
Chapter 3
Structures on Valuations

Semyon Alesker

Abstract In recent years on the space of translation invariant continuous valuations
there have been discovered several canonical structures. Some of them turned out
to be important for applications in integral geometry. In this chapter we review
the relevant background and the main properties of the following new structures:
product, convolution, Fourier type transform, and pull-back and push-forward of
valuations under linear maps.

3.1 Preliminaries

Let V be a finite dimensional real vector space, n D dimV . Let Val.V/ denote
the space of translation invariant continuous valuations on K .V/. We have the
following important result called McMullen’s decomposition [17] with respect to
degrees of homogeneity:

Val.V/ D
nM

iD0
Vali.V/:

It turns out that one can classify valuations in degrees of homogeneity 0, n, and
n � 1:
Theorem 3.1

(i) (Obvious) Val0.V/ D C � �.
(ii) (Hadwiger [14]) Valn.V/ D C � voln.
(iii) (McMullen [18]) Let us describe Valn�1.V/. Fix a Euclidean metric on V

for convenience. For any � 2 Valn�1.V/ there exists a continuous function
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f W Sn�1 ! C such that for any K 2 K .V/

�.K/ D
Z

Sn�1

f .!/dS.K; !/: (3.1)

Moreover the function f is defined uniquely by � up to addition of a linear
functional. Conversely any above expression belongs to Valn�1.V/. (Here
S.K; � / denotes the surface area measure of a convex body K, see [21].)

Let us also state a very important characterization of simple translation invariant
continuous valuations due to Klain [15] and Schneider [20] from 1995 which is
used a lot in the theory. A valuation is called simple if it vanishes on convex sets of
dimension less than dimV .

Theorem 3.2 (Klain–Schneider) Let � be a simple continuous translation invari-
ant valuation onK .V/. Fix a Euclidean metric on V for convenience; n WD dimV.
Then � can be presented

�.K/ D a � vol.K/C
Z

Sn�1

f .!/dS.K; !/ for any K 2 K .V/;

where a 2 C, f is a continuous odd function on Sn�1; the constant a is determined
uniquely, and f is unique up to a linear functional. Furthermore any such expression
(with f being odd) is a simple translation invariant continuous valuation.

We have further decomposition with respect to parity:

Vali.V/ D ValCi .V/˚ Val�i .V/:

The group GL.V/ acts linearly and continuously on Val.V/ preserving the above
decompositions:

g.�/.K/ D �.g�1K/;

for any g 2 GL.V/; � 2 Val.V/;K 2 K .V/.

Theorem 3.3 (Irreducibility Theorem, Alesker [1]) For any i the spaces
Vali̇ .V/ are topologically irreducible representations of GL.V/, i.e. they have
no proper GL.V/-invariant closed subspaces.

Remark 3.4 This theorem easily implies the so calledMcMullen’s conjecture which
says that linear combinations of valuations of the form vol. � CA/ where A 2 K .V/
are dense in Val.V/.
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Definition 3.5 A valuation � 2 Val.V/ is called smooth if the map GL.V/ !
Val.V/ given by g 7! g.�/ is C1-differentiable.

It is well known in representation theory (and not hard to see) that the subset
Val1.V/ of smooth valuations is a linear GL.V/-invariant subspace dense in Val.V/.
Moreover it has a canonical Fréchet topology which is stronger than that induced
from Val.V/. The action of GL.V/ on Val1.V/ is still continuous. Versions of the
McMullen’s decomposition and irreducibility theorem still hold for Val1.V/.

Example 3.6

(1) Let A 2 K .V/ has infinitely smooth boundary and strictly positive Gauss
curvature. Then the valuation vol. � C A/ is smooth.

(2) (Alesker [3]) Let G � O.n/ be a compact subgroup acting transitively on the
unit sphere Sn�1. Then Val.V/G � Val1.V/; actually Val.V/G is also finite
dimensional in this case.

(3) Let us give an example of non-smooth valuation. Fix a proper linear subspace
E � V . Let pWV ! E be a linear projection. Fix a Lebesgue measure volE on
E. Then K 7! volE. p.K// is a continuous, but not smooth valuation.

Remark 3.7 There is an equivalent description of smooth translation invariant
valuations in terms of differential forms [4]: a valuation � 2 Val.V/ is smooth if
and only if it can be presented in the form

�.K/ D
Z

nc.K/
! C a � vol.K/;

where ! in an infinitely smooth differential .n � 1/-form on spherical bundle
V � PC.V/ (here PC.V/ WD .Vnf0g/=R>0/, nc.K/ � V � PC.V/ is the normal
cycle of K defined in Sect. 2.6 in this book, and a is a constant. This description
turned out to be very useful for subsequent developments.

We will also need the notion of the Klain imbedding for even valuations. For
convenience we will fix again a Euclidean metric on V . Let us construct a linear
continuous map

KlWValCk .V/ ! C.Grk.V//

as follows. Let � 2 ValCk .V/. For any Ek 2 Grk.V/ the restriction �jEk 2 Valk.Ek/.
By the mentioned above Hadwiger theorem �jEk D c.E/ volE. The map � 7! c is
the required Klain map. The main theorem proved by Klain [16] (based on [15])
is that this map is injective. Sometimes c is called the Klain function of � and is
denoted by Kl� .

The Klain map on smooth valuationsKlWVal1C
k .V/ ! C1.Grk.V// has a closed

image which can be characterized in terms of decomposition under the SO.n/-
action [7]. (Note that it is harder to describe exactly the image of Kl of continuous
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valuations in continuous functions: very recently it was shown not to be a closed
subspace (see Parapatits and Wannerer [19] and Alesker and Faifman [8]).)

3.2 Product on Valuations

The goal of this section is to introduce the canonical product on Val1.V/ and
describe some if its properties. We will start with a slightly more refined notion:
exterior product.

Theorem 3.8 There exists a bilinear map, called exterior product,

�WVal1.V/ � Val1.W/ ! Val.V � W/

which is uniquely characterized by the following properties:

• it is continuous with the usual topology on Val and the Garding topology on
Val1;

• if �. � / D volV. � C A/;  . � / D volW. � C B/ then

.� �  /. � / D .volV � volW/. � C .A � B//:

Note that the uniqueness follows from the McMullen’s conjecture. But existence
is a non-trivial statement which is based not only on the irreducibility theorem.
The general idea of the proof is that any smooth valuation can be presented as a
rapidly convergent (in Val1.V/) series of the form

P
p ˛p volV. � C Ap/. For two

such expressions there is only one way to define their exterior product satisfying the
properties of the theorem. However a presentation of a valuation as such a series is
non-unique, and one has to check that the product is independent of a presentation.
This last step we will demonstrate now assuming for simplicity that all series are in
fact finite sums. Assume that � has two presentations

� D
X

p

˛p volV . � C Ap/ D
X

p

˛0
p volV. � C A0

p/:

For  we fix a similar presentation and show that � �  is independent of the
presentation of �. Thus we may assume that  has a single summand

 D volW. � C B/:



3 Structures on Valuations 71

For any K 2 K .V � W/ we have

.� �  /.K/ D
X

p

˛p.volV � volW/.K C .Ap � B//

D
Z

y2W
d volW.y/

X

p

˛p volV
�
ŒK C .Ap � B/�\ ŒV � fyg��

D
Z

y2W
d volW.y/

X

p

˛p volV
�f.K C .f0g � B//\ .V � fyg/g C Ap

�

D
Z

y2W
d volW.y/� .ŒK C .f0g � B/�\ .V � fyg// ;

where the second equation is based on Fubini’s theorem. From the last expression
we see that the exterior product does not depend on presentation of �.

Let us define the product on Val1.V/.

Definition 3.9 For �; 2 Val1.V/ let us define the product

.� �  /.K/ WD .� �  /.�.K//;

where K 2 K .V/, �WV ,! V � V is the diagonal imbedding.

Theorem 3.10 (Alesker [3])

(1) The product is a bilinear continuous map

Val1.V/ � Val1.V/ ! Val1.V/:

(2) Equipped with this product, Val1.V/ becomes a commutative associative
graded algebra with a unit (unit is the Euler characteristic; the grading is given
by the McMullen’s decomposition).

(3) For any 0 � i � n the bilinear map given by the product

Val1i .V/ � Val1n�i.V/ ! Valn.V/ D C � volV
is a perfect pairing, i.e. the induced map Val1i .V/ ! .Val1n�i.V//

� ˝ Valn.V/
is injective with image dense in the weak* topology.

Remark 3.11 When the two valuations are given by differential forms on the
spherical bundle as in Remark 3.7 then their product also can be described by an
differential form expressed explicitly via the given forms by a rather complicated
formula [6].

The following result is a version of the hard Lefschetz type theorem. In this form
it was proved by Alesker [5], but the proof is heavily based on a different version
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of the hard Lefschetz theorem which in full generality was proved by Bernig and
Bröcker [9] and earlier in the even case by Alesker [2].

Theorem 3.12 Fix a Euclidean metric on V. Let 0 � i < n=2. The map

Val1i .V/ ! Val1n�i.V/

given by � 7! Vn�2i
1 � �, is an isomorphism. (Here V1 is the first intrinsic volume as

usual.)

Remark 3.13 This theorem immediately implies that the operator Val1i .V/ !
Val1iCj.V/ given by � 7! Vj

1 �� is injective for j � n�2i and surjective for i � n�2i.
The product structure has been computed in some cases.

Example 3.14

(1) (Alesker [3]) Let

�.K/ D V.KŒi�;A1; : : : ;An�i/;  .K/ D V.KŒn � i�;B1; : : : ;Bi/:

Then

� �  D V.A1; : : : ;An�i;�B1; : : : ;�Bi/ � vol :

(2) ValO.n/.Rn/ is isomorphic as a graded algebra to CŒt�=.tnC1/ where t D V1.
(3) A geometric description of the space ValU.n/.Cn/ of unitarily invariant valua-

tions was obtained by Alesker [2] in 2003. Fu [12] has obtained in 2006 the
following beautiful description of the algebra structure of ValU.n/.Cn/ in terms
of generators and relations:

ValU.n/.Cn/ D CŒs; t�=. fnC1; fnC2/;

where deg s D 2; deg t D 1 and the polynomial fi is the degree i term of the
power series log.1C s C t/.

(4) Some non-trivial examples of the product of tensor valued valuations were
recently computed by Bernig and Hug [11]; see also Chap. 3 in this book.

3.3 Convolution of Valuations

We denote by D.V�/ the space of complex valued Lebesgue measures on V�.

Theorem 3.15 (Bernig-Fu [10]) There exists a bilinear map called convolution

�W �
Val1.V/˝ D.V�/

� � �
Val1.V/˝ D.V�/

� ! Val1.V/˝ D.V�/
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which is uniquely characterized by the following properties:

• continuity in the Garding topology;
• if �. � / D vol. � C A/˝ vol�1;  . � / D vol. � C B/˝ vol�1, then

.� �  /. � / D vol. � C A C B/˝ vol�1;

where vol�1 is the Lebesgue measure on V� such that for any basis e1; : : : ; en of V
spanning the parallelepiped of unit volume with respect to vol, the parallelepiped
in V� spanned by the dual basis e�

1 ; : : : ; e
�
n has the unit volume with respect to

vol�1.

Equipped with this product, Val1.V/˝ D.V�/ becomes a commutative associative
graded algebra with the unit, when the unit is vol˝ vol�1, and the grading is
.n � deg of homogeneity/.

The uniqueness again follows immediately from McMullen’s conjecture. The
existence is non-trivial. Later we will deduce it from existence of exterior product
on valuations.

Remark 3.16 If two valuations are given by differential forms as in Remark 3.7
then their convolution can be given by a differential form expressed by an explicit
formula via the two given forms [10].

3.4 Fourier Type Transform on Valuations

It turns out that the algebras .Val1.V/; � / and .Val1.V�/ ˝ D.V/;�/ are isomor-
phic. We are going to discuss a specific isomorphism between them, called a Fourier
type transform, which has some additional interesting properties.

Theorem 3.17 (Alesker [5]) There exists an isomorphism of algebras

FWVal1.V/ ��! Val1.V�/˝ D.V/

which has the following extra properties:

• F is an isomorphism of linear topological spaces.
• F commutes with the natural action of GL.V/ on both spaces.
• (Plancherel type inversion formula) Consider the composition EV:

Val1.V/ FV��! Val1.V�/˝ D.V/
FV�

˝IdD.V/��������! Val1.V/˝ D.V�/˝ D.V/„ ƒ‚ …
'C

D Val1.V/:

Then .EV�/.K/ D �.�K/.
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The construction of the Fourier transform is rather difficult and uses some more
of representation theory. Nevertheless in few examples the Fourier transform can be
computed. In the case of even valuations there is another description using the Klain
function. In the rest of this section we will discuss this material.

Below for simplicity we will fix a Euclidean metric on V . Hence we get
identifications V� ' V and D.V/ ' C. Thus FWVal1.V/ ��! Val1.V/ commutes
with O.n/, but not with GL.V/.

Example 3.18

(1) FV.�/ D volV .
(2) FV.volV/ D �.
(3) F.Vi/ D ci;nVn�i and the constant ci;n can be written down explicitly. Indeed this

(without the exact value of the constant) follows from the Hadwiger theorem.
(4) Assume dimV D 2. Given the first two examples and McMullen’s decompo-

sition, it remains to describe F on 1-homogeneous smooth valuations. Fix a
Euclidean metric and an orientation on V . Let JWV ! V be the operator of
rotation by �=2 counterclockwise.

By the Hadwiger’s theorem [13] (which now follows from McMullen’s
description of .n � 1/-homogeneous valuations from Sect. 3.1) any such
valuation � has the form

K 7!
Z

S1
f .!/dS.K; !/;

where f 2 C1.S1/ is defined uniquely up to a linear functional. Decompose f
into the even and odd parts:

f D fC C f�:

Furthermore let us decompose the odd part f� D f hol� C f anti� into holomorphic
and anti-holomorphic parts as follows. First decompose f� into the usual Fourier
series on S1:

f�.!/ D
X

k2Z
Of�.k/eik!:

Then define

f hol� .!/ WD
X

k>0

Of�.k/eik!; f anti� .!/ WD
X

k<0

Of�.k/eik!:



3 Structures on Valuations 75

Then the Fourier transform of � is

.F�/.K/

D
Z

S1
fC.J!/dS.K; !/C

Z

S1
f hol� .J!/dS.K; !/�

Z

S1
f anti� .J!/dS.K; !/:

(5) For even smooth valuations there is a simple description of the Fourier trans-
form in terms of the Klain functions; historically this was the first construction
of the Fourier transform (Alesker [2]). Fix a Euclidean metric on V for the
simplicity of notation. Let � 2 Val1C

k .V/. Then for any Fn�k 2 Grn�k.V/ one
has

KlF�.F/ D Kl�.F
?/:

Thus the Fourier transform can be easily described on the language of functions
on Grassmannians. The non-trivial point is that given a smooth Klain function
of a valuation then the transformed function indeed corresponds to some
valuation (the uniqueness follows from the Klain’s theorem). This follows
from the description of the image of the Klain map obtained by Alesker and
Bernstein [7].

(6) Recently Bernig and Hug [11] have made some explicit non-trivial computa-
tions of the Fourier transform on odd valuations in dimensions higher than 2
in order to obtain kinematic formulas for tensor valuations; see also Chap. 3 of
this book.

3.5 Pull-Back and Push-Forward on Valuations

In this section we discuss, following [5], operations of pull-back and push-forward
on valuations under linear mappings and their relations to product, convolution and
the Fourier transform. In particular we claim that the convolution on valuations can
be presented as composition of the exterior product and push-forward under the
addition map aWV � V ! V; that will provide another explanation why convolution
is well defined (given the exterior product).

Let us start with the notion of pull-back under a linear map f WV ! W. Define
the pull-back map

f �WVal.W/ ! Val.V/ (3.2)

by . f ��/.K/ D �. f .K//. Obviously f � is linear and continuous, it preserves degree
of homogeneity. Clearly

. f ı g/� D g� ı f �:
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A formal simple remark is that if �WV ,! V � V is the diagonal imbedding then

� �  D ��.� �  /:

The push-forward map

f�WVal.V/˝ D.V�/ ! Val.W/˝ D.W�/

is going to be a linear continuous map. In order to motivate somehow its introduc-
tion, let us have some non-rigorous remarks. f� is going to be dual to f � in the
following not very precise sense.

Consider the bilinear map Val1.V/�Val1.V/ ! Valn.V/ D D.V/ given by the
product and taking the n-th homogeneous component. By the Poincaré duality the
induced map

Val1.V/˝ D.V�/ ! .Val1.V//�

is injective and has a dense image in the weak* topology. Informally speaking, up
to a completion in appropriate topology, the dual of Val‹.V/ is equal to Val‹.V/ ˝
D.V�/, where Val‹.V/ is a class of valuations of unspecified class of smoothness.
Hence, with these identifications, the dual of f � from (3.2) should lead to a linear
map which we call push-forward and denote f�:

f�WVal‹.V/˝ D.V�/ ! Val‹.W/˝ D.W�/:

A closer investigation of this map shows that in fact f� is a continuous linear map
between spaces of continuous (!) valuations (twisted by densities):

f�WVal.V/˝ D.V�/ ! Val.W/˝ D.W�/:

It does satisfy the property

. f ı g/� D f� ı g� (3.3)

as it should be by dualizing the corresponding property of the pull-back.
Now we have to describe f� more explicitly. By the property (3.3) and since every

linear map can be presented as composition of injective and surjective linear maps,
it suffices to do that only in these two cases.

Assume first f WV ! W is onto. To simplify the notation, we may assume that
W is a subspace of V , and may choose a Euclidean metric on V such that f is the
orthogonal projection. This choice of metric also induces isomorphisms

D.V/ ' D.W/ ' D.W?/ ' C
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and the same for dual of V;W;W?. Let � 2 Val.V/ ˝ D.V�/ ' Val.V/. Fix any
K 2 K .W/. Let us choose QK 2 K .V/ such that f . QK/ D K. For any � � 0 consider
the valuation onK .W?/

R 7! �.�R C QK/:

By McMullen’s decomposition, this is a polynomial in � of degree at most k WD
dimW?. The highest degree term is the k-homogeneous valuation onW?, hence by
Hadwiger’s theorem it is proportional to volk.R/. The coefficient depends on � and
QK (but not on R of course). Moreover one can show that it depends only on K rather
than on QK (the proof I know uses the McMullen’s conjecture). More precisely we
have

�.�R C K/ D 1

kŠ
�k volk.R/ � . f��/.K/C O.�k�1/:

Thus we got a description of f� for surjective maps.
Before we describe f� for injective maps, let us say that the convolution on

valuations can be describe as

� �  D a�.� �  /;

where aWV � V ! V is the addition map (which is of course surjective).
Let now f WV ! W be an injective map. It is convenient to assume without loss

of generality that V is a subspace of W, and f is the identity imbedding. We fix a
Euclidean metric on W and use various identifications it induces. Let � 2 Val.V/
and K 2 K .W/. Then

. f��/.K/ D
Z

y2V?

�.K \ .y C V//d volV?
.y/:

Finally let us discuss the relation of pull-back and push-forward to the Fourier
transform. We will do it here in a non-rigorous way for the sake of simplicity. Let
f WV ! W be a linear map, and f_WW� ! V� be the dual map. Then we should
have the following non-rigorously stated identity

FV ı f � D . f_/� ı FW :

This identity is non-rigorous because the Fourier transform is defined on the class
of smooth valuations which is not preserved under the pull-back and push-forward
maps.
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