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Preface

The purpose of this volume is to give an up-to-date introduction to tensor valuations
and their applications on a graduate level. A valuation is a finitely additive mapping.
Since Dehn’s use of real-valued valuations to give a negative answer to Hilbert’s
third problem in 1900, the theory of valuations has been extended considerably and
found widespread use in applied sciences like biology, materials sciences, medicine
and physics. At the end of the twentieth century, McMullen and several other authors
started to consider tensor-valued valuations, but the research only gained momentum
when Alesker could show a characterization theorem for tensor valuations which
satisfy certain natural geometric and topological requirements, thus mirroring the
corresponding result for real-valued valuations by Hadwiger from the 1950s. In
the last decades, the intensive use of algebraic methods and representation theory
yielded a wealth of new results, including important integral geometric formulae
for tensor valuations. At the same time, the application of tensor valuations was
starting in stochastic geometry and a number of applied research areas, primarily
with the purpose of quantifying the morphology and anisotropy of complex spatial
structures.

In 2011 a very close collaboration between the Centre for Stochastic Geometry
and Advanced Bioimaging (CSGB) and the DFG funded research group Geometry
and Physics of Spatial Random Systems (GPSRS) started, where one of the main
goals was to advance theoretical research and applications of tensor valuations. The
GPSRS, with research groups from Karlsruhe Institute of Technology and the Uni-
versity of Erlangen-Nürnberg, combined fundamental mathematical research with
studies in the physical sciences, enabling fruitful interdisciplinary collaborations.
The CSGB group from the University of Aarhus, supported by the Danish Villum
Foundation, made a number of contributions to the basic theory of tensor valuations
and developed applications in biology and imaging. In view of the many new
developments, these two research groups jointly organized the Workshop on Tensor
Valuations in Stochastic Geometry and Imaging during September 21–26, 2014, at
the Sandbjerg Estate in Southern Denmark. Most of the eight invited speakers of this
workshop gave lectures of twice 45 min introducing their field of expertise on an
accessible graduate level. Extended transcripts of these lectures form the backbone

v



vi Preface

of this book and have been complemented by invited contributions to broaden the
scope.

The book develops around the central notion of Minkowski tensors, which
are tensor-valued valuations, typically defined on the family of convex bodies in
n-dimensional Euclidean space. They are isometry covariant and continuous with
respect to the Hausdorff metric. The most important special cases—also those
that have attracted most attention in the past—are the Minkowski tensors of rank
zero, the intrinsic volumes. Many of the results presented in this volume were
historically formulated for these scalar-valued valuations and later extended to
general Minkowski tensors.

Since Blaschke introduced integral geometry as a subject of its own, integral
geometric formulae have been playing a prominent role in the theory of valuations.
Federer even stated that for a theory of curvature measures ‘to be worthwhile’, it
must contain versions of the principal kinematic formula (and the Gauss-Bonnet
theorem). Integral geometric formulae are also crucial for applications because
they can be used as tools in image reconstruction and stereology, as exemplified
in Chap. 14. Integral geometric relations play also a prominent role in this volume.
In Chaps. 4 and 5, versions of the classical Crofton formula are stated for Minkowski
tensors. They are kinematic in nature, as they involve the intersection of a
convex body with an invariantly translated and rotated flat. Important stereological
applications in confocal microscopy are often based on flat sections through a
reference point and thus require rotational Crofton formulae, where the integration
over translations is omitted. Rotational Crofton formulae are presented in Chap. 7.
Hadwiger’s general integral geometric theorem allows to derive principal kinematic
formulae from (kinematic) Crofton formulae, and this is outlined in Chap. 4. To
treat non-isotropic Boolean models, a translative version of the principal kinematic
formula is needed and thus provided in Chap. 11, even in an iterated form. Finally,
rotation sum formulae for certain tensor valuations are given in Chap. 4.

The book is organized as follows. The first two chapters lay the foundations by
introducing valuations and giving characterization theorems. Chapter 1 gives an
overview of the status of the field prior to the recent advances first by Alesker and
later by others who exploited algebraic methods in integral geometry. It gives a
smooth introduction into the classical facts. It also introduces support, curvature
and area measures as important examples of measure-valued valuations. In Chap. 2,
Minkowski tensors are introduced and their properties are explained. In particular,
Alesker’s characterization theorem is given, stating that the vector space of all
continuous isometry covariant tensor valuations on convex bodies is spanned by
combinations of Minkowski tensors and the metric tensor. A similar characterization
theorem is then established for local versions of the Minkowski tensors, where it
surprisingly turns out that the latter class is richer than in the global case.

The next four chapters give an introduction to aspects of ‘algebraic integral
geometry’. Chapters 3 and 4 introduce algebraic structures on certain subspaces
of tensor valuations. Significant in their own right, these concepts are particularly
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valuable to derive integral geometric results. Chapter 3 introduces product, convo-
lution, the Alesker-Fourier transform and pull-back and push-forward of valuations
under linear maps. This chapter only treats the case of scalar-valued valuations.
Tensor-valued versions are given in Chap. 4 and their close connection to integral
geometric relations is revealed. This is then exploited to obtain rotation sum
formulae and a considerably simplified Crofton formula for translation invariant
tensor valuations. More general Crofton formulae, also for surface area measures,
are outlined as well. Chapter 5 varies and extends the Crofton formulae of the
foregoing chapter in several respects. Firstly, it states intrinsic versions, where the
intersection of the convex body with the integration plane E is considered as a
subset of E. Secondly, it shows that Crofton formulae can also be stated for tensorial
curvature measures, which are versions of the Minkowski tensors localized in R

n.
The algebraic methods outlined in Chaps. 3 and 4 are also principal tools of Chap. 6.
A decomposition of the space of continuous and translation invariant valuations into
a sum of SO.n/-irreducible subspaces is discussed. This result leads to a Hadwiger-
type theorem for translation invariant and SO.n/-equivariant valuations with values
in an arbitrary finite dimensional SO.n/-module. The class of these valuations
includes those with values in general tensor spaces. In Chap. 7 rotational Crofton
formulae and versions of a principal rotational formula are presented. This chapter
also describes a Hadwiger-type characterization theorem for continuous, rotation
invariant polynomial valuations.

Chapters 8–10 are devoted to valuations on domains other than convex bodies,
although valuations on convex polytopes already played a role in the first two
chapters of the volume. In Chap. 8, a theory of valuations on lattice polytopes is
outlined, including a Hadwiger-type characterization, the Betke-Kneser theorem for
certain real-valued valuations and more recent results on valuations with values in
the families of tensors or convex bodies. In Chap. 9, instead of treating valuations
on convex bodies of the Euclidean space R

n, (smooth) valuations on subsets of
n-dimensional manifolds are considered. The role of convex bodies is now played
by simple differential polyhedra. A theory, including local and global kinematic
formulae on space forms and a transfer principle, is explained with particular
emphasis on the Hermitian case. Chapter 10 generalizes the domains of valuations in
a different direction: while still working with the flat case of the Euclidean n-space,
it investigates what regularity of its subsets actually is required in order to develop a
theory of valuations that allows for integral geometric kinematic formulae. The very
general class of WDC sets is introduced and the construction of the normal cycle
for these sets is discussed.

The last five chapters are devoted to applications of tensor valuations in stochastic
geometry, biology and imaging. Chapters 11 and 12 describe properties of tensor
valuations of Boolean models with convex or polyconvex grains. While isotropy
(together with stationarity) is often a standard assumption in the literature, none
of these chapters requires isotropy. In Chap. 11 mean value formulae for scalar-
and tensor-valued valuations applied to Boolean models are given and explained
in the stationary case with an outlook to the newer developments and the non-
stationary case. Second-order formulae for valuations of the Boolean model in
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an observation window, that is, covariances, can be derived in the asymptotic
regime when the window is expanding. This is done in Chap. 12 together with the
formulation of central limit theorems. Chapter 13 describes the analysis of random
tessellations with the help of tensor valuations applied to individual cells. The
goal is to assess properties of the underlying stochastic process that generated the
tessellation. The chapter is a theory-based simulation study and compares Voronoi
tessellations of standard point process models, STIT- and hyperplane mosaics, and
tessellations derived from hard sphere and hard ellipsoid models from particle
physics. In applied image analysis of structured synthetic and biological materials,
the described methods have been used to infer information about the formation
process from spatial measurements of an observed random structure. Chapter 14 is
motivated by the applied problem of estimating volume tensors from observations
in planar sections in conventional microscopy using local stereological methods.
It presents a new estimator of mean particle volume tensors in three-dimensional
space from vertical sections. Also the last chapter is devoted to the determination
of tensor valuations in practical applications. It gives an overview over algorithms
that approximate tensor valuations of an object from binary and grey-valued images
and discusses in particular the asymptotic properties of these algorithms when the
resolution of the images tends to infinity.

The editors have aimed for a collection of self-contained contributions allowing
the reader to select chapters without the necessity of reading the whole volume from
its beginning. Therefore, chapters often start with a short summary of concepts and
notions possibly already introduced earlier in the book. This, and the comprehensive
cross-referencing to other chapters, may give the reader with a sound background
a deeper understanding of a specific subarea. At the same time, the newcomer can
read these lecture notes as a comprehensive introduction to tensor valuations and
important applications.

Aarhus C, Denmark Eva B. Vedel Jensen
September 2016 Markus Kiderlen
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Chapter 1
Valuations on Convex Bodies: The Classical
Basic Facts

Rolf Schneider

Abstract The purpose of this chapter is to give an elementary introduction to
valuations on convex bodies. The goal is to serve the newcomer to the field, by
presenting basic notions and collecting fundamental facts, which have proved of
importance for the later development, either as technical tools or as models and
incentives for widening and deepening the theory. We also provide hints to the
literature where proofs can be found. It is not our intention to duplicate the existing
longer surveys on valuations, nor to update them. We restrict ourselves to classical
basic facts and geometric approaches, which also means that we do not try to
describe the exciting developments of valuation theory in the last 15 years, which
involve deeper methods and will be the subject of later chapters. The sections of the
present chapter treat, in varying detail, general valuations, valuations on polytopes,
examples of valuations from convex geometry, continuous valuations on convex
bodies, measure-valued valuations, valuations on lattice polytopes.

1.1 General Valuations

The natural domain for a valuation, as it is understood here, would be a lattice
(in the sense of Birkhoff [4]; see p. 230, in particular). However, many important
functions arising naturally in convex geometry have a slightly weaker property,
and they become valuations on a lattice only after an extension procedure. For that
reason, valuations on intersectional families are the appropriate object to study here.
A family S of sets is called intersectional if A;B 2 S implies A \ B 2 S .

R. Schneider (�)
Mathematical Institute, Albert-Ludwigs-Universität Freiburg, Eckerstraße 1, 79104 Freiburg,
Germany
e-mail: rolf.schneider@math.uni-freiburg.de
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2 R. Schneider

Definition 1.1 A function ' from an intersectional family S into an Abelian group
(with composition C and zero element 0) is additive or a valuation if

'.A [ B/C '.A \ B/ D '.A/C '.B/ (1.1)

for all A;B 2 S with A [ B 2 S , and if '.;/ D 0 in case ; 2 S .

The Abelian group in the definition may be replaced by an Abelian semigroup
with cancellation law, because the latter can be embedded in an Abelian group.
A trivial example of a valuation on S is given by '.A/ WD 1A, where 1A is the
characteristic function of A, defined on S WD S

A2S A by

1A.x/ WD
(
1; if x 2 A;

0; if x 2 S n A:

For the Abelian group appearing in Definition 1.1 one can take in this case, for
example, the additive group of all real functions on S.

It would generally be too restrictive to assume that the intersectional family S is
also closed under finite unions. However, we can always consider the family U.S /

consisting of all finite unions of elements from S . Then .U.S /;[;\/ is a lattice. If
' is a valuation on U.S / (not only on S ), then (1.1) is easily extended by induction
to the formula

'.A1 [ � � � [ Am/ D
X

;6DJ�f1;:::;mg
.�1/jJj�1'.AJ/ (1.2)

for m 2 N and A1; : : : ;Am 2 U.S /; here AJ WD T
j2J Aj and jJj WD card J:

Relation (1.2) is known as the inclusion-exclusion formula. This gives rise to another
definition.

Definition 1.2 A function ' from the intersectional family S into an Abelian
group is called fully additive if (1.2) holds for m 2 N and all A1; : : : ;Am 2 S
with A1 [ � � � [ Am 2 S .

Thus, a valuation on S that has an additive extension to the lattice U.S /, is fully
additive. It is a nontrivial fact that the converse is also true. We formulate a more
general extension theorem. For this, we denote by U�.S / the Z-module spanned
by the characteristic functions of the elements of S .

Theorem 1.3 (Groemer’s First Extension Theorem) Let ' be a function from an
intersectional family of sets (including;) into an Abelian group, such that '.;/ D 0.
Then the following conditions (a)–(d) are equivalent.

(a) ' is fully additive;
(b) If

n11A1 C � � � C nm1Am D 0
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with Ai 2 S and ni 2 Z .i D 1; : : : ;m/, then

n1'.A1/C � � � C nm'.Am/ D 0I

(c) The functional '� defined by '�.1A/ WD '.A/ for A 2 S has a Z-linear
extension to U�.S /;

(d) ' has an additive extension to the lattice U.S /.

This theorem is due to Groemer [11]. His proof is reproduced in [42, Theo-
rem 6.2.1]. Actually, Groemer formulated a slightly different version. In his version,
' maps into a real vector space. The preceding theorem then remains true with Z

replaced by R, U�.S / replaced by the real vector space V.S / that is spanned
by the characteristic functions of the elements of S , and ‘Z-linear’ replaced by
‘R-linear’.

In this case, if ' is fully additive, then Groemer defined the '-integral of a
function f 2 V.S / in the following way. If

f D a11A1 C � � � C am1Am ; a1; : : : ; am 2 R;

then
Z

f d' WD a1'.A1/C � � � C am'.Am/:

This definition makes sense, since by Theorem 1.3 the right-hand side does not
depend on the chosen representation of the function f .

Such integrals with respect to a valuation were later rediscovered by Viro [46],
and they were applied by him and other authors in various ways, mainly in the case
where ' is the Euler characteristic on suitable sets.

Results on general valuations, as mentioned in this section, were preceded by
concrete geometric applications of valuations. We give two historic examples in
subsequent sections.

1.2 Valuations on Polytopes

From now on, we work in n-dimensional Euclidean space R
n, with scalar product

denoted by � and induced norm k � k. The domain of the considered valuations will
be either the set K n of convex bodies (nonempty, compact, convex sets) or the set
Pn of convex polytopes in R

n. We consider the latter case first.
Real valuations on polytopes (by which we always mean convex polytopes) are

closely related to dissections of polytopes.
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Definition 1.4 A dissection of the polytope P 2 Pn is a set fP1; : : : ;Pmg of
polytopes such that P D Sm

iD1 Pi and dim .Pi \ Pj/ < n for i 6D j.
Let G be a subgroup of the affine group of Rn. The polytopes P;Q 2 Pn are

called G-equidissectable if there are a dissection fP1; : : : ;Pmg of P, a dissection
fQ1; : : : ;Qmg of Q, and elements g1; : : : ; gm 2 G such that Qi D giPi for i D
1; : : : ;m.

The most frequently considered cases are those where G is the group Tn of
translations of Rn or the group Gn of rigid motions of Rn. Here a rigid motion is
an isometry of Rn that preserves the orientation, thus, a mapping g W Rn ! R

n of
the form gx D #x C t, x 2 R

n, with # 2 SO.n/ and t 2 R
n.

The following is a classical result of elementary geometry.

Theorem 1.5 (Bolyai-Gerwien 1833/35) In R
2, any two polygons of the same

area are G2-equidissectable.

The theorem remains true if the motion group G2 is replaced by the group
consisting of translations and reflections in points (Hadwiger and Glur [22]).

Hilbert’s third problem from 1900 asked essentially whether a result analogous to
the Bolyai-Gerwien theorem holds in three dimensions. The negative answer given
by Dehn [8] is apparently the first use of valuations in convexity. We describe the
essence of his answer, though in different terms and using later modifications. This
gives us an opportunity to introduce some further notions and facts about valuations.

On polytopes, the valuation property follows from a seemingly weaker assump-
tion.

Definition 1.6 A function ' on Pn with values in an Abelian group is called
weakly additive (or a weak valuation) if (setting '.;/ WD 0) for each P 2 Pn

and each hyperplane H, bounding the two closed halfspaces HC;H�, the relation

'.P/ D '.P \ HC/C '.P \ H�/� '.P \ H/ (1.3)

holds.

Every valuation on Pn is weakly additive, but also the converse is true, even
more.

Theorem 1.7 Every weakly additive function on Pn with values in an Abelian
group is fully additive onPn.

A proof can be found in [42, Theorem 6.2.3], and Note 1 there gives hints to the
origins of this result.

Together with Groemer’s first extension theorem (Theorem 1.3), the preceding
theorem shows that every weakly additive function on Pn has an additive extension
to the lattice U.Pn/. The elements of U.Pn/ are the finite unions of convex
polytopes; we call them polyhedra.

We need two other important notions.
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Definition 1.8 A valuation ' on a subset of K n is called simple if '.A/ D 0

whenever dimA < n.

Definition 1.9 Let G be a subgroup of the affine group of Rn. A valuation ' on a
subset of K n (which together with A contains gA for g 2 G) is called G-invariant
if '.gA/ D '.A/ for all A in the domain of ' and all g 2 G.

The following is easy, but important.

Lemma 1.10 Let G be a subgroup of the affine group of Rn. If ' is a G-invariant
simple valuation onPn and if the polytopes P;Q 2 Pn are G-equidissectable, then
'.P/ D '.Q/.

In fact, by Theorems 1.7 and 1.3, the valuation ' has an additive extension to
U.Pn/, hence the inclusion-exclusion formula (1.2) can be applied to dissections
fP1; : : : ;Pmg of P and fQ1; : : : ;Qmg of Q, satisfying giPi D Qi for gi 2 G. Since '
is simple, the terms in (1.2) with jJj > 1 vanish, and what remains is

'.P/ D '.P1 [ � � � [ Pm/ D '.P1/C � � � C '.Pm/

D '.g1P1/C � � � C '.gmPm/ D '.g1P1 [ � � � [ gmPm/

D '.Q1 [ � � � [ Qm/ D '.Q/:

Dehn’s negative answer to Hilbert’s third problem can now be obtained as
follows. We have to show that there are three-dimensional polytopes of equal
volume that are not G3-equidissectable. For this, we construct a simple, G3-invariant
valuation ' on P3 such that '.C/ D 0 for all cubes C and '.T/ 6D 0 for all regular
tetrahedra T. Denote by F1.P/ the set of edges of P 2 P3, by V1.F/ the length of
the edge F 2 F1.P/, and by �.P;F/ the outer angle of P at F. Let f W R ! R be a
solution of Cauchy’s functional equation

f .x C y/ D f .x/C f .y/ for x; y 2 R (1.4)

which satisfies

f .�=2/ D 0 (1.5)

and

f .˛/ ¤ 0; (1.6)

where ˛ denotes the external angle of a regular tetrahedron T at one of its edges.
That such a solution f exists, can be shown by using a Hamel basis of R and the fact
that �=2 and ˛ are rationally independent. Then we define

'.P/ WD
X

F2F1.P/

V1.F/f .�.P;F// for P 2 P3:
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Because of (1.4), it can be shown that ' is weakly additive and hence a valuation,
and as a consequence of (1.5) (which implies f .�/ D 0) it is simple. Clearly, it is
G3-invariant. A cube C has outer angle �=2 at its edges, hence '.C/ D 0, whereas
'.T/ 6D 0, due to (1.6). Now it follows from Lemma 1.10 that C and T cannot
be G3-equidissectable (even if they have the same volume). For this approach, see
Hadwiger [13], and for an elementary exposition, Boltyanskii [6].

The interrelations between the dissection theory of polytopes and valuations
have been developed in great depth. For a general account, we refer to the book
of Sah [37] and to the survey articles [34, Sect. II] and [32, Sect. 4]. For a recent
contribution, see Kusejko and Parapatits [27].

While Dehn’s result shows that, in dimension n � 3, two polytopes of equal
volume need not be Gn-equidissectable, the following result of Hadwiger [15]
is rather surprising. The proof (following Hadwiger) can also be found in [42,
Lemma 6.4.2]. The result plays a role in the further study of valuations.

Theorem 1.11 Any two parallelotopes of equal volume in R
n are Tn-equidissect-

able.

The first main goals of a further study of valuations on polytopes will be general
properties of such valuations and representation or classification results, possibly
under additional assumptions, such as invariance properties or continuity.

A further extension theorem can be helpful. As we have seen, the inclusion-
exclusion formula is easy to use for simple valuations, but it is a bit clumsy in
the general case. We can circumvent this by decomposing a polytope into a finite
disjoint union of relatively open polytopes. A relatively open polytope, briefly
ro-polytope, is the relative interior of a convex polytope. We denote the set of ro-
polytopes in R

n by Pn
ro and the set of finite unions of ro-polytopes by U.Pn

ro/. The
elements of the latter are called ro-polyhedra. Every convex polytope P 2 Pn is the
disjoint union of the relative interiors of its faces (including P) and hence belongs
to U.Pn

ro/.

Theorem 1.12 Any weakly additive function on Pn with values in an Abelian
group has an additive extension to U.Pn

ro/.

This can be deduced from Theorems 1.7 and 1.3; see [42, Corollary 6.2.4]. The
result facilitates the proof of the following theorem, which is fundamental for many
of the further investigations. Here ' is called homogeneous of degree r if

'r.�P/ D �r'.P/ for all P 2 Pn and all real � � 0;

and rational homogeneous of degree r if this holds for rational � � 0.

Theorem 1.13 Let ' be a translation invariant valuation on Pn with values in a
rational vector space X. Then

'.�P/ D
nX

rD0
�r'r.P/ for P 2 Pn and rational � � 0: (1.7)
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Here 'r W Pn ! X is a translation invariant valuation which is rational homo-
geneous of degree r .r D 0; : : : ; n/.

Setting � D 1 in (1.7) gives

' D '0 C � � � C 'n; (1.8)

which is known as the McMullen decomposition. It has the important consequence
that for the investigation of translation invariant valuations on Pn with values in a
rational vector space X one need only consider such valuations which are rational
homogeneous of some degree r 2 f0; : : : ; ng.

Another consequence of Theorem 1.13 is a polynomial expansion with respect to
Minkowski addition. Recall that the Minkowski sum (or vector sum) of K;L 2 K n

is defined by

K C L D fx C y W x 2 K; y 2 Lg;

and that K C L 2 K n. A function ' from K n to some Abelian group is Minkowski
additive if

'.K C L/ D '.K/C '.L/ for all K;L 2 K n:

By repeatedly applying (1.7), it is not difficult to deduce the following.

Theorem 1.14 Let ' W Pn ! X .with X a rational vector space/ be a translation
invariant valuation which is rational homogeneous of degree m 2 f1; : : : ; ng. Then
there is a polynomial expansion

'.�1P1 C � � � C �kPk/

D
mX

r1;:::;rkD0

 
m

r1 : : : rk

!

�
r1
1 � � ��rkk '.P1; : : : ;P1„ ƒ‚ …

r1

; : : : ;Pk; : : : ;Pk„ ƒ‚ …
rk

/;

valid for all P1; : : : ;Pk 2 Pn and all rational �1; : : : ; �k � 0. Here ' W .Pn/m ! X
is a symmetric mapping, which is translation invariant and Minkowski additive in
each variable.

Historical Note The result of Theorem 1.13, even in a more general version, was
stated by Hadwiger [12] (his first publication on valuations), as early as 1945, but
without proof. His later work gives a proof of the decomposition (1.8) for simple
valuations only, see [21, p. 54]. The question for a result as stated in Theorem 1.14
was posed by Peter McMullen, at an Oberwolfach conference in 1974. He gave a
proof the same year, see [28, 29]. Different proofs were provided by Meier [35]
and Spiegel [45]. A variation of Spiegel’s proof, using Theorem 1.12 instead of
the inclusion-exclusion formula, is found in [42, Sect. 6.3]. Proofs of more general
versions of the polynomiality theorem were given by Pukhlikov and Khovanskii
[36] and Alesker [1].
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A consequence of Theorem 1.14 is the fact that a valuation ' W Pn ! R that is
translation invariant and rational homogeneous of degree 1 is Minkowski additive.
A variant of this result was first proved by Spiegel [44].

We turn to representation results for translation invariant, real valuations on Pn.
Without additional assumptions, little is known about these. Setting � D 0 in (1.7),
we see that any such valuation which is homogeneous of degree zero, is constant.
Then we mention two classical characterizations of the volume on polytopes, which
are due to Hadwiger. The volume is denoted by Vn.

Theorem 1.15 Let ' W Pn ! R be a translation invariant valuation which is
simple and nonnegative. Then ' D cVn with a constant c.

The proof can be found in Hadwiger’s book [21, Sect. 2.1.3]. The following result
is also due to Hadwiger (see [21, p. 79]; also [42, Theorem 6.4.3]). The proof makes
use of Theorem 1.11.

Theorem 1.16 Let ' W Pn ! R be a translation invariant valuation which is
homogeneous of degree n. Then ' D cVn with a constant c.

For translation invariant and simple valuations on polytopes, more general
representations are possible. Under a weak continuity assumption, these go back
to Hadwiger [18], and without that assumption to recent work of Kusejko and
Parapatits [27]. We consider Hadwiger’s result first, but use the terminology of [27].

For k 2 f0; : : : ; ng, let U k denote the set of all ordered orthonormal k-tuples
of vectors from the unit sphere S

n�1. U 0 contains only the empty tuple ./. For
P 2 Pn and u 2 S

n�1, let F.P; u/ be the face of P with outer normal vector u. For
U D .u1; : : : ; uk/ 2 U k and P 2 Pn we define recursively the face PU of P by

P./ WD P; P.u1;:::;ur/ WD F.P.u1;:::;ur�1/; uk/; r D 1; : : : ; k:

The orthonormal frame U D .u1; : : : ; uk/ 2 U k is P-tight if dimP.u1;:::;ur/ D n � r
for r D 0; : : : ; k. Let U k

P denote the (evidently finite) set of all P-tight frames in U k.
Then Vn�k.PU/ > 0 for U 2 U k

P , where Vn�k denotes the .n � k/-dimensional
volume.

A function f W U k ! R is called odd if

f ."1u1; : : : ; "kuk/ D "1 � � � "kf .u1; : : : ; uk/

for "i D ˙1.
A valuation ' W Pn ! R is weakly continuous if it is continuous under parallel

displacements of the facets of a polytope. To make this more precise, we consider
the set of polytopes whose system of outer normal vectors of facets belongs to a
given finite set U D fu1; : : : ; umg; these vectors positively span R

n. Now a function
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' on Pn is called weakly continuous if for any such U the function

.�1; : : : ; �m/ 7! '.fx 2 R
n W x � ui � �i; i D 1; : : : ;mg/

is continuous on the set of all .�1; : : : ; �m/ for which the argument of ' is not empty.
The following is Hadwiger’s [18] result. For a version of his proof, we refer

to [42, Theorem 6.4.6]. The proof given in [27] appears to be simpler. We
write U WD Sn�1

kD0U k.

Theorem 1.17 A function ' W Pn ! R is a weakly continuous, translation
invariant, simple valuation if and only if for each U 2 U there is a constant cU 2 R

such that U 7! cU is odd and

'.P/ D
n�1X

kD0

X

U2U k
P .P/

cUVn�k.PU/ (1.9)

for P 2 Pn.

For non-simple valuations, the following result holds. As usual, Fr.P/ denotes
the set of r-dimensional faces of a polytope P, and N.P;F/ is the cone of normal
vectors of P at its face F.

Theorem 1.18 A function ' W Pn ! R is a weakly continuous, translation
invariant valuation if and only if there are a constant c and for each r 2 f1; : : : ;
n � 1g a simple real valuation �r on the system of convex polyhedral cones in R

n of
dimension at most n � r such that

'.P/ D '.f0g/C
n�1X

rD1

X

F2Fr.P/

�r.N.P;F//Vr.F/C cVn.P/ (1.10)

for P 2 Pn.

McMullen [31] has deduced this from Hadwiger’s result on simple valuations.
For a different approach, see in [32] the remark after Theorem 5.19.

Satisfactory as these results are in the realm of polytopes, they seem, at present,
not to lead much further in the investigation of continuous valuations on general
convex bodies. Conditions on the functions �r, which do or do not allow a
continuous extension of a valuation ' represented by (1.10) to general convex
bodies, were investigated in [23].

Without the assumption of weak continuity, Kusejko and Parapatits [27] have
obtained the following result.
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Theorem 1.19 A function ' W Pn ! R is a translation invariant, simple valuation
if and only if for each U 2 U there exists an additive function fU W R ! R such
that U 7! fU is odd and

'.P/ D
n�1X

kD0

X

U2U k
P .P/

fU.Vn�k.PU// (1.11)

for P 2 Pn.

The implications of this result for translative equidecomposability are explained
in [27].

1.3 Examples of Valuations from Convex Geometry

The theory of convex bodies is replete with natural examples of valuations. We
explain the most important of these, before turning to classification and characteri-
zation results.

A first example is given by the identity mapping K n ! K n. This makes sense,
since K n, as usual equipped with Minkowski addition, is an Abelian semigroup
with cancellation law. The identity mapping is a valuation, since the relation

.K [ L/C .K \ L/ D K C L (1.12)

holds for convex bodies K;L 2 K n with K [ L 2 K n (as first pointed out by
Sallee [38]; the easy proof can be found in [42, Lemma 3.1.1]). Consequently, also
the support function defines a valuation. The support function h.K; � / D hK of the
convex body K 2 K n is defined by

h.K; u/ WD maxfhu; xi W x 2 Kg for u 2 R
n:

The function h is Minkowski additive in the first argument. The Minkowski additiv-
ity of the support function together with (1.12) yields

h.K [ L; � /C h.K \ L; � / D h.K; � /C h.L; � / if K [ L is convex;

hence the map K 7! h.K; � /, fromK n into (say) the vector space of real continuous
functions on R

n, is a valuation. Using the support function, the following can be
shown (see, e.g., [42, Theorem 6.1.2] and, for the history, Note 2 on p. 332).

Theorem 1.20 Every Minkowski additive function on K n with values in an Abel-
ian group is fully additive.



1 Valuations on Convex Bodies: The Classical Basic Facts 11

Minkowski addition plays a role in valuation theory of convex bodies in more
than one way. As one example, we mention a way to construct new valuations from
a given one. Let ' be a valuation on K n. If C 2 K n is a fixed convex body, then

'C.K/ WD '.K C C/ for K 2 K n

defines a new valuation 'C on K n. If ' is translation invariant, then the same holds
for 'C.

A basic example of a valuation on K n is, of course, the volume Vn. Being the
restriction of a measure, the function Vn W K n ! R is a valuation, and since lower-
dimensional convex bodies have volume zero, it is simple. Moreover, the valuation
Vn is invariant under rigid motions and continuous (continuity of functions on K n

always refers to the Hausdorff metric). Via the construction (1.13) below, it gives
rise to many other (non-simple) valuations. The following fact, which goes back to
Minkowski at the beginning of the twentieth century, was, actually, the template for
Theorem 1.14. There is a nonnegative, symmetric function V W .K n/n ! R, called
the mixed volume, such that

Vn.�1K1 C � � � C �mKm/ D
mX

i1;:::;inD1
�i1 � � ��inV.Ki1 ; : : : ;Kin/

for all m 2 N, K1; : : : ;Km 2 K n and �1; : : : ; �m � 0. (For proofs and more
information, we refer to [42, Sect. 5.1].) We write

V.K1; : : : ;K1„ ƒ‚ …
r1

; : : : ;Km; : : : ;Km„ ƒ‚ …
rm

/ DW V.K1Œr1�; : : : ;KmŒrm�/:

For arbitrary p 2 f1; : : : ; ng and fixed convex bodies MpC1; : : : ;Mn 2 K n, the
function ' defined by

'.K/ WD V.KŒp�;MpC1; : : : ;Mn/; K 2 K n; (1.13)

is a valuation on K n. It is translation invariant, continuous, and homogeneous of
degree p. Often in the literature, these functionals ' are also called ‘mixed volumes’,
but we find that slightly misleading (since the mixed volume is a function of n
variables) and prefer to call them mixed volume valuations.

Of particular importance are the special cases of the mixed volume valuations
where the fixed bodies are equal to the unit ball Bn. First we recall two frequently
used constants: �n is the volume of the unit ball in R

n and !n is its surface area;
explicitly,

�n D �
n
2

	
�
1C n

2

� ; !n D n�n D 2�
n
2

	
�
n
2

� : (1.14)
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We define

Vj.K/ WD
�n
j

�

�n�j
V.KŒ j�;BnŒn � j�/ (1.15)

for K 2 K n. The functional Vj is called the j-th intrinsic volume. In addition
to the properties that all mixed volume valuations share, it is invariant under
rotations and thus under rigid motions. The normalizing factor has the effect that
the intrinsic volume is independent of the dimension of the ambient space in which
it is computed. In particular, if the convex body K has dimension dimK � m, then
Vm.K/ is the m-dimensional volume of K.

As a special case of the above approach to mixed volumes, we see that the
intrinsic volumes are uniquely defined by the coefficients in the expansion

Vn.K C 
Bn/ D
nX

jD0

n�j�n�jVj.K/; 
 � 0: (1.16)

Here, K C 
Bn is the outer parallel body of K at distance 
 � 0, that is, the set of
all points of Rn that have distance at most 
 from K. Equation (1.16) is known as
the Steiner formula.

The concept of the parallel body can be localized. There is a local Steiner
formula, which leads to measure-valued valuations. For this, we need a few more
definitions. For K 2 K n and x 2 R

n, there is a unique point p.K; x/ 2 K with

kx � p.K; x/k � kx � yk for all y 2 K:

The map p.K; � / W Rn ! K is known as the metric projection of K. The map K 7!
p.K; x/, for fixed x, is another example of a valuation, from K n to R

n. The distance
of a point x from K is defined by d.K; x/ WD kx � p.K; x/k and, for x 2 R

n n K,

u.K; x/ WD x � p.K; x/

d.K; x/

denotes the unit vector pointing from p.K; x/ to x. The pair .p.K; x/; u.K; x// is
a support element of K. Generally, a support element of K is a pair .x; u/, where
x 2 bdK and u is an outer unit normal vector of K at x. The set nc.K/ of all support
elements of K is called the (generalized) normal bundle or the normal cycle of K. It
is a subset of the product space

˙n WD R
n � S

n�1 (1.17)

(which is equipped with the product topology). Now for � 2 B.˙n/, the �-algebra
of Borel sets of ˙n, for K 2 K n and 
 > 0, we define the local parallel set

M
.K; �/ WD fx 2 R
n W 0 < d.K; x/ � 
 and .p.K; x/; u.K; x// 2 �g:
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This is a Borel set. By H n we denote n-dimensional Hausdorff measure. Again,
one has a polynomial expansion, namely

H n.M
.K; �// D
n�1X

jD0

n�j�n�j�j.K; �/ for 
 � 0:

This defines finite Borel measures �0.K; � /; : : : ; �n�1.K; � / on ˙n. One calls
�j.K; � / the j-th support measure of K. From the valuation property of the nearest
point map, one can deduce that

�j.K [ L; � /C�j.K \ L; � / D �j.K; � /C�j.L; � /

for all K;L 2 K n with K [ L 2 K n. Thus, the mapping K 7! �j.K; � / is a
valuation on K n, with values in the vector space of finite signed Borel measures
on ˙n.

From the support measures we get two series of marginal measures. They appear
in the literature with two different normalizations. For Borel sets ˇ � R

n, we define

�n
j

�

n�n�j
Cj.K; ˇ/ D ˚j.K; ˇ/ WD �j.K; ˇ � S

n�1/:

The measures C0.K; � /; : : : ;Cn�1.K; � / are the curvature measures of K. They are
measures on R

n, concentrated on the boundary of K. The definition is supplemented
by

1
nCn.K; ˇ/ D ˚n.K; ˇ/ WD H n.K \ ˇ/:

For Borel sets ! � S
n�1, we define

�n
j

�

n�n�j
Sj.K; !/ D j.K; !/ WD �j.K;R

n � !/:

The measures S0.K; � /; : : : ; Sn�1.K; � / are the area measures of K. They are
measures on the unit sphere S

n�1.

1.4 Continuous Valuations on Convex Bodies

The continuous valuations on the space K n of general convex bodies in R
n are of

particular interest. These comprise those which have their values in a (here always
real) topological vector space (such as R, Rn, tensor spaces, spaces of functions or
measures) and are continuous with respect to the topology on K n that is induced
by the Hausdorff metric.
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Before describing consequences of continuity, we wish to point out that general
valuations on K n can show rather irregular behaviour. For example, if we choose a
non-continuous solution f of Cauchy’s functional equation, f .x C y/ D f .x/C f .y/
for x; y 2 R, then ' WD f ı Vj with j 2 f1; : : : ; ng is a valuation on K n which
is not continuous, in fact not even locally bounded, since f is unbounded on every
nondegenerate interval. For j D 1, the function ' is Minkowski additive and hence,
by Theorem 1.20, even fully additive.

As a first consequence of continuity, we mention another extension theorem of
Groemer [11]. It needs only a weaker version of continuity. A function ' from K n

into some topological (Hausdorff) vector space is called �-continuous if for every
decreasing sequence .Ki/i2N in K n one has

lim
i!1'.Ki/ D '

�\

i2N
Ki

�
:

If ' is continuous with respect to the Hausdorff metric, then it is �-continuous. This
follows from Lemma 1.8.2 in [42].

Theorem 1.21 (Groemer’s Second Extension Theorem) Let ' be a function on
K n with values in a topological vector space. If ' is weakly additive onPn and is
�-continuous onK n, then ' has an additive extension to the lattice U.K n/.

Groemer’s proof is reproduced in [43, Theorem 14.4.2]. The formulation of the
theorem here is slightly more general, and we give a slightly shorter proof, based on
the following lemma.

Lemma 1.22 Let K1; : : : ;Km 2 K n be convex bodies such that K1 [ � � � [ Km is
convex. Let " > 0. Then there are polytopes P1; : : : ;Pm 2 Pn with Ki � Pi �
Ki C "Bn for i D 1; : : : ;m such that P1 [ � � � [ Pm is convex.

For the proof and the subsequent argument, we refer to Weil [47, Lemma 8.1].
With this lemma, Theorem 1.21 can be proved as follows (following a suggestion of
Daniel Hug). Let ' satisfy the assumptions of Theorem 1.21. Let K1; : : : ;Km 2 K n

be convex bodies such that K1 [ � � � [ Km is convex. We apply Lemma 1.22 with Ki

replaced by Ki C 2�kBn, k 2 N, and " D 2�k (note that
Sm

iD1.Ki C 2�kBn/ D�Sm
iD1 Ki

� C 2�kBn is convex). This yields polytopes P.k/1 ; : : : ;P
.k/
m with convex

union and such that Ki C 2�kBn � P.k/i � Ki C 21�kBn. Each sequence .P.k/i /k2N is
decreasing. By Theorem 1.7, the function ' is fully additive on Pn, hence

'.P.k/1 [ � � � [ P.k/m / D
X

;6DJ�f1;:::;mg
.�1/jJj�1'.P.k/J /:

Since

\

k2N

�
P.k/1 [ � � � [ P.k/m

� D K1 [ � � � [ Km
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and

\

k2N
P.k/J D KJ if KJ 6D ;;

the �-continuity of ' yields

'.K1 [ � � � [ Km/ D
X

;6DJ�f1;:::;mg
.�1/jJj�1'.KJ/:

Thus, ' is fully additive on K n. By Theorem 1.3, it has an additive extension to
U.K n/. This proves Theorem 1.21.

The elements of the lattice U.K n/, which has been termed the convex ring, are
finite unions of convex bodies and are known as polyconvex sets.

It seems to be unknown whether every valuation on K n (without a continuity
assumption) has an additive extension to U.K n/.

One consequence of Theorem 1.21 is the fact that the trivial valuation on K n,
which is constantly equal to 1, has an additive extension to polyconvex sets. This
extension is called the Euler characteristic and is denoted by �, since it coincides,
on this class of sets, with the equally named topological invariant. It should be
mentioned that for the existence of the Euler characteristic on polyconvex sets,
there is a very short and elegant proof due to Hadwiger [19]; it is reproduced in
[42, Theorem 4.3.1].

Next, we point out that the polynomiality results from Sect. 1.2 can immediately
be extended by continuity. Let ' be a translation invariant, continuous valuation on
K n with values in a topological vector space X. Then it follows from Theorem 1.13
that there are continuous, translation invariant valuations '0; : : : ; 'n on K n, with
values in X, such that 'i is homogeneous of degree i .i D 0; : : : ; n/ and

'.�K/ D
nX

iD0
�i'i.K/ for K 2 K n and � � 0:

In particular, the McMullen decomposition ' D '0 C � � � C 'n holds, where each
'i has the same properties as ' and is, moreover, homogeneous (not only rationally
homogeneous) of degree i.

If ' is, in addition, homogeneous of degree m, then it follows from Theorem 1.14
that there is a continuous symmetric mapping ' W .K n/m ! X which is translation
invariant and Minkowski additive in each variable, such that

'.�1K1 C � � � C �kKk/

D
mX

r1;:::;rkD0

 
m

r1 : : : rk

!

�
r1
1 � � ��rkk '.K1; : : : ;K1„ ƒ‚ …

r1

; : : : ;Kk; : : : ;Kk„ ƒ‚ …
rk

/
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holds for all K1; : : : ;Kk 2 K n and all real �1; : : : ; �k � 0. Further, one can deduce
that for r 2 f1; : : : ;mg the mapping

K 7! '.K; : : : ;K
„ ƒ‚ …

r

;MrC1; : : : ;Mm/; (1.18)

with fixed convex bodies MrC1; : : : ;Mm, is a continuous, translation invariant val-
uation, which is homogeneous of degree r.

Now that we have the classical examples of valuations on convex bodies at our
disposal, we can have a look at the second historical incentive for the development
of the theory of valuations. This came from the early history of integral geometry.
In his booklet on integral geometry, Blaschke [5, Sect. 43], asked a question, which
we explain here in a modified form. For convex bodies K;M 2 K n, consider the
‘kinematic integral’

 .K;M/ WD
Z

Gn

�.K \ gM/ �.dg/:

Here� denotes the (suitably normalized) Haar measure on the motion groupGn, and
� is the Euler characteristic, that is, �.K/ D 1 for K 2 K n and �.;/ D 0. In other
words,  .K;M/ is the rigid motion invariant measure of the set of all rigid motions
g for which gM intersects K. There are different approaches to the computation of
 .K;M/, and the result is that

 .K;M/ D
nX

i;jD0
cijVi.K/Vj.M/ (1.19)

with explicit constants cij. This throws new light on the importance of the intrinsic
volumes. Blaschke investigated this formula in a slightly different context (three-
dimensional polytopal complexes). He made the important observation that some
formal properties of the above functionals were essential for his proof of such for-
mulas. Specifically, these were the valuation property, rigid motion invariance and,
in his case, the local boundedness. He claimed that these properties characterize, ‘to
a certain extent’, the linear combinations of intrinsic volumes. He proved a result
in this direction, where, however, he had to introduce an additional assumption
in the course of the proof, namely the invariance under volume preserving affine
transformations for the ‘volume part’ of his considered functional. Whether a
characterization theorem for valuations on polyhedra satisfying Blaschke’s original
conditions is possible, seems to be unknown. Later, Hadwiger considered valua-
tions on general convex bodies and introduced the assumption of continuity. The
following is his celebrated characterization theorem.
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Theorem 1.23 (Hadwiger’s Characterization Theorem) If ' W K n ! R is a
continuous and rigid motion invariant valuation, then there are constants c0; : : : ; cn
such that

'.K/ D
nX

jD0
cjVj.K/

for all K 2 K n.

For the three-dimensional case, Hadwiger gave a proof in [16], and for general
dimensions in [17]; his proof is also found in his book [21, Sect. 6.1.10]. Hadwiger
expressed repeatedly ([14, p. 346], and [16], footnote 3 on p. 69) that a characteri-
zation theorem for the intrinsic volumes with the assumption of local boundedness
instead of continuity would be desirable. However, the following counterexample,
given in [34, p. 239], shows that this is not possible. For K 2 K n, let

'.K/ WD
X

u2Sn�1

H n�1.F.K; u//;

where F.K; u/ is the support set of K with outer normal vector u. This has non-zero
H n�1 measure for at most countably many vectors u, hence the sum is well-defined,
and its value is bounded by the surface areaof K. Thus, ' is a rigid motion invariant
valuation which is locally bounded, but it is not continuous and hence not a linear
combination of intrinsic volumes.

Hadwiger showed in [14, 20] how his theorem immediately leads to integral-
geometric results. For instance, to prove (1.19), one notes that for fixed K the
function  .K; � / satisfies the assumptions of Theorem 1.23 and hence is a linear
combination of the intrinsic volumes of the variable convex body, with real
constants that are independent of this body, thus  .K;M/ D Pn

jD0 cj.K/Vj.M/.
Then one repeats the argument with variable K and obtains that  must be
of the form  .K;M/ D Pn

i;jD0 cijVi.K/Vj.M/. The constants cij can then be
determined by applying the obtained formula to balls of different radii. There are
also different approaches to integral geometric formulas. For one result, however,
called ‘Hadwiger’s general integral-geometric theorem’ (it is reproduced in [43,
Theorem 5.1.2]), the proof via the characterization theorem is the only one known.

Hadwiger’s proof of his characterization theorem used a fair amount of dissection
theory of polytopes. A slightly simplified version of his proof was published by
Chen [7]. A considerably shorter, elegant proof of Hadwiger’s theorem is due to
Klain [24]. This proof is reproduced in the book by Klain and Rota [26], which
presents a neat introduction to integral geometry, with some emphasis on discrete
aspects. Klain’s proof is also reproduced in [42, Theorem 6.4.14].

An essential aspect of Hadwiger’s characterization theorem is the fact that the
real vector space spanned by the continuous, motion invariant real valuations on
K n has finite dimension. This is no longer true if the valuations under consideration
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are only translation invariant. We turn to these valuations, whose investigation is a
central part of the theory. By Val we denote the real vector space of translation
invariant, continuous real valuations on K n, and by Valm the subspace of valuations
that are homogeneous of degree m. The McMullen decomposition tells us that

Val D
nM

mD0
Valm :

Further, a valuation ' (on K n or Pn) is called even (odd) if '.�K/ D '.K/
(respectively, '.�K/ D �'.K/) holds for all K in the domain of '. We denote by
ValC and Val� the subspace of even, respectively odd, valuations in Val, and ValCm
and Val�m are the corresponding subspaces of m-homogeneous valuations. Since we
can always write

'.K/ D 1
2
.'.K/C '.�K//C 1

2
.'.K/� '.�K//;

we have

Valm D ValCm ˚ Val�m :

It would be nice to have a simple explicit description of the valuations in
each space Valm. Only special cases are known. So it follows from the results on
polytopes (Theorem 1.16, in particular), together with continuity, that the spaces
Valm are one-dimensional for m D 0 and m D n.

Corollary 1.24 The space Val0 is spanned by the Euler characteristic, and the
space Valn by the volume functional.

An explicit description is also known for the elements of Valn�1. The following
result is due to McMullen [30].

Theorem 1.25 Each ' 2 Valn�1 has a representation

'.K/ D
Z

Sn�1

f .u/ Sn�1.K; du/ for K 2 K n;

with a continuous function f W Sn�1 ! R. This function is uniquely determined up
to adding the restriction of a linear function.

More complete results are known for simple valuations. The following result of
Klain [24] was an essential step in his proof of Hadwiger’s characterization theorem.

Theorem 1.26 (Klain’s Volume Characterization) If ' 2 ValC is simple, then
'.K/ D cVn.K/ for K 2 K n, with some constant c.
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A counterpart for odd simple valuations was proved in [41] (the proof can also
be found in [42, Theorem 6.4.13]):

Theorem 1.27 If ' 2 Val� is simple, then

'.K/ D
Z

Sn�1

g.u/ Sn�1.K; du/ for K 2 K n;

with an odd continuous function g W Sn�1 ! R.

A different approach to Theorems 1.25 and 1.27 was provided by Kusejko and
Parapatits [27].

Klain’s volume characterization (Theorem 1.26) has a consequence for even
valuations, which has turned out to be quite useful. By G.n;m/ we denote the
Grassmannian of m-dimensional linear subspaces of Rn. Now let m 2 f1; : : : ; n�1g,
and let ' 2 Valm. Let L 2 G.n;m/. It follows from Corollary 1.24 that the restriction
of ' to the convex bodies in L is a constant multiple of the m-dimensional volume.
Thus, '.K/ D c'.L/Vm.K/ for the convex bodies K � L, where c'.L/ is a real
constant. Since ' is continuous, this defines a continuous function c' on G.n;m/.
It is called the Klain function of the valuation '. This function determines even
valuations uniquely, as Klain [25] has deduced from his volume characterization.

Theorem 1.28 A valuation in ValCm .m 2 f1; : : : ; n� 1g/ is uniquely determined by
its Klain function.

The proofs given by Klain for Theorems 1.26 and 1.28 are reproduced in [42,
Theorems 6.4.10 and 6.4.11].

1.5 Measure-Valued Valuations

We leave the translation invariant, real valuations and turn to some natural exten-
sions of the intrinsic volumes. We have already seen the measure-valued localiza-
tions of the intrinsic volumes, the support, curvature, and area measures. Another
natural extension (in the next chapter) will be that from real-valued to vector- and
tensor-valued functions. In both cases, invariance (or rather, equivariance) properties
with respect to the group of rigid motions play an important role.

First we recall that with each convex body K 2 K n we have associated its
support measures

�0.K; � /; : : : ; �n�1.K; � /

and, by marginalization and renormalization, the curvature measures Cj.K; � / and
the area measures Sj.K; � /, j D 0; : : : ; n � 1. Each mapping K 7! �j.K; � / is
a valuation, with values in the vector space of finite signed Borel measures on
˙n D R

n � S
n�1, and it is weakly continuous. The latter means that Ki ! K in
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the Hausdorff metric implies �j.Ki; � / w�! �j.K; � /, where the weak convergence
w�! is equivalent to

lim
i!1

Z

˙n
f d�j.Ki; � / D

Z

˙n
f d�j.K; � /

for every continuous function f W ˙n ! R. The measure �j.K; � / is concentrated
on the normal bundle nc.K/ of K. The valuation property and the weak continuity
carry over to the mappings Cj and Sj. The measure Cj.K; � / is a Borel measure on
R

n, concentrated on bdK for j � n�1. The area measure Sj.K; � / is a Borel measure
on the unit sphere Sn�1.

The behaviour of these measures under the motion group is as follows. First, if
g 2 Gn, we denote the rotation part of g by g0 (that is, gx D g0x C t for all x 2 R

n,
with a fixed translation vector t). Then we define

g� WD f.gx; g0u/ W .x; u/ 2 �g for � � ˙n;

gˇ WD fgx W x 2 ˇg for ˇ � R
n;

g! WD fg0u W u 2 !g for ! � S
n�1:

For K 2 K n, g 2 Gn and Borel sets � � ˙n, ˇ � R
n and ! � S

n�1 we then
have

�j.gK; g�/ D �j.K; �/; Cj.gK; gˇ/ D Cj.K; ˇ/; Sj.gK; g!/ D Sj.K; !/:

In each case, we talk of this behaviour as rigid motion equivariant.
One may ask whether, for these measure-valued extensions of the intrinsic

volumes, there are classification results similar to Hadwiger’s characterization
theorem. It turns out that in addition to the valuation, equivariance, and continuity
properties we need, because we are dealing with measures, some assumption of
local determination, saying roughly that the value of the relevant measure of K
at a Borel set ˛ depends only on a local part of K determined by ˛. With an
appropriate assumption of this kind, the following characterization theorems have
been obtained. If '.K/ is a measure, we write here '.K/.˛/ DW '.K; ˛/.
Theorem 1.29 Let ' be a map fromK n into the set of finite Borel measures on Rn,
satisfying the following conditions.

(a) ' is a valuation;
(b) ' is rigid motion equivariant;
(c) ' is weakly continuous;
(d) ' is locally determined, in the following sense: if ˇ � R

n is open and K \ ˇ D
L \ ˇ, then '.K; ˇ0/ D '.L; ˇ0/ for every Borel set ˇ0 � ˇ.
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Then there are real constants c0; : : : ; cn � 0 such that

'.K; ˇ/ D
nX

iD0
ciCi.K; ˇ/

for K 2 K n and ˇ 2 B.Rn/.

In the following theorem, �.K; !/ denotes the inverse spherical image of K at !,
that is, the set of all boundary points of the convex body K at which there is an outer
normal vector belonging to the given set ! � S

n�1.

Theorem 1.30 Let ' be a map fromK n into the set of finite signed Borel measures
on Sn�1, satisfying the following conditions.

(a) ' is a valuation;
(b) ' is rigid motion equivariant;
(c) ' is weakly continuous;
(d) ' is locally determined, in the following sense: if ! � S

n�1 is a Borel set and if
�.K; !/ D �.L; !/, then '.K; !/ D '.L; !/.

Then there are real constants c0; : : : ; cn�1 such that

'.K; !/ D
n�1X

iD0
ciSi.K; !/

for K 2 K n and ! 2 B.Sn�1/.

Theorem 1.29 was proved in [40] and Theorem 1.30 in [39]. The following result
is due to Glasauer [10].

Theorem 1.31 Let ' be a map fromPn into the set of finite signed Borel measures
on ˙n, satisfying the following conditions.

(a) ' is rigid motion equivariant;
(b) ' is locally determined, in the following sense: if � 2 B.˙n/ and K;L 2 K n

satisfy �\ nc.K/ D � \ nc.L/, then '.K; �/ D '.L; �/.

Then there are real constants c0; : : : ; cn�1 such that

'.K; �/ D
n�1X

jD0
cj�j.K; �/

for K 2 K n and � 2 B.˙n/.

Here the valuation property has not been forgotten! Indeed, the last theorem has
a character different from the two previous ones: the assumption that '.K; � / is
a locally determined measure on ˙n, is strong enough to allow a simpler proof,
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without assuming the valuation property. The latter point will be important in the
treatment of local tensor valuations (in Chap. 2).

1.6 Valuations on Lattice Polytopes

We denote by P.Zn/ the set of all polytopes with vertices in Z
n. In contrast to Pn

and K n considered so far, P.Zn/ is not an intersectional family. For that reason,
we modify the definition of a valuation in this case and say that a mapping ' from
P.Zn/ into some Abelian group is a valuation if

'.P [ Q/C '.P \ Q/ D '.P/C '.Q/ (1.20)

holds whenever P;Q;P[Q;P\Q 2 P.Zn/; moreover, we define that ; 2 P.Zn/

and assume that '.;/ D 0. In a similar vein, we say that ' satisfies the inclusion-
exclusion principle if

'.A1 [ � � � [ Am/ D
X

;6DJ�f1;:::;mg
.�1/jJj�1'.AJ/

holds whenever m 2 N, A1 [ � � � [ Am 2 P.Zn/ and AJ 2 P.Zn/ for all nonempty
J � f1; : : : ;mg. Further, a valuation ' on P.Zn/ is said to have the extension
property if there is a functione' on the family of finite unions of polytopes in P.Zn/

such that

e'.A1 [ � � � [ Am/ D
X

;6DJ�f1;:::;mg
.�1/jJj�1'.AJ/

whenever AJ 2 P.Zn/ for all nonempty J � f1; : : : ;mg. The following theorem
was proved by McMullen [33].

Theorem 1.32 A valuation on P.Zn/ satisfies the inclusion-exclusion principle
and has the extension property.

For polytopes in P.Zn/, the natural counterpart to the volume functional is the
lattice point enumerator L. It is defined by

L.P/ WD card.P \ Z
n/ for P 2 P.Zn/:

It was first proved by Ehrhart [9] that there is a polynomial expansion

L.kP/ D
nX

iD0
kiLi.P/; P 2 P.Zn/; k 2 N: (1.21)
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We refer to the surveys [32, 34] for information about how this fact embeds into the
general polynomiality theorems proved later.

The expansion (1.21) defines valuations L0; : : : ;Ln.D Vn/ on P.Zn/, which
are invariant under unimodular transformations, that is, volume preserving affine
maps of Rn into itself that leave Z

n invariant. A result of Betke [2] (see also Betke
and Kneser [3]), together with Theorem 1.32, gives the following characterization
theorem.

Theorem 1.33 If ' is a real valuation on P.Zn/ which is invariant under
unimodular transformations, then

'.P/ D
nX

iD0
ciLi.P/ for P 2 P.Zn/;

with real constants c0; : : : ; cn.
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Chapter 2
Tensor Valuations and Their Local Versions

Daniel Hug and Rolf Schneider

Abstract The intrinsic volumes, recalled in the previous chapter, provide an array
of size measurements for a convex body, one for each integer degree of homogeneity
from 0 to n. For measurements and descriptions of other aspects, such as position,
moments of the volume and of other size functionals, or anisotropy, tensor-valued
functionals on convex bodies are useful. The classical approach leading to the
intrinsic volumes, namely the Steiner formula for parallel bodies, can be extended
by replacing the volume by higher moments of the volume. This leads, in a
natural way, to a series of tensor-valued valuations. These so-called Minkowski
tensors are introduced in the present chapter, and their properties are studied. A
version of Hadwiger’s theorem for tensor valuations is stated. The next natural
step is a localization of the Minkowski tensors, in the form of tensor-valued
measures. The essential valuation, equivariance and continuity properties of these
local Minkowski tensors are collected. The main goal is then a description of the
vector space of all tensor valuations on convex bodies sharing these properties.
Continuity properties of local Minkowski tensors and of support measures follow
from continuity properties of normal cycles of convex bodies. We establish Hölder
continuity of the normal cycles of convex bodies, which provides a quantitative
improvement of the aforementioned continuity property.

2.1 The Minkowski Tensors

We use the notation introduced in Chap. 1. We recall that the intrinsic volumes,
certainly the most important valuations in the theory of convex bodies in Euclidean
space, all arise from one basic valuation, the volume functional. In fact, they are
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generated by the Steiner formula (1.16),

Vn.K C 
Bn/ D
nX

jD0

n�j�n�jVj.K/; 
 � 0: (2.1)

Here and in the following, K 2 K n denotes a convex body. The point to be
kept in mind is that the evaluation of the volume of parallel bodies leads to a
polynomial expansion and that the coefficients yield new valuations, which inherit
some essential properties of the volume functional, but are no longer simple.

The volume functional, which we may write as

Vn.K/ D
Z

K
dx;

where dx indicates integration with respect to Lebesgue measure, has a natural
vector-valued analogue, the moment vector

Z

K
x dx;

which is needed to define the centre of gravity,

c.K/ WD 1

Vn.K/

Z

K
x dx;

of convex bodies K with positive volume. If one wants to study moments of inertia,
for example, one has to consider matrices with entries of type

Z

K
�i�j dx;

where �1; : : : ; �n are the coordinates of x 2 R
n with respect to an orthonormal basis.

This can be continued and leads to a series of simple valuations with values in spaces
of symmetric tensors. Application to parallel bodies and polynomial expansion then
reveals more general tensor-valued valuations. In the present section, we introduce
these tensor valuations.

First we fix some conventions how to deal with tensors. We use the scalar product
of Rn to identify R

n with its dual space. Thus, each vector a 2 R
n is identified with

the linear functional x 7! a � x from R
n to R. For r 2 N0, an r-tensor, or tensor of

rank r, onRn is defined as an r-linear mapping from .Rn/r toR. It is symmetric if it is
invariant under permutations of its arguments. By T

r we denote the real vector space
(with its standard topology) of symmetric r-tensors on R

n. By definition, T0 D R,
and by the identification made above, T1 D R

n. The symmetric tensor product of
the symmetric tensors ai 2 T

ri , i D 1; : : : ; k, is defined as follows. We write s0 D 0,
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si D r1 C � � � C ri for i D 1; : : : ; k, then

.a1 ˇ � � � ˇ ak/.x1; : : : ; xsk/ WD 1

skŠ

X

�2S .sk/

kY

iD1
ai.x�.si�1C1/; : : : ; x�.si//

for x1; : : : ; xsk 2 R
n, where S .m/ denotes the group of permutations of the set

f1; : : : ;mg. Then a1ˇ� � �ˇak 2 T
r1C���Crk . Thus the space of symmetric tensors (of

arbitrary rank) becomes an associative, commutative graded algebra with unit. We
shall always use the abbreviations a ˇ b DW ab,

a1 ˇ � � � ˇ ak DW a1 � � � ak; a ˇ � � � ˇ a
„ ƒ‚ …

r

DW ar; a0 WD 1:

For instance, for a vector a 2 R
n, the r-tensor ar with r � 1 is given by

ar.x1; : : : ; xr/ D .a � x1/ � � � .a � xr/; x1; : : : ; xr 2 R
n:

The scalar product,

Q.x; y/ D x � y; x; y 2 R
n;

is a symmetric tensor of rank two; we call Q the metric tensor.
Let .e1; : : : ; en/ be an orthonormal basis of Rn. Then the tensors ei1 � � � eir with

1 � i1 � � � � � ir � n form a basis of T
r. The corresponding coordinate

representation of T 2 T
r is given by

T D
X

1�i1�����ir�n

ti1:::ir ei1 � � � eir (2.2)

with

ti1:::ir D
 

r

m1 : : :mn

!

T.ei1 ; : : : ; eir/; (2.3)

where mk counts how often the number k appears among the indices i1; : : : ; ir (k D
1; : : : ; n). (We remark that (2.3) should replace the formula given in [16, p. 463,
line �8].)

Now we define the moment tensors, which generalize the volume. Integrals of
tensor-valued functions can, of course, be defined coordinate-wise. For r 2 N0, let

r.K/ WD 1

rŠ

Z

K
xr dx; K 2 K n: (2.4)
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Thus, r.K/ 2 T
r, and explicitly

r.K/.y1; : : : ; yr/ D 1

rŠ

Z

K
.x � y1/ � � � .x � yr/ dx

for y1; : : : ; yr 2 R
n. The factor 1=rŠ in (2.4) is only for convenience. It is clear that

r W K n ! T
r is a simple valuation.

Immediately from (2.4) we see how r behaves under translations. Since the
binomial theorem holds for the symmetric tensor product, for t 2 R

n we get

r.K C t/ D
rX

jD0

1

jŠ
r�j.K/t

j: (2.5)

Formally, this looks like an ordinary polynomial, but we have to keep in mind that
here, according to our notational conventions,

r�j.K/t
j D r�j.K/ˇ t ˇ � � � ˇ t

„ ƒ‚ …
j

:

Nevertheless, in view of (2.5) one says that r has polynomial behaviour under
translations.

Also the behaviour under rotations is easy to see. Let O.n/ be the orthogonal
group of R

n. Its elements are called rotations of R
n; thus, rotations in our

terminology can be proper (orientation preserving) or improper. For # 2 O.n/ and
for y1; : : : ; yr 2 R

n we have

r.#K/.y1; : : : ; yr/ D 1

rŠ

Z

#K
.x � y1/ � � � .x � yr/ dx

D 1

rŠ

Z

K
.#x � y1/ � � � .#x � yr/ dx

D 1

rŠ

Z

K
.x � #�1y1/ � � � .x � #�1yr/ dx

D r.K/.#
�1y1; : : : ; #�1yr/ D .#r.K//.y1; : : : ; yr/:

Thus,

r.#K/ D #r.K/;

where the usual operation of O.n/ on T
r is defined by

.#a/.y1; : : : ; yr/ D a.#�1y1; : : : ; #�1yr/

for a 2 T
r .
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The tensor functional r also satisfies a Steiner formula. To express it in a
convenient way, we have to introduce further tensor functionals. In the following,
we use the support measures �k (see Sect. 1.3), which are Borel measures on
˙n D R

n � S
n�1. The constants �j; !j were introduced in (1.14).

Definition 2.1 The Minkowski tensors are defined by

˚
r;s
k .K/ WD 1

rŠsŠ

!n�k

!n�kCs

Z

˙n
xrus�k.K; d.x; u// (2.6)

for k 2 f0; : : : ; n � 1g and r; s 2 N0. Further, we define

˚ r;0
n .K/ WD r.K/ (2.7)

and

˚ r;s
k WD 0 if k … f0; : : : ; ng or r … N0 or s … N0 or k D n; s 6D 0:

The latter definition will allow us later to extend some summations formally over
all nonnegative integers.

Now we can formulate a Steiner-type formula.

Theorem 2.2 For r 2 N0, K 2 K n and 
 � 0, the formula

r.K C 
Bn/ D
nCrX

kD0

nCr�k�nCr�kV

.r/
k .K/ (2.8)

holds, where

V.r/k D
X

s2N0
˚

r�s;s
k�rCs: (2.9)

For r D 0, formula (2.8) reduces to the ordinary Steiner formula (2.1) for the
volume.

We indicate the proof of formula (2.8). For this, we need to compute an
integral

R
Rn f .x/ dx by a procedure that generalizes the transformation to polar

coordinates, with the role of the unit sphere played by the boundary of a general
convex body. Since such a general convex body need neither be smooth nor strictly
convex, this generalized transformation formula makes use of the support measures.
These satisfy themselves a Steiner formula [17, Theorem 4.2.7], of which here the
following special case is relevant. We write K
 WD K C 
Bn, for 
 � 0, and define
the mapping

�
 W ˙n ! ˙n; �
.x; u/ WD .x C 
u; u/:
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Then

2�n�1.K
; � / D
n�1X

kD0

n�k�1!n�k�
�k.K; � /;

where �
�k.K; � / is the image measure (pushforward) of �k.K; � / under �
. Using
this, the following formula can be proved [17, Theorem 4.2.8].

Lemma 2.3 Let K 2 K n, and let f W Rn n K ! R be a nonnegative measurable
function. Then

Z

RnnK
f .x/ dx D

n�1X

jD0
!n�j

Z 1

0

tn�j�1
Z

˙n
f .x C tu/�j.K; d.x; u// dt: (2.10)

To prove now formula (2.8), we first write

r.K
/ D r.K/C 1

rŠ

Z

K
nK
xr dx:

To the last term we apply the transformation (2.10) coordinate-wise and obtain

Z

K
nK
xr dx D

n�1X

jD0
!n�j

Z 


0

tn�j�1
Z

˙n
.x C tu/r�j.K; d.x; u// dt

D
n�1X

jD0
!n�j

Z 


0

tn�j�1
Z

˙n

rX

sD0

 
r

s

!

xr�susts�j.K; d.x; u// dt

D
n�1X

jD0

rX

sD0
!n�j

 
r

s

!

n�jCs

n � j C s

Z

˙n
xr�sus�j.K; d.x; u//:

Introducing the index k D j C r � s and using the definition (2.6), we obtain the
assertion (2.8).

2.2 A Classification of Tensor Valuations

To describe our next goals, we recall Hadwiger’s characterization theorem, that is,
Theorem 1.23. It determines the real vector space of all mappings ' W K n ! R

which are

• valuations,
• rigid motion invariant,
• continuous.
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Hadwiger proved that this vector space has dimension n C 1 and is spanned by
the intrinsic volumes V0; : : : ;Vn. These intrinsic volume functionals are linearly
independent, because they have different degrees of homogeneity and are not
identically zero.

As the intrinsic volumes have been generalized to Minkowski tensors, it is natural
to ask whether, respectively in which form, Hadwiger’s characterization theorem
can be extended. For tensor valuations of rank one, there is a closely analogous
result.

Theorem 2.4 The real vector space of all mappings  W K n ! R
n which are

• valuations,
• rotation equivariant, and such that  .K C t/ �  .K/ is parallel to t,
• continuous,

is spanned by the mappings

K 7!
Z

K
x Cj.K; dx/; j D 0; : : : ; n:

Recall from Sect. 1.3 the relation between the support measures�j.K; � / and the
curvature measures Cj.K; � /. The integral

R
K x Cj.K; dx/ is the moment vector of

the curvature measure Cj.K; � /. Again, the vector space in question has dimension
nC1, because the moment vectors have different degrees of homogeneity and are not
identically zero. The result was proved by Hadwiger and Schneider [7]. Although
it looks similar to Hadwiger’s characterization theorem, its proof uses a different
approach. One might wonder why the dimension of the vector space is still n C 1.
The Steiner formula for the moment vector

R
K x dx has, in fact, nC2 terms. However,

one of these, namely
R
Bn x dx, is identically zero.

For tensor valuations of ranks larger than one, the situation is more complicated.
It remains true that each Minkowski tensor ˚ r;s

k defines a mapping 	 W K n ! T
p,

for p D r C s, which is a valuation and is continuous. The behaviour under
isometries (combinations of rotations and translations) can be described as follows.
First, we point out that in Hadwiger’s theorem, ‘rigid motions’ are orientation
preserving, whereas in the following, a ‘rotation’ is an element of O.n/ and thus
can be improper. The mapping 	 is rotation covariant, that is, if # 2 O.n/ is a
rotation, then 	 .#K/ D #	 .K/ for all K 2 K n. We recall that the operation of the
orthogonal group appearing here is defined by

.#T/.y1; : : : ; yp/ D T.#�1y1; : : : ; #�1yp/ for y1; : : : ; yp 2 R
n; T 2 T

p:

Further, 	 has polynomial translation behaviour, by which we mean that

	 .K C t/ D
pX

jD0

1

jŠ
	p�j.K/t

j for K 2 K n; t 2 R
n;
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with tensors 	p�j.K/ 2 T
p�j, which are independent of t. (By convention, 00 D 1

here.) We say that 	 is isometry covariant if it has both properties, rotation
covariance and polynomial behaviour under translations.

One new aspect appearing for higher ranks is the following. For rank two, there is
a constant mapping 	 W K n ! T

2 that has all the properties listed above, namely
	 .K/ D Q, the metric tensor. Since Q does not depend on K, this mapping 	 is
trivially a valuation, continuous, and has polynomial behaviour under translations.
For # 2 O.n/,

Q.y1; y2/ D y1 � y2 D #�1y1 � #�1y2 D .#Q/.y1; y2/;

hence 	 is also rotation covariant. As the considered properties are preserved under
symmetric products, it follows that also the mappings K 7! Qm˚

r;s
k .K/, for any

m 2 N0, share these properties with the Minkowski tensors. But this is as far as we
can go, as the following characterization theorem due to Alesker [1] shows.

Theorem 2.5 (Alesker) Let p 2 N0. The real vector space of all mappings 	 W
K n ! T

p which are

• valuations,
• isometry covariant,
• continuous,

is spanned by the tensor valuations

Qm˚
r;s
k ; (2.11)

where m; r; s 2 N0 satisfy 2m C r C s D p, where k 2 f0; : : : ; ng, and where s D 0

if k D n.

The characterizations given in Theorem 1.23 (i.e., Hadwiger’s characterization
theorem) and Theorem 2.4 are special cases of this result. However, there is an
essential difference: for p � 2, the spanning tensor valuations (2.11) are no
longer linearly independent. They satisfy a series of linear relations, known as the
McMullen relations. We prove these now.

The crucial relation is the identity

Q˚ r�1;0
n D 2�˚

r;1
n�1: (2.12)

Explicitly, this reads

Qr�1.K/ D 2

rŠ

Z

˙n
xru�n�1.K; d.x; u//: (2.13)

It suffices to prove this identity for smooth convex bodies, because the general
case can then be obtained by approximation. If K is smooth, we denote by u.K; x/
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the unique outer unit normal vector ofK at its boundary point x. For a smooth convex
body K, the measure 2�n�1.K; � / is the image measure of the Hausdorff measure
H n�1 on @K, the boundary of K, under the measurable mapping x 7! .x; u.K; x//
from @K to ˙n. Therefore, Eq. (2.13) is equivalent to

Qr�1.K/ D 1

rŠ

Z

@K
xru.K; x/H n�1.dx/: (2.14)

To prove this, we use coordinates. We introduce an orthonormal basis .e1; : : : ; en/
of Rn and write x 2 R

n in the form x D x1e1 C � � � C xnen (so x1; : : : ; xn are now
Cartesian coordinates). For given i1; : : : ; ir; j 2 f1; : : : ; ng, we define the vector field
v by

v.x/ WD xi1 � � � xir ej; x 2 R
n:

To this and the convex body K we apply the divergence theorem. It says that

Z

K
divv.x/ dx D

Z

@K
v.x/ � u.K; x/H n�1.dx/:

To write this explicitly in a concise form, we use the Kronecker symbol ı and
indicate by Lxm that xm has to be deleted. Then we get

Z

K

rX

kD1
ıikj xi1 � � � Lxik � � � xir dx D

Z

@K
xi1 � � � xir.ej � u.K; x//H n�1.dx/:

Using tensor notation, this can equivalently be written as

rX

kD1
Q.eik ; ej/r�1.K/.ei1 ; : : : ; Leik ; : : : ; eir/

D 1

.r � 1/Š

Z

@K
xr.ei1 ; : : : ; eir /u.K; x/.ej/H

n�1.dx/: (2.15)

This identity holds for arbitrary .r C 1/-tuples .i1; : : : ; ir; j/ from f1; : : : ; ng.
To prove the identity (2.14), we have to check (only) that the .r C 1/-tensors on

either side attain the same value at any .rC1/-tuple .ei1 ; : : : ; eirC1
/ of basis vectors.

Now, by the definition of the symmetric tensor product, for the left side of (2.14) we
have

.r C 1/Š.Qr�1.K//.ei1 ; : : : ; eirC1
/

D
X

�2S .rC1/
Q.ei�.1/ ; ei�.2/ /r�1.K/.ei�.3/ ; : : : ; ei�.rC1/

/: (2.16)
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For the right side of (2.14) we obtain from (2.15) that

.r C 1/Š
1

rŠ

Z

@K
.xru.K; x//.ei1 ; : : : ; eirC1

/H n�1.dx/

D 1

rŠ

X

�2S .rC1/

Z

@K
xr.ei�.1/ ; : : : ; ei�.r/ /u.K; x/.ei�.rC1/

/H n�1.dx/

D 1

r

rX

kD1

X

�2S .rC1/
Q.ei�.k/ ; ei�.rC1/

/r�1.K/.ei�.1/ ; : : : ; Lei�.k/ ; : : : ; ei�.r/ /

D
X

�2S .rC1/
Q.ei�.1/ ; ei�.2/ /r�1.K/.ei�.3/ ; : : : ; ei�.rC1/

/:

The latter agrees with (2.16). This completes the proof of (2.12).
From (2.12), further identities can be derived by applying (2.12) to the parallel

bodies of a given convex body. For this, we write (2.12) in another explicit form,
which is a counterpart to (2.14) for strictly convex bodies. If the convex body K is
strictly convex, then to each unit vector u 2 S

n�1 there is a unique boundary point
of K at which u is attained as outer normal vector. We denote this boundary point by
x.K; u/. For a strictly convex bodyK, the measure 2�n�1.K; � / is the image measure
of the area measure Sn�1.K; � / under the measurable mapping u 7! .x.K; u/; u/
from S

n�1 to ˙n (for the area measure, see Sect. 1.3 or [17, Sect. 4.2]). Therefore,
Eq. (2.13) is transformed into

Qr�1.K/ D 1

rŠ

Z

Sn�1

x.K; u/ru Sn�1.K; du/: (2.17)

We apply this to a parallel body KC
Bn, for 
 � 0, which is also strictly convex
if K is strictly convex. For the left side we get, using the Steiner formula (2.8),

Qr�1.K C 
Bn/ D
nCr�1X

kD0

nCr�1�k�nCr�1�kQV

.r�1/
k .K/: (2.18)

To compute the right side of (2.17) for K C 
Bn, we note that

x.K C 
Bn; u/ D x.K; u/C 
u;

and hence

x.K C 
Bn; u/r D
rX

jD0

 
r

j

!


r�jx.K; u/jur�j:
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Further, we have to use the Steiner-type formula

Sn�1.K C 
Bn; � / D
n�1X

iD0

n�1�i

 
n � 1
i

!

Si.K; � /

(see [17, (4.36)]). Therefore, we also have

Qr�1 .K C 
Bn/

D 1

rŠ

n�1X

iD0

 
n � 1
i

!Z

Sn�1

rX

jD0

 
r

j

!

x.K; u/jur�jC1 Si.K; du/ 
nCr�1�i�j

D 1

rŠ

nCr�1X

kD0

nCr�1�k

rC1X

sD1

 
r

s � 1

! 
n � 1

k � r � 1C s

!

(2.19)

�
Z

˙n
xrC1�sus�k�r�1Cs.K; d.x; u//:

Here we have introduced new indices by s D r C 1� j and k D iC j, and instead of
the measure�m.K; � / we have used its re-normalization

�m.K; � / D n�n�m
�n
m

� �m.K; � /:

Comparing the coefficients in (2.18) and (2.19), we now get

�nCr�1�kQV
.r�1/
k .K/

D 1

rŠ

rC1X

sD1

 
r

s � 1

! 
n � 1

k � r � 1C s

!Z

˙n
xrC1�sus�k�r�1Cs.K; d.x; u//:

With the help of the identity 2��m D !mC2, this can be simplified. Replacing r C 1

by r, we obtain

QV.r�2/k .K/ D 2�
X

s2N0
s˚ r�s;s

k�rCs.K/: (2.20)

So far, this identity has been proved for strictly convex bodies K. By approximation,
this result can be extended to general convex bodies.

Now, multiplying (2.9) (with r replaced by r�2) by Q and comparing with (2.20),
we immediately get the McMullen relations. McMullen [12] proved these relations
in a different way, namely first for polytopes.
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Theorem 2.6 (McMullen) For r 2 N with r � 2 and k 2 f0; : : : ; n C r � 2g,

Q
X

s2N0
˚

r�s;s�2
k�rCs D 2�

X

s2N0
s˚ r�s;s

k�rCs: (2.21)

For r D 1, relation (2.21) also holds, but only expresses the well-known fact that

Z

Sn�1

u Sj.K; du/ D 0

for j D 0; : : : ; n � 1. For rank two, the McMullen relations are given by

Q˚0;0
k D 2�˚

1;1
k�1 C 4�˚

0;2
k ; k D 0; : : : ; n:

We recall that

˚
0;0
k .K/ D Vk;

˚1;1
k�1.K/ D ak

Z

˙n
xu�k�1.K; d.x; u// for k � 1; ˚1;1

�1 .K/ D 0;

˚
0;2
k .K/ D bk

Z

˙n
u2 �k.K; d.x; u// for k � n � 1; ˚0;2

n .K/ D 0;

with positive constants ak; bk.
Now the question arises whether the McMullen relations are essentially the only

linear dependences between the basic tensor valuations Qm˚
r;s
k . This is, in fact, true.

The following was proved by Hug et al. [9].

Theorem 2.7 Any nontrivial linear relation between basic tensor valuations
Qm˚

r;s
k can be obtained by multiplying suitable McMullen relations by powers

of Q and by taking linear combinations of relations obtained in this way.

This result opened the way to determine bases and dimensions of the vector
spaces in question. Let Tp;k denote the real vector space of all mappings K n ! T

p

that are continuous, isometry covariant valuations and homogeneous of degree k.
Theorem 3.1 of [9] gives an explicit formula for the dimension of Tp;k. As an
example for explicit bases, we present here the case of rank two:

• T2;0: a basis is fQ˚0;0
0 g.

• T2;1: a basis is f˚0;2
1 ;Q˚0;0

1 g.
• T2;k for k D 2; : : : ; n � 1: a basis is f˚0;2

k ; ˚2;0
k�2;Q˚

0;0
k g.

• T2;n: a basis is f˚2;0
n�2;Q˚0;0

n g.
• T2;k for k D n C 1; n C 2: a basis is f˚2;0

k�2g.

Thus, the vector space of continuous, isometry covariant tensor valuations of rank
two has dimension 3n C 1.
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2.3 Local Tensor Valuations

In the same way as the intrinsic volumes have local versions, the support measures,
so the Minkowski tensors have natural measure-valued extensions. We abbreviate
now the normalizing factor appearing in (2.6) by

cr;sn;k WD 1

rŠsŠ

!n�k

!n�kCs

and define the local Minkowski tensors by

�
r;s
k .K; �/ WD cr;sn;k

Z

�

xrus�k.K; d.x; u// (2.22)

for � 2 B.˙n/, the �-algebra of Borel sets in ˙n, and for r; s 2 N0, k 2 f0; : : : ;
n�1g. These local tensor valuations can also be introduced in a way that generalizes
the introduction of the support measures by means of a local Steiner formula (see
[17, Theorem 4.2.1]). For this, we define, for K 2 K n and � 2 B.˙n/, a tensor in
T
rCs by

V r;s

 .K; �/ WD

Z

K
nK
1�
�
pK.x/; uK.x/

�
pK.x/

r
�
x � pK.x/

�s
dx (2.23)

for 
 � 0 and r; s 2 N0. Here 1� is the characteristic function of the set � and pK.x/
denotes the point in K nearest to x; the vector uK.x/ WD .x � pK.x//=kx � pK.x/k
points from pK.x/ to x, for x … K. (Variants of the tensor (2.23) have been introduced
in [13] and [11], aiming at applications.) Noting that for .x; u/ in the support of the
measure �j.K; � / and t > 0 the relations pK.x C tu/ D x and uK.x C tu/ D u hold,
we obtain from Lemma 2.3 that

V r;s

 .K; �/ D rŠsŠ

n�1X

jD0

n�jCs�n�jCs�

r;s
j .K; �/: (2.24)

Equation (2.22) defines a mapping �r;s
k from K n � B.˙n/ into T

rCs. We want
to list the properties of this mapping and collect, therefore, the most important
properties which a general mapping 	 W K n � B.˙n/ ! T

p may have. For
� 2 B.˙n/, t 2 R

n and # 2 O.n/, we write � C t WD f.x C t; u/ W .x; u/ 2 �g
and #� WD f.#x; #u/ W .x; u/ 2 �g. Moreover, recall from Sect. 1.3 that nc.K/ D
f. pK.x/; uK.x// W x 2 R

n n Kg denotes the normal bundle of K. The following
properties will play an important role.

• 	 has polynomial translation behaviour of degree q, where 0 � q � p, if

	 .K C t; �C t/ D
qX

jD0

1

jŠ
	p�j.K; �/t

j (2.25)
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with tensors 	p�j.K; �/ 2 T
p�j, for all K 2 K n, � 2 B.˙n/ and t 2 R

n (the
factor 1=jŠ is convenient); here 	p D 	 . In particular, 	 is called translation
invariant if it is translation covariant of degree zero.

• 	 is rotation covariant if 	 .#K; #�/ D #	 .K; �/ for all K 2 K n, � 2 B.˙n/

and # 2 O.n/.
• 	 is isometry covariant (of degree q) if it has polynomial translation behaviour

of some degree q � p (and hence of degree p) and is rotation covariant.
• 	 is locally defined if for � 2 B.˙n/ and K;K0 2 K n with � \ nc.K/ D
� \ nc.K0/ the equality 	 .K; �/ D 	 .K0; �/ holds.

• If 	 .K; � / is a Tp-valued measure for eachK 2 K n, then	 is weakly continuous
if for each sequence .Ki/i2N of convex bodies in K n converging to a convex body
K the relation

lim
i!1

Z

˙n
f d	 .Ki; � / D

Z

˙n
f d	 .K; � /

holds for all continuous functions f W ˙n ! R.

We point out that ‘locally defined’, also called ‘locally determined’, appears with
different interpretations in different situations; compare Theorems 1.29–1.31.

In the previous definitions, the set K n may be replaced by Pn.
Returning to the local Minkowski tensors, we note that from the properties of the

support measures, the following can be deduced for each 	 D �
r;s
k .

• For each K 2 K n, 	 .K; � / is a TrCs-valued measure.
• 	 is weakly continuous.
• For each � 2 B.˙n/, 	 . � ; �/ is measurable.
• For each � 2 B.˙n/, 	 . � ; �/ is a valuation.
• The mapping 	 is isometry covariant.
• The mapping 	 is locally defined.

It will be the main goal of the rest of this chapter to determine all mappings with
these properties. In fact, it will turn out that some properties are consequences of
the others.

2.4 A Characterization Result for Local Tensor Valuations
on Polytopes

In a first step to achieve the goal just formulated, we consider local tensor valuations
on the space Pn of polytopes.

Let P 2 Pn be a polytope. By Fk.P/ we denote the set of k-dimensional faces
of P, for k 2 f0; : : : ; ng. For F 2 Fk.P/, the set �.P;F/ D N.P;F/ \ S

n�1 is
the set of outer unit normal vectors of P at its face F (see [17, Sect. 2.4] for the
normal cone N.P;F/). From a representation of the support measures for polytopes
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(see [17, (4.3)]), one can deduce that the local Minkowski tensors of a polytope P
have the explicit representation

�
r;s
k .P; �/

D Cr;s
n;k

X

F2Fk.P/

Z

F

Z

�.P;F/
1�.x; u/xrusH n�k�1.du/H k.dx/;

(2.26)

for k 2 f0; : : : ; n � 1g and r; s 2 N0, where

Cr;s
n;k WD .rŠsŠ!n�kCs/

�1: (2.27)

We point out that the integrations in (2.26) are only with respect to Hausdorff
measures. The structure of (2.26) should be well understood, since it plays an
important role in the following.

If one studies valuations on polytopes, it is always advisable to see how far one
gets without the assumption of continuity. Theorem 1.31, for example, does not need
any continuity assumption. However, without this assumption, there are mappings
on Pn which share the preceding properties with the local Minkowski tensors, but
are far more general. Hence, a possible classification theorem has to take these into
account.

To define these generalizations, we associate with each face F of a polytope the
linear subspace that is a translate of the affine hull of F. We denote this subspace by
L.F/ and call it the direction space of F. For a linear subspace L of Rn, we denote
by �L W Rn ! L the orthogonal projection. Then we define QL 2 T

2 by

QL.a; b/ WD �La � �Lb for a; b 2 R
n:

We note that Q#L D #QL for # 2 O.n/.
Now we define the generalized local Minkowski tensors by extending (2.26) in

the following way:

�
r;s; j
k .P; �/ (2.28)

WD Cr;s
n;k

X

F2Fk.P/

Qj
L.F/

Z

F

Z

�.P;F/
1�.x; u/xrusH n�k�1.du/H k.dx/;

for r; s; j; k 2 N0 with 1 � k � n � 1. This definition is supplemented by

�r;s;0
0 WD �r;s

0 ;

but �r;s; j
0 remains undefined for j � 1. Each mapping 	 D �

r;s; j
k has the following

properties. It is isometry covariant and locally defined. For each P 2 Pn, 	 .P; � /
is a T

p-valued measure, with p D 2j C r C s. For each � 2 B.˙n/, 	 . � ; �/ is a
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valuation. The first of these properties are easy to see; the proof of the last one uses
Theorem 1.7; we refer to [8, Theorem 3.3] for the details.

Now we can state a characterization theorem. It is motivated by Theorems 2.5
and 1.31.

Theorem 2.8 For p 2 N0, let Tp.Pn/ denote the real vector space of all mappings

	 W Pn � B.˙n/ ! T
p

with the following properties.

(a) 	 .P; � / is a T
p-valued measure, for each P 2 Pn;

(b) 	 is isometry covariant;
(c) 	 is locally defined.

Then a basis of Tp.Pn/ is given by the mappings

Qm�
r;s; j
k ;

where m; r; s; j 2 N0 satisfy 2m C 2j C r C s D p, where k 2 f0; : : : ; n � 1g, and
where j D 0 if k 2 f0; n � 1g.

That only j D 0 appears if k D n � 1, is due to the easily proved identity

�
r;s; j
n�1 D

jX

iD0
.�1/i

 
j

i

!
.s C 2i/Š!1CsC2i

sŠ!1Cs
Q j�i�

r;sC2i
n�1 : (2.29)

Theorem 2.8 is a stronger version of a theorem proved in [16]. Some modifi-
cations, including the linear independence result, were proved in [8]. We state this
linear independence as a separate theorem.

Theorem 2.9 Let p 2 N0. OnPn, the generalized localMinkowski tensors Qm�
r;s; j
k

with

m; r; s; j 2 N0; 2m C 2j C r C s D p; k 2 f0; : : : ; n � 1g;

and j D 0 if k 2 f0; n � 1g;

are linearly independent.

The proof starts with a general linear relation

X

m;r;s; j;k

akmrsjQ
m�

r;s; j
k D 0;

where akmrsj 2 R with a0mrsj D a.n�1/mrsj D 0 for j ¤ 0 and the summation extends
over all m; r; s; j; k such that 2m C 2j C r C s D p. This relation is evaluated for a
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k-dimensional polytope F and arbitrary Borel sets ˇ � relint F, ! � L.F/? \S
n�1.

Using the generality of these Borel sets, homogeneity considerations, and the fact
that the symmetric tensor algebra has no zero divisors, it follows for any fixed r and
k that

X

m;s; j

akmrsjQ
mQj

L.F/C
r;s
n;ku

s D 0

for all u 2 S
n�1\L.F/?. This simplified relation is then applied to a tuple .x; : : : ; x/

of vectors x D x1e1 C � � � C xnen, and from the fact that the resulting polynomial in
x1; : : : ; xn is zero, one can deduce that all coefficients must be zero.

We shall now describe the main steps and ideas of the proof of Theorem 2.8 (the
details are found in [8] and [16]). For this, we suppose that

	 W Pn � B.˙n/ ! T
p

is a mapping which has the following properties.

• For each P 2 Pn, 	 .P; � / is a T
p-valued measure.

• 	 is isometry covariant.
• 	 is locally defined.

That 	 is isometry covariant, includes that it has polynomial translation
behaviour of some degree q. Thus, there are mappings	p�j W Pn�B.˙n/ ! T

p�j,
j D 0; : : : ; q, (possibly zero for some j and with 	p D 	 ) such that

	 .P C t; �C t/ D
qX

jD0

1

jŠ
	p�j.P; �/t

j

for all P 2 Pn, � 2 B.˙n/ and t 2 R
n. This implies similar behaviour of the

coefficient tensors, namely

	p�j.P C t; �C t/ D
q�jX

rD0

1

rŠ
	p�j�r.P; �/t

r (2.30)

for j D 0; : : : ; q and all P 2 Pn, � 2 B.˙n/ and t 2 R
n, in particular (case j D q),

	p�q.P C t; �C t/ D 	p�q.P; �/:

Properties of 	p�j can be derived from those of 	 , by means of the following
relation. There are constants ajm (j D 0; : : : ; q, m D 1; : : : ; q C 1), depending only



44 D. Hug and R. Schneider

on q; j;m, such that

	p�j.P; �/t
j D

qC1X

mD1
ajm	 .P C mt; �C mt/ (2.31)

for all P 2 Pn, � 2 B.˙n/ and t 2 R
n. In particular, we can deduce that 	p�j.P; � /

is a T
p�j-valued measure and that

	p�j.#P; #�/ D #	p�j.P; �/ (2.32)

for # 2 O.n/. Together with (2.30) this shows that also 	p�j is isometry covariant.

Lemma 2.10 For each P 2 Pn, the measure 	 .P; � / is concentrated on nc.P/.

The proof is based on the fact that 	 is locally defined and has polynomial
translation behaviour. Further it uses that the only translation invariant finite signed
measure on the bounded Borel sets of R

n is Lebesgue measure, up to a constant
factor.

The essential step to prove Theorem 2.8 is the translation invariant case, that is,
the following result.

Theorem 2.11 Let p 2 N0. Let 	 W Pn � B.˙n/ ! T
p be a mapping with the

following properties.

(a) 	 .P; � / is a T
p-valued measure, for each P 2 Pn;

(b) 	 is translation invariant and rotation covariant;
(c) 	 is locally defined.

Then 	 is a linear combination, with constant coefficients, of the mappings

Qm�
0;s; j
k ;

where m; s; j 2 N0 satisfy 2m C 2j C s D p, where k 2 f0; : : : ; n � 1g, and where
j D 0 if k 2 f0; n � 1g.

If this has been proved, then one can use the properties of the coefficient tensors
	p�j mentioned above, to give for Theorem 2.8 an inductive proof, which step by
step reduces the degree of the polynomial translation behaviour of 	 .

Now we indicate some ideas in the proof of Theorem 2.11. To show, as we have to
do, an equality for measures on B.˙n/, it is sufficient to prove equality on product
sets ˇ � ! with ˇ 2 B.Rn/ and ! 2 B.Sn�1/. Let P 2 Pn. By Lemma 2.10,
	 .P; � / is concentrated on nc.P/ � @P � S

n�1. The boundary @P of the polytope P
is the disjoint union of the relative interiors of the proper faces of P. Therefore,

	 .P; ˇ � !/ D
n�1X

kD0

X

F2Fk.P/

	
�
P; .ˇ \ relintF/ � .! \ �.P;F//

�
: (2.33)
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Consequently, it is sufficient to determine 	 .P; ˇ � !/ for the case where ˇ �
relintF and ! � �.P;F/, for some face F 2 Fk.P/.

Therefore, and because 	 is locally defined, we may restrict ourselves to the
following situation. We are given a number k 2 f0; : : : ; n � 1g, a k-dimensional
linear subspace L � R

n, a bounded Borel set ˇ � L, a Borel set ! � S
n�1 \ L?,

and a k-dimensional polytope P � L with ˇ � relintP. It suffices to determine
	 .P; ˇ � !/ in this case.

First, we fix ! and use the standard characterization of Lebesgue measure in L to
show that

	 .P; ˇ � !/ D a.L; !/H k.ˇ/;

where the constant a.L; !/ is a tensor in T
p that depends on the subspace L and the

Borel set !. The main task is to determine this tensor function. It has an important
covariance property, namely

a.#L; #!/ D #a.L; !/ for # 2 O.n/

and

#a.L; !/ D a.L; !/ if # fixes L? pointwise.

From this, it is deduced in [16] that

a.L; !/ D
bp=2cX

jD0
Qj

L

bp=2cX

iD0
cpkijQ

i
L?

Z

!

up�2j�2i H n�k�1.du/ (2.34)

with real constants cpkij. Once this has been proved, things can be put together to
finish the proof of Theorem 2.11.

The only hints we can give here to the proof of (2.34) is the formulation of two
lemmas. The first exhibits the crucial point where the tensors QL enter the scene.

Lemma 2.12 Let L � R
n be a linear subspace. Let r 2 N0, let T 2 T

r be a tensor
satisfying #T D T for each # 2 O.n/ that fixes L? pointwise. Then

T D
br=2cX

jD0
Qj

L�
�
L?

T.r�2j/

with tensors T.r�2j/ 2 T
r�2j.L?/, j D 0; : : : ; br=2c.
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Here Tp.L?/ denotes the space of p-tensors on L?, and for T 2 T
p.L?/ we have

used the notation

.��
L?

T/.x1; : : : ; xp/ WD T.�L?
x1; : : : ; �L?

xp/ for x1; : : : ; xp 2 R
n:

The proof of Lemma 2.12 is based on the fact that the algebra of symmetric
tensors on R

n is isomorphic to the polynomial algebra on R
n, and it uses some

manipulations with polynomials.
The second crucial lemma deals with rotation covariant tensor measures on the

sphere.

Lemma 2.13 Let r 2 N0, and let � W B.Sn�1/ ! T
r be a T

r-valued measure
satisfying

�.#!/ D .#�/.!/ for all ! 2 B.Sn�1/ and all # 2 O.n/:

Then

�.!/ D
br=2cX

jD0
ajQ

j
Z

!

ur�2j H n�1.du/; ! 2 B.Sn�1/;

with real constants aj, j D 0; : : : ; br=2c.
A first step of the proof uses that the total variation measure of � is rotation

invariant and hence a constant multiple of spherical Lebesgue measure. Then the
Radon-Nikodym theorem, applied coordinate-wise, yields a representation

�.!/ D
Z

!

f dH n�1; ! 2 B.Sn�1/;

with an almost everywhere defined measurable mapping f W S
n�1 ! T

r . A
special case of Lemma 2.12 together with the covariance property and Lebesgue’s
differentiation theorem can then be used to determine the function f .

2.5 The Characterization Result on General Convex Bodies

If we want to extend Theorem 2.8 from polytopes to general convex bodies, we
certainly need some continuity assumption. This raises the question whether �r;s; j

k
has a weakly continuous extension from polytopes to general convex bodies. To
make this question more precise, let

	 W K n � B.˙n/ ! T
p (2.35)
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be a mapping and consider the following properties, which it may or may not
have:

(A) 	 .K; � / is a Tp-valued measure, for each K 2 K n;
(B) 	 is isometry covariant;
(C) 	 is locally defined;
(D) 	 is weakly continuous.

Question For given k 2 f0; : : : ; n � 1g and r; s; j 2 N0, is there a mapping 	
as in (2.35) having properties (A)–(D) and satisfying 	 .P; � / D �

r;s; j
k .P; � / for

P 2 Pn?

This is trivially true for k D 0, since �r;s;0
0 D �r;s

0 by definition, and �r;s; j
0 is not

defined for j � 1. It is also true for k D n � 1, since we may define

�
r;s; j
n�1 .K; � / WD

jX

iD0
.�1/i

 
j

i

!
.s C 2i/Š!1CsC2i

sŠ!1Cs
Qj�i�

r;sC2i
n�1 .K; � /

for K 2 K n; by (2.29), this is consistent with the case of polytopes. The weak
continuity of �r;sC2i

n�1 follows from (2.22) and the weak continuity of the support
measures. Further, the answer is affirmative if j D 0, since �r;s;0

k .P; � / D �
r;s
k .P; � /

for P 2 Pn, and we can define �r;s;0
k .K; � / D �

r;s
k .K; � / for K 2 K n. It remains to

consider the cases of �r;s; j
k where 1 � k � n � 2 and j � 1.

Proposition 2.14 For k 2 f1; : : : ; n � 2g and r; s 2 N0, the answer to the question
above is affirmative for j D 1.

Postponing the proof of this proposition to Sect. 2.6, we can now state the
following characterization theorem. It includes the fact that the statement of
Proposition 2.14 does not extend to j > 1.

Theorem 2.15 For p 2 N0, let Tp.K n/ denote the real vector space of all
mappings 	 W K n � B.˙n/ ! T

p with properties (A)–(D).
A basis of Tp.K n/ is given by the mappings

Qm�
r;s; j
k ; k 2 f0; : : : ; n � 1g; m; r; s 2 N0; j 2 f0; 1g;

where 2m C 2j C r C s D p and j D 0 if k 2 f0; n � 1g.
As in the case of polytopes, where Theorem 2.8 follows from Theorem 2.11, it

suffices to consider the translation invariant case. By an inductive argument, which
was already used by Alesker [1] in his proof of Theorem 2.5, our Theorem 2.15 can
be deduced from the following result. We also observe that linear independence is
implied by Theorem 2.9.
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Theorem 2.16 Let p 2 N0. Let 	 W K n � B.˙n/ ! T
p be a mapping with the

properties (A), (C), (D) and

(B’) 	 is translation invariant and rotation covariant.

Then 	 is a linear combination, with constant coefficients, of the mappings

Qm�
0;s; j
k ; k 2 f0; : : : ; n � 1g; m; s 2 N0; j 2 f0; 1g;

where 2m C 2j C s D p and j D 0 if k 2 f0; n � 1g.
For the proof, some further simplifications are possible. If 	 satisfies the

assumptions of Theorem 2.16, then it is not difficult to see (cf. [8, Lemma 3.5])
that 	 D Pn�1

kD0 	k, where 	k is a mapping with the same properties which is,
moreover, homogeneous of degree k. Therefore, to prove Theorem 2.16, we can and
will assume in addition that 	 is homogeneous of some degree k 2 f0; : : : ; n � 1g.
If k 2 f0; n � 1g, then Theorem 2.11 shows that the restriction of 	 to Pn is a
linear combination of mappings Qm�

0;s
k , and by weak continuity this holds also for

	 on K n. Hence, we can assume now that 	 is homogeneous of some degree
k 2 f1; : : : ; n � 2g (and, therefore, n � 3). Under these assumptions, Theorem 2.11
implies that there are constants cmjs (only finitely many of them different from zero)
such that

	 .P; � / D
X

m; j;s�0
2mC2jCsDp

cmjsQ
m�

0;s; j
k .P; � / for P 2 Pn:

Since 	 and �0;s;0k , and by the postponed Proposition 2.14 also �0;s;1k , are weakly
continuous, the mapping 	 0 defined by

	 0 WD 	 �
X

m; j;s�0; j�1
2mC2jCsDp

cmjsQ
m�

0;s; j
k (2.36)

has the properties (A), (B’), (C), (D), and for P 2 Pn it satisfies

	 0.P; � / D
X

m;s�0; j�2
2mC2jCsDp

cmjsQ
m�

0;s; j
k .P; � /:

Theorem 2.16 and thus Theorem 2.15 is proved if we show that 	 0 is identically
zero. We sketch the main ideas leading to this result and refer to [8] for the details.

The strategy of the proof is indicated by the following lemma. We write

	 0.K; f / WD
Z

˙n
f .u/ 	 0.K; d.x; u//

for K 2 K n and continuous real functions f on the unit sphere Sn�1.
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Lemma 2.17 If the function 	 0 defined by (2.36) is not identically zero, then there
exist a convex body K 2 K n, a continuous function f on S

n�1, a p-tuple E of
vectors from R

n, and a rotation # 2 O.n/ such that K and f are invariant under # ,
but 	 0.K; f /.#E/ 6D 	 0.K; f /.E/.

If this is proved, then it follows from the invariance of K and f under # and from
the rotation covariance of 	 0 that

	 0.K; f /.#E/ D 	 0.#K; # f /.#E/ D 	 0.K; f /.E/;

which is a contradiction. The conclusion is that 	 0 � 0, which proves the theorem.
The (lengthy) proof of Lemma 2.17 constructs a sequence .Pi/i2N of polytopes

converging to a convex bodyK, such that K has a symmetry # (a rotation mappingK
into itself) with the following property. For each i, the rotation # is not a symmetry
of Pi, and this fact can be strengthened as follows. If 	 0 is not identically zero, then
there are a continuous function f on S

n�1, invariant under # , and a p-tuple E of
vectors from R

n, such that

j	 0.Pi; f /.#E/ � 	 0.Pi; f /.E/j � c > 0: (2.37)

The function f , the p-tuple E and the constant c are independent of i. By the weak
continuity of 	 0, it then follows that j	 0.K; f /.#E/� 	 0.K; f /.E/j � c > 0:

The polytopes Pi are constructed as follows (we describe the construction for
n � 4; a modification is necessary for n D 3). Let .e1; : : : ; en/ be the standard
orthonormal basis of R

n, and identify linfe1; : : : ; en�1g with R
n�1. In R

n�1, we
consider the lattice

Z
n�1 WD fm1e1 C � � � C mn�1en�1 W m1; : : : ;mn�1 2 Zg:

Its points are the vertices of a tessellation of Rn�1 into .n � 1/-cubes. We lift the
homothets of this lattice to a paraboloid of revolution. For this, we define the lifting
map ` W Rn�1 ! R

n by `.x/ WD x C kxk2en for x 2 R
n�1. For t > 0 we define the

polyhedral set

Rt WD conv `.2tZn�1/:

It is well known and easy to see that under orthogonal projection to R
n�1, the facets

of Rt project into the cubes of the tessellation induced by 2tZn�1. With H�
h WD fy 2

R
n W y � en � hg for suitable h > 0, we define

Pi WD R1=i \ H�
h and K WD epi ` \ H�

h ;

where epi denotes the epigraph. Then Pi is a convex polytope, and Pi ! K for
i ! 1.
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The details of the estimates leading to (2.37) (if h > 0 is sufficiently small) are
found in [8].

We point out, however, that the last argument of the proof given there (which
concerns the case n D 3) needs a correction, and we replace the reasoning on
page 1561 of [8] by the following.

Let

F.�/ WD
dX

jD2
cj

d�1X

rD0

�
� cos rˇd C

p
1 � �2 sin rˇd

�2j
; � 2 Œ0; 1�;

where d 2 N, d � 2, cj 2 R, cd 6D 0, ˇd D �=d. We have to show that F is
not constant. First we note that F.�/ D P.�/C p

1 � �2Q.�/ with polynomials P
and Q, in particular,

P.�/ D
dX

jD2
cj

d�1X

rD0

jX

`D0

 
2j

2`

!

�2`.cos rˇd/2`.1 � �2/j�`.sin rˇd/2j�2`:

Suppose, to the contrary, that F.�/ D c for � 2 Œ0; 1�, with a constant c. Then

.P.�/� c/2 D .1 � �/.1C �/Q.�/2 (2.38)

for � 2 Œ0; 1� and hence for all � 2 R. If P � c and Q are not identically zero,
then the multiplicity of 1 as a root of either .P � c/2 or Q2 is even, but according
to (2.38), for .P � c/2 it is odd. This contradiction shows, in particular, that P is
constant. However, we have

lim
�!1��2dP.�/ D cd

d�1X

rD0

dX

`D0

 
2d

2`

!

.�1/d�`.cos rˇd/
2`.sin rˇd/

2d�2`

D cd

d�1X

rD0
Re .cos rˇd C i sin rˇd/

2d

D cd Re
d�1X

rD0
exp

�
r
�

d
i � 2d

�
D dcd 6D 0;

a contradiction.
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2.6 A Weakly Continuous Extension

The main purpose of this section is to sketch the proof of Proposition 2.14, which
was formulated in the previous section. Moreover, for an arbitrary convex body K
we shall give an explicit description of �r;s;1

k .K; � / as an integral over the normal
bundle of K involving generalized curvatures and principal directions of curvature,
which is then specialized for smooth convex bodies.

It is well known that the map K 7! �j.K; � / is weakly continuous on K n.
This follows most easily from the weak continuity of the local parallel volume map
K 7! H n.M
.K; � //, for all 
 > 0. As an immediate consequence we obtain that
K 7! �

r;s;0
k .K; � / is weakly continuous. In order to show that P 7! �

r;s;1
k .P; � /

has a weakly continuous extension from polytopes to general convex bodies, we
shall proceed in a different way. The starting point is a description of the support
measure�k.K; � / of K by means of a current, the normal cycle TK of K, evaluated at
suitably chosen differential forms 'k (the Lipschitz-Killing curvature forms), as first
explained in [18]. From the continuity of the map K 7! TK (in a suitable topology),
it follows again that the support measures are weakly continuous. The main task
then is to find suitable tensor-valued differential forms 'r;s

k such that TP evaluated at
'
r;s
k yields �r;s;1

k .P; � /, for an arbitrary polytope P.
We start with some basic terminology and facts of multilinear algebra and

geometric measure theory (see [5]), which will also be useful in the final section.
Let V be a finite-dimensional real vector space. Then

V
m V , for m 2 N0, denotes

the vector space of m-vectors of V , and
Vm V is the vector space of all m-linear

alternating maps from Vm to R, whose elements are called m-covectors. The
map

Vm V ! Hom.
V

m V;R/, which assigns to f 2 Vm V the homomorphism
v1 ^ � � � ^ vm 7! f .v1; : : : ; vm/, allows us to identify

Vm V and Hom.
V

m V;R/.
By this identification, the dual pairing of elements a 2 V

m V and ' 2 Vm V can
be defined by ha; 'i WD '.a/. If V 0 is another finite-dimensional vector space and
f W V ! V 0 is a linear map, then a linear map

V
m f W Vm V ! V

m V 0 is determined
by .

V
mf /.v1 ^ � � � ^ vm/ D f .v1/ ^ � � � ^ f .vm/, for all v1; : : : ; vm 2 V .

To introduce the normal cycle TK of K 2 K n, we remark that the normal bundle
nc.K/ � R

2n of K is an .n � 1/-rectifiable set. To see this, observe that the map
F W @K1 ! R

n � S
n�1 given by F.x/ WD . pK.x/; uK.x// is bi-Lipschitz, and

hence the image nc.K/ is an .n� 1/-rectifiable subset of R2n. Therefore, for H n�1-
almost all .x; u/ 2 nc.K/, the set of .H n�1 nc.K/; n � 1/-approximate tangent
vectors at .x; u/ 2 nc.K/ is an .n � 1/-dimensional linear subspace of R2n, which is
denoted by Tann�1.H n�1 nc.K/; .x; u//. The symbol describes the restriction of
a measure to a subset (see [5, p. 54]), and approximate tangent vectors are defined
and characterized in [5, p. 252, 3.2.16]. We also refer to [5, p. 253, 3.2.16] for
the notions of the approximate differentiability and the approximate differential of
a map, which are used in the following. In the present context, the approximate
tangent space, which has just been introduced, is spanned by an orthonormal basis
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.a1.x; u/; : : : ; an�1.x; u//, where

ai.x; u/ WD
�

1
p
1C ki.x; u/2

bi.x; u/;
ki.x; u/

p
1C ki.x; u/2

bi.x; u/

�

and where .b1.x; u/; : : : ; bn�1.x; u// is a suitable orthonormal basis of u?, which is
chosen so that .b1.x; u/; : : : ; bn�1.x; u/; u/ has the same orientation as the standard
basis .e1; : : : ; en/ of Rn. Here, ki.x; u/ 2 Œ0;1� for i D 1; : : : ; n � 1 with the usual
convention

1
p
1C ki.x; u/2

D 0 and
ki.x; u/

p
1C ki.x; u/2

D 1 if ki.x; u/ D 1:

The dependence of ai; bi; ki on K is not made explicit by our notation. We
remark that bi; ki, i D 1; : : : ; n � 1, are essentially uniquely determined (see [15,
Proposition 3, Lemma 2]). The numbers ki.x; u/ can be interpreted as generalized
curvatures with corresponding generalized principal directions of curvature bi.x; u/.
Moreover, we can assume that bi.xC"u; u/ D bi.x; u/, independent of " > 0, where
.x; u/ 2 nc.K/ and .x C "u; u/ 2 nc.K"/. For H n�1-almost all .x; u/ 2 nc.K/,

aK.x; u/ WD a1.x; u/ ^ � � � ^ an�1.x; u/

is an .n � 1/-vector, which fixes an orientation of the approximate tangent space
Tann�1.H n�1 nc.K/; .x; u//. Then

TK WD �
H n�1 nc.K/

� ^ aK

defines an .n � 1/-dimensional current in R
2n (see [5, Chap. 4.1]), the normal cycle

of K. Explicitly, we have

TK.'/ D
Z

nc.K/
haK.x; u/; '.x; u/iH n�1.d.x; u//;

for all H n�1 nc.K/-integrable functions ' W R2n ! Vn�1
R
2n. Note that TK is a

rectifiable current (see [5, Theorem 4.1.28] for a characterization of such currents),
which has compact support, and thus TK can be defined for a larger class of functions
than just for the class of smooth differential forms.

In order to define the Lipschitz-Killing forms 'k, k 2 f0; : : : ; n � 1g, we write
˘1 W R2n ! R

n, .x; u/ 7! x, and ˘2 W R2n ! R
n, .x; u/ 7! u, for the projections

to the components of R
2n D R

n � R
n. Let ˝n be the volume form on R

n with
the orientation chosen so that ˝n.e1; : : : ; en/ D he1 ^ � � � ^ en;˝ni D 1. Then
differential forms 'k W R2n ! Vn�1

R
2n, k 2 f0; : : : ; n � 1g, of degree n � 1 on R

2n
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are defined by

'k.x; u/.�1; : : : ; �n�1/ WD 1

kŠ.n � 1 � k/Š!n�k

�
X

�2S .n�1/
sgn.�/

D k̂

iD1
˘1��.i/ ^

n�1̂

iDkC1
˘2��.i/ ^ u;˝n

E
;

where .x; u/ 2 R
2n and �1; : : : ; �n�1 2 R

2n. Note that the right-hand side is
independent of x, and recall that S .n � 1/ denotes the set of all permutations of
f1; : : : ; n � 1g. Then, writing

K.x; u/ WD
n�1Y

iD1

p
1C ki.x; u/2;

we have

haK.x; u/; 'k.x; u/i D 1

!n�k

X

jIjDn�1�k

Q
i2I ki.x; u/
K.x; u/

for H n�1-almost all .x; u/ 2 nc.K/. The summation extends over all subsets I of
f1; : : : ; n� 1g of cardinality n� 1� k, where a product over an empty set is defined
as 1. Then, for � 2 B.˙n/,

TK.1�'k/ D �k.K; �/;

which provides a representation of the k-th support measure of K in terms of the
normal cycle of K, evaluated at the k-th Lipschitz-Killing form 'k.

The construction of suitable tensor-valued differential forms 'r;s
k , for n � 3 and

k 2 f1; : : : ; n � 2g, is slightly more involved. By a tensor-valued differential form
we mean the following. If W is the vector space of symmetric tensors of a given
rank, we identify

Vn�1
.R2n;W/ and Hom.

V
n�1R2n;W/. Then the map

'
r;s
k W R2n !

^n�1
.R2n;TrCsC2/; .x; u/ 7! '

r;s
k .x; u/;

is a differential form of degree n � 1 on R
2n with coefficients in T

rCsC2 (see
[5, p. 351] for this terminology). In particular, this means that ha; 'r;s

k .x; u/i 2
T
rCsC2, for all .x; u/ 2 R

2n and a 2 Vn�1R2n. For the explicit definition of 'r;s
k , we

refer to [8, Sect. 4]. A straightforward calculation shows that

h#a; 'r;s
k .#x; #u/i D #ha; 'r;s

k .x; u/i;
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for all # 2 O.n/, where in each case the natural operation of the rotation group is
used (in particular, #� WD .#p; #q/ for � D . p; q/ 2 R

n �R
n D R

2n). As a result of
the construction and by some calculations, which use that for a polytopeP and a face
F of P, for H n�1-almost all .x; u/ 2 nc.K/ with x 2 relint F we have ki.x; u/ D 0

if and only if bi.x; u/ 2 L.F/ and ki.x; u/ D 1 if and only if bi.x; u/ 2 L.F/? \ u?,
we obtain

TP.1�'
r;s
k / D �

r;s;1
k .P; �/

for all P 2 Pn and � 2 B.˙n/.
It is known that

• TK is a cycle for K 2 K n (see [14, Proposition 2.6]);
• the map K 7! TK is a valuation on K n (see [14, Theorem 2.2]);
• TKi ! TK in the dual flat seminorm for currents, if Ki;K 2 K n, i 2 N, and

Ki ! K in the Hausdorff metric, as i ! 1 (see [14, Theorem 3.1], and for the
dual flat seminorm, [5, Sect. 4.1.12, p. 367]).

In the next section, we prove a strengthened form of the continuity assertion
stated in the third point, namely local Hölder continuity of the normal cycles of
convex bodies with respect to the Hausdorff metric and the dual flat seminorm.

The third point above implies that if f W R2n ! R is of class C1, then the map

K n ! R; K 7! TK.f'
r;s
k /;

is continuous. But then the same is true if f is merely continuous. Hence, .K; �/ 7!
TK
�
1�'

r;s
k

�
is the weakly continuous extension of the map .P; �/ 7! �

r;s;1
k .P; �/

from polytopes P to general convex bodies. Moreover, we have the following result
(with (A)–(D) as formulated at the beginning of Sect. 2.5).

Theorem 2.18 The map K n � B.˙n/ ! T
rCsC2, .K; �/ 7! TK

�
1�'

r;s
k

�
, satisfies

the properties (A)–(D).

The next corollary then is an immediate consequence.

Corollary 2.19 Let r; s 2 N0 and k 2 f1; : : : ; n � 2g. Then, for each � 2 B.˙n/,
the map K 7! �

r;s;1
k .K; �/ is a valuation and Borel measurable onK n.

Since the global functionals �r;s;1
k .P; ˙n/ are continuous, Alesker’s character-

ization theorem must yield a representation for them. Such a representation was
explicitly known before. In fact, for r D 0 it follows from another relation by
McMullen (see [12, p. 269] and [10, Lemma 3.3]) that

�
0;s;1
k .P; ˙n/ D Q˚0;s

k .P/� 2�.s C 2/˚
0;sC2
k .P/:

The general case is covered by Hug et al. [10, p. 505].



2 Tensor Valuations and Their Local Versions 55

It is instructive to express the new local tensor valuations�r;s;1
k .K; � / for a general

convex body K in terms of the generalized curvatures ki.x; u/ and the corresponding
principal directions of curvature bi.x; u/, i D 1; : : : ; n � 1. Let n � 3 and k 2
f1; : : : ; n � 2g. Then a short calculation shows that

�r;s;1
k .K; �/ (2.39)

D Cr;s
n;k

Z

�\nc.K/
xrus

n�1X

iD1
bi.x; u/

2
X

jIjDn�1�k
i…I

Q
j2I kj.x; u/
K.x; u/

H n�1.d.x; u//:

If k D 1, then

�
r;s;1
1 .K; �/

D Cr;s
n;1

Z

�\nc.K/
xrus

n�1X

iD1
bi.x; u/

2

Q
jWj¤i kj.x; u/

K.x; u/
H n�1.d.x; u//;

and for k D n � 2, we have

�
r;s;1
n�2 .K; �/

D Cr;s
n;n�2

Z

�\nc.K/
xrus

n�1X

iD1
bi.x; u/

2
X

jWj¤i

kj.x; u/

K.x; u/
H n�1.d.x; u//:

For n D 3, these two special cases coincide and we get

�
r;s;1
1 .K; �/

D Cr;s
3;1

Z

�\nc.K/
xrus

k1.x; u/b2.x; u/2 C k2.x; u/b1.x; u/2

K.x; u/
H 2.d.x; u//:

For a given convex body K of class C2, we write u.x/ for the unique exterior unit
normal of K at the boundary point x 2 @K of K. (We omit the reference to K in our
notation.) An application of the coarea formula then yields

�r;s;1
k .K; �/

D Cr;s
n;k

Z

@K
1�.x; u.x//xru.x/s

n�1X

iD1
bi.x/

2
X

jIjDn�1�k
i…I

Y

j2I
kj.x/H

n�1.dx/;

where the kj.x/ are the principal curvatures and the unit vectors bj.x/ give the
principal directions of curvature of K at x 2 @K (again the dependence on K is
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not indicated by our notation). In particular, for a convex body K in R
3 with a C2

boundary we get

�
r;s;1
1 .K; �/

D Cr;s
3;1

Z

@K
1�.x; u.x//xru.x/s

�
k1.x/b2.x/

2 C k2.x/b1.x/
2
�
H 2.dx/:

2.7 Hölder Continuity of Normal Cycles of Convex Bodies

The normal cycle TK of a convex body K in R
n has a useful continuity property,

which we have used in the previous section. If Ki, i 2 N, and K are convex bodies
in R

n and Ki ! K in the Hausdorff metric, as i ! 1, then TKi ! TK in the dual
flat seminorm for currents (cf. [5, Sect. 1.12, p. 367]). This was stated without proof
in [19, p. 251] and was proved in [14, Theorem 3.1]; see also [6, Theorem 3.1].
The continuity property has been used in the theory of valuations on manifolds (see,
for instance, [2]). It is also a crucial ingredient in [8], in the course of the proof of a
classification theorem for local tensor valuations on the space of convex bodies, as
we have seen in the previous section.

The purpose of this section is to obtain a quantitative improvement of the
preceding continuity result, in the form of a Hölder estimate. As usual we equip
K n with the Hausdorff metric dH . We denote by E n�1.R2n/ D E .R2n;

Vn�1
R
2n/

the vector space of all differential forms of degree n�1 on R
2n with real coefficients

of class C1.

Theorem 2.20 Let K;L 2 K n, and let M � R
2n be a compact convex set

containing K1 � S
n�1 and L1 � S

n�1. Then, for each ' 2 E n�1.R2n/,

jTK.'/ � TL.'/j � C.M; '/ dH.K;L/
1

2nC1 ;

where C.M; '/ is a constant which depends (for given dimension) on M and on the
Lipschitz constant and the sup-norm of ' on M.

According to the definition of the dual flat seminorm, this result can be
interpreted as local Hölder continuity of the normal cycles of convex bodies with
respect to the Hausdorff metric and the dual flat seminorm. A similar, but essentially
different quantitative result is obtained in [3, Theorem 2]. It refers to more general
sets and is, therefore, less explicit. On the other hand, its restriction to convex bodies
does not yield the present result, since at least one of the sets in [3] has to be bounded
by a submanifold of class C2. We have not been able to decide whether the stability
exponent 1=.2n C 1/ in Theorem 2.20 can be improved.

It remains to prove Theorem 2.20. We continue to use the same notation as in
Federer’s [5] book, in order to facilitate the comparison. For the scalar product of
vectors x; y 2 R

n, however, we continue to write x � y; the induced norm is denoted
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by j � j. The same notation is used also for other Euclidean spaces which will come
up in the following. We identify R

n and its dual space via the given scalar product.
Given an inner product space .V; � / with norm j � j we obtain an inner product

on
V

m V . For �; � 2 V
m V with � D v1 ^ � � � ^ vm and � D w1 ^ � � � ^ wm, where

vi;wj 2 V , we define � � � D det.hvi;wjimi; jD1/. This is independent of the particular
representation of �; �. For general �; � 2 V

m V the inner product is defined by
linear extension, and then we put j�j WD p

� � � for � 2 V
m V . If .b1; : : : ; bn/ is an

orthonormal basis of V , then the m-vectors bi1 ^� � �^bim with 1 � i1 < � � � < im � n
form an orthonormal basis of

V
m V . Moreover, if � 2 Vp V or � 2 Vq V is simple,

then

j� ^ �j � j�j j�j: (2.40)

Let .b1; : : : ; bn/ be an orthonormal basis of V , and let .b�
1 ; : : : ; b

�
n / be the dual basis

in V� D V1 V . We endow
Vm V (which is identified with

V
m V�) with the inner

product for which the vectors b�
i1

^ � � � ^ b�
im

, for 1 � i1 < � � � < im � n, are an
orthonormal basis. Then

jh�; ˚ij � j�j j˚ j (2.41)

for � 2 V
m V and ˚ 2 Vm V . The preceding facts are essentially taken from [5,

Sect. 1.7].
Finally, if V is an n-dimensional inner product space, then comass and mass are

defined as in [5, Sect. 1.8]. In particular, for ˚ 2 Vm V the comass k˚k of ˚
satisfies k˚k D j˚ j if ˚ is simple. Moreover, for � 2 V

m V the mass k�k of �
satisfies k�k D j�j if � is simple.

The proof of Theorem 2.20 will be preceded by a sequence of lemmas. In order to
obtain an upper bound for jTK �TLj, we first establish an upper bound for jTA" �TAj,
for A 2 fK;Lg and " 2 Œ0; 1�, which is done in Lemma 2.21. Then we derive an
upper bound for jTK" � TL" j under the assumption that the Hausdorff distance of K
and L is sufficiently small. This bound is provided in Lemma 2.26, which in turn is
based on four preparatory lemmas.

Lemma 2.21 Let K 2 K n and " 2 Œ0; 1�. Let ' 2 E n�1.R2n/. Then

jTK" .'/ � TK.'/j � C.K; '/ ";

where C.K; '/ is a real constant, which depends on the maximum and the Lipschitz
constant of ' on K1 � S

n�1 and onH n�1.@K1/.
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Proof We consider the bi-Lipschitz map

F" W nc.K/ ! nc.K"/; .x; u/ 7! .x C "u; u/:

The extension of F" to all .x; u/ 2 R
2n by F".x; u/ WD .x C "u; u/ is differentiable

for all .x; u/ 2 R
2n. By Federer [5, Theorem 3.2.22 (1)], for H n�1-almost all

.x; u/ 2 nc.K/ the approximate .n � 1/-dimensional Jacobian of F" (see [5, p. 256,
Corollary 3.2.20]) satisfies

ap Jn�1F".x; u/ D k
^

n�1 apDF".x; u/aK.x; u/k > 0; (2.42)

and the simple orienting .n � 1/-vectors aK.x; u/ and aK".x C "u; u/ are related by

aK".x C "u; u/ D
V

n�1 apDF".x; u/aK.x; u/

kVn�1 apDF".x; u/aK.x; u/k : (2.43)

The orientations coincide, since

D^

n�1.˘1 C %˘2/aK.x; u/ ^ u;˝n

E
> 0

for all % > 0. Here, as before ˘1;˘2 are the projections to the components of
R

n � R
n. Thus, first using the coarea theorem [5, Theorem 3.2.22] and then (2.42)

and (2.43), we get

TK" .'/ D
Z

nc.K"/
haK" ; 'i dH n�1

D
Z

nc.K/
haK" ı F".x; u/; ' ı F".x; u/i ap Jn�1F".x; u/H n�1.d.x; u//

D
Z

nc.K/

D^

n�1 apDF".x; u/aK.x; u/; ' ı F".x; u/
E
H n�1.d.x; u//:

By the triangle inequality, we obtain

jTK" .'/ � TK.'/j

�
Z

nc.K/

nˇ
ˇ
D�^

n�1 apDF".x; u/�
^

n�1 id
�
aK.x; u/; ' ı F".x; u/

Eˇ
ˇ

C jhaK.x; u/; '.x C "u; u/� '.x; u/ij
o
H n�1.d.x; u//:
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We have
ˇ
ˇ
ˇ
D�^

n�1 apDF".x; u/�
^

n�1 id
�
aK.x; u/; ' ı F".x; u/

Eˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ'.x C "u; u/k

�^

n�1 apDF".x; u/�
^

n�1 id
�
aK.x; u/

ˇ
ˇ
ˇ ;

where we used (2.41). Now aK.x; u/ is of the form
Vn�1

iD1 .vi;wi/ with suitable
.vi;wi/ 2 R

2n and jvij2 C jwij2 D 1. Moreover, we have DF".x; u/.v;w/ D
.v C "w;w/, for all .v;w/ 2 R

2n. Writing z0i WD vi, z1i WD wi, we have

ˇ
ˇ
ˇ
�^

n�1 apDF".x; u/�
^

n�1 id
�
aK.x; u/

ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

n�1̂

iD1
.vi C "wi;wi/�

n�1̂

iD1
.vi;wi/

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

˛1;:::;˛n�12f0;1g
"
Pn�1

jD1 ˛j

n�1̂

iD1
.z˛ii ;wi/�

n�1̂

iD1
.z0i ;wi/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� "
X

˛1;:::;˛n�12f0;1g
Pn�1

jD1 ˛j�1

ˇ
ˇ
ˇ
ˇ
ˇ

n�1̂

iD1
.z˛ii ;wi/

ˇ
ˇ
ˇ
ˇ
ˇ

� c.n/";

where we used (2.40) and the fact that j.vi;wi/j D 1 and j.wi;wi/j � 2. We deduce
that

j'.x C "u; u/j
ˇ
ˇ
ˇ.
^

n�1 apDF".x; u/�
^

n�1 id/aK.x; u/
ˇ
ˇ
ˇ � C1.K; '/":

Furthermore, again by (2.41) we get

jhaK.x; u/; '.x C "u; u/� '.x; u/ij � j'.x C "u; u/� '.x; u/j � C2.K; '/ ":

Thus we conclude that

jTK".'/ � TK.'/j � C3.K; '/ "H
n�1.nc.K//:

Since F W @K1 ! nc.K/, z 7! . p.K; z/; z � p.K; z//, is Lipschitz with Lipschitz
constant bounded from above by 3, the assertion follows. ut

A convex body K 2 K n is said to be "-smooth (for some " > 0), if K D K0C"Bn

for some K0 2 K n. For a nonempty set A � R
n, we define the distance from A to

x 2 R
n by d.A; x/ WD inffja � xj W a 2 Ag. The signed distance is defined by

d�.A; x/ WD d.A; x/� d.Rn n A; x/, x 2 R
n, if A;Rn n A ¤ ;. If K is "-smooth, then
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@K has positive reach. More precisely, if x 2 R
n satisfies d.@K; x/ < ", then there is

a unique point p.@K; x/ 2 @K such that d.@K; x/ D jp.@K; x/� xj.
Lemma 2.22 Let " 2 .0; 1/ and ı 2 .0; "=2/. Let K;L 2 K n be "-smooth and
assume that dH.K;L/ � ı. Then

p W @K ! @L; x 7! p.@L; x/;

is well-defined, bijective, bi-Lipschitz with Lip. p/ � "=." � ı/, and jp.x/ � xj � ı

for all x 2 @K.
Proof Since dH.K;L/ � ı, we have K � L C ıBn, L � K C ıBn, and a separation
argument yields that

fx 2 L W d.@L; x/ � ıg � K: (2.44)

This shows that @K � fz 2 R
n W d.@L; z/ � ıg and therefore the map p is well-

defined on @K and jp.x/� xj � ı for all x 2 @K. By Federer [4, Theorem 4.8 (8)] it
follows that Lip. p/ � "=." � ı/. Since L is "-smooth, for y 2 @L there is a unique
exterior unit normal of L at y, which we denote by u DW uL.y/ (here we slightly
deviate from our previous notation where this vector was denoted by u.L; y/). Put
y0 WD y�"u and note that y0C."�ı/Bn � K\L by (2.44). Then x 2 @K is uniquely
determined by the condition fxg D .y0 C Œ0;1/u/\@K and satisfies p.x/ D y. This
shows that p is surjective.

Now let x1; x2 2 @K satisfy p.x1/ D p.x2/ DW p0 2 @L. Since there is a ball B of
radius " with p0 2 B � L, the points x1; x2 2 @K are on the line through p0 and the
center of B. By (2.44), they cannot be on different sides of p0, hence x1 D x2. This
shows that the map p is also injective. If d�.@K; � / W Rn ! @K denotes the signed
distance function of @K, then q W @L ! @K, z 7! z � d�.@K; z/uL.z/, is the inverse
of p. Since the signed distance function is Lipschitz, Lemma 2.23 below shows that
q is Lipschitz as well. ut

The following lemma provides a simple argument for the fact that the spherical
image map of an "-smooth convex body is Lipschitz with Lipschitz constant at
most 1=".

Lemma 2.23 Let K 2 K n be "-smooth, " > 0. Then the spherical image map uK
is Lipschitz with Lipschitz constant 1=".

Proof Let x; y 2 @K, and define u WD uK.x/, v WD uK.y/. Then x � "u C "v 2
x � "u C "Bn � K, and hence .x � "u C "v � y/ � v � 0. This yields

".v � u/ � v � .y � x/ � v: (2.45)

By symmetry, we also have ".u � v/ � u � .x � y/ � u, and therefore

".v � u/ � .�u/ � .y � x/ � .�u/: (2.46)
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Addition of (2.45) and (2.46) yields

"jv � uj2 � .y � x/ � .v � u/ � jy � xj jv � uj;

which implies the assertion. ut
Lemma 2.24 Let " 2 .0; 1/ and ı 2 .0; "=2/. Let K;L 2 K n be "-smooth and
assume that dH.K;L/ � ı. Put p.x/ WD p.@L; x/ for x 2 @K. Then

G W nc.K/ ! nc.L/; .x; u/ 7! . p.x/; uL. p.x///;

is bijective, bi-Lipschitz with Lip.G/ � 2=." � ı/ � 4=", and

jG.x; u/� .x; u/j � ı C 2
p
ı="

for all .x; u/ 2 nc.K/.

Proof It follows from Lemma 2.22 that G is bijective. Then, for .x; u/; .y; v/ 2
nc.K/ we get

jG.x; u/� G.y; v/j � jp.x/� p.y/j C juL. p.x//� uL. p.y//j

� "

" � ı
jx � yj C 1

"

"

" � ı jx � yj

� "C 1

" � ı
jx � yj

� 2

" � ı
j.x; u/� .y; v/j;

where we have used again Lemmas 2.22 and 2.23. Let x 2 @K and z WD p.x/ 2 @L.
We want to bound uL.z/ � uK.x/ from below. If x … L, then

conv
�fxg [ .z � "uL.z/C ." � ı/Bn/

� � K;

and therefore

uL.z/ � uK.x/ � " � ı
"C ı

� 1 � 2ı

"
:

If x 2 L, then in a similar way we obtain

uL.z/ � uK.x/ � " � ı

"
� 1 � ı

"
;
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hence

uL.z/ � uK.x/ � 1 � 2ı

"
(2.47)

holds for all x 2 @K. Thus

juL.z/� uK.x/j � 2
p
ı=";

which finally implies that, for all .x; u/ 2 nc.K/,

jG.x; u/� .x; u/j � jp.x/� xj C juL. p.x//� uK.x/j
� ı C 2

p
ı=":

Since G�1 W nc.L/ ! nc.K/ is given by G�1.z; u/ D .q.z/; uK.q.z/// (with q as
defined in the proof of Lemma 2.22), it follows that also G�1 is Lipschitz. ut

Next we show that under suitable assumptions
V

n�1DG.x; u/ is an orientation
preserving map from the approximate tangent space of nc.K/ to the approximate
tangent space of nc.L/. It seems that a corresponding fact is not provided in the
proofs of related assertions in the literature.

Lemma 2.25 Let " 2 .0; 1/ and ı 2 .0; "=.4n//. Let K;L 2 K n be "-smooth
and assume that dH.K;L/ � ı. Then, for H n�1-almost all .x; u/ 2 nc.K/, the
.n � 1/-vector

V
n�1DG.x; u/aK.x; u/ 2 Tann�1.H n�1 nc.L/;G.x; u// has the

same orientation as aL.G.x; u//.

Proof Let x 2 @K, u WD uK.x/, and Nx WD p.x/, hence d.@L; x/ D jx � Nxj.
The orientation of Tann�1.@K; x/ is determined by an arbitrary orthonormal basis
.b1.x/; : : : ; bn�1.x// of u? with ˝n.b1.x/; : : : ; bn�1.x/; u/ D 1. Similarly, any
orthonormal basis .Nb1.Nx/; : : : ; Nbn�1.Nx/; Nu/ with Nu WD uL. p.x// determines the
orientation of the space Tann�1.@L; p.x//. Since G is bi-Lipschitz, we can assume
that .x; u/ 2 nc.K/ is such that all differentials exist that are encountered
in the proof. Moreover, we can also assume that

V
n�1DG.x; u/aK.x; u/ spans

Tann�1.H n�1 nc.L/;G.x; u//, where we write again G for a Lipschitz extension
of the given map G to R

2n. In the following, we put bi WD bi.x/ and Nbi WD Nbi.Nx/ for
i D 1; : : : ; n � 1.

By our previous discussion, the differentials of the maps nc.K/ ! @K, .x; u/ 7!
x, and @L ! nc.L/, z 7! .z; uL.z//, are orientation preserving. Hence, it remains to
be shown that the differential of p W @K ! @L, x 7! p.x/, is orientation preserving,
that is,

� WD ˝n.Dp.x/.b1/; : : : ;Dp.x/.bn�1/; Nu/ > 0:
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First, we assume that x ¤ Nx, that is, x … @L. Since Dp.x/.Nu/ D 0, we get

Dp.x/.bi/ D
n�1X

jD1
bi � Nbj Dp.x/.Nbj/;

and thus

� D det.B/˝n.Dp.x/.Nb1/; : : : ;Dp.x/.Nbn�1/; Nu/;

where B D .Bij/ with Bij WD bi � Nbj for i; j 2 f1; : : : ; n � 1g. We choose Nb1; : : : ; Nbn�1
as principal directions of curvature of @L at Nx D p.x/. Then Dp.x/.Nbi/ D �i Nbi with

�i WD 1 � d.@L; x/ki

�

@L; Nx; x � Nx
jx � Nxj

�

> 0;

for i D 1; : : : ; n�1, where k1.@L; � /; : : : ; kn�1.@L; � / are the generalized curvatures
of @L as functions on the normal bundle of @L. Here we use that L is "-smooth, hence
@L has positive reach, d.@L; x/ < " and

ˇ
ˇ
ˇ
ˇki

�

@L; Nx; x � Nx
jx � Nxj

�ˇ
ˇ
ˇ
ˇ � 1=":

Hence it follows that� > 0 if we can show that det.B/ > 0. Let QB D . QBij/ be defined
by QBij WD Bij, QBin WD bi � Nu, QBnj WD u � Nbj, and QBnn WD u � Nu, for i; j 2 f1; : : : ; n � 1g.
Then

1 D ˝n.b1; : : : ; bn�1; u/˝n.Nb1; : : : ; Nbn�1; Nu/ D det. QB/

� u � Nu det.B/C
n�1X

iD1
jbi � Nuj � 1

� u � Nu det.B/C p
n � 1

p
1 � .u � Nu/2:

From (2.47) and our assumptions, we get u � Nu � 1 � .2ı/=" � 1 � 1=.2n/, and
therefore

p
1 � .u � Nu/2 � p

1=n:

Thus

1 < u � Nu det.B/C 1;

which implies that det.B/ > 0.
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Finally, we have to consider the case where x 2 @L. For H n�1-almost all x 2
@K \ @L, we have Tann�1.H n�1 .@K \ @L/; x/ D u? and Dp.x/ D idu?

, since
p.z/ D z for all z 2 @K \ @L. Hence,� D ˝n.b1; : : : ; bn�1; Nu/ D u � Nu > 0. ut
Lemma 2.26 Let " 2 .0; 1/ and ı 2 .0; "=.4n//. Let K;L 2 K n be "-smooth
and assume that dH.K;L/ � ı. Let M � R

2n be a compact convex set containing
K1�" � S

n�1 and L1�" � S
n�1 in its interior. Then

jTK.'/ � TL.'/j � C.M; '/.4="/n�1.ı C 2
p
ı="/

for ' 2 E n�1.R2n/, where C.M; '/ is a constant which depends on the sup-norm
and the Lipschitz constant of ' on M, and onH n�1.@K1/.

Proof Let G be as before (or a Lipschitz extension to the whole space with the same
Lipschitz constant [5, Theorem 2.10.43]). Then [5, Theorem 4.1.30] implies that
the pushforward G]TK of TK under the Lipschitz map G (see [5, Sect. 4.1.7, p. 359]
for the pushforward of a current under a smooth map and [5, Sect. 4.1.14] for the
extension to Lipschitz maps) satisfies

TL D G]TK ;

since
V

n�1DG preserves the orientation of the orienting .n � 1/-vectors, by Lem-
ma 2.25. (In [14] a corresponding fact is stated without further comment.) Recall
the definitions of the dual flat seminorm FM from [5, 4.1.12] and of the mass M (of
a current) from [5, p. 358]. Using [5, 4.1.14] (since G is not necessarily smooth of
class 1), @TK D 0 (that is, TK is a cycle), the fact that TK has compact support
contained in the interior of M and Lemma 2.24, we get

FM.TL � TK/ D FM.G]TK � TK/

� M .TK/ � kG � idknc.K/;1 � .4="/n�1

� H n�1.@K1/.4="/n�1.ı C 2
p
ı="/;

where kG � idkncK/;1 WD supfjG.x; u/ � .x; u/j W .x; u/ 2 nc.K/g. The assertion
now follows from the definition of FM, since kd'k can be bounded in terms of the
sup-norm and the Lipschitz constant of ' on M. ut

Now we are in a position to complete the proof of Theorem 2.20.

Proof of Theorem 2.20 Let ' 2 E n�1.R2n/. Let ı WD dH.K;L/ > 0 and " WD ı
1

2nC1 .

Assume that ı < .4n/� 2nC1
2n . Then ı < "=.4n/. Lemma 2.21 implies that

jTK.'/ � TK" .'/j � C1.M; '/ ";

jTL.'/ � TL" .'/j � C2.M; '/ ":
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Since K" and L" are "-smooth, dH.K";L"/ D ı, .K"/1�" D K1 and .L"/1�" D L1,
Lemma 2.26 shows that

jTK".'/ � TL" .'/j � C3.M; '/.4="/
n�1.ı C 2

p
ı="/:

The triangle inequality then yields

jTK.'/ � TL.'/j � C4.M; '/."C "1�nı C "1�n
p
ı="/

� C5.M; '/ ı
1

2nC1 :

If ı � .4n/� 2nC1
2n , we simply adjust the constant. ut
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Chapter 3
Structures on Valuations

Semyon Alesker

Abstract In recent years on the space of translation invariant continuous valuations
there have been discovered several canonical structures. Some of them turned out
to be important for applications in integral geometry. In this chapter we review
the relevant background and the main properties of the following new structures:
product, convolution, Fourier type transform, and pull-back and push-forward of
valuations under linear maps.

3.1 Preliminaries

Let V be a finite dimensional real vector space, n D dimV . Let Val.V/ denote
the space of translation invariant continuous valuations on K .V/. We have the
following important result called McMullen’s decomposition [17] with respect to
degrees of homogeneity:

Val.V/ D
nM

iD0
Vali.V/:

It turns out that one can classify valuations in degrees of homogeneity 0, n, and
n � 1:

Theorem 3.1

(i) (Obvious) Val0.V/ D C � �.
(ii) (Hadwiger [14]) Valn.V/ D C � voln.

(iii) (McMullen [18]) Let us describe Valn�1.V/. Fix a Euclidean metric on V
for convenience. For any � 2 Valn�1.V/ there exists a continuous function
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68 S. Alesker

f W Sn�1 ! C such that for any K 2 K .V/

�.K/ D
Z

Sn�1

f .!/dS.K; !/: (3.1)

Moreover the function f is defined uniquely by � up to addition of a linear
functional. Conversely any above expression belongs to Valn�1.V/. (Here
S.K; � / denotes the surface area measure of a convex body K, see [21].)

Let us also state a very important characterization of simple translation invariant
continuous valuations due to Klain [15] and Schneider [20] from 1995 which is
used a lot in the theory. A valuation is called simple if it vanishes on convex sets of
dimension less than dimV .

Theorem 3.2 (Klain–Schneider) Let � be a simple continuous translation invari-
ant valuation onK .V/. Fix a Euclidean metric on V for convenience; n WD dimV.
Then � can be presented

�.K/ D a � vol.K/C
Z

Sn�1

f .!/dS.K; !/ for any K 2 K .V/;

where a 2 C, f is a continuous odd function on Sn�1; the constant a is determined
uniquely, and f is unique up to a linear functional. Furthermore any such expression
(with f being odd) is a simple translation invariant continuous valuation.

We have further decomposition with respect to parity:

Vali.V/ D ValCi .V/˚ Val�i .V/:

The group GL.V/ acts linearly and continuously on Val.V/ preserving the above
decompositions:

g.�/.K/ D �.g�1K/;

for any g 2 GL.V/; � 2 Val.V/;K 2 K .V/.

Theorem 3.3 (Irreducibility Theorem, Alesker [1]) For any i the spaces
Vali̇ .V/ are topologically irreducible representations of GL.V/, i.e. they have
no proper GL.V/-invariant closed subspaces.

Remark 3.4 This theorem easily implies the so called McMullen’s conjecture which
says that linear combinations of valuations of the form vol. � CA/ where A 2 K .V/
are dense in Val.V/.
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Definition 3.5 A valuation � 2 Val.V/ is called smooth if the map GL.V/ !
Val.V/ given by g 7! g.�/ is C1-differentiable.

It is well known in representation theory (and not hard to see) that the subset
Val1.V/ of smooth valuations is a linear GL.V/-invariant subspace dense in Val.V/.
Moreover it has a canonical Fréchet topology which is stronger than that induced
from Val.V/. The action of GL.V/ on Val1.V/ is still continuous. Versions of the
McMullen’s decomposition and irreducibility theorem still hold for Val1.V/.

Example 3.6

(1) Let A 2 K .V/ has infinitely smooth boundary and strictly positive Gauss
curvature. Then the valuation vol. � C A/ is smooth.

(2) (Alesker [3]) Let G � O.n/ be a compact subgroup acting transitively on the
unit sphere Sn�1. Then Val.V/G � Val1.V/; actually Val.V/G is also finite
dimensional in this case.

(3) Let us give an example of non-smooth valuation. Fix a proper linear subspace
E � V . Let pWV ! E be a linear projection. Fix a Lebesgue measure volE on
E. Then K 7! volE. p.K// is a continuous, but not smooth valuation.

Remark 3.7 There is an equivalent description of smooth translation invariant
valuations in terms of differential forms [4]: a valuation � 2 Val.V/ is smooth if
and only if it can be presented in the form

�.K/ D
Z

nc.K/
! C a � vol.K/;

where ! in an infinitely smooth differential .n � 1/-form on spherical bundle
V � PC.V/ (here PC.V/ WD .Vnf0g/=R>0/, nc.K/ � V � PC.V/ is the normal
cycle of K defined in Sect. 2.6 in this book, and a is a constant. This description
turned out to be very useful for subsequent developments.

We will also need the notion of the Klain imbedding for even valuations. For
convenience we will fix again a Euclidean metric on V . Let us construct a linear
continuous map

KlW ValCk .V/ ! C.Grk.V//

as follows. Let � 2 ValCk .V/. For any Ek 2 Grk.V/ the restriction �jEk 2 Valk.Ek/.
By the mentioned above Hadwiger theorem �jEk D c.E/ volE. The map � 7! c is
the required Klain map. The main theorem proved by Klain [16] (based on [15])
is that this map is injective. Sometimes c is called the Klain function of � and is
denoted by Kl� .

The Klain map on smooth valuations KlW Val1C
k .V/ ! C1.Grk.V// has a closed

image which can be characterized in terms of decomposition under the SO.n/-
action [7]. (Note that it is harder to describe exactly the image of Kl of continuous
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valuations in continuous functions: very recently it was shown not to be a closed
subspace (see Parapatits and Wannerer [19] and Alesker and Faifman [8]).)

3.2 Product on Valuations

The goal of this section is to introduce the canonical product on Val1.V/ and
describe some if its properties. We will start with a slightly more refined notion:
exterior product.

Theorem 3.8 There exists a bilinear map, called exterior product,

�W Val1.V/ � Val1.W/ ! Val.V � W/

which is uniquely characterized by the following properties:

• it is continuous with the usual topology on Val and the Garding topology on
Val1;

• if �. � / D volV. � C A/;  . � / D volW. � C B/ then

.� �  /. � / D .volV � volW/. � C .A � B//:

Note that the uniqueness follows from the McMullen’s conjecture. But existence
is a non-trivial statement which is based not only on the irreducibility theorem.
The general idea of the proof is that any smooth valuation can be presented as a
rapidly convergent (in Val1.V/) series of the form

P
p ˛p volV. � C Ap/. For two

such expressions there is only one way to define their exterior product satisfying the
properties of the theorem. However a presentation of a valuation as such a series is
non-unique, and one has to check that the product is independent of a presentation.
This last step we will demonstrate now assuming for simplicity that all series are in
fact finite sums. Assume that � has two presentations

� D
X

p

˛p volV . � C Ap/ D
X

p

˛0
p volV. � C A0

p/:

For  we fix a similar presentation and show that � �  is independent of the
presentation of �. Thus we may assume that  has a single summand

 D volW. � C B/:
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For any K 2 K .V � W/ we have

.� �  /.K/ D
X

p

˛p.volV � volW/.K C .Ap � B//

D
Z

y2W
d volW.y/

X

p

˛p volV
�
ŒK C .Ap � B/�\ ŒV � fyg��

D
Z

y2W
d volW.y/

X

p

˛p volV
�f.K C .f0g � B//\ .V � fyg/g C Ap

�

D
Z

y2W
d volW.y/� .ŒK C .f0g � B/�\ .V � fyg// ;

where the second equation is based on Fubini’s theorem. From the last expression
we see that the exterior product does not depend on presentation of �.

Let us define the product on Val1.V/.

Definition 3.9 For �; 2 Val1.V/ let us define the product

.� �  /.K/ WD .� �  /.�.K//;

where K 2 K .V/, �WV ,! V � V is the diagonal imbedding.

Theorem 3.10 (Alesker [3])

(1) The product is a bilinear continuous map

Val1.V/ � Val1.V/ ! Val1.V/:

(2) Equipped with this product, Val1.V/ becomes a commutative associative
graded algebra with a unit (unit is the Euler characteristic; the grading is given
by the McMullen’s decomposition).

(3) For any 0 � i � n the bilinear map given by the product

Val1i .V/ � Val1n�i.V/ ! Valn.V/ D C � volV

is a perfect pairing, i.e. the induced map Val1i .V/ ! .Val1n�i.V//
� ˝ Valn.V/

is injective with image dense in the weak* topology.

Remark 3.11 When the two valuations are given by differential forms on the
spherical bundle as in Remark 3.7 then their product also can be described by an
differential form expressed explicitly via the given forms by a rather complicated
formula [6].

The following result is a version of the hard Lefschetz type theorem. In this form
it was proved by Alesker [5], but the proof is heavily based on a different version



72 S. Alesker

of the hard Lefschetz theorem which in full generality was proved by Bernig and
Bröcker [9] and earlier in the even case by Alesker [2].

Theorem 3.12 Fix a Euclidean metric on V. Let 0 � i < n=2. The map

Val1i .V/ ! Val1n�i.V/

given by � 7! Vn�2i
1 � �, is an isomorphism. (Here V1 is the first intrinsic volume as

usual.)

Remark 3.13 This theorem immediately implies that the operator Val1i .V/ !
Val1iCj.V/ given by � 7! Vj

1 �� is injective for j � n�2i and surjective for i � n�2i.
The product structure has been computed in some cases.

Example 3.14

(1) (Alesker [3]) Let

�.K/ D V.KŒi�;A1; : : : ;An�i/;  .K/ D V.KŒn � i�;B1; : : : ;Bi/:

Then

� �  D V.A1; : : : ;An�i;�B1; : : : ;�Bi/ � vol :

(2) ValO.n/.Rn/ is isomorphic as a graded algebra to CŒt�=.tnC1/ where t D V1.
(3) A geometric description of the space ValU.n/.Cn/ of unitarily invariant valua-

tions was obtained by Alesker [2] in 2003. Fu [12] has obtained in 2006 the
following beautiful description of the algebra structure of ValU.n/.Cn/ in terms
of generators and relations:

ValU.n/.Cn/ D CŒs; t�=. fnC1; fnC2/;

where deg s D 2; deg t D 1 and the polynomial fi is the degree i term of the
power series log.1C s C t/.

(4) Some non-trivial examples of the product of tensor valued valuations were
recently computed by Bernig and Hug [11]; see also Chap. 3 in this book.

3.3 Convolution of Valuations

We denote by D.V�/ the space of complex valued Lebesgue measures on V�.

Theorem 3.15 (Bernig-Fu [10]) There exists a bilinear map called convolution

	W �Val1.V/˝ D.V�/
� � �Val1.V/˝ D.V�/

� ! Val1.V/˝ D.V�/
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which is uniquely characterized by the following properties:

• continuity in the Garding topology;
• if �. � / D vol. � C A/˝ vol�1;  . � / D vol. � C B/˝ vol�1, then

.� 	  /. � / D vol. � C A C B/˝ vol�1;

where vol�1 is the Lebesgue measure on V� such that for any basis e1; : : : ; en of V
spanning the parallelepiped of unit volume with respect to vol, the parallelepiped
in V� spanned by the dual basis e�

1 ; : : : ; e
�
n has the unit volume with respect to

vol�1.

Equipped with this product, Val1.V/˝ D.V�/ becomes a commutative associative
graded algebra with the unit, when the unit is vol ˝ vol�1, and the grading is
.n � deg of homogeneity/.

The uniqueness again follows immediately from McMullen’s conjecture. The
existence is non-trivial. Later we will deduce it from existence of exterior product
on valuations.

Remark 3.16 If two valuations are given by differential forms as in Remark 3.7
then their convolution can be given by a differential form expressed by an explicit
formula via the two given forms [10].

3.4 Fourier Type Transform on Valuations

It turns out that the algebras .Val1.V/; � / and .Val1.V�/ ˝ D.V/;	/ are isomor-
phic. We are going to discuss a specific isomorphism between them, called a Fourier
type transform, which has some additional interesting properties.

Theorem 3.17 (Alesker [5]) There exists an isomorphism of algebras

FW Val1.V/ 	�! Val1.V�/˝ D.V/

which has the following extra properties:

• F is an isomorphism of linear topological spaces.
• F commutes with the natural action of GL.V/ on both spaces.
• (Plancherel type inversion formula) Consider the composition EV:

Val1.V/ FV��! Val1.V�/˝ D.V/
FV�

˝IdD.V/��������! Val1.V/˝ D.V�/˝ D.V/
„ ƒ‚ …

'C

D Val1.V/:

Then .EV�/.K/ D �.�K/.
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The construction of the Fourier transform is rather difficult and uses some more
of representation theory. Nevertheless in few examples the Fourier transform can be
computed. In the case of even valuations there is another description using the Klain
function. In the rest of this section we will discuss this material.

Below for simplicity we will fix a Euclidean metric on V . Hence we get
identifications V� ' V and D.V/ ' C. Thus FW Val1.V/ 	�! Val1.V/ commutes
with O.n/, but not with GL.V/.

Example 3.18

(1) FV.�/ D volV .
(2) FV.volV/ D �.
(3) F.Vi/ D ci;nVn�i and the constant ci;n can be written down explicitly. Indeed this

(without the exact value of the constant) follows from the Hadwiger theorem.
(4) Assume dimV D 2. Given the first two examples and McMullen’s decompo-

sition, it remains to describe F on 1-homogeneous smooth valuations. Fix a
Euclidean metric and an orientation on V . Let JWV ! V be the operator of
rotation by �=2 counterclockwise.

By the Hadwiger’s theorem [13] (which now follows from McMullen’s
description of .n � 1/-homogeneous valuations from Sect. 3.1) any such
valuation � has the form

K 7!
Z

S1
f .!/dS.K; !/;

where f 2 C1.S1/ is defined uniquely up to a linear functional. Decompose f
into the even and odd parts:

f D fC C f�:

Furthermore let us decompose the odd part f� D f hol� C f anti� into holomorphic
and anti-holomorphic parts as follows. First decompose f� into the usual Fourier
series on S1:

f�.!/ D
X

k2Z
Of�.k/eik!:

Then define

f hol� .!/ WD
X

k>0

Of�.k/eik!; f anti� .!/ WD
X

k<0

Of�.k/eik!:
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Then the Fourier transform of � is

.F�/.K/

D
Z

S1
fC.J!/dS.K; !/C

Z

S1
f hol� .J!/dS.K; !/�

Z

S1
f anti� .J!/dS.K; !/:

(5) For even smooth valuations there is a simple description of the Fourier trans-
form in terms of the Klain functions; historically this was the first construction
of the Fourier transform (Alesker [2]). Fix a Euclidean metric on V for the
simplicity of notation. Let � 2 Val1C

k .V/. Then for any Fn�k 2 Grn�k.V/ one
has

KlF�.F/ D Kl�.F
?/:

Thus the Fourier transform can be easily described on the language of functions
on Grassmannians. The non-trivial point is that given a smooth Klain function
of a valuation then the transformed function indeed corresponds to some
valuation (the uniqueness follows from the Klain’s theorem). This follows
from the description of the image of the Klain map obtained by Alesker and
Bernstein [7].

(6) Recently Bernig and Hug [11] have made some explicit non-trivial computa-
tions of the Fourier transform on odd valuations in dimensions higher than 2
in order to obtain kinematic formulas for tensor valuations; see also Chap. 3 of
this book.

3.5 Pull-Back and Push-Forward on Valuations

In this section we discuss, following [5], operations of pull-back and push-forward
on valuations under linear mappings and their relations to product, convolution and
the Fourier transform. In particular we claim that the convolution on valuations can
be presented as composition of the exterior product and push-forward under the
addition map aWV � V ! V; that will provide another explanation why convolution
is well defined (given the exterior product).

Let us start with the notion of pull-back under a linear map f WV ! W. Define
the pull-back map

f �W Val.W/ ! Val.V/ (3.2)

by . f ��/.K/ D �. f .K//. Obviously f � is linear and continuous, it preserves degree
of homogeneity. Clearly

. f ı g/� D g� ı f �:
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A formal simple remark is that if �WV ,! V � V is the diagonal imbedding then

� �  D ��.� �  /:

The push-forward map

f�W Val.V/˝ D.V�/ ! Val.W/˝ D.W�/

is going to be a linear continuous map. In order to motivate somehow its introduc-
tion, let us have some non-rigorous remarks. f� is going to be dual to f � in the
following not very precise sense.

Consider the bilinear map Val1.V/�Val1.V/ ! Valn.V/ D D.V/ given by the
product and taking the n-th homogeneous component. By the Poincaré duality the
induced map

Val1.V/˝ D.V�/ ! .Val1.V//�

is injective and has a dense image in the weak* topology. Informally speaking, up
to a completion in appropriate topology, the dual of Val‹.V/ is equal to Val‹.V/ ˝
D.V�/, where Val‹.V/ is a class of valuations of unspecified class of smoothness.
Hence, with these identifications, the dual of f � from (3.2) should lead to a linear
map which we call push-forward and denote f�:

f�W Val‹.V/˝ D.V�/ ! Val‹.W/˝ D.W�/:

A closer investigation of this map shows that in fact f� is a continuous linear map
between spaces of continuous (!) valuations (twisted by densities):

f�W Val.V/˝ D.V�/ ! Val.W/˝ D.W�/:

It does satisfy the property

. f ı g/� D f� ı g� (3.3)

as it should be by dualizing the corresponding property of the pull-back.
Now we have to describe f� more explicitly. By the property (3.3) and since every

linear map can be presented as composition of injective and surjective linear maps,
it suffices to do that only in these two cases.

Assume first f WV ! W is onto. To simplify the notation, we may assume that
W is a subspace of V , and may choose a Euclidean metric on V such that f is the
orthogonal projection. This choice of metric also induces isomorphisms

D.V/ ' D.W/ ' D.W?/ ' C
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and the same for dual of V;W;W?. Let � 2 Val.V/ ˝ D.V�/ ' Val.V/. Fix any
K 2 K .W/. Let us choose QK 2 K .V/ such that f . QK/ D K. For any � � 0 consider
the valuation on K .W?/

R 7! �.�R C QK/:

By McMullen’s decomposition, this is a polynomial in � of degree at most k WD
dimW?. The highest degree term is the k-homogeneous valuation on W?, hence by
Hadwiger’s theorem it is proportional to volk.R/. The coefficient depends on � and
QK (but not on R of course). Moreover one can show that it depends only on K rather
than on QK (the proof I know uses the McMullen’s conjecture). More precisely we
have

�.�R C K/ D 1

kŠ
�k volk.R/ � . f��/.K/C O.�k�1/:

Thus we got a description of f� for surjective maps.
Before we describe f� for injective maps, let us say that the convolution on

valuations can be describe as

� 	  D a�.� �  /;

where aWV � V ! V is the addition map (which is of course surjective).
Let now f WV ! W be an injective map. It is convenient to assume without loss

of generality that V is a subspace of W, and f is the identity imbedding. We fix a
Euclidean metric on W and use various identifications it induces. Let � 2 Val.V/
and K 2 K .W/. Then

. f��/.K/ D
Z

y2V?

�.K \ .y C V//d volV?
.y/:

Finally let us discuss the relation of pull-back and push-forward to the Fourier
transform. We will do it here in a non-rigorous way for the sake of simplicity. Let
f WV ! W be a linear map, and f_WW� ! V� be the dual map. Then we should
have the following non-rigorously stated identity

FV ı f � D . f_/� ı FW :

This identity is non-rigorous because the Fourier transform is defined on the class
of smooth valuations which is not preserved under the pull-back and push-forward
maps.
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Chapter 4
Integral Geometry and Algebraic Structures
for Tensor Valuations

Andreas Bernig and Daniel Hug

Abstract In this survey, we consider various integral geometric formulas for
tensor-valued valuations that have been obtained by different methods. Furthermore
we explain in an informal way recently introduced algebraic structures on the space
of translation invariant, smooth tensor valuations, including convolution, product,
Poincaré duality and Alesker-Fourier transform, and their relation to kinematic for-
mulas for tensor valuations. In particular, we describe how the algebraic viewpoint
leads to new intersectional kinematic formulas and substantially simplified Crofton
formulas for translation invariant tensor valuations. We also highlight the connection
to general integral geometric formulas for area measures.

4.1 Introduction

An important part of integral geometry is devoted to the investigation of integrals
(mean values) of the form

Z

G
'.K \ gL/ �.dg/;

where K;L � R
n are sets from a suitable intersection stable class of sets, G is

a group acting on R
n and thus on its subsets, � is a Haar measure on G, and

' is a functional with values in some vector space W. Common choices for W
are the reals or the space of signed Radon measures. Instead of the intersection,
Minkowski addition is another natural choice for a set operation which has
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been studied. The principle aim then is to express such integrals by means of
basic geometric functionals of K and L. Depending on the specific framework,
such as the class of sets or the type of functional under consideration, different
methods have been developed to establish integral geometric formulas, ranging
from classical convexity, differential geometry, geometric measure theory to the
theory of valuations. The interplay between the theory of valuations and integral
geometry, although a classical topic in convexity, has been expanded and deepened
considerably in recent years. In the present survey, we explore the integral geometry
of tensor-valued functionals. This study suggests and requires generalizations in the
theory of valuations which are of independent interest.

Therefore, we describe how some algebraic operations known for smooth
translation invariant scalar-valued valuations (product, convolution, Alesker-Fourier
transform) can be extended to smooth translation invariant tensor-valued valuations.
Although these extensions are straightforward to define, they encode various integral
geometric formulas for tensor valuations, like Crofton-type formulas, rotation sum
formulas (also called additive kinematic formulas) and intersectional kinematic
formulas. Even in the easiest case of translation invariant and O.n/-covariant
tensor valuations, explicit formulas are hard to obtain by classical methods. With
the present algebraic approach, we are able to simplify the constants in Crofton-
type formulas for tensor valuations, and to formulate a new type of intersectional
kinematic formulas for tensor valuations. For the latter we show how such formulas
can be explicitly calculated in the O.n/-covariant case. As an important byproduct,
we compute the Alesker-Fourier transform on a certain class of smooth valuations,
called spherical valuations. This result is of independent interest and is the technical
heart of the computation of the product of tensor valuations.

4.2 Tensor Valuations

The present chapter is based on the general introduction to valuations in Chap. 1
and on the description and structural analysis of tensor valuations contained in
Chap. 2. The algebraic framework for the investigation of scalar valuations, which
has already proved to be very useful in integral geometry, is outlined in Chap. 3. In
these chapters relevant background information is provided, including references to
previous work, motivation and hints to applications. The latter are also discussed in
other parts of this volume, especially in Chaps. 11–15.

Let us fix our notation and recall some basic structural facts. We will write V
for a finite-dimensional real vector space. Sometimes we fix a Euclidean structure
on V , which allows us to identify V with Euclidean space Rn. The space of compact
convex sets (including the empty set) is denoted by K .V/ (or K n if V D R

n).
The vector space of translation invariant, continuous scalar valuations is denoted
by Val.V/ (or simply by Val if the vector space V is clear from the context). The
smooth valuations in Val.V/ constitute an important subspace for which we write
Val1.V/; see Definition 3.5 and Remark 3.7, Definition 9.5 and Proposition 9.8, and
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Sect. 6.3. There is a natural decomposition of Val.V/ (and then also of Val1.V/) into
subspaces of different parity and different degrees of homogeneity, hence

Val.V/ D
nM

mD0
"D˙

Val"m.V/;

if V has dimension n, and similarly

Val1.V/ D
nM

mD0
"D˙

Val";1m .V/I

see Sects. 1.4, 3.1 and Theorem 9.1.
Our main focus will be on valuations with values in the space of symmetric

tensors of a given rank p 2 N0, for which we write Symp
R

n or simply Symp if the
underlying vector space is clear from the context (resp., Symp V in case of a general
vector space V). Here we deviate from the notation T

p used in Chaps. 1 and 2. The
spaces of symmetric tensors of different ranks can be combined to form a graded
algebra in the usual way. By a tensor valuation we mean a valuation on K .V/ with
values in the vector space of tensors of a fixed rank, say Symp.V/. For the space of
translation invariant, continuous tensor valuations with values in Symp.V/ we write
TValp.V/; cf. the notation in Chaps. 3, 6 and Definition 9.38. This vector space can
be identified with Val.V/ ˝ Symp.V/ (or Val ˝ Symp, for short). If we restrict to
smooth tensor valuations, we add the superscript 1, that is TValp;1.V/. It is clear
that McMullen’s decomposition extends to tensor valuations, hence

TValp.V/ D
nM

mD0
"D˙

TValp;"m .V/;

if dim.V/ D n. The corresponding decomposition is also available for smooth
tensor-valued valuations or valuations covariant (or invariant) with respect to a
compact subgroup G of the orthogonal group which acts transitively on the unit
sphere. The vector spaces of tensor valuations satisfying an additional covariance
condition with respect to such a group G is finite-dimensional and consists of
smooth valuations only (cf. Example 3.6 and Theorem 9.15). In the following, we
will only consider rotation covariant valuations (see Chap. 2).

4.2.1 Examples of Tensor Valuations

In the following, we mainly consider translation invariant tensor valuations. How-
ever, we start with recalling general Minkowski tensors, which are translation
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covariant but not necessarily translation invariant. For Minkowski tensors, and hence
for all isometry covariant continuous tensor valuations, we first state a general
Crofton formula. The major part of this contribution is then devoted to translation
invariant, rotation covariant, continuous tensor valuations. In this framework, we
explain how algebraic structures can be introduced and how they are related to
Crofton formulas as well as to additive and intersectional kinematic formulas.
Crofton formulas for tensor-valued curvature measures are the subject of Chap. 5.

For k 2 f0; : : : ; n � 1g and K 2 K n, let �0.K; � /; : : : ; �n�1.K; � / denote the
support measures associated with K (see Sect. 1.3). They are Borel measures on
˙n WD R

n � S
n�1 which are concentrated on the normal bundle ncK of K. Let �n

denote the volume of the unit ball and !n D n�n the volume of its boundary, the
unit sphere. Using the support measures, we recall from Sects. 1.3 or 2.1 that the
Minkowski tensors are defined by

˚
r;s
k .K/ WD 1

rŠsŠ

!n�k

!n�kCs

Z

˙n
xrus�k.K; d.x; u//;

for k 2 f0; : : : ; n � 1g and r; s 2 N0, and

˚ r;0
n .K/ WD 1

rŠ

Z

K
xr dx:

In addition, we define ˚ r;s
k WD 0 for all other choices of indices. Clearly, the tensor

valuations ˚0;s
k and ˚0;0

n , which are obtained by choosing r D 0, are translation
invariant. However, these are not the only translation invariant examples, since
e.g. ˚1;1

k�1, for k 2 f1; : : : ; ng, also satisfies ˚1;1
k�1.K C t/ D ˚

1;1
k�1.K/ for all K 2 K n

and t 2 R
n.

Further examples of continuous, isometry covariant tensor valuations are
obtained by multiplying the Minkowski tensors with powers of the metric tensor Q
and by taking linear combinations. As shown by Alesker [1, 2], no other examples
exist (see also Theorem 2.5). In the following, we write

˚ s
k.K/ WD ˚

0;s
k .K/ D 1

sŠ

!n�k

!n�kCs

Z

˙n
us�k.K; d.x; u//

D
 
n � 1

k

!
1

!n�kCssŠ

Z

Sn�1

us Sk.K; du/;

for k 2 f0; : : : ; n � 1g, where we used the k-th area measure Sk.K; � / of K, a Borel
measure on S

n�1 defined by

Sk.K; � / WD n�n�k
�n
k

� �k.K;R
n � � /:
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In addition, we define ˚0
n WD Vn and ˚ s

n WD 0 for s > 0. The normalization is such
that ˚0

k D Vk, for k 2 f0; : : : ; ng, where Vk is the k-th intrinsic volume. Clearly, the
tensor valuations Qi˚ s

k , for k 2 f0; : : : ; ng and i; s 2 N0, are continuous, translation
invariant, O.n/-covariant, homogeneous of degree k and have tensor rank 2i C s.
We have ˚ s

n � 0 for s ¤ 0, and ˚ s
0.K/ is independent of K. Hence, we usually

exclude these trivial cases. Apart from these, Alesker showed that for each fixed
k 2 f1; : : : ; n � 1g the valuations

Qi˚ s
k ; i; s 2 N0; 2i C s D p; s ¤ 1;

form a basis of the vector space of all continuous, translation invariant, O.n/-
covariant tensor valuations of rank p which are homogeneous of degree k. The
fact that these valuations span the corresponding vector space is implied by
[1, Proposition 4.9] (and [2]), the proof is based in particular on basic representation
theory. A result of Weil [17, Theorem 3.5] states that differences of area measure of
order k, for any fixed k 2 f1; : : : ; d�1g, are dense in the vector space of differences
of finite, centered Borel measures on the unit sphere. From this the asserted linear
independence of the tensor valuations can be inferred. We also refer to Sect. 6.5
where the present case is discussed as an example of a very general representation
theoretic theorem.

The situation for general tensor valuations (which are not necessarily translation
invariant) is more complicated. As explained in Chap. 2, the valuations Qi˚

r;s
k

span the corresponding vector space, but there exist linear dependences between
these functionals. Although all linear relations are known and the dimension of the
corresponding vector space (for fixed rank and degree of homogeneity) has been
determined, the situation here is not perfectly understood.

In the following, it will often (but not always) be sufficient to neglect the metric
tensor powers Qi and just consider the tensor valuations ˚ s

k , since the metric tensor
commutes with the algebraic operations to be considered.

4.2.2 Integral Geometric Formulas

Let A.n; k/, for k 2 f0; : : : ; ng, denote the affine Grassmannian of k-flats in R
n, and

let �k denote the motion invariant measure on A.n; k/ normalized as in [13, 14]. The
Crofton formulas to be discussed below relate the integral mean

Z

A.n;k/
˚

r;s
j .K \ E/ �k.dE/

of the tensor valuation˚ r;s
j .K \E/ of the intersection of K with flats E 2 A.n; k/ to

tensor valuations of K. Guessing from the scalar case, one would expect that only
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tensor valuations of the form Qi˚ r0;s0

n�kCj.K/ are required. It turns out, however, that
for general r the situation is more involved.

The following Crofton formulas for Minkowski tensors have been established
in [7]. Since ˚ r;s

j .K \ E/ D 0 if k < j, we only have to consider the cases where
k � j.

We start with the basic case k D j, in which the Crofton formula has a particularly
simple form.

Theorem 4.1 For K 2 K n, r; s 2 N0 and 0 � k � n � 1,

Z

A.n;k/
˚

r;s
k .K \ E/ �k.dE/ D

8
<

:

Q̨n;k;s Q s
2 ˚ r;0

n .K/; if s is even,

0; if s is odd,

where

Q̨n;k;s WD 1

.4�/
s
2
�
s
2

�
Š

	
�
n
2

�
	
�
n�kCs
2

�

	
�
nCs
2

�
	
�
n�k
2

� :

This result essentially follows from Fubini’s theorem, combined with a relation
due to McMullen, which connects the Minkowski tensors of K \ E and the
Minkowski tensors of K \ E, defined with respect to the flat E as the ambient space
(see (4.4) for a precise statement).

The main case j < k is considered in the next theorem.

Theorem 4.2 Let K 2 K n and k; j; r; s 2 N0 with 0 � j < k � n � 1. Then
Z

A.n;k/
˚ r;s

j .K \ E/ �k.dE/

D
b s
2 cX

zD0
�.1/n;j;k;s;zQ

z˚ r;s�2z
nCj�k.K/C

b s
2 c�1X

zD0
�.2/n;j;k;s;zQ

z

�
s�2z�1X

lD0

�
2�l˚ rCs�2z�l;l

nCj�k�sC2zCl.K/� Q˚ rCs�2z�l;l�2
nCj�k�sC2zCl.K/

�
; (4.1)

where �.1/n;j;k;s;z and �
.2/
n;j;k;s;z are explicitly known constants.

The constants �.1/n;j;k;s;z and �.2/n;j;k;s;z only depend on the indicated lower indices. It
is remarkable that they are independent of r. Moreover, the right-hand side of this
Crofton formula also involves other tensor valuations than ˚ r0 ;s0

n�kCj.K/. For instance,
in the special case where n D 3, k D 2, j D 0, r D 1 and s D 2, Theorem 4.2 yields
that

Z

A.3;2/
˚
1;2
0 .K \ E/ �2.dE/ D 1

3
˚
1;2
1 .K/C 1

24�
Q˚1;0

1 .K/C 1
6
˚
2;1
0 .K/:
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It can be shown that it is not possible to write ˚2;1
0 as a linear combination of ˚1;2

1

and Q˚1;0
1 , which are the only other Minkowski tensors of rank 3 and homogeneity

degree 2.
The explicit expressions obtained for the constants �.1/n;j;k;s;z and �.2/n;j;k;s;z in [7]

require a multiple (fivefold) summation over products and ratios of binomial
coefficients and Gamma functions. Some progress which can be made in simplifying
this representation is described in Chap. 5.

Since the tensor valuations on the right-hand side of the Crofton formula (4.1) are
not linearly independent, the specific representation is not unique. Using the linear
relation due to McMullen, the result can also be expressed in the form

Z

A.n;k/
˚

r;s
j .K \ E/ �k.dE/

D
b s
2 cX

zD0
�.1/n;j;k;s;zQ

z˚
r;s�2z
nCj�k.K/C

b s
2 c�1X

zD0
�.2/n;j;k;s;zQ

z

�
X

l�s�2z

�
Q˚ rCs�2z�l;l�2

nCj�k�sC2zCl.K/ � 2�l˚ rCs�2z�l;l
nCj�k�sC2zCl.K/

�
(4.2)

with the same constants as before. From (4.2) we now deduce the Crofton formula
for the translation invariant tensor valuations˚ s

j . For r D 0, the sum
P

l�s�2z on the
right-hand side of (4.2) is non-zero only if l D s � 2z. Therefore, after some index
shift (and discussion of the ‘boundary cases’ z D 0 and z D b s

2
c), we obtain

Z

A.n;k/
˚ s

j .K \ E/ �n
k.dE/ D

b s
2 cX

zD0
�.�/n;j;k;s;zQ

z˚ s�2z
nCj�k.K/ (4.3)

for j < k, where

�.�/n;j;k;s;z D �.1/n;j;k;s;z C �.2/n;j;k;s;z�1 � 2�.s � 2z/�.2/n;j;k;s;z:

Since the right-hand side of (4.3) is uniquely determined by the left-hand side
and the tensor valuations on the right-hand side are linearly independent, the
constant �.�/n;j;k;s;z is uniquely determined. Using the expression which is obtained
for �.�/n;j;k;s;z from the constants �.1/n;j;k;s;z and �.2/n;j;k;s;z provided in [7], it seems to be a
formidable task to get a reasonably simple expression for this constant. If j D k,
then Theorem 4.1 shows that (4.3) remains true if we define �n;k;k;s;b s

2 c WD Q̨n;k;s if
s is even, and as zero in all other cases. As we will see, the approach of algebraic
integral geometry to (4.3) will reveal that �.�/n;j;k;s;z has indeed a surprisingly simple
expression.
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To compare the algebraic approach with the one used in [7], and extended to
tensorial curvature measures in Chap. 5, we point out that the result of Theorem 4.2
is complemented by and in fact is based on an intrinsic Crofton formula, where the
tensor valuation ˚ r;s

j .K \ E/ is replaced by ˚ r;s
j;E.K \ E/. The latter is the tensor

valuation of the intersection K \ E, determined with respect to E as the ambient
space but considered as a tensor in R

n (see Sect. 5.2 or [7] for an explicit definition).
The two tensors are connected by the relation

˚
r;s
j .K \ E/ D

X

m�0

Q.E?/m

.4�/mmŠ
˚

r;s�2m
j;E .K \ E/; (4.4)

due to McMullen [11, Theorem 5.1] (see also [7]), where Q.E?/ is the metric tensor
of the linear subspace orthogonal to the direction space of E but again considered as
a tensor in R

n, that is, Q.E?/ D e2kC1C� � �Ce2n, where ekC1; : : : ; en is an orthonormal
basis of E?. Note that for s D 0 we get ˚ r;0

j .K \ E/ D ˚ r;0
j;E .K \ E/, since the

intrinsic volumes and the suitably normalized curvature measures are independent
of the ambient space.

The intrinsic Crofton formula for
Z

A.n;k/
˚ r;s

j;E.K \ E/ �k.dE/

has the same structure as the extrinsic Crofton formula stated in Theorem 4.2, but the
constants are different. Apart from reducing the number of summations required for
determining the constants, progress in understanding the structure of these (intrinsic
and extrinsic) integral geometric formulas can be made by localizing the Minkowski
tensors. This is the topic of Chap. 5.

Crofton and intersectional kinematic formulas for Minkowski tensors ˚ r;s
j with

s D 0 are special cases of corresponding (more general) integral geometric formulas
for curvature measures. For example, we have

Z

A.n;k/
˚

r;0
j .K \ E/ �k.dE/ D anjk ˚

r;0
nCj�k.K/ (4.5)

and

Z

Gn

˚
r;0
j .K \ gM/ �.dg/ D

nX

kDj

anjk ˚
r;0
nCj�k.K/Vk.M/; (4.6)

where Gn is the Euclidean motion group,� is the suitably normalized Haar measure
and the (simple) constants anjk are known explicitly. Therefore, we focus on the case
s ¤ 0 (and r D 0) in the following.
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A close connection between Crofton formulas and intersectional kinematic
formulas follows from Hadwiger’s general integral geometric theorem (see [14,
Theorem 5.1.2]). It states that for any continuous valuation ' on the space of convex
bodies and for all K;M 2 K n, we have

Z

Gn

'.K \ gM/ �.dg/ D
nX

kD0

Z

A.n;k/
'.K \ E/ �k.dE/Vk.M/: (4.7)

Hence, if a Crofton formula for the functional ' is available, then an intersectional
kinematic formula is an immediate consequence. This statement includes also
tensor-valued functionals, since (4.7) can be applied coordinate-wise. In particular,
this shows that (4.6) can be obtained from (4.5). In the same way, Theorem 4.2 and
the special case shown in (4.3) imply kinematic formulas for intersections of convex
bodies, one fixed the other moving. Thus, for instance, we obtain

Z

Gn

˚ s
j .K \ gM/ �.dg/ D

b s
2 cX

zD0

nX

kDj

�.�/n;j;k;s;z Q
z˚ s�2z

nCj�k.K/Vk.M/: (4.8)

These results are related to and in fact inspired general integral geometric
formulas for area measures (see [10]). The starting point is a local version of
Hadwiger’s general integral geometric theorem for measure-valued valuations. To
state it, let MC.Sn�1/ be the cone of non-negative measures in the vector space
M .Sn�1/ of finite Borel measures on the unit sphere.

Theorem 4.3 Let ' W K n ! MC.Sn�1/ be a continuous and additive mapping
with '.;; � / D 0 (the zero measure). Then, for K;M 2 K n and Borel sets A �
S
n�1,

Z

Gn

'.K \ gM;A/ �.dg/ D
nX

kD0
ŒTn;k'.K; � /�.A/Vk.M/; (4.9)

with (the Crofton operator) Tn;k on weakly continuous measure-valued valuations
given by

Tn;k'.K; � / WD
Z

A.n;k/
'.K \ E; �/ �k.dE/; k D 0; : : : ; n:

We want to apply this result to area measures of convex bodies, hence we need
a Crofton formula for area measures. The statement of such a Crofton formula is
based on Fourier operators Ip, for p 2 f�1; 0; 1; : : : ; ng, which act on C1 functions
on S

n�1. For f 2 C1.Sn�1/, let fp be the extension of f to R
n n f0g which is

homogeneous of degree �n C p, and let Ofp be the distributional Fourier transform
of fp. For 0 < p < n, the restriction Ip.f / of Ofp to the unit sphere is again a smooth
function. Let H n

s denote the space of spherical harmonics of degree s. Recall that a
spherical harmonic of degree s is the restriction to the unit sphere of a homogeneous
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polynomial p of degree s on R
n which satisfies �p D 0 (and hence is called

harmonic), where � is the Laplace operator. We refer to [13] for more information
on spherical harmonics. Since Ip intertwines the group action of SO.n/, we have
Ip.fs/ D �s.n; p/ fs for fs 2 H n

s and some �s.n; p/ 2 C. It is known that

�s.n; p/ D �
n
2 2p is

	
�
sCp
2

�

	
�
sCn�p
2

� :

Note that �s.n; p/ is purely imaginary if s is odd, and real if s is even. See [10] for
a summary of the main properties of this Fourier operator and [8, 9] for a detailed
exposition.

Using the connection to mean section bodies (see [8]) and the Fourier opera-
tors Ip, the following Crofton formula for area measures has been established in [10,
Theorem 3.1].

Theorem 4.4 Let 1 � j < k � n and K 2 K n. Then
Z

A.n;k/
Sj.K \ E; � / �k.dE/ D a.n; j; k/IjIk�jSnCj�k.�K; � / (4.10)

with

a.n; j; k/ WD j

2n�.nCk/=2.n C j � k/

	 . kC1
2
/	 .n � j/

	 . nC1
2
/	 .k � j/

:

Let I� be the reflection operator .I�f /.u/ D f .�u/, u 2 S
n�1, for a function f

on the unit sphere. The operator Tn;j;k WD a.n; j; k/IjIk�jI�, for 1 � j < k � n, and
the identity operator Tn;j;n act as linear operators on M .Sn�1/ and can be used to
express (4.10) in the form

Z

A.n;k/
Sj.K \ E; � / �k.dE/ D Tn;j;kSnCj�k.K; � /: (4.11)

This is also true for k D j < n if we define

Tn;j;jSn.K; � / WD
 
n � 1

j

!�1
!n�j

!n
Vn.K/�;

where � is spherical Lebesgue measure. Combining Eqs. (4.9) and (4.11), we obtain
a kinematic formula for area measures. Using again the operator Tn;j;k, it can be
stated in the form

Z

Gn

Sj.K \ gM;A/ �.dg/ D
nX

kDj

ŒTn;j;kSnCj�k.K; � /�.A/Vk.M/;
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for j D 1; : : : ; n � 1. Since the Fourier operators act as multiplier operators on
spherical harmonics, it follows that Theorem 4.4 can be rewritten in the form

Z

A.n;k/

Z

Sn�1

fs.u/ Sj.K \ E; du/ �k.dE/

D as.n; j; k/
Z

Sn�1

fs.u/ SnCj�k.K; du/; (4.12)

where fs 2 H n
s and as.s; j; k/ WD a.n; j; k/bs.n; j; k/ with

bs.n; j; k/ WD 2k�n
	
�
sCj
2

�
	
�
sCk�j
2

�

	
�
sCn�j
2

�
	
�
sCn�kCj

2

� :

In addition to Crofton and intersectional kinematic formulas, there is another
classical type of integral geometric formula. Since they involve rotations and
Minkowski sums of convex bodies, it is justified to call them rotation sum formulas.
Let SO.n/ denote the group of rotations and let � denote the Haar probability
measure on this group. A general form of such a formula can again be stated for
area measures. Let K;M 2 K n be convex bodies and let ˛; ˇ � S

n�1 be Borel sets.
Then [13, Theorem 4.4.6] can be written in the form

Z

SO.n/

Z

Sn�1

1˛.u/1ˇ.
�1u/ Sj.K C 
M; du/ �.d
/

D 1

!n

jX

kD0

 
j

k

!

Sk.K; ˛/Sj�k.M; ˇ/: (4.13)

More generally, by the inversion invariance of the Haar measure �, by basic measure
theoretic extension arguments, and by an application of (4.13) to the coordinate
functions of an arbitrary continuous function f W Sn�1�S

n�1 ! Syms1 ˝ Syms2 , for
given s1; s2 2 N0, we obtain

Z

SO.n/

Z

Sn�1

f .u; 
u/ Sj.K C 
�1M; du/ �.d
/

D 1

!n

jX

kD0

 
j

k

!Z

.Sn�1/2
f .u; v/

�
Sk.K; � / � Sj�k.M; � /�.d.u; v//:

To simplify constants, we define

�s
k.K/ WD

Z

Sn�1

us Sk.K; du/: (4.14)
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Choosing f .u; v/ D us1 ˝ vs2 , we thus get

Z

SO.n/
.id˝s1 ˝ 
˝s2/�

s1Cs2
j .K C 
�1M/ �.d
/

D
Z

SO.n/

Z

Sn�1

us1 ˝ .
u/s2 Sj.K C 
�1M; du/ �.d
/

D 1

!n

jX

kD0

 
j

k

!Z

.Sn�1/2
us1 ˝ vs2

�
Sk.K; � / � Sj�k.M; � /� .d.u; v//;

(4.15)

and hence
Z

SO.n/
.id˝s1 ˝ 
˝s2 /�

s1Cs2
j .K C 
�1M/ �.d
/

D 1

!n

jX

kD0

 
j

k

!

�
s1
k .K/˝ �

s2
j�k.M/:

Up to the different normalization, this is the additive kinematic formula for tensor
valuations stated in [6, Theorem 5]. In particular,

Z

SO.n/
�s
j .K C 
M/ �.d
/ D 1

!n

jX

kD0

 
j

k

!

�s
k.K/Sj�k.M/;

where Si.M/ WD Si.M;Sn�1/ D n�n�i
�n
i

��1
Vi.M/.

In the following section, we develop basic algebraic structures for tensor
valuations and provide applications to integral geometry. From this approach, we
will obtain a Crofton formula for the tensor valuations ˚ s

k , but also for another set
of tensor valuations, denoted by  s

k , for which the Crofton formula has ‘diagonal
form’. Moreover, we will study more general intersectional kinematic formulas than
the one considered in (4.8) and describe the connection between intersectional and
additive kinematic formulas. In the course of our analysis, we determine Alesker’s
Fourier operator for spherical valuations, that is, valuations obtained by integration
of a spherical harmonic (or, more generally, any smooth spherical function) against
an area measure.

4.3 Algebraic Structures on Tensor Valuations

Recall that Val D Val.Rn/ denotes the Banach space of translation invariant
continuous valuations on V D R

n, and Val1 D Val1.Rn/ is the dense subspace of
smooth valuations; see Chaps. 3 and 9 for more information. In this section, we first
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discuss the extension of basic operations and transformations from scalar valuations
to tensor-valued valuations. The scalar case is described in Chap. 3.

In the following, we usually work in Euclidean space R
n with the Lebesgue

measure and the volume functional Vn on convex bodies. Since some of the results
are also stated in invariant terms, we write vol for a volume measure on V , that is,
a choice of a translation invariant locally finite Haar measure on an n-dimensional
vector space V . Of course, in case V D R

n we always use Vn as a specific choice of
the restriction of a volume measure vol to K n (the corresponding choice is made
for V D R

n � R
n).

4.3.1 Product

Existence and uniqueness of the product of smooth valuations is provided by
the following result; see also Sect. 3.2 for the more general construction of an
exterior product between smooth scalar-valued valuations on possibly different
vector spaces.

Proposition 4.5 Let �1; �2 2 Val1 be smooth valuations on Rn given by

�i.K/ D vol.K C Ai/; K 2 K n;

where A1;A2 2 K n are smooth convex bodies with positive Gauss curvature at
every boundary point. Let � W Rn ! R

n � R
n be the diagonal embedding. Then

�1 � �2.K/ WD vol.�K C A1 � A2/; K 2 K n;

extends by continuity and bilinearity to a product on Val1.

The product is compatible with the degree of a valuation (i.e., if �i has degree ki,
then �1 � �2 has degree k1 C k2 if k1 C k2 � n), and more generally with the action
of the group GL.n/.

We can extend the product component-wise from smooth scalar-valued valua-
tions to smooth tensor-valued valuations. To see this, let V be a finite-dimensional
vector space, V D R

n say, and s1; s2 2 N0. Let ˚i 2 TValsi;1.V/ for i D 1; 2. Let
w1; : : : ;wm be a basis of Syms1V , and let u1; : : : ; ul be a basis of Syms2V . Then there
are �i;  j 2 Val1.V/, i 2 f1; : : : ;mg and j 2 f1; : : : ; lg, such that

˚1.K/ D
mX

iD1
�i.K/wi and ˚2.K/ D

lX

jD1
 j.K/uj
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for K 2 K .V/. Now we would like to define (omitting the obvious ranges of the
indices)

.˚1 � ˚2/.K/ WD
X

i;j

.�i �  j/.K/wiuj:

The dot on the right-hand side is the product of the smooth valuations �i;  j, and
wiuj 2 Syms1Cs2V denotes the symmetric tensor product of the symmetric tensors
wi 2 Syms1V and uj 2 Syms2V .

Let us verify that this definition is independent of the chosen bases. For this,
let w0

i D P
j cijwj with some invertible matrix .cij/, and let u0

i D P
j eijuj with an

invertible matrix .eij/.
If

˚1.K/ D
X

i

�0
i .K/w

0
i D

X

i

�i.K/wi;

then a comparison of coefficients yields that �0
i D P

j c
ji�j, where .cji/ denotes the

matrix inverse. Similarly, from

˚2.K/ D
X

i

 0
j .K/u

0
i D

X

i

 i.K/ui;

we conclude that  0
i D P

j e
ji j, where .eji/ denotes the matrix inverse. Therefore,

we have

X

i;j

.�0
i �  0

j /w
0
iu

0
j D

X

i;j;b1;b2

�X

a1;b1

ca1i�a1 � eb1j b1

�X

a2;b2

cia2wa2ejb2ub2

D
X

a1;a2;b1;b2

�X

i;j

ca1icia2e
b1jejb2

„ ƒ‚ …
Dıa1a2 ıb1b2

�
.�a1 �  b1 /wa2 � ub2

D
X

a;b

.�a �  a/wa � ub;

which proves the asserted independence of the representation.
Thus, recalling that TValsm.V/ denotes the vector space of translation invariant

continuous valuations on K .V/ which are homogeneous of degree m and take
values in the vector space Syms V of symmetric tensors of rank s over V , and that
TVals;1m .V/ is the subspace consisting of the smooth elements of this vector space,
we have

˚1 � ˚2 2 TVals1Cs2;1
kCl .V/; k C l � n;

for ˚1 2 TVals1;1k .V/, ˚2 2 TVals2;1l .V/ and k; l 2 f0; : : : ; ng.
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A similar description and similar arguments can be given for the operations
considered in the following sections.

4.3.2 Convolution

Similarly as for the product of valuations, an explicit definition of the convolution of
two valuations (as defined in [5]) is given only for a suitable subclass of valuations
(cf. Sect. 3.3).

Proposition 4.6 Let �1; �2 2 Val1 be smooth valuations on Rn given by

�i.K/ D vol.K C Ai/; K 2 K n;

where A1;A2 are smooth convex bodies with positive Gauss curvature at every
boundary point. Then

�1 	 �2.K/ WD vol.K C A1 C A2/; K 2 K n;

extends by continuity and bilinearity to a product (which is called convolution)
on Val1.

Written in invariant terms, the convolution is a bilinear map

.Val1.V/˝ Dens.V�// � .Val1.V/˝ Dens.V�// ! Val1.V/˝ Dens.V�/;

where Dens.V�/ is the one-dimensional space of translation invariant, locally finite
complex-valued Haar measures (Lebesgue measures, see Sect. 3.3) on the dual space
V�. It is compatible with the action of the group GL.n/ and with the codegree of a
valuation (i.e., if �i has degree ki, then �1 	�2 has degree k1Ck2�n if k1Ck2 � n).

The convolution can be extended component-wise to a convolution on the space
of translation invariant smooth tensor valuations. Hence we have

˚1 	 ˚2 2 TVals1Cs2;1
kCl�n .V/; k C l � n;

for ˚1 2 TVals1;1k .V/, ˚2 2 TVals2;1l .V/ and k; l 2 f0; : : : ; ng. This is analogous to
the definition and computation in the previous section.

4.3.3 Alesker-Fourier Transform

Alesker introduced an operation on smooth valuations, now called Alesker-Fourier
transform (cf. Sect. 3.4). It is a map F W Val1.Rn/ ! Val1.Rn/ which reverses the
degree of homogeneity, that is,

F W Val1k .Rn/ ! Val1n�k.R
n/;
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and which transforms product into convolution of smooth valuations, more pre-
cisely, we have

F.�1 � �2/ D F.�1/ 	 F.�2/: (4.16)

On valuations which are smooth and even, the Alesker-Fourier transform can
easily be described in terms of Klain functions as follows. Let � 2 Val1;C

k .Rn/ (the
space of smooth and even valuations which are homogeneous of degree k). Then the
restriction of � to a k-dimensional subspace E is a multiple Kl�.E/ of the volume,
and the resulting function (Klain function) Kl� determines �. Then

KlF�.E/ D Kl�.E?/

for every .n � k/-dimensional subspace E.
As an example (and consequence of the relation to Klain functions), the intrinsic

volumes satisfy

F.Vk/ D Vn�k; (4.17)

where V0; : : : ;Vn denote the intrinsic volumes on K n.
The description in the odd case is more involved and it is preferable to describe

it in invariant terms (i.e., without referring to a Euclidean structure).
Let V be an n-dimensional real vector space. Then

F W Val1k .V/ ! Val1n�k.V/˝ Dens.V�/;

where Dens denotes the one-dimensional space of densities (Lebesgue measures).
This map commutes with the action of GL.V/ on both sides. Applying it twice (and
using the identification Dens.V�/˝ Dens.V/ Š C), it satisfies the Plancherel type
formula

.F2�/.K/ D �.�K/; K 2 K .V/:

Working again on Euclidean space V D R
n, we can extend the Alesker-Fourier

transform component-wise to a map F W TVals;1 ! TVals;1 such that

F W TVals;1k ! TVals;1n�k :

It is not an easy task to determine the Fourier transform of valuations other than the
intrinsic volumes.

4.3.4 Example: Intrinsic Volumes

As an example, let us compute the Alesker product of intrinsic volumes V0; : : : ;Vn

in R
n. We complement the definition of the intrinsic volumes by Vl WD 0 for l < 0.

Let vol D Vn denote the volume measure on K n.
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Recall Steiner’s formula (1.16) which states that

vol.K C rB/ D
nX

iD0
Vn�i.K/�ir

i; r � 0:

Now we fix r � 0 and s � 0 and define the smooth valuations �1.K/ WD vol.KCrB/
and �2.K/ WD vol.K C sB/. Then

�1 	 �2.K/ D vol.K C rB C sB/ D vol.K C .r C s/B/

D
nX

kD0
Vn�k.K/�k.r C s/k;

hence

�1 	 �2 D
nX

i;jD0
Vn�i�j�iCj

 
i C j

i

!

ris j:

On the other hand, since �1 D Pn
iD0 Vn�i�iri and �2 D Pn

iD0 Vn�i�isi, we obtain

�1 	 �2 D
nX

i;jD0
Vn�i 	 Vn�j�i�jr

is j:

Now we compare the coefficient of ris j in these equations and get

Vn�i�j�iCj

 
i C j

i

!

D Vn�i 	 Vn�j�i�j:

Writing i instead of n � i and j instead of n � j, we obtain

Vi 	 Vj D
�
2n � i � j
n � i

	

ViCj�n; (4.18)

where we used the flag coefficient

�
n
k

	

WD
 
n

k

!
�n

�k�n�k
; k 2 f0; : : : ; ng:

Taking Alesker-Fourier transform on both sides yields

Vi � Vj D
�
i C j
i

	

ViCj: (4.19)
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The computation of convolution and product of tensor valuations follows the
same scheme: first one computes the convolution of tensor valuations, which can
be considered easier. Then one applies the Alesker-Fourier transform to obtain the
product. However, in the tensor-valued case it is much harder to write down the
Alesker-Fourier transform in an explicit way. This step is the technical heart of our
approach.

4.3.5 Poincaré Duality

The product of smooth translation invariant valuations as well as the convolution
both satisfy a version of Poincaré duality, which moreover are identical up to a sign.

To state this more precisely, recall that the vector spaces Valk D Valk.Rn/, k 2
f0; ng, are one-dimensional and spanned by the Euler-characteristic � D V0 and the
volume functional Vn D vol, that is, Val0 Š R � � and Valn Š R � vol. We denote by
�0; �n 2 R the component of � 2 Val of degree 0 and n, respectively.

Proposition 4.7 The pairings

Val1k � Val1n�k ! R; .�1; �2/ 7! .�1 � �2/n;

and

Val1k � Val1n�k ! R; .�1; �2/ 7! .�1 	 �2/0;

are perfect, that is, the induced maps

pdm; pdc W Val1k ! Val1;�
n�k

are injective with dense image. Moreover,

pdc D
(

pdm on ValCk ;
�pdm on Val�k :

To illustrate this proposition and to highlight the difference between the two
pairings, let us compute them on an easy example. Let �i.K/ WD vol.K C Ai/,
where Ai, i 2 f1; 2g, are smooth convex bodies with positive Gauss curvature. Then
�1 	 �2.K/ D vol.K C A1 C A2/, and hence .�1 	 �2/0 D vol.A1 C A2/.

On the other hand, �1 � �2.K/ D vol2n.�K C A1 � A2/. Using Fubini’s theorem,
one rewrites this as

�1 � �2.K/ D
Z

Rn
�2..x � A1/\ K/ dx:
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Taking for K a large ball reveals that .�1 � �2/n D �2.�A1/ D vol.A2 � A1/. If
A1 D �A1, then �1 is even and both pairings agree indeed.

The extension of Poincaré duality to tensor-valued valuations is postponed to
Sect. 4.4.1 where it is required for the description of the relation between additive
and intersectional kinematic formulas for tensor valuations.

4.3.6 Explicit Computations in the O.n/-Equivariant Case

In this section, we outline the explicit computation of product, convolution and
Alesker-Fourier transform in the O.n/-equivariant case. Depending on the situation,
we will either use the basis consisting of the tensor valuations Qi˚ s�2i

k or the basis
consisting of the tensor valuations Qi s�2i

k . The latter are defined in the following
proposition.

Proposition 4.8 The following statements hold.

(i) For 0 � k < n and s ¤ 1, define

 s
k WD ˚ s

k C
b s
2 cX

jD1

.�1/ j	 . n�kCs
2
/	 . n

2
C s � 1 � j/

.4�/ jjŠ	 . n�kCs
2

� j/	 . n
2

C s � 1/Q
j˚

s�2j
k

and let 0
n WD ˚0

n . Then 
s
k is the trace free part of ˚

s
k . In particular, 

s
k � ˚ s

k
mod Q.

(ii) For 0 � k < n and s ¤ 1, ˚ s
k can be written in terms of  s0

k as

˚ s
k D  s

k C
b s
2 cX

jD1

	
�
n�kCs
2

�
	 . n

2
C s � 2j/

.4�/ jjŠ	 . n�kCs
2

� j/	 . n
2

C s � j/
Qj

s�2j
k :

The inversion which is needed to derive (ii) from (i) can be accomplished with the
help of Zeilberger’s algorithm.

The first and easier step in the explicit calculations of algebraic structures for
tensor valuations is to compute the convolution of two tensor valuations. Since ˚ s

k
is smooth (i.e., each component is a smooth valuation), we may write

˚ s
k.K/ D

Z

nc.K/
!k;s;

where !k;s is a smooth .n � 1/-form on the sphere bundle R
n � Sn�1 with values

in Syms
R

n. Next, for valuations represented by differential forms, there is an easy
formula for the convolution, which involves only some linear and bilinear operations
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(a kind of Hodge star and a wedge product). The resulting formula states that, for
k; l � n with k C l � n and s1; s2 ¤ 1, we have

˚
s1
k 	 ˚ s2

l D !s1Cs2C2n�k�l

!s1Cn�k!s2Cn�l

.n � k/.n � l/

2n � k � l

�
 
2n � k � l

n � k

! 
s1 C s2

s1

!
.s1 � 1/.s2 � 1/
1 � s1 � s2

˚
s1Cs2
kCl�n;

or, using the normalization (4.14) which is more convenient for this purpose,

�
s1
k 	 �s2

l D n

�kCl
n

�

�kCl
k

�
.s1 � 1/.s2 � 1/
1 � s1 � s2

�
s1Cs2
kCl�n:

The computation of the Alesker-Fourier transform of tensor valuations is the
main step and will be explained in the next section. For 0 � k � n and s ¤ 1, the
result is

F. s
k / D is  s

n�k;

F.˚ s
k/ D is

b s
2 cX

jD0

.�1/ j
.4�/ jjŠ

Qj˚
s�2j
n�k :

Finally, the product of two tensor valuations can be computed once the convo-
lution and the Alesker-Fourier transform are known, see (4.16). The result is a bit
more involved than the formulas for convolution and Alesker-Fourier transform. The
reason is that the formula for the convolution is best described in terms of the tensor
valuations ˚ s

k , while the description of the Alesker-Fourier transform has a simpler
expression for the  s

k .
After some algebraic manipulations (which make use of Zeilberger’s algorithm),

we arrive at

˚
s1
k � ˚ s2

l D kl

k C l

 
k C l

k

! b s1Cs2
2 cX

aD0
2a¤s1Cs2�1

1

.4�/aaŠ

�
 

aX

mD0

minfm;b s1
2 cgX

iDmaxf0;m�b s2
2 cg
.�1/a�m

 
a

m

! 
m

i

!
!s1Cs2�2mCkCl

!s1�2iCk!s2�2mC2iCl

�
 
s1 C s2 � 2m

s1 � 2i

!
.s1 � 2i � 1/.s2 � 2m C 2i � 1/

1 � s1 � s2 C 2m

!

Qa˚
s1Cs2�2a
kCl :

(4.20)
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Here 0 � k; l with k C l � n and s1; s2 ¤ 1. It seems that there is no simple closed
expression for the inner sum.

4.3.7 Tensor Valuations Versus Scalar-Valued Valuations

The interplay between tensor valuations and scalar-valued valuations will be
essential in the computation of the Alesker-Fourier transform. We therefore explain
this now is some more detail.

We first need some facts from representation theory. It is well-known that
equivalence classes of complex irreducible (finite-dimensional) representations of
SO.n/ are indexed by their highest weights. The possible highest weights are tuples
.�1; �2; : : : ; �b n

2 c/ of integers such that

1. �1 � �2 � � � � � �b n
2 c � 0 if n is odd,

2. �1 � �2 � � � � � j� n
2
j � 0 if n is even.

Given � D .�1; : : : ; �b n
2 c/ satisfying this condition, we will denote the corre-

sponding equivalence class of representations by 	�.
The decomposition of the SO.n/-module Valk has been obtained in [3].

Theorem 4.9 ([3]) There is an isomorphism of SO.n/-modules

Valk Š
M

�

	�;

where � ranges over all highest weights such that j�2j � 2, j�ij ¤ 1 for all i and
�i D 0 for i > minfk; n � kg. In particular, these decompositions are multiplicity-
free.

Let 	 be an irreducible representation of SO.n/ and 	 � its dual. The space of k-
homogeneous SO.n/-equivariant	 -valued valuations (i.e., maps˚ W K ! 	 such
that ˚.gK/ D g˚.K/ for all g 2 SO.n/) is .Valk ˝	 /SO.n/ D HomSO.n/.	

�;Valk/.
By Theorem 4.9, 	 � appears in the decomposition of Valk precisely if 	
appears, and in this case the multiplicity is 1. By Schur’s lemma it follows that
dim.Valk ˝	 /SO.n/ D 1 in this case.

Let us construct the (unique up to scale) equivariant 	 -valued valuation explic-
itly. Denote by Valk.	 / the 	 -isotypical summand, which is isomorphic to 	 since
Valk is multiplicity free.

Let �1; : : : ; �m be a basis of Valk.	 /. These elements play two different roles:
first we can look at them as valuations, i.e., elements of Valk. Second, we may think
of �1; : : : ; �m as basis of the irreducible representation 	 . The action of SO.n/ on
this basis is given by

g�i D
X

j

c j
i .g/�j;
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where .c j
i .g//i;j is a matrix depending on g. The map g 7! .c j

i .g//i;j is a
homomorphism of Lie groups SO.n/ ! GL.m/.

Let ��
1 ; : : : ; �

�
m be the dual basis of 	 �. Then

g��
i D

X

j

.c j
i .g//

�t�j D
X

j

cij.g
�1/�j;

Using the double role played by the �i mentioned above, we set

˚.K/ WD
X

i

�i.K/�
�
i 2 	 �: (4.21)

We claim that ˚ is an O.n/-equivariant valuation with values in 	 �. Indeed, we
compute

˚.gK/ D
X

i

�i.gK/�
�
i D

X

i

.g�1�i/.K/��
i

D
X

i;j

c j
i .g

�1/�j.K/��
i D

X

j

�j.K/
X

i

c j
i .g

�1/��
i

D
X

j

�j.K/g�
�
j D g.˚.K//:

Conversely, we now start with an equivariant 	 �-valued continuous translation
invariant valuation ˚ of degree k. Let w1; : : : ;wm be a basis of 	 �. Then we may
look at the components of ˚ , i.e., we decompose

˚.K/ D
X

i

�i.K/wi

with �i 2 Valk. Let the action of SO.n/ on 	 � be given by

gwi D
X

j

a j
i .g/wj:

We have

˚.gK/ D
X

i

�i.gK/wi D
X

i

.g�1�i/.K/wi;

g.˚.K// D
X

j

�j.K/gwj D
X

i;j

�j.K/a
i
j.g/wi:
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Comparing coefficients yields g�1�i D P
j a

i
j.g/�j, or

g�i D
X

j

aij.g
�1/�j:

This shows that the subspace of Valk spanned by �1; : : : ; �m is isomorphic to 	 .
In summary, we have shown the following fact.

Each SO.n/-irreducible representation 	 appearing in the decomposition of Valk corre-
sponds to the (unique up to scale) 	 �-valued continuous translation invariant valuation ˚
from (4.21). Conversely, the coefficients of a 	 �-valued continuous translation invariant
valuation span a subspace of Valk isomorphic to 	 .

Let us now discuss the special case of symmetric tensor valuations. The SO.n/-
representation space Syms is (in general) not irreducible. Indeed, the trace map
tr W Syms ! Syms�2 commutes with SO.n/, hence its kernel is an invariant
subspace. This subspace turns out to be the irreducible representation 	.s;0;:::;0/ and
can be identified with the space H n

s of spherical harmonics of degree s.
Since the trace map is onto, we get the following decomposition.

Syms Š
M

j

H n
s�2j:

Instead of studying Syms-valued valuations, we can therefore study H n
s -valued

valuations. For s ¤ 1 and 1 � k � n�1, the representationH n
s appears in Valk with

multiplicity 1. Since H n
s is self-dual, the construction sketched above yields in the

special case 	 WD H n
s a unique (up to scale) H n

s -valued equivariant continuous
translation invariant valuation homogeneous of degree k, which we denoted by  s

k .

4.3.8 The Alesker-Fourier Transform

As we have seen in the previous section, the study of (symmetric) tensor valuations
and the study of the H s-isotypical summand of Valk are equivalent. For the
computation of the Alesker-Fourier transform, it is easier to work with scalar-
valued valuations. Let us first define a particular class of valuations, called spherical
valuations.

Let f be a smooth function on Sn�1. For k 2 f0; : : : ; n� 1g, we define a valuation
�k;f 2 Valk.Rn/ by

�k;f .K/ WD
 
n � 1
k

!
1

!n�k

Z

Sn�1

f .y/ Sk.K; dy/:

Such valuations are called spherical (see also [15]). Here the normalization
is chosen such that for f � 1 we have �k;f D Vk, k 2 f0; : : : ; n � 1g.
By Sect. 4.3.7, the components of an SO.n/-equivariant tensor valuation are
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spherical. Since the Alesker-Fourier transform of such a tensor valuation is defined
component-wise, it suffices to compute the Alesker-Fourier transform of spherical
valuations.

In this section, we sketch this (rather involved) computation. The first and easy
observation is that, by Schur’s lemma, there exist constants cn;k;s 2 C which only
depend on n; k; s such that

F.�k;f / D cn;k;s�n�k;f ; f 2 H n
s : (4.22)

The multipliers cn;k;s of the Alesker-Fourier transform can be computed in the even
case (i.e., if s is even) by looking at Klain functions. In the odd case, there seems to
be no easy way to compute them. We adapt ideas from [12], where the multipliers of
the ˛-cosine transform were computed, to our situation. The main point is that the
Alesker-Fourier transform is not only an SO.n/-equivariant operator, but (if written
in intrinsic terms) is equivariant under the larger group GL.n/. Using elements from
the Lie algebra gl.n/ allows us to pass from one irreducible SO.n/-representation to
another and to obtain a recursive formula for the constants cn;k;s, which states that

cn;k;sC2
cn;k;s

D � k C s

n � k C s
: (4.23)

This step requires extensive computations using differential forms, and we refer
to [6] for the details.

Next, one can use induction over s; k; n to prove that

cn;k;s D is
	 . n�k

2
/	 . sCk

2
/

	 . k
2
/	 . sCn�k

2
/
:

More precisely, in the even case, we may use as induction start the case s D 0,
which corresponds to intrinsic volumes, whose Alesker-Fourier transform is known
by (4.17).

In the odd case, we use as induction start s D 3. In order to compute cn;k;3, we
use a special case of a Crofton formula from [7] (see also Chap. 4) to compute the
quotients cn;kC1;3

cn;k;3
. This fixes all constants up to a scaling which may depend on n.

More precisely,

cn;k;s D "nis
	 . n�k

2
/	 . sCk

2
/

	 . k
2
/	 . sCn�k

2
/
; (4.24)

where "n depends only on n. Using functorial properties of the Alesker-Fourier
transform, we find that "n is independent of n. In the two-dimensional case, however,
there is a very explicit description of the Alesker-Fourier transform (see also
Example 3.18 (4)) which finally allows us to deduce that "n D 1 for all n � 2.
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A variant of this approach to determining the constants cn;k;s might be to prove
independently a Crofton formula for the tensor valuations  s

k . But still this will
leave the task of determining cn;1;s or cn;n�1;s. This point of view suggests to relate
the Fourier operator for spherical valuations to the Fourier operators for spherical
functions via the relation

F. N�k;f / D .2�/�
d
2 N�d�k;Ikf ;

for f 2 C1.Sd�1/, where

N�k;f .K/ D
 
d � 1
k

!

.2�/
k
2

Z

Sd�1

f .u/ Sk.K; du/;

is just a renormalization of �k;f .K/.

4.4 Kinematic Formulas

In this section, we first describe the interplay between algebraic structures and
kinematic formulas in general (i.e., for tensor valuations which are equivariant under
a group G acting transitively on the unit sphere). Then we will specialize to the
O.n/-covariant case.

4.4.1 Relation Between Kinematic Formulas and Algebraic
Structures

Let G be a subgroup of O.n/ which acts transitively on the unit sphere. Then the
space TVals;G.V/ of G-covariant, translation invariant continuous Syms.V/-valued
valuations is finite-dimensional. Next we define two integral geometric operators.
We start with the one for rotation sum formulas.

Let ˚ 2 TVals1Cs2;G.V/. We define a bivaluation with values in the tensor
product Syms1 V ˝ Syms2 V by

aGs1;s2 .˚/.K;L/ WD
Z

G
.id˝s1 ˝ g˝s2/˚.K C g�1L/ �.dg/

for K;L 2 K .V/, where G is endowed with the Haar probability measure �
(see [16]). (This notation is consistent with the case V D R

n and G D O.n/.)
Let ˚1; : : : ; ˚m1 be a basis of TVals1;G.V/, and let 1; : : : ; m2 be a basis of

TVals2;G.V/. Arguing as in the classical Hadwiger argument (cf. [16, Theorem 4.3]),
it can be seen that there are constants c˚ij such that

aGs1;s2 .˚/.K;L/ D
X

i;j

c˚ij ˚i.K/˝ j.L/
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for K;L 2 K .V/. The additive kinematic operator is the map

aGs1;s2 W TVals1Cs2;G.V/ ! TVals1;G.V/˝ TVals2;G.V/

˚ 7!
X

i;j

c˚ij ˚i ˝ j;

which is independent of the choice of the bases.
In view of intersectional kinematic formulas, we define a bivaluation with values

in Syms1 V ˝ Syms2 V by

kGs1;s2 .˚/.K;L/ WD
Z

NG
.id˝s1 ˝ g˝s2/˚.K \ Ng�1L/ �.dNg/

for K;L 2 K .V/, where NG is the group generated by G and the translation group
of V , endowed with the product measure � of � and a translation invariant Haar
measure on V , and where g is the rotational part of Ng. Again this notation is
consistent with the special case where NG D Gn is the motion group, G D O.n/ and
� is the motion invariant Haar measure with its usual normalization as a ‘product
measure’. Choosing bases and arguing as above, we find

kGs1;s2 .˚/.K;L/ D
X

i;j

d˚ij ˚i.K/˝ j.L/ (4.25)

for K;L 2 K .V/. Of course, the constants d˚ij depend on the chosen bases and on
˚ , but the operator, called intersectional kinematic operator,

kGs1;s2 W TVals1Cs2;G.V/ ! TVals1;G.V/˝ TVals2;G.V/

˚ 7!
X

i;j

d˚ij ˚i ˝ j;

is independent of these choices.
In the following, we explain the connection between these operators and then

provide explicit examples.
For this we first lift the Poincaré duality maps to tensor-valued valuations. Let

V be a Euclidean vector space with scalar product h � ; � i. For s � r we define the
contraction map by

contr W V˝s � V˝r ! V˝.r�s/;

.v1 ˝ � � � ˝ vs;w1 ˝ � � � ˝ wr/ 7! hv1;w1ihv2;w2i � � � hvs;wsiwsC1 ˝ � � � ˝ wr;

and linearity. This map restricts to a map contr W Syms V � Symr V ! Symr�s V . In
particular, if r D s, the map Syms V � Syms V ! R is the usual scalar product on
Syms V , which will also be denoted by h � ; � i.
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The trace map tr W Syms V ! Syms�2 V is defined by restriction of the map
V˝s ! V˝.s�2/, v1 ˝ � � � ˝ vs 7! hv1; v2iv3 ˝ � � � ˝ vs, for s � 2.

The scalar product on Syms V induces an isomorphism qs W Syms V !
.Syms V/� and we set

pdsc W TVals;1 D Val1 ˝ Syms V
pdc ˝qs����! .Val1/� ˝ .Syms V/� D .TVals;1/�;

pdsm W TVals;1 D Val1 ˝ Syms V
pdm ˝qs�����! .Val1/� ˝ .Syms V/� D .TVals;1/�:

From Proposition 4.7 it follows easily that

pdsm D .�1/s pdsc : (4.26)

Finally, we write

m; c W TVals1;1.V/˝ TVals2;1.V/ ! TVals1Cs2;1.V/

for the maps corresponding to the product and the convolution. Moreover, we write
mG; cG for the restrictions of these maps to the corresponding spaces of G-covariant
tensor valuations.

Theorem 4.10 Let G be a compact subgroup of O.n/ acting transitively on the unit
sphere. Then the diagram

commutes and encodes the relations between product, convolution, Alesker-Fourier
transform, intersectional and additive kinematic formulas.

This diagram allows us to express the additive kinematic operator in terms of the
intersectional kinematic operator, and vice versa, with the Fourier transform as the
link between these operators.
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Corollary 4.11 Intersectional and additive kinematic formulas are related by the
Alesker-Fourier transform in the following way:

aG D .F�1 ˝ F
�1/ ı kG ı F;

or equivalently

kG D .F ˝ F/ ı aG ı F
�1:

This follows by looking at the outer square in Theorem 4.10, by carefully taking
into account the signs coming from (4.26).

4.4.2 Some Explicit Examples of Kinematic Formulas

We start with a description of a Crofton formula for tensor valuations. Combining
the connection between Crofton formulas and the product of valuations (see [4,
(2) and (16)]) and the explicit formulas for the product of tensor valuations given
in (4.20), we obtain

Z

A.n;n�l/
˚ s

k.K \ E/ �n�l.dE/ D
�
n
l

	�1 �
˚ s

k � ˚0
l

�
.K/

D
�
n
l

	�1  
k C l

k

!
kl

k C l

b s
2cX

aD0;2a¤s�1

1

.4�/aaŠ

�
aX

mD0
.�1/a�m

 
a

m

!
!s�2mCkCl

!s�2mCk!l
Qa˚ s�2a

kCl :

After simplification of the inner sum by means of Zeilberger’s algorithm, we
obtain the Crofton formula in the ˚-basis which was obtained in [6].

Theorem 4.12 If k; l � 0 with k C l � n and s 2 N0, then

Z

A.n;n�l/
˚ s

k.K \ E/ �n�l.dE/ D
�
n
l

	�1  
k C l

k

!
kl

2.k C l/

1

	
�
kClCs
2

�

�
b s
2 cX

jD0

	
�
l
2

C j
�
	
�
kCs
2

� j
�

.4�/ jjŠ
Qj˚

s�2j
kCl .K/:

The result is also true in the cases k; l 2 f0; ng, if the right-hand side is interpreted
properly; see the comments after [6, Theorem 3]. The same is true for the next result.
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Comparing the trace-free part of this formula (or by inversion), we deduce the
Crofton formula for the  -basis, in which the result has a particularly convenient
form.

Corollary 4.13 If k; l � 0 and k C l � n, then

Z

A.n;n�l/
 s
k .K \ E/ �n�l.dE/ D !sCkCl

!sCk!l

 
k C l

k

!
kl

k C l

�
n
l

	�1
 s
kCl.K/:

Alternatively, as observed in [10], Corollary 4.13 can be deduced from (4.12),
and then Theorem 4.12 can be obtained as a consequence.

Thus, having now a convenient Crofton formula for tensor valuations, we deduce
from Hadwiger’s general integral geometric theorem an intersectional kinematic
formula in the  -basis.

Theorem 4.14 Let K;M 2 K n and j 2 f0; : : : ; ng. Then
Z

Gn

 s
j .K \ gM/ �.dg/ D

nX

kDj

!sCk

!sCj�k�j

 
k � 1

j � 1

!�
n

k � j

	�1
 s
k .K/Vn�kCj.M/:

Let us now prove some more refined intersectional kinematic formulas. In
principle, we could also use Corollary 4.11 to find the intersectional kinematic
formulas once we know the additive formulas. The problem is that (4.15) only gives
us the value of as1;s2 on the basis element �s1Cs2

j , but not on multiples of such basis
elements with powers of the metric tensors. However, such terms appear naturally
in the Fourier transform.

We therefore use Theorem 4.10 with V D R
n and G D O.n/, more precisely the

lower square in the diagram.
In (4.20) we have computed the product of two tensor valuations. For fixed

(small) ranks s1; s2, the formula simplifies and can be evaluated in a closed form.
For instance, if 1 � k; l with k C l � n and s1 D s2 D 3, we get

˚3
k � ˚3

l D .k C 1/.l C 1/	
�
kClC1
2

�

�
5
2 .k C l C 4/.k C l C 2/.k C l/	

�
k
2

�
	
�
l
2

�

�
�

� 32˚6
kCl�

3 C 8Q˚4
kCl�

2 � Q2˚2
kCl� C 1

12
Q3˚0

kCl

�
: (4.27)

Let us next work out the vertical arrows in the diagram of Theorem 4.10, that is,
the Poincaré duality pdm. Again, this is a computation involving differential forms.
The result (see [6, Corollary 5.3]) is

hpdsm.˚
s
k/; ˚

s
n�ki D .�1/s 1 � s

�ssŠ2

 
n

k

!
k.n � k/

4

	
�
kCs
2

�
	
�
n�kCs
2

�

	
�
n
2

C 1
� : (4.28)



108 A. Bernig and D. Hug

We now explain how to compute the intersectional kinematic formula kO.n/
3;3 with

this knowledge.
Since ˚1

m � 0, it is clear that there is a formula of the form

kO.n/
3;3 .˚

6
i / D

X

kClDnCi

an;i;k˚
3
k ˝ ˚3

l

with some constants an;i;k which remain to be determined. Fix k; l with kC l D nC i.
Using (4.28), we find

hpd3m ˚
3
k ; ˚

3
n�ki D 1

72�3

 
n

k

!

k.n � k/
	 . kC3

2
/	 . n�kC3

2
/

	 . n
2

C 1/
;

hpd3m ˚
3
l ; ˚

3
n�li D 1

72�3

 
n

l

!

l.n � l/
	 . lC3

2
/	 . n�lC3

2
/

	 . n
2

C 1/
;

and therefore

h.pd3m ˝ pd3m/ ı kO.n/
3;3 .˚

6
i /; ˚

3
n�k ˝˚3

n�li

D an;i;k
1

72�3

 
n

k

!

k.n � k/
	 . kC3

2
/	 . n�kC3

2
/

	 . n
2

C 1/

� 1

72�3

 
n

l

!

l.n � l/
	 . lC3

2
/	 . n�lC3

2
/

	 . n
2

C 1/
:

On the other hand, by (4.27) and (4.28),

hm�
O.n/ ı pd6m.˚

6
i /; ˚

3
n�k ˝ ˚3

n�li D hpd6m.˚
6
i /; ˚

3
n�k � ˚3

n�li

D .n � k C 1/.n � l C 1/	 . n�iC1
2
/

�
5
2 .n � i C 4/.n � i C 2/.n � i/	 . n�l

2
/	 . n�k

2
/

� ˝pd6m.˚
6
i /;�32˚6

n�i�
3 C 8Q˚4

n�i�
2 � Q2˚2

n�i� C 1
12
Q3˚0

n�i

˛

D 1

207360

.k � n � 1/.i � k � 1/	 . nC1
2
/.i C 1/.i � 1/.i � 3/

�5	 . iC1
2
/	 . n�k

2
/	 . k�i

2
/

:

Comparing these expressions, we find that

an;i;k D .i C 1/.i � 1/.i � 3/
40	 . nC1

2
/	 . iC1

2
/

	 . k
2
/	 . l

2
/

.k C 1/.l C 1/
:

We summarize the result in the following theorem.
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Theorem 4.15 Let K;M 2 K n and i 2 f0; : : : ; n � 1g. Then
Z

Gn

.id˝3 ˝ g˝3/˚6
i .K \ g�1M/ �.dg/

D .i C 1/.i � 1/.i � 3/
40	 . nC1

2
/	 . iC1

2
/

X

kClDnCi

	 . k
2
/	 . l

2
/

.k C 1/.l C 1/
˚3

k .K/˝ ˚3
l .M/:

The same technique can be applied to all bidegrees, but it seems hard to find a
closed formula which is valid simultaneously in all cases.
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Chapter 5
Crofton Formulae for Tensor-Valued Curvature
Measures

Daniel Hug and Jan A. Weis

Abstract The tensorial curvature measures are tensor-valued generalizations of
the curvature measures of convex bodies. We prove a set of Crofton formulae
for such tensorial curvature measures. These formulae express the integral mean
of the tensorial curvature measures of the intersection of a given convex body
with a uniform affine k-flat in terms of linear combinations of tensorial curvature
measures of the given convex body. Here we first focus on the case where the
tensorial curvature measures of the intersection of the given body with an affine flat
is defined with respect to the affine flat as its ambient space. From these formulae
we then deduce some new and also recover known special cases. In particular, we
substantially simplify some of the constants that were obtained in previous work on
Minkowski tensors. In a second step, we explain how the results can be extended to
the case where the tensorial curvature measure of the intersection of the given body
with an affine flat is determined with respect to the ambient Euclidean space.

5.1 Introduction

The classical Crofton formula is a major result in integral geometry. Its name
originates from works of the Irish mathematician Crofton [4] on integral geometry
in R

2 in the late nineteenth century. For a convex body K (a non-empty, convex and
compact set) in the n-dimensional Euclidean space R

n, n 2 N, the classical Crofton
formula (see [17, (4.59)]) states that

Z

A.n;k/
Vj.K \ E/ �k.dE/ D ˛njkVn�kCj.K/; (5.1)
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for k 2 f0; : : : ; ng and j 2 f0; : : : ; kg, where A.n; k/ is the affine Grassmannian of
k-flats in R

n, �k denotes the motion invariant Haar measure on A.n; k/, normalized
as in [18, p. 588], and ˛njk > 0 is an explicitly known constant.

Let K n denote the set of convex bodies in R
n. The functionals Vi W K n ! R,

for i 2 f0; : : : ; ng, appearing in (5.1), are the intrinsic volumes, which occur as the
coefficients of the monomials in the Steiner formula

Vn.K C �Bn/ D
nX

jD0
�n�jVj.K/�

n�j; (5.2)

for a convex body K 2 K n and � � 0 (cf. (1.16)); here, as usual, C denotes the
Minkowski addition in R

n and �n is the volume of the Euclidean unit ball Bn in R
n.

Properties of the Vi such as continuity, isometry invariance and additivity are derived
from corresponding properties of the volume. A key result for the intrinsic volumes
is Hadwiger’s characterization theorem (see [7, 2. Satz] and Theorem 1.23), which
states that V0; : : : ;Vn form a basis of the vector space of continuous and isometry
invariant real-valued valuations on K n.

A natural way to extend the Crofton formula is to apply the integration over the
affine Grassmannian A.n; k/ to functionals which generalize the intrinsic volumes.
One of these generalizations concerns the class of continuous and isometry covariant
T
p-valued valuations on K n, where T

p denotes the vector space of symmetric
tensors of rank p 2 N0 over Rn.

The T
0-valued valuations are simply the well-known and extensively studied

intrinsic volumes. For the T
1-valued (i.e. vector-valued) valuations, Hadwiger

and Schneider [8, Hauptsatz] proved in 1971 a characterization theorem similar
to the aforementioned real-valued case due to Hadwiger. In addition, they also
established integral geometric formulae, including a Crofton formula [8, (5.4)]. In
1997, McMullen [14] initiated a systematic investigation of this class of Tp-valued
valuations for general p 2 N0. Only 2 years later Alesker generalized Hadwiger’s
characterization theorem (see [2, Theorem 2.2] and Theorem 2.5) by showing that
the vector space of continuous and isometry covariant Tp-valued valuations on K n

is spanned by the tensor-valued versions of the intrinsic volumes, the Minkowski
tensors ˚ r;s

j , where j; r; s 2 N0 and j < n, multiplied with suitable powers of the
metric tensor in R

n. In 2008, Hug, Schneider and Schuster proved a set of Crofton
formulae for these Minkowski tensors (see [11, Theorems 2.1–2.6]).

Localizations of the intrinsic volumes yield other types of generalizations. The
support measures are weakly continuous, locally defined and motion equivariant
valuations on convex bodies with values in the space of finite measures on Borel
subsets of Rn � S

n�1, where S
n�1 denotes the Euclidean unit sphere in R

n. These
are determined by a local version of (5.2). Therefore, they are a crucial example
of localizations of the intrinsic volumes. Furthermore, their marginal measures on
Borel subsets of Rn are called curvature measures and the ones on Borel subsets of
S
n�1 are called surface area measures. In 1959, Federer [5] proved Crofton formulae

for curvature measures, even in the more general setting of sets with positive reach.
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For further details and references, see also Sects. 1.3 and 1.5. Certain Crofton
formulae for support measures were proved by Glasauer in 1997 [6, Theorem 3.2].

The combination of Minkowski tensors and localizations leads to another
generalization of the intrinsic volumes. This topic has been explored by Schneider
[16] and Hug and Schneider [9, 10] in recent years. They introduced particular
tensorial support measures, the generalized local Minkowski tensors, and proved
that they essentially span the vector space of isometry covariant and locally defined
valuations on the space of convex polytopes Pn with values in the T

p-valued
measures on B.Rn�S

n�1/ (see Sect. 2.4). Under the additional assumption of weak
continuity they extended this result to valuations on K n; a summary of the required
arguments is given in Sect. 2.5.

The aim of the present chapter is to prove a set of Crofton formulae for similar
functionals, which are localized in R

n, the tensorial curvature measures or tensor-
valued curvature measures. Here we first focus on the case where the tensorial
curvature measures of the intersection of the given body with an affine flat are
defined with respect to the affine flat as the ambient space (intrinsic viewpoint).
For precise definitions and references we refer to Sect. 5.2. In a second step, we
demonstrate how the arguments can be extended to the case where the curvature
measures are considered in R

n (extrinsic viewpoint). The current approach combines
main ideas of the previous works [11] and [9] and also links it to [3]. A major
advantage of the localization is that it naturally leads to a suitable choice of
local tensor-valued measures for which the constants in the Crofton formulae are
reasonably simple. From the general local results, we finally deduce various special
consequences for the total measures (obtained by globalization), which are the
Minkowski tensors that have been studied in [11]. For the latter, we restrict ourselves
to the translation invariant case, which simplifies the involved constants, but the
general case can be treated similarly. In the case of the results for the extrinsic
tensorial Crofton formulae, the connection to the approach in [3] via the methods of
algebraic integral geometry is used and deepened. This interplay will be explored
further in future work.

It is a remarkable feature of the present work that results of algebraic integral
geometry, which originally have been developed for translation invariant tensor
valuations (see [3] and Chap. 4), are applied in the context of tensorial cur-
vature measures. So far it is an open question (and perhaps doubtful) whether
basic algebraic structures for translation invariant valuations (such as the product
structure) can be introduced for smooth curvature measures (see the comment in
Sect. 9.2.2). However, the space of smooth curvature measures forms a module over
the algebra of smooth valuations and this structure is compatible with globalization
(see Theorem 9.13 and the references given there). The results of the present work
also contribute to the explicit determination of this module structure. As part of
work in progress, we will develop yet another approach which applies to nonsmooth
tensorial curvature measures as well and will lead to a full set of local integral
geometric formulae. Such results are crucial for applications in stereology (see for
instance [13] and the references given therein) and stochastic geometry, in particular
for obtaining localized versions of mean value formulae for Boolean models, as
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briefly discussed in Sect. 11.7, or for the derivation of Crofton formulae for random
sets and point processes, as described in [18, Sect. 9.4], and thus for the derivation
of (unbiased) estimators for densities of functionals of random closed sets.

The structure of this contribution is as follows. In Sect. 5.2, we fix our notation
and collect various auxiliary results which will be needed. Section 5.3 contains the
main results. We first state our findings for intrinsic tensorial curvature measures,
then we discuss some special cases and finally explain the extension to extrinsic
tensorial curvature measures where the involved constants turn out to be surprisingly
simple. Motivated by the results in [3] we also introduce another system of tensorial
curvature measures for which the Crofton formulae even have “diagonal form”. The
proofs of the results for the intrinsic case are given in Sect. 5.4. Section 5.5 contains
the arguments in the extrinsic setting. Some auxiliary results on sums of Gamma
functions are provided in the final section.

5.2 Some Basic Tools

In the following, we work in the n-dimensional Euclidean space R
n, equipped with

its usual topology generated by the standard scalar product � and the corresponding
Euclidean norm k � k. Recall that the unit ball centered at the origin is denoted by Bn,
its boundary (the unit sphere) is denoted by S

n�1. For a topological space X, we
denote the Borel �-algebra on X by B.X/.

By G.n; k/, for k 2 f0; : : : ; ng, we denote the Grassmannian of k-dimensional
linear subspaces in R

n, and we write �k for the (rotation invariant) Haar probability
measure on G.n; k/. The directional space of an affine k-flat E 2 A.n; k/ is denoted
by L.E/ 2 G.n; k/, its orthogonal complement by E? 2 G.n; n�k/, and the translate
of E by a vector t 2 R

n is denoted by Et WD E C t. For k 2 f0; : : : ; ng, l 2 f0; : : : ; kg
and F 2 G.n; k/, we defineG.F; l/ WD fL 2 G.n; l/ W L � Fg. On G.F; l/ there exists
a unique Haar probability measure �Fl invariant under rotations ofRn mappingF into
itself and leaving F? pointwise fixed. The orthogonal projection of a vector x 2 R

n

to a linear subspace L of Rn is denoted by pL.x/ and its direction by �L.x/ 2 S
n�1,

if x … L?. For two linear subspaces L;L0 of Rn, the generalized sine function ŒL;L0�
is defined as follows. One extends an orthonormal basis of L\ L0 to an orthonormal
basis of L and to one of L0. Then ŒL;L0� is the volume of the parallelepiped spanned
by all these vectors.

The vector space of symmetric tensors of rank p 2 N0 over Rn is denoted by T
p.

The symmetric tensor product of two vectors x; y 2 R
n is denoted by xy and the p-

fold tensor product of a vector x 2 R
n by xp. Identifying R

n with its dual space via
its scalar product, we interpret a symmetric tensor a 2 T

p as a symmetric p-linear
map from .Rn/p to R. One special tensor is the metric tensor Q 2 T

2, defined by
Q.x; y/ WD x � y for x; y 2 R

n. For an affine k-flat E 2 A.n; k/, k 2 f0; : : : ; ng, the
metric tensor Q.E/ in E is defined by Q.E/.x; y/ WD pL.E/.x/ � pL.E/.y/ for x; y 2 R

n.
Defining the tensorial curvature measures requires some preparation (see also

Sect. 1.3). For a convex body K 2 K n, we call the pair .x; u/ 2 R
2n a support
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element whenever x is a boundary point of K and u is an outer unit normal vector
of K at x. The set of all these support elements of K is denoted by ncK � ˙n WD
R

n � S
n�1 and called the normal bundle of K. For x 2 R

n, we denote the metric
projection of x onto K by p.K; x/, and define u.K; x/ WD .x�p.K; x//=kx�p.K; x/k
for x 2 R

n n K, the unit vector pointing from p.K; x/ to x. For � > 0 and a Borel set
� � ˙n,

M�.K; �/ WD fx 2 .K C �Bn/ n KW .p.K; x/; u.K; x// 2 �g

is a local parallel set of K which satisfies a local Steiner formula

Vn.M�.K; �// D
n�1X

jD0
�n�j�j.K; �/�

n�j; � � 0: (5.3)

This relation determines the support measures �0.K; � /; : : : ; �n�1.K; � / of K,
which are finite Borel measures on B.˙n/. Obviously, a comparison of (5.2)
and (5.3) yields Vj.K/ D �j.K; ˙n/.

Now, for a convex body K 2 K n, a Borel set ˇ 2 B.Rn/ and j; r; s 2 N0, the
tensorial curvature measures are given by

�
r;s;0
j .K; ˇ/ WD !n�j

Z

ˇ
Sn�1

xrus�j.K; d.x; u//;

for j 2 f0; : : : ; n � 1g, where !n denotes the (n � 1)-dimensional volume of Sn�1,
and by

�r;0;0
n .K; ˇ/ WD

Z

K\ˇ
xr H n.dx/:

If K � E 2 A.n; k/ with j < k � n, we denote the j-th support measure of K
defined with respect to E as the ambient space by �.E/

j .K; � /, which is a Borel
measure on B.Rn � .L.E/ \ S

n�1//, concentrated on ˙.E/ WD E � .L.E/ \ S
n�1/

with L.E/ 2 G.n; k/ being the linear subspace parallel to E. Then, we define the
intrinsic tensorial curvature measures

�r;s;0
j;E .K; ˇ/ WD !k�j

Z

ˇ
.L.E/\Sn�1/

xrus�.E/
j .K; d.x; u//

and

�
r;0;0
k;E .K; ˇ/ WD

Z

K\ˇ
xr H k.dx/:
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For the sake of convenience, we extend the definition by �r;s;0
j WD 0 (resp. �r;s;0

j;E WD
0) for j … f0; : : : ; ng (resp. j … f0; : : : ; kg) or r … N0 or s … N0 or j D n (resp.
j D k) and s ¤ 0. We adopt the same convention for the Minkowski tensors and the
generalized tensorial curvature measures introduced below.

The tensorial curvature measures are natural local versions of the Minkowski
tensors. For a convex body K 2 K n and j; r; s 2 N0, the latter are just the total
measures ˚ r;s

j .K/ WD �
r;s;0
j .K;Rn/ and, if K � E 2 A.n; k/, an intrinsic version

is given by ˚ r;s
j;E.K/ WD �

r;s;0
j;E .K;Rn/. These definitions of the Minkowski tensors

differ slightly from the ones commonly used in the literature, as we change the usual
normalization (compare with the normalization used in Definition 2.1). The purpose
of this change is to simplify the presentation of the main results of this chapter (and
of future work).

For a polytope P 2 Pn and j 2 f0; : : : ; ng, we denote the set of j-dimensional
faces of P by Fj.P/ and the normal cone of P at a face F 2 Fj.P/ by N.P;F/. For
a polytope P 2 Pn and a Borel set � � ˙n, the j-th support measure is explicitly
given by

�j.P; �/ D 1

!n�j

X

F2Fj.P/

Z

F

Z

N.P;F/\Sn�1

1�.x; u/H n�j�1.du/H j.dx/

for j 2 f0; : : : ; n � 1g. For ˇ 2 B.Rn/, this yields

�
r;s;0
j .P; ˇ/ D

X

F2Fj.P/

Z

F\ˇ
xr H j.dx/

Z

N.P;F/\Sn�1

us H n�j�1.du/

and, if P � E 2 A.n; k/ and j < k � n,

�
r;s;0
j;E .P; ˇ/ D

X

F2Fj.P/

Z

F\ˇ
xr H j.dx/

Z

NE.P;F/\Sn�1

usH k�j�1.du/;

where NE.P;F/ D N.P;F/\ L.E/ is the normal cone of P at the face F, taken with
respect to the subspace L.E/. Of course, analogous representations are obtained for
the (global) intrinsic and extrinsic Minkowski tensors.

The Crofton formulae, which are stated in the next section, will naturally also
involve the generalized tensorial curvature measures (see formula (2.28))

�r;s;1
j .P; ˇ/ WD

X

F2Fj.P/

Q.F/
Z

F\ˇ
xr H j.dx/

Z

N.P;F/\Sn�1

usH n�j�1.du/;

for j 2 f1; : : : ; n � 1g, and, if P � E 2 A.n; k/ and 0 < j < k � n,

�
r;s;1
j;E .P; ˇ/ WD

X

F2Fj.P/

Q.F/
Z

F\ˇ
xr H j.dx/

Z

NE.P;F/\Sn�1

usH k�j�1.du/:
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Due to Hug and Schneider [9] there exists a weakly continuous extension of
the generalized tensorial curvature measures to K n. In fact, they proved such an
extension for the generalized local Minkowski tensors, which are measures on
B.Rn � S

n�1/. Globalizing this in the S
n�1-coordinate yields the result for the

tensorial curvature measures.
Apart from the easily verified relation

�
r;s;1
n�1 D Q�r;s;0

n�1 � �
r;sC2;0
n�1 ; (5.4)

the tensorial curvature measures and the generalized tensorial curvature measures
are linearly independent. In contrast, McMullen [14] discovered basic linear rela-
tions for the (global) Minkowski tensors (see also Theorem 2.6), and it was shown
in [12] that these are essentially all linear dependences between the Minkowski
tensors (see also Theorem 2.7). Furthermore, McMullen [14, p. 269] found relations
for the global counterparts of the generalized tensorial curvature measures. In fact,
the globalized form of (5.4) is a very special example of one of these relations. For
the translation invariant Minkowski tensors ˚0;s

j , these relations take a very simple
form, nevertheless for our purpose they are essential in the proof of Theorem 5.5.
To have a short notation for these translation invariant Minkowski tensors, we omit
the first superscript and put

˚ s
j WD ˚

0;s
j ; ˚ s

j;E WD ˚
0;s
j;E :

Then we can state the following very special case of McMullen’s relations.

Lemma 5.1 (McMullen) Let P 2 Pn and j; s 2 N0 with j � n � 1. Then

n�jCs
sC1 ˚

sC2
j .P/ D

X

F2Fj.P/

Q.F?/H j.F/
Z

N.P;F/\Sn�1

usH n�j�1.du/:

Note that this lemma is essentially a global result which is derived by applying a
version of the divergence theorem.

5.3 Crofton Formulae

In this chapter, for 0 � j � k < n and i; s 2 N0, we are first concerned with the
Crofton integrals

Z

A.n;k/
Q.E/i �r;s;0

j;E .K \ E; ˇ \ E/ �k.dE/; (5.5)

which involve the intrinsic tensorial curvature measures, and the Crofton integrals

Z

A.n;k/
Q.E/i˚ s

j;E.K \ E/ �k.dE/ (5.6)
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for the global versions of the translation invariant intrinsic tensorial curvature
measures, the translation invariant intrinsic Minkowski tensors obtained by setting
r D 0. In the global case, we restrict our investigations mainly to these translation
invariant intrinsic Minkowski tensors, general Crofton formulae have already been
established in [11].

Using the substantial simplifications of the formulae obtained in the present
work, the extrinsic formulae in [11], that is, Crofton formulae for the integrals

Z

A.n;k/
�
r;s;0
j .K \ E; ˇ \ E/ �k.dE/ (5.7)

can be simplified accordingly. We explain this in detail in the case where j D k � 1.
The connection to [3] turns out to be crucial for simplifying the constants if s is odd.
However, for even s the current approach works completely independently. More
general results will be derived in subsequent work via a different approach.

5.3.1 Crofton Formulae for Intrinsic Tensorial Curvature
Measures

In this section we state the formulae for the integrals given in (5.5) and (5.6). We
start with the local versions, where we distinguish the cases j D k and j < k.

Theorem 5.2 Let K 2 K n, ˇ 2 B.Rn/ and i; k; r; s 2 N0 with k < n. Then

Z

A.n;k/
Q.E/i �r;s;0

k;E .K \ E; ˇ \ E/ �k.dE/ D 	 . n
2
/	 . k

2
C i/

	 . n
2

C i/	 . k
2
/
Qi�r;0;0

n .K; ˇ/

if s D 0; for s ¤ 0 the integral is zero.

If s D 0 in Theorem 5.2, then we interpret the coefficient of the tensor on the
right-hand side as 0, if k D 0 and i ¤ 0, and as 1, if k D i D 0. A global version of
Theorem 5.2 is obtained by simply setting ˇ D R

n.
Next we turn to the case j < k.

Theorem 5.3 Let K 2 K n, ˇ 2 B.Rn/ and i; j; k; r; s 2 N0 with j < k < n and
k > 1. Then
Z

A.n;k/
Q.E/i �r;s;0

j;E .K \ E; ˇ \ E/ �k.dE/

D �n;k;j

b s
2 cCiX

zD0
Qz
�
�.0/n;k;j;s;i;z �

r;sC2i�2z;0
n�kCj .K; ˇ/C �.1/n;k;j;s;i;z �

r;sC2i�2z�2;1
n�kCj .K; ˇ/

�
;



5 Crofton Formulae for Tensor-Valued Curvature Measures 119

where for " 2 f0; 1g we set

�n;k;j WD
 
n � k C j � 1

j

!
	 . n�kC1

2
/

2�
;

�."/n;k;j;s;i;z WD
iX

pD0

b s
2 cCi�pX

qD.z�pC"/C
.�1/pCq�z

 
i

p

! 
s C 2i � 2p

2q

! 
p C q � "

z

!

	 .q C 1
2
/

� 	 .
jCs
2

C i � p � q C 1/

	 .
n�kCjCs

2
C i � p C 1/

	 . k�1
2

C p/	 . n�k
2

C q/

	 . nC1
2

C p C q/
#."/n;k;j;p;q;

#.0/n;k;j;p;q WD .n � k C j/
�
k�1
2

C p
�
; #.1/n;k;j;p;q WD p.n � k/ � q.k � 1/:

If j D k � 1, then the tensorial curvature measures and the generalized tensorial
curvature measures are linearly dependent. In this case, the right-hand side can
be expressed as a linear combination of the tensor-valued curvature measures
Qz�r;sC2i�2z;0

n�1 .K; � /, whereas the measures Qz�r;sC2i�2z;1
n�1 .K; � / are not needed. An

explicit description of this case is given in Corollary 5.10 for i D 0 and in (5.15) for
i 2 N0.

If the additional metric tensor is omitted as a weight function, that is in the case
i D 0 D p, then the coefficients �."/n;k;j;s;0;z in Theorem 5.3 simplify to a single sum.

Apparently, the coefficients in Theorem 5.3 are not well defined in the (excluded)
case k D 1 and j D 0, as 	 .0/ is involved in the numerator of �."/n;1;0;s;i;z. Although
this issue can be resolved by a proper interpretation of the (otherwise ambiguous)
expression	 .p/ �p D 	 .pC1/ as 1 for p D 0, we prefer to state and derive this case
separately. In fact, our analysis leads to substantial simplifications of the constants,
as our next result shows.

Theorem 5.4 Let K 2 K n, ˇ 2 B.Rn/ and i; r; s 2 N0. Then

Z

A.n;1/
Q.E/i �r;s;0

0;E .K \ E; ˇ \ E/ �1.dE/

D 	 . n
2
/	 . sC1

2
C i/

�	 . nCsC1
2

C i/

s
2CiX

zD0
.�1/z

 
s
2

C i

z

!
1

1 � 2z
Q

s
2Ci�z�

r;2z;0
n�1 .K; ˇ/

for even s. If s is odd, then
Z

A.n;1/
Q.E/i �r;s;0

0;E .K \ E; ˇ \ E/ �1.dE/

D 	 . n
2
/	 . s

2
C i C 1/p

�	 . nCsC1
2

C i/
Q

s�1
2 Ci�r;1;0

n�1 .K; ˇ/:

Note that in Theorem 5.4 the Crofton integral is expressed only by tensorial
curvature measures �r;z;0

n�1 (multiplied with suitable powers of the metric tensor),
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whereas generalized tensorial curvature measures are not needed. A global version
of Theorem 5.4 is obtained by simply setting ˇ D R

n.
A translation invariant, global version of Theorem 5.3 allows us to combine

several of the summands on the right-hand side of the formula.

Theorem 5.5 Let K 2 K n and i; j; k; s 2 N0 with j < k < n and k > 1. Then

Z

A.n;k/
Q.E/i˚ s

j;E.K \ E/ �k.dE/ D �n;k;j

b s
2 cCiX

zD0
�.0/n;k;j;s;i;z Q

z˚ sC2i�2z
n�kCj .K/;

where �n;k;j and �.0/n;k;j;s;i;z are defined as in Theorem 5.3, but

#.0/n;k;j;s;i;z;p;q

WD .n � k C j/
�
k�1
2

C p
�� �

p.n � k/ � q.k � 1/��1C k�j�1
sC2i�2z�1 .1 � z

pCq /
�

replaces #.0/n;k;j;p;q, except if s is odd and z D b s
2
c C i, where �.0/n;k;j;s;i;b s

2 cCi WD 0.

In Theorem 5.5, if p D q D 0, then the definition of �.0/n;k;j;s;i;z implies that also
z D 0 and thus, #.0/n;k;j;s;i;0;0;0 is well-defined with z

pCq D 1.

5.3.2 Some Special Cases

In the following, we restrict to the case i D 0 of Crofton formulae for unweighted
intrinsic Minkowski tensors or tensorial curvature measures.

Corollary 5.6 Let K 2 K n and k; j; s 2 N0 with 0 � j < k < n. Then

Z

A.n;k/
˚ s

j;E.K \ E/ �k.dE/ D ın;k;j;s

b s
2 cX

zD0
�n;k;j;s;z Q

z˚ s�2z
n�kCj.K/;

where

ın;k;j;s WD
 
n � k C j � 1

j

!
	 . n�kC1

2
/	 . kC1

2
/

�	 . n�kCjCs
2

C 1/
;

�n;k;j;s;z WD
b s
2 cX

qDz

.�1/q�z

 
s

2q

! 
q

z

!

	 .q C 1
2
/
	 .

jCs
2

� q C 1/	 . n�k
2

C q/

	 . nC1
2

C q/

�
�
n�kCj
2

C q C .k�j�1/.q�z/
s�2z�1

�
;

but �n;k;j;s;b s
2 c WD 0 if s is odd.
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5.3.2.1 Specific Choices of s

Next we collect some special cases of Corollary 5.6, which are obtained for specific
choices of s 2 N0 by applications of Legendre’s duplication formula and elementary
calculations.

Corollary 5.7 Let K 2 K n and k; j 2 N0 with 0 � j < k < n. Then

Z

A.n;k/
˚2

j;E.K \ E/ �k.dE/

D 	 . kC1
2
/	 . n�kCjC1

2
/

	 . nC3
2
/	 .

jC1
2
/

�
n�k

4.n�kCj/ Q˚
0
n�kCj.K/C n�kCnjCj

2.n�kCj/ ˚
2
n�kCj.K/

�
:

Corollary 5.8 Let K 2 K n and k; j 2 N0 with 0 � j < k < n. Then

Z

A.n;k/
˚3

j;E.K \ E/ �k.dE/ D j C 1

n � k C j C 1

	 . kC1
2
/	 .

n�kCj
2
/

	 . nC1
2
/	 . j

2
/
˚3

n�kCj.K/:

As 	 . j
2
/�1 D 0, for j D 0, the integral in Corollary 5.8 equals 0 in this case.

However, as the integrand on the left-hand side is already 0, this is not surprising.
The same is true for any odd number s 2 N and j D 0.

Corollary 5.8 immediately leads to a result which was obtained and applied by
Bernig and Hug in [3, Lemma 4.13].

Corollary 5.9 Let K 2 K n. Then

Z

A.n;2/
˚3
1;E.K \ E/ �k.dE/ D

 
n

2

!�1
˚3

n�1.K/:

5.3.2.2 The Choice j D k � 1

Furthermore, we obtain simple Crofton formulae for the specific choice j D k � 1

in the local and in the global case.

Corollary 5.10 Let K 2 K n, ˇ 2 B.Rn/ and k; r; s 2 N0 with 1 < k < n. Then

Z

A.n;k/
�
r;s;0
k�1;E.K \ E; ˇ \ E/ �k.dE/ D ın;k;k�1;s

b s
2 cX

zD0
�n;k;s;z Q

z�
r;s�2z;0
n�1 .K; ˇ/;

where

�n;k;s;z WD
b s
2 cX

qDz

.�1/q�z

 
s

2q

! 
q

z

!

	
�
q C 1

2

� 	 . kCsC1
2

� q/	 . n�k
2

C q/

	 . n�1
2

C q/
:
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Corollary 5.10 will be derived from Theorem 5.3 in the same way as Theorem 5.5
is proved. More specifically, relation (5.4) is applied, which can be considered as a
local version of Lemma 5.1 in the particular case j D n � 1. Although k D 1 is
excluded in Corollary 5.10, the result is formally consistent with Theorem 5.4 (for
i D 0), which can be checked by simplifying the coefficients �n;1;s;z with the help of
Zeilberger’s algorithm.

A global version of Corollary 5.10 is obtained by setting ˇ D R
n.

Finally, Theorem 5.4 can be globalized to give a result, which was obtained in
[13] by a completely different approach.

Corollary 5.11 Let K 2 K n and s 2 N0. Then

Z

A.n;1/
˚ s
0;E.K \ E/ �k.dE/ D 2!nCsC1

�!sC1!n

s
2X

zD0

.�1/z
1 � 2z

 
s
2

z

!

Q
s
2�z˚2z

n�1.K/

for even s. For odd s the integral on the left-hand side equals 0.

Note that if s 2 N is odd, then the Crofton integral in Theorem 5.4 is a non-
zero measure, as the tensorial curvature measures �r;1;0

n�1 .K; � / are non-zero (if the
underlying set K is at least .n � 1/-dimensional), whereas ˚1

n�1 � 0 in the global
case considered in Corollary 5.11.

5.3.3 Crofton Formulae for Extrinsic Tensorial Curvature
Measures

In the following, we state Crofton formulae for tensorial curvature measures for
j D k � 1. The method also applies to the cases where j � k � 2, but it remains
to be explored to which extent the constants can be simplified then by the current
approach.

As for the intrinsic versions, we have to distinguish between the cases k > 1 and
k D 1. We start with the former.

Theorem 5.12 Let K 2 K n, ˇ 2 B.Rn/ and k; r; s 2 N0 with 1 < k < n. Then

Z

A.n;k/
�r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/ D

b s
2 cX

zD0
�n;k;s;z Q

z�r;s�2z;0
n�1 .K; ˇ/;

where

�n;k;s;z WD k � 1
n � 1

�
n�k
2 	 . n

2
/

	 . k
2
/	 . n�k

2
/

	 . sC1
2
/	 . s

2
C 1/

	 . n�kCsC1
2

/	 . nCs�1
2
/

	 . n�k
2

C z/	 . kCs�1
2

� z/

	 . s
2

� z C 1/zŠ
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if z ¤ s�1
2
, and

�n;k;s; s�12
WD �

n�k�1
2

2k.n C s � 2/
.n � 1/.n � k C s � 1/

	 . n
2
/

	 . n�k
2
/

	 . s
2

C 1/

	 . nCsC1
2

/
: (5.8)

In Theorem 5.12, if s is odd the coefficient �n;k;s;.s�1/=2 has to be defined
separately, as the proof shows. In fact, one easily checks that the difference amounts
to a factor k.n C s � 2/Œ.k � 1/.n C s � 1/��1. For even s, the constants involved
in the proof of Theorem 5.12 can be simplified by a direct calculation to arrive at
the asserted result. However, if s is odd, we need the connection to the work [3]
to simplify the constants. Since this connection breaks down for z D .s � 1/=2,
s odd, a separate direct calculation is required for this case, and this finally yields
the correct constant in (5.8). The result is also consistent with the special case k D 1

which is considered next. A more structural viewpoint, which will be developed in
future work, will provide another explanation for the case distinction required for
the coefficients in the preceding Crofton formula.

For k D 1 the Crofton integrals can be represented with a single functional, as
the following theorem shows.

Theorem 5.13 Let K 2 K n, ˇ 2 B.Rn/ and r; s 2 N0. Then

Z

A.n;1/
�
r;s;0
0 .K \ E; ˇ \ E/ �1.dE/

D �
n�2
2

	 . n
2
/

	 . nC1
2
/

	 .b sC1
2

c C 1
2
/

	 . n
2

C b sC1
2

c/Q
b s
2 c�r;s�2b s

2 c;0
n�1 .K; ˇ/:

It can be easily checked that the result for k D 1 can be obtained from the one
for k > 1 by a formal specialization and proper interpretation of expressions which
a priori are not well defined. For this to work, it is indeed crucial that for odd values
of s and z D .s � 1/=2 the definition in (5.8) applies.

In [3, Proposition 4.10], an alternative basis of the vector space of continuous,
translation invariant and rotation covariant T

p-valued valuations on K n was
introduced, based on the trace free part of the Minkowski tensors, which was called
the  -basis. In the same spirit (but locally and with the current normalization), we
now define

 
r;s;0
k WD �

r;s;0
k C 1p

�

b s
2 cX

jD1
.�1/j

 
s

2j

!
	 . j C 1

2
/	 . n

2
C s � j � 1/

	 . n
2

C s � 1/
Qj�

r;s�2j;0
k

for r; s 2 N0 and k 2 f0; : : : ; n � 1g. Interpreting this definition in the right way if
n D 2 and s D 0 (where  r;0;0

k D �r;0;0
k ), we can also write

 
r;s;0
k D 1p

�

b s
2 cX

jD0
.�1/j

 
s

2j

!
	 . j C 1

2
/	 . n

2
C s � j � 1/

	 . n
2

C s � 1/
Qj�

r;s�2j;0
k : (5.9)
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In particular,  r;s;0
k D �

r;s;0
k for s 2 f0; 1g. Conversely, we have

�r;s;0
k D 1p

�

b s
2 cX

jD0

 
s

2j

!
	 . j C 1

2
/	 . n

2
C s � 2j/

	 . n
2

C s � j/
Qj 

r;s�2j;0
k : (5.10)

Although this will not be needed explicitly, it shows how we can switch between a
�-representation and a  -representation of tensorial curvature measures.

The main advantage of the new local tensor valuations given in (5.9) is that the
Crofton formula takes a particularly simple form.

Corollary 5.14 Let K 2 K n, ˇ 2 B.Rn/, and let k; r; s 2 N0 with 0 < k < n.
If s … f0; 1g, then

Z

A.n;k/
 

r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D �
n�k
2
k � 1

n � 1
	 . n

2
/	 . kCs�1

2
/

	 . k
2
/	 . nCs�1

2
/

	 . sC1
2
/

	 . n�kCsC1
2

/
 

r;s;0
n�1 .K; ˇ/:

If s D 0, then

Z

A.n;k/
 

r;0;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D �
n�kC1

2
	 . n

2
/	 . kC1

2
/

	 . k
2
/	 . n�kC1

2
/	 . nC1

2
/
 

r;0;0
n�1 .K; ˇ/:

If s D 1, then

Z

A.n;k/
 

r;1;0
k�1 .K \ E; ˇ \ E/ �k.dE/ D �

n�k
2
k

n

1

	 . n�kC2
2
/
 

r;1;0
n�1 .K; ˇ/:

For r D 0 and ˇ D R
n, Corollary 5.14 coincides with [3, Corollary 6.1] (in the

case corresponding to j D k�1). If s 2 f0; 1g, then r;s;0
k D �

r;s;0
k and Corollary 5.14

coincides with Theorem 5.12 (resp. Theorem 5.13, for k D 1). If k D 1, then the
integral in Corollary 5.14 vanishes, except for s 2 f0; 1g.

5.4 Proofs of the Main Results

In this section, we first recall some results from [11]. Then we prove an integral
formula which is required in the following. Finally, all ingredients are combined for
the proofs of our main theorems.

A basic tool is the following transformation formula (see [11, Corollary 4.2]). It
can be used to carry out an integration over linear Grassmann spaces recursively.
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The result is also true for k D 1, but in this case the outer integration on the right-
hand side is trivial.

Lemma 5.15 Let u 2 S
n�1 and let h W G.n; k/ ! T

p be an integrable function for
k; p 2 N0, 0 < k < n. Then

Z

G.n;k/
h.L/ �k.dL/ D !k

2!n

Z

G.u?;k�1/

Z 1

�1

Z

U?\u?\Sn�1

jtjk�1.1� t2/
n�k�2

2

� h
�
span

˚
U; tu C

p
1� t2w


�
H n�k�1.dw/ dt �u

?

k�1.dU/:

The next results are derived from the previous one (see [11, Lemma 4.3 and
Corollary 4.6]).

Lemma 5.16 Let i; k 2 N0 with k � n. Then

Z

G.n;k/
Q.L/i �k.dL/ D 	 . n

2
/	 . k

2
C i/

	 . n
2

C i/	 . k
2
/
Qi:

In Lemma 5.16, we interpret the coefficient of the tensor on the right-hand side
as 0, if k D 0 and i ¤ 0, and as 1, if k D i D 0, as 	 .0/�1 WD 0 and 	 .a/

	 .a/ D 1 for all
a 2 R.

Lemma 5.17 Let i 2 N0, k; r 2 f0; : : : ; ng with k C r � n, and let F 2 G.n; r/.
Then

Z

G.n;k/
ŒF;L�2Q.L/i �k.dL/ D rŠkŠ

nŠ.k C r � n/Š

	 . n
2

C 1/	 . k
2

C i/

	 . n
2

C i C 1/	 . k
2

C 1/

� �. k
2

C i/Qi C i k�n
r Qi�1Q.F/

�
:

We interpret the second summand on the right-hand side of Lemma 5.17 as 0,
if i D 0, which is consistent with [11, Lemma 4.4]. If r D 0, we also interpret the
second summand as 0 and the integral on the left equals Qi.

Finally, we state the following integral formula (see [11, p. 503]), which is a
special case of [15, Theorem 3.1].

Lemma 5.18 Let P 2 Pn be a polytope, L 2 G.n; k/ for 0 � j < k < n and let
g W Rn � .Sn�1 \ L/ ! T be a measurable bounded function. Then

Z

L?

Z

Lt
.L\Sn�1/

g.x; u/�.Lt/
j .P \ Lt; d.x; u//H n�k.dt/

D 1

!k�j

X

F2Fn�kCj.P/

Z

F
.N.P;F/\Sn�1/

g.x; �L.u//

� kpL.u/kj�kŒF;L�2H n�1.d.x; u//:
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5.4.1 Auxiliary Integral Formulae

With the preliminary results from [11] we are able to establish the following integral
formula, which is a slightly modified version of [11, Proposition 4.7].

Proposition 5.19 Let i; j; k; s 2 N0 with j < k < n and k > 1, F 2 G.n; n � k C j/
and u 2 F? \ S

n�1. Then
Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�kŒF;L�2 �k.dL/

D �n;k;j

b s
2 cCiX

zD0

�
�.0/n;k;j;s;i;zu

2 C �.1/n;k;j;s;i;zQ.F/
�
QzusC2i�2z�2;

where the coefficients are defined as in Theorem 5.3.

Proof Lemma 5.15 yields

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�kŒF;L�2 �k.dL/

D !k

2!n

Z

G.u?;k�1/

Z 1

�1

Z

U?\u?\Sn�1

jtjk�1.1 � t2/
n�k�2

2 �spanfU;tuCp
1�t2wg.u/

s

� Q
�
span

˚
U; tu C

p
1 � t2w


�ikpspanfU;tuCp
1�t2wg.u/kj�k

� �F; span
˚
U; tu C

p
1 � t2w


�2
H n�k�1.dw/ dt �u

?

k�1.dU/:

As

Q
�
span

˚
U; tu C

p
1 � t2w


� D Q.U/C �jtju C
p
1 � t2 sign.t/w

�2
;

�spanfU;tuCp
1�t2wg.u/ D jtju C

p
1 � t2 sign.t/w;

kpspanfU;tuCp
1�t2wg.u/k D jtj;

�
F; span

˚
U; tu C

p
1 � t2w


� D ŒF;U�.u
?/jtj

hold for all t 2 Œ�1; 1� n f0g, we obtain
Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�kŒF;L�2 �k.dL/

D !k

2!n

Z

G.u?;k�1/

Z 1

�1

Z

U?\u?\Sn�1

jtjjC1.1 � t2/
n�k�2

2

�
ŒF;U�.u

?/
�2

� �jtju C
p
1 � t2w

�s�
Q.U/C .jtju C

p
1 � t2w/2

�i

� H n�k�1.dw/ dt �u
?

k�1.dU/;
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where we used the fact that the integration with respect to w is invariant under
reflections in the origin. Then we apply the binomial theorem to the terms .Q.U/C
.jtju C p

1 � t2w/2/i and .jtju C p
1 � t2w/sC2p and get

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�kŒF;L�2 �k.dL/

D !k

2!n

iX

pD0

sC2pX

qD0

 
i

p

! 
s C 2p

q

!Z

G.u?;k�1/

Z 1

�1
jtjjCsC2p�qC1.1 � t2/

n�kCq�2
2 dt

�
Z

U?\u?\Sn�1

wq H n�k�1.dw/
�
ŒF;U�.u

?/
�2
usC2p�qQ.U/i�p �u

?

k�1.dU/:

Since
Z

U?\u?\Sn�1

wq H n�k�1.dw/ D 1fq eveng2!n�kCq

!qC1
Q.U? \ u?/

q
2 ;

we deduce from the definition of the Beta function and its relation to the Gamma
function that
Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�kŒF;L�2 �k.dL/

D !k

!n

iX

pD0

b s
2 cCpX

qD0

 
i

p

! 
s C 2p

2q

!
	 . jCs

2
C p � q C 1/	 . n�k

2
C q/

	 . n�kCjCs
2

C p C 1/

!n�kC2q
!2qC1

� usC2p�2q
Z

G.u?;k�1/
Q.U? \ u?/q

�
ŒF;U�.u

?/
�2
Q.U/i�p �u

?

k�1.dU/:

Applying the binomial theorem to Q.U? \ u?/q D .Q.u?/ � Q.U//q yields

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�k
ŒF;L�2 �k.dL/

D 	 . n
2
/p

�	 . k
2
/

iX

pD0

b s
2 cCpX

qD0

qX

yD0
.�1/y

 
i

p

! 
s C 2p

2q

! 
q

y

!

	 .q C 1
2
/

� 	 . jCs
2

C p � q C 1/

	 .
n�kCjCs

2
C p C 1/

usC2p�2qQ
�
u?�q�y

�
Z

G.u?;k�1/
�
ŒF;U�.u

?/
�2
Q.U/i�pCy �u

?

k�1.dU/: (5.11)
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We conclude from Lemma 5.17, which is applied in u? to the remaining integral on
the right-hand side of (5.11),

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�kŒF;L�2 �k.dL/

D .n � k C j/Š.k � 1/Šp
�.n � 1/ŠjŠ

	 . n
2
/	 . nC1

2
/

	 . k
2
/	 . kC1

2
/

iX

pD0

b s
2 cCpX

qD0

 
i

p

! 
s C 2p

2q

!

	 .q C 1
2
/

� 	 .
jCs
2

C p � q C 1/

	 . n�kCjCs
2

C p C 1/
usC2p�2q

qX

yD0
.�1/y

 
q

y

!
	 . k�1

2
C i � p C y/

	 . nC1
2

C i � p C y/

�
��

k�1
2

C i � p C y
�
Q
�
u?�i�pCq

C k�n
n�kCj .i � p C y/Q

�
u?�i�pCq�1

Q.F/
�
:

Lemma 5.22 from Sect. 5.6 applied twice to the summations with respect to y
and Legendre’s duplication formula applied three times to the Gamma functions
involving n, k and n � k yield together with the definitions of �n;k;j and #."/n;k;j;p;q,
" 2 f0; 1g,

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�k
ŒF;L�2 �k.dL/

D �n;k;j

iX

pD0

b s
2 cCi�pX

qD0

 
i

p

! 
s C 2i � 2p

2q

!

	 .q C 1
2
/

� 	 . jCs
2

C i � p � q C 1/

	 .
n�kCjCs

2
C i � p C 1/

	 . k�1
2

C p/	 . n�k
2

C q/

	 . nC1
2

C p C q/

� usC2i�2p�2q
�
#.0/n;k;j;p;qQ

�
u?�pCq � #.1/n;k;j;p;qQ

�
u?�pCq�1

Q.F/
�
;
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where we changed the order of summation with respect to p. From the binomial
theorem applied to Q.u?/pCq D .Q � u2/pCq we obtain

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�kŒF;L�2 �k.dL/

D �n;k;j

iX

pD0

b s
2 cCi�pX

qD0

 
i

p

! 
s C 2i � 2p

2q

!

	 .q C 1
2
/
	 . jCs

2
C i � p � q C 1/

	 . n�kCjCs
2

C i � p C 1/

� 	 . k�1
2

C p/	 . n�k
2

C q/

	 . nC1
2

C p C q/

� pCqX

zD0
.�1/pCq�z

 
p C q

z

!

#.0/n;k;j;p;qQ
zusC2i�2z

C
pCq�1X

zD0
.�1/pCq�z

 
p C q � 1

z

!

#.1/n;k;j;p;qQ
zusC2i�2z�2Q.F/

�

:

A change of the order of summation, such that we sum with respect to z first, gives

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�k
ŒF;L�2 �k.dL/

D �n;k;j

b s
2 cCiX

zD0

�
�.0/n;k;j;s;i;zu

2 C �.1/n;k;j;s;i;zQ.F/
�
QzusC2i�2z�2;

which concludes the proof. ut
Next we state the special case of Proposition 5.19 where k D 1.

Proposition 5.20 Let i; s 2 N0, F 2 G.n; n � 1/ and u 2 F? \ S
n�1. Then

Z

G.n;1/
Q.L/i�L.u/

skpL.u/k�1ŒF;L�2 �1.dL/

D 	 . n
2
/	 . sC1

2
C i/

�	 . nCsC1
2

C i/

s
2CiX

zD0
.�1/z

 
s
2

C i

z

!
1

1 � 2zu
2zQ

s
2Ci�z

for even s. If s is odd, then

Z

G.n;1/
Q.L/i�L.u/

skpL.u/k�1ŒF;L�2 �k.dL/ D 	 . n
2
/	 . s

2
C i C 1/p

�	 . nCsC1
2

C i/
uQ

s�1
2 Ci:
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Proof The proof basically works as the proof of Proposition 5.19. But we do not
need to apply Lemma 5.17 as (5.11) simplifies to

Z

G.n;1/
Q.L/i�L.u/

skpL.u/k�1ŒF;L�2 �k.dL/

D 	 . n
2
/

�

iX

pD0

b s
2 cCpX

qD0

qX

yD0
.�1/y

 
i

p

! 
s C 2p

2q

! 
q

y

!

	 .q C 1
2
/
	 . s

2
C p � q C 1/

	 . nCsC1
2

C p/

� usC2p�2qQ
�
u?�q�y

Z

G.u?;0/

�
ŒF;U�.u

?/
�2
Q.U/i�pCy �u

?

k�1.dU/:

Since the remaining integral on the right-hand side equals 1, if p D i and y D 0, and
in all the other cases it equals 0, we obtain

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�k
ŒF;L�2 �k.dL/

D 	 . n
2
/

�

b s
2 cCiX

qD0

 
s C 2i

2q

!

	 .q C 1
2
/
	 . s

2
C i � q C 1/

	 . nCsC1
2

C i/
usC2i�2qQ

�
u?�q:

Applying the binomial theorem to Q.u?/q D .Q � u2/q yields

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�kŒF;L�2 �k.dL/

D 	 . n
2
/

�

b s
2 cCiX

qD0

qX

zD0
.�1/q�z

 
s C 2i

2q

! 
q

z

!

	 .q C 1
2
/
	 . s

2
C i � q C 1/

	 . nCsC1
2

C i/
usC2i�2zQz:

A change of the order of summation and Legendre’s duplication formula applied to
the Gamma functions involving q give

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�kŒF;L�2 �k.dL/

D .s C 2i/Š	 . n
2
/

2sC2i	 . nCsC1
2

C i/

b s
2 cCiX

zD0

1

zŠ

b s
2 cCiX

qDz

.�1/q�z

	 . sC1
2

C i � q/.q � z/Š
usC2i�2zQz:
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If s is even, we conclude from Lemma 5.23 applied to the summation with respect
to q and from another application of Legendre’s duplication formula that

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�kŒF;L�2 �k.dL/

D 	 . n
2
/	 . sC1

2
C i/

�	 . nCsC1
2

C i/

s
2CiX

zD0
.�1/ s2Ci�zC1

 
s
2

C i

z

!
1

s C 2i � 2z � 1u
sC2i�2zQz:

A change of the order of summation with respect to z then yields the assertion.
On the other hand, if s is odd, the binomial theorem gives, for b s

2
c C i ¤ z,

b s
2 cCiX

qDz

.�1/q�z

	 . sC1
2

C i � q/.q � z/Š
D 1

.b s
2
c C i � z/Š

b s
2 cCi�zX

qD0
.�1/q

 
b s
2
c C i � z

q

!

D 1

.b s
2
c C i � z/Š

.1 � 1/b s
2 cCi�z

D 0: (5.12)

For b s
2
c C i D z, the sum on the left-hand side of (5.12) equals 1. Hence, we finally

obtain

Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�k
ŒF;L�2 �k.dL/ D 	 . n

2
/	 . s

2
C i C 1/p

�	 . nCsC1
2

C i/
uQb s

2 cCi;

if s is odd. ut

5.4.2 The Proofs for the Intrinsic Case

Now all tools are available which are needed to prove the main theorems.
We start with the proof of Theorem 5.2.

Proof (Theorem 5.2) Let L 2 G.n; k/ and t 2 L?. Then we have

�r;s;0
k;Lt

.K \ Lt; ˇ \ Lt/ D 1fs D 0g
Z

K\ˇ\Lt

xr H k.dx/
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and thus, for s ¤ 0,

Z

A.n;k/
Q.E/i�r;s;0

k;E .K \ E; ˇ \ E/ �k.dE/

D
Z

G.n;k/

Z

L?

Q.Lt/
i�

r;s;0
k;Lt

.K \ Lt; ˇ \ Lt/H
n�k.dt/ �k.dL/ D 0:

Furthermore, for s D 0 Fubini’s theorem yields

Z

A.n;k/
Q.E/i�r;0;0

k;E .K \ E; ˇ \ E/ �k.dE/

D
Z

G.n;k/
Q.L/i

Z

L?

Z

K\ˇ\Lt

xr H k.dx/H n�k.dt/ �k.dL/

D
Z

G.n;k/
Q.L/i �k.dL/

Z

K\ˇ
xr H n.dx/:

Then we conclude the proof with Lemma 5.16 and the definition of �r;0;0
n . ut

We turn to the proof of Theorem 5.3.

Proof (Theorem 5.3) First, we prove the formula for a polytope P 2 Pn. The
general result then follows by an approximation argument.

As a matter of convenience, we name the integral of interest I. Then Lemma 5.18
yields

I D !k�j

Z

G.n;k/
Q.L/i

Z

L?

Z

Lt
.L\Sn�1/

1ˇ.x/xrus

��.Lt/
j .P \ Lt; d.x; u//H n�k.dt/ �k.dL/

D
X

F2Fn�kCj.P/

Z

F\ˇ
xrH n�kCj.dx/

Z

G.n;k/
Q.L/i

�
Z

N.P;F/\Sn�1

�L.u/
skpL.u/kj�k

ŒF;L�2H k�j�1.du/ �k.dL/:

With Fubini’s theorem we conclude

I D
X

F2Fn�kCj.P/

Z

F\ˇ
xrH n�kCj.dx/

Z

N.P;F/\Sn�1

�
Z

G.n;k/
Q.L/i�L.u/

skpL.u/kj�k
ŒF;L�2 �k.dL/H k�j�1.du/: (5.13)
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Then we obtain from Proposition 5.19

I D �n;k;j
X

F2Fn�kCj.P/

Z

F\ˇ
xrH n�kCj.dx/

�
� b s

2 cCiX

zD0
�.0/n;k;j;s;i;zQ

z
Z

N.P;F/\Sn�1

usC2i�2zH k�j�1.du/

C
b s
2 cCi�1X

zD0
�.1/n;k;j;s;i;zQ

zQ.F/
Z

N.P;F/\Sn�1

usC2i�2z�2H k�j�1.du/
�

:

With the definition of the tensorial curvature measures we get

I D �n;k;j

b s
2 cCiX

zD0
�.0/n;k;j;s;i;zQ

z�
r;sC2i�2z;0
n�kCj .P; ˇ/

C �n;k;j

b s
2 cCi�1X

zD0
�.1/n;k;j;s;i;zQ

z�
r;sC2i�2z�2;1
n�kCj .P; ˇ/:

Combining the two sums yields the assertion in the polytopal case.
As pointed out before, there exists a weakly continuous extension of the

generalized tensorial curvature measures �r;sC2i�2z�2;1
n�kCj from the set of all polytopes

to K n. The same is true for the tensorial curvature measures �r;sC2i�2z;0
n�kCj . Hence,

approximating a convex body K 2 K n by polytopes yields the assertion in the
general case. ut

Now we prove Theorem 5.4, which deals with the case k D 1 excluded in the
statement of Theorem 5.3.

Proof (Theorem 5.4) The proof basically works as the one of Theorem 5.3. Again,
we prove the formula for a polytope P 2 Pn. We call the integral of interest
I and proceed as in the previous proof in order to obtain (5.13). Now we apply
Proposition 5.20 and obtain

I D 	 . n
2
/	 . sC1

2
C i/

�	 . nCsC1
2

C i/

s
2CiX

zD0
.�1/z

 
s
2

C i

z

!
1

1 � 2zQ
s
2Ci�z

�
X

F2Fn�1.P/

Z

F\ˇ
xrH n�kCj.dx/

Z

N.P;F/\Sn�1

u2zH 0.du/;

if s is even. Hence, we conclude the assertion with the definition of �r;2z;0
n�1 .
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If s is odd, Proposition 5.20 yields

I D 	 . n
2
/	 . s

2
C i C 1/p

�	 . nCsC1
2

C i/
Q

s�1
2 Ci�

r;1;0
n�1 .P; ˇ/:

As sketched in the proof of Theorem 5.3, the general result follows by an
approximation argument. ut

For the proof of Theorem 5.5, we first globalize Theorem 5.3 and then apply
Lemma 5.1 to treat the appearing tensors �0;sC2i�2z�2;1n�kCj .

Proof (Theorem 5.5) We only prove the formula for a polytope P 2 Pn. As before,
the general result follows by an approximation argument.

We briefly write I for the Crofton integral under investigation. Starting from the
special case of Theorem 5.3 where r D 0 and ˇ D R

n, we obtain

I D �n;k;j

b s
2 cCiX

zD0
�.0/n;k;j;s;i;zQ

z˚ sC2i�2z
n�kCj .P/C �n;k;j

b s
2 cCi�1X

zD0
�.1/n;k;j;s;i;zQ

z

�
X

F2Fn�kCj.P/

Q.F/H n�kCj.F/
Z

N.P;F/\Sn�1

usC2i�2z�2H k�j�1.du/:

With Q.F/ D Q � Q.N.P;F// and Lemma 5.1 we get

X

F2Fn�kCj.P/

Q.F/H n�kCj.F/
Z

N.P;F/\Sn�1

usC2i�2z�2H k�j�1.du/

D Q˚ sC2i�2z�2
n�kCj .P/� k�jCsC2i�2z�2

sC2i�2z�1 ˚ sC2i�2z
n�kCj .P/

and thus

I D �n;k;j

b s
2 cCiX

zD0
�.0/n;k;j;s;i;zQ

z˚ sC2i�2z
n�kCj .P/

C �n;k;j

b s
2 cCi�1X

zD0
�.1/n;k;j;s;i;zQ

z
�
Q˚ sC2i�2z�2

n�kCj .P/ � k�jCsC2i�2z�2
sC2i�2z�1 ˚ sC2i�2z

n�kCj .P/
�
:

Combining these sums yields

I D �n;k;j

b s
2 cCiX

zD0

�
�.0/n;k;j;s;i;z C �.1/n;k;j;s;i;z�1 � k�jCsC2i�2z�2

sC2i�2z�1 �.1/n;k;j;s;i;z

�
Qz˚ sC2i�2z

n�kCj .P/:



5 Crofton Formulae for Tensor-Valued Curvature Measures 135

In fact, we have �.1/n;k;j;s;i;�1 D 0 and, furthermore for even s, as the sum with respect
to q is empty, �.1/n;k;j;s;i;b s

2 cCi also vanishes. On the other hand, for odd s, as ˚1
n�kCj �

0, the last summand of the sum with respect to z actually vanishes and thus its
coefficient does not have to be determined and is defined as zero.

Hence, we obtained a representation of the integral with the desired Minkowski
tensors. It remains to determine the coefficients explicitly. First, we consider the
case where (k > 1 and) z 2 f1; : : : ; b s

2
c C i � 1g. We get

�.0/n;k;j;s;i;z C �.1/n;k;j;s;i;z�1

D
iX

pD0

b s
2 cCi�pX

qD.z�p/C

.�1/pCq�z

 
i

p

! 
s C 2i � 2p

2q

! 
p C q

z

!

	 .q C 1
2
/

� 	 .
jCs
2

C i � p � q C 1/	 . k�1
2

C p/	 . n�k
2

C q/

	 .
n�kCjCs

2
C i � p C 1/	 . nC1

2
C p C q/

�
�
.n � k C j/. k�1

2
C p/� z

pCq

�
p.n � k/ � q.k � 1/

��

and

�.1/n;k;j;s;i;z D
iX

pD0

b s
2 cCi�pX

qD.z�p/C

.�1/pCq�z

 
i

p

! 
s C 2i � 2p

2q

! 
p C q

z

!

	 .q C 1
2
/

� 	 .
jCs
2

C i � p � q C 1/	 . k�1
2

C p/	 . n�k
2

C q/

	 .
n�kCjCs

2
C i � p C 1/	 . nC1

2
C p C q/

� pCq�z
pCq

�
p.n � k/ � q.k � 1/

�
: (5.14)

Hence we conclude

�.0/n;k;j;s;i;z C �.1/n;k;j;s;i;z�1 � k�jCsC2i�2z�2
sC2i�2z�1 �.1/n;k;j;s;i;z

D
iX

pD0

b s
2 cCi�pX

qD.z�p/C

.�1/pCq�z

 
i

p

! 
s C 2i � 2p

2q

! 
p C q

z

!

	 .q C 1
2
/

� 	 .
jCs
2

C i � p � q C 1/	 . k�1
2

C p/	 . n�k
2

C q/

	 .
n�kCjCs

2
C i � p C 1/	 . nC1

2
C p C q/

�
�
.n � k C j/. k�1

2
C p/� p.n�k/�q.k�1/

pCq

�
p C q C .k�j�1/.pCq�z/

sC2i�2z�1
��
:

The case z D b s
2
cCi, for even s, follows similarly. For z D 0, we have �.1/n;k;j;s;i;�1 D 0

and (5.14) still holds, if one cancels the remaining pCq�z
pCq D 1. ut
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Finally, we provide the argument for Corollary 5.10, which is the special case of
Theorem 5.3 obtained for i D 0 and j C 1 D k � 2.

Proof (Corollary 5.10) With the specific choices of the indices, we obtain

�."/n;k;k�1;s;0;z D
b s
2 cX

qDzC"
.�1/q�z

 
s

2q

! 
q � "

z

!

	 .q C 1
2
/

� 	 . kCsC1
2

� q/

	 . nCsC1
2

/

	 . k�1
2
/	 . n�k

2
C q/

	 . nC1
2

C q/
#."/n;k;k�1;0;q;

with

#.0/n;k;k�1;0;q D 1
2
.n � 1/.k � 1/; #.1/n;k;k�1;0;q WD �q.k � 1/;

and

�n;k;k�1 D
 
n � 2

k � 1

!
	 . n�kC1

2
/

2�
:

Let us denote the Crofton integral by I. Then Theorem 5.3 implies that

I D �n;k;k�1
b s
2 cX

zD0
Qz
�
�.0/n;k;k�1;s;0;z � �.1/n;k;k�1;s;0;z

�
�
r;s�2z;0
n�1 .K; ˇ/

C �n;k;k�1
b s
2 cC1X

zD1
Qz�.1/n;k;k�1;s;0;z�1�

r;s�2z;0
n�1 .K; ˇ/

D �n;k;k�1
b s
2 cX

zD0
Qz
�
�.0/n;k;k�1;s;0;z C �.1/n;k;k�1;s;0;z�1 � �.1/n;k;k�1;s;0;z
„ ƒ‚ …

DW�

�
�r;s�2z;0
n�1 .K; ˇ/;

where

� D 	 . k�1
2
/

	 . nCsC1
2

/

b s
2 cX

qDz

.�1/q�z

 
s

2q

!

	 .q C 1
2
/
	 . kCsC1

2
� q/	 . n�k

2
C q/

	 . nC1
2

C q/

�
� 

q

z

!
1

2
.n � 1/.k � 1/�

 
q � 1

z � 1

!

.�1/q.k � 1/

�
 
q � 1
z

!

.�1/q.k � 1/
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D 	 . k�1
2
/

	 . nCsC1
2

/

b s
2 cX

qDz

.�1/q�z

 
s

2q

!

	 .q C 1
2
/
	 . kCsC1

2
� q/	 . n�k

2
C q/

	 . nC1
2

C q/

�
 
q

z

!

.k � 1/
�
n�1
2

C q
�

D 2
	 . kC1

2
/

	 . nCsC1
2

/

b s
2 cX

qDz

.�1/q�z

 
s

2q

! 
q

z

!

	 .q C 1
2
/
	 . kCsC1

2
� q/	 . n�k

2
C q/

	 . n�1
2

C q/
;

from which the assertion follows. ut

5.5 The Proofs for the Extrinsic Case

Our starting point is a relation, due to McMullen, which relates the intrinsic and
the extrinsic Minkowski tensors (see [14, 5.1 Theorem]). Its proof can easily be
localized (see [19, Korollar 2.2.2]). Combining this localization with the relation
Q D Q.E/C Q.E?/, where E � R

n is any k-flat, we obtain the following lemma.

Lemma 5.21 Let j; k; r; s 2 N0 with j < k < n, let K 2 K n with K � E 2 A.n; k/
and ˇ 2 B.Rn/. Then

�
r;s;0
j .K; ˇ/ D �

n�k
2 sŠ

	 . n�jCs
2
/

b s
2 cX

mD0

mX

lD0
.�1/m�l

 
m

l

!
	 . k�jCs

2
� m/

4m mŠ.s � 2m/Š

� QlQ.E/m�l�
r;s�2m;0
j;E .K; ˇ/:

We start with the proof of Theorem 5.12, for which we use Theorem 5.3 after an
application of Lemma 5.21.

Proof (Theorem 5.12) Lemma 5.21 for j D k � 1 gives

Z

A.n;k/
�
r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D �
n�k
2 sŠ

	 . n�kCsC1
2

/

b s
2 cX

mD0

mX

lD0
.�1/m�l 	 .

sC1
2

� m/

4m mŠ.s � 2m/Š

 
m

l

!

Ql

�
Z

A.n;k/
Q.E/m�l�

r;s�2m;0
k�1;E .K \ E; ˇ \ E/ �k.dE/:
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For j D k�1 we can argue as in the proof of Corollary 5.10 to see that Theorem 5.3
implies that

Z

A.n;k/
Q.E/i�r;s;0

k�1;E.K \ E; ˇ \ E/ �k.dE/

D �n;k;k�1
b s
2 cCiX

zD0
�n;k;k�1;s;i;z Qz�

r;sC2i�2z;0
n�1 .K \ E; ˇ \ E/; (5.15)

where

�n;k;k�1;s;i;z D .k � 1/
iX

pD0

b s
2 cCi�pX

qD.z�p/C

.�1/pCq�z

 
i

p

! 
s C 2i � 2p

2q

! 
p C q

z

!

� 	 .q C 1
2
/
	 . kCsC1

2
C i � p � q/

	 . nCsC1
2

C i � p/

	 . k�1
2

C p/	 . n�k
2

C q/

	 . n�1
2

C p C q/
:

(Of course, for i D 0 we recover Corollary 5.10.) Hence, we obtain

Z

A.n;k/
�
r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D �n;k;k�1
�

n�k
2 sŠ

	 . n�kCsC1
2

/

b s
2 cX

mD0

mX

lD0

b s
2 c�lX

zD0
.�1/m�l 	 .

sC1
2

� m/

4m mŠ.s � 2m/Š

 
m

l

!

� �n;k;k�1;s�2m;m�l;z Q
lCz�r;s�2l�2z;0

n�1 .K; ˇ/:

An index shift of the summation with respect to z yields

Z

A.n;k/
�
r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D �n;k;k�1
�

n�k
2 sŠ

	 . n�kCsC1
2

/

b s
2 cX

mD0

mX

lD0

b s
2 cX

zDl

.�1/m�l 	 .
sC1
2

� m/

4m mŠ.s � 2m/Š

 
m

l

!

� �n;k;k�1;s�2m;m�l;z�l Q
z�r;s�2z;0

n�1 .K; ˇ/:
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Changing the order of summation gives
Z

A.n;k/
�r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D �n;k;k�1
�

n�k
2 sŠ

	 . n�kCsC1
2

/

b s
2 cX

zD0

zX

lD0

b s
2 cX

mDl

.�1/m�l 	 .
sC1
2

� m/

4m mŠ.s � 2m/Š

 
m

l

!

� �n;k;k�1;s�2m;m�l;z�l Q
z�r;s�2z;0

n�1 .K; ˇ/: (5.16)

The coefficients of the tensorial curvature measures on the right-hand side of (5.16)
do not depend on the choice of r 2 N0 or ˇ 2 B.Rn/. Thus, we can set

Z

A.n;k/
�
r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/ D

b s
2 cX

zD0
�n;k;s;z Q

z�
r;s�2z;0
n�1 .K; ˇ/;

where the coefficient �n;k;s;z is uniquely defined in the obvious way. By choosing
r D 0 and ˇ D R

n, we can compare this to the Crofton formula for translation
invariant Minkowski tensors in [3]. In fact, since the functionals Qz�

0;s�2z;0
n�1 .K;Rn/,

z 2 f0; : : : ; bs=2cgnf.s� 1/=2g, are linearly independent, we can conclude from the
Crofton formula for the translation invariant Minkowski tensors in [3, Theorem 3]
that

�n;k;s;z D k � 1

n � 1

�
n�k
2 	 . n

2
/

	 . k
2
/	 . n�k

2
/

	 . sC1
2
/	 . s

2
C 1/

	 . n�kCsC1
2

/	 . nCs�1
2
/

	 . n�k
2

C z/	 . kCs�1
2

� z/

	 . s
2

� z C 1/zŠ

for z ¤ .s � 1/=2. If z D .s � 1/=2, then �0;s�2z;0n�1 .K;Rn/ D ˚1
n�1.K/ D 0, and

hence we do not get any information about the corresponding coefficient from the
global theorem. Consequently, we have to calculate �n;k;s;.s�1/=2 directly, which is
what we do later in the proof.

But first we demonstrate that the coefficients of the tensorial curvature measures
in (5.16) can be determined also by a direct calculation if s is even. In fact, we obtain

S WD
b s
2 cX

mDl

.�1/m�l 	 .
sC1
2

� m/

4m mŠ.s � 2m/Š

 
m

l

!

�n;k;k�1;s�2m;m�l;z�l

D .k � 1/

b s
2 cX

mDl

mX

pDl

b s
2 c�pX

qD.z�p/C

.�1/mClCpCq�z 	 . sC1
2

� m/

4m mŠ.s � 2m/Š

�
 
m

l

! 
m � l

p � l

! 
s � 2p

2q

! 
p C q � l

z � l

!

	 .q C 1
2
/

� 	 . kCsC1
2

� p � q/

	 . nCsC1
2

� p/

	 . k�1
2

C p � l/	 . n�k
2

C q/

	 . n�1
2

C p C q � l/
:
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Changing the order of summation gives

S D .k � 1/

b s
2 cX

pDl

b s
2 c�pX

qD.z�p/C

.�1/lCq�z

 
s � 2p
2q

! 
p C q � l

z � l

!

	 .q C 1
2
/

� 	 . kCsC1
2

� p � q/

	 . nCsC1
2

� p/

	 . k�1
2

C p � l/	 . n�k
2

C q/

	 . n�1
2

C p C q � l/

�
b s
2 cX

mDp

.�1/mCp

 
m

l

! 
m � l

p � l

!
	 . sC1

2
� m/

4m mŠ.s � 2m/Š
:

We denote the sum with respect to m by T and conclude

T D
b s
2 cX

mDp

.�1/mCp

 
m

l

! 
m � l

p � l

!
	 . sC1

2
� m/

4m mŠ.s � 2m/Š

D 1

lŠ.p � l/Š

b s
2 cX

mDp

.�1/mCp 	 . sC1
2

� m/

4m .m � p/Š.s � 2m/Š :

An index shift yields

T D 1

2slŠ.p � l/Š

b s
2 c�pX

mD0
.�1/m 2

s�2p�2m	 . sC1
2

� p � m/

mŠ.s � 2p � 2m/Š
:

Legendre’s duplication formula gives

T D
p
�

2slŠ.p � l/Š

b s
2 c�pX

mD0
.�1/m 1

mŠ	 . s
2

� p � m C 1/
:

If s is even, the binomial theorem yields

T D
p
�

2slŠ.p � l/Š. s
2

� p/Š

s
2�pX

mD0
.�1/m

 
s
2

� p

m

!

D
p
�

2slŠ.p � l/Š. s
2

� p/Š
.1 � 1/ s2�p

D 1fp D s
2
g

p
�

2slŠ. s
2

� l/Š
:
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Hence, we obtain

S D .k � 1/p�
2slŠ. s

2
� l/Š

0X

qD.z� s
2 /

C

.�1/lCq�z

 
s
2

C q � l

z � l

!

	 .q C 1
2
/

� 	 . kC1
2

� q/

	 . nC1
2
/

	 . kCs�1
2

� l/	 . n�k
2

C q/

	 . nCs�1
2

C q � l/

D .�1/l�z .k � 1/p�	 .1
2
/

2slŠ. s
2

� l/Š

 
s
2

� l

z � l

!
	 . kC1

2
/

	 . nC1
2
/

	 . kCs�1
2

� l/	 . n�k
2
/

	 . nCs�1
2

� l/

D .�1/l�z	 .
kC1
2
/	 . n�k

2
/

	 . nC1
2
/

.k � 1/�

2slŠ. s
2

� l/Š

 
s
2

� l

z � l

!
	 . kCs�1

2
� l/

	 . nCs�1
2

� l/
:

Furthermore, Legendre’s duplication formula yields

sŠS D .�1/l�z .k � 1/p�	 . kC1
2
/	 . n�k

2
/	 . sC1

2
/

	 . nC1
2
/

 
s
2

l

! 
s
2

� l

z � l

!

„ ƒ‚ …
D. s2z /.zl/

	 . kCs�1
2

� l/

	 . nCs�1
2

� l/
:

Thus, we obtain

Z

A.n;k/
�
r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D �n;k;k�1
�

n�kC1
2

	 . n�kCsC1
2

/

.k � 1/	 . kC1
2
/	 . n�k

2
/	 . sC1

2
/

	 . nC1
2
/

s
2X

zD0

 
s
2

z

!

�
zX

lD0
.�1/l�z

 
z

l

!
	 . kCs�1

2
� l/

	 . nCs�1
2

� l/
Qz�

r;s�2z;0
n�1 .K; ˇ/:

From Lemma 5.22 we conclude
Z

A.n;k/
�
r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D �n;k;k�1
�

n�kC1
2

	 . n�kCsC1
2

/

.k � 1/	 . kC1
2
/	 . sC1

2
/

	 . nC1
2
/	 . nCs�1

2
/

�
s
2X

zD0

 
s
2

z

!

	 . kCs�1
2

� z/	 . n�k
2

C z/Qz�
r;s�2z;0
n�1 .K; ˇ/:
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With

�n;k;k�1 D
 
n � 2

k � 1

!
	 . n�kC1

2
/

2�
D .n � 2/Š

.n � k � 1/Š.k � 1/Š
	 . n�kC1

2
/

2�

we get
Z

A.n;k/
�
r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D .n � 2/Š
	 . nC1

2
/

	 . n�kC1
2
/

.n � k � 1/Š
	 . kC1

2
/

.k � 2/Š
�

n�k�1
2 	 . sC1

2
/

2	 . nCs�1
2
/	 . n�kCsC1

2
/

�
s
2X

zD0

 
s
2

z

!

	 . kCs�1
2

� z/	 . n�k
2

C z/Qz�
r;s�2z;0
n�1 .K; ˇ/:

Legendre’s formula applied three times gives

Z

A.n;k/
�
r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D k � 1
n � 1

	 . n
2
/

	 . k
2
/	 . n�k

2
/

�
n�k
2 	 . sC1

2
/

	 . nCs�1
2
/	 . n�kCsC1

2
/

�
s
2X

zD0

 
s
2

z

!

	 . kCs�1
2

� z/	 . n�k
2

C z/Qz�
r;s�2z;0
n�1 .K; ˇ/;

which confirms the coefficients for even s.
On the other hand, if s is odd, then Lemma 5.23 yields

T D
p
�

2slŠ.p � l/Š

s�1
2 �pX

mD0
.�1/m 1

mŠ	 . s
2

� p � m C 1/

D
p
�

2slŠ.p � l/Š

� sC1
2 �pX

mD0
.�1/m 1

mŠ	 . s
2

� p � m C 1/

� .�1/ sC1
2 �p 1

. sC1
2

� p/Š	 . 1
2
/

�

D
p
�

2slŠ.p � l/Š

�

.�1/ sC1
2 �p 1p

�.�s C 2p/. sC1
2

� p/Š

� .�1/ sC1
2 �p 1p

�. sC1
2

� p/Š

�
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D .�1/ s�12 �p

p
�

2slŠ.p � l/Š

1p
�. sC1

2
� p/Š

. 1
s�2p C 1/

D .�1/ s�12 �p 1

2s�1.s � 2p/. s�1
2

� p/ŠlŠ.p � l/Š

D .�1/ s�12 �p 2	 . s
2

C 1/p
�.s � 2p/sŠ

 
s�1
2

p

! 
p

l

!

:

Hence, we obtain

sŠ
zX

lD0
S D 2.k � 1/	 . s

2
C 1/p

�

zX

lD0

s�1
2X

pDl

s�1
2 �pX

qD.z�p/C

.�1/ s�12 ClCpCq�z 1

.s � 2p/

�
 

s�1
2

p

! 
p

l

! 
s � 2p

2q

! 
p C q � l

z � l

!

	 .q C 1
2
/

� 	 . kCsC1
2

� p � q/

	 . nCsC1
2

� p/

	 . k�1
2

C p � l/	 . n�k
2

C q/

	 . n�1
2

C p C q � l/
:

This yields

Z

A.n;k/
�
r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D 2.k � 1/�n;k;k�1
�

n�k�1
2 	 . s

2
C 1/

	 . n�kCsC1
2

/

s�1
2X

zD0
Qz�

r;s�2z;0
n�1 .K; ˇ/

�
zX

lD0

s�1
2X

pDl

s�1
2 �pX

qD.z�p/C

.�1/ s�12 ClCpCq�z 1

.s � 2p/

 
s�1
2

p

! 
p

l

! 
s � 2p

2q

!

�
 
p C q � l

z � l

!

	 .q C 1
2
/
	 . kCsC1

2
� p � q/

	 . nCsC1
2

� p/

	 . k�1
2

C p � l/	 . n�k
2

C q/

	 . n�1
2

C p C q � l/
:

With

�n;k;k�1 D
 
n � 2

k � 1

!
	 . n�kC1

2
/

2�
D .n � 2/Š

.n � k � 1/Š.k � 1/Š
	 . n�kC1

2
/

2�
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we get

Z

A.n;k/
�
r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D .n � 2/Š

.n � k � 1/Š.k � 2/Š
�

n�k�3
2 	 . n�kC1

2
/	 . s

2
C 1/

	 . n�kCsC1
2

/

s�1
2X

zD0
Qz�

r;s�2z;0
n�1 .K; ˇ/

�
zX

lD0

s�1
2X

pDl

s�1
2 �pX

qD.z�p/C

.�1/ s�12 ClCpCq�z 1

.s � 2p/

�
 

s�1
2

p

! 
p

l

! 
s � 2p

2q

! 
p C q � l

z � l

!

� 	 .q C 1
2
/
	 . kCsC1

2
� p � q/

	 . nCsC1
2

� p/

	 . k�1
2

C p � l/	 . n�k
2

C q/

	 . n�1
2

C p C q � l/
:

We denote the threefold sum with respect to l, p and q by R. Hence, R multiplied
with the factor in front of the sum with respect to z equals �n;k;s;z. A direct calculation
for R still remains an open task. However, for the proof this is not required.

Finally, if s is odd we calculate the only so far unknown coefficient �n;k;s;.s�1/=2.
For z D .s � 1/=2 we see that the sum over q only contains one summand, namely
q D .s � 1/=2� p. Hence, we obtain

R D 	 . k
2

C 1/

zX

lD0

s�1
2X

pDl

.�1/ s�12 Cl

 
s�1
2

p

! 
p

l

!

	 . s
2

� p/

�	 .
k�1
2

C p � l/	 . n�kCs�1
2

� p/

	 . nCsC1
2

� p/	 . nCs
2

� l � 1/

D 	 . k
2

C 1/

s�1
2X

pD0
.�1/ s�12

 
s�1
2

p

!

	 . s
2

� p/
	 . n�kCs�1

2
� p/

	 . nCsC1
2

� p/

�
pX

lD0
.�1/l

 
p

l

!
	 . k�1

2
C p � l/

	 . nCs
2

� l � 1/
:
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Then Lemma 5.22 yields

R D 	 . k
2

C 1/	 . k�1
2
/	 . n�kCs�1

2
/

	 . nCs
2

� 1/

s�1
2X

pD0
.�1/ s�12 Cp

 
s�1
2

p

!
	 . s

2
� p/

	 . nCsC1
2

� p/

D 	 . k
2

C 1/	 . k�1
2
/	 . n�kCs�1

2
/

	 . nCs
2

� 1/

s�1
2X

pD0
.�1/p

 
s�1
2

p

!
	 .1

2
C p/

	 . n
2

C 1C p/
:

Again, we apply Lemma 5.22 and obtain

R D p
�
	 . k

2
C 1/	 . k�1

2
/

	 . nC1
2
/

	 . nCs
2
/	 . n�kCs�1

2
/

	 . nCs
2

� 1/	 . nCsC1
2

/
:

Thus, we conclude

�n;k;s; s�12
D .n � 2/Š
.n � k � 1/Š.k � 2/Š

�
n�k�3

2 	 . n�kC1
2

/	 . s
2

C 1/

	 . n�kCsC1
2

/
R

D �
n�k�2

2
.n � 2/Š
	 . nC1

2
/

	 . k
2

C 1/	 . k�1
2
/

.k � 2/Š
	 . n�kC1

2
/

.n � k � 1/Š

� .n C s � 2/	 . s
2

C 1/

.n � k C s � 1/	 . nCsC1
2

/
:

Applying three times Legendre’s formula gives

�n;k;s; s�12
D �

n�k�1
2

2k.n C s � 2/

.n � 1/.n � k C s � 1/
	 . n

2
/

	 . n�k
2
/

	 . s
2

C 1/

	 . nCsC1
2

/
;

which completes the argument. ut
Next we prove Theorem 5.13. As in the previous proof, one can compare the

Crofton integral to the global one obtained in [3, Theorem 3]. However, we deduce
it directly from Theorem 5.4.

Proof (Theorem 5.13) Lemma 5.21 yields

Z

A.n;1/
�
r;s;0
0 .K \ E; ˇ \ E/ �1.dE/

D �
n�1
2 sŠ

	 . nCs
2
/

b s
2 cX

mD0

mX

lD0
.�1/m�l

 
m

l

!
	 . sC1

2
� m/

4m mŠ.s � 2m/ŠQ
l

�
Z

A.n;1/
Q.E/m�l�

r;s�2m;0
0;E .K \ E; ˇ \ E/ �1.dE/:
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If s 2 N0 is even, we conclude from Theorem 5.4

Z

A.n;1/
�
r;s;0
0 .K \ E; ˇ \ E/ �1.dE/

D �
n�1
2 sŠ

	 . nCs
2
/

s
2X

mD0

mX

lD0
.�1/m�l

 
m

l

!
	 . sC1

2
� m/

4m mŠ.s � 2m/Š

� 	 . n
2
/	 . sC1

2
� l/

�	 . nCsC1
2

� l/

s
2�lX

zD0
.�1/z

 
s
2

� l

z

!
1

1 � 2z
Q

s
2�z�r;2z;0

n�1 .K; ˇ/:

A change of the order of summation yields

Z

A.n;1/
�
r;s;0
0 .K \ E; ˇ \ E/ �1.dE/

D �
n�1
2 sŠ

	 . nCs
2
/

s
2X

lD0

s
2X

mDl

.�1/m�l

 
m

l

!
	 . sC1

2
� m/

4m mŠ.s � 2m/Š

� 	 . n
2
/	 . sC1

2
� l/

�	 . nCsC1
2

� l/

s
2�lX

zD0
.�1/z

 
s
2

� l

z

!
1

1 � 2z
Q

s
2�z�

r;2z;0
n�1 .K; ˇ/:

Legendre’s duplication formula gives for the sum with respect to m, which we
denote by S,

S D
p
�

2s

s
2X

mDl

.�1/m�l

 
m

l

!
1

mŠ	 . s
2

� m C 1/

D
p
�

2slŠ

s
2�lX

mD0
.�1/m 1

mŠ	 . s
2

� l � m C 1/
:

As seen before, we conclude from the binomial theorem

S D
p
�

2s. s
2

� l/ŠlŠ

s
2�lX

mD0
.�1/m

 
s
2

� l

m

!

D 1fl D s
2
g	 .

sC1
2
/

sŠ
:
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Hence, we obtain

Z

A.n;1/
�
r;s;0
0 .K \ E; ˇ \ E/ �1.dE/ D �

n�3
2 	 . sC1

2
/

	 . nCs
2
/

	 . n
2
/	 . 1

2
/

	 . nC1
2
/

Q
s
2 �

r;0;0
n�1 .K; ˇ/

D �
n�2
2

	 . n
2
/	 . sC1

2
/

	 . nCs
2
/	 . nC1

2
/
Q

s
2 �

r;0;0
n�1 .K; ˇ/:

On the other hand, if s 2 N is odd, we conclude from Theorem 5.4
Z

A.n;1/
�
r;s;0
0 .K \ E; ˇ \ E/ �1.dE/

D �
n�2
2 	 . n

2
/sŠ

	 . nCs
2
/

s�1
2X

mD0

mX

lD0
.�1/m�l 	 .

sC1
2

� m/

4m mŠ.s � 2m/Š

 
m

l

!

� 	 . s
2

� l C 1/

	 . nCsC1
2

� l/
Q

s�1
2 �r;1;0

n�1 .K; ˇ/:

A change of the order of summation yields
Z

A.n;1/
�
r;s;0
0 .K \ E; ˇ \ E/ �1.dE/

D �
n�2
2 	 . n

2
/sŠ

	 . nCs
2
/

s�1
2X

lD0

s�1
2X

mDl

.�1/m�l 	 .
sC1
2

� m/

4m mŠ.s � 2m/Š

 
m

l

!

� 	 . s
2

� l C 1/

	 . nCsC1
2

� l/
Q

s�1
2 �r;1;0

n�1 .K; ˇ/:

Legendre’s duplication formula gives for the sum with respect to m, which we
denote by S,

S D
p
�

2slŠ

s�1
2 �lX

mD0
.�1/m 1

mŠ	 . s
2

� l � m C 1/
:

Then Lemma 5.23 yields

S D
p
�

2slŠ

� sC1
2 �lX

mD0
.�1/m 1

mŠ	 . s
2

� l � m C 1/
� .�1/ sC1

2 �l 1

. sC1
2

� l/Š	 . 1
2
/

�

D
p
�

2slŠ

�

.�1/ s�12 �l 1p
�.s � 2l/. sC1

2
� l/Š

� .�1/ sC1
2 �l 1p

�. sC1
2

� l/Š

�

D .�1/ s�12 �l 1

2s�1lŠ.s � 2l/. s�1
2

� l/Š
:
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Hence, we obtain

Z

A.n;1/
�
r;s;0
0 .K \ E; ˇ \ E/ �1.dE/

D �
n�2
2 	 . n

2
/sŠ

2s	 . nCs
2
/

s�1
2X

lD0
.�1/ s�12 �l 1

lŠ. s�1
2

� l/Š

	 . s
2

� l/

	 . nCsC1
2

� l/
Q

s�1
2 �

r;1;0
n�1 .K; ˇ/

D �
n�2
2 	 . n

2
/sŠ

2s	 . sC1
2
/	 . nCs

2
/

s�1
2X

lD0
.�1/l

 
s�1
2

l

!
	 .l C 1

2
/

	 . nC2
2

C l/
Q

s�1
2 �

r;1;0
n�1 .K; ˇ/:

Then Lemma 5.22 gives

Z

A.n;1/
�
r;s;0
0 .K \ E; ˇ \ E/ �1.dE/

D sŠ

2s	 . sC1
2
/

�
n�1
2 	 . n

2
/

	 . nCsC1
2

/	 . nC1
2
/
Q

s�1
2 �

r;1;0
n�1 .K; ˇ/:

Now, the assertion follows from Legendre’s duplication formula. ut
Finally, we show that the Crofton formula has a very simple form in the  -

representation of tensorial curvature measures.

Proof (Corollary 5.14) The cases s 2 f0; 1g are checked directly, hence we can
assume s � 2 in the following. Using (5.9) we get

Z

A.n;k/
 r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D 1p
�

b s
2 cX

jD0
.�1/j

 
s

2j

!
	 . j C 1

2
/	 . n

2
C s � j � 1/

	 . n
2

C s � 1/
Qj

�
Z

A.n;k/
�
r;s�2j;0
k�1 .K \ E; ˇ \ E/ �k.dE/: (5.17)
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Then, for k ¤ 1, Theorem 5.12 yields
Z

A.n;k/
 

r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D 1p
�

b s
2 cX

jD0
.�1/j

 
s

2j

!
	 . j C 1

2
/	 . n

2
C s � j � 1/

	 . n
2

C s � 1/

�
b s
2 c�jX

zD0
�n;k;s�2j;z QzCj�

r;s�2j�2z;0
n�1 .K; ˇ/

D 1p
�

b s
2 cX

jD0

b s
2 cX

zDj

.�1/j
 
s

2j

!
	 . j C 1

2
/	 . n

2
C s � j � 1/

	 . n
2

C s � 1/

� �n;k;s�2j;z�j Q
z�

r;s�2z;0
n�1 .K; ˇ/;

where

�n;k;s�2j;z�j D k � 1
n � 1

�
n�k
2 	 . n

2
/

	 . k
2
/	 . n�k

2
/

	 . sC1
2

� j/	 . s
2

� j C 1/

	 . n�kCsC1
2

� j/	 . nCs�1
2

� j/

� 	 . n�k
2

C z � j/	 . kCs�1
2

� z/

	 . s
2

� z C 1/.z � j/Š
;

if z ¤ .s � 1/=2. On the other hand, if z D .s � 1/=2, then the coefficient needs to
be multiplied by the factor k.nCs�2j�2/

.k�1/.nCs�2j�1/ (see the comment after Theorem 5.12).
Applying Legendre’s duplication formula twice, we thus obtain
Z

A.n;k/
 

r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D k � 1

n � 1
�

n�kC1
2 	 . n

2
/

	 . k
2
/	 . n�k

2
/

sŠ

2s

b s
2 cX

zD0

	 . kCs�1
2

� z/

zŠ	 . n
2

C s � 1/	 . s
2

� z C 1/
Qz�

r;s�2z;0
n�1 .K; ˇ/

�
zX

jD0
.�1/j

 
z

j

!
	 . n

2
C s � j � 1/	 . n�k

2
C z � j/

	 . n�kCsC1
2

� j/	 . nCs�1
2

� j/

�
�
1 � 1fz D s�1

2
g
�
1 � k.nCs�2j�2/

.k�1/.nCs�2j�1/
��
:

Denoting the sum with respect to j by Sz, an application of Lemma 5.24 shows that

Sz D
zX

jD0
.�1/j

 
z

j

!
	 . n

2
C s � j � 1/	 . n�k

2
C z � j/

	 . n�kCsC1
2

� j/	 . nCs�1
2

� j/



150 D. Hug and J.A. Weis

D .�1/z 	 . n�k
2
/	 . sC1

2
/	 . kCs�1

2
/	 . n

2
C s � z � 1/

	 . n�kCsC1
2

/	 . nCs�1
2
/	 . sC1

2
� z/	 . kCs�1

2
� z/

; (5.18)

for z ¤ .s � 1/=2 and k > 1. On the other hand, for z D .s � 1/=2 DW t, we obtain
from Lemmas 5.24 and 5.25 (since s > 1 and thus t > 0) that

St D k
k�1

tX

jD0
.�1/j

 
t

j

!
�
1 � 1

nC2t�2j
� 	 . n

2
C 2t � j/	 . n�k

2
C t � j/

	 . n�k
2

C t � j C 1/	 . n
2

C t � j/

D k
k�1

� tX

jD0
.�1/j

 
t

j

!
	 . n

2
C 2t � j/	 . n�k

2
C t � j/

	 . n�k
2

C t � j C 1/	 . n
2

C t � j/

�
tX

jD0
.�1/j

 
t

j

!

1
n�k
2 Ct�j

	 . n
2

C 2t � j/

	 . n
2

C t � j C 1/

�

D .�1/t	 .
n�k
2
/	 .t C 1/	 . k

2
C t/

	 . k
2
/	 . n�k

2
C t C 1/

;

which coincides with (5.18) for z D .s � 1/=2.
Thus, we have

Z

A.n;k/
 

r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D k � 1

n � 1

�
n�kC1

2 	 . n
2
/	 . kCs�1

2
/

	 . k
2
/	 . n�kCsC1

2
/	 . nCs�1

2
/

sŠ	 . sC1
2
/

2s

�
b s
2 cX

zD0
.�1/z 	 . n

2
C s � z � 1/

zŠ	 . n
2

C s � 1/	 . s
2

� z C 1/	 . sC1
2

� z/
Qz�

r;s�2z;0
n�1 .K; ˇ/:

Applying Legendre’s duplication formula twice, we get

Z

A.n;k/
 

r;s;0
k�1 .K \ E; ˇ \ E/ �k.dE/

D k � 1

n � 1
�

n�k
2 	 . n

2
/	 . kCs�1

2
/	 . sC1

2
/

	 . k
2
/	 . n�kCsC1

2
/	 . nCs�1

2
/

� 1p
�

b s
2 cX

zD0
.�1/z

 
s

2z

!
	 .z C 1

2
/	 . n

2
C s � z � 1/

	 . n
2

C s � 1/ Qz�r;s�2z;0
n�1 .K; ˇ/:

With (5.9) we obtain the assertion for k ¤ 1.
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On the other hand, if k D 1, then Theorem 5.13 yields for (5.17) that
Z

A.n;1/
 r;s;0
0 .K \ E; ˇ \ E/ �k.dE/

D �
n�3
2 	 . n

2
/

	 . nC1
2
/	 . n

2
C s � 1/

b s
2 cX

jD0
.�1/j

 
s

2j

!

	 . j C 1
2
/

� 	 . n
2

C s � j � 1/	 .b sC1
2

c � j C 1
2
/

	 . n
2

C b sC1
2

c � j/
Qb s

2 c�r;s�2b s
2 c;0

n�1 .K; ˇ/:

Denoting the sum with respect to j by S and applying Legendre’s duplication
formula three times, we conclude that

S D p
�	 .b sC1

2
c C 1

2
/

b s
2 cX

jD0
.�1/j

 
b s
2
c
j

!
	 . n

2
C s � j � 1/

	 . n
2

C b sC1
2

c � j/
:

Since s � 2, Lemma 5.22 yields S D 0 due to (5.19), and hence the assertion. ut

5.6 Sums of Gamma Functions

In this section, we state four basic identities involving sums of Gamma functions.

Lemma 5.22 Let q 2 N0 and a; b > 0. Then

qX

yD0
.�1/y

 
q

y

!
	 .a C y/

	 .b C y/
D 	 .a/	 .b � a C q/

	 .b C q/	 .b � a/
:

Under the additional assumption a < b, this lemma can be found as
Lemma 15.6.4 in [1], which is also proved there. Since this case is not sufficient
for our purposes, we deduce the current more general version via Zeilberger’s
algorithm.

The factor 	 .b � a C q/ in Lemma 5.22 does not cause any problems in case
a�b�q 2 N0, as the also appearing	 .b�a/ cancels out the singularity, see (5.19).

Proof We set

F.q; y/ WD .�1/y
 
q

y

!
	 .a C y/

	 .b C y/
;

for which we see that F.q; y/ D 0 if y … f0; : : : ; qg, and

f .q/ WD
qX

yD0
F.q; y/:
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Furthermore, we define the function

G.q; y/ WD

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

y.bCy�1/
q�yC1 F.q; y/; for y 2 f0; : : : ; qg;

G.q; q/� .b C q/F.q C 1; q/

C .b � a C q/F.q; q/; for y D q C 1;

0; else:

A direct calculation yields

� .b C q � 1/F.q; y/C .b � a C q � 1/F.q � 1; y/
D G.q � 1; y C 1/� G.q � 1; y/

for y 2 N0. Summing this relation over y 2 f0; : : : ; qg gives

�.b C q � 1/f .q/C .b � a C q � 1/f .q � 1/ D 0

and thus

f .q/ D .b � a C q � 2/.b � a C q � 1/

.b C q � 2/.b C q � 1/
f .q � 2/

:::

D 	 .b � a C q/	 .b/

	 .b C q/	 .b � a/
f .0/;

where

	 .b � a C q/

	 .b � a/
D .b � a/ � � � .b � a C q � 1/ (5.19)

is well-defined, even for a � b 2 N. With

f .0/ D 	 .a/

	 .b/

we obtain the assertion. ut
Lemma 5.23 Let a 2 N0. Then

aX

qD0

.�1/q
	 .a � q C 1

2
/qŠ

D .�1/ap
�.1 � 2a/aŠ

:
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Proof For the sum S on the left-hand side of the asserted equation, we obtain

S D
aX

qD0

 
2q

2a � 1

.�1/q
	 .a � q C 1

2
/qŠ

C 2q C 2

2a � 1

.�1/q
	 .a � q � 1

2
/.q C 1/Š

!

;

where we use that .� 1
2
/	 .� 1

2
/ D p

� . Due to cancellation in this telescoping sum,
the assertion follows immediately. ut

Finally, we establish the following lemmas.

Lemma 5.24 Let a; b; c 2 R and z 2 N0 with a > z � 0 and b > 0. Then

zX

jD0
.�1/j

 
z

j

!
	 .a � j/	 .b C z � j/

	 .c � j/	 .a C b � c � j C 1/

D .�1/z 	 .a � z/	 .b/

	 .a C b � c C 1/	 .c/

	 .a � c C 1/

	 .a � c C 1 � z/

	 .c � b/

	 .c � b � z/
:

The factor 	 .a � c C 1/ (resp. 	 .c � b/) in Lemma 5.24 does not cause any
problems for c � a 2 N (resp. b � c 2 N0), as the also appearing 	 .a � c C 1 � z/
(resp. 	 .c�b�z/) cancels out the singularity. On the other hand, in our applications
of the lemma, we only need the cases where a � c C 1 > z and c � b > z.

Proof We set

F.z; j/ WD .�1/j
 
z

j

!
	 .a � j/	 .b C z � j/

	 .c � j/	 .a C b � c � j C 1/
;

for j 2 f0; : : : ; zg, and F.z; j/ D 0 in all other cases, and

f .z/ WD
zX

jD0
F.z; j/:

Furthermore, we define the function

G.z; j/ WD

8
ˆ̂
<̂

ˆ̂
:̂

� j.a�j/.bCz�j/
z�jC1 F.z; j/; for j 2 f0; : : : ; zg;

G.z; z/C .a � z � 1/F.z C 1; z/
C .c � b � z � 1/.a � c � z/F.z; z/; for j D z C 1;

0; otherwise:

A direct calculation yields

.a � z/F.z; j/C .c � b � z/.a � c � z C 1/F.z � 1; j/
D G.z � 1; j C 1/� G.z � 1; j/
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for j 2 N0. Summing this relation over j 2 f0; : : : ; zg gives

.a � z/f .z/C .c � b � z/.a � c � z C 1/f .z � 1/ D 0

and thus

f .z/ D .c � b � z/.c � b � z C 1/.a � c � z C 1/.a � c � z C 2/

.a � z/.a � z C 1/
f .z � 2/

:::

D .�1/z 	 .c � b/	 .a � c C 1/	 .a � z/

	 .c � b � z/	 .a � c C 1� z/	 .a/
f .0/;

where

	 .c � b/

	 .c � b � z/
D .c � b � z/ � � � .c � b � 1/

is well-defined, even for b � c 2 N0, and a similar statement holds for 	 .a�cC1/
	 .a�cC1�z/ .

With

f .0/ D 	 .a/	 .b/

	 .c/	 .a C b � c C 1/

we obtain the assertion. ut
Lemma 5.25 Let a; b 2 R with a; b > 0 and t 2 N. Then

tX

jD0
.�1/j 1

b C j

 
t

j

!
	 .a C t C j/

	 .a C 1C j/
D 	 .a � b C t/	 .b/	 .t C 1/

	 .a � b C 1/	 .b C t C 1/
:

The factor	 .a�bCt/ in Lemma 5.25 does not cause any problems for b�a�t 2 N0,
as the also appearing 	 .a � b C 1/ cancels out the singularity. In our application of
the lemma, we will additionally know that a > b.

Proof We set

F.t; j/ WD .�1/j 1

b C j

 
t

j

!
	 .a C t C j/

	 .a C 1C j/
;

for which we see that F.t; j/ D 0 if j … f0; : : : ; tg, and

f .t/ WD
tX

jD0
F.t; j/:
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Furthermore, we define the function

G.t; j/ WD

8
ˆ̂
<̂

ˆ̂
:̂

j.aCj/.aC2tC1/.t2Ct.aC1/�jC1/.bCj/
t.t�jC1/.aCt/.aCtC1/ F.t; j/; for j 2 f0; : : : ; tg;

G.t; t/ � .b C t C 1/F.t C 1; t/
C .t C 1/.a � b C t/F.t; t/; for j D t C 1;

0; otherwise:

A direct calculation yields

� .b C t/F.t; j/C t.a � b C t � 1/F.t � 1; j/
D G.t � 1; j C 1/� G.t � 1; j/

for j 2 N0. Summing this relation over j 2 f0; : : : ; tg gives

�.b C t/f .t/C t.a � b C t � 1/f .t � 1/ D 0

and thus

f .t/ D .t � 1/t.a � b C t � 2/.a � b C t � 1/

.b C t � 1/.b C t/
f .t � 2/

:::

D 	 .t C 1/	 .a � b C t/	 .b C 2/

	 .a � b C 1/	 .b C t C 1/
f .1/:

With

f .1/ D 1

b
� 1

b C 1
D 1

b.b C 1/

we obtain the assertion. ut
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Chapter 6
A Hadwiger-Type Theorem for General Tensor
Valuations

Franz E. Schuster

Abstract Hadwiger’s characterization of continuous rigid motion invariant real
valued valuations has been the starting point for many important developments
in valuation theory. In this chapter, the decomposition of the space of continuous
and translation invariant valuations into a sum of SO.n/ irreducible subspaces,
derived by S. Alesker, A. Bernig and the author, is discussed. It is also explained
how this result can be reformulated in terms of a Hadwiger-type theorem for
translation invariant and SO.n/ equivariant valuations with values in an arbitrary
finite dimensional SO.n/ module. In particular, this includes valuations with values
in general tensor spaces. The proofs of these results will be outlined modulo a couple
of basic facts from representation theory. In the final part, we survey a number of
special cases and applications of the main results in different contexts of convex and
integral geometry.

6.1 Statement of the Principal Results

Let K n denote the space of convex bodies in Euclidean n-space R
n, where n � 3,

endowed with the Hausdorff metric. In this chapter we consider valuations � defined
on K n and taking values in an Abelian semigroup A , that is,

�.K [ L/C �.K \ L/ D �.K/C �.L/

whenever K [ L is convex and C denotes the operation of A .
The most famous and important classical result on scalar-valued valuations

(where A D R or C) is the characterization of continuous rigid motion invariant
valuations by Hadwiger [38] (which was slightly improved later by Klain [44]).
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Theorem ([38, 44]) A basis for the vector space of all continuous, translation- and
SO.n/ invariant scalar valuations onK n is given by the intrinsic volumes.

The characterization theorem of Hadwiger had a transformative effect on integral
geometry. It not only allows for an effortless proof of the principal kinematic
formula (see, e.g., [46]) but almost all classical integral-geometric results can be
derived from this landmark theorem. It also motivated subsequent characterizations
of rigid motion equivariant vector-valued valuations (where A D R

n) (see [40]),
valuations taking values in the set of finite Borel measures on R

n or Sn�1 which
intertwine rigid motions (see [67, 68]) and, more recently, Minkowski valuations
(where A D K n endowed with Minkowski addition) which are translation
invariant and SO.n/ equivariant (see [43, 66, 71, 72, 74, 75]). Important parts of
modern integral geometry also deal with variants of Hadwiger’s characterization
theorem, where either the group SO.n/ is replaced by a subgroup acting transitively
on the unit sphere (see [6, 15, 16, 18, 20, 23]) or the valuations are invariant under
the larger group SL.n/ but neither assumed to be continuous nor translation invariant
(see, e.g., [35, 50, 54]).

Here we focus on continuous and translation invariant valuations which take
values in a general (finite dimensional) tensor space � and are equivariant with
respect to SO.n/. The case of symmetric tensors, where � D Symk.Rn/, was first
investigated by McMullen [58], who considered instead of translation invariant
more general isometry covariant tensor valuations. Alesker [3, 4] showed that the
space of all such continuous isometry covariant Symk.Rn/-valued valuations (of a
fixed rank and given degree of homogeneity) is spanned by the Minkowski tensors.
More recently, Hug, Schneider and Schuster [41, 42] explicitly determined the
dimension of this space and obtained a full set of kinematic formulas for Minkowski
tensors. Following a more algebraic approach, these kinematic formulas could be
further simplified in the translation invariant case by Bernig and Hug [19]. For
applications of the integral geometry of tensor valuations in different areas, see
Chaps. 11–15 and the references therein. We also mention that Symk.Rn/-valued
valuations were also investigated in the context of affine and centro-affine geometry
by Ludwig [51] and Haberl and Parapatits [36, 37].

Bernig [14] constructed an interesting translation invariant valuation with values
in �k.Rn/ ˝ �k.Rn/ which can be interpreted as a natural curvature tensor. Apart
from this, not much was known for general, non-symmetric tensor valuations until
recently Alesker, Bernig and the author [11] established a Hadwiger-type theorem
for continuous, translation invariant and SO.n/ equivariant valuations with values in
an arbitrary finite dimensional complex representation space � of SO.n/. In order
to state this result first recall that given a Lie group G and a topological vector
space 	 (finite or infinite dimensional), a (continuous) representation of G on 	 is
a continuous left action G � 	 ! 	 such that for each g 2 G the map v 7! g � v is
linear. Note that we assume throughout that all representations are continuous.

For a finite dimensional complex vector space 	 , we denote by �Val the vector
space of all continuous and translation invariant valuations with values in � and
write � Vali for its subspace of all valuations of degree i. If � D C, then we simply
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write Val and Vali, respectively. McMullen’s decomposition theorem [56] implies
that

� Val D
M

0�i�n

� Vali: (6.1)

We also recall the parametrization of the isomorphism classes of irreducible
representations of SO.n/ in terms of their highest weights. These can be identified
with bn=2c-tuples of integers .�1; : : : ; �bn=2c/ such that

(
�1 � �2 � � � � � �bn=2c � 0 for odd n;

�1 � �2 � � � � � �n=2�1 � j�n=2j for even n:
(6.2)

We write �� for any isomorphic copy of an irreducible representation of SO.n/ with
highest weight � D .�1; : : : ; �bn=2c/. Note that since SO.n/ is a compact Lie group,
every �� is finite dimensional. Moreover, any finite dimensional representation
of SO.n/ can be decomposed into a direct sum of irreducible representations. In
particular, we have a decomposition of our representation space � of the form

� D
M

�

m.�; �/ ��; (6.3)

where the sum ranges over a finite number of highest weights � D .�1; : : : ; �bn=2c/
satisfying (6.2). Here and in the following m.‚; �/ denotes the multiplicity of �� in
an arbitrary SO.n/ module‚ which, by Schur’s lemma, is given by

m.‚; �/ D dim HomSO.n/.‚; ��/;

where HomSO.n/ denotes as usual the space of continuous linear SO.n/ equivariant
maps. If m.‚; �/ is 0 or 1 for all highest weights � satisfying (6.2), we say that the
SO.n/module‚ is multiplicity free. For explicit examples of decompositions of the
form (6.3) and more background material as well as references on representation
theory of compact Lie groups, see Sect. 6.2.

We are now ready to state the main result of [11] which is the topic of this chapter.
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Theorem 6.1 Let � be a finite dimensional complex SO.n/ module and let 0 � i
� n. The dimension of the subspace of SO.n/ equivariant valuations in � Vali is
given by

X

�

m.�; �/;

where the sum ranges over all highest weights � D .�1; : : : ; �bn=2c/ satisfying (6.2)
and the following additional conditions:

(i) �j D 0 for j > minfi; n � ig;
(ii) j�jj ¤ 1 for 1 � j � bn=2c;

(iii) j�2j � 2.

Theorem 6.1 follows from an equivalent result about the decomposition of the
space Vali into SO.n/ irreducible subspaces.

Theorem 6.2 Let 0 � i � n. Under the action of SO.n/ the space Vali is
multiplicity free. Moreover, m.Vali; �/ D 1 if and only if the highest weight
� D .�1; : : : ; �bn=2c/ satisfies (6.2) and the conditions (i)–(iii) from Theorem 6.1.

In order to outline how Theorem 6.1 can be deduced from Theorem 6.2 (for
the precise argument, see [11, p. 765]), first note that we may assume that �
is irreducible, that is, � D �� for some highest weight � D .�1; : : : ; �bn=2c/
satisfying (6.2). Next, observe that the linear map � W Vali ˝ � ! � Vali, induced
by

�.� ˝ v/.K/ D �.K/v;

is an isomorphism and that the subspace of SO.n/ equivariant valuations in � Vali
corresponds under this isomorphism to the subspace of SO.n/ invariant elements in
Vali ˝� . (As usual we will use the superscript SO.n/ to denote subspaces of SO.n/
invariant elements.) Now, if S denotes the set of highest weights of SO.n/ satisfying
conditions (i)–(iii), then, by Theorem 6.2,

dim.Vali ˝ �/SO.n/ D
X

�2S
dim.�� ˝ ��/

SO.n/ D
X

�2S
dim HomSO.n/.�

�
� ; ��/:

It follows from Lemma 6.3 below, that the SO.n/ irreducible subspaces �� for � 2 S
are not necessarily isomorphic as SO.n/ modules to their dual representations ��

�

(see Sect. 6.2 for details). However, Lemma 6.3 also implies that if � 2 S, then also
�0 2 S, where �0 is the highest weight of ��

� . Thus, from an application of Schur’s
lemma, we obtain

dim.Vali ˝ �/SO.n/ D
X

�2S
dim HomSO.n/.��; ��/ D

(
1 if � 2 S;

0 otherwise
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which is precisely the statement of Theorem 6.1 in the case � D ��. We also remark
that the argument outlined here can be easily reversed to deduce Theorem 6.2 from
Theorem 6.1.

A proof of Theorem 6.2 for even valuations was first given by Alesker and
Bernstein [10] (based on the Irreducibility Theorem of Alesker [5]). They used the
Klain embedding of continuous, translation invariant and even valuations and its
relation to the cosine transform on Grassmannians to deduce Theorem 6.2 in this
special case. We will discuss this approach in more detail in the last section of this
chapter, where we also survey a number of other special cases and applications of
Theorems 6.1 and 6.2.

In Sect. 6.2 we collect more background material about representations of SO.n/
which is needed for the analysis of the action of SO.n/ on the space of translation
invariant differential forms on the sphere bundle. Combining this with a description
of smooth translation invariant valuations via integral currents by Alesker [8] and,
in a refined form, by Bernig and Bröcker [17] and Bernig [16], this will allow us to
give an essentially complete proof of Theorem 6.2 in Sect. 6.4.

6.2 Irreducible Representations of SO.n/

For an introduction to the representation theory of compact Lie groups we refer to
the books by Bröcker and tom Dieck [21], Fulton and Harris [24], Goodman and
Wallach [32], and Knapp [48]. These books, in particular, contain all the material
on irreducible representations of SO.n/ which are needed in this chapter.

In this and the next section let V be an n-dimensional Euclidean vector space
and write VC D V ˝ C for its complexification. For later reference we state here a
number of examples of irreducible SO.n/modules as well as reducible ones together
with their direct sum decomposition into SO.n/ irreducible subspaces.

Examples

(a) Up to isomorphism, the trivial representation is the only one dimensional
(complex) representation of SO.n/. It corresponds to the SO.n/module �.0;:::;0/.
The standard representation of SO.n/ on VC is isomorphic to �.1;0;:::;0/.

(b) The exterior power �iVC is SO.n/ irreducible for every 0 � i � bn=2c � 1.
If n D 2i C 1 is odd, then �iVC is also irreducible under the action of
SO.n/. In these cases the highest weight tuple of �iVC is given by � D
.1; : : : ; 1; 0; : : : ; 0/, where 1 appears i times. If n D 2i is even, then �iVC

is not irreducible but is a direct sum of two irreducible subspaces, namely,
�iVC D �.1;:::;1/ ˚ �.1;:::;1;�1/. Moreover, for every i 2 f0; : : : ; ng, there is a
natural isomorphism of SO.n/ modules

�iVC Š �n�iVC: (6.4)

The spaces�iVC are called fundamental representations since they can be used
to construct arbitrary irreducible representations of SO.n/ (cf. [24]).
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(c) The symmetric power SymkVC is not irreducible as SO.n/module when k � 2.
Its direct sum decomposition into irreducible subspaces takes the form

SymkVC D
bk=2cM

jD0
�.k�2j;0;:::;0/: (6.5)

(d) The decomposition of L2.Sn�1/ into an orthogonal sum of SO.n/ irreducible
subspaces is given by

L2.Sn�1/ D
M

k2N
H n

k ; (6.6)

where H n
k is the space of spherical harmonics of dimension n and degree k.

The highest weight tuple of the space H n
k is given by � D .k; 0; : : : ; 0/.

(e) For 1 � i � n � 1, the space L2.G.n; i// is an orthogonal sum of SO.n/
irreducible subspaces whose highest weights .�1; : : : ; �bn=2c/ satisfy (6.2) and
the following two additional conditions (see, e.g., [48, Theorem 8.49]):

(
�j D 0 for all j > minfi; n � ig;
�1; : : : ; �bn=2c are all even.

(6.7)

Let ‚ be a complex finite dimensional SO.n/ module which is not necessarily
irreducible. The dual representation of SO.n/ on the dual space ‚� is defined by

.# u�/.v/ D u�.#�1v/; # 2 SO.n/; u� 2 ‚�; v 2 ‚:

We say that ‚ is self-dual if ‚ and‚� are isomorphic representations. The module
‚ is called real if there exists a non-degenerate symmetric SO.n/ invariant bilinear
form on ‚. In particular, if ‚ is real, then ‚ is also self-dual.

Lemma 6.3 ([21]) Let � D .�1; : : : ; �bn=2c/ be a tuple of integers satisfy-
ing (6.2).

(a) If n � 2 mod 4, then the irreducible representation �� of SO.n/ is real if and
only if �n=2 D 0.

(b) If n � 2 mod 4 and �n=2 ¤ 0, then the dual of �� is isomorphic to ��0 , where
�0 D .�1; : : : ; �n=2�1;��n=2/.

(c) If n 6� 2 mod 4, then all representations of SO.n/ are real.

Now, let � be again a finite dimensional complex SO.n/ module and denote by
% W SO.n/ ! GL.�/ the corresponding representation. The character of � is the
function char� W SO.n/ ! C defined by

.char�/.#/ D tr%.#/;

where tr %.#/ is the trace of the linear map %.#/ W � ! � .
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The most important property of the character of a complex representation is
that it determines the module � up to isomorphism. Moreover, several well known
properties of the trace map immediately carry over to useful arithmetic properties
of characters. For example, if � and ‚ are finite dimensional SO.n/ modules, then

char.� ˚‚/ D char� C char‚ (6.8)

and

char.� ˝‚/ D char� � char‚: (6.9)

A description of the characters of irreducible representations of compact Lie
groups in terms of their highest weights is provided by Weyl’s character formula. For
our purposes, that is, the case of the special orthogonal group SO.n/, a consequence
of this description, known as the second determinantal formula, is crucial. In order
to state this result let � D .�1; : : : ; �bn=2c/ be a tuple of non-negative integers
satisfying (6.2). We define the SO.n/ module �� by

�� WD
(
�� ˚ ��0 if n is even and �n=2 ¤ 0;

�� otherwise:

The conjugate of � is the s WD �1 tuple � D .�1; : : : ; �s/ defined by letting �j be
the number of terms in � that are greater than or equal j.

The second determinantal formula expresses the character of �� as a polynomial
in the characters Ei WD char�iVC, i 2 Z. (Here and in the following, we use the
convention Ei D 0 for i < 0 or i > n.)

Theorem 6.4 ([24]) Let � D .�1; : : : ; �bn=2c/ be a tuple of non-negative integers
satisfying (6.2) and let � D .�1; : : : ; �s/ be the conjugate of �. The character of
�� is equal to the determinant of the s � s-matrix whose ith row is given by

�
E�i�iC1 E�i�iC2 C E�i�i � � � E�i�iCs C E�i�i�sC2

�
: (6.10)

In the definition of the conjugate of � we will later also allow s > �1. Note that
this introduces additional zeros at the end of the conjugate tuple but does not change
the determinant of the matrix defined by (6.10).

In order to analyze the action of SO.n/ on the infinite dimensional space Val,
we need to briefly discuss the construction of a class of such infinite dimensional
representations of a Lie group G induced from closed subgroups H 
 G (although
we only need the case G D SO.n/ and H D SO.n � 1/). To this end, we
denote by C1.GI�/ the space of all smooth functions from G to an arbitrary finite
dimensional (complex) H module � . The induced representation of G by H on the
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space

IndGH� WD ˚
f 2 C1.GI�/ W f .gh/ D h�1f .g/ for all g 2 G; h 2 H


 
 C1.GI�/

is given by left translation, that is, .g f /.u/ D f .g�1u/, g; u 2 G. Conversely, if ‚
is any representation of G, we obtain a representation ResGH‚ of H by restriction.
The fundamental Frobenius Reciprocity Theorem establishes a connection between
induced and restricted representations.

Theorem 6.5 ([32]) If ‚ is a G module and � is an H module, then there is a
canonical vector space isomorphism

HomG.‚; IndGH�/ Š HomH.ResGH‚;�/:

A for our purposes crucial consequence of the Frobenius Reciprocity Theorem
(and the definition of multiplicity) is the fact that if ‚ and � are irreducible, then
the multiplicity of ‚ in IndGH� equals the multiplicity of � in ResGH‚.

In order to apply Theorem 6.5 in the case G D SO.n/ and H D SO.n � 1/,
we require the following branching formula for decomposing ResSO.n/

SO.n�1/� into
irreducible SO.n � 1/ modules.

Theorem 6.6 ([24]) If �� is an irreducible representation of SO.n/ with highest
weight tuple � D .�1; : : : ; �bn=2c/ satisfying (6.2), then

ResSO.n/
SO.n�1/�� D

M

�

��; (6.11)

where the sum ranges over all � D .�1; : : : ; �k/ with k WD b.n � 1/=2c satisfying
(
�1 � �1 � �2 � �2 � � � � � �k�1 � �bn=2c � j�kj for odd n;

�1 � �1 � �2 � �2 � � � � � �k � j�n=2j for even n:

6.3 Smooth Valuations and the Rumin-de Rham Complex

We discuss in this section a description of translation invariant smooth valuations
via integral currents and how it relates to induced representations. This will allow
us in the next section to apply the machinery from representation theory presented
in Sect. 6.2 to prove Theorem 6.2.

First recall that by McMullen’s decomposition theorem

Val D
M

0�i�n

ValCi ˚ Val�i ; (6.12)



6 A Hadwiger-Type Theorem for General Tensor Valuations 165

where Vali̇ denote the subspaces of valuations of degree i and even or odd parity,
respectively. In the cases i D 0 and i D n a simple description of the valuations in
Vali is possible (cf. Chap. 1, Theorem 1.16 and Corollary 1.24).

Proposition 6.7 ([39])

(a) The space Val0 is one-dimensional and spanned by the Euler characteristic.
(b) The space Valn is one-dimensional and spanned by the volume functional.

Note that statement (a) of Proposition 6.7 is trivial while the non-trivial statement
(b) was proved by Hadwiger [39, p. 79]. We also note that Proposition 6.7 directly
implies Theorem 6.2 for the cases i D 0 and i D n.

There is also an explicit description of the valuations in Valn�1 going back to
McMullen [57] (cf. Chap. 1, Theorem 1.25). However, in this chapter we will not
make use of this result and we will therefore not repeat it here. Instead we turn to
the notion of smooth valuations. To this end first recall that the space Val becomes
a Banach space when endowed with the norm

k�k D supfj�.K/j W K 
 Bng:

Here, Bn denotes as usual the Euclidean unit ball. On the Banach space Val there is
a natural continuous action of the group GL.n/ given by

.A�/.K/ D �.A�1K/; A 2 GL.n/; � 2 Val:

Clearly, the subspaces Vali̇ 
 Val are GL.n/ invariant. In fact, they are irreducible
as was shown by Alesker [5] (but we will not use this deep result directly).

Smooth translation invariant valuations were first introduced by Alesker [6].
By definition, they are precisely the smooth vectors (see, e.g. [77]) of the natural
representation of GL.n/ on Val.

Definition A valuation � 2 Val is called smooth if the map GL.n/ ! Val, defined
by A 7! A�, is infinitely differentiable.

As usual, we denote by Val1 the Fréchet space of smooth translation invariant
valuations endowed with the Gårding topology (see, e.g., [80, Section 4.4]) and
write Val1i for its subspaces of smooth valuations of degree i.

By general properties of smooth vectors (cf. [77]), the spaces Val1i are dense
GL.n/ invariant subspaces of Vali and from (6.12) it is easy to deduce that

Val1 D
M

0�i�n

Val1i :

The advantage of considering smooth translation invariant valuations instead of
merely continuous ones is that the Fréchet space Val1 admits additional algebraic
structures. Since these are precisely the topic of Chap. 3, we will discuss here only
one structural property of Val1 which is crucial for us. To this end, first recall that
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McMullen’s decomposition (6.12) implies that for any � 2 Val and K 2 K n, the
function t 7! �.K C tBn/ is a polynomial of degree at most n. This, in turn, gives
rise to a derivation operatorƒ W Val ! Val, defined by

.ƒ�/.K/ D d

dt

ˇ
ˇ
ˇ
tD0�.K C tBn/: (6.13)

From this definition it follows that if � 2 Vali, then ƒ� 2 Vali�1, that ƒ is
continuous, SO.n/ equivariant, and that ƒ maps smooth valuations to smooth ones.
Moreover, the following hard Lefschetz theorem for ƒ was proved by Alesker [6]
for even and by Bernig and Bröcker [17] for general valuations.

Theorem 6.8 ([6, 17]) For n
2
< i � n, the map ƒ2i�n W Val1i ! Val1n�i is an

SO.n/ equivariant isomorphism of Fréchet spaces.

The main tool used in [17] to establish Theorem 6.8 was a description of smooth
valuations in terms of the normal cycle map by Alesker [8]. Since a refined version
of this result by Bernig [16] (stated below as Theorem 6.9) is critical for the proof
of Theorem 6.2, we discuss these results and the necessary background in the
following.

Let SV D V�Sn�1 denote the unit sphere bundle on the n-dimensional Euclidean
vector space V . The natural (smooth) action of SO.n/ on SV is given by

l#.x; u/ WD .#x; #u/; # 2 SO.n/; .x; u/ 2 SV: (6.14)

Similarly, each y 2 V determines a smooth map ty W SV ! SV by

ty.x; u/ D .x C y; u/; .x; u/ 2 SV: (6.15)

The canonical contact form ˛ on SV is the one form given by

˛j.x;u/.w/ D hu; d.x;u/�.w/i; w 2 T.x;u/SV;

where � W SV ! V denotes the canonical projection and d.x;u/� is its differential
at .x; u/ 2 SV . Endowed with the contact form ˛ the manifold SV becomes a
2n � 1 dimensional contact manifold. The kernel of ˛ defines the so-called contact
distribution Q WD ker˛. Note that the restriction of d˛ to Q is a non-degenerate two
form and, therefore, each space Q.x;u/ becomes a symplectic vector space.

Since SV is a product manifold, the vector space ˝�.SV/ of complex valued
smooth differential forms on SV admits a bigrading given by

˝�.SV/ D
M

i;j

˝ i;j.SV/;
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where ˝ i;j.SV/ are the subspaces of ˝�.SV/ of forms of bidegree .i; j/. We denote
by ˝ i;j the subspace of translation invariant forms in ˝ i;j.SV/, that is,

˝ i;j D f! 2 ˝ i;j.SV/ W t�y! D ! for all y 2 Vg:

The natural (continuous) action of SO.n/ on the vector space˝ i;j is given by

#! D l�
#�1!; # 2 SO.n/; ! 2 ˝ i;j:

Here, t�y and l�
#�1 are the pullbacks of the maps defined in (6.14) and (6.15). We also

note that the restriction of the exterior derivative d to ˝ i;j has bidegree .0; 1/.
For K 2 K n and x 2 @K, let N.K; x/ denote the normal cone of K at x. The

normal cycle of K is the Lipschitz submanifold of SV defined by

nc.K/ D f.x; u/ 2 SV W x 2 @K; u 2 N.K; x/g:

For 0 � i � n � 1, Alesker [8, Theorem 5.2.1] proved that the SO.n/ equivariant
map � W ˝ i;n�i�1 ! Val1i , defined by

�.!/.K/ D
Z

nc.K/
!; (6.16)

is surjective. However, for our purposes we need a more precise version of this
statement which includes, in particular, a description of the kernel of � first obtained
by Bernig and Bröcker [17]. In order to state this refinement, we first have to recall
the notion of primitive forms.

Let Ii;j denote the SO.n/ submodule of ˝ i;j defined by

Ii;j WD f! 2 ˝ i;j W ! D ˛ ^ � C d˛ ^  ; � 2 ˝ i�1;j;  2 ˝ i�1;j�1g:

The SO.n/ module˝ i;j
p of primitive forms is defined as the quotient

˝ i;j
p WD ˝ i;j=Ii;j: (6.17)

Primitive forms are very important for the study of translation invariant valuations
since, by a theorem of Bernig [16], the space Val1i , 0 � i � n, fits into an exact
sequence of the spaces˝ i;j

p . In order to state Bernig’s result precisely, first note that
dIi;j 
 Ii;jC1. Thus, by (6.17), on one hand the exterior derivative induces a linear
SO.n/ equivariant operator dQ W ˝ i;j

p ! ˝ i;jC1
p . On the other hand, integration over

the normal cycle (6.16) induces a linear map � W ˝ i;n�i�1
p ! Val1i which, clearly,

is also SO.n/ equivariant.
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Theorem 6.9 ([16]) For every 0 � i � n, the SO.n/ equivariant sequence of
SO.n/ modules

0 ��! �iVC ��! ˝ i;0
p

dQ��! ˝ i;1
p

dQ��! � � � dQ��! ˝ i;n�i�1
p

���! Val1i ��! 0

is exact.

In order to apply Theorem 6.9 in the proof of Theorem 6.2, we require an
equivalent description of primitive forms involving horizontal forms. To this end, let
R denote the Reeb vector field on SV defined by R.x;u/ D .u; 0/. Note that ˛.R/ D 1

and that iRd˛ D 0, where iR denotes the interior product with the vector field R. The
SO.n/ submodule˝ i;j

h 
 ˝ i;j of horizontal forms is defined by

˝
i;j
h WD f! 2 ˝ i;j W iR! D 0g:

From this definition it is not difficult to see that the multiplication by the symplectic
form �d˛ induces an SO.n/ equivariant linear operator L W ˝ i;j

h ! ˝
iC1;jC1
h which

is injective if i C j � n � 2. Moreover, it follows from (6.17) that in this case

˝ i;j
p D ˝

i;j
h =L˝

i�1;j�1
h : (6.18)

Let us now fix an arbitrary point u0 2 Sn�1 and let SO.n�1/ denote the stabilizer
of SO.n/ at u0. For u 2 Sn�1, we denote by Wu WD TuSn�1 ˝C the complexification
of the tangent space TuSn�1 and we write W0 to denote Wu0 . The advantage of
using description (6.18) instead of definition (6.17) of primitive forms becomes clear
from the next lemma which relates horizontal and primitive forms to certain SO.n/
representations induced from SO.n � 1/.

Lemma 6.10 ([11]) For i; j 2 N, there is an isomorphism of SO.n/ modules

˝
i;j
h Š IndSO.n/

SO.n�1/.�
iW�

0 ˝�jW�
0 /: (6.19)

Moreover, if i C j � n � 1, then there is an isomorphism of SO.n/ modules

˝ i;j
p ˚ IndSO.n/

SO.n�1/.�
i�1W�

0 ˝�j�1W�
0 / Š IndSO.n/

SO.n�1/.�
iW�

0 ˝�jW�
0 /: (6.20)

Note that (6.20) is an immediate consequence of (6.19) and (6.18).

6.4 Proof of the Main Result

With the auxiliary results from the last two sections at hand, we are now in a position
to complete the proof of Theorem 6.2. To this end, first recall that the cases i D 0

and i D n are immediate consequences of Proposition 6.7. Hence, by Theorem 6.8,
we may assume that n=2 � i < n.
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Let � D .�1; : : : ; �bn=2c/ be a highest weight tuple of SO.n/. As a consequence
of (6.20), the multiplicity m.˝ i;j

p ; �/ is finite for all i; j 2 N such that i C j � n � 1.
Since, by Theorem 6.9, the spaces Val1i are quotients of ˝ i;n�i�1

p , it follows that
also m.Val1i ; �/ is finite. Moreover, since m.Vali; �/ D m.Val1i ; �/, we deduce
from Theorem 6.9 that

m.Vali; �/ D .�1/n�im.�iVC; �/C
n�i�1X

jD0
.�1/n�1�i�jm.˝ i;j

p ; �/ (6.21)

and another application of (6.20) yields

m.˝ i;j
p ; �/ D m

�
IndSO.n/

SO.n�1/.�
iW ˝�jW/; �

� � m
�
IndSO.n/

SO.n�1/.�
i�1W ˝�j�1W/; �

�
;

where W Š W� denotes the complex standard representation of SO.n � 1/. In
order to further simplify the last expression, we require a consequence of the second
determinantal formula, Theorem 6.4. In order to state this simple auxiliary result,
let #.�; j/ denote the number of integers in � which are equal to j.

Lemma 6.11 If i; j 2 N are such that n=2 � i � n and i C j � n, then

EiEj � Ei�1Ej�1 D
X

�

char��; (6.22)

where the sum ranges over all tuples of non-negative integers � D .�1; : : : ; �bn=2c/
satisfying (6.2) and

�1 � 2; #.�; 1/ D n � i � j; #.�; 2/ � j: (6.23)

Proof The conjugate of an bn=2c-tuple of non-negative integers � D .�1; : : : ;

�bn=2c/ satisfying (6.2) and (6.23) is given by� D .�1; �2/, where�2 D #.�; 2/ � j
and �1 � �2 D #.�; 1/ D n � i � j. Thus, by Theorem 6.4,

char�� D det

�
E�2Ck E�2CkC1 C E�2Ck�1
E�2�1 E�2 C E�2�2

�

;

where k D n � i � j. Since, by (6.4), En�i D Ei, we therefore obtain for the right
hand side of (6.22),

X

�

char�� D
jX

�2D0

�
E�2Ck.E�2 C E�2�2/� E�2�1.E�2CkC1 C E�2Ck�1/

�

D En�iEj � En�.i�1/Ej�1 D EiEj � Ei�1Ej�1:

ut
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An application of Lemma 6.11 with n replaced by n � 1 and 0 � j � n � 1 � i
now yields

m.˝ i;j
p ; �/ D

X

�

m
�
IndSO.n/

SO.n�1/�� ; �
�
; (6.24)

where the sum ranges over all k WD b.n � 1/=2c-tuples of non-negative highest
weights � D .�1; : : : ; �k/ of SO.n � 1/ such that

�1 � 2; #.�; 1/ D n � 1 � i � j; #.�; 2/ � j:

Let Wi denote the union of these k-tuples of non-negative highest weights of
SO.n � 1/. By (6.21) and (6.24), we now have

m.Vali; �/ D .�1/n�im.�iVC; �/C
X

�2Wi

.�1/j� jm
�
IndSO.n/

SO.n�1/�� ; �
�
: (6.25)

The Frobenius Reciprocity Theorem (Theorem 6.5), the branching formula from
Theorem 6.6, and the definition of �� yield

X

�2Wi

.�1/j� jm
�
IndSO.n/

SO.n�1/�� ; �
� D

X

�

.�1/j�j;

where the sum on the right ranges over all tuples � D .�1; : : : ; �k/ with �n�i D 0

and

(
��
1 � �1 � ��

2 � �2 � : : : � �k�1 � ��
bn=2c � j�kj for odd n;

��
1 � �1 � ��

2 � �2 � : : : � �k � ��
n=2 for even n:

:

Here, ��
1 WD minf�1; 2g and ��

j WD j�jj for every 1 < j�bn=2c. Thus, if ��
n�iC1 > 0,

then there is no such tuple �. However, if ��
n�iC1 D 0, then

X

�2Wi

.�1/j� jm
�
IndSO.n/

SO.n�1/�� ; �
� D

n�i�1Y

jD1

��

jX

�jD��

jC1

.�1/�j :

This product vanishes if the ��
j ; j D 1; : : : ; n � i, do not all have the same parity.

If the ��
j all do have the same parity, then the product above equals .�1/.n�i�1/��

1 .
Hence, we obtain for i > n=2,

X

�2Wi

.�1/j� jm
�
IndSO.n/

SO.n�1/�� ; �
� D

8
ˆ̂
<

ˆ̂
:

.�1/n�i�1 if �� Š �n�iVC;

1 if � satisfies (i), (ii), (iii);

0 otherwise:
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If i D n=2, in which case n must be even, then

X

�2Wi

.�1/j� jm
�
IndSO.n/

SO.n�1/�� ; �
� D

8
ˆ̂
<

ˆ̂
:

.�1/i�1 if � D .1; : : : ; 1;˙1/;
1 if � satisfies (i), (ii) and (iii);

0 otherwise:

Plugging these expressions into (6.25) and using that�n=2VC D �.1;:::;1/˚�.1;:::;1;�1/
if n is even and �n�iVC Š �iVC for every i 2 f0; : : : ; ng, completes the proof of
Theorem 6.2.

6.5 Special Cases and Applications

In this final section we discuss numerous special cases and recent applications of
Theorems 6.1 and 6.2. In particular, these results should illustrate the variety of
implications that the study of valuations has for different areas.

6.5.1 Special Cases

The following is a list of special cases and immediate consequences of Theo-
rem 6.1.

• If � D �.0;:::;0/ Š C is the trivial representation, then the subspace of SO.n/
equivariant valuations in �Val coincides with the vector space ValSO.n/ of all
continuous and rigid motion invariant scalar valuations on K n. By (6.1) and
Theorem 6.1, we have

dim ValSO.n/ D
nX

iD0
dim ValSO.n/

i D n C 1:

Together with the fact that intrinsic volumes of different degrees of homogeneity
are linearly independent, this yields Hadwiger’s characterization theorem.

• Let � D �.1;0;:::;0/ Š VC be the complex standard representation of SO.n/. By
Theorem 6.1, there is no non-trivial continuous, translation invariant, and SO.n/
equivariant vector valued valuation. While this result seems of no particular
interest at first, it directly implies a classical characterization of the Steiner point
map by Schneider [65]. Recall that the Steiner point s.K/ of a convex body
K 2 K n is defined by

s.K/ D 1

n

Z

Sn�1

uh.K; u/ du;
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where h.K; � / is the support function ofK and du denotes integration with respect
to the rotation invariant probability measure on the unit sphere.

Theorem ([65]) A map � W K n ! R
n is a continuous, rigid motion equivariant

valuation if and only if � is the Steiner point map.

Proof It is well known that s W K n ! R
n has the asserted properties (cf. [69]).

Assume that � is another such valuation. Then � � s is a continuous, translation
invariant, and SO.n/ equivariant valuation and, hence, � � s D 0. ut

• Next, let � D SymkVC be the space of symmetric tensors of rank k � 2 over VC.
The subspace of SO.n/ equivariant valuations in �Val is then just the vector
space TValk;SO.n/ of all continuous, translation invariant and SO.n/ equivariant
valuations on K n with values in SymkVC.

By Theorem 6.1 and (6.5), we have, for 1 � i � n � 1,

dim TValk;SO.n/
i D

(
k=2C 1 if k is even;

.k � 1/=2 if k is odd:

In order to recall a basis of the space TValk;SO.n/
i , let e1; : : : ; en be an orthonormal

basis of VC and denote by Q D Pn
lD1 e2l 2 Sym2VC the metric tensor. Moreover,

for s 2 N, 1 � i � n � 1 and K 2 K n, let

i;s.K/ D
Z

Sn�1

us dSi.K; u/;

where, as usual, us denotes the s-fold symmetric tensor product of u 2 Sn�1 and
Si.K; � / denotes the ith area measure of the body K. Then the valuations Qri;s,
where r; s � 0, s ¤ 1, and 2r C s D k, form a basis of the space TValk;SO.n/

i .
The dimensions and bases of the spaces TValk;SO.n/

i and more general spaces of
isometry covariant tensor valuations were first determined in the articles [3, 41].
For more information, we refer to Chaps. 2, 4, and 9 of this volume.

• In [81], Yang posed the problem to classify valuations compatible with some
subgroup of affine transformations with values in skew-symmetric tensors of
rank two. Using Theorem 6.1, we can give a partial solution to Yang’s problem.
Taking � D �.1;1;0:::;0/ D �2VC, it follows that there is no non-trivial continuous,
translation invariant, and SO.n/ equivariant valuation with values in � .

In contrast to this negative result, we note that Bernig [14] constructed for
each 0 � k � i � n � 1 a family of continuous, translation invariant, and SO.n/
equivariant valuations of degree i with values in �kVC ˝ �kVC D �.2;:::;2;0;:::;0/.
By Theorem 6.1, Bernig’s curvature tensor valuations are (up to scalar multiples)
the uniquely determined SO.n/ equivariant valuations in �Vali.
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6.5.2 Even Valuations and the Cosine Transform

As already mentioned in the introduction, Theorem 6.2 was first proved for even
valuations by Alesker and Bernstein [10] using a fundamental relation between even
translation invariant valuations and the cosine transform on Grassmannians. This
relation will be the topic of this subsection.

First recall that the cosine of the angle between E;F 2 G.n; i/, 1 � i � n � 1,
is given by jcos.E;F/j D voli.MjE/, where M is an arbitrary subset of F with
voli.M/ D 1. The cosine transform on smooth functions is the SO.n/ equivariant
linear operator Ci W C1.G.n; i// ! C1.G.n; i// defined by

.Ci f /.F/ D
Z

G.n;i/
jcos.E;F/j f .E/ dE;

where integration is with respect to the Haar probability measure on G.n; i/.
Next, we also briefly recall the Klain map (for more information, see Chap. 1).

For 1 � i � n � 1, Klain defined a map Kli W ValCi ! C.G.n; i//, � 7! Kli�,
as follows: For � 2 ValCi and every E 2 G.n; i/, consider the restriction �E
of � to convex bodies in E. This is a continuous translation invariant valuation
of degree i in E and, thus, a constant multiple of i-dimensional volume, that is,
�E D .Kli�/.E/ voli. This gives rise to a function Kli� 2 C.G.n; i//, called
the Klain function of the valuation �. It is not difficult to see that Kli is SO.n/
equivariant and maps smooth valuations to smooth ones. Moreover, by an important
result of Klain [45], the Klain map Kli is injective for every i 2 f1; : : : ; n � 1g (see
also [62]).

Now, for 1 � i � n � 1, consider the map Cri W C1.G.n; i// ! ValC;1i , defined
by

.Cri f /.K/ D
Z

G.n;i/
voli.KjE/ f .E/ dE:

Clearly, Cri is an SO.n/ equivariant linear operator. Moreover, if F 2 G.n; i/, then,
for any f 2 C1.G.n; i// and convex body K 
 F,

.Cri f /.K/ D voli.K/
Z

G.n;i/
jcos.E;F/j f .E/ dE:

In other words, the Klain function of the valuation Crif is the cosine transform Cif
of f . Hence, the image of the cosine transform is contained in the image of the Klain
map. From the main result of [10] and an application of the Casselman-Wallach
Theorem [22], Alesker [6] proved that, in fact, these images coincide.
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Theorem 6.12 ([6, 10]) Let 1 � i � n�1. The image of the restriction of the Klain
map to smooth valuations Kli W ValC;1i ! C1.G.n; i// coincides with the image of
the cosine transform Ci W C1.G.n; i// ! C1.G.n; i//.

Theorem 6.12 was essential in the discovery of algebraic structures on the space
of continuous translation invariant even valuations (see [6, 7] and Chap. 3 for more
detailed information). Using a variant of Theorem 6.12 combined with certain
computations from the proof of Alesker’s Irreducibility Theorem [5], Alesker and
Bernstein [10] gave the following precise description of the range of the cosine
transform in terms of the decomposition under the action of SO.n/. This description
is equivalent to Theorem 6.2 for even valuations.

Theorem 6.13 ([10]) Let 1 � i � n�1. The image of the cosine transform consists
of irreducible representations of SO.n/ with highest weights � D .�1; : : : ; �bn=2c/
satisfying (6.2), (6.7), and j�2j � 2.

As a concluding remark for this subsection we note that the structural analysis of
intertwining transforms on Grassmannians, such as Radon- and cosine transforms,
has a long tradition in integral geometry and is still to this day a focus of research
(see, e.g., [12, 25–27, 31, 33, 59, 60, 63, 82]).

6.5.3 Unitary Vector Valued Valuations

We have seen in Sect. 6.5.1 that there exists no non-trivial continuous, translation
invariant, and SO.n/ equivariant valuation from K n to R

n. As Wannerer [79]
discovered, the situation changes when the translation invariant vector valued
valuations are no longer required to be equivariant with respect to SO.n/ but merely
with respect to the smaller group U.n/ (for classifications of vector valued valuations
in the non-translation invariant case, see [36, 40, 49]).

Since the natural domain of the unitary group U.n/ is C
n Š R

2n, we consider
in this (and only in this) subsection valuations defined on the space K 2n of convex
bodies in R

2n. In particular, in the following also the spaces Val, Vali, : : : will refer
to translation invariant continuous valuations on K 2n.

We denote by Vec the (real) vector space of continuous and translation invariant
valuations � W K 2n ! C

n and we write VecU.n/ for its subspace of U.n/ equivariant
valuations. It follows from McMullen’s decomposition (6.1) that

Vec D
M

0�i�2n
Veci;

where as usual Veci denotes the subspace of valuations of degree i.
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Theorem 6.14 ([79]) Suppose that 0 � i � 2n. Then

dimR VecU.n/
i D 2min

�
i

2

�

;

�
2n � i

2

��

: (6.26)

Proof We put V D R
2n and write again VC for the complexification of V . Since Veci

is isomorphic as vector space to Vali ˝ V , we have, by Theorem 6.2,

dimC.Veci ˝ C/U.n/ D dimC.Vali ˝ VC/
U.n/ D

X

�

dimC.�� ˝ VC/
U.n/; (6.27)

where the sum ranges over all highest weights � D .�1; : : : ; �n/ of SO.2n/
satisfying

(i) �j D 0 for j > minfi; 2n � ig;
(ii) j�jj ¤ 1 for 1 � j � n;

(iii) j�2j � 2.

In order to determine the sum on the right hand side of (6.27), we first apply a
formula of Klimyk [47] to ��˝VC to obtain the decomposition of this tensor product
into SO.2n/ irreducible subspaces:

�� ˝ VC D
M

�

��; (6.28)

where the sum ranges over all � D � ˙ ek for some n-tuple ek D
.0; : : : ; 0; 1; 0; : : : ; 0/.

Next, a theorem of Helgason (see, e.g., [76, p. 151]) applied to the symmetric
space SO.2n/=U.n/ implies that the highest weights � D .�1; : : : ; �n/ we need to
consider have to satisfy the following additional condition

(
�1 D �2 � �3 D �4 � � � � � �n�1 D �n if n is even;

�1 D �2 � �3 D �4 � � � � � �n�2 D �n�1 � �n D 0 if n is odd:
(6.29)

We have

dimC �
U.n/
� D

(
1 if � satisfies (6.29);

0 otherwise.

From this, conditions (i), (ii), (iii), and (6.28), it follows now that .�� ˝ VC/
U.n/

is non-trivial if and only if � if of the form

�1 D 3; �2 D � � � D �2m D 2; �j D 0 for j > 2m
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for some integer 1 � m � minfb i
2
c; b 2n�i

2
cg and that in this case

dimC.�� ˝ VC/
U.n/ D 2:

To see this, fix some � satisfying (i), (ii), and (iii) and suppose that � D � C ek
for some k. If � satisfies in addition (6.29), then necessarily k D 2, �1 D �2 D 3,
and, thus, �1 D 3, �2 D � � � D �2m D 2, and �j D 0 for j > 2m. If � D � � ek,
then (6.29) forces k D 1, �1 D �2 D 2, and, again, �1 D 3, �2 D � � � D �2m D 2,
and �j D 0 for j > 2m.

Finally, since dimR VecU.n/
i D dimC.Veci ˝ C/U.n/, we obtain now from (6.27)

the desired dimension formula. ut
As an application of Theorem 6.14, Wannerer [79] obtained the following new

characterization of the Steiner point map in Hermitian vector spaces.

Corollary 6.15 ([79]) A map � W K 2n ! C
n is a continuous, translation and

U.n/ equivariant map satisfying �.K C L/ D �.K/C �.L/ for all K;L 2 K 2n if
and only if � is the Steiner point map.

Corollary 6.15 is a generalization of a similar result by Schneider [64], where the
unitary group U.n/ is replaced by the lager group SO.2n/.

6.5.4 The Symmetry of Bivaluations

In this subsection we outline how Theorem 6.2 can be used to prove a remarkable
symmetry property of rigid motion invariant continuous bivaluations which in turn
has important consequences in geometric tomography and the study of geometric
inequalities for Minkowski valuations.

Definition A map ' W K n � K n ! C is called a bivaluation if ' is a
valuation in both arguments. We call ' translation biinvariant if ' is invariant
under independent translations of its arguments and say that ' has bidegree .i; j/
if '.aK; bL/ D aibj'.K;L/ for all K;L 2 K n and a; b > 0. If G is some group of
linear transformations of Rn, we say ' is G invariant provided '.gK; gL/ D '.K;L/
for all K;L 2 K n and g 2 G.

The problem to classify invariant bivaluations was already posed in the book
by Klain and Rota [46] on geometric probability. A first such classification was
obtained by Ludwig [53] in connection with notions of surface area in normed
spaces. However, here we want to discuss a structural property of rigid motion
invariant bivaluations. To this end we denote by BVal the vector space of all
continuous translation biinvariant complex valued bivaluations. An immediate
consequence of McMullen’s decomposition (6.1) of the space Val is an analogous
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result for the space BVal:

BVal D
nM

i;jD0
BVali;j; (6.30)

where BVali;j denotes the subspace of all bivaluations of bidegree .i; j/. In
turn, (6.30) can be used to show that BVal becomes a Banach space when endowed
with the norm

k'k D supfj'.K;L/j W K;L 
 Bng:

The following symmetry property of rigid motion invariant bivaluations was
established in [11].

Theorem 6.16 Let 0 � i � n. Then

'.K;L/ D '.L;K/ for all K;L 2 K n (6.31)

holds for all SO.n/ invariant ' 2 BVali;i if and only if .i; n/ ¤ .2k C 1; 4k C 2/,
k 2 N. Moreover, (6.31) holds for all O.n/ invariant ' 2 BVali;i.

In the following we outline the proof of the ‘if’ part of the first statement of
Theorem 6.16 using Theorem 6.2. We refer to [11, p. 768], for the construction of
an SO.n/ invariant bivaluation � 2 BVali;i, where .i; n/ D .2kC 1; 4kC 2/ for some
k 2 N, such that �.K;L/ ¤ �.L;K/ for some pair of convex bodies. Similarly, we
will not treat O.n/ invariant bivaluations here. For the proof of (6.31) in this case,
a description of the irreducible representations of O.n/ in terms of the irreducible
representations of SO.n/ is needed and we also refer to [11] for that.

Now, assume that ' 2 BVali;i is SO.n/ invariant and that .i; n/ ¤ .2kC1; 4kC2/.
Moreover, since for i D 0 or i D n, (6.31) follows easily from Proposition 6.7, we
may assume that 0 < i < n. Now, by Theorem 6.2,

BValSO.n/
i;i Š .Vali ˝ Vali/

SO.n/ Š
M

�;�

.�� ˝ ��/
SO.n/; (6.32)

where the sum ranges of all highest weights � and � of SO.n/ satisfying conditions
(i), (ii), and (iii) from Theorem 6.1. (In fact, in order to make the isomorphisms
in (6.32) precise, we have to consider the dense subset of all bivaluations with finite
SO.n/ � SO.n/ orbit, compare [11, p. 766]).

Since .i; n/ ¤ .2kC1; 4kC2/, it follows from condition (i) and Lemma 6.3, that
all irreducible representations of SO.n/ which appear in (6.32) are real and, thus,
self-dual. Hence, we have

.�� ˝ ��/
SO.n/ Š HomSO.n/.�� ; ��/ Š HomSO.n/.�� ˝ ��;C/:
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Since �� and �� are irreducible, Schur’s lemma implies that

dim HomSO.n/.�� ; ��/ D
(
1 if � D �;

0 if � ¤ �:

Using again that the SO.n/ irreducible representations which we consider are real,
the space

HomSO.n/.�� ˝ ��;C/ D .Sym2��/
SO.n/ ˚ .ƒ2��/

SO.n/

of SO.n/ invariant bilinear forms on �� must coincide with .Sym2��/
SO.n/. Hence,

BValSO.n/
i;i Š

M

�

.Sym2��/
SO.n/

which implies (6.31).
Using partial derivation operators on bivaluations [the definition of which is

motivated by the operatorƒ W Val ! Val defined in (6.13)], one can easily obtain a
corollary of Theorem 6.16 which is particularly useful for applications. To state this
result, define for m D 1; 2 the operatorsƒm W BVal ! BVal by

.ƒ1�/.K;L/ D d

dt

ˇ
ˇ
ˇ
tD0�.K C tBn;L/

and

.ƒ2�/.K;L/ D d

dt

ˇ
ˇ
ˇ
tD0�.K;L C tBn/:

Clearly, if � 2 BVali;j, then ƒ1� 2 BVali�1;j and ƒ2� 2 BVali;j�1.
Also define an operator T W BVal ! BVal by

.T�/.K;L/ D �.L;K/:

Note that, by Theorem 6.16, the restriction of T to BValO.n/i;i acts as the identity.

Corollary 6.17 Suppose that 0 � j � n and 0 � i � j. Then the following diagram
is commutative:
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Corollary 6.17 has found several interesting applications in connection with
Minkowski valuations, that is, maps ˚ W K n ! K n such that

˚.K/C ˚.L/ D ˚.K [ L/C ˚.K \ L/;

whenever K [ L is convex and addition here is the usual Minkowski addition.
Recently, Ludwig [52] started an important line of research concerned with the
classification of Minkowski valuations intertwining linear transformations, see
[1, 2, 34, 50, 53, 73, 78] and Chap. 8. However, first investigations of Minkowski
valuations by Schneider [66] in 1974 were concentrating on rigid motion compatible
valuations which are still a focus of intensive research, see [43, 71, 72, 74, 75].

In order to explain how Corollary 6.17 can be used in the theory of Minkowski
valuations, let MVal denote the set of all continuous and translation invariant
Minkowski valuations. Parapatits and the author [61] proved that for any˚ 2 MVal,
there exist ˚. j/ 2 MVal, where 0 � j � n, such that for every K 2 K n and t � 0,

˚.K C tBn/ D
nX

jD0
tn�j˚. j/.K/:

This Steiner type formula shows that an analogue of the operatorƒ from (6.13) can
be defined for Minkowski valuationsƒ W MVal ! MVal by

h..ƒ˚/.K/; u/ D d

dt

ˇ
ˇ
ˇ
tD0h.˚.K C tBn; u/; u 2 Sn�1:

ForK;L 2 K n, we use Wi.K;L/ to denote the mixed volumeV.KŒn�i�1�;BnŒi�;L/.

Corollary 6.18 ([61]) Suppose that ˚j 2 MValj, 2 � j � n � 1, is O.n/
equivariant. If 1 � i � j C 1, then

Wn�i.K; ˚j.L// D .i � 1/Š
jŠ

Wn�1�j.L; .ƒ
jC1�i˚j/.K//

for every K;L 2 K n.

Proof For K;L 2 K n, define � 2 BValO.n/j;j by �.K;L/ D Wn�1�j.K; ˚j.L//. Then
it is not difficult to show that

Wn�i.K; ˚j.L// D .i � 1/Š

jŠ
.�

jC1�i
1 �/.K;L/:

Thus, an application of Corollary 6.17 completes the proof. ut
Corollary 6.18 as well as variants and generalizations of this result have been

a critical tool in the proof of log-concavity properties of rigid motion compatible
Minkowski valuations (see [2, 11, 13, 55, 61, 70, 72]). Corollary 6.18 was also
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important in the solution of injectivity questions for certain Minkowski valuations
arising naturally from tomographic data, more precisely, the so-called mean section
operators, defined and investigated by Goodey and Weil [28–30].

6.5.5 Miscellaneous Applications

In this short final subsection we collect three more applications of Theorem 6.2
in various contexts. We will not outline proofs here but rather refer to the original
source material. We begin with the following fact about Minkowski valuations.

Proposition 6.19 ([11]) If ˚ 2 MVal is SO.n/ equivariant, then ˚ is also O.n/
equivariant.

Note that, by Proposition 6.19, Corollary 6.18 in fact holds for SO.n/ equivariant
Minkowski valuations.

The proof of Proposition 6.19 is based on the simple fact that any continu-
ous Minkowski valuation which is translation invariant and SO.n/ equivariant is
uniquely determined by a spherical valuation.

Definition For 0 � i � n, the subspaces Valsph
i and Val1;sph

i of translation invariant
continuous and smooth spherical valuations of degree i are defined as the closure
(w.r.t. the respective topologies) of the direct sum of all SO.n/ irreducible subspaces
in Vali and Val1i which contain a non-zero SO.n � 1/ invariant valuation.

Since, by Theorem 6.2, the space Vali is multiplicity free under the action of
SO.n/, it follows from basic facts about spherical representations (see [75]) that

Val1;sph
i D cl1

M

k2N
�.k;0;:::;0/: (6.33)

Spherical valuations also play an important role in the recent article [19] by
Bernig and Hug, where they compute kinematic formulas for translation invariant
and SO.n/ equivariant tensor valuations. It follows from Theorem 6.2 and (6.5) that
tensor valuations from TValSO.n/

i are also determined by spherical valuations. In
order to bring the algebraic machinery from modern integral geometry into play in
the computation of the kinematic formulas in [19], the main step was to determine
the Alesker–Fourier transform F (see [9]) of spherical valuations. Note that since
F is a linear and SO.n/ equivariant map, (6.33) and Schur’s lemma imply that the
restriction of F to Val1;sph

i is determined by a sequence of multipliers which was
computed in [19].

As a final application of Theorem 6.2, we mention that it was used by Bernig
and Solanes [20] to give a complete classification of valuations on the quaternionic
plane which are invariant under the action of the group Sp.2/Sp.1/. Note that
since Sp.2/Sp.1/ contains �Id all such valuations are even and, thus, determined
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by their Klain functions. For the proof of their classification theorem, Bernig and
Solanes now identify certain Sp.2/Sp.1/ invariant functions on the Grassmannian
as eigenfunctions of the Laplace-Beltrami operator on G.n; i/ and determine the
SO.n/ irreducible subspaces that they are contained in. Then Theorem 6.2 is applied
to show that these subspaces also appear in Vali. Finally, the computation of
dim ValSp.2/Sp.1/

i from [16] is used to show that the so-constructed valuations form a
basis.
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Chapter 7
Rotation Invariant Valuations

Eva B. Vedel Jensen and Markus Kiderlen

Abstract In this chapter, we focus on rotation invariant valuations. We give an
overview of the results available in the literature, concerning characterization of
such valuations. In particular, we discuss the characterization theorem, derived
in Alesker (Ann Math 149:977–1005, 1999), for continuous rotation invariant
polynomial valuations on K n. Next, rotational Crofton formulae are presented.
Using the new kinematic formulae for trace-free tensor valuations presented in
Chap. 4, it is possible to extend the rotational Crofton formulae for tensor valuations,
available in the literature. Principal rotational formulae for tensor valuations are also
discussed. These formulae can be derived using locally defined tensor valuations, as
introduced in Chap. 2. A number of open questions in rotational integral geometry
are presented.

7.1 Preliminaries

The Grassmannian of q-dimensional linear subspaces of Rn is denoted by G.n; q/,
0 � q � n. For L 2 G.n; q/, the set G.L; p/ is the family of all p-dimensional
linear subspaces M incident with L, that is, M � L when p � q and L � M,
otherwise. The invariant probability measures on these spaces are denoted by �q
and �Lp , respectively. Similarly the space A.n; q/ of q-dimensional flats is endowed
with the motion invariant measure �q, normalized in such a way that

�q .fE 2 A.n; q/ W E \ Bn ¤ ;g/ D �n�q;

where �j is the volume of the Euclidean unit ball Bj in R
j. For E 2 A.n; q/ the family

of all p-dimensional flats incident with E is denoted by A.E; p/ and endowed with
the invariant measure �E

p . When q � p the measure �E
p is obtained by identifying E

with R
q and taking the image measure of �p in R

q using this identification. When
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q < p and E D L C x with x 2 L?, the measure �E
p is the image measure of �L?

n�q
under the mapping N 7! N? C x.

The subspace determinant ŒL;M� of two flats L and M is defined in [29,
Sect. 14.1]. Let K n be the family of convex bodies, that is, of all non-empty
compact convex subsets of Rn. For E 2 A.n; q/ we let K q

E be the family of all
convex bodies in E. The unit normal bundle of a set of positive reach X is nc.X/.
For a definition of the unit normal bundle in the convex case, see Chap. 1, Sect. 1.3.

We will need a norm on the space T
p of symmetric tensors of rank p 2 N0 and

define

kTk WD supfjT.v1; : : : ; vp/j W kv1k; : : : ; kvpk � 1g
for T 2 T

p. Symmetric tensors are defined in Chap. 2, Sect. 2.1.
We will make use of Gauss’ hypergeometric function

F˛;ˇI� .z/ WD
1X

kD0

.˛/k.ˇ/k

.�/k

zk

kŠ
; (7.1)

for ˛; ˇ; � 2 R, �� 62 N0, where .˛/k D ˛.˛C1/ � � � .˛Ck�1/. The series in (7.1)
converges absolutely for z 2 .�1; 1/ and if ˛C ˇ < � even for z 2 Œ�1; 1�. We will
later use one of Euler’s transformation rules

F˛;ˇI� .z/ D .1 � z/��.˛Cˇ/F��˛;��ˇI� .z/ (7.2)

and the fact that

F˛;˛C 1
2 I2˛.z/ D .1 � z/�1=2

 
1C p

1 � z

2

!1�2˛
; jzj < 1I (7.3)

see, for instance, [7, (8.2.11) and p. 296].

7.2 Rotation Invariant Continuous Valuations on Star Sets

Before describing rotation invariant valuations on the family of convex bodies, we
shortly describe a theory of rotation invariant tensor valuations for star sets. With
the appropriate definition of star sets, this theory turns out to be rather complete and
can serve as a reference for the convex case that still contains a number of open
questions. In fact, the richness of the class of star sets considered greatly limits the
form of rotation invariant valuations.

A set S � R
n is called star shaped if its intersection with an arbitrary line through

the origin o is a (possibly degenerate) line-segment. Clearly, a star shaped set S is
determined by its radial function


.S; u/ WD supf˛ 2 R W ˛u 2 Sg;
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u 2 S
n�1. Usually one only works with geometrically defined subclasses of the

family of all star shaped sets, and results depend crucially on the subclass chosen.
In this survey we restrict considerations exclusively to star shaped sets containing
the origin. Note that the results on star bodies in Gardner’s monograph [12] do
not require this assumption. We base our review on Klain’s [23] definition of an
Ln � star, which is a star shaped set S � R

n that contains the origin and has a
finite volume, that is, its radial function is a non-negative element of Ln.H n�1/.
Here, H n�1 is the .n�1/-dimensional Hausdorff measure. Recall that a measurable
function f on S

n�1 belongs to Ln.H n�1/ if

Z

Sn�1

j f .u/jndu < 1:

Here and in the following we write ‘du’ when integrating with respect to the
Hausdorff measure of appropriate dimension. The family of all Ln-stars will be
denoted by S n, and endowed with the topology that is induced by the norm in
Ln.H n�1/ on f
.S; � / W S 2 S ng. As usual, one thus identifies Ln-stars when their
radial functions coincide up to a set of H n�1-measure zero.

We now discuss examples of continuous SO.n/-invariant valuations on S n that
take values in the space of tensors of rank p 2 N0. We thus consider continuous
tensor valued valuations ' on S n satisfying '.#S/ D '.S/ for all # 2 SO.n/ and
S 2 S n. The first examples that come to mind are the Euler-Poincaré characteristic

�.S/ WD 1; (7.4)

and, of course, the volume

�n.S/ D
Z

S
1dx; S 2 S n; (7.5)

yielding tensor valued valuations of rank 0. To obtain higher rank tensors, the
constant 1 in (7.4) and in the integrand of (7.5) can be replaced by tensors—in
the second case possibly one that depends on x. To retain the rotation invariance,
this tensor must depend on x only through kxk, so we may put

'.S/ D T C
Z

S
f .kxk/dx; (7.6)

with some fixed T 2 T
p and a suitable function f W Œ0;1/ ! T

p. Rewriting (7.6)
using polar coordinates gives

'.S/ D
Z

Sn�1

�.
.S; u// du; (7.7)
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where � W Œ0;1/ ! T
p must be continuous, as the restriction of ' on f˛Bn W ˛ �

0g is continuous. Finally, to assure that (7.7) defines a tensor valued mapping on
S n, �.t/ may not grow faster than tn as t ! 1; see [24, Lemma 2.2]. With these
conditions on � , we have found all rotation invariant continuous valuations on S n.

Theorem 7.1 (Klain [24, Theorem 2.8]) For every SO.n/-invariant continuous
valuation ' W S n ! T

p there is a continuous function � W Œ0;1/ ! T
p with

k�.t/k � atn C b, t � 0, for some a; b � 0 such that (7.7) holds.
Conversely, for any � as above, (7.7) defines an SO.n/-invariant continuous

valuation onS n with values in Tp.

Klain stated this result only for p D 0 but it can easily be extended to positive
p by pointwise application to the tensors involved. The proof of Theorem 7.1 relies
on the fact that the family S n is very large. To illustrate the main idea, we restrict
considerations to the case where p D 0. For any r > 0, the functional � given by

�.A/ D '.fta W 0 � t � r; a 2 Ag/; A 2 B.Sn�1/; (7.8)

is finitely additive. Here and in the following we write B.T/ for the �-algebra of
Borel sets in a topological space T. Continuity and the valuation property of '
imply that � is �-additive, and hence � is a (possibly signed) measure on S

n�1. The
measure � inherits the rotation invariance from ', so � must be a multiple �.r/ of
the uniform measure on S

n�1. The proof is concluded by observing that any element
of S n can be approximated by finite unions of bounded cones with different r, as
defined on the right hand side of (7.8). Concluding, the theory of invariant measures
is the backbone of Theorem 7.1.

Consider an SO.n/-invariant continuous valuation ' W S n ! T
p with p D 0. If

' is homogeneous of degree ˛ 2 R, Theorem 7.1 implies that 0 � ˛ � n. If ˛ D i
is an integer, the associated function � in (7.7) must be proportional to ti, and hence

' D '.Bn/

�n
QWn�i

is proportional to the .n � i/th dual quermassintegral

QWn�i.S/ WD 1

n

Z

Sn�1


.S; u/idu; S 2 S n:

Of course, Theorem 7.1 also applies to valuations 'L on the subfamily S
q
L of

all Lq-stars in a fixed subspace L 2 G.n; q/, when we identify L with R
q, where

q 2 f1; : : : ; n � 1g. Hence, if 'L W S
q
L ! T

p is a continuous valuation that is
SO.q/-invariant (with respect to all rotations leaving L fixed), we have

'L.S/ D
Z

Sn�1\L
�L.
.S; u//du; S 2 S

q
L : (7.9)
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This opens the door to applications in rotational integral geometry. In many
practically relevant cases, 'L are given for all L 2 G.n; q/, and are compatible with
rotations in the following sense:

'L.S/ D '#L.#S/; # 2 SO.n/;L 2 G.n; q/; S 2 S
q
L : (7.10)

A family f'L W L 2 G.n; q/g of mappings 'L W S q
L ! T

p that satisfies (7.10) is
called SO.n/-compatible. Note that in this case all 'L are O.n/-invariant on S q

L ,
and if all 'L are continuous valuations on S q

L , their associated functions �L in (7.9)
all coincide. In the following we use that when S 2 S n, then S\L 2 S q

L for almost
all L 2 G.n; q/.

Corollary 7.2 Let q 2 f1; : : : ; n � 1g and let f'L W L 2 G.n; q/g be an SO.n/-
compatible family of continuous valuations with values in T

p. Let � D �L be the
joint associated function in (7.9). Then

Z

G.n;q/
'L.S \ L/�q.dL/ D !q

!n

Z

Sn�1

�.
.S; u//du; S 2 S n: (7.11)

Example 7.3 For fixed q 2 f1; : : : ; n � 1g and i 2 f0; : : : ; qg the family f QWq�i;L W
L 2 G.n; q/g of .q � i/th dual quermassintegrals

QWq�i;L WD 1

q

Z

Sn�1\L

. � ; u/idu;

is SO.n/-compatible. Equation (7.11) now reads

Z

G.n;q/

QWq�i;L.S \ L/�q.dL/ D �q

�n
QWn�i.S/; S 2 S n:

This is the dual Kubota integral recursion essentially due to Lutwak [26].

Corollary 7.4 Let q 2 f1; : : : ; n � 1g and assume that ' W S n ! T
p is an SO.n/-

invariant continuous valuation on S n such that the associated function in (7.7)
satisfies k�.t/k � atq C b for some a; b � 0. Then ' can be written as a rotational
Crofton integral with q-planes:

Z

G.n;q/
'L.S \ L/�q.dL/ D '.S/; S 2 S n; (7.12)

where

'L.S
0/ D !n

!q

Z

Sn�1\L
�.
.S0; u//du; S0 2 S q

L : (7.13)
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Note that if f'L W L 2 G.n; q/g is an SO.n/-compatible family of continuous
valuations satisfying (7.12), it must be given by (7.13), as such valuations are
determined by their values on balls.

It should be mentioned that there are other, more geometrically motivated notions
of star sets in the literature. One common class is defined as the family of all
star shaped sets containing the origin and having a continuous radial function. Its
elements are called star bodies in [33]. Let S be the family of all star bodies,
endowed with the L1-topology, which is induced by the supremum norm of the
radial functions. As S ¨ S n the above results do not readily apply to valuations
on S . However, Villanueva [33] showed that a real-valued SO.n/-invariant L1-
continuous valuation ' that is in addition non-negative and satisfies '.fog/ D 0, can
be written in the form (7.7) with a non-negative continuous function � satisfying
�.0/ D 0. The converse being obvious, this gives a strengthened version of
Theorem 7.1 for star bodies and p D 0, but only for non-negative valuations with
'.fog/ D 0. If the latter two conditions are necessary is an open question.

Example 7.5 Let �n be the n-dimensional Lebesgue measure. The associated
function of the real-valued continuous SO.n/-invariant valuation '.S/ D �n.S/ is
�.t/ D tn=n. For q < n there cannot be an SO.n/-compatible family f'L W L 2
G.n; q/g of continuous valuations satisfying (7.12), as the joint associated function
� would be .!n=.n!q//tn, which increases faster than tq as t ! 1. We thus consider
' only on the class of star bodies.

With the same arguments that led to Corollary 7.4, we have for any q 2
f1; : : : ; n � 1g that

Z

G.n;q/
'L.S \ L/�q.dL/ D �n.S/;

for any star body S, where

'L.S \ L/ D !n

n!q

Z

Sn�1\L

.S; u/ndu D !n

!q

Z

S\L
kxkn�qdx:

This is a special case of the rotational Crofton formula for intrinsic volumes
in [4]. ut

7.3 Rotation Invariant Continuous Valuations on Convex
Bodies

We now turn to rotation invariant continuous valuations on the family of convex
bodies, endowed with the Hausdorff metric. Throughout the rest of this chapter we
assume n � 2 to avoid peculiarities of the one-dimensional setting.
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Clearly, valuations of the form (7.6), restricted to K n, are examples of con-
tinuous SO.n/-invariant valuations, but the family of continuous SO.n/-invariant
valuations on K n is much richer. One simple example are the intrinsic volumes Vj,
0 < j < n, they are even motion invariant, but not of the form (7.6).

In the seminal paper [1] by Alesker, characterization theorems for rotation
invariant continuous polynomial valuations are derived. A valuation ' W K n ! T

p

is called polynomial of degree at most k if for all K 2 K n the function '.K C x/ is
a polynomial in x of degree at most k with coefficients in T

p. If ' is polynomial of
degree at most k and '.K C x/ is a polynomial in x of exact degree k for at least one
K 2 K n, ' is called polynomial of degree k.

In [1], a characterization theorem for continuous polynomial rotation invariant
valuations is derived, involving the family of valuations given by

'p;j.K/ WD
Z

nc.K/
p.kxk2; hx; ui/�j.K; d.x; u//; (7.14)

where p is a polynomial in two variables with values in T
p and j 2 f0; : : : ; n�1g. The

properties of the support measures �j.K; � /, listed for instance in [28, Sect. 4.2],
imply that 'p;j W K n ! T

p is an O.n/-invariant continuous valuation. In addition,
'p;j is a polynomial valuation of degree at most 2 deg p.

Theorem 7.6 (Alesker [1, Theorem B (i)]) For every continuous polynomial
valuation ' W K n ! T

p, which is SO.n/-invariant if n � 3 and O.n/-invariant
if n D 2, there exist polynomials p0; : : : ; pn�1 in two variables with values in T

p

such that

' D
n�1X

jD0
'pj;j: (7.15)

Conversely, any expression of the form (7.15) defines a continuous polynomialO.n/-
invariant valuation onK n with values in T

p.

Note that as (7.14) defines an O.n/-invariant valuation, every continuous poly-
nomial SO.n/-invariant valuation is also O.n/-invariant when n � 3. A character-
ization theorem for the particular case of continuous polynomial SO.2/-invariant
valuations on K 2 can also be found in [1]. As we do not require that the valuations
are translation invariant, McMullen’s decomposition, one of the main tools of the
theory for the class Val in Chap. 1, Sect. 1.4, is not readily available. However,
polynomiality of degree at most k implies that ' can be decomposed into a sum
of homogeneous valuations with homogeneity degrees in f0; 1; : : : ; n C kg. This
follows from a more general result in [21] and is used extensively in [1].
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Example 7.7 A very simple example of a continuous polynomial O.n/-invariant
valuation on K n is

'k
n.K/ WD

Z

K
kxk2kdx;

where k 2 N0. This valuation is of the form (7.15), since the divergence theorem
implies

.n C 2k/
Z

K
kxk2kdx D 2

Z

nc.K/
kxk2khx; ui�n�1.K; d.x; u//;

see e.g. [28, p. 316].

The space Vn;k of all real-valued continuous O.n/-invariant (or, equivalently,
SO.n/-invariant when n � 3) valuations in R

n that are polynomial of degree at most
k 2 N0 is finite dimensional. In fact, Alesker has shown the following decomposition

Vn;k D Wn;0 ˚ Wn;1 ˚ � � � ˚ Wn;k;

where each subspace Wn;q is spanned by valuations of (exact) polynomial degree q.
This yields the recursive formula

dimVn;k D dimVn;k�1 C dimWn;k:

As dimWn;2qC1 D q.n � 1/ and dimWn;2q D q.n � 1/ C .n C 1/, see [1, p. 997],
this implies

dimVn;2i D i2.n � 1/C .i C 1/.n C 1/;

dimVn;2iC1 D i.i C 1/.n � 1/C .i C 1/.n C 1/;

for all i 2 N0, n � 3. The fact that dimVn;0 D dimWn;0 D n C 1 is a direct
consequence of Hadwiger’s theorem, as valuations of polynomial degree zero are
translation invariant, and thus V0; : : : ;Vn forms a basis of Wn;0. Furthermore, we
see dimVn;1 D dimVn;0 D n C 1, so Wn;1 is trivial—continuous SO.n/-invariant
valuations of polynomial degree exactly one do not exist. Explicit bases for Wn;k

and hence for Vn;k can be constructed from the family of valuations

'
r;s
j .K/ WD

Z

nc.K/
kxk2rhx; uis�j.K; d.x; u//; (7.16)

for r; s 2 N0, j D 0; : : : ; n � 1. For odd polynomial degree k D 2q C 1, q 2 N, the
valuations 'q�i;2iC1

j , j D 1; : : : ; n � 1, i D 1; : : : ; q, form a basis of Wn;2qC1. For
even polynomial degree k D 2q, q 2 N0, the valuations 'q�i;2i

j , j D 1; : : : ; n � 1,
i D 0; : : : ; q, (note that i D 0 is included now) together with 'q

n and 'q;0
0 form a basis
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of Wn;2q. (For the definition of 'q
n , see Example 7.7.) This follows from the facts that

the exact polynomial degree of any of these valuations is 2qC1 and 2q, respectively,
and that these valuations can replace the less explicit ones in [1, Lemma 4.8]. More
explicitly for the planar case, a basis of all O.2/-invariant continuous valuations of
degree at most k 2 2N0 C 1 is given by the valuations ' i;j

1 , where the non-negative
integers i and j satisfy 2i C j � k, together with '2i;00 , 0 � 2i < k.

From the above it is straightforward to find a basis of the space Vp
n;k of all Tp-

valued continuous O.n/-invariant (or, equivalently, SO.n/-invariant when n � 3)
valuations in R

n, as any ' 2 Vp
n;k can be written as a linear combination of basis

vectors in T
p, where the coefficients are in Vn;k. We only note here that this implies

dimVp
n;k D dimVn;k � dimT

p;

where dimT
p D �nCp�1

p

�
.

The valuations in (7.14) are all quasi-smooth. A continuous valuation ' W K n !
R is called quasi-smooth, if the map on K n given by

K 7! Œ.t; x/ 7! '.tK C x/�; t 2 Œ0; 1�; x 2 R
n;

is a continuous map from K n into the space Cn.Œ0; 1��R
n/ of n-times continuously

differentiable functions on Œ0; 1� � R
n. This notion is extended to T

p-valued valu-
ations by assuming quasi-smoothness pointwise i.e. for all real-valued valuations
K 7! '.K/.x1; : : : ; xp/, x1; : : : ; xp 2 R

n. (Recall that '.K/ is a p-linear map from
.Rn/p to R.)

Alesker [2, 3] showed that any quasi-smooth valuation can be approximated
uniformly on any compact subset of K n by continuous polynomial valuations. For
the understanding of SO.n/-invariant quasi-smooth valuations it is thus sufficient
to investigate the valuations 'p;j, defined in (7.14). There are SO.n/-invariant
continuous valuations that are not quasi-smooth, but it is an open problem if all
of them can be approximated by continuous polynomial valuations.

Example 7.8 On K 2 the functional

'.K/ D
Z

K
kxk�1dx

is a real-valued O.2/-invariant continuous valuation (the finiteness of which can
be seen by introducing polar coordinates). The valuation ' is a special case of the
valuations appearing in Theorem 7.11 below. The valuation is not quasi-smooth. In
fact, for K D Œ0; 1�2 and s > 0 an application of the divergence theorem like in
Example 7.7 shows that

'.K C .s; s// D �2s
Z 1Cs

s
k.s; y/k�1dy C 2.1C s/

Z 1Cs

s
k.1C s; y/k�1dy:
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The second derivative of this function of s has a pole at 0, so ' is not quasi-smooth.
However, it can be shown that ' can be approximated uniformly on any compact
subset of K 2 by continuous polynomial valuations.

Rotational integral geometry for the valuations appearing in the characterization
theorems in [1] appears largely unexplored. Below we show, as a new result, how
the valuation 'r;s

n�1 defined in (7.16) with s even can be expressed as a rotational
average. The assumption that s is even can be omitted when o 2 K.

Theorem 7.9 Let q 2 f2; : : : ; n � 1g, r; s non-negative integers with s even. Then,
the valuation 'r;s

n�1 in (7.16) can be written as a rotational Crofton integral with
q-planes:

Z

G.n;q/
'
r;s
L .K \ L/ �q.dL/ D '

r;s
n�1.K/: (7.17)

for all K 2 K n. Here

'r;s
L .K

0/ D !n

!q

Z

nc.K0/

kxk2rCn�qhx; uis

� Fs�1
2 ;� n�q

2 I q�1
2
.sin2 †.x; u//�L

q�1.K0; d.x; u//

is an integral with respect to the generalized curvature measure�L
q�1.K0; � / of K0 2

K
q
L relative to L, !n is the surface area of Sn�1 and †.x; u/ is the angle between x

and u.

Proof As support measures are weakly continuous and the integrand in the defini-
tion of 'r;s

L is continuous in .x; u/, one can apply an approximation argument. It is
thus enough to show the claim for a polytope K for which the union of all support
planes of K at the facets does not contain the origin. The variable s is even, so it does
not matter if one works with the exterior or the interior normal vectors. It is thus
enough to show the claim for one facet, or, equivalently, for all .n� 1/-dimensional
sets K 2 K n. Let u 2 S

n�1 be one of the unit normals of K at a relative interior
point. Then

'
r;s
n�1.K/ D

Z

K
kxk2rhx; uisH n�1.dx/;

and using [16, Proposition 5.4] we find

'
r;s
n�1.K/ D !n

2

Z

G.n;1/

Z

K\M
kxk2rCsCn�1

Œu?;M�s�1H 0.dx/ �1.dM/:
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The only analytic function h that satisfies

Z

G.M;q/
h.Œu? \ L;M�s�1/ �Mq .dL/ D Œu?;M�s�1 (7.18)

for all M 2 G.n; 1/ is given by

h.z/ D z F s�1
2 ;� n�q

2 I q�1
2
.1 � z

2
s�1 /: (7.19)

The proof of this claim follows closely [16, Sect. 5.6], where the case s D 0 is
treated. Using (7.18) and interchanging the order of integration we find

'
r;s
n�1.K/ D

Z

G.n;q/
'
r;s
L .K \ L/ �q.dL/;

with

'r;s
L .K \ L/ D !n

2

Z

G.L;1/

Z

.K\L/\M
kxk2rCsCn�1h.Œu? \ L;M�s�1/H 0.dx/ �L1 .dM/

D !n

!q

Z

K\L
kxk2rCsCn�qŒu? \ L;Mx� h.Œu

? \ L;Mx�
s�1/H q�1.dx/;

where, at the last equality sign, we have used again [16, Proposition 5.4], but now
in L, and we wrote Mx for spanfxg. As Œu?\L;Mx� is the cosine of the angle between
x and the unit normal vector of K \ L in L, this function 'r;s

L coincides with the one
in the statement of the theorem. ut

Rotational integral geometry of intrinsic volumes has been developed during the
last decade in a series of papers [4, 5, 14, 19], motivated by the strong interest in
such results from local stereology [16]. In the theorem below, we show in the spirit
of Corollary 7.4 how the intrinsic volumes can be expressed as rotational averages.
A central element in the proof of the theorem is the classical Crofton formula for
affine subspaces

Z

A.n;q/
Vj.K \ E/ �q.dE/ D ˛n;j;qVnCj�q.K/; (7.20)

where

˛n;j;q WD

 
q

j

!

�q�nCj�q

 
n

q � j

!

�j�n

;

and 0 � j � q � n; see [28, Sect. 4.4].
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Theorem 7.10 (Auneau and Jensen [4], Gual-Arnau et al. [14]) For q D
1; : : : ; n�1 and j D 1; : : : ; q, let ' D VnCj�q be the intrinsic volume of homogeneity
degree n C j � q. Then,

Z

G.n;q/
'L.K \ L/ �q.dL/ D '.K/; K 2 K n;

where

'L.K
0/ D !n�qC1

!1

1

˛n;j�1;q�1

�
Z

A.L;q�1/
d.o;E/n�q Vj�1.K0 \ E/ �q�1.dE/; K0 2 K

q
L ;

(7.21)

and d.o;E/ is the distance from o to E. For j D q, (7.21) takes the following explicit
form

'L.K
0/ D !n

!q

Z

K0

kxkn�q dx; (7.22)

while for j D q � 1, (7.21) can equivalently be expressed as

'L.K
0/ D !n

!q

Z

nc.K0/

kxkn�qF� 1
2 ;� n�q

2 I q�1
2
.sin2 †.x; u//�L

q�1.K0; d.x; u//:

(7.23)

Note that (7.22) also appears in Example 7.5, while (7.23) is obtained by setting
r D s D 0 in Theorem 7.9 and noting that '0;0n�1.K/ D 2Vn�1.K/.

Besides the classical Crofton formula, the proof of Theorem 7.10 uses the
following Blaschke-Petkantschin formula for a non-negative measurable function
f on A.n; r/, see [22, Theorem 2.7],

Z

A.n;r/
f .E/ �r.dE/ D !n�r

!q�r

Z

G.n;q/

Z

A.L;r/
d.o;E/n�qf .E/ �L

r .dE/ �q.dL/; (7.24)

for q D 1; : : : ; n � 1, r D 0; : : : ; q � 1. This formula, also called the invariator
principle in stereology [32], is used to translate the classical Crofton formula,
dealing with affine subspaces, into a result for linear subspaces. The details of the
proof may be found in [18, p. 239].

The formula for 'L in (7.21) is not very explicit, but actually useful in local
stereology, because a stereological estimator of VnCj�q.K/ can be constructed from
this formula, involving motion invariant random flats within isotropic random linear
subspaces, as explained in Sect. 7.7 below. However, from a theoretical point of
view, a more explicit expression for (7.21) would be desirable. To the best of our
knowledge, this is an open problem in rotational integral geometry.
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In the spirit of Corollary 7.2, we now consider the SO.n/-compatible family f'L W
L 2 G.n; q/g where

'L.K
0/ D Vj.K

0/; K0 2 K q
L ; (7.25)

for q D 1; : : : ; n � 1, j D 0; : : : ; q. In [5, 19], the rotational averages of these
sectional valuations are derived. The result is presented in the theorem below.

Theorem 7.11 (Auneau et al. [5], Jensen and Rataj [19]) Let q D 1; : : : ; n � 1,
j D 0; : : : ; q and f'L W L 2 G.n; q/g be the SO.n/-compatible family given by (7.25).
Then,

Z

G.n;q/
'L.K \ L/ �q.dL/ D '.K/; (7.26)

where for j D q

'.K/ D !q

!n

Z

K
kxk�.n�q/ dx:

If o 62 bdK, then for j < q

'.K/ D 2!q

!n!q�j

Z

nc.K/
kxk�.n�q/

�
X

I�f1;:::;n�1g
jIjDq�j�1

Qq.x; u;AI/

Q
i2I �i.x; u/

Qn�1
iD1

q
1C �2i .x; u/

�n�1.K; d.x; u//; (7.27)

where �i.x; u/, i D 1; : : : ; n � 1; are the principal curvatures of nc.K/ at .x; u/.
Furthermore, AI D AI.x; u/ is the .n � 1 � jIj/-dimensional subspace spanned by
the principal directions ai.x; u/, i 62 I, at .x; u/ 2 nc.K/, and

Qq.x; u;AI/ WD
Z

G.spanfxg;q/
ŒL;AI �

2

kpLukq�j �
spanfxg
q .dL/;

where pLu is the orthogonal projection of u onto L. If q D 1 and x ? u, we set
Q1.x; u;M/ WD 0. For j D q � 1, (7.27) takes the following explicit form

'.K/ D !q

!n

Z

nc.K/
kxk�.n�q/F� 1

2 ;
n�q
2 I n�1

2
.sin2 †.x; u//�n�1.K; d.x; u//: (7.28)

The proof of the theorem involves extensive geometric measure theory.
In [5], the explicit form of Qq has been derived. Generally, Qq.x; u;AI/ depends

on the angle between x and u, and the angle between x and AI . As an example, let
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j D 0 and q D n � 1. Then, by [19, Proposition 3],

'.K/ D 2

.n � 1/!n

Z

nc.K/
kxk�1

�
� n�1X

iD1
R.x; u; ai.x; u//

˘j¤i�j.x; u/
Qn�1

lD1
q
1C �2l .x; u/

	

�n�1.K; d.x; u//;

where

R.x; u; a/ WD sin2 †.x; a/
h

sin2 � Fn�1
2 ; 12 I nC1

2
.sin2 †.x; u//

C cos2 � Fn�1
2 ; 32 I nC1

2
.sin2 †.x; u//

i
;

with � D †. px?

a; px?

u/. An application of the Euler-transformation (7.2) yields

F1; 12 I2.sin2 †.x; u// D cos †.x; u/ F1; 32 I2.sin2 †.x; u//;

and we find for n D 3

R.x; u; a/ D F1; 32 I2.sin2 †.x; u// sin2 †.x; a/Œ.sin2 �/cos †.x; u/C cos2 � �:

As

cos � D cos †.a; x/ cos †.x; u/
sin †.a; x/ sin †.x; u/ ;

trigonometric identities give

R.x; u; a/ D F1; 32 I2.sin2 †.x; u//

�
"

.sin2 †.x; a// cos †.x; u/C 2 cos2 †.x; a/ cos2 †.x; u/
sin2 †.x; u/ sin2

†.x; u/
2

#

;

where F1; 32 I2 can be simplified using (7.3) with ˛ D 1 as

F1; 32 I2.z/ D .1 � z/�1=2
 
1C p

1 � z

2

!�1
:
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Summarizing, we find for n D 3, q D 2 and j D 0 that (7.27) reduces to

'.K/ D 1

8�

Z

nc.K/
kxk�1

� 2X

iD1

�3�i.x; u/

˘2
lD1
q
1C �2l .x; u/

h
sin2 †.x; ai.x; u// cos�2 †.x; u/

2

C 2 cos2 †.x; ai.x; u// cos †.x; u/
sin2 †.x; u/ tan2

†.x; u/
2

i	

H 2.d.x; u//:

(7.29)

We conclude these considerations with a remark on SO.n/-invariant valuations in
the context of the above rotational formulae. When 'L D Vj is an intrinsic volume,
the left hand side of (7.26) defines a real-valued SO.n/-invariant valuation '. In the
case of the Euler characteristic, j D 0, the valuation ' is not continuous, as can be
seen considering a non-constant sequence of singletons converging to fog. Using
the upper semi-continuity of the intersection operation one can show that ' is
continuous for j � 1. One may ask if this valuation can be approximated by
polynomial ones. Due to Weierstrass’ approximation theorem the hypergeometric
function in (7.28) can uniformly be approximated by polynomials on Œ�1; 1�. As a
consequence, the valuation in (7.28) is a locally uniform limit of continuous SO.n/-
invariant polynomial valuations by Theorem 7.6. In contrast to this, the valuation
in (7.27) is for j � q�2 an integral over the unit normal bundle where the integrand
depends on the principal directions of nc.K/. It was therefore conjectured in [5]
that such valuations are not locally uniform limits of continuous SO.n/-invariant
polynomial valuations even if j � 1. The lowest dimensional example of this kind
occurs for n D 4; q D 3 and j D 1. The mentioned problem is still open.

7.4 Rotational Crofton Formulae for Minkowski Tensors

Rotational Crofton formulae for Minkowski tensors have recently been derived in [6,
31].

To express Minkowski tensors as rotational averages, we need to generalize
Theorem 7.10. An important element in the proof of Theorem 7.10 is the classical
Crofton formula (7.20). In [15], (7.20) is generalized to the case of Minkowski
tensors. (For the definition of Minkowski tensors, see Chap. 2, Sect. 2.1.) It turns
out that the formula for Minkowski tensors derived in [15] is considerably more
complicated than the classical Crofton formula, but for Minkowski tensors ˚ r;0

k it
takes a sufficiently simple form so that the proof of Theorem 7.10 carries over. For
a convex body K contained in a flat E � R

n, there are variants of the Minkowski
tensors denoted by ˚ r;s.E/

j .K/. These Minkowski tensors are again tensor valuations
of rank r C s in R

n, but they are calculated with respect to the support measures of
K in E; see the beginning of [15, Sect. 3] for details. They coincide with ˚ r;s

j;E.K/ in
Sect. 5.2 apart from a different normalization.
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Theorem 7.12 (Auneau-Cognacq et al. [6, Corollary 4.4]) For q D 1; : : : ; n�1,
j D 1; : : : ; q and r a non-negative integer, let ' D ˚

r;0
n�qCj be the tensor of rank r

with s D 0 and index n � q C j. Then,

Z

G.n;q/
'L.K \ L/ �q.dL/ D '.K/; K 2 K n;

where

'L.K
0/ D !n�qC1

!1

1

˛n;j�1;q�1

�
Z

A.L;q�1/
d.o;E/n�q˚

r;0.L/
j�1 .K0 \ E/ �q�1.dE/; K0 2 K

q
L :

(7.30)

For j D q, (7.30) takes the following explicit form

'L.K
0/ D !n

!q

1

rŠ

Z

K0

xrkxkn�q dx; (7.31)

while for j D q � 1, (7.30) can equivalently be expressed as

'L.K
0/ D !n

!q

1

rŠ

Z

nc.K0/

xrkxkn�qF� 1
2 ;� n�q

2 I q�1
2
.sin2 †.x; u//�L

q�1.K0; d.x; u//:

(7.32)

A result of the type (7.30) can also be established for ˚ r;1
n�qCj, see [6, Corol-

lary 4.4], but here explicit expressions for 'L for j D q and j D q � 1 are not
available.

Surface tensors ˚0;s
k are studied in [25]. In [25, Theorem 3.4], ˚0;s

n�1.K/ is
expressed for even s as a Crofton-integral with respect to lines E 2 A.n; 1/,
involving an explicitly known tensor Gs.�.E// of rank s. Here, �.E/ is the line
through the origin parallel to E. By combining this result with (7.24), ˚0;s

n�1.K/ can
for even s be expressed as a rotational integral. We get for q D 2; : : : ; n � 1

˚
0;s
n�1.K/ D

Z

G.n;q/
'L.K \ L/ �q.dL/;

where

'L.K
0/ D !n�1

!q�1

Z

A.L;1/
d.o;E/n�qGs.�.E//V0.K \ E/ �L

1.dE/:

As is apparent from the discussion above, it is an open problem to express
Minkowski tensors with general indices as rotational averages. One possible route
to follow for the tensors ˚0;s

k with arbitrary non-negative integer s is to use the
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recently established kinematic formula [8, Corollary 6.1] for trace-free tensors s
k in

combination with the Blaschke-Petkantschin formula (7.24). For k; l � 0, k C l � n
and n < l C p, we get

!sCkCl

!sCk!l

 
k C l

k

!
kl

k C l

�
n
l

	�1
 s
kCl.K/ D

Z

A.n;n�l/
 s
k .K \ E/�n�l.dE/

D
Z

G.n;p/
˛sp;k;l.K;L/�p.dL/;

where

�
n
l

	

WD
 
n

l

!
	
�
l
2

C 1
�
	
�
n�l
2

C 1
�

	
�
n
2

C 1
�

and

˛sp;k;l.K;L/ D !l

!p�nCl

Z

A.L;n�l/
 s
k .K \ E/d.o;E/n�p�L.dE/:

Combining this with the fact that ˚0;s
k can be expressed in terms of 0

k ; : : : ; 
s
k [8,

Proposition 4.16] it can be seen that any translation invariant Minkowski tensor˚0;s
k ,

2 � k � n � 1, s 2 N0, can be written as a non-trivial rotational Crofton integral.
To the best of our knowledge, explicit general formulae cannot be found in the
literature. It is an open problem to express the more general Minkowski tensors˚ r;s

k
as rotational averages.

The situation is much more clear for rotational averages of Minkowski tensors,
due to the recent work of Svane and Jensen [31]. Using the same techniques as
in [19], Theorem 7.11 can be generalized as follows, where it should be noted that
the integrand of the function Qq in Theorem 7.13 below takes a more general form
than in Theorem 7.11.

Theorem 7.13 (Svane and Jensen [31]) Let q D 1; : : : ; n � 1, j D 0; : : : ; q, r; s
non-negative integers and let f'L W L 2 G.n; q/g be the SO.n/-compatible family
given by

'L.K
0/ D ˚

r;s.L/
j .K0/; K0 2 K q

L :

Then,

Z

G.n;q/
'L.K \ L/ �q.dL/ D '.K/; K 2 K n;
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where for j D q and s D 0

'.K/ D 1

rŠ

!q

!n

Z

K
xrkxk�.n�q/ dx:

If K 2 K n contains o in its interior, then for j < q

'.K/ D 1

rŠsŠ

2!q

!n!q�jCs

Z

nc.K/
xrkxk�.n�q/

�
X

I�f1;:::;n�1g
jIjDq�j�1

Qq.x; u;AI/

Q
i2I �i.x; u/

Qn�1
iD1

q
1C �2i .x; u/

�n�1 .d.x; u// ; (7.33)

where

Qq.x; u;AI/ D
Z

G.spanfxg;q/
.pLu/

s ŒL;AI �
2

kpLukq�jCs �
spanfxg
q .dL/:

For j D q � 1, (7.33) takes the following explicit form

'.K/ D 2

rŠsŠ!sC1
!q!q�1!n�q

!n!n�1!n�2

X

aCbCcC2lDs

 
s

a; b; c; 2l

!
!2lCn�2
!2lC1

�
X

eCfCtCvDl

 
l

e; f ; t; v

!

.�1/ fCvCb2tC1Qe

�
Z

nc.K/
ucC2fCt xrCaCbC2vCt

kxkn�qCaCbC2vCt
g.sin2 †.x; u//�n�1.KI d.x; u//;

where Q 2 T
2 is the metric tensor and

g.˛2/ D !n�1C2bC2cC4l
!q�1C2bC2cC2l!n�qC2l

˛2e.1 � ˛2/
aCbCt

2 F s�1
2 ;

n�q
2 ClI n�1

2 CbCcC2l.˛
2/:

We finally mention that a recently derived kinematic Crofton formula for area
measures (see Theorem 4.4 or [13]) can also be combined with the Blaschke-
Petkantschin formula (7.24) in order to obtain a rotational Crofton-type represen-
tation of the surface area measure Sk.K; � / of K with index 2 � k � n � 1.
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7.5 Uniqueness of the Measurement Function

Let K 2 K n and q 2 f1; : : : ; n � 1g be given. The rotational Crofton formulae in
Sect. 7.4 all read

Z

G.n;q/
'L.K \ L/ �q.dL/ D '.K/; (7.34)

where ' is some tensor valued valuation and the functionals 'L are tensor valued
valuations on K q

L for all L 2 G.n; q/. As 'L is the quantity we have to measure
in order to obtain a desired isotropic average, we refer to 'L as the measurement
function. In [14] it was asked if this measurement function is unique under
appropriate additional assumptions when the right hand side of (7.34) is an intrinsic
volume of K. This question was motivated by the observation that two apparently
different measurement functions that satisfy (7.34) with ' D Vn actually coincide.
In fact, also the following result on surface area estimation appears to support
uniqueness of the measurement function. Theorem 7.10 implies that (7.34) with
' D Vn�1 holds with 'L given by (7.23). About a decade before Theorem 7.10 was
established, a Blaschke-Petkantschin formula was used in [16, Sect. 5.6] to show
that the apparently different measurement function

'L.K
0/ D1

2

!n

!q

Z

Sn�1\L

n�1
K .u/

1

cos �L.u/
F� 1

2 ;� n�q
2 ;

q�1
2
.sin2 �L.u//du; K0 2 K q

L ;

(7.35)

also satisfies (7.34) if o 2 intK. Here �L.u/ is the angle between u and the (almost
everywhere unique) outer unit normal in L of K0 at its boundary point u
K0.u/. A
closer examination reveals that the measurement functions (7.23) and (7.35) actually
coincide when q D 2; see [9] for a proof in the case of strictly convex and smooth
K � R

3 and [32] for the general case.
Using the linearity of the integral, the original uniqueness question can equiva-

lently be rephrased by asking under what conditions

Z

G.n;q/
'L.K \ L/ �q.dL/ D 0 (7.36)

implies that all measurement functions 'L are vanishing.
In contrast to the convex case, the corresponding question for measurement

functions on Ln-stars is not difficult: We have already noted after Corollary 7.4 that
an SO.n/-compatible family f'L W L 2 G.n; q/g of continuous valuations is uniquely
determined when 'L is known on all balls in L, so (7.36) implies that all 'L vanish.
When q D 1 any member of an SO.n/-compatible family f'L W L 2 G.n; q/g
of functionals 'L W S n

L ! R (without any further assumptions) must vanish
when (7.36) holds. In fact, one only has to show that 'L vanishes on all line-
segments in L that contain the origin. However, this is a direct consequence of (7.36)
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applied to the sets

K D rBn [ fx 2 RBn W hx;wi � 0g; (7.37)

for 0 � r � R, w 2 S
n�1, and the SO.n/-compatibility.

The question under what conditions (7.36) determines 'L in the convex case is
widely open apart from the following result on one-dimensional sections.

Theorem 7.14 Let f'L W L 2 G.n; 1/g be an SO.n/-compatible family of func-
tionals 'L onK n

L . Then (7.36) implies that 'L D 0 for all L 2 L n
1 .

The proof of this new result uses the convex hull K1 of K in (7.37) and the
intersection K2 of all closed supporting half spaces of K1 that contain a point of
fx 2 RBn W hx;wi � 0g in their boundaries. An explicit calculation and comparison
of (7.36) with K1 and K2 replacing K then yields the assertion.

7.6 Principal Rotational Formulae

A principal rotational formula for Minkowski tensors may involve integrals of the
form

Z

SO.n/
˚ r;s

k .K \ #M/ �.d#/;

for k D 0; : : : ; n, r; s 2 N0, where K;M 2 K n and � is the unique rotation
invariant probability measure on SO.n/. In local stereology, principal rotational
formulae are used in cases where an unknown spatial structure K is studied via
the intersection with a randomly rotated set M. In such applications, M is a known
‘sampling window’ constructed by the observer.

In this section, we consider principal rotational formulae for general Minkowski
tensors. Some formulae of this type already appeared in [17]. The more complete
formulae presented below are new.

It turns out that local Minkowski tensors are an important tool in the derivation
of such formulae. We use a slightly more general definition than the one given in
Chap. 2, Sect. 2.3. Thus, for K 2 K n, r; s non-negative integers and k D 0; : : : ;

n � 1, the local Minkowski tensors are defined by

˚
r;s
k .K;  / WD !n�k

rŠ sŠ !n�kCs

Z

nc.K/
 .x; u/ xrus�k.K; d.x; u// (7.38)

and

˚ r;0
n .K; �/ WD 1

rŠ

Z

K
�.x/xr dx; (7.39)
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where  and � are non-negative measurable functions on R
n � S

n�1 and R
n,

respectively. The classical Minkowski tensors are obtained in (7.38) and (7.39) by
choosing the functions  and � identically equal to 1. We remark for later use
that the rotation group acts on the corresponding function spaces in the natural
way: for # 2 SO.n/, let .# /.x; u/ D  .#�1x; #�1u/ and .#�/.x/ D �.#�1x/,
x 2 R

n; u 2 S
n�1. We define the rotational average

 .x; u/ WD
Z

SO.n/
 .#x; #u/ �.d#/

and likewise for N�. The same definition can also be applied to functions  and �
with values in T

p.
A simple application of Tonelli’s theorem yields the following result for local

Minkowski tensors.

Proposition 7.15 Let  and � be non-negative measurable functions on Rn �S
n�1

and R
n, respectively. Then, for K 2 K n, r; s non-negative integers and k D

0; : : : ; n � 1;

Z

SO.n/
˚ r;0

n .K; #�/ �.d#/ D ˚ r;0
n .K; N�/

and

Z

SO.n/
˚

r;s
k .K; # / �.d#/ D ˚

r;s
k .K;  /:

As a consequence of Proposition 7.15, we have the following principal rotational
formula for local Minkowski tensors. We slightly abuse notation using 1A.x; u/ WD
1A.x/ for the indicator function of a set A � R

n and �M.x; u/ WD �M.x/ for the
function �M defined below, where .x; u/ 2 R

n � S
n�1.

Theorem 7.16 Let K;M 2 K n and

�M.x/ WD H n�1.intM \ kxkSn�1/
H n�1.kxkSn�1/

;

if x 2 R
n n fog, and �M.o/ WD 1intM.o/. Then, for any non-negative integer r we

have
Z

SO.n/
˚ r;0

n .K \ #M/ �.d#/ D ˚ r;0
n .K; �M/: (7.40)
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If, in addition, k D 0; : : : ; n � 1; and s 2 N0 we have

Z

SO.n/
˚

r;s
k .K \ #M; #1intM/ �.d#/ D ˚

r;s
k .K; �M/: (7.41)

When k D n � 1 and H n�1.bdK \ # bdM/ D 0 for almost all # 2 SO.n/, this
implies

Z

SO.n/
˚

r;s
n�1.K \ #M/ �.d#/

D ˚
r;s
n�1.K; �M/C 1

rŠsŠ

2

!sC1

Z

nc.M/
1intKxrus�n�1.M; d.x; u//: (7.42)

Proof As 1intM D �M and

˚ r;0
n .K \ #M/ D ˚ r;0

n .K; #1intM/;

(7.40) follows directly from Proposition 7.15. Support measures are locally defined
(see Sect. 2.3), so�k.K\#M; �/ D �k.K; �/ for the open set � D .int#M/�S

n�1.
This implies

˚
r;s
k .K \ #M; #1intM/ D ˚

r;s
k .K; #1intM/

and Proposition 7.15 yields (7.41). To show (7.42) an application of the facts that
support measures are locally defined together with the additional assumption yields

�n�1.K \ #M; � / D �n�1.K; � \ .#.intM/ � S
n�1//

C�n�1.#M; � \ ..intK/ � S
n�1//

for almost all # . Integrating xrus with this measure, applying (7.41) and using
again the fact that support measures are locally defined to simplify the second term,
yields (7.42). ut

Proposition 7.15 may also be used to derive a principal rotational formula where
Minkowski tensors are expressed as rotational averages. The result is given in the
theorem below.

Theorem 7.17 Let K;M 2 K n. Suppose that M is chosen such that o 2 intM and
that

H n�1.intM \ kxkSn�1/ > 0
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for all o ¤ x 2 K. Let

�ı
M.x/ WD H n�1.kxkSn�1/

H n�1.intM \ kxkSn�1/
1intM.x/;

if H n�1.intM \ kxkSn�1/ > 0, and �ı
M.x/ WD 0, otherwise. Then, for r; s non-

negative integers and k D 0; : : : ; n � 1,
Z

SO.n/
˚

r;s
k .K \ M; #�ı

M/ �.d#/ D ˚
r;s
k .K/

and

Z

SO.n/
˚ r;0

n .K \ M; #�ı
M/ �.d#/ D ˚ r;0

n .K/:

The theorem follows from Proposition 7.15 as �ı
M.x/ D 1 for x 2 K. ut

In order to use Theorem 7.17 for estimating ˚ r;s
k .K/ from an observation in K \

#M, where # is a random rotation, requires to determine the weight function �ı
M

yielding a Horvitz-Thompson-type correction. This is possible when #M is known
which is often the case in optical microscopy, see e.g. [30].

But from a basic science point of view, it is important to develop principal
rotational formulae of the type (7.40) and (7.42) with integrands only depending
on K \ #M without any further knowledge. To the best of our knowledge, this is
an open problem in rotational integral geometry for the measurement function ˚ r;s

k
with k < n � 1.

7.7 Local Stereology Applications

The aim of local stereology [16] is the estimation of quantitative parameters
(volume, surface area, Minkowski tensors, . . . ) of spatial structures from sections
through fixed points, called reference points.

Using a rotational Crofton formula, local stereological estimators of Minkowski
tensors˚ r;s

k .K/ have recently been derived [20], based on measurements on random
sections passing through a fixed point of K. More specifically, such local estimators
are available for (i) s D 0; 1 and r; k arbitrary and for (ii) r D 0, s even and k D
n � 1. In (i), the rotational Crofton formula presented in [6, Corollary 4.4] is used
while (ii) follows by combining [25, Theorem 3.4] with the Blaschke-Petkantschin
formula (7.24). The details were given in Sect. 7.4. The most common stereological
application of rotational Crofton formulae is the estimation of intrinsic volumes
(r D s D 0). For volume and surface area estimation, that is, when k D n or
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k D n � 1, different forms of measurement functions have been suggested. In [32]
several surface area estimators are discussed and a measurement function based
on Morse theory is established. The works of Cruz-Orive and Gual-Arnau on this
subject are summarized in the recent paper [10].

Alternatively, measurements for local estimation of ˚ r;s
k .K/ may be performed

on the intersection K \ M of K with a randomly rotated convex body M. Here, a
principal rotational formula is used; see Sect. 7.6.

In this section, we will investigate to what extent these results can be transferred
to particle processes. Let X be a particle process of full-dimensional convex particles
in R

n that we represent as a stationary marked point process. The marked point
process is given by

fŒx.K/IK � x.K/� W K 2 Xg;

where x.K/ 2 K is a reference point associated to each particle K 2 X while the
mark K � x.K/ is the particle translated such that its reference point is the origin o.
The particle mark distribution is denoted by Q. We let K0 be a random convex set
with distribution Q. We may regard K0 as a randomly chosen particle or a typical
particle with o put at its reference point.

Inference about the distribution of ˚ r;s
k .K0/ may be based on a sample of

particles, collected as those particles with reference point in a sampling window.
More specifically, we consider a sample of the form

fK 2 X W x.K/ 2 Wg; (7.43)

where W 2 B.Rn/ is a full-dimensional sampling window with 0 < �n.W/ < 1.
The distribution of ˚ r;s

k .K0/ may be studied via the empirical distribution of

f˚ r;s
k .K � x.K// W K 2 X; x.K/ 2 Wg: (7.44)

If complete access to the sampled particles is not possible, the distribution of
˚

r;s
k .K0/ may still be studied via (7.44) if a precise estimate b̊r;s

k .K � x.K// of
˚

r;s
k .K � x.K// is available, e.g. from replicated local sectioning of K � x.K/.
We will now discuss the situation where such precise estimates are not available.

This situation is frequently encountered in optical microscopy where it is difficult
to obtain a precise 3D image of K, due to overprojection at the peripheral parts
of K. For this discussion, it turns out to be useful to consider the following n C 1

probability measures PX;k, k D 0; : : : ; n, associated to the particle process X. The
probability measure PX;n is concentrated on R

n and is absolutely continuous with
respect to the Lebesgue measure �n with probability density

fK0 .x/ WD P.x 2 K0/=E�n.K0/; x 2 R
n;

called the cover density. The density fK0 may be envisaged as a kind of probability
cloud. If K0 is deterministic, then fK0 is proportional to 1K0 , so K0 can be
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reconstructed from fK0 . If Q is invariant under rotations, then fK0 is also rotation
invariant.

The remaining probability measures PX;k, k D 0; : : : ; n � 1, are concentrated on
R

n � S
n�1 and are normalized versions of the mean support measures

PX;k.A/ WD E�k.K0;A/

E�k.K0;Rn � Sn�1/
; A 2 B.Rn � S

n�1/:

The probability measures PX;k, 0 � k � n � 1, contain information about the
probabilistic properties of the boundary of K0. As an example, PX;n�1.Rn � � / is
proportional to the surface area measure of the so-called Blaschke body B.X/ of the
particle process, see [29, p. 149]. If Q is invariant under rotations, then B.X/ is a
ball.

The theorem below shows that for particle processes, normalized mean Min-
kowski tensors determine the moments of arbitrary order in the distributions PX;k,
k D 0; : : : ; n.

Theorem 7.18 Let X be a stationary particle process of full-dimensional convex
particles in R

n with particle mark distribution Q. Let K0 be a random convex set
with distribution Q. Then, for non-negative integers r; s and k D 0; : : : ; n � 1

E˚
r;s
k .K0/

E˚
0;0
k .K0/

D !n�k

rŠsŠ!n�kCs

Z

Rn
Sn�1

xrusPX;k.d.x; u//:

For k D n, we get

E˚ r;0
n .K0/

E˚
0;0
n .K0/

D 1

rŠ

Z

Rn
xrfK0 .x/�n.dx/:

For k D n � 1 and r D 0 we have the following connection to the surface area
measure of the Blaschke body:

E˚
0;s
n�1.K0/

E˚
0;0
n�1.K0/

D 1

sŠ!sC1

Z

Sn�1

us
Sn�1.B.X/; du/
Vn�1.B.X//

:

The second identity in Theorem 7.18 has earlier been presented in [34, Sect. 4.3],
otherwise the results in Theorem 7.18 appear to be new. They are easily proved,
using the definitions of PX;k and the Blaschke body B.X/, see [29, pp. 148–149].
Similar results may be derived for the characteristic functions of PX;k and PX;n.

Let us now return to the problem of drawing inference about the distribution of
˚ r;s

k .K0/ from a sample of particles. Using Campbell’s theorem for marked point
processes, we have

E
P

K2X;x.K/2W ˚
r;s
k .K � x.K//

E
P

K2X;x.K/2W ˚
0;0
k .K � x.K//

D E˚
r;s
k .K0/

E˚
0;0
k .K0/

: (7.45)
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Combining this result with Theorem 7.18, it follows under weak assumptions about
the particle process that

rŠsŠ!n�kCs

!n�k

P
K2X;x.K/2W ˚

r;s
k .K � x.K//

P
K2X;x.K/2W ˚

0;0
k .K � x.K//

is a consistent (in a probabilistic sense) estimator of the moment of order .r; s/ of
PX;k, also in the case where˚ r;s

k .K�x.K// is substituted with an unbiased estimator
b̊r;s

k .K � x.K//, subject to non-negligible variability. For instance, consistency
follows in an expanding window regime if the particle process is ergodic, see [11,
Corollary 12.2.V].

These ideas have been pursued in detail in [27, 34] for volume tensors and the
resulting methods have been implemented in optical microscopy. For a sampled
particle K, the volume tensor ˚ r;0

n .K � x.K// is here unbiasedly estimated using a
local stereological design, involving measurements from the central part of K.

The design used in [27, 34] is a so-called vertical slice design. Let us consider a
slice of the form T D L C B.o; t/ where L 2 G.M; q/, q > 1, is a q-dimensional
linear subspace containing a fixed line M 2 G.n; 1/ passing through o and t > 0

is the thickness of the slice. The line M is called the vertical axis. The set of such
slices is denoted T.n; q;M/. We let 
Mq denote the unique probability measure on
T.n; q;M/, invariant under rotations that keep M fixed.

The unbiased estimator of˚ r;0
n .K�x.K// is obtained by replacing K by K�x.K/

in the lemma below.

Lemma 7.19 Let T be a random vertical slice with distribution 
Mq . Let K 2 K n

be a fixed convex set and Ga;b the distribution function of the Beta distribution with
parameters .a=2; b=2/. Then,

b̊r;0
n .KI T/ WD 1

rŠ

Z

K\T
xrGn�q;q�1.t2=kpM?

.x/k2/�1�n.dx/

is an unbiased estimator of ˚ r;0
n .K/.

The lemma is a direct consequence of [16, Proposition 6.3].
Combining Lemma 7.19 with Theorem 7.18 and (7.45), we obtain the following

result.

Theorem 7.20 Let W 2 B.Rn/ with 0 < �n.W/ < 1. Let X be a stationary
particle process of convex particles in R

n with particle mark distribution Q. Let
K0 be a random convex set with distribution Q. Finally, let T be a random vertical
slice, independent of the particle process X, with distribution 
Mq . Then, for any
non-negative integer r,

E
P

K2X;x.K/2W b̊r;0
n .K � x.K/I T/

E
P

K2X;x.K/2W b̊
0;0
n .K � x.K/I T/

D 1

rŠ

Z

Rn
xrfK0 .x/�n.dx/;

where b̊r;0
n is given in Lemma 7.19.
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If the particle mark distribution Q is invariant under rotations that keep the
vertical axis fixed, then it is not needed to randomize the slice.
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Chapter 8
Valuations on Lattice Polytopes

Károly J. Böröczky and Monika Ludwig

Abstract This survey is on classification results for valuations defined on lattice
polytopes that intertwine the special linear group over the integers. The basic real
valued valuations, the coefficients of the Ehrhart polynomial, are introduced and
their characterization by Betke and Kneser is discussed. More recent results include
classification theorems for vector and convex body valued valuations.

8.1 From the Pick Theorem to the Ehrhart Polynomial

A (full-dimensional) lattice � � R
n is a discrete subgroup spanned by n indepen-

dent vectors. Given a basis of �, the automorphisms of � are transformations of
the form x 7! Ax C b with b 2 � and A 2 GLn.Z/, that is, A is an n � n integer
matrix with determinant ˙1. Such transformations are called unimodular. A lattice
polytope is the convex hull of a finite subset of� and we write P.�/ for the family
of lattice polytopes. Since every lattice is a linear image of Zn, in general we just
consider the lattice Z

n.
This section concentrates on the lattice point enumerator L.P/ for a bounded set

P � R
n, where

L.P/ WD
X

x2P\Zn

1: (8.1)
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Hence, L.P/ is the number of lattice points in P and P 7! L.P/ is a valuation on
P.Zn/. For basic properties of lattices related to this chapter from various aspects,
see Barvinok [3], Beck and Robins [4], Gruber [20] or Gruber and Lekkerkerker
[21].

The starting point is a formula [51] due to Georg Alexander Pick (1859–1942).
For P 2 P.Z2/, write B.P/ for the number of lattice points on the boundary of P if
P is two-dimensional, and B.P/ WD 2jP\Z

2j �2 if P is a segment or a point, where
j � j denotes the cardinality of a finite set. Note that P 7! B.P/ is a valuation.

Theorem 8.1 (Pick) For P 2 P.Z2/ non-empty,

L.P/ D V2.P/C 1

2
B.P/C 1:

Here V2.P/ is the two-dimensional volume of the polytope P. The core fact behind
Pick’s theorem is that if P 2 P.Z2/ is a triangle with L.P/ D 3, then V2.P/ D 1=2.
Thus the essential two-dimensional case can be proved for example by induction
on L.P/, dissecting P into triangles sharing a common vertex if L.P/ � 4. The Pick
theorem has various proofs (see e.g. [9, 22]).

In higher dimensions, there is no simple formula as in Pick’s theorem, as was
noted by Reeve [54, 55]. The reason is that the volume of an n-dimensional simplex
S 2 P.Zn/ with L.S/ D n C 1 can be any non-negative integer multiple of 1=nŠ
However, Eugène Ehrhart (1906–2000), a French high school teacher, found the
following fundamental formula in [17] which works in all dimensions. We write N0
for the set of non-negative integers and call a valuation unimodular if it is invariant
with respect to unimodular transformations.

Theorem 8.2 (Ehrhart) There exist rational numbers Li.P/ for i D 0; : : : ; n such
that

L.kP/ D
nX

iD0
Li.P/k

i

for every k 2 N0 and P 2 P.Zn/. For each i, the functional Li W P.Zn/ ! Q is a
unimodular valuation which is homogeneous of degree i.

Note that Ln.P/ is the n-dimensional volume Vn.P/ and that L0.P/ is the Euler
characteristic of P, that is, L0.P/ WD 1 for P 2 P.Zn/ non-empty and L0.;/ WD 0.
Also note that Li.P/ D 0 for i > dimP, where dimP is the dimension (of the
affine hull) of P.

Let detn�1 � denote the determinant of an .n � 1/-dimensional sublattice of Zn.
In addition, for an n-dimensional polytope P 2 P.Zn/, let Fn�1.P/ be the family
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of .n � 1/-dimensional faces and write aff for affine hull. For n � 2, we have

Ln�1.P/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

1
2

P

F2Fn�1.P/

Vn�1.F/
detn�1.Zn \ affF/

if dim.P/ D n;

Vn�1.P/
detn�1.Zn \ affP/

if dim.P/ D n � 1;

0 if dim.P/ � n � 2:

Thus Ln�1.P/ is a lattice surface area of P. Note, in particular, that L1.P/ D 1
2
B.P/

in accordance with Pick’s Theorem for n D 2.
The coefficient Li.P/ may not be an integer for i D 1; : : : ; n, but nŠLi.P/ 2 Z

for P 2 P.Zn/. There seems to be no known “geometric interpretation” for Li.P/
if n � 3 and 1 � i � n � 2, and actually Li.P/ might be negative in this case
(see [30] for a strong result in this direction). If P 2 P.Zn/ is n-dimensional and
i D 1; : : : ; n � 1, then good bounds of the form

a.n; i/Vn.P/C b.n; i/ � Li.P/ � c.n; i/Vn.P/C d.n; i/

involving the so-called Stirling numbers are known. Here the optimal upper bound
on Li.P/ for i D 1; : : : ; n � 1 is due to Betke and McMullen [8]. A lower bound is
due to Henk and Tagami [29] and Tsuchiya [64], and it is known to be optimal if
i D 1; 2; 3; n � 3; n � 2, and if n � i is even.

There is a representation of the Ehrhart polynomial via projective toric varieties
associated to a lattice polytope (see, e.g., [13, 15, 18]). Using this representation,
or combinatorial analogues of the algebraic geometric approach, formulas for Li.P/
were established by Pommersheim [52] in terms of Dedekind sums if P 2 P.Z3/

is a tetrahedron, by Kantor and Khovanskii [32] if n D 3; 4, by Brion and Vergne
[12] if P is simple, by Diaz and Robins [16] using Fourier analysis for any P and by
Chen [14] if P is a simplex.

We note that inspired by the algebraic geometric representation of the Ehrhart
polynomial, Barvinok [2] provided a polynomial time algorithm to calculate Li.P/
for P 2 P.Zn/ and i D 1; : : : ; n, if the dimension n is fixed.

Ehrhart’s Theorem 8.2 was extended to non-negative integer linear combinations
of lattice polytopes by Bernstein [5] and McMullen [46].

Theorem 8.3 Let P1; : : : ;Pm 2 P.Zn/ be given. If k1; : : : ; km 2 N0, then L.k1P1C
� � � C kmPm/ is a polynomial in k1; : : : ; km of total degree at most n. Moreover, the
coefficient of kr11 � � � krmm in this polynomial is a translation invariant valuation in Pi

which is homogeneous of degree ri.

To prove this result, McMullen [46] uses induction on the number of summands,
while Bernstein [5] considers intersections of algebraic hypersurfaces in .Cnf0g/n
determined by Laurent polynomials with given Newton polytope. Here the Newton
polytope associated to a Laurent polynomial is the convex hull of the lattice points
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corresponding to the exponents of its non-zero coefficients. Note that Theorems 8.2
and 8.3 imply that L1 is additive.

Corollary 8.4 If P;Q 2 P.Zn/, then L1.P C Q/ D L1.P/C L1.Q/.

For the lattice point enumerator, the following important reciprocity relation was
established by Ehrhart [17] and Macdonald [45]. For P 2 P.Zn/, write relintP for
the relative interior of P (with respect to the affine hull of P).

Theorem 8.5 If P 2 P.Zn/, then L.relintP/ D .�1/dimP
Pn

iD0 Li.P/.�1/i:
This is also called the Ehrhart-Macdonald reciprocity law. The right side of the
formula in Theorem 8.5 is, up to multiplication with the factor .�1/dimP, the Ehrhart
polynomial k 7! L.k P/ evaluated at k D �1. For a multivariate version, that is, a
version using the polynomial from Theorem 8.3, see [31].

One may choose other bases for the vector space of polynomials of degree at
most n instead of the monomials and obtains other representations for the Ehrhart
polynomial. In particular, for k 2 N0,

L.kP/ D
nX

iD0
H�

i .P/

 
k C n � i

n

!

:

For i D 0; : : : ; n, the functional H�
i is a unimodular valuation on P.Zn/ (which is

not homogeneous). More commonly used are the functionals h�
i , defined by

L.kP/ D
mX

iD0
h�
i .P/

 
k C m � i

m

!

(8.2)

for k 2 N0, where m D dimP. The vector .h�
0 .P/; : : : ; h

�
n .P//, where we set

h�
i .P/ WD 0 for i > dimP, is called the Ehrhart h�-vector of P. Stanley [61]

showed that the Ehrhart h�-vector of P coincides with the combinatorial h-vector
of a unimodular triangulation of P, if such a triangulation exists. Betke [6] and
Stanley [61] showed that for i D 0; : : : ; n, the functional h�

i is integer-valued and
non-negative on P.Zn/. Stanley [62] showed that each h�

i is monotone with respect
to set inclusion. Clearly, we have H�

i .P/ D h�
i .P/ for n-dimensional polytopes P.

However, the functionals h�
i are not valuations on P.Zn/ while the valuations H�

i
are not monotone or non-negative.

Another representation of the Ehrhart polynomial, introduced by Breuer [11], is

L.kP/ D
nX

iD0
f �
i .P/

 
k � 1
i

!

(8.3)

for k 2 N0. For i D 0; : : : ; n, the functional f �
i is a unimodular valuation on

P.Zn/ (which again is not homogeneous). Note that f �
i .P/ D 0 for i > dimP. The

vector .f �
0 .P/; : : : ; f

�
n .P// is called the Ehrhart f �-vector of P and coincides with the
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combinatorial f -vector of a unimodular triangulation of P, if such a triangulation
exists. Breuer [11] showed that for i D 0; : : : ; n, the valuation f �

i is integer-
valued and non-negative on P.Zn/ and that these properties extend to polyhedral
complexes.

8.2 The Inclusion-Exclusion Principle

The inclusion-exclusion principle is a fundamental property of valuations on lattice
polytopes, which was first established in the case of translation invariant and
real valued valuations by Stein [63] and for general real valued valuations by
Betke (Das Einschließungs-Ausschließungsprinzip für Gitterpolytope. Unpublished
manuscript). The first published proof is by McMullen [48], who also established
the more general extension property. Since the family of lattice polytopes is not
intersectional, that is, the intersection of two lattice polytopes is in general not a
lattice polytope, results for valuations on polytopes (see Theorem 1.3) could not
easily be generalized.

For m � 1, we write PJ WD \i2JPi for ; ¤ J � f1; : : : ;mg and given polytopes
P1; : : : ;Pm 2 P.Zn/. Let G be an abelian group. The inclusion-exclusion formula
for lattice polytopes is the following result.

Theorem 8.6 If Z W P.Zn/ ! G is a valuation, then for lattice polytopes
P1; : : : ;Pm,

Z.P1 [ � � � [ Pm/ D
X

;¤J�f1;:::;mg
.�1/jJj�1 Z.PJ/:

whenever P1 [ � � � [ Pm 2 P.Zn/ and PJ 2 P.Zn/ for all ; ¤ J � f1; : : : ;mg.
It is often helpful to extend valuations defined on lattice polytopes to finite unions

of lattice polytopes whose intersections are again lattice polytopes. McMullen [48]
showed that this is always possible. This is the extension property.

Theorem 8.7 If Z W P.Zn/ ! G is a valuation, then there exists a function
NZ defined on finite unions of lattice polytopes such that for lattice polytopes
P1; : : : ;Pm,

NZ.P1 [ � � � [ Pm/ D
X

;¤J�f1;:::;mg
.�1/jJj�1 Z.PJ/;

whenever PJ 2 P.Zn/ for all ; ¤ J � f1; : : : ;mg.
For a given valuation Z, we denote its extension by NZ and will use this notation
throughout the chapter.

The inclusion-exclusion formula and the extension property are frequently
needed for cell decompositions. We call a dissection of the polytope Q into
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polytopes P1; : : : ;Pm a cell decomposition if Pi \ Pj is either empty or a common
face of Pi and Pj for every 1 � i < j � m. The faces of the cell decomposition are
the faces of all Pi for i D 1; : : : ;m.

Theorem 8.8 If Z W P.Zn/ ! G is a valuation and Q 2 P.Zn/, then

NZ.Q/ D .�1/dimQ
X

F2F
F\intQ¤;

.�1/dimF Z.F/;

whereF is the set of all faces of a cell decomposition of Q.

In particular, Theorem 8.7 implies the following. Write F .P/ for the family of
all non-empty faces of P 2 P.Zn/ (including the face P) and set NZ.relintP/ D
Z.P/ � NZ.relbdP/, where relbd stands for relative boundary. Expressing relbdP as
the union of its faces, we obtain

NZ.relintP/ D .�1/dimP
X

F2F .P/

.�1/dimF Z.F/ (8.4)

for P 2 P.Zn/.
For a valuation Z W P.Zn/ ! G, Sallee [56] introduced the associated function

Zı W P.Zn/ ! G defined by

Zı.P/ WD
X

F2F .P/

.�1/dimF Z.F/ (8.5)

for P 2 P.Zn/, which by (8.4) is closely related to NZ.relintP/. He showed that
Zı is a valuation on P.Zn/ (while P 7! NZ.relintP/ is not a valuation) and that
.Zı/ı D Z. McMullen [46] gave simple proofs for these facts. We will use the
notation (8.5) and the valuation property of Zı throughout the chapter. Using this,
we can write the Ehrhart-Macdonald reciprocity law (Theorem 8.5) also as

Lı.P/ D
nX

iD0
Li.P/.�1/i (8.6)

for P 2 P.Zn/.
We note that many of the results related to the inclusion-exclusion principle have

a variant if Z W P.Zn/ ! A is a valuation with A a cancellative abelian semigroup.
For example, the analogue of Theorem 8.6 is that if Z W P.Zn/ ! A is a valuation,
and P1; : : : ;Pm 2 P.Zn/ satisfy that P1 [ � � � [ Pm 2 P.Zn/ and PJ 2 P.Zn/ for
all ; ¤ J � f1; : : : ;mg, then

Z.P1 [ � � � [ Pm/C
X

;¤J�f1;:::;mg
jJj even

Z.PJ/ D
X

;¤J�f1;:::;mg
jJj odd

Z.PJ/:
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A typical case when A is only a semigroup is the case of Minkowski valuations,
which will be discussed in Sect. 8.5.

8.3 Translation Invariant Valuations

Let V be a vector space over Q. A valuation Z W P.Zn/ ! V is translation
invariant if Z.P C x/ D Z.P/ for every P 2 P.Zn/ and x 2 Z

n. Translation
invariant valuations on P.Zn/ behave similarly to the lattice point enumerator in
many ways, as was proved by McMullen [46]. The paper [46] assumes that the
valuation Z on P.Zn/ satisfies the inclusion-exclusion principle, which always
holds by Theorem 8.6.

Theorem 8.9 Let Z W P.Zn/ ! V be a translation invariant valuation. There exist
Zi W P.Zn/ ! V for i D 0; : : : ; n such that

Z.kP/ D
nX

iD0
Zi.P/k

i

for every k 2 N0 and P 2 P.Zn/. Moreover, Zi.P/ D 0 for i > dimP.

The corresponding result for valuations on polytopes is described in Theorem 1.13.
Combining results in McMullen [46] and [48] leads to an analogue of the

Ehrhart-Macdonald reciprocity law (8.6).

Theorem 8.10 If Z W P.Zn/ ! V is a translation invariant valuation, then

Zı.�P/ D
nX

iD0
Zi.P/.�1/i

for P 2 P.Zn/.

The Ehrhart-Macdonald reciprocity law (8.6) is easily deduced from Theorem 8.10
because in addition to translation invariance, the lattice point enumerator also
satisfies L.relint.�P// D L.relintP/.

Taking Theorem 8.9 as starting point, Jochemko and Sanyal [31] consider
analogues of the coefficients h�

i .P/ in (8.2) for translation invariant valuations. For
a translation invariant valuation Z W P.Zn/ ! R and P 2 P.Zn/, they define
hZ
0 .P/; : : : ; h

Z
n .P/ by

Z.kP/ D
mX

iD0
hZ
i .P/

 
k C m � i

m

!

;
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where m D dimP. A translation invariant valuation Z is called h�-nonnegative, if
hZ
i � 0 on P.Zn/ for i D 0; : : : ; n. It is called h�-monotone if hZ

i is monotone (with
respect to set inclusion) on P.Zn/ for i D 0; : : : ; n. Using the extended valuation
NZ, Jochemko and Sanyal [31] establish a version of Stanley’s theorem on the non-
negativity and monotonicity of h�

i for any translation invariant valuation.

Theorem 8.11 For a translation invariant valuation Z W P.Zn/ ! R, the follow-
ing three statements are equivalent.

1. Z is h�-nonnegative.
2. Z is h�-monotone.
3. NZ.relintP/ � 0 for every P 2 P.Zn/.

Since for the lattice point enumerator we have L.relintP/ � 0 for every P 2 P.Zn/,
the non-negativity and monotonicity of h�

i on P.Zn/ is a simple consequence of
Theorem 8.11. Jochemko and Sanyal [31] also obtain the following result.

Theorem 8.12 A functional Z W P.Zn/ ! R is a unimodular and h�-nonnegative
valuation if and only if there exist constants c0; : : : ; cn � 0 such that

Z.P/ D c0 f
�
0 .P/C � � � C cn f

�
n .P/

for every P 2 P.Zn/.

In the proof, essential use is made of the Betke-Kneser theorem, which is described
in the following section.

8.4 The Betke-Kneser Theorem

The classical classification result for valuations on lattice polytopes concerns real
valued and unimodular valuations and is due to Betke [6]. It was first published in
Betke and Kneser [7]. It shows that the coefficients of the Ehrhart polynomial form
a basis of the vector space of unimodular valuations.

Theorem 8.13 (Betke) A functional Z W P.Zn/ ! R is a unimodular valuation if
and only if there exist constants c0; : : : ; cn 2 R such that

Z.P/ D c0 L0.P/C � � � C cn Ln.P/

for every P 2 P.Zn/.

We remark that by Corollary 8.16 below, it is sufficient to assume that Z is an SLn.Z/

and translation invariant valuation to obtain the same result, where SLn.Z/ denotes
the group of n � n integer matrices with determinant 1.
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The Euclidean counterpart of Theorem 8.13 is the celebrated classification of
rigid motion invariant and continuous valuations on convex bodies by Hadwiger
[27] (see Theorem 1.23). A classification of SLn.R/ invariant, Borel measurable
valuations on convex polytopes containing the origin in their interiors was recently
established by Haberl and Parapatits [24] extending results from [25, 33]. For
a complete classification of SLn.R/ invariant valuations on convex polytopes,
see [38].

We say that a j-dimensional S 2 P.Zn/ is a unimodular simplex if j D 0 or
S D Œx0; : : : ; xj� for j � 1 and fx1 � x0; : : : ; xj � x0g is part of a basis of Zn. Here
Œ: : : � stands for convex hull. We define a particular set of unimodular simplices by
setting T0 WD f0g and Tj WD Œ0; e1; : : : ; ej� for j D 1; : : : ; n, where e1; : : : ; en is the
standard basis of Zn. Betke and Kneser [7] also established the following result for
an abelian group G.

Theorem 8.14 (Betke-Kneser) Every unimodular valuation Z W P.Zn/ ! G is
uniquely determined by its values on T0; : : : ;Tn and these values can be chosen
arbitrarily in G.

Again, by Corollary 8.16 below, it is sufficient to assume that Z is an SLn.Z/ and
translation invariant valuation.

The following statement is the core of the argument in Betke and Kneser [7]. It is
proved using dissection into simplices and suitable complementation by simplices.

Proposition 8.15 For P 2 P.Zn/, there exist unimodular simplices S1; : : : ; Sm and
integers l1; : : : ; lm such that for any abelian group G,

Z.kP/ D
mX

jD1
lj Z.kSj/

for every valuation Z W P.Zn/ ! G and k 2 N0.

This proposition implies Ehrhart’s theorem. Just note that for k � 1,

L.kTi/ D
 
k C i

i

!

for i D 0; : : : ; n;

that each unimodular simplex Sj is an image under a unimodular transformation of
some Ti, and that for each i, the above binomial coefficient is a polynomial in k of
degree i.

The following statement is another direct consequence of Proposition 8.15.

Corollary 8.16 If Z W P.Zn/ ! G and Z0 W P.Zn/ ! G are SLn.Z/ and
translation invariant valuations such that

Z.Ti/ D Z0.Ti/ for i D 0; : : : ; n;

then Z.P/ D Z0.P/ for every P 2 P.Zn/.
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8.5 Minkowski Valuations

Let F be a family of subsets of Rn and write K n for the set of convex bodies, that
is, compact convex sets, in R

n. The subset of convex polytopes is denoted by Pn.
An operator Z W F ! K n is a Minkowski valuation if Z satisfies

ZK C ZL D Z.K [ L/C Z.K \ L/

for all K;L 2 F with K[L;K\L 2 F and addition on K n is Minkowski addition;
that is,

K C L WD fx C y W x 2 K; y 2 Lg:

Let SLn.R/ be the special linear group on R
n, that is, the group of real matrices

of determinant 1. An operator Z W F ! K n is called SLn.R/ equivariant if

Z.�P/ D � ZP for � 2 SLn.R/ and P 2 F :

Define SLn.Z/ equivariance of operators on P.Zn/ analogously. For recent results
on SLn.R/ equivariant operators on convex bodies and their associated inequalities,
see, for example, [26, 40–43].

For SLn.R/ equivariant and translation invariant Minkowski valuations defined
on convex polytopes, the following complete classification was established in [35].
It provides a characterization of the difference body operator

P 7! P � P WD fx � y W x; y 2 Pg;

which assigns to P its difference body. For more information on difference bodies
and their associated inequalities, see [19, 59]. Let n � 2.

Theorem 8.17 An operator Z W Pn ! K n is an SLn.R/ equivariant and trans-
lation invariant Minkowski valuation if and only if there exists a constant c � 0

such that

ZP D c.P � P/

for every P 2 Pn.

Further results on the classification of SLn.R/ equivariant Minkowski valuations
can be found, for example, in [23, 36, 50, 65].

The following result, taken from [10], is an analogue for lattice polytopes of
Theorem 8.17.
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Theorem 8.18 An operator Z W P.Zn/ ! K n is an SLn.Z/ equivariant and
translation invariant Minkowski valuation if and only if there exist a, b � 0 such
that

ZP D a.P � `1.P//C b.�P C `1.P//

for every P 2 P.Zn/.

Here for a lattice polytope P, the point `1.P/ is its discrete Steiner point that was
introduced in [10]. See Sect. 8.6 for the definition and characterization theorems.
The proof of Theorem 8.18 uses constructions from Betke and Kneser [7] as well as
results on Minkowski summands and it also exploits the large symmetry group of
the standard simplex Tn.

For operators mapping P.Zn/ to P.Zn/, the following result was established
in [10]. Write LCM for least common multiple.

Theorem 8.19 An operator Z W P.Zn/ ! P.Zn/ is an SLn.Z/ equivariant and
translation invariant Minkowski valuation if and only if there exist integers a, b � 0

with b � a 2 LCM.2; : : : ; n C 1/Z such that

ZP D a.P � `1.P//C b.�P C `1.P//

for every P 2 P.Zn/.

Here it is used that the discrete Steiner point of a lattice polytope is a vector with
rational coordinates.

An operator Z W F ! K n is SLn.R/ contravariant if

Z.�P/ D ��t ZP for � 2 SLn.R/ and P 2 F ;

where ��t is the inverse of the transpose of �. We define SLn.Z/ contravariance
of operators on P.Zn/ analogously. For recent results on SLn.R/ contravariant
operators on convex bodies, see, for example, [26, 41, 44].

An important SLn.R/ contravariant operator on K n is the operator K 7! …K,
that associates with a convex body its projection body. To define this operator,
we describe a convex body L by its support function h.L; � / W S

n�1 ! R where
h.L; u/ WD maxfu � x W x 2 Lg.

For a convex body K, the projection body…K is given by

h.…K; u/ D Vn�1.Kju?/;

for u 2 S
n�1, where Kju? is the orthogonal projection of K onto the hyperplane

orthogonal to u. We refer to [19, 59] for more information on projection bodies
and their associated inequalities. For a polytope P with facets (that is, .n � 1/-
dimensional faces) F1; : : : ;Fm, the projection body …P is given as the following
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Minkowski sum,

…P D 1
2

�
Œ�v1; v1�C � � � C Œ�vm; vm�

�
;

where vi is the scaled normal corresponding to the facet Fi, that is, vi is a normal
vector to the facet Fi with length equal to Vn�1.Fi/. Here Œ�vi; vi� is the segment
with endpoints �vi and vi.

For SLn.R/ contravariant Minkowski valuations on Pn, the following complete
classification was established in [35]. Let n � 2.

Theorem 8.20 An operator Z W Pn ! K n is an SLn.R/ contravariant and trans-
lation invariant Minkowski valuation if and only if there exists a constant c � 0

such that

ZP D c…P

for every P 2 Pn.

Further classification theorems for SLn.R/ contravariant Minkowski valuations on
convex bodies can be found in [23, 34, 36, 37, 49, 60].

The following analogue of Theorem 8.20 for lattice polytopes is from [10].

Theorem 8.21

(i) An operator Z W P.Z2/ ! K 2 is an SL2.Z/ contravariant and translation
invariant Minkowski valuation if and only if there exist constants a; b � 0 such
that

ZP D a %�=2.P � `1.P//C b %�=2.�P C `1.P//

for every P 2 P.Z2/.
(ii) For n � 3, an operator Z W P.Zn/ ! K n is an SLn.Z/ contravariant and

translation invariant Minkowski valuation if and only if then there exists a
constant c � 0 such that

ZP D c…P

for every P 2 P.Zn/.

Here %�=2 denotes the rotation by an angle �=2 in R
2. Note that for n D 2, the

projection body is obtained from the difference body by applying this rotation.
The projection body of a lattice polytope is a rational polytope. For operators

mapping P.Zn/ to P.Zn/, the following result was established in [10].
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Theorem 8.22

(i) An operator Z W P.Z2/ ! P.Z2/ is an SL2.Z/ contravariant and translation
invariant Minkowski valuation if and only if there exist integers a; b � 0 with
b � a 2 6Z such that

ZP D a %�=2.P � `1.P//C b %�=2.�P C `1.P//

for every P 2 P.Z2/.
(ii) For n � 3, an operator Z W P.Zn/ ! P.Zn/ is an SLn.Z/ contravariant and

translation invariant Minkowski valuation if and only if there exists a constant
c 2 .n � 1/ŠN0 such that

ZP D c…P

for every P 2 P.Zn/.

8.6 Vector Valuations

In analogy to (8.1), for P 2 P.Zn/, the discrete moment vector was introduced in
[10] as

`.P/ WD
X

x2P\Zn

x: (8.7)

The discrete moment vector ` W P.Zn/ ! Z
n is a valuation that is equivariant with

respect to unimodular linear transformations. In addition, if y 2 Z
n, then

`.P C y/ D `.P/C L.P/ y: (8.8)

In general, a valuation Z W P.Zn/ ! R
n is called translation covariant if for all

P 2 P.Zn/ and y 2 Z
n,

Z.P C y/ D Z.P/C Z0.P/y

with some Z0 W P.Zn/ ! R. Note that it easily follows from this definition that the
associated functional Z0 is also a valuation.

McMullen [46] established the following analogue of Theorem 8.9.
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Theorem 8.23 Let Z W P.Zn/ ! Q
n be a translation covariant valuation. There

exist Zi W P.Zn/ ! Q
n for i D 0; : : : ; n C 1 such that

Z.kP/ D
nC1X

iD0
Zi.P/k

i

for every k 2 N0 and P 2 P.Zn/. For each i, the function Zi is a translation
covariant valuation which is homogeneous of degree i.

Note that if the valuation Z is SLn.Z/ equivariant, then so are Z0; : : : ;ZnC1. Using
this homogeneous decomposition, McMullen [46] established the following more
general result.

Theorem 8.24 Let Z W P.Zn/ ! Q
n be a translation covariant valuation and let

P1; : : : ;Pm 2 P.Zn/ be given. If k1; : : : ; km 2 N0, then Z.k1P1 C � � � C kmPm/ is a
polynomial of total degree at most .n C 1/ in k1; : : : ; km. Moreover, the coefficient
of kr11 � � � krmm in this polynomial is a translation covariant valuation in Pi which is
homogeneous of degree ri.

The discrete moment vector is a translation covariant valuation. Hence, we obtain
as a special case of Theorem 8.23 the following result.

Corollary 8.25 There exist `i W P.Zn/ ! Q
n for i D 1; : : : ; n C 1 such that

`.kP/ D
nC1X

iD1
`i.P/k

i

for every k 2 N0 and P 2 P.Zn/. For each i, the function `i is a translation
covariant valuation which is equivariant with respect to unimodular linear trans-
formations and homogeneous of degree i.

Note that `nC1.P/ is the moment vector of P, that is, `nC1.P/ D R
P x dx. We call

the vector `1.P/ the discrete Steiner point of P. From Theorem 8.24, we deduce as
in Corollary 8.4 the following result.

Corollary 8.26 The function `1 W P.Zn/ ! Q
n is additive.

It is shown in [10] that the discrete Steiner point of a unimodular simplex is its
centroid. Hence, by using suitable dissections and complementations, it is possible
to obtain `1.P/ for a given lattice polytope P.

The following results, Theorems 8.27 and 8.29, both from [10], are the reason
for calling `1 the discrete Steiner point map. A function Z W P.Zn/ ! R

n is called
translation equivariant if Z.P C x/ D Z.P/C x for x 2 Z

n and P 2 P.Zn/.

Theorem 8.27 A function Z W P.Zn/ ! R
n is SLn.Z/ and translation equivariant

and additive if and only if Z is the discrete Steiner point map.
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Theorem 8.27 corresponds to the following characterization of the classical
Steiner point by Schneider [57]. The classical Steiner point, s.K/, is defined by

s.K/ WD 1

�n

Z

Sn�1

u h.K; u/ du;

where �n is the n-dimensional volume of the n-dimensional unit ball and du denotes
integration with respect to .n � 1/-dimensional Hausdorff measure on the unit
sphere.

Theorem 8.28 A function Z W K n ! R
n is continuous, rigid motion equivariant

and additive if and only if Z is the Steiner point map.

Note that Wannerer [66] recently obtained a corresponding characterization of
vector valuations in the Hermitian setting (see Corollary 6.15).

The discrete Steiner point is also characterized in the following result.

Theorem 8.29 A function Z W P.Zn/ ! R
n is an SLn.Z/ and translation equi-

variant valuation if and only if Z is the discrete Steiner point map.

This theorem corresponds to the following characterization of the classical Steiner
point by Schneider [58].

Theorem 8.30 A function Z W K n ! R
n is a continuous and rigid motion equi-

variant valuation if and only if Z is the Steiner point map.

By (8.8), the discrete moment vector is translation covariant. Note that

`i.P C x/ D `i.P/C Li�1.P/ x

for i D 1; : : : ; n C 1, where the case i D 1 is just the translation equivariance of `1.
Hence `i is translation covariant for each i. The following result is from [39].

Theorem 8.31 A function Z W P.Zn/ ! R
n is an SLn.Z/ equivariant and trans-

lation covariant valuation if and only if there exist constants c1; : : : ; cnC1 2 R such
that

Z.P/ D c1`1.P/C � � � C cnC1 `nC1.P/

for every P 2 P.Zn/.

The Euclidean counterpart of this result is the classification of rotation equi-
variant and translation covariant, continuous valuations Z W K n ! R

n by Hadwiger
and Schneider [28] (see Theorem 2.4). A classification of SLn.R/ equivariant, Borel
measurable vector valuations on convex polytopes containing the origin in their
interiors was recently established by Haberl and Parapatits [25].
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8.7 Polynomial Valuations

To discuss polynomial valuations, let us review what we mean by polynomial in our
context. Let G be an abelian group and � a lattice in R

n. We say that p W � ! G is
polynomial of degree 0, if p is constant on�. We say that p is polynomial of degree
d � 1 if for any y 2 �, the map x 7! p.x C y/ � p.x/ is polynomial of degree at
most d � 1. If w1; : : : ;wn form a basis of �, then this implies that there are bi 2 G

and integer polynomials pi W Zn ! Z of degree at most d for i D 1; : : : ; r such that
for ki 2 N0

p.k1w1 C � � � C knwn/ D
rX

iD1
pi.k1; : : : ; kn/ bi:

Now a valuation Z W P.�/ ! G is polynomial of degree d if for every P 2 P.�/,
the function, defined on � by x 7! Z.P C x/ is a polynomial of degree d.

Clearly, a valuation Z W P.Zn/ ! G is translation invariant if and only if it is
polynomial of degree 0. If q W Zn ! G is a polynomial of degree at most d, then
Z W P.Zn/ ! G defined by

Z.P/ WD
X

x2P\Zn

q.x/ (8.9)

is a polynomial valuation of degree at most d.
McMullen [46] considered polynomial valuations of degree at most one and

Pukhlikov and Khovanskii [53] proved Theorem 8.32 in the general case. Another
proof, following the approach of [46], is due to Alesker [1]. These papers assume
that the valuation Z on P.Zn/ satisfies the inclusion-exclusion principle, which
holds by Theorem 8.6.

Theorem 8.32 Let Z W P.Zn/ ! G be a polynomial valuation of degree at most d
and let P1; : : : ;Pm 2 P.Zn/ be given. If k1; : : : ; km 2 N0, then Z.k1P1C� � �CkmPm/

is a polynomial of total degree at most .dCn/ in k1; : : : ; km. Moreover, the coefficient
of kr11 � � � krmm in this polynomial is a polynomial valuation in Pi of degree at most d
which is homogeneous of degree ri.

This result implies that a homogeneous decomposition for polynomial valuations
exists. Let V be a vector space over Q.

Corollary 8.33 Let Z W P.Zn/ ! V be a polynomial valuation of degree at most d.
There exist valuations Zi W P.Zn/ ! V for i D 0; : : : ; n C d which are polynomial
of degree at most d C n and homogeneous of degree i such that

Z.kP/ D
dCnX

iD0
Zi.P/k

i

for every k 2 N0 and P 2 P.Zn/.



8 Valuations on Lattice Polytopes 229

If a polynomial valuation Z W P.Zn/ ! V respects the action of linear unimodular
transformations, then so do Z0; : : : ;ZnCd. Important cases include SLn.Z/ invariant
valuations and SLn.Z/ equivariant as well as SLn.Z/ contravariant valuations.

A version of the Ehrhart-Macdonald reciprocity law for polynomial valuations
of type (8.9) was established by Brion and Vergne [12]. The following more general
result is from [39] and was proved along the lines of reciprocities laws from [46].

Theorem 8.34 If Z W P.Zn/ ! V is a polynomial valuation which is homo-
geneous of degree j, then

Zı.�P/ D .�1/ j Z.P/

for P 2 P.Zn/.

8.8 Tensor Valuations

In analogy to (8.1) and (8.7), for P 2 P.Zn/, we define for r 2 N0, the discrete
moment tensor of rank r by

Lr.P/ WD 1

rŠ

X

x2P\Zn

xr;

where xr denotes the r-fold symmetric tensor product of x. Let Tr denote the vector
space of symmetric tensors of rank r on R

n. Note that T0 D R and L0 D L and that
T
1 D R

n and L1 D `.
We view each element of Tr as a symmetric r linear functional on .Rn/r. So, in

particular,

Lr.P/.v1; : : : ; vr/ D 1

rŠ

X

x2P\Zn

.x � v1/ � � � .x � vr/

for v1; : : : ; vr 2 R
n, where x � v is the inner product of x and v.

The discrete moment tensor Lr W P.Zn/ ! T
r has the following behavior with

respect to unimodular linear transformations. For v1; : : : ; vr 2 R
n,

Lr.�P/.v1; : : : ; vr/ D Lr.P/.� tv1; : : : ; �
tvr/

for all � 2 GLn.Z/ and P 2 P.Zn/. In general, a tensor valuation Z W P.Zn/ ! T
r

is called SLn.Z/ equivariant if for v1; : : : ; vr 2 R
n,

Z.�P/.v1; : : : ; vr/ D Z.P/.� tv1; : : : ; �
tvr/

for all � 2 GLn.Z/ and P 2 P.Zn/.
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In addition, if y 2 Z
n, then

Lr.P C y/ D
rX

mD0
Lr�m.P/

ym

mŠ
;

where we use the convention that y0 D 1 2 R. Following McMullen [47], a
valuation Z W P.Zn/ ! T

r is called translation covariant if there exist associated
functions Zm W P.Zn/ ! T

m for m D 0; : : : ; r such that

Z.P C y/ D
rX

mD0
Zm.P/

yr�m

.r � m/Š

for all y 2 Z
n and P 2 P.Zn/. It follows from this definition that Zm is a valuation

for m D 0; : : : ; r and that Zr D Z. Note that the associated valuation Zm is
translation covariant for m D 0; : : : ; r, since we have

Zm.P C y/ D
mX

jD0
Zj.P/

ym�j

.m � j/Š
:

For given v1; : : : ; vr 2 R
n, associate with the translation covariant tensor

valuation Z W P.Zn/ ! T
r , the real valued valuation P 7! Z.P/.v1; : : : ; vr/, which

is easily seen to be polynomial of degree at most r. Hence we obtain the following
result from Theorem 8.32.

Theorem 8.35 Let Z W P.Zn/ ! T
r be a translation covariant valuation and let

P1; : : : ;Pm 2 P.Zn/ be given. If k1; : : : ; km 2 N0, then Z.k1P1 C � � � C kmPm/ is a
polynomial of total degree at most .n C r/ in k1; : : : ; km. Moreover, the coefficient
of kr11 � � � krmm in this polynomial is a translation covariant valuation in Pi which is
homogeneous of degree ri.

As a special case, we obtain the following homogeneous decomposition.

Theorem 8.36 Let Z W P.Zn/ ! T
r be a translation covariant valuation. There

exist Zi W P.Zn/ ! T
r for i D 0; : : : ; n C r such that

Z.kP/ D
nCrX

iD0
Zi.P/k

i

for every k 2 N0 and P 2 P.Zn/. For each i, the function Zi is a translation
covariant valuation which is homogeneous of degree i.

Note that if Z is SLn.Z/ equivariant, then so are the homogeneous components
Z0; : : : ;ZnCr.

We apply these results to the discrete moment tensor and obtain the following
result.
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Corollary 8.37 There exist Lri W P.Zn/ ! T
r for i D 1; : : : ; n C r such that

Lr.kP/ D
nCrX

iD1
Lri .P/k

i

for every k 2 N0 and P 2 P.Zn/. For each i, the function Lri is a translation
covariant valuation which is equivariant with respect to unimodular linear trans-
formations and homogeneous of degree i.

Note that LrnCr.P/ is the rth moment tensor of the lattice polytope P, that is,
LrnCr.P/ D 1

rŠ

R
P x

rdx [cf. (2.4)]. See [39], for results on the classification of tensor
valuations.

Using the approach from [46], we can extend the reciprocity laws to tensor
valuations and obtain the following result, which is proved in [39].

Theorem 8.38 If Z W P.Zn/ ! T
r is a translation covariant valuation which is

homogeneous of degree j, then

Zı.P/ D .�1/ j Z.�P/

for P 2 P.Zn/.

Since Zı is again a translation covariant valuation, Theorem 8.36 implies that
there are homogeneous decompositions for Z and Zı. Hence the following result is
a simple consequence of Theorem 8.38.

Corollary 8.39 If Z W P.Zn/ ! T
r is a translation covariant valuation, then

Zı.P/ D
nCrX

iD0
.�1/i Zi.�P/

for P 2 P.Zn/.

So, in particular, using that Lr.�P/ D .�1/rLr.P/, we obtain

Corollary 8.40 For P 2 P.Zn/,

Lr.relintP/ D .�1/mCr
mCrX

iD1
.�1/iLri .P/;

where m D dimP.

Acknowledgements The authors thank Raman Sanyal for pointing out Corollary 8.4 and its proof
to them. They also thank Martin Henk for helpful remarks. The work of Károly J. Böröczky was
supported, in part, by the Hungarian Scientific Research Fund No 109789 and No 116451, and
the work of Monika Ludwig was supported, in part, by Austrian Science Fund (FWF) Project
P25515-N25.



232 K.J. Böröczky and M. Ludwig

References

1. S. Alesker, Integrals of smooth and analytic functions over Minkowski’s sums of convex
sets, in Convex Geometric Analysis (Berkeley, CA, 1996). Math. Sci. Res. Inst. Publ., vol. 34
(Cambridge University Press, Cambridge, 1999), pp. 1–15

2. A.I. Barvinok, Computing the Ehrhart polynomial of a convex lattice polytope. Discrete
Comput. Geom. 12, 35–48 (1994)

3. A.I. Barvinok, Integer Points in Polyhedra (European Mathematical Society, Zürich, 2008)
4. M. Beck, S. Robins, Computing the Continuous Discretely (Springer, Heidelberg, 2007)
5. D. Bernstein, The number of lattice points in integer polyhedra. Funct. Anal. Appl. 10, 223–

224 (1976)
6. U. Betke, Gitterpunkte und Gitterpunktfunktionale (Habilitationsschrift, Siegen, 1979)
7. U. Betke, M. Kneser, Zerlegungen und Bewertungen von Gitterpolytopen. J. Reine Angew.

Math. 358, 202–208 (1985)
8. U. Betke, P. McMullen, Lattice points in lattice polytopes. Monatsh. Math. 99, 253–265 (1985)
9. C. Blatter, Another proof of Pick’s area theorem. Math. Mag. 70, 200 (1997)

10. K.J. Böröczky, M. Ludwig, Minkowski valuations on lattices polytopes. J. Eur. Math. Soc., in
press, arXiv:1602.01117

11. F. Breuer, Ehrhart f�-coefficients of polytopal complexes are non-negative integers. Electron.
J. Comb. 19, Paper 16, 22 pp (2012)

12. M. Brion, M. Vergne, Lattice points in simple polytopes. J. Am. Math. Soc. 10, 371–392 (1997)
13. S. Cappell, J. Shaneson, Genera of algebraic varieties and counting of lattice points. Bull. Am.

Math. Soc. 30, 62–69 (1994)
14. B. Chen, Lattice points, Dedekind sums, and Ehrhart polynomials of lattice polyhedra. Discrete

Comput. Geom. 28, 175–199 (2002)
15. D.A. Cox, J.B. Little, H.K. Schenck, Toric Varieties (American Mathematical Society, Provi-

dence, RI, 2011)
16. R. Diaz, S. Robins, The Ehrhart polynomial of a lattice polytope. Ann. Math. (2) 145, 503–518

(1997); Erratum: Ann. Math. (2) 146, 237 (1997)
17. E. Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris

254, 616–618 (1962)
18. W. Fulton, Introduction to Toric Varieties (Princeton University Press, Princeton, NJ, 1993)
19. R. Gardner, Geometric Tomography. Encyclopedia of Mathematics and Its Applications,

vol. 58, 2nd edn. (Cambridge University Press, Cambridge, 2006)
20. P.M. Gruber, Convex and Discrete Geometry. Grundlehren der Mathematischen Wissen-

schaften, vol. 336 (Springer, Berlin, 2007)
21. P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers (North-Holland, Amsterdam, 1987)
22. B. Grünbaum, G.C. Shephard, Pick’s theorem. Am. Math. Mon. 100, 150–161 (1993)
23. C. Haberl, Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc.

14, 1565–1597 (2012)
24. C. Haberl, L. Parapatits, The centro-affine Hadwiger theorem. J. Am. Math. Soc. 27, 685–705

(2014)
25. C. Haberl, L. Parapatits, Moments and valuations. Am. J. Math., 138, 1575–1603 (2016)
26. C. Haberl, F. Schuster, General Lp affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26

(2009)
27. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer, Berlin, 1957)
28. H. Hadwiger, R. Schneider, Vektorielle Integralgeometrie. Elem. Math. 26, 49–57 (1971)
29. M. Henk, M. Tagami, Lower bounds on the coefficients of Ehrhart polynomials. Eur. J. Comb.

30, 70–83 (2009)
30. T. Hibi, A. Higashitani, A. Tsuchiya, Negative coefficients of Ehrhart polynomials. Preprint,

arXiv:1506.00467



8 Valuations on Lattice Polytopes 233

31. K. Jochemko, R. Sanyal, Combinatorial positivity of translation-invariant valuations and a
discrete Hadwiger theorem. J. Eur. Math. Soc., in press, arXiv:1505.07440

32. J.-M. Kantor, A. Khovanskii, Une application du théorème de Riemann-Roch combinatoire
au polynôme d’Ehrhart des polytopes entiers de Rd . C. R. Acad. Sci. Paris Sér. I Math. 317,
501–507 (1993)

33. M. Ludwig, Valuations of polytopes containing the origin in their interiors. Adv. Math. 170,
239–256 (2002)

34. M. Ludwig, Projection bodies and valuations. Adv. Math. 172, 158–168 (2002)
35. M. Ludwig, Minkowski valuations. Trans. Am. Math. Soc. 357, 4191–4213 (2005)
36. M. Ludwig, Minkowski areas and valuations. J. Differ. Geom. 86, 133–161 (2010)
37. M. Ludwig, Valuations on Sobolev spaces. Am. J. Math. 134, 827–842 (2012)
38. M. Ludwig, M. Reitzner, SL(n) invariant valuations on polytopes. Discrete Comput. Geom. 57,

571–581 (2017)
39. M. Ludwig, L. Silverstein, Tensor valuations on lattice polytopes. Preprint, arXiv:1704.07177
40. E. Lutwak, G. Zhang, Blaschke-Santaló inequalities. J. Differ. Geom. 47, 1–16 (1997)
41. E. Lutwak, D. Yang, G. Zhang, Lp affine isoperimetric inequalities. J. Differ. Geom. 56, 111–

132 (2000)
42. E. Lutwak, D. Yang, G. Zhang, Moment-entropy inequalities. Ann. Probab. 32, 757–774 (2004)
43. E. Lutwak, D. Yang, G. Zhang, Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)
44. E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)
45. I.G. Macdonald, Polynomials associated with finite cell-complexes. J. Lond. Math. Soc. 4,

181–192 (1971)
46. P. McMullen, Valuations and Euler-type relations on certain classes of convex polytopes. Proc.

Lond. Math. Soc. 35, 113–135 (1977)
47. P. McMullen, Isometry covariant valuations on convex bodies. Rend. Circ. Mat. Palermo (2)

Suppl. 50, 259–271 (1997)
48. P. McMullen, Valuations on lattice polytopes. Adv. Math. 220, 303–323 (2009)
49. L. Parapatits, SL.n/-contravariant Lp-Minkowski valuations. Trans. Am. Math. Soc. 366,

1195–1211 (2014)
50. L. Parapatits, SL.n/-covariant Lp-Minkowski valuations. J. Lond. Math. Soc. 89, 397–414

(2014)
51. G. Pick, Geometrisches zur Zahlenlehre. Sitzungber. Lotos Prague 19, 311–319 (1899)
52. J. Pommersheim, Toric varieties, lattice points and Dedekind sums. Math. Ann. 295, 1–24

(1993)
53. A.V. Pukhlikov, A.G. Khovanskii, Finitely additive measures of virtual polyhedra. St. Peters-

burg Math. J. 4, 337–356 (1993)
54. J.E. Reeve, On the volume of lattice polyhedra. Proc. Lond. Math. Soc. 7, 378–395 (1957)
55. J.E. Reeve, A further note on the volume of lattice polyhedra. J. Lond. Math. Soc. 34, 57–62

(1959)
56. G.T. Sallee, Polytopes, valuations, and the Euler relation. Can. J. Math. 20, 1412–1424 (1968)
57. R. Schneider, On Steiner points of convex bodies. Isr. J. Math. 9, 241–249 (1971)
58. R. Schneider, Krümmungsschwerpunkte konvexer Körper. II. Abh. Math. Semin. Univ. Hambg.

37, 204–217 (1972)
59. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics

and Its Applications, vol. 151, expanded edn. (Cambridge University Press, Cambridge, 2014)
60. F. Schuster, T. Wannerer, GL.n/ contravariant Minkowski valuations. Trans. Am. Math. Soc.

364, 815–826 (2012)
61. R.P. Stanley, Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342

(1980)
62. R.P. Stanley, A monotonicity property of h-vectors and h�-vectors. Eur. J. Comb. 14, 251–258

(1993)
63. R. Stein, Additivität und Einschließungs-Ausschließungsprinzip für Funktionale von Gitter-

polytopen. Ph.D. Thesis, Dortmund (1982)



234 K.J. Böröczky and M. Ludwig

64. A. Tsuchiya, Best possible lower bounds on the coefficients of Ehrhart polynomials. Eur. J.
Comb. 51, 297–305 (2016)

65. T. Wannerer, GL.n/ equivariant Minkowski valuations. Indiana Univ. Math. J. 60, 1655–1672
(2011)

66. T. Wannerer, The module of unitarily invariant area measures. J. Differ. Geom. 96, 141–182
(2014)



Chapter 9
Valuations and Curvature Measures
on Complex Spaces

Andreas Bernig

Abstract We survey recent results in Hermitian integral geometry, i.e. integral
geometry on complex vector spaces and complex space forms. We study valuations
and curvature measures on complex space forms and describe how the global and
local kinematic formulas on such spaces were recently obtained. While the local
and global kinematic formulas in the Euclidean case are formally identical, the
local formulas in the Hermitian case contain strictly more information than the
global ones. Even if one is only interested in the flat Hermitian case, i.e. C

n,
it is necessary to study the family of all complex space forms, indexed by the
holomorphic curvature 4�, and the dependence of the formulas on the parameter �.
We will also describe Wannerer’s recent proof of local additive kinematic formulas
for unitarily invariant area measures.

9.1 Introduction

Hermitian integral geometry is a relatively old subject, with early contributions by
Blaschke [23], Rohde [39], Santaló [41], Shifrin [44], Gray [30], Griffiths [31] and
others, and more recent works by Tasaki [45, 46], Park [38], and Abardia, Gallego
and Solanes [2].

A systematic study of this subject was completed only recently. This is partly due
to the fact that Alesker’s algebraic theory of translation invariant valuations as well
as his theory of valuations on manifolds, both being indispensable tools in this line
of research, were not available before. The main recent results of Hermitian integral
geometry are the explicit description of global kinematic formulas in Hermitian
spaces [19], local and global kinematic formulas on complex space forms [20] and
kinematic formulas for unitarily invariant area measures [47].

These three papers cover almost 200 pages. The aim of the present chapter is to
state most of the main theorems and to give some ideas about their proofs. More
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generally, we want to give a taste of this beautiful theory, which involves tools
and results from convex geometry, differential geometry, geometric measure theory,
representation theory and algebraic geometry.

In Sect. 9.2 we sketch some fundamental facts and definitions of Alesker’s theory
of translation invariant valuations, in particular we introduce product, convolution
and Alesker-Fourier transform. Section 9.3 deals with valuations on manifolds; and
introduces the important notion of a smooth curvature measure on a manifold. In
Sect. 9.4 we introduce the general framework to study local and global kinematic
formulas on space forms and state the important transfer principle.

The remaining sections deal with the Hermitian case. Section 9.5 is a survey
on the results from [19], the most important theorem in this section being The-
orem 9.24. The curved case, i.e. the case of complex space forms, is treated in
Sect. 9.6. The main results are Theorems 9.30 and 9.34. Finally, the theory of
unitarily invariant area measures is sketched in Sect. 9.7. This theory has some
similar features as the theory of curvature measures. We do not explicitly state
Wannerer’s theorem (the local additive kinematic formulas for unitarily invariant
area measures), but sketch the way they are obtained.

9.2 Translation Invariant Valuations on Vector Spaces

In this section, we will introduce the basic notation and state some fundamental
theorems, some of which will be explained in more detail in [13].

9.2.1 McMullen’s Decomposition and Hadwiger’s Theorem

Let K n be the space of compact convex bodies in R
n. A (real-valued) valuation on

R
n is a functional � W K n ! R which satisfies

�.K [ L/C �.K \ L/ D �.K/C �.L/

whenever K;L;K [ L 2 K n.
Continuity of valuations is with respect to the Hausdorff topology. A valuation is

said to be translation invariant, if �.K C x/ D �.K/ for all K 2 K n; x 2 R
n. The

vector space of all continuous translation invariant valuations is denoted by Val.
If G is some group acting linearly on R

n, a valuation � is called G-invariant if
�.gK/ D �.K/ for all K 2 K n; g 2 G.

A valuation � is called homogeneous of degree k if �.tK/ D tk�.K/; t > 0. It is
even/odd if �.�K/ D �.K/ (resp. �.�K/ D ��.K/) for all K. The corresponding
space is denoted by Valk̇ .

A fundamental theorem concerning translation invariant valuations is
McMullen’s decomposition.
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Theorem 9.1 (McMullen [37])

Val D
M

kD0;:::;n
�D˙

Val�k :

The space Valn is one-dimensional and spanned by the volume, while Val0 is
spanned by the Euler characteristic �.

The space of SO.n/-invariant valuations was described by Hadwiger. Let �k

denote the k-th intrinsic volume, see [36, 42].

Theorem 9.2 (Hadwiger [32], See Also [34, 36]) The intrinsic volumes�0; : : : ; �n

form a basis of ValSO.n/.

Note that without any G-invariance, the spaces Valk̇ are infinite-dimensional
(except for k D 0; n). Using McMullen’s theorem, one can show that they admit
a Banach space structure.

Even valuations are easier to understand than odd ones thanks to Klain’s
embedding result [35]. If � 2 ValCk , then the restriction of � to a k-dimensional
plane E 2 Grk is a multiple Kl�.E/ of the Lebesgue measure. Klain proved that the
map ValCk ! C.Grk/; � 7! Kl� is injective.

9.2.2 Alesker’s Irreducibility Theorem, Product
and Convolution of Valuations

The group GL.n/ acts on Val by

.g�/.K/ WD �.g�1K/:

Obviously, degree and parity are preserved under this action.
One of the most fundamental and influential theorems of modern integral

geometry is the following.

Theorem 9.3 (Alesker [3]) The spaces Val�k; k D 0; : : : ; n; � D ˙ are irreducible
GL.n/-representations.

Since we are in an infinite-dimensional situation, this means that every non-trivial
GL.n/-invariant subspace of Val�k is dense.

Corollary 9.4 Valuations of the form K 7! vol.K C A/ with A 2 K n span a dense
subspace inside Val.

Definition 9.5 A valuation � 2 Val is called smooth, if the map

GL.n/ ! Val

g 7! g�

is smooth as a map from the Lie group GL.n/ to the Banach space Val.
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Smooth valuations form a dense subspace Val1 � Val, which has a natural
Fréchet space structure.

An example of a smooth valuation is a valuation of the form K 7! vol.K C A/,
where A is a convex body with smooth boundary and positive curvature.

Based on Alesker’s Irreducibility theorem, a rich algebraic structure was intro-
duced on Val1 in recent years.

Theorem 9.6 (Alesker [4, 5, 11], Bernig-Fu [18])

(Alesker) There exists a unique continuous bilinear product on Val1 such that if

�i.K/ D voln.K C Ai/; i D 1; 2;

with convex bodies Ai with smooth boundary and positive curvature, then

�1 � �2.K/ D vol2n.�K C A1 � A2/;

where � W Rn ! R
n � R

n is the diagonal embedding.
(Bernig-Fu) There exists a unique continuous bilinear product on Val1 such that

if

�i.K/ D voln.K C Ai/; i D 1; 2;

with convex bodies Ai with smooth boundary and positive curvature, then

�1 	 �2.K/ D voln.K C A1 C A2/:

(Alesker) There exists a Fourier-type transform F W Val1 ! Val1 (called
Alesker-Fourier transform) such that

F.�1 � �2/ D F�1 	 F�2; �1; �2 2 Val1

and

F
2 D � on Val�k :

We note that, up to some minor modifications, these algebraic structures do not
depend on the choice of the Euclidean scalar product. We refer to [13] for more
details.

In Sect. 9.4 it will become transparent that product and convolution are very
closely related to kinematic formulas.
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Theorem 9.7 ([5]) The map

Val1 ˝ Val1 ! Valn Š R; �1 ˝ �2 7! .�1 � �2/n
is perfect and thus induces an injective map with dense image

PD W Val1 ! .Val1/�

A smooth valuation can be described by a pair of differential forms as follows.
Let K be a convex body and N.K/ its normal cycle [49]. As a set, it consists of all
pairs .x; v/, where x 2 @K and v is an outer normal vector of K at x. This set is an
.n � 1/-dimensional Lipschitz submanifold of the sphere bundle SRn D R

n � Sn�1,
which can be endowed in a canonical way with an orientation. Given a smooth
.n � 1/-form ! on SRn, we can integrate it over N.K/.

Proposition 9.8 A valuation � 2 Val is smooth if and only if there are translation
invariant differential forms ! 2 ˝n�1.SRn/; � 2 ˝n.Rn/ such that

�.K/ D
Z

N.K/
! C

Z

K
�

for all K.

These forms are not unique, see Theorem 9.10 below.

9.3 Valuations and Curvature Measures on Manifolds

In this section, we define smooth valuations on manifolds and describe them in terms
of differential forms. Then we extend the product from the previous section to such
valuations. Smooth curvature measures on valuations are introduced as measure-
valued smooth valuations. They form a module over the space of smooth valuations.
We refer to [6–10, 12, 14, 16, 17] for valuations on manifolds and to [20, 38] for
curvature measures on manifolds.

9.3.1 Smooth Valuations on Manifolds, the Rumin Operator
and the Product Structure

If we want to define the notion of valuation on a smooth manifold of dimension n,
an obvious obstacle is that the notion of convex set is not available. In the presence
of a Riemannian metric, one can define convex sets, but their behaviour is too wild
to be a good substitute of the notion of convexity on Euclidean space. Instead, we
are led to define valuations on some other class of reasonable sets. One possibility
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is to use sets of positive reach or variants of it. Another possibility is to use compact
submanifolds with corners, also called simple differentiable polyhedra. Each simple
differential polyhedron has a conormal cycle, which is an .n � 1/-dimensional
Lipschitz manifold in the cosphere bundle S�M D f.x; Œ��/ W x 2 M; � 2 T�

x Mnf0gg,
where the equivalence classes are taken with respect to the relation �1 � �2 if and
only if �2 D ��1 for some � > 0.

Here we will not pay much attention to the precise class of sets, since the
kinematic formulas in the different settings are formally identical. We refer to [28]
for a more thorough study of this question.

The second difference with the flat case is that we do not really define valuations,
but only smooth valuations. The definition is inspired by Proposition 9.8.

Definition 9.9 A smooth valuation on an n-dimensional manifold M is a functional
� on the space P.M/ of simple differentiable polyhedra which has the form

�.P/ D
Z

N.P/
! C

Z

P
�

with smooth forms ! 2 ˝n�1.S�M/; � 2 ˝n.M/. Here N.P/ � S�M denotes the
conormal cycle of P. The space of smooth valuations on M is denoted by V .M/.

Note that no invariance is assumed in this definition.
Taking ! D 0 and � a volume form (say with respect to a Riemannian metric),

we see that the Riemannian volume is a smooth valuation. The Euler characteristic
is another example. In fact, Chern [24, 25], when proving the famous Chern-Gauss-
Bonnet theorem, constructed a pair .!; �/ as above. By Proposition 9.8, each
smooth translation invariant valuation on the vector space Rn can also be considered
as a smooth valuation on the manifold R

n.
An important point to note is that the pair of forms .!; �/ is not unique. Since

the conormal cycle is closed, it annihilates exact differential forms. Moreover, it is
Legendrian, i.e. it annihilates forms which vanish on the contact distribution in S�M.
The kernel of the map which associates to a pair of forms the corresponding smooth
valuation is given in the following theorem.

Theorem 9.10 ([17]) A pair of forms .!; �/ induces the trivial valuation if and
only if

1. D! C ��� D 0,
2. ��! D 0.

Here D W ˝n�1.S�M/ ! ˝n.S�M/ is a certain second order differential operator,
called Rumin operator [40], �� denotes pull-back and �� push-forward (or fiber
integration) with respect to the projection map � W S�M ! M.

Any operation on pairs of forms .!; �/ which is compatible with the kernel
described in Theorem 9.10 thus induces an operation on smooth valuations. An
easy example is given by the Euler-Verdier involution, which on the level of forms
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is given by .!; �/ 7! ..�1/na�!; .�1/n�/, where a W S�M ! S�M; .x; Œ��/ 7!
.x; Œ���/ is the natural involution (anti-podal map).

A much more involved example is the product of smooth valuations on man-
ifolds. The complete formula is rather technical and uses certain blow-up spaces
whose definition we prefer to omit.

Theorem 9.11 ([14, 16]) The space of smooth valuations on a manifold admits a
product structure which, on the level of forms, is given by a formula of the type

.!1; �1/ � .!2; �2/ 7! .Q1.!1; !2/;Q2.!1; �1; !2; �2//

Here Q1;Q2 are certain explicitly known operators on differential forms involving
some Gelfand transform on a blow-up space. This product is commutative, asso-
ciative, has the Euler characteristic as unit, and is compatible with restrictions to
submanifolds.

A nice interpretation of this formula was recently given in [29]. Of course, in the
(very) special case of smooth translation invariant valuations on R

n, the new product
coincides with the product from Theorem 9.6.

Let us now describe a version of Poincaré duality on the level of valuations on
manifolds, which was introduced in [9]. Given any compactly supported smooth
valuation � on a manifold M, we may evaluate it at the manifold M to obtain a real
number denoted by

R
�.

If we denote by Vc.M/ the compactly supported smooth valuations on M, then
we get a pairing

V .M/ � Vc.M/ ! R; .�1; �2/ 7!
Z

�1 � �2: (9.1)

Alesker has shown that this pairing is perfect, i.e. it induces an injective map
V .M/ ! Vc.M/� with dense image. This fact is important in connection with
generalized valuations on manifolds (see [9, 14, 15]), but also for kinematic
formulas [14, 20].

9.3.2 Curvature Measures, Module Structure

Roughly speaking, a curvature measure is a valuation with values in the space of
signed measures. An example are Federer’s curvature measures ˚0; : : : ; ˚n in R

n,
which (up to scaling) are localizations of the intrinsic volumes.
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Definition 9.12 ([20]) A smooth curvature measure on an n-dimensional manifold
M is a functional˚ of the form

˚.P;B/ D
Z

N.P/\��1B
! C

Z

P\B
�;

where P is a simple differentiable polyhedron, B � M a Borel subset, and
! 2 ˝n�1.S�M/; � 2 ˝n.M/. The globalization of ˚ is the smooth valuation
glob˚.P/ WD ˚.P;M/. The space of all smooth curvature measures on M is denoted
by C .M/.

Let us explain where the name “curvature measure” comes from. For this,
suppose that P is a compact smooth submanifold of a Riemannian manifold M. The
geometry of the second fundamental form ofP is then encoded in the conormal cycle
N.P/. If ˚ is a smooth curvature measure, then the measure ˚.P; � / is obtained by
integration of some polynomial function on the second fundamental form, hence by
some curvature expression.

As in Theorem 9.10, one may describe the kernel of the map which associates to
a pair of differential forms a curvature measure. The pair .!; �/ induces the trivial
curvature measure if and only if � D 0 and ! belongs to the ideal generated by ˛
and d˛, where ˛ is the contact form on S�M.

It follows that the map glob W C .M/ ! V .M/ is surjective, but not injective.
For example, if ! is an exact form which is not contained in the ideal generated
by ˛ and d˛, then .!; 0/ defines a non-zero curvature measure whose globalization
vanishes.

A more general globalization map is obtained as follows. If f is a smooth function
on M, we may define a smooth valuation globf˚ by

globf ˚.P/ WD
Z

N.P/
��f! C

Z

P
f�:

In the particular case f � 1, this is just the map glob.
While we can multiply smooth valuations on a manifold, there seems to be no

reasonable product structure on the space of smooth curvature measures. However,
curvature measures form a module over valuations.

Theorem 9.13 ([20], Based on [14]) The space C .M/ is a module over the
algebra V .M/. More precisely, given � 2 V .M/; ˚ 2 C .M/, there exists a unique
curvature measure� �˚ 2 C .M/ such that globf .� �˚/ D � �globf˚ for all smooth
functions f on M.

The proof follows rather easily from Theorem 9.11.
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9.4 Global and Local Kinematic Formulas, the Transfer
Principle

In this section, we study the global and local kinematic operators on isotropic
spaces, their link to the algebra and module structure from the previous section,
and the important transfer principle relating local kinematic formulas on flat and
curved spaces.

9.4.1 Fundamental Theorem of Algebraic Integral Geometry I:
Flat Case

Definition 9.14 The space of smooth and translation invariant curvature measures
on R

n is denoted by Curv. If G acts linearly on R
n, then CurvG is the subspace of

G-invariant elements.

As an example, CurvSO.n/ has Federer’s curvature measures ˚0; : : : ; ˚n as basis.
In particular, the restricted globalization map glob W CurvSO.n/ ! ValSO.n/ is a
bijection.

Theorem 9.15 ([8]) Let G be a subgroup of O.n/. Then ValG is finite-dimensional
if and only if G acts transitively on the unit sphere. In this case, ValG � Val1 and
CurvG is finite-dimensional as well.

Let G be such a group and denote by NG the group generated by G and translations
(endowed with a convenient invariant measure). Let �1; : : : ; �N be a basis of ValG.
Then there are constants cikl such that the kinematic formulas

Z

NG
�i.K \ NgL/d Ng D

X

k;l

cik;l�k.K/�l.L/; K;L 2 K n

hold.
Similarly, if ˚1; : : : ; ˚M is a basis of CurvG, there are constants dik;l such that

Z

NG
˚i.K \ NgL;B1 \ NgB2/d Ng D

X

k;l

dik;l˚k.K;B1/˚l.L;B2/

holds for all convex bodies K;L and all Borel subsets B1;B2 � R
n. The proof is

contained in [26].
We call the corresponding operators

kG W ValG ! ValG ˝ ValG

�i 7!
X

k;l

cik;l�k ˝ �l
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and

KG W CurvG ! CurvG ˝ CurvG

˚i 7!
X

k;l

dik;l˚k ˝˚l

the global and local kinematic operators. They are independent of the choice of the
bases. Moreover, Fubini’s theorem and the unimodularity of G imply that kG;KG are
cocommutative coassociative coproducts.

Since the diagram

CurvG CurvG CurvG

ValG ValG ValG

KG

glob glob glob

kG

clearly commutes and glob is surjective, but usually non-injective, the local
kinematic operator contains more information than the global one.

There is another kinematic operator which lies between these two, called semi-
local kinematic operator, which is defined by

NkG WD .id ˝ glob/ ı KG W CurvG ! CurvG ˝ ValG:

The following theorem, although rather easy to prove, is fundamental for our
algebraic understanding of kinematic formulas.

Theorem 9.16 ([18, 27]) Let m W ValG ˝ ValG ! ValG denote the restriction of
the product to G-invariant valuations and m� W ValG� ! ValG� ˝ ValG� its adjoint.
Then the following diagram commutes

ValG ValG ValG

ValG ValG ValG

kG

PD PD PD

m
(9.2)

Thus knowing the product structure, we can (at least in principle) write down the
global kinematic formulas.
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9.4.2 The Transfer Principle

Definition 9.17 An isotropic space is a pair .M;G/, where M is a Riemannian
manifold and G is a Lie subgroup of the isometry group of M which acts transitively
on the sphere bundle SM.

Theorem 9.18 ([8, 20]) Let .M;G/ be an isotropic space. Then V .M/G and
C .M/G are finite-dimensional.

If .M;G/ is an isotropic space, there exist local kinematic formulas as follows.
Let X;Y be sufficiently nice sets (compact submanifolds with corners will be enough
for our purpose) and let B1;B2 � M be Borel subsets. If ˚1; : : : ; ˚N is a basis of
C .M/G, then there are constants dik;l such that

Z

G
˚i.X \ gY;B1 \ gB2/dg D

X

k;l

dik;l˚k.X;B1/˚l.Y;B2/:

The existence of such formulas is harder to prove than in the flat case (compare
[20, 26]). One reason for this is that it is unknown whether there are G-invariant
continuous, but non-smooth valuations (even in the simplest case of the sphere).

As in the flat case, we obtain a map KG W C .M/G ! C .M/G ˝ C .M/G.
Semi-local and global kinematic formulas are defined similarly, the corresponding
operators are denoted by NkG; kG. Then .V .M/G; kG/ and .C .M/G;KG/ are cocom-
mutative coassociative coalgebras and the following diagram is commutative.

(9.3)

The transfer principle below will apply to the following families of isotropic
spaces.

Table 9.1

Division algebra Positively curved Flat Negatively curved

R .Sn; SO.n C 1// .Rn; SO.n// .Hn; SO.n; 1//

C .CPn; PU.n C 1// .Cn;U.n// .CHn; PU.n; 1//

H .HPn; Sp.n C 1// .Hn; Sp.n/ � Sp.1// .HHn; Sp.n; 1//

O .OP2; F4/ .O2; Spin.9// .OH2; F�20
4 /
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Here H stands for the skew field of quaternions and O for the division algebra
of octonions. In the second column stand the simply connected positively curved
space forms, in the third column the corresponding flat space and in the last column
the corresponding hyperbolic space form. Scaling by the curvature yields in all four
cases a family .M�;G�/ indexed by the curvature.

Theorem 9.19 ([20, 33]) Let .M�;G�/; � 2 R be one of the families from the table.
Then the coalgebras .C .M�/

G� ;KG� /; � 2 R are naturally isomorphic to each other.

In particular, knowing the local kinematic formulas in the flat case, we can write
down the local kinematic formulas in the curved cases, and from these formulas we
can derive the global kinematic formulas in the curved cases by using (9.3).

9.4.3 Fundamental Theorem of Algebraic Integral Geometry
II: Curved Case

We now formulate an analogue of Theorem 9.16 in the curved case. Let .M;G/ be an
isotropic space. Then V .M/G is finite-dimensional and admits a product structure.
Hence the horizontal maps in (9.2) generalize to the curved case. It is less obvious
how to substitute the vertical map, i.e. the Poincaré duality.

In the compact case, we can use (9.1) to define a map PD W V .M/G ! V .M/G�.
To generalize this to the non-compact case, one has to give another interpretation. It
turns out that there exists a unique element vol� 2 V .M/G� with the property that
hvol�; voli D 1 and such that vol� annihilates all smooth valuations given by a pair
of forms of the type .!; 0/. Up to some normalization factor, vol� corresponds toR
M in the compact case and to PD in the flat case.

In all cases, we obtain a map (called normalized Poincaré duality)

pd W V G.M/ ! V G.M/�; hpd.�/; �i WD hvol�; � � �i:

The analogue of Theorem 9.16 is the following.

Theorem 9.20 Let .M;G/ be an isotropic space. Let m W V G.M/ ˝ V G.M/ !
V G.M/ be the restricted multiplication map, pd W V G.M/ ! V G.M/� the
normalized Poincaré duality and kG W V G.M/ ! V G.M/˝ V G.M/ the kinematic
coproduct. Then the following diagram commutes:
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As before, this can be used in two ways. Information on the algebra structure on
V G.M/ can be translated into information on the (global) kinematic operator. In the
Hermitian case, we will rather go the other way and translate information from the
kinematic operator into information on the algebra structure.

The ultimate goal, however, is not to compute the global formulas only, but
to compute the local kinematic formulas. One reason is that they are curvature
independent (see Theorem 9.19), the other is that they contain more information
than the global formulas. Unfortunately, an analogue of Theorem 9.20 for curvature
measures and local kinematic formulas is unknown (and it seems unlikely to exist).
Nevertheless, there is an improvement of Theorem 9.20 which relates local formulas
and the module structure from Theorem 9.13.

Let Nm W V G.M/˝C G.M/ ! C G.M/; �˝˚ 7! ��˚ denote the module product.
Alternatively, we may think of this as a map Nm W C G.M/ ! C G.M/˝ V G.M/�.

Theorem 9.21 The following diagram commutes

(9.4)

Moreover, for � 2 V G.M/ and ˚ 2 C G.M/ we have

KG.� � ˚/ D .� ˝ �/ � KG.˚/ D .�˝ �/ � KG.˚/:

The knowledge of the module structure will thus tell us a lot, although not
everything about the local kinematic formulas.

9.5 Hermitian Integral Geometry: The Flat Case

In Sect. 9.4 we have laid out the theoretical ground for the study of the local
kinematic formulas for the spaces from Table 9.1. Needless to say that to work
out this program in practice requires some additional effort and ideas. In fact, only
in the real and in the complex case the local kinematic formulas are known so far.

Before going to the complex case, let us say a few words about the real case.
The main point here is that the globalization map glob W CurvSO.n/ ! ValSO.n/

is bijective. From (9.3) we can thus read off the local kinematic formulas from the
global ones, and the latter are just the well-known classical Chern-Blaschke-Santaló
formulas. Once the local formulas are determined, one can globalize again to write
down global kinematic formulas for spheres and hyperbolic spaces.

The situation in the complex (and quaternionic and octonionic) case is different.
The dimension of CurvU.n/ is roughly twice that of ValU.n/, hence the globalization
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map has a large kernel and the local formulas contain much more information than
the global ones. But even to work out the global formulas is not an easy task. In
this section we describe the ideas leading to a complete determination of the global
kinematic formulas in the flat case .Cn;U.n//.

9.5.1 Vector Space Structure

Intrinsic volumes on a Euclidean vector space can be introduced or characterized
in a number of ways, for instance averaging some functional applied to projections
onto linear subspaces, averaging some functional applied to intersections with affine
subspaces, or by prescribing their Klain functions.

In the complex case, one can do analogous constructions to define some
interesting valuations. However, in contrast to the real case, this gives different bases
for the space of invariant valuations.

Alesker showed in [3] that

dim ValU.n/k D min

�
k

2

�

;

�
2n � k

2

��

C 1: (9.5)

Using intersections with affine complex planes, Alesker defined

Uk;p.K/ WD
Z

AC.n;n�p/
�k�2p.K \ NE/ d NE;

where AC.n; n� p/ is the affine complex Grassmannian, endowed with a translation
invariant and U.n/-invariant measure.

The Uk;p, as p ranges over 0; 1; : : : ;minfb k
2
c; b 2n�k

2
cg, constitute a basis of

ValU.n/k .
Fu [27] renormalized these valuations by setting

t WD 2
�
�1 D 2

�
U1;0 2 ValU.n/1 (9.6)

s WD nU2;1 2 ValU.n/2 (9.7)

which implies that

sptk�2p D .k � 2p/ŠnŠ!k�2p
.n � p/Š�k�2p Uk;p;

where the monomial on the left hand side refers to the Alesker product.
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The second basis given by Alesker uses projections onto linear complex sub-
spaces instead of intersections:

Ck;q.K/ WD
Z

GC.n;q/
�k.�E.K// dE;

where GC.n; q/ is the complex Grassmannian.
As q ranges over all values from n � minfb k

2
c; b 2n�k

2
cg to n, the Ck;q constitute a

basis of ValU.n/k . Up to a normalizing constant, the Alesker-Fourier transform of Uk;p

is C2n�k;n�p.
A third basis, consisting of Hermitian intrinsic volumes, will be particularly

useful. Recall that a real subspace E of Cn is called isotropic if the restriction of
the symplectic form to E vanishes. Then the dimension of E does not exceed n,
and an isotropic subspace of dimension n is called Lagrangian. We call E of type
.k; q/ if E can be written as the orthogonal sum of a complex subspace of (complex)
dimension q and an isotropic subspace of dimension k � 2q. Then k � q � n.

Theorem 9.22 There is a unique valuation �k;q 2 ValU.n/k whose Klain function
evaluated at a subspace of type .k; q0/ equals ıqq0 . Moreover,

F�k;q D �2n�k;n�kCq:

There are two more interesting bases related to Hermitian intrinsic volumes.
The first one is quite useful from a geometric point of view. It consists of so
called Tasaki valuations. As Hermitian intrinsic volumes, they are defined via
their Klain function. The orbit space GC.n; k/=U.n/ can be described in terms of
minfb k

2
c; b 2n�k

2
cg Kähler angles, and the Klain function of a Tasaki valuation is an

elementary symmetric polynomial in the cosines of the Kähler angles. Comparison
of the Klain functions then easily yields the explicit expression

�k;q D
bk=2cX

iDq

 
i

q

!

�k;i:

The last basis to be mentioned here is very useful for computational purposes.
As is explained in [43], the SO.2n/-module Valk.Cn/ may be decomposed into a
multiplicity free direct sum of irreducible representations. It is well known which
of these irreducible representations contain U.n/-invariant vectors, moreover these
vectors are unique up to scale. Explicitly, this yields the valuations

�k;r D .�1/r.2n � 4r C 1/ŠŠ

rX

iD0
.�1/i .k � 2i/Š

.2r � 2i/Š

.2r � 2i � 1/ŠŠ
.2n � 2r � 2i C 1/ŠŠ

�k;i; (9.8)

which form the so called primitive basis.
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An interesting new line of research was opened by Abardia and Wannerer
[1], who studied versions of the classical isoperimetric inequality, but with the
usual intrinsic volumes replaced by unitarily invariant valuations. In small degrees
(k � 3) they study which linear combinations of Hermitian intrinsic volumes satisfy
an Alexandrov-Fenchel-type inequality, from which several other isoperimetric
inequalities can be derived.

9.5.2 Algebra Structure

The next step is to write down the algebra structure, i.e. the Alesker product.
Depending on which basis we take (Akesker’s valuation Uk;p;Ck;p, Hermitian
intrinsic volumes, Tasaki valuations, primitive basis), this task may be more or
less difficult. The main point of entry is to determine the product of t and s with
a Hermitian intrinsic volume. We will not go into the details of these computations.
A more or less complete set of formulas was written down in [19].

The computation of the algebra ValU.n/ was obtained earlier by Fu [27].

Theorem 9.23 (Fu [27]) Let t; s be variables of degree 1 and 2 respectively. Let fi
be the component of total degree i in the expansion of log.1C t C s/. Then

ValU.n/ Š RŒt; s�=.fnC1; fnC2/:

9.5.3 Global Kinematic Formulas

As stated in Theorem 9.16, the product structure may be translated into kinematic
formulas. To write down explicit closed formulas valid in all dimensions is not
straightforward, since we have to invert some matrices. However, in the primitive
basis, the corresponding matrices are anti-diagonal and therefore easy to invert. One
can then write down the principal kinematic formula in explicit form as follows.

Theorem 9.24 (Principal Kinematic Formula [19]) The principal kinematic
formula for .Cn;U.n// is given by

kU.n/.�/ D
2nX

kD0

minfb k
2 c;b 2n�k

2 cgX

rD0
an;k;r�k;r ˝ �2n�k;r

with

an;k;r WD !k!2n�k

�n

.n � r/Š

8r.2n � 4r/Š
.2n � 2r C 1/ŠŠ

.2n � 4r C 1/ŠŠ

 
n

2r

!�1
:
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Together with the knowledge of the product structure, other kinematic formulas,
as well as kinematic formulas in other bases, may be derived from the principal
kinematic formula. It is not clear which of these formulas can be written in such a
neat and closed form as the formula above.

9.6 Hermitian Integral Geometry: The Curved Case

In this section, we describe more recent work from [20]. Two of the previously open
major problems in Hermitian integral geometry were to compute local kinematic
formulas and to compute global kinematic formulas in the curved case (say on
CPn and CHn). These two problems are interrelated by Theorem 9.19: the local
kinematic formula is independent of the curvature and globalizes simultaneously to
the different global kinematic formulas in the space forms. Roughly speaking, the
knowledge of the local kinematic formulas and the knowledge of the different global
kinematic formulas is equivalent. Some partial results were known before [20]:
Park established local kinematic formulas in small degrees (n � 3), while Abardia,
Gallego and Solanes [2] proved Crofton-type formulas, which are special cases of
the general kinematic formulas.

We write CPn
� for the complex space form with holomorphic curvature 4�. If � >

0, this is the complex projective space with an appropriate scaling of the Fubini-
Study metric; if � < 0 this is complex hyperbolic space with an appropriate scaling
of the Bergman metric; and if � D 0, this is just the Hermitian space C

n. The
holomorphic isometry group of CPn

� will be denoted by G�. Hence G� Š PU.nC1/
if � > 0; G� Š PU.n; 1/ if � < 0 and G� Š C

n Ì U.n/ if � D 0.
Before describing the solution, let us write down some intermediate steps. The

first step is to write down a basis for CurvU.n/. It was basically achieved by Park
[38]. He determined a basis

Bk;q .k > 2q; n � k � q/ (9.9)

	k;q .n > k � q; k � 2q/ (9.10)

of curvature measures by writing down explicit invariant differential forms on the
sphere bundle.

It is rather easy to describe the kernel of the globalization map glob� W
CurvU.n/ Š C G�.CPn

�/ ! V G�.CPn
�/. More precisely, this kernel is spanned by

all curvature measures of the form

Nk;q C �
q C 1

�
BkC2;qC1; k > 2q; q > k � n;

where Nk;q WD 2.n�kCq/
2n�k .	k;q � Bk;q/. Note that this kernel depends on �. In

curvature 0, both Bk;q and 	k;q globalize to the Hermitian intrinsic volume �k;q.
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The next problems are

1. Compute the module structure of CurvU.n/ over ValU.n/.
2. Compute the module structure of CurvU.n/ over V G� .CPn

�/.
3. Compute the local and semi-local formulas in curvature �.
4. Compute the product structure of V G�.CPn

�/.

All of these problems were solved in [20], but not in the order given here. In fact,
none of these problems could be solved independently of the others, but all had to
be solved simultaneously.

9.6.1 Module Structure

Even if it is not obvious how to determine the module structure of CurvU.n/ over
ValU.n/, some a priori information can be obtained by geometric means.

Definition 9.25 Let V be a euclidean space of dimension m. A translation-invariant
curvature measure ˚ 2 Curv.V/ is called angular if, for any compact convex
polytope P � V ,

˚.P; � / D
mX

kD0

X

F2Fk.P/

c˚.F/†.F;P/ volkjF (9.11)

where c˚.F/ depends only on the k-plane F 2 G.n; k/ parallel to F and where
†.F;P/ denotes the outer angle of F in P. The space of such translation-invariant
curvature measures will be denoted by Ang.V/.

Theorem 9.26 (Angularity Theorem) The product of the first intrinsic volume
with an angular measure is again angular.

Let us return to the complex case. Define curvature measures �kq 2 CurvU.n/,
maxf0; k � ng � q � k

2
< n by

�kq WD 1

2n � k

�
2.n � k C q/	kq C .k � 2q/Bkq

�
(9.12)

�2n;n WD vol2n: (9.13)

Thus �2q;q D 	2q;q and �k;k�n D Bk;k�n. Then the subspace of angular elements in
CurvU.n/ is precisely the span of the �kq. This gives us some a priori information
about the product of t with an invariant measure, but of course does not determine it
completely.

The next piece of information concerns multiplication by s.
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Proposition 9.27 Let Betak � CurvU.n/k be the subspace spanned by all Bk;q. Then
s � Betak � BetakC2.

The proof of this proposition, as well as the proof of the angularity theorem, only
uses elementary geometric considerations.

Apparently, the previous proposition gives us only information about the module
structure of CurvU.n/ over ValU.n/ in the flat case. In reality, the next proposition
tells us that a similar statement holds true in the curved case as well. For this, we
first have to define s as an element of V G�.CPn

�/. Suppose first that � > 0 and fix a
complex hyperplane P�. Then we define

s WD �n�1nŠ
�n

Z

G�

�.gP� \ � /dg:

Regarding � as a parameter, one can then show that this definition extends
analytically to all � 2 R and, in the case � D 0, coincides with the definition
of s from (9.7).

Recall that we have a canonical identification of the space C G�.CPn
�/ with

CurvU.n/.

Proposition 9.28 The multiplication by s on C G�.CPn
�/ Š CurvU.n/ is independent

of �.

The proof is basically an application of the transfer principle.
Propositions 9.27 and 9.28, together with some elementary properties, determine

completely the multiplication by s.
The situation for t is a bit different. First we define t as an element of V G�.CPn

�/.
In fact, there is a unique assignment of a valuation t to a Riemannian manifold with
the two properties that in the Euclidean case t D 2

�
�1 and that the assignment

is compatible with isometric immersions. This element is the generator of the so
called Lipschitz-Killing algebra [8, 20].

For each k, the valuation tk can be expressed by integration over a pair of forms
.!; �/, both of which are defined in terms of the Riemann curvature tensor. In the
special case of CPn

�, the Riemann curvature tensor is of course well-known, and
modulo some combinatorial difficulties it is straightforward to express tk as the
globalization of some linear combination of basic curvature measures Bk;q; 	k;q.

9.6.2 The Isomorphism Theorem

The next aim is to determine the product structure in the curved case, i.e. the algebra
structure of V G� .CPn

�/.
We will need a basis of V G�.CPn

�/ which will play the role of Hermitian intrinsic
volumes.



254 A. Bernig

Definition 9.29 For maxf0; k � ng � q � k
2

� n we set

��kq WD
X

i�0

�i.q C i/Š

� iqŠ
glob�.�kC2i;qCi/ 2 V G�.CPn

�/;

where �kC2i;qCi 2 CurvU.n/ was defined in (9.12), (9.13). These valuations form a
basis of V G�.CPn

�/.

If k > 2q, then ��kq is just the globalization of Bkq. In the case � D 0, we obtain
the usual Hermitian intrinsic volumes: �0kq D �kq.

Using that we can write both sitk�2i and ��kq as globalizations of some curvature
measures, it is then possible to establish a complete dictionary between these two
bases. The result is

��kq D .1 � �s/

b k
2 cX

iDq

.�1/iCq

 
i

q

!
�k

!k.k � 2i/Š.2i/Š
v

k
2�iui;

where v WD t2.1 � �s/; u WD 4s � v. Here v
r
2 has to be understood in the sense of

power series if r is odd, but only finitely many terms will be non-zero for a given
dimension n.

From these computations follows the next, rather surprising, theorem.

Theorem 9.30 (Isomorphism Theorem) The algebras V G�.CPn
�/; � 2 R are

pairwise isomorphic. More precisely, the map s 7! s; t 7! t
p
1 � �s induces an

isomorphism ValU.n/ ! V G�.CPn
�/.

A related statement concerns the principal kinematic formula for CPn
�.

Theorem 9.31 (Global Principal Kinematic Formula) The principal kinematic
formula k�.�/, expressed in the basis ��kq, is independent of �.

Since we know the principal kinematic formula in the case � D 0 (see
Theorem 9.24), we can therefore write it down for all � without any additional
effort.

9.6.3 Local Kinematic Formulas

By Proposition 9.28, multiplication by s on CurvU.n/ is curvature independent. This
is not true for t.

However, in the flat case � D 0 one can completely determine the action of t
on CurvU.n/ by using Theorem 9.26 and some elementary properties (for instance
that the actions of t and s commute). Hence the module structure of CurvU.n/ over
ValU.n/ is known. It turns out a posteriori that a version of the angularity theorem is
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valid in the curved case as well, but an a priori proof of this theorem seems to be
missing.

We now have enough information to find out the local kinematic formulas. More
precisely, we first know that the operator K is curvature independent by Theo-
rem 9.19. From the global kinematic formulas (which are known by Theorem 9.31),
we can compute .glob� ˝ glob�/ ı K. The module structure in the flat case implies
the knowledge of .glob0 ˝ id/ ı K. These properties fix K.

To write down explicit formulas, we have to introduce some more notation.

Definition 9.32 Let N1;0 WD �1;0 � B1;0. Define two natural maps from ValU.n/ to
CurvU.n/ by

l.�/ WD ��0;0; n.�/ WD �N1;0:

The importance of these maps comes from the following proposition.

Proposition 9.33 The ValU.n/-module CurvU.n/ is generated by �0;0 and N1;0.

Since the module structure is completely known, the proof is easy.
Theorem 9.21 and Proposition 9.33 imply that the local kinematic operator K is

completely determined by K.�0;0/ and K.N1;0/. We have already sketched above
how to compute K. The main result is the following.

Recall the valuations �k;r from (9.8) and the constants an;k;r from Theorem 9.24.
Define


kr WD 2.�1/r.2n � 4r C 1/ŠŠ�k�1

!k

�
�
.2r � 1/ŠŠ.k C 1/Š

.2n � 2r C 1/ŠŠ.2r/Š

b k�1
2 cX

iD0

.�1/iC1
.2i C 3/Š.k � 2i � 1/Š t

k�2i�1ui

C
r�1X

iD0

.�1/i.2r � 2i � 3/ŠŠ

.2n � 2r � 2i � 1/ŠŠ.2r � 2i � 2/Š.2i C 2/Š
tk�2i�1ui

�

2 ValU.n/;

(9.14)

where u D 4s � t2.

Theorem 9.34 (Principal Local Kinematic Formulas [20])

K.�00/ D
X

ankr Œl.�kr/˝ l.�2n�k;r/ � n.
kr/˝ n.
2n�k;r/� : (9.15)

K.N10/ D
X

ankr
�
n.�kr/˝ l.�2n�k;r/C l.�kr/˝ n.�2n�k;r/

� n.�kr/˝ n.
2n�k;r/ � n.
kr/˝ n.�2n�k;r/
�
: (9.16)
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9.7 Local Additive Kinematic Formulas for Hermitian Area
Measures and Tensor Valuations

In this section, we describe a recent deep theorem by Wannerer [47, 48], which
gives another type of localization of the global kinematic formulas. The theory of
unitarily invariant area measures has some similarities with that of unitarily invariant
curvature measures.

9.7.1 Area Measures and Local Additive Kinematic Formulas

Roughly speaking, an area measure is a valuation on a Euclidean vector space with
values in the space of signed measures on the unit sphere. An example is the area
measure Sn�1.K; � / in an n-dimensional Euclidean space, or more generally the kth
area measure Sk.K; � /, compare [42].

Definition 9.35 A smooth area measure on an n-dimensional Euclidean vector
space V is a functional of the form

˚.K;B/ D
Z

N.K/\��1
2 B

!;

where ! is a smooth translation invariant .n � 1/-form on the sphere bundle SV D
V � Sn�1, K is a convex body, B � Sn�1 a Borel subset of the unit sphere and
�2 W SV ! Sn�1 the projection on the sphere. The space of smooth area measures is
denoted by Area.V/ or just by Area.

Plugging B WD Sn�1 into a smooth area measure, we obtain a smooth valuation.
The corresponding map is called globalization map and denoted by glob.

As was the case for Curv, Area is a module over Val. However, the algebra
structure on Val is not the Alesker product, but the convolution product.

Theorem 9.36 ([48]) There is a unique module structure of Area over .Val1;	/
such that if �.K/ D vol.K C A/ with A a smooth convex body with strictly positive
curvature, then

� 	 ˚.K;B/ D ˚.K C A;B/:

Let G be a subgroup of SO.n/ acting transitively on the unit sphere. Then AreaG,
the space of G-invariant area measures, is finite-dimensional. Wannerer proved the
existence of local additive kinematic formulas as follows.
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Theorem 9.37 ([47]) There exists a linear map A W AreaG ! AreaG ˝ AreaG such
that

A.˚/.K;B1IL;B2/ D
Z

G
˚.K C gL;B1 \ gB2/dg:

It is called local additive kinematic operator.

The local additive kinematic formula, its semi-local version Na WD .id ˝glob/ıA,
and the global additive kinematic formula aG W ValG ! ValG ˝ ValG fit into a
diagram analogous to (9.3). Moreover, the relation between the semi-local formula
and the module structure is as in (9.4).

9.7.2 The Moment Map and Additive Kinematic Formulas
for Tensor Valuations

In Sect. 9.6 we have described how to obtain local kinematic formulas for curvature
measures in the Hermitian case. One main ingredient was the passage to complex
space forms and the use of the transfer principle. For area measures, this strategy
does not work, since there are no area measures on space forms. Instead, Wannerer
uses the moment map, which relates local additive kinematic formulas and additive
kinematic formulas for tensor valuations.

Definition 9.38 Let Valr WD Val ˝Symr denote the space of tensor valuations of
rank r. The r-th moment map is the map

Mr W Area ! Valr

˚ 7!
Z

Sn�1

urd˚. � ; u/

Theorem 9.39 (Wannerer [47]) Let A be the local additive kinematic operator,
and ar1;r2 the additive kinematic operator for tensor valuations (see [21, 22]). The
following diagram commutes

From the theorem we can derive a strategy to compute the operator A, i.e. the
local additive kinematic formulas: we have to choose r1; r2 in such a way that Mr1

and Mr2 are injective, and then ar1;r2 will determine A.
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9.7.3 Hermitian Case

Park’s result [38], which was already used in Sect. 9.6 to determine the unitarily
invariant curvature measures, gives the following characterization.

Proposition 9.40 The area measures Bk;q; 	k;q with the same restrictions on k; q
as in (9.9) and with k < 2n, form a basis of the space AreaU.n/ of smooth U.n/-
invariant area measures.

The module structure of AreaU.n/ over .ValU.n/;	/ was determined earlier by
Wannerer in [48].

Proposition 9.41 The module structure of AreaU.n/ over .ValU.n/;	/ has the follow-
ing properties.

1. The subspace generated by all 	k;q is a submodule.
2. If Os denotes the Alesker-Fourier transform of s, then Os 	 Bk;q is a linear

combination of Bk0;q0 ’s.

Both properties follow from a careful inspection of the formula from [18]. Since
the module product is compatible with the globalization map, the first property
allows to determine Ot		k;q and Os		k;q, and the second property allows to determine
Os 	 Bk;q. Finally, Ot 	 Bk;q can be easily written down using some Lie derivative
computation. We refer to the original paper [48] for the statement of the theorem.

Finally, let us consider the local additive kinematic formulas for unitarily
invariant area measures. In order to work out the strategy sketched in the previous
section, Wannerer showed in [47] that the second moment map M2 W AreaU.n/ !
Val2;U.n/ is injective. He then went on to compute the relevant parts of the additive
kinematic formula a2;2 for unitarily invariant tensor valuations. He first proved
an additive version of Theorem 9.16 for tensor valuations, relating a and the
convolution product of tensor valuations (compare also [22]). The convolution
product of unitarily invariant tensor valuations of rank 2 can be computed using
a formula from [18]. This formula is much easier to use than the corresponding
formula for the product of valuations from Theorem 9.11 since it does not involve
any fiber integrations.

To state his theorem, Wannerer gives a precise description of the adjoint of A,
which is a commutative associative product on the dual space AreaU.n/;�. It turns
out that this algebra is a polynomial algebra with three generators t; s; v. We refer to
[47] for the precise statement of the theorem.
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Chapter 10
Integral Geometric Regularity

Joseph H.G. Fu

Abstract Smooth scalar-valued valuations may be thought of as curvature integrals
that are robust enough to apply to objects with convex singularities. It turns out
that certain kinds of nonconvex singularities are also included. The distinguishing
feature is the existence of a normal cycle, which is an integral current that stands
in for the manifold of unit normals in case they do not exist in the usual sense. We
describe the elements of the normal cycle construction, and sketch how it may be
used to establish the fundamental relations of integral geometry, with emphasis on
the class of WDC sets recently introduced by Pokorný and Rataj.

10.1 Introduction

Those subsets of n space which are to be the objects of such a theory must be singled out
by some simple geometric property. [. . .] Whatever differentiability may be required for an
auxiliary analytic or algebraic argument must be implied by the geometric properties. Of
course, in order to be worth while, such a theory must contain natural generalizations of the
principal kinematic formula and of the Gauss-Bonnet Theorem [. . .] [Geometric measure
theory has] greatly contributed to the understanding of first order tangential properties of
point sets, and one can hope for similar success in dealing with second order differential
geometric concepts such as curvature.

– Herbert Federer, Curvature measures

It is natural to think of the intrinsic volumes, the most famous of all valuations,
as integrals of curvature that are sufficiently robust to continue to make sense for
convex singularities. Both the valuations and the underlying integrals of curvature
apply also to certain nonconvex objects, for example the convex ring. Thus it is
natural to ask how far their domain may extend, and in what sense they may
be regarded as true curvatures. These questions belong to the study of integral
geometric regularity. The first serious attempt to understand integral geometric
regularity was Federer’s theory [14] of the curvature measures of sets with positive
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reach in Euclidean space. From the viewpoint of valuation theory, a curvature
measure is a smooth valuation that takes values among signed measures, giving
rise to a scalar-valued valuation by taking the total variation.

Federer understood too that the issue of integral geometric regularity is insepara-
ble from the integral geometry originally introduced by Blaschke, revolving around
the kinematic formulas. This understanding lies in turn at the root of an important
mental picture of what a valuation is, viz. a set function that associates to a set B
the integral of the Euler characteristics �.B \ Ap/ of the intersection with B of a
measured family of sets .Ap; dp/ (cf. Sect. 10.5.3 below). McMullen’s Conjecture,
proved by Alesker in [2], is a prominent formal statement in this direction.

Motivated by the relative success, described in Sect. 10.5 below, of the concept
of the normal cycle in understanding kinematic formulas, we adopt here the
viewpoint that the fundamental issues surrounding integral geometric regularity are
encapsulated by this notion. Whereas in the smooth case the normal cycle nc.A/
is easy to construct directly, viewing it formally as an integral current we may tie
it axiomatically to the underlying object A even if the singularities of A become
severe. Note that once the normal cycle is defined as a current in this way, the sets A
under consideration become amenable to any valuations (such as tensor valuations)
that are given in terms of integration against a smooth differential form.

In the present chapter we sketch the theory of the normal cycle and present the
state of the art regarding the regularity needed to resolve the primary issues raised
by Federer. We discuss a raft of further technical problems surrounding the elusive
nature, entailed by the axiomatic approach, of the relation between an object and its
normal cycle. We also raise a family of fundamental issues that have been largely
ignored to date, having to do with the relation between the intrinsic volumes of a
singular space X and the structure of X as a length space.

10.1.1 Notation and Basic Concepts

10.1.1.1 Tangents and Cotangents

Our main constructions occur within the tangent and sphere bundles TM; SM, and
the cotangent and cosphere bundles T�M; S�M, of a smooth manifold M. For
convenience we will often conflate them, in particular sometimes ignoring the need
for a Riemannian metric to make sense of SM. By the same token, our main object of
interest is the normal cycle of a singular subspace of M, living in SM. Although the
conormal cycle in S�M is formally more natural, we do not make this distinction.

10.1.1.2 Currents

We will make essential use of established tools from geometric measure theory,
taken mostly from Chap. 4 of [15]. A current of dimension k on a smooth manifold
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M is a linear functional T on the space ˝k.M/ of compactly supported smooth
differential forms of degree k on M, continuous with respect to C1 convergence
with common compact support. The support of T is denoted sptT.

The pairing of T with a form � will be denoted either by T.�/ or
R
T �. The

boundary @T of such T is the current of dimension k�1 given by @T. / WD T.d /.
Given a proper smooth map F W M ! N to another smooth manifold N, we may
form the pushforward current F�T by F�T.�/ D T.F��/. Here F�� denotes the
usual pullback of the differential k-form � to M, i.e.

.F��/x.v1; : : : ; vk/ D �F.x/.DxF.v1/; : : : ;DxF.vk//

for x 2 M and v1; : : : ; vk 2 TxM. A measurable subset E of a smooth oriented
submanifold Vk � M gives rise to a k-dimensional current ŒŒE�� given by ŒŒE��.�/ DR
E �.

Such T is an integral current if there exists a sequence g1; g2; : : : W Rk ! M of
C1 maps, and measurable subsets E1;E2; : : : � R

k, such that

T.�/ WD
X

i

gi�ŒŒEi��.�/ D
X

i

Z

Ei

g�
i �;

and such that @T may be similarly expressed. By Rademacher’s theorem, an integral
current may be pushed forward by maps F that are merely locally Lipschitz. Thus
an integral current T is one that resembles integration over an oriented submanifold,
and so for convenience we may at times conflate T with a subset of M.

If  is a differential form of deg d then

T  .�/ WD T. ^ �/:

Since the integral current T has the special form above, here may be merely Borel
measurable and this will still make sense. If U � M we put .T U/ WD T 1U,
where 1U is the characteristic function of U.

A rudimentary intersection theory for integral currents exists in the form of
slicing: given a Lipschitz map F W M ! Nd D an oriented manifold of dimension d,
and y 2 Nd, one constructs hT;F; yi (the slice of T by F at y) as an integral current
of dimension k � d in M, well-defined for a.e. y 2 Nd . This slice may be thought of
as the oriented intersection of T with the fiber F�1.y/.

For smooth oriented submanifolds V;W � M of complementary dimension that
meet transversely, we denote by V � W their intersection product, i.e. the sum of
the multiplicities at their various points of intersection. Note that if W arises as
W D F�1.y/ for some smooth map F W M ! Nd and regular value y 2 Nd,
where an orientation of Nd induces the orientation of W, then the sum of the delta
functions at the points of V \ W, weighted with their intersection multiplicities,
equals the slice hŒŒV��;F; yi. Thus we adopt the � notation also in the scenario of
the last paragraph: if d D k then the slice of T by F at y is a 0-dimensional integral
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current, i.e. a sum of delta functions with integer multiplicities. In this case we put
T � F�1.y/ for the sum of these multiplicities, and the following form of the change
of variables formula for integrals applies:

F�T D ŒŒNd�� .T � F�1/; (10.1)

where T � F�1 denotes the integer-valued function y 7! T � F�1.y/. For subsets
U � M we put .T � F�1.y//.U/ or T � F�1.y/

ˇ
ˇ
U

for the sum of the multiplicities
attached to points lying in U. Observe that if T is closed (i.e. @T D 0) then so is F�T,
so that by the constancy theorem [15, 4.1.7] the latter must be a constant multiple
of ŒŒN��, and therefore T � F�1.y/ is independent of y.

10.2 Classical Theory

In this section we give an account of Federer’s curvature measures for sets with
positive reach through the lens of the normal cycle.

10.2.1 Tube Formulas

The mother of all integral geometric theorems is the Steiner-Weyl tube formula.
Let K n denote the space of all compact convex subsets of Rn, equipped with the
Hausdorff metric. Let �k denote the volume of the unit ball in R

k. For r � 0 and
A � R

n put

Ar WD fx 2 R
n W dist.A; x/ � rg:

The first statement of the following theorem, and a localized version of it, are
discussed in detail in Chap. 1, which restricts attention entirely to the convex case.

Theorem 10.1

1. (Steiner 1840) Let A 2 K n, Then there are constants V0.A/; : : : ;Vn.A/ such that

Vn.Ar/ D
nX

iD0
�n�iVi.A/r

n�i (10.2)

for all r � 0.
2. (Weyl 1939) If M � R

n is a compact smoothly embedded submanifold then there
exists r0 > 0 such that (10.2) holds for all r 2 Œ0; r0�.
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Proof Consider first the case 2. of a submanifold M and define the .n � 1/-
dimensional C1 submanifold nc.M/ � SRn WD R

n � Sn�1 given by

nc.M/ WD f.x; v/ W v ? TxMg: (10.3)

For sufficiently small t0 > 0, the restriction to nc.M/ of the map .x; v/ 7! x C t0v
yields a diffeomorphism with the boundary of the tubular neighborhood of M of
radius t0. The natural orientation of the latter thus induces a canonical orientation of
nc.M/. Recall that SRn is a contact manifold, with contact 1-form ˛ given by

˛x;v WD hv; dxi D
nX

iD1
vidxi: (10.4)

Clearly nc.M/ is Legendrian in the usual sense, i.e. ˛jnc.M/ D 0 and has maximal
dimension subject to this property.

Define the map

exp W SRn � R ! R
n;

exp.x; v; t/ WD x C tv:

For t0 > 0 sufficiently small, the restriction of exp to nc.M/ � .0; t0/ is a
diffeomorphism onto the tubular neighborhood Mt0 n M. Thus by the change of
variables formula for integrals

Vn.Mt0 / D
Z

nc.M/
.0;t0/
exp�.dx1 ^ � � � ^ dxn/ (10.5)

where

exp�.dx1 ^ � � � ^ dxn/ D d.x1 C tv1/ ^ � � � ^ d.xn C tvn/

D
�n�1X

iD0
�n�i.n � i/tn�i�1�i

�
^ .dt C ˛/:

The differential forms �i appearing here are determined by the condition that �i

contains i factors dx and n � i � 1 factors dv. This may be seen by evaluating at a
representative point .x; en/ 2 SRn, where

v1 D v2 D � � � D vn�1 D 0 D dvn; vn D 1; ˛ D dxn:

The tube formula (10.2) follows, with

Vi.M/ D
Z

nc.M/
�i; i D 0; : : : ; n � 1: (10.6)
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The original Steiner formula (10.2) for convex sets A 2 K n may be proved in
exactly the same way. One considers the normal cycle

nc.A/ WD f.x; v/ 2 SRn W x 2 bdA; hv; x � yi � 0 for all y 2 Ag: (10.7)

Since A is convex, the distance function ıA.x/ WD dist.x;A/ is C1;1 (continuously
differentiable, with locally Lipschitz gradient) in the complement of A, with gradient

rıA.x/ D x � p.A; x/

jx � p.A; x/j D x � p.A; x/

ıA.x/

where p.A; x/ 2 bdA is the point of A minimizing the distance to x. It follows that
each level set ı�1

A .t/ is a C1;1 hypersurface of Rn, oriented as the boundary of the
tubular neighborhood At. The gradient rıA.x/ is of course normal to this level set,
and moreover it is easy to see that .p.A; x/;rı.x// 2 nc.A/ for all x 62 A. The map
x 7! .p.A; x/;rıA.x// is then a biLipschitz homeomorphism ı�1

A .t/ ! nc.A/, thus
inducing an orientation on nc.A/. ut

In the convex setting, the Vi are precisely the intrinsic volumes; see Sect. 1.3.
In the smooth setting, the integrals (10.6) may also be expressed as integrals of
the traces of the second fundamental form of M. For example, if M is a compact
domain with smooth boundary then nc.M/ is the manifold of outward unit normals.
The integral

R
nc.M/ �i D const:

R
bdM �n�i�1.k1; : : : ; kn�1/ dH n�1, where �j is the

j-th elementary symmetric function and the ki are the principal curvatures. To see
this we consider the outward normal vector field �, which gives a diffeomorphism
bdM ! nc.M/. Given any point of the boundary we choose coordinates so that
e1; : : : ; en�1 are principal directions, so that dvi D kidxi; i D 1; : : : ; n � 1.

Both cases of Theorem 10.1 are subsumed by a theorem of Federer. Following
Federer we define the reach of a closed set A � R

n as the supremal r � 0 such that
for all x 2 Ar there exists a unique point p 2 A such that dist.x;A/ D jx�pj. Denote
this nearest point by p.A; x/ WD p. If this r > 0 (i.e. A has positive reach) then we
say that A is PR.

Theorem 10.2 (Federer [14]) There exist signed Radon measures

˚0.A; � /; : : : ; ˚n.A; � /

such that for r > 0 less than the reach r0 of A, and for every bounded Borel set
E � A,

Vn.Ar \ p.A; � /�1.E// D
nX

iD0
�n�i˚i.A;E/r

n�i: (10.8)

Again in this setting the measures ˚i.A; � / are artifacts of the normal cycle. The
distance function ıA is C1;1, with no critical points, in the open set Ar0 n A. Thus
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each level set ı�1
A .s/; s 2 .0; r0/ is a C1;1 hypersurface, oriented as the boundary of

As. As in the convex case, if we fix such s the map

x 7!
�

p.A; x/;
x � p.A; x/

ıA.x/

�

is a biLipschitz homeomorphism from ı�1
A .s/ to its image in the sphere bundle

SRn D R
n � Sn�1, and moreover the latter is independent of s. Thus this image

carries the structure of a closed oriented Lipschitz submanifold nc.A/ � SRn, and
the Federer curvature measures may be expressed

˚i.A;E/ D
Z

nc.A/\��1.E/
�i; i D 0; : : : ; n � 1; (10.9)

where � W SRn ! R
n is the projection to the first factor.

10.2.2 Euler-Morse Theory, the Gauss-Bonnet Theorem,
and the Principal Kinematic Formula

The normal cycle lends itself via the intersection product of cycles to a reduced
form of Morse theory that is sensitive only to the Euler characteristic. As we will
see below, the Euler-Morse theory of a set A determines the normal cycle nc.A/
completely provided it exists.

If f W A ! R is a function on a “nice” space A and c 2 R, we define the Euler-
Morse index

��. f ; c/ WD �
�
f�1.�1; c C "�

� � �
�
f�1.�1; c � "�

�

provided this is well-defined and independent of the choice of (small) " > 0.
Here � denotes the Euler characteristic; we will assume that these sublevel sets are
compact absolute neighborhood retracts (ANRs), and hence all standard notions of
(co)homology coincide (cf. [12]).

If A D M is an oriented compact smooth manifold and f is a Morse function in
the usual sense, then

��. f ; c/ D
(
0; if c is a regular value of f ;

.�1/�; if c is a critical value of f ;

where � is the usual Morse index of f at the (unique, by hypothesis) critical point
x 2 f�1.c/. The Morse condition on f is equivalent to the statement that the graph
	df � T�M of the differential df intersects the graph 	0 of the zero section z W
M ! T�M transversely at the single point z.x/. The multiplicity of the intersection
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	0 � 	df at this point is precisely ��. f ; c/. Here the orientations of the two factors
are induced by the orientation of M. More generally, if N � M is a submanifold, and
g 2 C1.M/, then the Morse condition on f WD gjN is equivalent to the transversality
of 	dg and the manifold T�

NM of conormals to N, together with the assumption that
the critical values are distinct. The Euler-Morse indices of f are then given by the
intersection multiplicities of T�

NM � 	dg, or equivalently (assuming that N contains
no critical points of f ) by those of S�

NM � 	Œdg�, where Œdg� denotes the image of dg
under the normalization map T�M n .zero section/ ! S�M and S�

NM the manifold
of unit conormals to N.

If the ambient manifold M is Euclidean space Rn then we apply this fact to height
functions g.x/ D hv.x/ WD v � x, v 2 Sn�1. In this case it is not difficult to see that
hvjN is Morse for a.e. v, and that the Euler-Morse index ��.hv; hv.x// agrees with
the sign �.x; v/ of the Jacobian determinant of the Gauss map nc.N/ ! Sn�1 at
.x;�v/ whenever x is a critical point of hv. This interpretation yields a proof of an
elementary version of the Gauss-Bonnet theorem:

Theorem 10.3 If N � R
n is a compact smooth submanifold without boundary, then

V0.N/ D �.N/:

Proof By the change of variables formula, taking dv to be the invariant probability
measure on Sn�1, we have

V0.N/ D
Z

nc.N/
�0

D
Z

Sn�1

X

.x;v/2nc.N/

�.x; v/ dv

D
Z

Sn�1

X

c2R
��.hvjN ; c/ dv

D
Z

Sn�1

�.N/ dv

D �.N/:

ut
Suitably interpreted, the discussion above applies also to PR sets A. We refer to

[17] for the formal definitions underlying the following statement.

Theorem 10.4 ([17]) Let f 2 C1.Rn/. Suppose that A � R
n is PR, that the graph

of the normalized differential of f is transverse to nc.A/, and that f has no critical
points in A. If c is a regular value of f jA then

�.A \ f�1.�1; c�/ D �
nc.A/ � 	Œ�df �

�
.��1f�1.�1; c�/:
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Here the right hand side denotes the sum of all the multiplicities of the oriented
intersection lying in the region of T�M lying above f�1.�1; c�.

In light of this statement it is worthwhile to consider what happens in the tube
formula (10.8) when the radius exceeds the reach r0 of A. For a.e. x … A, restriction
to A of ıx WD j � � xj is Morse, and if exp.p; v; t/ D x for .p; v/ 2 nc.A/ and t > 0

then the sign of the Jacobian determinant N�.p; v; t/ of expjnc.A/
R
at .p; v; t/ equals

the Euler-Morse index ��.ıxjA ; t/. Thus we may apply the change of variables
formula to the right hand side of (10.5) to obtain for all r � 0

n�1X

iD0
�n�iVi.A/r

n�i D
Z

nc.M/
.0;r/
exp�.dx1 ^ � � � ^ dxn/

D
Z

Rn

X

.p;v;t/2exp�1.x/\Œnc.A/
.0;r/�
N�.p; v; t/ dx

D
Z

Rn

X

t2.0;r�
��.ıxjA ; t/ dx

D
Z

Rn

�
nc.A/ � 	Œ�dıx�

�
.��1ı�1

x .�1; r�/ dx

D
Z

Rn
�. NB.x; r/\ A// dx:

If r < r0 then this last integrand is either 0 (if ıA.x/ � r ) or 1 (if ıA.x/ > r).
One computes that Vi. NB.x; r// D �n

�n�i

�n
i

�
ri, so the tube formula in its extended

form above is a special case of the Principal Kinematic Formula:

Theorem 10.5 (Federer [14]) For suitable constants ci, if A;B � R
n are compact

and PR then

Z

SO.n/
�.A \ NgB/ d Ng D

nX

iD0
ciVi.A/Vn�i.B/: (10.10)

Here SO.n/ denotes the group of orientation-preserving Euclidean isometries,
generated by SO.n/ and translations, equipped with its usual Haar measure.

Formulas of this type are valid also if Vi; i D 1; : : : ; n, replaces � D V0 in the
integrand, and moreover local versions also hold:

Theorem 10.6 (Federer [14]) Given k D 0; : : : ; n there exist constants ckij such
that whenever A;B � R

n are compact and PR, and E;F � R
n are Borel, then

Z

SO.n/
˚k.A \ NgB;E \ NgF/ d Ng D

X

iCjDnCk

ckij˚i.A;E/˚j.B;F/: (10.11)
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10.3 The Normal Cycle and the Differential Cycle

As we have seen above, many of the basic operations of elementary differential
geometry may be framed in terms of the manifold of normals to a smooth object.
Similarly, the differential calculus of a function f of several variables may be carried
out in terms of the graph of its differential. Whereas one constructs these objects of
the smooth category directly by differentiation, this is not possible once they become
singular. Thus it is necessary to introduce them by indirect means. It turns out that
one may use the language of the Federer-Fleming theory of integral currents (cf.
[15, Chap. 4]) to frame a set of axioms that associates a unique current to a singular
subspace or function. Due to the compactness theorem for integral currents, this
correspondence applies to an impressively broad range of such objects.

10.3.1 Axioms for Differential and Normal Cycles

Differential and normal cycles of nonsmooth sets and functions are determined by
means of a few simple and inevitable axioms, reproduced here in Theorems 10.7
and 10.9. We sketch their proofs in Sect. 10.3.3 below.

The following may be paraphrased as: the normal cycle of a compact subset of
R

n is determined by the Euler-Morse theory of height functions. Denote by Sn�1�
the unit cosphere, i.e. the space of all linear functionals of norm 1 on R

n.

Theorem 10.7 ([17, 21, 38]) Let A � R
n be compact, and suppose that A \

���1.�1; c� is an ANR for a.e. .��; c/ 2 Sn�1� � R. Then there is at most one
compactly supported, closed Legendrian integral current T in the cosphere bundle
S�
R

n such that for a.e. .��; c/ 2 Sn�1� � R

�.A \ ���1.�1; c�/ D �
T � 	Œ�d���

�ˇ
ˇ
��1���1.�1;c� : (10.12)

If this T exists we call it the normal cycle of A, denoted nc.A/. The definition
is awkward in certain respects. One issue is diffeomorphism invariance (cf. e.g.
Sect. 10.3.2.1). Another is the ANR condition, which seems likely to be a conse-
quence of a more comprehensive, yet substantively equivalent, definition.

From a formal point of view it is more natural to deduce Theorem 10.7 from the
following more natural and general statement.

Theorem 10.8 If T is a compactly supported, closed, Legendrian integral current,
and

ŒT � 	Œ�d����.�
�1���1.�1; c�/ D 0 for a.e. .��; c/ 2 Sn�1� � R (10.13)

then T D 0.
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Note that in order for uniqueness to hold in Theorem 10.7 it is not necessary to
specify the critical points of the �jA, but only their critical values. This corresponds
to the classical idea of reconstruction of a hypersurface as the envelope of its tangent
hyperplanes.

Theorem 10.7 is about an integral current that encodes the 2nd order properties
of a nonsmooth (albeit integral geometrically regular) geometric object in Euclidean
space. The following companion theorem is about functions instead. Recall that the
cotangent bundle T�M of a C2 manifold M always admits a natural symplectic
2-form !. An integral current T of dimension n D dimM, living in T�M, is
Lagrangian if T ! D 0.

Theorem 10.9 ([17, 31]) Let U � R
n be open and f 2 W1;1

loc .U/, i.e. a function
on U with differential locally in L1. Then there is at most one closed Lagrangian
integral current D. f / in T�U such that mass.D. f / ��1K/ < 1 for all compact
K � U and

Z

D. f /
g � ��.dx1 ^ � � � ^ dxn/ D

Z

U
g.x; df .x// dx (10.14)

whenever g is continuous and compactly supported in T�U.

If such a current exists then f is said to be a Monge-Ampère (MA) function, and
D. f / its differential cycle. Again it is formally more natural to state the theorem as
follows:

Theorem 10.10 If T is a closed Lagrangian integral current satisfying the local
mass condition above, and T annihilates all compactly supported functional
multiples of ��.dx1 ^ � � � ^ dxn/, then T D 0.

The proof of Theorem 10.9 implies that the support of D. f / is included in the
graph of the Clarke differential of f [11]: we recall that for Lipschitz f and a point
x, the Clarke differential @f .x/ is defined to be the convex hull of the set of all limits
df .xi/ over all sequences xi ! x at which df .xi/ is defined (these are plentiful by
Rademacher’s theorem). It is clear that @f is upper semicontinuous as a set function,
i.e. if xi ! x0; vi 2 @f .xi/; vi ! v0 then v0 2 @f .x0/.

Under suitable topological regularity assumptions it is well known that the Euler
characteristic is a valuation, i.e. �.;/ D 0 and � is finitely additive,

�.A [ B/C �.A \ B/ D �.A/C �.B/:

Thus if these assumptions hold for generic intersections of A;B with halfspaces then
the existence of normal cycles for any three of A;B;A\B;A[B implies its existence
for the fourth, with

nc.A [ B/C nc.A \ B/ D nc.A/C nc.B/: (10.15)
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Cf. Proposition 10.38 below for a precise statement of this type. Similarly, if we put
f^g; f_g for the minimum and the maximum, respectively, of f ; g, then f^g; f_g 2
W1;1

loc whenever f ; g 2 W1;1
loc , with

d. f ^ g/C d. f _ g/ D df C dg

a.e., from which it follows that if any three of f ; g; f ^ g; f _ g are MA then so is the
fourth, with

D. f ^ g/C D. f _ g/ D D. f /C D.g/: (10.16)

10.3.2 Some Basic Questions

10.3.2.1 Invariance Under Ambient Diffeomorphisms

While the reliance on the family of height functions (or, equivalently, linear
functions) in Theorem 10.7 makes it relatively easy to test whether a given
Legendrian cycle is the normal cycle nc.A/ of some given set A, it also raises some
basic unresolved questions.

Given a C2 diffeomorphism � of Rn, put Q� D .��1/� W T�
R

n ! T�
R

n for
the induced symplectomorphism that covers it, and abuse notation to denote the
induced contact transformation S�

R
n ! S�

R
n by the same symbol. By the change

of variables formula the following statement is easy to prove.

Proposition 10.11 If f is MA then so is f ı ��1, with

D. f ı ��1/ D Q��D. f /:

The corresponding statement for normal cycles is not known:

Conjecture 10.12 If A � R
n is a compact set admitting a normal cycle then so is

�.A/, with

nc.�.A// D Q�� nc.A/:

Thus we have no fully satisfactory definition at the present moment for the
normal cycle of a subset of a general smooth manifold. On the other hand, since
normal cycles in practice seem always to be given in more concrete terms, this has
not yet presented any difficulties in applications (cf. e.g. Corollary 10.34 below).

It is not hard to see that the current on the right hand side is Legendrian, so it
only remains to prove that it satisfies the Euler Morse condition (10.12) for linear
functions for �.A/. Since linear functions are not stabilized by �, the path to a proof
is not clear.
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10.3.2.2 Morse Theory of MA Functions

One more glaring gap lies in the relation between the differential cycle of a function
f and the normal cycle of its graph (or epigraph). The question is basically whether
the Euler-Morse theory of f can be read off from the differential cycle D. f / in the
classical way.

Conjecture 10.13 Let U � R
n be open and f 2 MA.U/. Suppose that f ; @f are

proper maps (i.e. the sets f�1Œa; b� and fx W there exists v 2 @f .x/; jvj � cg are
relatively compact for all a; b; c 2 R) and f is bounded below. Then for a.e. .�; c/ 2
R

n� � R

�.. f � �/�1.�1; c�/ D �
D. f / � q�1.�/

�ˇ
ˇ
.. f��/�1.�1;c�/
Rn�

where q W T�U ' U � R
n� ! R

n� denotes the projection to the second factor.

Implicit in this statement is the conjecture that the sets on the left are ANRs. The
properness hypothesis ensures that they are compact, and that the integers on the
right hand side are well defined.

10.3.2.3 Continuity

In order to make sense of this last discussion it seems necessary that f be continuous,
but this is not known of a general MA function f . However, a theorem of Ponce and
Van Schaftingen [39] implies that this is true if n D 2.

Jerrard [32] gives examples showing that there exist MA functions that fail to be
˛-Hölder continuous for any ˛ > 2

nC1 .

10.3.3 Proofs of the Uniqueness Theorems

We prove Theorem 10.9 first. The idea is based on a characterization of certain
simple Lagrangian submanifolds of a cotangent bundle.

Proposition 10.14 ([29]) Let M � T�
R

n be a smooth Lagrangian submanifold
such that the projection to the base restricts to a submersion M ! R

n of rank k.
Then there exists a smoothly immersed k-dimensional submanifold V � R

n such
that M is a perturbation of the conormal bundle to V by a closed 1-form ˇ on V, i.e.

M D f.x; �C ˇ.x// W � 2 TxV
?g:

The main point of the proof of Theorem 10.9 is to obtain a weak form of this
characterization with M replaced by a carrier of T, an n-rectifiable Lagrangian
subset of T�M. The condition (10.14) implies that the projection to R

n is essentially
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a submersion on a large subset of the carrier, so the conclusion of Proposition 10.14
implies that the fibers of the projection are affine subspaces of dimension k > 0,
hence of infinite k-volume. The coarea formula then implies that the mass of T
must be locally infinite in the neighborhood of any such fiber, contradicting the
local mass condition. The measure-theoretic fibration result [15, Theorem 3.2.22],
together with the theory of slicing encapsulated in [15, Theorem 4.3.2], are enough
to make this all work.

The proof of Theorem 10.7 proceeds in two steps. To state the first, denote by

q W SRn ' R
n � Sn�1 ! Sn�1

the projection. We claim that any compactly supported, closed, Legendrian integral
current T with

T q�d VolSn�1 D 0 (10.17)

must vanish, where dVolSn�1 is the volume form of the sphere. In fact this is
a consequence of the argument of the last paragraph: we replace T by the n-

dimensional conical current
�!
T in R

n � .Rn nf0g/, the image of T� .0;1/ under the
map .x; vI t/ 7! .x; tv/. Interchanging the two factors we may regard the ambient

space as the cotangent bundle of U WD R
n n f0g/, and

�!
T becomes a Lagrangian

current satisfying the previous hypotheses—the locally finite mass condition is
replaced here by the stronger condition that the intersections of the support of T
with the fibers of the projection to U all lie in a common compact subset of Rn.

To complete the proof of Theorem 10.7 it remains to show that the half-space
vanishing condition (10.13) implies the stronger vanishing statement (10.17). We
introduce the “envelope map”

p W SRn ! Sn�1 � R; .x; v/ 7! .v; x � v/:

If target space is identified with the space of oriented hyperplanes in R
n, the image

under p of the normal cycle of a smooth object A � R
n is then the space of all

hyperplanes tangent to A. The relation (10.13) is equivalent to

p�.T q�d VolSn�1 / D 0:

Thus it is enough to prove the following.

Proposition 10.15 Let X � SRn be a Legendrian .n � 1/-rectifiable subset. Then
there is a set C � Sn�1 of measure zero such that pjXnp�1.C
R/ is injective.
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Proof The proof is simple and pleasant enough to give in its entirety. We may
assume that X is included in a C1 submanifold QX � SRn of dimension n � 1.
Then, by hypothesis, at a.e. .x; v/ 2 X the tangent plane T.x;v/ QX is Legendrian.
By Sard’s theorem we may assume that qjQX has nonvanishing Jacobian determinant
everywhere, so we choose a countable neighborhood base fVig for QX such that each
qjVi

is a diffeomorphism with its image in the sphere. It is enough to show that if
Vi \ Vj D ; then the projection R D Rij of p.Vi/ \ p.Vj/ to the sphere has measure
zero.

To this end, suppose that .x0; v0/ 2 Vi; .y0; v0/ 2 Vj, t0 WD x0 � v0 D y0 � v0.
We show that the density of R � Sn�1 at v is zero. Suppose vk 2 R; vk ! v0, so
that there exist xk; yk with .xk; vk/ 2 Vi; .yk; vk/ 2 Vj, and p.xk; vk/ D p.yk; vk/, i.e.
.xk � yk/ � vk D 0. Since q is a diffeomorphism on each of Vi;Vj, it follows that

jxk � x0j D O.jvk � v0j/ D jyk � y0j:

Thus the Legendrian condition implies that

lim
k!1 vk � xk � x0

jvk � v0j D lim
k!1 v0 � xk � x0

jvk � v0j D lim
k!1 v0 � yk � y0

jvk � v0j
D lim

k!1 vk � yk � y0
jvk � v0j D 0;

so that

lim
k!1

vk � v0

jvk � v0j � .x0 � y0/ D lim
k!1 vk � .x0 � y0/

jvk � v0j

D lim
k!1 vk � ..x0 � xk/ � .y0 � yk//

jvk � v0j
D 0:

In other words the vk must approach v0 tangentially along the great hypersphere
perpendicular to x0 � y0, which implies that the density vanishes as claimed. ut

10.3.4 Basic Properties and Examples

The axioms for differential cycles are more convenient than those for normal cycles,
hence we begin the discussion there. In fact it is a simple matter to adapt this notion
to functions on any C2 (or even C1;1) manifold M. For ease of notation, however, we
state the results for the case M D R

n.
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10.3.4.1 Direct Constructions

In a few cases, differential cycles may be constructed directly.
Any f 2 C1;1.Rn/ is MA, with D. f / given by integration over the Lipschitz

submanifold of T�
R

n representing the graph of its differential. The same is true of a
function that is convex or semiconvex (i.e. locally expressible as the sum of a smooth
and a convex function): in this case the (sub)differential is multi-valued, but the
graph 	df nonetheless fits together as a single Lipschitz submanifold: in the convex
case it is not hard to see [1] that the map T�

R
n ' R

n �R
n 3 .x; y/ 7! .xC y; x� y/

transforms 	df into the graph of a function R
n ! R

n with Lipschitz constant 1.
Any piecewise linear function p is MA. If p is affine on each simplex of the

triangulation T of R
n, we may construct D.p/ recursively by specifying it over

simplices of successively smaller dimension. The leading term is the sum of constant
graphs �n � fdp�ng where �n is an n-dimensional simplex of T and dp�n is the
constant value of dp there. The resulting current satisfies all of the axioms for D. f /
except for closure, since it has boundary living over the .n� 1/-skeleton of T ; thus
we wish to cancel the boundary without altering the other features. If �n0 ; �

n
1 are the

n-simplices adjacent to some .n � 1/-simplex �n�1, then the difference dp�n1 � dp�n0
is perpendicular to �n�1: another way of saying this is that these two differentials
must restrict to the same value on �n�1, namely the differential of the restriction
of p. It follows that the Cartesian product of �n�1 with the segment Œdp�n1 ; dp�n0 � is
Lagrangian, and up to orientations its boundary is

.@�n�1 � Œdp�n1 ; dp�n0 �/C �
�n�1 � .ŒŒdp�n1 �� � ŒŒdp�n0 ��/

�
:

If oriented correctly the second terms precisely cancel the boundary of the sum of
the leading terms. However, we have introduced new boundary terms, living now
over the .n � 2/-skeleton. In fact it is not hard to see that the boundary is a sum of
terms �n�2 � P, where P is a closed polygon. The vertices of P are precisely the
values of dp�n corresponding to n-dimensional faces incident to �n�2; since these
must restrict to the same value in �n�2, it follows that P lies in an affine 2-plane
perpendicular to �n�2. Since P is closed, there exists a unique compact polyhedral
chain C in this 2-plane with @C D P. Adding in all the terms �n�2 � C now
annihilates the boundary produced at the last step, but gives rise to boundary terms
living over the .n � 3/-skeleton of the form �n�3 � Q, where Q is a 2-dimensional
polyhedral cycle lying in an affine 3-plane perpendicular to �n�3. The procedure
may thus be repeated until finally all of the boundary is cancelled by the terms lying
over the vertices of T . Cf. [31] for a more careful account of this process.

It is easy to see that a function f of one variable is MA iff its derivative f 0
has bounded variation (BV), with D. f / given as the connected rectifiable curve
representing the graph of f 0 (i.e. the literal graph of f 0 together with the countable
union of line segments needed to connect the graph at the jump discontinuities).
The corresponding statement in higher dimensions is false: there are functions f of
two variables with BV differential that are not MA. For example, if c > 0 then the
function Fc.x/ WD max.0; c � jxj/ has BV differential, and the mass of the vector
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measure rFc is proportional to c. Thus if
P1

iD1 ci < 1 and x1; x2; � � � 2 R
2 then,

putting G.x/ WD P
Fci.x � xi/, the vector distribution rG is a vector measure with

mass proportional to this sum. In other words, G 2 BV. However, D.Fc/ includes
f0g�B.0; 1/ � R

2�R
2 as long as c > 0, and therefore such a countable sum cannot

be MA as long as cancellations are avoided.

10.3.4.2 Normal Cycles

With regard to normal cycles, any compact subset A � R
n with positive reach admits

a normal cycle which is again given by integration over a Lipschitz submanifold of
SRn [16]. In this case the distance function ıA D dist.�;A/ is C1;1 and has no critical
points in a small region ı�1

A .0; r0/. Thus the level sets ı�1
A .r/ are C1;1 hypersurfaces,

0 < r < r0, and the map x 7! .p.A; x/;rıA.x// gives a biLipschitz homeomorphism
from each of these hypersurfaces to nc.A/. If B is a second such PR set such A\B is
again PR (as is true for generic positions of B with respect to A; cf. Proposition 10.37
below) then the additivity property (10.15) may be used to define nc.A [ B/. These
are the UPR sets of Zähle [43].

The only known general procedure for constructing normal cycles applies only
in case the underlying set A is a sublevel set of an MA function. The most successful
instance to date is the case of the WDC sets introduced in [38] and described in detail
below. The idea is simply to adapt the analogous procedure for smooth objects to
the singular case: if A � R

n is a smooth domain then it may be described as a
sublevel set A D f�1.�1; c� for some regular value c of a smooth function f , and
the manifold of outward normals to A appears as the image of the gradient field of f
along f�1.c/. The tools of the theory of integral currents are enough to carry out the
basic constructions in the MA setting; the challenge is then to show that the result
makes sense, by applying the criteria pronounced by Federer in the epigram to this
chapter.

10.3.4.3 The Subanalytic Case

Subanalytic objects are integral geometrically regular. Fundamentally the reason
is the local topological triviality of subanalytic families of sets, together with the
Lojasiewicz inequality (cf. [21]). Thus the assertions of this section apply also to
objects definable with respect to an o-minimal structure with suitable properties
(cf. [34]).

Theorem 10.16 ([21])

1. Every locally Lipschitz subanalytic function defined on a real analytic manifold
is MA.

2. Any compact subanalytic subset X � R
n admits a normal cycle. If � W Rn ! R

n

is an analytic diffeomorphism then Q�� nc.X/ D nc.�.X//, where Q� W SRn ! SRn

is the induced diffeomorphism.
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Proof

1. We may assume that the domain of the Lipschitz subanalytic function f is R
n.

The Moreau-Yosida smoothing procedure

fr.x/ WD sup
y

�

f .y/ � jy � xj2
2r

	

; r > 0

yields a subanalytic family of semiconvex functions converging to f . By suban-
alyticity, the masses of their differential cycles D. fr/ are locally bounded near
r D 0, and therefore a subsequence converges. It is not hard to confirm that the
axioms of Theorem 10.9 hold for any such limit.

2. We may display X as a sublevel set f�1.�1; 0� of subanalytic function f that is
semiconcave off of X, for example the distance function from X. Subanalyticity
implies that f has no small positive critical values. Thus the nearby sublevel sets
Xr WD f�1.�1; r�, r > 0, admit normal cycles, which are again bounded in
mass. Any subsequential limit satisfies the axioms of Theorem 10.7. ut

10.3.4.4 Strong Approximations

The Federer-Fleming compactness theorem for integral currents, together with the
uniqueness Theorem 10.9, provides a powerful method for producing new classes
of MA functions. In fact all known examples of MA functions, including those
described above, may be produced in this way.

Theorem 10.17 Let f1; f2; � � � 2 C2.Rn/, converging in L1loc to f0, and suppose that
for every K �� R

n there is a constant C.K/ such that

Z

K

X

I;J�f1;:::;ng
#ID#J

ˇ
ˇ
ˇdet

�
@2fk
@xi@xj

�

i2I;j2J

ˇ
ˇ
ˇ � C.K/: (10.18)

Then f0 is MA, with D. f0/ D limk!1 D. fk/ in the local flat metric topology.

Proof The D. fk/ are simply the graphs of the differentials of the fk, so by the area
formula the mass of D. fk/ ��1.K/ is

Z

K

ˇ
ˇ
ˇ
^

n
�
IdnjD2fk

�ˇˇ
ˇ

where .IdnjD2fk/ denotes the n � 2n matrix obtained by concatenating the n � n
identity matrix with the Hessian matrix of fk. From this one calculates easily that
this mass is bounded above and below by constant multiples of the left hand side
of (10.18).
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If the masses corresponding to all K �� R
n are all bounded, then the Federer-

Fleming compactness theorem for integral currents implies that there exists a
subsequence fk0 and an integral current T such that D. fk0/ * T. Using the BV
compactness theorem, it is easy to confirm that the current T satisfies the hypotheses
of Theorem 10.9 for the function f0, so T D D. f0/. Since this result is independent
of the choice of subsequence it follows that the original sequence must converge, as
claimed. ut

A sequence of functions as above is called a C2 strong approximation of f0;
the C2 condition on the approximating functions may be replaced by C1;1, or by
semiconvexity, with equivalent content. All functions known to be MA are in factC2

strongly approximable: for example, this is true not only of PL functions but more
generally of all locally Lipschitz subanalytic functions (or, more generally still,
all locally Lipschitz functions definable with respect to any o-minimal structure).
There is another version of Theorem 10.17 with the C2 functions fk replaced by
PL functions pk, and the bounds (10.18) replaced by uniform local mass bounds
on the D.pk/; this is called a PL strong approximation. The proof is again a direct
consequence of Theorem 10.9. It is not difficult to show [19] that any C2 function is
PL strongly approximable.

It is natural to conjecture that the C2 and the PL notions are equivalent. A slightly
stronger and more natural conjecture is the following.

Conjecture 10.18 Given a bounded open set U � R
n, there exists a constant C D

C.U/ < 1 with the following properties: if V � R
n is open and U �� V then

• if for any f 2 C2.V/ there is a sequence p1; p2; � � � 2 PL.V/ such that pk ! f and
massD.pkjU/ � C massD. f jU/, and

• for any p 2 PL.U/ there is a sequence f1; f2; � � � 2 C2.U/ such that fk ! p and
massD. fkjU/ � C massD.pjU/.

Of course the two statements may also be separated. Both parts of the conjecture are
known to hold for n � 2 [9, 27] but the cases n � 3 are open.

Any f0 2 W2;n.Rn/ is C2 strongly approximable, and hence MA: smoothing by
convolution with an approximate identity yields a sequence of smooth functions
that converges to f0 and is locally uniformly bounded with respect to the W2;n norm.
Now the Hölder inequality implies that the bounds (10.18) all hold.

10.3.5 DC Functions

We say that a function f defined on an open subset U � R
n is DC if it may

be expressed locally as a difference of convex functions. This class enjoys some
remarkable properties, and has appeared as a tool in other avenues of metric
geometry (e.g. [5, 37]). The properties that will be most useful here are the
following.
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Theorem 10.19 (Hartman [28]) Suppose f W Rk  U ! R and g1; : : : ; gk W Rn 
V ! R are DC functions. Then x 7! f .g1.x/; : : : ; gk.x// is a DC function on V.

Since any C2 function g is clearly DC this implies the following two statements.

Corollary 10.20 The class DC is stable under C2 diffeomorphisms. In particular
the concept of DC function makes sense on C2 manifolds.

Corollary 10.21 If f ; g are DC functions then so are max. f ; g/;min. f ; g/.

The next statement may be paraphrased as: the set of all tangent planes � R
n �R

to the graph of a DC function f W Rn  U ! R has Hausdorff dimension n. It is
convenient to express these planes in “slope-intercept form”.

Theorem 10.22 (Pavlica-Zajíček, [36]) If f W Rn  U ! R is DC then the set

f.v; t/ 2 R
n � R W v 2 @f .x/; t D f .x/ � v � x for some x 2 Ug (10.19)

has Hausdorff dimension at most n.

This theorem may be strengthened as follows. Recall that the d-dimensional
Minkowski content of a subset S � R

k may be defined as lim sup"#0 N.S; "/"d,
where N.S; "/ denotes the minimal number of balls of radius " required to cover
S. If this number is finite then clearly the Hausdorff dimension of S is no greater
than d.

Theorem 10.23 ([26]) For f as above, the set f.x; v/ W v 2 @f .x/g (i.e. the graph
of the Clarke differential of f ) has locally finite n-dimensional Minkowski content.

Remark 10.24 Theorem 10.22 is essentially equivalent to a theorem of Ewald et
al. [13] that gives a parallel statement about the Hausdorff dimension of the subset
of Sn�1 consisting of all line segments lying in the boundary of a given convex body
in R

n. It is not known whether this set—or, equivalently, the set (10.19)—must be
rectifiable. One may ask the same question about the rectifiability of the graph of
the Clarke differential; a positive answer would of course yield the same statement
about (10.19). As the reader will see from the discussion below, it would also imply
that the support of the normal cycle of a WDC set is rectifiable, which is again an
open question.

Finally, it turns out that the DC functions are also MA. Since the proof is
remarkably simple we include it here.

Theorem 10.25 ([38]) Any difference of convex (DC) functions is strongly approx-
imable, and therefore MA.
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Proof The proof is based on the following fact from [38]: if A;B are n � n matrices
then

det.A � B/ D 1

nŠ

nX

iD0
.�1/i det..n � i/A C iB/ (10.20)

Suppose f0 D g0 � h0, with g0; h0 convex. Smoothing by convolution we obtain
a sequence fk D gk � hk, where the gk; hk are smooth convex functions with
locally uniformly bounded derivatives. It is well known and not hard to see that
the volume of the graph of the differential of a smooth convex function u is bounded
by a function of the diameter of its domain and the L1 norm k du k1 of its
differential. Since we can bound the latter quantities locally uniformly for the
functions u D ui;k WD igk C .n � i/hk; i D 0; : : : ; n, the integrals

Z

K

ˇ
ˇ
ˇdet

�
@2u

@xi@xj

�

i2I;j2J

ˇ
ˇ
ˇ � C.K/;

independent of i; k. Thus (10.20) shows that the hypothesis of Theorem 10.17 is
fulfilled for f0. ut

As noted above, the classes DC and MA coincide if n D 1. However this is
definitely not the case for n � 2: the well known function

fHM.x1; : : : ; xn/ D x1 sin log log.x21 C � � � C x2n/
�1

of [30] is smooth away from the origin and belongs to W2;n
loc � MA for n � 2, but

the restriction of @fHM
@x1

to the x1 axis is not BV. It follows that fHM … DC.

10.4 WDC Sets

We apply the ideas above to construct normal cycles for certain sublevel sets of DC
functions, called WDC sets.

10.4.1 Regular and Weakly Regular Values of Lipschitz
Functions

We wish to describe compact subsets of Rn as sublevel sets of Lipschitz functions f ,
which we therefore assume in the following discussion to be proper and bounded
below.
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We say that c 2 R is a regular value of f if 0 … @f .x/ whenever f .x/ D c. We
define similarly the notion of critical value, and of regular and critical points. The
fundamental implicit function theorem of Clarke states that if c is such a regular
value then the sublevel set f�1.�1; c� is a Lipschitz domain, i.e locally expressible
as the set of points lying below the graph of a Lipschitz function of n � 1 variables.
A vector field V on U � R

n is said to be gradient-like for f if V.x/ � v > 0 for all
v 2 @f .x/; x 2 U.

Lemma 10.26 If U � R
n consists entirely of regular points of f then there exists a

smooth gradient-like vector field for f jU.
Proof For each point x 2 U there is a vector vx such that vx is gradient-like at x
(for example, vx may be taken to be the point of @f .x/ � R

n that lies closest to
the origin). Since @f is upper semicontinuous, the constant vector field vx is also
gradient-like in a neighborhood of x. Since the gradient-like condition is convex,
a global smooth gradient-like field may then be constructed from these locally
constant fields using a partition of unity. ut

Recall that q W SRn ' R
n � Sn�1 ! Sn�1 denotes the projection to the Sn�1

factor.

Lemma 10.27 Let c be a regular value of the Lipschitz function f . Suppose T 2
In�1.SRn/ is an integral current with

• @T D 0,
• spt T � ��1f�1.c/ � SRn,
• if v 2 spt T \ ��1.x/ then v is gradient-like for f at x,
• ��T D @ŒŒ f�1.�1; c��� where ŒŒ f�1.�1; c��� denotes the n-dimensional inte-

gral current given by integration over this region.

Then

T � q�1.v/ D �. f�1.�1; c�/: (10.21)

Proof The usual proof of the Poincaré-Hopf theorem implies that if V is smooth,
unit, and gradient-like in the neighborhood of f�1.c/ then the degree of Vjf�1.c/ is
equal to �. f�1.�1; c�/. Using (10.1) we find that if T 0 is the integral current of
dimension n � 1 given by integration over the graph of Vjf�1.c/ then

q�T 0 D �. f�1.�1; c�/ŒŒSn�1��:

The gradient-like condition on sptT implies that there exists a smooth homotopy
H W Œ0; 1��SRn ! SRn such that H.0; � / is the identity map andH.1; .x; v// D V.x/
for .x; v/ 2 spt T. Since the n-dimensional current q�H�.Œ0; 1� � T/ on Sn�1 must
vanish, we find that

q�T 0 � q�T D @.q�H�.Œ0; 1� � T// D 0:

Now (10.1) implies (10.21). ut
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We say that c 2 R is a weakly regular value of f if there exists " > 0 such
that jvj � " whenever v 2 @f .x/ and c < f .x/ < c C ". In particular if c0 �
c > 0 is small enough then f�1.c0/ is a Clarke regular value of f ; furthermore this
is true in a controlled fashion. By smoothing the gradient field of f in the region
f�1.c; c0/ and integrating, it is easy to see that any such weakly regular sublevel set
is a deformation retract of a neighborhood.

Lemma 10.28 If c is a weakly regular value of f then f�1.�1; c� is a deformation
retract of f�1.�1; c C "� for all for " > 0 sufficiently small. In particular

�
�
f�1.�1; c�

� D �
�
f�1.�1; c C "�

�
:

Proof In view of the weak regularity condition, the construction above of a gradient-
like vector field for f may be used to construct such a field V on f�1.c; c C "/ with
jVj � 1 and directional derivatives DVf � ". The backwards flow of V may then be
reparametrized so that f decreases at rate 1 along each trajectory in f�1.c; c C "/,
and moreover so that each trajectory has speed at least .Lip f /�1 and at most "�1.
Stopping each trajectory when it reaches f�1.c/ yields the required deformation
retraction. ut

The retraction map constructed above has the property that any curve � �
f�1.�1; c C "� retracts to a curve of diameter � C".length�/, although it
is not clear whether the retraction may be taken to be Lipschitz (the proof of
Proposition 1.2 of [21] is not valid), even if the function f is DC.

10.4.2 WDC Sets

The concept of weakly regular value was introduced originally in the following
result of Kleinjohann and Bangert, giving an alternate characterization of sets with
positive reach.

Theorem 10.29 (Kleinjohann[33], Bangert [6]) Let A � R
n be compact. Then A

is PR iff there exists a proper semiconvex function f and a weakly regular value c of
f such that A D f�1.�1; c�.

Since the notion of semiconvex function makes sense on a general C2 manifold M,
we may speak also of PR subsets of such M. Since the same is true of DC, we may
also make the following definition in ambient spaces of the same generality.

Definition 10.30 We say that a compact set A � M is a WDC set if the function f
in the Kleinjohann-Bangert condition above is merely DC.

Thus every PR set is WDC, but the latter is a strictly larger class: for example the
relative boundary of a general convex subset of Rn is WDC but not PR.

By Theorem 10.19, the function max. f � c; 0/ is again DC, with 0 as a weakly
regular value. Thus we may assume that f � 0; c D 0;A D f�1.0/ above. In this
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case we say that f is an aura for A. Next we show that the normal cycle of a compact
WDC subset A of Euclidean space exists in the sense of Theorem 10.7, and may be
constructed from any aura for A, as follows.

Theorem 10.31 Let A � R
n be a compact WDC set, and f an aura for A. Put

� W T�
R

nn.zero�section/ ! SRn for the fiberwise radial projection to the cosphere
bundle, and r W T�

R
n ! Œ0;1/ the length function r.x; y/ WD jyj. Then for all

sufficiently small neighborhoods U  A and " > 0

lim
ı#0
��hD. f /; f ı �; ıi D ��hD. f / ��1.U/; r; "i (10.22)

D ��@.D. f / ��1.A//:

Furthermore, this current satisfies the conditions of Theorem 10.7, and we may
therefore define it to be nc.A/.

Proof The equivalence of the three expressions (10.22) follows from formal consid-
erations, and it is easy to see that this current—let us call it nc. f /—is Legendrian,
closed, and has compact support. Thus it remains only to establish (10.12).

First we prove that the Gauss curvature measure associated to nc. f / yields a
Gauss-Bonnet theorem for A, i.e. that

R
nc. f /�0 D Vn�1.Sn�1/�.A/, where �0 is the

pullback to SRn of the volume form of Sn�1 under the projection q W SRn ! Sn�1.
By the remarks at the end of Sect. 10.1.1, this is equivalent to the statement
in Lemma 10.32, below. We then replace f by h�;c in Lemma 10.32 and apply
Lemma 10.33, below, which yields (10.12). ut
Lemma 10.32 For a.e. � 2 Sn�1

nc. f / � q�1.�/ D �.A/:

Proof By the first expression of (10.22) for nc. f /, for a.e. � 2 Sn�1

nc. f / � q�1.�/ D lim
r#0
��hD. f /; f ı �; ri � q�1.�/

D lim
r#r
�. f�1Œ0; r�/

D �.A/;

where the second and third equality follows from Lemmas 10.27 and 10.28,
respectively. ut

Together with the following, replacing f by h�;c in Lemma 10.32 now
yields (10.12). It will be convenient here to conflate vectors � 2 Sn�1 with their
associated covectors v 7! � � v. In order to form a mental image of the statement it
may be helpful to consider the case in which A is a closed ball.
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Lemma 10.33 For a.e. .�; c/ 2 Sn�1 � R, the function

h�;c WD f C max.� � c; 0/

is an aura for A \ ��1.�1; c�, with

nc.h�;c/ � q�1.��/ D �
nc. f / � q�1.��/�ˇˇ

��1.�1;c�
:

Proof Clearly the zero set of h�;c is the intersection of A with the halfspace H�;c WD
fx W � � x � cg. We claim that 0 is a weakly regular value of h�;c for a.e. .�; c/, i.e.
that h�;c is an aura for this intersection. We claim that h�;c is an aura for generic
.�; c/, and that the slices by q at �� of nc. f /;nc.h�;c/ agree above H�;c.

Obviously f ; h�;c agree in the open halfspace ��1.�1; c/, so the weak regularity
condition holds there, and the differential cycles also agree there. Since dh�;c � � in
the complement of ��1.�1; c�/, it remains only to show that the Clarke differential
@h�;c.x/ is bounded away from the negative ray .�1; 0� � � for �.x/ D c and x
near A.

To see this, recall that the calculus of the Clarke differential yields for such x

@h�;c.x/ � conv.@f .x/ [ f�g/: (10.23)

Condition (10.23) is fulfilled if @f .x/ contains no nonpositive multiple of � for x as
above. Say that an .n � 1/-plane P � R

n is tangent to A if there exists an n-plane
NP � R

n � R that is tangent (in the sense of Theorem 10.22) to the graph of f at a
point .x; 0/ 2 R

n �R; x 2 A, with P D NP\ .Rn �f0g/. Thus condition (10.23) holds
if the hyperplane fx W � � x D cg is not tangent to A.

Each such NP corresponds to a nonzero element v of the Clarke differential @f .x/
that is perpendicular to P. Since 0 is the minimum value of f , it follows from the
general theory of the Clarke differential that 0 2 @f .x/; thus by convexity rv 2 @f .x/
for 0 < r < 1, so that in fact any such .n�1/-plane P tangent to A corresponds to an
interval of corresponding n-planes NP tangent to the graph of f . Since Theorem 10.22
states that the set of all such NP is closed and of Hausdorff dimension n, it follows
that the set of all planes P tangent to A is closed and of dimension n � 1, i.e.
has codimension 1 in the space of all affine hyperplanes in R

n. Thus the desired
conclusion in fact holds off of a closed set of Hausdorff codimension 1 in Sn�1 �R.

ut
Thus by Theorem 10.7 the normal cycle constructed in (10.22) is independent

of the choice of aura f for A. Since the axioms for differential cycles transform
naturally, it follows that the same is true of the differential cycles themselves.
Having constructed the normal cycle of a WDC set from the differential cycle of
an aura we may now draw the following conclusion.
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Corollary 10.34 Let � W Rn ! R
n be a C2 diffeomorphism and Q� W SRn ! SRn

the induced contact transformation. If f is an aura for the WDC set A � R
n then

f ı ��1 is an aura for the WDC set �.A/, and

nc.�.A// D Q�� nc.A/:

Passing to local coordinates, it follows that the normal cycle of a WDC subset of
a C2 manifold M may be constructed from an aura in the same fashion as above.

10.4.3 Questions

Let A � R
n be a WDC set.

Is the support of nc.A/ rectifiable? (Recalling Remark 10.24, this question is
closely related to that of the rectifiability of the set of directions of line segments
lying in the boundary of a given convex body.) Is the distance from A a DC function?
Must the masses of the normal cycles nc. f�1Œ0; "// sublevel sets at small " remain
bounded? If not, must there exist a sequence of values " D "1; "2; : : : for which they
are bounded?

These last three questions are to a certain degree intertwined: Pokorný has
recently given an example of a Lipschitz graph S � R

3 that admits a normal cycle,
but for which the normal cycles of the distance tubes S" are unbounded in mass as
" # 0.

10.5 The Kinematic Formula for WDC Sets

Since the Gauss-Bonnet Theorem is already built into the axioms for the normal
cycle, in order to satisfy the Federer criteria we must prove that the kinematic
formulas hold for pairs of such sets. This we accomplish using a general scheme
developed in [18, 21] which relies on representing the sets as sublevel sets of MA
functions. Although there exists, under the same hypotheses, a form of the kinematic
formula that applies to curvature measures, for simplicity we confine our discussion
to scalar valuations.

10.5.1 The Formal Setup

Let .M;G/ be a Riemannian isotropic space, in which we wish to establish the
kinematic formulas.The formal part of the scheme follows the double fibration
approach familiar to much of classical integral geometry: we construct an integral
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over a large space that represents the two respective sides of the equation when
sliced in different ways. In this case the large space occurs as a subspace of the total
space E of the pullback E a natural fiber bundle, and the two fibrations appear (1)
as the projection˘ of the pulled back bundle, and (2) as the tautological map ˚ of
the total spaces:

(10.24)

Here the bottom map is the product of the two projections � W SM ! M and the
right hand map (bundle projection) is given by

.�; �/ 7! .�.�/; ��1�.�//:

Thus the fiber above .�; �/ 2 SM � SM of the pullback bundle is

E�;� WD f.�; �/ W �.�/ D �.�/; ��.�/ D �.�/g:

Within E�;� lies the special subset C�;�, consisting of the pairs above for which �
lies on some spherical geodesic joining �� to �. This geodesic is of course unique
unless �� D ��. Choosing reference points o 2 M; No 2 SM with �.No/ D o, the
model fibers are then

E0 WD SoM � Go  C0 WD f.�; �/ 2 E0 W � 2 No; � Nog

where Go � G is the stabilizer of o. Thus C0 is a compact semialgebraic set of
dimension dimGo C1, and its top-dimensional stratum inherits a natural orientation
from Go.

There are obvious natural actions of G � G on all four spaces of (10.24),
commuting with all of the maps. Thus this picture entails the following Proposition.
Observe that the vector space of G-invariant differential forms on M is isomorphic
to the space of GNo-invariant elements of

V� TNoSM, and therefore finite dimensional.
Put Z; 	 for the projections of SM � G to the respective factors, and similarly for
$;H W SM � SM ! SM. Denote fiber integration with respect to the fibers C by
˘C� W ˝�.E/ ! ˝�.SM/2.

Proposition 10.35 Put ˘C� W ˝�.E/ ! ˝�.SM � SM/ for the fiber integral with
respect to the fibers C�;�. Let d VolG be an invariant volume form for G and ˇ a
G-invariant differential form on SM. The form ˘C�.˚�.Z�ˇ ^ 	 �d VolG// is then
G � G-invariant. Therefore it may be expressed as a finite sum

P
ij$ 	 ˛i ^ H�˛j,

where the ˛i constitute a basis for the space of G-invariant forms on SM.

Given currents S;T in SM, we denote by S � T �E C the current in E given by
taking the indicated fiber product with C.
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Corollary 10.36 Suppose fˇ1; : : : ; ˇNg is a basis for the vector space of G-
invariant forms of degree n � 1 on SM. Then there are constants ckij such that
whenever A;B � M are compact WDC subsets of M

Z

G

�Z

Z
�

˚
�

hnc.A/
nc.B/
E C;	;�i
ˇk

�

d VolG D
X

i;j

ckij

Z

nc.A/
ˇi

Z

nc.A/
ˇj: (10.25)

Proof This is a formal consequence of Proposition 10.35 and the slicing theory
of [15, Sect. 4.2]. ut

This formal picture is most easily interpreted in the simple case of two smooth
domains A;B � M. We take � D nA.x/; � D nB.y/ to be normal vectors to these
domains at the boundary points x 2 A; y 2 B respectively, and consider the set
Gxy of all motions � 2 G that map y to x, which is a coset of Go. If � and �� are
not antipodal then A;B meet transversely at x, and the intersection A \ �B locally
resembles a wedge. The normals to the wedge constitute an arc interpolating �; ��,
i.e. the geodesic arc that connects them in the fiber sphere SxM. Thus, given any
such boundary points x; y the set CnA.x/;nB.y/ simultaneously depicts all of the fibers
at x of the normal cycles nc.A \ �B/ as � varies over Gxy. Assembling all of these
together as above and slicing at generic � 2 G as on the left hand side of (10.25),
we obtain the part of the normal cycle of A \ �B that lies above the intersection of
the boundaries of the two sets.

Thus the left hand integral of (10.25) represents one part of the kinematic formula
as a whole, though of course not all of the normal vectors to A \ �B arise in this
way: if the boundary point x lies in the interior of �B then A\�B is locally identical
to A, and nA.x/ is the only normal vector also to A \ �B there. A similar situation
prevails if �y lies in the interior of A. Thus there are two terms of the kinematic
formula missing above, corresponding to these geometrically trivial scenarios, but a
much more elementary double fibration argument implies that these yield preciselyR

nc.A/ ˇk � Vn.B/ and
R

nc.B/ ˇk � Vn.A/.

10.5.2 Auras and Normal Cycles for Generic Intersections

In order to interpret this formalism as geometrically meaningful for pairs A;B of
WDC sets, we argue below that (1) the set of all motions � which map normals
of B to vectors antipodal to normals of A has measure zero, and (2) the case of
smooth domains is nonetheless representative even for singular spaces of this type.
We address each point in turn.

Proposition 10.37 Let A;B � M be WDC sets with auras f ; g respectively. Then
A \ �B is WDC for a.e. � 2 G. In fact, there is a closed set C � G of measure zero
such that if � 2 G n C then h� WD f C g ı ��1 is an aura for A \ �B.
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Proof It is clear that every h� is DC and nonnegative, with A \ �B D h�1
� .0/. It

remains to show that 0 is a weakly regular value for � as stated. By Theorem 10.23,
the supports of nc.A/;nc.B/ are .n�1/-dimensional in the Minkowski sense, which
is well-behaved with respect to Cartesian products.

This follows from Theorem 10.23 in much the same way as Theorem 10.31
follows from the prototype Theorem 10.22. Put Nf � SM for the subset of all
elements .x; v/ such that f .x/ D 0 (i.e. x 2 A) and rv 2 @f .x/ for some r > 0, and
define Ng similarly. Then Nf ;Ng are compact and have finite .n � 1/-dimensional
Minkowski content, and hence the Cartesian product Nf � Ng has finite .2n � 2/-
dimensional Minkowski content. It is crucial that the dimensionality be measured in
this way here: the corresponding statement for Hausdorff measure or dimension is
false!

Consider now the fiber bundle F

f.�; �; �/ 2 SM � SM � G W �� D ���g

over .�; �/ 2 SM � SM. The fibers F are clearly diffeomorphic to the stabilizer
GNo � G of a representative point No 2 SM, so that Nf � Ng �F F is compact and of
finite .2n� 2C dimGNo/-dimensional Minkowski content. Since 2n� 2C dimGNo D
dim SM C dimGNo � 1 D dimG � 1, the natural projection C to G of this set is
compact and of Minkowski codimension 1. This set C has the desired property. ut
Proposition 10.38 Under the hypotheses of Proposition 10.37, for a.e. � 2 G both
of A \ �B, A [ �B are WDC sets, with

nc.A [ �B/C nc.A \ �B/ D nc.A/C nc.�B/: (10.26)

Proof It is not difficult to show that min. f ; g ı ��1/ is an aura for A [ �B for
� 2 GnC. Therefore Lemmas 10.28 and 10.33 above imply that for a.e. halfspace H
the respective intersections with H of A;B;A[B;A\B are all neighborhood retracts.
By VIII.6.12 and VIII.6.13 of [12] the Euler characteristics of these intersections
are additive in the expected way. Therefore (10.26) follows from the Uniqueness
Theorem 10.7. ut

In view of Corollary 10.36, the proof of the kinematic formula for WDC sets will
be completed by the following.

Proposition 10.39 For such � 2 G n C:

nc.A \ �B/

D nc.A/ ��1.�.B//C �� nc.B/ ��1A C Z�hnc.A/ � nc.B/ �E C; 	; �i:
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Proof The first two terms on the right correspond to the points of the boundary of
A lying in the interior of �B and vice versa. We claim that the last term arises from
the expressions (10.22), with f replaced by h� .

First we observe that the differential cycles of the h� can be constructed from
those of f ; g in a straightforward way. Consider the bundle F over T�M � T�M,
with fibers ' Go and total space

F WD f.�; �; �/ W ��.�/ D �.�/g:

Put 	 W F ! G for the (restricted) projection, and define the mapping ˙ W F !
T�M by ˙.�; �; �/ WD � C ��. Then for a.e. � 2 G

D.h�/ D ˙�hD. f / � D.g/ �F Go; 	; �i: (10.27)

The expressions (10.22) may be interpreted to say that D. f / bdA is a bundle
of line segments Œ0; r�� over � 2 nc.A/, for some function r D r.�/ > 0. In view
of (10.27) for a.e. � 2 G any � 2 nc.A/; � 2 nc.B/ with ��.�/ D �.�/ gives rise to
the parallelogram (Minkowski sum)

Œ0; r��C Œ0; r0���

in the fiber of D.h� / over �.�/. Now we apply (10.22) to the aura h� : this
parallelogram in D.h� / corresponds to the geodesic segment from � to �� in
nc.A \ �B/. ut

10.5.3 Kinematic Valuations from WDC Sets
and the Alesker-Bernig Formula

The kinematic formulas offer a prototype for the more general concept of Alesker
product of smooth valuations: in [24] we propose as a model for a general smooth
valuation in a smooth manifold M functionals of the following type, each associated
to an appropriately rich smooth measured family of objects Ap � M; p 2 P:

�.B/ WD
Z

P
�.B \ Ap/ dp: (10.28)

This generalizes the construction in the kinematic formalism above, in whichP D G
and Ap is replaced by gA. The Alesker product of such � with a general smooth
valuation � is then given by

.� � �/.B/ WD
Z

P
�.B \ Ap/ dp: (10.29)
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The proof in [24] of (10.29) applies to measured families of smooth polyhedra Ap,
and proceeds by comparison with the celebrated product formula of Alesker
and Bernig [3] for the product of two smooth valuations in terms of smooth
differential forms that define them. The key point is to identify the term of (10.29)
corresponding to the part of the normal cycle nc.B\Ap/ lying above the intersection
of the boundaries of Ap;B. In the proof of the kinematic formula, this corresponds
to the part of the normal cycle analyzed in the proof of Proposition 10.39. It should
be possible to execute the same analysis in the more general context, i.e. replacing
the smooth polyhedra of Fu [24] with WDC sets.

10.5.4 Towards a Definitive Notion of Integral Geometric
Regularity

There are numerous formally incompatible domains in which integral geometric
regularity prevails (or should): WDC (which includes PR), piecewise W2;n domains
(cf. Sect. 10.5.5 below), and one for each o-minimal structure. In order to make
some sense out of this situation let us introduce the following notion.

Definition 10.40 A class C of compact subsets of R
n is an integral geometric

regularity (igregularity) class if

1. C includes all compact smooth domains.
2. Every X 2 C admits a normal cycle.
3. If X 2 C and � is a C2 diffeomorphism of Rn then �.X/ 2 C , with nc.�.X// D

Q�� nc.X/.
4. If X;Y 2 C then X \ �Y 2 C for a.e. Euclidean motion � , with

nc.X \ �Y/ D nc.X/ ��1.�Y/C �� nc.Y/ ��1.X/

C Z�hnc.X/ � nc.Y �E C; 	; �i:

The last axiom implies that the Euclidean kinematic formulas apply to any pair
of subsets from a given igregularity class. The second axiom implies that the class
could also be extended to subsets ofC2 manifolds, and therefore the last axiom could
also be stated to include kinematic formulas in all Riemannian isotropic spaces, but
it is not intended that this definition be set in stone.

Thus PR and WDC are both igregularity classes. So is the class of all compact
subanalytic subsets of R

n, provided the second axiom above is relaxed to apply
only to real analytic diffeomorphisms �, and it seems more than plausible that the
class of all C2 images of compact subanalytic sets is an igregularity class. A similar
statement holds for each o-minimal structure.

Since the definition is finitary, it follows from Zorn’s lemma that every igregu-
larity class is included in a maximal one.

Conjecture 10.41 There exists a unique maximal igregularity class.
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What property might characterize such a class? One might postulate that it
consists of all weakly regular sublevel sets of MA functions, but this rules out the
interior cusps that may occur in the subanalytic case (e.g. the subset f.x; y/ 2 R

2 W
y � pjxjg). The only plausible suggestion known to us is the following.

Conjecture 10.42 Consider the class N consisting of all X � R
n such that there

exists a constant C and a sequence X1  X2  � � �  X of compact smooth domains
such that

1\

iD1
Xi D X; mass.nc.Xi// � C:

Then N is the unique maximal igregularity class.

One might be tempted to believe that the normal cycle of a set X can always be
constructed by taking the sets Xi above to be tubular neighborhoods of X, at least
if interior cusps are excluded (this exclusion could be formalized by assuming that
X is a weakly regular sublevel sets of some Lipschitz function). However, a recent
example of Pokorný shows that this is not the case. It is not known whether such
examples may be taken to be WDC.

The class N satisfies axioms 1 and 3, and also the first part of 4. Since
the Federer-Fleming compactness theorem implies that there is a convergent
subsequence nc.Xi0/ * T, it is tempting to take nc.X/ D T. However, this limit
may not be unique, or might fail to have the right properties, for example if X is a
point and the Xi are nested annuli: in this case T D 0. However, if integral geometric
regularity is truly a kind of regularity then nc.X/ must surely exist: the failure
to converge must be attributable to extraneous pieces of the normal cycles nc.Xi/

arising from unnecessary twists and turns in the approximating sets. Presumably the
convergence could be made to work by eliminating these.

The sequence Xi may be imagined as a process of covering X with shrinkwrap.
The process begins by enclosing X loosely by a bag X1 of this wrapping material,
then distorting it so that more and more of it is in contact with X, yielding
the approximating sets X2;X3; : : : . Distorting the shrinkwrap Xi—introducing
curvature—is expensive, with cost measured by the mass of nc.Xi/ as a kind of
total curvature integral. In order for X to be wrapped in this way with finite cost, the
total curvature of the successive stages Xi must remain bounded.

10.5.5 Questions

Is WDC � N ? This is related to the questions of Sect. 10.4.3 above. Does the
class of W2;n domains (i.e. compact sets that are locally given as sublevel sets of
W2;n functions) generate an integral geometric regularity class? Basically this would
mean that a generic intersection of a finite collection of such domains admits a
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normal cycle. Such intersections might be regarded as “piecewise W2;n domains”,
although this description may implicitly understate their complexity.

10.6 How Smart is the Normal Cycle?

The (co)normal bundle of a smooth submanifold may be used to calculate a wide
array of geometric quantities associated with a smooth manifold. Since the normal
cycle is a measure-theoretic generalization, it is natural to ask whether nc.X/ may
be used to extend these quantities to singular, but integral geometrically regular,
subspaces X. There is significant evidence for an affirmative answer.

10.6.1 Characteristic Classes

The conormal cycle may be used to construct the fundamental characteristic classes
applicable to singular spaces, and to establish their basic properties. First we
mention the generalized Stiefel-Whitney classes, constructed first by Sullivan,
applicable to (sufficiently regular) mod 2 Euler spaces, i.e. spaces X with the
property that the link of any p 2 X has even Euler characteristic.

Theorem 10.43 ([25]) Let M be a smooth real analytic manifold, S�M its cosphere
bundle, andRPT�M its real-projectivized cosphere bundle, so that S�M is naturally
an S0 bundlePR over RPT�M. Let s W S�M ! S�M denote the antipodal map.

1. A closed subanalytic set X � M is a mod 2 Euler space iff its conormal cycle
is antipodally symmetric mod 2, i.e. there exists an integral current T such that
nc.X/ C s� nc.X/ D 2T. Thus in this case there exists a mod 2 integral cycle
RP nc.X/ of dimension n � 1 in RPT�M such that the mod 2 reduction of nc.X/
may be expressed as RPnc.X/ �PR

S0.
2. There exist mod 2 cohomology classes ˇi 2 Hi.RPT�M/ such that the mod 2

cycles ŒRP nc.X/� \ ˇi; i D 0; : : : ; n � 1, represent the Sullivan-Stiefel-Whitney
classes of any mod 2 Euler subspace X � M.

Next are the Chern-Schwartz-MacPherson homology classes of a singular com-
plex analytic subvariety X of a smooth complex analytic manifold M; introduced
originally in [35, 40], these generalize the Poincaré duals of the usual Chern
cohomology classes of the tangent bundle of a smooth variety.
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Theorem 10.44 ([20]) Let M be a smooth complex analytic manifold of complex
dimension n, S�M its cosphere bundle and CPT�M its complex-projectivized
cotangent bundle, so that S�M is naturally an S1 bundle PC over PT�M via the
fiberwise Hopf map.

1. If X � M is a complex analytic subvariety then there exists a closed integral
current P nc.X/ of dimension 2n � 2 such that nc.X/ D P nc.X/ �PC S1.

2. There exist closed differential forms �i 2 ˝2n�2i�2.PT�M/; i D 0; : : : ; n�1, such
that for any compact complex subvariety X � M the closed currents ci.X/ D
��.P nc.X/ �i/; i D 0; : : : ; n � 1 represent the Chern-Schwartz-MacPherson
homology classes of X.

Remark 10.45 In fact the projectivized conormal cycle nc.X/ may be expressed
as a weighted sum of ordinary conormal spaces of the (smooth) strata of X. The
conormal cycle approach gives rise to a practical method of computing the weights
(cf. [8]).

Together with the classical relations between the Chern classes and the Stiefel-
Whitney classes of the tangent bundles of smooth complex manifolds, these parallel
constructions imply the following.

Corollary 10.46 ([25]) If X is a (singular) complex analytic subvariety of a
complex manifold, then the Sullivan Stiefel-Whitney classes of X coincide with the
mod 2 reductions of its Schwartz-MacPherson Chern classes.

The Sullivan Stiefel-Whitney classes and the Schwartz-MacPherson Chern
classes are both characterized by a functoriality property with respect to the category
of constructible functions, viz. functions that may be expressed as locally finite
sums and differences of characteristic functions of subanalytic sets (resp. complex
analytic subvarieties)—the relation (10.15) (finite additivity of conormal cycles)
implies that the conormal cycle operation may be extended uniquely to a linear
map from constructible functions to Legendrian cycles. The key to the proofs of
Theorems 10.43 and 10.44 is to establish this functoriality with respect to general
maps f . In each case this is accomplished by examining the conormal cycle of a
geometric object associated to f , viz. the mapping cylinder in the first case and the
graph in the second.

10.6.2 Weyl’s Theorem

The main theme of the present chapter is that the formalism of the normal cycle
is well suited to meeting Federer’s criteria for success in finding a second order
geometric measure theory, and moreover extends to an impressively wide range of
singular objects. However, these criteria are not completely definitive, as indicated
by the following classical yet still astounding theorem of Hermann Weyl.



10 Integral Geometric Regularity 295

Theorem 10.47 (Weyl, [42]) If M � R
n is a smooth submanifold then appropriate

multiples of the tube coefficients are Riemannian invariants. In particular they are
unchanged under a change in the isometric immersion into Euclidean space.

In other words, when applied to smooth submanifolds M � R
n the primary

invariants of classical integral geometry are actually characteristics of the inner
metric structure of M. To what extent does this remain true if M is replaced by
objects that are merely integral geometrically regular? Although our understanding
of this question remains rudimentary, we have enough evidence to make the
following.

Conjecture 10.48 Let X � be a connected compact set admitting a normal cycle.

1. Any two points of X may be joined by a rectifiable curve � � X.
2. Endow X with the metric given by d.p; q/ = the infimal length of all curves � X

joining p; q. Then the signed measures

˚X
i WD ��.nc.X/ �i/; i D 0; : : : ; n � 1:

may be computed solely from this metric.

This is not known even in the relatively simple case of a convex hypersurface
in R

n, n � 4 (see Sect. 10.6.3 below for the n D 3 case). However, it is not hard to
confirm it in some other basic cases:

Theorem 10.49

1. The conjecture holds if X � R
n is a compact convex set.

2. (Bröcker-Kuppe [10]) If X;Y � R
n are closed subanalytic sets, and g W X ! Y

is a subanalytic homeomorphism such that length.g.�// D length.�/ for every
rectifiable curve � � X, then

g�˚X
i D ˚Y

i ; i D 0; : : : ; n � 1:

Proof (Sketch)
(1) The boundary of X is topologically distinguished. From the discussion above

it is not hard to see that the intrinsically defined function

f .r/ WD
Z

X
�.B.x; r/ \ @X/ dx

is a polynomial of degree n in r > 0. The i-th coefficient is (up to scale) equal to
.�1/n�i�1 times the i-th intrinsic volume of X.

(2) For simplicity we confine the discussion to the globalizations Vi of the
curvature measures ˚i. We proceed by induction on the dimension d of X.

Let S be a nice (Whitney b is enough) stratification of X such that ff .S/ W S 2
S g is again a nice stratification of Y. Put S D Sd for top-dimensional stratum of S
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and T WD X n S. The length-preserving condition implies that f jS is a Riemannian
isometry with its image.

Let f � 0 be any subanalytic function with f�1.0/ D T, and put Xr WD
f�1Œr;1/;Tr WD f�1Œ0; r�;Qr WD f�1.r/. It is known that nc.T/ D limr#0 nc.Tr/,
and therefore

Vi.X/ D Vi.Xr/C Vi.Tr/� Vi.Qr/ ! lim
r#0

Vi.Xr/C Vi.T/ � lim
r#0

Vi.Qr/

as r # 0. Since the Xr;Qr are smooth, the first and third terms are intrinsically
defined, and so is �i.T/ by the inductive hypothesis. ut

Bernig [7] has given an intrinsic geometric expression for the scalar curvature
measure ˚d�2.X/ for subanalytic X.

Part 1 of Conjecture 10.48 suggests the following scenario. We might naively
attempt to approximate the normal cycle of a connected X � R

n by those of smooth
hypersurfaces X1;X2; : : : ! X in the Hausdorff metric, under the assumption
that the masses of the nc.Xi/ are uniformly bounded. In any case, if such an
approximation exists then X might be viewed as at least marginally igregular, and
so we expect that the first part of Conjecture 10.48 holds. The most direct approach
to proving this proceeds by way of the following.

Conjecture 10.50 There exists a universal constant C such that the intrinsic diame-
ter of a smooth compact hypersurface M � R

n is no greater than C � mass.nc.M//.

This may be restated in more common terminology by replacing mass.nc.M// by
the equivalent (up to scale)

Z

M

n�1X

jD0

X

i1<���<ij
jki1 � � � kij j dH n�1

where the ki are the principal curvatures. This is true for surfaces, i.e. n D 3 (cf. [23,
41]).

10.6.3 Surfaces

In other words, Weyl’s Theorem 10.47 suggests that the ostensibly extrinsic notion
of integral geometric regularity also suggests a species of generalized Riemannian
geometry tame enough to admit precise quantitative curvature measures, as opposed
for example to the curvature bounds that are the foundation of the theory of what
are now called Alexandrov spaces. Since the spaces belonging to this domain may
not even be C1, the absence of an analytic framework in which to compute these
curvatures is an obvious obstacle.
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However, such a framework does exist in case the objects in question are topo-
logical surfaces: Alexandrov’s theory of manifolds of bounded curvature (MBC).
The underlying idea relies on the special nature of the Gauss-Bonnet theorem in
dimension 2. One considers all possible geodesic triangulations T of a given a
compact metric surface ˙ . Assuming for simplicity that the interior angles of the
constituent triangles T 2 T are well-defined, one asserts the Ansatz that the integral
of the Gauss curvature measure ˚˙

0 over the interior of T is equal to the angle
deficit. An Alexandrov MBC is then defined to be a surface ˙ for which the sum
of all absolute angle deficits/surpluses over all the triangles T 2 T is bounded by
an absolute constant C, independent of T , which then serves as an upper bound
for the total absolute Gauss curvature

R
˙

jKj. Alexandrov showed that under these
conditions˙ admits a well-defined signed measure ˚˙

0 that fulfills the Ansatz.

Theorem 10.51 (Alexandrov) A convex surface ˙ � R
3 is an MBC. Its

Alexandrov Gauss curvature measure agrees with the Gauss curvature measure
constructed from its normal cycle.

Alexandrov’s Theorem 10.51 may be generalized as follows.

Theorem 10.52 ([22]) Suppose˙ � R
3 is a surface that may be expressed locally

as the graphs of Lipschitz functions gi W R2  U ! R, such that each gi is a strongly
approximableMA function. Then˙ , as a length space, is an Alexandrov MBC, with
Alexandrov Gauss curvature measure equal to the Gauss curvature measure arising
from the normal cycle.

The local graph condition may be weakened slightly. The proof proceeds by
showing that the induced metrics on the domain R

2 of the functions gi converge.
These metrics are of course smooth, with Gauss curvature induced by the curvature
of the graphs, converging weakly to a signed measure obtained by contracting the
normal cycle of ˙ with the area form of S2. Thus the conditions of Alexandrov’s
general Theorem 10.51 are fulfilled.

Pogorelov made the amazing claim that a C1 surface in R
3 is an MBC if its Gauss

map has finite mapping area (cf. [4]). This hypothesis is weaker than finiteness of the
area of its normal cycle. However, a fundamental heuristic states that normal cycle
finiteness is equivalent to the statement that finite Gauss mapping area is finite for
generic smooth perturbations: if the L1 norm of the second fundamental form of ˙
is infinite, then we may choose some direction v in space so that the integral of the
absolute value of the second fundamental form, applied to the projection of v onto
˙ , is infinite. Applying a small quadratic perturbation of space along the direction
v, the resulting perturbed surface now has infinite total absolute Gauss curvature.
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36. D. Pavlica, L. Zajíček, On the directions of segments and r-dimensional balls on a convex
surface. J. Convex Anal. 14, 149–167 (2007)

37. G. Perel’man, DC structure on Alexandrov space. Preprint (1994)
38. D. Pokorný, J. Rataj, Normal cycles and curvature measures of sets with d.c. boundary. Adv.

Math. 248, 963–985 (2013)
39. A.C. Ponce, J. Van Schaftingen, The continuity of functions with N-th derivative measure.

Houst. J. Math. 33, 927–939 (2007)
40. M.-H. Schwartz, Classes de Chern des ensembles analytiques. [Chern classes of analytic

sets] With a preface by Jean-Paul Brasselet, Le Dung Trang and Bernard Teissier. Actualités
Mathématiques. [Current Mathematical Topics] Hermann, Paris (2000)

41. P. Topping, Relating diameter and mean curvature for submanifolds of Euclidean space.
Comment. Math. Helv. 83, 539–546 (2008)

42. H. Weyl, On the volume of tubes. Am. J. Math. 61, 461–472 (1939)
43. M. Zähle, Curvatures and currents for unions of sets with positive reach. Geom. Dedicata 23,

155–171 (1987)



Chapter 11
Valuations and Boolean Models

Julia Schulte and Wolfgang Weil

Abstract Valuations, as additive functionals, allow various applications in Stochas-
tic Geometry, yielding mean value formulas for specific random closed sets and
processes of convex or polyconvex particles. In particular, valuations are especially
adapted to Boolean models, the latter being the union sets of Poisson particle pro-
cesses. In this chapter, we collect mean value formulas for scalar- and tensor-valued
valuations applied to Boolean models under quite general invariance assumptions.

11.1 Introduction

Hadwiger’s characterization theorem for the intrinsic volumes (see Theorem 1.23)
has important applications in integral geometry. Besides a kinematic formula for
arbitrary continuous valuations on K n, the celebrated principal kinematic formula
was proved by Hadwiger using his characterization result. In its general form, the
principal kinematic formula for the intrinsic volumes Vj reads

Z

Gn

Vj.K \ gM/�.dg/ D
nX

kDj

cn;j;kVk.K/VnCj�k.M/; (11.1)

for convex bodies K;M 2 K n, j D 0; : : : ; n, and with given constants cn;j;k � 0.
In 1959, Federer proved a local version of (11.1), for curvature measures, a notion
he invented on the larger class of sets with positive reach. For both results, the
global formula (11.1) and its local analog for curvature measures, a more direct
proof was given in [20] by splitting the integration over the motion group Gn into
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a translation integral and a subsequent integration over the rotation group. This
approach led to translative integral formulas for intrinsic volumes and curvature
measures, introducing certain expressions of mixed type.

The need for translative integral formulas arose with the development of
Stochastic Geometry in the 1970s by Matheron and Miles (we refer here and in the
following to the book [21], for more details and specific references). In particular,
in two important papers by Miles and Davy in 1976, the problem was discussed
how geometric mean values for particles in a randomly overlapping system can be
estimated from measurements at the union set. The formulas, which they proved,
modeled the particle system by a stationary and isotropic Poisson process of convex
bodies (a random countable subset of K n with rigid motion invariant distribution)
and then used the principal kinematic formula. As a surprising result, in two and
three dimensions, it was possible to estimate the mean number of particles (per unit
volume) in an overlapping particle system by measuring the specific area, boundary
length and Euler characteristic of the union set in a bounded planar sampling
window (respectively, the volume, surface area, integral mean curvature and Euler
characteristic in the spatial situation). In addition, also mean particle quantities were
obtained (mean area and boundary length, respectively, mean volume, mean surface
area and mean integral mean curvature). Such overlapping particle systems occurred
frequently in microscopic investigations and became more and more important for
techniques in image analysis. There, the random set model, given as the union of
a Poisson particle process, the Boolean model, was not only used for systems with
given real particles but also for spatially homogeneous random structures without
that there were particles in the background. Then, the mean particle characteristics
served as important parameters to find an appropriate distribution for a fictive
particle process to adjust a Boolean model to the given structure.

For such applications, the assumption of stationarity (spatial homogeneity) was
mostly acceptable, but isotropy (rotation invariance) was often not fulfilled. This
initiated the study of non-isotropic Boolean models, for which translative integral
formulas were needed. In general dimensions, and for the intrinsic volumes, a
corresponding system of formulas for stationary Boolean models was presented
in [24]. A further important step was made in [1] by showing that the translative
integral formulas for intrinsic volumes, in their local form for curvature measures,
even produced mean value results in the non-stationary case. In the subsequent
years, many related integral-geometric results were obtained for mixed volumes,
support functions, area measures, and applied to particle processes and Boolean
models. Recently, translative integral formulas for general valuations and local
versions for measure-valued valuations became available and corresponding mean
value formulas for Boolean models were established in [26, 27]. As we shall see,
some of these results can also be applied to tensor valuations.

In the following survey, we describe the interrelations between valuations,
translative integral formulas and Boolean models and give appropriate references.
We mostly concentrate on the stationary situation. After discussing the general
results, we collect various examples in Sect. 11.6. Formulas for tensor valuations
are given in Sect. 11.7. The final Sect. 11.8 describes shortly extensions to non-
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stationary structures and also gives an outlook on the use of harmonic intrinsic
volumes in the directional analysis of non-isotropic Boolean models, a development
which was started in [6]. In two and three dimensions measurements of the specific
harmonic intrinsic volumes allow the estimation of the mean number of particles per
unit volume and of the mean harmonic intrinsic volumes (which include in particular
the usual intrinsic volumes). Thus, these recent results are a natural extension of the
formulas by Miles and Davy from 1976 to the non-isotropic situation.

11.2 Basic Definitions and Background Information

We consider the space K n of convex bodies in R
n; n � 2, supplied with the

Hausdorff metric ı. �; � / and the dense subset Pn of convex polytopes. We refer
to [19], for notions from Convex Geometry which are used in this chapter. In the
following, we study valuations on K n or Pn. These are mappings ' W K n ! X
(or ' W Pn ! X ), which are additive in the sense that

'.K [ M/C '.K \ M/ D '.K/C '.M/;

whenever K;M and K [ M lie in K n (respectively, in Pn). Here X is a
commutative (topological) semigroup, but we concentrate on the situations where
X D R (real valuations), X D M .Rn � S

n�1/ (measure valuations; here
M .Rn � S

n�1/ is the space of finite signed Borel measures on R
n � S

n�1), and
X D T n the space of tensors in R

n (tensor valuations).

11.2.1 Real Valuations

Concerning real valuations, we mostly concentrate on the class Val of translation
invariant continuous valuations, in the following. The standard examples of valu-
ations in Val are the intrinsic volumes Vm.K/;m D 0; : : : ; n, for K 2 K n. They
are, in addition, invariant under rotations. McMullen [14, 16] has shown that every
valuation ' 2 Val admits a (unique) decomposition

' D
nX

jD0
'j (11.2)

into j-homogeneous valuations 'j (which are again translation invariant and con-
tinuous). Here, '0 is a constant and Hadwiger [4] has proved that 'n D cnVn. For
m D 1; : : : ; n � 1, the vector space Valm of m-homogeneous valuations is infinite-
dimensional. In particular, McMullen [15] has shown that ' 2 Valn�1 if and only if

'.K/ D
Z

Sn�1

f .u/Sn�1.K; du/; K 2 K n; (11.3)
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for some continuous function f D f' on S
n�1 which is uniquely determined, up to a

linear function (see Theorem 1.25). Here, Sn�1.K; � / is the area measure of K (see
Sect. 1.3).

We also recall from Theorem 1.18 that, for a polytope P 2 Pn and 'j 2 Valj; j D
1; : : : ; n � 1; we have

'j.P/ D
X

F2Fj.P/

fj.n.P;F//Vj.F/; (11.4)

where the summation is over all j-dimensional faces of P, n.P;F/ is the set of all unit
vectors which are normals of P at relative interior points of F (n.P;F/ is a spherical
polytope of dimension n�j�1) and fj is a simple valuation on the spherical polytopes
of dimension � n � j � 1.

11.2.2 Measure Valuations

Concerning measure valuations, we mention the support measures �j.K; � /; j D
0; : : : ; n� 1, which are finite measures on R

n �S
n�1, continuous with respect to the

weak convergence of measures and translation covariant in the sense that

�j.K;A � B/ D �j.K C x; .A C x/ � B/

for Borel sets A � R
n;B � S

n�1; and all x 2 R
n. They are also rotation covariant,

�j.K;A � B/ D �j.#K; #.A � B//; # 2 SOn:

If ' W K n ! M .Rn � S
n�1/ is a continuous, translation covariant measure-

valued functional, which is locally determined in the spatial component in the sense
of Theorem 1.29, Condition (d), then there is a decomposition similar to (11.2),
which follows from Theorem 3.1 in [12]. Namely,

' D
nX

jD0
'j (11.5)

with j-homogeneous measure-valued functionals 'j W K n ! M .Rn�S
n�1/ (which

are again translation covariant, continuous and locally determined in the spatial
component). Here, homogeneity means that

'.˛K; .˛A/ � B/ D ˛j'.K;A � B/ (11.6)
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for Borel sets A � R
n;B � S

n�1; and all ˛ � 0. This decomposition does not
require additivity of ', but if ' is a valuation then the homogeneous components 'j
are also valuations, j D 0; : : : ; n.

The support measures give rise to two further series of measures, the curvature
measures C0.K; � /; : : : ;Cn�1.K; � / and the area measures S0.K; � /; : : : ; Sn�1.K; � /
of K. The former are (up to some constant) the projections of the support measures
onto the first component and the latter are (up to the same constant) the projections
onto the second component. For different normalizations of curvature and area
measures, see Sect. 1.3.

11.2.3 Tensor Valuations

For j D 0; : : : ; n�1 and r; s 2 N0, the basic tensor valuations, the Minkowski tensors
˚

r;s
j .K/ (of rank r C s), arise as (tensor) integrals of the support measures,

˚ r;s
j .K/ D cr;sn�j

Z

Rn
Sn�1

xrus�j.K; d.x; u//

where cr;sk WD 1
rŠsŠ

!k
!kCs

for k 2 f1; : : : ; ng. Here !i is the surface area of the i-
dimensional unit ball (see (1.14)). The Minkowski tensors with r D 0 are translation
invariant; for r > 0 they have a special covariance property with respect to
translations (see Sect. 2.2).

11.3 The Basic Equation for Boolean Models

The Boolean model is a random closed set Z � R
n which arises in a special way,

namely as the union of sets (called grains) from a Poisson process Y. Usually,
the grains are assumed to be compact or even compact and convex. More general
random sets Z can be considered if Y is an arbitrary point process on the class C n of
nonempty compact sets in R

n or on the subclass of convex bodies K n. In particular,
if Z and Y are stationary, that is, have a distribution invariant under translations, the
random set Z can be interpreted as a germ-grain model,

Z WD
1[

iD0
.xi C Zi/;

where points (germs) x1; x2; : : : are distributed in R
n according to a stationary point

process X and then random compact (or compact, convex) sets Zi (the grains) are
attached to the germs in a suitable way. We shall describe this construction in the
next subsection, but will concentrate on the Poissonian case and convex sets, that is
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to Boolean models, where the grains are convex and independent from each other
and from the underlying germ process X. These strong independence properties
together with the fact that the realizations of Z are locally polyconvex allow to
apply valuations ' to Z and to express the expected value E'.Z \K0/ in a bounded
sampling window K0 by the characteristic parameters of X and the Zi. This will be
explained in the second subsection. The effective further investigation of Boolean
models then requires formulas from Translative Integral Geometry, as they will be
provided in Sect. 11.4. Background material on random sets, point processes and
the integral geometric results as well as further material on Boolean models can be
found in [21] and we refer to this book for all details which are not explained in the
following.

11.3.1 Boolean Models

Since we will only consider stationary Boolean models Z with convex grains
throughout the following, we start with a stationary Poisson process in R

n. A
stationary point process X in R

n is a (simple) random counting measure

X WD
1X

iD1
ı�i ;

where ıx denotes the Dirac measure in x 2 R
n and where the �i are distinct random

points in R
n. We also assume that X is locally finite meaning that (almost surely)

each C 2 C n contains only finitely many points �i from X. Here, in the description,
we already made use of the fact that such a point process can be represented in an
alternative way as a locally finite (random) closed set

X D f�1; �2; : : : g � R
n:

To make these definitions precise, we need an underlying probability space
.˝;A ;P/ and �-algebras on the class F n of closed sets in R

n, respectively on
the class N of counting measures in R

n. For details we refer to [21] but mention that
the former is chosen as the Borel �-algebra B.F n/ of the hit-or-miss topology on
F n and the latter, N , is generated by the evaluation (or counting) maps

˚A W � 7! �.A/; A 2 B.Rn/:

The stationarity, which we assume in addition, means that X C t has the same
distribution as X for all translations t 2 R

n. X is isotropic if the distribution of X
is invariant under rotations. (Here translations and rotations act in the natural way
on counting measures, respectively on closed sets.)
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The (stationary) point process X is a Poisson process if X.A/ has a Poisson
distribution for all bounded Borel sets A � R

n,

P.X.A/ D k/ D e�� �n.A/ .� �n.A//
k

kŠ
; k D 0; 1; 2; : : :

Here � D EX.Œ0; 1�n/ is the intensity of the Poisson process. It describes the
mean number of points of X per unit volume. Because of the stationarity we
have EX.A/ D � �n.A/, for all A 2 B.Rn/. As a consequence of the Poisson
property, the random variables X.A1/; : : : ;X.Am/ are (stochastically) independent
if the Borel sets A1; : : : ;Am are disjoint. More generally, in this case, also the
restrictions X A1; : : : ;X Am are independent random measures. The Poisson
process X is uniquely determined (in distribution) by the parameter � . Since the
Lebesgue measure �n is rotation invariant, X is isotropic.

Now assume that X is a stationary Poisson process with intensity � > 0,
enumerated (in a measurable way) as X D f�1; �2; : : : g. Let Q be a probability
measure on K n (supplied with the Borel �-algebra with respect to the Hausdorff
metric) and let Z1;Z2; : : : , be a sequence of independent random convex bodies with
distribution Q (and independent of the Poisson process X). Then

Z WD
1[

iD1
.�i C Zi/

is a stationary random set, a Boolean model. Some additional assumptions are
helpful. First, we require that

Z

K n
Vn.K C Bn/Q.dK/ < 1; (11.7)

since then Z is a closed set (and moreover Z \ K is polyconvex for each K 2 K n).
Second, we assume that Q is concentrated on the centered convex bodies K n

c (the
class of bodies K 2 K n with center of the circumsphere at the origin). The effect
of this condition is that Q is uniquely determined by Z and that Z is isotropic if and
only if Q is invariant under rotations.

For the following it is often convenient to use the particle process Y D f�1 C
Z1; �2 CZ2; : : : g. This is a point process on the locally compact space K n (that is, a
(simple) random counting measure on K n or, equivalently, a locally finite random
closed subset of K n). The process Y also has the Poisson property, that means, the
random number Y.A/ of particles from Y in a Borel set A � K n has a Poisson
distribution. Later we will use this for the sets

KC WD fK 2 K n W K \ C 6D ;g; C 2 C n:
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Proposition 11.1 For A 2 B.K n/, we have

P.Y.A/ D k/ D e��.A/ .�.A//k

kŠ
; k D 0; 1; : : : ;

where � is the image measure (on K n) of � �n ˝ Q under the mapping ˚ W
R

n � K n
c ! K n, .x;K/ 7! x C K.

Proof By the extension theorem of measure theory, and since ˚ is a homeomor-
phism, it is sufficient to prove the result for sets A D ˚.B � C/, B 2 B.Rn/,
C 2 B.K n

c /. In this case, the independence properties of Z yield

P.Y.A/ D k/ D P
� 1X

iD1
1f�i 2 B;Zi 2 Cg D k

�

D
1X

jDk

P.X.B/ D j/

 
j

k

!

Q.C/k.1 � Q.C// j�k

D e�� �n.B/Q.C/k
1X

jDk

 
j

k

!

.1 � Q.C// j�k .� �n.B//
j

jŠ

D e�� �n.B/Q.C/k
.� �n.B//k

kŠ

1X

iD0
.1 � Q.C//i

.� �n.B//i

iŠ

D e�� �n.B/ .� �n.B/Q.C//
k

kŠ
e� �n.B/�� �n.B/Q.C/

D e��.A/ .�.A//k

kŠ
:

Here 1f � g denotes the indicator function of the event f � g. ut
We emphasize the fact that the (stationary) Boolean model Z is uniquely

determined (in distribution) by the two quantities � (a constant which we always
assume to be > 0) and Q (a probability measure on K n

c ). Thus, in order to fit a
Boolean model to given data (in form of closed sets in a window K0, say), one
has to determine (more precisely, to estimate) � and Q from the data, that is from
observations of realizations Z.!/ \ K0 of Z in K0.

11.3.2 Additive Functionals

Concerning the estimation problem described above, let us assume that we observe
'.Z.!/ \ K0/ for some geometric functional ' in the window K0. The mean value
E'.Z\K0/ is then the quantity which can be estimated unbiasedly by '.Z.!/\K0/.
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It is natural to assume that the window is convex, hence K0 2 K n. Then Z \ K0 is
polyconvex a.s. Therefore it is another natural assumption that ' is additive, hence
a valuation. In order to have a smooth behavior with respect to approximations (at
least on K n), we also assume that ' is continuous on K n. Hence, we consider now
E'.Z \ K0/, for K0 2 K n and a continuous real valuation ' on K n.

The following result from [28] (see also [21, Theorem 9.1.2]), expresses the mean
value E'.Z \ K0/ in terms of � and Q. Notice that we do no require that ' is
translation invariant.

Theorem 11.2 Let Z be a stationary Boolean model in R
n with convex grains, let

K0 2 K n be a sampling window and ' a continuous real valuation on K n. Then
Ej'.Z \ K0/j < 1 and

E'.Z \ K0/

D
1X

kD1

.�1/k�1
kŠ

� k
Z

K n
c

� � �
Z

K n
c

˚.K0;K1; : : : ;Kk/Q.dK1/ � � � Q.dKk/

with

˚.K0;K1; : : : ;Kk/

WD
Z

.Rn/k
'.K0 \ .K1 C x1/ \ � � � \ .Kk C xk// �

k
n.d.x1; : : : ; xk// : (11.8)

Proof We sketch the proof since it sheds some light on the role of the Poisson
assumption underlying the Boolean model. To simplify the formulas, we use the
particle process Y D f�1 C Z1; �2 C Z2; : : : g.

Almost surely the window K0 is hit by only finitely many grains M1; : : : ;M� 2 Y
(here � is a random variable). The additivity of ' implies

'.Z \ K0/ D '
� �[

iD1
Mi \ K0

�

D
�X

kD1
.�1/k�1

X

1�i1<���<ik��
'.K0 \ Mi1 \ � � � \ Mik /

D
1X

kD1

.�1/k�1
kŠ

X

.N1;:::;Nk/2Yk
6D

'.K0 \ N1 \ � � � \ Nk/: (11.9)

Here, Yk
6D denotes the set of all k-tuples of pairwise distinct bodies in Y and we could

extend the summation to infinity since '.;/ D 0.
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The continuity of ' on K n implies j'.M/j � c.K0/ for all M 2 K n;M � K0.
Hence,

j'.Z \ K0/j �
�X

kD1

 
�

k

!

c.K0/ � 2�c.K0/:

From Proposition 11.1 we get

E2� D
1X

kD0
2kP.Y.KK0 / D k/

D e��.KK0 /

1X

kD0

.2�.KK0 //
k

kŠ

D e�.KK0 / < 1

since

�.KK0 / D �

Z

K n
c

Z

Rn
1f.x C K/ \ K0 6D ;g�n.dx/Q.dK/

D �

Z

K n
c

Vn.K C .�K0//Q.dK/

� � maxfr.K0/; 1gn
Z

K n
c

Vn.K C Bn/Q.dK/ < 1;

due to condition (11.7) (here r.K0/ is the circumradius of K0). Hence we obtain
Ej'.Z \ K0/j < 1.

This integrability property allows to use the dominated convergence theorem for
E'.Z \ K0/, where '.Z \ K0/ is expressed by formula (11.9), and interchange
expectation and summation. We get

E'.Z \ K0/ D
1X

kD1

.�1/k�1
kŠ

E
X

.N1;:::;Nk/2Yk
6D

'.K0 \ N1 \ � � � \ Nk/:

Now we use the Campell theorem for point processes [21, Theorem 3.1.2] (applied
to the special point process Yk¤ on .K n

c /
k) and the fact that the intensity measure
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of Yk
6D, for a Poisson process Y, is the product measure �k of � (see [21,

Corollary 3.2.4]). We obtain

E'.Z \ K0/ D
1X

kD1

.�1/k�1
kŠ

Z

K n
c

: : :

Z

K n
c

'.K0 \ N1 \ � � � \ Nk/�.dN1/ � � ��.dNk/: (11.10)

Inserting the special form of � now yields the result. ut
Remarks

(1) There is a simple and obvious generalization of the last theorem to Boolean
models with polyconvex grains if the integrability condition (11.7) is modified
appropriately (the number of convex bodies which constitute the typical
polyconvex grain should be limited). There is also another, less obvious
generalization to non-stationary Boolean models. This requires to consider a
general Poisson process Y on K n where the intensity measure � can have a
more general form (this induces that the underlying Poisson process X in R

n is
also not stationary anymore). Formula (11.10) then still holds, provided � is
translation regular. We will explain this and give more results in Sect. 11.8.

(2) Due to the stationarity and the independence properties of the Poisson pro-
cess Y, the grains M1;M2; : : : 2 Y are almost surely in general relative
position. This implies that geometric functionals ' on K n or Pn can have
an additive extension to the polyconvex set Y \ K0, although they are not
valuations. Examples are the local functionals on Pn considered in [26]. For
them, Theorem 11.2 still holds for Boolean models with polytopal grains. A
j-homogeneous local functional 'j.P/;P 2 Pn, of interest is the total content
of the j-dimensional skeleton (the union of the j-dimensional faces) of P,

'j.P/ WD
X

F2Fj.P/

Vj.F/:

For j D 0; : : : ; n�2, this functional is not additive on K n. Since we concentrate
on valuations in this chapter, we will not discuss general local functionals
further and refer to [26] for information (but observe the remarks on local
extensions of valuations in Sect. 11.4.1).

11.4 Integral Geometry for Valuations

In order to simplify the expectation formula in Theorem 11.2, it would be helpful
to have a more explicit expression for the (iterated) translative integral in (11.8).
This is obtained in the following subsection. In the second subsection, we discuss
kinematic formulas.
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11.4.1 The Translative Formula

Some results on translative integrals in dimension 2 and 3 are due to Blaschke,
Berwald and Varga in 1937. A first general translative integral formula for intrinsic
volumes in R

n and their local counterparts, the curvature measures, was obtained in
[20] and the iterated version was proved in [24] (see the Notes for Sect. 6.4 in [21],
for further references, variations and extensions).

The k-fold iterated translative integral formula for the intrinsic volume Vj

involved mixed functionals which were denoted by V. j/m1;:::;mk
(where the parameters

satisfy m1 C � � � C mk D .k � 1/n C j), a notation which was subsequently used
also for various related results on support measures and other local functionals. In
the sequel, we use a special notation, which was introduced in [6] to simplify the
resulting formulas. First, we observe that the exponent . j/ in such mixed expressions
can be determined from j D m1 C � � � C mk � .k � 1/n and is therefore redundant.
Then, we introduce a multi-index m D .m1; : : : ;mk/ from the class

mix. j; k/ WD fm D .m1; : : : ;mk/ 2 fj; : : : ; ngk W m1 C � � � C mk D .k � 1/n C jg;

for j 2 f0; : : : ; ng and k 2 N, and abbreviate the mixed functional 'm1;:::;mk by 'm.
For m 2 mix. j; k/, we also write jmj WD k.

The following theorem was obtained in [27], based on a corresponding result for
polytopes in [26]. We now assume that the functional ' is translation invariant.

Theorem 11.3 For ' 2 Val, let 'j be its j-homogeneous part, j D 0; : : : ; n, with
'n D cnVn. Then, for k � 2, there exist mixed functionals 'm, m 2 mix. j; k/, on
.K n/k such that for convex bodies K1; : : : ;Kk 2 K n,

Z

.Rn/k�1
'j.K1 \ .K2 C x2/\ � � � \ .Kk C xk// �

k�1
n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

'm.K1; : : : ;Kk/: (11.11)

For .m1; : : : ;mk/ 2 mix. j; k/ the mapping .K1; : : : ;Kk/ 7! 'm1;:::;mk.K1; : : : ;Kk/ is
symmetric (w.r.t. permutations of the indices 1; : : : ; k), it is homogeneous of degree
mi in Ki and it is a valuation in Val in each of its variables Ki.

Proof Again, we give only a sketch of the proof and refer to [26, 27] for details. In
particular, we omit the discussion of the necessary measurability properties. Also,
we concentrate on the case k D 2, the general case follows then by iteration. On
the other hand, we give a more general proof using measures, since this will give us
also a local version of the theorem, as explained in the Remark given below.

The main idea is to consider polytopes first and then extend the result to arbitrary
convex bodies by approximation. Since the restriction of 'j to Pn is a continuous,
translation invariant valuation, homogeneous of degree j, we can use (11.4) to
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decompose 'j.P/;P 2 Pn; as

'j.P/ D
X

F2Fj.P/

fj.n.P;F//Vj.F/:

We define a measure ˚j.P; � / on R
n by

˚j.P; � / WD
X

F2Fj.P/

fj.n.P;F//�F:

Here, �F denotes the restriction to F of the j-dimensional Lebesgue measure in
the affine space generated by F. Then, P 7! ˚j.P; � / is a measure valuation,
homogeneous of degree j (in the sense of (11.6)) and translation covariant.

The following arguments are similar to those used in the proofs of Theo-
rems 5.2.2 and 6.4.1 in [21]. Since fj can be written as a difference of two positive
functions fj D fC

j � f�
j , we may assume fj � 0 (the additivity of fj, which can get

lost in this decomposition, does not play a role in the following arguments).
Let P;Q 2 Pn, A;B 2 B.Rn/ and x 2 R

n. Then,

˚j.P \ .Q C x/;A \ .B C x//

D
X

F02Fj.P\.QCx//

fj.n.P \ .Q C x/;F0//�F0.A \ .B C x//:

For �n-almost all x, the face F0 is the intersection F0 D F \ .GC x/ of some m-face
F of P with the translate of a .n C j � m/-face G of Q, m 2 fj; : : : ; ng (such that F
and G C x meet in relative interior points). The normal cone of F \ .G C x/ does
not depend on the choice of x, let n.P;QIF;G/ be its intersection with S

n�1. Thus,

Z

Rn
˚j.P \ .Q C x/;A \ .B C x// �n.dx/

D
nX

mDj

X

F2Fm.P/

X

G2FnCj�m.Q/

fj.n.P;QIF;G//
Z

Rn
�F\.GCx/.A \ .B C x// �n.dx/:

In [21, pp. 185–186] it is shown that

Z

Rn
�F\.GCx/.A \ .B C x// �n.dx/ D ŒF;G��F.A/�G.B/;
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where ŒF;G� denotes the determinant between F and G (see [21, p. 183]). Hence, if
we define a measure ˚m;nCj�m.P;QI � / on R

n � R
n by

˚m;nCj�m.P;QI � / WD
X

F2Fm.P/

X

G2FnCj�m.Q/

fj.n.P;QIF;G//ŒF;G��F ˝ �G;

(11.12)
we arrive at

Z

Rn
˚j.P \ .Q C x/;A \ .B C x// �n.dx/ D

nX

mDj

˚m;nCj�m.P;QIA � B/:

(11.13)

Now we consider the total measures ˚j.P \ .Q C y/;Rn/ (which equals our
valuation 'j.P \ .Q C y//) and 'm;nCj�m.P;Q/ WD ˚m;nCj�m.P;QIRn � R

n/.
Then (11.13) implies

Z

Rn
'j.P \ .Q C x// �n.dx/ D

nX

mDj

'm;nCj�m.P;Q/: (11.14)

We remark that

'm;nCj�m.P;Q/

D
X

F2Fm.P/

X

G2FnCj�m.Q/

fj.n.P;QIF;G//ŒF;G�Vj.F/VnCj�m.G/ (11.15)

and therefore

'm;nCj�m.rP; sQ/ D rmsnCj�m'm;nCj�m.P;Q/ (11.16)

for r; s > 0.
We define a functional J on K n � K n by

J.K;M/ WD
Z

Rn
'j.K \ .M C x// �n.dx/:

Let Ki ! K;Mi ! M be convergent sequences. Since 'j is continuous, there is a
constant c.K C Bn/ such that

j'j.Ki \ .Mi C x//j � c.K C Bn/1.KCBn/�.MCBn/.x/

for all large enough i. For �n-almost all x the integrand 'j.Ki \ .Mi C x// converges
to 'j.K \ .M C x// (namely, for all x for which K and M C x do not touch each
other). Hence the dominated convergence theorem implies J.Ki;Mi/ ! J.K;M/,
thus J is continuous.
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Choosing polytopes Pi ! K;Qi ! M, we obtain J.rPi; sQi/ ! J.rK; sM/ for
all r; s > 0. Since

J.rPi; sQi/ D
nX

mDj

rmsnCj�m'm;nCj�m.Pi;Qi/;

the coefficients 'm;nCj�m.Pi;Qi/ of this polynomial have to converge, and we denote
the limits by 'm;nCj�m.K;M/;m D j; : : : ; n. Hence,

J.rK; sM/ D
nX

mDj

rmsnCj�m'm;nCj�m.K;M/

and, putting r D s D 1, we get (11.11) (for k D 2).
It remains to prove the properties of the mixed functionals 'm;nCj�m. The symme-

try and the homogeneity property follow for polytopes from (11.15) and (11.16), and
for arbitrary bodies by approximation. The valuation property follows from (11.11)
if one takes into account the additivity properties of the integrand on the left hand
side and compares these with the different homogeneity properties of the summands
on the right hand side. ut
Remarks

(1) Theorem 11.3 also holds for measure valuations. More precisely, let˚ W K n !
M .Rn/ be a continuous, translation covariant and locally determined valuation
and let ˚j be its j-homogeneous part, j D 0; : : : ; n (see (11.5)). Then, for k � 2,
there exist mixed measure-valued functionals ˚m, m 2 mix. j; k/, on .K n/k

such that
Z

.Rn/k�1
˚j.K1 \ .K2 C x2/ \ � � � \ .Kk C xk/;A1 \ .A2 C x2/ \ � � � \ .Ak C xk//

� �k�1n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

˚m.K1; : : : ;KkIA1 � � � � � Ak/ (11.17)

for K1; : : : ;Kk 2 K n and A1; : : : ;Ak 2 B.Rn/.
For .m1; : : : ;mk/ 2 mix. j; k/ the mapping .K1; : : : ;Kk/ 7! ˚m1;:::;mk .K1; : : : ;

KkIA1 � � � � � Ak/ is symmetric (w.r.t. permutations of the indices 1; : : : ; k), it
is homogeneous of degree mi in Ki and Ai, and it is a continuous, translation
covariant and locally determined measure valuation in each of its variables Ki.

The proof follows the same lines as in the case of Theorem 11.3 by starting
with the case of polytopes. For k D 2, we then arrive again at (11.13). In
order to extend this expansion to arbitrary bodies K;M 2 K n, we use the fact
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that (11.13) is equivalent to

Z

Rn

Z

Rn
g.x; x � y/˚j.P \ .Q C y/; dx/ �n.dy/

D
nX

mDj

Z

.Rn/2
g.x; y/˚m;nCj�m.P;QI d.x; y// (11.18)

for each continuous function g on .Rn/2. Again, the dominated convergence
theorem shows that the integral on the left, for arbitrary bodies K;M, is a
continuous functional J.g;K;M/. The homogeneity properties are then used
again to show that, for Pi ! K;Qi ! M, each of the integrals

Z

.Rn/2
g.x; y/˚m;nCj�m.Pi;QiI d.x; y//

on the right hand side converges. Therefore, the measures ˚m;nCj�m.Pi;QiI � /
converge weakly and the limit measures ˚m;nCj�m.K;MI � / satisfy (11.17) (for
k D 2).

(2) Of course, for a measure valuation ˚j as above, the total measure 'j.K/ D
˚j.K;Rn/ satisfies Theorem 11.3 with mixed functionals which are given by
the total measures

'm.K1; : : : ;Kk/ WD ˚m.K1; : : : ;KkIRn � � � � � R
n/; m 2 mix. j; k/:

We then say that the measure valuation ˚j is a local extension of the scalar
valuation 'j (more generally ˚ WD Pn

jD0 ˚j is a local extension of ' WD
Pn

jD0 'j). Thus, if a valuation ' 2 Val has such a local extension, then the
iterated translative formula holds in a global as well as a local version. This
fact is of importance if expectation formulas for non-stationary Boolean models
are considered. It is an open question, whether each valuation ' 2 Val has a
local extension. Local extensions, if they exist, are not unique (corresponding
examples are given in [26, 27]). It is another open problem to describe all local
extensions of a valuation '.

(3) Due to the summation conditionm1C� � �Cmk D .k�1/nCj, only finitely many
different mixed functionals arise in the iterated translative formula (11.11).
Namely, the mixed functionals 'm1;:::;mk (as well as the local versions ˚m1;:::;mk )
split if one of the parameters mi equals n. In fact, if we consider (11.12) for
m D n, then F D P (we may assume that P is full dimensional) and G 2 Fj.Q/.
Then n.P;QIF;G/ D n.Q;G/ and ŒF;G� D 1, hence

˚n;j.P;QI � / D �P ˝
� X

G2Fj.Q/

fj.n.Q;G//�G
�

D �P ˝ ˚j.Q; � /:
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This extends to arbitrary bodies K;M (if 'j has a local extension ˚j) and to the
total measures 'n;j.K;M/. More generally, for k � 2 and .m1; : : : ;mk�1; n/ 2
mix. j; k/ we have

'm1;:::;mk�1;n.K1; : : : ;Kk�1;Kk/ D 'm1;:::;mk�1 .K1; : : : ;Kk�1/Vn.Kk/

and, if a local extension exists,

˚m1;:::;mk�1;n.K1; : : : ;Kk�1;KkI � / D ˚m1;:::;mk�1 .K1; : : : ;Kk�1I � /˝ �Kk :

Because of the symmetry, the case mk D n also implies corresponding
decompositions if mi D n; i 2 f1; : : : ; k � 1g.

11.4.2 Kinematic Formulas

The Boolean model Z is isotropic if and only if the grain distribution Q is rotation
invariant. If this is the case, the translative integrals in (11.8) can be replaced by an
integration over the group Gn of rigid motions (with invariant measure �), hence
Theorem 11.2 holds with

˚.K0;K1; : : : ;Kk/ WD
Z

.Gn/k
'.K0 \ g1K1 \ � � � \ gkKk/ �

k.d.g1; : : : ; gk// :

(11.19)

Here, Hadwiger’s general integral-geometric theorem (see [21, Theorem 5.1.2])
shows that

Z

Gn

'.K \ gM/ �.dg/ D
nX

kD0
'n�k.K/Vk.M/; (11.20)

for K;M 2 K n, where the coefficients 'n�k.K/ are given by the Crofton-type
integrals

'n�k.K/ WD
Z

A.n;k/
'.K \ E/ �k.dE/ (11.21)

over the space A.n; k/ of affine k-dimensional flats in R
n with invariant mea-

sure�k. (11.20) follows from an application of Hadwiger’s characterization theorem
(Theorem 1.23) and holds for continuous valuations, even without the assumption
of translation invariance. The 'n�k are then also continuous valuations. If ' 2 Valj,
then 'n�k 2 ValnCj�k. If ' 2 Val has a local extension ˚ � 0, then a direct proof
of (11.20) is possible, based on the translative integral formula (11.13) for polytopes
and the representation (11.12) (see [27] for details).
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Formula (11.20) can be easily iterated and yields

Z

.Gn/k
'.K0 \ g1K1 \ � � � \ gkKk/ �

k.d.g1; : : : ; gk//

D
X

m2mix.0;kC1/
cnn�m0'm0.K0/

kY

iD1
cmi
n Vmi.Ki/; (11.22)

with m D .m0; : : : ;mk/ and constants defined by

crs WD rŠ�r
sŠ�s

; (11.23)

see [21, Theorem 5.1.4]. Here �i is the volume of the i-dimensional unit ball
(see (1.14)).

For ' D Vj, the integral (11.21) can be solved by the Crofton formula and we get

'n�k.K/ D ckj c
nCj�k
n VnCj�k.K/

for k � j (and 'n�k.K/ D 0 otherwise), which yields the principal kinematic formula

Z

Gn

Vj.K \ gM/ �.dg/ D
nX

kDj

ckj c
nCj�k
n Vk.K/VnCj�k.M/ (11.24)

and the iterated version
Z

.Gn/k
Vj.K0 \ g1K1 \ � � � \ gkKk/ �

k.d.g1; : : : ; gk//

D
X

m2mix. j;kC1/
cnj

kY

iD0
cmi
n Vmi.Ki/: (11.25)

11.5 Mean Values for Valuations

Combining Theorems 11.2 and 11.3, we obtain the following expectation formula
for a stationary Boolean model Z and ' 2 Valj,

E'.Z \ K0/ D
1X

kD1

.�1/k�1
kŠ

� k

X

m2mix. j;kC1/

Z

K n
c

� � �
Z

K n
c

'm.K0;K1; : : : ;Kk/Q.dK1/ � � � Q.dKk/: (11.26)
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Here, it is important to observe that the right hand side can be simplified due to
the decomposition property which we mentioned above. The resulting formulas
are presented in [27]. They depend on the shape and size of the window K0. We
can get simpler results if we eliminate the effect of the window by a suitable limit
procedure, namely by normalizing with Vn.K0/ (here we assume Vn.K0/ > 0) and
then letting K0 grow to R

n (for simplicity, we consider rK0; r ! 1). Then, on
the right hand side all summands with multi-index m D .m0; : : : ;mk/ and m0 < n
will vanish asymptotically. If we define for m 2 mix. j; k/ the density (mean value)
'm.Y; : : : ;Y/ of the mixed valuation 'm for the (Poisson) particle process Y by

'm.Y; : : : ;Y/ WD � k
Z

K n
c

� � �
Z

K n
c

'm.K1; : : : ;Kk/Q.dK1/ � � � Q.dKk/;

the right hand side thus reads

1X

kD1

.�1/k�1
kŠ

X

m2mix. j;k/

'm.Y; : : : ;Y/:

This also indicates that the corresponding limit

lim
r!1

1

Vn.rK0/
E'.Z \ rK0/ (11.27)

on the left hand side exists. We will discuss this in the following subsection. The
second subsection then contains the central result, the explicit expectation formula
for valuations and Boolean models. The third subsection shortly discusses the
isotropic case.

11.5.1 Densities for Valuations and Random Sets

The following result is Theorem 9.2.1 in [21] in a slightly less general form. It
shows that the limit in (11.27) exists for valuations ' 2 Val (additively extended
to the convex ring Rn) and stationary random sets Z with values in the extended
convex ring

S n WD fF � R
n W F \ rBn 2 Rn for all r > 0g;

satisfying the condition

E2N.Z\Bd/ < 1: (11.28)
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Here, N.A/, for a set A 2 Rn, is the minimal number k of convex bodies
K1; : : : ;Kk 2 K n such that A D Sk

iD1 Ki.
The class S n consists of countable unions of convex bodies (locally polyconvex

sets) and is supplied with the Borel �-algebra generated by the Hausdorff metric on
Rn (which is the same �-algebra as the one generated by the hit-or-miss topology,
see [21, Sect. 2.4]). For a stationary Boolean model Z with convex or polyconvex
grains, we have Z.!/ 2 S n and (11.28) is satisfied.

Theorem 11.4 Let Z be a stationary random set with values in S n, satisfy-
ing (11.28). Let ' 2 Val and K 2 K n with Vn.K/ > 0. Then the limit

'.Z/ WD lim
r!1

1

Vn.rK/
E'.Z \ rK/

exists and is independent of K.

For the proof, a functional � 2 Val is defined by

�.K/ WD E'.Z \ K/; K 2 K n:

Then, Theorem 1.12 is used to obtain an additive extension of � to ro-polyhedra
(see Sect. 1.2). Since R

n allows a lattice decomposition into half-open unit cubes
Cd
0 ;C

d
1 ; : : : , one can show directly that

lim
r!1

�.rW/

Vn.rW/
D �.Cd

0/:

This argument shows slightly more, namely that

'.Z/ D E'.Z \ Cd
0/:

We call '.Z/ the '-density (or specific '-value) of Z. We can estimate the '-
density by the '-value of Z on the unit cube Cd minus the value '.Z \ @CCd/ on
the upper right boundary @CCd of Cd (observe that @CCd 2 Rn).

We get, in particular, the existence of the densities 'm;nCj�m.Z;K/ for the mixed
functionals 'm;nCj�m and K 2 K n.

The following result is a nice application of our translative formula (11.11) and
generalizes Theorem 9.4.1 in [21].

Theorem 11.5 Let Z be a stationary random set with values in S n, satisfy-
ing (11.28). Let 'j 2 Valj and K 2 K n. Then

E'j.Z \ K/ D
nX

mDj

'm;nCj�m.Z;K/:
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Proof We can follow the proof of Theorem 9.4.1 in [21]. We use the stationarity of
Z and the translation invariance of 'j to get

E
Z

Rn
'j.Z \ K \ .rBn C x//�n.dx/ D E

Z

Rn
'j.Z \ .K C x/\ rBn/�n.dx/:

Now we apply the translative formula to both sides and obtain

nX

mDj

E'm;n�mCj.Z \ K; rBn/ D
nX

mDj

E'm;n�mCj.Z \ rBn;K/:

We divide both sides by Vn.rBn/ and let r ! 1. On the left hand side the
homogeneity properties of the mixed functionals induce that only the summand for
m D j remains (and yields E'j.Z \ K/). Each summand on the right hand side
converges to the corresponding density. ut

The summand on the right hand side for m D j is ' j.Z/Vn.K/. Theorem 11.5
thus gives the error (or bias) if the mean value 'j.Z/ is estimated by the values of 'j
for realisations Z.!/ in a window K. As mentioned above, an unbiased estimator of
'j.Z/ is given by 'j.Z.!/ \ Cd/� 'j.Z.!/ \ @CCd/.

11.5.2 The Mean Value Formula for Boolean Models

We now come back to Boolean models Z and continue with the formula

' j.Z/ D
1X

kD1

.�1/k�1
kŠ

X

m2mix. j;k/

'm.Y; : : : ;Y/;

for 'j 2 Valj, j 2 f0; : : : ; ng; which we have developed. To simplify this formula
further, we use again the decomposition property. For j D n, we have only one
summand

'n;:::;n.Y; : : : ;Y/ D 'n.Y/Vn.Y/
n�1 D cnVn.Y/

n;

which gives us

'n.Z/ D cnVn.Z/

D cn

1X

kD1

.�1/k�1
kŠ

Vn.Y/
k

D cn
�
1 � e�Vn.Y/

�
:
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For j < n and m D .m1; : : : ;mk/ 2 mix. j; k/, let s be the number of indices which
are smaller than n. By symmetry we can assume msC1 D � � � D mk D n. Then

'm1;:::;ms ;n;:::;n.Y; : : : ;Y/ D 'm1;:::;ms
.Y; : : : ;Y/Vn.Y/

k�s;

where s 2 f1; : : : ; n � jg and mi 2 fj; : : : ; n � 1g, for i D 1; : : : ; s. Introducing the
notation

mix. j/ WD f.m1; : : : ;ms/ 2 fj; : : : ; n � 1gs \ mix. j; s/ W 1 � s � n � jg;

we obtain

X

m2mix. j;k/

'm.Y; : : : ;Y/ D
.n�j/^kX

sD1

 
k

s

!
X

m2mix. j/
jmjDs

'm.Y; : : : ;Y/Vn.Y/
k�s;

where .n � j/ ^ k denotes the minimum of n � j and k. This implies

' j.Z/ D
1X

kD1
.�1/k�1

.n�j/^kX

sD1

1

.k � s/Š
Vn.Y/

k�s
X

m2mix. j/
jmjDs

1

sŠ
'm.Y; : : : ;Y/

D
n�jX

sD1

1X

rD0

.�1/rCs�1

rŠ
Vn.Y/

r
X

m2mix. j/
jmjDs

1

sŠ
'm.Y; : : : ;Y/

D e�Vn.Y/
X

m2mix. j/

.�1/jmj�1

jmjŠ 'm.Y; : : : ;Y/:

For j D n � 1, the sum in the formula above reduces to 'n�1.Y/. Hence we have
obtained the following result.

Theorem 11.6 Let Z be a stationary Boolean model with convex grains and let
'j 2 Valj. Then,

'n.Z/ D cn
�
1 � e�Vn.Y/

�
;

'n�1.Z/ D e�Vn.Y/'n�1.Y/;

and

' j.Z/ D e�Vn.Y/
X

m2mix. j/

.�1/jmj�1

jmjŠ 'm.Y; : : : ;Y/; (11.29)

for j D 0; : : : ; n � 2.
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In (11.29), the multi-index m 2 mix. j/ with jmj D 1 is m D . j/, it yields the
summand 'j.Y/. The remaining summands have multi-indices m D .m1; : : : ;ms/

with s > 1 and mi 2 fj C 1; : : : ; n � 1g, due to the definition of mix. j/ and the
summation rule in mix. j; s/.

11.5.3 The Isotropic Case

If the Boolean model Z is stationary and isotropic, we can obtain a result analogous
to Theorem 11.6 by using the iterated kinematic formula (11.22). Equivalently, we
can use the rotation invariance of Q to show that the mean value 'm.Y; : : : ;Y/
in (11.29) satisfies

'm.Y; : : : ;Y/ D cm.'j/

sY

iD1
Vmi.Y/;

for m D .m1; : : : ;ms/ with constants cm.'j/ depending on 'j.
In the case 'j D Vj, we have

cm.Vj/ D cnj

sY

iD1
cmi
n :

Using this in Theorem 11.6, we see that, in the isotropic case, all densities Vj.Z/
can be expressed by the densities Vj.Y/ and we obtain the famous Miles formulas

Vn.Z/ D 1� e�Vn.Y/;

Vn�1.Z/ D e�Vn.Y/Vn�1.Y/;

and

Vj.Z/ D e�Vn.Y/
X

m2mix. j/

.�1/jmj�1

jmjŠ cnj

sY

iD1
cmi
n Vmi.Y/;

for j D 0; : : : ; n � 2.
These density formulas can be inverted successively from top to bottom. Since,

for convex grains, the mean value V0.Y/ equals the intensity � , we obtain in this
way an expression for � in terms of the densities Vj.Z/ of the Boolean model Z.
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11.6 Special Cases

We now discuss which formulas arise from Theorems 11.3 and 11.6, if special
valuations ' are considered. More details on these examples can be found in [27].

11.6.1 Mixed Volumes

As a first case, we consider the mixed volume '.K/ D V.KŒ j�;MjC1; : : : ;Mn/, for
fixed bodies MjC1; : : : ;Mn 2 K n. It follows from the properties of the intrinsic
volume Vj (which corresponds to the case MjC1 D � � � D Mn D Bn) that ' is in Valj.
Formula (11.11) thus gives

Z

.Rn/k�1
V.K1 \ .K2 C x2/ \ � � � \ .Kk C xk/Œ j�;MjC1; : : : ;Mn/ �

k�1
n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

Vm.K1; : : : ;KkIMjC1; : : : ;Mn/; (11.30)

with mixed functionals Vm.K1; : : : ;KkIMjC1; : : : ;Mn/. The special case MjC1 D
� � � D Mn D Bn yields the iterated translative formula for intrinsic volumes,

Z

.Rn/k�1
Vj.K1 \ .K2 C x2/\ � � � \ .Kk C xk// �

k�1
n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

Vm.K1; : : : ;Kk/: (11.31)

(Note, however, that Vj.K/ and V.KŒ j�;Bn; : : : ;Bn/ differ by a constant. Therefore,
Vm.K1; : : : ;Kk/ and Vm.K1; : : : ;KkIBn; : : : ;Bn/ also differ by the same constant.)

We also remark that K 7! V.KŒ j�;MjC1; : : : ;Mn�1;Bn/, for strictly convex
bodies MjC1; : : : ;Mn�1, has a local extension given, up to a constant, by the mixed
curvature measure C.KŒ j�;MjC1; : : : ;Mn�1I . � /�MjC1�� � ��Mn�1/ introduced and
studied in [12] (see also [8] and [9]). This implies a corresponding local integral
formula coming from (11.17) which we do not copy here. Instead, we emphasize
the special case MjC1 D � � � D Mn�1 D Bn, where we have a multiple of the j-th
order curvature measure Cj.K; � /, j D 0; : : : ; n, and where we obtain the iterated
translative formula

Z

.Rn/k�1
Cj.K1 \ .K2 C x2/\ � � � \ .Kk C xk/;A1 \ .A2 C x2/

\ � � � \ .Ak C xk// �
k�1
n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

Cm.K1; : : : ;KkIA1 � � � � � Ak/; (11.32)
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with mixed measures, which are different from the mixed curvature measures
mentioned above. The different nature of these measures of mixed type can be
most easily seen from the homogeneity properties of the total measures. For
example, the mixed volume V.K1Œ j1�; : : : ;KkŒ jk�/ has total degree of homogeneity
j1 C � � � C jk D n. In contrast to this, the mixed functional Vm1;:::;mk.K1; : : : ;Kk/, for
m D .m1; : : : ;mk/ 2 mix. j; k/, has total degree of homogeneity m1 C � � � C mk D
.k � 1/n C j. There is a special case where the two series of functionals meet, for
k D 2 and j D 0 (where we have the translative formula for the Euler characteristic).
Here,

Vm;n�m.K;M/ D
 
n

m

!

V.KŒm�;�MŒn � m�/;

for m D 0; : : : ; n.
Theorem 11.6 implies mean value formulas for mixed volumes and Boolean

models. We only state the result for the intrinsic volumes, which is Theorem 9.1.5
in [21] and reads

Vn.Z/ D 1 � e�Vn.Y/;

Vn�1.Z/ D e�Vn.Y/Vn�1.Y/;

and

Vj.Z/ D e�Vn.Y/
X

m2mix. j/

.�1/jmj�1

jmjŠ Vm.Y; : : : ;Y/; (11.33)

for j D 0; : : : ; n � 2.
If Z is isotropic, then the density of the mixed functional Vm1;:::;ms splits,

Vm1;:::;ms.Y; : : : ;Y/ D cnj

sY

iD1
cmi
n Vmi.Y/; (11.34)

with constants cki defined in (11.23).
This is Theorem 9.1.4 in [21] (with corrected constants).

11.6.2 Support Functions

As a next case, we consider the (centered) support function '.K/ D h�.K; � /. This
is a translation invariant, continuous and additive functional, which is homogeneous
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of degree 1, with values in the Banach space of centered continuous functions
on S

n�1. To fit this case into our framework, we may apply the results for scalar
valuations point-wise, that is, for h�.K; u/; u 2 S

n�1. The iterated translative
formula then reads

Z

.Rn/k�1
h�.K1 \ .K2 C x2/\ � � � \ .Kk C xk/; � / �k�1n .d.x2; : : : ; xk//

D
X

m2mix.1;k/

h�
m.K1; : : : ;Kk; � /; (11.35)

with mixed support functions h�
m1;:::;mk

.K1; : : : ;Kk; � /, .m1; : : : ;mk/ 2 mix.1; k/.
This integral formula was studied in [25] and [2]. In the latter paper, it was also
shown that, for k D 2, the mixed function h�

m;nC1�m.K1;K2; � / is indeed a support
function. For general k this was shown, with a different proof, by Schneider [18].

The formula for Boolean models Z reads

h
�
.Z; � / D e�Vn.Y/

X

m2mix.1/

.�1/jmj�1

jmjŠ h
�
m.Y; : : : ;Y; � /:

Again, there is a local extension of K 7! h�.K; u/ given by the mixed measure
�1;n�1.K; uCI � / where uC is the closed half-space with outer normal u (see [2,
25]). The corresponding iterated translative formula for this mixed measure is a
consequence of Theorem 11.3, but it also follows from the general results in [21,
Sect. 6.4].

11.6.3 Area Measures

Next, we consider the area measure map Sj W K 7! Sj.K; � /. It is a translation
invariant, additive and measure-valued functional which is continuous with respect
to the weak topology of measures. To fit these measure-valued notions into our
results, we cannot consider them point-wise, for a given Borel set, since this would
not yield a continuous valuation. However, we can apply our results to the integral

'
f
j .K/ WD

Z

Sn�1

f .u/Sj.K; du/
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with a continuous function f on S
n�1. Namely, ' f

j is an element of Val and fulfills,
by Theorem 11.3, the iterated translative formula

Z

.Rn/k�1

'
f
j

�
K1 \ .K2 C x2/ \ � � � \ .Kk C xk/

�
�k�1n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

' f
m.K1; : : : ;Kk/

with unique mixed functionals ' f
m1;:::;mk

, .m1; : : : ;mk/ 2 mix. j; k/. Let C.Sn�1/
denote the space of continuous functions on the sphere. For m 2 mix. j; k/ the
mapping f 7! '

f
m.K1; : : : ;Kk/ is a continuous linear functional on C.Sn�1/. The

Riesz representation theorem therefore implies the existence of a unique finite
(signed) measure Sm.K1; : : : ;KkI � / on S

n�1 with

' f
m.K1; : : : ;Kk/ D

Z

Sn�1

f .u/Sm.K1; : : : ;KkI du/;

which we call the mixed measure of area type. Therefore, we obtain a translative
formula for area measures reading

Z

.Rn/k�1

Sj
�
K1 \ .K2 C x2/ \ � � � \ .Kk C xk/; � ��k�1n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

Sm.K1; : : : ;KkI � /:

Since area measures have centroid 0, the same is true for the mixed measures. We
emphasize the difference between the mixed measures of area type, which arise
in the translative formula, and the mixed area measures S.K1; : : : ;Kn�1; � / which
are defined as a coefficient in the multilinear expansion of Sn�1.˛1K1 C � � � C
˛n�1Kn�1; � /, ˛i � 0. Both types of measures are measures on the unit sphere
but they depend on different numbers of bodies and have different homogeneity
properties.

The translative formula for area measures was originally obtained in [8].
We remark that the mixed area-type measures for j D 0 are trivial. Since

S0.K; � / D V0.K/�. � /, where � is the spherical Lebesgue measure, we have by
the uniqueness of the mixed measures

Sm.K1; : : : ;KkI � / D Vm.K1; : : : ;Kk/ �. � /; m 2 mix.k; 0/; k � 2:
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The translative formulas imply formulas for Boolean models (see [6, Corol-
lary 4.1.4]) of the form

Sj.Z; � / D e�Vn.X/
X

m2mix. j/

.�1/jmj�1

jmjŠ Sm.Y; : : : ;YI � /: (11.36)

This result follows now also from Theorem 11.6 using the functional analytic
approach described above.

If Z is an isotropic Boolean model, the measure Sj.Z; � / is rotation invariant.
Since the spherical Lebesgue measure � is up to normalization the unique measure
on S

n�1 with this property, we have

Sj.Z; � / D n�n�j

!n
�n
j

� Vj.Z/ �

and the formula (11.36) is equivalent to the corresponding result for the specific
intrinsic volume Vj.Z/ (this also implies a rotation formula for mixed area-type
measures).

The local extension of the valuation K 7! Sj.KIC/;C � S
n�1; is (up to a

constant) given by K 7! �j.KI � � C/, where �j.K; P/ is the support measure of
K introduced in Sect. 11.2.2. For the support measures a local translative integral
formula similar to (11.32) holds which was originally shown in [8].

11.6.4 Flag Measures

Now, we use the functional analytic approach just described in a similar situation
for flag measures of convex bodies. A general reference for flag measures is the
overview article [10]. The flag measures we consider in the following are a version
of the translation invariant flag area measures which are considered in [3] and
related to the flag area measures in [10] via [3, (2.1)] and a renormalization. We
first describe the underlying notions concerning flag manifolds. Recall that G.n; j/
denotes the Grassmannian of j-dimensional subspaces (which we supply with the
invariant probability measure �j) and define corresponding flag manifolds by

F.n; j/ WD f.u;L/ W L 2 G.n; j/; u 2 L \ S
n�1g

and

F?.n; j/ WD f.u;L/ W L 2 G.n; j/; u 2 L? \ S
n�1g:

Both flag manifolds carry natural topologies (and invariant Borel probability
measures) and F.n; n � j/ and F?.n; j/ are homeomorphic via the orthogonality
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map 
 W .u;L/ 7! .u;L?/. We define a flag measure  j.K; � / as a projection mean
of area measures,

 j.K;A/ WD
Z

G.n;jC1/

Z

Sn�1\L
1f.u;L? _ u/ 2 AgS0

j.KjL; du/�jC1.dL/ (11.37)

for a Borel set A � F.n; n � j/, where L? _ u is the subspace generated by L?
and the unit vector u and where the prime indicates the area measure calculated in
the subspace L (for the necessary measurability properties needed here and in the
following, we refer to [5]). Using the homeomorphism 
, we can replace  j.K; � /
by a measure  ?

j .K; � / on F?.n; j/ given by

 ?
j .K;A/ WD

Z

G.n;jC1/

Z

Sn�1\L
1f.u;L \ u?/ 2 AgS0

j.KjL; du/�jC1.dL/: (11.38)

These two (equivalent) versions of the same flag measure are motivated by the
fact that their images under the map .u;L/ 7! u are in both cases the j-th
order area measure Sj.K; � /. Both measures,  j.K; � / and  ?

j .K; � / have a local

version �j.K; � /, respectively �?
j .K; � /, which is obtained by replacing in (11.37)

and (11.38) the area measure S0
j.KjL; � / by a multiple of the support measure

�0
j.KjL; � / (see [10, Theorem 4]). In the following, we concentrate on  j.K; � /,

formulas for the other representation  ?
j .K; � / follow in a similar way.

The measure  j.K; � / is centered in the first component,

Z

F.n;n�j/
u j.K; d.u;L// D 0;

as follows from the corresponding property of area measures. Let C.F.n; n �
j// be the Banach space of continuous functions on F.n; n � j/ and choose
f 2 C.F.n; n � j//. Then,

'
f
j W K 7!

Z

F.n;n�j/
f .u;L/ j.K; d.u;L//

is in Valj. Consequently, we obtain the iterated translative formula

Z

.Rn/k�1
'

f
j .K1 \ .K2 C x2/\ � � � \ .Kk C xk// �

k�1
n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

' f
m.K1; : : : ;Kk/; (11.39)

with mixed functionals ' f
m.K1; : : : ;Kk/, m 2 mix. j; k/. For fixed bodies K1; : : : ;Kk,

the left hand side is a continuous linear functional on C.F.n; n� j// if we let f vary.
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Namely,

f 7! '
f
j .K1 \ .K2 C x2/\ � � � \ .Kk C xk//

is continuous and linear, for each x1; : : : ; xk, and this carries over to the integral.
Replacing K1; : : : ;Kk by ˛1K1; : : : ; ˛kKk; ˛i > 0; we use the homogeneity proper-
ties of ' f

m1;:::;mk
to see that the right side is a polynomial in ˛1; : : : ; ˛k. This shows

that the coefficients ' f
m1;:::;mk

.K1; : : : ;Kk/ of this polynomial must be continuous
linear functionals on C.F.n; n � j//, too. By the Riesz representation theorem we
obtain unique finite (signed) measures  m1;:::;mk .K1; : : : ;KkI � / on F.n; n � j/ such
that

' f
m1;:::;mk

.K1; : : : ;Kk/ D
Z

F.n;n�j//
f .u;L/ m1;:::;mk .K1; : : : ;KkI d.u;L//

for all f 2 C.F.n; n � j//. We call them the mixed flag measures. They are again
centered in the first component.

Hence we obtain the iterated translative formula for flag measures,

Z

.Rn/k�1
 j.K1 \ .K2 C x2/\ � � � \ .Kk C xk/; � / �k�1n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

 m.K1; : : : ;KkI � /: (11.40)

A mean value formula for flag measures of Boolean models Z follows from
Theorem 11.6. Since it looks very similar to (11.36) (but is in fact a generalization),
we do not copy it here.

11.7 Tensor Valuations and Boolean Models

Finally, we consider the Minkowski tensors K 7! ˚
r;s
j .K/ which are the central

objects of various chapters of this volume. They are defined as integrals with respect
to the support measures. Therefore, Sect. 11.6.3 implies the iterated translative
formula

Z

.Rn/k�1

˚
r;s
j .K1 \ .K2 C x2/ \ � � � \ .Kk C xk//�

k�1
n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

˚ r;s
m .K1; : : : ;Kk/; (11.41)
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with mixed tensor valuations .K1; : : : ;Kk/ 7! ˚ r;s
m .K1; : : : ;Kk/, m 2 mix. j; k/. The

mixed tensor valuations ˚ r;s
m1;:::;mk

are homogeneous of order m1 C r with respect to
the first argument K1 and homogeneous of order mi with respect to Ki for i � 2. For
r D 0 the Minkowski tensors are translation invariant. In this case their coordinates
are elements of Val and as an alternative to the above approach via support measures,
Theorem 11.3 can be applied directly.

It is convenient to define local Minkowski tensors as the tensor-valued signed
measures on R

n given by

˚ r;s
j .K;A/ WD cr;sn�j

Z

A
Sn�1

xrus�j.K; d.x; u//

for Borel sets A � R
n. In generalization of (11.41), they fulfill the translative

formula
Z

.Rn/k�1
˚

r;s
j

�
K1 \ .K2 C x2/\ � � � \ .Kk C xk/;A1 \ .A2 C x2/

\ � � � \ .Ak C xk/
�
�k�1n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

˚ r;s
m .K1; : : : ;KkIA1 � � � � � Ak/ (11.42)

with mixed local Minkowski tensors ˚ r;s
m .KI � /, m 2 mix. j; k/. For r D 0, the

mapping K 7! ˚
0;s
j .K; � / is a local extension of the Minkowski tensor K 7!

˚
0;s
j .K/.
For the translation invariant Minkowski tensors we then obtain density formulas

for Boolean models reading

˚
0;s
j .Z/ D e�Vn.Y/

X

m2mix. j/

.�1/jmj�1

jmjŠ ˚
0;s
m .Y; : : : ;Y/

for j D 0; : : : ; n � 1. The case j D 0 is special here, since

˚ 0;s
0 .K/ D 2

sŠ!sC1
1fs 2 2N0gQ s

2V0.K/

and

˚ 0;s
m .K1; : : : ;Kk/ D 2

sŠ!sC1
1fs 2 2N0gQ s

2Vm.K1; : : : ;Kk/
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for m D .m1; : : : ;mk/ 2 mix.0/. Thus we get

˚
0;s
0 .Z/ D 2

sŠ!sC1
1fs 2 2N0gQ s

2V0.Z/;

where V0.Z/ can be expressed by mixed densities of Y using (11.33).
If Z is an isotropic Boolean model, we have more generally

˚
0;s
j .Z/ D ˛n;j;s1fs 2 2N0gQ s

2Vj.Z/

for j D 0; : : : ; n � 1, where

˛n;j;s WD 2

sŠ

!n�j !sCn

!n !n�jCs !sC1
:

The translative formula (11.41) and the density formulas for Minkowski tensors are
contained in [7]. In [7] also mean value formulas for general Minkowski tensors
˚

r;s
j are obtained expressing

E˚ r;s
j .Z \ K0/

for K0 2 K n by mixed expressions of K0 and Y. They result by combining
Theorem 11.2 and (11.41) (here it is important that Theorem 11.2 does not require
translation invariance of '). For r > 0 the tensors ˚ r;s

j need not be translation
invariant (but see [7, p. 35 or p. 62], for exceptions) and densities of the Boolean
model Z in the sense of Theorem 11.4 are not defined. Therefore, in this case the
mean value results do not lead to density formulas.

The usefulness of the Minkowski tensors for the study of special non-isotropic
Boolean models is illustrated in [7] and [22] by parametric examples.

11.8 Concluding Remarks and Outlook

As we have mentioned before, the methods and results for the use of valuations
with stationary Boolean models Z can be extended to non-stationary Z under mild
regularity assumptions. We describe this situation in the following, but leave out
many details for which we refer to the literature.

We recall from Proposition 11.1 the definition of the measure� and the Poisson
property of Y, which shows that � is a translation invariant measure on K n, which
satisfies

EY D �:
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Since therefore �.A/, for a Borel set A � K n, describes the mean number of
particles from Y which fall into A, � is called the intensity measure of Y. For the
discussion of the non-stationary case, we allow Poisson particle processes Y on K n,
where the intensity measure� WD EY on K n is no longer translation invariant, but
is absolutely continuous with respect to a translation invariant measure. We call such
a measure translation regular. It then follows that

�.A/ D
Z

K n
c

Z

Rn
1A.K C x/�.K; x/�n.dx/Q.dK/

for some probability measure Q on K n
c and a measurable function � � 0 on K n

c �
R

n (see [21, (11.1)]). In general, Q and � are not uniquely determined by�, but they
are if � does not depend on K, hence can be considered as a function on R

n alone.
We will assume this throughout the following and refer to [21, Sect. 11.1] and [27]
for the more general situation. Then, � is called the intensity function and Q the
distribution of the typical grain of the Poisson particle process Y. The interpretation
is similar to the stationary case. Points in space are distributed according to the
intensity function � (by a Poisson process X0 in R

n with intensity measure
R
�d�n).

Then convex bodies are attached to the points independently and with distribution Q.
Let now ' 2 Val have a local extension ˚ . Then ˚.Z; � / is a signed Radon

measure (defined on bounded Borel sets of Rn) which is absolutely continuous to
the Lebesgue measure �n. We denote its (almost everywhere existing) density by
'.Z; � / (this is a measurable function on R

n). Then we have, as a generalization of
Theorem 11.2,

'.Z; z/ D
1X

kD1

.�1/k�1
kŠ

Z

K n
c

� � �
Z

K n
c

Z

.Rn/k
�.z � x1/ � � ��.z � xk/

� ˚.k/.K1; : : : ;KkI d.x1; : : : ; xk//Q.dK1/ � � � Q.dKk/

where the measure ˚.k/.K1; : : : ;KkI � / is given by

˚.k/.K1; : : : ;KkIA1 � � � � � Ak/

WD
Z

.Rn/k�1
˚
�
K1 \ .K2 C x2/ \ � � � \ .Kk C xk/;

A1 \ .A2 C x2/\ � � � \ .Ak C xk/
�

� �k�1n .d.x2; : : : ; xk//; (11.43)

for Borel sets A1; : : : ;Ak � R
n. It is remarkable that, in this non-stationary situation,

still an iterated translative integral shows up. Using (11.17), we can now proceed as
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in Sect. 11.5.2 and obtain

'n.Z; z/ D cn
�
1 � e�Vn.Y;z/

�
;

'n�1.Z; z/ D e�Vn.Y;z/'n�1.Y; z/;

and

'j.Z; z/ D e�Vn.Y;z/
X

m2mix. j/

.�1/jmj�1

jmjŠ 'm.Y; : : : ;Y; z; : : : ; z/; (11.44)

for j D 0; : : : ; n � 2 and �n-almost all z 2 R
n. Here, the mean values for Y are

defined by

Vn.Y; z/ WD
Z

K n
c

Z

Rn
�.z � x/�n.dx/Q.dK/

and

'm.Y; : : : ;Y; z; : : : ; z/ WD
Z

K n
c

� � �
Z

K n
c

Z

.Rn/k
�.z � x1/ � � ��.z � xk/

� ˚m.K1; : : : ;KkI d..x1; : : : ; xk//Q.dK1/ � � � Q.dKk/;

see [27, Theorem 6.2].
Specializing to the examples discussed in Sect. 11.6, we obtain from (11.44)

formulas for various geometric mean values for general Boolean models. In
particular, for the translation invariant local Minkowski tensors we obtain the
formulas

˚
0;s
n�1.Z; z/ D e�Vn.Y;z/˚

0;s
n�1.Y; z/;

and

˚
0;s
j .Z; z/ D e�Vn.Y;z/

X

m2mix. j/

.�1/jmj�1

jmjŠ ˚
0;s
m .Y; : : : ;Y; z; : : : ; z/; (11.45)

for j D 0; : : : ; n � 2, s 2 N0 and �n-almost all z 2 R
n.

We conclude this article with an outlook on the recent development of applying
harmonic intrinsic volumes in the study of stationary non-isotropic Boolean models.
Harmonic intrinsic volumes are integrals of spherical polynomials with respect to
the area measures Sj.KI �/, j 2 f0; : : : ; n � 1g. Let Sl denote the space of spherical
harmonics (i.e. homogeneous spherical polynomials p with �p D 0) of degree l
and let D.n; l/ be the dimension of Sl. Let Yl;1; : : : ;Yl;D.n;l/ be an orthonormal basis
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of Sl with respect to the L2-scalar product with the measure !�1
n � . Then, harmonic

intrinsic volumes are defined by

Vl;p
j .K/ WD cn;j

Z

Sn�1

Yl;p.u/Sj.K; du/;

where

cn;j WD
 
n

j

!
1

n�n�j
:

The harmonic intrinsic volumes Vl;p
j are elements of Val. Furthermore it holds

V0;1j D Vj;

i.e. the usual intrinsic volumes are contained in the collection of harmonic intrinsic
volumes. They fulfill an interesting rotation formula

Z

SOd

Vl;p
j .#K/�.d#/ D

(
Vj.K/; .l; p/ D .0; 1/;

0; otherwise:

Since the harmonic intrinsic volumes are integrals with respect to the area
measures, Sect. 11.6.3 implies the iterated translative formula,

Z

.Rn/k�1

Vl;p
j .K1 \ .K2 C x2/\ � � � \ .Kk C xk//�

k�1
n .d.x2; : : : ; xk//

D
X

m2mix. j;k/

Vl;p
m .K1; : : : ;Kk/:

Consequently, also density formulas for Boolean models are obtained reading

V
l;p
j .Z/ D e�Vn.X/

X

m2mix. j/

.�1/jmj�1

jmjŠ V
l;p
m .Y; : : : ;Y/:

If Z is an isotropic Boolean model, we have

V
l;p
j .Z/ D

(
Vj.Z/; .l; p/ D .0; 1/;

0; otherwise;
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a property which already indicates that the harmonic intrinsic volumes are par-
ticularly useful for non-isotropic Boolean models. This turns out to be true if we
consider a Boolean model where the grain distribution Q is rotation regular, i.e.
satisfies

Q.A/ D
Z

K n
c

Z

SOn

1A.#K/�.K; #/�.d#/ QQ.dK/

for some rotation invariant probability measure QQ on K n
c and a measurable function

� � 0 on K n
c � SOn. The measure QQ is unique and the function � is unique QQ ˝ �-

everywhere under the additional assumptions

Z

SOn

�.K; #/�.d#/ D 1 and �.�K; #/ D �.K; #�/;

for K 2 K n
c ; #; � 2 SOn: It was recently shown in [6] that in two and three

dimensions, for a stationary Boolean model with rotation regular grain distribution,

the intensity can be expressed as a series of products of the densities V
l;p
j .Z/ of the

harmonic intrinsic volumes. For the proofs and the definition of the constants in the
following two theorems we refer to [6].

Theorem 11.7 In two dimensions, the intensity � has the series representation

� D 
V0.Z/C 
2
1X

l;mD0

D.2;l/X

pD1

D.2;m/X

qD1
c p;q
l;m V

l;p
1 .Z/V

m;q
1 .Z/

with some constants c p;q
l;m 2 R and


 WD 1

1 � V2.Z/
:

Theorem 11.8 In three dimensions, the intensity � has the series representation

� D 
 V0.Z/C 
2
1X

l;mD0

D.3;l/X

pD1

D.3;m/X

qD1
d p;q
l;m V

l;p
1 .Z/V

m;q
2 .Z/

C 
3
1X

l;m;oD0

D.3;l/X

pD1

D.3;m/X

qD1

D.3;o/X

sD1
e p;q;s
l;m;o V

l;p
2 .Z/V

m;q
2 .Z/V

o;s
2 .Z/

with some constants d p;q
l;m ; e

p;q;s
l;m;o 2 R and


 WD 1

1 � V3.Z/
:
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These representations of the intensity can be seen as a generalization of the
results by Miles and Davy for isotropic Boolean models from 1976 which were
mentioned in the introduction and described in Sect. 11.5.3. The article [23] will
also contain applications of the series representation in Theorem 11.7 to specific
examples of Boolean models.

Harmonic intrinsic volumes are real-valued functionals but they are closely
related to tensor-valued functionals. For the corresponding Minkowski tensors, see
[11, 17] and [13].
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Chapter 12
Second Order Analysis of Geometric
Functionals of Boolean Models

Daniel Hug, Michael A. Klatt, Günter Last, and Matthias Schulte

Abstract This chapter presents asymptotic covariance formulae and central
limit theorems for geometric functionals, including volume, surface area, and all
Minkowski functionals and translation invariant Minkowski tensors as prominent
examples, of stationary Boolean models. Special focus is put on the anisotropic
case. In the (anisotropic) example of aligned rectangles, we provide explicit analytic
formulae and compare them with simulation results. We discuss which information
about the grain distribution second moments add to the mean values.

12.1 Introduction

In this chapter we study a large class of functionals of the Boolean model, a
fundamental benchmark model of stochastic geometry [6, 33, 37] and continuum
percolation [9, 30]. It has many applications in materials science [42], physics [1,
38], and astronomy [17, 26], as well as, for the measurement of biometrical data [28]
or the estimation of percolation thresholds [27, 29]. Intuitively speaking, a Boolean
model is a collection of overlapping random grains, scattered in space in a purely
random manner. This random object is defined as follows. Let X D fX1;X2; : : :g be
a stationary Poisson process of intensity � in R

n, that is, a countable collection of
random points in R

n such that the numbers of points in disjoint sets are independent
and the number of points in each set follows a Poisson distribution whose parameter
is � times the Lebesgue measure of the set. Let .Zi/i2N be a sequence of independent
and identically distributed random convex bodies (nonempty compact convex
subsets of Rn), independent ofX. The Boolean model Z is the random closed set [37]
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defined by

Z WD
[

i2N
.Zi C Xi/;

where Zi C Xi WD fz C Xi W z 2 Zig; see also Chap. 11. An example is the spherical
Boolean model, where the Zi are balls with random radii centred at the origin and
Zi C Xi is the corresponding ball centred at Xi.

In this chapter we study geometric functionals of the Boolean model Z. Promi-
nent examples of such functionals are the intrinsic volumes (Minkowski functionals)
and Minkowski tensors, which are efficient shape descriptors that have been
successfully applied to a variety of physical systems [40]. In [41], the different
approaches and notations in the physics and mathematics literature are compared.
We are interested in the second order properties of the random variables obtained
by applying geometric functionals to the restriction Z \ W of the Boolean model
to a convex observation window W � R

n. For a stationary and isotropic Boolean
model, Miles [31] and Davy [7] obtained explicit formulae expressing the mean
values of the Minkowski functionals in terms of the intensity and geometric mean
values of the typical grain (see also [6, 37]). For mean value formulae for more
general functionals of Boolean models we refer to Chap. 11. We shall discuss
here formulae for asymptotic covariances as well as multivariate central limit
theorems for an increasing observation window. Much of the presented theory
is taken from [16]. However, some results are new. In particular this is the first
publication providing explicit covariance formulae involving the Euler characteristic
of planar non-isotropic Boolean models. Our methods are based on the Fock space
representation of Poisson functionals from [20] and the Stein-Malliavin approach
to their normal approximation [21, 22, 34]. A completely different treatment of
second moments of curvature measures of an isotropic Boolean model with an
interesting application to morphological thermodynamics was presented in [25].
There, two different scenarios are considered: first, a Poisson distributed number
of grain centres in the observation window (Poisson process), and second, a fixed
number of grains (binomial process). In statistical physics, these two choices are
called the grand canonical and the canonical ensemble. The second moments of
geometric quantities show a similar behaviour as thermodynamical quantities in
statistical physics [24, 25]. For the isotropic examples of overlapping discs or
spheres, the covariances of the Minkowski functionals are also discussed in [4] or
[17], respectively.

This chapter is organized in the following way. After introducing Boolean models
and geometric functionals in Sect. 12.2, Sect. 12.3 is devoted to the covariance
structure of geometric functionals of Boolean models. First, we present general
covariance formulae. Then, we concentrate on planar Boolean models. Univariate
and multivariate central limit theorems for geometric functionals of Boolean models
are discussed in Sect. 12.4. In Sect. 12.5, we explicitly compute the covariance
formulae for a special Boolean model of aligned rectangles. In the final Sect. 12.6,
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we present and discuss simulation results for Boolean models with rectangles and
compare them with our theoretical findings. The agreement is excellent.

Let us finish this introduction with an informal summary of our results for applied
scientists. We calculate for certain models of disordered systems of overlapping
grains the second moments of a quite general class of robust shape descriptors,
which include as well-known examples volume, surface area, Euler characteristic,
and, more generally, all Minkowski functionals and tensors. Our results apply to
general anisotropic grain distributions, see Theorems 12.4 and 12.5. The anisotropic
case of aligned (planar) rectangles is discussed in great detail; see Sect. 12.5 and
Fig. 12.2. It is interesting to note that the asymptotic formulae for the infinite volume
system are actually exact for finite systems with periodic boundary conditions;
see Sect. 12.3.3. The central limit theorem for the geometric functionals (see
Theorems 12.8 and 12.10) ascertains that in the limit of infinite system size
the probability distributions of the normalized geometric functionals are normal
distributions. If the structure of a given sample is reasonably well described by
the (joint) cumulative probability distributions of the geometric functionals, it is
possible to construct tests of certain model hypotheses for random heterogeneous
media based on the asymptotic normality and our explicit covariance formulae.
We discuss the behaviour of the second moments (e.g., how they differ for various
models) and probability distributions in finite systems for specific examples, such
as isotropically oriented rectangles or rectangles that are aligned with the coordinate
axes (but still distributed randomly in space). In the latter case, the formulae for the
asymptotic covariances take a very explicit form (see Fig. 12.2). Moreover, these
formulae allow for an exact analysis of the dependence of asymptotic covariances
on the grains and in particular of their scaling behaviour. Furthermore, they serve
as a benchmark for our general formulae. Indeed, the analytic results for aligned
rectangles are in excellent agreement with Monte Carlo simulations, see Figs. 12.3
and 12.5.

12.2 Preliminaries

In the introduction, we have defined a Boolean model, as in Sect. 11.3.1, in terms
of a stationary Poisson process in R

n which is independently marked with random
convex bodies. In this chapter we use an equivalent description based on a Poisson
process in the space K n of convex bodies in R

n, n � 1. For our purposes this
representation is more convenient.

We equipK n with its Borel �-field B.K n/with respect to the Hausdorff metric.
We call a measure � on K n locally finite if

�.fK 2 K n W K \ C ¤ ;g/ < 1; C 2 C n;

where C n is the space of compact subsets of Rn. Let N be the space of all locally
finite counting measures on K n and let it be equipped with the smallest �-field N
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such that all maps � 7! �.A/, A 2 B.K n/, from N to N [ f0;1g are measurable.
Each element � 2 N has a representation

� D
NX

iD1
ıKi ; K1;K2; : : : 2 K n; N 2 N [ f0;1g;

where ıK stands for the Dirac measure concentrated at K 2 K n. Because of
this representation one can think of � as a countable collection of convex bodies
(or grains).

Throughout this chapter all random objects are defined on a fixed (sufficiently
rich) probability space .˝;A ;P/. We call a random element � in N a Poisson
process with a locally finite intensity measure � if

(i) �.A1/; : : : ; �.Am/ are independent for disjoint sets A1; : : : ;Am 2 B.K n/,
(ii) �.A/ follows a Poisson distribution with parameter�.A/ for A 2 B.K n/, i.e.

P.�.A/ D k/ D �.A/k

kŠ
e��.A/; k 2 N [ f0g:

The second property explains the name. Since�.A/ D E�.A/ for any A 2 B.K n/,
� is called intensity measure of �. The Poisson process � is called stationary if it
is invariant under the shifts K 7! K C x WD fy C x W y 2 Kg for all x 2 R

n. This
means that the distribution of � does not change under simultaneous translations of
its grains. The stationarity of the Poisson process � is equivalent to the translation
invariance of the intensity measure�.

In the following we always assume that � is a stationary Poisson process in K n

with a locally finite intensity measure� such that�.K n/ > 0. It follows from [37,
Theorem 4.1.1] that the intensity measure� has the representation

�. � / D �

“

1fK C x 2 � g dxQ.dK/;

where � 2 .0;1/ is an intensity parameter and Q is a probability measure on K n

such that
Z

Vn.K C C/Q.dK/ < 1; C 2 C n: (12.1)

Without loss of generality we can assume in the following that Q is concentrated on
convex bodies for which the origin is the centre of the circumscribed ball. A random
convex body Z0 distributed according to the probability measure Q is called typical
grain. It follows from Steiner’s formula that (12.1) is equivalent to

vi WD EVi.Z0/ < 1; i D 0; : : : ; n;
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where V0; : : : ;Vn stand for the intrinsic volumes. Later we shall require that some
higher moments of the intrinsic volumes exist. When studying covariances we have
to assume that

EVi.Z0/
2 < 1; i D 0; : : : ; n: (12.2)

For some results we need the stronger assumption that

EVi.Z0/
3 < 1; i D 0; : : : ; n: (12.3)

The Boolean model Z based on the Poisson process � is the union of all grains of
the Poisson process �, that is

Z WD
[

K2�
K:

This is a random closed set (see [37, Chap. 2] for an introduction to random
closed sets), whose distribution is completely determined by the intensity � and
the distribution Q of the typical grain Z0. The stationarity of the Poisson process
� implies the stationarity of the Boolean model Z, that is, the distribution of Z is
invariant under translations. Throughout this chapter we investigate the stationary
Boolean model Z within compact convex observation windows. For a convex body
W 2 K n the number of convex bodies of � that intersect W is almost surely finite
so that the random closed set Z \ W belongs almost surely to the convex ring Rn,
which is the set of all unions of finitely many convex bodies and the empty set. Most
results in this chapter are for the asymptotic regime that the observation window
is increased. More precisely, we shall assume that the inradius of the observation
window goes to infinity.

To study the behaviour of the intersection of the Boolean model with the
observation window W, we consider functionals of Z \ W with specific properties.
We say that a functional  W Rn ! R is

(i) additive (or a valuation), if .;/ D 0, and .A[B/ D  .A/C .B/� .A\B/
for all A;B 2 Rn;

(ii) locally bounded, if

M. / WD supfj .K C x/j W x 2 R
n;K 2 K n with K � Œ0; 1�ng < 1I

(iii) translation invariant, if  .A C x/ D  .A/, for any A 2 Rn and any x 2 R
n.

A measurable functional  W Rn ! R with all three properties is called
geometric. In this case property (ii) can be simplified using the translation invariance
(iii). Fundamental examples of geometric functionals are the intrinsic volumes
V0; : : : ;Vn, where Vn is the volume, Vn�1 is half the surface area (if the set is the
closure of its interior) and V0 is the Euler characteristic (see also Sect. 1.2).
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More general geometric functionals are of the form

Vg;i.A/ WD i.AI g/ WD
Z

g.u/ i.AI du/; A 2 Rn; (12.4)

where i.AI � / WD �i.AIRn � � /, i 2 f0; : : : ; ng, is the (additive extension of the)
i-th area measure of A (a signed measure on the unit sphere S

n�1 in R
n), and g W

S
n�1 ! R is measurable and bounded. If g � 1, then Vg;i D Vi. We refer to

Sect. 1.3 and [36, p. 216] for more detail on the support measures �i. An example
for geometric functionals of the form (12.4) are the so-called harmonic intrinsic
volumes, which are used in [12] to give a representation of the intensity � of non-
isotropic Boolean models (see also Sect. 11.8).

The next class of geometric functionals we consider are the components of
translation invariant Minkowski tensors (see Chaps. 1 and 2 for a more detailed
introduction to tensor valuations). Let us denote by T

s the space of s-dimensional
tensors in R

n. Let .e1; : : : ; en/ denote the standard basis of Rn. Then, for u 2 R
n and

s 2 N, the s-dimensional tensor us is given by its coordinates

.us/i1;:::;is D
sY

jD1
uij ; i1; : : : ; is 2 f1; : : : ; ng;

with respect to the tensor basis ei1 ˝ � � � ˝ eis , i1; : : : ; is 2 f1; : : : ; ng. See Chap. 2
for a description in terms of a basis of the vector space Ts of symmetric tensors.

Now the Minkowski tensors ˚0;s
m W Rn ! T

s, s 2 N, m 2 f0; : : : ; n � 1g, are
given by

˚0;s
m .A/ D 1

sŠ

!d�m

!d�mCs

Z

us m.AI du/;

where !i WD i�i with �i being the volume of the unit ball in R
i. Each component of

˚0;s
m is obviously measurable, additive and translation invariant. For any i1; : : : ; ir 2

f1; : : : ; ng and u 2 S
n�1 we have j.ur/i1;:::;ir j � 1 so that

j.˚0;s
m .K//i1;:::;ir j � 1

sŠ

!d�m

!d�mCs

Z

1m.KI du/ D 1

sŠ

!d�m

!d�mCs
Vm.K/

for K 2 K n. This shows that the components are also locally bounded.

12.3 Covariance Structure

We first consider general covariance formulae for geometric functionals of Boolean
models in any dimension n. Then, we concentrate on planar Boolean models and
derive explicit integral formulae for the asymptotic covariances of intrinsic volumes.
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12.3.1 General Covariance Formulae

In this subsection we consider the asymptotic covariance of two geometric function-
als of the Boolean model Z within an observation window W as the inradius of W
is increased. This means that we consider sequences of convex bodies .Wi/i2N such
that r.Wi/ ! 1 as i ! 1, where r.K/ stands for the inradius of a convex body
K 2 K n. We denote this asymptotic regime by r.W/ ! 1 in the sequel.

In order to present a formula for the asymptotic covariance of two geometric
functionals of a Boolean model Z we have to introduce some notation. For a
geometric functional  W Rn ! R the integrability assumption (12.1) implies for
any A 2 Rn that Ej .Z \ A/j < 1; see [16]. Hence we can define  � W Rn ! R

by

 �.A/ D E .Z \ A/�  .A/; A 2 Rn:

The functional � is again geometric, see [16, Eq. (3.11)]. The mapping 7!  � is
a key operation for the second order analysis of the Boolean model. The following
proposition provides explicit formulae in some important examples. To state these
(and other formulae) we need the measure n�1. � / WD En�1.Z0I � /. For a bounded
measurable function g W Sn�1 ! R we use the notation

 n�1.g/ WD
Z

g.u/  n�1.du/ D E
Z

g.u/ n�1.Z0I du/:

The volume fraction of Z is defined by p WD EVn.Z \ Œ0; 1�n/ and can be expressed
in the form

p D 1 � e��vn : (12.5)

Proposition 12.1 Let g W Sn�1 ! R be bounded and measurable. Then

V�
n D �.1 � p/Vn; (12.6)

V�
g;n�1 D �.1 � p/Vg;n�1 C .1 � p/� n�1.g/Vn: (12.7)

Proof Formula (12.6) follows from an easy calculation; see [16]. For j 2 f0; : : : ;
n � 1g and K0 2 K we obtain from Theorem 9.1.2 in [37] that

EVg;j.Z \ K0/ D
1X

kD1

.�1/k�1
kŠ

Z

j.K0 \ : : : \ KkI g/�k.d.K1; : : : ;Kk//:
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Using a result in [14, Sects. 3.2–3.4] or [13, Theorem 3.1] (for g � 1 see also [37,
p. 390]), we obtain that

EVg;j.Z \ K0/ D
1X

kD1

.�1/k�1� k
kŠ

(12.8)

�
nX

m0;:::;mkDj
m0C���CmkDknCj

Z

V. j/m0;:::;mk
.K0; : : : ;KkI g/Qk.d.K1; : : : ;Kk//;

where

V. j/m0;:::;mk
.K0; : : : ;KkI � / WD �. j/

m0;:::;mk
.K0; : : : ;KkI .Rn/kC1 � � /

are finite Borel measures on S
n�1, the mixed area measures of order j; see [13–15].

As usual, we abbreviate V. j/m0;:::;mk.K0; : : : ;Kk/ WD V. j/m0;:::;mk.K0; : : : ;KkISn�1/.
Consider (12.8) for j D n � 1. In the summation on the right-hand side we have

mi D n � 1 for exactly one i 2 f0; : : : ; kg and mr D n for r ¤ i. Using the
decomposability

V.n�1/
n�1;n;:::;n.K0; : : : ;KkI g/ D n�1.K0I g/Vn.K1/ � � �Vn.Kk/ (12.9)

and the symmetry properties of the mixed area measures (see [13, 14]) we hence
obtain that

EVg;n�1.Z \ K0/

D n�1.K0I g/
1X

kD1

.�1/k�1� k
kŠ

vkn C Vn.K0/
1X

kD1

.�1/k�1� k
kŠ

kvk�1n  n�1.g/

D .1 � e��vn/g;n�1.K0/C � n�1.g/e��vnVn.K0/:

Inserting here (12.5) yields formula (12.7). ut
For two geometric functionals  ; �, we define the inner product

%. ; �/ W D
1X

iD1

�

iŠ

Z

K n

Z

.K n/i�1
 .K1 \ : : : \ Ki/ (12.10)

� �.K1 \ : : : \ Ki/�
i�1.d.K2; : : : ;Ki//Q.dK1/;

whenever this infinite series is well defined. The importance of this operation
for the covariance analysis of the Boolean model is due to (12.17) below. In
Proposition 12.2 below and in Sect. 12.3.2 we shall see that (12.10) can be computed
in some specific examples.
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We need to introduce further notation. Themean covariogram of the typical grain
Z0 is

Cn.x/ D EVn.Z0 \ .Z0 C x//; x 2 R
n:

For a measurable and bounded function g W Sn�1 ! R we define

Cn�1.xI g/ D E
Z

1fy 2 Zı
0 C xgg.u/�n�1.Z0I d.y; u//; x 2 R

n; (12.11)

where Aı denotes the interior of A. Moreover, we use the mixed moment measures

Nn�1;n. � / D E
“

1f.y; u; z/ 2 � g1fz 2 Z0g�n�1.Z0I d.y; u// dz

and

Nn�1;n�1. � / D E
“

1f.y; u; z; v/ 2 � g�n�1.Z0I d.y; u//�n�1.Z0I d.z; v//:

Proposition 12.2 Let g; h W Sn�1 ! R be bounded and measurable. Then

%.Vn;Vn/ D
Z
�
e�Cn.x/ � 1� dx; (12.12)

%.Vg;n�1;Vn/ D �

Z

g.u/e�Cn.y�z/ Nn�1;n.d.y; u; z//; (12.13)

%.V0;Vn/ D .1 � p/�1 � 1: (12.14)

If, additionally, P.Vn.Z0/ > 0/ D 1, then

%.Vg;n�1;Vh;n�1/ D �2
Z

e�Cn.y�z/Cn�1.y � zI g/h.v/Nn�1;n.d.z; v; y//

C �

Z

e�Cn.y�z/g.u/h.v/Nn�1;n�1.d.y; u; z; v//; (12.15)

%.V0;Vg;n�1/ D �.1� p/�1 n�1.g/: (12.16)

Proof Formulae (12.12) and (12.14) are implied by [16, Theorem 5.2]. The
formulae (12.13) and (12.16) can be derived as in the proof of the latter theorem; cf.
the computation of %d�1;d and of %0;d in [16].

As in the computation of %i;j in [16] (for i D j D n � 1) we obtain that

%.Vg;n�1;Vh;n�1/ D A0 C A1;
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where

A0 W D �2
ZZZZ

e�Cn.y�z/1fy 2 Kı
2 ; z 2 Kı

1 gg.u/h.v/

��n�1.K1I d.y; u//�n�1.K2I d.z; v//�.dK1/Q.dK2/

and

A1 WD �

•

e�Cn.y�z/g.u/h.v/�n�1.KI d.y; u//�n�1.KI d.z; v//Q.dK/:

An easy calculation based on the covariance property of �n�1 shows that

A0 D �2
Z

e�Cn.x�z/Cn�1.x � zI g/h.v/Nn�1;n.d.z; v; x//:

As the number A1 can be expressed directly as an integral with respect to
Nn�1;n�1, (12.15) follows. ut

The following theorem establishes the existence of asymptotic covariances for
general geometric functionals. Moreover, formula (12.17) provides a tool for their
computation.

Theorem 12.3 Assume that (12.2) is satisfied and let  and � be geometric
functionals. Then the limit

�. ; �/ WD lim
r.W/!1

cov. .Z \ W/; �.Z \ W//

Vn.W/

exists and is given by

�. ; �/ D %. �; ��/: (12.17)

If (12.3) holds, there is a constant c� , depending only on�, such that, for W 2 K n

with r.W/ � 1,

ˇ
ˇ
ˇ
ˇ
cov. .Z \ W/; �.Z \ W//

Vn.W/
� �. ; �/

ˇ
ˇ
ˇ
ˇ � c�M. /M.�/

r.W/
: (12.18)

Theorem 12.3 is taken from [16, Theorem 3.1]. Its proof is involved and depends
on the Fock space representation [20] and several non-trivial integral-geometric
inequalities for geometric functionals. The inequality (12.18) allows us to control
the error if we approximate the exact covariance for a given observation window by
the asymptotic covariance. By evaluating the left-hand side of (12.18) for the volume
one obtains a lower bound of order 1=r.W/ (see [16, Proposition 3.8]), which shows
that the rate on the right-hand side of (12.18) is optimal, in general.
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Using Propositions 12.1 and 12.2 in formula (12.17), we obtain the following
result for the asymptotic covariances involving volume and surface content.

Theorem 12.4 Assume that (12.2) holds and let g; h W Sn�1 ! R be measurable
and bounded. Then,

�.Vn;Vn/ D .1 � p/2
Z

.e�Cn.x/ � 1/ dx;

�.Vg;n�1;Vn/ D � .1 � p/2� n�1.g/
Z

.e�Cn.x/ � 1/ dx

C .1 � p/2�
Z

g.u/e�Cn.x�y/ Nn�1;n.d.x; u; y//:

If, in addition, P.Vn.Z0/ > 0/ D 1, then

�.Vg;n�1;Vh;n�1/ D .1 � p/2�2 n�1.g/ n�1.h/
Z

.e�Cn.x/ � 1/ dx

C.1 � p/2�2
Z

e�Cn.x�y/h.u/Cn�1.x � yI g/Nn�1;n.d.y; u; x//

�.1 � p/2�2
Z

e�Cn.x�y/
�
g.u/ n�1.h/

C h.u/ n�1.g/
�
Nn�1;n.d.y; u; x//

C.1 � p/2�
Z

e�Cn.x�y/g.u/h.v/Nn�1;n�1.d.x; u; y; v//:

In the case h D g � 1 the formula for �.Vg;n�1;Vh;n�1/ simplifies to [16,
Corollary 6.2], that is

�.Vn�1;Vn�1/ D .1 � p/2�2v2n�1
Z

.e�Cn.x/ � 1/ dx

C.1 � p/2�2
Z

e�Cn.x�y/.Cn�1.x � y/� 2v1/Nn�1;n.d.y; u; x//

C.1 � p/2�
Z

e�Cn.x�y/ Nn�1;n�1.d.x; u; y; v//; (12.19)

where Cn�1.x/ WD Cn�1.xI 1/ is defined by (12.11) with g � 1.
In the planar case (treated in Sect. 12.3.2) we will complement Theorem 12.4

with the asymptotic covariances involving the Euler characteristic. Integral repre-
sentations of asymptotic covariances of intrinsic volumes in general dimensions
(with respect to some special curvature based measures) can be found in [16, Sects. 5
and 6].



350 D. Hug et al.

Theorem 12.3 establishes the existence of an asymptotic covariance matrix
˙ D .�. i;  j//i;jD1;:::;m for geometric functionals  1; : : : ;  m. It is natural to ask
whether this matrix is positive definite. The next result (see [16, Theorem 4.1]) gives
sufficient, but presumably not necessary conditions for positive definiteness.

Theorem 12.5 Let (12.2) be satisfied and assume that P.Vn.Z0/ > 0/ > 0.
Let  0; : : : ;  n be geometric functionals such that, for i 2 f0; : : : ; ng,  i is
homogeneous of degree i (that is,  i.�K/ D �i i.K/ for � > 0) and satisfies

j i.K/j � Q̌. i/r.K/
i; K 2 K n;

with a constant Q̌. i/ only depending on  i. Then ˙ D .�. i;  j//i;jD0;:::;n is
positive definite.

Since the intrinsic volumes satisfy the assumptions of Theorem 12.5, we obtain
the following corollary.

Corollary 12.6 Let (12.2) be satisfied and assume that the typical grain has
nonempty interior with positive probability. Then the matrix˙ D .�.Vi;Vj//i;jD0;:::;n
is positive definite.

12.3.2 Covariance Formulae for Planar Boolean Models

In this section we consider the Boolean model in the planar case n D 2. For
measurable and bounded g W S

1 ! R we consider the additive and measurable
functional

Vg;1.K/ WD 1.KI g/ WD
Z

g.u/ 1.KI du/; K 2 Rn;

see (12.4). We will compute the asymptotic covariances between V0 and the vector
.V0;Vg;1;V2/.

We define a function Nh W S1 ! R by

Nh.u/ WD
Z

h.K�; u/Q.dK/; u 2 S
1;

where K� WD �K and h.K�; � / is the support function of K�. Indeed, if K is a
convex body containing the origin, then the basic properties of V1 together with the
definition of the support function easily imply that 0 � h.K�; u/ � cV1.K�/ D
cV1.K/ for a constant c > 0 that does only depend on the dimension. Therefore
dominated convergence implies that Nh is continuous and in particular bounded. We
also define

v1;1 WD 1.Nh/ D
Z

Nh.u/ 1.du/ D
•

h.K�; u/ 1.LI du/Q.dK/Q.dL/:
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Theorem 12.7 Assume that (12.2) and P.V2.Z0/ > 0/ D 1 hold and let g W S1 ! R

be measurable and bounded. Then

�.V0;V2/ D p.1� p/� .1 � p/2�.1� �v1;1/
Z
�
e�C2.x/ � 1/ dx

� 2.1� p/2�2
Z

Nh.u/e�C2.y�z/ N1;2.d.y; u; z//; (12.20)

�.V0;Vg;1/ D .1 � p/2�1.g/C .1 � p/2�21.g/.1 � �v1;1/
Z
�
e�C2.x/ � 1

�
dx

C .1 � p/2
Z
�
�0.y � z/g.u/

C 2�31.g/e
�C2.y�z/ Nh.u/�N1;2.d.z; u; y//

� 2.1� p/2�2
Z

e�C2.y�z/ Nh.u/g.v/N1;1.d.y; u; z; v//; (12.21)

�.V0;V0/ D .1 � 2p/.1� p/� C .1 � p/.2p � 3/v1;1�
2

C .1 � p/2�2.1� �v1;1/
2

Z
�
e�C2.x/ � 1

�
dx

C .1 � p/2
Z

Nh.u/�00.y � z/N1;2.d.z; u; y//

C 4.1� p/2�3
Z

e�C2.y�z/ Nh.u/Nh.v/N1;1.d.y; u; z; v//; (12.22)

where

�0.x/ WD e�C2.x/
�
�3.v1;1 � 2C1.xI Nh//� �2

�
; x 2 R

2;

�00.x/ WD e�C2.x/
�
4�4.C1.xI Nh/� v1;1/C 4�3

�
; x 2 R

2:

Proof We wish to apply (12.17). In view of Proposition 12.1 we need to deter-
mine V�

0 . To do so we consider (12.8) for j D 0 and g � 1. For the summation
we distinguish four cases. In the first two cases we have mi D 0 for exactly one
i 2 f0; : : : ; kg and either m0 D 0 or m0 D 2. In the third and fourth case we have
mi D mr D 1 for exactly two i; r 2 f0; : : : ; kg and either m0 D 0 or m0 D 1.
Accordingly we can write

EV0.Z \ K0/ D
1X

kD1

.�1/k�1� k
kŠ

.a1;k C a2;k C a3;k C a4;k/:
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The decomposability property (12.9) (for n D 2) and the symmetry of mixed
functionals imply that

a1;k D V0.K0/v
k
2; a2;k D V2.K0/kv

k�1
2 :

To treat a3;k and a4;k we use the decomposability property

V.0/1;1;2:::;2.K0; : : : ;Kk/ D V.0/1;1 .K0;K1/V2.K2/ � � �V2.Kk/

and again the symmetry of mixed functionals (see [14]) to obtain that

a3;k D kvk�12

Z

V.0/1;1.K0;K/Q.dK/;

a4;k D k.k � 1/

2
vk�22 V2.K0/

Z

V.0/1;1.K;L/Q2.d.K;L//:

It follows that

V�
0 .K0/ D � .1 � p/V0.K0/C .1 � p/�

Z

V.0/1;1 .K0;K/Q.dK/

C .1 � p/V2.K0/
�
� � �2

2

Z

V.0/1;1.K;L/Q2
�
d.K;L/

��

or

V�
0 .K0/ D � .1 � p/V0.K0/C .1 � p/�V1;1.K0/

C .1 � p/
�
� � �2

2
w1;1

�
V2.K0/; (12.23)

where

V1;1.K0/ WD
Z

V.0/1;1.K0;K/Q.dK/;

w1;1 WD
Z

V.0/1;1.K;L/Q2.d.K;L//:

Using (12.17) together with (12.23) and Proposition 12.1, we obtain the follow-
ing intermediate formulae for the asymptotic covariances:

�.V0;V2/ D .1 � p/2%.V0;V2/ � .1 � p/2�%.V1;1;V2/

� .1 � p/2
�
� � �2

2
w1;1

�
%.V2;V2/; (12.24)
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�.V0;Vg;1/ D � .1 � p/2�1.g/%.V0;V2/C .1 � p/2�21.g/%.V1;1;V2/

C .1 � p/21.g/
�
�2 � �3

2
w1;1

�
%.V2;V2/

C .1 � p/2%.V0;Vg;1/� .1 � p/2�%.V1;1;Vg;1/

� .1 � p/2
�
� � �2

2
w1;1

�
%.V2;Vg;1/; (12.25)

and

�.V0;V0/ D .1 � p/2%.V0;V0/ � 2.1� p/2�%.V0;V1;1/

C .1 � p/2�2%.V1;1;V1;1/� 2.1� p/2
�
� � �2

2
w1;1

�
%.V0;V2/

C 2.1� p/2
�
�2 � �3

2
w1;1

�
%.V1;1;V2/

C .1 � p/2
�
� � �2

2
w1;1

�2
%.V2;V2/: (12.26)

At this stage we can use the formula

V.0/1;1 .K;L/ D 2

Z

h.L�; u/ 1.KI du/; K;L 2 K ;

(which follows from (6.25) and (14.21) in [37] along with S1 D 21) implying that

V1;1.K/ D 2

Z
Nh.u/ 1.KI du/ D 2VNh;1.K/; (12.27)

w1;1 D
Z

V1;1.K/Q.dK/ D 21.Nh/ D 2v1;1: (12.28)

Theorem 5.2 in [16] shows that

%.V0;V0/ D e�v2
�
� C �2v0

1;1

2

�
;

where

v0
1;1 WD

Z

˚0.K1 \ .K2 C x/I @K1 \ .@K2 C x// dxQ2.d.K1;K2//:

It follows from [37, Theorem 6.4.1] (together with the decomposability property
and the fact that the boundary of a convex body has vanishing volume) that

Z

˚0.K1 \ .K2 C x/I @K1 \ .@K2 C x// dx D ˚
.0/
1;1 .K1;K2I @K1 � @K2/;
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where ˚.0/
1;1 .K1;K2I � / is a mixed measure. Since ˚.0/

1;1 .K1;K2I � / is concentrated on
@K1 � @K2 by [37, Theorem 6.4.1 (b)], we have

˚
.0/
1;1 .K1;K2I @K1 � @K2/ D ˚

.0/
1;1 .K1;K2IR2 � R

2/ D V.0/1;1.K1;K2/:

Therefore v0
1;1 D w1;1 D 2v1;1 and

%.V0;V0/ D .1 � p/�1.� C �2v1;1/: (12.29)

Now we can insert (12.27) and (12.28) as well as (12.29) and the formulae of
Proposition 12.2 into (12.24)–(12.26) to obtain the assertions. From (12.24) we get

�.V0;V2/ D .1 � p/2%.V0;V2/ � .1 � p/2�2%.VNh;1;V2/

� .1 � p/2.� � �2v1;1/%.V2;V2/

so that (12.20) follows from (12.14), (12.13) and (12.12).
Next we deduce from (12.25) that

�.V0;Vg;1/ D � p.1� p/�1.g/

C 2.1� p/2�31.g/
Z

Nh.u/e�C2.y�z/ N1;2.d.y; u; z//

C .1 � p/21.g/.�
2 � �3v1;1/

Z
�
e�C2.x/ � 1/ dx

C .1 � p/2�e�v21.g/

� 2.1� p/2�3
Z

e�C2.y�z/C1.y � zI Nh/g.v/N1;2.d.z; v; y//

� 2.1� p/2�2
Z

e�C2.y�z/ Nh.u/g.v/N1;1.d.y; u; z; v//

� .1 � p/2
�
�2 � �3v1;1

� Z

g.u/e�C2.y�z/ N1;2.d.y; u; z//:

Equation (12.21) follows upon some simplification and rearrangement.
From (12.26) we obtain that

�.V0;V0/ D .1� p/
�
� C �2v1;1

� � 4.1� p/�2v1;1

C 4.1� p/2�4
Z

e�C2.y�z/C1.y � zI Nh/Nh.v/N1;2.d.z; v; y//

C 4.1� p/2�3
Z

e�C2.y�z/ Nh.u/Nh.v/N1;1.d.y; u; z; v//
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� 2.1� p/2
�
� � �2v1;1

�
..1 � p/�1 � 1/

C 4.1� p/2.�3 � �4v1;1/
Z

Nh.u/e�C2.y�z/ N1;2.d.y; u; z//

C .1 � p/2
�
� � �2v1;1

�2
Z
�
e�C2.x/ � 1/ dx:

Equation (12.22) now follows from an easy calculation. ut
In the isotropic case, Nh WD Nh.u/ does not depend on u 2 S

1. By [37, (14.21)], we
have for L 2 K n

V1.L/ D
Z

h.L; u/ 1.B
2I du/ D 1

2

Z

h.L; u/H 1.du/;

so that

v1 D 1
2

“

h.L; u/H 1.du/Q.dL/ D � Nh:

Further

v1;1 D
“

Nh.u/ 1.KI du/Q.dK/ D Nhv1:

Hence

Nh D v1

�
; v1;1 D v21

�
: (12.30)

Inserting (12.30) into (12.20)–(12.22) yields Corollary 6.3 in [16].

12.3.3 The Boolean Model on the Torus

One obtains the n-dimensional (unit) torus Tn by identifying opposite sides of the
boundary of Œ�1=2; 1=2�n. As in R

n one can consider a translation invariant Poisson
process of grains on the torus (with intensity measure �, grain distribution Q and
intensity � ) and consider the resulting Boolean model ZTn . The Boolean model on
the torus Tn can be constructed in the following way from a random closed set in R

n

(see Fig. 12.1). We start with a homogeneous Poisson process in Œ�1=2; 1=2�n and
put around each point an independent copy of the typical grain. For each grain, we
also place all translates by vectors v 2 Z

n and take the union of all resulting grains.
Finally, we restrict this random closed set to Œ�1=2; 1=2�n and identify opposite
boundaries. This setting is also denoted as periodic boundary conditions.
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Fig. 12.1 The Boolean model with periodic boundary conditions: we consider grains with centers
in Œ�1=2; 1=2�n (square with solid line) and all their translations by Z

n valued vectors (in squares
with dashed lines). The Boolean model with periodic boundary conditions is obtained by taking
the union of all the grains and restricting to the square with the solid line

For a geometric functional  W Rn ! R we can define  .ZTn / in the following
way. For a set K � Tn whose embedding KRn D fx 2 R

n W x 2 Kg into R
n is a

convex body and is contained in .�1=2; 1=2/n we put  .K/ D  .KRn/. By further
requiring that  is translation-invariant and additive on Tn, this gives us  .ZTn /.

By computing the Fock space representation of .ZTn / and �.ZTn/ for geometric
functionals ; � W Rn ! R as in [16, Sect. 3] for a Boolean model in R

n, one obtains
that

cov. .ZTn/; �.ZTn//

D
1X

nD1

�

nŠ

“
�
E .ZTn \ K1 \ : : : \ Kn/�  .K1 \ : : : \ Kn/

�

� �E�.ZTn \ K1 \ : : : \ Kn/� �.K1 \ : : : \ Kn/
�

��n�1�d.K2; : : : ;Kn/
�

Q.dK1/:

Now let us assume that the grain distribution Q is such that the typical grain Z0
is almost surely contained in Œ�1=4; 1=4�n, which is depicted by the dot-dash line
in Fig. 12.1. In this case the intersection of two grains is always convex and the
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intersections on the right-hand side of the covariance formula are the same as for
a Boolean model in R

n with grain distribution Q and intensity � . Thus, it follows
from the above definition of  and � of a subset of the torus whose embedding into
R

n is a convex body and a subset of .�1=2; 1=2/n and the additivity that

cov. .ZTn /; �.ZTn// D %. �; ��/:

In other words, if the typical grain is sufficiently bounded, the exact covariances for
the Boolean model on the torus coincide with the asymptotic covariances for the
corresponding Boolean model in R

n. This provides a way to compute estimates for
the asymptotic covariances via simulations on the torus.

12.4 Central Limit Theorems

In this section we consider the asymptotic behaviour of the distributions of
geometric functionals or of vectors of geometric functionals for growing observation
window. Recall that a sequence of m-dimensional random vectors .Yi/i2N converges
in distribution to an m-dimensional random vector Y if

lim
i!1 P.Yi � x/ D P.Y � x/

for all x 2 R
m for which y 7! P.Y � y/ is continuous at x. (Here the relation � is

to be understood componentwise.) In this case we write Yi
d�! Y (as i ! 1). We

are not only interested in the convergence in distribution but also in error bounds.
In order to measure the distance between the distributions of two m-dimensional
random vectors Z1;Z2, we use the d3-metric which is given by

d3.Z1;Z2/ D sup
h2Hm

jEh.Z1/� Eh.Z2/j;

where Hm is the set of all C3-functions h W Rm ! R such that the absolute values
of the second and the third partial derivatives are bounded by one. For two random
variables Z1;Z2 we consider the Wasserstein distance

dW.Z1;Z2/ D sup
h2Lip.1/

jEh.Z1/ � Eh.Z2/j;

where Lip.1/ is the set of all functions h W R ! R whose Lipschitz constant is at
most one. Note that convergence in the d3-distance or in the Wasserstein distance
implies convergence in distribution.

For the quantitative bounds we assume that there is a constant " 2 .0; 1� such
that

EVi.Z0/
3C" < 1; i D 0; : : : ; n: (12.31)
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We begin with a multivariate central limit theorem for a vector of geometric
functionals.

Theorem 12.8 Assume that (12.2) is satisfied, let WD . 1; : : : ;  m/ for geometric
functionals  1; : : : ;  m, and let N˙ be an m-dimensional centred Gaussian random
vector with covariance matrix ˙ D .�. i;  j//i;jD1;:::;m. Then

1
p
Vn.W/

�
.Z \ W/ � E.Z \ W/

� d�! N˙ as r.W/ ! 1:

If (12.31) holds, there is a constant C 1;:::; m depending on  1; : : : ;  m, � and "
such that

d3
� 1
p
Vn.W/

�
.Z \ W/ � E.Z \ W/

�
;N˙

�
� C 1;::: m

r.W/minf"n=2;1g

for W 2 K n with r.W/ � 1.

This result was proved in [16, Theorem 9.1] by using the Stein-Malliavin method
and a truncation argument.

As tensors can be interpreted as vectors, we can define convergence of tensor
valued random elements and their d3-distance via convergence and d3-distance
for random vectors. Since the components of ˚0;s

m are geometric functionals,
Theorem 12.8 can be applied to the translation invariant Minkowski tensors.

Corollary 12.9 Assume that (12.2) holds, let s 2 N and m 2 f0; : : : ; n � 1g, and
let N0;sm be a random element in T

s such that each component is a centred Gaussian
random variable and

cov
�
.N/i1;:::;is ; .N/j1;:::;js

� D �
�
.˚0;s

m /i1;:::;is ; .˚
0;s
m /j1;:::;js

�

for i1; : : : ; is; js; : : : ; js 2 f1; : : : ; ng. Then
1

p
Vn.W/

�
˚0;s

m .Z \ W/� E˚0;s
m .Z \ W/

� d�! N0;sm as r.W/ ! 1:

If (12.31) holds, there is a constant Cs;m depending on s, m, � and " such that

d3
� 1
p
Vn.W/

.˚0;s
m .Z \ W/� E˚0;s

m .Z \ W//;N0;sm

�
� Cs;m

r.W/minf"n=2;1g

for W 2 K n with r.W/ � 1.

In the multivariate case we assume translation invariance of the geometric
functionals in order to ensure the existence of an asymptotic covariance matrix.
In the univariate case this is not required since one can standardize be dividing by
the standard deviation. For this reason, we can drop the assumption of translation
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invariance in the following univariate central limit theorem, which is taken from [16,
Theorem 9.3].

Theorem 12.10 Let (12.2) be satisfied, let  W Rn ! R be measurable, additive
and locally bounded. Assume that there are constants r0 � 1 and �0 > 0 such that

var .Z \ W/

Vn.W/
� �0 (12.32)

for W 2 K n with r.W/ � r0, and let N be a standard Gaussian random variable.
Then

 .Z \ W/� E .Z \ W/
p

var .Z \ W/

d�! N as r.W/ ! 1:

If, additionally, (12.31) is satisfied, there is a constant c depending on  , �, r0,
�0, and " such that

dW

�
 .Z \ W/� E .Z \ W/

p
var .Z \ W/

;N

�

� c 
Vn.W/minf"=2;1=2g

for W 2 K n with r.W/ � r0.

Theorem 12.5 shows that (12.32) holds for a geometric functional if the typical
grain has a nonempty interior with positive probability and if there exist an integer
i 2 f0; : : : ; dg and a constant c > 0 such that  is homogeneous of degree i and
 .K/ � c � r.K/i for all K 2 K n.

The results presented in this section generalize previous findings in [2, 3, 10, 11,
23, 32, 35], which only deal with volume, surface area or closely related functionals.

12.5 Boolean Model of Aligned Rectangles

In this section we assume that n D 2 and that the typical grain Z0 is a deterministic
rectangle of the form

K WD
h

� a

2
e1;

a

2
e1
i

C
h

� b

2
e2;

b

2
e2
i

D
h

� a

2
;
a

2

i
�
h

� b

2
;
b

2

i

for some fixed a; b > 0, where e1 WD .1; 0/ and e2 WD .0; 1/. Then v2 D ab and
v1 D a C b.



360 D. Hug et al.

12.5.1 Asymptotic Variance �.V2; V2/

For any x D .x1; x2/ 2 R
2 we have

C2.x/ D V2.K \ .K C x// D 1fjx1j � a; jx2j � bg.a � jx1j/.b � jx2j/:

A change of variables and a symmetry argument imply that

Z
�
e�C2.x/ � 1� dx D 4v2H.�v2/; (12.33)

where the function H W Œ0;1/ ! Œ0;1/ is defined by

H.r/ WD
Z 1

0

Z 1

0

�
erst � 1

�
ds dt D

1X

kD1

rk

kŠ.k C 1/2
; r � 0: (12.34)

Hence we obtain from Theorem 12.4 that

�.V2;V2/ D 4.1� p/2v2H.�v2/; (12.35)

where we recall that p D 1 � e��v2 . The variance is visualized in Fig. 12.2a.

12.5.2 Asymptotic Covariance �.V1; V2/

At this stage it is convenient to complement the definition (12.34) with the following
easy to check formulae:

Z 1

0

Z 1

0

ersts ds dt D 1

r2
er � 1

r2
� 1

r
; (12.36)

Z 1

0

Z 1

0

ersts2 ds dt D 1

r2
er � 1

r3
er C 1

r3
� 1

2r
; (12.37)

Z 1

0

Z 1

0

erstst ds dt D 1

r2
er � 1

r2
� 1

r
H.r/� 1

r
: (12.38)

A consequence is

Z 1

0

Z 1

0

erst.st C s2/ ds dt D 2

r2
er � 1

r3
er C 1

r3
� 1

r2
� 3

2r
� 1

r
H.r/: (12.39)
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Fig. 12.2 Asymptotic covariances �.Vi;Vj/ as a function of the intensity � for Boolean models
of aligned rectangles with side lengths a, b and varying aspect ratio b=a; we choose a D 1, hence
b 2 .0; 1�; see (12.35), (12.43), (12.45), (12.53), (12.56), and (12.59). The insets show covariances
that are rescaled by ab or a C b so that they only depend on �v2 but not on the aspect ratio, which
also holds for �.V0;V2/ in (d) without rescaling

Now we use Theorem 12.4 (for n D 2 and g � 1) to compute �.V1;V2/. For any
measurable and even functions f W R2 ! Œ0;1/ and Qf W S1 ! Œ0;1/ we have

Z

f .y � z/Qf .u/N1;2.d.y; u; z// D aC
1 C a�

1 C aC
2 C a�

2 ;
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where

ai̇ WD 1

2

“

1fy 2 Ai̇ ; z 2 Kgf .y � z/Qf .ei/H 1.dy/ dz; i 2 f1; 2g;

and A1̇ WD f.x1; x2/ 2 K W x1 D ˙a=2g, A2̇ WD f.x1; x2/ 2 K W x2 D ˙b=2g. By
Fubini’s theorem and a change of variables

a1̇ D
Qf .e1/
2

“

1fy 2 A1̇ ; y C z 2 Kg f .z/H 1.dy/ dz:

For any z D .z1; z2/ 2 K with �a � z1 � 0 and z2 � 0 we have

Z

1fy 2 A1; y C z 2 KgH 1.dy/ D H 1.Œ�b=2; b=2� z2�/ D b � z2 D b � jz2j:

For �a � z1 � 0 and z2 � 0 this integral takes the same value. Since the set of all
z with z1 … Œ�a; 0� or jz2j > b does not contribute to aC while the set of all z with
z1 … Œ0; a� or jz2j > b does not contribute to a� it follows that

aC
1 C a�

1 D
Qf .e1/
2

Z

1fjz1j � a; jz2j � bgf .z1; z2/.b � jz2j/ d.z1; z2/:

Using a similar result for bC
1 C b�

1 gives

Z

f .y � z/Qf .u/N1;2.d.y; u; z//

D
Qf .e1/
2

Z

1fjz1j � a; jz2j � bg f .z1; z2/.b � jz2j/ d.z1; z2/

C Qf .e2/
2

Z

1fjz1j � a; jz2j � bg f .z1; z2/.a � jz1j/ d.z1; z2/: (12.40)

Inserting here f .z/ WD e�C2.z/ and using a change of variables gives

Z

e�C2.y�z/Qf .u/N1;2.d.y; u; z//

D 2ab2 Qf .e1/
Z 1

0

Z 1

0

e�aby1y2y2 dy1 dy2 C 2a2b Qf .e2/
Z 1

0

Z 1

0

e�aby1y2y1 dy1 dy2:
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From (12.36) we obtain that

Z

e�C2.y�z/Qf .u/N1;2.d.y; u; z//

D Qf .e1/
�
2

�2a
e�ab � 2

�2a
� 2b

�

�

C Qf .e2/
�
2

�2b
e�ab � 2

�2b
� 2a

�

�

:

(12.41)

In the case Qf .e1/ D Qf .e2/ D 1 this yields

Z

e�C2.x�y/ N1;2.d.x; u; y// D 2v1

�
1

�2v2
e�v2 � 1

�2v2
� 1

�

�

: (12.42)

Inserting this result together with (12.33) into the formula of Theorem 12.4 yields

�.V1;V2/ D 2.1 � p/2v1

�
1

�v2
.e�v2 � 1/� 1 � 2�v2H.�v2/

	

; (12.43)

which is visualized in Fig. 12.2b.

12.5.3 Asymptotic Covariance �.V0; V2/

Next we use (12.20) to compute �.V0;V2/, starting with the observation

h.K;�e1/ D h.K; e1/ D a
2
; h.K;�e2/ D h.K; e2/ D b

2
:

Therefore we obtain from (12.41)

Z
Nh.u/e�C2.y�z/ N1;2.d.y; u; z// D 2

�2
e�v2 � 2

�2
� 2v2

�
: (12.44)

To evaluate

v1;1 D
Z

h.K; u/ 1.KI du/

we split the integration according to u 2 f�e1; e1;�e2; e2g. As all four integrals
yield the same value ab=4, we get v1;1 D v2. Summarizing, we obtain from (12.20)

�.V0;V2/ D p.1 � p/� 4.1� p/2�v2.1 � 1�v2/H.�v2/

� 4.1� p/2
�
.1 � p/�1 � 1 � �v2

�
;
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that is

�.V0;V2/ D .1 � p/ Œ2.1� p/�v2 � 3p � .1 � p/�v2.4 � 2�v2/H.�v2/� :
(12.45)

Figure 12.2d visualizes this asymptotic covariance.

12.5.4 Asymptotic Variance �.V1; V1/

Next we turn to �.V1;V1/ as given by (12.19) for n D 2. Some of our calculations
will also be required to compute �.V0;V1/ and �.V0;V0/. We have

C1.xI Nh/ D a

4

Z

1fy � x 2 Kı; y 2 AC
1 [ A�

1 gH 1.dy/

C b

4

Z

1fy � x 2 Kı; y 2 AC
2 [ A�

2 gH 1.dy/

and a straightforward calculation (left to the reader) yields

C1.xI Nh/ D 1fjx1j � a; jx2j � bg
�a

4
.b � jx2j/C b

4
.a � jx1j/

�
(12.46)

as well as

C1.x/ D 1
2
1fjx1j � a; jx2j � bg..a � jx1j/C .b � jx2j//:

From C1.xI Nh/ D C1.�xI Nh/ (see (12.46)) and (12.40) (with f .x/ WD e�C2.x/ and
Qf � 1) it follows that

Z

e�C2.y�z/C1.y � zI Nh/N1;2.d.z; u; y// D J1 C J2;

where

J1 WD a

8

Z

Œ�a;a�
Œ�b;b�
e�.a�jz1j/.b�jz2j/..a � jz1j/C .b � jz2j//.b � jz2j/ d.z1; z2/
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and J2 is defined similarly. We have

J1 D a

2

Z

1f0 � z1 � a; 0 � z2 � bge�z1z2 .z1 C z2/z2 d.z1; z2/

D a2b2

2

Z 1

0

Z 1

0

e�abst.as C bt/t ds dt

D a3b2

2

Z 1

0

Z 1

0

e�abstst ds dt C a2b3

2

Z 1

0

Z 1

0

e�abstt2 ds dt:

Together with the analogous formula for J2 this yields

Z

e�C2.y�z/C1.y � zI Nh/N1;2.d.z; u; y// D v1v
2
2

2

Z 1

0

Z 1

0

e�v2st.st C t2/ ds dt:

Now we can use (12.39) with r D �v2 to obtain

Z

e�C2.y�z/C1.y � zI Nh/N1;2.d.z; u; y//

D v1

�2
e�v2 � v1

2�3v2
e�v2 C v1

2�3v2
� v1

2�2
� 3v1v2

4�
� v1v2

2�
H.�v2/:

(12.47)

Similarly,

Z

e�C2.y�z/C1.y � z/N1;2.d.z; u; y//

D
Z

1f0 � z1 � a; 0 � z2 � bge�z1z2.z1 C z2/
2 d.z1; z2/

D ab
Z 1

0

Z 1

0

e�abst.as C bt/2 ds dt

D ab.a2 C b2/
Z 1

0

Z 1

0

e�absts2 ds dt C 2a2b2
Z 1

0

Z 1

0

e�abstst ds dt:

It follows from (12.37) and (12.38) that the latter sum equals

ab.a2 C b2/
� 1

�2a2b2
e�v2 � 1

�3a3b3
e�v2 C 1

�3a3b3
� 1

2�ab

�

C 2a2b2
� 1

�2a2b2
e�ab � 1

�2a2b2
� 1

�ab
H.�ab/� 1

�ab

�
:
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Therefore

�2
Z

e�C2.y�z/C1.y � z/N1;2.d.z; u; y//

D .a2 C b2/
� 1

v2
e�v2 � 1

�v22
e�v2 C 1

�v22
� �

2

�

C 2e�v2 � 2 � 2v2�.H.�v2/C 1/:

To proceed, we need to compute the integrals

ICC
1 WD

Z

1fy 2 AC
1 ; z 2 AC

1 ge�C2.y�z/H 1.dy/H 1.dz/; (12.48)

IC�
1 WD

Z

1fy 2 AC
1 ; z 2 A�

1 ge�C2.y�z/H 1.dy/H 1.dz/;

IC
1;2 WD

Z

1fy 2 AC
1 ; z 2 AC

2 ge�C2.y�z/H 1.dy/H 1.dz/ (12.49)

as well as ICC
2 (resp. IC�

2 ), arising from ICC
1 (resp. IC�

1 ) by replacing .AC
1 ;A

C
1 /

(resp. .AC
1 ;A

�
1 /) with .AC

2 ;A
C
2 / (resp. .AC

2 ;A
�
2 /). A straightforward calculation

gives

ICC
1 D 2b

�a
e�ab � 2

�2a2
e�ab C 2

�2a2
; ICC

2 D 2a

�b
e�ab � 2

�2b2
e�ab C 2

�2b2
;

(12.50)

IC�
1 D b2; IC�

2 D a2; (12.51)

IC
1;2 D ab.H.�ab/C 1/: (12.52)

We prove here (12.50). The proof of (12.51) and (12.52) is even simpler. By the
parametrisation y D .a=2; s/with s 2 Œ�b=2; b=2� for y 2 AC

1 and z D .a=2; t/ with
t 2 Œ�b=2; b=2� for z 2 AC

2 we get

ICC
1 D

Z b=2

�b=2

Z b=2

�b=2
e�a.b�js�tj/ ds dt:

Splitting the domain of integration into s < t and s � t yields

ICC
1 D 2e�ab

Z b=2

�b=2
e�at

Z b=2

t
e��as ds dt

D 2

�a
e�ab

Z b=2

�b=2

�
1 � e��ab=2e�at

�
dt:
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Continuing this calculation gives

ICC
1 D 2b

�a
e�ab � 2

�2a2
e�ab=2

�
e�ab=2 � e��ab=2�

and hence the first identity in (12.50). The second follows by symmetry.
By symmetry arguments we have

Z

e�C2.x�y/ N1;1.d.x; u; y; v// D 21
4
ICC
1 C 21

4
ICC
2 C 21

4
IC�
1 C 21

4
IC�
2 C 81

4
IC
1;2;

so that (12.50)–(12.52) yield

Z

e�C2.x�y/N1;1.d.x; u; y; v// D b

�a
e�ab � 1

�2a2
e�ab C 1

�2a2

C a

�b
e�ab � 1

�2b2
e�ab C 1

�2b2
C a2 C b2

2
C 2ab.H.�ab/C 1/:

Therefore,

�

Z

e�C2.x�y/ N1;1.d.x; u; y; v//

D a2 C b2

v2
e�v2 � a2 C b2

�v22
e�v2 C a2 C b2

�v22
C �

a2 C b2

2
C 2�v2.H.�v2/C 1/;

so that

�2
Z

e�C2.y�z/C1.y � z/N1;2.d.z; u; y//C �

Z

e�C2.x�y/ N1;1.d.x; u; y; v//

D .a2 C b2/
� 1

v2
e�v2 � 1

�v22
e�v2 C 1

�v22
� �

2

�
C 2e�v2 � 2

C a2 C b2

v2
e�v2 � a2 C b2

�v22
e�v2 C a2 C b2

�v22
C �

a2 C b2

2

D 2.a2 C b2/
� 1

v2
e�v2 � 1

�v22
e�v2 C 1

�v22

�
C 2e�v2 � 2:

Now we can conclude from (12.19), (12.33) and (12.42) that

�.V1;V1/ D 4.1� p/2�2v21v2H.�v2/ � 4.1� p/2v21�
2

�
1

�2v2
e�v2 � 1

�2v2
� 1

�

�

C .1 � p/22.a2 C b2/
� 1

v2
e�v2 � 1

�v22
e�v2 C 1

�v22

�

C .1 � p/2.2e�v2 � 2/;
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that is

�.V1;V1/ D .1 � p/

�

2p C 4.1� p/�2v21v2H.�v2/

� 4�2v21
�

p

�2v2
� 1 � p

�

�

C 2.a2 C b2/
� 1

v2
� p

�v22

�	

; (12.53)

which is shown in Fig. 12.2c.

12.5.5 Asymptotic Covariance �.V0; V1/

We now turn to �.V0;V1/. It follows from (12.47) that

� 2�3
Z

e�C2.y�z/C1.y � zI Nh/N1;2.d.z; u; y//

D �2�v1e�v2 C v1

v2
e�v2 � v1

v2
C �v1 C 3�2v1v2

2
C �2v1v2H.�v2/:

Furthermore, from (12.42) and v1;1 D v2 we get

.�3v1;1 � �2/
Z

e�C2.y�z/ N1;2.d.z; u; y//

D 2v1�
3v2

�
1

�2v2
e�v2 � 1

�2v2
� 1

�

�

� 2v1�
2

�
1

�2v2
e�v2 � 1

�2v2
� 1

�

�

D 2�v1e
�v2 � 2�v1 � 2�2v1v2 � 2v1

v2
e�v2 C 2v1

v2
C 2�v1:

From (12.44) and .1/ D v1 we deduce that

2�31.1/

Z

e�C2.y�z/ Nh.u/N1;2.d.z; u; y// D 2�3v1

� 2

�2
e�v2 � 2

�2
� 2v2

�

�

D 4�v1e
�v2 � 4�v1 � 4�2v1v2:

Summarizing the previous formulae we arrive at

.1 � p/2
Z
�
�0.y � z/C 2�31.1/e

�C2.y�z/ Nh.u/�N1;2.d.z; u; y//

D .1 � p/�v1

�

1C
�

3 � 1

�v2

�

p C .1 � p/�v2

�

H.�v2/ � 9

2

�	

:

(12.54)
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Next we consider

I WD
Z

e�C2.y�z/ Nh.u/N1;1.d.y; u; z; v//:

Then I D I1 C I2, where

I1 WD a

8

Z

1fy 2 AC
1 [ A�

1 ge�C2.y�z/H 1.dy/H 1.dz/;

I2 WD b

8

Z

1fy 2 AC
2 [ A�

2 ge�C2.y�z/H 1.dy/H 1.dz/:

By symmetry,

I1 D 2
a

8
ICC
1 C 2

a

8
IC�
1 C 4

a

8
IC
1;2; I2 D 2

b

8
ICC
2 C 2

b

8
IC�
2 C 4

a

8
IC
1;2;

where the occurring integrals have been defined by (12.48)–(12.49). The formu-
lae (12.50)–(12.52) yield

I D
� a

2�
C b

2�

�
e�ab �

� 1

2�2a
C 1

2�2b

�
e�ab C 1

2�2a
C 1

2�2b

C ab2

4
C a2b

4
C
�a2b

2
C ab2

2

�
.H.�ab/C 1/;

that is

I D v1

2�
e�v2 � v1

2�2v2
e�v2 C v1

2�2v2
C 3v1v2

4
C v1v2

2
H.�v2/:

It follows that

� 2.1� p/2�2
Z

e�C2.y�z/ Nh.u/N1;1.d.y; u; z; v//

D .1 � p/�v1

�
p

�v2
� 1 � �

3
2

C H.�v2/
�
.1 � p/�v2

	

: (12.55)

Now we conclude from (12.21) and (12.33) that

�.V0;V1/ D .1 � p/�v1 Œ1 � p C 4.1� p/�v2.1� �v2/H.�v2/�C c1;2 C c1;1;
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where c1;2 is given by the right-hand side of (12.54) and c1;1 is given by the right-
hand side of (12.55). Thus, we derive

�.V0;V1/ D .1 � p/�v1Œ1C 2p C .1 � p/�v2.4.1� �v2/H.�v2/� 6/�:

(12.56)

The asymptotic covariance is plotted in Fig. 12.2f.

12.5.6 Asymptotic Variance �.V0; V0/

Finally, we determine �.V0;V0/, as given by (12.22). From (12.40) and (12.46) we
get

Z

e�C2.y�z/C1.y � zI Nh/Nh.u/N1;2.d.z; u; y//

D a

4

Z

1fjz1j � a; jz2j � bge� jz1jjz2jjz2j
�a

4
jz2j C b

4
jz1j
�
d.z1; z2/

C b

4

Z

1fjz1j � a; jz2j � bge� jz1jjz2jjz1j
�a

4
jz2j C b

4
jz1j
�
d.z1; z2/

D a

4

Z b

0

Z a

0

e�z1z2z2.az2 C bz1/ dz1 dz2 C b

4

Z b

0

Z a

0

e�z1z2z1.az2 C bz1/ dz1 dz2

D a2b2

4

Z 1

0

Z 1

0

e�abstt.abt C abs/ ds dt C a2b2

4

Z 1

0

Z 1

0

e�absts.abt C abs/ ds dt

D a3b3

2

Z 1

0

Z 1

0

e�abst.s2 C st/ ds dt:

Using now (12.39), we obtain

4�4
Z

e�C2.y�z/C1.y � zI Nh/Nh.u/N1;2.d.z; u; y//

D 4�2v2e
�v2 � 2�e�v2 C 2� � 2�2v2 � 3�3v22 � 2�3v22H.�v2/:

From (12.44) we see that

.�4�4v2 C 4�3/

Z

e�C2.y�z/ Nh.u/N1;2.d.z; u; y//

D .�4�4v2 C 4�3/
� 2

�2
e�v2 � 2

�2
� 2v2

�

�

D �8�2v2e�v2 C 8�2v2 C 8�3v22 C 8�e�v2 � 8� � 8�2v2:
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Summarizing, we have

.1� p/2
Z

Nh.u/�00.y � z/N1;2.d.z; u; y//

D .1 � p/�Œ6p � 4�v2 C .1 � p/�v2.5�v2 � 2H.�v2/�v2 � 2/�: (12.57)

Next we note that
Z

e�C2.y�z/ Nh.u/Nh.v/N1;1.d.y; u; z; v//

D 2
a2

16
ICC
1 C 2

a2

16
IC�
1 C 2

b2

16
ICC
2 C 2

b2

16
IC�
2 C 8

ab

16
IC
1;2;

where ICC
1 ; IC�

1 ; IC
1;2; I

CC
2 ; IC�

2 have been defined by (12.48)–(12.49). The formu-
lae (12.50)–(12.52) give

Z

e�C2.y�z/ Nh.u/Nh.v/N1;1.d.y; u; z; v//

D a2

8

� 2b

�a
e�ab � 2

�2a2
e�ab C 2

�2a2

�
C a2b2

8

C b2

8

� 2a

�b
e�ab � 2

�2b2
e�ab C 2

�2b2

�

C a2b2

8
C a2b2

2
.H.�ab/C 1/

D v2

2�
e�v2 � 1

2�2
e�v2 C 1

2�2
C v22

4
C v22
2
H.�v2/C v22

2
:

Therefore

4.1� p/2�3
Z

e�C2.y�z/ Nh.u/Nh.v/N1;1.d.y; u; z; v//

D .1 � p/�
�
.2H.�v2/C 3/.1� p/.�v2/

2 C 2�v2 � 2p� : (12.58)

Now we conclude from (12.22) and (12.33) that

�.V0;V0/ D .1 � p/�
�
1� 2p C .2p � 3/�v2

C 4.1� p/.1 � �v2/2�v2H.�v2/
�C d1;2 C d1;1;
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where d1;2 is given by the right-hand side of (12.57) and d1;1 is given by the right-
hand side of (12.58). Thus, we finally derive

�.V0;V0/ D .1 � p/�
�
1C 2p C .4p � 7/�v2

C 4.1� p/�v2
�
2�v2 C .1 � �v2/2H.�v2/

��
; (12.59)

which is plotted in Fig. 12.2e.

12.5.7 Invariance Properties

The reader might have noticed that the asymptotic covariances �.Vi;Vj/ (with the
exception of �.V1;V1/) depend on the parameters � , v1, and v2 in a specific way.
In order to explain these invariance properties, let Za;b;� denote the Boolean model
with grains K D Œ0; a� � Œ0; b� and intensity � . By applying to each rectangle of the
underlying Poisson process the linear transformation Ta;b W R2 ! R

2, .x1; x2/ 7!
.ax1; bx2/, one obtains the distributional identity

Za;b;�
dD Ta;bZ1;1;ab� :

Together with the fact that Vi.Ta;bA/ D .ab/i=2Vi.A/, for A 2 R2 and i 2 f0; 2g, we
see that

�.Vi;Vj/ D lim
r.W/!1

cov.Vi.Za;b;� \ W/;Vj.Za;b;� \ W//

V2.W/

D lim
r.W/!1

cov.Vi.Ta;bZ1;1;ab� \ W/;Vj.Ta;bZ1;1;ab� \ W//

V2.W/

D .ab/i=2Cj=2�1 lim
r.W/!1

cov.Vi.Z1;1;ab� \ T�1
a;bW/;Vj.Z1;1;ab� \ T�1

a;bW//

V2.T�1
a;bW/

D v
i=2Cj=2�1
2 lim

r.W/!1
cov.Vi.Z1;1;�v2 \ W/;Vj.Z1;1;�v2 \ W//

V2.W/
;

for i; j 2 f0; 2g. This shows that for all Boolean models of deterministic rectangles
with fixed �v2, the asymptotic covariances between volume and Euler characteristic
are a power of v2 times a constant depending on �v2.

Next we investigate the invariance properties of �.V0;V1/ and �.V1;V2/. For
i 2 f1; 2g we define

V1;ei.A/ WD
Z

1fu D ˙eig1.AI du/; A 2 R2;
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which are again geometric functionals. If W is a rectangle with sides in the directions
e1 and e2, which we can assume in the following, we have that

V1.Za;b;� \ W/ D V1;e1 .Za;b;� \ W/C V1;e2 .Za;b;� \ W/:

By the same arguments as in the previous computation we obtain that, for i 2 f0; 2g,

�.Vi;V1/ D lim
r.W/!1

cov.Vi.Za;b;� \ W/;V1.Za;b;� \ W//

V2.W/

D lim
r.W/!1


cov.Vi.Ta;bZ1;1;ab� \ W/;V1;e1 .Ta;bZ1;1;ab� \ W//

V2.W/

C cov.Vi.Ta;bZ1;1;ab� \ W/;V1;e2 .Ta;bZ1;1;ab� \ W//

V2.W/

�

D lim
r.W/!1



.ab/i=2�1b
cov.Vi.Z1;1;ab� \ W/;V1;e1 .Z1;1;ab� \ W//

V2.W/

C .ab/i=2�1a
cov.Vi.Z1;1;ab� \ W/;V1;e2 .Z1;1;ab� \ W//

V2.W/

�

:

Using that the asymptotic covariances between Vi and V1;e1 and between Vi and V1;e2
are the same for the Boolean model Z1;1;ab� due to symmetry, we conclude that

�.Vi;V1/ D lim
r.W/!1.ab/

i=2�1.a C b/
cov.Vi.Z1;1;ab� \ W/;V1;e1 .Z1;1;ab� \ W//

V2.W/

D lim
r.W/!1



.ab/i=2�1
.a C b/

2

cov.Vi.Z1;1;ab� \ W/;V1;e1 .Z1;1;ab� \ W//

V2.W/

C .ab/i=2�1
.a C b/

2

cov.Vi.Z1;1;ab� \ W/;V1;e2 .Z1;1;ab� \ W//

V2.W/

�

D lim
r.W/!1 v

i=2�1
2

v1

2

cov.Vi.Z1;1;�v2 \ W/;V1.Z1;1;�v2 \ W//

V2.W/
:

Thus, the asymptotic covariance between volume and surface area is v1 times a
constant depending on �v2, while the covariance between Euler characteristic and
surface area is v1v�1

2 times a constant depending on �v2.
Figure 12.2 summarizes the results of this section visually. It shows the asymp-

totic covariances �.Vi;Vj/ as a function of the intensity � for Boolean models of
aligned rectangles for a variety of aspect ratios b=a.
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12.6 Simulations of Boolean Models with Isotropic
or Aligned Rectangles

Planar Boolean models with either squares or rectangles with aspect ratio 1=2 as
grains are simulated in a finite observation window. We study the variances and
covariances of the intrinsic volumes as well as their relative frequency histograms
weighted by the size of each bin. We compare the simulation results for aligned
rectangles to the analytic formulae for the covariances in the previous Sect. 12.5.
Moreover, we simulate rectangles with a uniform (isotropic) orientation distribution
and find, e.g., for �.V0;V1/ a qualitatively different behaviour.

Tensor valuation densities and the density of the Euler characteristic V0 of
anisotropic Boolean models are studied in [13]. The same simulation procedure is
applied here with even better statistics for reliable estimates of the second moments
and the histograms of the intrinsic volumes.

The grain centres are random points, uniformly distributed within the simulation
box. The union of the rectangles is computed using the Computational Geom-
etry Algorithms Library (CGAL) [5]. The program PAPAYA then calculates the
Minkowski functionals of the Boolean model [39].

For aligned rectangles, the covariances �.V2;V2/, �.V0;V0/, and �.V0;V2/ as
well as the rescaled covariances �.V1;V2/=.2a C 2b/ and �.V0;V1/=.2a C 2b/ are
only functions of v2 and �v2, as shown in the previous Sect. 12.5. In other words,
if the unit of area is chosen to be the area of a single grain v2 D a � b D 1

(so that the area of the typical grain does not depend on the aspect ratio), the
rescaled covariances are independent of the aspect ratio. Therefore, we define in
the following the unit of length by the square root of the area of a single grain.

Parts of this section are taken from the PhD thesis of one of the authors [18].

12.6.1 Variances and Covariances

The first moments of area or perimeter of a Boolean model are rather insensitive to
the grain distribution. Indeed, if the unit of area is chosen to be the mean area of a
single grain, the density of the area, i.e., the occupied area fraction, of the Boolean
model is only a function of the intensity. Moreover, if the density of the perimeter
in the asymptotic limit is divided by the mean perimeter of a single grain, it is also
independent of the grain distribution [37, Theorem 9.1.4].

Does the same hold for the second moments? Is there a qualitatively different
behaviour in the variances and covariances depending on whether the orientation
distribution of the grains is isotropic or anisotropic? Which covariances or variances
are invariant under affine transformations of the grain distributions?

Depending on the computational costs, for each different set of parameters we
perform between Ms D 21;000 and 600;000 simulations of Boolean models with
rectangles: at varying intensities � , with aspect ratio 1 or 1=2, and for rectangles
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either aligned w.r.t. the observation window or with an isotropic orientation
distribution. The simulation box is a square with side length L D 4a, where periodic
boundary conditions are applied. The number of grains within the simulation box is
a random number and follows a Poisson distribution with mean � �L2. To estimate the
covariances, we simulate more than 5,800,000 samples of Boolean models including
about 54,000,000 rectangles in total.

Because of the periodic boundary conditions, the covariances of this system
coincide with the asymptotic covariances for the infinite volume system from
Sect. 12.5, as we have pointed out in Sect. 12.3.3.

For each sample m 2 f1; : : :Msg of a Boolean model, we determine the intrinsic
volumes V.m/i (i D 0; 1; 2). The sample covariance then provides an estimate for the
covariance between the Minkowski functionals:

s.Vi;Vj/ WD 1

Ms � 1

MsX

mD1
.V.m/i � hVii/.V.m/j � hVji/

using the sample mean hVii WD 1
Ms

PMs
mD1 V

.m/
i as an estimator for the expectation.

In accordance with the definition of the asymptotic covariances in Theorem 12.3,
the sample covariance is then divided by the size L2 of the observation window. We
finally use bootstrapping (with 1000 bootstrap samples) to estimate the mean and
the error of the estimators.

Figure 12.3 shows the simulation results for the variances and covariances of the
intrinsic volumes for an isotropic orientation distribution of the grains as well as
for aligned rectangles. In the latter case, the simulation results are compared to the
analytic results in (12.35), (12.43), (12.45), (12.53), (12.56), and (12.59). They are
in excellent agreement.

The variances and covariances of the Minkowski functionals of overlapping
rectangles exhibit a complex behaviour as functions of the intensity � similar to
the Boolean model with discs in [16, Sect. 7]. The variances of area and Euler
characteristic apparently have one maximum and no other extrema. The variance of
the perimeter has a global maximum and (at least) one local minimum and one local
maximum. As expected, the three Minkowski functionals are positively correlated
at low intensities � , but at higher intensities there are also regimes where the area is
anti-correlated to the Euler characteristic or the perimeter.

The covariance �.V0;V1/ between the perimeter and the Euler characteristic
shows a qualitatively different behaviour for rectangles with an isotropic orientation
distribution when compared to aligned rectangles. There is a regime in the intensity
� (around the first local minimum) for which the rectangles with an isotropic
orientation distribution are anti-correlated, while the aligned grains are positively
correlated. In the same regime, also the discs in [16] are positively correlated like
the aligned rectangles and in contrast to the rectangles with an isotropic orientation
distribution. This is probably related to the fact that rotated rectangles can more
easily form clusters with holes than aligned rectangles or discs. The zero-crossing
of the expectation of the Euler characteristic � for the rectangles with an isotropic
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Fig. 12.3 Variances and covariances of the intrinsic volumes V2 (area A), V1 (proportional to
perimeter P), and V0 (Euler characteristic �) of Boolean models as a function of the intensity � .
Depicted are both numerical estimates in finite observation windows with periodic boundary
conditions (marks with dotted lines as guides to the eye) and analytic curves of the covariances
(solid lines), see (12.35), (12.43), (12.45), (12.53), (12.56), and (12.59). Four different Boolean
models are simulated: both for squares (b=a D 1) and rectangles (b=a D 1=2) either an isotropic
orientation distribution is used or the grains are aligned with the x-direction. In the insets, the
covariances and the variance of the perimeter of the Boolean model are rescaled by the perimeter
of a single grain. In contrast to Fig. 12.2, the unit of area is the size of a single grain, that is
v2 D ab D 1
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orientation distribution is within this regime. For the aligned rectangles, the zero-
crossing of the mean value of � is at the end of this regime, see [13].

The question remains whether or not the variances and covariances of area or
rescaled perimeter of the Boolean model are independent of the grain distribution
like the first moments of these functionals. Equations (12.35) and (12.43) show
that at least for aligned rectangles the variance �.V2;V2/ as well as the covariance
�.V1;V2/ divided by the perimeter of a single grain .2aC2b/ are indeed independent
of the aspect ratio. The simulation results from Fig. 12.3 might suggest that this
could also be valid for the isotropic orientation distributions. However, the variance
�.V2;V2/ and the rescaled covariance �.V1;V2/=.2a C 2b/ do depend on the grain
distribution, although only weakly for the models studied here. To show this, we
evaluate (12.35) and (12.43) numerically and compare the covariances to those of
the Boolean model with discs from [16]. Figure 12.4 shows that there is a weak but
significant difference in the analytic curves of �.V2;V2/ and �.V1;V2/ for the two
different models. The variance of the perimeter depends more clearly on the grain
distribution. Even if it is rescaled by the perimeter of a single grain and even for
aligned grains, the variance distinctly depends on the aspect ratio of the rectangles
(except for small intensities � ). So, in contrast to the first moments of the area and
rescaled perimeter of the Boolean model, the second moments in general depend
on the grain distribution, e.g., the orientation distribution, even if this dependence
may be weak. As expected, also the variance �.V0;V0/ of the Euler characteristic
as well as the covariances �.V0;V1/ and �.V0;V2/ depend on the grain distribution,
see Fig. 12.4.

12.6.2 Central Limit Theorem

We also determine the histograms of the intrinsic volumes in a finite observation
window, where the histograms are weighted by the total number of samples and the
bin width. The histograms are then compared to the density of a standard normal
distribution in order to numerically validate the central limit theorems in Sect. 12.4.
The information content of a histogram is up to the binning almost equivalent to
the empirical distribution function, but in plotting it is more convenient to compare
histograms and densities.

The histograms resemble probability density functions. However, the intrinsic
volumes of the considered Boolean model do not have probability density functions.
Indeed, with positive probability, there is no overlap between the grains and there are
no intersections with the boundary so that some multiples of the intrinsic volumes
of the fixed grain have positive probability.

In this subsection, we simulate larger systems than in the previous Sect. 12.6.1.
For a simulation box with side length L D 20a, we perform for each different set of
parameters between Ms D 5000 and 150,000 simulations of Boolean models with
rectangles at varying intensities � . Like in Sect. 12.6.1, the rectangles have aspect
ratio 1 or 1=2, and they are either aligned w.r.t. the observation window or their
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Fig. 12.4 Variances and covariances: �.V2;V2/, the variance of the area; �.V1;V2/=v1, propor-
tional to the covariance of area and perimeter; v1 is half of the perimeter of a single grain;
�.V1;V1/=v

2
1 , proportional to the variance of the perimeter; �.V0;V2/, the covariance of area and

Euler characteristic; �.V0;V0/, the variance of the Euler characteristic; �.V0;V1/=v1, proportional
to the covariance of perimeter and Euler characteristic. They are shown both for Boolean models
with aligned rectangles, see (12.35), (12.43), (12.45), (12.53), (12.56), and (12.59), and for
overlapping discs, see [16]. Note that except for �.V1;V1/=v21 the curves for the rectangles are
independent of the aspect ratio of the rectangle, see also Figs. 12.2 and 12.3. The insets in the
figures at the top are close-up views which show that the covariances differ slightly for Boolean
models with rectangles or with discs. Below each subfigure, the differences of the covariances for
Boolean models with rectangles or discs are plotted
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Fig. 12.5 Histograms f of the normalized intrinsic volumes OVi (see (12.60)) of Boolean models of
rectangles with different aspect ratios b=a for different intensities � ; for both aligned rectangles and
rectangles with an isotropic orientation distribution. For all of these different models, the rescaled
distributions are already for the relatively small system size L D 20a in very good agreement with
a normal distribution (dashed black line)

orientation is isotropically distributed. To produce the histograms, we simulate more
than 1,400,000 samples of Boolean models including about 350,000,000 rectangles
in total.

We normalize the intrinsic volumes Vi, i.e., we subtract the estimated mean
values hVii of the intrinsic volumes and divide by

p
s.Vi;Vi/:

OVi WD Vi � hVii
p
s.Vi;Vi/

: (12.60)

Figure 12.5 plots the histograms f of the normalized intrinsic volumes of Boolean
models with different aspect ratios b=a for either aligned rectangles or rectangles
with an isotropic orientation distribution and for varying intensities � .

These histograms are in good agreement with the density function of a normal
distribution for all intrinsic volumes, for all intensities, and for all of the simulated
models (despite the relatively small simulation box). In other words, even in
small observation windows, the probability distributions of the intrinsic volumes
of Boolean models can be well approximated by Gaussian distributions.

As we have mentioned in the introduction, the central limit theorems for the
geometric functionals (see Theorems 12.8 and 12.10) and the exact formulae for the
second moments (see Theorems 12.4 and 12.5) can be used for hypothesis testing
of models of random heterogeneous media. A hypothesis test could, e.g., use the
intrinsic volumes to decide whether or not a random two-phase medium can be
modeled by overlapping grains. The joint probability distribution of the Minkowski
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functionals allows for a characterization of the shape by several geometrical
functionals and hence for a construction of tests using their full covariance structure.
For a different random field (with a Poisson distributed number of counts in a binned
gamma-ray sky map) such a sensitive morphometric data analysis has already been
developed [8, 19]. The same concepts could be applied to the Boolean model.

In Fig. 12.5, there are only small deviations from a normal distribution relative
to the error bars. So, the systematic deviations, e.g., due to the finite observation
window size, seem to be small. In order to determine these deviations, a very
high numerical accuracy is needed. We simulate 3 � 106 samples of two Boolean
models for rectangles with aspect ratio 1=2 that are either aligned or follow
an isotropic orientation distribution. Here, we apply minus sampling boundary
conditions, i.e., we consider all grains with centres in a slightly larger simulation
box Œ�p

a2 C b2=2;L C p
a2 C b2=2�2, but the observation window is still the

original square .0;L/2 with L D 20a. Contributions caused by the boundary are
here neglected as it is often done in physics. The expected number of grains in the
simulation box is adjusted accordingly and follows a Poisson distribution with mean
� �.LCp

a2 C b2/2. To minimize the computational costs, a relatively low intensity �
is chosen for these simulations. It corresponds to an expected occupied area fraction
� D 1=15. The resulting histograms are plotted in Fig. 12.6. As expected, for the
small system size the large number of samples reveals deviations from the normal
distribution that are significantly larger than the error bars.

For each underlying Boolean model, the histograms of the normalized intrinsic
volumes coincide within error bars. This is not surprising because at the low
intensity chosen here the intrinsic volumes are strongly correlated. (The correlation
coefficients are larger than 0.9.)

For different Boolean models (isotropic orientation distribution or aligned
grains), the histograms of the non-rescaled Minkowski functionals differ slightly
but distinctly already for the relatively small intensity studied here, see the inset
of Fig. 12.6. In contrast to this, the histograms of the normalized intrinsic volumes
collapse for the different Boolean models within the error bars to a single curve,
which can be well approximated by a standardized Poisson distribution. This can be
explained by the strong correlation between the intrinsic volumes and the number
of grains Nh hitting the observation window for each Boolean model. The latter
follows a Poisson distribution with parameter EŒNh� D � � EŒV2.Œ0IL�2 C Z0/�. (The
correlation coefficients are larger than 0.85.) There is only a small relative difference
between the parameters EŒNh� for the different considered Boolean models, because
the observation window is large when compared to the typical grain Z0. Therefore,
the corresponding Poisson distributions are very close after standardization (dashed
green line in Fig. 12.6) and coincide with the histograms of the normalized intrinsic
volumes.
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Fig. 12.6 Histograms f of the normalized intrinsic volumes OVi (see (12.60)) of Boolean models
with either aligned rectangles or rectangles with an isotropic orientation distribution. The aspect
ratio of the rectangles is 1=2. The dashed black line depicts the density of a normal distribution. The
dashed green line represents a standardized Poisson distribution. On the left hand side, two samples
of the Boolean models with either an isotropic orientation distribution or aligned rectangles are
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rescaled Euler characteristic V0 in the isotropic and aligned case as well as the corresponding
probability mass functions of the number of grains Nh hitting the observation window with mean
values 59:4 and 60:5, respectively
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Chapter 13
Cell Shape Analysis of Random Tessellations
Based on Minkowski Tensors

Michael A. Klatt, Günter Last, Klaus Mecke, Claudia Redenbach,
Fabian M. Schaller, and Gerd E. Schröder-Turk

Abstract To which degree are shape indices of individual cells of a tessellation
characteristic for the stochastic process that generates them? Within the context of
stochastic geometry and the physics of disordered materials, this corresponds to the
question of relationships between different stochastic processes and models. In the
context of applied image analysis of structured synthetic and biological materials,
this question is central to the problem of inferring information about the formation
process from spatial measurements of the resulting random structure. This chapter
addresses this question by a theory-based simulation study of cell shape indices
derived from tensor-valued intrinsic volumes, or Minkowski tensors, for a variety
of common tessellation models. We focus on the relationship between two indices:
(1) the dimensionless ratio hVi2=hAi3 of empirical average cell volumes to areas,
and (2) the degree of cell elongation quantified by the eigenvalue ratio hˇ0;21 i of the
interface Minkowski tensorsW0;2

1 . Simulation data for these quantities, as well as for
distributions thereof and for correlations of cell shape and cell volume, are presented
for Voronoi mosaics of the Poisson point process, determinantal and permanental
point processes, Gibbs hard-core processes of spheres, and random sequential
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absorption processes as well as for Laguerre tessellations of configurations of
polydisperse spheres, STIT-tessellations, and Poisson hyperplane tessellations.
These data are complemented by experimental 3D image data of mechanically stable
ellipsoid configurations, area-minimising liquid foam models, and mechanically
stable crystalline sphere configurations. We find that, not surprisingly, the indices
hVi2=hAi3 and hˇ0;21 i are not sufficient to unambiguously identify the generating
process even amongst this limited set of processes. However, we identify significant
differences of these shape indices between many of the tessellation models listed
above. Therefore, given a realization of a tessellation (e.g., an experimental image),
these shape indices are able to narrow the choice of possible generating processes,
providing a powerful tool which can be further strengthened by considering density-
resolved volume-shape correlations.

13.1 Shape Descriptors for Random Cells

In 1966, Mark Kac [39] posed the now famous question “Can one hear the shape of
a drum”? This question referred to the uniqueness of the spectrum of the Helmholtz
equation, i.e., the eigenmodes—perceptible as acoustic waves to the ear—with
respect to different shapes of the Dirichlet boundary conditions. In general, the
answer to Mark Kac’s question is “No” as examples of distinct drum shapes exist
that give the same spectrum of eigenmodes. Nevertheless, while not providing a
unique characterization of the shape of the drum, the eigenmode spectrum contains
substantial information about the shape of the drum. Given a specific eigenmode
spectrum, many drum shapes can be excluded as the possible origin of the sound.
While short of being a unique determinant, several aspects and properties of the
shape of the drum can be inferred from an observed eigenmode spectrum. For
example, Mark Kac showed how to some degree we can “hear” the connectivity
of the drum. In fact, Mark Kac derived a relationship between the eigenmode
spectrum of a drum and its shape quantified by Minkowski functionals or intrinsic
volumes [39]. This family of integral geometric measures are also at the heart of
this chapter.

Here, we address a similar question for stochastic spatial tessellation models,
“Can one ‘see’ the stochastic process that generates a disordered structure (by
considering only geometric characteristics of individual cells)?”. This question
refers to the uniqueness of average or distributional properties of geometric
characteristics of a random tessellation—those that can be ‘seen’—with respect
to different stochastic processes that underly the formation of the tessellation.
However, the answer to this question bears close analogies to the answer to Kac’s
question: the answer to our question is also “no”, since there are at least two distinct
tessellation models that agree in any single cell property. An example of such a pair
is the Poisson hyperplane tessellation [16] and the STIT tessellation (STable with
respect to ITeration) [76], see Fig. 13.1 and Sect. 13.2.4; a measurement of single
cell properties can never uniquely infer which of these two models has generated
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Fig. 13.1 Two random tessellations that have identical single cell properties but a different global
arrangement: a Poisson hyperplane tessellation (a), see Sect. 13.2.4.1, and a STIT tessellation (b),
see Sect. 13.2.4.2

the tessellation. On the other hand, like the eigenmode spectrum in Kac’s question,
the distributions and averages of single-cell properties of the tessellation are strongly
dependent on the underlying stochastic process. In reverse, their measurement can
be used to discriminate between possible underlying stochastic processes.

We investigate a variety of random tessellations that are stationary, that is,
statistically homogeneous. We address the question which of their properties can
be captured by geometric shape indices of the typical cell. That is to say, what
information is contained in a local structure characterization.

There is a plethora of very different tessellation models that are important
across many disciplines, from mathematics, physics, chemistry and biology to
computer, life, and social sciences. Very different types of random or disordered
tessellations appear ubiquitously in nature in very different systems, e.g., metal
alloys, foams, biological tissues, and geological formations. Moreover, they are not
only used to model cellular spatial systems but also for point pattern analysis or local
optimization. For an overview see, e.g., [16, 71, 73, 79]. In our simulation study, we
focus on three-dimensional systems, but the definitions and concepts can be applied
or generalized to arbitrary dimensions.

Random tessellations can vary both in their geometric construction principle [19]
and in the underlying stochastic process [16]. Although based on the same point
pattern, different cells can be constructed according to varying protocols, but the
same construction principle can also be applied to different random processes.
We analyze a variety of important mathematical models and physical systems. We
especially compare random tessellations with the same construction principles but
different underlying stochastic processes. How are the shape indices of their typical
cells related to each other? How do they differ from one another?

A special emphasis is on the characterization of anisotropy or elongation of
the cell. Even in a statistically isotropic ensemble, a single cell usually exhibits a
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non-uniform orientation of its normal vectors. Similar to the method described
in [96], we quantify the latter geometric anisotropy by Minkowski tensors.

An overview of the different construction principles and underlying stochastic
processes that are analyzed here is given in Sect. 13.2. Here, we also relate the
different nomenclatures that are commonly used in various fields of research.
Moreover, we here provide the simulation details.

In Sect. 13.3, we present the here used shape indices and discuss how the
Minkowski tensors serve as robust and sensitive measures of anisotropy.

In Sect. 13.4, we estimate the expectations of anisotropy indices of a typical
cell in these models and physical systems, from which a “map of anisotropy” is
constructed that to some extent classifies and relates the different tessellations.
In Sect. 13.5, we extend the analysis and estimate the full probability density
functions of both Minkowski functionals and anisotropy parameters. There, we find
that the shape characterization based only on a single descriptor can distinguish
such different tessellations as Voronoi or hyperplane tessellations. However, the
probability density functions of the normalized Minkowski functionals for the
Voronoi tessellations of (random) point processes can hardly distinguish quite
different physical systems.

Therefore, we introduce in Sect. 13.6 a more sensitive structure characterization:
we determine the mean anisotropy index as a function of the cell volume, i.e., con-
ditional on the cell size. Loosely speaking, we distinguish the shape of small from
that of large cells. For the different physical systems which are indistinguishable
w.r.t. the former structure based on a single index, we detect a qualitatively different
behavior with the more sensitive analysis based on two different shape descriptors.
The latter can clearly distinguish the different Voronoi tessellations. Moreover,
for the Poisson hyperplane tessellations with an isotropic orientation distribution
compared to those with cuboidal cells, we find that while small cells in the latter
tessellations tend to be more anisotropic, this trend changes for the large cells that
are on average more isotropic. Section 13.7 contains the conclusion.

13.2 Construction of Random Tessellations

In its most general form, a tessellation is a collection of subsets of Rn (cells) with
pairwise disjoint interiors whose union is R

n. In such a generality the cells need
not be connected, let alone convex. A rigorous introduction to the mathematical
theory of random tessellations with convex cells is given in [90]; see also [16].
Some basic properties of more general (stationary) random tessellations (partitions)
are discussed in [51].

The mathematical properties of a random tessellation are the result of a some-
times subtle interplay of the geometric construction principle and the underlying
stochastic process. Section 13.2.1 describes some basic geometric construction
principles and Sects. 13.2.2–13.2.5 some stochastic processes driving random tes-
sellations. Figure 13.2 visualizes some of these examples.
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Fig. 13.2 Examples of tessellations: (a) a crystalline packing of hard spheres and the corre-
sponding Voronoi cells of the sphere centers (reproduced from [97], with the permission of AIP
Publishing), (b) Voronoi diagram of the sphere centers of an equilibrium hard-sphere fluid (using
sphere configurations from Steven Atkinson), (c) an experimental random packing of ellipsoids
and some corresponding Set Voronoi cells (reprinted with permission from [87]. Copyright 2015
by the American Physical Society), (d) random monodisperse foam in the dry limit (data by Andy
Kraynik), (e) three cells out of a Poisson-Voronoi tessellation, and (f) cells of a STIT tessellation

13.2.1 Geometric Construction Principles

A Voronoi tessellation (also known as Voronoi diagram) is constructed from a given
finite or locally finite subset of points (centers). The (Voronoi) cell of a center is
the set of points in R

n that are closer to this center than to any other center. The
cells are convex polytopes (finite intersections of half-spaces) which are bounded if
the convex hull of the points equals R

n; for examples, see Fig. 13.2a, b. Voronoi

http://dx.doi.org/10.1063/1.4811939
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.158001
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tessellations can be generalized in several ways [79, Chap. 3]. For instance one
might replace the set of centers by a set of particles of equal or different shape.
This leads to the Set Voronoi diagrams. In such a tessellation, a cell of a particle
is the set of points in R

n that are closer to the surface of this particle than to
any other particle. Instead of the distance to the center of a particle, like in the
standard Voronoi tessellation, the distance to the surface of a particle is used. This
definition results in curved facets, see Fig. 13.2c; for details of the algorithm applied
here, see [84]. Another rich source for more general models are distances other
than the Euclidean one. A Laguerre tessellation (also called power diagram), for
instance, is based on a weighted power distance, where each cell has its individual
weight. Such tessellations do have convex cells. However, not every center has a
non-empty cell. An example is a system of impenetrable polydisperse spheres, i.e.,
spheres with different volumes, where the radius R of a sphere is the weight for
the corresponding cell. Instead of the Euclidean distance r between a point outside
of a sphere and a sphere center, the Laguerre tessellation then uses the weighted
power distance r2 � R2. Voronoi tessellations are widely used in such diverse fields
as, e.g., astronomy [26], wireless networks [6, 7], archeology, biology, chemistry,
computational geometry, geology, or marketing; see [16, 79, 108].

Tessellations very different from Voronoi diagrams are determined by a (locally
finite) collection of (intersecting) hyperplanes. The interiors of the cells are the
connected components of the complement of the union of these hyperplanes. Hence
any such hyperplane is the union of some .n�1/-dimensional facets. The planar case
of this hyperplane tessellation is a line tessellation. The vertices of a non-degenerate
tessellation all have degree 2n [90].

A third class of tessellations results from iterative cell divisions; see [19]. One
starts with a (bounded) convex window which is divided by a (random) hyperplane.
Then the cell division process is continued independently on both resulting cells.
In contrast to Voronoi and hyperplane tessellations, this cracking pattern algorithm
does not produce face-to-face tessellations, compare Figs. 13.1b and 13.2f. In a face-
to-face tessellation, the intersection of two cells is either empty or a face of both.
The properties of the tessellation depend on the rules for randomly selecting the
cells to be split and the (random) choice of the dividing hyperplanes. One important
example, the STIT-tessellation [76], is discussed in Sect. 13.2.4.2, see Fig. 13.2f.

13.2.2 Point Processes

This section considers the completely random Poisson point process, repulsive
determinantal point processes, clustering permanental processes, and patterns with
a minimal distance between the points constructed by random sequential addition
[34, 38].

A point process ˚ (on R
n) is a random collection of points which is locally

finite, that is, the points are not allowed to accumulate in bounded sets. The number
of points in a (Borel) set B � R

n is denoted by ˚.B/. Here, point processes are
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always assumed to be stationary, that is, the distribution of ˚ does not change under
simultaneous shifts of all points. The mean (or expected) number � D EŒ˚.Œ0; 1�n/�
of points falling into the unit cube Œ0; 1�n is called intensity of ˚ .

In most cases the distribution of ˚ can be described by the correlation functions.
This is a countable family of functions gkWRn ! Œ0;1/, k 2 N, satisfying

EŒ˚.B1/ � � �˚.Bk/� D � k
Z

B1
���
Bk

gk.x1; : : : ; xk/ d.x1; : : : ; xk/;

for all k 2 N and all pairwise disjoint Borel sets B1; : : : ;Bk � R
n. Note that

the mathematical expectation operator EŒ�� corresponds to the ensemble average in
physics literature.

For a finite point pattern, � k � gk.x1; : : : ; xk/d.x1; : : : ; xk/ can be interpreted as the
probability to find a point in each of the infinitesimally small neighborhoods of the
positions x1; : : : ; xk.

13.2.2.1 The Poisson Process

Intuitively speaking, a Poisson point process (PPP) is a completely independent
point process, where the points are randomly placed in space uniformly distributed,
e.g., see [20, 52].

The (stationary) Poisson process is the most fundamental example of a point
process. In this case, the correlation functions do not depend on the locations and
are simply given by

gk.x1; : : : ; xk/ D 1:

For a Poisson process ˚ with intensity � > 0, the number of points in pairwise
disjoint sets are stochastically independent. Moreover, the number of points in a set
B has a Poisson distribution, that is

P.˚.B/ D m/ D �mVn.B/m

mŠ
e��Vn.B/; m D 0; 1; : : : ;

where Vn.B/ denotes the volume (Lebesgue measure) of B.
The PPP can be interpreted as discrete white noise (appearing, e.g., as random

noise in a detector), and the configurations are equivalent to the grand-canonical
version of the ideal gas model. In the latter case, the intensity is equivalent to the
fugacity z WD e�=.kBT/ of the ideal gas (if the unit of length is defined by the thermal
de Broglie wavelength), where � is the chemical potential, T the temperature, and
kB the Boltzmann constant.

In this chapter we shall be concerned with the Poisson Voronoi tessellation, that
is with the Voronoi tessellation generated by the points of a Poisson process, see
Fig. 13.2e. Many probabilistic properties of this benchmark model of stochastic
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geometry are now well understood; see [16, 71, 90] for first order properties and
[53] for (asymptotic) second order properties.

To simulate a Poisson point pattern with intensity � , the random number of points
within a finite simulation box is drawn from a Poisson distribution with parameter � �
Vbox, where Vbox is the volume of the simulation box. The points are then uniformly
distributed within the simulation box. Data in Figs. 13.4, 13.5, 13.8a, and 13.9 is
based on simulations of about 1000 patterns, each with on average 2000 points.

13.2.2.2 Determinantal Point Processes

Determinantal point processes (DPP) were introduced in [58] (see also [14]) to
model the behavior of fermions in quantum mechanics. They are also used to
describe transmitters in wireless networks [21]. Determinantal processes model
“soft” repulsive particles in the sense that although it is unlikely, particles can
get arbitrarily close to each other. (This is in contrast to the hard-sphere systems
discussed below.)

The mathematical definition of a DPP is based on a kernel KWRn � R
n ! R

which is assumed to generate a self-adjoint, non-negative and locally trace-class
integral operator on L2.Rn/ with eigenvalues in the interval Œ0; 1�, see [102]. Then
the correlation functions are given by the determinants

gk.x1; : : : ; xk/ D ��k det.K.xi; xj//1�i;j�k:

We refer to [34] for a nice survey of the probabilistic properties of a DPP. For our
present studies we have simulated the DPP with a software package provided by
Ege Rubak [55] written for SPATSTAT [8], which is a package for the statistics
software R. Data in Figures 13.4, 13.5, 13.8a, and 13.9 is based on simulations of
100 point patterns with on average 2000 points (using a power exponential spectral
model with ˛ D 0:12 and � D 10, as explained in [55]).

13.2.2.3 Permanental Point Processes

Permanental point processes are the attractive counterpart of determinantal pro-
cesses and can be used to model bosons in quantum mechanics [58]. The definition
of a permanental point process is again based on a kernel KWRn � R

n ! R which
is assumed to generate a self-adjoint, non-negative and locally trace-class integral
operator on L2.Rn/. Then the correlation functions are given by

gk.x1; : : : ; xk/ D ��k per.K.xi; xj//1�i;j�k;
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where the permanent perA of a k � k-matrix A D .ai;j/ is given by

perA WD
X

�2˙k

kY

iD1
ai;�.i/:

Here ˙k denotes the group of permutations � of f1; : : : ; kg.
The mathematical properties of the permanental process are analyzed in [34, 62],

see also [52]. A remarkable feature of such a process is that it is doubly stochastic
Poisson, i.e., an inhomogeneous PPP with a random intensity function. If the latter
is stationary, so is the resulting process. To explain this we let .Y1.x//x2Rn and
.Y2.x//x2Rn denote two independent centered Gaussian random fields with the same
covariance function

EŒY1.x/Y1.y/� D EŒY2.x/Y2.y/� D K.x; y/

2
; x; y 2 R

n:

Let Z WD .Z.x//x2Rn , where Z.x/ WD Y21 .x/ C Y22 .x/. Then the permanental
process with this kernel K has the same distribution as a point process ˚ with the
following two properties. Given Z, the number of points in pairwise disjoint sets
are conditional independent, while the number of points in a set B has a conditional
Poisson distribution with parameter

R
B Z.x/ dx, that is,

P.˚.B/ D m j Z/ D
�R

B Z.x/ dx
�m

mŠ
e� R

B Z.x/ dx; m D 0; 1; : : : :

As pointed out in [62], this doubly-stochastic construction allows for a fast
simulation of permanental point processes. First, the two Gaussian random fields
Y1 and Y2 are simulated in an observation window W. Then, we simulate an
inhomogeneous Poisson point process with intensity function Z.x/ WD Y21 .x/ C
Y22 .x/. Therefore, we simulate a homogeneous PPP ˚ 0 (see Sect. 13.2.2.1) with
intensity �0 � maxx2W Z.x/ but only accept a point y 2 ˚ 0 with probability Z.y/=�0,
which is called independent Poisson thinning [72].

Because of the vast number of possible Gaussian random fields, there is a great
wealth of permanental point processes that produce quite different point patterns.
Here, we restrict ourselves to a class of Gaussian random fields that is especially
important in physics: the Gaussian random wave model (GRWM), see [22] and
references therein. Intuitively speaking, the GRWM is defined as a superposition of
plane waves with random phases and orientations of the wave vector but a constant
absolute value of the wave vector; with an increasing number of random plane
waves, the random field converges to a Gaussian random field. More precisely, for
each run we add Nw D 100 plane waves and use

f .x/ D aw �
s

2

Nw
�

NwX

iD1
cos.ki � x C �i/; (13.1)
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as a very good approximation of a Gaussian random field. The random phases �i are
uniformly distributed in Œ0; 2�/.

An anisotropic GRWM can be constructed by choosing a non-isotropic orien-
tation distribution of the wave vectors ki. Instead of a uniform distribution of the
orientation of ki on the unit sphere, the orientation can, for example, be restricted to
a spherical cap with opening angle !, which is the angle between the edge and the
center of the spherical cap (with the origin as the vertex). Both arbitrarily anisotropic
and perfectly isotropic models can be obtained by varying ! 2 .0; �=2�.

For the present study, we have simulated GRWMs in W D Œ0IL/3 with L D 25,
jkij D 10=L, aw D 1=2, and 2!=� D 0:01; 0:03; : : : ; 0:09; 0:1; 0:3; : : : ; 0:9; 1. For
each value of !, we analyze 100 point patterns; each contains on average about 8000
points, but the number of points in the single samples vary between 500 and 40,000.

13.2.2.4 Random Sequential Addition

An intuitive explanation of “random sequential addition” (RSA), also called “ran-
dom sequential adsorption” or “simple sequential inhibition”, is to subsequently
place spheres uniformly distributed into space. However, a sphere is only accepted
if there is no overlap with spheres that have already been accepted [108]. The point
process is then formed by the centers of the accepted spheres. This notion of RSA
is nearly identical to the (in mathematics well-known) Matérn III process [75, 105].
There is only a difference in finite observation windows. In the latter process, the
intensity is fixed and the global packing fraction can (slightly) fluctuate, that is,
the fraction of the volume occupied by the particles. However, in the RSA process
studied here the global packing fraction is fixed.

The RSA process can be generalized by introducing “ghost” particles, i.e.,
particles that have been rejected but for a finite time still block later arriving
spheres [109]. In the limit that such a rejected sphere blocks all later arriving
spheres, these ghost packings correspond to the Matérn II process [107]. The latter
is exactly solvable in that all correlation functions are explicitly known across all
dimensions [109]. In contrast to the Matérn I and II processes (see e.g. [16, 44, 104,
107]), the RSA model does not seem to be amenable to a first and second order
analysis. A likelihood based statistical inference, however, is possible; see [35].

Sometimes, RSA is only referring to the saturation limit, i.e., a configuration
where no additional sphere can be accepted. The volume fraction in the saturation
limit in the spherical spatial case is about 0:384131.˙2 � 10�6/ [112]. In this
chapter, RSA refers to a system for which the global packing fraction is chosen
to be some value below this limit. Spheres are added to the ensemble only until this
global packing fraction is reached. In the dilute limit, i.e., vanishing global packing
fraction, an overlap with a previously accepted sphere gets increasingly unlikely.
Thus, the structure of the RSA sphere configurations becomes similar to a Poisson
point process.

In chemistry and physics, RSA is used to model the irreversible adsorption or
adhesion of, for example, proteins or cells at solid interfaces. If such a particle is
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(randomly) attached to the surface, it can no longer move or leave the interface, and
it prevents other particles from being absorbed in its neighborhood [24, 106].

For Sect. 13.4, we simulate for each occupied volume fraction (� D
0:03; 0:06; : : : ; 0:36) 100 samples of 2000 spheres. For Sects. 13.5 and 13.6, we
simulate 1000 patterns where each again consists of 2000 spheres. A description
of the simulation procedure (which follows straightforwardly from the definition of
the process) can, e.g., be found in [108, Sect. 12.3, p. 280].

13.2.3 Systems of Hard Particles

We also analyze systems of hard, impenetrable particles and the resulting Voronoi
tessellations: simulations of equilibrium hard spheres, a variety of crystalline
arrangements of spheres, and experimentally packed spheres and ellipsoids.

13.2.3.1 Equilibrium Hard Spheres

If hard spheres are not motionless but allowed to move, the system can equilibrate,
so that the point process defined via snapshots of the sphere centers becomes
statistically invariant over time, see Fig. 13.2b. It can then serve as a simple
model for liquids. In mathematics, this model is often called a hard-sphere Gibbs
process [16, 20, 81]. This is a point process ˚ satisfying the integral equation

E
hX

x2˚
f .x; ˚/

i
D b � E

h Z

f .x; ˚ [ fxg/e�E.x;˚/ dx
i

for all (measurable) functions f of x and ˚ . In physics, it corresponds to a
grand canonical ensemble of impenetrable spheres that are in thermodynamic
equilibrium with a reservoir that allows for an exchange of energy and particles.
The number � log b can be interpreted as chemical activity. The intensity � is an
increasing function of b, see [16, p. 189]. E.x; ˚/ is some fixed positive parameter
if the sphere around x does not intersect the spheres around the points of ˚ ;
otherwise E.x; ˚/ WD 1. Here, all spheres have the same radius. Replacing in the
above integral equation E.x; ˚/ by a more general (energy) function, yields Gibbs
processes as characterized in [78]. The usual definition of a Gibbs process proceeds
with specifying the conditional finite window distributions given the configuration
in the complement and then using the Dobrushin-Lanford-Ruelle (DLR) equation,
see [16, 83].

Like for the RSA process, the equilibrium hard-sphere fluid becomes, in
the dilute limit, similar to a Poisson point process. It can then be called a
hard-sphere gas. It was shown in [61] that the packing fraction of equilibrium
hard spheres tends, as b ! 1, monotonically to the closest packing density
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�max D �=
p
18 � 0:74 [30]. With increasing packing fraction, there is a disorder-

to-order phase transition [1, 111] and at a maximum global packing fraction the
spheres form a face-centered-cubic crystal (or one of its stacking variants).

This work analyzes equilibrium configurations of hardcore spheres without
gravity in the isotropic fluid phase obtained by Monte Carlo simulations. The data
is taken from [41]. The results are averaged over 10 systems per global packing
fraction with up to 16,384 particles. Dense systems contain only 4000 particles due
to computational costs.

13.2.3.2 Crystalline Sphere Packings

We also determine the geometric anisotropy of cells in deterministic, perfectly
ordered tessellations. More specifically, we analyze Voronoi cells of crystal lattices
that are formed by the centers of hard spheres in mechanically stable packings [18,
113]. We compare the random packings of hard spheres to crystalline packings of
hard spheres that are locally jammed, which means no sphere can be moved while
all other spheres are kept fix. (In three dimensions, each sphere touches at least four
other spheres of which not all are on the same hemisphere.) Moreover, each sphere
is connected to any other sphere via a chain of contacts. The data includes a great
range of Bravais lattices, which in three-dimensions are lattices that are generated
by discrete translations of three independent vectors, therefore all lattice sites are
equivalent. The most isotropic unit cells (w.r.t. the distribution of the normal vectors
on the cell boundary) are in our analysis those of the simple cubic, body-centered,
and face-centered cubic packing as well as the hexagonal close-packed arrangement
and the hexagonal AAA stacking, see Fig. 13.2a.

The data for the Minkowski functionals and tensors of the Voronoi cells for these
sphere packings are provided by Richard Schielein, for more details see [97].

13.2.3.3 Jammed Ellipsoids and Spheres

Jammed packings of hard particles need not to be perfectly ordered like the
crystalline sphere packings. There are also mechanically stable packings that are
disordered. The local structure is more similar to an equilibrium liquid like in
Sect. 13.2.3.1 but the particles are jammed.

Moreover, the simple model of hard spheres can be extended to non-spherical
particles, namely ellipsoids. However, in contrast to the equilibrium hard-sphere
fluid, we here analyze experiments with non-equilibrium jammed packings. This
work uses oblate ellipsoids (e.g. two equally long and one small half-axis) created
by 3D printing with aspect ratios ˛ D 0:40; 0:60; 0:80; 1:00, where the aspect ratio
is defined as the ratio of the smallest to the largest length of a semi-axis. For each
aspect ratio at least ten packings of 5000 ellipsoids with different global packing
fraction are analyzed. The particles are randomly packed into a cylindrical container
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by different preparation protocols to get an initial loose packing. They can then
be compactified by tapping to get a variety of different packing fractions [87]. A
3D image is gained by imaging the packing with X-ray tomography. The positions
and orientations of the ellipsoids are detected from the grayscale image of the
tomographic reconstruction, for more details see [85]. To reduce boundary effects,
the outer particles are removed for the analysis leaving approximately 800 particles
in the core region.

The Voronoi diagram of the ellipsoid centers is not a useful tessellation of the
void space for non-spherical particles like ellipsoids. The particles are anisotropic,
and facets of the Voronoi cell could cut the particles. Therefore, we construct the
Set Voronoi diagram of the jammed ellipsoid packings, see Fig. 13.2c and [84], as
described in Sect. 13.2.1.

13.2.4 Tessellations Constructed by Hyperplanes

Sections 13.2.2 and 13.2.3 discuss particle processes and their Voronoi tessellations
or generalizations thereof. Quite different tessellations can be constructed by a
collection of intersecting hyperplanes. In Sect. 13.1, Fig. 13.1 compares realizations
of two such tessellations, which have the same distribution of the typical cell, i.e.,
the same single cell properties, but an obviously different global structure.

13.2.4.1 Poisson Hyperplane Tessellations

Loosely speaking, a Poisson process ˚ of hyperplanes can be defined by replacing
the points of a PPP by hyperplanes [90]. This means that ˚ is a countable collection
of random hyperplanes with the following two properties. First, the random number
of hyperplanes with a prescribed property follows a Poisson distribution. Second,
given a finite number of mutually exclusive properties, the random numbers of
hyperplanes with these properties are stochastically independent. Such a process
is stationary if its distribution does not change under simultaneous translations of
the hyperplanes. In this case, the distribution of ˚ is determined by an intensity
parameter (the cumulative surface area of hyperplanes in the unit volume) and a
directional orientation distribution Q, an (even) probability measure on the unit
sphere. If Q is uniform, then the tessellation is statistically isotropic. In general,
Q can be used to model preferred directions.

Here, we analyze Poisson hyperplane tessellations (PHP) with two different
orientation distributions of the hyperplanes. They are either isotropically distributed,
see Fig. 13.1a, or only three directions are allowed that are orthogonal to each other,
and the probability for each is 1=3. Thus, the single cells form cuboids.

We simulate these tessellations with unit intensity. For the isotropic tessellations,
we use software written by Felix Ballani. We analyze 2 � 107 cells in the isotropic
tessellation and 107 cuboidal cells in the tessellation with three allowed directions.
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13.2.4.2 STIT Tessellations

STIT (STable with respect to ITeration) tessellations [16, 76] are the result of an
iterative cell division process. The original cell (e.g., the simulation box) has an
exponential random lifetime whose parameter (in the isotropic case) is proportional
to its first intrinsic volume, i.e., the .n � 1/-st Minkowski functional. At the end
of a lifetime, the cell is divided by a random hyperplane. The two new cells
again have exponential lifetimes whose parameters are determined as above and
which are assumed to be independent. Stopping this process after some fixed
deterministic positive time yields the STIT tessellation. Different STIT models can
be constructed from different orientation distributions of the random hyperplanes,
compare Figs. 13.1b and 13.2f. Potential applications of the STIT tessellations are
approximations of ‘hierarchical’ crack or fracture structures [76].

Although being globally very different from Poisson hyperplane tessellations,
the typical cell of a STIT tessellation has the same distribution as that of the
corresponding Poisson hyperplane tessellations; see [76]. Therefore, also the joint
distribution of all Minkowski functionals and tensors of a typical cell is the same
in a STIT or in a Poisson hyperplane tessellation (with the same intensity and
orientation distribution of the hyperplane directions). For further properties of STIT-
tessellations we refer to [67, 93, 94].

13.2.5 Random Dry Foam and Laguerre Tessellations

Foams like dry soap froth in the limit of a vanishing liquid content [47], that is with
infinitely thin soap films, are important examples of tessellations which minimize
surface area [32]. The foam that is analyzed here, see Fig. 13.2d, is a realistic model
for monodisperse dry soap froth, where all cells have the same volume [49].

Interestingly, for random foams, the basic stochastic and geometric building
blocks are closely connected [48]. In this sense, it can be seen as a hybrid model
of different construction principles and stochastic processes.

The simulation starts from the Voronoi diagram of a random hard-sphere
packing, derived by the Lubachevsky-Stillinger packing algorithm [57]. Then, the
soap froth is equilibrated by Kenneth Brakke’s SURFACE EVOLVER [15]. The
surface area is minimized, and the mechanical forces balanced [25, 49, 50]. The
data is provided by Andy Kraynik.

We also analyze random Laguerre tessellations with varying volume distribu-
tions, which are intended as a mathematical model similar to polydisperse foam
structures, where the volume of the cells can vary strongly [54].

The data is taken from [82]. First, a random ensemble of hard spheres is simulated
where the volume of the spheres follows a log-normal distribution with a coefficient
of variation (CV) between 0:2 and 2:0. The packing fraction, i.e., the volume
fraction that is occupied by the spheres, is 60%. For each chosen parameter, we
simulate five samples of sphere packings in the unit cube (with periodic boundary
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conditions) each containing 10,000 spheres. Using the radii of the hard spheres as
weights, the Laguerre tessellation is constructed as described in Sect. 13.2.1.

13.3 Minkowski Tensors and Anisotropy Indices

Intrinsic volumes are in physical literature commonly referred to as “Minkowski
functionals” and the tensor valuations as “Minkowski tensors”. (The only difference
to the mathematical literature is in the normalization.) They are efficient numerical
tools, which have been successfully applied to a variety of biological [9, 13] and
physical systems [45, 65, 66] on all length scales from nuclear physics [99, 100],
over condensed and soft matter [31, 42, 92, 110], to astronomy and cosmology [17,
23, 27, 28, 43, 89] as well as to pattern analysis [12, 60, 64, 91]. They allow for a
versatile morphometric analysis of random spatial structures on very different length
scales [45].

The Minkowski tensors allow for a comprehensive [2, 3] and systematic approach
to quantify various aspects of structural anisotropy [96]. A local analysis based
on the anisotropy of a single cell quantified by the Minkowski tensors, e.g.,
allows to detect phase transitions and the onset of crystallinity in jammed packings
[40–42, 69].

Free software to calculate Minkowski functionals and tensors of both voxelized
and triangulated data, PAPAYA and KARAMBOLA (for two and three dimensions,
respectively), is available at:

www.theorie1.physik.fau.de/research/software.html

A comprehensive introduction to the Minkowski tensors as anisotropy indices and
exemplary applications can be found in [95, 96]. A comparison of physical and
mathematical notation is provided in [98].

13.3.1 Integral Geometric Definition

To allow easy comparison of the results presented here with the existing physical
literature, we shortly recall the definitions of these quantities with the relevant
notational adaptations; see Sect. 1.3 in Chap. 1 for details.

Let K be a convex body inRn, that is, a compact convex subset of Rn. The parallel
body K C 
Bn, 
 � 0, consists of all points in R

n with Euclidean distance at most

 from K. The volume Vn.K C 
Bn/ of the parallel body K C 
Bn can be expressed
by the following version of Steiner’s formula:

Vn.K C 
Bn/ D W0.K/C 1

n

nX

�D1

�

 
n

�

!

W�.K/:

www.theorie1.physik.fau.de/research/software.html
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A comparison with the intrinsic volumes in Eq. (1.16) shows that Vn D W0 is the
volume and that

V� D 1

n�n��

 
n

�

!

Wn�� for � � n � 1:

A similar reindexing and rescaling applies to the Minkowski tensors defined in
Chap. 2. For r; s 2 N0 we define following [63, 90]

Wr;0
0 .K/ D

Z

K
xrdx;

and

Wr;s
� .K/ D n��

�n
�

�

Z

Rn
Sn�1

xrus�n��.KI d.x; u// for n � � � 1;

where xr and us are symmetric tensor products, and xrus is the symmetric tensor
product of xr and us, and��.KI � / is the �-th support measure of K; see Sect. 1.3 in
Chap. 1. Comparing this with (2.4), (2.6), and (2.7), we see that

˚ r;0
n .K/ D 1

rŠ
Wr;0
0 .K/;

and

˚ r;s
� .K/ D 1

rŠsŠ!n��Cs

 
n � 1
�

!

Wr;s
n��.K/ for n � � � 1:

In this work, we concentrate on the translation invariant Minkowski tensors W0;2
� .

For a sufficiently smooth three-dimensional compact convex set K, these tensors of
rank two can be represented by symmetric matrices

W0;2
1 D

Z

@K

 
n2x nxny
nxny n2y

!

dA; (13.2)

and

W0;2
2 D

Z

@K

�1 C �2

2
�
 

n2x nxny
nxny n2y

!

dA; (13.3)

where n D .nx; ny/ describes the normal vector at the boundary of K; �1 and �2 are
the principle curvatures on @K, and .�1 C �2/=2 is the mean curvature.
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13.3.2 Geometrical Interpretation

In three dimensions, the Minkowski functionals are proportional to either the
volume, the surface area, the integrated mean curvature, or the Euler characteristic.
The latter is a topological constant, which measures in a certain way connectivity.
For a single cell without holes, the Euler characteristic is trivially equal to unity.

The Minkowski functionals of a domain K can be expressed by integrals over
K or over its boundary @K. These scalar measures are naturally generalized to the
Minkowski tensors by including an integral over the tensor products of the position
vector r and the surface normal vector n. In other words, they are the moment tensors
of the position or normal vectors.

The tensors using the position vector are closely related to tensors of inertia
where the mass is located in the region of integration and possibly weighted by the
curvature. W2;0

0 contains the information of the tensor of inertia of the solid object,
W2;0
1 of a hollow object where the mass is located in the shell. For the example of

polytopes in three dimensions, W2;0
2 and W2;0

3 are related to the tensor of inertia
if the mass is distributed on the edges or vertices but weighted with the opening
angles. The tensor W0;2

1 is proportional to the moment or covariance tensor of the
distribution of normal vectors, in other words, of the orientation of the surface;
W0;2
2 is proportional to the according moment tensor weighted by the curvature

distribution. In contrast to the tensors that are related to the tensors of inertia, the
moment tensors of the normal distributions are translation invariant.

The Minkowski tensors allow for a systematic analysis of anisotropy w.r.t.
different geometrical aspects, like the distribution of volume or of the orientation
of the surface. While a domain K might be perfectly isotropic w.r.t. one of these
properties, it can be strongly anisotropic w.r.t. another property. For example, a
homogeneous random two-phase medium, like a stationary Boolean model, has an
isotropic distribution of the volume; hence, the tensors W2;0

� are isotropic [33, 96].
However, it can be strongly anisotropic w.r.t. the distribution of the normal vectors
on the interface, which is detected by W0;2

1 [33, 96].
Different normalizations are used in different fields of research. In this chapter,

we use for the Minkowski functionalsW� and tensors Wr;s
� a normalization such that

W0 is the volume and W1 is the surface area. The normalizations of the Minkowski
tensors are then defined accordingly [45].

Here, the tensor W0;2
3 is not of interest because it is proportional to the unit tensor

times the Euler characteristic (see detailed discussion in the conclusion section
of [68]). The latter is, as mentioned above, for a compact, convex cell always equal
to one.
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13.3.3 Shape Indices

Even in a statistically isotropic random tessellation, a typical cell is usually
geometrically anisotropic. There is no globally preferred orientation. However,
given a specific realization of a single cell, the distribution of its normal vectors will
be most likely non-uniform. This geometric anisotropy of each single cell is here
characterized by the Minkowski tensors. Each tensorW0;2

� contains both information
about the preferred direction and the amplitude or degree of the anisotropy. The
latter can conveniently be described by a scalar anisotropy index: the ratio of the
smallest to the largest eigenvalue ˇ0;2� of the Minkowski tensor W0;2

� [95, 96]. It
describes the “degree of anisotropy” that is captured by the Minkowski tensor
W0;2
� . (In physics literature, such shape indices are sometimes referred to as “shape

measures.” However, this does not refer to a measure in the mathematical sense.) For
example, if �1 and �3 are the smallest and largest eigenvalues of W0;2

1 , respectively,
the anisotropy index is given by:

ˇ
0;2
1 WD �1

�3
: (13.4)

Smaller values indicate stronger anisotropy. For a ball, ˇ0;21 D 1. A cube also
appears perfectly isotropic to a second rank tensor. Therefore, ˇ0;21 D 1 for a cube.
For a cuboid, the index ˇ0;21 is equal to the ratio of the surface areas of the smallest
and largest faces.

Alternative scalar anisotropy indices qr can also be derived for Minkowski
tensors of arbitrary rank r [40, 69]. The index q2, for example, is equivalent to a
weighted bond orientational order parameter [69]. For two dimensions, see [45].

Given a sample of M cells, we determine for each cell Cm (with m 2 f1; : : :Mg)
the Minkowski functionals W�.Cm/ and the anisotropy indices ˇ0;2� .Cm/. We then
estimate the corresponding mean values for the typical cell by the sample means:

hW�i WD 1

M

MX

mD1
W�.Cm/;

hˇ0;2� i WD 1

M

MX

mD1
ˇ0;2� .Cm/:

(13.5)

Put differently, the shape indexW� (or ˇ0;2� ) is evaluated for each cell separately, and
the arithmetic average is the estimator for the expectation. These estimators can be
justified by the ergodicity properties of the underlying tessellations. Similarly, the
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sample variance over all cells provides an estimate for the variance:

s2W�
WD 1

M � 1

MX

mD1
.W�.Cm/ � hW�i/2; (13.6)

s2
ˇ
0;2
�

WD 1

M � 1

MX

mD1
.ˇ0;2� .Cm/ � hˇ0;2� i/2: (13.7)

Based on the sample mean and sample variance, we define normalized Minkowski
functionals and normalized anisotropy indices:

OW� WD W� � hW�i
sW�

; (13.8)

Ǒ0;2
� WD ˇ0;2� � hˇ0;2� i

s
ˇ
0;2
�

: (13.9)

For these normalized or rescaled shape indices, we also determine estimated
probability density functions (EPDFs) f , that means empirical histograms weighted
by the total number of samples and the bin width. (A bin is a range of values for
which the frequency of occurrence is determined.) In other words, the EPDF is a
relative frequency histogram weighted by the size of each bin.

In Sect. 13.4, we use another shape index

Q WD 36� � hVi2=hAi3; (13.10)

where V.D W0/ is the volume of the cell, A./ W1/ its surface area, and h:i denotes
the sample mean as defined in Eq. (13.5). The mean volume is rescaled by the mean
surface area, so that the resulting index has no unit. The prefactor 36� is chosen
such that the upper bound (which is given by the perfectly isotropic sphere) is unity.

Q can be interpreted as an isoperimetric ratio of the empirical average cell volume
and area. However, the ratio of mean values is in general not equal to the mean
value of the corresponding ratio of volume and surface area. Therefore, Q can be
quite different from the mean isoperimetric ratio (or quotient) of the typical cell. For
example, we will discuss in the following Sect. 13.4 how in strongly polydisperse
tessellations, that is, in tessellations with strong fluctuations in the cell volume,
a few large cells can strongly influence the mean volume and surface area and
thus Q.

For a single body K, the isoperimetric ratio is defined as Qs.K/ WD 36� �
V.K/2=A.K/3, where V.K/ and A.K/ are the volume or surface area of K. It
characterizes to some extent the deviation from a spherical shape: only for a sphere
Qs D 1, for all other bodies Qs < 1. The isoperimetric quotient is, e.g., used
to describe equilibrium phases of packings of hard convex polyhedra. It can be
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Fig. 13.3 Anisotropy indices for exemplary single bodies. The curves show the anisotropy indices
for a family of objects with different aspect ratios

correlated to the coordination number in a map of phases [59] similar to our map of
average anisotropies in the following Sect. 13.4.

In Fig. 13.3, the anisotropy index ˇ0;21 from Eq. (13.4) is compared to the
isoperimetric ratio Qs for some exemplary single bodies. Only for a sphere, both
ˇ0;21 D 1 and Qs D 1. For a cube, ˇ0;21 D 1 but Qs D �=6 � 0:52. The two (red)
lines for cuboids in Fig. 13.3 correspond to either an elongation or a contraction of
one of the sidelengths of a cube. Similarly, the two (cyan) lines show the anisotropy
indices of cylinders with a varying ratio of their heights to their diameters, which
can be larger or smaller than unity. If the ratio is exactly equal to one, ˇ0;21 D 1. If
spherical caps are added to the cylinder, it is called a sphero-cylinder. In the limit of
a vanishing ratio of height to diameter, it becomes a sphere. The spherical segments
in Fig. 13.3 are defined by cutting a sphere with two parallel hyperplanes. More
precisely, they are the intersections of the unit sphere with Œ�1; 1��Œ�1; 1��Œ�h; h�.
The (green) line represents different values of this height h. Finally, Fig. 13.3 plots
the anisotropy indices of prolate ellipsoids (where the two smaller principal axes are
equally long) with different aspect ratios (orange line).
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13.4 Averages and Map of Mean Anisotropy Indices

First, we compare for the tessellations discussed in Sect. 13.2 the mean values of the
Minkowski functionals and tensors of the typical cells.

These averages allow us to construct a “map of anisotropy” [45], see Fig. 13.4.
Each tessellation is represented by its mean anisotropy index hˇ0;21 i, see Eq. (13.4),
and the parameter Q from Eq. (13.10). The map of anisotropy provides a kind of
classification of the tessellation models based on their anisotropy, which can, e.g.,
help to choose the appropriate model for applications.

It also reveals how some of the models can be related to each other. For example,
the systems of equilibrium hard spheres at different global packing fractions
connect, in the two limits of vanishing or maximal packing fraction, the uncorrelated
Poisson point process .C/ and the perfectly ordered close packing on a lattice (gray
dots). The anisotropy indices for the equilibrium hard spheres are represented by
two solid (black) lines. The curve separates into an ordered and a disordered branch
because of the disorder-to-order phase transition, see Sect. 13.2.3.1. (For clarity of
presentation, we connect single data points close to each other by a solid line.)

At the densest global packing fraction �max D �=
p
18 � 0:74 [30], the

spheres form a face-centered-cubic crystal or one of its stacking variants. Due to
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Fig. 13.4 Map of local anisotropy for various tessellations ranging from Poisson and equilibrium
hard sphere (HS) Voronoi tessellations, over PHP tessellations to cells in crystalline sphere
packings. For each tessellation, the mean anisotropy index hˇ0;21 i, see Eq. (13.4), and the parameter
Q from Eq. (13.10) are shown. For the jammed ellipsoid packings, experimental data is shown for
different aspect ratios ˛. The map of anisotropy reveals structural differences between the models,
but also how they are related to each other
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the symmetry of these crystals, the single cells are perfectly isotropic w.r.t. the
anisotropy index ˇ0;21 of the second-rank Minkowski tensor. The cells in the other
crystalline sphere packings (gray dots) are, as expected, also either isotropic or only
slightly anisotropic w.r.t. ˇ0;21 .

For the RSA process .�/, different points in the figure correspond to different
global packing fractions. The Poisson point process .C/ is quite irregular, and its
Voronoi cells are therefore rather anisotropic. In the dilute limit the RSA process,
like the equilibrium hard spheres, have a structure similar to a Poisson point process.
The same holds for any dilute system of hard particles where the distances between
the particles compared to the size of the single particles diverge. In such a case,
collisions and thus interactions between the particles can be neglected, and the
Voronoi diagram is well approximated by a Poisson Voronoi tessellation. However,
the denser the hard-particle systems get, the more correlated and ordered they
become. Therefore, the typical cells become more isotropic w.r.t. both ˇ0;21 and the
ratio Q. Put differently, an increasing packing fraction decreases the anisotropy in
the hard-particle systems (hˇ0;21 i gets closer to unity).

In Fig. 13.4, the mean anisotropy indices of the DPP .ı/ are similar to that
of an RSA pattern .�/. However, the mean values for the packings of jammed
ellipsoids .�/ are distinctly different. For ellipsoids with an aspect ratio ˛ D 0:4,
the corresponding Set Voronoi cells are on average more anisotropic than Poisson
Voronoi cells.

The different points for the Laguerre tessellations .˘/ correspond to different
polydispersities of the underlying hard sphere packings, that is different degrees
of variation in the sphere volumes. A stronger polydispersity decreases hˇ0;21 i,
i.e., the typical cell is more anisotropic. At the same time, however, the ratio Q
increases, for which we can provide a heuristic argument. The estimate hˇ0;21 i of the
mean value for a typical cell is dominated by a vast number of small anisotropic
cells. The same would apply to the mean isoperimetric ratio hQsi of a typical cell.
However, Q is based on the ratio of mean volume and surface area. These are more
strongly influenced by large cells while small cells contribute values close to zero.
In the Laguerre tessellations studied here, large cells are on average more isotropic.
Therefore, the ratio Q increases with increasing polydispersity. A comparison of
hˇ0;21 i to Q, which is the ratio of mean values, can thus distinguish more systems
than a comparison to hQsi, which is the mean isoperimetric ratio of the typical cell.

The PHP tessellations are also strongly polydisperse, as we will show in the
following Sect. 13.5. The range of observed cell volumes covers several orders of
magnitude. Similar to the polydisperse Laguerre tessellations, the isotropic PHP
tessellations .�/ exhibit a small anisotropy index hˇ0;21 i but a large ratio Q. This
does not hold for the PHP tessellations with cuboids as cells .N/, where both hˇ0;21 i
and Q are small. For an isotropic distribution of the hyperplanes, the shape of a large
typical cell is, with high probability, close to a that of ball [36]. However, the most
isotropic shape of a cuboid is the cube. We indeed find for the PHP tessellations with
cuboids as cells a value of Q that is within error bars equivalent to Qs of a cube, see
Fig. 13.3.
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The average anisotropy index hˇ0;21 i of a typical cell in a statistically isotropic
PHP tessellation is more anisotropic than the average anisotropy of a typical cell in
a PHP tessellation with cuboids as cells. As expected, the anisotropy indices of the
typical cell differ for different orientation distributions of the hyperplanes. However,
they are independent of the intensity of the hyperplanes, because the tessellation
model itself and the two shape indices are scale free. This follows for Q directly
from the mean value formulas in [77]. The intensity only defines a unit of length
that can be chosen arbitrarily.

The data for the permanental point process is represented by the solid (yellow)
line which connects the single data points. Because a single realization of a
permanental point process is here the outcome of an inhomogeneous PPP, the
pattern can locally be very similar to a homogeneous PPP. Therefore, hˇ0;21 i of the
typical Voronoi cell is for the models that we have simulated similar to hˇ0;21 i of
a typical Poisson Voronoi cell. However, with increasingly anisotropic underlying
Gaussian random fields, the index Q becomes larger (possibly because of a stronger
polydispersity of the cells like for the Laguerre tessellations).

For the monodisperse foam .♦/, the jammed sphere packings .�/, and the
Laguerre tessellations in the monodisperse limit .˘/, the anisotropy takes very
similar values. The tessellations are all related in that they are at least based on the
Voronoi tessellation of a rather dense and disordered packing of hard spheres, see
Sect. 13.2. (Note that an equilibrium hard-sphere liquid at the same global packing
fraction is significantly more regular than these disordered packings.) However,
there are also distinctive geometric differences between these systems, which this
coarse analysis cannot capture. For example, the faces of a foam cell are curved [48].

Moreover, the anisotropy of the Voronoi tessellations for the RSA and equi-
librium hard-sphere systems as well as for the DPP, are at least for the range of
parameters chosen here very similar. All three point processes have in common that
they are purely repulsive.

13.5 Shape Distribution Functions

Going beyond the average, we consider the full probability density function of the
Minkowski functionals of the typical cell as well as of the anisotropy index.

From the data (described in Sect. 13.2), we determine the EPDFs of the nor-
malized Minkowski functionals and of the normalized anisotropy indices, which
are derived from the Minkowski tensors. Figures 13.5 and 13.6 show the resulting
curves.

How sensitive is this description of the qualitative behavior of several features of
the local structure? Figs. 13.5 and 13.6 clearly show that the probability density
functions of the Minkowski functionals are distinctly qualitatively different for
the Voronoi or hyperplane tessellations. At least for the here simulated models
of PHP (or equivalently STIT) tessellations, the probability density function of
the volume appears to be monotonically decreasing at least for a large range of
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Fig. 13.5 Estimated probability density functions f of the normalized Minkowski functionals OW� ,
see Eq. (13.8), for cells in Voronoi tessellations of three different point processes: Poisson point
process (see Sect. 13.2.2.1), DPP (see Sect. 13.2.2.2), and RSA (see Sect. 13.2.2.4)
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Fig. 13.6 Estimated probability density functions f of the normalized Minkowski functionals OW� ,
see Eq. (13.8), for cells in PHP tessellations with different orientation distributions of the
hyperplanes (see Sect. 13.2.4.1)

volumes. In contrast to this, the distributions of the Voronoi cell volumes show a
clear maximum close to the mean values.

In the latter case, the distributions are for several point processes well-known to
be in good agreement with (generalized) Gamma distributions [4, 5, 41, 56, 80, 101].
However, statistically significant deviations have been found for jammed particle
packings, see, e.g., [46, 88].

The occurrence of Gamma distributions in tessellations driven by Poisson
processes of points or flats was observed in the seminal mathematical work [70, 74].
Even for Poisson point processes on very general spaces the intensity measure
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of certain random sets is conditionally Gamma-distributed [114]. A systematic
and unifying explanation of these phenomena in a Euclidean setting was given
in [11]; see also [10]. One of the results in [11, 74] ascertains (for n D 3) that
the distribution of the .n � 2/-nd Minkowski functional of the typical cell of
a statistically isotropic Poisson hyperplane tessellation is conditionally Gamma-
distributed given the number m of neighbors. The shape parameter of this Gamma
distribution is just m � n. Hence, the unconditional distribution is a mixture of
Gamma distributions (with the same scale parameter) with respect to the distribution
of the number of neighbors of the typical cell.

In a Poisson hyperplane tessellation, the number of neighbors of a cell coincides
with the number of .n � 1/-dimensional facets. Note that this is in general not the
case in a STIT tessellation. (However, the distribution of the number of .n � 1/-
facets of the typical cell and the distributions of the Minkowski functionals are the
same as for the corresponding PHP tessellation.)

According to [11], in both cases the probability density function of the .n�2/-nd
Minkowski functional of the typical cell can be expressed by the probability mass
function p of the number of .n � 1/-dimensional facets:

f .Wn�1/ D 1

2�n�1

1X

mD4
p.m/ � g.m � n; � I Wn�1

2�n�1
/; (13.11)

where g.˛; ˇI x/ D ˇ˛x˛�1e�xˇ=	 .˛/ is the probability density function of the
Gamma distribution. This is demonstrated in Fig. 13.7 (for n D 3), where the
mixture of Gamma distributions given in Eq. (13.11) (the solid line in Fig. 13.7b)
is in very good agreement with the EPDF of W2. In a three-dimensional stationary
random hyperplane tessellation (with finite intensity), the average number of facets
of the typical cell is n3;2 D 6 [90, Eq. (10.35), p. 484], which is in agreement with
the sample mean hmi D 5:9994 (where the standard error of the mean is � 0:0004).

Equation (13.11) shows that the information content of the number of facets and
of the Minkowski functional Wn�1 is somehow related. However, the latter is an
additive, continuous measure where small changes in the positions and orientations
of the hyperplanes correspond to only small changes in the Minkowski functionals.
This is in contrast to the number of facets which is a topological index, which can
change distinctly and discontinuously for small variations of the positions and orien-
tations of the hyperplanes. Moreover, in experimental observations, the resolution of
small facets might not be possible. Therefore, the Minkowski functionals are more
robust structure characteristics, which are also suitable for an analysis of noisy data
sets.

The above described phenomenon extends to typical faces of lower dimen-
sions [11]. For other intrinsic volumes, there seems to be no mathematical argument
supporting the occurrence of mixed Gamma distributions.

For the Poisson Voronoi tessellation, the situation is more complicated. There
is no obvious reason for the typical cell to have conditionally Gamma-distributed
Minkowski functionals. There is, however, the concept of the (typical) Voronoi
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Fig. 13.7 Relation between the distribution of the number of faces and the Minkowski functional
W2 in an isotropic PHP tessellation: (a) the empirical probability mass function p of the number m
of two-dimensional facets; (b) the EPDF f .W2/ of the integrated mean curvature of a cell (marks)
is in very good agreement with the mixture of Gamma distributions given in Eq. (13.11) and using
the empirical probability mass function p in (a)

flower, whose geometry is closely connected to the typical cell. Given the number m
of neighbors of the typical cell, the volume of this flower has a Gamma distribution
with shape parameter m [74]. Again this can be extended to flowers of typical faces
of lower dimensions [10, 11]. There are some reasons to believe that similar results
hold for other Minkowski functionals.

The agreement of the EPDFs of the normalized Minkowski functionals of
Voronoi cells for very different point processes reveals some limitations of this
univariate qualitative shape descriptors. For physically different systems like the
relatively long-ranged DPP, the uncorrelated PPP, or a non-equilibrium RSA system
with only short-ranged interactions, the EPDFs are at least very similar. For the
systems studied here, there are small but statistically significant deviations only
for the volume distribution of the Poisson Voronoi cells and for the distribution
of the integrated mean curvature for the cells of an RSA process. On the one hand,
this reveals an interesting similarity in the local structure of Voronoi diagrams of
random point processes. On the other hand, this agreement for very different systems
indicates that the EPDF of the normalized Minkowski functionals is not sensitive
enough to detect the structural differences between these systems. Note that the
global structure differs distinctly for the four systems. Such differences in the global
structure of the Poisson point process, the equilibrium hard-sphere liquid, or a non-
equilibrium jammed packing of hard spheres is, for example, discussed in detail
in [46].

Also the EPDFs of the anisotropy indices show a qualitatively different behavior
for both PHP tessellations (and thus for the corresponding STIT tessellations) and
the Voronoi tessellations, see Fig. 13.8. However, the EPDFs of both the anisotropy
indices ˇ0;21 and ˇ

0;2
2 appear to be qualitatively indistinguishable for the three

different Voronoi tessellations of a Poisson point process, the RSA process, or
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Fig. 13.8 Estimated probability density functions f (a) of the normalized Minkowski tensor
anisotropy indices Ǒ0;2

� , see Eq. (13.9), for cells in Voronoi tessellations and (b) of the anisotropy
indices ˇ0;2� for cells in PHP tessellations

the DPP (like for the Minkowski functionals). In an analysis based on a single
characteristic, we do not find a qualitatively different behavior in the local structure
of these three models. Depending on the chosen parameters of the models there
can be distinct quantitative differences, see Fig. 13.4. However, for some sets of
parameters also these quantitative differences nearly vanish.

13.6 Local Joint Characterization via Volume
and Anisotropy

For a more sensitive characterization of the local structure, we need to take the
relations between different characteristics into account. By doing so, we reveal a
qualitatively different behavior of local structural characteristics even for systems
where the single characteristics exhibited a qualitatively indistinguishable EPDF
in the previous Sect. 13.5. Moreover, this sensitive joint local analysis of different
characteristics allows for intuitive geometric insights.

Following the analysis of [86], we perform a conditional analysis based on the
cell volume and consider the shape of small or large cells separately. We quantify the
anisotropy of the cells by the Minkowski tensor W0;2

1 conditional on their volume.
In other words, we estimate the conditional expectation hˇ0;21 iV of the anisotropy
index ˇ0;21 as a function of the cell volume V . More precisely, the condition is on the
cell volume being in an interval ŒV � �VIV C �V/, i.e., we bin the cell volumes
and then estimate hˇ0;21 iV separately for each bin.
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13.6.1 Distinguishing Local Structures

Figure 13.9 shows the resulting curves for the Voronoi tessellations of the PPP, RSA
process, and DPP. In contrast to the shape description by a single index in Sect. 13.5,
the new analysis combining two shape indices can qualitatively distinguish the
different point processes.

The Poisson points are non-interacting. The hard spheres in the RSA process are
rigid, i.e., perfectly repulsive at contact. The points in the DPP can be interpreted as
“soft” repulsive particles. Although unlikely, the particles can get arbitrarily close
to each other, which is in contrast to the RSA process.

The cells in the Poisson Voronoi tessellation are on average most anisotropic
for all cell volumes. The mean anisotropy index conditional on the cell volume is
also (at least for a large range of cell volumes) smaller than for the Voronoi cells
of the other systems. The anisotropy index increases monotonically with increasing
cell volumes, i.e., larger cells are on average more isotropic than smaller ones. It is
well known that the shape of a typical large cell in the Poisson Voronoi tessellation
converges to a sphere in the limit of arbitrarily large cell volume [37]. Therefore,
also the anisotropy parameter hˇ0;21 iV must approach unity, i.e., perfect isotropy.

As expected, the RSA process of hard-spheres at different global packing
fractions � D 0:1 and � D 0:2 have qualitatively similar curves in Fig. 13.9.
Because a hard-sphere system at finite packing fraction is more ordered than a
Poisson point process, it can be expected that a typical cell is more isotropic in the
hard-sphere system. This corresponds to an increase in the mean anisotropy index.
For large cell volumes, the anisotropy index also increases as a function of the cell

β
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2
1

V

V/ V

φ = 0.2
φ = 0.1

Fig. 13.9 Anisotropy as a function of cell volume for Voronoi tessellations of a Poisson point
process, a DPP, or RSA hard-sphere process with volume fractions � D 0:1 or 0:2. The combined
analysis based on volume and anisotropy reveals the qualitatively different behavior of the different
models



13 Cell Shape Analysis of Random Tessellations Based on Minkowski Tensors 413

volume. However, in contrast to the uncorrelated Poisson point process, the curves
for the RSA process exhibit a minimum.

For small cells, the trend reverses and the smaller the cell, the larger the
anisotropy index gets. The smallest possible Voronoi cell for a hard sphere packing
is well-known to be a regular dodecahedron where the central sphere touches all
faces. This is the dual to an icosahedral arrangement of the neighboring spheres,
which is the locally densest possible configuration with a maximum of 12 contacting
neighbors. (The volume of the smallest Voronoi cell for hard spheres divided by the
mean Voronoi volume is given byV=hVi D 6=.�

p
5=2C 11=10

p
5/�� � 0:1729��

and rather small for the here chosen global packing fraction �.) In this limit,
the anisotropy index converges to unity (because a regular dodecahedron appears
perfectly isotropic w.r.t. ˇ0;2� ). Therefore, there is a minimum in the anisotropy
index as a function of the cell volume. The curve is qualitatively different from
the corresponding curve for a Poisson Voronoi tessellation.

Moreover, it is also qualitatively different from the DPP. Interestingly, the
repulsive particles in the DPP show an intermediate behavior between the hard
spheres and the non-interacting Poisson points. For large cells, the anisotropy of
the Voronoi cells of the DPP is comparable to those of the RSA process. It is more
regular than a PPP. However, in contrast to the hard-sphere system, small cells get
on average more anisotropic (hˇ0;21 i decreases). These small cells are more similar
to those in the irregular PPP. A heuristic explanation of this behavior is that it is
unlikely but possible that two points get close to each other. However, it is then very
unlikely that also a third point is located nearby. Therefore, the two corresponding
cells would, in this case, tend to be elongated because they are strongly restricted in
the direction of the nearest neighbors.

Be reminded that the typical cells in a dilute hard-sphere gas or a weakly
interacting DPP are very similar to those of a PPP, i.e., the mean values are
very close to each other, see Fig. 13.4. Moreover, the EPDFs of the Minkowski
functionals or of the anisotropy indices are qualitatively nearly indistinguishable,
see Figs. 13.5 and 13.8a.

Analyzed by single characteristics alone, the local structure seemed at least qual-
itatively the same for the three different point processes. However, the qualitative
behavior of the local structural characteristics is actually not the same. The rescaled
univariate EPDFs were only not sensitive enough to find this qualitatively different
behavior. The characterization based on both the volume and the anisotropy can
clearly and qualitatively distinguish the local structure of the Voronoi tessellations
for the different generating processes (PPP, DPP and RSA).

13.6.2 Equilibrium and Non-equilibrium Hard Particles

Using this improved local shape analysis, Fig. 13.10 compares the local structure
of the equilibrium hard-sphere liquids (a) and the non-equilibrium jammed ellip-
soids (b).
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Fig. 13.10 Anisotropy as a function of cell volume for hard-particle systems: (a) equilibrium
hard-sphere liquids from the dilute limit (i.e., vanishing packing fraction) to nearly crystalline
structures; the color scale indicates the varying packing fraction �; the black line corresponds
to the Poisson point process (see also Fig. 13.9); the gap at roughly � D 0:5 results from the
freezing transition; (b) experimental data of random jammed ellipsoids for different aspect ratios
˛ (indicated by different colors); the different curves with the same colors represent different
experimental realizations with varying global packing fraction (� D 0:54� 0:68) [86]

In Fig. 13.10a, the curve for the Poisson point process from Fig. 13.9 is extended
to larger cell volumes. As mentioned above, it must converge to unity. However, the
simulation reveals that it converges rather slowly. Only the extremely dilute hard-
sphere systems are numerically difficult to distinguish from the PPP (because of the
vanishing number of close neighbors and thus of small Voronoi cells). Already for
equilibrium liquids at relatively small global packing fractions, the anisotropy as a
function of the volume deviates distinctly from the uncorrelated PPP.

With increasing packing fraction, the range of observed Voronoi cell volumes
shrinks because the configurations become more regular and thus the fluctuations in
the Voronoi volume decrease. In the limit of maximal packing fraction, only a single
value of the volume is possible (which corresponds to the dual of the unit cell).

At a global packing fraction of about � D 0:5, a gap in the curves of the
anisotropy index is observed, see Fig. 13.10a. This is related to the solid-liquid
hard-sphere phase transition. Our samples are initially prepared in a crystalline state
before equilibration. Therefore, the transition occurs at the lower end of coexistence
regime which is for an equilibrium hard-sphere system between � � 0:494 and
0.545 [41].

In contrast to the globally loose fluids where the system behaves like the PPP, the
anisotropy index in globally dense systems decreases monotonically as a function
the cell volume. This shows that in dense hard-sphere liquids the locally dense
configurations are more ordered than the looser ones, and thus more isotropic.

For the jammed ellipsoid packings, the monotony of this functions changes with
the aspect ratio of the ellipsoids. Like in dense equilibrium hard-sphere systems,
smaller cells are more isotropic. For very oblate ellipsoids with ˛ D 0:60 or 0:40,
the anisotropy in Fig. 13.10b appears to be rather independent of the cell volume.
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Fig. 13.11 Anisotropy as a function of cell volume for PHP tessellations with either an isotropic
orientation distribution of the hyperplanes or with three allowed directions, i.e., all cells are
cuboids. For most volumes V, the cells in the isotropic tessellation are on average more anisotropic
than the cuboid shaped cells. However, the inset shows that this changes for very small cells, for
which the cells in the isotropic system are more isotropic than the cuboid-shaped cells

13.6.3 Poisson Hyperplane Tessellations

Figure 13.11 displays the results for the PHP tessellations with either an isotropic
orientation distribution of the hyperplanes or with three allowed directions, i.e., all
cells are cuboids.

The main plot shows the anisotropy as a function of the cell volume for large
cells, which get exceedingly unlikely with increasing cell volume, see Fig. 13.6.
These large cells are on average more isotropic than a typical cell in the tessellation,
and the cuboid-shaped cells are more isotropic than the cells in the statistically
isotropic tessellation (i.e., larger values of hˇ0;21 iV ). However, the inset shows that
this order reverses for small cells, where the cells in the statistically isotropic system
are more isotropic than the cuboid shaped cells.

13.7 Conclusions

Random or disordered tessellations appear in very different physical, chemical, or
biological systems as well as in life sciences. Their complex structure calls for
advanced mathematical tools that can quantify their geometry.

The Minkowski functionals and tensors allow for a robust yet concise character-
ization of the shape of single cells. They are powerful tools to narrow the choice of
possible underlying stochastic processes.
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Here, we have applied, in a theory-based simulation study, such an analysis to a
variety of important and common tessellations, see Sect. 13.2.

• The “map of anisotropy” from Sect. 13.4 analyzes the relationship between the
dimensionless ratio hVi2=hAi3 of average cell volumes to average cell areas
and the degree of cell elongation quantified by the eigenvalue ratio hˇ0;21 i of
the interfacial Minkowski tensor W0;2

1 . It provides an overview of the various
tessellations considered here. It can highlight relations between different point
processes but also reveals some structural differences.

• The probability density functions of single local characteristics in Sect. 13.5 can
also clearly distinguish two different types of tessellations such as the PHP and
Voronoi tessellations. However, the rescaled probability density functions for
Voronoi cells from different stochastic processes can be qualitatively similar. On
the one hand, this agreement reveals interesting relations between the models. On
the other hand, it does not imply that the local structure, i.e., the shape distribution
of single cells, is the same for these physically quite different point processes.

• To detect qualitative differences in the local structure, we combine different
characteristics. More precisely, we determine the mean anisotropy index as a
function of the cell volume, see Sect. 13.6. Thus, we find a qualitatively different
behavior, for example, for determinantal point processes and equilibrium hard
spheres. We also use this analysis for additional insights into the Poisson
hyperplane or STIT tessellations, e.g., discussing the different anisotropy for
small or large cells. The numerical tools which we apply here are efficient and
can be easily used for a detailed structure analysis of any tessellation of interest.

We have thus demonstrated how the Minkowski functionals and tensors can
serve as sensitive and robust local shape descriptors. Given a simple object like
a single cell and starting with simple and efficient shape indices like volume and
surface area (following the rule of parsimony), the straightforward generalization to
Minkowski functionals and tensors allows for a comprehensive shape analysis. Each
additive, continuous, and motion invariant or covariant tensor is essentially a linear
combination of Minkowski tensors [2, 3, 29]. Moreover, these geometrical shape
descriptors are more robust than so-called “topological measures,” like the number
of faces, vertices, or edges. Such topological quantities are sensitive to noise in that
a small change can strongly alter the topology of the cell. For example, whether or
not a small additional face is resolved can lead to faces with a very different number
of vertices.

Prominent examples are also the so-called bond-orientational order parameters,
which are standard tools in condensed matter physics to characterize particle
arrangements [103]. They are based on the definition of a neighborhood, where
different choices can even lead to qualitatively different behavior of the bond-
orientational order parameters. Moreover, because of the discrete nature of neigh-
borhood, the bond-orientational order parameters can change discontinuously for
infinitesimally small changes in the particle positions. This can be avoided by a
morphometric approach that assigns weights to the neighbors. These weights lead
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to robust measures that are continuous in the particle coordinates and that are
equivalent to the Minkowski tensors presented here.
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Chapter 14
Stereological Estimation of Mean Particle
Volume Tensors in R3 from Vertical Sections

Astrid Kousholt, Johanna F. Ziegel, Markus Kiderlen,
and Eva B. Vedel Jensen

Abstract In this chapter, we discuss stereological estimation of mean particle
volume tensors in R

3 from vertical sections. We consider a particle process of
compact particles that can be represented as a stationary marked point process.
Under the assumption that the particle distribution is invariant under rotations
around a fixed axis, called the vertical axis, we show how the mean particle volume
tensors can be estimated consistently (in a probabilistic sense) from observations
in vertical sections through a sample of particles. In a simulation study, the new
estimator has a superior behaviour compared to an earlier estimator based on
observations in several optical planes.

14.1 Introduction

Volume tensors, or more generally Minkowski tensors, have been used with success
for shape and orientation description of spatial structures in materials science, see
Chap. 13 or [2, 5, 11, 12]. An early example from the biosciences is given in [3].

Information about shape and orientation from tensors can fairly easily be
determined if a 3D voxel image of the spatial structure under study is available.
However, for biostructures like cells it is even in conventional microscopy difficult
to construct such voxel images. For such cases, local stereological methods of
estimating volume tensors from observations in planar sections have been developed
in [9] and [14]. A particular focus has been on methods of obtaining information on
shape and orientation for particle populations.
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In this chapter, we give an introduction to these methods and also present a new
estimator that has great potential use in optical microscopy.

14.2 The Particle Model

Let X be a particle process of compact particles in R
3. We assume that the process

can be represented as a stationary marked point process

fŒx.K/IK � x.K/� W K 2 Xg:

Here, x.K/ 2 K is a reference point associated to the particle K 2 X and the mark
K � x.K/ is the particle translated such that its reference point is at the origin o.
We let K0 be a random compact set with distribution equal to the particle mark
distribution Q, say. The random set K0 may be regarded as a randomly chosen
particle or a typical particle with o as its reference point. The intensity of the
marked point process, that is the mean number of reference points per unit volume,
is denoted by �. For a detailed description of stationary particle processes and the
definition of the mark distribution, see [10, Chap. 3].

Our aim is to estimate the mean particle volume tensors E˚
r;0
3 .K0/ where, as

in the previous chapters, the volume tensor of rank r 2 N0 of a compact set K is
given by

˚
r;0
3 .K/ WD 1

rŠ

Z

K
xr dx: (14.1)

Recall that for x D .x1; x2; x3/, xr is the rank r tensor that can be identified with an
array of elements of the form

.xr/i1 i2i3 WD xi11 x
i2
2 x

i3
3 for i1; i2; i3 2 f0; : : : ; rg with

3X

jD1
ij D r:

In contrast to Chap. 2, we thus identify the r-linear mapping˚ r;0
3 with its coefficients

with respect to an arbitrarily chosen basis. The integration in (14.1) is to be
understood elementwise.

The estimation will be based on a sample of particles, collected as those particles
with reference point in a full-dimensional compact sampling window W,

fK 2 X W x.K/ 2 Wg: (14.2)

For an illustration of the sampling procedure, see Fig. 14.1 (left).
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W

x(K)
K

L

T

t t
M

Fig. 14.1 Left: a particle K is sampled if its reference point x.K/ belongs to W. Sampled particles
are shown hatched. Right: a vertical slice T of thickness 2t. The central plane L contains the vertical
axis M

Due to the stationarity of the particle process X, we have for any Q-integrable
function f on compact subsets of R3

E

X

K2X; x.K/2W
f .K � x.K// D �V3.W/E f .K0/;

where V3 denotes volume. If we let N.W/ be the number of sampled particles, it
follows that

E
P

K2X; x.K/2W f .K � x.K//

EN.W/
D E f .K0/: (14.3)

In particular if f in (14.3) equals the elements of ˚ r;0
3 , we find that

P
K2X; x.K/2W ˚

r;0
3 .K � x.K//

N.W/
(14.4)

is a ratio-unbiased estimator of E˚
r;0
3 .K0/. For the proof of consistency of

estimators, the following theorem will be useful, see [4, Corollary 12.2.V].

Theorem 14.1 Suppose that the particle process X is a stationary ergodic marked
point process. Let fWng be an increasing sequence of convex bodies in R3 such that

r.Wn/ ! 1 as n ! 1;

where

r.W/ WD supfr � 0 W W contains a ball of radius rg:
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Let f be a measurable function on compact subsets of R3 which is integrable with
respect to the mark distribution Q. Then, almost surely,

1

V3.Wn/

X

K2X;x.K/2Wn

f .K � x.K// ! �Ef .K0/;

as n ! 1.

Using Theorem 14.1 with f equal to the elements of ˚ r;0
3 and f � 1, it is seen

that the estimator (14.4) is consistent when X is ergodic and the increasing sequence
fWng of bounded convex windows satisfies r.Wn/ ! 1 as n ! 1.

The estimator (14.4) requires that the volume tensor ˚ r;0
3 can be determined on

the sampled particles. If we do not have direct access to the particles in 3D, we need
to develop stereological methods of estimating the volume tensors of the sampled
particles from planar sections.

Stereological estimators of volume tensors based on observations in vertical
slices have been derived in [9] and [14]. In a model-based setting, these estimators
are valid under the restricted isotropy assumption where the distribution of the
typical particle K0 is invariant under rotations around a line M in the Grassmannian
G.3; 1/ of one-dimensional linear subspaces in R

3. The line M is called the vertical
axis, but may indeed be an arbitrary fixed line through the origin.

To be more specific, let T WD LCtB3 be a vertical slice. Here, L is a plane through
the origin, containingM, and tB3 is a ball centred at o and with radius t, see Fig. 14.1
(right). Let

b̊r;0
3 .K/ WD 1

rŠ

Z

K\T
xrG.t2=kpM?

.x/k2/�1 dx; (14.5)

where G is the distribution function of the Beta distribution with parameters
.1=2; 1=2/ and pM?

is the orthogonal projection on M?. Then, cf. [14, Sect. 3 and
Appendix A (online supporting information)],

Eb̊r;0
3 .K0/ D E˚

r;0
3 .K0/;

and, combining this identity with (14.3),

P
K2X; x.K/2W b̊

r;0
3 .K � x.K//

N.W/
(14.6)

is a ratio-unbiased (and consistent) estimator of E˚ r;0
3 .K0/. The consistency holds

under the assumptions of Theorem 14.1. This estimator will be called the slice
estimator in the following.
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Note that under a restricted isotropy assumption, the mean particle volume
tensors E˚ r;0

3 .K0/ do not vary freely. For E˚1;0
3 .K0/ and E˚

2;0
3 .K0/, we have

E˚
1;0
3 .K0/ 2 M; (14.7)

and

E˚
2;0
3 .K0/� .E˚

1;0
3 .K0//

2

2E˚0;0
3 .K0/

D B

0

@
� 0 0

0 � 0

0 0 �

1

ABT ; (14.8)

where B is any orthogonal matrix with first column spanning M [14, p. 819]. The
slice estimator may be adjusted such that constraints of this type are fulfilled [14,
pp. 821–822].

14.3 Stereological Estimation from Vertical Sections

In this section, we will show that, under the restricted isotropy assumption,
E˚ r;0

3 .K0/ can be estimated from observations only in the central plane L of the
slice T. To the best of our knowledge, this estimator has not been described before.

To show this claim, we assume for simplicity that the vertical axis M is the z-axis
and use cylindrical coordinates to obtain

E˚ r;0
3 .K0/ D 1

rŠ
E

Z

K0

xr dx

D 1

rŠ

Z 1

zD�1

Z 1

uD0

Z 2�

�D0
P
�
.u cos �; u sin �; z/ 2 K0

�

� .u cos �; u sin �; z/ru d� du dz:

Using restricted isotropy, we get

E˚
r;0
3 .K0/ D 1

rŠ

Z 1

zD�1

Z 1

uD0
P..u; 0; z/ 2 K0/fr.u; z/ du dz; (14.9)

where fr.u; z/ is the rank r tensor

fr.u; z/ WD
Z 2�

�D0
.u cos �; u sin �; z/ru d�
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for u > 0 and z 2 R. The elements of the tensor fr.u; z/, u > 0, z 2 R, are given by

fr.u; z/i1i2i3 D
Z 2�

0

u.u cos �/i1 .u sin �/i2zi3 d�

D ui1Ci2C1zi3
Z 2�

0

.cos �/i1 .sin �/i2 d�

D ci1i2u
i1Ci2C1zi3 ;

say, for i1; i2; i3 2 f0; : : : ; rg with
P3

jD1 ij D r, where

ci1i2 D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

2
!i1Ci2C2
!i1Ci2C1

�
.i1 C i2/=2

i1=2

�

�
i1 C i2
i1

� ; for i1; i2 even,

0; otherwise:

Here, as in previous chapters,!i is the surface area of the unit sphere in R
i. It follows

that

E˚
r;0
3 .K0/i1i2i3 D .r C 1/ci1i2E

�
˚

rC1;0
2;L .K0 \ LC/i1Ci2C1;i3

�
; (14.10)

where

L WD f.u; 0; z/ W u; z 2 Rg;
LC WD f.u; 0; z/ W u > 0; z 2 Rg;

and ˚ rC1;0
2;L .K0 \ LC/ is the rank r C 1 volume tensor of K0 \ LC, considered as

a subset of L; see Chap. 5 for a precise definition of this intrinsic version of the
volume tensor. Alternatively, one can use the larger set K0 \ L and obtain

E˚
r;0
3 .K0/i1i2i3 D .r C 1/

ci1i2
2

E
�
˚

rC1;0
2;L .K0 \ L/i1Ci2C1;i3

�
:

If, for a compact set K, we let e̊r;0
3 .K/ be the rank r tensor with

e̊r;0
3 .K/i1i2i3 WD .r C 1/

ci1i2
2
˚

rC1;0
2;L .K \ L/i1Ci2C1;i3 ;

we find

Ee̊r;0
3 .K0/ D E˚ r;0

3 .K0/;
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and

P
K2X; x.K/2W e̊

r;0
3 .K � x.K//

N.W/
(14.11)

is a ratio-unbiased (consistent) estimator of E˚
r;0
3 .K0/. The consistency holds

under the assumptions of Theorem 14.1. This estimator will be called the section
estimator.

The section estimator is much simpler to implement in microscopy than the slice
estimator and, furthermore, it has technical advantages. For instance, the estimator is
not sensitive to shrinkage in the direction perpendicular to the slice. Both estimators
rely on restricted isotropy, which must be assured in applications. Note, however,
that K0 need not be a body of revolution around the vertical axis, but only its
distribution must be invariant under rotations, fixing this axis, see also Fig. 14.3
below.

14.4 The Lévy Particle Model

We have compared by simulation the statistical behaviour of the section estimator
and the slice estimator under a flexible Lévy particle model [1, 7, 8].

Under such a model, the random particle K0 is star-shaped with respect to a point
c0 2 R

3 and distributed as c0 C Z, where Z is modelled as a random deformation
of a fixed particle Z0, say, which is star-shaped relative to the origin o. The random
set Z is also star-shaped with respect to o and therefore uniquely determined by its
radial function R W S2 ! Œ0;1/ relative to o. (Recall that R.u/ is the distance from
o to the boundary of Z in direction u 2 S

2.) In the model, the radial function R is
given by

R.u/ WD r.u/X.u/; u 2 S
2;

where r W S2 ! Œ0;1/ is the radial function of the fixed particle Z0 and X W S2 !
Œ0;1/ is an isotropic non-negative Lévy-based stochastic process on S

2 of the form

X.u/ WD
Z

S2

k.u; v/Y.dv/:

Here, k is chosen as the von Mises-Fisher kernel [6] and Y is a Gamma Lévy basis.
The parameters of the stochastic process X are chosen such that EV3.K0/ D V3.Z0/.
This ensures that Z is a random deformation of Z0. For more details, see [14, Sect. 6].

The set-up is illustrated in Fig. 14.2. We choose x.K0/ D o as the reference
point for K0. If c0 ¤ o, the reference points of the particles in the resulting particle
process may be non-centrally placed in the particles, as illustrated on the profile to
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o o o

Z0 Z K0 = c0 + Z

c0

K

x(K)

Fig. 14.2 2D illustration relating to the particle model, used in the simulation study. The typical
particle K0 is distributed as c0CZ where c0 2 R

3 and Z is a random deformation of the ellipse Z0.
If c0 ¤ o, the reference points of the particles in the resulting particle process may be non-centrally
placed in the particles, as illustrated on the profile to the right

the right in Fig. 14.2. The restricted isotropy assumption is fulfilled if c0 belongs to
the vertical axis M and Z0 is a solid of revolution around M.

14.5 The Simulation Study

In this section, we compare by simulation the statistical behaviour of the slice
estimator and the section estimator. We focus on the quality of the estimators of
E˚

r;0
3 .K0/ for r D 0; 1; 2.
We use a Lévy particle model, fulfilling the restricted isotropy assumption. The

fixed particle Z0 is chosen as a prolate ellipsoid with its longest axis parallel to the
vertical axis. The mean particle volume tensors E˚ r;0

3 .K0/, r D 0; 1; 2, determine
the model parameters v WD E˚

0;0
3 .K0/ D EV3.K0/, c0 2 M and the lengths a > b

of the semi-axes of the ellipsoid Z0. In the simulation study, we use the volume
tensors to estimate this set of natural model parameters. Since c0 2 M, c0 D ze,
where e spans M, so the focus is here on estimating z. In Fig. 14.3, five replicated
simulations of K0 are shown from the actual model used in the simulation study
together with the ellipsoid Z0 (left).

For a sample of n particles K01; : : : ;K0n, we have determined for r D 0; 1; 2

1

n

nX

iD1
b̊r;0
3 .K0i/ (the slice estimator) (14.12)

and

1

n

nX

iD1
e̊r;0
3 .K0i/ (the section estimator). (14.13)
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Fig. 14.3 Particles simulated under the Lévy particle model as random deformations of a prolate
ellipsoid. The ellipsoid is shown to the left, followed by five random deformations

U
L

t

tT

Fig. 14.4 2D illustration of the subsampling of a slice T of thickness 2t. The slice is subsampled by
three equidistant planes (shown as stippled lines) with distance 2t=3 between neighbour planes. The
position of the lower plane is determined by U which is uniform random in the interval Œ0; 2t=3/

In principle, the slice estimator (14.5) requires measurements in the whole slice T
which typically covers the central part of the particle, as illustrated in Fig. 14.4. By
focusing on the central part of the particle, overprojection at the peripheral parts
of the particle is avoided in optical microscopy. For further details, see [13]. In
practice (and in the simulations), the slice is subsampled by a systematic set of
parallel planes. We used three equidistant planes in T, as also shown in Fig. 14.4.
Each plane was subsampled by a systematic set of lines that was alternately parallel
and perpendicular to the vertical axis. The distance between lines in a plane was
chosen such that on the average two lines hit the particle in each plane. For more
details, see [9, Fig. 2].

For the section estimator, K0i \ L was subsampled by a systematic set of parallel
lines in L, perpendicular to M. Again, the distance between lines was chosen such
that on the average two lines hit the particle. With this set-up, the amount of work
involved for the slice estimator is approximately three times that of the section
estimator.

The simulation results for the slice estimator and the section estimator are shown
in Tables 14.1 and 14.2, respectively, for the case of n=10, 20, 50 and 100 particles.
For a sample of n particles K01; : : : ;K0n, the estimators of v are

bv WD 1

n

nX

iD1
b̊0;0
3 .K0i/; ev WD 1

n

nX

iD1
e̊0;0
3 .K0i/; (14.14)

depending on whether the slice estimator or the section estimator is used. Likewise,
the estimators of z become
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Table 14.1 For the slice estimator, we show the mean (and CV) of the estimated mean particle
volume v, displacement z and semi-axis lengths a > b of the prolate ellipsoid Z0, determined from
estimated mean volume tensors based on n simulated particles in 500;000=n simulations. The true
parameter values are v D 606:553, z D �0:073, a D 5:857 and b D 4:972. The parameter
values resemble the ones obtained in concrete analyses of microscopy data from the human brain
cortex [14, p. 827]. The ellipsoid Z0 is shown to the left in Fig. 14.3 followed by five random
particles from the Lévy particle model, used in the simulation study. Estimation is done under the
assumption of restricted isotropy

n 10 20 50 100

v 606.860 (0.151) 606.860 (0.095) 606.860 (0.067) 606.860 (0.047)

z �0.073 (6.162) �0.074 (4.021) �0.074 (2.867) �0.074 (2.034)

a 5.821 (0.082) 5.841 (0.054) 5.848 (0.039) 5.852 (0.028)

b 4.981 (0.068) 4.977 (0.044) 4.976 (0.031) 4.975 (0.022)

Table 14.2 For the section estimator, we show the mean (and CV) of the estimated mean particle
volume v, displacement z and semi-axis lengths a > b of the prolate ellipsoid Z0, determined from
estimated mean volume tensors based on n simulated particles in 500;000=n simulations. The true
parameter values are given in the legend to Table 14.1

n 10 20 50 100

v 606.333 (0.152) 606.333 (0.096) 606.333 (0.068) 606.333 (0.048)

z �0.069 (7.057) �0.069 (4.560) �0.069 (3.258) �0.069 (2.337)

a 5.797 (0.098) 5.832 (0.064) 5.844 (0.047) 5.850 (0.033)

b 4.992 (0.070) 4.981 (0.044) 4.976 (0.032) 4.974 (0.022)

bz WD
1
n

Pn
iD1 b̊

1;0
3 .K0i/

1
n

Pn
iD1 b̊

0;0
3 .K0i/

� e; ez WD
1
n

Pn
iD1 e̊

1;0
3 .K0i/

1
n

Pn
iD1 e̊

0;0
3 .K0i/

� e; (14.15)

where x �e denotes the usual inner product of x 2 R
3 with the unit vector e that spans

the vertical axis M and was used in the definition of z. The estimators of the semi-
axis lengths a and b of the ellipsoid Z0 are non-linear functions of the estimators of
mean particle tensors of rank 0,1 and 2.

A total of 500,000 particles was simulated. These particles are used in Tables 14.1
and 14.2 to produce 500;000=n samples of n particles. Since the same 500,000
particles are used for all n and the estimated mean particle volume is a simple
average, according to (14.14), the mean of the estimated mean particle volume v in
Tables 14.1 and 14.2 does not depend on n. The mean of the estimated displacement
z is also virtually constant which shows that for the model used in the simulation
study the bias of the estimators of z in (14.15) is negligible, also for as small n as 10.

Tables 14.1 and 14.2 show that both the slice estimator and the section estimator
provide estimators of the mean particle volume v and the semi-axis lengths a
and b of the prolate ellipsoid Z0 with CVs less than 10 % if 20 or more particles
are sampled while it is needed to sample more than 100 particles if the very
small displacement z is to be discovered. Comparing the section estimator with n
particles to the slice estimator with n=3 particles (same amount of work), the section
estimator is superior.
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14.6 Non-parametric Inference

In the simulation study, we used the estimators of mean particle volume tensors
E˚

r;0
3 .K0/, r D 0; 1; 2, to estimate the parameters in the simulated Lévy particle

model. In cases where the particle model is not a suitable description of the particle
population under consideration, we may still use the mean particle volume tensors
to obtain information about particle size, position, shape and orientation. Here,
E˚

0;0
3 .K0/ D EV3.K0/ is, of course, a size parameter (mean particle volume) while

Nc WD E˚
1;0
3 .K0/=E˚

0;0
3 .K0/ contains information about the deviation of the centre

of gravity from the reference point of the typical particle. Likewise, we can use
E˚

r;0
3 .K0/, r D 0; 1; 2, to construct an approximating ellipsoid Nc C Ne, say, that

contains information about particle shape and orientation of the typical particle.
Here, Ne is a centred ellipsoid, called the Miles ellipsoid. It can be constructed from
a spectral decomposition of

E˚2;0
3 .K0/� .E˚

1;0
3 .K0//

2

2E˚
0;0
3 .K0/

:

For more details, see [14, Sects. 4.2 and 4.3].
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Chapter 15
Valuations in Image Analysis

Anne Marie Svane

Abstract When intrinsic volumes and Minkowski tensors of a real world structure
are computed, this is often based on a digital image. The digitization causes some
estimation problems due to the anisotropic nature of the digital grid. Even the most
natural and frequently used algorithms based on counting the local pixel/voxel
configurations are often biased. In this chapter, we survey the known results on
convergence of these local algorithms with a focus on estimation of intrinsic
volumes. Moreover, we present some of the latest attempts to define convergent
algorithms.

15.1 Introduction

Let X 
 R
n be a geometric object. If X is sufficiently well-behaved, we

can gain information about its geometry by computing its intrinsic volumes
V0.X/; : : : ;Vn.X/. These include such important characteristics as volume Vn,
surface area 2Vn�1, integrated mean curvature 2�.n � 1/�1Vn�2, and Euler
characteristic V0. See [18] for the general definition of intrinsic volumes when
X is convex. All intrinsic volumes are rotation and translation invariant. Non-
invariant properties, such as position, orientation, and elongation, are captured by
the Minkowski tensors. The r-th Minkowski volume tensor for r � 0 is an element
of the space Tr of symmetric r-tensors on R

n and is given by

˚ r;0
n .X/ WD 1

rŠ

Z

X
xrdx;

where xr is the r-fold tensor product of x. Moreover, for r � 0 and s > 0, we
define ˚ r;s

n .X/ WD 0. For r; s � 0 and 0 � m � n � 1, there is a Minkowski tensor
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˚ r;s
m .X/ 2 T

rCs defined by

˚ r;s
m .X/ WD 1

rŠsŠ

!n�m

!n�mCs

Z

˙n
xrus�m.XI d.x; u//: (15.1)

Here˙n WD R
n�Sn�1, where Sn�1 is the unit sphere in R

n, and !n is the surface area
of Sn�1. Moreover, �m.XI � / is the m-th support measure on ˙n, see [18] when X
is convex and [28] for more general set classes. The integrand xrus is the symmetric
tensor product of r copies of x and s copies of u. Intrinsic volumes are special
cases of the Minkowski tensors since ˚0;0

m .X/ D Vm.X/. More information about
Minkowski tensors of convex sets can be found in [18, Sect. 5.4].

As explained in [19, 20] Minkowski tensors are useful tools for physicists to
characterize geometric properties of a material. The tensors are often computed
based on a digital image, for instance from a microscope or a scanner. This causes
several problems. Not only are such images often blurred and noisy, the digitization
itself may also introduce a bias. The latter is the topic of the present chapter.

A digital image is divided into pixels or voxels and the object is observed
inside each. The pixel (voxel) midpoints form a lattice. Gaining information about
the underlying object can thus be considered a stereological type of problem.
In stereology, the object is usually only known inside an affine plane. Unbiased
estimators for intrinsic volumes and, more generally, Minkowski tensors can be
obtained by randomizing the rotation and translation of the intersection plane. In
image analysis, we observe the object along a lattice rather than a plane. If the
object is randomly translated and rotated with respect to the observation lattice, it is
sometimes possible to find algorithms that are unbiased when the resolution goes to
infinity. The assumption that the lattice is randomly rotated is not always realistic.
This causes a rotation bias in many digital algorithms.

Another problem is that, while the boundary of the object is still visible on
lower dimensional planes, a lattice will most likely not hit any boundary points. The
boundary can in principle behave wildly between the lattice points. To avoid this,
some regularity of the boundary must normally be assumed. In grey-scale images,
the object boundary is represented by a blurred zone around the true boundary. As
we shall see, this makes it easier to gain information about the boundary.

A third problem is that the data amount is often large. Therefore, fast algorithms
are required. The focus of this chapter will therefore be on the development of
algorithms with low computation time.

We are going to review some of the mathematical results on digital estimators
for intrinsic volumes and Minkowski tensors. In Sect. 15.2, we consider the ideal
situation where there is no noise or blurring. The emphasis will be on the so-
called local algorithms, which are the most frequently applied ones, but some global
methods will also be discussed. In Sect. 15.3, we consider the situation where the
digital image is blurred. Noisy images will not be treated.



15 Valuations in Image Analysis 437

15.2 Digital Algorithms for Black-and-White Images

In this section, we consider the ideal situation where the digital image is sharp and
noise-free. A mathematical model for such an image is given in Sect. 15.2.1. Local
algorithms are defined and discussed in Sects. 15.2.2–15.2.6. Some other types of
algorithms are described in Sect. 15.2.7.

15.2.1 Black-and-White Images

Let X 
 R
n be the object that we are trying to observe. A digital image is divided

into pixels (voxels). If there is no noise or blurring, we can measure exactly whether
or not each pixel midpoint belongs to X. A pixel (voxel) is colored black if its
midpoint lies in X and white otherwise. This is illustrated in Fig. 15.1.

If we let L denote the lattice formed by the pixel (voxel) midpoints, then the
information contained in a black-and-white image corresponds to the set X \ L

of black pixel midpoints. We will assume throughout that X is compact and
topologically regular, i.e., X is the closure of its own interior. This ensures that X
does not have any lower dimensional parts that we are not able to see in the image.

Clearly, there is not enough information in X \ L to determine the Minkowski
tensors. But going to a higher resolution will give us more information about X. This
corresponds to scaling L by a small factor a > 0, resulting in the image X \ aL.

In most applications, L is the standard lattice Z
n or a rotation and translation of

this. However, other cases can occur, for instance the hexagonal lattice in 2D [14].
For this reason, we let L be arbitrary.

a. b.

Fig. 15.1 Example of a black-and-white image. Figure (a) shows the object together with the grid
of pixel midpoints. Figure (b) shows the resulting digital image
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15.2.2 Local Algorithms for Intrinsic Volumes

The most popular type of algorithms for estimating intrinsic volumes and
Minkowski tensors is the class of so-called local algorithms. The reason for the
name is that the algorithm only depends on what the image looks like locally.

The intuition behind is the additivity of Minkowski tensors: By the inclusion-
exclusion formula, they can be computed as a sum of contributions from each k �
� � � � k lattice cell depending only on the intersection of X with that cell. Since the
only thing we know about X in each cell is the configuration of black and white
points, we estimate the contribution from each cell by a so-called weight depending
only on the configuration. The Minkowski tensor is then estimated by counting the
number of occurrences of each possible k � � � � � k configuration of black and white
points in the image and taking a weighted sum of configuration counts.

Local algorithms are a popular choice in applications since they only require
reading through the image once. Hence they are very fast in the sense that their
computation times are linear in the number of pixels. They do, however, become
computationally involved for n > 2 and k > 2 [16]. Geometric intuition can give an
idea about how to choose the weights.

To give a precise definition of local algorithms, we first introduce some notation:
Suppose the lattice is given by L WD A.Zn C c/ where A 2 Gl.n/ and c 2 Œ0; 1/n.
The fundamental lattice k-cell of L is Ck

0 WD A.Œ0; k/n/. The volume of C10 is denoted
cL. The set of lattice points in Ck

0 is denoted by Ck
0;0 WD Ck

0 \ L. The translation of
Ck
0;0 by z 2 R

n is denoted by Ck
z;0 WD Ck

0;0 C z.
A k � � � � � k configuration is a partition of Ck

0;0 into two disjoint sets B (black
points) and W (white points). We denote the 2k

n
possible k � � � � � k configurations

by .Bl;Wl/ for l D 1; : : : ; 2k
n
. For instance, up to rotation there are six possible 2�2

configurations in 2D. These are shown in Fig. 15.2.
Let Nl.X \ aL/ be the number of occurrences of the configuration .Bl;Wl/ in the

image, i.e.

Nl.X \ aL/ WD
X

z2aL
1fzCaBl�X;.zCaWl/\XD;g:

, , , , , .

Fig. 15.2 The possible 2
 2 configurations in 2D
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We estimate Vm.X/ by a weighted sum of these configuration counts:

Definition 15.1 A local algorithm for the intrinsic volume Vm is an algorithm of
the form

OVm.X/ WD am
2k

n

X

lD1
w.m/l Nl.X \ aL/; (15.2)

where w.m/l can be arbitrary real numbers, referred to as the weights.

Many natural approaches to defining digital estimators result in a local algorithm.
The most simple one, see [13, Sect. 2.3.1], is based on approximatingX by the union
OX of all 2 � � � � � 2 lattice cells with midpoint in X, i.e.,

OX WD
[

z2X\aL

.z � pL C aC10/; (15.3)

where pL WD A. 1
2
; : : : ; 1

2
/ is the midpoint of the fundamental cell. Then Vm. OX/ can

be used as an estimate for Vm.X/. The intrinsic volumes of OX can be computed by a
local algorithm. One can realize this by applying the inclusion-exclusion formula
to OX. Local algorithms based on different reconstructions of X have also been
considered, see e.g. [13, 15].

Other approaches are inspired by integral geometry. These take as a starting point
the Steiner formula as in [12] or a discretization of the Crofton formula as in [14, 15].
The results are again local algorithms.

15.2.3 Convergence of Local Algorithms in the Design-Based
Setting

To evaluate the quality of an algorithm, it can be tested in a design based setting.
This means that the object X is considered as deterministic, whereas the lattice is
randomized. In this section, we consider what we will call a stationary lattice, that
is, a lattice of the form L D L0 C c, where L0 is a fixed lattice and c 2 C10 is a
uniform random translation vector. This means that the lattice is randomly translated
with respect to the underlying object which seems like a natural assumption in
applications. It is natural to require a local algorithm to be unbiased in this setting,
at least asymptotically when the resolution tends to infinity, i.e., lima!0 E OVm.X/ D
Vm.X/. Alternatively, one could consider the exact error, see Remark 15.7.

There is a simple estimator for the volume of X that is unbiased even in finite
resolution:



440 A.M. Svane

Theorem 15.2 The volume estimator that counts the number of black lattice points
and multiplies by the volume of each 2� � � �� 2 lattice cell is a local algorithm with
k D 1 given by

OVn.X/ WD ancL
X

z2aL
1fz2X\aLg:

This algorithm is unbiased in the design based setting, i.e.,

E OVn.X/ D Vn.X/:

Note that the algorithm in Theorem 15.2 is actually computing the volume of the
approximating set OX defined in (15.3).

In 2D and 3D, the Euler characteristic V0.X/ can also be estimated by V0. OX/.
This requires the following smoothness condition on the boundary:

Definition 15.3 A set X 
 R
n is called r-regular if for every boundary point x 2

bdX, there are two balls of radius r containing x whose interiors are completely
contained in X and R

n n X, respectively.

The following theorem is proved in 2D in [17] and in 3D in [3]:

Theorem 15.4 Let X be an r-regular subset of R2 or R3. Then for a sufficiently
small compared to r,

V0. OX/ D V0.X/:

Unfortunately, the estimator Vm. OX/ is not unbiased for 1 � m � n � 1, not even
when a ! 0. This is part of a more general phenomenon. Even when the underlying
set is a convex polytope, the following was proved in [23], see also [8] when k D 2:

Theorem 15.5 There exists no estimator of the form (15.2) for Vm with m < n
that is asymptotically unbiased for all compact convex polytopes with non-empty
interior.

In fact, there is a measure � on the set Pn
0 of compact convex polytopes with

non-empty interior, such that any local algorithm for Vm, m < n, is biased on a set
of polytopes with positive �-measure. See [23] for details.

Moreover, for 0 � m � n � 2, it can be shown that the worst case bias

sup
X2Pn

0

ˇ
ˇ
ˇ
ˇ
ˇ

lima!0 E OVm.X/� Vm.X/

Vm.X/

ˇ
ˇ
ˇ
ˇ
ˇ

is always at least 100%. For surface area in 3D, i.e. when m D 2 and n D 3, one
can do a bit better. It was shown in [29] that the best possible algorithm has a worst
case bias of 4%. The authors give an explicit algorithm that minimizes the bias.
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Theorem 15.4 showed that under certain smoothness assumptions on the bound-
ary, estimation of the Euler characteristic is possible. This is not the case in general.
The following was proved in [23]:

Theorem 15.6 Let m > 0 and m D n � 1 or m D n � 2. There exists no estimator
for Vm of the form (15.2) that is asymptotically unbiased for all r-regular sets.

To prove these theorems, it is necessary to study the mean E OVm.X/, which is
a linear combination of the mean configuration counts ENl.X \ aL/. A simple
computation shows that

ENl.X \ aL/ D E
�X

z2aL
1fzCaBl�X;.zCaWl/\XD;g

�

D
X

z2aL0

Z

C10

1fzCacCaBl�X;.zCacCaWl/\XD;gdc

D a�n
Z

Rn
1fzCaBl�X;.zCaWl/\XD;gdz: (15.4)

If X is r-regular and f is a function supported within distance r from bdX, then
the generalized Steiner formula of Hug et al. [6] yields the following formula for
the integral

Z

Rn
f .x/dx D

n�1X

iD0

Z

bdX

Z r

�r
tif .x C tu.x//dt�i.dx/;

where the �i are signed measures on bdX and u.x/ is the outward pointing normal
vector at x 2 bdX.

If Bl and Wl are both non-empty, then all points z satisfying z C aBl 
 X
and .z C aWl/ \ X D ; lie at distance at most ak

p
n from the boundary, so the

generalized Steiner formula can be applied to 1fzCaBl�X;.zCaWl/\XD;g when a is
small. Thus, to determine the asymptotic behavior of (15.4), one must study the
function 1fzCaBl�X;.zCaWl/\XD;g along the normal lines x C tu.x/. This idea first
appeared in [10] and was extended in [25].

Remark 15.7 One could also consider convergence when the lattice is fixed and
require that lima!0

OVm.X/ D Vm.X/. This property is known as multigrid con-
vergence. It was shown in [23] that if a local algorithm is not asymptotically
unbiased, then it can also not be multigrid convergent. Thus, the above results on
non-existence of asymptotically unbiased algorithms translate to results on non-
existence of multigrid convergent algorithms.



442 A.M. Svane

15.2.4 Local Algorithms for Minkowski Tensors

Local algorithms for Minkowski 2-tensors have been suggested in [19, 20]. Since
these are position dependent, the weights in Definition 15.1 will generally have to
depend on position, i.e. we must consider algorithms of the form

X

l

X

z2aL
wl.z; a/1fzCaBl�X;.zCaWl/\XD;g; (15.5)

where wl W Rn � .0;1/ ! T
rCs depends on position and resolution.

Estimation of volume tensors is easy, since a Riemann sum

O̊ r;0
n .X/ WD ancL

1

rŠ

X

z2X\aL

zr

yields an unbiased local algorithm.
There are no convergence results in the literature about local algorithms for other

Minkowski tensors than intrinsic volumes, but asymptotic formulas for the mean of
a local algorithm of the form (15.5) could easily be derived by computations similar
to [25] and [23]. Apart from the most trivial tensors, asymptotically unbiased local
estimators for Minkowski tensors are not expected to exist.

15.2.5 Isotropic Design

One could also consider a version of the design based setting where the lattice is
both randomly translated and rotated. That is, we consider the lattice L D R.L0Cc/
where the translation vector c 2 C10 and the rotation R 2 SO.n/ are both uniform
random and mutually independent. We say that L is stationary isotropic. In this
setting, asymptotically unbiased estimators do exist [25]:

Theorem 15.8 If X is r-regular and L is stationary isotropic, then there exist local
algorithms for Vm with m D n; n � 1; n � 2 that are asymptotically unbiased, i.e.

lim
a!0

E OVm.X/ D Vm.X/:

Explicit asymptotically unbiased algorithms are given in [25].
If the algorithms are applied to a stationary isotropic Boolean model with a

fixed lattice, a similar result seems to hold: There exists asymptotically unbiased
estimators for Vn, Vn�1, and Vn�2. At least, this has been shown in both 2D [22] and
3D [5]. Again, isotropy is essential.

These results suggest that it is the lack of isotropy of L that causes the bias in the
results of Sect. 15.2.3.
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15.2.6 Variance of the Local Volume Estimator

We consider again the volume estimator given by lattice point counting

OVn.X/ D ancL
X

z2aL
1X.z/

from Theorem 15.2. While this has the correct mean in the design based setting,
determining the exact error j OVn.X/ � Vn.X/j is a classical and difficult topic. Even
when X is the unit ball centered at the origin, the optimal bound on the error when
a ! 0 is unknown. This is known as the Gauss circle problem.

Instead, we will consider the variance in the design based setting where L is
stationary and isotropic. To study the variance, we first consider E. OVn.X/2/:

E. OVn.X/
2/ D a2nc2

L
E
�X

z2aL
1X.z/

�2

D a2nc2
L

Z

SO.n/

Z

C10

� X

z12aRL0

X

z22aR.L0Cc/

1X.z2/1X.z2 C z1/
�
dcdR

D ancL

Z

SO.n/

� X

z12L0

Z

Rn
1X.Rz2/1X.R.z2 C az1//dz2

�
dR

D ancL

Z

SO.n/

� X

z12L0
1X 	 .1X/

�.�aRz1/
�
dR;

where g� denotes the function x 7! g.�x/. The Poisson summation formula [21,
VII, Corollary 2.6] yields:

ancL

Z

SO.n/

�X

z2L0
1X 	 .1X/

�.�aRz/
�
dR

D
X

�2L�

0

Z

SO.n/
F .1X 	 .1X/

�/.a�1R�/dR

D
X

�2L�

0

Z

SO.n/
jF .1X/.a

�1R�/j2dR

D !�1
n

X

�2L�

0

Z

Sn�1

ˇ
ˇF .1X/.a

�1j�ju/ˇˇ2du:

Here F denotes the Fourier transform and L
�
0 is the so-called dual lattice of L0. We

have used the fact that the Fourier transform of a convolution is a product of Fourier
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transforms and that F .g�/ is the complex conjugate of F .g/. Recalling that

F .1X/.0/ D
Z

Rn
1X.x/dx D E. OVn.X//;

we find

var. OVn.X// D E. OVn.X/
2/� E. OVn.X//

2

D !�1
n

X

�2L�

0 nf0g

Z

Sn�1

ˇ
ˇF .1X/.a

�1j�ju/ˇˇ2du: (15.6)

It was shown in [1] that if X is a smooth manifold, then for a�1j�j sufficiently
large,

Z

Sn�1

ˇ
ˇF .1X/.a

�1j�ju/ˇˇ2du � C.X/adC1j�j�d�1;

where C.X/ > 0 is a constant depending on X. It follows that:

Theorem 15.9 If X is a smooth manifold, then for a sufficiently small

var. OVn.X// � adC1!�1
n C.X/

X

�2L�

0 nf0g
j�j�d�1

:

Getting a precise formula for the variance is not possible. When X is smooth
and convex with nowhere vanishing Gauss curvature, there are formulas for the
Fourier coefficients. These show that each term

R
Sn�1 jF .1X/.a�1j�ju/j2du oscillates

between 0 and 8Vn�1.X/adC1j�j�d�1, see [4]. It is therefore hard to determine the
sum (15.6).

If the underlying set is a random set X, it is sometimes possible to obtain precise
formulas for the asymptotic variance. Under suitable conditions on X, it is shown in
[11] that

lim
a!0

a�d�1 var. OVn.X// D 4!�1
n EVn�1.X/

X

�2L�

0

j�j�d�1:

15.2.7 Other Types of Algorithms

Despite the negative convergence results, local algorithms are still being used
because of their low computation time. But there are also various attempts in the
literature to define algorithms that take the global structure of the image into account
without loosing too much speed.
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In [9], a semi-local algorithm is suggested for estimation of Euler characteristic.
Let K n

0 be the class of compact convex sets with non-empty interior in R
n. Assume

that X is known to be a finite union of planar sets from K 2
0 satisfying mild

conditions on their intersections [9, Definition 1]. Generally, OX does not have the
same Euler characteristic as X, but it is shown in [9] that after throwing away certain
connected components of OX in a systematic way, it does. The computation time of
this algorithm is also linear in the number of pixels.

There are also convergent algorithms for the remaining ˚ r;s
m when X 2 K n

0 . The
convex hull of X \ aL, conv.X \ aL/, converges to X in the Hausdorff metric when
a ! 0, see [7]. The Minkowski tensors are continuous with respect to the Hausdorff
metric, so

lim
a!0

˚ r;s
m .conv.X \ aL// D ˚ r;s

m .X/:

Hence ˚ r;s
m .conv.X \ aL// can be taken as an estimate for ˚ r;s

m .X/. The optimal
computation time for the convex hull of a set of N points is O.N logN C Nbn=2c/,
see [2].

The method of convex hulls does obviously not generalize to non-convex sets.
Another approach [7] is based on computing the Voronoi cells of X \ aL. The
optimal computation time for the Voronoi cells of N points is almost as good as
for the convex hull, namely O.N logN C Ndn=2e/, see [2]. This algorithm applies to
all sets of positive reach:

Definition 15.10 Let X 
 R
n and R � 0. Then XR WD fx 2 R

n j d.x;X/ � Rg
denotes the parallel set of X. The reach of X, Reach.X/, is the supremum over all
R � 0 for which every point in XR has a unique nearest point in X. If Reach.X/ > 0,
then we say that X has positive reach.

The idea is to define the Voronoi tensor of a set Y 
 R
n for each pair r; s � 0 by

V r;s
R .Y/ WD

Z

YR
pY.x/

r.x � pY.x//
sdx 2 .Rn/˝.rCs/:

Here pY.x/ denotes the point in Y closest to x. This is well-defined for almost all x.
If X has positive reach and R < Reach.X/, then the Voronoi tensors satisfy the

following Steiner formula:

V r;s
R .X/ D rŠsŠ

nX

jD0
�jCsR

jCs˚ r;s
n�j.X/:

This follows from an application of the generalized Steiner formula in [6].
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If the Voronoi tensors are known for n C 1 distinct values R0; : : : ;Rn of R, then
we get n C 1 equations:

0

B
@

V r;s
R0
.X/
:::

V r;s
Rn
.X/

1

C
A D rŠsŠ

0

B
@

�sRs
0 : : : �sCnR

sCn
0

:::
:::

�sRs
n : : : �sCnRsCn

n

1

C
A

0

B
@

˚ r;s
n .X/
:::

˚ r;s
0 .X/

1

C
A

The matrix is invertible since it is a product of a diagonal matrix and a Vandermonde
matrix, so the system can be solved for the Minkowski tensors.

The Voronoi tensors of the set X\aL can be computed from the image. If we take
this as an estimate for the Voronoi tensors of X, we obtain the following estimators
for the Minkowski tensors:

0

B
@

O̊ r;s
n .X/
:::

O̊ r;s
0 .X/

1

C
A D 1

rŠsŠ

0

B
@

�sRs
0 : : : �sCnR

sCn
0

:::
:::

�sRs
n : : : �sCnRsCn

n

1

C
A

�10

B
@

V r;s
R0
.X \ aL/
:::

V r;s
Rn
.X \ aL/

1

C
A (15.7)

An asymptotic convergence result for these estimators was proved in [7]. Note
that the result holds for any translation of the lattice, so we do not need to assume
randomization of the lattice.

Theorem 15.11 Suppose X is a topologically regular set of positive reach and R <
Reach.X/. Then

lim
a!0

V r;s
R .X \ aL/ D V r;s

R .X/:

By linearity in (15.7), we obtain

lim
a!0

O̊ r;s
m .X/ D ˚ r;s

m .X/:

The Voronoi tensors of X \ aL have a simple expression in terms of the Voronoi
cells

Vx WD fy 2 R
n j 8z 2 .X \ aL/ n fxg W kx � yk < kz � ykg:

Namely,

V r;s
R .X \ aL/ D

X

x2X\aL

xr
Z

Vx\Bx.R/
.y � x/sdy;

where Bx.R/ is the ball around x of radius R. Thus, in order to compute the estimator,
one needs to compute the Voronoi cells of X \ aL and do an integral over each of
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these. This is more computationally involved than the local algorithms, but there
exist relatively fast algorithms to compute Voronoi cells.

15.3 Grey-Scale Images

The black-and-white model for digital images introduced in Sect. 15.2.2 is often
too idealized for real world images. Due to limitations of the measuring device, the
light from a single point will be spread out. We are thus unable to measure precisely
whether or not a point lies in X. Instead, we measure a light intensity. Associating a
grey tone to each intensity, this results in a grey-scale image where we see a blurred
zone around the boundary of the object.

Blurring may seem like an obstacle to the estimation of intrinsic volumes. The
simplest way to deal with it is to use thresholding, i.e. to choose a threshold value
ˇ and convert all pixels with grey-value larger than ˇ to black and all other pixels
to white. The algorithms for black-and-white images may then be applied to the
thresholded image. One would expect this to introduce an extra bias. At the same
time, a lot of information is thrown away when an image is thresholded. We shall
see below that algorithms based directly on the grey-values perform much better.

15.3.1 Models for Grey-Scale Images

Let 
 W Rn ! Œ0;1/ be the point spread function (PSF) that describes how the light
originating from a point at the origin is spread out over Rn. The intensity �X.x/ that
can be measured at x 2 R

n is then an integral of the contributions from all points
in X:

�X.x/ WD
Z

X

.x � y/dy:

In other words, �X is the convolution of 1X with 
. We have assumed that the PSF
is independent of the position of the point. Moreover, we assume that 
 is bounded,
continuous, and that

R
Rn 
.x/dx D 1. Since the results below only deal with rotation

invariant PSF’s, we will assume throughout that 
.x/ D 
.jxj/, i.e. the light received
from a point depends only on the distance to the point. More general PSF’s have
been considered in [24].

In applications, the PSF is often modeled by the Gaussian 
.x/ D
.2�/�d=2e�x2=2, which satisfies all the above assumptions.

In a digital grey-scale image, we measure the intensity �X at the midpoint of each
pixel. That is, the information we have is

�XjL W L ! Œ0; 1�:
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We also consider the following transformation of 
:


".x/ WD "�n
."�1x/:

Small values of " correspond to little blurring, meaning that the grey-values are
concentrated close to the boundary of X. The intensity function corresponding to 
"
will be denoted by �X" .

15.3.2 Local Algorithms for Grey-Scale Images

Local algorithms for grey-scale images are algorithms based on the local k� � � � � k
configurations of grey-values in the image. A k�� � ��k configuration of grey-values
is an element of

Œ0; 1�C
k
0;0 D ff�sgs2Ck

0;0
j �s 2 Œ0; 1�g:

We denote the configuration f�X" .x/gx2zCaCk
0;0

of grey-values observed on z C aCk
0;0

by �X" .z; a; k/. To each configuration we associate a weight. We can think of this as

a function f W Œ0; 1�Ck
0;0 ! R.

Definition 15.12 A local algorithm for Vm is an algorithm of the form

OVm.X/ D an"m�n
X

z2aL
f .�X" .z; a; k//;

where f W Œ0; 1�Ck
0;0 ! R is a measurable function called the weight function.

The factor an compensates for the growing number of terms in the sum when a ! 0.
The factor "m�n ensures the right degree of homogeneity.

15.3.3 Convergence of Grey-Scale Local Algorithms

We again test the convergence of the algorithms in the design based setting with a
stationary lattice.

We restrict ourselves to estimators with k D 1. Thus, the weight function is a
function f W Œ0; 1� ! R and OVm takes the following simple form

OVm.X/ D an"m�n
X

z2aL
f .�X" .z//: (15.8)
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The asymptotic behavior of estimators based on larger k � � � � � k configurations is
studied in [24], but the results are harder to interpret in this case, so we omit them
here.

The mean of an estimator of the form (15.8) is again given by a simple formula:

E OVm.X/ D an"m�nE
�X

z2aL
f .�X" .z//

�

D an"m�n
Z

C10

� X

z2aL0
f .�X" .z C ac//

�
dc (15.9)

D "m�nc�1
L

Z

Rn
f ı �X" .z/dz:

Note that this is independent of the resolution a�1. Instead, we consider the
convergence of OVm.X/ when " ! 0, i.e. when the blurring becomes small. To
determine the asymptotic behavior of (15.9) when " ! 0, we introduce a function
� W R ! Œ0; 1� that will appear in the results below. This is given by

�.t/ WD
Z

Rn
1fhx;ui�0g
.tu � x/dx;

where u 2 Sn�1 is a unit vector. By rotation invariance of 
, � is independent of u.
The map t 7! �.t/ is the intensity function of a halfspace perpendicular to u

measured at a point of signed distance t from the boundary of the halfspace. If
we zoom in on the boundary of a sufficiently smooth set, it will look almost like
a halfspace. Therefore, the blurred image will locally look almost like a blurred
halfspace when " is small. This is the intuitive reason why � shows up in the limit
" ! 0.

The theorem is stated under the assumption that X is a gentle set. This is a mild
smoothness condition ensuring that almost every boundary point has a well-defined
tangent space. It is satisfied by all finite unions elements from K n

0 and all r-regular
sets. See [10] for the precise definition.

We can now state the following convergence result for surface area estimators:

Theorem 15.13 Let X be a gentle set. Suppose f W Œ0; 1� ! R is continuously
differentiable on the interval Œˇ; !� 
 .0; 1/ and that f is zero outside Œˇ; !�. Then

lim
"!0

E OVn�1.X/ D c1. f ; 
/Vn�1.X/;

where

c1. f ; 
/ WD 2c�1
L

Z

R

f ı �.t/dt:
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If f > 0 on .ˇ; !/, then c1. f ; 
/ ¤ 0. In this case,

c1. f ; 
/
�1 OVn�1.X/

is an asymptotically unbiased estimator for Vn�1.X/.

Similarly, there is a result for estimation of integrated mean curvature:

Theorem 15.14 Let X be an r-regular set and assume that 
 has compact support.
Suppose f W Œ0; 1� ! R is continuously differentiable on Œˇ; 1�ˇ� � .0; 1/ and zero
outside Œˇ; 1 � ˇ�. If f .t/ D �f .1 � t/, then

lim
"!0

E OVn�2.X/ D c2. f ; 
/Vn�2.X/:

15.3.4 Some Examples

To illustrate the results, we can look at some simple examples of local algorithms
for grey-scale images. The simplest algorithm for surface area is of the form (15.8)
with f D 1Œˇ;1�ˇ�, i.e.

OVn�1.X/ WD an"�1 X

z2aL
1Œˇ;1�ˇ�.�X" .z//:

Up to a factor an"�1, this is the number of pixels with grey-value in the interval
Œˇ; 1 � ˇ�. According to Theorem 15.2, the mean of this estimator is "�1 times
the volume of the band around bdX with grey-values in Œˇ; 1 � ˇ�. Intuitively, the
volume of this a band should be proportional to "Vn�1.X/. Indeed, Theorem 15.13
shows that

lim
a!0

E OVn�1.X/ D c1.ˇ; 
/Vn�1.X/;

where

c1.ˇ; 
/ D 4c�1
L
��1.ˇ/:

When 
 is the standard Gaussian PSF, � is the distribution function of a standard
normal distribution on R, so c1.ˇ; 
/ can be computed directly. If the PSF is
unknown, it may be necessary to determine c1.ˇ; 
/ experimentally.

This algorithm is extremely simple. It only requires thresholding at two different
levels and computing the difference in the number of black lattice points. However,
other algorithms for surface area could also be worth considering. For instance, it
might be relevant to choose a function that puts more emphasis on grey-values close
to 1=2 since these are expected to lie close to bdX.
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For estimating Vn�2, one can consider the weight function f D 1Œˇ;1=2��1Œ1=2;1�ˇ�.
The resulting algorithm is given by counting the number of grey-values between ˇ
and 1=2 and subtracting the number of grey-values between 1=2 and 1 � ˇ. For
suitable ˇ, the constant c2. f ; 
/ in Theorem 15.14 will be non-zero and hence we
can divide by it to get an estimator for Vn�2.

15.3.5 Variance of Local Algorithms for Grey-Scale Images

The above convergence results hold in any resolution a. This may seem a bit
counterintuitive. If " is small, which is necessary to obtain good precision, the grey-
values in the interval Œˇ; !� are concentrated in a very narrow band around bdX.
If, at the same time, the resolution is low, then it is likely that the lattice does not
intersect this band. Thus we expect to see large deviations from the mean. This is
captured by the variance, as shown in [26]:

Theorem 15.15 Suppose that X is a topologically regular set and its boundary
is a smooth .n � 1/-dimensional manifold where n > 1 and that 
 and f are
smooth functions. Let L be a stationary isotropic lattice. Then there is a constant
C.X; 
; f / > 0 such that for all a and " sufficiently small,

var. OVn�1.X// � C.X; 
; f /an"�1:

The interesting thing here is that the effect of the resolution on the variance is much
larger than the effect of ". In particular, if a and " tend to 0 at the same rate, the
variance will also go to zero. So to obtain small variance, it is more important to
have high resolution than little blurring.

A computation similar to the one in Sect. 15.2.6 with "�1f ı �X" replacing cL1X

shows that

var. OVn�1.X// D "�2!�1
n c�2

L

X

z2L�

0 nf0g

Z

Sn�1

ˇ
ˇF .f ı �X" /.a�1jzju/ˇˇ2du:

As in the case of volume estimators, the variance can be studied by considering the
Fourier coefficients in this sum. This is the approach in [26].

15.3.6 Minkowski Tensors from Grey-Scale Images

As in the black-and-white case, local estimators for Minkowski tensors would have
to take the position of each configuration into account. That is, we must consider
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estimators of the form

an"�m
X

z2aL
f .z; �X" .z; a; k//;

where f W R
n � Œ0; 1�C

k
0;0 ! T

rCs. Such estimators were studied in [27] with the
purpose of defining estimators for Minkowski tensors. Under the assumption that
a D " and X is r-regular, it was shown that all Minkowski tensors of the form
˚

r;s
n�1.X/ and ˚ r;0

n�2.X/ can be estimated by an asymptotically unbiased algorithm of
this form. This requires that the point spread function is known.

We will not show this in general here but just outline the idea for surface tensors
in 2D. We assume that L is the standard lattice Z

2 spanned by the basis vectors e1
and e2. Consider the estimator

O̊ r;s
1 .X/ WD a

X

z2aZ2
zrf .�Xa .z; a; 2//:

Comparing with the definition (15.1), we expect that f should be an estimate for us.
The idea is to estimate the normal direction u by the direction in which the grey-

values decrease fastest. Given a 2 � 2 configuration, we can look at how fast the
grey-values change in the vertical and horizontal direction to get an idea about the
normal direction, see Fig. 15.3.

More precisely, consider a boundary point x with normal vector u and suppose
that a is small. Then, in a neighborhood around x, the image will look almost like a
blurred halfspace with normal vector u. In particular, if y lies in this neighborhood,
then the grey-value at y will be approximately �.hy � x; ui/ since �.t/ is the grey-
value of a point at signed distance t to the boundary of the halfspace.

If the whole 2 � 2 lattice block z C aC20;0 D fz; z C ae1; z C ae2; z C ae1 C ae2g
lies in this neighborhood of x, then

�Xa .z/ � �.hz � x; ui/;
�Xa .z C ae1/ � �.hz C ae1 � x; ui/;
�Xa .z C ae2/ � �.hz C ae2 � x; ui/:

a. b.

u
z z e1

z e2

Fig. 15.3 (a) A blurred halfspace with normal u. The normal vector is determined by how fast the
grey-values change in the horizontal and vertical direction. (b) A configuration of grey-values. To
determine u one can look at how the grey-vales change from z to z C e1 and from z to z C e2
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It follows that

��1.�Xa .z C ae1// � ��1.�Xa .z// � hae1; ui D au1;

��1.�Xa .z C ae2// � ��1.�Xa .z// � hae2; ui D au2;

where u D .u1; u2/. We may use the left hand side to estimate u and estimate us from
this. Note that this requires that � , which is determined by the point spread function,
is known. It is shown in [27] that this algorithm is asymptotically unbiased.
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A
addition

Minkowski, 7
additive, 2

fully, 2
kinematic operator, 104
weakly, 4

Alesker’s
characterization theorem, 34
irreducibility theorem, 237

Alesker-Fourier transform
scalar-valued valuations, 73
tensor-valued valuations, 93

angularity theorem, 252
anisotropy index, 402
approximate

differentiability, 51
tangent space, 51
tangent vector, 51

area measure, 13
asymptotic

covariance, 348
regime, 345

asymptotically unbiased, 440
aura, 284

B
Betke-Kneser theorem, 221
bidegree, 176
bivaluation, 176
Blaschke body, 209
body

convex, 3
star, 190

Bolyai-Gerwien theorem, 4
Boolean model, 307

area measure, 326–328
central limit theorem

Minkowski tensors, 358
multivariate, 358
univariate, 359

mean value formula, 322
mixed volumes, 324–325
on the torus, 355–357
support function, 325–326

branching formula, 164

C
character of an SO.n/ module, 162
characterization theorem

Alesker’s, 34
area measures, 21
curvature measures, 20–21
generalized local Minkowski tensors, 47
Hadwiger’s, 17
Klain’s, for volume, 18
Klain’s, on Ln-stars, 188
rotation-invariant case, 191
Steiner point map, 172, 226–227

Hermitian, 176
support measures, 21
tensor valuations, 33–34

class
igregularity, 291

© Springer International Publishing AG 2017
E.B.V. Jensen, M. Kiderlen (eds.), Tensor Valuations and Their Applications
in Stochastic Geometry and Imaging, Lecture Notes in Mathematics 2177,
DOI 10.1007/978-3-319-51951-7

455



456 Index

classical Steiner point, See Steiner point
configuration, 438
conjugate, 163
consistency theorem, 425–426
contact form on SV, 166
contravariant, 223
convergence

Voronoi tensor, 446
convex

body, 3
ring, 15
ring, extended, 319

convolution
scalar-valued valuations, 72
tensor-valued valuations, 93

cosine transform, 173
covariance

asymptotic, 348
formula

general Boolean model, 345
planar Boolean model, 350

covariant
isometry, 34, 40
rotation, 33, 40

cover density, 208
Crofton formula

for area measures, 88
for intrinsic volumes, 111
for Minkowski tensors

extrinsic, 84–85, 106–107
intrinsic, 120–122

for tensorial curvature measures, 118–119,
122–124

rotational, scalar case, 196–197
rotational, tensorial case, 200–202

crystalline packing, 396
current, 262
curvature measure, 13

angular, 252
tensorial, 115–116

generalized, 116
intrinsic, 115

curvature measure on manifolds, 242

D
decomposition

McMullen, 7, 67
of Vali, 160

determinantal point process, 392
difference body, 222
differential cycle, 271
digital image, 437
direction space, 41

discrete
moment tensor, 229
moment vector, 225
Steiner point, 226

dual
Kubota integral recursion, 189
quermassintegral, 188
representation, 162

E
Ehrhart polynomial, 214
Ehrhart’s theorem, 214
Ehrhart-Macdonald reciprocity law, 216, 218
�-smooth, 59
equivariant

w.r.t. rigid motions, 20
w.r.t. the special linear group, 222, 229

Euler characteristic, 15
Euler-Morse

index, 267
theory, 267

Euler-Verdier involution, 240–241
even valuation, 18
extended convex ring, 319
extension property, 22, 217
exterior product, 70

F
flag measure, 328–329
foam, 398
Fock space representation, 356
form

horizontal, 168
primitive, 167

Fourier transform. See Alesker-Fourier
transform

Frobenius reciprocity theorem, 164
function

aura, 284
DC, 279
Monge-Ampère, 271
regular value, 282
weakly regular value, 283

fundamental representations, 161

G
G-invariant, 236
Gamma distribution, 408
Gauss circle problem, 443
Gauss-Bonnet theorem, 268
Gaussian random wave model, 393
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generalized
curvature, 52
sine function, 114
tensorial curvature measure, 116

germ-grain model, 305
Gibbs process, 395
globalization map, 242
Grassmannian

affine, 83
linear, 114

grey-scale image, 447
Groemer’s extension theorem, 2–3, 14

H
Hadwiger’s

characterization theorem, 17
general integral geometric theorem, 87
volume characterizations, 8

hard
Lefschetz theorem, 166
spheres, 395

harmonic intrinsic volume, 335
Hermitian

integral geometry, 235
intrinsic volume, 249

hit-or-miss topology, 320
homogeneous

of degree r, 6
rational, of degree r, 6

horizontal form, 168

I
inclusion-exclusion formula, 2

for lattice polytopes, 217
induced representation, 163
integral current, 263
intensity, 307

measure, 342
intersectional

family, 1
kinematic

formula, 107
operator, 104

intrinsic volume, 12
harmonic, 335

invariance
w.r.t. translations, 40

invariator principle, 196
irreducibility theorem, 68
isometry covariant, 34, 40

of degree q, 40
isomorphism theorem, 254

isotropy
restricted, 426

K
kinematic formula, 107

WDC sets, 288
Klain

function, 19, 69
imbedding, 69
valuation characterization (Ln-stars), 188
volume characterization, 18

Kubota integral recursion
dual, 189

L
Lévy particle model, 429
Laguerre tessellation, 390
lattice, 213

point enumerator, 22
polytope, 213
surface area, 215

Lipschitz-Killing form, 52–53
Ln-star, 187
local

algorithm
digital image, 439
grey-scale image, 448

extension, 316
Minkowski tensor, 39

generalized, 41
principal kinematic formula, 269
stereology, 207, 423

locally
defined

measure on ˙n, 40
determined

measure on ˙n, 21
measure on R

n, 20
measure on S

n�1, 21
finite, 341
polyconvex set, 320

M
manifold

current, 262
mark distribution, 424
marked point process, 424
McMullen

conjecture, 68
decomposition, 7, 15, 67
relations, 34–37
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mean
covariogram, 347
particle volume tensor, 424
value formula, Boolean model, 322

metric
projection, 12
tensor, 29, 114

Miles ellipsoid, 433
Minkowski

addition, 7
additive, 7
content, 280
tensor, 31

differently normalized, 116
generalized, local, 41
local, 39

valuation, 179, 222
mixed volume, 11

valuation, 11
Monge-Ampère function, 271
multiplicity free, 159
multiplicity of irreducible representation,

159

N
normal

bundle, 12
cycle, 12, 52, 270

O
odd valuation, 18

P
parallel

body, outer, 12
set, local, 12
set, outer (see parallel body)

permanental point process, 392
'-density, 320
Pick’s theorem, 214
Poincaré duality, 241

scalar-valued valuations, 96
tensor-valued valuations, 104

point process, 306
determinantal, 392
Gibbs process, 395
intensity, 307
isotropy, 306
marked, 424
permanental, 392
Poisson, 307

random sequential addition, 394
stationarity, 306

Poisson
hyperplane tessellations, 397
point process, 307

polyconvex set, 15
polyhedron, 4
polynomial

behaviour, 30
translation behaviour, 33

of degree q, 39
valuation, 191, 228

polytope
cell decomposition, 218
lattice, 213

power diagram. See Laguerre tessellation
primitive form, 167
principal kinematic formula. See also

intersectional kinematic formula,
269, 318

local, curved case, 255
for curvature measures, 269
Hermitian, flat case, 250

principal rotational formula, 205–207
product

scalar-valued valuations, 71
tensor-valued valuations, 91–92

projection body, 223
pull-back, 75
push-forward, 76–77

Q
quasi-smooth valuation, 193
quermassintegral. See intrinsic volume

dual, 188

R
r-regular, 440
radial function, 186
random sequential addition, 394
random sequential adsorption. See random

sequential addition
reciprocity law

Ehrhart-Macdonald, 216, 218
regular value, 282

weak, 283
relative open polytope, 6
representation

dual, 162
Fock space, 356
of a group, 158

restricted isotropy, 426
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ro-polyhedron, 6
ro-polytope, 6
rotation, 30

covariant, 33, 40
sum formula

for area measures, 89
for tr. inv. Minkowski tensors,

90
rotational

Crofton formula
scalar case, 196–197
tensorial case, 200–202

formula, intersectional (see principal
rotational formula)

S
second determinantal formula, 163
shape index, 402
� -continuity, 14
simple valuation, 5
simplex

unimodular, 221
slicing, 263
smooth valuation, 69
SO.n/-compatible, 189
spherical valuation, 101, 180
star

body, 190
shaped, 186

stationary point process, 306
Stein-Malliavin method, 358
Steiner

formula, 12
for support measures, 32
for volume tensors, 31

point, 171
discrete, 226

Steiner-Weyl formula, 264
stereology

local, 207, 423
STIT tessellation, 398
strong approximation

C2, 279
PL, 279

subspace determinant, 186
support

element, 12
function, 10
measure, 13

w.r.t. an affine space, 115

surface area
lattice, 215

symmetric
tensor, 28
tensor product, 28–29

T
Tasaki valuation, 249
tensor

metric, 29
on R

n, 28
symmetric, 28

tensor-valued curvature measure. See tensorial
curvature measure

tensorial curvature measure, 115–116
generalized, 116

tessellation, 388
Laguerre, 390
Poisson hyperplane, 397
STIT, 398
Voronoi, 389

theorem
Alesker, irreducibility, 237
angularity, 252
Betke-Kneser, 221
Bolyai-Gerwien, 4
characterization

area measures, 21
curvature measures, 20–21
generalized local Minkowski tensors,

47
intrinsic volumes, 17
rotation-invariant case, 191
Steiner point map, 172, 176, 226–227
support measures, 21
tensor valuations, 33–34
volume, 8

Ehrhart, 214
Frobenius reciprocity, 164
Gauss-Bonnet, 268
Groemer’s extension, 2, 14
Hadwiger’s characterization, 17
Hadwiger’s general integral geometric, 87
hard Lefschetz, 166
isomorphism, 254
Pick, 214
Weyl, 295

thresholding, 447
trace free part, 97
transfer principle, 245
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transformation
unimodular, 213

translation
biinvariant, 176
covariant, 225, 230
equivariant, 226
invariant, 236

translative formula
iterated, 312

typical particle, 208

U
unimodular

simplex, 221
transformation, 213

V
Val, 18
Val.V/, 67
Valm, 18
Val�, 18
ValC, 18
valuation, 2

even, 18
G-invariant, 5
Minkowski, 179, 222
odd, 18
on manifold, 240

polynomial, 191, 228
quasi-smooth, 193
simple, 5
smooth, 69
spherical, 101, 180
Tasaki, 249
unimodular, 214
weak, 4

variance
digital volume estimator, 444
grey-values, surface area estimator, 451

vertical
axis, 426
slice, 210, 426

volume tensor, 424
Voronoi

diagram (see Voronoi tessellation)
tensor, 445

convergence, 446
tessellation, 389

W
WDC set, 283
weak

continuity, 8–9
valuation, 4

weakly regular value, 283
Weyl’s theorem, 295
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