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Abstract. The paper is devoted to caching of popular multimedia and
Web contents in Internet. We study the Cluster Caching Rule (CCR)
recently proposed by the authors. It is based on the idea to store only
popular contents arising in clusters of related popularity processes. Such
clusters defined as consecutive exceedances of popularity indices over a
high threshold are caused by dependence in the inter-request times of
the objects and, hence, their related popularity processes. We compare
CCR with the well-known Time-To-Live (TTL) and Least-Recently-Used
(LRU) caching schemes. We model the request process for objects as a
mixture of Poisson and Markov processes with a heavy-tailed noise. We
focus on the hit probability as a main characteristic of a caching rule
and introduce cache effectiveness as a new metric. Then the dependence
of the hit probability on the cache size is studied by simulation.

Keywords: Caching · Cluster Caching Rule · TTL · LRU · Hit/miss
probability · Popularity process · Clusters of exceedances · Inter-request
times

1 Introduction

Nowadays, caching of contents is intensively applied in the Internet to provide
multimedia or Web objects on demand to the users with a minimal delay. The
idea stems from computer systems where frequently demanded files have to be
cached in a short memory to accelerate the exchange between the processor and
the operative memory. In telecommunication systems this concept is used to keep
the requested content in a cache, e.g. at an edge router in fog computing (cf.
[19–21]), or a hierarchy of caches (cf. [3,4]). Numerous problems arising from the
randomness of the inter-request time (IRT) sequences concern the optimal cache
size, cache utilization and occupancy, and the replacement of objects within a
cache to provide the fast availability of the requested content. The latter item
is characterized by the hit/miss probability, i.e. the probability to find/miss a
requested content in the cache.
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Among these cache replacement rules the Least-Recently-Used (LRU) (cf.
[1]), the Least-Frequently-Used (LFU) (cf. [2]) and the Time-to-Live (TTL) pol-
icy (cf. [3–5]) are the most popular schemes. Usually, the Independent Refer-
ence Model (IRM) that summarizes a number of assumptions is used to sim-
plify the formulation of the hit/miss probability, the cache utilization and occu-
pancy problems. According to IRM it is assumed that the inter-request times
are independent and exponentially distributed (i.e. the request process is a Pois-
son renewal process), and that the popularity of contents or Web objects and
content sizes are constant. The IRM implies a time and space locality regarding
the object popularity. It should be noted that normally a non-Poisson renewal
process model cannot capture the superposition of request processes that arise
in cache networks (cf. [3]).

Not much work has been done when the IRM model is not appropriate. Then
the IRT sequence may be correlated, heavy-tailed and non-stationary. Our first
objective is to show how one can handle the caching problem in this case and
what is the impact of such conditions on the effectiveness and utilization of a
cache. Correlated IRTs are particularly realistic if some content has become very
popular and many users are interested in it. Therefore, such correlations generate
clusters of peaks of the popularity index. Following [6] we determine the cluster
as a conglomerate of consecutive exceedances of the popularity process over a
threshold between two consecutive non-exceedances. A cluster structure of the
popularity process is shown in Fig. 1.

Fig. 1. The sequence of content popularity against the time including some indicated
clusters of exceedances over a given threshold.

We focus on the Cluster Caching Rule (CCR) policy proposed in [7] and
studied in [8]. Dealing with a single cache we propose here an effectiveness of a
cache as new caching metric. It is defined as total popularity of objects placed in
the cache at time t. The second objective is given by the analysis and comparison
of the CCR, TTL and LRU rules by a simulation study. Both the CCR and TTL
rule use timers as tuning knobs for individual objects to stay in the cache, but
they apply different arguments. We propose to select the TTL timers depending
on the popularity of the cached objects.
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The paper is organized as follows. In Sect. 2 related work is discussed. In
Sect. 3 we propose the effectiveness of a cache as characteristic metric. In Sect. 4
we modify the TTL rule regarding the specific TTL timers which depend on
the popularity indices. Moreover, we compare the hit probabilities of the CCR,
LRU and TTL rules depending on the cache size and the TTL timer selection
by simulation. The results are summarized in the Conclusion.

2 Related Work

Cache replacement schemes can be split into capacity-driven and TTL-based
policies (cf. [9]). The hit (or miss) probability determines the long-term frequency
to find (or not to find) a requested object in the cache. The LRU and LFU policies
belong to the capacity-driven group since objects are evicted from the cache by
arrivals of those objects not yet stored. According to LRU a new requested object
is placed into the cache and the least recently requested object is evicted from
the cache. In case the requested object is found in the cache, it is put on the
first position while the residual cache contents is shifted upwards. According to
the TTL policy objects are evicted according to individual timers, i.e. life times
to be in cache (cf. [3]). It was found that LFU is better than LRU (cf. [10]).
Thus, modifications of LRU were proposed like persistent-access-caching (PAC)
to improve its miss probability (cf. [11]).

The CCR policy [7] is related to a popularity oriented, threshold-driven pol-
icy. It allows to cache only those contents corresponding to related popularity
clusters, i.e. those objects are cached whose popularity index exceeds a suffi-
ciently high threshold u. The hit probability is then determined as the probabil-
ity to enter the cluster and the time of an object to stay in the cache is deter-
mined by the duration of consecutive clusters containing that object and the
corresponding inter-cluster times (see Fig. 2). The CCR scheme provides some
kind of congestion control that allows to drive cache utilization. The threshold
u determines the popularity level which is exceeded and impacts on the cluster
sizes of the popularity process. CCR is in a way similar to LFU where only
popular objects may be placed in the cache. Caching only frequently referenced
objects has also been developed as central processing unit (CPU) approach in [1].

Regarding the stochastic analysis of caching rules for correlated request
processes with heavy tails not much research has been done yet. Poisson arrival
processes were considered in [12–14] with light- and heavy-tailed request rates
λi, i.e. λi ∼ c exp(−ξiβ) for i = 1, 2, . . . with c, ξ, β > 0 and λi ∼ c/iα for
i = 1, 2, . . . with α > 1, c > 0, respectively. The miss probability of the LRU
policy was shown to decrease following a power law or exponentially, respec-
tively, for heavy- and light-tailed λi as the cache size C tends to infinity. It was
derived that the correlation does not impact the miss probability for unlimited
cache size. Markov arrival processes (MAPs) were also used to model correlated
requests (cf. [3]), since they are self-contained regarding superposition. Regard-
ing the LRU strategy and moderate cache sizes, non-stationary and dependent
request processes and the average miss probability were considered as input and
metric in [15].
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Cache utilization determines an important metric and raises several issues.
To optimize cache utilization based on TTL policies, it was proposed in [16]
to maximize the sum of the utilities of all objects regarding the TTL timers.
Therein, each content item is associated with a utility metric that is a function
of the corresponding content hit probability. The latter approach assumes a
Poisson renewal process as request model. In [7] the utilization with regard to
the CCR strategy has been determined by the ratio of the cluster and the cache
sizes where the cluster implies a set of consecutive exceedances of the popularity
index over a sufficiently high threshold. Then the average cache utilization was
considered both for fixed and random object sizes.

3 Effectiveness of the Cluster Caching Rule

The analysis of real traces has shown that about 70% of contents in caches is
requested only once. It translates into an even higher miss ratio of 0.88 (cf. [1]).
The LRU and TTL cache policies do not prevent to place unpopular contents
in the cache. To prevent caching of a large portion of rarely requested objects,
we propose to maximize the effectiveness of a cache. It is reflected by the new
metric

e(t) =
C∑

i=1

pi(t)1I{ith object oji from the catalog is in the cache at time t}.

We assume that all objects {oj | j ∈ M},M = {1, . . . , N} in the catalog have
equal size s and Ĉ = C · s is the cache size. N denotes the size of the catalog.
pi(t) is the popularity of the ith object oji in the cache at epoch t. e(t) indicates
the total popularity of all those objects {oj1 , . . . ojC} stored in the cache at time
t. It holds jC ≤ C since the cache may not be full. According to the CCR policy,
the ith object oji may be placed in the cache if its popularity pi(t) at time t
exceeds a given threshold u.

As the cache load is provided by clusters of highly popular objects, their
indices pi(t) may belong only to one cluster. This means that the number of
cached objects is limited by the cluster size T2(u) or more exactly by the maximal
cluster size. The notion of the cluster size of a stationary process {Xt}t≥1

T2(u) = min{j ≥ 1 : L1,j > u,Xj+1 ≤ u|X1 ≤ u},

where M1,j = max{X2, . . . , Xj}, M1,1 = −∞, L1,j = min{X2, . . . , Xj}, L1,1 =
+∞ is mentioned in [6,7] following [17]. Regarding the CCR policy, we then get
the effectiveness

eu(t) =
C∑

i=1

pi(t)P{pi(t) > u|ith object is in the latest cluster at time t}

≤
j∑

i=1

pi(t)P{T2(u) = j} (1)
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where j ≤ C is the observed cluster size. In case j > C we can load the rest of
those objects in the next cache of a cache hierarchy or increase u to decrease the
cluster size.

Fig. 2. Illustration of the CCR caching mechanism and the popularity clustering for
different threshold values U1 and U2 over time.

Example 1. Figure 2 illustrates the dynamics of CCR caching and the calculation
of the effectiveness. At time T1 the cache contains objects with numbers 1, 2 and
3 because their popularity exceeds the threshold U1. If U2 were the threshold,
the objects with numbers 0 − 4 would be cached. Let us consider the threshold
U1. The next cluster begins at the object with number 6. The popularity of the
object 2 decreases and it falls between two clusters. Nevertheless, at time T1

it remains in the cache. In the second cluster the object with number 7 occurs
twice. At time T2 we have the objects with numbers 6 − 8 in the cache. The
objects 1 − 3 are evicted from the cache. Hence, the effectiveness at time T1 is
calculated as the sum of the popularity of objects 1−3 and at time T2 by means
of the objects 6 − 8.

The probability P{T2(u) = j} in (1) does not take into account possible
repetitions of the same objects in the popularity clusters. Therefore, it provides
an upper bound of the real effectiveness.

The effectiveness metric eu(t) in (1) is driven by u. We can find such u that
provides a maximal value eu(t) for a fixed time t. To this end, let us assume that
the objects’ popularity is determined by Zipf’s law, i.e. pi ∼ χ/iα, where χ > 0
is a constant. α > 0 is the tail index. It shows the heaviness of the tail of the
popularity distribution. As the popularity index may change over time, we can
take pi(t) ∼ χ/iα(t).

Regarding a sequence of increasing thresholds {un}n≥1, the probability of
T2(un) derived in [6] satisfies for each ε > 0 and some nε and j0(nε) the following
expression
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| P{T2(xρn
) = j}/(θ2qn(1 − qn)(j−1)θ) − 1 |< ε

for all n > nε and sufficiently large j, i.e. j > j0(nε). Here high quantiles {xρn
}

of the common popularity process of all objects in the catalog w.r.t. the levels
qn = 1 − ρn, ρn ∼ 1/n are taken as thresholds {un}. θ ∈ [0, 1] is the dependence
measure of the popularity process called extremal index [18]. The reciprocal 1/θ
approximates the mean cluster size of exceedances over the threshold u = un.
By (1) and an approximation of the Rieman Zeta function for α(t) > 0, α(t) �= 1,

we get the total popularity of the j objects placed in the cache of size Ĉ = C · s
in terms of

eq(t) ≈ θ2q(1 − q)(j−1)θ

j∑

i=1

χ

iα(t)
≈ χθ2q(1 − q)(j−1)θ j1−α(t) − 1

1 − α(t)
. (2)

As the quantile level q represents now the threshold u, one can find q = 1/(1 +
(j − 1)θ) that maximizes eq(t). In Fig. 3 eq(t) is depicted for a fixed time t,
i.e. α(t) = α. As Zipf’s model may fit the popularity not accurately enough for
samples of moderate size, we can estimate the popularity of the ith object oji

at stopping time t by [7]

pi(t) = Ji,t/Nt. (3)

Here Ji,t and Nt denote the number of requests for the ith object oji and for all
objects oj , j ∈ M in the catalog at time t, respectively, that progress in time.
The cluster size probability can be evaluated as ratio of the number of requests
Rt with popularity exceedances over u to the total number of requests Nt at
time t. Here, Rt contains only exceedances corresponding to different objects
falling in the clusters. Then we get from (1) the empirical effectiveness

eu(t) =
[
Rt/Nt

2
] C∑

i=1

Ji,t.

Fig. 3. Effectiveness (2) with C = j = 10 for the CCR policy against the quantile
level q of the extremal index θ ∈ {0.2, 0.7} and the tail index α ∈ {1.2, 4}, where
q ∈ {0.137, 0.357} corresponds to the maximal effectiveness.
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Thereby, formula (2) provides the parametric model taking into account the
heaviness of the tail in terms of α(t) and the dependence structure by θ.

An increasing level u induces clusters with smaller sizes. It may lead to the
necessity to select a smaller cache size or to a less efficient utilization of the
cache.

4 Performance Comparison of Different Caching Rules

We compare the CCR, LRU and TTL caching rules by simulation. Following
[8] we use a mixture of the Moving Maxima (MM) and the Poisson renewal
processes to model a common IRT process regarding all objects of the catalog
of different types.

The MM process {τi,t} as IRT model of the ith object type satisfies

τi,t = max
j=0,...,mi

{αjZt−j}, t ∈ Z,

with nonnegative constants {αj} such that
∑mi

j=0 αj = 1 and iid standard Fréchet
distributed r.v.s {Zt} with distribution function F (x) = P{Zi ≤ u} = e−1/u.
The distribution of τi,t is also Fréchet. The MM process is a mi-dependent
Markov chain where mi determines the popularity duration. The MM process
models IRTs of short-term news that are of public interest for a limited time.
The Poisson process with intensity λi models objects like scientific and culture
articles which may attract interest within a long time independently. Each object
of equal size s = 1 from the catalog has an own (mi, {αj}) or λi value as unique
IRT model parameter.

The MM processes generate the correlation and the cluster structure of such
common IRT process that has been generated here by 90% MM and 10% Poisson
renewal processes. The corresponding popularity process that is the popularity
pi(t) of each requested object oji calculated by (3) is given in Fig. 1. In (3) Ji,t

is calculated in a cross-window with Nt = 300 requests. The number of objects
in the catalog was taken as N = 100.

We compare the CCR, the LRU and the TTL policies for such simulated
IRT processes. For each object oji we propose TTL timers {ti} depending on its
popularity index pi(t) and the mean IRT E(Yi) of the overall IRT process, i.e.

ti = h E(Yi) pi(t), 0 < h < ∞. (4)

h is a scalability parameter. The TTL timers are larger for highly popular
objects. In (4) ti is proportional to the popularity of the ith object in [0, t].

In Fig. 4 we estimate the extremal index θ of the popularity process by the
intervals estimator proposed in [17]. This allows us to estimate the effectiveness
(2) and the cache size as the reciprocal C = 1/θ equal to the mean cluster size
as proposed in [7]. Taking θ̂ = 0.22 it is easy to calculate the approximate mean
cache size Ĉ = 5.

In Fig. 5 we show the hit probabilities for the TTL, LRU and CCR policies
depending on the cache size C for s = 1. The hit probability is estimated as
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Fig. 4. The intervals estimate ̂θ of the extremal index averaged over 50 samples against
the threshold u: the estimate ̂θ = 0.22 corresponds to the stability interval of the plot
by threshold u.

the ratio of the number of requests hitting the cache and the total number
of requests. For small cache sizes the best hit probability is provided by the
CCR scheme with a threshold u corresponding to the stability interval of the
plot (u, θ̂) and both the TTL and CCR work similar if h and u are relatively
small. Small u generates large clusters. Then the CCR stores more objects in
the same manner as TTL irrespectively of their popularity processes. If h and u
are small, then the inter-cluster time for large clusters is of similar small scale
as the TTL timers. For large caches and long timers TTL is better than CCR.
This means a long-term placement of many objects in the large cache which is
not effective. For large caches the CCR hit probability reaches a stability level
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Fig. 5. The hit probabilities of the CCR, LRU and the TTL policies averaged over 50
samples against the cache size C, where horizontal lines indicate standard deviations.
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that is lower than the corresponding TTL value due to the limited cluster size
and the impossibility to store a larger number of objects than the cluster size.
A minimal C corresponding to the stability level of the hit probability may be
taken as a sufficient cache size.

5 Conclusion

The paper addresses the caching of popular multimedia and Web contents in
Internet. We have extended the investigation of the Cluster Caching Rule (CCR)
recently proposed in [7,8]. Assuming correlated inter-request time processes and
fixed object sizes, we have studied here the caching of popular contents when
the popularity of the stored objects may change over time. The LRU, CCR and
TTL caching rules have been compared by a simulation study.

The following results have been obtained:

1. cache effectiveness has been introduced as new quality metrics;
2. regarding a TTL based policy, TTL timers based on popularity indices have

been proposed;
3. the CCR policy has a better hit probability than TTL regarding relatively

small cache sizes and thresholds u corresponding to the stability interval of
the extremal index plot (u, θ);

4. the LRU policy is worse than both the CCR and TTL rule when the cache
size is moderate and it works similar to TTL for large caches.

Regarding a fog computing environment based on interconnected powerful SBC
boards (cf. [19,20]), optimized caching strategies for popular objects that imple-
ment the sketched approaches on a small memory are currently a very important
research issue (cf. [21]). Consequently, the adoption of a dynamic version of the
proposed CCR policy is a topic of our future research.
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