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Abstract. In this paper we study reliability analysis of a k-out-of-n sys-
tem with a repair facility which provides an essential and several inessen-
tial service with given probabilities. At the epoch the system starts, all
components are in operational state. Service to failed components are in
the order of their arrival. When a component is selected for repair, we
assume that the server may select it either for a service that turns out to
be different from what is exactly needed for it, which we call the inessen-
tial service with the probability p or for desired service, called essential
service with probability (1-p). Once the inessential service process starts,
a random clock is assumed to start ticking which decides the event to
follow: if the clock realises first (still inessential service going on) the
components ongoing service is stopped and it is replaced with a new
component. On the other hand if the inessential service gets completed
before the realisation of the random clock, then the component moves
for the essential service immediately. The life-time of a component, the
essential service time and the random clock time have independent expo-
nential distributions and the inessential service time is assumed to follow
a phase type distribution. The steady state distribution of the system
has been obtained explicitly and several important performance measures
derived and verified numerically. The extension of the results reported
to the case of more than one essential service is worth examining. This
has applications in medicine, biology and several other fields of activity.
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1 Introduction

At several occasions, customers while seeking for a particular type of service
are met with some other type which is not desirable for him/her. For example,
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consider a person admitted to a hospital. If for some unwanted reason, he/she
get wrongly diagnosed and may receive a service which is unwanted for him/her.
Another example is a mechanic wrongly diagnoses a car problem leading to offer
an unwanted service. There are several other examples which, we are sure, the
readers can think from the day-to-day life. In many such occasions, it is prob-
able that the unwanted service which is being offered after a wrong diagnosis
finishes without eternal damage and the customer receives the required service.
These real world phenomena have motivated us to develop a queuing model,
which we describe as follows. We consider a k-out-of-n system, where the com-
ponents are subjected to failure. When selected for a repair, with probability
p, the failed component may receive an unwanted service (which we call the
inessential service). If the inessential service finishes before a random duration,
we assume that the component has overcome the wrong diagnosis and hence
proceeds for the essential service and become as good as a new one thereafter.
If the random duration is over while the component still receiving the unwanted
service, we assume that its ongoing service is stopped and it is replaced with a
new component. Our model differs from the vacation queuing models studied in
Madan et al. [1] or Ayyappan et al. [2], where at each service start, a customer
can choose one of the two kinds of services. The difference is that in our model,
a customer who got selected for inessential service may leave the system either
without completing any service or receiving both types of services. Saravanarajan
and Chandrasekaran [3] studies a vacation queuing model with system break-
downs, where the customers can choose one of the two type of services offered.
This model allows a customer to remain in the system for another service, join-
ing the tail of the queue, after a service completion. However, a customer can’t
receive two back to back services of different kind and it can’t leave the system
in between an ongoing service. Hence our model differs from this model also.

This paper has been arranged as follows: In Sect. 1, we give the technical
description of the model. In Sect. 3, the steady state distribution has been found.
Several important system performance measures have been derived in Sect. 4 and
Sect. 5 presents the results from a numerical study of the performance measures.

2 Technical Description of the Model

We consider a k-out-of-n system with a single server repair facility. At the epoch
the system starts, all components are in operational state. The life-time of a
component follows an exponential distribution with parameter λ/i, when i com-
ponents are operational. Service to failed components is in the order of their
arrival. When a component is selected for repair, it may get selected for an
inessential service with probability p and with probability (1 − p), it may be
taken for desired service, called the essential service. Once the inessential service
process starts, the failed component either completes the service there and moves
for the essential service or is replaced by a new component. A random clock is
assumed to start ticking the moment the inessential service starts, which decides
the event to follow: if the clock realises first (still the inessential service is going
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on) the failed component’s ongoing service is stopped and it is replaced with
a new component. On the other hand if the inessential service gets completed
before the realisation of the random clock, then the component moves for the
essential service immediately. After a successful repair (the essential service) the
component is assumed to be as good as a new component.

The essential service time of a failed component is exponentially distributed
with parameter μ and the service time of failed components in inessential service
has a phase type distribution with representation (α, S) of order m. We assume
that S0 = −Seee.

The random clock time is assumed to be exponentially distributed with para-
meter δ.

2.1 The Markov Chain

Let N(t) = at time t number of failed components in the system.

J(t) =

{
0, if the failed component getting essential service,
i, if a failed component getting ith phase of inessential service,

where i = 1, 2, . . . ,m.
Then {X(t), t ≥ 0} where X(t) = (N(t), J(t)) is a continuous time Markov

chain with state space {(0, 0)} ∪ {1, 2, . . . , n − k + 1} × {0, 1, 2, . . . ,m}.
The generator matrix of the Markov chain {X(t), t ≥ 0} is

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00 B0

B1 A1 A0

A2 A1 A0

· · ·
· · ·

A2 A1 A0

A2 Ã1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A00 = [−λ];B0 =
[
(1 − p)λ pλα

]
; B1 =

[
μ
δe

]

A1 =
[−(μ + λ) 0

S0 S − (δ + λ)Im

]
;A0 = [λIm+1];A2 =

[
(1 − p)μ pμα
(1 − p)δ eee pδ eeeα

]

Ã1 =
[−μ 0
S0 S − δIm

]

where α = (α1, α2 . . . , αm) with α1 + α2 + . . . + αm = 1.
We also define β = ((1 − p) pα).

3 Steady State Distribution

Since this system is finite, it is stable. Let

πππ = (π(0), π(1), . . . , π(n − k + 1))
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with
π(i) = (π(i, 0), π(i, 1), π(i, 2), . . . π(i,m)), 1 ≤ i ≤ n − k + 1

be the steady state probability vector of the system {X(t), t ≥ 0}. Then it
satisfies the equations πππQ = 0 and πππ eee = 1.

The equation πππQ = 0 gives rise to

π(0)A00 + π(1)B1 = 0 (1)
π(0)B0 + π(1)A1 + π(2)A2 = 0 (2)

π(i − 1)A0 + π(i)A1 + π(i + 1)A2 = 0, 2 ≤ i ≤ n − k (3)

π(n − k)A0 + π(n − k + 1)Ã1 = 0. (4)

Since A00 = [−λ] and B1 = A2 eee, from (1) it follows that

λπ(0) = π(1)A2 eee. (5)

Since B0 = λβ, equation (2) becomes

π(0)λβ + π(1)A1 + π(2)A2 = 0. (6)

Using (5) we can write this equation as

π(1)B1β + π(1)A1 + π(2)A2 = 0. (7)

We notice that B1β = A2 and hence equation (7) becomes

π(1)(A1 + A2) + π(2)A2 = 0. (8)

Post multiplying equation (8) with eee, we get

π(1)(A1 + A2)eee + π(2)A2 eee = 0 (9)

but (A1 + A2)eee = −A0 eee = −λeee. Hence (9) becomes

π(1)λeee = π(2)A2 eee. (10)

We notice that A2 = A2 eeeβ, which transforms equation (8) in to

π(1)(A1 + A2) + π(2)A2 eeeβ = 0. (11)

Substituting for π(2)A2 eee from (10) in (11), we get

π(1)(A1 + A2) + π(1)λeeeβ = 0.

That is
π(1)(A1 + A2 + λeeeβ) = 0. (12)

Equation (12) shows that π(1) is a constant multiple of the steady state vector
ϕϕϕ of the generator matrix A1 + A2 + λeeeβ. That is

π(1) = ηϕϕϕ (13)

where η is a constant.
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Equation (3) for i = 2 gives

π(1)A0 + π(2)A1 + π(3)A2 = 0. (14)

Since A2 = A2 eeeβ, equation (14) becomes

π(1)A0 + π(2)A1 + π(3)A2 eeeβ = 0. (15)

Post multiplying with eee, we get

π(1)λeee + π(2)A1 eee + π(3)A2 eee = 0. (16)

Using (10) the above equation can be written as

π(2)A2 eee + π(2)A1 eee + π(3)A2 eee = 0
i.e., π(2)(A1 + A2)eee = −π(3)A2 eee

i.e., π(2)λeee = π(3)A2 eee. (17)

In the light of equation (17), equation (15) becomes,

π(1)A0 + π(2)A1 + π(2)λeeeβ = 0
i.e., π(1)A0 + π(2)(A1 + λeeeβ) = 0

which implies that
π(2) = −π(1)A0(A1 + λeeeβ)−1.

That is
π(2) = −ηϕϕϕA0(A1 + λeeeβ)−1. (18)

Post-multiplying equation (3) with eee and proceeding in the same lines as we
derived equation (17), we can derive that

π(i + 1)A2 eee = π(i)λeee, for 3 ≤ i ≤ n − k. (19)

Equation (19) then transforms equation (3) as

π(i − 1)A0 + π(i)A1 + π(i)λeeeβ = 0, 3 ≤ i ≤ n − k,

which implies that

π(i) = −π(i − 1)A0(A1 + λeeeβ)−1, 2 ≤ i ≤ n − k (20)

which in turn gives

π(i) = (−1)i−1ηϕϕϕ(A0(A1 + λeeeβ)−1)i−1, 2 ≤ i ≤ n − k. (21)

We notice that Ã1 eee = −A2 eee; post-multiplying equation (4) with eee, we get

π(n − k)λeee = π(n − k + 1)A2 eee. (22)
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From equation (4), we can also write

π(n − k + 1) = −π(n − k)A0(Ã1)−1. (23)

Using (21) for i = n − k, (23) becomes

π(n − k + 1) = (−1)n−kηϕϕϕ(A0(A1 + λeeeβ)−1)n−k+1A0(Ã1)−1. (24)

Hence, we have the following theorem for the steady state distribution:

Theorem 1. The steady state distribution πππ = (π(0), π(1), . . . , π(n − k + 1)) of
the Markov chain {X(t), t ≥ 0} is given by

π(0) =
1
λ

ηϕϕϕB1,

π(1) = ηϕϕϕ,

π(i) = (−1)i−1ηϕϕϕ(A0(A1 + λeeeβ)−1)i−1, 2 ≤ i ≤ n − k

π(n − k + 1) = (−1)n−kηϕϕϕ(A0(A1 + λeeeβ)−1)n−k−1A0(Ã1)−1,

where ϕϕϕ is the steady state vector of the generator matrix A1 + A2 + λeeeβ and η
is a constant, which can be found from the normalizing condition πππ eee = 1.

4 System Performance Measures

1. Fraction of time the system is down,

Pdown =
m∑
j=0

π(n − k + 1, j).

2. System reliability,

Prel = 1 − Pdown = 1 −
m∑
j=0

π(n − k + 1, j).

3. Average number of failed components in the system,

Nfail =
n−k+1∑
i=1

i

⎛
⎝ m∑

j=0

π(i, j)

⎞
⎠ .

4. Expected rate at which failed components are taken for essential service:

Ees = (1 − p)λπ(0) +
n−k+1∑
i=2

(1 − p)μπ(i, 0) +
n−k+1∑
i=2

(1 − p)δ

⎛
⎝ m∑

j=1

π(i, j)

⎞
⎠ .
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5. Expected rate at which failed components are taken for inessential service

Ein es = pλπ(0) +
n−k+1∑
i=2

pμπ(i, 0) +
n−k+1∑
i=2

pδ

⎛
⎝ m∑

j=1

π(i, j)

⎞
⎠ .

6. Expected rate at which new components were bought:

EC.R =
n−k+1∑
i=1

δ

⎛
⎝ m∑

j=1

π(i, j)

⎞
⎠ .

7. Expected rate at which failed components that start with inessential service
subsequently moving to essential service before clock realisation:

EINE =
n−k+1∑
i=1

m+1∑
j=2

π(i, j)S0(j − 1, 1).

8. Fraction of time server is idle:

Pidle = π(0).

9. Fraction of time server is busy:

Pbusy = 1 − π(0).

5 Numerical Study of the System Performance Measures

Notice that if a component is selected for inessential service, it is either replaced
by a new component (if the random clock realises before completion of the
inessential service) or is got repaired (if the inessential service completes before
the random clock realises). Hence a component getting selected for inessential
service according to probability p affects the system reliability only through an
increase in the repair time by a random amount of time (minimum of inessential
service time and random clock time). Table 1 shows that very high reliability is
maintained in the system, which decreases slightly as the probability p that a
failed component receives an undesired service initially, increases. The decrease
in the average rate at which components directly receive essential service with
an increase in p, as seen in Table 2, was expected. According to the modelling
assumption, if the random clock expires during an inessential service, the compo-
nent receiving the inessential service is replaced with a new component. Hence,
as the probability p increases, more components will get selected for inessential
service, which leads to an increase in the replacement rate as seen in Table 3.

Since the inessential service is not helping the system in any way whatsoever,
one would expect the optimal value for the probability p as to be zero. However
in a situation where the possibility for inessential service can’t be avoided, one
would like to know its harm through some number. For this purpose, we have
constructed a cost function as follows:
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Table 1. Variation in system reliability

p n = 45 n = 50 n = 55 n = 60

0.001 0.999985933 0.999985933 0.999997139 0.999999404

0.007 0.999985814 0.999985814 0.999997139 0.999999404

0.03 0.999985576 0.999985576 0.99999702 0.999999404

0.07 0.999985039 0.999985039 0.999996901 0.999999344

0.09 0.999984741 0.999984741 0.999996841 0.999999344

0.3 0.999981642 0.999981642 0.999996066 0.999999166

0.7 0.999973893 0.999973893 0.99999404 0.999998629

0.9 0.999968886 0.999968886 0.999992669 0.999998271

0.99 0.999966323 0.999966323 0.999991954 0.999998093

Table 2. Average rate at which components are taken for essential service

p n = 45 n = 50 n = 55 n = 60

0.001 3.99649739 3.99649739 3.99654222 3.99655128

0.007 3.97557425 3.97579312 3.97583771 3.97584677

0.03 3.89581704 3.89603281 3.89607692 3.89608598

0.07 3.75561023 3.7558198 3.75586271 3.75587177

0.09 3.68479681 3.6850028 3.68504548 3.68505406

0.3 2.91331673 2.91348505 2.91352081 2.91352844

0.7 1.30956876 1.30964661 1.30966437 1.30966842

0.9 0.44612866 0.446155071 0.44616127 0.446162701

0.99 0.045032669 0.04503531 0.045035943 0.045036085

Table 3. Average rate at which components were bought

p n = 45 n = 50 n = 55 n = 60

0.001 0.001538355 0.00153844 0.001538457 0.001538461

0.007 0.010768481 0.010769077 0.010769199 0.010769224

0.03 0.046150584 0.04615318 0.046153713 0.046153817

0.07 0.107684486 0.107690714 0.107691996 0.107692257

0.09 0.138451293 0.138459414 0.138461098 0.138461441

0.3 0.461498737 0.46153 0.461536676 0.461538808

0.7 1.07679927 1.076895 1.07691669 1.0769217

0.9 1.38443172 1.38457251 1.38460553 1.38461328

0.99 1.52286148 1.52302587 1.52306497 1.52307427

Let C1 be the cost per unit time incurred if the system is down, C2, be the
repair cost per unit time for essential service per failed component, C3 is the cost
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incurred towards the time loss due to wrong diagnosis with failed components
and consequent realisation of random clock before inessential service completion.
C4 is the extra cost incurred on failed components that start with inessential
service subsequently moves to essential service before clock realisation, C5 be
the repair cost per unit time for inessential service.

Expected cost per unit time

= C1 · Pdown + C2 · Ees + C3 · EC.R + C4 · EIN E + C5 · Eines.

Table 4 presents the variation in cost function as the probability p increases
for different component failure rates. In all the cases studied, the optimum value
of p was found zero as was expected. The table also shows that as the component
failure rate increases, the cost function also increases.

General parameters for Tables 1–3 are as follows: λ = 4, μ = 3.2, δ = 5,

S =

⎡
⎣−18 4 6

5 −18 5
7 4 −19

⎤
⎦, α = (0.4, 0.3, 0.3).

Table 4. Variation in cost C1 = 9500, C2 = 2600, C3 = 4000, C4 = 1600 C5 = 3000

P λ = 4 λ = 4.5 λ = 5 λ = 6

0.001 10411.8662 11709.9268 12982.9131 15048.7344

0.007 10483.1328 11782.5352 13053.7373 15112.8564

0.03 10756.3047 12060.7119 13324.9258 15358.3809

0.07 11231.2598 12543.8252 13795.2471 15784.0264

0.09 11468.6729 12789.0537 14029.7676 15996.2021

0.3 13958.7285 15304.4629 16466.709 18199.4043

0.7 18682.9082 20028.3828 20973.9453 22276.6172

0.9 21032.8359 22349.3281 23158.7715 24260.2168

0.99 22087.1016 23384.0664 24126.6035 25141.5078
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