C s � 2j/

.4�/ jjŠ� . n�kCs
2

� j/� . n
2

C s � j/
Qj�

s�2j
k :

The inversion which is needed to derive (ii) from (i) can be accomplished with the
help of Zeilberger’s algorithm.

The first and easier step in the explicit calculations of algebraic structures for
tensor valuations is to compute the convolution of two tensor valuations. Since ˚ s

k
is smooth (i.e., each component is a smooth valuation), we may write

˚ s
k.K/ D

Z
nc.K/

!k;s;

where !k;s is a smooth .n � 1/-form on the sphere bundle R
n � Sn�1 with values

in Syms
R

n. Next, for valuations represented by differential forms, there is an easy
formula for the convolution, which involves only some linear and bilinear operations
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(a kind of Hodge star and a wedge product). The resulting formula states that, for
k; l � n with k C l � n and s1; s2 ¤ 1, we have

˚
s1
k 	 ˚ s2

l D !s1Cs2C2n�k�l

!s1Cn�k!s2Cn�l

.n � k/.n � l/

2n � k � l

�
 
2n � k � l

n � k

! 
s1 C s2

s1

!
.s1 � 1/.s2 � 1/
1 � s1 � s2

˚
s1Cs2
kCl�n;

or, using the normalization (4.14) which is more convenient for this purpose,

�
s1
k 	 �s2

l D n

�kCl
n

�
�kCl

k

� .s1 � 1/.s2 � 1/
1 � s1 � s2

�
s1Cs2
kCl�n:

The computation of the Alesker-Fourier transform of tensor valuations is the
main step and will be explained in the next section. For 0 � k � n and s ¤ 1, the
result is

F.� s
k / D is � s

n�k;

F.˚ s
k/ D is

b s
2 cX

jD0

.�1/ j
.4�/ jjŠ

Qj˚
s�2j
n�k :

Finally, the product of two tensor valuations can be computed once the convo-
lution and the Alesker-Fourier transform are known, see (4.16). The result is a bit
more involved than the formulas for convolution and Alesker-Fourier transform. The
reason is that the formula for the convolution is best described in terms of the tensor
valuations ˚ s

k , while the description of the Alesker-Fourier transform has a simpler
expression for the � s

k .
After some algebraic manipulations (which make use of Zeilberger’s algorithm),

we arrive at

˚
s1
k � ˚ s2

l D kl

k C l

 
k C l

k

! b s1Cs2
2 cX

aD0
2a¤s1Cs2�1

1

.4�/aaŠ

�
 

aX
mD0

minfm;b s1
2 cgX

iDmaxf0;m�b s2
2 cg
.�1/a�m

 
a

m

! 
m

i

!
!s1Cs2�2mCkCl

!s1�2iCk!s2�2mC2iCl

�
 
s1 C s2 � 2m

s1 � 2i

!
.s1 � 2i � 1/.s2 � 2m C 2i � 1/

1 � s1 � s2 C 2m

!
Qa˚

s1Cs2�2a
kCl :

(4.20)
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Here 0 � k; l with k C l � n and s1; s2 ¤ 1. It seems that there is no simple closed
expression for the inner sum.

4.3.7 Tensor Valuations Versus Scalar-Valued Valuations

The interplay between tensor valuations and scalar-valued valuations will be
essential in the computation of the Alesker-Fourier transform. We therefore explain
this now is some more detail.

We first need some facts from representation theory. It is well-known that
equivalence classes of complex irreducible (finite-dimensional) representations of
SO.n/ are indexed by their highest weights. The possible highest weights are tuples
.
1; 
2; : : : ; 
b n

2 c/ of integers such that

1. 
1 � 
2 � � � � � 
b n
2 c � 0 if n is odd,

2. 
1 � 
2 � � � � � j
 n
2
j � 0 if n is even.

Given 
 D .
1; : : : ; 
b n
2 c/ satisfying this condition, we will denote the corre-

sponding equivalence class of representations by �
.
The decomposition of the SO.n/-module Valk has been obtained in [3].

Theorem 4.9 ([3]) There is an isomorphism of SO.n/-modules

Valk Š
M



�
;

where 
 ranges over all highest weights such that j
2j � 2, j
ij ¤ 1 for all i and

i D 0 for i > minfk; n � kg. In particular, these decompositions are multiplicity-
free.

Let � be an irreducible representation of SO.n/ and � � its dual. The space of k-
homogeneous SO.n/-equivariant� -valued valuations (i.e., maps˚ W K ! � such
that ˚.gK/ D g˚.K/ for all g 2 SO.n/) is .Valk ˝� /SO.n/ D HomSO.n/.�

�;Valk/.
By Theorem 4.9, � � appears in the decomposition of Valk precisely if �
appears, and in this case the multiplicity is 1. By Schur’s lemma it follows that
dim.Valk ˝� /SO.n/ D 1 in this case.

Let us construct the (unique up to scale) equivariant � -valued valuation explic-
itly. Denote by Valk.� / the � -isotypical summand, which is isomorphic to � since
Valk is multiplicity free.

Let �1; : : : ; �m be a basis of Valk.� /. These elements play two different roles:
first we can look at them as valuations, i.e., elements of Valk. Second, we may think
of �1; : : : ; �m as basis of the irreducible representation � . The action of SO.n/ on
this basis is given by

g�i D
X
j

c j
i .g/�j;
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where .c j
i .g//i;j is a matrix depending on g. The map g 7! .c j

i .g//i;j is a
homomorphism of Lie groups SO.n/ ! GL.m/.

Let ��
1 ; : : : ; �

�
m be the dual basis of � �. Then

g��
i D

X
j

.c j
i .g//

�t�j D
X
j

cij.g
�1/�j;

Using the double role played by the �i mentioned above, we set

˚.K/ WD
X
i

�i.K/�
�
i 2 � �: (4.21)

We claim that ˚ is an O.n/-equivariant valuation with values in � �. Indeed, we
compute

˚.gK/ D
X
i

�i.gK/�
�
i D

X
i

.g�1�i/.K/��
i

D
X
i;j

c j
i .g

�1/�j.K/��
i D

X
j

�j.K/
X
i

c j
i .g

�1/��
i

D
X
j

�j.K/g�
�
j D g.˚.K//:

Conversely, we now start with an equivariant � �-valued continuous translation
invariant valuation ˚ of degree k. Let w1; : : : ;wm be a basis of � �. Then we may
look at the components of ˚ , i.e., we decompose

˚.K/ D
X
i

�i.K/wi

with �i 2 Valk. Let the action of SO.n/ on � � be given by

gwi D
X
j

a j
i .g/wj:

We have

˚.gK/ D
X
i

�i.gK/wi D
X
i

.g�1�i/.K/wi;

g.˚.K// D
X
j

�j.K/gwj D
X
i;j

�j.K/a
i
j.g/wi:
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Comparing coefficients yields g�1�i D P
j a

i
j.g/�j, or

g�i D
X
j

aij.g
�1/�j:

This shows that the subspace of Valk spanned by �1; : : : ; �m is isomorphic to � .
In summary, we have shown the following fact.

Each SO.n/-irreducible representation � appearing in the decomposition of Valk corre-
sponds to the (unique up to scale) � �-valued continuous translation invariant valuation ˚
from (4.21). Conversely, the coefficients of a � �-valued continuous translation invariant
valuation span a subspace of Valk isomorphic to � .

Let us now discuss the special case of symmetric tensor valuations. The SO.n/-
representation space Syms is (in general) not irreducible. Indeed, the trace map
tr W Syms ! Syms�2 commutes with SO.n/, hence its kernel is an invariant
subspace. This subspace turns out to be the irreducible representation �.s;0;:::;0/ and
can be identified with the space H n

s of spherical harmonics of degree s.
Since the trace map is onto, we get the following decomposition.

Syms Š
M
j

H n
s�2j:

Instead of studying Syms-valued valuations, we can therefore study H n
s -valued

valuations. For s ¤ 1 and 1 � k � n�1, the representationH n
s appears in Valk with

multiplicity 1. Since H n
s is self-dual, the construction sketched above yields in the

special case � WD H n
s a unique (up to scale) H n

s -valued equivariant continuous
translation invariant valuation homogeneous of degree k, which we denoted by � s

k .

4.3.8 The Alesker-Fourier Transform

As we have seen in the previous section, the study of (symmetric) tensor valuations
and the study of the H s-isotypical summand of Valk are equivalent. For the
computation of the Alesker-Fourier transform, it is easier to work with scalar-
valued valuations. Let us first define a particular class of valuations, called spherical
valuations.

Let f be a smooth function on Sn�1. For k 2 f0; : : : ; n� 1g, we define a valuation
�k;f 2 Valk.Rn/ by

�k;f .K/ WD
 
n � 1
k

!
1

!n�k

Z
Sn�1

f .y/ Sk.K; dy/:

Such valuations are called spherical (see also [15]). Here the normalization
is chosen such that for f � 1 we have �k;f D Vk, k 2 f0; : : : ; n � 1g.
By Sect. 4.3.7, the components of an SO.n/-equivariant tensor valuation are
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spherical. Since the Alesker-Fourier transform of such a tensor valuation is defined
component-wise, it suffices to compute the Alesker-Fourier transform of spherical
valuations.

In this section, we sketch this (rather involved) computation. The first and easy
observation is that, by Schur’s lemma, there exist constants cn;k;s 2 C which only
depend on n; k; s such that

F.�k;f / D cn;k;s�n�k;f ; f 2 H n
s : (4.22)

The multipliers cn;k;s of the Alesker-Fourier transform can be computed in the even
case (i.e., if s is even) by looking at Klain functions. In the odd case, there seems to
be no easy way to compute them. We adapt ideas from [12], where the multipliers of
the ˛-cosine transform were computed, to our situation. The main point is that the
Alesker-Fourier transform is not only an SO.n/-equivariant operator, but (if written
in intrinsic terms) is equivariant under the larger group GL.n/. Using elements from
the Lie algebra gl.n/ allows us to pass from one irreducible SO.n/-representation to
another and to obtain a recursive formula for the constants cn;k;s, which states that

cn;k;sC2
cn;k;s

D � k C s

n � k C s
: (4.23)

This step requires extensive computations using differential forms, and we refer
to [6] for the details.

Next, one can use induction over s; k; n to prove that

cn;k;s D is
� . n�k

2
/� . sCk

2
/

� . k
2
/� . sCn�k

2
/
:

More precisely, in the even case, we may use as induction start the case s D 0,
which corresponds to intrinsic volumes, whose Alesker-Fourier transform is known
by (4.17).

In the odd case, we use as induction start s D 3. In order to compute cn;k;3, we
use a special case of a Crofton formula from [7] (see also Chap. 4) to compute the
quotients cn;kC1;3

cn;k;3
. This fixes all constants up to a scaling which may depend on n.

More precisely,

cn;k;s D "nis
� . n�k

2
/� . sCk

2
/

� . k
2
/� . sCn�k

2
/
; (4.24)

where "n depends only on n. Using functorial properties of the Alesker-Fourier
transform, we find that "n is independent of n. In the two-dimensional case, however,
there is a very explicit description of the Alesker-Fourier transform (see also
Example 3.18 (4)) which finally allows us to deduce that "n D 1 for all n � 2.
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A variant of this approach to determining the constants cn;k;s might be to prove
independently a Crofton formula for the tensor valuations � s

k . But still this will
leave the task of determining cn;1;s or cn;n�1;s. This point of view suggests to relate
the Fourier operator for spherical valuations to the Fourier operators for spherical
functions via the relation

F. N�k;f / D .2�/�
d
2 N�d�k;Ikf ;

for f 2 C1.Sd�1/, where

N�k;f .K/ D
 
d � 1
k

!
.2�/

k
2

Z
Sd�1

f .u/ Sk.K; du/;

is just a renormalization of �k;f .K/.

4.4 Kinematic Formulas

In this section, we first describe the interplay between algebraic structures and
kinematic formulas in general (i.e., for tensor valuations which are equivariant under
a group G acting transitively on the unit sphere). Then we will specialize to the
O.n/-covariant case.

4.4.1 Relation Between Kinematic Formulas and Algebraic
Structures

Let G be a subgroup of O.n/ which acts transitively on the unit sphere. Then the
space TVals;G.V/ of G-covariant, translation invariant continuous Syms.V/-valued
valuations is finite-dimensional. Next we define two integral geometric operators.
We start with the one for rotation sum formulas.

Let ˚ 2 TVals1Cs2;G.V/. We define a bivaluation with values in the tensor
product Syms1 V ˝ Syms2 V by

aGs1;s2 .˚/.K;L/ WD
Z
G
.id˝s1 ˝ g˝s2/˚.K C g�1L/ �.dg/

for K;L 2 K .V/, where G is endowed with the Haar probability measure �
(see [16]). (This notation is consistent with the case V D R

n and G D O.n/.)
Let ˚1; : : : ; ˚m1 be a basis of TVals1;G.V/, and let �1; : : : ; �m2 be a basis of

TVals2;G.V/. Arguing as in the classical Hadwiger argument (cf. [16, Theorem 4.3]),
it can be seen that there are constants c˚ij such that

aGs1;s2 .˚/.K;L/ D
X
i;j

c˚ij ˚i.K/˝ �j.L/
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for K;L 2 K .V/. The additive kinematic operator is the map

aGs1;s2 W TVals1Cs2;G.V/ ! TVals1;G.V/˝ TVals2;G.V/

˚ 7!
X
i;j

c˚ij ˚i ˝ �j;

which is independent of the choice of the bases.
In view of intersectional kinematic formulas, we define a bivaluation with values

in Syms1 V ˝ Syms2 V by

kGs1;s2 .˚/.K;L/ WD
Z

NG
.id˝s1 ˝ g˝s2/˚.K \ Ng�1L/ �.dNg/

for K;L 2 K .V/, where NG is the group generated by G and the translation group
of V , endowed with the product measure � of � and a translation invariant Haar
measure on V , and where g is the rotational part of Ng. Again this notation is
consistent with the special case where NG D Gn is the motion group, G D O.n/ and
� is the motion invariant Haar measure with its usual normalization as a ‘product
measure’. Choosing bases and arguing as above, we find

kGs1;s2 .˚/.K;L/ D
X
i;j

d˚ij ˚i.K/˝ �j.L/ (4.25)

for K;L 2 K .V/. Of course, the constants d˚ij depend on the chosen bases and on
˚ , but the operator, called intersectional kinematic operator,

kGs1;s2 W TVals1Cs2;G.V/ ! TVals1;G.V/˝ TVals2;G.V/

˚ 7!
X
i;j

d˚ij ˚i ˝ �j;

is independent of these choices.
In the following, we explain the connection between these operators and then

provide explicit examples.
For this we first lift the Poincaré duality maps to tensor-valued valuations. Let

V be a Euclidean vector space with scalar product h � ; � i. For s � r we define the
contraction map by

contr W V˝s � V˝r ! V˝.r�s/;

.v1 ˝ � � � ˝ vs;w1 ˝ � � � ˝ wr/ 7! hv1;w1ihv2;w2i � � � hvs;wsiwsC1 ˝ � � � ˝ wr;

and linearity. This map restricts to a map contr W Syms V � Symr V ! Symr�s V . In
particular, if r D s, the map Syms V � Syms V ! R is the usual scalar product on
Syms V , which will also be denoted by h � ; � i.
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The trace map tr W Syms V ! Syms�2 V is defined by restriction of the map
V˝s ! V˝.s�2/, v1 ˝ � � � ˝ vs 7! hv1; v2iv3 ˝ � � � ˝ vs, for s � 2.

The scalar product on Syms V induces an isomorphism qs W Syms V !
.Syms V/� and we set

pdsc W TVals;1 D Val1 ˝ Syms V
pdc ˝qs����! .Val1/� ˝ .Syms V/� D .TVals;1/�;

pdsm W TVals;1 D Val1 ˝ Syms V
pdm ˝qs�����! .Val1/� ˝ .Syms V/� D .TVals;1/�:

From Proposition 4.7 it follows easily that

pdsm D .�1/s pdsc : (4.26)

Finally, we write

m; c W TVals1;1.V/˝ TVals2;1.V/ ! TVals1Cs2;1.V/

for the maps corresponding to the product and the convolution. Moreover, we write
mG; cG for the restrictions of these maps to the corresponding spaces of G-covariant
tensor valuations.

Theorem 4.10 Let G be a compact subgroup of O.n/ acting transitively on the unit
sphere. Then the diagram

commutes and encodes the relations between product, convolution, Alesker-Fourier
transform, intersectional and additive kinematic formulas.

This diagram allows us to express the additive kinematic operator in terms of the
intersectional kinematic operator, and vice versa, with the Fourier transform as the
link between these operators.
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Corollary 4.11 Intersectional and additive kinematic formulas are related by the
Alesker-Fourier transform in the following way:

aG D .F�1 ˝ F
�1/ ı kG ı F;

or equivalently

kG D .F ˝ F/ ı aG ı F
�1:

This follows by looking at the outer square in Theorem 4.10, by carefully taking
into account the signs coming from (4.26).

4.4.2 Some Explicit Examples of Kinematic Formulas

We start with a description of a Crofton formula for tensor valuations. Combining
the connection between Crofton formulas and the product of valuations (see [4,
(2) and (16)]) and the explicit formulas for the product of tensor valuations given
in (4.20), we obtain

Z
A.n;n�l/

˚ s
k.K \ E/ �n�l.dE/ D

�
n
l

��1 �
˚ s

k � ˚0
l

�
.K/

D
�
n
l

��1  
k C l

k

!
kl

k C l

b s
2cX

aD0;2a¤s�1

1

.4�/aaŠ

�
aX

mD0
.�1/a�m

 
a

m

!
!s�2mCkCl

!s�2mCk!l
Qa˚ s�2a

kCl :

After simplification of the inner sum by means of Zeilberger’s algorithm, we
obtain the Crofton formula in the ˚-basis which was obtained in [6].

Theorem 4.12 If k; l � 0 with k C l � n and s 2 N0, then

Z
A.n;n�l/

˚ s
k.K \ E/ �n�l.dE/ D

�
n
l

��1  
k C l

k

!
kl

2.k C l/

1

�
�
kClCs
2

�

�
b s
2 cX

jD0

�
�
l
2

C j
�
�
�
kCs
2

� j
�

.4�/ jjŠ
Qj˚

s�2j
kCl .K/:

The result is also true in the cases k; l 2 f0; ng, if the right-hand side is interpreted
properly; see the comments after [6, Theorem 3]. The same is true for the next result.
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Comparing the trace-free part of this formula (or by inversion), we deduce the
Crofton formula for the � -basis, in which the result has a particularly convenient
form.

Corollary 4.13 If k; l � 0 and k C l � n, then

Z
A.n;n�l/

� s
k .K \ E/ �n�l.dE/ D !sCkCl

!sCk!l

 
k C l

k

!
kl

k C l

�
n
l

��1
� s
kCl.K/:

Alternatively, as observed in [10], Corollary 4.13 can be deduced from (4.12),
and then Theorem 4.12 can be obtained as a consequence.

Thus, having now a convenient Crofton formula for tensor valuations, we deduce
from Hadwiger’s general integral geometric theorem an intersectional kinematic
formula in the � -basis.

Theorem 4.14 Let K;M 2 K n and j 2 f0; : : : ; ng. Then
Z

Gn

� s
j .K \ gM/ �.dg/ D

nX
kDj

!sCk

!sCj�k�j

 
k � 1

j � 1

!�
n

k � j

��1
� s
k .K/Vn�kCj.M/:

Let us now prove some more refined intersectional kinematic formulas. In
principle, we could also use Corollary 4.11 to find the intersectional kinematic
formulas once we know the additive formulas. The problem is that (4.15) only gives
us the value of as1;s2 on the basis element �s1Cs2

j , but not on multiples of such basis
elements with powers of the metric tensors. However, such terms appear naturally
in the Fourier transform.

We therefore use Theorem 4.10 with V D R
n and G D O.n/, more precisely the

lower square in the diagram.
In (4.20) we have computed the product of two tensor valuations. For fixed

(small) ranks s1; s2, the formula simplifies and can be evaluated in a closed form.
For instance, if 1 � k; l with k C l � n and s1 D s2 D 3, we get

˚3
k � ˚3

l D .k C 1/.l C 1/�
�
kClC1
2

�
�

5
2 .k C l C 4/.k C l C 2/.k C l/�

�
k
2

�
�
�
l
2

�

�
�

� 32˚6
kCl�

3 C 8Q˚4
kCl�

2 � Q2˚2
kCl� C 1

12
Q3˚0

kCl

�
: (4.27)

Let us next work out the vertical arrows in the diagram of Theorem 4.10, that is,
the Poincaré duality pdm. Again, this is a computation involving differential forms.
The result (see [6, Corollary 5.3]) is

hpdsm.˚
s
k/; ˚

s
n�ki D .�1/s 1 � s

�ssŠ2

 
n

k

!
k.n � k/

4

�
�
kCs
2

�
�
�
n�kCs
2

�
�
�
n
2

C 1
� : (4.28)
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We now explain how to compute the intersectional kinematic formula kO.n/
3;3 with

this knowledge.
Since ˚1

m � 0, it is clear that there is a formula of the form

kO.n/
3;3 .˚

6
i / D

X
kClDnCi

an;i;k˚
3
k ˝ ˚3

l

with some constants an;i;k which remain to be determined. Fix k; l with kC l D nC i.
Using (4.28), we find

hpd3m ˚
3
k ; ˚

3
n�ki D 1

72�3

 
n

k

!
k.n � k/

� . kC3
2
/� . n�kC3

2
/

� . n
2

C 1/
;

hpd3m ˚
3
l ; ˚

3
n�li D 1

72�3

 
n

l

!
l.n � l/

� . lC3
2
/� . n�lC3

2
/

� . n
2

C 1/
;

and therefore

h.pd3m ˝ pd3m/ ı kO.n/
3;3 .˚

6
i /; ˚

3
n�k ˝˚3

n�li

D an;i;k
1

72�3

 
n

k

!
k.n � k/

� . kC3
2
/� . n�kC3

2
/

� . n
2

C 1/

� 1

72�3

 
n

l

!
l.n � l/

� . lC3
2
/� . n�lC3

2
/

� . n
2

C 1/
:

On the other hand, by (4.27) and (4.28),

hm�
O.n/ ı pd6m.˚

6
i /; ˚

3
n�k ˝ ˚3

n�li D hpd6m.˚
6
i /; ˚

3
n�k � ˚3

n�li

D .n � k C 1/.n � l C 1/� . n�iC1
2
/

�
5
2 .n � i C 4/.n � i C 2/.n � i/� . n�l

2
/� . n�k

2
/

� ˝pd6m.˚
6
i /;�32˚6

n�i�
3 C 8Q˚4

n�i�
2 � Q2˚2

n�i� C 1
12
Q3˚0

n�i

˛

D 1

207360

.k � n � 1/.i � k � 1/� . nC1
2
/.i C 1/.i � 1/.i � 3/

�5� . iC1
2
/� . n�k

2
/� . k�i

2
/

:

Comparing these expressions, we find that

an;i;k D .i C 1/.i � 1/.i � 3/
40� . nC1

2
/� . iC1

2
/

� . k
2
/� . l

2
/

.k C 1/.l C 1/
:

We summarize the result in the following theorem.
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Theorem 4.15 Let K;M 2 K n and i 2 f0; : : : ; n � 1g. Then
Z

Gn

.id˝3 ˝ g˝3/˚6
i .K \ g�1M/ �.dg/

D .i C 1/.i � 1/.i � 3/
40� . nC1

2
/� . iC1

2
/

X
kClDnCi

� . k
2
/� . l

2
/

.k C 1/.l C 1/
˚3

k .K/˝ ˚3
l .M/:

The same technique can be applied to all bidegrees, but it seems hard to find a
closed formula which is valid simultaneously in all cases.
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