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Abstract. The paper deals with a multi-server controllable queueing
system M(t)/M/K with time-dependent and, in particular, with peri-
odic arrival rates. The models with homogeneous and heterogeneous
servers are of interest. In latter case the fastest free server allocation
mechanism is assumed and the preemption is allowed. The control prob-
lem consists in evaluation of the optimal number of servers during
some specified stages and is solved by finite horizon dynamic program-
ming approach. To calculate the transient solutions we use a forth-order
Runge-Kutta method for the system with a truncated queue length. The
results are compared with corresponding queues operating in a station-
ary regime. It is shown that the optimal control policies are also time
dependent and periodic as arrival rates and heterogeneous systems are
superior in performance comparing to the homogeneous ones.

Keywords: Time-dependent arrival rate · Controllable queueing
system · Dynamic programming approach · Forth-order Runge-Kutta
method

1 Introduction

Many queueing systems are subject to time-dependent changes in system para-
meters. This feature is very important to cover the problems with seasonality
and periodicity of stochastic processes. Particularly it happens with an arrival
rate which is used for modelling of arrivals of calls and inquires at call centres,
arrival of packets at routers of the telecommunication systems, of time changing
air traffic at airports, different arrival rates of trucks to the warehouses, goods
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depot or seaports and so on. A very good literature overview on this subject can
be found in [4]. This paper surveys and classifies the results on performance eval-
uation approaches for time-dependent queueing systems and their applications
and identifies the links between different approaches. The performance analy-
sis of multi-server queueing system subject to breakdowns was studied in [1].
There are several approaches to analyse such systems. The dynamic behaviour
of Markovian queueing systems is described by a system of Kolmogorov differen-
tial equations (KDEs). Analytical solution of such systems exists only for special
cases. Numerical approaches are based on a Runge-Kutta method. The systems
with an infinite buffer are normally approximated by using a finite buffer sys-
tem. The numerical solution of KDEs is used for example for the performance
evaluation of a M(t)/M/1/N system in [3].

In many cases the time-dependent system parameters must be combined with
some controllable problems. The paper [5] deals with optimal allocation of such
resources as beds in emergency departments of a hospital. For the mathematical
modelling the queueing system with losses of the type is used. It was shown that
the periodic variation of arrival rates makes a hysteretic policy time-dependent
and periodic with the same period. To find the optimal decisions dynamic pro-
gramming is used. The same approach was used in [2] for the multi-server queue-
ing system with a controllable number of homogeneous servers.

The contribution of the present work is an evaluation of the optimal number
of servers in multi-server queueing system with homogeneous and heterogeneous
servers and time-dependent arrival rate. The discretization of a continuous-time
Markov process is performed to apply the Runge-Kutta method and the iterative
dynamic programming algorithm over a finite horizon. The decisions are chosen
at specified moments of time which divide the observation time interval into so
called stages. The number of available servers is assumed to be a constant within
each stage. The paper provides comparison analysis of stationary and transient
solutions as well as homogeneous and heterogeneous systems.

The rest of the paper is organized as follows. In Sect. 2 we describe a mathe-
matical model and formulate a optimization problem for transient and stationary
case. Section 3 deals with a description of a time-dependent arrival rate. In Sect. 4
a forth-order Runge-Kutta method is adopted for the model under study. The
recursive dynamic programming algorithm is shown in Sect. 5. Some illustrative
numerical examples are discussed in Sect. 6. Conclusions are given in Sect. 7.

2 Mathematical Model

Consider the controllable multi-server queueing system M(t)/M/K with K
servers. This system features Poisson arrival stream with time dependent arrival
rate λ(t). The servers are assumed to be heterogeneous with servers intensities
μj , j = 1, 2, . . . ,K. In special case when all intensities are equal, μj = μ, j =
1, 2, . . . ,K, we get the homogeneous system. The control consists in specification
of the number of servers K(t) at any decision epoch which will be specified later.

Denote by N(t) the number of customers in the system at time t. The dynam-
ics of the system is described by means of the controllable continuous-time inho-
mogeneous Markov chain {N(t)}t≥0 with a set of states E = {n;n ∈ N0} and set
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of control actions A = {1, 2, . . . ,K}. Define additional cost structure with the
following components: c1 – the waiting cost per unit of time for each customer
in the queue, c2,j – the idle state cost per unit of time when the server j is idle.
In homogeneous case it is assumed that c2,j = c2, j = 1, 2, . . . ,K. The servers
are enumerated in such a way that

μ1 ≥ μ2 ≥ · · · ≥ μK , c2,1 ≥ c2,2 ≥ · · · ≥ c2,K . (1)

In accordance with the given cost structure, the mean total cost criterion is
denoted by

Jf (n) = E
f [

∫ T

0

c(N(t),K(t), λ(t), t)dt|N(0) = n]. (2)

Here f is a Markov control policy which depends on the current state and time
only, i.e. K(t) = f(t, n(t)), the expectation E

f is taken with respect to the
probability distribution P

f over the state-action sequence under control policy
f . The immediate cost function c(N(t),K(t), λ(t), t) is defined as

c(N(t),K(t), λ(t), t) = c1

∞∑
k=K(t)+1

(k − K(t))1{N(t)=k} (3)

+
K(t)∑
k=0

K(t)∑
j=k+1

c2,j1{N(t)=k}.

The substitution of (3) into (2) yields the relation for the mean total cost in
form

Jf (n) =
∫ T

0

η(n,K(t), λ(t), t)dt (4)

=
∫ T

0

[
c1Q̄(n,K(t), λ(t), t) +

K(t)∑
k=0

K(t)∑
j=k+1

c2,jπk(n,K(t), λ(t), t)
]
dt.

The first term by c1 at the right hand side of (4) stands for the mean number of
customers in the queue at time t with K(t) servers and initial state N(0) = n,
the second term stands for the mean idle state costs. We wish to minimize the
functional Jf (n) over all control policies and find optimal policy f∗ that achieves
the minimal cost J∗(n), i.e.

J∗(n) := Jf∗
(n) = min

f
Jf (n). (5)

The solution of proposed optimization problem can be performed numerically.
To realize some iterative algorithm the continuous time model must be converted
to a discrete one. We divide a time interval [0, T ] into I equally spaced periods.
The mean total cost functional in this case can be rewritten a follows,
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Jf (n) =
I∑

i=1

η(n,K(i), λ(i), i) (6)

=
I∑

i=1

[
c1Q̄(n,K(i), λ(i), i) +

K(i)∑
k=0

K(i)∑
j=k+1

c2,jπk(n,K(i), λ(i), i)
]
,

where K(i) is a number of servers at period i, Q̄(n,K(i), λ(i), i) is a mean number
of customers in the queue at period i, πk(n,K(i), i) – probability of k customers
in the system with K(i) servers at period i with initial state n.

The transient solution of the problem will be compared with a stationary
one. In this case the long-run average cost per unit of time

η(K,λ(t)) = c1Q̄(K,λ(t)) +
K∑

k=0

K∑
j=k+1

c2,jπk(K,λ(t)) (7)

must be minimized over K(t) for any fixed value λ(t). The substitution of the
stationary state probabilities of the infinite buffer system into (7) yields the
relation

η(K(t), λ(t)) =
[
c1

K(t)∏
j=1

λ(t)∑j
k=1 μk

λ(t)
∑K(t)

k=1 μk

(λ(t) − ∑K(t)
k=1 μk)2

(8)

+
K(t)∑
k=0

K(t)∑
j=k+1

c2,j
λ(t)k∏k

l=1

∑l
j=1 μj

]
π0(K(t), λ(t)),

π0(K(t), λ(t)) = (9)

[K(t)−1∑
k=0

λ(t)k∏k
l=1

∑l
j=1 μj

+
K(t)∏
j=1

λ(t)∑j
k=1 μk

∑K(t)
k=1 μk∑K(t)

k=1 μk − λ(t)

]−1

.

3 Arrival Rate

We have chosen a similar arrival rate λ(t) as in the paper from [2]. The authors
have studied there incoming and service of airplanes of an airport modelled
via a M(t)/M/K/N queuing system. In the queueing system under study the
condition

λ(t) <

K∑
j=1

μj (10)

is a necessary one, since there is no cost relation for customers who get rejected.
That means that the maximum number of server K can handle the average
arrival rate of users. The data for λ(t) is given in Table 1.

The arrival rate will be divided into three equidistant stages. It means that
each stage lasts eight hours, which is a normal working shift cycle. At the begin-
ning of a stage, the number of customers n in the system is known. This value
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Table 1. Values for the arrival rate λ(t)

Time in hour Input intensity

1–5 8.75 + 4.25 cos(t/1.6)

6 4.5

7 5.0

8 5.5

9 6.5

10–17 7.0

18–21 10.0

22–24 13.0

will be called initial state of the current stage. A natural question, one can ask
is, how many servers (in this context workers) should be hired at current and fol-
lowing stage(s) so that the expected costs are minimized. Obviously the number
of necessary operators are depending on the initial state n.

4 Fourth-Order Explicit Runge-Kutta Method

Since there is no way to solve the system of Kolmogorov forward equations

π′(t) = π(t)A(t) (11)

analytically a numerical algorithm is needed to get an approximate solution. For
this task we have used the standard fourth order explicit Runge-Kutta procedure
which is a widely used one-step method. It considers differential equations of the
form

y′(t) = f(t, y(t)) ∀t ∈ (0, T ) (12)

with given initial condition
y(t0) = y0. (13)

Algorithm 1. The explicit fourth-order Runge-Kutta method.
Step 1. Computation of five parameters κ1, κ2, κ3, κ4 and κ:

κ1 = f(tn, yn)Δt

κ2 = f(tn +
Δt

2
, yn +

κ1

2
)Δt

κ3 = f(tn +
Δt

2
, yn +

κ2

2
)Δt

κ4 = f(tn + Δt, yn + κ3)Δt

κ =
1
6
(κ1 + 2κ2 + 2κ3 + κ4)
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Step 2. Evaluation of yn+1 by the recursive relation,

yn+1 = yn + κ.

For solving the Kolmogorov forward equations (11) interpret f(t)π(t) as
f(π(t), t), choose a appropriate step size Δt and apply this Runge-Kutta method
directly on the function f(π(t), t). Obviously the error between the calculated
and the real solution gets less if one selects a smaller step size. On the other hand
a greater step size means less computing time. We have chosen Δt = 0.005. This
value for the step size seems to have a reasonable balance between computing
time and computation error.

To solve the system (11) we use a truncation of the buffer capacity by assum-
ing that N is the maximum allowable number of customers in the system.

5 Optimisation Problem

Let T = 24h be an observation cycle and a finite horizon for the dynamic
programming. The decision epochs occur each 8 h, hence we get S = 3 stages with
I
S periods i within each stage s. A strategy at a decision epoch d = (S−s)I/S+1
which depends on a current stage s is donated by f(d, n), where n stands as
before for the initial state. A strategy is equal for any period i from the interval

d ≤ i ≤ d +
I

S
− 1.

Denote by Vn(s) the optimal cost function for s stages left which we refer to as
value function:

Vn(s) = min
f

E
f [

I∑
i=1

c(N(i),K(i), λ(i), i) |N(s) = n], s = 1, 2, . . . , S, n ∈ E.

(14)

The minimum must be taken over tail policies

(f(1,K(1)), f(I/S + 1,K(I/S + 1)), . . . , f((S − 1)I/S + 1,K((S − 1)I/S + 1)).

Obviously, Vn(S) = J∗(n).

Algorithm 2. The finite horizon dynamic programming:
Step 1. Backward recursion: Vn(0) = 0,n ∈ E, and

Vn(s) = min
1≤k≤K

{
r(n, k, s) +

N∑
m=0

pnm(k, s)Vm(s − 1)
}

, (15)

where r(n, k, s) is the total average cost per stage,

r(n, k, s) =
d+ I

S −1∑
i=d

η(n, k, λ(i), i), s = 1, 2, . . . , S, (16)
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and the transition probabilities between the stages are defined as

pnm(k, s) = P

[
N(d + I/S) = m

∣∣∣N(d) = n, f(d, n) = k
]
, (17)

s = 2, . . . , S. (18)

Step 2. Any Markov policy f∗ that satisfies

f∗(d, n) = arg min
1≤k≤K

{
r(n, k, s) +

N∑
m=0

pnm(k, s)Vm(s − 1)
}

(19)

is an optimal control policy.

The values pnm(k, s) in (17) have to be interpreted in the following way. They
stand for the probability to be in state m at the beginning of the next stage
under the condition that the initial state of the previous stage was n.

Algorithm 3. The following basic steps are involved into the computation
procedure:

Step 1. Compute the state probabilities π(n, k, λ(i), i) for each n, k and i via the
Runge-Kutta fourth order method.

Step 2. Compute the cost function η(n, k, λ(i), i) for each n, k and i.
Step 3. Compute r(n, k, s) for each n, k and s by accumulating η(n, k, λ(i), i)

over all periods i within the corresponding stage.
Step 4. Compute the transition probabilities pnm(k, s) for each n, m, k and s via

Runge-Kutta fourth order method.
Step 5. Evaluation of the optimal strategy for any s and n by means of

Algorithm2.

The number of servers k∗ = f(s, n) defined by (19) for which the expression in
the right hand side of (15) is minimal is called the best or optimal strategy at
stage s given the initial state is n.

Remark 1. Notice that in this queueing model rejecting of customers is not a
valid option. If, for example, the initial state n at the current stage is the capacity
of the buffer plus 2, the best strategy cannot be one server. However if the one
choose the waiting room capacity high enough, restrict n up to this value and
condition (10) is clearly fulfilled there will be no dropping of users.

6 Numerical Realisation and Results

The main goal in this paper is to compare the operating costs for the M(t)/M/K
queue between homogeneous and heterogeneous servers when optimal policies
are used. Further the difference between transient and stationary solution will
be contrasted for both philosophies. For this computations the following assump-
tions are used:
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1. The maximum number of servers is K = 6.
2. The buffer capacity is N − K = 10.
3. The waiting cost c1 = 10.
4. The service rate of the server in homogeneous case is μ = 4.
5. The service intensities μj , j = 1, 2, . . . , K, of heterogeneous servers are listed

in Table 2.
6. The idle state cost in homogeneous case is c2 = 2.1.
7. The idle state costs c2,j , j = 1, 2, . . . ,K, for heterogeneous servers are listed

in the Table 2.

To get comparability with the homogeneous case we have chosen the service
rates and operator idle costs for heterogeneous servers so that they satisfy the
following conditions,

K∑
j=1

μj = Kμ,

K∑
j=1

c2,j
μj

=
c2
μ

(20)

together with the ordering (1). That means that the server 1 is the fastest one
but has the highest mean standing costs. Followed by server 2 and so forth. This
is a quite reasonable assumption because a faster operator needs more resources.
If this server is idle more costs are generated as for a slower one. In heterogeneous
case the fastest free server policy is used for the allocation mechanism. If more
then one operator is free and a new customer enters the queue the fastest free
server will be entrusted with this task. This must be considered in the calculation
of η(n, k, λ(i), i). To calculate the best stationary policy the long-run average
cost η(k, λ(i)) must be minimized for k, 1 ≤ k ≤ K. For homogeneous servers
the service intensities μj as well as idle state costs c2,j in homogeneous case must
be set to be equal as was discussed before.

Table 2. Values of μj and c2,j for heterogeneous servers

Server Idle state cost Service rate

1 c2,1 = 0.4371 μ1 = 480/49

2 c2,2 = 0.9 c2,1 μ2 = μ1/2

3 c2,3 = 0.85 c2,2 μ3 = μ1/3

4 c2,4 = 0.8 c2,3 μ4 = μ1/4

5 c2,5 = 0.75 c2,4 μ5 = μ1/5

6 c2,6 = 0.7 c2,5 μ6 = μ1/6

In Figs. 1(a) and (b) we illustrate the mean number of customers in the buffer
Q̄(n,K(t), λ(t), t) in homogeneous and heterogeneous cases for different number
of servers K(t). The queue length for K(t) = 4, 5, 6 servers are not shown in these
figures, since the values are very small (especially when heterogeneous servers



140 D. Efrosinin and M. Feichtenschlager

are used). In Fig. 1(a) and (b) the initial state N(t) = n at time t = 0 is set to
be zero. That means the queueing system is at start empty. The mean number
of waiting customers, which is needed in (6), is calculated via the formula

Q̄(n,K(i), λ(i), i) =
N∑

k=K(i)+1

(k − K(i))πk(n,K(i), λ(i), i), (21)

where K(i) is fixed in period i, k is a state at period i and N is the maximum
number of customers in the system. The state probabilities in this expression
are the solution of the system (11) performed by the fourth-order Runge-Kutta
method for each given number of servers K(i) at each period i.

Fig. 1. Q̄(n, K, λ(t), t) for (a) homogeneous and (b) heterogeneous system

Fig. 2. Transient/stationary Q̄(n, K, λ(t), t)/Q̄(K, λ(t)) for (a) homogeneous and (b)
heterogeneous system

Figures 2(a) and (b) illustrate how the mean queue length (21) differs from
the stationary solution in the homogeneous and heterogeneous case which can
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be calculated by expression from (8). Again the mean queue length for 4, 5 and
6 servers are not shown because of the small values. The continuously plotted
lines belong to the transient and the dashed lines to the stationary solution.

These pictures illustrate clearly the behaviour of the queuing system. When
the transient solution is off and λ(t) is a constant value for a certain period it con-
verges to the stationary result as time goes by. This is not astonishing because a
stationary queuing system can be interpreted as a long running transient system
with a constant arrival rate.

To compare the minimum expected costs between homogeneous/hetero-
geneous servers in stationary/transient case simply evaluate η(n, k∗, λ(i), i)
and η(k∗, λ(i)) for each period i and corresponding optimal number of servers
k∗. The calculated values of the optimal policy are listed in Table 3. To get

Table 3. Optimal policy f

Initial state at

stage one

Homogen

transient

Homogen

stationary

Heterogen

transient

Heterogen

stationary

0 4 5 6 6

1 4 5 6 6

2 5 5 6 6

3 5 5 6 6

4 5 5 6 6

5 5 5 6 6

6 5 5 6 6

7 5 5 6 6

8 5 5 6 6

9 5 5 6 6

10 6 5 6 6

Stage two

0 4 4 4 4

1 4 4 4 4

2 4 4 4 4

3 4 4 4 4

4 4 4 4 4

5 4 4 4 4

6 4 4 5 4

7 4 4 5 4

8 4 4 6 4

9 4 4 6 4

10 5 4 6 4

Stage three

0 5 5 6 6

1 5 5 6 6

2 5 5 6 6

3 5 5 6 6

4 5 5 6 6

5 5 5 6 6

6 5 5 6 6

7 5 5 6 6

8 5 5 6 6

9 6 5 6 6

10 6 5 6 6
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more server variety in the transient solutions one can increase the waiting room
capacity and adjust c1 and c2.

Figures 3(a), (b) and 4(a), (b) show the minimum expected costs η(n,K(i),
λ(i), i) in homogeneous and heterogeneous case. The first one deals with a

Fig. 3. (a) η(K(t), λ(t)) in stationary case and (b) η(n, K(t), λ(t), t) in transient case
for n = 0

Fig. 4. η(n, K(t), λ(t), t) in transient case for (a) n = 5 and (b) n = 10

Fig. 5. η(n, K(t), λ(t), t) with homogeneous servers for (a) n = 0 and (b) n = 5
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stationary case. Here the initial state n is without any significance. The sec-
ond, third, fourth one is dedicated to the transient solution of the optimizing
problem with initial state n at each stage equal to 0, 5 and 10. In the following
pictures the stages should be interpreted severally.

As one would expect, the queuing system with heterogeneous servers is supe-
rior in terms of running costs. A similar gap to the homogeneous costs as in
Figs. 3(b), 4(a) and (b) can be seen for different initial states n at the end of
every stage.

The Figs. 5(a), (b) and 6(a), (b) deal with homogeneous and number
Figs. 7(a), (b) and 8(a) and (b) with heterogeneous operators. They picture the
minimum expected costs η(n,K(i), λ(i), i) and η(K(i), λ(i)) which were induced
in the stationary and transient case respectively for chosen initial states.

Fig. 6. η(n, K(t), λ(t), t) with homogeneous servers for (a) n = 9 and (b) n = 10

Fig. 7. η(n, K(t), λ(t), t) with heterogeneous servers for (a) n = 0 and (b) n = 5

At a close look at Figs. 5(a) up to 8(b) one can see that the costs induced by
the transient queuing system converges to the expenses of the stationary model
if and only if the computed optimal policies for this stage are the same.
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Fig. 8. η(n, K(t), λ(t), t) with heterogeneous servers for (a) n = 7 and (b) n = 10

7 Conclusions

In this paper we have provided performance analysis of the Markovian control-
lable queueing system with a time-dependent arrival rate. The control policy
prescribes the number of allowable servers and is time-dependent as well. The
transient and stationary analysis for homogeneous and heterogeneous systems
with preemption is provided. It is shown that the optimal policy differs in tran-
sient and stationary case. For the same control policy the corresponding cost
functions take very close values. It is confirmed that the heterogeneous queueing
systems are superior in performance comparing to the homogeneous case.
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