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Preface

This volume contains a collection of revised selected full-text papers presented at the
19th International Conference on Distributed Computer and Communication Networks
(DCCN 2016), held in Moscow, Russia, November 21–25, 2016.

The conference is a continuation of traditional international conferences of the
DCCN series, which took place in Bulgaria (Sofia, 1995, 2005, 2006, 2008, 2009,
2014), Israel (Tel Aviv, 1996, 1997, 1999, 2001), and Russia (Moscow, 1998, 2000,
2003, 2007, 2010, 2011, 2013, 2015) in the past 19 years. The main idea of the
conference is to provide a platform and forum for researchers and developers from
academia and industry from various countries working in the area of theory and
applications of distributed computer and communication networks, mathematical
modeling, methods of control and optimization of distributed systems, by offering them
a unique opportunity to share their views, discuss prospective developments, and
pursue collaborations in this area. The content of this volume is related to the following
subjects:

1. Computer and communication networks architecture optimization
2. Control in computer and communication networks
3. Performance and QoS/QoE evaluation in wireless networks
4. Analytical modeling and simulation of next-generation communications systems
5. Queuing theory and reliability theory applications in computer networks
6. Wireless 4G/5G networks, cm- and mm-wave radio technologies
7. RFID technology and its application in intellectual transportation networks
8. Internet of Things, wearables, and applications of distributed information systems
9. Probabilistic and statistical models in information systems

10. Mathematical modeling of high-tech systems
11. Mathematical modeling and control problems
12. Distributed and cloud computing systems, big data analytics

The DCCN 2016 conference gathered 208 submissions from authors from 20 dif-
ferent countries. From these, 141 high-quality papers in English were accepted and
presented during the conference, 56 of which were recommended by session chairs and
selected by the Program Committee for the Springer proceedings.

All the papers selected for the proceedings are given in the form presented by the
authors. These papers are of interest to everyone working in the field of computer and
communication networks.

We thank all the authors for their interest in DCCN, the members of the Program
Committee for their contributions, and the reviewers for their peer-reviewing efforts.

November 2016 Vladimir M. Vishnevskiy
Konstantin E. Samouylov
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Abstract. Future Fifth Generation (5G) cellular systems will be char-
acterized by ultra-dense areas, where users are gradually asking for new
multimedia applications and hungry-bandwidth services. Therefore, a
promising solution to boost and optimize this future wireless hetero-
geneous networks is represented by the Cloud Radio Access Network
(C-RAN) with the joint use of Software Defined Networking (SDN) and
Network Function Virtualization (NFV). In such a scenario, low power
base stations and device-to-device communications (D2D), involved into
traditional cellular network, represented a possible solution to offload the
heavy traffic of macrocells, while guaranteeing user experience as well.
Nevertheless, the high centralization and the limited-capacity backhauls
makes it difficult to perform centralized control plane functions on a
large network scale. To address this issue, we investigate the integration
of two enabling technologies for C-RAN (i.e., SDN and NFV) in the cur-
rent 5G heterogeneous wireless architecture in order to exploit properly
proximity-based transmissions among devices. Then, in order to validate
the applicability of our proposed architecture, we consider the case of
D2D pair handover where we show that our solution is able to decrease
the number of signaling messages needed to handoff the D2D pair from a
source to a target base station and, at the same time, the time execution
for the entire handover process.

Keywords: Wireless network virtualization · SDN · NFV · C-RAN ·
D2D · Handover

1 Introduction

Future 5G networks are expected to deal with different multi-connectivity and
multi-technology tiers all of them deployed within the same ares of interest. For
this reason, such kind of environment are one of the foreseeable mission-critical
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V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 3–12, 2016.
DOI: 10.1007/978-3-319-51917-3 1



4 A. Orsino et al.

hybrid networks connecting machines and humans to provide various public ser-
vices through highly reliable, ultra-low latency and broadband communications
[1,2]. The benefits expected to be introduced by future 5G systems, indeed, are
widely and will change completely the perception that the end-users have with
the surrounding environment. Nevertheless, jointly with these enhancements,
the avalanche of data traffic and new multimedia services, e.g., massive sensor
deployment and vehicular to anything communication, will lead to strict require-
ments concerning latencies, signaling overhead, energy consumption, and data
rates [3].

To overcome these issues, D2D communications have gained momentum
among the research community as a possible enabling technology for 5G future
systems. However, Proximity Services (ProSe) standardization is still on going
and only few works in literature proposed solutions and architectures in order
to manage efficiently short-range transmissions in current and future cellular
networks [4,5]. For this reason, it is expected that the integration of D2D com-
munications within the cellular infrastructure may be facilitated by SDN, NVF,
and C-RAN.

For instance, in [6] the integration of D2D communications exploiting the
paradigms of SDN and NVF is addressed. Specifically, the authors consider how
to manage properly a pool of radio resources belonging to multiple Infrastructure
Providers (InPs) through short-range transmissions in virtual wireless networks
with the aim of maximizing the network-wide welfare. An SDN-controlled optical
mobile fronthaul (MFH) architecture, instead, is proposed in [7] for bidirectional
coordinated multipoint (CoMP) and low latency inter-cell D2D connectivity in
a 5G mobile scenario. In particular, the SDN controller OpenFlow is exploited in
order to control dynamically CoMP and inter-cell D2D features by monitoring
the behavior of both optical and electrical SDN switching elements.

Although a centralized SDN-NFV solution works well for the standard cel-
lular infrastructure (i.e., core and access network), this approach results not
completely suitable when focusing on proximity-based communications. To this
end, a possible solution is represented by a distributed approach where part
of the features typically located in a global SDN-controller are implemented in
local SDN-controllers deployed, in a distributed way [8], inside the radio access
network (i.e., the local controller usually is implemented within the base sta-
tions/access points). The concept of hierarchical SDN has been also addressed
in [9], where the authors propose a hierarchical D2D communications architec-
ture with a centralized SDN controller communicating with the cloud head (CH)
to reduce the number of requested LTE communication links, thereby improv-
ing the overall system energy consumption. However, in this last work the word
hierarchical is referred only to the direct links used between an SDN controller
and a cloud head (i.e., similar to the cluster head of a grouped users). In our
work instead, we aim to efficiently manage D2D communications by using jointly
a multi-layer SDN infrastructure and an enhanced C-RAN architecture.

Beside SDN and NFV, indeed, the C-RANs, differently from the conven-
tional RANs, decouple the baseband processing unit (BBU) from the remote



Enhanced C-RAN Architecture for D2D 5

radio head (RRH) allowing centralized operation of BBUs and scalable deploy-
ment of light-weight RRHs as small cells. To the best of our knowledge, only few
papers in literature deal with the C-RAN architecture for proximity-based com-
munications. In particular, in [10] the authors propose a D2D service selection
framework in C-RAN networks. The optimal solution is achieved theoretically
by using queue theory and convex optimization. Further, an energy efficient
resource allocation algorithm through joint channel selection and power alloca-
tion design is presented in [11]. The approach proposed by the authors includes
a hybrid structure that exploits the C-RAN architecture (i.e., distributed RRHs
and centralized BBU pool). Nevertheless, the aim of our work is not to exploit the
existing C-RAN concepts like has been made in the cited works, but to propose
enhancements in the current C-RAN infrastructure concerning new modules and
procedures for proximity services is future 5G scenarios.

Therefore, the aim of this work is to propose a new hybrid architecture where
hierarchical SDN will be used in conjunction with the C-RAN to improve not
only the users’ experience (i.e., QoE), but also to decrease drastically the amount
of signaling messages performed by the cellular radio access and core network.
The scenario considered deals with the usage of low power base stations (i.e.,
femtocells, microcells, picocells) and proximity connections (i.e., D2D) in a het-
erogeneous scenario in order to offload the heavy traffic among the macro BSs,
and from these ones toward the core network infrastructure. The proposed solu-
tion will also guarantee an improved quality of service (QoS) in terms of spec-
trum utilization, energy efficiency and mobility management. The motivation
behind the utilization of a hierarchical SDN architecture is that, normally, the
high centralization as well as the limited-capacity backhauls makes it difficult to
perform centralized control plane functions on a large network scale. Thus, in
our work distributed local SDN controllers (in help to the global SDN controller)
are dynamically set up and configured in a programmable way, such that all the
transmissions paths and the system, generally, can be well managed. Finally,
with a practical example we show that the usage of local SDN controllers, jointly
with the concepts of NFV and new D2D-aware C-RAN architecture, will allow
D2D users’ handover to be managed efficiently by avoiding signaling overload
and useless network procedures.

The rest of the paper is summarized as follows. In Sect. 2 the enhanced
Software Defined Proximity Services Networking (eSDN-ProSe) architecture is
described with particular emphasis on the SDN and C-RAN integration over
ProSe network deployment. A possible application of the proposed architecture
is provided in Sect. 3 whereas conclusive remarks are illustrated in Sect. 4.

2 Enhanced Software Defined Proximity Services
Networking (eSDN-ProSe) Architecture

The basic theory and key technology of the wireless network design, management
and scheduling, based on the cloud architecture and multi-resource virtualiza-
tion, is a great driving force to solve the problems and challenges faced by the
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heterogeneous ultra-dense future 5G scenarios. The C-RAN architecture has the
characteristics of communication computing integration, which can meet the
needs of high performance computing in large-scale complex networks. On the
other hand, network virtualization and SDN paradigm can integrate network
resources and achieve centralized control thus improving the overall usage of
the radio resource and managing efficiently uncontrolled and unplanned envi-
ronment driven by the mobility of the users and network entities (e.g., mobile
femtocells). Therefore, designing a network architecture with the combined use of
C-RAN, NFV, and SDN functionalities is an effective way to achieve an efficient
management of the overall system.

2.1 Hierarchical Enhanced-SDN Architecture (eSDN)

The idea behind the proposal of a hierarchical SDN architecture, is not only
to expand the network connections and the way the users grant the access, but
also offload the macro layer traffic and improve the radio resource management
and issues related to mobility. In fact, in such a solution part of the global con-
troller functionalities are moved to local controllers deployed within the access
nodes (i.e., the base station) and, in a limited way, also on the different devices
and users. Thereby, the huge pressure on the macro base stations in ultra dense
mobility-aware environments can be relieved. In addition, the single node access
failure and backhaul link delay problems, typical of such scenarios, are wide-
spread. To overcome these issues, we propose a hierarchical SDN architecture
with NFV functionalities, where D2D communications, that represent a feasi-
ble solution for traffic offloading, can be managed “locally” with deployed SDN
controllers (either global or local) within base stations (or generally within the
access nodes).

Our vision is, indeed, to enhance the current LTE cellular network infrastruc-
ture with a novel SDN architecture based on OpenFlow (or other available SDN
controller software), and virtualized networks where different service providers
(SPs) can dynamically share the physical substrate of wireless networks operated
by mobile network operators (MNOs). In addition, given the significant amount
of modifications needed to integrate “natively” D2D communications in future
5G systems (i.e., both control plane and data plane of radio access networks and
core networks), SDN and NVF can provide a versatile framework for the inte-
gration of new communications schemes (i.e., D2D) in legacy cellular systems
(i.e., LTE, LTE-A).

To cope with this purpose, in a D2D-based network environment an SDN
controller (either deployed globally or locally) will be responsible for detecting
the user traffic so that the potential D2D users can be paired if it is feasible. In
addition, this new architecture entity will introduce new useful functions (e.g.,
traffic earmarking for gateways, new radio resource management schemes for
access points) and new signaling protocols between network entities under the
legacy wireless mobile network framework. Indeed, if two networks devices will
be identified as potential D2D partners, the network controller further decides
whether to perform D2D transmission or to utilize an access point to relay the
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information. Moreover, since it is a virtual wireless network, it will also consider
which access point is responsible for relaying the traffic if the access point relay
mode is selected.

Nevertheless, even if SDN can assure a considerable management of
proximity-based transmissions, in such a situation one of the key questions is
how to make the best use of the precious radio resources. One solution to over-
come this issue is to decouple the control and data planes and to have the control
logic located inside a controller (i.e., globally or locally distributed) via the soft-
ware defined networking paradigm. The benefit is that networks controlled by
the SDN architecture are also mapped into virtual infrastructures and elements
in order to make it available “everywhere” and “anywhere”. Then the virtual
entities are aggregated and sliced into different virtual networks by a virtual
resource manager or hypervisor.

In conclusion, the improvements of the proposed architecture are that net-
work coverage and network access during instances of very high demand are
cost effectively increased at the additional cost of an overlay network and SDN
infrastructure, thereby increasing revenue. Furthermore, in the rare instances
when there is a lack of the network infrastructure (i.e., due to a disaster or
tragic event), communications are still guaranteed by D2D-based transmissions
among the devices.

2.2 C-RAN Deployment for the eSDN

The virtualization and softwarisation paradigms are gaining ground in the mobile
networking ecosystem, particularly in conjunction with C-RAN. In this field,
great effort has gone into virtualizing radio access technology as this enables the
virtualization of edge functions of the core network without incurring additional
hardware costs. Concerning the enhancement already introduced by the current
C-RAN architecture in the current cellular an wireless architectures, our main
idea is to propose new C-RAN modules and procedures for proximity services
that can cooperate in an efficient way with the NFV and SDN paradigms. The
reason, is that works present in literature only deal with the exploitation on
the C-RAN architecture to improve the performance of D2D communications
without focusing, indeed, if this architecture (at the present stage) is effectively
suitable or not for managing short-range transmissions.

Looking at the common C-RAN architecture, the main idea is the replace-
ment of self-contained base stations at each radio mast with shared- and cloud-
based processing and distributed radio elements. In particular, the related main
components/entities are: (i) the BBUs that represents the pool of processing
resources useful to provide enhanced functionalities (i.e., signal processing and
cells coordination capabilities) to all the network base stations within a given
area of interest; (ii) the Fronthaul layer consisting in all the transmission links
exploited to carry the baseband information that have to be transmitted in the
RAN; (iii) the RRHs entities identified as the antenna equipment to whom the
end-user connect toward the RAN.
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Fig. 1. Proposed C-RAN D2D-aware Architecture

However, the exploitation of the C-RAN architecture in current LTE sys-
tems poses limitations and challenges regarding the overall network efficiency
procedures. Indeed, the core network of current 4G networks is experiencing a
fast growing of signaling messages given by the usage of new transmission par-
adigms and technologies. Although a portion of this new signaling is required
for new services and new devices types, over 50% of the signaling is related to
mobility and paging, due to the greater node density. Focusing of an expected
avalanche of short-range transmissions (i.e., D2D connections) performed not
only by users (i.e., through smartphone or tablet) but also by a multitude of
sensors and “smart” devices referred to the Internet of Things (IoT) paradigm,
is clear the need of a more signaling-effective architecture in order to face these
issues [12].

To this end, in this paper, jointly with the hierarchical enhanced-SDN archi-
tecture already mentioned in Sect. 2.1, we improve the current C-RAN paradigm
in order to manage in an efficient way the D2D transmissions performed by the
users/devices without overload strongly the already stressed LTE core network.
In particular, starting from the C-RAN baseline already proposed in [13], we
propose to major enhanced to be added in the C-RAN core in addition to the
existing ones. As is shown in Fig. 1, the first module is identified as D2D trans-
mission management whereas the second one is named as mode selection.

The idea at the basis of these new features is to virtualize possible D2D
transmitters together with the cells in order to exploit the VLAN and NAT
functionalities already proposed in [13]. In particular, the D2D transmission
management is responsible to identify the possible D2D forwarder/transmitter
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and perform all the procedures to establish the D2D links among the users. The
transmission mode selection entity, instead, selects the interface on which the
users download/upload a given data content. Of course, the selection may be
performed based on given metrics of interest, the application considered, or the
scenario taken into consideration.

The need of the mode selection module is also justified by upcoming new
wireless technology that are the hard core of the future 5G systems. In particu-
lar, users that in the past 3GPP Release 12 could exploit direct connection over
licensed (e.g., LTE) and unlicensed (e.g., WiFi) bands, now have the chance to
exploit also higher frequencies dealing with the new paradigm of the milliter-
wave (mmWave) communications. In such a case, users will have the possibility
to switch among four possible mode of transmissions when using D2D communi-
cations: (i) below 6 GHZ licensed bands (e.g., LTE), (ii) below 6 GHz unlicensed
bands (e.g., WiFi), (iii) above 6 GHz licensed bands (e.g., 28 GHz mmWave),
and (iv) above 6 GHz unlicensed bands (e.g., 60 GHz mmWave).

3 Applicability of the eSDN-ProSe Architecture:
The Case of D2D Pair Handover

As a possible example of the applicability of the proposed eSDN-ProSe architec-
ture, in this section we analyze the case where a pair of D2D users (with an active
connection) are moving across the overlapping zone of two eNodeBs and have to
perform a handover procedure from, e.g., a source eNodeB and a target eNodeB.
In such a case, following the 3rd Generation Partnership Project (3GPP) LTE
standard handover procedures1, the handoff of the entire D2D pair results in an
expensive process in terms of signaling messages overhead and resource alloca-
tion (and reservation) between the two eNodeBs [14] and the core networks. To
overcome these issues, exploiting our proposed eSDN architecture, we are able
to reduce sensibly the number of messages that have to be exchanged between
the source and target eNodeB and toward the Evolved Packet Core (EPC) net-
work entity. In particular, all the messages exchanged (e.g., the handover request
message with its acknowledgement) through the X2 protocol between the source
and target eNodeB could be avoided and demanded to the new evolved EPC.
Further, the part related to the new path request and the bearer setting, typical
of the legacy 3GPP X2 handover protocol, thanks to the C-RAN and NFV func-
tionalities could be performed directly within the core network, without overload
with signaling messages the links that connect the EPC with the radio access
base station. Finally, for the lack of clarification, in Fig. 2 is shown the possible
message flow diagram of the new D2D handover procedure proposed.

In details, the evolved EPC (i.e., enhanced with SDN, NFV, and C-RAN
functionalities) is responsible of gathering the measurements reports from the
D2D pair and, if needed, starting the handover requests and the RRC reconfig-
uration. In such a case, the source and target eNodeB have to deal only with
1 Please, refer to the 3GPP specification 23.009 – Available at: http://www.3gpp.org/

DynaReport/23009.htm.

http://www.3gpp.org/DynaReport/23009.htm
http://www.3gpp.org/DynaReport/23009.htm
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Fig. 2. Possible example of D2D handover procedure exploiting the eSDN architecture

the RCC synchronization and pre-allocation (from the target eNodeB) of the
spectrum resources in order to host the upcoming D2D pair. Once that all the
procedures regarding the resource allocation and RRC configuration are com-
pleted, the EPC, by exploiting the SDN and NFV functionalities, establish a
new data flow for the D2D pair and inform with a bearer notification either
the source and target eNodeB of the new D2D data path. Finally, the source
eNodeB releases the resource previously allocated for the D2D users and these
ones can continue their D2D transmission within the target eNodeB (i.e., their
D2D connection is never interrupted). It is worth noticing, that the EPC is able
to decide whether or not the handover has to be performed by scheduling the
periodic channel measurements sent by the D2D pair. In addition, the exploita-
tion of the new D2D-aware C-RAN functionalities described in Sect. 2.2, allows
the EPC to start the handover procedure and inform both the involved eNodeB
that the RRC configuration and pre-resource allocation have to be started.

In conclusion, this novel approach is able to reduce substantially the signaling
messages overload when considering the handover of a D2D pair between two
eNodeB of the same operator. In particular, the amount of signaling needed to
offload the D2D pair and perform all the handover procedure is reduced up to
9 messages instead of the legacy LTE X2 handover protocol that requests, at
least, 22 messages2.
2 For the lack of space the messages diagram of the legacy LTE handover has been

omitted, but the reader can have a look at the 3GPP specification 23.009 (available
at http://www.3gpp.org/DynaReport/23009.htm) for a detailed description.

http://www.3gpp.org/DynaReport/23009.htm
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4 Conclusions

In this paper we have presented a D2D-aware hierarchical SDN architecture
where NFV and C-RAN functionalities are used to improve the users’ Quality of
Service (QoS) in an ultra-dense heterogenous scenario where the network traffic
is expected to offloaded, not only through small cell (e.g., picocell or femto-
cell) disseminated within the given area of interest, but also through direct links
among users (i.e., by using D2D transmissions). After describing the hierarchi-
cal SDN and NFV infrastructure (i.e., named enhanced SDN – eSDN), a new
D2D-aware C-RAN architecture has been proposed with the aim of managing
efficiently the connection establishment of the D2D links among users in prox-
imity. For the best of our knowledge, this is still an aspect that has not been well
investigated in literature and the present work is one of the first that is providing
a novel solution to this important topic. Finally, in the last section of the paper
we have provided a practical example about how this new D2D-aware eSDN
architecture could be exploited by focusing on the case of handover procedure of
a D2D pair between a source and target eNodeB. In such a case, we have shown
that our solution is able not only to decrease drastically the number of signaling
messages needed to perform all the D2D handover procedures, but also achieve
good results in terms of time needed to perform the entire handover process thus
allowing to avoid the ping pong effect and the unnecessary handover requests on
the network operator-side.
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Abstract. In this paper, we present the review of existing and pro-
posed programming models for Internet of Things (IoT) applications.
The requests by the economy and the development of computer tech-
nologies (e.g., cloud-based models) have led to an increase in large-scale
projects in the IoT area. The large-scale IoT systems should be able to
integrate diverse types of IoT devices and support big data analytics.
And, of course, they should be developed and updated at a reasonable
cost and within a reasonable time. Due to the complexity, scale, and
diversity of IoT systems, programming for IoT applications is a great
challenge. And this challenge requires programming models and devel-
opment systems at all stages of development and for all aspects of IoT
development. The first target for this review is a set of existing and future
educational programs in information and communication technologies at
universities, which, obviously, must somehow respond to the demands of
the development of IoT systems.

Keywords: Internet of Things · Smart Cities · Streaming · Sensor
fusion · Programming · Education

1 Introduction

The Internet of Things (IoT) world is becoming an important direction for tech-
nology development. In general, the IoT promotes a heightened level of awareness
about our world. IoT plays a basic role in many other things. For example, IoT
is a base for Smart Cities, etc.

IoT ecosystem is currently presented by multiple (sometimes - competing)
technologies and platforms. IoT platforms (at least, nowadays) are varied across
the vertical and horizontal segments of the markets. Of course, it complicates
and delays the development and deployment, makes the support of IoT systems
more expensive than it should be, etc. So, IoT standards are highly demanded [1].

In the same time, it is a very competitive area. We cannot expect that a gen-
eral solution will be agreed upon by all players. Standards proposals in IoT (and
M2M) come from formal standards development organizations (e.g., the European
c© Springer International Publishing AG 2016
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Telecommunications Institute - ETSI) or non-formal groups (the Institute of Elec-
trical and Electronics Engineers - IEEE). Standards can target the connectivity
for a particular set of devices (e.g., Bluetooth Low Energy) or provide common
application interfaces up to developers (e.g., oneM2M) [2]. In this paper, we would
like to discuss the common elements of IoT programming models and perform this
review from the perspective of educational programs.

The rest of the paper is organized as follows. In Sect. 2, we discuss program-
ming systems for IoT. In Sect. 3, we discuss data models, data persistence, data
processing and educational programs for IoT. In Sect. 4, we discuss cloud com-
puting for IoT.

2 IoT Programming Models

The choice of programming languages for IoT platforms does not depend on a
hardware platform. Also, new hardware platforms make programming embedded
(nowadays - cyber-physical) systems easier. Even more, the diversity in hardware
platforms enhances the interest to the platform independent on hardware.

Standards for the IoT could be classified as downward-facing standards that
establish connectivity with devices and upward-facing standards that provide
common application interfaces up to end users and application developers.

By our opinion, confirmed by the practical experience and academic papers,
the key moment for software development in telecom and related areas (IoT is
among them) is time to market indicator [3]. The main question to any software
standard is the generalization. Shall the standard follow to the “all or nothing”
model and covers all the areas of the life cycle? In software standards, the exces-
sive generalization (unification) could be the biggest source of the problems.
Actually, all the standards should make its implementation by the most conve-
nient way for developers. Because only the developers are finally responsible for
the putting new services in place.

It is especially true for such areas as IoT or Smart Cities. The services here
are not finalized (and it is very probably that they could not be finalized at
all). This means that we will constantly try (test) new services and to refuse
from the old ones. Naturally, this process needs to be fast and inexpensive. As
the next step, it means that the most of IoT application could be described
as mashups [4]. Mashups use data from several data sources. On programming
level, it should stimulate the interest in scripting languages and to the systems
for fast prototyping. In the modern software architecture world, we can men-
tion also micro-services approach [5]. Of course, these directions should have an
appropriate reflection in educational programs.

Another direction, which is very close to mashups, actually, is so-called Data–
as–a–Service (DaaS) approach [6]. In its technical aspects, DaaS is an informa-
tion provision and distribution model in which data files (including text, images,
sounds, and videos) are made available to customers over a network. The key
moment is the separation for data and proceedings. It lets delivery data (e.g., in
some open format, like JSON), rather than some API with the predefined model
for data processing.
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The next significant visible trend is the growing interest in the dynamic
languages. And the perfect example here is JavaScript. We can mention the
following reasons for JavaScript in IoT applications [7]. At the first hand, there
is a big army of web developers. So, the entry level for programming is low.
Most of the Internet applications already use JavaScript. JavaScript nowadays
covers both server-side and client-side programming. It could be useful to use
the same language across the whole project. So, it makes sense to extend the
same standard platform to the Internet of Things, communicating to a larger
set of devices using the same language.

JavaScript has matured as a language and international standards cover its
extensions. JavaScript has a range of already existing libraries, plugins, etc.
And what is also important, there is a huge Open Source community behind
JavaScript.

Technically, this language has got a great support for event-driven apps. The
nature of IoT project is mostly associated with asynchronous communications.
And event-driven models are the most suitable solution. In JavaScript, it is very
easy to implement models, where an application can receive and respond to
events, then wait for a callback from each event that notifies us once it is com-
plete. It lets respond to events as they happen, performing many tasks simulta-
neously as they come in.

Also, the recent development shows more and more direct involvement
JavaScript into data processing. Actually, the winning data format (JSON) has
its origin in JavaScript.

As a recent example of JavaScript in IoT, we can mention the developments
from Samsung. Samsung Electronics recently opened the development of IoT.js,
a web-based Internet of Things (IoT) platform that connects lightweight devices.
Examples of lightweight devices include micro-controllers or devices with only a
few kilobytes of RAM available [8]. The idea is to make all devices interoperable
in the IoT space by enabling more devices to be interoperable, from complex and
sophisticated devices such as home appliances, mobile devices, and televisions,
to lightweight and small devices such as lamps, thermometers, switches, and sen-
sors. The IoT.js platform is comprised of a lightweight version of the JavaScript
engine, and a lightweight version of node.js. We think that JavaScript for IoT
world should be in educational programs. This is very important because until
now, this language is often seen as simple web pages scripting. But it’s not for
a long time already.

By the same reason, any attempt to replace JavaScript with the similar idea
of portability could be also interested in IoT programming. In this connection,
we should mention Dart programming language from Google [9].

3 Data Persistence and Processing

It terms of the data processing in IoT applications, we should pay attention in
educational programs to the following two moments: sensor fusion and streaming.
There are different data mining and data science approaches which are applicable
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to IoT. And of course, they should be a subject of the separate courses for
statistics, machine learning, etc. For example, in many cases, IoT (Smart City)
measurements are time series. Of course, it should be a subject of a separate
course among other data-mining techniques [10].

But one moment is important, in our opinion, and should be discussed sep-
arately for IoT applications. It is sensor fusion. Sensor fusion is combining of
sensory data or data derived from disparate sources such that the resulting infor-
mation has less uncertainty than would be possible when these sources were used
individually [11]. It is illustrated in Fig. 1.

Fig. 1. Sensor fusion [12]

There are many ways of fusing sensors into one stream. Each sensor has
its own strengths and weaknesses. The idea of sensor fusion is to take readings
from each sensor and provide a more useful result which combines the strengths
of each. Actually, such a fusion is the main idea for all IoT and Smart City
projects, related to some measurements. The next big issue for IoT data process-
ing is streaming. By our opinion, it is a key technology in data acquisition and
proceeding for Smart Cities and IoT.

There are many tasks in IoT with the requirements for real-time (or near
real-time) processing. In this case, the common architecture is associated with
some messaging bus. And it is very important to present the software archi-
tectures associated with streaming. At the first hand, it is so-called Lambda
Architecture [13]. Originally, the Lambda Architecture is an approach to build-
ing stream processing applications on top of MapReduce and Storm or similar
systems (Fig. 2). Currently, we should link it to Spark and Spark streaming
too [14].

The main idea behind this schema is the fact that an immutable sequence
of source data is captured and fed into a batch system and a stream processing
system in parallel. Of course, the negative impact of this decision is the need to
implement business logic twice, once in the batch system and once in the stream
processing system.

The Lambda Architecture targets applications built around complex asyn-
chronous transformations that need to run with low latency. One proposed
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Fig. 2. Lambda architecture [15]

approach to fixing this is to have a language or framework that abstracts over
both the real-time and batch framework [16].

Another solution here is so-called Kappa architecture [17]. The Kappa archi-
tecture simplifies the Lambda architecture by removing the batch layer and
replacing it with a streaming layer (Fig. 3).

Fig. 3. Kappa architecture [15]

With Kappa, everything in the system is a stream. All batch operations
become a subset of streaming operations. Data source (raw data) is persisted
and views are derived. Of course, a state can always be recomputed where the
initial record is never changed. This feature lets us support replay functionality.
Computations and results can evolve by replaying the historical data from a
stream. With Kappa, only a single analytics engine is required. It means that
code is considerably reduced. Also, maintenance and upgrades are cheaper.

The hearth for such implementations is a scalable, distributed messaging sys-
tem with events ordering and at-least-once delivery guarantees. At this moment,
it is almost always Kafka system [18].

Apache Kafka is a distributed publish-subscribe messaging system. It is
designed to provide high throughput persistent scalable messaging. Kafka allows
parallel data loads into Hadoop. Its features include the use of compression to
optimize performance and mirroring to improve availability, scalability. Kafka
is optimized for multiple-cluster scenarios. In general, publish-subscribe archi-
tecture is the most suitable approach for mostly asynchronous measurements in
IoT.
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Technically, there are at least three possible message delivery guarantees in
publish-subscribe systems:

(1) At most once. It means that messages may be lost but are never redelivered.
(2) At least once. It means messages are never lost but may be redelivered.
(3) Exactly once. It means each message is delivered once and only once.

As per Kafka’s semantics, when publishing a message, developers have a
notion of the message being “committed” to the log. Once a published message
is committed, it will not be lost. Kafka is distributed system, so messages are
replicated to partitions. For message commit, at least one replicating broker
should be alive.

Kafka guarantees at-least-once delivery by default. It also allows the user to
implement at most once delivery by disabling retries on the producer and com-
mitting its offset prior to processing a batch of messages. Exactly-once delivery
requires co-operation with the destination storage system (it is some sort of
two-phase commit).

In connection with Kafka, we should highlight Apache Spark [19]. Apache
Spark is an open-source cluster computing framework for big data processing.
It has emerged as the next generation big data processing engine, overtaking
Hadoop MapReduce.

Apache Spark provides a comprehensive, unified framework to manage big
data processing requirements with a variety of diverse data sets (text data, graph
data, etc.) and data sources (batch data and real-time streaming data). Spark
enables applications in Hadoop clusters to run up to 100 times faster in mem-
ory and 10 times faster even when running on disk. Spark lets developers write
applications in Java, Scala, or Python using a built-in set of high-level opera-
tors. In addition to MapReduce operations, Apache Spark supports SQL queries,
streaming data, graph data processing, and machine learning. Developers can use
these capabilities stand-alone or combine them to run in a single data pipeline
use case.

Another model is the recently introduced Kafka Streams. Kafka models a
stream as a log, that is, a never-ending sequence of key/value pairs. Kafka
Streams is a library for building streaming applications, specifically applications
that transform input Kafka topics into output Kafka topics (or calls to external
services, or updates to databases, or whatever). It lets you do this with concise
code in a way that is distributed and fault-tolerant [20].

The above-mentioned models describe the modern view of the building IoT
systems from the position of data architecture. A review for some IoT and/or
Smart Cities related program (of course, we target technology-related education
only) is presented in [21], for example.

Time-series databases historically play the important role for IoT applica-
tions. Technically, most of the applications (especially, in M2M area) collect
and proceed some measurements. And time-series are the natural way of saving
measurements.

One important element of IoT programming is associated with meta-data.
In the most cases, the public APIs IoT systems are dealing with are based on
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REST model. It is true for data persistence interfaces too. REST architecture
proposes the uniform interface. In REST model, all resources present the same
interface to clients. And it is one of the reasons for REST popularity. Alterna-
tively, the Service Oriented Architecture (SOA) approach may offer personalized
interfaces for the different resources. The whole SOA model is based on the idea
that different services have different interfaces. In SOA, we need to provide the
definition for used interfaces. The definition of the services (Web Service Defin-
ition Language - WSDL) is a key part of SOA. Any WSDL definition of a Web
Service defines operations in terms of their underlying input and output mes-
sages. Unlike this, REST is based on the self-described messages. WSDL defines
the form of the data that accompany the messages in SOA. REST does not
provide this information. In other words, SOA has got a rich set of metadata,
where REST model does not have meta-data at all.

Metadata support lets discover information about interfaces programmati-
cally. It is a key moment. With the program-based discovery, we can automate
the programming. And automation is a very important issue for Internet of
Things due to high diversity in hardware (e.g., sensors, actuators, etc.). So, in
our opinion, adding some standard form of metadata for REST API is very
important for Internet of Things programming.

The educational program should include the following parts (elements):

sensing,
network connectivity,
IoT security
data integration, data processing, and applications.

In the first part, we present some overview for the modern sensors. Network
connectivity section should discuss IoT networks, such as Bluetooth, Bluetooth
Low Energy, ZigBee, Wi-Fi, WiMAX, LTE. There are several key dimensions
for IoT protocols: their communication range, application duty cycle, data rate,
and battery consumption. Also, we should talk here about data protocols, such
as CoAP, MQTT, HTTP (HTTP/2).

Data integration elements should include IoT middleware, data storage
options, principles of processing for unstructured data. This topic should cover
data architectures for IoT systems too.

Data processing part includes real-time processing engines and algorithms,
as well as stream analytics.

Applications-related section should include gateways, user applications as
well as top-level architectures, such as edge processing and fog computing. Also,
we will discuss here such things as localization: localization algorithms, indoor
and mobile localization. In this section, we place also context-aware applications
and utilizing sensors to gain greater visibility and real-time situational awareness.

In general, we followed the following schema (Fig. 4) in our educational pro-
gram.
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Fig. 4. Sensor fusion [22]

4 Cloud Computing and Related Areas for IoT

In this section, we would like to discuss the cloud computing models for IoT.
Cloud architecture provides new opportunities in aggregating IoT data (e.g. data
from sensors) and exploiting the aggregates for larger coverage and relevancy. In
the same time, cloud models affect privacy and security.

There are several important moments. Firstly, we would like to highlight the
important role of Amazon S3 for all tasks related to media data persistence.
Almost all existing projects use Amazon Simple Storage Service (S3) for media
data. The classical model is when Amazon S3 stores media objects and a separate
relational database (it could be some NoSQL database, e.g., key-value store)
keeps keys for objects.

The OpenStack project [23] produces the open standard cloud computing
platform for both public and private clouds. OpenStack has a modular archi-
tecture with various code names for its components. OpenStack Object Storage
(Swift) is a scalable redundant storage system [24]. With Swift, objects and files
are written to multiple disk drives spread throughout servers in the data cen-
ter, with the OpenStack software responsible for ensuring data replication and
integrity across the cluster. It lets scale storage clusters scale horizontally simply
by adding new servers. Swift is responsible for replication its content.

Another important moment for IoT programming and cloud is so-called
MBaaS (Mobile Backend As A Service). It is a model for providing the web and
mobile app developers with a way to link their applications to backend cloud
storage [25]. The key moments are simplicity for the developers and time to
market factor. Actually, the additional services are the key idea behind MBaaS.
MBaaS provides public application program interfaces (APIs) and custom soft-
ware development kits (SDKs) for mobile and web developers. Also, MBaaS
provides such features as user management, push notifications, and integration
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with social networking services. The key moment here is the simplicity for the
developers.

Usually, MBaaS API (SDK) hides data persistence details from the devel-
opers. So, in the most cases, for the developers, it looks like some unrestricted
key-value data store.

Also, in this connection, we can mention such IoT frameworks as oneM2M
or FIWARE. They are pretending to be IoT standards. But standards in IoT
(M2M) do not provide dedicated data persistence solutions. They rely on the
existing cloud solutions.

Our vision for the future of cloud computing in IoT is based on the conception
of fog computing. Fog computing is an extension of classic cloud computing
to the edge of the network. It has been designed to support IoT applications,
characterized by latency constraints and a requirement for mobility and geo-
distribution [26]. It is illustrated in Fig. 5.

Fig. 5. Fog computing [27]

Fog computing architecture is not just about aggregation or concatenation
of various physical data. It is about real-time distributed intelligence.

The common model is a bit more complex. It will include also extreme edge
computing and software defined networks. It is illustrated in Fig. 6.

As per Cisco, extreme edge part includes data collecting elements: vehicles,
ships, railways, roadways, factory floors. And of course, nowadays data could
be processed on the collecting devices too. In general, the most time-sensitive
should be analyzed on the node closest to the data collector (collectors). It is
the main idea behind the fog computing. In this paradigm, we could analyze
data even on the data collector itself. Especially, if our collector has the same
computing power as fog’s node.
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Fig. 6. The common architecture computing [28]

Technically, for or extreme edge is a new intelligent layer at or near the
source of the data (data collector). And this layer can filter and normalize the
data before passing them to the cloud or send commands directly to actuators.

With this architecture, data might not need to ever travel to the cloud layer.
We can process data in real-time at the edge of our network.

With this architecture, we can store data on our devices (network fabric data
store [29]) rather than in cloud-based data-center. Of course, we can follow to
mixed model too and log, for example, some history on our cloud. But anyway,
this model helps as to avoid always passing big data to our cloud and reduce the
cost of transportation.

The edge-based processing is always stream-based processing. It is almost
mandatory, because with the network fabric data store it is not so common
to save big volumes of data. This emphasizes again the importance of stream
processing, which we discussed in the section devoted to training. Stream
processing is a key element for IoT programming.

Some of the authors describe this model as a shift in the way business is
organized. The infrastructure based model is being replaced by the service-based
model [30]. It corresponds to the common trend in which business is being vir-
tualized and digitalized.

In this connection, we should mention the importance of another element
in Fig. 5 - Software Defined Networks [31]. With Software Defined Networks
(SDN) we can virtualize and digitalize network’s hardware. Firstly, SDN sepa-
rate (decouple) the data plane and control plane. SDN establish open interfaces
between them. Secondly, SDN proposes a centralized control plane, thus having
a global view of the network.
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The ability to program the network, provided by SDN, can be compared with
the mobile applications running on a mobile Operating System (Android or IoS)
[31]. Similar to mobile applications, network-based applications can use resource
and services (public interfaces) provided by SDN.

For IoT applications, SDN model brings yet another set of public interfaces.
As per reviews, the specific SDN capabilities which will be useful for IoT appli-
cation, are dynamic load management, service chaining, and bandwidth man-
agement.

Dynamic load management enables to monitor and orchestrate bandwidth
changes automatically depends on the overall load of the network. It helps
providers to support data peaks from IoT devices. Service chaining enables
to sequence application-specific processing procedures to a given clients job
[32]. SDN will ease the provisioning and service management processes for IoT
devices. Service chaining allows to integrate unchanged network service software
that is unaware of its operating environment. Many IoT devices (e.g., sensors)
send data (measurements) periodically. Bandwidth management allow schedul-
ing when and how much traffic an IoT application will need at a given time [33].
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Abstract. Owing to significant progress in the Internet of Things (IoT)
within both academia and industry, this breakthrough technology is
increasingly penetrating our everyday lives. However, the levels of user
adoption and business revenue are still lagging behind the original expec-
tations. The reasons include strong security and privacy concerns behind
the IoT, which become critically important in the smart home environ-
ment. Our envisioned smart home scenario comprises a variety of sensors,
actuators, and end-user devices interacting and sharing data securely.
Correspondingly, we aim at investigating and verifying in practice the
Yoking-proof protocol, which is a multi-factor authentication solution
for smart home systems with an emphasis on data confidentiality and
mutual authentication. Our international team conducted a large trial
featuring the Yoking-proof protocol, RFID technology, as well as var-
ious sensors and user terminals. This paper outlines the essentials of
this trial, reports on our practical experience, and summarizes the main
lessons learned.

Keywords: Authentication · IoT · RFID · Smart-Home · Yoking-proof
protocol

1 Introduction

The rapid proliferation of smart devices prepares to invade many areas of mod-
ern life: from connected home appliances and furniture to wearables and other
personal systems, known altogether as the Internet of Things (IoT) [1]. What
appeared a decade ago as a science fiction, is steadily becoming real today by
bringing along over 24 billion of networked smart objects by 2020 [2]. On the
other hand, despite all the enthusiasm around the IoT, a significant number of
implementation-related challenges still remain to be solved [3].
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The smart home (or, home automation) sector belongs to the most ambitious
business drivers across the entire IoT domain. However, in order to boost the end-
user adoption of smart home applications and services built over different com-
munication technologies [4] – and thus reach the anticipated market benefits –
the resultant environment has to be easy to use, secure, and trustworthy [5]. It is
believed by many that such a success story environment should be orchestrated by
a single device, often named the Smart-Home Gateway (SH-GW). Following the
recent developments in the field, it is evident that the SH-GW (deployed typically
by telecommunication operators) will play a crucial role in the customer-centric
IoT ecosystem [6]. To this end, the SH-GWs evolve by aiming to provide support
for: (i) multiple connected smart devices, (ii) different types of user services, (iii)
content access via different communication platforms, (iv) unrestricted mobility
for end-users, and (v) enhanced security and reliability.

As known from other information and communication domains, sufficient lev-
els of security and privacy are the key ingredient to the success of any user tech-
nology, and the smart home business sector is no exception [7]. Hence, despite the
fact that SH-GW-controlled residential networks do offer a range of value-added
services, this area is highly vulnerable to numerous security threats [8]. In partic-
ular, smart home sensing devices with relatively low computational capabilities
are often connected to the digital residential networks via a central node [9];
they could thus become subject to several types of attacks, such as eavesdrop-
ping and replay, among others. Remember that home networks are intended
to handle private user information and may provide critical services, including
healthcare and protection of property. Therefore, attacks on such systems may
lead to violating privacy and ultimately threatening the very life of residents,
and appropriate security measures must therefore be considered carefully.

As the question of holistic security in the IoT ecosystem is very complex, in
this work we focus on a particular problem of authentication, which we consider
to be one of the critical information-security elements of the IoT. The main secu-
rity risk in the systems without a straightforward authentication is vulnerability
to the person-in-the-middle attacks that are particularly crucial for applications
with stringent security requirements, such as those related to healthcare. Govern-
ments as well as industry leaders engage with trusted but overly complex author-
ities that provide authentication and authorization services while attempting to
protect from such vulnerabilities [10]. However, said systems might be cumber-
some to use and prohibitively expensive, especially when implemented in small-
scale scenarios, including the residential environment.

Following the above reasoning, we propose a lightweight authentication proto-
col enabling simultaneous identification of newly-added IoT devices (e.g., sensors,
actuators, meters, etc.) towards the central communication unit in a residential
network, which is based on Yoking-proof protocol [11]. Summarizing the main
requirements in the context of smart home scenarios, the target authentication
scheme should satisfy the following security objectives [12]: (i) data confidential-
ity; (ii) mutual authentication; and (iii) forward security. To make an authenti-
cation protocol more secure, it is common to utilize Multi-Factor Authentication
(MFA) [13]. The main feature of the MFA protocol is the involvement of two
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or more different devices with their own secrets. In order to increase efficiency
of the MFA protocol, not only different devices but also various communication
channels are usually utilized.

The main goal of our work is therefore to offer a universal communication
scheme for the MFA that would be independent of the utilized communication
technology between the sensors and the SH-GW. In our practical demonstra-
tor, the MFA is implemented and verified in real-world smart home environment
using smartphones and other wireless handheld devices. Further, we demonstrate
the applicability of Yoking-proof approach for the MFA protocol construction.
The rest of this paper is organized as follows. Section 2 is devoted to a discussion
on the existing types of Yoking-proof protocol with respect to the MFA. Then,
in Sect. 3, a detailed description of the considered smart home scenario is pro-
vided, together with an introduction of all the needed communication phases.
Finally, the lessons learned during the trial implementation of our prototype are
summarized in Sect. 4.

2 Overview of Yoking-Proof Protocol Principles

The Yoking-proof protocol comprises a set of elements, known as tags. These
tags are controlled by two nodes – a reader and a verifier. At the time when the
reader is capable of simultaneous identification of the tags and the verifier can
provide a proof that two or more tags have been scanned simultaneously – the
tags are sharing the secret keys with the verifier, but the reader’s knowledge of
this procedure is limited [14].

Each tag has its own ID, status value c, and the corresponding secret infor-
mation – Key. The final result (if positive) is computed by the reader and
constitutes the proof of simultaneous presence of all the tags involved. There are
several types of Yoking-proof protocols to be considered:

1. Online protocols utilizing the so-called grouping-proof [15] and its modifica-
tion, the existence-proof approach [16].

2. Offline protocols based on the chaining-proof approach [17].
3. Broadcast style protocols that are not studied here due to their higher com-

plexity as a result of involving the Public Key Infrastructure (PKI) and asym-
metric cryptography (Elliptic curves, ECC), which may not be fully opera-
tional on the target embedded devices [17].

An example of the online protocol is presented in Fig. 1. Here, Key1 and
Key2 are the secret keys of the IoT devices 1 and 2, correspondingly (these
keys are known to the reader). ID1 and ID2 represent the identifiers of the IoT
devices 1 and 2. Further, SN1 and SN2 are special data junks generated by the
IoT devices in the course of operation, i.e., at the time of a request from the
reader reception. Note that SN1 generated by device 1 at step 2 is not equal to
SN1 generated by the same device at step 5, see Fig. 1. The main advantage of
this Yoking-proof protocol type is in the capabilities of the verifier – the protocol
structure becomes more elaborate and provides a secure verification (compared
to the offline protocol).
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Fig. 1. Communication flow of the online Yoking-proof protocol.

Another alternative is based on the chaining-proof approach, which is named
the offline protocol. The description of the respective communication flow is pro-
vided in Fig. 2. Here, random(*) is a pseudo random number generator initialized
with the value *. For each device and for each instant of time, the result of this
generator is assumed to vary even for the same parameter *. It is worth men-
tioning that the main difference compared to the online protocols is represented
by the fact that the verifier is used only as an arbiter (thus, the absence of the
verifier does not collapse the operation of this protocol type).

Fig. 2. An example of the offline Yoking-proof protocol.

3 Yoking-proof Protocol Prototype in Smart Home
Scenario

In this section, our prototype implementation is outlined. We discuss the pro-
posed communication scheme and then describe our Yoking-proof protocol trial
demonstrating authentication of the Radio Frequency Identification (RFID)-
equipped temperature/humidity sensors.
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Fig. 3. Proposed communication scheme for the smart home scenario.

3.1 Trial Construction Conditions

For the purposes of this demonstration, we propose a novel communication
scheme, see Fig. 1. Following the introductory information above, we reiterate
that various types of smart IoT devices are flooding the market today. Conven-
tionally, these devices (sensors, wearables, smart objects, etc.) are deployed in
households and controlled via the SH-GW, which is the entity responsible for
handling privacy of the collected information. First, we begin by describing the
initial conditions for our test scenario. The SH-GW realized on a Raspberry
Pi 3 interconnected with the RFID reader1 represents the executive entity in a
home network. The complete prototype installation is introduced in Fig. 3 and
the implemented communication flow is described below:

1. When a new IoT device is joining the network, the SH-GW sends the request
(using the RFID technology) to the incoming device. As a response, the iden-
tification and serial number of this new device are sent back to the SH-GW.
Based on the Yoking-proof protocol functionality, the obtained data is sent
to the User Authenticator Device (UAD) in the form of a Message Authenti-
cation Code (MAC) function W = MAC(ID, SN,KeyGW ).

2. Next, the UAD computes a response V = MAC(W, IDUAD, SNUAD,
KeyUAD). The request from the SH-GW, containing V,W, SN, IDUAD, and
SNUAD, is then sent to the User Master Device (UMD). Further, the UMD
verifies whether the new device is allowed to join the home network by send-
ing the request to the database (in our implementation, the SQLite has been

1 See Cottonwood: USB Long Range UHF RFID reader, 2016 http://store.
linksprite.com/cottonwood-usb-long-range-uhf-rfid-reader-iso18000-6c-epc-g2/.

http://store.linksprite.com/cottonwood-usb-long-range-uhf-rfid-reader-iso18000-6c-epc-g2/
http://store.linksprite.com/cottonwood-usb-long-range-uhf-rfid-reader-iso18000-6c-epc-g2/
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utilized). If the sensor entry is found in the management database (this
knowledge should be predefined by the home network administrator, e.g.,
via a remote configuration interface using the TR-069 protocol [18]), then
the response is sent to the SH-GW.

3. The data received from the sensor(s) is verified, accepted, and stored. In the
case if an entry for the new device is not found in the database, the UMD will
inform the end-user about this situation – the service provider (administrator)
has to update the database with new/actual information about the device in
question.

3.2 Implementation of Yoking-Proof Protocol: Communication
Flow

This subsection briefly overviews the main elements and the corresponding exe-
cution steps of our protocol. First, the UMD disposes with the knowledge related
to the secret key of the user authenticator device KeyUAD represented by the
identifier IDUAD. Therefore, the UMD has the possibility to verify the variable
value V received from the UAD compared with (i) the parameter W obtained
from the SH-GW and (ii) the value SNUAD received from the UAD.

The implemented MAC employs the symmetric key cryptographic systems
computed as a hash function (i.e., MD5, SHA1, SHA256, etc.) of concatenated
messages received from the identifier (time stamp, secret key, etc.), see below:

V = MAC(W, IDUAD, SNUAD,KeyUAD) (1)

⇓
hash (W ||IDUAD||SNUAD||KeyUAD) (2)

Similarly to the classical Yoking-proof protocol, we use SNUAD to protect
our system against a replay attack at the side of the UAD. In case of a suc-
cessful verification on the UMD, the final step of the verification process may
be completed by utilizing the secret key of the Gateway (KeyGW ) stored in the
database. We use SN to prevent from the replay attack on the Metering Device
(MD) as well. If the verification at the UMD fails, our proposed protocol returns
to the step 3, see Fig. 3. In case of a successful verification at the database side,
the SH-GW receives the secret key to execute the authentication process and
the data processing with such newly added MD (our IoT device). In case the
verification process fails during the search phase in the database, the system
returns to the phase 1.

3.3 Real-World Demonstration

Further, we have tested the proposed communication scheme in a real-world
smart home scenario, see Fig. 4. As the SH-GW entity, the Raspberry Pi 3 plat-
form was utilized and the main programming language for our test implemen-
tation has been Python. The developed script enables the connection between
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the SH-GW and the RFID reader utilizing the USB interface (AT commands
were used to send specific requests to the reader controller). When the initializa-
tion process is completed, the reader starts to continuously scan for new devices
(equipped with the RFID tags). When such a tag appears, its ID is concate-
nated with the SH-GW’s ID and the secret key. Based on this resultant string,
the Python script calculates the MAC using the SHA-256 hash function. At step
3, see Fig. 3, the socket-based connection (data is transmitted in the JSON for-
mat) towards the UAD is created. After that, the SH-GW sends the MAC and
waits for the response from the UAD.

Fig. 4. Prototyped smart home scenario.

When a reply from the UAD is received (step 4), the SH-GW creates a client
request (on the UMD, step 5) with the corresponding content and waits for the
MD’s secret key (stored in the database, see Fig. 3). During the final stage (after
obtaining the secret key), the SH-GW starts a data transfer with the authenti-
cated MD (sensor). As it is indicated in Fig. 4, two Android-based smartphones
were used as the UAD and the UMD, respectively. In order to develop the
required software running on these devices, Java programming language has
been utilized. The key component of the created application is represented by
the socket-based server operating in a separate thread. The requested data is
provided as a JSON-object and contains the packet type that determines the
application mode – UAD or UMD, respectively.

When the UAD receives an authentication request, a pop-up window with the
query is displayed as to whether the authentication procedure should be accepted
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Table 1. Created table structure in utilized SQLite database.

Keys

recID int, AI, PK

tagID string

tagKey string

or declined (it contains the tag’s ID received from the SH-GW). This procedure
represents the proof of the user involvement. When the user accepts the request,
the UAD processes the SH-GW’s hash W, its own ID, and the secret key as well as
sends these credentials back to the SH-GW. The developed application running
on the UMD follows a similar procedure. In case of a successful verification, the
UMD displays a dialog window on the UMD’s screen and sends the request to
the database. Otherwise, the application returns an error message to the SH-
GW. For the data storage, we have used the SQLite database with the structure
described in Table 1.

Fig. 5. Proposed logic for UAD and UMD.
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Another part of the database module is represented by the PHP interface
allowing for the data selection. When the UMD is requesting a PHP webpage,
the verification is performed. In case of a successful request, the UMD connects
to the database and selects the required information with an SQL SELECT
request. Otherwise, the UMD displays an error message on the screen, see Fig. 5.

Our applications created in Python (Raspberry Pi 3) and Java (Android
smartphones running Android 4.4.2) were tested in a smart home scenario, where
the sensing device was represented by an electricity meter. As a communication
interface for the multi-factor authentication, the RFID technology was used.
For the user data transmission, the Wireless M-BUS protocol was utilized as it
is a preferred solution for smart metering systems across modern Europe. The
functionality of the implemented logic was evaluated during a long-term trial
that mimicked user habits when adding new IoT device(s)2.

4 Lessons Learned and Conclusions

The full-scale smart home deployments are still cumbersome mostly due to the
users’ security concerns that often outweigh any potential benefits. Despite the
fact that academia as well as industry invested considerable efforts into the
development of security and privacy protecting technologies for smart home
applications, many of them fail to provide with the required ease of use and
cost-efficiency in real residential environments.

Therefore, in this paper, we considered Yoking-proof protocol as a promising
light-weight tool for authentication of various IoT devices. Specifically, our goal
was to demonstrate the potential of Yoking-proof protocol while implementing
it as part of a practical smart home demonstrator. With our trial, we uncovered
the way how such technology can be easily implemented and operated over the
off-the-shelf components. Our unique prototype enables secure authentication of
new IoT devices joining the home network, which increases the user’s perceived
trust of different smart home solutions and thus promises to boost the expected
revenues of this industry.
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Abstract. In this paper a model of UHF RFID Vehicle Identification
System based on EPC Class1 Gen2 is described. The model takes into
account the influence of protocol settings, antenna and tranceiver para-
meters and signal propagation along roads on the system performance. It
is shown that the two-ray pathloss model and Rayleigh distribution for
BER computation allows to simulate RFID system operation adequately.
The estimated protocol settings providing reliable vehicle identification
at speed up to 220 kmph are given.

Keywords: UHF RFID · EPC Class 1 Gen. 2 · RFID link bud-
get · Propagation models · Vehicle identification · Wireless network
simulation · Passive RFID · Traffic law enforcement

1 Introduction

Vehicle identification is one of the primary RFID applications. First RFID-based
tolling system appeared in the USA in 1991 [10]. RFID usages in entrance control
systems, tolling and others are devoted a significant amount of researches [2,5,
7–9,21]. RFID can be applied to solve other problems, such as performance
enhancement of the traffic law enforcement systems making use of cameras to
identify vehicle licence plates [19,20].

RFID system consists of a Reader, or an Interrogator, and Tags. Such systems
can be active, if the tag has inner power source and can independently initiate
message exchange with the reader, or passive, if the tag has no inner power
source. Passive RFID [3,6] generally provides less reading distance as the tag is
required to be close enough to the reader to power up its chip and transmit the
identifier, but such tags are significantly cheaper then the active ones.

In 2014 in Kazan city (Russia, Tatarstan) an expirement was carried out.
During the experiment the performance of the EPC Class1 Gen2 [4] passive
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RFID system to identify vehicles in urban area was studied. Four identification
points were deployed and 1000 buses were equiped with tags placed in license
plates and under the windshields. The experiment was running for several winter
months and showed that system provided 0.92 buses recognition rate [20].

To analyze the efficiency of RFID application for massive identification of fast
moving vehicles achieving 220 kmph speed it is neccessary to study all factors
affecting system performance. The RFID system performance is affected by the
factors which are as follows: significant contribution is made by antenna systems
and transeivers [3,6,13–16,18], propagation conditions [1,7] and protocol settings
[12,17]. Thus, it is necessary to take into account both protocol specifics and
signal propagation properties to build an adequate model.

In this paper a detailed model enabling precise UHF RFID vehicle identifi-
cation system performance evaluation is presented. Peculiarities of wave propa-
gation along roads, characteristics and mounting parameters of the antennas are
considered. The model also allows to analyze the influence of different protocol
settings on the system performance.

The paper is organized as follows. In Sect. 2 the principles of UHF RFID vehi-
cle identification system and fundamental specifics of UHF RFID EPC Class1
Gen2 protocol are described. In Sect. 3 the model of RFID channel is given,
link budget is calculated and computation of the bit error probability (BER) is
performed. Section 4 provides the parameters estimation and performance eval-
uation using system simulation modeling. Section 5 concludes the paper.

2 Operation of UHF RFID Vehicle Identification System

UHF RFID Vehicle Identification System consists of a reader, an antenna con-
nected to the reader and disposed over a lane at the 5 m altitude and a passive
tag, embedded into a licence plate (see Fig. 1).

Fig. 1. The scheme of UHF RFID vehicle identification system

A reader radiates a constant or sine wave (CW). As a tag has no energy
source it makes use of CW to power up and respond to the reader via backscatter
modulation. Thus, the connection between a reader and a tag is possible if and
only if (a) the tag receives enough power to operate (approximately −18 dBm)
and (b) the power of the backscattered signal is enough for successful decoding
at the reader side. Standard tags provide read distance up to 8–15 m from the
reader that has transmitting power of 31.5 dBm (1.4 W) and 8dBi antenna gain
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(a) PIE scheme (b) The command preambles

Fig. 2. Reader command encoding [4]

in a lab environment. However this distance is overestimated and can shorten in
a real environment affected by multipath fading.

Reader sends commands to a tag using DSB-ASK, SSB-ASK or PR-ASK
modulation. These commands are encoded with PIE (Pulse Interval Encoding);
according to PIE, the duration of the data-0 and data-1 symbols differ in 1.5–2
times (see Fig. 2a). Before transmitting a command the reader sends either a
preamble or a frame-sync (see Fig. 2b). Due to PIE any command transmission
duration significantly depends on the content of the message. Data-0 symbol
duration is refered to as Tari and variates from 6.25 to 25μs.

Tag takes advantage of ASK or/and PSK modulation. It makes use of FM0
encoding scheme or Miller code with 2, 4 or 8 symbols per bit. The symbol rate
is defined as BLF = DR

TRcal , where DR is equal to 8 or 64/3. Each tag response
follows a preamble whose length depends on the chosen coding scheme and can
be around 10–12 bits or 18–22 bits in extended mode. All tag operation settings
except a modulation are transmitted by the reader in the session beginning.

The communication protocol between a reader and a tag is based on Slotted
ALOHA. All operating time is divided into rounds (see Fig. 3a). Each round
starts with the QUERY command transmitted by the reader. A QUERY com-
mand follows a preamble containing tag settings and carries Q parameter value
defining time slots number in the round as 2Q. At the beginning of all following
slots the reader transmits QREP (QueryRep) command that has significantly
less size then QUERY.

After receiving QUERY the tag assigns slot counter a random number in
[0, 2Q − 1] range. After receiving QREP a tag decrements the counter. When it
reaches 0 a tag transmits a random 16-bit word in RN16 response. The reader
receives the word and transmits it back to the tag in ACK command. Then the
tag should transmit a response with its parameters (PC/XPC), memory content
(EPC bank) and CRC (Cyclic Redundancy Check) as a response to ACK (see
Fig. 3b). The EPC size may vary from tag to tag, we will consider it be equal to
96 bit. If two of more tags have chosen the same slot, then the collision arises
during RN16 transmission and the reader either would not able to receive any
response or would transmit ACK with a wrong word (see Fig. 3c). In both cases
the tag will fail to transmit its identifier in the round.
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(a) Inventory round

(b) Tag answer transmission in the first slot

(c) Tag collision

Fig. 3. The structure and duration of rounds and slots

Thus, the successful vehicle identification probability Ps can be evaluated
using the following formula:

Ps = 1 − (1 − (1 − Pc)(1 − PRN16
e )(1 − PEPC

e )))Nrounds , (1)

where Nrounds is a number of rounds in which the tag participates, Pc is the col-
lision probability (depends on a tags and slots number), PRN16

e is RN16 trans-
mission error probability, PEPC

e is the probability of PC+EPC+CRC response
transmission error. A number of rounds (see Fig. 4a) depends on the vehicle
speed and the duration of each round which, in turn, depends on the duration
of commands and responses (see Fig. 4b).

(a) Round duration and rounds rate (b) Tag response PC+EPC+CRC duration
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The duration of commands and answers may vary in a wide range (see
Table 1) depending on protocol settings. The slot duration differs when the slot
is free, a collision accures or an identifier transmission takes place. The slot
duration also depends on the commands and responses duration. The number
of slots in a round is 2Q, where Q = 0, 15. Thus, the duration of a round may
vary from a millisecond to several seconds depending on the settings chosen, see
Fig. 4a and b.

Table 1. Computation of commands and responses duration depending on the protocol
parameters. Tari, TRcal, QUERY and PC+EPC+CRC columns are measured in µs.

DR Tari TRcal BLF, kHz M QUERY PC+EPC+CRC

64/3 6.25 33.38 639.2 FM0 252.13 211.20

64/3 6.25 33.38 639.2 Miller-8 270.88 1739.67

64/3 12.5 66.75 319.6 FM0 491.75 422.4

64/3 25.0 133.5 159.8 FM0 971.0 844.8

64/3 25.0 225.0 94.81 FM0 1062.5 1423.83

8 6.25 33.38 239.7 FM0 245.8 563.2

8 25.0 225.0 33.56 Miller-8 1112.5 31275.0

Fig. 4. Straight and ground reflected rays geometry

Tags can move with very large speeds when mounted on cars. This implies
that the large round duration may result in a tag identifier transmission failure
since the tag won’t have enough time to repeat the attempt if any error occurs.
On the other hand, decreasing commands and responses duration may lead to
higher error rate, and shortening the slots number per round leads to higher
collision probability. It will be shown that decreasing the slots number along
with slow and reliable coding schemes utilization (Miller-4, Miller-8) allows to
enhance the system performance. In the next chapter we are going to study the
propagation properties and their influence on the responses delivery error rates.
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3 The Model of RFID Channel

The vehicle identification probability in an arbitrary inventory round is defined
by the probability of successful tag identifier transmission. At the same time this
probability depends on the probability of successful transmission of all messages
between the reader and the tag. The command is successfully received by the tag
only if the tag has beed powered on since the round beginning, i.e. it has been
extracting enough power from the CW. The reader should also receive a tag
response of sufficient power for its decoding. Furthermore, while transmitting
any message the interference with other tags responses is not allowed. Thus,
there are three reasons of tag identification failure: collision, insufficient power
for a tag to operate and a weak tag response that cannot be separated from
the noise. The collision probability depends on a number of slots in a round, a
number of tags and protocol settings. This section analyzes the last two reasons.

To perform this analysis it is neccessary to consider the whole propagation
path, attenuations and losses arising out on this path and evaluate the probabil-
ity of successful message transmission via evaluation of the bit error probability.

(a) Channel attenuations for tag angle = 45◦

and reader angle = 90◦
(b) Power levels at the receivers

Fig. 5. Channel attenuations and received power versus tag-reader distance

To define the power on the reader and tag receivers let us investigate the
link budget [14,16], which allows, among others, to find areas of sufficient power
levels for a tag [13,18]. Let PTX

r be the reader power and Gr be a reader antenna
gain. Then PTX

r Gr = EIRP , equivalent isotropically radiated power. A signal
experiences path loss PL during propagation over the radio channel. To compute
PL free-space path loss (FSPL) or multiray path loss models can be used. Due
to significant influence of ground reflected ray on the path loss (see Figs. 4 and
5a) the multiray propagation model will be used further. It is defined as [16]:

PL =
(

λ

4π

)2
∣∣∣∣∣
Γ0(θ)

d0
e−j λ

2π d0 +
N∑

i=1

Γi(θ)Ri(φ)
di

e−j λ
2π di

∣∣∣∣∣
2

(2)
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where λ is a wavelength, d0 is a direct ray path length, di is a length of the
i-th reflected ray, Γ0(θ) = Γ

(r)
0 (θ)Γ (t)

0 (θ) is an attenuation coefficient of the
direct ray corresponding to the radiation pattern of the reader and the tag,
Γi(θ) = Γ

(r)
i (θ)Γ (t)

i (θ) is a proper attenuation coefficient of the i-th reflected
ray, Ri(φ) is a ground reflection coefficient of the i-th ray, N is a number of
reflected rays.

Radiation patterns significantly affects path loss. For instance, Fig. 5a illus-
trates the path loss computation for an isotropic and dipole antennas. The radi-
ation patterns are chosen according to antenna specifications. In this paper a
dipole radiation pattern is used.

The ground reflection coefficient is defined by the following formula [7]:

R =
sin φ − √

C

sin φ +
√

C
(3)

where φ is a grazing angle, C = η − cos2 φ for horizontally polarized component
and C = η−cos2 φ

η2 , for vertical one; η = εr(f)−j60λσ(f), where εr(f) is a relative
permittivity of a ground surface at the frequency f , σ(f) is a conductivity.

Unfortunately, it is difficult to take into account all summands due to chaotic
nature of the signal propagation. For this reason, in the given paper two-ray
propagation model considering ground reflected ray is concerned (see Fig. 4).

The received power at a tag antenna is

PRX
t = EIRP · PL. (4)

As a rule, readers take advantage of circular polarization to identify a tag in
any space orientation, and a tag uses linear polarisation. Thus, if a tag receives a
message from a reader (in contrast with backscatter modulation) the energy that
tag obtains equals to PRX

t p, where p = 1/2 is the polarization loss. If this value is
found to be low and insufficient to power up the tag, the tag chip switches off and
the round is lost. If the tag needs to send an answer via backscatter modulation,
power PRX

t should be multiplied by the modulation loss K = α |ρo − ρc|, where
ρo and ρc is reflection coefficient of a tag antenna in a reflection and absorption
states.

Since backward propagation is computed in the same way, we obtain Friis’
formula for RFID channel:

PRX
r = PTX

r G2
rP

(fwd)
L P

(back)
L G2

t K, (5)

where P
(fwd
L is the path loss in forward channel (from the reader) and P

(back)
L is

the path loss in backscattered channel (from the tag). For the sake of simplicity,
if the polarization loss is considered to be equal for both directions, P

(fwd)
L equals

P
(back)
L .

To compute the successful pocket receiving probability it is neccessary to
find a signal-noise ratio SNR = P RX

r

Nr
, where Nr is a noise power at the receiver

antenna. Since the reader should radiate CW all time including the time of
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tag response reception and since the RX and TX channels are not isolated
completely, a noise contained in CW leaks into RX channel. The attenuation
of RX-TX isolation may vary around 25–40 dB and under this condition the
noise produced by this leakage is much greater then the thermal noise (about
−115 dBm) and it is a dominant contribution into the Nr value [16].

(a) AWGN channel (b) Rayleigh fading channel

Fig. 6. BER and a tag answer transmission probability (PC+EPC+CRC) versus the
distance between the reader and the tag.

Besides direct and ground reflected signal replicas, there are other dublicates
resulted from the vehicles or road objects reflections in the received signal. This
spontaneous reflections changes rapidly leading to fast multipath fading. Thus,
usage of AWGN channel as a model (being often used for RFID-system analysis
[12]) is not adequate and gives too optimistic results. The dependency of BER
from tag-reader distance is illustrated in Fig. 6a (for the sake of convenience, the
area where the reader receives the tag answers is illustrated on the bottom plot).
As we can see on the tag response failure rate plot there exist areas where a tag
transmits its response too reliably under the condition of collision absence that
disagrees with the experiment results.

To describe the multipath fading correctly let us make use of Rayleigh dis-
tribution (see Fig. 6b). Thus, BER can be calculated as [1]:

BER =
1
2

− 1√
1 + 2

M ·SNR

+
2
π

arctan(
√

1 + 2
M ·SNR )√

1 + 2
M ·SNR

. (6)

This model provides higher BER which provides the response error rate closer
to the experimentally measured results.

Let us take a note that in open areas without obstacles AWGN channel can
be used for BER computation.

In next section the results of system simulation based on the results of this
and previous sections are given.
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4 Analysis of UHF RFID Vehicle Identification System

To evaluate the performance of vehicle identification system a simulation model
have been developed [11]. In this model tags mounted on vehicles are simulated,
tag activation time and the probability that the response being received by the
reader are computed using models defined in the previous section. After multiple
simulation runs the successful vehicle identification probabilities and mean read
number of each tag are computed by Monte-Carlo method. The simulation model
is defined by the parameters as follows:

– reader and tags antennas radiation patterns, polarizations, gains, altitudes
and mounting angles

– reader transmission power, tag sensitivity, modulation loss
– propagation loss and bit error probability models
– protocol settings: M – tag encoding, Tari – a data-0 symbol duration, RTcal,

TRcal, DR, Q – an exponent of the slots number in a round
– vehicle speed, vehicles number on the simulated road area.

The model was developed in Python3 programming as IPython notebook;
source code is available [11] on GitHub under GNU GPLv3 license.

The equipment parameters of all computations have been given from those
had been used in the experiment in Kazan city:

– reader transmission power: 31.5 dBm
– reader antenna: dipole radiation pattern, 8dBi gain with circular polarization,

5m altitude above the lane, 30◦ vertical angle
– tag antennas: dipole radiation pattern, 2dBi gain, oriented along the road
– tag sensitivity: −18.5 dBm

Two-ray propagation model and formula 6 based on Rayleigh distribution for
BER computation have been used for the reasons mentioned above. An inter-
rogator read distance (a maximum distance between the reader and vehicles to
be identified along the road) has been restricted by 20 m that results in the
number of tags in reading area not exceeding 4 without side tags.

First of all the parameters providing tag reading under conditions corre-
sponding to the Kazan experiment (vehicle speed was 60 kmph, up to three tags
in reading range) with probability over 0.92 were discovered. The probability
turned out to be achieved under major settings, some of them are given in
Table 2. It should be mentioned that the best results were achieved under small
values of Q parameter – the reason is a small collision probability due to the
small tags number on the one hand, and the increase in rounds number the tag
takes part in on the other hand.

Further the configurations allowing to identify the vehicles with probability
above 0.95 when vehicles move at 180 kmph speed and 6 tags are in a reading area
have been found. The results are given in Table 3. As it can be seen, the general
trend is in rising the command transmission rate (Tari has minimum 6.25μs
value for almost all configurations) and increasing the number of symbols per
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Table 2. Some configurations for stable identification of the vehicle moving at 60 kpmh
speed and 3 tags presence in the reading area.

M Tari DR Q Psuccess

FM0 6.25 8 2 0.93

Miller-2 6.25 8 2 1.0

Miller-4 6.25 64/3 3 1.0

FM0 12.5 64/3 2 0.93

Miller-2 12.5 8 2 0.99

Miller-2 18.75 8 2 0.95

Miller-4 25.0 8 4 0.95

Table 3. Configurations for stable identification of the vehicle moving at 180 kpmh
speed and 6 tags presence in the reading area.

M Tari DR Q Psuccess

Miller-2 6.25 64/3 3 0.96

Miller-2 6.25 64/3 4 0.95

Miller-4 6.25 64/3 2 0.99

Miller-4 6.25 64/3 3 0.99

Miller-4 6.25 64/3 4 0.99

Miller-8 6.25 64/3 2 0.99

Miller-8 6.25 64/3 3 1.0

Miller-8 6.25 64/3 4 1.0

Miller-8 12.5 64/3 3 0.96

Miller-8 12.5 64/3 4 0.95

bit in tag responses (only two configurations have used Miller-2 encoding, the
rest of them has used Miler-4 or Miler-8). At that time it was quite unexpected
that the rise of Q value doesn’t lead to identification probability increase. It is
resulted from the fact that the drop of Q value allows to exponentially decrease
the round duration and if the tag is able to transmit the response it almost surely
achieves the reader when more resistant encoding is used. That is the increase
of a number of transmission attempts with more reliable encoding has greater
effect then the decrease of collision probability.

For some configurations the dependencies of identification probabilities versus
speed and reader antenna angle were studied. The results are given in Figs. 7a
and b. They show that it is possible to reliably identify the vehicles moving with
speed up to 220 kmph and with presence of up to 6 vehicles in a reading area
under the usage of Q = 3, Tari = 6.25, angle of slope to vertical equals to π/6,
DR = 64/3 and Miller-8 encoding.
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(a) Probability versus speed (b) Probability versus angle

Fig. 7. Vehicle identification probability dependence on vehicles speed and antenna
angle of slope to vertical

5 Conclusion

In the paper a model of UHF RFID Vehicle Identification System based on
EPC Class1 Gen2 is described. The model considers the influence of protocol
settings, antenna and tranceiver parameters, signal propagation along roads on
the vehicle identification probability. The results computed by the given model
agreed with the results of the vehicle identification system experiment carried
out in Kazan city. The protocol settings estimation for reliable identification
of vehicles moving at 60–220 kmph speed under the presence of several tags in
a reading area was performed. The results presented in this paper show that
the passive UHF RFID-based vehicle identification can be successfully used in
modern traffic law enforcement systems.
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Abstract. The paper is devoted to caching of popular multimedia and
Web contents in Internet. We study the Cluster Caching Rule (CCR)
recently proposed by the authors. It is based on the idea to store only
popular contents arising in clusters of related popularity processes. Such
clusters defined as consecutive exceedances of popularity indices over a
high threshold are caused by dependence in the inter-request times of
the objects and, hence, their related popularity processes. We compare
CCR with the well-known Time-To-Live (TTL) and Least-Recently-Used
(LRU) caching schemes. We model the request process for objects as a
mixture of Poisson and Markov processes with a heavy-tailed noise. We
focus on the hit probability as a main characteristic of a caching rule
and introduce cache effectiveness as a new metric. Then the dependence
of the hit probability on the cache size is studied by simulation.

Keywords: Caching · Cluster Caching Rule · TTL · LRU · Hit/miss
probability · Popularity process · Clusters of exceedances · Inter-request
times

1 Introduction

Nowadays, caching of contents is intensively applied in the Internet to provide
multimedia or Web objects on demand to the users with a minimal delay. The
idea stems from computer systems where frequently demanded files have to be
cached in a short memory to accelerate the exchange between the processor and
the operative memory. In telecommunication systems this concept is used to keep
the requested content in a cache, e.g. at an edge router in fog computing (cf.
[19–21]), or a hierarchy of caches (cf. [3,4]). Numerous problems arising from the
randomness of the inter-request time (IRT) sequences concern the optimal cache
size, cache utilization and occupancy, and the replacement of objects within a
cache to provide the fast availability of the requested content. The latter item
is characterized by the hit/miss probability, i.e. the probability to find/miss a
requested content in the cache.
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 47–56, 2016.
DOI: 10.1007/978-3-319-51917-3 5
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Among these cache replacement rules the Least-Recently-Used (LRU) (cf.
[1]), the Least-Frequently-Used (LFU) (cf. [2]) and the Time-to-Live (TTL) pol-
icy (cf. [3–5]) are the most popular schemes. Usually, the Independent Refer-
ence Model (IRM) that summarizes a number of assumptions is used to sim-
plify the formulation of the hit/miss probability, the cache utilization and occu-
pancy problems. According to IRM it is assumed that the inter-request times
are independent and exponentially distributed (i.e. the request process is a Pois-
son renewal process), and that the popularity of contents or Web objects and
content sizes are constant. The IRM implies a time and space locality regarding
the object popularity. It should be noted that normally a non-Poisson renewal
process model cannot capture the superposition of request processes that arise
in cache networks (cf. [3]).

Not much work has been done when the IRM model is not appropriate. Then
the IRT sequence may be correlated, heavy-tailed and non-stationary. Our first
objective is to show how one can handle the caching problem in this case and
what is the impact of such conditions on the effectiveness and utilization of a
cache. Correlated IRTs are particularly realistic if some content has become very
popular and many users are interested in it. Therefore, such correlations generate
clusters of peaks of the popularity index. Following [6] we determine the cluster
as a conglomerate of consecutive exceedances of the popularity process over a
threshold between two consecutive non-exceedances. A cluster structure of the
popularity process is shown in Fig. 1.

Fig. 1. The sequence of content popularity against the time including some indicated
clusters of exceedances over a given threshold.

We focus on the Cluster Caching Rule (CCR) policy proposed in [7] and
studied in [8]. Dealing with a single cache we propose here an effectiveness of a
cache as new caching metric. It is defined as total popularity of objects placed in
the cache at time t. The second objective is given by the analysis and comparison
of the CCR, TTL and LRU rules by a simulation study. Both the CCR and TTL
rule use timers as tuning knobs for individual objects to stay in the cache, but
they apply different arguments. We propose to select the TTL timers depending
on the popularity of the cached objects.
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The paper is organized as follows. In Sect. 2 related work is discussed. In
Sect. 3 we propose the effectiveness of a cache as characteristic metric. In Sect. 4
we modify the TTL rule regarding the specific TTL timers which depend on
the popularity indices. Moreover, we compare the hit probabilities of the CCR,
LRU and TTL rules depending on the cache size and the TTL timer selection
by simulation. The results are summarized in the Conclusion.

2 Related Work

Cache replacement schemes can be split into capacity-driven and TTL-based
policies (cf. [9]). The hit (or miss) probability determines the long-term frequency
to find (or not to find) a requested object in the cache. The LRU and LFU policies
belong to the capacity-driven group since objects are evicted from the cache by
arrivals of those objects not yet stored. According to LRU a new requested object
is placed into the cache and the least recently requested object is evicted from
the cache. In case the requested object is found in the cache, it is put on the
first position while the residual cache contents is shifted upwards. According to
the TTL policy objects are evicted according to individual timers, i.e. life times
to be in cache (cf. [3]). It was found that LFU is better than LRU (cf. [10]).
Thus, modifications of LRU were proposed like persistent-access-caching (PAC)
to improve its miss probability (cf. [11]).

The CCR policy [7] is related to a popularity oriented, threshold-driven pol-
icy. It allows to cache only those contents corresponding to related popularity
clusters, i.e. those objects are cached whose popularity index exceeds a suffi-
ciently high threshold u. The hit probability is then determined as the probabil-
ity to enter the cluster and the time of an object to stay in the cache is deter-
mined by the duration of consecutive clusters containing that object and the
corresponding inter-cluster times (see Fig. 2). The CCR scheme provides some
kind of congestion control that allows to drive cache utilization. The threshold
u determines the popularity level which is exceeded and impacts on the cluster
sizes of the popularity process. CCR is in a way similar to LFU where only
popular objects may be placed in the cache. Caching only frequently referenced
objects has also been developed as central processing unit (CPU) approach in [1].

Regarding the stochastic analysis of caching rules for correlated request
processes with heavy tails not much research has been done yet. Poisson arrival
processes were considered in [12–14] with light- and heavy-tailed request rates
λi, i.e. λi ∼ c exp(−ξiβ) for i = 1, 2, . . . with c, ξ, β > 0 and λi ∼ c/iα for
i = 1, 2, . . . with α > 1, c > 0, respectively. The miss probability of the LRU
policy was shown to decrease following a power law or exponentially, respec-
tively, for heavy- and light-tailed λi as the cache size C tends to infinity. It was
derived that the correlation does not impact the miss probability for unlimited
cache size. Markov arrival processes (MAPs) were also used to model correlated
requests (cf. [3]), since they are self-contained regarding superposition. Regard-
ing the LRU strategy and moderate cache sizes, non-stationary and dependent
request processes and the average miss probability were considered as input and
metric in [15].
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Cache utilization determines an important metric and raises several issues.
To optimize cache utilization based on TTL policies, it was proposed in [16]
to maximize the sum of the utilities of all objects regarding the TTL timers.
Therein, each content item is associated with a utility metric that is a function
of the corresponding content hit probability. The latter approach assumes a
Poisson renewal process as request model. In [7] the utilization with regard to
the CCR strategy has been determined by the ratio of the cluster and the cache
sizes where the cluster implies a set of consecutive exceedances of the popularity
index over a sufficiently high threshold. Then the average cache utilization was
considered both for fixed and random object sizes.

3 Effectiveness of the Cluster Caching Rule

The analysis of real traces has shown that about 70% of contents in caches is
requested only once. It translates into an even higher miss ratio of 0.88 (cf. [1]).
The LRU and TTL cache policies do not prevent to place unpopular contents
in the cache. To prevent caching of a large portion of rarely requested objects,
we propose to maximize the effectiveness of a cache. It is reflected by the new
metric

e(t) =
C∑

i=1

pi(t)1I{ith object oji from the catalog is in the cache at time t}.

We assume that all objects {oj | j ∈ M},M = {1, . . . , N} in the catalog have
equal size s and Ĉ = C · s is the cache size. N denotes the size of the catalog.
pi(t) is the popularity of the ith object oji in the cache at epoch t. e(t) indicates
the total popularity of all those objects {oj1 , . . . ojC} stored in the cache at time
t. It holds jC ≤ C since the cache may not be full. According to the CCR policy,
the ith object oji may be placed in the cache if its popularity pi(t) at time t
exceeds a given threshold u.

As the cache load is provided by clusters of highly popular objects, their
indices pi(t) may belong only to one cluster. This means that the number of
cached objects is limited by the cluster size T2(u) or more exactly by the maximal
cluster size. The notion of the cluster size of a stationary process {Xt}t≥1

T2(u) = min{j ≥ 1 : L1,j > u,Xj+1 ≤ u|X1 ≤ u},

where M1,j = max{X2, . . . , Xj}, M1,1 = −∞, L1,j = min{X2, . . . , Xj}, L1,1 =
+∞ is mentioned in [6,7] following [17]. Regarding the CCR policy, we then get
the effectiveness

eu(t) =
C∑

i=1

pi(t)P{pi(t) > u|ith object is in the latest cluster at time t}

≤
j∑

i=1

pi(t)P{T2(u) = j} (1)
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where j ≤ C is the observed cluster size. In case j > C we can load the rest of
those objects in the next cache of a cache hierarchy or increase u to decrease the
cluster size.

Fig. 2. Illustration of the CCR caching mechanism and the popularity clustering for
different threshold values U1 and U2 over time.

Example 1. Figure 2 illustrates the dynamics of CCR caching and the calculation
of the effectiveness. At time T1 the cache contains objects with numbers 1, 2 and
3 because their popularity exceeds the threshold U1. If U2 were the threshold,
the objects with numbers 0 − 4 would be cached. Let us consider the threshold
U1. The next cluster begins at the object with number 6. The popularity of the
object 2 decreases and it falls between two clusters. Nevertheless, at time T1

it remains in the cache. In the second cluster the object with number 7 occurs
twice. At time T2 we have the objects with numbers 6 − 8 in the cache. The
objects 1 − 3 are evicted from the cache. Hence, the effectiveness at time T1 is
calculated as the sum of the popularity of objects 1−3 and at time T2 by means
of the objects 6 − 8.

The probability P{T2(u) = j} in (1) does not take into account possible
repetitions of the same objects in the popularity clusters. Therefore, it provides
an upper bound of the real effectiveness.

The effectiveness metric eu(t) in (1) is driven by u. We can find such u that
provides a maximal value eu(t) for a fixed time t. To this end, let us assume that
the objects’ popularity is determined by Zipf’s law, i.e. pi ∼ χ/iα, where χ > 0
is a constant. α > 0 is the tail index. It shows the heaviness of the tail of the
popularity distribution. As the popularity index may change over time, we can
take pi(t) ∼ χ/iα(t).

Regarding a sequence of increasing thresholds {un}n≥1, the probability of
T2(un) derived in [6] satisfies for each ε > 0 and some nε and j0(nε) the following
expression
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| P{T2(xρn
) = j}/(θ2qn(1 − qn)(j−1)θ) − 1 |< ε

for all n > nε and sufficiently large j, i.e. j > j0(nε). Here high quantiles {xρn
}

of the common popularity process of all objects in the catalog w.r.t. the levels
qn = 1 − ρn, ρn ∼ 1/n are taken as thresholds {un}. θ ∈ [0, 1] is the dependence
measure of the popularity process called extremal index [18]. The reciprocal 1/θ
approximates the mean cluster size of exceedances over the threshold u = un.
By (1) and an approximation of the Rieman Zeta function for α(t) > 0, α(t) �= 1,

we get the total popularity of the j objects placed in the cache of size Ĉ = C · s
in terms of

eq(t) ≈ θ2q(1 − q)(j−1)θ

j∑
i=1

χ

iα(t)
≈ χθ2q(1 − q)(j−1)θ j1−α(t) − 1

1 − α(t)
. (2)

As the quantile level q represents now the threshold u, one can find q = 1/(1 +
(j − 1)θ) that maximizes eq(t). In Fig. 3 eq(t) is depicted for a fixed time t,
i.e. α(t) = α. As Zipf’s model may fit the popularity not accurately enough for
samples of moderate size, we can estimate the popularity of the ith object oji

at stopping time t by [7]

pi(t) = Ji,t/Nt. (3)

Here Ji,t and Nt denote the number of requests for the ith object oji and for all
objects oj , j ∈ M in the catalog at time t, respectively, that progress in time.
The cluster size probability can be evaluated as ratio of the number of requests
Rt with popularity exceedances over u to the total number of requests Nt at
time t. Here, Rt contains only exceedances corresponding to different objects
falling in the clusters. Then we get from (1) the empirical effectiveness

eu(t) =
[
Rt/Nt

2
] C∑

i=1

Ji,t.

Fig. 3. Effectiveness (2) with C = j = 10 for the CCR policy against the quantile
level q of the extremal index θ ∈ {0.2, 0.7} and the tail index α ∈ {1.2, 4}, where
q ∈ {0.137, 0.357} corresponds to the maximal effectiveness.



Modeling and Performance Comparison of Caching Strategies 53

Thereby, formula (2) provides the parametric model taking into account the
heaviness of the tail in terms of α(t) and the dependence structure by θ.

An increasing level u induces clusters with smaller sizes. It may lead to the
necessity to select a smaller cache size or to a less efficient utilization of the
cache.

4 Performance Comparison of Different Caching Rules

We compare the CCR, LRU and TTL caching rules by simulation. Following
[8] we use a mixture of the Moving Maxima (MM) and the Poisson renewal
processes to model a common IRT process regarding all objects of the catalog
of different types.

The MM process {τi,t} as IRT model of the ith object type satisfies

τi,t = max
j=0,...,mi

{αjZt−j}, t ∈ Z,

with nonnegative constants {αj} such that
∑mi

j=0 αj = 1 and iid standard Fréchet
distributed r.v.s {Zt} with distribution function F (x) = P{Zi ≤ u} = e−1/u.
The distribution of τi,t is also Fréchet. The MM process is a mi-dependent
Markov chain where mi determines the popularity duration. The MM process
models IRTs of short-term news that are of public interest for a limited time.
The Poisson process with intensity λi models objects like scientific and culture
articles which may attract interest within a long time independently. Each object
of equal size s = 1 from the catalog has an own (mi, {αj}) or λi value as unique
IRT model parameter.

The MM processes generate the correlation and the cluster structure of such
common IRT process that has been generated here by 90% MM and 10% Poisson
renewal processes. The corresponding popularity process that is the popularity
pi(t) of each requested object oji calculated by (3) is given in Fig. 1. In (3) Ji,t

is calculated in a cross-window with Nt = 300 requests. The number of objects
in the catalog was taken as N = 100.

We compare the CCR, the LRU and the TTL policies for such simulated
IRT processes. For each object oji we propose TTL timers {ti} depending on its
popularity index pi(t) and the mean IRT E(Yi) of the overall IRT process, i.e.

ti = h E(Yi) pi(t), 0 < h < ∞. (4)

h is a scalability parameter. The TTL timers are larger for highly popular
objects. In (4) ti is proportional to the popularity of the ith object in [0, t].

In Fig. 4 we estimate the extremal index θ of the popularity process by the
intervals estimator proposed in [17]. This allows us to estimate the effectiveness
(2) and the cache size as the reciprocal C = 1/θ equal to the mean cluster size
as proposed in [7]. Taking θ̂ = 0.22 it is easy to calculate the approximate mean
cache size Ĉ = 5.

In Fig. 5 we show the hit probabilities for the TTL, LRU and CCR policies
depending on the cache size C for s = 1. The hit probability is estimated as
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Fig. 4. The intervals estimate ̂θ of the extremal index averaged over 50 samples against
the threshold u: the estimate ̂θ = 0.22 corresponds to the stability interval of the plot
by threshold u.

the ratio of the number of requests hitting the cache and the total number
of requests. For small cache sizes the best hit probability is provided by the
CCR scheme with a threshold u corresponding to the stability interval of the
plot (u, θ̂) and both the TTL and CCR work similar if h and u are relatively
small. Small u generates large clusters. Then the CCR stores more objects in
the same manner as TTL irrespectively of their popularity processes. If h and u
are small, then the inter-cluster time for large clusters is of similar small scale
as the TTL timers. For large caches and long timers TTL is better than CCR.
This means a long-term placement of many objects in the large cache which is
not effective. For large caches the CCR hit probability reaches a stability level
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Fig. 5. The hit probabilities of the CCR, LRU and the TTL policies averaged over 50
samples against the cache size C, where horizontal lines indicate standard deviations.
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that is lower than the corresponding TTL value due to the limited cluster size
and the impossibility to store a larger number of objects than the cluster size.
A minimal C corresponding to the stability level of the hit probability may be
taken as a sufficient cache size.

5 Conclusion

The paper addresses the caching of popular multimedia and Web contents in
Internet. We have extended the investigation of the Cluster Caching Rule (CCR)
recently proposed in [7,8]. Assuming correlated inter-request time processes and
fixed object sizes, we have studied here the caching of popular contents when
the popularity of the stored objects may change over time. The LRU, CCR and
TTL caching rules have been compared by a simulation study.

The following results have been obtained:

1. cache effectiveness has been introduced as new quality metrics;
2. regarding a TTL based policy, TTL timers based on popularity indices have

been proposed;
3. the CCR policy has a better hit probability than TTL regarding relatively

small cache sizes and thresholds u corresponding to the stability interval of
the extremal index plot (u, θ);

4. the LRU policy is worse than both the CCR and TTL rule when the cache
size is moderate and it works similar to TTL for large caches.

Regarding a fog computing environment based on interconnected powerful SBC
boards (cf. [19,20]), optimized caching strategies for popular objects that imple-
ment the sketched approaches on a small memory are currently a very important
research issue (cf. [21]). Consequently, the adoption of a dynamic version of the
proposed CCR policy is a topic of our future research.
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scholarship 91619901.
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Université de Technologie de Troyes, UTT/ICD/LM2S, UMR 6281 CNRS,
12, rue Marie Curie, CS 42060, 10004 CEDEX Troyes, France

nikiforo@utt.fr

http://www.utt.fr

Abstract. The problem of sequential transient change detection is con-
sidered in the paper. The original contribution of this paper is twofold:
first, a mixed count/continuous statistical model with abrupt changes is
considered in the paper; second, a new sequential test for such a mixed
count/continuous statistical model is designed and studied. The theoreti-
cal findings are applied to the problem of cyber-physical attack detection.

Keywords: Mixed count and continuous random data · Sequential
change detection · Minimax criterion · Cyber-physical attacks · Cyber-
physical systems

1 Introduction and Motivation

The problem of cyber-physical systems security is of great importance nowa-
days. A typical distributed cyber-physical system (networked control systems,
SCADA, etc.) is composed of several physical and cyber layers. These layers are
connected by different computer networks (WAN, LAN, VPN, etc.) The recent
studies have established that the cyber-physical systems are vulnerable to cyber-
physical attacks, when both, physical and cyber, components are sabotaged by
attackers (see for details [1–3]).

A typical feature of cyber-physical systems is the presence of mixed count
and continuous parallel data flows. The count data represent the number of
events N(t) occurring during a fixed time interval (0, t] (for example, the num-
ber of requests per second). The data with continuous state space describe the
physical parameters {Xt}t≥1 like temperature, pressure, position/speed, etc.,
usually in discrete time t = 1, 2, . . .. The theory and tests for sequential detec-
tion are well-developed for the observations with continuous state space and for
the observations with discrete states (also for some types of point processes). To
the best of our knowledge, the theory of sequential detection is practically not
developed for the case of mixed count/continuous statistical models with abrupt
changes.

c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 57–63, 2016.
DOI: 10.1007/978-3-319-51917-3 6
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2 Sequential Detection of Transient Changes

Let ν be the number of the first post-change observation. It is assumed that the
changepoint ν is unknown and not necessarily random. Let Pk and Ek denote
the probability measure of {Xt}t≥1 and its expectation when ν = k and let P∞
and E∞ denote the same when ν = ∞, i.e., there is no change. This means that
Xt ∼ P0 for every t < ν and Xt ∼ P1 for every t ≥ ν under the measure Pν and
Xt ∼ P0 for every t ≥ 1 under the measure P∞. A sequential change detection
test consists in calculating the stopping time T at which the change-point ν
is detected. In the classical abrupt change detection, the post-change period
is assumed to be infinitely long. The conventional (Shiryaev-type, Lorden-type
and Pollak-type) criteria of optimality involve the minimization of the average
detection delay for a given value of false alarms (see details in [4]). For instance,
the minimax Lorden-type criterion of optimality based on the minimization of
the worst-worst-case average detection delay is given by [5]:

inf
T∈Cγ

{
ESADD(T ) = sup

ν≥1
esssupEν [(T − ν + 1)+|Fν ]

}
(1)

over the class
Cγ = {T : E∞(T ) ≥ γ}

of stopping times T .
Unfortunately, such criteria of optimality (like (1)) are not adequate for the

detection of transient changes of duration L (i.e., the changes of short duration)
because the detection of changes after their disappearance or with the detection
delay greater than a prescribed value L is considered as missed. Moreover, for
the safety-critical applications, it is no matter if the true duration of the post-
change period is greater than L. The changes should be detected with the delay
which satisfies the following condition T − ν +1 ≤ L due to safety requirements.
The penalty function related to the detection delay is quite nonlinear.

The conventional (Shiryaev-type, Lorden-type or Pollak-type) criterion war-
ranties that some large detection delays can be compensated with some short
detection delays and, hence, the (worst-worst-case) average detection delay will
be optimal. In safety-critical applications, such philosophy does not work: a
detection delay greater than L cannot be compensated with a detection delay
shorter than L.

Motivated by safety-critical applications, we use through this paper the cri-
terion of optimality introduced in [6,7], which involves the minimization of the
worst-case conditional probability of missed detection (under the assumption
that no change occurs during the “preheating” period (i.e. it is assumed that
ν ≥ L))

inf
T∈Cα

{
Pmd (T ;L) = sup

ν≥L
Pν (T − ν + 1 > L|T ≥ ν)

}
(2)

over the class

Cα=
{

T : Pfa (T ;m)=sup
�≥L

P0 (� ≤ T < � + m − 1)≤α

}
,
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where Pmd denotes the worst-case probability of missed detection and Pfa

stands for the worst-case probability of false alarm within any time window of
length m.

3 Variable Threshold Window Limited CUSUM Test

The motivation and rationalities of the Window Limited (WL) CUSUM test as
a solution to the transient change detection problem can be found in [6,7]. Let
us first consider that the pre-change density is f0 and the post-change density is
fθ. Because the conventional CUSUM test can be interpreted as a set of parallel
open-ended sequential probability ratio tests (SPRTs), which are activated at
each time n with the upper threshold h and the lower threshold −∞ [4]:

Tk =
{

min {n ≥ k : Sn
k ≥ h}

∞ if no suchn exists , Sn
k =

n∑
t=k

log
fθ(Xt)
f0(Xt)

,

where k = 1, 2, . . ., the stopping time TCS is defined as

TCS = inf {Tk | k = 1, 2, . . .} . (3)

The rationality of the WL CUSUM test is due to the fact that any detection
with a delay greater than L is considered as missed. Hence, the WL CUSUM test
uses at each moment only L last observations. To get a more general stopping
time, we consider now the following definition of the truncated SPRT with the
upper variable threshold h1, . . . , hL and the lower threshold −∞ (see [7])

Tk =
{

min {k ≤ n ≤ k + L − 1 : Sn
k ≥hn−k+1}

∞ if no suchn exists , (4)

Sn
k =

n∑
t=k

log
fθt−k+1(Xt)

f0(Xt)
, k = 1, 2, . . . (5)

Putting together the above mentioned equations, we get the stopping time of
the Variable Threshold Window Limited CUmulative SUM (VTWL CUSUM)
test [7]:

TVTWL = inf
{

n ≥ L : max
1≤k≤L

[
Sn

n−k+1 − hk

] ≥ 0
}

, (6)

Sn
n−k+1 =

n∑
t=n−k+1

log
fθk−n+t

(Xt)
f0(Xt)

. (7)

Let us consider the time instant n. Considering the parallel truncated SPRTs

T1, T2, . . . , Tn,
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we get a set of stopping times. All these tests, consequently activated at each
time m, 1 ≤ m ≤ n, accumulate the statistics in the “direct” time. Say, the test
activated at time m calculates the Log-Likelihood Ratios (LLR)

Sm
m , Sm+1

m , Sm+2
m , . . . .

From a practical point of view, it is more convenient to consider the on-line
detection algorithm in the “inverse” time, i.e., to re-write Eqs. (3) and (4) for a
sliding window [n − L + 1;n]. In the other words, the procedure of observation
is stopped and a transient change is declared at the first time instant n when

Sn
n−k+1 ≥ hk

for some k such that 1 ≤ k ≤ L. These LLRs Sn
n−k+1 are calculated by using

the replicas of the profile:

(θ1, . . . , θL−1, θL),
(θ1, . . . , θL−1),
. . .

(θ1)

in the sliding window [n − L + 1;n].

4 Mixed Continuous-Discrete Data Flows: Problem
Statement

Let us formalize the transient change detection problem considered in this paper
as follows. We sequentially observe nc parallel independent sequences {Xi,t}t≥1

of random variables (also independent) with absolutely continuous distributions
Fi, i = 1, . . . , nc. We also sequentially observe nd parallel sequences {Ni,t}t≥1

of independent random variables with discrete distributions Pi, i = 1, . . . , nd.
Therefore, the generative model of the continuous distributions with transient
changes is given by:

Xi,t ∼
{

Fi,0 if 1 ≤ t < ν
Fi,θi,t−ν+1 if ν ≤ t ≤ ν + L − 1 , (8)

where Fi,θ is the parameterized cumulative distribution function during the tran-
sient change period L and (θi,1, . . . , θi,L) is the set of known parameters defin-
ing the dynamic profile of the transient change. Without loss of generality, it
is assumed that the pre-change parameter is θi,0 = 0. Hence, the pre-change
cumulative distribution function is denoted by Fi,0.

Analogously, the generative model of the discrete distributions with transient
changes is given by:

Ni,t ∼
{

Pi,0 if 1 ≤ t < ν
Pi,λi,t−ν+1 if ν ≤ t ≤ ν + L − 1 , (9)

where Pi,λ is the parameterized probability mass function of the discrete random
variable Ni,t.
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5 Mixed Continuous-Discrete Data Flows: FMA Test

The originality of this paper with respect to previous publications is the co-
existence of parallel continuous and discrete data flows. In this case, the LLR
for the mixed count/continuous statistical model is given by

Sn
n−k+1=

n∑
t=n−k+1

nc∑
i=1

log
fi,θi,k−n+t

(Xi,t)
fi,0(Xi,t)

+
n∑

t=n−k+1

nd∑
i=1

log
Pi,λi,k−n+t

(Ni,t)
Pi,0(Ni,t)

.

(10)
The optimization of the VTWL CUSUM test in the case of arbitrary distribution
of the independent observations {Xt}t≥1 is considered in [8]. It follows from [8]
that the optimal tuning of the VTWL CUSUM test leads to the Finite Moving
Average (FMA) test. Applying this test to the LLR given by (10), we get:

TFMA = inf
{
n ≥ L : Sn

n−L+1 ≥ hFMA

}
. (11)

As it follows from [8], to calculate the worst-case conditional probability of
missed detection Pmd (TFMA;L) and the worst-case probability of false alarm
Pfa (TFMA;m) within any time window of length m, it is necessary to know two
Cumulative Distribution Functions (CDF). The first CDF of the LLR Sn

n−L+1

corresponds to the pre-change period:

x �→ FS,∞(x) = P0

(
Sn

n−L+1 < x
)
, n ≥ L (12)

under the measure P∞. The second CDF of the LLR Sn
n−L+1 corresponds to

the measure Pν . The worst-case conditional probability of missed detection
Pmd (TFMA;L) is upper bounded by Pν

(
SL+ν−1

ν < hFMA

)
, hence, the second CDF

is defined as follows:

x �→ FS,ν(x) = Pν

(
SL+ν−1

ν < x
)
, ν ≥ L (13)

Hence, to calculate the above-mentioned probabilities, it is necessary to study
the LLR as a function of continuous state space data, represented by {Xt}t≥1

and discrete (countable) data, represented by the number of events {Nt}t≥1 per
sampling period and to define the CDF of the LLRs. As it follows from [8]

Pmd (TFMA;mα) ≤ FS,ν (hFMA) and Pfa (TFMA;L) ≤ 1 − [FS,∞ (hFMA)]mα . (14)

Let us define the following random values ξ (continuous) and ζ (discrete):

ξ =
n∑

t=n−k+1

nc∑
i=1

log
fi,θi,k−n+t

(Xi,t)
fi,0(Xi,t)

(15)

ζ =
n∑

t=n−k+1

nd∑
i=1

log
Pi,λi,k−n+t

(Ni,t)
Pi,0(Ni,t)

. (16)

It can be considered (without loss of generality) that

pj = P(ζ = xj), j ∈ J avec xi 	= xj pour i 	= j.
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Hence, let us define the random value ϑ = ξ+ζ, its CDF is given by the following
formula

Fϑ(z)=P(ϑ ≤ z)=P(ξ+ζ ≤ z)=
∑
j∈J

Fξ(z−xj)P(ζ = xj)=
∑
j∈J

Fξ(z−xj)pj . (17)

Therefore, we calculate the CDFs x �→ FS,∞(x) and x �→ FS,ν(x) by using
equation (17). These CDFs permit us to estimate the worst-case conditional
probability of missed detection Pmd (TFMA;L) and the worst-case probability of
false alarm Pfa (TFMA;m).

Example 1. To illustrate the above-mentioned algorithm, let us consider that
nc = 1 and nd = 1. Let us assume that

Xt ∼
{N (0, 1) if 1 ≤ t < ν

N (θ, 1) if ν ≤ t ≤ ν + L − 1 , (18)

where N (θ, 1) is the normal distribution with mean θ > 0 and variance σ2 = 1
and

Nt ∼
{

Π(λ0) if 1 ≤ t < ν
Π(λ1) if ν ≤ t ≤ ν + L − 1 , (19)

where Π(λ) is the Poisson distribution with mean λ, λ0 < λ1. The LLRs are
represented as follows:

ξ =
n∑

t=n−L+1

log
fθ(Xt)
f0(Xt)

=
θ

σ2

n∑
t=n−L+1

(
Xt − θ

2

)
(20)

and

ζ =
n∑

t=n−L+1

log
pλ1(Nt)
pλ0(Nt)

= (λ1 − λ0)
n∑

t=n−L+1

(Nt − (λ0 − λ1)) (21)

The distribution of the random variable ξ is normal. If the independent random
variables Nn−L+1, . . . , Nn have Poisson distributions with means λt, t = n −
L+1, . . . , n, then the sum

∑n
t=n−L+1 Nt has the Poisson distribution with mean∑n

t=n−L+1 λt. As it follows from (17), the CDF z �→ Fϑ(z) of the random variable
ϑ represents a weighted sum of the normal CDFs, where the weight coefficients
are defined by the resulting Poisson distribution.
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Abstract. This paper deals with performance modeling of radio fre-
quency licensing. Licensed users (Primary Users - PUs) and normal users
(Secondary Users - SUs) are considered. The main idea, is that the SUs
are able to access to the available non-licensed radio frequencies.

A finite-source retrial queueing model with two non-independent fre-
quency bands (considered as service units) is proposed for the perfor-
mance evaluation of the system. A service unit with a priority queue
and another service unit with an orbit are assigned to the PUs ans SUs,
respectively. The users are classified into two classes: the PUs have got
a licensed frequency, while the SUs have got a frequency band, too but
it suffers from the overloading. We assume that during the service of
the non-overloaded band the PUs have preemptive priority over SUs.
The involved inter-event times are supposed to be independent, hypo-
exponentially, hyper-exponentially, lognormal distributed random vari-
ables, respectively, depending on the different cases during simulation.

The novelty of this work is that we create a new model to analyze the
effect of distribution of inter-event time on the mean and variance of the
response time of the PUs and SUs.

As the validation of the simulation program a model with exponen-
tially distributed inter-event times is considered in which case a con-
tinuous time Markov chain is introduced and by the help of MOSEL
(MOdeling Specification and Evaluation Language) tool the main per-
formance measures of the system are derived. In several combinations of
the distribution of the involved random variables we compare the effect
of their distribution on the first and second moments of the response
times illustrating in different figures.

Keywords: Finite source queuing systems · Simulation · Cognitive
radio networks · Performance evaluation

1 Introduction

Cognitive radio has emerged as a promising technology to realize dynamic spec-
trum access and increase the efficiency of a largely under utilized spectrum. In a
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cognitive radio network (CRN), a cognitive or secondary users (SUs) are allowed
to use the spectrum by primary users (PUs) as long as the PUs do not use it.
This operation is called opportunistic spectrum access, see for example [1,2]. To
avoid interference to PUs, SUs must intelligently release the unlicensed spectrum
if a licensed user appears as it was treated in [3,4].

In this paper we introduce a finite-source queueing model with two (non
independent) frequency channels. According to the CRN modeling the users are
divided into two types: the Primary Users (PUs) have got a licensed frequency,
which does not suffer from overloading feature. The Secondary Users (SUs) have
got a frequency band too, but suffers from overloading. A newly arriving SU
request can use the band of PUs (which is not licensed for SUs) if the band of
SUs is engaged, in the cognitive way: the non-licensed frequency must be released
by the SU when a PU request appears. In our environment the band of the PUs
is modeled by a queue where the requests has preemptive priority over the SUs
requests. The band of the SUs is described by a retrial queue: if the band is free
when the request arrives then it is transmitted. Otherwise, the request goes to
the orbit if both bands are busy. We assume that the radio transmission is not
reliable, it will fail with a probability p for both channels. If a failure happens
then the request retransmission process starts immediately, see for example [3,4].

Hence, it should be noted that the novelty of this work is that we create a
new model to analyze the effect of distribution of inter-event time on the mean
and variance of the response time of the PUs and SUs. In several combinations
of the distribution of the involved random variables and using simulation we
compare the effect of their distribution on the first and second moments of the
response times illustrating in different figures.

2 System Model

Figure 1 illustrates a finite source queueing system which is used to model the
considered cognitive radio network. The queueing system contains two intercon-
nected, not independent sub-systems. The first part is for the requests of the PUs.
The number of sources is denoted by N1. In order to analyze the effect of the dis-
tribution, these sources generate high priority requests with hypo-exponentially,
hyper-exponentially and lognormally distributed inter-request times with the
same rate λ1 or with the same mean 1/λ1. The generated requests are sent to
a single server unit (Primary Channel Service - PCS) with preemptive priority
queue. The service times are supposed to be also hypo-exponentially, hyper-
exponentially and lognormally distributed with the same rate μ1 or with the
same mean 1/μ1.

The second part is for the requests of the SUs. There are N2 sources, the
inter-request times and service times of the single server unit (Secondary Channel
Service - SCS) are assumed to be hypo-exponentially, hyper-exponentially and
lognormally distributed random variables with rate λ2 and μ2, respectively.

A generated high priority packet goes to the primary service unit. If the unit
is idle, the service of the packet begins immediately. If the server is busy with
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Fig. 1. A priority and a retrial queue with components

a high priority request, the packet joins the preemptive priority queue. When
the unit is engaged with a request from SUs, the service is interrupted and the
interrupted low priority task is sent back to the SCS. Depending on the state
of secondary channel the interrupted job is directed to either the server or the
orbit. The transmission through the radio channel may produce errors, which
can be discovered after the service. In the model this case has a probability p,
and the failed packet is sent back to the appropriate service unit. When the
submission, is successful (probability 1-p), the requests goes back to the source.

In case of requests from SUs. If the SCS is idle, the service starts, if the SCS
is busy, the packet looks for the PCS. In case of an idle PCS, the service of
the low priority packet begins at the high priority channel (PCS). If the PCS is
busy the packet goes to the orbit. From the orbit it retries to be served after an
exponentially distributed time with parameter ν. The same transmission failure
with the same probability can occur as in the PCS segment.

To create a stochastic process describing the behavior of the system, the
following notations are introduced

– k1(t) is the number of high priority sources at time t,
– k2(t) is the number of low priority sources at time t,
– q(t) denotes the number of high priority requests in the priority queue at

time t,
– o(t) is the number of requests in the orbit at time t,
– y(t) = 0 if there is no job in the PCS unit, y(t) = 1 if the PCS unit is busy

with a job coming from the high priority class, y(t) = 2 when the PCS unit is
servicing a job coming from the secondary class at time t,

– c(t) = 0 when the SCS unit is idle and c(t) = 1, when the SCS is busy at
time t.
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It is easy to see that

k1(n) =
{

N1 − q(t), y(t) = 0, 2
N1 − q(t) − 1 y(t) = 1

k2(n) =
{

N2 − o(t) − c(t), y(t) = 0, 1
N2 − o(t) − c(t) − 1 y(t) = 2

In the case of exponentially distributed inter-event time a continuous-time
Markov chain can be constructed and the main steady-state performance mea-
sures can be obtained, as it was carried out in [4]. The numerical result obtained
in this paper were the test result for the validation of the simulation outputs.

However, in this paper we deal with more general situation allowing non-
exponentially distributed times. For the sake of easier understanding the input
parameters are collected in Table 1.

Table 1. List of simulation parameters

Parameter Maximum Value at t

Active primary sources N1 k1(t)

Active secondary sources N2 k2(t)

Primary generation rate λ1

Secondary generation rate λ2

Requests in priority queue N1 − 1 q(t)

Requests in orbit N2 − 1 o(t)

Primary service rate μ1

Secondary service rate μ2

Retrial rate ν

Error probability p

3 Simulation Results

In order to estimate the mean and variance of the response times of the requests,
the batch means method is used which is the most popular confidence interval
techniques for the output analysis of a steady-state simulation, see for example
[5–7].

There are many possible combinations of the cases, but due to the page
limitation we considered only the following sample results showing the effect of
the distributions on the mean and variance of the corresponding response times.

For the easier understanding the numerical values of parameters are collected
in Table 2.
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Table 2. Numerical values of model parameters

No. N1 N2 λ1 λ2 μ1 μ2 ν p

Figs. 2 and 3 10 50 x-axis 0.03 1 1 20 0.1

Figs. 4 and 5 10 50 x-axis 0.03 1 1 20 0.1

Figs. 6 and 7 10 50 0.02 x-axis 1 1 20 0.1

Fig. 8 10 50 0.02 0.03 1 1 x-axis 0.1

Fig. 9 10 50 0.02 x-axis 1 1 20 0.1

Figures 2 and 3 show that the distribution of the inter-arrival time of the
primary packets with the same mean has no effect on the mean and variance of
response time of the secondary users, they depend only on their mean supposing
that the inter-request time of the SUs and the service time of both servers units
are exponentially distributed. It is the consequence of [8] in which it was proved
that the steady-state distribution is insensitive to the distribution of the source
times, depending only on their means.

Fig. 2. The effect of inter-request time distribution of the PUs on the mean response
time of SUs vs λ1

The other operation mode is where the service time at the primary server is
hyper-exponentially, hypo-exponentially and lognormally distri-buted with the
same mean supposing that the inter-arrival time of PUs and SUs, and the service
time of the secondary server are exponentially distributed.

Figures 4 and 5 show that the value of the mean response time and variance
is greater when the service time is hypo-exponentially distributed, also the mean
response time of the secondary users. In the case the service time is lognormally
distributed is approximately the same when it is hypo-exponentially distributed.
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Fig. 3. The effect of inter-request time distribution of the PUs on the variance of
response time of SUs vs λ1

Fig. 4. The effect of service time distribution of the PUs on the mean response time
of SUs vs λ1

In Figs. 6 and 7, the inter-request time for the PUs and SUs is exponentially
distributed. In this cases, figures show the effect of the SU’s inter-request arrival
time on the mean and variance response time of the SUs knowing that the ser-
vice time of SCS is exponentially, hypo-exponentially, hyper-exponentially and
lognormally distributed with the same mean. The value of the squared coefficient
of variation for the hypo-exponentially distribution is always less than one and
for the hyper-exponentially is always greater than one, therefore the mean and
variance of response time of SUs when the service time is hyper-exponentially
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Fig. 5. The effect of service time distribution of the PUs on the variance of response
time of SUs vs λ1

Fig. 6. The effect of service time distribution of the SUs on the mean response time of
SUs vs λ2

is greater than the mean response time of SUs when the service time is hypo-
exponentially distributed.

On Fig. 8 the service time distribution of SCS is exponentially, hypo-
exponentially, hyper-exponentially and lognormally distributed with the same
mean. The service time of PCS and the inter-arrival time of both PUs, SUs are
exponentially distributed. Figure shows the effect of the time spent in orbit on
the mean response time of the SUs, it was modeled by a variable retrial rate.
The result confirms the expectation that is increasing retrial rate involves shorter
response times.
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Fig. 7. The effect of service time distribution of the SUs on the variance of response
time of SUs vs λ2

Fig. 8. The effect of service time distribution of the SUs on the mean response time of
SUs vs the retrial rate ν

On the last figure, we assume that the service time of the PCS is exponen-
tially, hypo-exponentially, hyper-exponentially and lognormally distributed with
the same mean. The service time of the SCS and the inter-request time of PUs
and SUs are exponentially distributed. The figure shows the effect of the inter-
request time of the SUs on the mean response time of SUs. Here again we get
what we expected that is increasing arrival intensity involves longer response
times.
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Fig. 9. The effect of service time distribution of the PUs on the mean response time
of SUs vs λ2

4 Conclusions

In this paper a finite-source retrial queueing model was proposed with two bands
servicing primary and secondary users in a cognitive radio network. Primary
users have preemptive priority over the secondary ones in servicing at primary
channel. At the secondary channel an orbit is installed for the secondary packets
finding the server busy upon arrival. Simulation was used to obtain several sam-
ple examples illustrating the effect of the distribution of the inter-events times
on the first and second moments of the response times.
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Abstract. In this paper, we consider a single-server queueing system
with infinite buffer and reserve server which can be used for modeling
energy saving schemes in some real information transmission and process-
ing systems. An arriving customer is serviced by the main server until
the end of the service time or the expiration of the limited time defined
by the timer which is set up at the beginning of the service. If the service
of a customer has not yet completed while the timer has expired then the
reserve server joins to the service of the customer. This allows to avoid
too large delays in a system with reasonable energy saving.

Keywords: Single-server queueing system · Reserve server · Stationary
distribution · Performance measures · Optimization

1 Introduction

Problem of the optimal selection of the minimal number of the servers required
to guarantee the desired quality of customer’s service is in the focus of queueing
theory from the early beginning. However, when this problem is solved for some
real world system, the new problem arises. Due to the stochastic nature of the
arrival process, sometimes a certain part of servers is idle and the problem of
the optimal use this idle time is also very important. If we consider the server
as a machine in cloud computing system, it is known, see, e.g., reference in [1],
that the idle server consumes up to 65% of energy consumed by the working
server. Therefore, it is necessary to switch off the idle servers. In this way we
arrive to idea of the reserved servers which are switched on only if there is a lot
of customers in the system. Otherwise, they are switched off. Papers [1–3] are
devoted to the problem of minimizing the energy consumption in the data center
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while maintaining an acceptable level of customer service based on temporarily
keeping a certain part of servers in reserve. A similar model is considered in [4].
As an early work (in Russian) in this subject we can mention the book [5] where
the system with reserved server was analysed. The paper [6] deals with a finite
capacity queueing system with one main server who is supported by a backup
server. The queueing model assumes Markovian arrivals and phase type services.
In all these models, it is assumed that and a threshold-type server backup policy
with two pre-determined lower and upper thresholds is applied. In recent paper
[7], a very general model with reserved servers and hysteresis strategy of control
is analyzed. Short survey of the state of art in the related field is presented there
as well.

In this paper, we consider another mechanism of server reservation. This
mechanism does not use information about the current queue length. It assumes
the change of the customer’s service rate after expiration of a certain random
time since the service beginning. The reserve server does not provide the service
by itself. It just helps to the main server.

The rest of the paper is organized as follows. In Sect. 2 the model under
study is described. The process of the system states is defined in Sect. 3. The
steady-state analysis of the model is performed in Sect. 4 and in this section
we also display some key system performance measures. The stationary sojourn
time distribution of an arbitrary customer is presented in Sect. 5. Illustrative
examples of numerical optimization are discussed in Sect. 6. Some concluding
remarks are given in Sect. 7.

2 Mathematical Model

We consider a single-server queue with infinite waiting room and stationary Pois-
son input flow with the rate λ. The service times are independent random val-
ues having the phase type (PH) distribution with an irreducible representation
(β, S). This means the following. Service time is interpreted as the time until the
continuous time Markov chain mt, t ≥ 0, with state space {1, . . . , M +1} reaches
the single absorbing state M + 1. Transitions of the chain mt, t ≥ 0, within the
state space {1, . . . ,M} are defined by the sub-generator S while the intensities
of transitions into the absorbing state are defined by the vector S0 = −Se.
At the service beginning epoch, the state of the process mt, t ≥ 0, is chosen
within the state space {1, . . . , M} according to the probabilistic row vector β.
It is assumed that the matrix S + S0β is an irreducible one. The service rate is
defined as μ = −(βS−1e)−1, the mean service time is calculated as b1 = μ−1.
For more information about the PH type distribution, see, e.g., [8].

Besides the main server, there is a reserve server in the system. This server
connects to the service of a current customers, if the service time of the customer
exceeds a certain time limit, which is set up on the timer and is defined as
a random variable having the PH distribution with irreducible representation
(τ , T ). The underlying process ηt, t ≥ 0, of the service time has state space
{1, 2, . . . , R + 1}, where R + 1 is an absorbing state. The transitions rate of the
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underlying process to the absorbing state is defined by the vector T 0 = −Te,
the timer rate is defined as κ = −(τT−1e)−1, the mean time until the timer
expiration is τ1 = κ−1.

After the reserve server connects to the service of a customer, both servers
begin the sharing service of the customer. The service continues with PH service
phase in which the timer expired but with another rate. To reflect the latter fact,
we assume that at the moment of the timer expiration the sub-generator S is
changed to S̃ = αS, α > 0. The value α can be greater than one (the system
manager aims to quickly finish the service that lasts too long) or less than one
(after the timer expiration, the customer in service becomes less important or
resources assigned for customer service exhaust and the service is continued in
stand by mode). If α = 1, the model reduces to the standard M /PH /1 queue.

3 Process of the System States

Let at the moment t

• it be the number of customers in the system, it ≥ 0,
• rt = 0, if the reserve server is idle, or rt = 1, if the reserve server is busy at

the moment t;
• mt be the state of the underlying process of the service, mt = 1,M ;
• ηt be the state of the underlying process of the timer, ηt = 1, R.

The process of the system states is described by a regular irreducible contin-
uous time Markov chain ξt, t ≥ 0, with state space

Ω = {(0); (i, 0,m, η), i ≥ 1,m = 1,M, η = 1, R; (i, 1,m), i ≥ 1,m = 1,M}.

In the following we will suppose that states of the chain ξt, t ≥ 0, are enumer-
ated as follows. States under fixed value of the components i, r are enumerated
in the lexicographic order. Denote the obtained set as Ωi,r. Order the sets Ωi,r

as follows:
(0), Ω1,0, Ω1,1, Ω2,0, Ω2,1, Ω3,0, Ω3,1 . . .

Let Qi,j be the matrix of the transition rates of the chain ξt, t ≥ 0, from the
states corresponding to the value i of the denumerable component to the states
corresponding to the value j of this component, i, j ≥ 0.

Theorem 1. Infinitesimal generator Q of the Markov chain ξt, t ≥ 0, has the
following block structure:

Q =

⎛
⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 O O O · · ·
Q1,0 Q0 Q1 O O · · ·
O Q−1 Q0 Q1 O · · ·
O O Q−1 Q0 Q1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

,
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where

Q0,0 = −λ, Q0,1 = (λβ ⊗ τ |O1×M ), Q1,0 =
(

S0⊗eR
S̃0

)
,

Q−1 =
(

S0β ⊗ eRτ OMR×M

S̃0β ⊗ τ OM

)
, Q0 =

(−λIMR + S ⊕ T IM ⊗ T 0

OM×MR −λIM + S̃

)
,

Q1 = λIM(R+1).

Here ⊗ is a symbol of Kronecker’s product of matrices; ⊕ is a symbol of
Kronecker’s sum of matrices; e is a column vector of 1s, I is an identity matrix;
O is zero matrix. If needed, the size of the vector e and the matrices I, O is
indicated by the suffix.

Proof of the theorem is implemented by analyzing the rates of transition of
the multi-dimensional Markov chain ξt, t ≥ 0.

The generator Q has three-diagonal block structure and, for i > 1, the blocks
Qi,j depend on the values i, j only via the difference i − j. It means that

Corollary 1. The Markov chain ξt, t ≥ 0, is a Quasi Birth-and-Death process,
see [8].

4 Stationary Distribution. Performance Measures

Theorem 2. A necessary and sufficient condition for existence of the stationary
distribution of the Markov chain ξt, t ≥ 0, is the fulfillment of the inequality

λ < xμ, (1)

where the row vector x is defined as the unique solution of the system of the
linear algebraic equation

x(S ⊕ T )[I − e(β ⊗ τ )] = 0, (2)

xe − x(IM ⊗ T 0)S̃−1e = 1, (3)

and the column vector μ is calculated as μ = −(S ⊕ T )e.

Proof. Since the chain under consideration is a Quasi Birth-and-Death process,
then, according to [8], a necessary and sufficient condition for existence of its
stationary distribution is the fulfillment of the inequality

zQ−1e > zQ1e (4)

where the vector z is the unique solution of the following system of linear alge-
braic equations:

z(Q−1 + Q0 + Q1) = 0, ze = 1. (5)
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Represent the vector z in the form z = (x,y), where x and y are of size MR
and M respectively. Then inequality (4) is written in the form

x(S0 ⊗ eL) + yS̃0 > λ, (6)

and system (5) as

x(S0β ⊗ eτ + S ⊕ T ) + y(S̃0β ⊗ τ ) = 0, (7)

x(IM ⊗ T 0) + yS̃ = 0, (8)

xe + ye = 1. (9)

Express the vector y via the vector x using (8) and substitute the resulting
expression into inequality (6) and Eqs. (7), (9). Then, after simple algebraic
transformations, we obtain inequality (1) and system (2), (3).

Corollary 2. In case of exponentially distributed service and timer times, the
necessary and sufficient condition (1)–(3) for existence of the stationary distri-
bution of the Markov chain ξt, t ≥ 0, reduces to the following inequality:

λ <
αμ

αμ + κ
(μ + κ).

In what follows we will assume that inequality (1) holds.
Let us order the stationary probabilities of the Markov chain in accordance

with the arrangement procedure defined above and form row vectors pi, i ≥ 0,
of the probabilities corresponding to the value i of the denumerable component
of the chain.

The vectors pi, i ≥ 0, satisfy Chapman-Kolmogorov’s equations (equilibrium
equations)

(p0,p1,p2, . . . )Q = 0, (p0,p1,p2, . . . )e = 1.

To solve this infinite size system, we used the numerically stable algorithm devel-
oped in [9] for calculation of the stationary distribution of multi-dimensional
quasi-Toeplitz Markov chain. We can use this algorithm because the Quasi Birth-
and-Death process, which describes the operation of the queue under considera-
tion, is a partial case of a quasi-Toeplitz Markov chain. In our case, the general
algorithm from [9] is reduced to the following one.

Algorithm.

• Calculate the matrix G as the minimal nonnegative solution of the matrix
equation

Q−1 + Q0G + Q1G
2 = O.

• Calculate the matrix G0 from the equation

Q1,0 + Q0G0 + Q1GG0 = O,

from which
G0 = −(Q0 + Q1G)−1Q1,0.
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• Calculate the matrices Q̄i,l, l = i, i + 1, i ≥ 0, using the formulas

Q̄i,l =

⎧⎪⎪⎨
⎪⎪⎩

Q0,0 + Q0,1G0, i = 0, l = 0,
Q0,1, i = 0, l = 1,
Q0 + Q1G, l = i, i ≥ 1,
Q1, l = i + 1, i ≥ 1.

• Calculate the matrices Φi, i ≥ 0, using the recurrent formulas

Φ0 = I, Φi = Φi−1Q̄i−1,i(−Q̄i,i)−1, i ≥ 1.

• Calculate the vector p0 as the unique solution of the system of linear algebraic
equations

p0(−Q̄0,0) = 0, p0

∞∑
i=0

Φie = 1.

• Calculate the vectors pi, i ≥ 1, as follows pi = p0Φi, l ≥ 1.

Having the stationary distribution of the system states, pi, i ≥ 0, been calcu-
lated we can find a number of stationary performance measures of the considered
system. When calculating the performance measures, we can avoid of calculation
of the infinity sums using the following result.

Theorem 3. The vector generating function P(z) =
∞∑
i=1

piz
i, |z| ≤ 1, satisfies

the following equation:

P(z)(Q1z
2 + Q0z + Q−1) = z(p1Q−1 − zp0Q0,1). (10)

Proof. Equation (10) is obtained by the multiplication of the ith equation of
the system (p0,p1,p2, . . . )Q = 0 in (10) by zi and summing over i ≥ 1.

Let us denote f (n)(z) the nth derivative of the function f(z), n ≥ 1, and
f (0)(z) = f(z).

Formula (10) can be used to calculate the factorial moments P(m)(1), of the
number of customers in the system. But the problem of calculating the value of
the vector generating function P(z) and its derivatives at the point z = 1 from
Eq. (10) is non-trivial one because the matrix Q1z

2 + Q0z + Q−1 is singular at
the point z = 1. To solve this problem, the following computational procedure
was elaborated.

Corollary 3. The mth, m ≥ 0, derivatives of the vector generating function
P(z) at the point z = 1 are recursively calculated as the solution of the system
of linear algebraic equations

⎧⎪⎪⎨
⎪⎪⎩

P(m)(1)Q(0)(1) = Γ (m)(1) −
m−1∑
l=0

Cl
mP(l)(1)Q(m−l)(1),

P(m)(1)Q(1)(1)e = 1
m+1 [Γ (m+1)(1) −

m−1∑
l=0

Cl
m+1P

(l)(1)Q(m+1−l)(1)]e.
(11)
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where

Γ (m)(1) =

⎧⎪⎪⎨
⎪⎪⎩

p1Q−1 − p0Q0,1, m = 0,
p1Q−1 − 2p0Q0,1, m = 1,

−2p0Q0,1, m = 2,
O, m > 2,

Q(m)(1) =

⎧⎪⎪⎨
⎪⎪⎩

Q−1 + Q0 + Q1, m=0,
Q0 + 2Q1, m=1,

2Q1, m=2,
O, m > 2.

The proof of the corollary is based on the technique very similar to the one
outlined in paper [10] and is omitted here.

Calculating the stationary distribution and using formula (11), we can cal-
culate a number of important performance measures of the system. Formulas for
calculating some performance measures are given below.

• Probability that the main server is idle P
(1)
idle = p0.

• Mean number of customers in the system L = P′(1)e.
• Variance of the number of customers in the system V = [P′′(1)+P′(1)]e−L2.
• Probability that, at an arbitrary moment, the main server serves a customer

without the help of the reserve server (P (0)) and with the help of the reserve
server (P (1)).

P (0) = P(1)
(
eMR

0T
M

)
, P (1) = 1 − p0 − P (0).

• Probability that a customer will be served with the help of the reserve server
(Phelp), and probability that a customer will be served without the help of
the reserve server(Pno−help.)

Phelp = −(β ⊗ τ )(S ⊕ T )−1(IM ⊗ T )e, Pno−help = 1 − Phelp.

5 Sojourn Time Distribution

Let ṽt be the residual service time of a customer being at the main server at
time t. Let also

Ṽ (0, m, η, x) = lim
t→∞

P{it > 0, rt = 0, mt = m, ηt = η, ṽt < x}, m = 1, M, η = 1, R;

Ṽ (1,m, x) = lim
t→∞ P{it > 0, rt = 1,mt = m, ṽt < x}, m = 1,M, x ≥ 0.

Introduce the notation for the Laplace-Stieltjes transforms:

ṽ(0,m, η, u) =

∞∫
0

e−uxdṼ (0,m, η, x), ṽ(1,m, u) =

∞∫
0

e−uxdṼ (1,m, x), Re u ≥ 0.
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Denote as ṽ(0, u) and ṽ(1, u) column vectors formed by these transforms
ordered in the lexicographical order of the components (m, η) in the first case
and the component m̃ in the second case.

Theorem 4. The vectors of the Laplace-Stieltjes transforms of the residual ser-
vice time of a customer is calculated as

ṽ(0, u) = (uI − S ⊕ T )−1[S0 ⊗ eR + (uI − S̃)−1S̃0 ⊗ T 0], (12)

ṽ(1, u) = (uI − S̃)−1S̃0. (13)

Proof. The proof is based on the probabilistic interpretation of the Laplace-
Stieltjes transform. We assume that, independently on the system operation,
the stationary Poisson input of so called catastrophes arrives. Let u, u > 0, be
the rate of this flow. Then components of the vectors ṽ(0, u) and ṽ(1, u) can be
interpreted as follows. ṽ(0,m, η, u) is a probability that, at an arbitrary time,
the main server works without the help of the reserve server, the underlying
processes of the service and the timer are in the states m and η respectively
and catastrophes will not arrive during the residual service time of the customer
under service. ṽ(1,m, u) is a probability that, at an arbitrary time, the main
server works with the help of the reserve server, the underlying processes of the
service is in the state m and catastrophes will not arrive during the residual
service time of the customer under service.

Taking into account the probabilistic interpretation, we write ṽ(0, u) as

ṽ(0, u) =

∞∫
0

e−ute(S⊕T )t(S0 ⊗ eR)dt+

∞∫
0

e−ut

t∫
0

e(S⊕T )x(IM ⊗ T 0)dxeS̃(t−x)S̃0dt. (14)

Calculate the integrals in the right hand side of (14). In the obvious way we
obtain expression for the first integral:

∞∫
0

e−ute(S⊕T )t(S0 ⊗ eR)dt = (uI − S ⊕ T )−1(S0 ⊗ eR). (15)

After tedious algebra we obtain the expression for the double integral in (14):

∞∫
0

e−ut

t∫
0

e(S⊕T )x(IM ⊗ T 0)dxeS̃(t−x)S̃0dt =

= [uI − (S ⊕ T )]−1[(uI − S̃)−1 ⊗ IR](S̃0 ⊗ T 0). (16)

Substituting (15), (16) into (14), we get (12).
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Further, using the probabilistic interpretation of the Laplace-Stieltjes trans-
form, we write ṽ(1, u) as

ṽ(1, u) =

∞∫
0

e−uteS̃tS̃0dt.

Calculating the integral, we get formula (13).

Corollary 4. The vectors of the means of the residual service time of a customer
is calculated as

t̃0 = −(S ⊕ T )−1[I + S̃−1 ⊗ T ]e,

t̃1 = −S̃−1e.

The proof follows from the formulas t̃0 = −ṽ′(0, 0), t̃1 = −ṽ′(1, 0).

Corollary 5. The Laplace-Stieltjes transform of the service time of a customer
is calculate by the formula

v(0, u) = (β ⊗ τ )ṽ(0, u).

Corollary 6. Mean service time is calculated by the formula

t̄ = −(β ⊗ τ )(S ⊕ T )−1[I + S̃−1 ⊗ T ]e.

The proof follows from the formula t̄ = −v′(0, 0).

Theorem 5. The Laplace-Stieltjes transform of the sojourn time of a customer
has the following form:

v(u) = p0v(0, u) + P(v(0, u))
(
ṽ(0, u)
ṽ(1, u)

)
.

The proof is based on the total probability formula:

v(u) = p0v(0, u) +
∞∑
i=1

pi

(
ṽ(0, u)
ṽ(1, u)

)
vi(0, u),

from which the required formula follows immediately.

Corollary 7. The mean sojourn time of a customer is calculated as

v̄ = p0t̄ + P(1)
(
t̃0
t̃1

)
+ Lt̄.

The proof follows from the formula v̄ = −v′(0).
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6 Examples of Numerical Optimization

In this section, we solve numerically the problem of finding the minimum of the
economic criterion, which is an average charge per unit time under the steady-
state operation of the system:

J = av̄ + c0P
(0) + c1P

(1), (17)

where a is a charge, which is paid for one customer staying in the system per
unit time, c0(c1) is a cost of using the mode without the help of the reserve
server (with the help of the reserve server) per unit time.

Experiment 1. Our aim is to find numerically the optimal value of the mean
time to the timer expiration, τ1, that provides the minimum to the cost criterion
(17) under different values of the coefficient α.

We consider the following input data. The input rate λ = 2. The service time
by the main server has hyper-exponential distributions of order 2. It is defined

by the vector β = (0.05, 0.95) and the matrix S =
(−0.2 0.0

0.0 −3.8

)
. The service

rate μ = 2 and the mean service time b1 = 0.5. The coefficient of variation
cvar = 9.52632.

The time to the timer expiration has Erlangian distribution of order 2. It is

defined by the vector τ = (1.0, 0.0) and the matrix T =
(−2 2

0 −2

)
. The rate of

timer κ = 1, the mean time to the timer expiration τ1 = 1 and the coefficient of
variation ccor = 0.5.

Let us vary the mean time to the timer expiration, τ1, in the interval [0.05, 15]
by scaling the time. Note that the coefficients of variation do not change under
such a scaling.

We fix the cost coefficients a, c0, c1 setting them equal to 1, 4, 90 respectively.
According to the description of the system, the matrix S̃, which defines the

service rates in the case when the service is carried out with the help of the
reserve server, is defined as S̃ = αS, α > 0. We will consider three values of the
coefficient α: α = 1.5, 2, 3.5.

The curves in Fig. 1 depict the dependence of the cost criterion J on the
mean time to the timer expiration, τ1 = 1. Table 1 contains the values of the
criterion in this example. The optimal value J∗ of the cost criterion for each
value of the parameter α is printed in bold face.

In this example we also interested in the behavior of the performance mea-
sures v̄, P (0), P (1), entering into expression (17) for the cost criterion. These
performance measures as functions of τ1 for different values of α are depicted in
Figs. 2, 3 and 4.

As it is seen from Fig. 1 and Table 1, under α = 1.5 the criterion J reaches
a minimum at the point τ1 = 2 and this minimum is equal to 37.04. If α = 2
and α = 3.5, the criterion reaches a minimum at the point τ1 = 3 and the values
of J at this point are equal to 24.7 and 14.6 respectively. Note that the mean
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Fig. 1. Cost criterion J as a function of τ1 for α = 1.5, 2, 3.5

Table 1. Values of the cost criterion J for different τ1 and α

α\τ1 0.05 0.1 0.25 0.4 0.5 1 2 3 4 5 6 7 10 15

1.5 59 56 49 45 44 39 37.04 37.07 38 41 43 47 61 93

2.0 43 40 35 32 31 27 25.1 24.7 25.2 26 28 30 39 60

3.5 24 23 20 19 18 16 14.7 14.6 15 16 17 19 25 40

service time by the main server equals b1 = 0.5. It means that under the optimal
strategy the reserve server rarely connects to the service due to excessive cost of
its use.

Table 2 contains the relative negative profit from the use of non-optimal value
of τ1. We see that for the data under consideration the maximal negative profit
is more than 170%. At the same time, one can see that the curves at the point
of minimum is rather elastic. This allow to choose as suboptimal any values of
τ1 belonging to the region (1, 4).

Experiment 2. In this experiment, we solve numerically the problem of optimal
choice of the mean time to the timer expiration, τ1, that provides the minimum
value to the cost criterion (17) under different values of the cost coefficient c1.
We consider the following values of this coefficient: c1 = 90, 180, 270. The others
cost coefficients are as follows: a = 1, c0 = 4. Parameter α = 1.5. The input rate,
service times distribution and distribution of time to the timer expiration are
the same as in Experiment 1.
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Fig. 2. Mean sojourn time v̄ as a function of τ1 for α = 1.5, 2, 3.5
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Fig. 3. Probability P (0) as a function of τ1 for α = 1.5, 2, 3.5
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Fig. 4. Probability P (1) as a function of τ1 for α = 1.5, 2, 3.5

Table 2. Relative negative profit from the use of non-optimal value of τ1 (in percents)

α\τ1 0.05 2 3 15

1.5 59 0 0.0008 150

2.0 24.7 0.02 0 142

3.5 64 0.007 0 173

The curves in Fig. 5 depict the dependence of the criterion J on the mean
time to the timer expiration for different values of the cost coefficient c1.

Table 3 contains the values of the cost criterion J in this example. The optimal
value J∗ of the cost criterion for each value of the cost coefficient c1 is printed
in bold face.

Figure 5 and Table 3 confirm the obvious fact that the value of criterion
increases with increasing the cost coefficient c1. They also show that an increase
in this coefficient, i.e., an increase in the cost of using the reserve server implies
an increase in the optimal mean time τ1. This is because it becomes unprofitable
to attract the reserve server due to excessive cost of its use.
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Fig. 5. Cost criterion J as a function of τ1 for c1 = 90, 180, 270

Table 3. Values of the cost criterion J for different τ1 and c1

c1\τ1 0.05 0.1 0.25 0.4 0.5 1 2 3 4 5 6 7 10 15

90 59 56 49 45 44 39 37 37.06 38 41 43 47 61 93

180 114 106 91 83 79 68 59 55 54 54.1 55 58 68 98

270 169 157 134 120 114 96 81 74 70 68 67 68 76 102

7 Conclusion

In this paper, the single-server queuing system with a timer defining the limit
service time is studied. In case of exceeding this time limit the reserve server
connects to the service of a customer. This allows to increase the service rate.
The process of the system operation is described in terms of Quasi Birth-and-
Death process. We derive the necessary and sufficient condition for existence of
the stationary regime in the system, calculate its stationary distribution and
main performance measures. We derive formulas for the Laplace-Stieltjes of the
sojourn time distribution and the mean sojourn time. We present the results of
numerical experiments directed to the choice of the optimal value of the mean
time to the timer expiration.

The results can be used for the modeling and optimization of energy savings
in some real-life data transmission and processing systems. Further research in
this area can be directed to the investigation of multi-server queues with several
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reserve servers, the retrial queues with reserve servers, queues with more complex
mechanism of connection of the reserve servers.
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Abstract. In this paper we study reliability analysis of a k-out-of-n sys-
tem with a repair facility which provides an essential and several inessen-
tial service with given probabilities. At the epoch the system starts, all
components are in operational state. Service to failed components are in
the order of their arrival. When a component is selected for repair, we
assume that the server may select it either for a service that turns out to
be different from what is exactly needed for it, which we call the inessen-
tial service with the probability p or for desired service, called essential
service with probability (1-p). Once the inessential service process starts,
a random clock is assumed to start ticking which decides the event to
follow: if the clock realises first (still inessential service going on) the
components ongoing service is stopped and it is replaced with a new
component. On the other hand if the inessential service gets completed
before the realisation of the random clock, then the component moves
for the essential service immediately. The life-time of a component, the
essential service time and the random clock time have independent expo-
nential distributions and the inessential service time is assumed to follow
a phase type distribution. The steady state distribution of the system
has been obtained explicitly and several important performance measures
derived and verified numerically. The extension of the results reported
to the case of more than one essential service is worth examining. This
has applications in medicine, biology and several other fields of activity.

Keywords: k-out-of-n system · Essential service · Inessential service

1 Introduction

At several occasions, customers while seeking for a particular type of service
are met with some other type which is not desirable for him/her. For example,
c© Springer International Publishing AG 2016
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consider a person admitted to a hospital. If for some unwanted reason, he/she
get wrongly diagnosed and may receive a service which is unwanted for him/her.
Another example is a mechanic wrongly diagnoses a car problem leading to offer
an unwanted service. There are several other examples which, we are sure, the
readers can think from the day-to-day life. In many such occasions, it is prob-
able that the unwanted service which is being offered after a wrong diagnosis
finishes without eternal damage and the customer receives the required service.
These real world phenomena have motivated us to develop a queuing model,
which we describe as follows. We consider a k-out-of-n system, where the com-
ponents are subjected to failure. When selected for a repair, with probability
p, the failed component may receive an unwanted service (which we call the
inessential service). If the inessential service finishes before a random duration,
we assume that the component has overcome the wrong diagnosis and hence
proceeds for the essential service and become as good as a new one thereafter.
If the random duration is over while the component still receiving the unwanted
service, we assume that its ongoing service is stopped and it is replaced with a
new component. Our model differs from the vacation queuing models studied in
Madan et al. [1] or Ayyappan et al. [2], where at each service start, a customer
can choose one of the two kinds of services. The difference is that in our model,
a customer who got selected for inessential service may leave the system either
without completing any service or receiving both types of services. Saravanarajan
and Chandrasekaran [3] studies a vacation queuing model with system break-
downs, where the customers can choose one of the two type of services offered.
This model allows a customer to remain in the system for another service, join-
ing the tail of the queue, after a service completion. However, a customer can’t
receive two back to back services of different kind and it can’t leave the system
in between an ongoing service. Hence our model differs from this model also.

This paper has been arranged as follows: In Sect. 1, we give the technical
description of the model. In Sect. 3, the steady state distribution has been found.
Several important system performance measures have been derived in Sect. 4 and
Sect. 5 presents the results from a numerical study of the performance measures.

2 Technical Description of the Model

We consider a k-out-of-n system with a single server repair facility. At the epoch
the system starts, all components are in operational state. The life-time of a
component follows an exponential distribution with parameter λ/i, when i com-
ponents are operational. Service to failed components is in the order of their
arrival. When a component is selected for repair, it may get selected for an
inessential service with probability p and with probability (1 − p), it may be
taken for desired service, called the essential service. Once the inessential service
process starts, the failed component either completes the service there and moves
for the essential service or is replaced by a new component. A random clock is
assumed to start ticking the moment the inessential service starts, which decides
the event to follow: if the clock realises first (still the inessential service is going
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on) the failed component’s ongoing service is stopped and it is replaced with
a new component. On the other hand if the inessential service gets completed
before the realisation of the random clock, then the component moves for the
essential service immediately. After a successful repair (the essential service) the
component is assumed to be as good as a new component.

The essential service time of a failed component is exponentially distributed
with parameter μ and the service time of failed components in inessential service
has a phase type distribution with representation (α, S) of order m. We assume
that S0 = −Seee.

The random clock time is assumed to be exponentially distributed with para-
meter δ.

2.1 The Markov Chain

Let N(t) = at time t number of failed components in the system.

J(t) =

{
0, if the failed component getting essential service,
i, if a failed component getting ith phase of inessential service,

where i = 1, 2, . . . ,m.
Then {X(t), t ≥ 0} where X(t) = (N(t), J(t)) is a continuous time Markov

chain with state space {(0, 0)} ∪ {1, 2, . . . , n − k + 1} × {0, 1, 2, . . . ,m}.
The generator matrix of the Markov chain {X(t), t ≥ 0} is

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00 B0

B1 A1 A0

A2 A1 A0

· · ·
· · ·

A2 A1 A0

A2 Ã1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A00 = [−λ];B0 =
[
(1 − p)λ pλα

]
; B1 =

[
μ
δe

]

A1 =
[−(μ + λ) 0

S0 S − (δ + λ)Im

]
;A0 = [λIm+1];A2 =

[
(1 − p)μ pμα
(1 − p)δ eee pδ eeeα

]

Ã1 =
[−μ 0
S0 S − δIm

]

where α = (α1, α2 . . . , αm) with α1 + α2 + . . . + αm = 1.
We also define β = ((1 − p) pα).

3 Steady State Distribution

Since this system is finite, it is stable. Let

πππ = (π(0), π(1), . . . , π(n − k + 1))
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with
π(i) = (π(i, 0), π(i, 1), π(i, 2), . . . π(i,m)), 1 ≤ i ≤ n − k + 1

be the steady state probability vector of the system {X(t), t ≥ 0}. Then it
satisfies the equations πππQ = 0 and πππ eee = 1.

The equation πππQ = 0 gives rise to

π(0)A00 + π(1)B1 = 0 (1)
π(0)B0 + π(1)A1 + π(2)A2 = 0 (2)

π(i − 1)A0 + π(i)A1 + π(i + 1)A2 = 0, 2 ≤ i ≤ n − k (3)

π(n − k)A0 + π(n − k + 1)Ã1 = 0. (4)

Since A00 = [−λ] and B1 = A2 eee, from (1) it follows that

λπ(0) = π(1)A2 eee. (5)

Since B0 = λβ, equation (2) becomes

π(0)λβ + π(1)A1 + π(2)A2 = 0. (6)

Using (5) we can write this equation as

π(1)B1β + π(1)A1 + π(2)A2 = 0. (7)

We notice that B1β = A2 and hence equation (7) becomes

π(1)(A1 + A2) + π(2)A2 = 0. (8)

Post multiplying equation (8) with eee, we get

π(1)(A1 + A2)eee + π(2)A2 eee = 0 (9)

but (A1 + A2)eee = −A0 eee = −λeee. Hence (9) becomes

π(1)λeee = π(2)A2 eee. (10)

We notice that A2 = A2 eeeβ, which transforms equation (8) in to

π(1)(A1 + A2) + π(2)A2 eeeβ = 0. (11)

Substituting for π(2)A2 eee from (10) in (11), we get

π(1)(A1 + A2) + π(1)λeeeβ = 0.

That is
π(1)(A1 + A2 + λeeeβ) = 0. (12)

Equation (12) shows that π(1) is a constant multiple of the steady state vector
ϕϕϕ of the generator matrix A1 + A2 + λeeeβ. That is

π(1) = ηϕϕϕ (13)

where η is a constant.
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Equation (3) for i = 2 gives

π(1)A0 + π(2)A1 + π(3)A2 = 0. (14)

Since A2 = A2 eeeβ, equation (14) becomes

π(1)A0 + π(2)A1 + π(3)A2 eeeβ = 0. (15)

Post multiplying with eee, we get

π(1)λeee + π(2)A1 eee + π(3)A2 eee = 0. (16)

Using (10) the above equation can be written as

π(2)A2 eee + π(2)A1 eee + π(3)A2 eee = 0
i.e., π(2)(A1 + A2)eee = −π(3)A2 eee

i.e., π(2)λeee = π(3)A2 eee. (17)

In the light of equation (17), equation (15) becomes,

π(1)A0 + π(2)A1 + π(2)λeeeβ = 0
i.e., π(1)A0 + π(2)(A1 + λeeeβ) = 0

which implies that
π(2) = −π(1)A0(A1 + λeeeβ)−1.

That is
π(2) = −ηϕϕϕA0(A1 + λeeeβ)−1. (18)

Post-multiplying equation (3) with eee and proceeding in the same lines as we
derived equation (17), we can derive that

π(i + 1)A2 eee = π(i)λeee, for 3 ≤ i ≤ n − k. (19)

Equation (19) then transforms equation (3) as

π(i − 1)A0 + π(i)A1 + π(i)λeeeβ = 0, 3 ≤ i ≤ n − k,

which implies that

π(i) = −π(i − 1)A0(A1 + λeeeβ)−1, 2 ≤ i ≤ n − k (20)

which in turn gives

π(i) = (−1)i−1ηϕϕϕ(A0(A1 + λeeeβ)−1)i−1, 2 ≤ i ≤ n − k. (21)

We notice that Ã1 eee = −A2 eee; post-multiplying equation (4) with eee, we get

π(n − k)λeee = π(n − k + 1)A2 eee. (22)
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From equation (4), we can also write

π(n − k + 1) = −π(n − k)A0(Ã1)−1. (23)

Using (21) for i = n − k, (23) becomes

π(n − k + 1) = (−1)n−kηϕϕϕ(A0(A1 + λeeeβ)−1)n−k+1A0(Ã1)−1. (24)

Hence, we have the following theorem for the steady state distribution:

Theorem 1. The steady state distribution πππ = (π(0), π(1), . . . , π(n − k + 1)) of
the Markov chain {X(t), t ≥ 0} is given by

π(0) =
1
λ

ηϕϕϕB1,

π(1) = ηϕϕϕ,

π(i) = (−1)i−1ηϕϕϕ(A0(A1 + λeeeβ)−1)i−1, 2 ≤ i ≤ n − k

π(n − k + 1) = (−1)n−kηϕϕϕ(A0(A1 + λeeeβ)−1)n−k−1A0(Ã1)−1,

where ϕϕϕ is the steady state vector of the generator matrix A1 + A2 + λeeeβ and η
is a constant, which can be found from the normalizing condition πππ eee = 1.

4 System Performance Measures

1. Fraction of time the system is down,

Pdown =
m∑
j=0

π(n − k + 1, j).

2. System reliability,

Prel = 1 − Pdown = 1 −
m∑
j=0

π(n − k + 1, j).

3. Average number of failed components in the system,

Nfail =
n−k+1∑
i=1

i

⎛
⎝ m∑

j=0

π(i, j)

⎞
⎠ .

4. Expected rate at which failed components are taken for essential service:

Ees = (1 − p)λπ(0) +
n−k+1∑
i=2

(1 − p)μπ(i, 0) +
n−k+1∑
i=2

(1 − p)δ

⎛
⎝ m∑

j=1

π(i, j)

⎞
⎠ .
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5. Expected rate at which failed components are taken for inessential service

Ein es = pλπ(0) +
n−k+1∑
i=2

pμπ(i, 0) +
n−k+1∑
i=2

pδ

⎛
⎝ m∑

j=1

π(i, j)

⎞
⎠ .

6. Expected rate at which new components were bought:

EC.R =
n−k+1∑
i=1

δ

⎛
⎝ m∑

j=1

π(i, j)

⎞
⎠ .

7. Expected rate at which failed components that start with inessential service
subsequently moving to essential service before clock realisation:

EINE =
n−k+1∑
i=1

m+1∑
j=2

π(i, j)S0(j − 1, 1).

8. Fraction of time server is idle:

Pidle = π(0).

9. Fraction of time server is busy:

Pbusy = 1 − π(0).

5 Numerical Study of the System Performance Measures

Notice that if a component is selected for inessential service, it is either replaced
by a new component (if the random clock realises before completion of the
inessential service) or is got repaired (if the inessential service completes before
the random clock realises). Hence a component getting selected for inessential
service according to probability p affects the system reliability only through an
increase in the repair time by a random amount of time (minimum of inessential
service time and random clock time). Table 1 shows that very high reliability is
maintained in the system, which decreases slightly as the probability p that a
failed component receives an undesired service initially, increases. The decrease
in the average rate at which components directly receive essential service with
an increase in p, as seen in Table 2, was expected. According to the modelling
assumption, if the random clock expires during an inessential service, the compo-
nent receiving the inessential service is replaced with a new component. Hence,
as the probability p increases, more components will get selected for inessential
service, which leads to an increase in the replacement rate as seen in Table 3.

Since the inessential service is not helping the system in any way whatsoever,
one would expect the optimal value for the probability p as to be zero. However
in a situation where the possibility for inessential service can’t be avoided, one
would like to know its harm through some number. For this purpose, we have
constructed a cost function as follows:
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Table 1. Variation in system reliability

p n = 45 n = 50 n = 55 n = 60

0.001 0.999985933 0.999985933 0.999997139 0.999999404

0.007 0.999985814 0.999985814 0.999997139 0.999999404

0.03 0.999985576 0.999985576 0.99999702 0.999999404

0.07 0.999985039 0.999985039 0.999996901 0.999999344

0.09 0.999984741 0.999984741 0.999996841 0.999999344

0.3 0.999981642 0.999981642 0.999996066 0.999999166

0.7 0.999973893 0.999973893 0.99999404 0.999998629

0.9 0.999968886 0.999968886 0.999992669 0.999998271

0.99 0.999966323 0.999966323 0.999991954 0.999998093

Table 2. Average rate at which components are taken for essential service

p n = 45 n = 50 n = 55 n = 60

0.001 3.99649739 3.99649739 3.99654222 3.99655128

0.007 3.97557425 3.97579312 3.97583771 3.97584677

0.03 3.89581704 3.89603281 3.89607692 3.89608598

0.07 3.75561023 3.7558198 3.75586271 3.75587177

0.09 3.68479681 3.6850028 3.68504548 3.68505406

0.3 2.91331673 2.91348505 2.91352081 2.91352844

0.7 1.30956876 1.30964661 1.30966437 1.30966842

0.9 0.44612866 0.446155071 0.44616127 0.446162701

0.99 0.045032669 0.04503531 0.045035943 0.045036085

Table 3. Average rate at which components were bought

p n = 45 n = 50 n = 55 n = 60

0.001 0.001538355 0.00153844 0.001538457 0.001538461

0.007 0.010768481 0.010769077 0.010769199 0.010769224

0.03 0.046150584 0.04615318 0.046153713 0.046153817

0.07 0.107684486 0.107690714 0.107691996 0.107692257

0.09 0.138451293 0.138459414 0.138461098 0.138461441

0.3 0.461498737 0.46153 0.461536676 0.461538808

0.7 1.07679927 1.076895 1.07691669 1.0769217

0.9 1.38443172 1.38457251 1.38460553 1.38461328

0.99 1.52286148 1.52302587 1.52306497 1.52307427

Let C1 be the cost per unit time incurred if the system is down, C2, be the
repair cost per unit time for essential service per failed component, C3 is the cost
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incurred towards the time loss due to wrong diagnosis with failed components
and consequent realisation of random clock before inessential service completion.
C4 is the extra cost incurred on failed components that start with inessential
service subsequently moves to essential service before clock realisation, C5 be
the repair cost per unit time for inessential service.

Expected cost per unit time

= C1 · Pdown + C2 · Ees + C3 · EC.R + C4 · EIN E + C5 · Eines.

Table 4 presents the variation in cost function as the probability p increases
for different component failure rates. In all the cases studied, the optimum value
of p was found zero as was expected. The table also shows that as the component
failure rate increases, the cost function also increases.

General parameters for Tables 1–3 are as follows: λ = 4, μ = 3.2, δ = 5,

S =

⎡
⎣−18 4 6

5 −18 5
7 4 −19

⎤
⎦, α = (0.4, 0.3, 0.3).

Table 4. Variation in cost C1 = 9500, C2 = 2600, C3 = 4000, C4 = 1600 C5 = 3000

P λ = 4 λ = 4.5 λ = 5 λ = 6

0.001 10411.8662 11709.9268 12982.9131 15048.7344

0.007 10483.1328 11782.5352 13053.7373 15112.8564

0.03 10756.3047 12060.7119 13324.9258 15358.3809

0.07 11231.2598 12543.8252 13795.2471 15784.0264

0.09 11468.6729 12789.0537 14029.7676 15996.2021

0.3 13958.7285 15304.4629 16466.709 18199.4043

0.7 18682.9082 20028.3828 20973.9453 22276.6172

0.9 21032.8359 22349.3281 23158.7715 24260.2168

0.99 22087.1016 23384.0664 24126.6035 25141.5078
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Abstract. The Poisson point process (PPP) is widely used in perfor-
mance analysis of wireless communications technologies as a basic model
for random deployment of communicating entities. The reason behind
widespread use of PPP is analytical tractability in terms of closed-form
distributions of distances to the n-th neighbour needed for performance
analysis. At the same time, the process allows for infinitesimally close dis-
tances between communicating stations not only contradicting the reality
but presenting fundamental difficulties in analysis when used with power-
law propagation models. As an alternative suggested in the literature ad
free of abovementioned deficiencies are the hardcore processes where a
certain separation distance between points is always presumed. Unfortu-
nately, no closed-form expressions for distance distributions is available
for these processes. We study distance distributions of Matern hardcore
process and propose analytical approximations based on acyclic phase
type distributions. The nature of approximation as a mixture of expo-
nentials allows for their use in analytical performance analysis. Results
for a range of process intensities are reported.

Keywords: Hardcore process · Approximation · Poisson process ·
Distance distribution · SINR

1 Introduction

The stochastic geometry has recently attracted attention from the wireless
research community as a tool used to study performance metrics of modern
and forthcoming wireless technologies [1,5,6]. The first step in modeling of wire-
less systems is the choice of the spatial model for location of nodes. Owning to
unpredictable in advance locations of subscribers on the plane, random spatial
point processes are often used for this purpose. Depending on specific purposes
examples include Poisson point process, cluster Poisson point process, hardcore
processes [4].

c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 98–109, 2016.
DOI: 10.1007/978-3-319-51917-3 10
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In [10] indoor scenarios with grid aligned rooms (Fig. 1) that are typical for
shopping malls and office buildings are investigated. These scenarios include
communications between access points and devices scattered over the rooms,
as well as direct device-to-device (D2D) communications. While providing a
comprehensive analysis of SINR for Uplink scenario (Fig. 1a) based on both
analytical and simulation modelling the authors confined the study of Downlink
and D2D scenarios (Fig. 1b, c) to simulation only. In Uplink scenario location
of an access point is always fixed in the center of a room making the model
quite simple as only the location of devices is random. So, for the pair access
point-device it is sufficient to operate with only two random values coordinates
of the device on a plane.

Fig. 1. Indoor communication scenarios

The reason for limitations of analytical methods is the complexity of formula
derivation process, since there dependences of the distance between communi-
cating devices and interfering with adjacent clusters appear. Therefore, consid-
eration of several random variables describing the coordinates of the location
of devices in the cluster (room) is required, which is not a trivial task. In this
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case assuming that clusters can be represented by circles of radius a
2 a hardcore

process could be applied. As there are no closed-form expressions for distance
distributions in hardcore processes, they would not offer the opportunity of ana-
lytical modelling. However, this constraint can be overcome with the help of
distance approximations that allow construction of analytical models based on
empirical data.

In this paper we study distance distributions in MHC showing that approx-
imation by the thinned Poisson point process lead to significant errors in terms
of both distance distributions and interference, especially, for first several neigh-
bours providing the critical contribution to the overall interference. We then pro-
pose to approximate these distance distributions by the gamma distributions.
We report the parameters of the approximating distributions for first several
neighbours for wide range of MHC intensities. The proposed approximations
enables the analytical tractability of the spatial wireless systems modelled using
MHCs.

The rest of the paper is organized as follows. SINR modelling methods are
described in Sect. 2. Then, we formally introduce PPP and MHC and address
their properties in Sect. 3. Further, we analyze and compare distance distrib-
utions of PPP and MHC in Sect. 4. In Sect. 5 we propose approximations by
gamma distributions and present numerical results for these approximations.
Finally, conclusions are drawn in the last section.

2 SINR Modelling

Signal-to-noise-plus-interference ratio (SINR) is the fundamental characteristic
characterizing the performance of wireless mobile system [9]. Once obtained
SINR can be related to the Shannon capacity of the channel as C = B log2(1+S),
where S is SINR, specifying the maximum theoretical rate that can be achieved.
Further, given a certain set of modulation and coding schemes, SINR can be
related to the spectral efficiency and area capacity of the wireless technology.
Formally, SINR is given by

S(d ,PT , f) =
PR0(d0, PT , f)

N0 + I(PT ,d , f)
, (1)

where PR0(d0, PT , f) is the received signal power spectral density (psd) at the
distance d0, I(PT ,d , f) is the aggregate psd of the interferers at the receiver,
N0 is the noise psd at the receiver, d is the vector of separation distances, di,
i = 1, 2, . . . ,M , between interferers and the receiver, f is the operating frequency
and M is the number of interfering nodes.

In order to model interference and SINR in spatial wireless systems PPP
if universally used. The reason is that distance distributions in (1) has closed-
form of generalized gamma distribution [7]. However, its usage is associated with
one fundamental problem. First, it allows the distance to be of infinitesimally
small length, i.e. zero. This is unrealistic as users are always separated by some
distance. Conventional propagation models used on top of these distances, e.g.
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Ad−γ predict the received signal strength (and, thus, interference) to approach
infinity [8]. This also implies that the mean interference does not exist as the
integral E[I] =

∫ ∞
0

f(x)1/x−γdx, where f(x) is the distance to the first neigh-
bour, γ is the path loss exponent, diverges which is unrealistic. This feature also
drives the interference which is the sum of signals from N neighbours to follow
heavy-tailed distribution (α-stable with α < 2), not the Normal one (α = 2).

In Fig. 2 distributions of SINR in the network model are shown. The distrib-
utions were obtained for three point processes: MHC, PPP and so-called shifted
PPP, where distances are adjusted to coincide with MHC in mean value of SINR.

Fig. 2. Distributions of SINR in the network model.

More realistic model would be to use hardcore processes where there exist a
minimum separation between neighbours. Example of such processes is Poisson
hardcore process also known as Matern hardcore process (MHC) that can be
obtained by special thinning procedure of the original Poisson process, see e.g.
[2]. For these processes, however, there is no closed form expression for the
distance distribution to the n-th neighbour preventing their usage in analytical
assessment of spatial wireless networks. Very often, a thinned version of the
Poisson process for approximations of the distance to the n-th neighbour.

3 Poisson and Hardcore Spatial Processes

The PPP is used to model or abstract a network composed of a possibly infinite
number of nodes randomly and independently coexisting in a finite or infinite
service area.
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The Matern HCPP (MHC) conditions on having a minimum distance r
between any two points of the process, and is obtained by applying depen-
dent thinning to a PPP. That is, starting from a PPP, the HCPP is obtained by
assigning a random mark uniformly distributed in [0, 1] to each point in the PPP,
then deleting all points that coexist within a distance less than the hard core
parameter r from another point with a lower mark. Hence, only the points that
have the lowest mark within their r-neighborhood distance are retained. As a
result, no two points with a separation less that r will coexist in the constructed
HCPP.

Poisson point process (PPP) is a PP Π = {xi; i = 1, 2, 3, . . .} ⊂ R
d is a

Poisson PP if and only if the number of points inside any compact set B ⊂
R

d is a Poisson random variable, and the numbers of points in disjoint sets
are independent. In other words: Π is a Poisson PP, if and only if for every
k = 1, 2, 3, . . . and all bounded, mutually disjoint Ai ⊂ R

d for i = 1, . . . , k,
(Π (A1) , . . . , Π (Ak)) is a vector of independent Poisson random variables of
parameter Λ (A1) , . . . , Λ (Ak), respectively. Let W be some bounded observation
window and let A1, . . . , Ak be some partition of this window: Ai ∩ Aj = ∅ for
j �= i and

⋃
i

Ai = W . For all n, n1, . . . , nk ∈ N with
∑
i

ni = n,

P {Π (A1) = n1, . . . , Π (Ak) = nk|Π (W ) = n} =
n!

n1! . . . nk!
1

Λ(W )n

∏
i

Λ(Ai)
ni .

The importance of the PPP is that, besides being tractable and easy to
handle, it is not only applicable for modelling of large-scale ad-hoc networks
with randomized multiple access, but it also provides tight bounds for the per-
formance parameters in planned infrastructure-based networks and coordinated
spectrum access networks. Moreover, the PPP provides the base line model (i.e.,
parent PP) for the different point processes used for wireless communications
systems [6].

A Hardcore PP is a repulsive point process where no two points of the
process coexist with a separating distance less than a predefined hard core
parameter r. A PP Π = {xi; i = 1, 2, 3, . . .} ⊂ R

d is an HCPP if and only if
Π = {xi;i = 1, 2, 3, . . .} ⊂ R

d, ∀xi, xj ∈ Π, j �= i, where r ≥ 0 is a predefined
hard core parameter.

In [7] an expression for distribution of distances from an arbitrary point to
the n-nearest neighbor is provided in a form of gamma distributions (2):

f (r, n) dr =
2(πλ)n

(n − 1)!
r2n−1e−λπr2

, r > 0, n = 1, 2, . . . (2)

A Hardcore PP can be derived from a parent Poisson PP by using the thin-
ning procedure that is described in the algorithm shown below. As the result of
thinning a new process of a reduced intensity is obtained. This process is called
Matern Hardcore PP (MHC). As the thinning is dependent (points are removed
with regards to the distance between them), MHC does not bare the property of
independence what results in infeasibility of analytical expressions derivation.
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Algorithm 1. Thinning algorithm
Generate k ∼ Pois(Λ)
for i = 1 : k do

generate pi := (xi R[0;a], yi R[0;b], mi R[0;1])
end for
for i = 1 : k do

for j = i + 1 : k do
if ‖pi − pj‖ < r then

if mi < mj then
pj := [ ]

else
pi := [ ]

end if
end if

end for
end for

First, in steps 1–4 we construct a parent PPP of intensity Λ = λ · S, where
S is the area of the plane (Fig. 3a). Each point of the process is given a random
mark mi. Then for each pair of points we evaluate the distance between them.
If the distance is less then predefined hardcore parameter r, the point with the
smaller mark m is retained while the other is removed. Thus, as all the possible
pairs are handled, we get a MHC (Fig. 3b).

Fig. 3. Parent PPP (a) and derived MHC (b).

Although the problem of infinitesimally small distances between communi-
cating stations have been known for years, the Poisson distributions of mobile
nodes in the plane have been assumed in a number of fundamental studies of
mobile wireless network performance. There are a number of indirect methods
proposed to avoid it. For example, the authors usually assume (see e.g. [2,8])
that there is a certain circular area of rather small radius r around the receiver
where no point of PPP may occur. However, they also revealed that the choice of
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r is arbitrary and may affect the resulting SINR performance of the system. For
realistic inter-node distances PPP with thinned intensity provides rather poor
approximation of the MHP [2].

4 Analysis of Distance Distributions

In this section, we provide a comparative analysis of distance distributions in
Poisson and Hardcore PPs. According to [3], the contribution of the devices
that are located at the distance of more than 2r to the value of interference
for both processes is practically identical. For this reason, we focus our study
on distances from a target transmitter device to the nearest interfering ones.
Besides, without taking into account transmission power of interfering devices
the closer an interfering device to the receiver the more it impacts the signal
transmission. The distributions of distances to the 3 nearest neighbours for both
PPP and HCPP of the same intensity are shown in Fig. 3.

In this paper we consider a plane of area S and a set of point scattered over the
plane that may be interpreted as a network service area and its communicating
devices consequently. For the sake of simplicity we assume that the environment
corresponds to an urban area, where path-loss exponent approximately equals
to 4. We also consider that the network is based on Carrier Sensing Multiple
Access (CSMA) technology meaning that the points represent active sources of
target and interfering signals at an arbitrary instance of time.

The fundamental distinction between the two processes is that the distance
between the target and interfering sources in PPP may be infinitesimally small
regardless of network parameters, leading to reduction of SINR to zero, which is
not compliant with real networks. Furthermore, the number of devices is unlim-
ited and may be arbitrary large. On the contrary, for HCPP there is always
maximum number of points that can be distributed over a plane: this number
equals to the maximum number of inscribed into the plane circles with radiuses
r. It is worth noting that points of HCPP in comparison with PPP tend to
tighten around the circle of radius r with the center corresponding to target
transmitter (Fig. 4).

Obviously, the experimental accuracy in case of using PPP instead of HCPP
is inadmissible, specially in terms of SINR. Since there is no analytical expres-
sions exist for MHC there is a need for appropriate approximation of distribu-
tions of distances to the nearest neighbours. As the points of MHC and PPP at
the distance of more than 2r from target transmitter generate the identical inter-
ference, approximation of only points at the distance of less than 2r is required.
Thus, we need to identify the number of the nearest neighbours N that should be
approximated. Common sense guides us to suppose that N should not be more
than 9 as it is impossible to locate more non-intersecting circles of radius r over
a circle of radius (2r + r) where 2r stands for the approximation distance and r
for a circle the center of which may be located on the edge of the 2r-circle. So
9 approximated nearest neighbours is always sufficient to obtain a close approx-
imation of MHC. To reduce computational complexity we propose to use (3),
where ϕ is significance level
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Fig. 4. Distributions of distances to the three nearest neighbours in PPP and HCPP.

N = inf N

⎧⎨
⎩∀η, η ∈ N ⇒

∞∫
2r

f (ρ, η) dρ < ϕ

⎫⎬
⎭ , (3)

where f (ρ, η) = 2(πλMHC)η

(η−1)! ρ2η−1e−λMHCπρ2
.

The less the value of ϕ the more accurate and resource-intensive calculation.
In this paper we consider a square plane 103 meters on side. The solution of the
inequation (3) with ϕ = 0.05 for range of intensities can be provided as follows:
N = 6 for Λ = 10−4 : 5.5 × 10−4 and N = 7 for Λ = 5.5 × 10−4 : 10−3. For
smaller intensities approximation is meaningless since a MHC consisting of a few
points may be sufficiently well approximated by PPP of the same intensity.

5 An Approximation Method and Numerical Results

In this section we propose an approximation for distribution of distances for
MHC process. We impose the following two requirements on the prospective
approximation: (i) the model shall be able to approximate the empirical densi-
ties with any given accuracy and (ii) the approximation should be suitable for
analytical analysis of wireless communications systems.

In this paper we propose an approximation method that allows to construct
a Matern-like point process. The method includes aprroximation of N nearest
neighbours using EM-type algorithm to find the parameters of gamma distri-
butions. In more details, for a given intensity of an approximated MHC, we
calculate the intensity of parent PPP that is given by (4).

λPPP = − ln
(
1 − λMHCπr2

)
πr2

. (4)
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Fig. 5. Distributions of distance to the first nearest neighbour.

Fig. 6. Distributions of distance to the second nearest neighbour.

Then we calculate empirical distributions of distances to N nearest neigh-
bours and subtract r. As we obtain the shifted distributions, we use EM-type
algorithm to approximate them with a set of gamma distributions. As a result,
we have N pairs of scale k and shape θ parameters of approximating gamma dis-
tributions. Approximation of distance distributions for three nearest neighbours
is presented in Figs. 5, 6 and 7.

The final approximating point process may be constructed by generating
NAP ∼ Pois (Λ) points on the plane, where N distances from a target trans-
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Fig. 7. Distributions of distance to the third nearest neighbour.

Fig. 8. SINR distributions in source HCPP and approximating PPs.

mitter to the nearest neighbours have approximated gamma distributions with
addition of the shift of r. The last (NAP − N) points are modeled using the ana-
lytical expressions for n-neighbours in PPP. Approximation in terms of SINR is
shown in Fig. 8.

Parameters of approximating gamma distributions with parameters k and θ
for the square plane with area of 106 meters are presented in Table 1, where N#
is the neighbour number.
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Table 1. Parameters of gamma distribution

N# λ · 10−4

Param 1 2 4 6 8 9 10

1 k 1.26347 1.24129 1.13116 1.10736 1.11643 1.11258 1.11958

θ 25.9479 21.1063 17.9393 16.0743 14.7693 14.3528 13.9138

2 k 3.19935 2.93065 2.53419 2.45763 2.5253 2.5335 2.55191

θ 18.9758 16.7617 15.2804 13.9234 12.6013 12.214 11.8539

3 k 5.80764 4.83297 4.2146 4.15462 4.28739 4.33109 4.37885

θ 14.6016 14.2745 13.1401 11.8991 10.7669 10.3908 10.0696

4 k 8.13106 6.75228 6.09364 6.04108 6.20278 6.31883 6.49767

θ 12.9582 12.8222 11.6162 10.5268 9.59577 9.20752 8.7955

5 k 10.6094 8.73425 7.85794 7.9624 8.27033 8.52779 8.8086

θ 11.6487 11.7559 10.7996 9.64551 8.7384 8.29497 7.89239

6 k 12.5335 9.97398 9.07916 9.43584 9.98714 10.374 10.7512

θ 11.1871 11.7331 10.7011 9.36291 8.34988 7.87798 7.47487

7 k 14.5912 11.3266 10.2119 10.7367 11.5137 11.9753 12.4476

θ 10.6288 11.4675 10.6156 9.21823 8.13033 7.66462 7.25372

6 Conclusions

Inspired by the need for more realistic spatial models for random user locations
on the plane allowing for analytical performance analysis of wireless communi-
cations systems we analyzed distance distribution in MHC. We have shown that
for all intensities of the MHCs there is always a certain N starting from which
the distribution of MHC and the corresponding thinned version of PPP coin-
cides. For first N distance distributions we proposed to use approximation by
gamma distributions. We provided the fitting procedure as well as parameters
of gamma distributions for a range of MHC point densities.

The important features of the proposed approximations is that gamma dis-
tributions allows for analytical analysis of wireless technologies with MHC dis-
tributions of user on the plane. Indeed, the distance distribution is represented
by a specific mixture of exponentials having rational Laplace transform.
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Abstract. In the paper, the infinite-server queueing system with a ran-
dom capacity of customers is considered. In this system, the total capac-
ity of customers is analysed by means of the asymptotic analysis method
with high-rate Markov Modulated Poisson Process arrivals. It is obtained
that the stationary probability distribution of the total customer capac-
ity can be approximated by the Gaussian distribution. Parameters of the
approximation is also derived in the paper.

Keywords: Infinite-server queueing system · Customer with random
capacity · Markovian Modulated Poisson Process

1 Introduction

In the design of messages processing and transmission systems, determining the
memory capacity required for information storage is a relevant open issue [1,2].
The total capacity is a random quantity and in queueing theory it is given by the
sum of the lengths of all messages, which are waiting in the buffer or currently
processed by servers.

Since in real systems customers are heterogeneous (for instance in computer
networks packet size may vary from a few tens of bytes to 1500 bytes in case of
Ethernet links), this paper focuses on the analysis of queueing system (QS) with
random customer capacity. The main classes of models used for such models and
their applications in real information systems are given [1,2].

There are several works on the study of such systems with Poisson arrival
process and service time independent of the customer capacity. For example,
in [3] for systems with limited total capacity the generalization of the Erlang
problem is considered in stationary conditions. Moreover, in [4,5], the stationary
distribution of the customers number and the probability of losses are obtained
for systems with limited memory. Finally, in [9], the authors consider systems
with service time depended on the customers capacity or with waiting time
restrictions, an assumption very relevant for real-time applications.

It is important to point out that most known results are obtained for queueing
systems and networks with Poisson arrivals. Unfortunately, it has been proved
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 110–120, 2016.
DOI: 10.1007/978-3-319-51917-3 11
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that the Poisson model is suitable only for few cases of modern telecommunica-
tion streams [6] and, in general, the correlation among arrivals must be taken
into account. Therefore, many researches use more complex models of arrivals,
such as Markovian Arrival Processes (MAPs) [7] or semi-Markov processes [8].

The main contribution of this paper consists in extending previous works on
random capacity customers to the case of correlated arrivals. In more detail, the
problem statement is formally defined in Sect. 2 and in Sect. 3 the corresponding
Kolmogorov differential equations are derived. Then Sect. 4 presents the results
of the asymptotic analysis, focusing on first and second order approximations.
Finally, the main findings are summarized in Sect. 5.

2 Problem Statement

In this paper, the MMPP/GI/∞ QS with random capacity customers is stud-
ied. The arrival process is a Markov Modulated Poisson Process (MMPP), a
widely-used special case of MAP [7]. The system has an unlimited number of
servers and service times on each server are i.i.d. with distribution function
B (x). All customers have a random capacity ν > 0 with the probability distrib-
ution G (y) = P {ν < y} and the customers capacity are independent. Moreover,
we assume that service time and customers capacity are mutually independent.
After the service, customers leave the system and carry out the capacity.

Let us denote the number of customers in the system and the total customers
capacity at time t by i (t) and V (t), respectively. We consider two-dimensional
stochastic process {i (t) , V (t)}, which is not Markovian. Therefore, we propose
the dynamic screening method for its investigation [10].

For the screened process construction, we fix some point in time T . We assume
that the customer arrived in the system at time t < T creates a point in the
screened process with probability

S (t) = 1 − B (T − t)

or does not create it with probability 1 − S (t). We name the points occurred in
the screened process before t as customers in the screened process at time t.

Let us denote the customers number in the screened process at the moment
t by n (t). Then, if at the initial moment t0 < T the system is empty, we have
the following equality at the moment T :

P {i (T ) = m} = P {n (T ) = m} .

Note that this method exactly determines the characteristics of the process
V (t) since the screened process contains only customers which do not finish the
service at the moment T .

3 The System of Kolmogorov Differential Equations

Let us consider the three-dimensional Markovian process {k(t), n(t), V (t)},
where k(t) identifies the state of the modulating Markov chain of the MMPP
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input process at time t (1 ≤ k(t) ≤ K), which is defined through the infinitesimal
generator matrix Q and rate matrix Λ:

Q =

⎡
⎢⎢⎣

q11 q12 . . . q1K

q21 q22 . . . q2K

. . . . . . . . . . . .
qK1 qK2 . . . qKK

⎤
⎥⎥⎦ , Λ =

⎡
⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0

. . . . . . . . . . . .
0 0 . . . λK

⎤
⎥⎥⎦ .

Denoting the probability distribution of this process by P (k, n, z, t) =
P {k(t) = k, n(t) = n, V (t) < z}, we can write the corresponding system of
Kolmogorov differential equations taking into account the formula of total
probability:

P (k, n, z, t + Δt) = P (k, n, z, t) (1 − λk) (1 − qkk)
+P (k, n, z, t) λkΔt (1 − S (t))

+λkΔtS (t)

z∫
0

P (k, n − 1, z − y, t) dG (y)

+
∑
ν �=k

qνkΔtP (ν, n, z, t) + o (Δt) ,

for k = 1 . . . K, n = 0, 1, 2, . . . , z > 0.

(1)

From (1), we obtain the system of Kolmogorov differential equations

∂P (k,n,z,t)
∂t = λkS (t)

⎡
⎣

z∫
0

P (k, n − 1, z − y, t) dG (y)

⎤
⎦+

∑
ν

qνkP (ν, n, z, t)

for k = 1 . . . K, n = 0, 1, 2, . . . , z > 0.

We introduce a partial characteristic function of the form:

H (k, u1, u2, t) = M {exp (ju1n (t) + ju2V (t))} =
∞∑

n=0
eju1n

∞∫
0

eju2zP (k, n, z, t) dz

for k = 1 . . . K, n = 0, 1, 2, . . . , z > 0.

Considering that

∞∑
n=0

eju1n

∞∫
0

eju2z

z∫
0

P (k, n − 1, z − y, t) dG (y) dz =

eju1H (k, u1, u2, t) G∗ (u2) ,

where

G∗ (u2) =

∞∫
0

eju2ydG (y) , (2)
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we can write the following system of equations:

∂H(k,u1,u2,t)
∂t = λkS (t) H (k, u1, u2, t)

[
eju1G∗ (u2) − 1

]
for k = 1 . . . K.

We write this system in the form of a matrix equation

∂H (u1, u2, t)
∂t

= H (u1, u2, t)
[
ΛS (t)

(
eju1G∗ (u2) − 1

)
+ Q

]
(3)

with the initial condition
H (u1, u2, t0) = r, (4)

where

H (u1, u2, t) = [H (1, u1, u2, t) ,H (2, u1, u2, t) , . . . , H (K,u1, u2, t)] ,

and
r = [r (1) , r (2) , . . . , r (K)] ,

is the row vector of the stationary distribution of the modulating Markov chain:
{

rQ = 0,
re = 1,

(5)

e being a column vector with all entries equal to 1.

4 The Asymptotic Analysis Method

The exact solution of the Eq. (3) is, in general, not available, but it is possible
to get asymptotic results in case of heavy loads. To this aim we will use the
asymptotic analysis method under the condition of an infinitely growing arrival
rate. Let us substitute Λ = NΛ1 and Q = NQ1 into the Eq. (3), where N
is some parameter which will be used for the asymptotic analysis (N → ∞ in
theoretical studies).

Then, the Eq. (3) takes the form

1
N

∂H (u1, u2, t)
∂t

= H (u1, u2, t)
[
Λ1S (t)

(
eju1G∗ (u2) − 1

)
+ Q1

]
(6)

with the initial condition
H (u1, u2, t0) = r. (7)

4.1 The First-Order Asymptotic Analysis

The main result is summarized by the following lemma.
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Lemma. The first-order asymptotic characteristic function of the probability
distribution of the process {k(t), n(t), V (t)} has the form

H (u1, u2, t) = r exp

⎧⎨
⎩Nλ [ju1 + ju2a1]

t∫
t0

S (τ) dτ

⎫⎬
⎭ ,

where the row vector r is defined by the system of linear equations (5), λ denotes
the average rate

λ = rΛe

and a1 is the mean of the random variable defining the customer capacity

a1 =

∞∫
0

ydG (y) .

Proof. Let us perform the substitutions

ε =
1
N

,u1 = εw1, u2 = εw2,H (u1, u2, t) = F1 (w1, w2, t, ε) (8)

in the expressions (5) and (6).
Then the problem (5)–(6) takes the form

ε∂F1(w1,w2,t,ε)
∂t =

F1 (w1, w2, t, ε)
[
Λ1S (t)

(
ejεw1G∗ (εw2) − 1

)
+ Q1

] (9)

with the initial condition
F1 (w1, w2, t, ε) = r. (10)

Let us find the asymptotic solution (where ε → 0) of the problem (8)–(9),
i.e. the F1 (w1, w2, t) = lim

ε→0
F1 (w1, w2, t, ε).

Step 1. Letting ε → 0 in (9), we obtain

F1 (w1, w2, t)Q1 = 0.

Comparing this equation with the first one in (5), we can conclude that
F1 (w1, w2, t) can be expressed as

F1 (w1, w2, t) = rΦ1 (w1, w2, t) , (11)

where Φ1 (w1, w2, t) is some scalar function which satisfies the condition

Φ1 (w1, w2, t0) = 1.

Step 2. Let us multiply (9) by vector e, substitute (11), divide the results
by ε and perform the asymptotic transition ε → 0. Then, taking into account
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that Q1e = 0 and re = 1, we obtain the following differential equation for the
function Φ1 (w1, w2, t)

∂Φ1 (w1, w2, t)
∂t

= Φ1 (w1, w2, t) [λS (t) (jw1 + jw2a1)] . (12)

The solution of (12) with the initial condition gives

Φ1 (w1, w2, t) = exp

⎧⎨
⎩λ (jw1 + jw2a1)

t∫
t0

S (τ) dτ

⎫⎬
⎭ .

Substituting this expression into (11), we obtain

F1 (w1, w2, t) = r exp

⎧⎨
⎩λ (jw1 + jw2a1)

t∫
t0

S (τ) dτ

⎫⎬
⎭ .

Using substitutions (8), we can write the asymptotic (as ε → 0) equality:

H (u1, u2, t) = F1 (w1, w2, t, ε) ≈ F1 (w1, w2, t) = rΦ1 (w1, w2, t)

= r exp

⎧⎨
⎩λ

[
j
u1

ε
+ j

u2

ε
a1

] t∫
t0

S (τ) dτ

⎫⎬
⎭

= r exp

⎧⎨
⎩Nλ [ju1 + ju2a1]

t∫
t0

S (τ) dτ

⎫⎬
⎭ .

The proof is complete.

Corollary. When t = T we obtain the characteristic function of the process
{i (t) , V (t)} in the steady state regime

H (u1, u2, t) = exp {Nλb1 [ju1 + ju2a1]} ,

where

b1 =

T∫
−∞

S (τ) dτ =

T∫
−∞

(1 − B (T − τ)) dτ =

∞∫
0

(1 − B (τ)) dτ

denotes the mean service time.

4.2 The Second-Order Asymptotic Analysis

The main result is summarized by the following theorem.
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Theorem. The second-order asymptotic characteristic function of the probability
distribution of the process {k(t), n(t), V (t)} has the form

H (u1, u2, t) = r exp

⎧⎨
⎩Nλ (ju1 + ju2a1)

t∫
t0

S (τ) dτ+

(ju1)
2

2

⎛
⎝Nλ

t∫
t0

S (τ) dτ + Nκ

t∫
t0

S2 (τ) dτ

⎞
⎠ +

(ju2)
2

2

⎛
⎝Nλa2

t∫
t0

S (τ) dτ + Nκa2
1

t∫
t0

S2 (τ) dτ

⎞
⎠ +

j2u1u2

⎛
⎝Nλa1

t∫
t0

S (τ) dτ + Nκa1

t∫
t0

S2 (τ) dτ

⎞
⎠

⎫⎬
⎭ ,

where
κ = 2g

(
Λ1 − λI

)
e,

and the row vector g satisfies the linear matrix system

gQ1 = r
(
λI − Λ1

)
,

ge = 1.

Proof. Denote by H2 (u1, u2, t) a multi-dimensional function that satisfies the
equation

H (u1, u2, t) = H2 (u1, u2, t) exp

⎧⎨
⎩Nλ (ju1 + ju2a1)

t∫
t0

S (τ) dτ

⎫⎬
⎭ . (13)

Substituting this expression into (6) and (7), we obtain the following problem:

1
N

∂H2 (u1, u2, t)
∂t

+ λ (ju1 + ju2a1) S (t)H2 (u1, u2, t) (14)

= H2 (u1, u2, t)
[
Λ1S (t)

(
eju1G∗ (u2) − 1

)
+ Q1

]
,

with the initial condition
H2 (u1, u2, t0) = r. (15)

Let us perform the following substitutions

ε2 =
1
N

,u1 = εw1, u2 = εw2,H2 (u1, u2, t) = F2 (w1, w2, t, ε) . (16)

Using these notations the problem (14)–(15) can be rewritten in the form

ε2
∂F2 (w1, w2, t, ε)

∂t
+ F2 (w1, w2, t, ε) λ (jεw1 + jεw2a1) S (t) (17)

= F2 (w1, w2, t, ε)
[
Λ1S (t)

(
ejεw1G∗ (εw2) − 1

)
+ Q1

]
,
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with the initial condition

F2 (w1, w2, t0, ε) = r. (18)

Let us find the asymptotic solution (as ε → 0) of this problem, i.e. the
function F2 (w1, w2, t) = lim

ε→0
F2 (w1, w2, t, ε) .

Step 1. Letting ε → 0 in (17)–(18), we obtain the following system of
equations: {

F2 (w1, w2, t)Q1 = 0,
F2 (w1, w2, t0) = r,

Then, using (4), we can write

F2 (w1, w2, t) = rΦ2 (w1, w2, t) , (19)

where Φ2 (w1, w2, t) is some scalar function which satisfies the condition

Φ2 (w1, w2, t0) = 1.

Step 2. Using (19), the function F2 (w1, w2, t) can be represented in the
expansion form

F2 (w1, w2, t, ε) =
Φ2 (w1, w2, t) [r + g (jεw1 + jεw2a1) S (t)] + O

(
ε2

)
,

(20)

where g is some row vector which satisfying the condition ge = 1 and O
(
ε2

)
is

row vector whose elements are infinitesimals of the same order as ε2.
Let us use the substitution (20) and the Taylor-Maclaurin expansions

ejεw1 = 1 + jεw1 + O
(
ε2

)
, ejεw2 = 1 + jεw2 + O

(
ε2

)

in (17). Considering the (2), we perform in the obtained equality of the limiting
transition ε → 0, we obtain matrix equation for the vector g

gQ1 = r
(
λI − Λ1

)
,

where I is diagonal unit matrix.
Step 3. We multiply the (17) by the e, using (20) and the second-order

expansions

ejεw1 = 1 + jεw1 +
(jεw1)

2

2
+ O

(
ε2

)
,

ejεw2 = 1 + jεw2 +
(jεw2)

2

2
+ O

(
ε2

)
.

As a result of simple transformations with the notation

κ = 2g
(
Λ1 − λI

)
e,
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we obtain the following differential equation for the function Φ2 (w1, w2, t)

∂Φ2 (w1, w2, t)
∂t

= Φ2 (w1, w2, t)

{
(jw1)

2

2
(
λS (t) + κS2 (t)

)
+

(jw2)
2

2
(
λa2S (t) + κa2

1S
2 (t)

)
+ j2w1w2

(
λa1S (t) + κa1S

2 (t)
)}

, (21)

where a2 =

∞∫
0

y2dG (y) is the second moment of the random customer

capacity ν.
The solution of the latter equation with the available initial condition

Φ2 (w1, w2, t0) = 1 gives the expression Φ2 (w1, w2, t)

Φ2 (w1, w2, t) = exp

⎧⎨
⎩ (jw1)

2

2

⎛
⎝λ

t∫
t0

S (τ) dτ + κ

t∫
t0

S2 (τ) dτ

⎞
⎠ +

(jw2)
2

2

⎛
⎝λa2

t∫
t0

S (τ) dτ + κa2
1

t∫
t0

S2 (τ) dτ

⎞
⎠ +

j2w1w2

⎛
⎝λa1

t∫
t0

S (τ) dτ + κa1

t∫
t0

S2 (τ) dτ

⎞
⎠

⎫⎬
⎭ ,

and substituting in (19) we obtain

F2 (w1, w2, t) = r exp

⎧⎨
⎩ (jw1)

2

2

⎛
⎝λ

t∫
t0

S (τ) dτ + κ

t∫
t0

S2 (τ) dτ

⎞
⎠ +

(jw2)
2

2

⎛
⎝λa2

t∫
t0

S (τ) dτ + κa2
1

t∫
t0

S2 (τ) dτ

⎞
⎠ +

j2w1w2

⎛
⎝λa1

t∫
t0

S (τ) dτ + κa1

t∫
t0

S2 (τ) dτ

⎞
⎠

⎫⎬
⎭ .

(22)

Performing in (22) the substitutions inverse to (16) and (13), we obtain the
following expression for the asymptotic characteristic function of the number of
customers of screened process and total capacity of customers at the moment t:

H (u1, u2, t) = r exp

⎧⎨
⎩Nλ (ju1 + ju2a1)

t∫
t0

S (τ) dτ+
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(ju1)
2

2

⎛
⎝Nλ

t∫
t0

S (τ) dτ + Nκ

t∫
t0

S2 (τ) dτ

⎞
⎠ +

(ju2)
2

2

⎛
⎝Nλa2

t∫
t0

S (τ) dτ + Nκa2
1

t∫
t0

S2 (τ) dτ

⎞
⎠ +

j2u1u2

⎛
⎝Nλa1

t∫
t0

S (τ) dτ + Nκa1

t∫
t0

S2 (τ) dτ

⎞
⎠

⎫⎬
⎭ ,

where
κ = 2g

(
Λ1 − λI

)
e,

and the row vector g satisfies the linear matrix system

gQ1 = r
(
λI − Λ1

)
,

ge = 1.

The proof is complete.

Corollary 1. When t = T we obtain the characteristic function of the process
i(t), V (t) in the steady state regime

H (u1, u2, t) = exp

{
Nλ (ju1 + ju2a1) b1 +

(ju1)
2

2
(Nλb1 + Nκb2) +

(ju2)
2

2
(
Nλa2b1 + Na2

1κb2
)

+ j2u1u2 (Nλa1b1 + Nκa1b2)

}
, (23)

where

b2 =

T∫
−∞

S2 (τ) dτ.

From the form of function (23) it is clear that the two-dimensional
process i(t), V (t) is asymptotically Gaussian with the vector of mathematical
expectations

a = [Nλb1, Nλa1b1]

and the covariance matrix

A =
[

σ2
1 rσ1σ2

rσ1σ2 σ2
2

]
=

[
Nλb1 + Nκb2 Nλa1b1 + Nκa1b2

Nλa1b1 + Nκa1b2 Nλa2b1 + Nκa2
1b2

]
.

Corollary 2. The asymptotic characteristic function of the total customer
capacity in the steady-state regime is given by a Gaussian characteristic function

H (u, t) = exp

{
juNλa1b1 +

(ju)2

2
(
Nλa2b1 + Na2

1κb2
)}

,

with parameters a = Nλa1b1 and σ2 = Nλa2b1 + Na2
1κb2.
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5 Conclusions

In the paper, a queueing system with random customers capacity and service
time independent of its capacity is considered in case of correlated arrivals,
described by an MMPP process. For such system, the total customers capacity
is derived by using the asymptotic analysis method in case of heavy loads. It
is obtained that the stationary probability distribution of total capacity can be
approximated by a Gaussian distribution and the parameters of the approxima-
tion are derived in the paper.

Acknowledgments. The work is performed under the state order of the Ministry of
Education and Science of the Russian Federation (No. 1.511.2014/K).
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On the Queue Length in the Discrete
Cyclic-Waiting System of Geo/G/1 Type

Laszlo Lakatos(B)

Eotvos Lorand University, Budapest, Hungary
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Abstract. We consider a discrete time queueing system with geometri-
cally distributed interarrival and general service times, with FCFS service
discipline. The service of a customer is started at the moment of arrival
(in case of free system) or at moments differing from it by the multiples
of a given cycle time T (in case of occupied server or waiting queue).
Earlier we investigated such system from the viewpoint of waiting time,
actually we deal with the number of present customers. The functioning
is described by means of an embedded Markov chain considering the sys-
tem at moments just before starting the services of customers. We find
the transition probabilities, the generating function of ergodic distribu-
tion and the stability condition. The model may be used to describe the
transmission of optical signals.

Keywords: Queue length · Discrete cyclic-waiting system · Geo/G/1

1 Introduction

This paper continues the investigation of a single-server queueing system where
an entering customer might be accepted for service at the moment of arrival or at
moments differing from it by the multiples of a given cycle time T . As described
in [4] such problem was motivated by the transmission of optical signals: optical
signals enter a node and they should be transmitted according to the FCFS
rule. The information cannot be stored, if it cannot be served at once is sent to
a delay line and returns to the node after having passed it. So the signal can be
transmitted at the moment of its arrival or at moments that differ from it by
the multiples of time required to pass the delay line. The original problem had
been raised in connection with the landing of airplanes, later it appeared to be
an exact model for the transmission of optical signals where because of the lack
of optical RAM the fiber delay lines are used.

First this system was considered from the viewpoint of number of present
customers in the case of Poisson arrivals and exponentially distributed service
time distribution [3]. By using Koba’s results [1,2] in [4] we investigated the
distribution of waiting time for the continuous time model. [5] solved this prob-
lem for the discrete time case if the service time had geometrical distribution.
Finally, [6] considered the waiting time problem in the case of general discrete
service time distribution.
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 121–131, 2016.
DOI: 10.1007/978-3-319-51917-3 12
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We have also showed that these models give possibility for the numerical
optimization of cycle length.

In this paper we investigate the distribution of queue length for the discrete
system with geometrical interarrival and general service time distribution.

2 The Theorem

We investigate a service system where the service may start at the moment of
arrival (if the system is free) or at moments differing from it by the multiples of
a given cycle time T (in the case of busy server or waiting queue). The service
is realized according to the FCFS discipline. So, the service process is not con-
tinuous: during the “busy period” there are idle intervals required to reach the
starting position, during them there is no real service.

Let the service of the nth customer begin at tn, and let us consider the
number of customers at moment just before the service begins. Then the number
of customers is determined by the recursive formula

Ntn+1−0 =

⎧⎨
⎩

Δn − 1, if Ntn−0 = 0,

Ntn−0 − 1 + Δn, if Ntn−0 > 0,

where Δn is the number of customers arriving at the system for [tn, tn+1). In [3]
we showed that these values form a Markov chain.

Theorem. Let us consider a discrete queueing system in which the interarrival
time has geometrical distribution with parameter r, the service time has general
distribution with probabilities qi (i = 1, 2, . . .). The service of a customer may
start upon arrival or (in case of busy server or waiting queue) at moments dif-
fering from it by the multiples of a given cycle time T (equal to n time units)
according to the FCFS discipline. Let us define an embedded Markov chain whose
states correspond to the number of customers in the system at moments tk − 0,
where tk is the moment of beginning of service of the k-th one. The matrix of
transition probabilities has the form⎡

⎢⎢⎢⎢⎢⎣

a0 a1 a2 a3 . . .
a0 a1 a2 a3 . . .
0 b0 b1 b2 . . .
0 0 b0 b1 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

(1)

its elements are determined by the generating functions

A(z) =
∞∑

i=0

aiz
i = Q1 + z

r

1 − r
Q1 + z

∞∑
k=1

(1 − r + rz)kn (2)

×
⎧⎨
⎩

kn+1∑
i=(k−1)n+2

qi +
∞∑

i=kn+2

qi(1 − r)i−kn−1 −
∞∑

i=(k−1)n+2

qi(1 − r)i−(k−1)n−1

⎫⎬
⎭,
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Qk =
∞∑

i=k

qi(1 − r)i;

B(z) =
∞∑

i=0

biz
i =

∞∑
k=0

n∑
j=1

qkn+j(1 − r + rz)kn+j

×
{

r
1−(1−r)n

1−(1−r)j−1(1−r+rz)j−1

1−(1−r)(1−r+rz) (1 − r + rz)n−j+1

+ r(1−r)j−1

1−(1−r)n
1−(1−r)n−j+1(1−r+rz)n−j+1

1−(1−r)(1−r+rz)

}
.

(3)

The generating function of ergodic distribution P (z) =
∞∑

i=0

piz
i has the form

P (z) =
p0[zA(z) − B(z)] + p1z[A(z) − B(z)]

z − B(z)
, (4)

where
p1 =

1 − a0

a0
p0,

p0 =
a0[1 − B′(1)]

a0 + A′(1) − B′(1)
. (5)

The ergodicity condition is
∞∑

i=1

qi

⌈
i

n

⌉
<

1
1 − (1 − r)n

∞∑
i=1

qi(1 − r)i−1 (mod n). (6)

3 The Proof of Theorem

The matrix of transition probabilities is given in the matrix (1), the generating
functions of transition probabilities are found in the following section. Denote the
ergodic probabilities by pi (i = 0, 1, . . .) and introduce the generating function

P (z) =
∞∑

i=0

piz
i. According to the theory of Markov chains we have

pj = p0aj + p1aj +
j+1∑
i=2

pibj−i+1 (j ≥ 1), (7)

p0 = p0a0 + p1a0. (8)

From (7) and (8) one can obtain the expression

P (z) =
p0 [zA(z) − B(z)] + p1z [A(z) − B(z)]

z − B(z)
.

This expression includes two unknown probabilities p0 and p1 from the desired
distribution, by (8) p1 can be expressed by p0,

p1 =
1 − a0

a0
p0,



124 L. Lakatos

and p0 can be found from the condition P (1) = 1, i.e.

p0 =
a0[1 − B′(1)]

a0 + A′(1) − B′(1)
.

By using the corresponding (9) and (10) values we obtain

a0 + A′(1) − B′(1)

= 1
1−(1−r)n

{
−

∞∑
i=1

qi(1 − r)i−1 (mod n)[1 − (1 − r)� i
n�n]

+
∞∑

i=1

qi(1 − r)i−1 (mod n)

}

= 1
1−(1−r)n

∑∞
i=1 qi(1 − r)i−1 (mod n)(1 − r)� i

n�n > 0,

consequently the numerator must be positive, too; so the condition

1 − B′(1) > 0

must be fulfilled. This leads to the ergodicity condition B′(1) < 1, i.e.

∞∑
k=0

n∑
j=1

qkn+j [1 + (k + 1)nr] − nr

1 − (1 − r)n

∞∑
k=0

n∑
j=1

qkn+j(1 − r)j−1 < 1,

which can be written in the form (6).

4 The Generating Functions of Transition Probabilities

Concerning the transition probabilities we have to distinguish two cases: at the
moment when the service of a customer begins the next one is present or not.
First we find the generating function A(z) corresponding to the case when the
next customer is not there yet, then we find the generating function B(z) for
the case when the next customer is present, too.

4.1 The Generating Function A(z)

This possibility appears at the states 0 and 1. Assume that the service time of
first customer is equal to u, the second customer appears v time after stating its
service. The probability of event {u − v = �} is

P{u − v = �} =
∞∑

k=�+1

qk(1 − r)k−�−1r (� = 1, 2, . . .).

We are interested in the number of customers appearing during intervals whose
lengths are the multiples of n, i.e. � ∈ [(i − 1)n + 1, in], the generating functions
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are represented by the tables, if � changes from 1 till n (we will not write the
factors r(1 − r + rz)n)

q2 q3(1 − r) q4(1 − r)2 . . . qn(1 − r)n−2 qn+1(1 − r)n−1 qn+2(1 − r)n . . .
q3 q4(1 − r) . . . qn(1 − r)n−3 qn+1(1 − r)n−2 qn+2(1 − r)n−1 . . .

q4 . . . qn(1 − r)n−4 qn+1(1 − r)n−3 qn+2(1 − r)n−2 . . .
...

...
...

qn(1 − r) qn+1(1 − r)2 qn+2(1 − r)3 . . .
qn qn+1(1 − r) qn+2(1 − r)2 . . .

qn+1 qn+2(1 − r) . . .

for the following columns it is continued as

qn+2(1 − r)n qn+3(1 − r)n+1 . . . q2n(1 − r)2n−2 q2n+1(1 − r)2n−1 . . .
qn+2(1 − r)n−1 qn+3(1 − r)n . . . q2n(1 − r)2n−3 q2n+1(1 − r)2n−2 . . .
qn+2(1 − r)n−2 qn+3(1 − r)n−1 . . . q2n(1 − r)2n−4 q2n+1(1 − r)2n−3 . . .
...

...
...

...
qn+2(1 − r)3 qn+3(1 − r)4 . . . q2n(1 − r)n+1 q2n+1(1 − r)n+2 . . .
qn+2(1 − r)2 qn+3(1 − r)3 . . . q2n(1 − r)n q2n+1(1 − r)n+1 . . .
qn+2(1 − r) qn+3(1 − r)2 . . . q2n(1 − r)n−1 q2n+1(1 − r)n . . .

and

q2n+2(1 − r)2n q2n+3(1 − r)2n+1 . . . q3n(1 − r)3n−2 q3n+1(1 − r)3n−1 . . .
q2n+2(1 − r)2n−1 q2n+3(1 − r)2n . . . q3n(1 − r)3n−3 q3n+1(1 − r)3n−2 . . .
q2n+2(1 − r)2n−2 q2n+3(1 − r)2n−1 . . . q3n(1 − r)3n−4 q3n+1(1 − r)3n−3 . . .
...

...
...

...
q2n+2(1 − r)n+3 q2n+3(1 − r)n+4 . . . q3n(1 − r)2n+1 q3n+1(1 − r)2n+2 . . .
q2n+2(1 − r)n+2 q2n+3(1 − r)n+3 . . . q3n(1 − r)2n q3n+1(1 − r)2n+1 . . .
q2n+2(1 − r)n+1 q2n+3(1 − r)n+2 . . . q3n(1 − r)2n−1 q3n+1(1 − r)2n . . .

etc., if � changes from n + 1 till 2n (we omit the factor r(1 − r + rz)2n)

qn+2 qn+3(1 − r) qn+4(1 − r)2 . . . q2n(1 − r)n−2 q2n+1(1 − r)n−1 . . .
qn+3 qn+4(1 − r) . . . q2n(1 − r)n−3 q2n+1(1 − r)n−2 . . .

qn+4 . . . q2n(1 − r)n−4 q2n+1(1 − r)n−3 . . .
...

...
q2n(1 − r) q2n+1(1 − r)2 . . .
q2n q2n+1(1 − r) . . .

q2n+1 . . .
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for the following columns it is continued as

q2n+2(1 − r)n q2n+3(1 − r)n+1 . . . q3n(1 − r)2n−2 q3n+1(1 − r)2n−1 . . .
q2n+2(1 − r)n−1 q2n+3(1 − r)n . . . q3n(1 − r)2n−3 q3n+1(1 − r)2n−2 . . .
q2n+2(1 − r)n−2 q2n+3(1 − r)n−1 . . . q3n(1 − r)2n−4 q3n+1(1 − r)2n−3 . . .
...

...
...

...
q2n+2(1 − r)3 q2n+3(1 − r)4 . . . q3n(1 − r)n+1 q3n+1(1 − r)n+2 . . .
q2n+2(1 − r)2 q2n+3(1 − r)3 . . . q3n(1 − r)n q3n+1(1 − r)n+1 . . .
q2n+2(1 − r) q2n+3(1 − r)2 . . . q3n(1 − r)n−1 q3n+1(1 − r)n . . .

etc., if � changes from 2n + 1 till 3n (we omit the factor r(1 − r + rz)3n)

q2n+2 q2n+3(1 − r) q2n+4(1 − r)2 . . . q3n(1 − r)n−2 q3n+1(1 − r)n−1 . . .
q2n+3 q2n+4(1 − r) . . . q3n(1 − r)n−3 q3n+1(1 − r)n−2 . . .

q2n+4 . . . q3n(1 − r)n−4 q3n+1(1 − r)n−3 . . .
...

...
q3n(1 − r) q3n+1(1 − r)2 . . .
q3n q3n+1(1 − r) . . .

q3n+1 . . .

etc.
Summing up the elements of columns for r(1 − r + rz)n, r(1 − r + rz)2n,

r(1 − r + rz)3n, ... we get the coefficients

n+1∑
i=2

qi
1−(1−r)i−1

1−(1−r) +
∞∑

i=n+2

qi(1 − r)i−n−1 1−(1−r)n

1−(1−r) ,

2n+1∑
i=n+2

qi
1−(1−r)i−n−1

1−(1−r) +
∞∑

i=2n+2

qi(1 − r)i−2n−1 1−(1−r)n

1−(1−r) ,

3n+1∑
i=2n+2

qi
1−(1−r)i−2n−1

1−(1−r) +
∞∑

i=3n+2

qi(1 − r)i−3n−1 1−(1−r)n

1−(1−r) , . . .

and, in general, for r(1 − r + rz)kn

kn+1∑
i=(k−1)+2

qi
1 − (1 − r)i−(k−1)n−1

1 − (1 − r)
+

∞∑
i=kn+2

qi(1 − r)i−kn−1 1 − (1 − r)n

1 − (1 − r)
,

which canceling r is

kn+1∑
i=(k−1)n+2

qi −
kn+1∑

i=(k−1)n+2

qi(1 − r)i−(k−1)n−1 +
∞∑

kn+2

qi(1 − r)i−kn−1

−
∞∑

i=kn+2

qi(1 − r)i−(k−1)n−1

=
kn+1∑

i=(k−1)n+2

qi +
∞∑

i=kn+2

qi(1 − r)i−kn−1 −
∞∑

i=(k−1)n+2

qi(1 − r)i−(k−1)n−1.
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Taking into account that the probability of event during the service of a customer
a new one does not arrive

∞∑
i=1

qi(1 − r)i = Q1 = a0,

and the probability of zero waiting time is

∞∑
i=1

qi(1 − r)i−1r =
r

1 − r
Q1,

for the generating function A(z) we obtain the expression

A(z) = Q1 + z r
1−r Q1 + z

∞∑
k=1

(1 − r + rz)kn

×
{

kn+1∑
i=(k−1)n+2

qi +
∞∑

i=kn+2

qi(1 − r)i−kn−1 −
∞∑

i=(k−1)n+2

qi(1 − r)i−(k−1)n−1

}
.

Its derivative is

A′(z) = rQ1
1−r +

∞∑
k=1

(1 − r + rz)kn

×
{

kn+1∑
i=(k−1)n+2

qi +
∞∑

i=kn+2

qi(1 − r)i−kn−1 −
∞∑

i=(k−1)n+2

qi(1 − r)i−(k−1)n−1

}

+znr
∞∑

k=1

k(1 − r + rz)kn−1

×
{

kn+1∑
i=(k−1)n+2

qi +
∞∑

i=kn+2

qi(1 − r)i−kn−1 −
∞∑

i=(k−1)n+2

qi(1 − r)i−(k−1)n−1

}

and at z = 1 gives

A′(1) = rQ1
1−r +

∞∑
k=1

kn+1∑
i=(k−1)n+2

qi − Q2
1−r

+nr
∞∑

k=1

k
kn+1∑

i=(k−1)n+2

qi − nr
∞∑

k=1

∞∑
i=(k−1)n+2

qi(1 − r)i−(k−1)n−1.

(9)

4.2 The Generating Function B(z)

At the beginning of service of first customer the second customer is present, too.

Let x = u −
[
u − 1

n

]
n ([x] denotes the integer part of x), and let y be the mod

T interarrival time (1 ≤ y ≤ n). The time elapsed between the starting moments
of two successive customers is[

u − 1
n

]
n + y if x ≤ y and

([
u − 1

n

]
+ 1

)
n + y if x > y.
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One can easily see that y has truncated geometrical distribution with
probabilities

P{y = �} =
(1 − r)�−1r

1 − (1 − r)n
(� = 1, 2, . . . , n),

the generating function of entering customer for a time slice is 1 − r + rz. The
generating functions of entering customers depending on the service time and
the mod T interarrival time are given in the tables (the rows correspond to the
mod T interarrival and the columns to the service times):

q1(1 − r + rz) q2(1 − r + rz)n+1 . . . qn−1(1 − r + rz)n+1 qn(1 − r + rz)n+1

q1(1 − r + rz)2 q2(1 − r + rz)2 . . . qn−1(1 − r + rz)n+2 qn(1 − r + rz)n+2

q1(1 − r + rz)3 q2(1 − r + rz)3 . . . qn−1(1 − r + rz)n+3 qn(1 − r + rz)n+3

...
...

...
...

q1(1 − r + rz)n−1 q2(1 − r + rz)n−1 . . . qn−1(1 − r + rz)n−1 qn(1 − r + rz)2n−1

q1(1 − r + rz)n q2(1 − r + rz)n . . . qn−1(1 − r + rz)n qn(1 − r + rz)n

the following n columns

qn+1(1 − r + rz)n+1 qn+2(1 − r + rz)2n+1 . . . q2n(1 − r + rz)2n+1

qn+1(1 − r + rz)n+2 qn+2(1 − r + rz)n+2 . . . q2n(1 − r + rz)2n+2

qn+1(1 − r + rz)n+3 qn+2(1 − r + rz)n+3 . . . q2n(1 − r + rz)2n+3

...
...

...
qn+1(1 − r + rz)2n−1 qn+2(1 − r + rz)2n−1 . . . q2n(1 − r + rz)3n−1

qn+1(1 − r + rz)2n qn+2(1 − r + rz)2n . . . q2n(1 − r + rz)2n

and

q2n+1(1 − r + rz)2n+1 q2n+2(1 − r + rz)3n+1 . . . q3n(1 − r + rz)3n+1

q2n+1(1 − r + rz)2n+2 q2n+2(1 − r + rz)2n+2 . . . q3n(1 − r + rz)3n+2

q2n+1(1 − r + rz)2n+3 q2n+2(1 − r + rz)2n+3 . . . q3n(1 − r + rz)3n+3

...
...

...
q2n+1(1 − r + rz)3n−1 q2n+2(1 − r + rz)3n−1 . . . q3n(1 − r + rz)4n−1

q2n+1(1 − r + rz)3n q2n+2(1 − r + rz)3n . . . q3n(1 − r + rz)3n

etc. Summing up the elements in the columns, then considering these sums
shifted by n (i.e. the sums of columns corresponding to the service times
qj , qn+j , q2n+j , . . . (1 ≤ j ≤ n)) for a concrete deviation j the generating function
equals

r
1−(1−r)n

1−(1−r)j−1(1−r+rz)j−1

1−(1−r)(1−r+rz) (1 − r + rz)n−j+1

×
∞∑

k=0

qkn+j(1 − r + rz)kn+j

+ r(1−r)j−1

1−(1−r)n
1−(1−r)n−j+1(1−r+rz)n−j+1

1−(1−r)(1−r+rz)

∞∑
k=0

qkn+j(1 − r + rz)kn+j ,
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and B(z) will be

B(z) =
∞∑

k=0

n∑
j=1

qkn+j(1 − r + rz)kn+j

×
{

r
1−(1−r)n

1−(1−r)j−1(1−r+rz)j−1

1−(1−r)(1−r+rz) (1 − r + rz)n−j+1

+ r(1−r)j−1

1−(1−r)n
1−(1−r)n−j+1(1−r+rz)n−j+1

1−(1−r)(1−r+rz)

}
.

Its derivative at z = 1 is

B′(1) = r
1−(1−r)n

n∑
j=1

∞∑
k=0

qkn+j ·{
[1 − (1 − r)n] [(k+1)n+1]r2+r(1−r)

r2 − nr2(1−r)j−1

r2

}
.

After some arithmetics we obtain

B′(1) =
n∑

j=1

∞∑
k=0

qkn+j

{
r
(k + 1)nr2 + r2 + r − r2

r2
− nr

1 − (1 − r)n
(1 − r)j−1

}

=
∞∑

k=0

n∑
j=1

qkn+j [(k + 1)nr + 1] − nr

1 − (1 − r)n

∞∑
k=0

n∑
j=1

qkn+j(1 − r)j−1.

(10)

Remark 1. In [6] and the present paper we characterized the same discrete cyclic-
waiting system, so between their characteristics there exists certain connection.
One can check the coincidence of stability condition (in the two cases they are
written in different forms), between the zero probabilities there is valid the
relation

p
(w)
0 =

(
p
(q)
0 + p

(q)
1

) ∞∑
i=1

qi(1 − r)i−1. (11)

Here the upper index w corresponds to the waiting time, the upper index q to
the queue length.

We clarify this expression. Consider a moment just before starting the service
of a customer and let the system be free or let there be present one customer.
The probability of this event is p

(q)
0 + p

(q)
1 . One starts the service of the actual

customer and it takes i time units. The waiting time for the next customer will
be zero if during the first i − 1 time slices no customer enters and on the last
time slice either no customer enters (the server becomes free) or a new customer
appears. So, it is not important that during this time slice a further customer
arrives or not since either the server becomes free or the service of new one can
be started on the following time slice, in such sense it will be taken for service
without waiting.

Remark 2. Our formulas for the generating functions of transition probabilities,
p0, P (z) and the stability condition in the case of geometrical service time dis-
tribution (i.e. it is i time slices with probability (1 − q)qi−1) give the following
formulas.
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P (z) has the form (4), in the concrete case it is

P (z) = p0
zA(z) − B(z) + rz

(1−r)(1−q) [A(z) − B(z)]

z − B(z)
.

The generating functions of transition probabilities are

A(z) =
∞∑

i=0

aiz
i =

(1−r)(1−q)
1−q(1−r) + z r(1−q)

1−q(1−r) + z rq(1−r+rz)n(1−qn)
[1−q(1−r)][1−qn(1−r+rz)n] ,

B(z) =
∞∑

k=1

biz
i

= 1−(1−r)n(1−r+rz)n

1−(1−r)(1−r+rz)
r(1−r+rz)
1−(1−r)n

+ 1−qn(1−r)n(1−r+rz)n

1−q(1−r)(1−r+rz)
rq(1−r+rz)[(1−r+rz)n−1]
[1−(1−r)n][1−qn(1−r+rz)n] .

By using these expressions for A′(1) and B′(1) one gets

A′(1) =
r

1 − q(1 − r)
+

nr2q

(1 − qn)[1 − q(1 − r)]

and

B′(1) = 1 − nr(1 − r)n

1 − (1 − r)n
+

nr2q[1 − qn(1 − r)n]
(1 − qn)[1 − q(1 − r)][1 − (1 − r)n]

.

For the probability of free state we had the expression

p0 =
a0[1 − B′(1)]

a0 + A′(1) − B′(1)
.

Substituting the corresponding values we have

a0 + A′(1) − B′(1) =
nr(1 − r)n(1 − q)

[1 − (1 − r)n][1 − q(1 − r)]
> 0,

so 1 − B′(1) > 0 must be fulfilled, it leads to the inequality

rq[1 − (1 − r)n]
(1 − q)(1 − qn)(1 − r)n

< 1.

The probability of free state is

p0 = 1 − r − rq(1 − r)[1 − qn(1 − r)n]
(1 − r)n(1 − qn)[1 − q(1 − r)]

,

the condition p0 > 0 gives the same ergodicity condition.
Finally, we show the validity of (11) in the case of geometrical service time

distribution. In [4] we obtained the formula

p
(w)
0 =

[
1 − rq[1 − (1 − r)n]

(1 − q)(1 − qn)(1 − r)n

]
1 − q

1 − q(1 − r)
.
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From one side we have
∞∑

i=1

qi(1 − r)i−1 =
∞∑

i=1

(1 − q)qi−1(1 − r)i−1 =
1 − q

1 − q(1 − r)
.

From another side

p
(q)
0 + p

(q)
1 = p

(q)
0 +

1 − a0

a0
p
(q)
0 =

p
(q)
0

a0
,

a0 =
(1 − r)(1 − q)
1 − q(1 − r)

.

Consequently, it is enough to show that p
(q)
0 /a0 coincides with the expression in

the brackets for p
(w)
0 . One has

p
(q)
0
a0

=
[
1 − r − rq(1−r)[1−qn(1−r)n]

(1−r)n(1−qn)[1−q(1−r)]

]
1−q(1−r)
(1−r)(1−q)

=
[
1 − rq[1−qn(1−r)n]

(1−r)n(1−qn)[1−q(1−r)]

]
1−q(1−r)

1−q

= 1 + rq
1−q − rq[1−qn(1−r)n]

(1−q)(1−qn)(1−r)n = 1 − rq[1−(1−r)n]
(1−q)(1−qn)(1−r)n ,

which proves our assertion.
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Abstract. The paper deals with a multi-server controllable queueing
system M(t)/M/K with time-dependent and, in particular, with peri-
odic arrival rates. The models with homogeneous and heterogeneous
servers are of interest. In latter case the fastest free server allocation
mechanism is assumed and the preemption is allowed. The control prob-
lem consists in evaluation of the optimal number of servers during
some specified stages and is solved by finite horizon dynamic program-
ming approach. To calculate the transient solutions we use a forth-order
Runge-Kutta method for the system with a truncated queue length. The
results are compared with corresponding queues operating in a station-
ary regime. It is shown that the optimal control policies are also time
dependent and periodic as arrival rates and heterogeneous systems are
superior in performance comparing to the homogeneous ones.

Keywords: Time-dependent arrival rate · Controllable queueing
system · Dynamic programming approach · Forth-order Runge-Kutta
method

1 Introduction

Many queueing systems are subject to time-dependent changes in system para-
meters. This feature is very important to cover the problems with seasonality
and periodicity of stochastic processes. Particularly it happens with an arrival
rate which is used for modelling of arrivals of calls and inquires at call centres,
arrival of packets at routers of the telecommunication systems, of time changing
air traffic at airports, different arrival rates of trucks to the warehouses, goods
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depot or seaports and so on. A very good literature overview on this subject can
be found in [4]. This paper surveys and classifies the results on performance eval-
uation approaches for time-dependent queueing systems and their applications
and identifies the links between different approaches. The performance analy-
sis of multi-server queueing system subject to breakdowns was studied in [1].
There are several approaches to analyse such systems. The dynamic behaviour
of Markovian queueing systems is described by a system of Kolmogorov differen-
tial equations (KDEs). Analytical solution of such systems exists only for special
cases. Numerical approaches are based on a Runge-Kutta method. The systems
with an infinite buffer are normally approximated by using a finite buffer sys-
tem. The numerical solution of KDEs is used for example for the performance
evaluation of a M(t)/M/1/N system in [3].

In many cases the time-dependent system parameters must be combined with
some controllable problems. The paper [5] deals with optimal allocation of such
resources as beds in emergency departments of a hospital. For the mathematical
modelling the queueing system with losses of the type is used. It was shown that
the periodic variation of arrival rates makes a hysteretic policy time-dependent
and periodic with the same period. To find the optimal decisions dynamic pro-
gramming is used. The same approach was used in [2] for the multi-server queue-
ing system with a controllable number of homogeneous servers.

The contribution of the present work is an evaluation of the optimal number
of servers in multi-server queueing system with homogeneous and heterogeneous
servers and time-dependent arrival rate. The discretization of a continuous-time
Markov process is performed to apply the Runge-Kutta method and the iterative
dynamic programming algorithm over a finite horizon. The decisions are chosen
at specified moments of time which divide the observation time interval into so
called stages. The number of available servers is assumed to be a constant within
each stage. The paper provides comparison analysis of stationary and transient
solutions as well as homogeneous and heterogeneous systems.

The rest of the paper is organized as follows. In Sect. 2 we describe a mathe-
matical model and formulate a optimization problem for transient and stationary
case. Section 3 deals with a description of a time-dependent arrival rate. In Sect. 4
a forth-order Runge-Kutta method is adopted for the model under study. The
recursive dynamic programming algorithm is shown in Sect. 5. Some illustrative
numerical examples are discussed in Sect. 6. Conclusions are given in Sect. 7.

2 Mathematical Model

Consider the controllable multi-server queueing system M(t)/M/K with K
servers. This system features Poisson arrival stream with time dependent arrival
rate λ(t). The servers are assumed to be heterogeneous with servers intensities
μj , j = 1, 2, . . . ,K. In special case when all intensities are equal, μj = μ, j =
1, 2, . . . ,K, we get the homogeneous system. The control consists in specification
of the number of servers K(t) at any decision epoch which will be specified later.

Denote by N(t) the number of customers in the system at time t. The dynam-
ics of the system is described by means of the controllable continuous-time inho-
mogeneous Markov chain {N(t)}t≥0 with a set of states E = {n;n ∈ N0} and set
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of control actions A = {1, 2, . . . ,K}. Define additional cost structure with the
following components: c1 – the waiting cost per unit of time for each customer
in the queue, c2,j – the idle state cost per unit of time when the server j is idle.
In homogeneous case it is assumed that c2,j = c2, j = 1, 2, . . . ,K. The servers
are enumerated in such a way that

μ1 ≥ μ2 ≥ · · · ≥ μK , c2,1 ≥ c2,2 ≥ · · · ≥ c2,K . (1)

In accordance with the given cost structure, the mean total cost criterion is
denoted by

Jf (n) = E
f [

∫ T

0

c(N(t),K(t), λ(t), t)dt|N(0) = n]. (2)

Here f is a Markov control policy which depends on the current state and time
only, i.e. K(t) = f(t, n(t)), the expectation E

f is taken with respect to the
probability distribution P

f over the state-action sequence under control policy
f . The immediate cost function c(N(t),K(t), λ(t), t) is defined as

c(N(t),K(t), λ(t), t) = c1

∞∑
k=K(t)+1

(k − K(t))1{N(t)=k} (3)

+
K(t)∑
k=0

K(t)∑
j=k+1

c2,j1{N(t)=k}.

The substitution of (3) into (2) yields the relation for the mean total cost in
form

Jf (n) =
∫ T

0

η(n,K(t), λ(t), t)dt (4)

=
∫ T

0

[
c1Q̄(n,K(t), λ(t), t) +

K(t)∑
k=0

K(t)∑
j=k+1

c2,jπk(n,K(t), λ(t), t)
]
dt.

The first term by c1 at the right hand side of (4) stands for the mean number of
customers in the queue at time t with K(t) servers and initial state N(0) = n,
the second term stands for the mean idle state costs. We wish to minimize the
functional Jf (n) over all control policies and find optimal policy f∗ that achieves
the minimal cost J∗(n), i.e.

J∗(n) := Jf∗
(n) = min

f
Jf (n). (5)

The solution of proposed optimization problem can be performed numerically.
To realize some iterative algorithm the continuous time model must be converted
to a discrete one. We divide a time interval [0, T ] into I equally spaced periods.
The mean total cost functional in this case can be rewritten a follows,
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Jf (n) =
I∑

i=1

η(n,K(i), λ(i), i) (6)

=
I∑

i=1

[
c1Q̄(n,K(i), λ(i), i) +

K(i)∑
k=0

K(i)∑
j=k+1

c2,jπk(n,K(i), λ(i), i)
]
,

where K(i) is a number of servers at period i, Q̄(n,K(i), λ(i), i) is a mean number
of customers in the queue at period i, πk(n,K(i), i) – probability of k customers
in the system with K(i) servers at period i with initial state n.

The transient solution of the problem will be compared with a stationary
one. In this case the long-run average cost per unit of time

η(K,λ(t)) = c1Q̄(K,λ(t)) +
K∑

k=0

K∑
j=k+1

c2,jπk(K,λ(t)) (7)

must be minimized over K(t) for any fixed value λ(t). The substitution of the
stationary state probabilities of the infinite buffer system into (7) yields the
relation

η(K(t), λ(t)) =
[
c1

K(t)∏
j=1

λ(t)∑j
k=1 μk

λ(t)
∑K(t)

k=1 μk

(λ(t) − ∑K(t)
k=1 μk)2

(8)

+
K(t)∑
k=0

K(t)∑
j=k+1

c2,j
λ(t)k∏k

l=1

∑l
j=1 μj

]
π0(K(t), λ(t)),

π0(K(t), λ(t)) = (9)

[K(t)−1∑
k=0

λ(t)k∏k
l=1

∑l
j=1 μj

+
K(t)∏
j=1

λ(t)∑j
k=1 μk

∑K(t)
k=1 μk∑K(t)

k=1 μk − λ(t)

]−1

.

3 Arrival Rate

We have chosen a similar arrival rate λ(t) as in the paper from [2]. The authors
have studied there incoming and service of airplanes of an airport modelled
via a M(t)/M/K/N queuing system. In the queueing system under study the
condition

λ(t) <

K∑
j=1

μj (10)

is a necessary one, since there is no cost relation for customers who get rejected.
That means that the maximum number of server K can handle the average
arrival rate of users. The data for λ(t) is given in Table 1.

The arrival rate will be divided into three equidistant stages. It means that
each stage lasts eight hours, which is a normal working shift cycle. At the begin-
ning of a stage, the number of customers n in the system is known. This value
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Table 1. Values for the arrival rate λ(t)

Time in hour Input intensity

1–5 8.75 + 4.25 cos(t/1.6)

6 4.5

7 5.0

8 5.5

9 6.5

10–17 7.0

18–21 10.0

22–24 13.0

will be called initial state of the current stage. A natural question, one can ask
is, how many servers (in this context workers) should be hired at current and fol-
lowing stage(s) so that the expected costs are minimized. Obviously the number
of necessary operators are depending on the initial state n.

4 Fourth-Order Explicit Runge-Kutta Method

Since there is no way to solve the system of Kolmogorov forward equations

π′(t) = π(t)A(t) (11)

analytically a numerical algorithm is needed to get an approximate solution. For
this task we have used the standard fourth order explicit Runge-Kutta procedure
which is a widely used one-step method. It considers differential equations of the
form

y′(t) = f(t, y(t)) ∀t ∈ (0, T ) (12)

with given initial condition
y(t0) = y0. (13)

Algorithm 1. The explicit fourth-order Runge-Kutta method.
Step 1. Computation of five parameters κ1, κ2, κ3, κ4 and κ:

κ1 = f(tn, yn)Δt

κ2 = f(tn +
Δt

2
, yn +

κ1

2
)Δt

κ3 = f(tn +
Δt

2
, yn +

κ2

2
)Δt

κ4 = f(tn + Δt, yn + κ3)Δt

κ =
1
6
(κ1 + 2κ2 + 2κ3 + κ4)
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Step 2. Evaluation of yn+1 by the recursive relation,

yn+1 = yn + κ.

For solving the Kolmogorov forward equations (11) interpret f(t)π(t) as
f(π(t), t), choose a appropriate step size Δt and apply this Runge-Kutta method
directly on the function f(π(t), t). Obviously the error between the calculated
and the real solution gets less if one selects a smaller step size. On the other hand
a greater step size means less computing time. We have chosen Δt = 0.005. This
value for the step size seems to have a reasonable balance between computing
time and computation error.

To solve the system (11) we use a truncation of the buffer capacity by assum-
ing that N is the maximum allowable number of customers in the system.

5 Optimisation Problem

Let T = 24h be an observation cycle and a finite horizon for the dynamic
programming. The decision epochs occur each 8 h, hence we get S = 3 stages with
I
S periods i within each stage s. A strategy at a decision epoch d = (S−s)I/S+1
which depends on a current stage s is donated by f(d, n), where n stands as
before for the initial state. A strategy is equal for any period i from the interval

d ≤ i ≤ d +
I

S
− 1.

Denote by Vn(s) the optimal cost function for s stages left which we refer to as
value function:

Vn(s) = min
f

E
f [

I∑
i=1

c(N(i),K(i), λ(i), i) |N(s) = n], s = 1, 2, . . . , S, n ∈ E.

(14)

The minimum must be taken over tail policies

(f(1,K(1)), f(I/S + 1,K(I/S + 1)), . . . , f((S − 1)I/S + 1,K((S − 1)I/S + 1)).

Obviously, Vn(S) = J∗(n).

Algorithm 2. The finite horizon dynamic programming:
Step 1. Backward recursion: Vn(0) = 0,n ∈ E, and

Vn(s) = min
1≤k≤K

{
r(n, k, s) +

N∑
m=0

pnm(k, s)Vm(s − 1)
}

, (15)

where r(n, k, s) is the total average cost per stage,

r(n, k, s) =
d+ I

S −1∑
i=d

η(n, k, λ(i), i), s = 1, 2, . . . , S, (16)
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and the transition probabilities between the stages are defined as

pnm(k, s) = P

[
N(d + I/S) = m

∣∣∣N(d) = n, f(d, n) = k
]
, (17)

s = 2, . . . , S. (18)

Step 2. Any Markov policy f∗ that satisfies

f∗(d, n) = arg min
1≤k≤K

{
r(n, k, s) +

N∑
m=0

pnm(k, s)Vm(s − 1)
}

(19)

is an optimal control policy.

The values pnm(k, s) in (17) have to be interpreted in the following way. They
stand for the probability to be in state m at the beginning of the next stage
under the condition that the initial state of the previous stage was n.

Algorithm 3. The following basic steps are involved into the computation
procedure:

Step 1. Compute the state probabilities π(n, k, λ(i), i) for each n, k and i via the
Runge-Kutta fourth order method.

Step 2. Compute the cost function η(n, k, λ(i), i) for each n, k and i.
Step 3. Compute r(n, k, s) for each n, k and s by accumulating η(n, k, λ(i), i)

over all periods i within the corresponding stage.
Step 4. Compute the transition probabilities pnm(k, s) for each n, m, k and s via

Runge-Kutta fourth order method.
Step 5. Evaluation of the optimal strategy for any s and n by means of

Algorithm2.

The number of servers k∗ = f(s, n) defined by (19) for which the expression in
the right hand side of (15) is minimal is called the best or optimal strategy at
stage s given the initial state is n.

Remark 1. Notice that in this queueing model rejecting of customers is not a
valid option. If, for example, the initial state n at the current stage is the capacity
of the buffer plus 2, the best strategy cannot be one server. However if the one
choose the waiting room capacity high enough, restrict n up to this value and
condition (10) is clearly fulfilled there will be no dropping of users.

6 Numerical Realisation and Results

The main goal in this paper is to compare the operating costs for the M(t)/M/K
queue between homogeneous and heterogeneous servers when optimal policies
are used. Further the difference between transient and stationary solution will
be contrasted for both philosophies. For this computations the following assump-
tions are used:
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1. The maximum number of servers is K = 6.
2. The buffer capacity is N − K = 10.
3. The waiting cost c1 = 10.
4. The service rate of the server in homogeneous case is μ = 4.
5. The service intensities μj , j = 1, 2, . . . , K, of heterogeneous servers are listed

in Table 2.
6. The idle state cost in homogeneous case is c2 = 2.1.
7. The idle state costs c2,j , j = 1, 2, . . . ,K, for heterogeneous servers are listed

in the Table 2.

To get comparability with the homogeneous case we have chosen the service
rates and operator idle costs for heterogeneous servers so that they satisfy the
following conditions,

K∑
j=1

μj = Kμ,

K∑
j=1

c2,j
μj

=
c2
μ

(20)

together with the ordering (1). That means that the server 1 is the fastest one
but has the highest mean standing costs. Followed by server 2 and so forth. This
is a quite reasonable assumption because a faster operator needs more resources.
If this server is idle more costs are generated as for a slower one. In heterogeneous
case the fastest free server policy is used for the allocation mechanism. If more
then one operator is free and a new customer enters the queue the fastest free
server will be entrusted with this task. This must be considered in the calculation
of η(n, k, λ(i), i). To calculate the best stationary policy the long-run average
cost η(k, λ(i)) must be minimized for k, 1 ≤ k ≤ K. For homogeneous servers
the service intensities μj as well as idle state costs c2,j in homogeneous case must
be set to be equal as was discussed before.

Table 2. Values of μj and c2,j for heterogeneous servers

Server Idle state cost Service rate

1 c2,1 = 0.4371 μ1 = 480/49

2 c2,2 = 0.9 c2,1 μ2 = μ1/2

3 c2,3 = 0.85 c2,2 μ3 = μ1/3

4 c2,4 = 0.8 c2,3 μ4 = μ1/4

5 c2,5 = 0.75 c2,4 μ5 = μ1/5

6 c2,6 = 0.7 c2,5 μ6 = μ1/6

In Figs. 1(a) and (b) we illustrate the mean number of customers in the buffer
Q̄(n,K(t), λ(t), t) in homogeneous and heterogeneous cases for different number
of servers K(t). The queue length for K(t) = 4, 5, 6 servers are not shown in these
figures, since the values are very small (especially when heterogeneous servers



140 D. Efrosinin and M. Feichtenschlager

are used). In Fig. 1(a) and (b) the initial state N(t) = n at time t = 0 is set to
be zero. That means the queueing system is at start empty. The mean number
of waiting customers, which is needed in (6), is calculated via the formula

Q̄(n,K(i), λ(i), i) =
N∑

k=K(i)+1

(k − K(i))πk(n,K(i), λ(i), i), (21)

where K(i) is fixed in period i, k is a state at period i and N is the maximum
number of customers in the system. The state probabilities in this expression
are the solution of the system (11) performed by the fourth-order Runge-Kutta
method for each given number of servers K(i) at each period i.

Fig. 1. Q̄(n, K, λ(t), t) for (a) homogeneous and (b) heterogeneous system

Fig. 2. Transient/stationary Q̄(n, K, λ(t), t)/Q̄(K, λ(t)) for (a) homogeneous and (b)
heterogeneous system

Figures 2(a) and (b) illustrate how the mean queue length (21) differs from
the stationary solution in the homogeneous and heterogeneous case which can
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be calculated by expression from (8). Again the mean queue length for 4, 5 and
6 servers are not shown because of the small values. The continuously plotted
lines belong to the transient and the dashed lines to the stationary solution.

These pictures illustrate clearly the behaviour of the queuing system. When
the transient solution is off and λ(t) is a constant value for a certain period it con-
verges to the stationary result as time goes by. This is not astonishing because a
stationary queuing system can be interpreted as a long running transient system
with a constant arrival rate.

To compare the minimum expected costs between homogeneous/hetero-
geneous servers in stationary/transient case simply evaluate η(n, k∗, λ(i), i)
and η(k∗, λ(i)) for each period i and corresponding optimal number of servers
k∗. The calculated values of the optimal policy are listed in Table 3. To get

Table 3. Optimal policy f

Initial state at

stage one

Homogen

transient

Homogen

stationary

Heterogen

transient

Heterogen

stationary

0 4 5 6 6

1 4 5 6 6

2 5 5 6 6

3 5 5 6 6

4 5 5 6 6

5 5 5 6 6

6 5 5 6 6

7 5 5 6 6

8 5 5 6 6

9 5 5 6 6

10 6 5 6 6

Stage two

0 4 4 4 4

1 4 4 4 4

2 4 4 4 4

3 4 4 4 4

4 4 4 4 4

5 4 4 4 4

6 4 4 5 4

7 4 4 5 4

8 4 4 6 4

9 4 4 6 4

10 5 4 6 4

Stage three

0 5 5 6 6

1 5 5 6 6

2 5 5 6 6

3 5 5 6 6

4 5 5 6 6

5 5 5 6 6

6 5 5 6 6

7 5 5 6 6

8 5 5 6 6

9 6 5 6 6

10 6 5 6 6
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more server variety in the transient solutions one can increase the waiting room
capacity and adjust c1 and c2.

Figures 3(a), (b) and 4(a), (b) show the minimum expected costs η(n,K(i),
λ(i), i) in homogeneous and heterogeneous case. The first one deals with a

Fig. 3. (a) η(K(t), λ(t)) in stationary case and (b) η(n, K(t), λ(t), t) in transient case
for n = 0

Fig. 4. η(n, K(t), λ(t), t) in transient case for (a) n = 5 and (b) n = 10

Fig. 5. η(n, K(t), λ(t), t) with homogeneous servers for (a) n = 0 and (b) n = 5
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stationary case. Here the initial state n is without any significance. The sec-
ond, third, fourth one is dedicated to the transient solution of the optimizing
problem with initial state n at each stage equal to 0, 5 and 10. In the following
pictures the stages should be interpreted severally.

As one would expect, the queuing system with heterogeneous servers is supe-
rior in terms of running costs. A similar gap to the homogeneous costs as in
Figs. 3(b), 4(a) and (b) can be seen for different initial states n at the end of
every stage.

The Figs. 5(a), (b) and 6(a), (b) deal with homogeneous and number
Figs. 7(a), (b) and 8(a) and (b) with heterogeneous operators. They picture the
minimum expected costs η(n,K(i), λ(i), i) and η(K(i), λ(i)) which were induced
in the stationary and transient case respectively for chosen initial states.

Fig. 6. η(n, K(t), λ(t), t) with homogeneous servers for (a) n = 9 and (b) n = 10

Fig. 7. η(n, K(t), λ(t), t) with heterogeneous servers for (a) n = 0 and (b) n = 5

At a close look at Figs. 5(a) up to 8(b) one can see that the costs induced by
the transient queuing system converges to the expenses of the stationary model
if and only if the computed optimal policies for this stage are the same.
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Fig. 8. η(n, K(t), λ(t), t) with heterogeneous servers for (a) n = 7 and (b) n = 10

7 Conclusions

In this paper we have provided performance analysis of the Markovian control-
lable queueing system with a time-dependent arrival rate. The control policy
prescribes the number of allowable servers and is time-dependent as well. The
transient and stationary analysis for homogeneous and heterogeneous systems
with preemption is provided. It is shown that the optimal policy differs in tran-
sient and stationary case. For the same control policy the corresponding cost
functions take very close values. It is confirmed that the heterogeneous queueing
systems are superior in performance comparing to the homogeneous case.

References

1. Ghimire, S., Ghimire, R.P., Thapa, G.B.: Performance evaluation of unreliable
M(t)/M(t)/n/n queueing system. Br. J. Appl. Sci. Technol. 7(4), 412–422 (2015)

2. Jung, M., Lee, E.S.: Numerical optimization of a queueing system by dynamic pro-
gramming. J. Math. Anal. Appl. 141, 84–93 (1989)

3. Koopman, B.O.: Air-terminal queues under time-dependent conditions. Oper. Res.
20(6), 1089–1114 (1972)

4. Schwarz, J.A., Selinka, G., Stolletz, R.: Performance analysis of time-dependent
queueing systems: survey and classification. Omega (2016). doi:10.1016/j.omega.
2015.10.013

5. Tirdad, A., Grassmann, W.K., Tavakoli, J.: Optimal policies of M(t)/M/c/c queues
with two different levels of servers. Eur. J. Oper. Res. 249, 1124–1130 (2016)

http://dx.doi.org/10.1016/j.omega.2015.10.013
http://dx.doi.org/10.1016/j.omega.2015.10.013


Algorithmic and Software Tools for Optimal
Design of New Generation Computer Networks

Yuriy Zaychenko(B) and Helen Zaychenko

Institute for Applied System Analysis, NTUU “KPI”, Kiev, Ukraine
zaychenkoyuri@ukr.net, syncmaster@bigmir.net

Abstract. Algorithmic and software tools for new generation networks
(NGN) design are elaborated and presented in this paper. The tools
are based on original methods and algorithms suggested by authors and
include algorithms for solution of numerous tasks: channels capacities
assignment, flows distribution, survivability analysis and structural syn-
thesis. The elaborated models and algorithms take into account the speci-
ficity of NGN technology. The results of experimental investigations and
practical implementation of the suggested tools are presented and dis-
cussed.

Keywords: New generation networks · Capacities assignment · Flows
distribution · Topological optimization · Survivability analysis

1 Introduction

Burst increase in the volume of the traffic in the global computer networks due
to millions of mobile users and the increasing demands on the quality of infor-
mation transfer caused the appearance and implementation of new generation
of computer networks (NGN), in particular communication network with MPLS
technology [1]. Distinctive features of these networks are: (1) the high data trans-
fer rate; (2) the presence of various classes of flows (users); (3) introduction of
quality of service (QoS), namely, the average delay in the delivery of packets
and a packets loss ratio. The emergence of a new generation of networks put on
the agenda for the development of appropriate models and methods of perfor-
mance analysis and optimization of networks in terms of quality. These methods
are used in the optimal design of NGN networks. The aim of this work is to
develop and investigate models and algorithmic and software tools for analysis
and optimization of next-generation networks.

2 Analytic Models for Estomation QoS NGN Networks

To solve the problems of the analysis and optimization of NGN network using
Quality of Service (QoS) indicators must first be developed analytical models
for assessing the quality indices for different classes of service, depending on the
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 145–161, 2016.
DOI: 10.1007/978-3-319-51917-3 14
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intensity of the input flows, channel capacities, flow distribution (FD) over com-
munication channels. These models should take into account all the specificities
of NGN networks the different classes of service (flows) and their priority service.

The main QopS indicators are: packets transfer delay (PTD) of different
classes and packets loss ratio (PLR) [2]. Consider analytical models of these
QoS.

Let it be one channel in which N flows are transmitted with priorities Pi.
Denote flow with priority i in channel (r, s) as f i

rs, channel capacity - μrs. For
convenience set priorities in such order: p0 > p1 > . . . > pN .

For obtaining analytical models for average delay of packets of k-th priority
introduce the following assumptions:

1. Input flows in node of all classes are Poisson with intensity h
(k)
ij .

2. Service time in channels (r, s) is distributed by exponential law with parame-
ter intensity μrs (Mbit/s), where μrs is capacity of the channel (r, s).

3. Service time of a packet in different channels are statistically independent
random variables.

Under such assumptions using queue theory write down the expression for delay
in the channel (r, s) for flows of different priorities (classes) [1,2]: p0:

t0rs =
f0

rs

(μrs − f0
rs) · μrs

, (1)

tjrs =

j∑
k=0

fk
rs

(μrs −
j−1∑
k=0

fk
rs) · (μrs −

j∑
k=0

fk
rs)

. (2)

Let be given demand matrix for flow transmission of the l-th priority Hl = ||hl
ij ||.

Using these expressions in [1] the final expression was obtained for average delay
of k-th priority flow in a network:

Tmean,k =
1

H
(k)
Σ

∑
(r,s)∈E

f
(k)
rs

k∑
i=1

f
(i)
rs

(μrs −
k−1∑
i=1

f
(i)
rs ) · (μrs −

k∑
i=1

f
(i)
rs )

, (3)

where H
(k)
Σ =

n∑
j=1

n∑
i=1

h
(k)
ij is total intensity of input flow of the k-th priority

(class); f
(i)
rs is the flow of i-th priority in the (r, s).

Now obtain the expression for packets loss probability of different classes.
The probability of packets loss of the k-th class (priority) is equal to the

probability of the state when all the virtual channels allotted for k-th class of
flow in the channel (r, s) are occupied [2]:

P
(k)
losses(r,s) = P0 ·

(
f
(k)
rs

μ

)nk

· 1
nk!

·
(

f
(k)
rs

nkμ

)Nk

, (4)
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where μ is capacity of the base channel, e.g., μ1 = 2.048Mbit/s; nk is a number
of channels in the link (r, s) allotted for transmission of the k-th flow; Nk is a
buffer size in LSR assigned for queue of k-th class of packets; P0 is a normalizing
multiplier.

Then the loss ratio of the k-th class of packets will be equal to:

PLRk = 1 −
∏

(r,s)∈E

(
1 − P

(k)
losses(r,s)

)
. (5)

These models are used for the solution of problems of performance analysis and
optimization of NGN networks considered in this paper: (1) flows distribution
(FD) problem; (2) channels capacities choice and flows distribution (CCFD);
(3) NGN networks survivability analysis and optimization; (4) NGN structure
optimization under constraints on QoS indicators.

Consider the general statement algorithms for these solution.

3 Flows Distribution Problem

3.1 Problem Statement

Let be given NGN network as a graph G(X,E), where X = {xj} is a set of
nodes (routers), E = {(r, s)} is a set of channels, capacities of channels are
given {μrs} and matrices of demands for transmission of all the classes of flows
H(k) = ||hij(k)||, i, j = 1, n, where hij(k) is an intensity of information flow of k-
th class of service (CoS) to be transmitted from the node xi to node xj(Mbit/s).
It’s demanded to find such transmission routes and flows distribution for all the
classes F (k) = [frs(k)], under which the constraints on average packets delay

Tmean,k ≤ Tk,preassigned, k = 1,K, (6)

and constraint on the packets loss ratio

PLRk ≤ PLRk,preassigned, k = 1,K, (7)

will be fulfilled.

3.2 The Algorithm of FD Problem Solution

The algorithm consists of K stages (by number of classes of service) at each of
which the distribution of k-th class of flow is determined F (k) using constraints
6 and 7.

1 Stage
0 step. Initialize F1(0) = 0;H1(0) = 0.
This stage consists of 2C2

n = n(n−1) iterations at each of which flow distribution
from next demand hij is searched. i, j = 1, n, i �= j.
1 iteration
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1. Find the initial conditional metrics: lrs(1) = λ
∂Tmean,1

∂f
(1)
rs

+(1−λ)∂PLR1

∂f
(1)
rs

, where

λ ∈ [0; 1].
As an initial value of λ its possible to take λ = 0.5.

2. Determine the shortest paths in the chosen metrics between all the nodes -
πmin

ij (1).
3. Choose the first demand in matrix H1 = ||h1

ij ||, for example hi1j1 . Find the
shortest path πmin

i1j1
and distribute flow from the demand hi1j1 and find the

initial flows distribution:

f (1)
rs (1) =

{
f
(1)
rs (0) + hi1j1 = hi1j1 , if (r, s) ∈ πmin

i1j1
,

f
(1)
rs (0) = 0, otherwise.

(8)

End of the first iteration. Go to the second iteration.
r-th iteration
Let (r−1) iteration was completed, flows distribution of the first (r−1) demands
H(1) FD f

(1)
rs (r − 1) were found.

1. Determine the conditional metrics:

l(1)rs (r) = λ
∂Tmean,1

∂f
(1)
rs

+ (1 − λ)
∂PLR1

∂f
(1)
rs

|frs = f (1)
rs (r − 1). (9)

2. Choose the next demand hirjr from matrix H(1) and find the shortest path
πmin

irjr
in the metrics l

(1)
rs (r).

Distribute the flow from demand hirjr over the path πmin
irjr

and find the new
flow F1(r):

f (1)
rs (r) =

{
f
(1)
rs (r − 1) + hα

irjr
, if (r, s) ∈ πmin

irjr
,

f
(1)
rs (r − 1), otherwise.

(10)

where hα
irjr

= min{hirjr ;Qres(πmin
irjr

)} is a portion of hirjr which is transmit-
ted by the path πmin

irjr
.

End of r-th iteration.
The rest of iterations of the first stage are fulfilled similarly up to the full

exhausting of demands in matrix H(1). Denote the obtained flow F1 = [f (1)
rs ].

Check up the fulfillment of the following constraints:

Tmean(F1) ≤ T1,preassigned, (11)

PLR(F1) ≤ PLR1,preassigned. (12)

If the constraints (11) and (12) are fulfilled then end of the first stage and go to
the next stage 2. Otherwise, perform the additional optimization of the flow F1.
If after this step at least one of the constraints (11), (12) won’t be fulfilled, then
this problem is unsolvable at the given channels capacities.
k Stage
Let k − 1 stages were performed and flows distribution from the first (k − 1)
demands F1, F2, . . . , Fk−1 = [f (k−1)

rs ] were found. Find the distribution of the
k-th class of flows. The stage consists of n(n − 1) iterations like the first stage.
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1. Take the first demand hi1j1 out of matrix Hk = ||hk
ij ||. Find the shortest path

in the metrics (9) πmin
i1j1

(k).

2. Determine the capacity reserve of the path π
(k)min
i1j1

:

Qres(πmin
i1j1

) = min
(r,s)∈πmin

i1j1
(k)

{
μrs −

k−1∑
i=1

f
(i)
rs

}
− ε.

3. Distribute the flow of demand h
(k)
i1j1

with value hα
i1j1

, where

hα
i1j1

= min{h
(k)
i1j1

;Qres

(
πmin

i1j1

)} and calculate new flow value:

f
(k)
rs (1) =

{
f
(k)
rs (0) + hk

i1j1
, if (r, s) ∈ πmin

i1j1
(k),

f
(k)
rs (0), otherwise.

End of the first iteration.
The following iterations are performed similarly for the rest of demands in

matrix H(k) = ||hij(k)||, i, j = 1, n.
In result obtain flows distribution of the k-th class F (k) = [frs(k)].
Check the fulfillment of the constraints:

Tmean(Fk) ≤ Tk,preassigned, (13)

PLR(Fk) ≤ PLRk, preassigned. (14)

If both constraints are fulfilled then STOP, the end of algorithm.
In case if Tmean(Fk) > Tk,preassigned then the corresponding FD problem is

unsolvable under given channels capacities and requirements on given values of
QoS Tk,preassigned.

4 Problem of Optimal Capacities Choice and Flows
Distribution

For ensuring of transmission of all the input flows with given values QoS under
arbitrary demand matrices it’s necessary to solve combined problem of traffic
engineering in which the optimal channels capacities and flows distributions of
all classes should be found simultaneously.

4.1 Problem Statement

MPLS network structure is given as an oriented graph G = (X,E), where X =
{xj}, j = 1, n is a set of nodes (routers), E = {(r, s)} is a set of channels,
set of channels capacities D = {d1, d2, . . . , dk} and their costs of unit length
C = {c1, c2, . . . , ck}.

Let it also be given demand matrices of input flows of corresponding classes
H = ||h(k)

ij ||, i, j = 1, n, k = 1,K and constraints on average packets delay for
the k-th flow Tmean,k, k ∈ K1 ⊂ K, and the constraint on packets loss ratio for
different classes of flows.
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It’s required to choose such channels capacities {μ
(0)
rs } and to find the flows

distributions of all the classes F (k) = [frs(k)] for which total cost of NGN
network would be minimal and the established constraints on given values of
QoS be fulfilled completely:
Find

min CΣ =
∑

(r,s)∈E

Crs(μrs), (15)

under constraints

Tmean,k(F (k), μrs) ≤ Tpreassigned,k, k = 1,K, (16)

PLR(Fk) ≤ PLRk,preassigned. (17)

Describe the algorithm of solution the problem of capacities choice and flows
distribution (CCFD) for NGN network. It consists of preliminary stage and
finite number of iterations [2].

At the preliminary stage find initial channels capacities μrs(0) and flows
distributions of all classes F (k). Then go to the first iteration.
l + 1 iteration
Let l iterations be already performed and current capacities {μrs(l)}, flows dis-
tributions Fk(l) = [f (k)

rs (l)] and total network cost CΣ(l) were found.
The goal of iteration (l+1) is the optimization of channels capacities and flows

distribution by criterion of total cost minimization CΣ and check of optimality
condition.

1. For given values of capacities μrs(l) solve the problem FD and find new flows
distributions of all classes F(k)(l + 1) = [f (k)

rs (l + 1)], k = 1,K.
2. For new flows F(k)(l +1) solve the problem of optimal capacities choice (CC)

and find new channels capacities μrs(l+1) and total network cost CΣ(l+1) =∑
(r,s)∈E

μr0Crs(l + 1)

3. Compare if |CΣ(l) − CΣ(l + 1)| < ε, where ε is given accuracy, then end of
algorithm. Found capacities {μrs(l + 1)} and flows distribution of all classes
Fk(l + 1) are optimal, otherwise l := l + 1 and go to the next iteration.

5 Survivability Analysis

We’ll consider the system survivability as its ability to preserve its functioning
and to ensure the fulfillment of its main functions (perhaps in the shortened
amount) under given QoS. As the main MPLS network function is the transmis-
sion of different classes of packets flows so we’ll estimate the survivability level
as maximal flow value to be transmitted in a network under its channels and
nodes failures under given values of QoS factors [3].
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5.1 Survivability Analysis Problem Statement

Let it be given MPLS network which is defined by oriented graph G = {X,E}.
Assume that in network K classes of service (CoS) are transmitted due to so-
called demand matrices H(k) = ||hij(k)||, i = 1, N, j = 1, N (Mbits per sec).
For each flow class CoS the corresponding QoS are introduced. It’s necessary to
determine the survivability factors for a given network.

In papers [2,3] the following complex factor was suggested for survivability
analysis of MPLS networks

P{HΦ
Σ(1) ≥ r%H0

Σ(1)}, P{HΦ
Σ(2) ≥ r%H0

Σ(2)}, . . . , P{HΦ
Σ(k) ≥ r%H0

Σ(k)},
(18)

where H0
Σ(k) is k-th class flow value in the faultless state; HΦ

Σ(k) is real flow value
of class k in case of failures; r = (50 ÷ 100); k = 1,K; P{H0

Σ(k) ≥ r%H0
Σ(k)} is

the probability that flow value of k-th class transmitted in a network would be
not less than fraction r of nominal flow value in the faultless state H0

Σ(k).

5.2 The Algorithm of MPLS Networks Survivability Analysis

Let MPLS network G = (X,E) be considered consisting of n elements: channels
and nodes exposed to influence of environment due to which they may fail. It’s
assumed that reliability characteristics of network elements such as readiness
coefficients of channels kΓ (r,s) and nodes kΓi

are known. Consider the following
network failure states:

1. Failure of one channel: Z1;
2. Failure of one node: Z2;
3. Failure of two channels: Z3;
4. Simultaneous failure of one channel and one node: Z4;
5. Failure of three channels: Z5.

Assuming failures of network elements to be statistically independent events we
may determine the probability of each state P (Zi). For example, if Zi is the
failure state of the channel (ri, si) then

P (Zi) =
(
1 − KΓri,si

) ∏
(r,s) �=(ri,si)

KΓr,s

n∏
i=1

KΓi
, (19)

where KΓr,s
is a probability of faultless state of the channel (r, s), (r, s) �= (ri, si);

1 − KΓri,si
is a probability of the channel (ri, si) failure.

In [3] MPLS networks survivability estimation algorithm was suggested,
which consists of the following steps.

1. Compute the total flow value in the faultless state for all classes of service
(CoS) H

(0)
Σ (1),H(0)

Σ (2), . . . ,H(0)
Σ (K).

2. Simulate network different failure states: Z1, Z2, Z3, Z4, Z5. For each failure
state calculate the corresponding probability according to (19).
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3. Find the maximal flow value for all CoS in the state Zj : HΦ
Σ(k, zj), k = 1,K.

For it we use specially developed algorithm of finding maximal flow [1,2].
4. Calculate the complex survivability index for each CoS:

for CoS k
P{HΦ

Σ(k) ≥ r%H0
Σ(k)} =

∑
Zi

P (Zi), (20)

where summing in (20) is performed over all states Zi such that HΦ
Σ(k) ≥

r%H
(0)
Σ (k); H

(0)
Σ (k) is nominal flow value of the class k in network faultless

state; HΦ
Σ(k) is real flow value of the class k in case of failures; r = (50÷100);

k = 1,K.

The found dependencies P{HΦ
Σ(1) ≥ r%H0

Σ(1)}, P{HΦ
Σ(2) ≥ r%H0

Σ(2)}, . . . ,
P{HΦ

Σ(k) ≥ r%H0
Σ(k)}, are further presented as curves in coordinates

P{HΦ
Σ(k)} − r%H0

Σ and by its change we may estimate the survivability of
the corresponding network.

6 The Network Survivability Optimization Problem
Statement

In the process of network design after analysis of its survivability the prob-
lem arises to ensure the desired survivability level. Naturally, this problem may
be solved by the way of reserving its channels and nodes and the structural
optimization demanding the additional expenses. Consider the corresponding
problem statement of network structural optimization by survivability indices.

Let it be MPLS network which as earlier is defined by oriented graph G =
{X,E}, where X = {xj} is a set of network nodes, E = {(r, s)} is a set of
channels; μrs are channels capacities.

The reliability characteristics of channels and nodes are given, namely readi-
ness coefficients for channels KΓrs

and nodes KΓi
and corresponding failure

probabilities Pfailure,rs = 1 − KΓrs
.

For each class k quality of service (QoS) is given as a of mean
delay time value Tmean,k. Let judging from functional purpose the fol-
lowing values of survivability indicators are established for k flow class:
P

(k)
0,preassigned, P

(k)
2,preassigned, . . . , P

(k)
5,preassigned.

It is demanded to determine such network structure for which the following
requirements on survivability level will be ensured:

P{HΦ
Σ(k) ≥ r%H

(0)
Σ (k)} ≥ P

(k)
r,preassigned, r = (50 ÷ 100), k = 1,K, (21)

and the additional costs would be minimal: CΣ =
∑

Cres
rs (μrs) → min.

The achievement of the desired survivability level we’ll ensure by introduc-
ing corresponding reservation of the most responsible channels and nodes. For
reservation efficiency estimation we propose to introduce the following index for
channels

αrisi
= −ΔP (Zi)

Crisi

, (22)
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where Zi is a state of failure of the channel (ri, si); ΔP (Zi) is a probability change
of the state Zi in case of its reservation, Crisi

is a cost of this reservation.
The value ΔP (Zi) is estimated by the following formula:

Pres(Zi) − P (Zi) =

= − (1 − Pfailure,risi
) · Pfailure,risi

∏
(r,s) �=(ri,si)

KΓr,s
·

n∏
i=1

KΓi
=

= −(1 − Pfailure,risi
) · P (Zi), (23)

where Pfailure,risi
is failure probability of the channel (ri, si).

The similar expressions are used for estimation of nodes reservation.
The index αrisi

is used for selection the proper elements nodes and channels
to be reserved in the first turn. In [3] the following method of MPLS network
optimization by survivability level is suggested.

6.1 Method of MPLS Network Optimization by Survivability

The algorithm consists of finite number of iterations. On each iteration the next
element (node or channel) is reserved.
k iteration

1. For each channel and node the index αrisi
is calculated by formula (22).

2. Select channel (r∗, s∗) such that αr∗s∗ = max
(r∗,s∗)

αrisi
.

3. Reserve channel (r∗, s∗) and recalculate survivability indices for all the flow
classes after reservation using the following formula:

PH{HΦ
Σ(k) ≥ r%H

(0)
Σ } = P{HΦ

Σ(k) ≥ r%H
(0)
Σ } + |ΔP (Z∗

i )|, (24)

where ΔP (Z∗
i ) is a probability change of the state Zi after the channel (r∗, s∗)

reservation.
4. Check the fulfillment of condition (25):

PH{HΦ
Σ(k) ≥ r%H

(0)
Σ } ≥ P

(k)
r,preassigned, r = (50 ÷ 100), k = 1,K. (25)

If the conditions (25) are fulfilled for each r and for all the classes K, then
stop otherwise go to (k + 1) iteration.

The described iterations are repeated until the condition (6) would be true. The
algorithm converges by finite number of iterations not exceeding m + n, where
m is a number of channels n is a number of nodes.

7 NG Network Structure Optimization

The final stage of NGN performance analysis and optimization is network struc-
ture synthesis (optimization). Its statement is follows.
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There are given a set of network nodes X = {xj}, j = 1, n- MPLS
routers (so-called LRS Label Switching Routers), their locations over regional
area, channels capacities D = {d1, d2, . . . , dk} and their costs per unit length
C = {c1, c2, . . . , ck}, classes of service (CoS) are determined, matrices of input
demands for the k-th CoS are known H(k) = ||hij(k)||; i, j = 1, n; k = 1,K,
where hij(k) is the intensity of flow of the k-th CoS which is to transfer from
node i to node j in sec (Mbits/s).

Additionally the constraints are introduced on the Quality of Service (QoS)
for each class k as constraint on mean PTD (packets transfer delay) Tinp,k, k =
1,K, (16) and packets loss ratio (17).

It’s demanded to find network structure as a channels set E = {(r, s)}, choose
channels capacities {μrs} and find flows distributions of all classes so that ensure
the transmission demands of all classes H(k) in full volume with mean delays
Tav, not exceeding the given values Tpreassigned,k and by this the constraint on
packets loss ratio (PLR) should be fulfilled and total network cost be minimal
[1,4].

Let’s construct the mathematical model of this problem.
It’s demanded to find such network structure E = {(r, s)} for which

min
{μrs}

CΣ(M) =
∑

(r,s)∈E

Crs({μrs}), (26)

under constraints

Tav({μrs}; {frs}) ≤ Tpreassigned, k = 1,K, (27)

PLRk({μrs}; {frs}) ≤ PLRk,preassigned, k = 1,K, (28)

where PLRk({μrs}; {frs}) is packets loss ratio for the k-th flow, PLRk,preassigned

given constraint on its value.
This problem belongs to so-called NP-complete optimization problems. For

its solution general genetic algorithm was developed using two operators:
crossover and mutation [4].

Define matrix of channels K = ||kij ||, where

kij =
{

1, if ∃(i − j),
0, otherwise, i.e. ¬∃(i − j), (29)

for each network structure. Then initial population of different structures in
given class of multi-connected structures is generated with connectivity coef-
ficient 2. For synthesis we’ll use semi-uniform crossover which is grounded for
small population size.

Parents (structures Ei(k) are chosen randomly with probability inverse pro-
portional to cost CΣ(Ei(k)), each parent is determined by matrix Ki, i = 1, 2.
In the process of semi-uniform crossover each descendant receives exactly a half
of quantity of parents genes. The crossover mask is presented as the following
matrix M = ||mij ||:

mij =
{

0, if p ≥ p0,
1, if p < p0,
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where parameter p0 = 0, 5 and p ∈ [0; 1] is a random value.
This process of crossover may be written so:

E(k)′ = ||e(k)′
ij || =

{
(i − j)1, k1

ij = 1, if mij = 0;
(i − j)2, k2

ij = 1, if mij = 1.

In this crossover only one descendant is generated that to maximize the algo-
rithm productivity. In case if after crossover isolated sub-graphs were generated
then with direct channels they are connected to a root. Further for generated
descendant-structure E(k)′ capacities assignment and flows distribution prob-
lems are solved described in Sect. 4 and network total cost is calculated. Then
using cost value CΣ decision is made whether to include new structure E(k)′ in
the set of local optimal structures (new population) Π or not.

After crossover operation the mutations are performed. Note that basic GA
algorithm suggested in [1] uses unconditional mutations. Mutations consist in
deleting or adding new channels into network structure.

In the process of algorithm perfection in pair with unconditional muta-
tion the following schemes of crossover probability change were applied and
investigated [4]:

– Deterministic. Implementation of deterministic scheme of crossover probabil-
ity change is based on hypothesis that at different stages of genetic search
crossover may be more or less significant, therefore as a function of crossover
probability change should be used non-monotonic function. That’s why in this
problem we used the function σ(t) = | sin(t)|, where 0 ≤ t ≤ T .

– Adaptive. Define adaptive crossover as an operator whose probability decreases
if population is sufficiently homogeneous and increases in case if the population
is heterogeneous. As the measure of homogeneity/ heterogeneity we chose the
value

CΔ = max CΣ(Ei(k)) − CΣ(Ej(k)), i ∈ [1, . . . , n], j ∈ [1, . . . , n], i �= j,

where n is a population size (in this case n = 3).
It’s reasonable to suggest that in case of similar individuals in population

the crossover operation will be inefficient and vice versa. Therefore in adaptive
crossover the law of crossover probability change takes the form:

σ(t) =

⎧⎨
⎩

σ(t − 1)λ, if CΔ > C∗,
σ(t − 1)/λ, if CΔ < C∗,
σ(t − 1), if CΔ = C∗,

(30)

where C∗ is threshold value, λ = 1, 1 is a learning coefficient.
After experiments with real problems of NG network structure optimization

it was found that a combination of dynamic adaptive crossover and unconditional
mutation: proved to be the most successful and ensured the performance increase
(cost cut) by 20–22% [4]. Thus, the hypothesis about some positive properties
of crossover which mutation operator doesn’t have was confirmed. Note that
application of crossover is grounded only if a population is heterogeneous, i.e.
the individuals differ from each other sufficiently.
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Fig. 1. Structure of software kit “NGN NetBuilder”

8 Structure and Functions of Software Kit “NGN
NetBuilder”

In accordance with developed algorithms a software kit “NGN Builder” was
designed. Software kit consists of the following functional modules:

– Module of estimation of QoS indicators: packets average delay Tmean,k and
PLRk;

– Module of analysis and performance optimization of NGN including software
products flows distribution (FD) and capacities assignment (CA) and flows
distribution;

– Module of NGN survivability analysis and optimization;
– Module of structural synthesis of NG networks

Structure of software complex “NGN Builder” and information connections
between modules are presented in Fig. 1. Apart from main functional modules
software complex contains service modules, including interface module for inter-
connection with designer. This software module allows to put out the synthesized
structure at map, to perform design procedures, to present by indication of user
at the display flows distribution and transmission routes, the channels charac-
teristics, their loads.

For software kit “NGN NetBuilder” was developed and installed a data bank
consisting of several data bases (DB) including:

1. DB of input flows;
2. DB of network channels and nodes with their characteristics;
3. DB of flows distribution of different classes over channels.
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All functional modules interact with each other by data bases. As the DB
management system MySQL Server is used.

The software kit “NGN NetBuilder” enables to solve wide scope of prac-
tical problems of NG networks analysis and optimal design under constraints
on the values of QoS indicators: packets transfer delays and packets loss ratio
PLR for different classes of service, analyze survivability and perform structure
optimization under constraint on survivability level.

9 Experimental Results

The experimental investigations of methods and algorithms of software kit were
carried out. Some of them are presented below.

Algorithms FD and CA FD were explored at the global Ukrainian network
whose structure is presented in the Fig. 2. Three classes of service were intro-
duced. During experiments in the algorithm FD elements of demand matrix were
increased by multiplying of corresponding elements on a coefficient k. Under the
increase of input demands the delays in data transfer were also increased for all
classes of service.

The dependence of average packets transfer delay for the first class (K1) is
presented in the Fig. 3, and for the second class (K2) - in the Fig. 4. In the next
experiments the algorithm CCFD was investigated. In these experiments the
dependence of network cost versus transfer delay for different CoS was explored.
The corresponding dependence for class 2 is presented in the Fig. 5. As it was
expected the less is constraint on transfer delay the greater would be the network
cost. This may be explained thereby for decrease of values Tmean it’s necessary
to increase channels capacities (Fig. 6).

Fig. 2. Structure of a global investigated network
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Fig. 3. Dependence PTD for first class flow (CoS1) versus loading coefficient K1

Fig. 4. Dependence PTD for second class flow (CoS2) versus loading coefficient K2

In the next experiment the dependence network cost versus variation of input
flows volumes (intensities). For this initial demand matrices Hk were multiplied
by corresponding coefficient k. In the following experiments the investigations
of survivability analysis algorithms were carried out. All experiments were per-
formed for channels readiness coefficients uniformly distributed in the interval
[0,9; 0,95], and for nodes coefficients uniformly distributed in the [0,95; 0,99]. The
algorithm of network optimization by survivability indicators was explored. The
initial survivability values are presented in the Table 1, and after optimization
in Table 2.
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Fig. 5. Dependence network cost versus constraint on PTD for second class flow

Fig. 6. Dependence network cost versus input flow intensity

Table 1. Initial survivability indicators for different CoS before optimization.

H,% Class 1 Class 2 Class 3 Class 4

0,5 0,385 0,385 0,385 0,385

0,6 0,385 0,385 0,385 0,385

0,7 0,385 0,385 0,385 0,385

0,8 0,385 0,385 0,385 0,385

0,9 0,385 0,385 0,385 0,357

1 0,385 0,385 0,385 0,357
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Table 2. Survivability indicators after optimization.

H,% Class 1 Class 2 Class 3 Class 4

0,5 0,814 0,75 0,72 0,70

0,6 0,814 0,75 0,72 0,70

0,7 0,814 0,75 0,72 0,70

0,8 0,814 0,75 0,70 0,68

0,9 0,814 0,72 0,70 0,65

1 0,75 0,72 0,68 0,65

Fig. 7. Optimized structure of global MPLS network

In the following experiments the suggested genetic algorithm for NGN struc-
tural optimization was investigated. During experiments the matrices of input
flows and constraints on QoS indicators were varied. Analysing the obtained
structures after varying the intensities of input flows in the range 0, 2–2, 0 of
nominal values it was detected the stability of network back bone structure under
sufficiently wide variation of input load.

In the Fig. 7 the optimized structure obtained with application of suggested
genetic algorithm which realizes a combination of dynamic adaptive crossover
and unconditional mutation is presented. Note that cut in total network cost for
optimized structure in comparison with initial structure equals to 14250 thou-
sand $−10023 thousand $ = 4227 thousand $, i.e. the cost after optimization
is by 30% less than the cost of initial network structure. Additionally the sug-
gested algorithm productivity increased by 22% in comparison with basic genetic
algorithm [4].
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10 Conclusion

The instrumental kit of algorithms and programs “NGN Builder” for analysis
and optimization of NGN networks is described. The developed software kit is
based on the original methods and algorithms.

The developed kit enables to solve wide range of NG networks design prob-
lems, incl. optimal flows distribution, optimal capacities choice and flows distri-
bution, survivability analysis and network structure synthesis under constraints
on the set QoS values.

The experimental investigations of suggested algorithms were carried out.
The developed kit enables to cut design time, and decrease the costs of NG

networks to be designed.
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One Problem of the Risk Control
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Abstract. A problem of supply order is considered. It is necessary to
determine an order which gives the minimal probability of the upset-
ting of the supply. A corresponding probabilistic model is elaborated.
The reduced gradient method is used for the minimization. Numerical
example illustrates the efficiency of the suggested approach.

Keywords: Normal distribution · Reduced gradient method · Planned
reward · Risk minimization

1 Introduction

We consider the following problem of the risk. A firm wishes to order some
product. The full size of the order equals m∗. For that the firm has the money
resources C. There exists n suppliers with numbers i = 1, . . . , n. The i-th supplier
is characterized by the following indices: ai - maximal size of the supply, ci -
the cost of the product per unit. A product quality is different for the different
suppliers and is a random variable. As result, production unit of the i-th supplier
gives a random reward Ri. Additionally, Ri has normal distribution with mean
ri and standard deviation σi. Vector R = (R1, R2, . . . , Rn) has multivariate
distribution with mean r = (r1, r2, . . . , rn) and covariance matrix σ = (σi,j)n×n

where σi,i = σ2
i . The firm is planning getting a reward r∗, at least. It is necessary

to determined supply plan m = (m1,m2, . . . ,mn), which satisfies the request
size m∗ and the disposed sum C, and gives the minimal probability that gotten
reward S = R1m1 + R2m2 + . . . + Rnmn will be less then r∗.

Let us give a mathematical setting of the described problem. The reward of
the firm is the random variable S = m1R1 + m2R2 + . . . + mnRn = mT R. We
suppose that it has normal distribution with mean and variance, calculated by
formulas

E(S) = r1m1 + r2m2 + . . . + rnmn = rT m,

V (S) = mT σm =
n∑

i=1

n∑
j=1

miσi,jmj . (1)

If Φ(z) is the cumulative distribution function of the standard normal distri-
bution, then the probability doesn’t receive the planned reward r∗

P{S ≤ r∗} = Φ
(r∗ − rT m√

V (S)

)
. (2)

c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 162–167, 2016.
DOI: 10.1007/978-3-319-51917-3 15
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We must minimize this probability under restrictions:

m1 + m2 + . . . + mn = m∗,

m1c1 + m2c2 + . . . + mncn ≤ C, (3)

0 ≤ mi ≤ ai, i = 1, . . . , n.

It is possible to simplify the formulas if to consider weights w =(
m1
m∗ , m2

m∗ , . . . , mn

m∗

)
instead of m1,m2, . . . ,mn. Setting C∗ = C/m∗, ρ = r∗/m∗,

αi = ci/m∗, and D(w) = V (S)(m∗)−2 = wT σ w, have the problem:
Minimize

f(w) = P
{ S

m∗ ≤ ρ
}

= Φ
{ρ − rT w√

D(w)

}
(4)

under restrictions
w1 + w2 + . . . + w1 = 1,

w1c1 + w2c2 + . . . + wncn ≤ C∗,

0 ≤ wi ≤ αi, i = 1, . . . , n. (5)

We will solve this problem by reduced gradient method [1].

2 Reduced Gradient Method

Using vector-matrix notations

A =
(

1 1 . . . 1
c1 c2 . . . cn

)
,

(
1

C∗

)
, w = (w1 w2 . . . wn)T ,

we rewrite two upper equations as

Aw = b. (6)

Let us declare wi and wj , i �= j, as basic variables, the remaining - non-basic
ones, and denote wB = (wi, wj), wN = {w1, . . . , wn}−(wi, wj) so w = (wB wN ).
Let B be the submatrix of A corresponding to the basic variables, and N be the
analogous matrix for non-basic variables. We suppose that the basic is such, that
matrix B is nonsingular matrix. Then we have

Bwb + NwN = b,

wb = B−1(b − NwN ) = b̄ − N̄wN ,

where b̄ = B−1b, N̄ = B−1N.

As the basic variables dependent on non-basic variables only, we have for the
aim function

f̄(wN ) = f(wB , wN ) = f(B−1(b − NωN )wN ). (7)
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The gradient is calculated with respect to the chain rule [2]:

∂

∂wN
f̄(wN ) =

∂

∂wN
f(wB , wN )|wB=b̄B−1wN

+
( ∂

∂wN
wB

) ∂

∂wB
f(wB , wN ) =

∂

∂wN
f(wB , wN )|wB=b̄−N̄wN

+ (−B−1N)T ∂

∂wB
f(wB , wN )|wB=b̄−N̄wN

. (8)

The gotten vector is called the reduced gradient uN (w):

uN (w) =
∂

∂wN
== f̄(wN ) =

∂

∂wN
f(wB , wN )|wB=b̄−N̄wN

− N̄T ∂

∂wB
f(wB , wN )|wB=b̄−N̄wN

. (9)

Now the gradient optimization works as follows. Let current value
w = (wB , wN ) be gotten. We go to direction y = (yB , yN ), where yN is deter-
mined as follows:

yi = 0 if > 0 and wi = 0, or ui < 0 and wi = αi,

yi = −u, otherwise,

and for the basic variables yB = −N̄wN .
If yN = 0, then the optimum is reached. Otherwise we find value θ > 0, which

minimizes function g(w) = Pr(w+θy). The non-negation condition requests that

θ ≤ θmax =
min

yi < 0

{
−wi

yi

}
.

This one-dimension procedure gives optimal value θ∗ on the interval (0, θmax).
Two cases are possible here.

(1) θ∗ < θmax. The procedure is continued with new point ω′ = ω +θ∗y and the
same base B.

(2) θ∗ < θmax. In this case one basic variable, let with number s, is cancelled. If
it is non-basic variable then the base doesn’t change and all is repeated. If
it is a basic variable then the base is changed. Any non-basic variable with
number t is introduced on the base, if new matrix B will be nonsingular.

3 Reduced Gradient of the Aim Function

We have:

∂

∂wi
Φ

(ρ − rT w√
D(w)

)
=

∂

∂wi

ρ−rT w√
D(w)∫

−∞

1√
2π

exp
(

− 1
2
z2

)
dz
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=
1√
2π

exp
(
−1

2
(ρ − rT w√

D(w)

)2) ∂

∂wi

(ρ − rT w√
D(w)

)

=
1√
2π

exp
(
−1

2
(ρ − rT w√

D(w)

2))
.

(
− 1√

D(w)
ri − (ρ − rtw)

1
2
D(w)−3/2 ∂

∂wi

( n∑
k=1

n∑
j=1

wkσk,jwj

))

=
1√
2π

exp
(
−1

2
(ρ − rT w√

D(w)

)2)
.

(
− 1√

D(w)
ri − (ρ − rT w)

1
2
D(w)−3/22

n∑
j=1

σi,jwj

)
.

Therefore the full gradient is of the form

∇f(w) =
∂

∂w
f(w) =

1√
2π

exp
(
−1

2
(ρ − rT w√

D(w)

)2)·

(
− 1√

D(w)
r − (ρ − rT w)D(w)−3/2σw

)
.

The sub-gradient ∂
∂wN

f(w) is the following:

∂

∂wN
f(w) =

1√
2π

exp
(
−1

2
(ρ − rT w√

D(w)

)2)·

(
− 1√

D(w)
rN − (ρ − rT w)D(w)−3/2σwN

)
, (10)

where rN and wN are subvectors of r and w, corresponding to non-basic
variables.

The sub-gradient ∂
∂wB

f(w) is calculated analogously by means of change rN

and wN by rB and wB . Also the reduced gradient is calculated.

4 Numerical Example

Below there is presented relative initial data, corresponding to unit production:
the disposed financial sum C∗ = 15, the number of the suppliers n = 5, the
vector of the costs per unit of the production c = (9 12 15 18 21), the vector
of reward means r = (10 15 20 25 30). A restrictions on maximal sizes of the
supply {ai} is absent. Rewards from various suppliers are multivariate random
vector with standard deviation σ = (4 7 9 12 17). Minimal desired reward
r∗ = 25.
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Iterative procedure begins with uniform distributed orders w = (0.2 0.2 0.2
0.2 0.2). Matrix A and vector b from (6) are the following:

A =
(

1 1 1 1 1
9 12 15 18 21

)
, b =

(
1
15

)
.

Initially the basic variables are w1 and w2, so

B =
(

1 1
9 12

)
, N =

(
1 1 1
15 18 21

)
,

B−1 =
(

4 −1/3
−3 1/3

)
, N̄ = B−1N =

(−1 −2 −3
2 3 4

)
.

Table 1 below contains stepwise results of the gradient optimization: the cur-
rent vector of the variables w, corresponding aim’s function value P , and further
the numbers i and j of basic variables, the step length along gradient θ for the
next step. We see that minimal probability equals 0.717 and is reached by vector
(0.5 0 0 0 0.5), but it is a local minimum only. The less value of the probability
is reached for the degenerative case when the third supplier is used only, namely
vector (0 0 1 0 0) gives probability 0.711. As the sequence of basic solutions
(ε 0 1 − 2ε 0 ε) and (0 ε 1 − 2ε 0 ε) trends to (0 0 1 0 0) when ε tends to
0, we can get probability P arbitrarily close to 0.711.

Now we suppose that restrictions on maximal sizes of the supply from
the third and fifth suppliers exist: α3 = 0.8, α5 = 0.4. In this case vector
(0.10 0.8 0 0.1 0) gives optimal solution with probability P (0.10 0 0.8 0 0.10) =
0.750. Other solution grows worse: P (0.4 0 0.2 0 0.4) = 0.756, P (0 0.5 0 0.5
0.10) = 0.764. The situation is changes for various values of the desired reward r∗.
For example, if restrictions on maximal sizes of the supply αi absents and the firm
wish cover its own expenses at least, i.e. r∗ = C∗ = 15, then the optimal solu-
tion is (0.169 0.226 0.224 0.197 0.184) or (0.182 0.208 0.216 0.216 0.178).
This solution insures the probability of the expenses covering 0.145. It is close

Table 1. Protocol of gradient optimization

Step 1 2 3 4 5 7 8

w1 0.200 0.247 0.436 0.464 0.492 0.500 0.500

w2 0.200 0.136 0.048 0.009 0.009 0.000 0.000

w3 0.200 0.201 0.055 0.056 0.000 0.000 0.000

w4 0.200 0.203 0.001 0.002 0.002 0.000 0.000

w5 0.200 0.213 0.459 0.468 0.496 0.500 0.500

P 0.851 0.846 0.730 0.719 0.717 0.717

i 1 1 1 1 2 2 2

j 2 5 2 3 3 3 3

θ 0.02 0.02 0.01 0.01 0.01 0.01 0.01
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to uniform distributed order w = (0.2 0.2 0.2 0.2 0.2), which gives probability
0.149. The previous optimal solutions (0.5 0.0 0.0 0.0 0.5) and (0 0 1 0 0)
give worse results 0.283 and 0.289, correspondingly.

More involved situation arises, if we take into account dependence of the
rewards for various suppliers.

5 Conclusions

Considered examples show that it is impossible to foresee a solution, that insures
the minimal risk. The probability theory gives us such possibilities.
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Abstract. The proposed model is a virtual connection managed by the
transport protocol with a forward error correction mechanism for selec-
tive repeat mode in the form of Markov chain with discrete time. The
analysis of the impact of protocol parameters window size and the dura-
tion of the timeout of waiting confirmation, the likelihood of distortion
of the segments in the individual links of the transmission path data,
the duration of the round-trip delay, the parameters of mechanism to
restore the distorted segments (without retransmissions) on throughput
of a transport connection. In the area of protocol parameters, the charac-
teristics of the transmission channel and parameters of the forward error
correction mechanism found in the area of superiority of the manage-
ment procedures of the transport protocol with forward error correction
over the classic procedure with decision feedback on the criterion of the
throughput of a transport connection. The expediency of applying of
the method of forward error correction for transport links with large
round-trip delay.

Keywords: Transport protocol · Data path · Forward error correction ·
Markov chain · Throughput of a transport connection · Window size ·
Duration of the timeout · Round-trip delay · Loss rate

1 Introduction

The most important indicator of the quality of interaction and networking applica-
tions used software and hardware of computer networks is the throughput trans-
port links. This operating characteristic is largely determined by the transport
protocol, its parameters—the width of the window and the duration of the time-
out [1,2], as well as additional mechanisms to increase performance by reducing
the number of retransmissions of distorted data [3–5]. Simulation of the subscriber
connection and the analysis of its potential ability to perform is in the [2–10], and
other works. But the results were obtained only for single-link data path [6–8], or
with significant restrictions on the protocol parameters [9,10]. Known technology
of forward error correction (FEC) are used as the transport protocol typically as
services for the lower level network architecture [3–5]. A comprehensive analysis of
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 168–181, 2016.
DOI: 10.1007/978-3-319-51917-3 16
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the advantages and effectiveness of the methods of advanced error correction per-
formed only on a qualitative level, as well as numerically for a number of special
cases and not allowed to identify areas of possible application methods in the area
of protocol parameters and characteristics of the transport connection. Modern
transport protocols contain a wide variety of congestion control mechanisms [11].
There is a wide range of studies [11–21] in the field of control parameters of the
transport protocol with the aim of preventing and bypass congestion, focused on
building models of diagnostic over various indicators [11] and adaptation of pro-
tocol parameters and mechanisms of error correction to changing network load
and connectivity, the level of losses, activity interactive subscribers, etc. condi-
tions of data transmission. However, the implementation of control mechanisms to
bypass congestion based on available bandwidth of the transport connection at the
current and predictable to changing the values of protocol parameters. Thus, the
potential of the transport protocol using the methods of forward error correction
has not been studied yet. There is no analytical dependence of the overall effect
of protocol parameters, the characteristics of the transmission channel data and
parameters of the correction method, the resulting operating characteristics of the
transport connection. Not studied the effect of correlations between the duration
of round-trip delay and protocol parameters on the throughput of the transmis-
sion path of the managed data transport protocol. In addition, the process of data
transmission in computer networks are essentially discrete in nature [22], due to
the pipeline transfer mechanism in the network of limited size segments and the
use of algorithms with decision feedback at different levels of network architecture,
however, most of the results [2–7,11–20] based on models with continuous time,
which leads to the narrowing of the field of their applicability.

The paper presents a mathematical model of the data transfer process from
the FEC in the phase of information transfer in the form of a Markov chain
with discrete time, analytically found stationary distribution of probabilities of
states for the mode of selective reject, [2] obtained analytical expressions for
the bandwidth on the basis of which the analysis of potential capabilities of the
transport connection is performed.

2 Transport Connection Model

Let’s consider the process of transferring data between subscribers of transport
protocol based on the algorithm with decision feedback and operating in a selec-
tive reject mode [2]. An example of such reliable family of protocols is dominant
in modern computer networks, the TCP protocol [1]. We believe that interactive
subscribers have unlimited data stream for transmission, and the exchange is
performed by data units of the transport protocol (segments) of equal length.
We believe that the area of hops along the transmission path data have the
same speed in both directions, and the length of loop segment in a separate
link is t. In general, the path length from the sender to the destination of the
transfer information flow, and the length of the return path that are transmitted
to received acknowledgment segments can be different. We believe that the data
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length of the transmission path, expressed in hop number of sites in the forward
direction is equal Dn ≥ 1. Reverse path delivers the confirmation to the sender
about the correct reception of the blocks of the sequence of segments has length
Do ≥ 1. Set the probability of segment distortions in communication channels for
forward Rn(d), d = 1,Dn and reverse Ro(d), d = 1,Do directions of transmission
of each part of hops. Then the reliability of segments transmission along the path
from the sender to the destination and back will be Fn =

∏Dn
d=1(1 − Rn(d)) and

Fo =
∏Do

d=1(1 − Ro(d)) respectively. We believe that the loss of segments due to
the absence in the buffer memory in tract’s nodes does not occur. We believe that
data transmission by the sender is implemented by blocks containing B segments
of which 1 ≤ A ≤ B—are informative, and B−A—additional (redundant) of the
same length. Loss (distortion) to B − A arbitrary segments in the block allows
you to restore all of the block segments for RAID-arrays of the fourth level [23].
Flow control mechanism is implemented by sliding window [1,2] protocol para-
meters with a window width w ≥ 1, expressed in a number of blocks. We believe
that the verification of the correctness of the received target segments blocks
are transferred in each segment of the oncoming flow. In case of impossibility of
direct recovery of the transmitted segment blocks (the distortion more B − A
segments in the block) entire block is retransmitted. Then, the process of infor-
mation transfer in virtual connection managed by the transport protocol, can be
described by Markov process with discrete time (with the cycle duration t) due to
the fact that the time between the receipt of confirmation has the geometric dis-
tribution with parameter Fo. This model is a generalization of the formalizations
of the data transfer process, proposed in [3–6], in case of a transport connection
of arbitrary length and the mechanism of forward error correction. The area of
possible states of the Markov’s chain determined by the duration of the timeout
of waiting confirmation S, expressed in number of cycles of duration t. The size
of the time-out is associated with the length of the tract, the width of the win-
dow and a block size of the inequalities S ≥ wB + 1, S ≥ Dn + Do + B − 1. It is
obvious that the sum of the lengths of the forward and backward paths can be
interpreted as a circular delay of a single segment D = Dn + Do, expressed in
the durations t (excluding losses of protocol blocks in the transmission along the
path). The cyclic delay for block of segments will be D+B−1. The states of the
Markov chain i = 0, wB corresponds to the size of the queue transmitted, but
not confirmed segments in the stream, and the states i = wB + 1, S − 1—the
time during which the sender is not active and is waiting to receive confirmation
about the correctness of receiving the transmitted sequence from w blocks of
segments. From the zero state in the (D+B −2)-th sender is moving with every
cycle t with a probability of determine event. In the states i ≥ D+B−2 after the
expiration of the next discrete cycle t the sender begins to receive confirmation
and, depending on the results of the delivery units of the segments according
to the technology of forward error correction, the sender transmits new blocks
of segments (with positive confirmation) or re-distorted (not allowing to direct
recovery). The completion of the cycle of the host state D + B − 2 corresponds
to the time of bringing the first set of segments to the destination and receiving
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an acknowledgment. Further growth of the state occurs with a probability of
distortion of the confirmation 1−Fo in the reverse path. In states i ≥ D +B −2
in the selective reject mode the confirmation gives conversion to (D−1)-th state
when w ≥ K + 2, K =

⌊
D−2

B

⌋
, where �· · · �—means “integer part” of the frac-

tion, or in the state kB, k = 1, w − 1 where w ≤ K + 1. Due to the fact that
in states i ≥ wB the sender stops sending blocks of segments, obtaining con-
firmation when w ≥ K + 2 in the states i = (w + 1)B − 1, (w + K + 1)B − 2,
k = 1,K leads to a transition in state D − kB − 1, k = 1,K. When w ≤ K + 1
out of state i = D + (w − K)B − 2,D + (w − k + 1)B − 3, k = 1,K there is
a transition to state kB, k = 1, w − 1. In states i = (w + K + 1)B − 1, S − 2
with arbitrary width of the window there is a transition to zero state, since the
size of the queue transmitted but unconfirmed information segments come clear.
In the state S − 1 the timeout period of waiting for acknowledgment from the
recipient runs out, of the correctness of the received blocks and segments and
there is unconditional conversion to zero state.

3 The State Probabilities for Selective Rejection Mode
with Forward Error Correction Mechanism

The transition probabilities πij from the initial state i in the resulting j Markov’s
chain that describes the process of transmission of information flow with the
technology of direct correction error in selective reject mode have the form:

πij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, j = i + 1, i = 0,D + B − 3;
1 − Fo, j = i + 1, i = D + B − 2, S − 2;
Fo, j = D − 1, i = D + B − 2, (w + 1)B − 2, w ≥ K + 2;
Fo, j = kB, i = D + (w − k)B − 2,D + (w − k + 1)B − 3,

k = 1, w − 1, w ≤ K + 1;
Fo, j = D − kB − 1, i = (w + k)B − 1, (w + k + 1)B − 2,

k = 1, w − 1, w ≥ K + 2;
Fo, j = 0, i = (w + K + 1)B − 1, S − 2;
1, j = 0, i = S − 1.

A variety of types of solutions for system of equilibrium equations for probabil-
ities of states of Markov’s chain is determined by the relationships between the
protocol parameters w, S, the size of block parameter B and the total length of
the tract D. Since the duration of the timeout must exceed the window width
and be no shorter than the round trip delay of block segments (S ≥ D +B − 1),
there are five variants of the solutions for various areas of applications of protocol
parameters.

For the protocol-related parameters associated with total path length of
inequalities of the form

w ≥ K + 2, S ≥ D + (w + 1)B − 2, (1)
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the system of local equations can be written as follows:

P0 = PS−1 + Fo

S−2∑
i=B(w+K+1)−1

Pi; (2)

Pi = Pi−1, i = 1,D−KB−2,D−(K−k)B,D−(K−k−1)B−2, k = 0,K; (3)

PD−kB−1 = PD−kB−2 + Fo

(w+k+1)B−2∑
i=(w+k)B−1

Pi, k = 1,K; (4)

PD−1 = PD−2 + Fo

(w+1)B−2∑
i=D+B−2

Pi; (5)

Pi = Pi−1(1 − Fo), i = D + B − 1, S − 1. (6)

Taking into account the condition of normalization the solution of this system
is determined by the relations:

Pi = P0, i = 0,D − KB − 2;

Pi = P0(1 − Fo)−kB , i = D−(K−k+1)B−1,D−(K−k)B−2, k = 1,K;

Pi = P0(1 − Fo)D−1−(w+k)B, i = D − 1,D + B − 2;

Pi = P0(1 − Fo)i−(w+K+1)+1, i = D + B − 1, S − 1;

P0 = Fo

[
1−(1−Fo)B

]
(1−Fo)B(w+K)

/{(
1−(1−Fo)B

)[
(D−KB−1)×

Fo(1−Fo)B(w+K) + (1−Fo)D−1
(
1+Fo(B−1)−(1−Fo)S−D−B+2

)]

+ Fo(1−Fo)wB
(
1−(1−Fo)KB

)}
. (7)

If the window width w prevails over the total paths length of the data trans-
mission, and the range of the duration of the timeout S interval has limitations

w ≥ K + 2, (w + 1)B ≤ S ≤ D + (w + 1)B − 2, (8)

the balance Eqs. (2) and (3) for states i = 0,D − 2 are converted to

P0 = PS−1; (9)

Pi = Pi−1, i = 1,D−(M+1)B−2,D−(M−k+1)B,D−(M−k)B−2,

k = 0,M + 1;

PD−(M+1)B−1 = PD−(M+1)B−2 + Fo

S−2∑
i=(w+M+1)B−1

Pi;

PD−kB−1 = PD−kB−2 + Fo

(w+k+1)B−2∑
i=(w+k)B−1

Pi, k = 1,M.
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Here M = �S/B� − w − 1—the distance, expressed as a length of the block B,
between the states of Markov’s chain S − 2 and (w + 1)B − 1, and correspond-
ing non-sender activity. The probabilities of the Markov’s chain are taking the
following form:

Pi = P0, i = 0,D − (M + 1)B − 2;

Pi = PD−kB−1, i = D − (M − k + 1)B,D − (M − k)B − 2, k = 0,M ;

PD−kB−1 = P0(1 − Fo)B(w+k)−S , k = 1,M + 1;

Pi = P0(1 − Fo)D+B−S−1, i = D − 1,D + B − 2;

Pi = P0(1 − Fo)i−S+1, i = D + B − 1, S − 1;

P0 = Fo(1−Fo)S
(
1−(1−Fo)B

)/{
BFo(1−Fo)B(w+1)

(
1−(1−Fo)B(M+1)

)

+
(
1−(1−Fo)B

)[(
D−(M+1)B

)
Fo(1−Fo)S +(1−Fo)D+B−1 (10)

×
(
1+Fo(B−1)−(1 − Fo)S−D−B+1

)]}
. (11)

For window width w and the length of the timeout duration S of type

w ≥ K + 2, wB + 1 ≤ S < (w + 1)B, (12)

balance equation converted to

Pi = Pi−1, i = 1,D − 2,D,D + B − 2;

PD−1 = PD−2 + Fo

S−2∑
i=D+B−2

Pi.

The solution takes the form:

Pi = P0, i = 0,D − 2;

Pi = P0(1 − Fo)D+B−S−1, i = D − 1,D + B − 2;

Pi = P0(1 − Fo)i−S+1, i = D + B − 1, S − 1;

P0 =
Fo(1 − Fo)S

(DFo − 1)(1 − Fo)S +
[
1 + Fo(B − 1)

]
(1 − Fo)D+B−1

. (13)

Under restrictions on the protocol parameters

1 ≤ w ≤ K + 1, S ≥ D + (w + 1)B − 2, (14)
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the balance Eqs. (3) and (4) can be rewritten as:

P0 = PS−1 + Fo

S−2∑
i=D+(w+1)B−2

Pi;

Pi = Pi−1, i = kB+1, (k+1)B−1, (w−1)B+1,D+B−2, k = 0, w − 2;

PkB = PkB−1 + Fo

D+(w−k+1)B−3∑
i=D+(w−k)B−2

Pi, k = 1, w − 1.

The state probabilities in this case have subset (i = (w − 1)B,D + B − 2) of
values, and invariant to the number of states:

Pi = P0(1 − Fo)−kB , i = kB, (k + 1)B − 1, k = 0, w − 2;

Pi = P0(1 − Fo)−(w−1)B , i = (w − 1)B,D + B − 2;

Pi = P0(1 − Fo)i−D−wB+2, i = D + B − 1, S − 1;

P0 = Fo(1 − Fo)B(w−1)
[
1 − (1 − Fo)B

]/{[
1 +

(
D − (w − 2)B − 2

)
Fo

−(1−Fo)S−D−B+2
][

1−(1−Fo)B
]
+Fo(1−Fo)B

[
1−(1−Fo)B(w−1)

]}
. (15)

In the case of interval limitation on both the protocol parameters

1 ≤ w ≤ K + 1, D + B − 1 ≤ S ≤ D + (w + 1)B − 2 (16)

Equation (2) takes the form (9) and the Eqs. (3) and (4) is converted to the
following:

Pi = Pi−1, i = 1, (w − N − 1)B − 1, kB, (k + 1)B − 1, wB,D + B − 2

k = w − N,w − 1;

PkB = PkB−1 + Fo

D+(w−k+1)B−3∑
i=D+(w−k)B−2

Pi, k = w − N,w − 1;

P(w−N−1)B = P(w−N−1)B−1 + Fo

S−2∑
i=D+(N+1)B−2

Pi.

Here N = �(S − D + 1)/B� − 1—the distance between the last condi-
tional recurrent state of Markov’s chain S − 2 and a state D + B − 2, in
which the sender begins to receive acknowledgements. Local balance equa-
tions solution will be determined by the dependencies of two subsets (i =
0, (w − N − 1)B − 1, (w − 1)B,D + B − 2) of the probabilities of state’s values
that do not depend on number of the state:



Forward Error Correction in Selective Mode of Transport Protocol 175

Pi = P0, i = 0, (w − N − 1)B − 1;

Pi = P0(1 − Fo)D+(w−k)B−S−1, i = kB, (k+1)B−1, k = w−N−1, w−2;

Pi = P0(1 − Fo)D+B−S−1, i = (w − 1)B,D + B − 2;

Pi = P0(1 − Fo)i−S+1, i = D + B − 1, S − 1;

P0 = Fo(1−Fo)S
[
1−(1−Fo)B

]/{
BFo(1−Fo)D+2B−1

[
1−(1−Fo)BN

]

+
[
1−(1−Fo)B

]{
(1−Fo)S

[
Fo

(
1+B(w−N−1)

)−1
]
+(1−Fo)D+B−1

×
[
1+Fo

(
D−B(w−2)−2

)]}}
. (17)

Thus, the stationary probability distribution of Marcov circuit states with
different relationships between the width of the window w, duration of a time-
out S, the total length of the transmission path D and data block size B (1),
(8), (12), (14), (16) determined by is the relations (7), (11), (13), (15) and (17)
respectively.

4 Throughput Analysis of Selective Repeat Mode

The most important operating characteristic of the Protocol is its throughput,
defined by the parameters of the data transmission channel and the mechanism
of forward error correction, and overhead as well as the peculiarities of procedure
of transmission control [1,2]. Normalized performance of a transport connection
is determined by the average number delivered to the recipient undistorted seg-
ments (including selective repeat mode [2] and a direct mechanism to restore
the distorted segments) mean time between two successive arrivals of acknowl-
edgement [3–6]. As the time between arrivals of acknowledgments distributed
according to a geometric law with parameter Fo, mean time between arrivals of
acknowledgements in the duration of the cycle t will be T̄ = 1/Fo. Then for the
selective procedure of rejection throughput under S ≥ D + (w + 1)B − 2 will be
determined by the relationship:

Z(w,S) = FoΦ

⎧⎨
⎩

w∑
k=1

Ak

D+(k+1)B−3∑
i=D+kB−2

Pi + Aw

S−1∑
i=D+(w+1)B−2

Pi

⎫⎬
⎭ ,

and for max{D + B − 1, wB + 1} ≤ S ≤ D + (w + 1)B − 2—by relation:

Z(w,S) = FoΦ

⎧⎨
⎩

L∑
k=1

Ak

D+(k+1)B−3∑
i=D+kB−2

Pi + A(L + 1)
S−1∑

i=D+(L+1)B−2

Pi

⎫⎬
⎭ .

Here Φ =
∑B

i=A Ci
BF i

n(1 − Fn)B−i—the probability of a direct reduction unit
segments with errors (the reliability of delivery of the unit segments to the des-
tination without retransmission), and L = �(S − D + 2)/B� − 1—is the time
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between the duration of the timeout and the time of arrival of the acknowledge-
ment. Given the variability of expression for the probabilities of Markov’s chain
here in various connections between protocol parameters and a round-trip delay
obtained functional dependence of this indicator with an accuracy factor P0:

Z(w,S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0AΦ

(1−Fo)(w+K)B−D+1

{
1−(1−Fo)wB

1−(1−Fo)B
− w(1−Fo)S−B−D+2

}
,

w ≥ K + 2, S ≥ D + (w + 1)B − 2;
P0AΦ

(1 − Fo)(w−1)B

{
1 − (1 − Fo)wB

1 − (1 − Fo)B
− w(1 − Fo)S−B−D+2

}
,

1 ≤ w ≤ K + 1, S ≥ D + (w + 1)B − 2;
P0AΦ

(1−Fo)S−D−B+1

{
1−(1−Fo)B(L+1)

1 − (1 − Fo)B
−(L+1)(1−Fo)S−B−D+2

}
,

max{D + B − 1, wB + 1} ≤ S ≤ D + (w + 1)B − 2.

Hence it is easy to see that when A = B = 1 we get the known result [10].
For absolutely reliable reverse data path (Fo = 1) the throughput is deter-
mined by the relation Z(w,S) = AΦ

B when w ≥ K + 2 and by the depen-
dence Z(w,S) = AΦ

D−1−(w−2)B —when w ≤ K + 1. In the case of unlimited
window size (w = ∞) performance of a transport connection will take the form
Z(w,S) = AFoΦ

[1−(1−Fo)B ](1+(B−1)Fo)
. For timeout of minimal duration S = D+B−1

the performance of the transport connection is invariant to the size of the win-
dow Z(w,S) = AFoΦ

D+B−1 . When w ≤ K + 1 and limitless duration of timeout
(S = ∞) the throughput is converted to:

Z(w,∞) = AΦP0

[
1−(1−Fo)wB

]/{
Fo(1−Fo)B

[
1−(1−Fo)B(w−1)

]

+
[
1 +

(
D − (w − 2)B − 2

)
Fo

][
1 − (1 − Fo)B

]}
.

If S = D + (w + 1)B − 2, then

Z(w,S) =
P0AΦ

{
1 − (1 − Fo)wB

(
1 + w

[
1 − (1 − Fo)B

])}

(1 − Fo)B(w−1)
[
1 − (1 − Fo)B

] .

From the numerical results shown in Fig. 1 it can be seen that the dependence of
the throughput size when the window 1 ≤ w < K +1 has a slight increase, in the
area w = K + 1—the sharp increase and then when w > K + 2—the saturation
to the limit values. The duration of the round trip delay D the throughput has
an inverse (symmetric) dependency. The performance of a transport connection
depends on duration timeout and has the character of a curve with saturation,
and with the growth S quickly goes for extreme performance.
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Fig. 1. Dependence of the transport protocol throughput from the window width

5 Discussion of the Advantages of Forward Error
Correction Mechanism

The most important task of effective use of technology of forward error correc-
tion is the choice of parameters of block length of a sequence of segments B
and the number of redundant segments B − A in the block for error correc-
tion, providing the fastest possible transport connection. It is obvious that the
presence of excess segments in a transmitted sequence increases the probability
of delivery to the recipient information segments in the group. However, this
is achieved by the growth of overheads in the form of time transfer of redun-
dant data. In this connection there is the task of searching for ranges of values
of characteristics of transport connection (D,Fo, Fn), parameters of transport
protocol (w,S) and the mechanism of forward error correction (A,B), providing
superior management procedures with forward error correction to the classical
protocol procedure without FEC. Let’s do comparative analysis of the protocol
procedures with and without the use of FEC mechanism. Comparison of the con-
trol procedure is performed under conditions of equal intensities of subscriber
streams offered for transfer λ = Aw. We define the benefit in speed from the
use of FEC mechanism compared with the classical protocol procedure, decision
feedback in the form of:

Δ(w,S) = Z(D,w, S,A,B) − Z(D,Aw, S, 1, 1).
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With a reliable reverse path data transmission Fo = 1 and w ≤ K +1 the benefit
has a simple analytical form:

Δ(w,S) =
AΦ

D − 1 − B(w − 2)
− Fn

D + 1 − Aw
.

In general, the comparative analysis is possible to carry out only numerically.
The most significant gain is determined by the relation between the width of the
window and the round-trip delay duration of the transport connection D (see
Fig. 2). In general, the dependence of the benefit from this option has a positive
value when the window size satisfying the constraints 1 ≤ w < 2(K +2). For the
field of 1 ≤ w < K + 1 the subscriber stream is advantageous to configure the
window width w = 1 and the maximum group size B < D (Fig. 3), while for w ≥
K + 2 more profitable to use of small parameters of FEC (see Fig. 4). It should
also be noted that with the growth of parameters of forward error correction A
and B in the area of 1 ≤ w < K +1 the absolute value of the winnings grow, but
the positive values of the winning coordinate is the reliability of the transmission
of the data segments in the transport connection in this case is narrowed (see
Fig. 3). Obviously, that for not fully loaded transport connection (w ≤ K + 1)
the use of FEC mechanism would be most beneficial. This is due to the fact
that during idle periods of the sender waiting for acknowledgements sender can
download the data transmission path of the mandrel redundant segments and
thereby reduce the probability of re-transmission with virtually no increase in
overhead.

D

Δ(10, 60), (A = 1, B = 2)

2
0

10 20 30 40 50
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0.2

0.4
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Fig. 2. Dependence of the benefit from the round trip delay duration
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Fig. 3. Dependence of the benefit from the reliability of data transmission for w > K+2
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Fig. 4. Dependence of the benefit from the reliability of data transmission for w < K+1
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6 Conclusions

In this paper, a model of the process of transfer data segments in a transport
connection managed by the reliable transport protocol with a mechanism of
forward error correction and confirmation of data received by the receiver, in
selective repeat mode. A mathematical model based on the description of the
queue transmitted, but not confirmed data segments with Markov’s chain with a
finite number of states and discrete time. The obtained stationary distribution of
different states of Markov’s chain for various areas of changes in window size and
the duration of the timeout. The analytical expressions for the throughput of
transport connection are found. Overall throughput is largely determined by the
relation between the width of the window and the round trip delay. It is shown
that for the selective repeat mode, the application of the FEC mechanism is
reasonable but for not fully loaded transport links (w < K + 1) with a large
round trip delay (D).
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Abstract. We review the queuing system, the input of which is supplied
with the Poisson process of priority customers and N number of the
Poisson processes of non-priority customers. Durations of service for both
priority and non-priority customers have a distribution functions of A(x)
and Bn(x) for applications from priority flow and for customers from n
flow (n = 1 . . . N) respectively. By using methods of systems with server
vacations and asymptotic analysis in conditions of a large load we have
found the asymptotic probability distribution of a value of an unfinished
work. It is shown that this distribution is exponential.

Keywords: Cyclic queueing system with server vacations · Priority cus-
tomers · Asymptotic analysis · Exponential distribution

1 Introduction

A cyclic queueing systems with priority customers are mathematical models of
telecommunication systems, which are pretty common in practice [1]. Method of
research of such systems is her decomposition and research of system with server
vacations. In real systems “vacations” are considered as a temporal suspension
of service either for device other applications or for its breakdown or repair [2].

The mathematical model under study is presented in the Sect. 2. Kolmogorov
equations for the investigated processes can be found in the Sect. 3. Asymptotic
analysis of the obtained equations is performed in the Sect. 4.

2 Mathematical Model

Let’s review the queuing system with one service device, the input of which
is supplied with the Poisson process of priority information with the inten-
sity of τ and a N number of the Poisson processes of non-priority information
with the intensity of λn, where n = 1, N [3]. The flows of non-priority cus-
tomers will be called λn-flows, and the flow of priority information will be called
τ -flow. Let’s assume that the intensity of a τ -flow is substantially lower than the
total intensity of λn-flows. Applications of each λn-flow form a queue with an
unlimited number of waiting seats.
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 182–193, 2016.
DOI: 10.1007/978-3-319-51917-3 17
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Device visits queues in a cyclic order, starting from a first queue and finishing
with the N , then the cycle repeats. Duration of a visit is random and has the
distribution function of Tn(x). During that time device receives customers of a
λn-flow for service, duration of which has the distribution function of Bn(x).
If there are no customers in the queue when device addresses it or if device
has already serviced all applications in the queue, device is still addressing the
queue till the end of a visit, duration of which is determined by the distribution
function of Tn(x).

τ -flow customers form their queue with an unlimited number of waiting seats
as well. If the system receives an application from a τ -flow, device stops the ser-
vice of a common application and instantly starts servicing priority customers
for a time, duration of which is distributed by the function of A(x). Upon finish-
ing the service of a priority customer device resumes the service of non-priority
customers. If during a service of a priority customer device receives another pri-
ority application device services all priority application and only then returns to
the queue of a non-priority customers and resumes servicing them.

Cyclic system research method is it’s decomposition and the research of a
system with server vacations. Let’s review the queuing system with one service
device and two queues with an unlimited number of waiting seats. The system
receives a Poisson process of priority customers with the intensity of τ (τ -flow)
and a Poisson process of non-priority customers with the intensity of λ (λ-flow).

The system functions in cyclic mode, the cycle of which consists of two con-
secutive intervals. During the first interval customers of a λ-flow are serviced at
the device. If there are no customers in the queue at the start of an interval or
if device has serviced all customers that were in the queue during that interval,
device still remains in this mode, waiting for customers to come. At the end of
an interval device goes on a “vacation” during a second interval of the said cycle.
Customers of a λ-flow that were received during a vacation are accumulating in
the queue and wait till device returns to servicing them [4].

Let’s assume that durations of these intervals are random and are determined
by distribution functions of T1(x) and T2(x) respectively. During the first inter-
val device services customers for a random time with a distribution function
of B(x). If a server vacation interrupted the service of a common application
then after vacation device resumes the service of this application. When the sys-
tem receives priority customers of a τ -flow, then regardless of where the device
previously was (in a service mode or on a vacation) it starts servicing priority
customers for duration of time, that has distribution function of A(x). After a
device has serviced all priority customers it either resumes the service of non-
priority application or returns to a vacation. In order to research the waiting
time in systems with server vacations we have to find the characteristic function
and the probability distribution of value V (t) of an unfinished work on servicing
all non-priority customers that were in a system at the time t. Let’s denote

V (t) the volume of work on servicing all non-priority customers that were in
a system at the time t.
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Y (t) the volume of work on servicing all priority customers that were in a
system at time t.
k(t) device status: 1 device is available for λ-flow applications, 2 device is
on a vacation, 3 device is servicing priority customers, having interrupted
the interval of being available for a common information (1st device status),
4 device is servicing priority information, having interrupted a vacation.
z(t) the remaining time of a vacation or servicing priority information.

3 Kolmogorov Equations

Let’s review the Markov process {V (t), Y (t), k(t), z(t)} and set up a direct sys-
tem of Kolmogorov differential equations for a following probability distribution:

Pk(v, z, t) = P{V (t) < v, k(t) = k, z(t) < z}, k = 1, 2,

Pk(v, y, z, t) = P{V (t) < v, Y (t) < y, k(t) = k, z(t) < z}, k = 3, 4.

Let’s assume that a system functions in a stationary mode, then:

− (λ + τ) P1(v, z) + λ

∫ v

0

B(v − x)dP1(x, z) +
∂P2(v, 0)

∂z
T1(z)

+
∂P3(v, 0, z)

∂y
+

∂P1(v, z)
∂v

+
∂P1(v, z)

∂z
− ∂P1(v, 0)

∂z
= 0,

− (λ + τ) P2(v1, z) + λ

∫ v

0

B(v − x)dP2(x, z) +
∂P1(v, 0)

∂z
T2(z)

+
∂P4(v, 0, z)

∂y
+

∂P2(v, z)
∂z

− ∂P2(v, 0)
∂z

= 0,

− (λ + τ) P3(v, y, z)

+λ

∫ v

0

B(v − x)dP3(x, y, z) + τ

∫ y

0

A(y − x)dP3(v, x, z)

+P1(v, z)A(y)τ +
∂P3(v, y, z)

∂y
− ∂P3(v, 0, z)

∂y
= 0,

− (λ + τ) P4(v, y, z)

+λ

∫ v

0

B(y − x)dP4(x, y, z) + τ

∫ y

0

A(y − x)dP4(v, x, z)

+P2(v, z)A(y)τ +
∂P4(v, y, z)

∂y
− ∂P4(v, 0, z)

∂y
= 0.
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Let’s introduce functions

Hk(u, z) =
∫ ∞

0

e−uvdPk(v, z), k = 1, 2,

Hk(u, y, z) =
∫ ∞

0

e−uvdPk(v, y, z), k = 3, 4,

for which we will rewrite a system of Kolmogorov equations in a following form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[λβ(u) − (λ + τ) + u] H1(u, z) − uP1(0, z)
+∂H2(u,0)

∂z T1(z) + ∂H3(u,0,z)
∂y + ∂H1(u,z)

∂z − ∂H1(u,0)
∂z = 0,

[λβ(u) − (λ + τ)] H2(u, z)
+∂H1(u,0)

∂z T2(z) + ∂H4(u,0,z)
∂y + ∂H2(u,z)

∂z − ∂H2(u,0)
∂z = 0,

[λβ(u) − (λ + τ)] H3(u, y, z) + H1(u, z)A(y)τ
+τ

∫ y

0
A(y − x)dH3(u, x, z) + ∂H3(u,y,z)

∂y − ∂H3(u,0,z)
∂y = 0,

[λβ(u) − (λ + τ)] H4(u, y, z) + H2(u, z)A(y)τ
+τ

∫ y

0
A(y − x)dH4(u, x, z) + ∂H4(u,y,z)

∂y − ∂H4(u,0,z)
∂y = 0.

(1)

Here

β(u) =
∫ ∞

0

e−uvdB(v),
∫ ∞

0

e−uvd
∂P1(v, z)

∂v
= β(u)Hk(u, z),

∫ ∞

0

e−uvd

(∫ v

0

B(v − x)dPk(x, y, z)
)

= β(u)Hk(u, y, z).

P1(0, z) is probability of situation where device stays in the service mode,
and there are no customers in the system [5]. Let’s make changes in the third
and the fourth equations of a system (1)

H3(u, y, z) = H1(u, z)H3(u, y),H4(u, y, z) = H2(u, z)H4(u, y),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[λβ(u) − (λ + τ)] H3(u, y) + A(y)τ
+τ

∫ y

0
H3(u, y − x)dA(x) + ∂H3(u,y)

∂y − ∂H3(u,0)
∂y = 0,

[λβ(u) − (λ + τ)] H4(u, y) + A(y)τ
+

∫ y

0
H4(u, y − x)dA(x) + ∂H4(u,y)

∂y − ∂H4(u,0)
∂y = 0.

(2)

Let’s take a Laplace-Stieltjes transform of the equations of system (2), by
denoting:

Gk(u, v) =
∫ ∞

0

e−yvdHk(u, y), α(v) =
∫ ∞

0

e−yvdA(y).

Then we have:{
[λβ(u) − (λ + τ) + τα(v) + v]G3(u, y) + α(v)τ − ∂H3(u,0)

∂y = 0,

[λβ(u) − (λ + τ) + τα(v) + v]G4(u, y) + α(v)τ − ∂H4(u,0)
∂y = 0.
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Solution of the last system exists for v = v(u) when

[λβ(u) − (λ + τ) + τα(v) + v] = 0.

Then
v(u) = (λ + τ) − λβ(u) − τα(v(u)). (3)

We have
∂H3(u, 0)

∂y
=

∂H4(u, 0)
∂y

= α(v)τ.

Now let’s make changes in the first and the second equations of a system (1)

∂H3(u, 0, z)
∂y

= α(v)τH1(u, z),
∂H4(u, 0, z)

∂y
= α(v)τH2(u, z),

we’ll get
[λβ(u) − (λ + τ) + u] H1(u, z) − uP1(0, z)

+
∂H2(u, 0)

∂z
T1(z) + α(v)τH1(u, z) +

∂H1(u, z)
∂z

− ∂H1(u, 0)
∂z

= 0,

[λβ(u) − (λ + τ)] H2(u, z)

+
∂H1(u, 0)

∂z
T2(z) + α(v)τH2(u, z) +

∂H2(u, z)
∂z

− ∂H2(u, 0)
∂z

= 0.

Considering that (3), we can write down this
⎧⎨
⎩

[−v(u) + u] H1(u, z) − uP1(0, z)
+∂H2(u,0)

∂z T1(z) + ∂H1(u,z)
∂z − ∂H1(u,0)

∂z = 0,

−v(u)H2(u, z) + ∂H1(u,0)
∂z T2(z) + ∂H2(u,z)

∂z − ∂H2(u,0)
∂z = 0.

(4)

The last system will be solved by using a method of asymptotic analysis in
conditions of a large load [6,7].

4 Method of Asymptotic Analysis

Let’s denote S the bandwidth value of a system with vacations, b first moment
of a random value, which is determined by a function of servicing time of non-
priority customer B(x), ε is a small positive parameter, which in theoretical
research is considered to be ε → 0. Let’s make changes in the system (4) of
equations.

λ = (1 − ε)S/b, u = εw, P1(0, z) = επ1(z, ε).

Hk(u, z) = Fk(w, z, ε),Hk(u, y, z) = Fk(w, y, z, ε),

S is the systems load. It’s value will be found below. We’ll get
⎧⎪⎪⎨
⎪⎪⎩

[−v(εw) + εw] F1(w, z, ε) − ε2wπ1(z, ε)
+∂F2(w,0,ε)

∂z T1(z) + ∂F1(w,z,ε)
∂z − ∂F1(w,0,ε)

∂z = 0,
−v(εw)F2(w, z, ε)
+∂F1(w,0,ε)

∂z T2(z) + ∂F2(w,z,ε)
∂z − ∂F2(w,0,ε)

∂z = 0.

(5)
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Theorem 1. The limit value for ε → 0 Fk(w) = Fk(w,∞) solutions Fk(w, z, ε)
of the system (5) has the following form

Fk(w, z) = Rk(z)Φ(w),

where S = T1
T1+T2

(1 − τa) ,

{
R1 = R1(∞) = T1

T1+T2
(1 − τa) = S,

R2 = R2(∞) = T2
T1+T2

(1 − τa) = 1 − S − τa.

Asymptotic characteristic function

Φ(w) =
Sγ

Sγ + w

is a Laplace-Stieltjes transform of an exponentially distributed random function
with the parameter of γ type.

γ =

(
S

b2
2b

+ τ

(
S

1 − τa

)2
a2

2
+

Δ

1 − τa

)−1

.

Here

Δ = − T1T2

T1 + T2
R1R2 +

R1R2

T1 + T2

{
T2

T
(2)
1

2T1
+ T1

T
(2)
2

2T2

}
,

b and b2 - are the starting moments of a first and second orders of time of a
service of non-priority customer, a and a2 are the starting moments of a first and

second orders of time of a service of priority customer.
∞∫
0

(1 − Tk(x))dx = Tk

is the average time of staying in the corresponding mode. T
(2)
k is the second

initial moment of the time of devices staying in mode k. Lets find an asymptotic
function of volume of work on servicing all customers

H(u) =
(S − λb) γ

(S − λb) γ + u
.

Proof. We perform the proof by three stages.

Stage 1. By tending ε to zero ε → 0 in (5) we will obtain:
{

∂F1(w,z)
∂z − ∂F1(w,0)

∂z + ∂F2(w,0)
∂z T1(z) = 0,

∂F2(w,z)
∂z − ∂F2(w,0)

∂z + ∂F1(w,0)
∂z T2(z) = 0.

We have
v(0) = (λ + τ) − λβ(0) − τα(v(0)) = 0.

where
α(0) =

∫ ∞

0

dA(y) = 1, β(0) =
∫ ∞

0

dB(v) = 1.
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We will seek solution for this system in this form

Fk(w, z) = Rk(z)Φ(w).

We will obtain following system
{

R′
1(z) − R′

1(0) − R′
2(0)T1(z) = 0,

R′
2(z) − R′

2(0) − R′
1(0)T2(z) = 0.

solution for which we will write down in this form:
⎧⎪⎪⎨
⎪⎪⎩

R1(z) =
z∫
0

(R′
1(0) − R′

2(0)T1(x))dx,

R2(z) =
z∫
0

(R′
2(0) − R′

1(0)T2(x))dx.

{R1(z), R2(z)} is a two-dimensional distribution of devices mode and value of
remaining time of devices staying in that mode. By tending z to infinity z → ∞,
considering that T (∞) = 1, we will obtain:

⎧⎪⎪⎨
⎪⎪⎩

R1(∞) =
∞∫
0

(R′
1(0) − R′

2(0)T1(x))dx,

R2(∞) =
∞∫
0

(R′
2(0) − R′

1(0)T2(x))dx.

For improper integral to be convergent it is necessary that the following
condition is met

R′
1(0) − R′

2(0)T1(∞) = 0,

then we will obtain

R′
1(0) = R′

2(0) = R′(0).

We have

Rk(z) = R′(0)

z∫
0

(1 − Tk(x))dx.

Let’s denote ∞∫
0

(1 − Tk(x))dx = Tk

as the average time of staying in the corresponding mode.
Then, from the one side

R1(∞) + R2(∞) + τα = 1,

and from the other

R1(∞) + R2(∞) + τα
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= R′(0)

∞∫
0

(1 − T1(x))dx +

∞∫
0

(1 − T2(x))dx + τα

= R′(0) (T1 + T2) + τα.

We will obtain

R′(0) =
1 − τα

(T1 + T2)
.

Then
⎧⎪⎪⎨
⎪⎪⎩

R1(∞) = 1−τα
T1+T2

∞∫
0

(1 − T1(x))dx = T1(1−τα)
T1+T2

,

R2(∞) =
∞∫
0

(R′
2(0) − R′

1(0)T2(x))dx = T2(1−τα)
T1+T2

.

Stage 2. We will denote the expansion for the function v(εw)

v(εw) = εw
S

1 − τα
− (εw)2

S b2
2b + S

w + τ( S
1−τα )2 a2

2

1 − τα
+ O(ε2).

In the Eq. (5) let’s tend z to infinity z → ∞
{

[−v(εw) + εw] F1(w, ε) − ε2wπ1(ε)++∂F2(w,0,ε)
∂z − ∂F1(w,0,ε)

∂z = 0,

−v(εw)F2(w, ε)+∂F1(w,0,ε)
∂z − ∂F2(w,0,ε)

∂z = 0.

Let’s sum the equations of the last system

(−v(εw) + εw)F1(w, ε) − v(εw)F2(w, ε) = ε2wπ1(ε).

We will substitute the following expansion in the system (5)

Fk(w, z, ε) = Φ(w) {Rk(z) + jεwfk(z)} + O(ε2). (6)

We will substitute expansions in the equality which we got from above

Φ(w)

(

εw(R1−S) + +(εw)2
(

f1 + S
b2
2b

+
S

w
+ τ

(

S

1 − τα

)2
a2

2
− S

1 − τα
[f1 + f2]

))

= ε2wπ1(ε),

where
fk = fk(∞), k = 1, 2.

Then we will obtain
S = R1,

Φ(w)(εw)2
(

f1 + S
b2
2b

+
S

w
+ τ

(
S

1 − τα

)2
a2

2
− S

1 − τα
[f1 + f2]

)
= ε2wπ1(ε).
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By dividing both parts of the equations by ε2 and by tending ε2 to zero ε → 0
we will obtain:

Φ(w) =
π

S + w

(
f1 + S b2

2b + τ
(

S
1−τα

)2
a2
2 − S

1−τα [f1 + f2]
) .

Let’s assume that w = 0 and considering that

Φ(0) = 1,

we will obtain:
π1 = S, π1 = lim

ε→0
π1(ε2).

Then

Φ(w) =
S

S + w

(
f1 + S b2

2b + τ
(

S
1−τα

)2
a2
2 − S

1−τα [f1 + f2]
) .

Stage 3. We will substitute the expansion (6) in the system (5)
{

εw (f ′
1(z) − f ′

1(0) + f ′
2(0)T1(z)) + εw

(
1 − S

1−τα

)
R1(z) = O(ε2),

εw (f ′
2(z) − f ′

2(0) + f ′
1(0)T2(z)) − εw S

1−ταR2(z) = O(ε2).

By dividing both equations by ε and be tending to zero ε → 0, we will obtain:
{

f ′
1(z) − f ′

1(0) + f ′
2(0)T1(z) +

(
1 − S

1−τα

)
R1(z) = 0,

f ′
2(z) − f ′

2(0) + f ′
1(0)T2(z) − S

1−ταR2(z) = 0.

Let’s write down⎧⎪⎪⎨
⎪⎪⎩

f1(z) =
z∫
0

{
f ′
1(0) − f ′

2(0)T1(x) − R1(x) R2
1−τα

}
dx,

f2(z) =
z∫
0

{
f ′
2(0) − f ′

1(0)T2(x) + R2(x) R1
1−τα

}
dx.

Let’s find f1(∞), f2(∞)
⎧⎪⎪⎨
⎪⎪⎩

f1(∞) =
∞∫
0

{
f ′
1(0) − f ′

2(0)T1(x) − R1(x) R2
1−τα

}
dx,

f2(z) =
∞∫
0

{
f ′
2(0) − f ′

1(0)T2(x) + R2(x) R1
1−τα

}
dx.

It is necessary that the following is true
{

f ′
1(0) − f ′

2(0)T1(∞) − R1(∞) R2
1−τα = 0,

f ′
2(0) − f ′

1(0)T2(∞) + R2(∞) R1
1−τα = 0.
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Then
f ′
1(0) − f ′

2(0) =
R1R2

1 − τα
, (7)

where
R1 = R1(∞), R2 = R2(∞).

Let’s write down:
⎧⎪⎪⎨
⎪⎪⎩

f1(∞) = f ′
2(0)

∞∫
0

(1 − T1(x)) dx+ R2
1−τα

∞∫
0

(R1 − R1(x)) dx,

f2(∞) = f ′
1(0)

∞∫
0

(1 − T2(x)) dx − R1
1−τα

∞∫
0

(R2 − R2(x))dx.

Let’s denote

Δk =

∞∫
0

(Rk − Rk(x)) dx.

{
f1(∞) = f ′

2(0)T1 + R2
1−ταΔ1,

f2(∞) = f ′
1(0)T2 + R1

1−ταΔ2.
(8)

Let’s review the expression in the denominator separately

R2f1(∞) − R1f2(∞).

Considering (7) and (8) we will obtain and denote the following

R1f2(∞) − R2f1(∞)

= −R1f
′
1(0)T2 +

R2
1

1 − τα
Δ2 + R2f

′
2(0)T1 +

R2
2

1 − τα
Δ1

= −R1R2
T1T2

T1 + T2
+

R1R2

T1 + T2

(
T1

T
(2)
2

2T2
+ T2

T
(2)
1

2T1

)
= Δ. (9)

Here

Δk =

∞∫
0

(Rk − Rk(x)) dx

= Rk

∞∫
0

⎧⎨
⎩1 − 1

Tk

z∫
0

(1 − Tk(x)) dx

⎫⎬
⎭ dz

= Rk

⎧⎨
⎩1 − 1

Tk

z∫
0

(1 − Tk(x)) dx

⎫⎬
⎭ z

∣∣∣∣∣∣
∞

z=0

−Rk

∞∫
0

zd

⎧⎨
⎩1 − 1

Tk

z∫
0

(1 − Tk(x)) dx

⎫⎬
⎭
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= Rk

∞∫
0

z
1
Tk

(1 − Tk(z)) dz

= Rk

∞∫
0

1
Tk

(1 − Tk(z)) d
z2

2
= Rk

1
Tk

(1 − Tk(z))
z2

2

∣∣∣∣
∞

z=0

−Rk

∞∫
0

1
Tk

z2

2
d (1 − Tk(z)) = Rk

1
Tk

∞∫
0

z2

2
d (Tk(z)) = Rk

T
(2)
k

2Tk
.

Where ∞∫
0

⎧⎨
⎩1 − 1

Tk

z∫
0

(1 − Tk(x)) dx

⎫⎬
⎭ dz

is the average value of the remaining time of staying in mode k. T
(2)
k is the

second initial moment of the time of devices staying in mode k. Rk(z) is written
down in this form:

Rk(z) = (1 − τα)
Tk

T1 + T2

⎧⎨
⎩

1
Tk

z∫
0

(1 − Tk(x)) dx

⎫⎬
⎭ .

Then Φ(w) = Sγ
Sγ+w is a Laplace-Stieltjes transform of an exponentially dis-

tributed random function with the parameter of γ type.

γ =

(
S

b2
2b

+ τ

(
S

1 − τa

)2
a2

2
+

Δ

1 − τa

)−1

.

where Δ is determined by Eq. (9). The theorem was proved.

By making backward substitutions, we will tend z to infinity and ε to zero,
z → ∞, ε → 0, and well get the characteristic function of a value of an unfinished
work

H(u) =
∑

k

F (w, ε) =
∑

k

Φ(w)Rk(∞) + o(ε) = H(u) =
(S − λb) γ

(S − λb) γ + u
.

5 Conclusions

In this work we have researched mathematical model of the system with server
vacations. By using method of asymptotic analysis under large load, we have
found asymptotic distribution of probabilities of a value of an unfinished work
V (t). The found function and an exponential probability distribution let us per-
form research of a virtual time of waiting in cyclic systems by reviewing models
with vacations once again.

Acknowledgments. The work is performed under the state order of the Ministry of
Education and Science of the Russian Federation (No. 1.511.2014/K).
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Abstract. We consider the problem of reliability assurance of a local
ground-based distributed radio direction finding system (RDFS), which
consists of a local dispatching center (LDC) and unattended radio termi-
nals (URT), which are up to several hundred kilometers apart from the
LDC and are connected to the LDC via communication channels. The
performance criteria of the RDFS are defined according to its topology
and structure. Requirements on the mean time between failures (MTBF)
and the availability factor are imposed. A methodic has been developed
for determining the reliability parameters both in approximate analytical
form and in the form of a formalized simulation model that takes into
account different hierarchy levels of the system from the topology of the
network and communication channels to the printed board assemblies
and individual types of electronic components. Simulation and calcula-
tion of reliability measures was performed using an automated system for
reliability calculation of electronic modules and reconfigurable manufac-
turing calculation (ASONIKA). The weak spots (least reliable elements)
of the RDFS have been revealed and recommendations were given to
ensure the reliability of individual elements and the RDFS as a whole.
The composition of spare parts for LDC, URT equipment and commu-
nication channels is proposed.

Keywords: Reliability model · Diagnostics · Radio technical system ·
Communications network · System topology · Communication channel ·
Radio direction finding · Radar · Methodic · Link

1 Introduction

Despite the rapid development of global navigation satellite positioning systems,
video surveillance and machine vision, radar and radio direction finding is still
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widely used at present, for the reason that in remote and underdeveloped areas
radars and does not undetectable automatic direction finders (ADF) are among
the main flight facilities [1].

The radio direction finding system (RDFS) is distributed over large area
(Fig. 1), has a multi-level star topology and consists of equipment of the local
dispatching center (LDC), communication channels and unattended radio ter-
minals (URT), which, depending on the allocation conditions can be far from
the LDC up to several hundred kilometers [2,3]. Therefore, the vital task is to
provide reliable functioning of the RDFS [4] and work out recommendations on
reservation of its elements.

Fig. 1. Ground-based distributed radio direction finding system

As a part of solution of this problem, it is necessary to create a reliability
model, for which at the initial stage it is necessary to analyze the structure and
components of the RDFS, to formalize the statement of the reliability enhance-
ment problem, to develop a method for reliability evaluation. Then it is necessary
to develop a reliability block diagram, and, on the basis of an expert estima-
tion of operational failure rates of components, to perform both analytical and
numerical modeling and compare the obtained results. Based on the modeling
results recommendations are to be given on the reservation of components and
the composition of spare parts.

2 Structure of the Distributed RDFS

Structural diagram of URT and LDC interaction is shown in Fig. 2. Automatic
Direction Finder (ADF) receives signals from the quasi-doppler (QD) antenna
and generates a corresponding corner bearing quadrature voltage, from which
analogue phase converter (APC) forms a bearing value as a phase shift. Phase
code converter (PCC) generates a bearing angle code out of the phase shift.
Remote signaling (RS) device is a receiver, which indicates breakdowns (hard-
ware temperature, fire, smoke) to the URT and performs the following functions:
receives and stores in its buffer the status signals form ADF and URT hardware,
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Fig. 2. Structural scheme of interaction between NSD and the TIR

generates information existence signals and transmits the RS digital code and
control signals. Remote control (RC) device performs remote on/off switching of
the ADF, reception and processing of ADF information in APC and PCC mod-
ules. Matching device (MD) collects code messages from the PCC, RS, RC and
peripheral control unit (PCU) into a single data packet, which is transmitted
to the links through the interface unit with the channel (IUC) and secondary
sealing equipment (SSE). PCU monitors the performance of URT components
while in operation and while performing repair or maintenance works. Secondary
power system (SPS) provides power to the other elements of the scheme. Non-
end URTs are equipped with a retransmitter (RT), which provides data exchange
between end URTs and the LDC via CCs.

LDC hardware is designed to: collect bearing information from URT via
communication channels (CC); with the help of bearing values determine the
location of an object at the moment of radio contact of its on-board transmitter;
provide control over URT via the CC; perform bearings membership test; display
and record the air situation; perform the automated control of the technical state
of URT and LDC hardware.

LDC hardware consists of a micro-computer with management firmware, ser-
vice data storage device (SD), information processing unit (IPU), the reference
indicator of air situation (RIAS), remote dispatching controller (RDC), interface
unit with a channel (IUC) to interact with an available communication system
through distributors.

IPU is designed to: collect information on bearing and signals coming from
the IUC and input it to the microcomputer; prepare the information on air situa-
tion to display it on RIAS; perform URT remote control and reception of signals;
record and store the dynamic information displayed on RIAS; store service data
in accordance with which the input information is conversed; perform oversight.
IPU includes an interface unit (IU), a remote technical controller (RTC), an
image forming apparatus (IFA), an information documenting block (IDB), a
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configurable PROM and a central control unit (CCU). IU provides interface
between a CC and a microcomputer, and control over the map data recording
in PROM. IU consists of interfaces hardware (IH) and the map information
input hardware (MIIH). IH allows to receive/transmit code messages between
the microcomputer and the IUC. IDB provides (i) connection between a record-
ing and storing device and a microcomputer; (ii) conversion of “Common Bus”
interface to the “Q-Bus” interface. IDB consists of the information documenting
equipment (IDE) and adapter boards. IDE operates in two modes “recording”
and “displaying”. IFA is a part of the display equipment and provides: (i) inter-
face between RIAS and a microcomputer, (ii) RIAS backup, (iii) generation of
the current time code. PROM is designed for storing programs and constants,
according to which the input information is transformed. Output of programs
and constants is performed upon request from the microcomputer. CCU refers to
the control and diagnostic equipment and is designed to provide timely informa-
tion on the technical condition of LDC. The objects of control are CCU, RTC,
PROM, IDB, IU. The rest of the LDC is controlled by the microcomputer’s
CPU. To manage the CPU control and to ensure the monitoring and diagnostic
coordination between channeling equipment and communication channels, CCU
has a “semi-active” access to the “Q-bus” that allows to automatically transfer
data from CCU into the microcomputer for displaying it RIAS and form the
microcomputer to the CCU for displaying it on its front panel.

3 Problem Statement

The initial data for reliability assessment of a distributed RDFS is: its topology,
LDC and URT structure, type of CC, information about operational failure rate
of all printed board assemblies and communication channels, clear criteria of the
system efficiency, working time schedule and operating conditions. Performance
criteria of the distributed RDFS at the top level of its hierarchy are defined by
the requirements for the coverage area, that is, the territory where the RDFS
can determine the coordinates of an emitting object using radio direction-finders
with covering radius RADF (Fig. 3).

RDFS coverage area is divided nominally into 4 quadrants with respect to
the cardinal directions in relation to LDC. In general case each quadrant con-
tains URT (denoted by U on the diagram, and U* stands for intermediate URT
equipped with a repeater). At that the number of URTs for each quadrant may
be different—m1, m2, m3, m4.

Since the RDFS is spatially distributed, it is reasonable to consider 2 oper-
ation states working state and state of failure. While in the working state, all
the RDFS units operate adequately without faults. The condition for the failure
state is disability of all the URTs in at least one quadrant. Mathematically, these
criteria can be expressed as follows:

Q0 = {U1
1...m1&U2

1...m2&U3
1...m3&U4

1...m4} × Δti, (1)
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Fig. 3. Distributed RDFS coverage area

where Q0 is a failure function, Δti is a time period during which the failure
occurs.

Mean time before failures (MTBF) shall be at least 500 h under day-and-night
service. There can be used telegraph, telephone, radio relay, tropospheric, fiber
optic and cellular communications links as communication channels. Printed
board assemblies of all the system components are 170 × 200 mm in size and
have an average degree of integration (20–30 elements with 2–3 microchips each).
Restoration of the RDFS should be ensured through a cold redundancy (replace-
ment of components with ones from the set of spare parts), and the restoration
time τB should not exceed 30 min.

4 Reliability Assessment Method

We propose a reliability prediction method for the RDFS, which consists of
six consolidated procedures. This method allows to carry out a comprehensive
assessment of reliability measures together with analysis of the obtained results,
search for the most critical nodes and release of recommendations. This reliability
assessment method is represented in the form of integrated definition language
(IDEF0) diagram in Fig. 4.

Consider the sequence of actions performed by a researcher in accordance
with the described method. It includes performing the following activities:



Comparative Analysis of Reliability Prediction Models 199

Fig. 4. IDF0 diagram of reliability assessment method

- Activity A1. Construction of a reliability structure diagram (RSD) of
RDFS and its components. RSD is based on the analysis of requirements of
technical specifications for the RDFS, the failure criterion, and the reliability
measures requirements. The necessary data for building up the RSD are:
RDFS topology, a list of system elements (specification).
- Activities A2. Building of a formalized reliability model is performed:
an analytical model, formed on the basis of logical-probabilistic method; a
simulation model, formed on the basis of the numerical Monte-Carlo method
using a complex systems description language. The formalized model is built
on the basis of RSD and the reliability measures data listed in the technical
statement (TS). Rules for building the simulation model are given in [5] and
for the analytical one – in [6,8]. To avoid inaccuracies, it is recommended to
build the simulation model directly in the automated system for reliability
calculation for functionally complex systems - ASONIKA-K-RES.
- Activities A3. Top-down and bottom-up calculation of reliability char-
acteristics is performed first for electronic components, then for electronic
modules and components of RDFS, with account of temperature conditions,
load factors and other parameters that may affect reliability characteristics,
as well as with account of the average daily cycles of application modes of
RDFS elements.
- Activities A4. Complex RDFS reliability calculation is performed based
on the formalized reliability model, which describes the behavior of the RDFS
in different states and the reliability characteristics of individual components
calculated while performing functions A2 and A3, respectively, including the
use of MathCad and ASONIKA-K-RES computing software.
- Activities A5. Calculation and optimization of individual, group, or multi-
level [7,9] sets of spare parts, tools and accessories (SPTA) is performed,
relevant to the current configuration and operation model of the RDFS with
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account of the chosen replenishment strategy. The main objective of the SPTA
projection is to ensure the maintainability factors which are defined for these
types of RDFS. It is recommended to use the ASONIKA-K-SPTA system for
the calculation and optimization of SPTA sets.
- Activities A6. A comprehensive analysis of the obtained results of the
RDFS calculation is performed, including reliability assessment of the sys-
tem and its elements on different hierarchy levels. Also search for critical
nodes is carried out by the means of identifying ones that contribute most
to the decrease in the entire system reliability as well as by comparison of
the obtained data with the specified one by the TS. Besides the acquisition
analysis of SPTA is done. According to the results the report documenta-
tion is released, which contains information on the on RDFS reliability and
recommendations for SPTA acquisition.

5 Reliability Model

Using logical connections of the operating RDFS components needed for suc-
cessful system functioning (see Sects. 2 and 3), the topology and structure of
hardware components, as well as the basics of logical-probabilistic method, the
RDFS reliability model can be represented in the form of reliability structure
diagram (RSD) shown in Fig. 5.

Also Fig. 5 depicts RSD of RDFS hardware components and a state diagram
of the system birth-death process.

From Fig. 5(b) we conclude that failure of any of the URT components leads
to failure of the whole URT except for a failure of one of the CCs or RDC. Com-
munication channels are cold standby connected. At that all the URT modules
are in hot standby with a critical failure condition failure of N −1 URT modules.

Analysis of RDFS RSD (see Fig. 5(a)) shows that LDC failure leads to the
failure of the whole complex, and failure of end and non-end URTs in each
quadrant leads to the system failure only in case of failure of n out of m URTs.

It is assumed in the analytical model for reliability measures assessment that
operating time and recovery time of RDFS RSD elements are exponentially dis-
tributed, and failures and repairs of RDFS elements are statistically independent
events [12].

First we consider an arbitrary separate group of redundant elements shown
in Fig. 5 (assume that LDC is excluded from consideration, and thus the subject
of study are four areas of the reliability structure diagram). Birth and death
scheme can be represented as a simple state diagram (see Fig. 5(d)), where state
S0 corresponds to the absence of failures in the group, state S1—the presence
of a failure in the group, Si—the presence of i failures in the group, Sn—failure
of the entire group (when all the elements of the group fail—both the main and
the redundant ones).

Consider a sequence of four sections, each containing two groups with redun-
dancy. Denote: λ—URT failure rate, λ∗ - URT* failure rate, μ and μ∗—
corresponding recovery rates. Failure flows of redundant groups of URT and
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Fig. 5. RSD for topology of (a) RDFS, (b) URT complex, and (c) LDC and a state
diagram of the birth-death process (d)

URT* are simple Poisson flows so we can use the principle of superposition.
Indeed, now each state of the birth-death process in Fig. 5(d) (except for the
first and last states) implies a failure either of an URT, or an URT* or a restora-
tion of an URT or an URT*, or no changes. It is noteworthy that the situation,
is taken into account when the system is in the i-th state and we consider the
possible events that can happen in a short time Δt. We write an event Si as
follows:

Si = AURT
i ∪ AURT*

i ∪ BURT
i ∪ BURT*

i ∪ DURT
i ∪ DURT*

i (2)

Failures of URT or URT* correspond to outcomes A, restorations of URT
and URT* correspond to outputs B, and zero changes correspond to outputs D.
According to the extended axiom of addition, we obtain:

P (Si) = P (AURT
i ) + P (AURT*

i ) + P (BURT
i ) + P (BURT*

i ) + P (DURT
i ) + P (DURT*

i ) (3)

Thus, the expression above remains valid, but now every event A, B and D
should be presented as the union of the corresponding events in each section of
the reliability structure diagram:
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AURT
i = AURT

i,1 ∪ AURT
i,2 ∪ AURT

i,3 ∪ AURT
i,4

AURT*
i = AURT*

i,1 ∪ AURT*
i,2 ∪ AURT*

i,3 ∪ AURT*
i,4

BURT
i = BURT

i,1 ∪ BURT
i,2 ∪ BURT

i,3 ∪ BURT
i,4

BURT*
i = BURT*

i,1 ∪ BURT*
i,2 ∪ BURT*

i,3 ∪ BURT*
i,4

DURT
i = DURT

i,1 ∪ DURT
i,2 ∪ DURT

i,3 ∪ DURT
i,4

DURT*
i = DURT*

i,1 ∪ DURT*
i,2 ∪ DURT*

i,3 ∪ DURT*
i,4

(4)

Naturally, the question arises as to how to define the failure criterion for the
whole RDFS. Consider the circuit starting from the events S0. The system has
no failures and the only possible transition can be made to the event S1, which
may represent the denial of URT or URT* on any section of reliability structure
diagram. Occurrence of failure (recovery) of URT in any section of the circuit
has equal probability because of the identity of elements (the same is true in
respect of URT*), thus, we cannot say exactly in which section URT or URT*
will fail. Further failures and recoveries will not only be interleaved with of URT
or URT*, but also with sections of reliability structure diagram. Eventually, this
leads us to the last condition of Sn, which is the occurrence of failure in any of
the eight reserve containing groups. The logical assumption would be that the
failure occurred in the group with the lowest redundancy rate, as the probability
of failure of this group is higher than that of other groups.

Based on the detailed analysis of the scheme of birth and death of the com-
plex (see Fig. 5d) and using the spatial state method and the method of struc-
ture diagrams, we construct the analytical models for calculating the probabil-
ity of no-failure operation (RRDFS(t)), availability factor (ARDFS) and MTBF
(T0RDFS).

The model is as follows:

RRDFS(t) =
[

e−λLDC·t
]

(5)
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where: λLDC – LDC failure rate, 1/h; t – operating time; λURTnX∗ – failure rate
of a n-th non-end URT of quadrants 1, 2, 3 and 4, 1/h; λURTmX∗ – failure rate
of an n-th end URT of quadrants 1,2, 3 and 4, 1/h; γ = λ

μ – duty ratio; μ = 1
τB

–
recovery rate, 1/h; Ci+1

N−s+i—number of combinations; N = n+1 – total number
of elements; n (or m) – number of redundant elements.

The model of ARDFS is as follows:

ARDFS =

[

T0 LDC

T0 LDC + τB LDC

]

·
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where: T0 LDC – LDC mean time to failure, h.; τB LDC – LDC mean time to
recovery, h.; T0 j – MTBF of a j-th element, h.; τB j – mean time to recovery
of a j-th element, h.; m – number of redundant elements; N – total number of
elements.

The model of T0RDFS is as follows:

1
T0RDFS

=
1[
1

λLDC

] +
[

1
T0GRURTn∗

+
1

T0GRURTm1

]
1

+
[

1
T0GRURTn∗

+
1

T0GRURTm1

]
2

+
[

1
T0GRURTn∗

+
1

T0GRURTm1

]
3

+
[

1
T0GRURTn∗

+
1

T0GRURTm1

]
4

(7)

where: λLDC – LDC failure rate, 1/h; T0GRURTn∗ – MTBF of a group of non-end
URTs, h.; T0GRURTm1 – MTBF of a group of end URTs, h.

Calculation of T0GRURTn∗ or T0GRURTm1 is performed according to the fol-
lowing mathematical model:
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T0GRURTn∗ (T0GRURTm1) =
1(

N∏

j=1
(1+λjτB j)−

N∏

j=1
(λjτB j)/

N∑

j=1

1
τB j

N∏

j=1
(λjτB j)

) (8)

where: λj – failure rate of a j-th element, 1/h; τB j – mean time to recovery
of a j-th element, h.; m – number of redundant elements; N – total number of
elements.

Though it is possible to build a general formalized simulation model for
RDFS RSD (see Fig. 5a) but it will be cumbersome. For that matter we give
an example of a model that precisely corresponds to the topology of Fig. 2 with
the number of URTs in quadrants m1 = 1, m2 = 2, m3 = 3, m4. RSD for such
RDFS is shown in Fig. 6.

Fig. 6. RSD of RDFS with the number of URT equal to m1 = 1, m2 = 2, m3 = 3,
m4 = 2

Using the description language for reconfigurable systems simulation models
[5,10], we construct a formal model of the RDFS. Its simplified form can be
represented as follows:

F (x) = {LDC &n ∗ (non-end URT)&m ∗ (end URT)& CC} (9)

where: LDC = {Distributors & IUC & IH & . . . & RIAS}; URT = {QD antenna
& ADF & . . . & SPS & RT (for non-end)}; CC = {Telephone | Telegraph | Radio
Relay | Fiber optic | Mobile}.

Figure 7a shows a simulation model of the upper-level of RDFS in the form of
a block diagram describing the RDFS functioning in accordance with the RSD
shown in Fig. 6. Based on the efficiency criteria, LDC and all four sets of URTs
(for the four quadrants, respectively), are connected via a logical “AND”, which
means that RDFS fail in case of failure of any of these elements.

URT* simulation model in Fig. 7a describes the URT* functioning in accor-
dance with RSD shown in Fig. 5b. According to the URT* failure criteria, five
types of communication channels connected via logical “OR” means the imple-
mentation of the reliability criterion of at least one communication channel; the
output of the logical “OR” is connected with the rest of URT* via a logical
“AND”, which means that the failure occurs when any of the elements or all
of the communication channels fail. The initial data for the numerical model
are the failure rate and the mean time to recovery, besides there are behavior
patterns of components in case of failure. A fragment of a simulation model in
the form of a pseudo code describing the operation of a RDFS communication
channel is shown in Fig. 7b.
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Fig. 7. Representation of RDFS simulation model in the form of a block diagram (a)
and a fragment of pseudocode for a communication channel simulation (b)

6 Example of Reliability Calculation for RDFS Topology

As an example of reliability calculation we carry out a comparative analysis
of reliability measures of a restorable geographically distributed system using
RDFS RSD topology shown in Fig. 6, using analytical models describing the
reliability structure diagram in Sect. 5 - models (1)–(4), respectively, and the
numerical simulation model (see Fig. 7) [5,6].

All the input data for the reliability calculation of RDFS part (see Fig. 5b,c),
namely the failure rate and mean time to repair are given in Table 1 [11]. Assume
the operating time equal to 24 h, since such systems run continuously and on a
round-the-clock basis.

In numerical calculation example, the values of operational failure rate and
mean time to repair for each element of the RDFS RSD were assigned with the
help of analogies methods and expert evaluation.
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Table 1. Operational failure rate λ and the mean time to repair τB of components of
the distributed RDFS

No. Group Module λ, 1/h τB , h. No. Group Module λ, 1/h τB , h.

1 URT QD antenna 25 · 10−6 2,0 18 LDC Distributors 15 · 10−6 0,5

2 ADF 30 · 10−6 0,5 19 IUC 10 · 10−6 1,0

3 APC 15 · 10−6 1,0 20 IH 20 · 10−6 1,0

4 PCC 10 · 10−6 1,0 21 MIIH 40 · 10−6 1,0

5 MD 20 · 10−6 0,5 22 RTC 10 · 10−6 0,5

6 IUC 10 · 10−6 1,0 23 IFA 50 · 10−6 1,0

7 SSE 15 · 10−6 0,5 24 PROM 20 · 10−6 1,0

8 CCU 10 · 10−6 1,0 25 Adapter 5 · 10−6 0,5

9 RS 5 · 10−6 0,5 26 IDE 40 · 10−6 1,0

10 RC 20 · 10−6 1,0 27 Controller 5 · 10−6 1,0

11 SPS 15 · 10−6 1,0 28 CCU 10 · 10−6 1,0

12 RT* 15 · 10−6 1,0 29 Recorder 15 · 10−6 0,5

13 Link Telephone 30 · 10−6 1,0 30 Indication board 10 · 10−6 1,0

14 Telegraph 25 · 10−6 1,0 31 RDC1 20 · 10−6 0,5

15 Radio relay 10 · 10−6 1,0 32 RDCr 20 · 10−6 0,5

16 Fiber optic 20 · 10−6 1,0 33 RIAS 30 · 10−6 1,0

17 Mobile 10 · 10−6 0,5 34 Microcomputer 20 · 10−6 0,5

The results of calculation of RRDFS(t), ARDFS and T0RDFS through analytical
and numerical methods are summarized in Table 2. Also results of mutual error
calculation are presented.

Verification of developed models (see Sect. 5) was carried out in two stages. At
the first stage modeling of standard (typical) redundant structures was carried
out, for which analytical formulas are known without assumptions. According to
the simulation results the measure values have been obtained with an error less
than 0.5–1% relative to the analytical models, which is due to an error of a finite
number of experiments. At the second stage, the calculation of reliability mea-
sures for RDFS RSD topology shown in Fig. 6 was performed. The calculation
results are shown in Table 2.

Table 2. Comparison of reliability measures of a distributed RDFS

Calculation method Reliability measures Mutual calculation error,%

RRDFS(t) ARDFS T0,RDFS Δ(RRDFS(t)) Δ(ARDFS) Δ(T0,RDFS)

Analytical method
(structure graph
method)

0,9740966 0,9991321 915 2,509337 0,0232334 31,2568

Numerical method
(method of Monte
Carlo simulation)

0,99854 0,9989 629
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To build an accurate analytical model of RDFS reliability assessment (see
Fig. 6) it is necessary to analyze 218 possible states of the system, taking into
account the sequence of failures, therefore we obtained only a lower-bound esti-
mate of RRDFS(t). The developed models allow to fully describe the algorithms
and fault criteria of RDFS. To verify the models experts from RDFS developing
enterprises were involved, which gave the expert confirmation of model adequacy.

There were obtained expected results for three reliability measures that can
be considered closer to the truth, compared with analytical models, where admit-
tedly the assumptions where made leading to undercount in one case and over-
stating in other case. For RDFS in estimation of RRDFS(t) the 2.5% difference
was obtained, while the error for T0RDFS is 31% which is a substantial difference.

While checking the stability and correctness of analytical and numerical mod-
els is supported by figures (see Fig. 8a,b).

As can be seen from Fig. 8a the increase in the number of end URTs over
4 stops to give a substantial contribution to T0RDFS, but the increase in the
number of redundant end URTs in quadrant 2 of RDFS leads to a substantial
increase of T0—almost 3 times.

Fig. 8. Plot of mean time between failures of the RDFS (a) and its second quadrant
(b) against the number of redundant end URTs in quadrant 2

As for the analysis of quantitative values of parameters of reliability of RDFS,
it shows the need to improve indicators of recovery through creation of an effec-
tive system of repair, namely making up a set of components by own sets of
SPTA. As it can be seen from the experience of designing similar systems, the
best option is a two-tier system of SPTA, while single set of SPTA is provided
for URT and URT*, SPTA group kit is located near LDC. The main parame-
ters that influence the composition of SPTA are the replenishment strategy (for
similar systems the most economically efficient strategy is a continuous strategy
of replenishment) and the failure rate, obtained in our case through the results
of expert estimation. On the basis of this the following components will prelim-
inary become parts of SPTA - 2, 5, 10, 13, 14, 16, 20, 21, 23, 24, 26, 31–34 (see
Table 1).
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7 Conclusion

Performance criteria for a distributed radio direction finding telecommunication
system (RDFS) were defined according to its topology and structure. There
was developed a unified IDEF0-diagram of RDFS reliability assessment method.
Comparative analysis of analytical and numerical models for RDFS reliability
prediction was carried out.

A methodic has been developed for determining the reliability parameters
both in approximate analytical form and in the form of a formalized simula-
tion model that takes into account different hierarchy levels of the system from
the topology of the network and communication channels to the printed board
assemblies and individual types of electronic components. The analysis of both
models showed that the difference in mean time to failure of the whole RDFS is
significant and is not less than 31%. It is primarily due to strong assumption in
analytical calculations for redundant groups with restoration contrary to a more
precise description of the algorithm of system functioning and failures in the
framework of numerical model. A formalized model was built for its implemen-
tation in the automated system for reliability simulation of functionally complex
systems (ASONIKA-K-RES).

An optimally matched set of spare parts, tools and attachments is able to
provide a high value of the system availability factor.
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Abstract. A mathematical model of a tandem of queuing systems is con-
sidered. Each system has a high-priority input flow and a low-priority
input flow which are conflicting. In the first system, the customers are
serviced in the class of cyclic algorithms. The serviced high-priority cus-
tomers are transferred from the first system to the second one with random
delays and become the high-priority input flow of the second system. In
the second system, customers are serviced in the class of cyclic algorithms
with prolongations. Low-priority customers are serviced when their num-
ber exceeds a threshold. A mathematical model is constructed in form of
a multidimensional denumerable discrete-time Markov chain. Conditions
of low-priority queue stationary distribution existence were found.

Keywords: Tandem of controlling queuing systems · Cyclic algorithm
with prolongations · Conflicting flows · Multidimensional denumerable
discrete-time Markov chain

1 Introduction

An enormous amount of work has been done on the problem of conflicting traffic
flows control at crossroad by the moment. In the queuing theory literature one
can find following algorithms investigated: fixed duration cyclic algorithm, cyclic
algorithm with a loop, cyclic algorithm with changing regimes, etc [1–6]. How-
ever, in a real-life situations cars pass several consecutive crossroads on their way
rather then only one. In other words, an output flow of cars from the first inter-
section forms an input flow of cars of the next intersection. Hence, the second
input flow no longer has an a priori known simple probabilistic structure (for
example, a non-ordinary Poison flow), and knowledge about the service algo-
rithm should be taken into account to deduce formation conditions of the first
output flow.

One can find several works about tandems of intersections. In [7] a computer-
aided simulation of adjacent intersections was carried out. In [8] a mathematical
model of two intersections in tandem governed by cyclic algorithms was investi-
gated and stability conditions were found. In this paper we assume that the first
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 210–221, 2016.
DOI: 10.1007/978-3-319-51917-3 19
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intersection is governed by a cyclic algorithm while the second intersection is gov-
erned by a cyclic algorithm with prolongations. The low-priority queue on the sec-
ond intersection and necessary conditions of its stationary state existence take
central place of this paper. This work continues studying in paper [10].

2 The Problem Settings

Consider a queuing system with a scheme shown in Fig. 1. There are four input
flows of customers Π1, Π2, Π3, and Π4 entering the single server queueing sys-
tem. Customers in the input flow Πj , j ∈ {1, 2, 3, 4} join a queue Oj with an
unlimited capacity. For j ∈ {1, 2, 3} the discipline of the queue Oj is FIFO (First
In First Out). Discipline of the queue O4 will be described later. The input flows
Π1 and Π3 are generated by an external environment, which has only one state.
Each of these flows is a nonordinary Poisson flow. Denote by λ1 and λ3 the
intensities of bulk arrivals for the flows Π1 and Π3 respectively. The probability
generating function of number of customers in a bulk in the flow Πj is

fj(z) =
∞∑

ν=1

p(j)ν zν , j ∈ {1, 3}. (1)

We assume that fj(z) converges for any z ∈ C such that |z| < (1 + ε), ε > 0.
Here p

(j)
ν is the probability of a bulk size in flow Πj being exactly ν = 1, 2, . . . .

Having been serviced the customers from O1 come back to the system as the Π4

customers. The Π4 customers in turn after service enter the system as the Π2

ones. The flows Π2 and Π3 are conflicting in the sense that their customers can’t

Π1

Π2

Π3

Π4

O1

O2

O3

O4

δ1

δ2

δ3

δ4

(0,1) (0,2)

(d,nd)

Π1out

Π2out

Π3out

Π4out

Π1sat

Π2sat

Π3sat

Π4sat

Fig. 1. Scheme of the queuing system as a cybernetic control system
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be serviced simultaneously. This implies that the problem can’t be reduced to a
problem with fewer input flows by merging the flows together.

In order to describe the server behavior we fix positive integers d, n0, n1, . . .,
nd and we introduce a finite set Γ = {Γ (k,r) : k = 0, 1, . . . , d; r = 1, 2, . . . nk} of
states server can reside in. At the state Γ (k,r) the server stays during a constant
time T (k,r). Define disjoint subsets Γ I, Γ II, Γ III, and Γ IV of Γ as follows. In
the state γ ∈ Γ I only customers from the queues O1, O2 and O4 are serviced.
In the state γ ∈ Γ II only customers from the queues O2 and O4 are serviced.
In the state γ ∈ Γ III only customers from queues O1, O3, and O4 are serviced.
In the state γ ∈ Γ IV only customers from queues O3 and O4 are serviced. We
assume that Γ = Γ I ∪ Γ II ∪ Γ III ∪ Γ IV. Set also 1Γ = Γ I ∪ Γ III, 2Γ = Γ I ∪ Γ II,
3Γ = Γ III ∪ Γ IV.

The server changes its state according to the following rules. We call a set
Ck = {Γ (k,r) : r = 1, 2, . . . nk} the k-th cycle, k = 1, 2, . . ., d. For k = 0 the state
Γ (0,r) with r = 1, 2, . . ., n0 is called a prolongation state. Put r ⊕k 1 = r + 1
for r < nk, and r ⊕k 1 = 1 for r = nk (k = 0, 1, . . ., d). In the cycle Ck we
select a subset CO

k of input states, a subset CI
k of output states, and a subset

CN
k = Ck \ (CO

k ∪ CI
k) of neutral states. After the state Γ (k,r) ∈ Ck \ CO

k the
server switches to the state Γ (k,r⊕k1) within the same cycle Ck. After the state
Γ (k,r) in CO

k the server switches to the state Γ (k,r⊕k1) if number of customers in
the queue O3 at switching instant is greater than a predetermined threshold L.
Otherwise, if the number of customers in the queue O3 is less than or equal to
L then the new state is the prolongation one Γ (0,r1) where r1 = h1(Γ (k,r)) and
h1(·) is a given mapping of

⋃d
k=1 CO

k into {1, 2, . . . , n0}. After the state Γ (0,r) if
the number of customers in O3 is not above L the state of the same type Γ (0,r2)

is chosen where r2 = h2(r) and h2(·) is a given mapping of the set {1, 2, . . . , n0}
into itself; in the other case the new state is Γ (k,r3) ∈ CI

k where Γ (k,r3) = h3(r)
and h3(·) is a given mapping of {1, 2, . . . , n0} to

⋃d
k=1 CI

k. We assume that each
prolongation state Γ (0,r) belongs to the set 2Γ and that relations CO

k ⊂ 2Γ
and CI

k ⊂ 3Γ hold. We also assume that all the cycles have exactly one input
and output state. Finally, we assume that all the prolongation states make a
cycle, that is h2(r) = r ⊕0 1. Putting all together, we introduce a function which
formalizes the server state changes:

h(Γ (k,r), y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Γ (k,r⊕k1) if Γ (k,r) ∈ Ck \ CO
k or

(Γ (k,r) ∈ CO
k ) ∧ (y > L);

Γ (0,h1(Γ
(k,r))) if Γ (k,r) ∈ CO

k and y � L;
Γ (0,r⊕01) if k = 0 and y � L;
h3(r) if k = 0 and y > L.

(2)

In general, service durations of different customers can be dependent and may
have different laws of probability distributions. So, saturation flows will be used
to define the service process. A saturation flow Πsat

j , j ∈ {1, 2, 3, 4}, is defined
as a virtual output flow under the maximum usage of the server and unlimited
number of customer in the queue Oj . The saturation flow Πsat

j , j ∈ {1, 2, 3}
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Fig. 2. A tandem of crossroads, the physical interpretation of the queuing system under
study

contains a non-random number �(k, r, j) � 0 of customers in the server state
Γ (k,r). In particular, �(k, r, j) � 1 for Γ (k,r) ∈ jΓ and �(k, r, j) = 0 for Γ (k,r) �∈
jΓ . Let Z+ be the set of non-negative integer numbers. If the queue O4 contains
x ∈ Z+ customers the saturation flow Πsat

4 also contains the x customers. Finally,
in the state Γ (k,r) every customer from queue O4 with probability pk,r and
independently of others ends servicing and joins Π2 to go to O2. With the
complementary probability 1 − pk,r the customer stays in O4 until the next
time slot. In the next time slot it repeats its attempt to join Π2 with a proper
probability.

A real-life example of just described queuing system is a tandem of two
consecutive crossroads (Fig. 2). The input flows are flows of vehicles. The flows
Π1 and Π5 at the first crossroad are conflicting; Π2 and Π3 at the second
crossroad are also conflicting. Every vehicle from the flow Π1 after passing first
road intersection joint the flow Π4 and enters the queue O4. After some random
time interval the vehicle arrives to the next road intersection. Such a pair of
crossroads is an instance of a more general queuing model described above.

3 Mathematical Model

The queuing system under investigation can be regarded as a cybernetic con-
trol system that helps to rigorously construct a formal stochastic model [8].
The scheme of the control system is shown in Fig. 1. There are following blocks
present in the scheme: (1) the external environment with one state; (2) input
poles of the first type—the input flows Π1, Π2, Π3, and Π4; (3) input poles of
the second type—the saturation flows Πsat

1 , Πsat
2 , Πsat

3 , and Πsat
4 ; (4) an exter-

nal memory—the queues O1, O2, O3, and O4; (5) an information processing
device for the external memory—the queue discipline units δ1, δ2, δ3, and δ4;
(6) an internal memory—the server (OY); (7) an information processing device
for internal memory—the graph of server state transitions; (8) output poles—
the output flows Πout

1 , Πout
2 , Πout

3 , and Πout
4 . The coordinate of a block is its

number on the scheme.
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Let us introduce the following variables and elements along with their value
ranges. To fix a discrete time scale consider the epochs τ0 = 0, τ1, τ2, . . . when
the server changes its state. Let Γi ∈ Γ be the server state during the interval
(τi−1; τi], κj,i ∈ Z+ be the number of customers in the queue Oj at the instant
τi, ηj,i ∈ Z+ be the number of customers arrived into the queue Oj from the
flow Πj during the interval (τi; τi+1], ξj,i ∈ Z+ be the number of customers in
the saturation flow Πsat

j during the interval (τi; τi+1], ξj,i ∈ Z+ be the actual
number of serviced customers from the queue Oj during the interval (τi; τi+1],
j ∈ {1, 2, 3, 4}.

The server changes its state according to the following rule:

Γi+1 = h(Γi, κ3,i) (3)

where the mapping h(·, ·) is defined by Formula (2).
Let ϕ1(·, ·) and ϕ3(·, ·) be defined by series expansions

∞∑
ν=0

zνϕj(ν, t) = exp{λjt(fj(z) − 1)}

with functions fj(z) defined by (1), j ∈ {1, 3}. The function ϕj(ν, t) equals the
probability of ν = 0, 1, . . . arrivals in the flow Πj during time t � 0. If ν < 0
the value of ϕj(ν, t) is set to zero.

Mathematical model in more details can be found in work [10]. From now on
we focus on low-priority customers in the queue O3.

4 The Low-Priority Queue

Here we will consider the stochastic sequence

{(Γi(ω), κ3,i(ω)); i = 0, 1, . . .}, (4)

which includes the number of low-priority customers κ3,i(ω) in the queue O3. In
this section we will report several results concerning this stochastic sequence.

Let Γ (k,r) ∈ Γ and x3 ∈ Z+. Denote by H−1(Γ (k,r), x3) the set of all server
states γ such that h(γ, x3) = Γ (k,r) and put r �k 1 = r − 1 for nk � r > 1, and
r �k 1 = nk for r = 1 (k = 0, 1, . . ., d). Then formula (2) makes it possible to
define the mapping H−1(Γ (k,r), x3) explicitly:

H−1(Γ (k,r), x3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
Γ (k1,r1), Γ (0,r�01)

}
if (k = 0) ∧ (x3 � L),{

Γ (k,r�k1), Γ (0,r2)
}

if (Γ (k,r) ∈ CI
k) ∧ (x3 > L),{

Γ (k,r�k1)
}

if (Γ (k,r) ∈ CO
k ) ∨ (Γ (k,r) ∈ CN

k );
∅ if (k = 0) ∧ (x3 > L)

or (Γ (k,r) ∈ CI
k) ∧ (x3 � L)

(5)
where h1(Γ (k1,r1)) = r and h3(r2) = Γ (k,r).



Low-Priority Queue and Server’s Steady-State Existence 215

Let’s define for γ ∈ Γ and x3 ∈ Z+ values

Q3,i(γ, x) = P({ω : Γi(ω) = γ, κ3,i(ω) = x3}).

Theorem 1 concerns generating functions and corrects ones in paper [10].
Suppose k and r are such that Γ (k,r) ∈ Γ . Let’s define partial probability gen-
erating functions

M(3,i)(k, r, v) =
∞∑

w=0

Q3,i(Γ (k,r), w)vw,

qk,r(v) = v−�(k,r,3)
∞∑

w=0

ϕ3(w, T (k,r))vw.

and auxilary functions

α̃i(k, r, v) =
�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3,i(γ, x3)
�(k,r,3)−x3∑

a=0

ϕ3(a, T (k,r))

−
�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3,i(γ, x3)vx3−�(k,r,3)

�(k,r,3)−x3∑
w=0

ϕ3(w, T (k,r))vw,

αi(0, r, v) = α̃i(0, r, v) + q0,r(v) ×
L∑

x3=0

[
Q3,i(Γ (k1,r1), x3)

+Q3,i(Γ (0,r�01), x3)
]
vx3 , Γ (0,r) ∈ Γ,

αi(k, r, v) = α̃i(k, r, v) − qk,r(v)
L∑

x3=0

[
Q3,i(Γ (k,r�k1), x3)

+ Q3,i(Γ (0,r2), x3)
]
vx3 + qk,r(v)

∑
x3�0

Q3,i(Γ (0,r), x3)vx3 , Γ (k,r) ∈ CI
k,

αi(k, r, v) = α̃i(k, r, v), Γ (k,r) ∈ CO
k ∪ CN

k .

Theorem 1. Following recurrent w.r.t. i � 0 relations take place for the partial
probability generating functions:

1. Γ (0,r) ∈ Γ , r = 1, n0

M(3,i+1)(0, r, v) = αi(0, r, v);
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2. Γ (k,r) ∈ Γ , k = 1, d, r = 1, nk

M(3,i+1)(k, r, v) = qk,r(v) × M(3,i)(k, r �k 1, v) + αi(k, r, v);

The last result (Theorem 2) is new and concerns low-priority queue and
server’s steady-state existence.

Theorem 2. For Markov chain (4) to have stationary distribution Q3(γ, x),
(γ, x) ∈ Γ × Z+ it is necessary that following inequality takes place

min
k=1,d

λ3f
′
3(1)

∑nk

r=1 T (k,r)∑nk

r=1 �(k, r, 3)
< 1.

Proof. Let’s assume that stationary distribution Q3(γ, x), (γ, x) ∈ Γ×Z+, exists.
Then choosing this distribution as the initial one imposes existence of following
limits:

lim
i→∞

Q3,i(γ,w) = Q3(γ,w),

which are equal to stationary probabilities of corresponding states.
After defining generating functions

M(3)(k, r, v) =
∞∑

w=0

Q3(γ,w)vw,

for the stationary distribution similar relations can be derived as in Theorem1:

1. Γ (0,r) ∈ Γ , r = 1, n0

M(3)(0, r, v) = α(0, r, v); (6)

2. Γ (k,r) ∈ Γ , k = 1, d, r = 1, nk

M(3)(k, r, v) = qk,r(v) × M(3)(k, r �k 1, v) + α(k, r, v); (7)

where

α̃(k, r, v) =
�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3(γ, x3)
�(k,r,3)−x3∑

a=0

ϕ3(a, T (k,r))

−
�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3(γ, x3)vx3−�(k,r,3)

�(k,r,3)−x3∑
w=0

ϕ3(w, T (k,r))vw,

α(0, r, v) = α̃(0, r, v) + q0,r(v) ×
L∑

x3=0

[
Q3(Γ (k1,r1), x3)

+Q3(Γ (0,r�01), x3)
]
vx3 , Γ (0,r) ∈ Γ,
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α(k, r, v) = α̃(k, r, v) − qk,r(v)
L∑

x3=0

[
Q3(Γ (k,r�k1), x3)

+ Q3(Γ (0,r2), x3)
]
vx3 + qk,r(v)

∑
x3�0

Q3(Γ (0,r), x3)vx3 , Γ (k,r) ∈ CI
k,

α(k, r, v) = α̃(k, r, v), Γ (k,r) ∈ CO
k ∪ CN

k

Taylor expansion of qk,r(v) gives

qk,r(v) = v−�(k,r,3) exp (λ3T
(k,r)(f3(v) − 1))

= 1 + (λ3T
(k,r)f ′

3(1) − �(k, r, 3))(v − 1) + O((v − 1)2)).

Summing all the relations (6) and (7) one can find

d∑
k=0

nk∑
r=1

M(3)(k, r, v)

=
n0∑

r=1

α(0, r, v) +
d∑

k=1

nk∑
r=1

[
qk,r(v)M(3)(k, r �k 1, v) + α(k, r, v)

]

=
d∑

k=1

nk∑
r=1

qk,r(v)M(3)(k, r �k 1, v) +
d∑

k=1

nk∑
r=1

α(k, r, v) +
n0∑

r=1

α(0, r, v). (8)

Similarly lets expand
∑d

k=1

∑nk

r=1 α(k, r, v) and
∑n0

r=1 α(0, r, v). First of all

α̃(k, r, v)

=
�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3(γ, x3)
�(k,r,3)−x3∑

w=0

ϕ3(w, T (k,r))(1 − vw−(�(k,r,3)−x3))

= −(v − 1)
�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3(γ, x3)

×
�(k,r,3)−x3∑

w=0

ϕ3(w, T (k,r))(w − (�(k, r, 3) − x3)) + O((v − 1)2).

In particular, �(k, r, 3) equals to zero for k = 0, that implies α̃(0, r, v) = O((v −
− 1)2).
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And now we are ready to expand further:

n0∑
r=1

α(0, r, v)

=
n0∑

r=1

q0,r(v) ×
L∑

x3=0

[
Q3(Γ (k1,r1), x3) + Q3(Γ (0,r�01), x3)

]
vx3 + O((v − 1)2)

=
n0∑

r=1

(1 + (λ3T
(0,r)f ′

3(1) − �(0, r, 3))(v − 1))

×
L∑

x3=0

[
Q3(Γ (k1,r1), x3) + Q3(Γ (0,r�01), x3)

]
vx3 + O((v − 1)2),

∑
k,r : Γ (k,r)∈CI

k

α(k, r, v) =
∑

k,r : Γ (k,r)∈CI
k

qk,r(v)
[
M(3)(0, r2, v)

−
L∑

x3=0

(
Q3(Γ (k,r�k1), x3) + Q3(Γ (0,r2), x3)

)
vx3

]

+
∑

k,r : Γ (k,r)∈CI
k

α̃(k, r, v) =
∑

k,r : Γ (k,r)∈CI
k

(1 + (λ3T
(k,r)f ′

3(1) − �(k, r, 3))(v − 1))

×
[
M(3)(0, r2, v) −

L∑
x3=0

(
Q3(Γ (k,r�k1), x3) + Q3(Γ (0,r2), x3)

)
vx3

]

− (v − 1)
∑

k,r : Γ (k,r)∈CI
k

�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3(γ, x3)

×
�(k,r,3)−x3∑

w=0

ϕ3(w, T (k,r))(w − (�(k, r, 3) − x3)) + O((v − 1)2),

∑
k,r : Γ (k,r)∈CO

k ∪CN
k

α(k, r, v) =
∑

k,r : Γ (k,r)∈CO
k ∪CN

k

α̃(k, r, v)

= −(v − 1)
∑

k,r : Γ (k,r)∈CO
k ∪CN

k

�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3(γ, x3)

×
�(k,r,3)−x3∑

w=0

ϕ3(w, T (k,r))(w − (�(k, r, 3) − x3)) + O((v − 1)2).

It’s important to mention, that any input system state corresponds to one
and only one prolongation system state. That is why substitution of calculated
expressions into (8) gives:
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0 = O((v − 1)2) + (v − 1)
d∑

k=1

nk∑
r=1

(λ3T
(k,r)f ′

3(1) − �(k, r, 3))M(3)(k, r �k 1, v)

+ (v − 1)
n0∑

r=1

(λ3T
(0,r)f ′

3(1) − �(0, r, 3)) ×
L∑

x3=0

[
Q3(Γ (k1,r1), x3)

+Q3(Γ (0,r�01), x3)
]
vx3 + (v − 1)

∑
k,r : Γ (k,r)∈CI

k

(λ3T
(k,r)f ′

3(1) − �(k, r, 3))

×
[
M(3)(0, r2, v) −

L∑
x3=0

(
Q3(Γ (k,r�k1), x3) + Q3(Γ (0,r2), x3)

)
vx3

]

− (v − 1)
∑

k,r : Γ (k,r)∈CO
k ∪CN

k

�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

(
Q3(γ, x3)

×
�(k,r,3)−x3∑

w=0

ϕ3(w, T (k,r))(w − (�(k, r, 3) − x3))
)

, (9)

dividing by (v − 1) and then sending v to 1 from the left one continues

0 =
∑

k,r : Γ (k,r)∈CI
k

(λ3T
(k,r)f ′

3(1) − �(k, r, 3)) ×
[
M(3)(k, r �k 1, 1)

−
L∑

x3=0

Q3(Γ (k,r�k1), x3) + M(3)(0, r2, 1) −
L∑

x3=0

Q3(Γ (0,r2), x3)
]

+
∑

k,r : Γ (k,r)∈CO
k ∪CN

k

(λ3T
(k,r)f ′

3(1) − �(k, r, 3))M(3)(k, r �k 1, 1)

+
n0∑

r=1

λ3T
(0,r)f ′

3(1) ×
L∑

x3=0

[
Q3(Γ (k1,r1), x3) + Q3(Γ (0,r�01), x3)

]

+
d∑

k=1

nk∑
r=1

�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3(γ, x3)
�(k,r,3)−x3∑

w=0

ϕ3(w, T (k,r))(�(k, r, 3) − x3 − w).

(10)

Fixing v = 1 in corresponding generating functions relations one can get

M(3)(0, r, 1) =
L∑

x3=0

(
Q3(Γ (k1,r1), x3) + Q3(Γ (0,r�01), x3)

)
,

M(3)(k, r, 1) = M(3)(k, r �k 1, 1) + M(3)(0, r2, 1)

−
L∑

x3=0

(
Q3(Γ (k,r�k1), x3) + Q3(Γ (0,r2), x3)

)
, Γ (k,r) ∈ CI

k,

M(3)(k, r, 1) = M(3)(k, r �k 1, 1), Γ (k,r) ∈ CO
k

⋃
CN

k .
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The last equation gives M(3)(k, nk, 1) = M(3)(k, nk �k 1, 1) = . . . =
M(3)(k, 1, 1) = Mk. Using these facts, let’s simplify expression (10)

0 =
∑

k,r : Γ (k,r)∈CI
k

(λ3T
(k,r)f ′

3(1) − �(k, r, 3)) × Mk

+
∑

k,r : Γ (k,r)∈CO
k ∪CN

k

(λ3T
(k,r)f ′

3(1) − �(k, r, 3))Mk

+
n0∑

r=1

λ3T
(0,r)f ′

3(1) ×
L∑

x3=0

[
Q3(Γ (k1,r1), x3) + Q3(Γ (0,r�01), x3)

]

+
∑

k,r : Γ (k,r)∈
∈CO

k ∪CN
k

�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3(γ, x3)
�(k,r,3)−x3∑

w=0

ϕ3(w, T (k,r))(�(k, r, 3) − x3 − w).

After grouping terms we get:

0 =
d∑

k=1

(
Mk ×

nk∑
r=1

(λ3T
(k,r)f ′

3(1) − �(k, r, 3))
)

+
n0∑

r=1

λ3T
(0,r)f ′

3(1) ×
L∑

x3=0

[
Q3(Γ (k1,r1), x3) + Q3(Γ (0,r�01), x3)

]

+
∑

k,r : Γ (k,r)∈
∈CO

k ∪CN
k

�(k,r,3)∑
x3=0

∑
γ∈H−1(γ̃,x3)

Q3(γ, x3)
�(k,r,3)−x3∑

w=0

ϕ3(w, T (k,r))(�(k, r, 3)−x3−w).

Assumption that expression
∑nk

r=1 �(k, r, 3)
/
λ3f

′
3(1)

∑nk

r=1 T (k,r) for any
k = 1; d is less than or equal to 1, leads to impossible conclusion Q3(Γ (0,1), 0) = 0.
Theorem is proved.
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Abstract. We continue to develop a novel approach for confidence esti-
mation of the stationary measures in the model describing high perfor-
mance multiserver queueing systems, such as high performance clusters
(HPC). We call this model cluster model. This model is described by a
stochastic process, and in the framework of the approach, we construct
two envelopes, minorant and majorant regenerative processes for the
queue size process in the original system. These envelopes have classical
regenerations while the original process may not be regenerative or its
regenerations happen too rare to be useful for statistical estimation. It
allows to construct confidence intervals for the steady-state queue size
of the cluster model. We use simulation to illustrate the applicability
of the approach and give recommendations how to select the predefined
parameters of the envelopes to increase the efficiency of estimation. As
simulation shows, the constructed envelopes allow to estimate the mean
stationary queue size in the original system with a given accuracy in an
acceptable time.

Keywords: Regenerative envelopes · High performance cluster · Queue
size estimation

1 Introduction

Regenerative simulation approach is well known as one of the powerful tools for
high performance queueing systems simulation with a complicated correlation
structure [1–4]. It allows to apply well-developed classical statistical methods
based on the special form of the Central Limit Theorem (CLT) for confidence
estimation of QoS parameters in the case when data are dependent. At the
same time the efficiency of the approach depends strongly on the accuracy of
estimation which, in turn, depends on the frequency of the regenerations.

In this work we continue to develop regenerative envelopes method proposed
in [5] with focus on regenerative estimation of classical multiserver system (not
necessary regenerative) by means of construction of majorant and minorant
regenerative system (called envelopes). In this work instead we focus on sim-
ulation and estimation of a cluster model. (This possibility has been mentioned
in previous work [5].) In general, this new approach can be effectively applied for
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estimation of QoS parameters, such as queue size in the case, when the number
of servers is large and classical regenerations do not exist, or are too rare to be
useful in practice to provide the desired accuracy in an acceptable simulation
time.

The main idea of the method is to construct the two new systems: majorant
and minorant regenerative systems (called regenerative envelopes). In fact we
obtain a regeneration point when a basic (Markov) process hits a predefined
compact set. At these instances we transform the remaining service times in an
appropriate way to obtain classical regeneration in each envelop. The queue size
processes in the new majorant and minorant systems regenerate in classical sense
and have i.i.d. regenerative cycles with i.i.d. lengths, however, at the regeneration
instant, need not to be in an empty state as in conventional construction. Then
we apply a monotonicity property of the queue size process (which is based on the
concept of coupling) to construct confidence estimate of the steady-state queue
size in the original system. It is worth mentioning, that there is a proximity of
the queue size processes in the majorant and original systems. Moreover in some
experiments these processes merge in a neighborhood of regeneration points.
Potentially it allows to estimate the performance measures in (generally non-
regenerative) cluster model with a very high precision. It is important to note
that, unlike classical multiserver system M/M/m, the performance measures in
the new cluster model are not explicitly available, and we rely on the simulation
to select the most frequent regenerations applied for estimation.

In summary, the present work is a development of previous paper [5] with
focus on the application of the new method to the cluster model. The novelty of
this work is the description of regeneration points for cluster model. The main
contribution of this work is a detailed analysis of the high performance cluster
simulation based on regenerative envelopes.

This paper is organised as follows. In Sect. 2 we describe the cluster model in
detail and present a modified Kiefer–Wolfowitz-type recursion which recursively
defines m-dimensional workload process in this model. Moreover, we present
recently proved stability criteria of this model. In Sect. 3 we give monotonicity
properties of the basic processes, queue-size and number of customers, in the
cluster model. Then we describe construction of the envelopes with focus on
regenerations of the majorant system. In Sect. 4.1 we present the main notions
of the regenerative simulation method including confidence estimation based
on the corresponding variant of Central Limit Theorem. Then, in Sect. 4.2, we
demonstrate results of simulation of the cluster model for some governing distri-
butions, and also give estimates of the stationary queue size. Other performance
measures of the cluster model are discussed as well. Obtained results show some
advantages of the method in estimation of non-regenerative queueing system, in
particular, the cluster model.

2 Description of the Model and Stability Criterion

Consider the cluster model Σ with FCFS service discipline which has m servers
working in parallel. (In what follows we will suppress serial index to denote a
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generic element of an i.i.d sequence.) Denote by τi = ti+1 − ti the interarrival
times (with arrival rate λ = 1/Eτ), where ti is the arrival instant of the ith
customer, i � 1. Customer i requires Ni servers simultaneously for service time
Si (with service rate μ = 1/ES). Note that {Ni} is an i.i.d. sequence with
distribution of a generic sequence member p = {pk := P(N = k), k = 1, . . . ,m}.

The following Kiefer–Wolfowitz-type recursion describes the dynamics of the
workload of the cluster model

Wi+1 = R
( Ni components︷ ︸︸ ︷
Wi,Ni

+ Si − τi, . . . ,Wi,Ni
+ Si − τi,

Wi,Ni+1 − τi, . . . ,Wi,m − τi

)+
, (1)

where operator R puts the components of the vector in an increasing order and
Wi,j is the remaining work allocated to the jth most busy server at the arrival
epoch ti of customer i. In other words, customer i occupies the Ni least busy
servers. Note that if N = 1 w.p. 1, then (1) defines the workload vector for a
classical GI/G/m multiserver system [6], that is

Wi+1 = R(Wi,1 + Si − τi,Wi,2 − τi, . . . ,Wi,m − τi)+.

Denote νi (Qi) the number of customers (queue size) at instant t−i in the cluster
model. All basic processes in this system are regenerative with regeneration
points defined as arrival epochs to an empty system. When the mean regeneration
period is finite, ET < ∞, the regenerative process is called positive recurrent,
and it is the most important step to establish stability of the system [1]. The
following stability (positive recurrence) criterion has been proved in [7]

λ

μ
C < 1, (2)

where

C :=
m∑

i=1

1
i

m∑
j=i

(p∗i)j

m∑
t=m−j+1

pt, (3)

and (p∗i)j is the j-th component of i-convolution of p with itself, that is (p∗i)j =
P(N1 + · · · + Ni = j).

For a 2-server model, the criterion (2) becomes [8]

λ

μ

(
1 − p21

2

)
< 1. (4)

3 Monotonicity and Construction of Regenerative
Envelopes

In the regenerative envelopes method, we construct two queueing systems, majo-
rant (or upper) system Σ and minorant (or lower) system Σ. We endow the
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corresponding variables in the system Σ (Σ) with overline (underline). The
majorant and minorant systems have the same input sequence {τi} as in Σ,
and appropriately enlarged, respectively, shortened service times {Si} and {Si},
i � 1. These transformations occur at the epochs when each system hits the cor-
responding fixed compact set, implying regeneration. In turn, it allows to perform
regenerative confidence estimation of the steady-state performance measures of
the discrete-time process {Xn, n � 0} which describes the dynamics of the origi-
nal stochastic system [2–4], even if the original system is not regenerative. (More
on regenerative estimation see in [5].)

The procedure is based on the following monotonicity result which holds true
for the cluster model as well as for a classical GI/G/m model [1]. Assume the
initial workloads ordered as W 1 � W1 � W 1, and the service times are ordered
as Si � Si � Si, i � 1. (In fact we apply coupling method which allows to
replace stochastic relations by relations w.p.1.) Then

νi � νi � νi, Q
i
� Qi � Qi, i � 1. (5)

To define the aforementioned compact set, we suggest the following methods:

(1) Fix integer Q0 (the number of customers in the queue), N0 (the number of
servers required by the customer at the head of the queue) and constants
0 � a � b � ∞, and define

βn+1 = inf
{

k > βn : Qk = Q0 > 0, Nk−Q0 = N0, (6)

Si(k) ∈ [a, b], i ∈ Mk, Mβn

⋂
Mk = ∅

}
, n � 0, (7)

where Mn = {i : ti � tn < zi} is the set of the customers served in the
system Σ at instant tn, Si(n) is the remaining service time of customer i at
instant tn and zi := ti +W i,Ni

+Si is the departure instant of ith customer.
(2) Fix integer m0 (the number of busy servers, if the queue is empty) and define

βn+1 = inf
{

k > βn : Qk = 0,
∑

i∈Mk

Ni = m0 � m,

Si(k) ∈ [a, b], i ∈ Mk, Mβn

⋂
Mk = ∅

}
, n � 0. (8)

At each such instant βn we replace the remaining times Si(k), i ∈ Mk, by
the upper bound b. The condition Mβn

⋂ Mk = ∅ means that all customers
being served at instant βn have left the system before instant βn+1. It is easy
to see that Xn := {Qn, Si(n), i ∈ Mn}, n � 1, is a Markov process, and that
distribution of Xβn

is independent of n and pre-history {Xk, k < βn}, n �
1. In other words, the process {Xn, n � 1} regenerates at the instants {βk}
and has the iid regeneration cycles {Xk, βn � k < βn+1} with iid cycle
lengths βn+1 − βn, n � 1.
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We define the moments β
n
, n � 0 in a similar way (with possibly other values

a, b,Q0, N0,m0). When the queue-size process in the minorant system hits, at
some arrival instant tk, the corresponding compact set, we replace the current
remaining service times Si(k), i ∈ Mk, by a. (More details can be found in [5].)

It is easy to show that the constructed moments {βn}, {β
n
} are regenerative

instants of the corresponding basic processes, and moreover, these replacements
keep the monotonicity of the performance measures of interest. We stress that,
at the regeneration instant βn, all the remaining service times of the customers
being served become equal to b, and customers in Mβn

can be treated a single
large customer occupying m0 servers. Note that for a classical GI/G/m system
the cases (1) and (2) coincide, since

N = 1 w.p. 1,
∑

i∈Mk

Ni = νk and Qk = max(0, νk − m).

In general, selection of the constants a, b,Q0, N0,m0 must be done in such a way
to obtain a trade-off between the frequency of regenerations and the difference
between the upper and lower systems. In this regard we recall the well-known
result for classical M/M/m system: the value �λ/μ� of the stationary number of
customers in the system ν is the most probable, see, for instance, [1]. However,
in the cluster model, stationary distributions of the number of customers in the
system ν, the stationary queue size Q and the number of the busy servers are
not available in an explicit form. Nevertheless, as our simulation confirms, it
is surprising that the state ν = �λ/μ� is still the most probable in the cluster
model as well. This fact can be used to speed-up regenerative estimation of the
performance measures of general (non-Markovian) cluster model.

4 Simulation and Estimation

4.1 Regenerative Simulation

Define the regenerative instants {βk, k � 1} for a discrete-time regenerative
process {Xn, n � 0}. The regenerative cycles Ck := {Xj : βk � j < βk+1},
k � 0, are iid with the iid cycle lengths αk := βk+1 − βk (β0 := 0). We discuss
the confidence estimation of steady-state characteristic r = EX. Consider the
iid sequence

Yk =
βk+1−1∑

i=βk

Xi, Vk = Yk − rαk, k � 0,

Applying CLT we obtain the following asymptotic 100(1 − 2γ)% confidence
interval for the unknown r:

[
r̂k − z1−γS(k)

α̂k

√
k

, r̂k +
z1−γS(k)

α̂k

√
k

]
, (9)
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where r̂k = Ŷk/α̂k, Ŷk(α̂k) is the sample mean of EY (Eα), the estimate S2(k) →
σ2 = EV 2

1 , k → ∞, w.p.1, the quantile z1−γ is defined as P(N(0, 1) � z1−γ) =
1 − γ, and N(0, 1) is standard normal variable. It is important to stress that,
unlike classic estimation, in this case we deal with the iid groups {Yk} related
to regeneration cycles, but not original data {Xi}, and simulation with a given
accuracy requires in general much more simulation time.

4.2 Regenerative Estimation of Cluster Model

To study the performance measures of the cluster model, we perform the follow-
ing numerical experiment. We take m = 100 and generate a sequence of n = 105

Poisson arrivals (with rate λ = 1). We use the Zipf’s law, the discrete analogue
of the heavy-tailed Pareto law, to model distribution {pi}:

pi = p0/i, i = 1, . . . ,m,where p0 = (p1 + · · · + pm)−1
.

Then we select μ = 0.9λC, where C is defined in (3). It gives �λ/μ� = 4. We
calculate the following performance measures: the number of customers in the
system, the number of customers in the queue, the number of customers being
served, the number of busy servers. The histograms of the results are shown
on Fig. 1. It is seen that the most frequent number of customers in the system
equals 4, and it corresponds to our conjecture. However, in the most of the cases
(≈ 0.15) the queue size Q = 0, and the (empirical) probability P(Q = i) decreases
for i > 0. This effect of (geometrical) decreasing of probabilities P (ν = k) for
k large has been established as a property of the matrix-geometric solution for
the cluster model, see [7,9]. Now to increase the frequency of regenerations, we
select Q0 = 0 both for the upper and for the lower models, and set m0 = 100, as
the most frequent value. Next, we select (a, b) as (0, 2.4) for the upper system,
and (2.2,∞) for the lower system. Thus, the regeneration instants defined by (8)
become in our setting

βn+1 = inf
{

k > βn : Qk = 0,
∑

i∈Mk

Ni = 100,

Si(k) ∈ (0, 2.4), i ∈ Mk, Mβn

⋂
Mk = ∅

}
, n � 0.

β
n+1

= inf
{

k > β
n

: Q
k

= 0,
∑

i∈Mk

Ni = 100,

Si(k) ∈ (2.2, ∞), i ∈ Mk, Mβ
n

⋂
Mk = ∅

}
, n � 0.

We apply regenerative confidence estimations for the regenerative envelopes
(with γ = 0.05), and for the original system as well, because in this case it has
classical regenerations when νi = 0. The results of the experiments are shown
on Fig. 2. It is seen that the regenerative envelop method slightly outperforms
(in terms of acquired accuracy) the confidence interval constructed for original
system using classical regenerations. This important effect shows the advantage
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Fig. 1. Histograms of the performance measures for m = 100 servers, Poisson arrivals
with rate λ = 1, exponential service time with rate μ = 0.3 and pi = p0/i, i = 1, . . . , s:
(a) customers in the system, (b) customers in the queue, (c) customers at service, (d)
busy servers.
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Fig. 2. Confidence intervals for the systems with m = 100 servers, Poisson arrivals
with rate λ = 1, exponential service time with rate μ = 0.3 and pi = p0/i, i = 1, . . . , m.
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Fig. 3. Coupling of the majorant and original systems with m = 100 servers, Poisson
arrivals with rate λ = 1, exponential service time with rate μ = 0.3 and pi = p0/i, i =
1, . . . , m in a neighborhood of the regeneration epoch t7787+0 (a): number of customers
in the system vs. system time; (b): number of busy servers vs. system time.

of the method of regenerative envelops. However, the nature of such phenomenon
requires a separate investigation.

Now we study in detail the paths of the queue size in the majorant system
(possessing regenerations) and in the original system, in a neighborhood of a
regeneration point, see Fig. 3. We consider the first regeneration point of this
trajectory, that is, just after arrival of customer 7787. It turns out that the this
instant is the first regeneration point of the majorant system, that is β1 = 7787.
At instant tβ1

, the number of busy servers equals 100, and the residual service
times of customers Mβ1

= {7783, 7784, 7785, 7787} belong to interval [0, 2.4]. At
that, the residual service times {Si(β1), i ∈ Mβ1

} in the system Σ̄ take maximal
value 2.4. Then the customers from the set Mβ1

depart system simultaneously
at instant tβ1

+ 2.4 (see Fig. 3(a)). By this transformation, the path of majo-
rant system dominates the corresponding path of the original system because of
the mentioned monotonicity property. However, as our experiment shows, long
interarrival time period between t7793 ≈ 7722.79 and t7794 ≈ 7726.03, allows to
unload the system in such a way that the majority of servers become free (see
Fig. 3(b)). As a result, a sequence of non-waiting arrivals appears (see Fig. 3(a),
after arrival of customer 7794). In turn, it leads to merging (or coupling) of the
paths of the system Σ̄ and original system. We stress that both systems stay
not empty between the regeneration epoch tβ1

and the instant of the coupling.
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We mention an analogy of this period with the so-called renovation period in
the theory of renovating events, see [1,10]. We also note that, by the monotonic-
ity, the order of departures is the same for the original and majorant systems.
However, due to the transformation of the remaining service times at regener-
ation instant, the departure instants are shifted (to the right) by the amount
of time 2.4 − mini∈Mβ1

{Si(β1)}, see Fig. 3(b). Nevertheless, by combination of
non-waiting arrivals and a long interarrival time, this difference between the
paths disappears eventually. It shows one more time an analogy with the the-
ory of renovating events and an interesting interrelation between the method of
regenerative envelopes and theory of Harris Markov chains. This interrelation is
assumed to be a topic of a future research.

5 Conclusion

In this work we continue to develop the method of regenerative envelopes with
focus on estimation of a cluster model. As simulation shows, this method allows
to estimate the mean steady-state queue size in the original (not necessary regen-
erative) model with a high precision by means of confidence estimation of the
upper and lower (envelopes) regenerative systems.
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Abstract. We consider infinite-server queue with Markov modulated
Poisson arrivals and feedback. Asymptotic analysis of the aggregate
arrival process is made under conditions of frequent changing of the
underlying chain states of the arrival process and increasing service time.
It is proved that the aggregate arrival process is Poisson asymptotically.
Parameter of the Poisson approximation is obtained. Applicability area
of the asymptotic results is derived by means of numerical experiments.

Keywords: Infinite-server queue · Asymptotic analysis · Feedback ·
Aggregate arrival process

1 Introduction

Queuing models have been investigated by many authors due to their different
applications in production, communications, banking, computer systems and
other areas. Due to present rapid development of these systems there is a need
to expand the modification of queuing systems, as well as design and develop
new methods of their investigation. It is known that the queuing system with
feedback [1] can be used to describe socio-economic processes [2,3], as well as
afterservice processes in information and telecommunication systems [4–9].

Models of queuing systems with feedback are of two types: models with
instantaneous feedback and models with delayed feedback. In the available lit-
erature, both types of models are investigated separately. Recently in [10–12],
Markov models with both types of feedbacks were investigated and both exact
and approximate methods to calculate their performance metrics are developed.
Detailed review of the queueing models with both types of feedback might be
found in [12]. Infinite-server queue with feedback and Poisson arrivals were con-
sidered in the articles [13,14]. In this paper, we study the aggregate arrival
process in infinite-server queue with Markov modulated Poisson arrivals and
feedback.

c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 231–240, 2016.
DOI: 10.1007/978-3-319-51917-3 21
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2 Mathematical Model

Consider an infinite-server queue with arrivals as Markov modulated Poisson
process (MMPP) which underlying chain k(t) has a finite number of states:
1, 2, . . . ,K. The MMPP is determined by given matrix of infinitesimals Q =
‖qij‖, i, j = 1, 2, . . . ,K, and by matrix of conditional rates Λ = diag{λk}, k =
1, 2, . . . ,K [15]. Let R be a vector of stationary probability distribution of states
of Markov chain k(t) which is determined by the system of equations

{
Re = 1,
RQ = 0.

(1)

When a customer arrives at the system, it occupies any free server. Service
time is distributed according to the exponential law with a parameter μ. When
service is finished, the customer leaves the system with a probability (1 − r)
or goes into the system again for additional service with a probability r. So,
the arrivals in the system is an aggregate arrival process which contains “pure”
arrivals from MMPP and feedback arrivals. The problem of the study is an
analysis of the aggregate arrival process.

Let us denote the following: i(t) is a number of busy servers at the
time instant t, m(t) is a number of customers in aggregate arrival process
that have come into the system during time interval [0, t), k(t) is a state
of the underlying Markov chain of the MMPP at the time instant t. Three-
dimensional process {k(t), i(t),m(t)} is Markov. For its probability distribution
P (k, i,m, t) = P{k(t) = k, i(t) = i,m(t) = m}, we can write down Kolmogorov
differential equation system in the following form

∂P (k, i,m, t)
∂t

= −λkP (k, i,m, t) − iμP (k, i,m, t) + λkP (k, i − 1,m, t)+

μ(i + 1)(1 − r)P (k, i + 1,m, t) + μirP (k, i,m − 1, t) +
K∑

ν=1

P (ν, i,m, t)qνk (2)

for k = 1, 2, . . . ,K, i,m = 0, 1, 2, . . .
We introduce partial characteristic functions [15]:

H(k, u, s, t) =
∞∑

i=0

∞∑
m=0

ejuiejsmP (k, i,m, t),

where j =
√−1. Then we can write the system (2) in the form of differential

matrix equation

∂H(u, s, t)
∂t

+ jμ
[
rejs − 1 + (1 − r)e−ju

] ∂H(u, s, t)
∂u

=

H(u, s, t)
[(

ej(u+s) − 1
)
Λ + Q

]
, (3)

where H(u, s, t) = [H(1, u, s, t), . . . ,H(K,u, s, t)].
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3 Asymptotic Analysis

Consider the system MMPP/M/∞ described above. Let us fix a matrix of infin-
itesimals as Q(1). Let S be a positive value. Denote Q = S ·Q(1). It is clear that
the stationary probability distributions of state of the underlying Markov chain
k(t) coincide for the cases both with infinitesimal matrices Q(1) and Q. In other
words, this distribution does not depend on parameter S, but the intensity of the
transitions of Markov chain k(t) from one state to another increases while value
of the parameter S increases. This corresponds us to the condition of frequent
changing of the underlying chain states of the arrival process.

Let us obtain the steady-state asymptotic characteristic function of the num-
ber of busy servers under conditions of frequent changing of the underlying chain
states of the arrival process and increasing service time. To do this, we set s = 0
in the Eq. (3) and make a transition to the steady state (t → ∞), then we derive
the following equation

j(1 − r)
(
e−ju − 1

)
H(u)′ = H(u)

[(
ej(u) − 1

)
Λ + SQ(1)

]
. (4)

Theorem 1. The steady-state asymptotic characteristic function of the number
of busy servers in infinite-server queue with Markov modulated Poisson arrivals,
exponential service times and feedback has the form

h(u) = E
{

ejui(t)
}

= exp
{

juκ

μ(1 − r)

}

under the conditions of frequent changing of the underlying chain states of the
arrival process and increasing service time. Here κ = RΛe.

Proof. We denote

μ = ε, u = εy,
1
S

= ε,H(u) = F(y, ε).

Let us rewrite the Eq. (10), taking into account these notations:

jε(1 − r)(e−jεy − 1)
∂F(y, ε)
ε · ∂y

= F(y, ε)
[(

ej(εy) − 1
)
Λ + SQ(1)

]
. (5)

Dividing right and left side of the Eq. (10) by S and making a transition
S → ∞, we obtain the system of equations

0 = F(y)Q(1).

Its solution has the form

F(y) = RΦ(y), (6)

where Φ(y) is a some scalar function.



234 A. Melikov et al.

To determine the form of this function, we multiply both sides of the Eq. (5)
by the vector e:

jε(1 − r)(e−jεy − 1)
∂F(y, ε)
ε · ∂y

e = F(y, ε)
[(

ej(εy) − 1
)
Λ

]
e.

Performing an asymptotic transition ε → 0 and taking into account the form
(11), we derive the following differential equation

(1 − r)Φ′(y) = jΦ(y)RΛe.

Solving this equation under the initial condition Φ(0) = 1, we obtain

Φ(y) = exp
{

jyκ

(1 − r)

}
. (7)

Therefore, the solution of Eq. (5) has the form

F(y) = R exp
{

jyκ

(1 − r)

}
. (8)

We derive the following steady-state asymptotic characteristic function of the
number of busy servers under conditions of frequent changing of the underlying
chain states of the arrival process and increasing service time:

h(u) = E
{

ejui(t)
}

= H(u, 0, ε)e ≈ F(u, 0, ε)e = exp
{

juκ

μ(1 − r)

}
.

The theorem is proved.

Let us investigate the number of customers in the aggregate arrival process
under conditions of frequent changing of the underlying chain states of the arrival
process and increasing service time.

Theorem 2. Then the asymptotic characteristic function of the number of cus-
tomers in the aggregate arrival process h(s, t) = E

{
ejsm(t)

}
has the form

h(s, t) = exp

{
κt

(
ejs − 1

)
1 − r

}
(9)

under the conditions of frequent changing of the underlying chain states of the
arrival process and increasing service time.

Proof. We denote

μ = ε, u = εy,
1
S

= ε,H(u, s, t) = F(y, s, t, ε).

Let us rewrite the Eq. (3), taking into account these notations:

∂F(y, s, t, ε)
∂t

= jε
[
1 − rejs − (1 − r)e−jεy

] ∂F(y, s, t, ε)
ε · ∂y

+

F(y, s, t, ε)
[(

ej(εy+s) − 1
)
Λ + SQ(1)

]
. (10)
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Dividing right and left sides of the Eq. (10) by S and making a transition S → ∞,
we obtain the system of equations

0 = F(u, s, t)Q(1).

Its solution has the form

F(u, s, t) = RΦ(u, s, t), (11)

where Φ(u, s, t) is a some scalar function.
To determine the form of this function, we multiply both sides of the Eq. (10)

by the vector e:

∂F(y, s, t, ε)
∂t

e = j
[
1 − rejs − (1 − r)e−jεy

] ∂F(y, s, t, ε)
·∂y

e+

F(y, s, t, ε)
[(

ej(εy+s) − 1
)
Λ + SQ(1)

]
e.

Performing an asymptotic transition ε → 0 and taking into account the form
(11), we derive the following differential equation

∂Φ(y, s, t)
∂t

= jr
(
1 − ejs

) ∂Φ(y, s, t)
∂y

+ Φ(y, s, t)κ
(
ejs − 1

)
. (12)

To solve this equation, we use the method of characteristics [16]. As the first
step, we write the following corresponding system of characteristics equations:

dt

1
=

dy

jr (ejs − 1)
=

dΦ(y, s, t)
κ (ejs − 1) Φ(y, s, t)

.

As the next step, we find two first integrals of the system. One of them can
be found from the equation

dt

1
=

dy

jr (ejs − 1)
.

Solving this equation, we obtain

y = jr
(
ejs − 1

)
t − C1.

The second integral can found from the equation

dy

jr (ejs − 1)
=

dΦ(y, s, t)
κ (ejs − 1) Φ(y, s, t)

.
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Its solution gives the expression

C2 =
κy

jr
− ln |Φ(y, s, t)| .

Finally, taking into account the initial condition Φ(y, s, 0) = exp
{

jκy

1 − r

}
,

we obtain the solution of the Eq. (12)

Φ(y, s, t) = exp
{

jκ

1 − r

(−jr
(
ejs − 1

)
t + y

)}

= exp

{
κt

(
ejs − 1

)
1 − r

+
jκy

1 − r

}
.

So, we obtain that the solution of the Eq. (10) has the form

F(y, s, t) = R exp

{
κt

(
ejs − 1

)
1 − r

+
jκy

1 − r

}
. (13)

Assuming here y = 0, we derive the following asymptotic approximation of
the characteristic function of the number of customers in the aggregate arrival
process under conditions of frequent changing of the underlying chain states of
the arrival process and increasing service time:

h(s, t) = E
{

ejsm(t)
}

= H(0, s, t)e ≈ F(0, s, t)e = exp

{
κt

(
ejs − 1

)
1 − r

}
.

The theorem is proved.

This theorem shows that the aggregate arrival process in the system has the

Poisson distribution with parameter
κt

1 − r
.

4 Numerical Analysis

We have made numerical experiments using simulations in a goal to obtain the
applicability area of the Poisson approximation (9) for considered models. We
use the Kolmogorov distance [17] for estimation of precision:

d = max
n=0,1,...

∣∣∣∣∣
n∑

i=0

(Pi − P̃i)

∣∣∣∣∣,

where Pi, i = 0, 1, . . . are relative frequencies of the distribution constructed
on base of simulation results, P̃i, i = 0, 1, . . . are the probabilities given by the
Poisson approximation (9).
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Let us consider one of numerical examples. Let parameters of the MMPP
arrivals be the following:

Λ =

⎛
⎝0.2 0 0

0 1 0
0 0 5

⎞
⎠, Q = S ·

⎛
⎝−2 1 1

7 −8 1
3 3 −6

⎞
⎠.

So, the fundamental rate of this arrival process is equal to κ = 1. Let the
parameter r be equal 0.5.

We assume that the approximation result is acceptable if the Kolmogorov
distance is not more than 0.03. In the Table 1, the Kolmogorov distances for
considered model with different values of parameters S and μ are presented.
Acceptable results are marked as boldface.

On the Fig. 1, you can see the comparison of the probability distribution
constructed on base of simulation results with the Poisson approximation (9)
for various values of parameters μ and S. Increasing the frequency of changing
underlying chain states (figure a) or increasing the service time (figure b) sep-
arately don’t give us a sufficient accuracy but using both of these conditions
(figure c) makes the accuracy acceptable. Moreover, further changing of both
parameters give us the result that is near the exact one (figure d).

So, we can make a conclusion that if we take into account the condition
of growing the frequency of changing of arrival process states in addition to
the condition of growing the service time, it allows to extend the applicability
area (upper bound of parameter μ and lower bound of parameter S). If we use
only one of these conditions, it may be not give a possibility to obtain enough
precision of the Poisson approximation (see the first row and the first column of
the Table 1).

Table 1. Kolmogorov distances between and Poisson approximation distribution based
on simulation for various values of exponential service parameter µ and parameter S
of state changing frequency of MMPP arrivals

µ \ S 1 2.5 5 10 25 50 100

1.0 0.1316 0.0921 0.0789 0.0763 0.0724 0.0673 0.0529

0.5 0.0867 0.0562 0.0455 0.0374 0.0337 0.0297 0.0273

0.25 0.0621 0.0397 0.0296 0.0246 0.0216 0.0183 0.0154

0.10 0.0481 0.0285 0.0190 0.0114 0.0108 0.0068 0.0067

0.010 0.0379 0.0174 0.0109 0.0081 0.0054 0.0039 0.0029
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Fig. 1. Comparison of distribution based on simulation results (solid line) with the
Poisson approximation (dashed line) for various values of µ and S
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5 Conclusions

In the paper, an asymptotic characteristic function of the number of customers
in the aggregate arrival process is obtained for infinite-server queue with MMPP
arrivals and a feedback under conditions of frequent changing of the underlying
chain states of the arrival process and increasing service time. It is shown that
the probability distribution of the number of customers in the aggregate arrival
process under these conditions is Poisson asymptotically. Obtained numerical
results show that the range of applicability of the asymptotic method is increased
when we use both asymptotic conditions instead of single one [18].

Results of the paper are similar to the earlier obtained results for queueing
systems with Poisson and renewal arrival processes and feedback [13,14]. Some
more complicate asymptotic analysis for queueing networks with MAP arrivals
(but only about number of busy servers) can be found in [19].
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Abstract. The further development of communication networks
appears today on the basis of the concept of the Internet of Things. At
the same time gaining popularity technology “augmented reality” that
allows you to manage different objects and processes in networks. Shar-
ing the “augmented reality” and the concept of the Internet of Things
technology, requires the development of the new service model and traffic
pattern and establishment of a new approach of the Quality of Experi-
ence estimation.

Keywords: Augmented reality · Internet of Things · Quality of Expe-
rience · Service model · Traffic pattern · D2D technology

1 Introduction

Today in the market of telecommunications there was a new type of service -
it is services augmented reality (AR, Augmented Reality) [1,2]. Primal problem
of technology augmented reality not to create the new world, and to improve
existing for the account strengthenings of feelings of the user such as hearing,
vision, sense of smell, knowledge, etc. The augmented and virtual realities in
essence different concepts. The virtual reality replaces the actual world synthetic,
artificially created environment, being in which, the person does not see what
occurs around. At that time as AR supplements a real, but does not replace
it. It allows the user to see the actual world with the virtual objects combined
or imposed atop actual world [3,4]. Each person, not very well who is he, the
doctor or the climber, in search of the nearest subway station in the big city will
feel all advantages of new technology which allows to impose computer graphics
on environmental space under review the person, and by that gives the chance
to glance in buildings and to see through walls. So, walking down the street
augmented reality wearing glasses which look as the routine couple of points,
is available to you graphics with various information in dependence from your
turn of the head and orientation of a look, audio, video, data on objects coincide
with what you see at present. So, the main idea of augmented reality consists
in imposing of graphics, audio, other sensory data and feelings over the existing
world around in real time scale [5]. Thus, it is possible to mark out three main
properties AR technologies:
c© Springer International Publishing AG 2016
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(1) A combination of real and virtual objects in uniform space;
(2) Interactivity in real time;
(3) 3D objects.

In the modern applications of augmented reality it is possible to allocate on
to smaller measure six classes: medicine; assembly, maintenance and repair the
difficult technique; addition of information of private and common character to
existing to objects; control of robots, unmanned aerial vehicles, etc.; games and
entertainments; military.

2 Applications of Augmented Reality

The range of application of technology of augmented reality in medicine is exten-
sive and bears a number of benefits for doctors in the composite cases demand-
ing fast reaction and acceptance decisions. As it is known a lot of time leaves on
diagnostics, poll and survey the patient, here the doctor possesses as if “x-ray
vision”, and looking on particular parts of a body of the patient sees results of a
computer tomography or magnetic and resonance tomography, etc. Applications
can carry also training character, prompting that else the patient needs to ask
or appoint, in dependences on its complaints and diagnosis.

Other class of applications of augmented reality is an assembly, technical
service, repair of the difficult technique. So in case of breakage in the cold winter
on to the deserted road any woman can make primary car repairs. It puts on
augmented reality glasses, via them carries out diagnostics, i.e. it looks on some
detail of the car and it information is displayed. as has to look in a normal
duty this detail as to check it also in a case to repair malfunctions. Similar
applications are very popular also at offices, for example when replacing paper or
a cartridge in the printer. When targeting on it of points, the user sees the short
instruction from what party what to press and what it will lead to. The following
class unites applications which add information to objects of various character,
sometimes, this class is called by “the summary and visualization” [6,8]. For
example, in library, passing on ranks, to you information is displayed about the
books standing on shelves, thereby, there is no need last or will bend that to get
each of them. Other application helps teachers and teachers to trace progress
of students. So looking at the student, through points of added realities, the
teacher sees whether this student is allowed to examination, whether it is frequent
it attended classes what GPA of progress, whether that the student came to
examination, what ticket it extended as he spends at University, personal much
time achievements, victories at competitions of projects, etc. Similar applications
are popular in construction, architecture and design of rooms. Users can in actual
time to add or clean the virtual object the existing space, to estimate dimensions,
planning, spaciousness, color schemes, etc. To estimate the projected skyscraper
will how successfully fit into the built-up area, what look will open from windows.
Control of robots and unmanned aerial vehicles. Management of technique on
distance is the complex challenge, there are problems with a transfer delay the
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operating information, reaction rate of the robot, distortion of information at
to transfer [9,10]. Therefore there was an idea to operate not directly, and to
control the virtual version of the robot. The user plans and defines operations of
the robot with the help of a manipulation the local virtual version of the robot
in actual scale time. Results are displayed immediately on actual object. After
that, as the plan is checked and is chosen suitable, the user gives command to
actual to the robot to implement the specified plan. These applications allow to
avoid delays when performing sequence of actions and not to interrupt process,
also to predict results of the taken actions on environmental objects, that most
to prevent undesirable consequences.

Games and entertainments one of the most inventive classes of applications
augmented reality [7]. So games on searching of things or tracings of participants
games in the actual world can be supplied with three-dimensional graphics and
the virtual hints, I make game unpredictable and fascinating. Also, having, for
example the image, poster or photo of the player in soccer, the application
distinguishes who it and provides you everything the available information on
this player, the best goals personal achievements for which clubs are visualized by
means of three-dimensional graphics, this athlete and many other things played.
Of course theatrical sceneries, color decisions, lighting receptions can change
and be imposed on alive acting, expanding and deepening space. Applications
of augmented reality for military stand a separate class industries. Helmets of
augmented reality are for a long time developed, which are actively used in
simulators of flights by military planes various models in a wide criteria range
and tasks. In investigation devices are used with support of AR which can impose
drawings or a view from the satellite or information from the unmanned aerial
vehicle immediately in the field of vision soldier. Apparently from the above,
there is a lot of applications of augmented reality, they are very different and set
contradictory tasks for telecom operators [11–13].

The greatest interest and popularity at users bought applications from a class
“summary and visualization” and “assembly, maintenance and repair of equip-
ment”, therefore for model building of a traffic, model of interaction of separate
elements, definitions of the main indexes of functioning of data of systems, were
chosen applications of these groups.

3 Service Model

According to the majority of definitions, providing service augmented reality
consists in introduction in the field of perception person of padding information.
Generally, appointment to facilitate the solution of various tasks, the bound to
perception, the analysis and management. In Fig. 1 the example of AR of the
star chart is given (StarChart iPhone). Difference from just card or an interactive
map consists in that, that its display is bound to position of the device in space
(its targeting in a particular point of a palate), i.e. it is added with results
information processing of the user.

In more general case process of providing service DR it is possible to consider
as interactive interaction of the user with the applied functions realizing the
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Fig. 1. An example of augmented reality when looking at the starry sky (StarChart
iPhone).

analysis of a condition of its environment and providing it padding information,
Fig. 2.

As the purpose of AR is a granting to the user padding context-sensitive
information, that quality of its granting it is necessary to consider from the
point of view of extent of achievement of this purpose that it is possible to
characterize:

– degree of compliance to the provided padding information to needs of the user
(compliance to purpose, volume, specification, etc.);

– degree of a susceptibility of the provided data (video this, graphics, sound,
tables, the text and other elements of the interface with user, quality of their
representation);

– timeliness of providing padding information.

Realization of service AR can be various, depending on the used technical
means. In a set of these tools surely the subscriber device which can repre-
sent enters the smartphone, the tablet personal computer, multimedia glasses, a
helmet, etc., allowing to organize the user interface, data acquisition about an
environment and having rather high efficiency of computing devices. In partic-
ular, all functionality of AR can be realized as a part of the client application
of such device. However, in many applications, for example, it is inexpedient or
it is impossible to store all padding information and also to carry out all data
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Fig. 2. User interaction with the application function

processing user resources of the mobile device. Therefore, following the AR ele-
ment is infocommunication making (communication network), which provides
delivery of padding information to the user, databases and perhaps servers the
carrying-out part of functions on processing information of the user, Fig. 3. At
existence in the user’s environment the sensors of the Internet of Things (IoT)
capable to provide the useful information, the D2D technology providing can be
used direct connection of the subscriber device with them.

The basic elements providing quality of perception services by the user are
the device of the user of AR, the service server AR, databases and communica-
tion network. All elements interact through a network communications (in the
presence of IoT devices also D2D). In this system the main problem of ensuring
quality of service is distribution functionality and data between the client appli-
cation of the device user, server of service and databases. This distribution it is
reflected in a run time of functions on data processing, time deliveries of data
through a communication network and on the traffic made in a network. Degree
of compliance of padding information to requirements the user and degree of its
susceptibility are defined by the organization services, existence of the required
information and the organization of user interface. Service AR is interactive
therefore timeliness providing information is one of the most important factors,
defining its quality. Timeliness is characterized by time between an event the
bound to changes of a condition of an environment or the user and the event
characterizing availability to the user padding information. This time (delay) is
defined by a row components, such as:
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Fig. 3. Interaction of the main elements in the provision of AR services

– data acquisition time about an environment (poll of sensors of a state, video,
etc.) and their processings;

– time of delivery of data for the service server (if it is necessary);
– data processing time service server;
– time of delivery of data to the user;
– data presentation time.

At the organization of service with participation of the server data are
requested and transferred to the user at change of a condition of an environ-
ment (change of an environment in the field of vision/perception of the user).
Depending on functionality of service it can occur at change of position in space
of the user (terminal) or some objects that is equivalent to change of a set of
objects in the field of perception which require providing padding data. Identifi-
cation of change can be made, for example, on the basis of the analysis of data
on coordinates of the device and its orientation in space, discernments of objects
by the analysis of video of data, etc.

4 Traffic Pattern

For the description of the traffic made by service it is necessary to connect volume
given by the user and to the user of data at changes of his environment.

– service space model;
– model of an environment of the user;
– behavior model;



Applications of Augmented Reality Traffic 247

We will understand informational model of physical three-dimensional space
in which there can be a user of service as space of service. The informa-
tional model includes the description of some objects which are in this space
X = {x̄1, x̄2, x̄n}, where n total number of objects. The model of an environment
of the user is a subspace service spaces, i.e. part of space restricted by opportu-
nities perceptions (model of these opportunities). Environment, as a rule, it is
attached to position of the user in space of service and includes in a set of objects
X(U) = {x̄(U)

1 , x̄
(U)
2 , x̄

(U)
k }, where k number of the objects which are to the area

perceptions of the user. The behavior model describes changes of position of the
user and it environments in service space. Changes in the user’s environment can
occur as owing to movements of the user, and movements of objects in service
space. The change caused emergence in an environment of the user of new object
x̄i, leads to inquiry data on this object.

The algorithm of realization of service has to provide realization following
functions:

– identification of an event of change of an environment and calculation change
parameters;

– information request about change of an environment;
– data acquisition and their display.

The possible chart of data exchange is given in Fig. 4.

Fig. 4. Data exchange diagram when providing AR services

As an environment also as well as space of service is restricted (area of per-
ception) physical three-dimensional space, changes in it can be described as a
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stream of events of the bound to emergence in it objects. Objects can enter
through its borders owing to movement of these borders or objects. In case of
the former, movement of borders is bound to behavior of the user, and in the
second to behavior of objects. In that and other case quality of functioning of
system will depend on its ability in due time to serve events of this stream.
Thus, the problem of ensuring quality of service can be considered as the choice
of parameters of system (efficiency, a channel capacity, distribution of its func-
tionality) from the characteristic of a stream of events and load of the system
made by this stream.

Properties of a stream of events substantially define properties of a data
flow between elements of system. For example, in system of positioning on a
district map such stream is defined by events of change of coordinates of the
user and is defined by characteristics of his driving, in system it will decide by
their orientation in space on use of points of DR and it is possible events the
bound to data transmission about objects under review or their characteristics.

It is apparent that characteristics of a stream will depend on distribution
and characteristics of objects in service space, and also characteristics of driving
of the user. Let’s make an assumption that objects in space of service are dis-
tributed in a random way (form the Poisson field) and are not mobile, only the
user is mobile. Then, change of position of the user is equivalent to change of
its environment. Taking into account properties of space of service and an envi-
ronment, this change can be described by the volume or the area. Let’s consider
2D option and we will describe the user’s environment r radius circle, and we
will consider the speed of movement of the user of v as a constant, Then that
during t change of an environment will be defined by number of new objects in
the area defining the user’s environment.

Let’s estimate amount of new objects in an environment during t as (1)

n(t) = S̃ (L(t)) ρ (1)

where S̃L(t) - the area of change of an environment; ρ - density of objects
(objects/sq.m).

The model illustrating movement of the user and change of its environment
is given in Fig. 5. Shift of the circle representing the user’s environment from the
initial point on distance of L is led to formation of area in the form of a sickle
(the shaded area) by which defines change of an environment. Objects it is in
the field identified, according to algorithm of providing service therefore requests
for providing padding information are formed.

From the given drawing, the area of the shaded area can be determined by
a formula (2) the Number of new objects in the area can be defined as

S̃(L) = πr2 − 2

⎛
⎝r2arccos

(
L

2r

)
−

(
L

2

) √
r2 −

(
L

2

)2
⎞
⎠ (2)
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Fig. 5. Movement of the user and change of its environment

The number of the new objects in the field can be defined as (3)

n(t) = S̃(L)ρ (3)

where ρ - density of objects (objects/sq.m). Considering this process in dynamics,
i.e. when driving the user the stream of events (requests of data) takes place.
Intensity of a stream of events (requests for data) can be defined as number of
objects in a small increment of the area of the considered figure

λr =
dS̃(L)

dL
ρv (4)

Where ρ - density of objects (objects/sq.m); v - speed of movement (m/s).
Derivative of expression (2) in a point L = 0

dS̃(L)
dL

= [L = 0] = 2r (5)

Then taking into account (4) and (5) we got (6)

λr = 2rρv (6)

Considering properties of the Poisson field accepted for model the amount
of objects in some restricted area is casual, distributed under the law of Poisson
and depends only on the area (or volume) the considered area. Therefore, for
the accepted model the stream of inquiries will represent the elementary stream
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for which the probability of the interval of time t of receipt of requests k will be
defined as (7)

pk =
(λrt)

k

k!
e−λrt =

(2rρvt)k

k!
e−2rρvt (7)

The traffic stream made as a result of providing service is defined by a stream
of replies to the requests of data. Generally, the simple package of data, and a
stream of packages (transfer of video or audio of data) can be the answer both.
Intensity of this stream can be described as (8)

λr = λsη (8)

Where η - the average number of the packages necessary for realization of
inquiry.

By transfer of video data can exceed intensity of inquiries in tens and hun-
dreds of times. Taking into account requirements to quality it leads to essential
growth of requirements to a channel capacity of a communication network. The
physical sizes of an environment of the user are, as a rule, commensurable with
a radius of communication, the wireless technologies used for the PAN organi-
zation, for example family of the WiFi standards. Many objects of services AR
(elements of city infrastructure, vehicles, household appliances) can be equipped
with clusters of access and necessary data which it can be provided to users.
Therefore, use of the D2D technologies can be the possible decision providing
essential decrease in a traffic on a communication network. In that case the traf-
fic of data can be delivered immediately from object to the terminal of the user
of Fig. 4 (dashed line). Intensity of this stream will be defined as (9)

λr = λsηD2D (9)

Where ηD2D = (1 − γ)η, γ - a share of the objects of an environment sup-
porting the D2D technology.

Certainly, application of D2D technologies is possible only when objects of
service are the physical objects mentioned above which I can be equipped with
the corresponding communication centers. Rather wide range of services nev-
ertheless demands interaction with remote databases and problem solving of
ensuring quality.

5 Conclusions

1. Rendering of services of AR demands differentiated approach to definition of
their indexes of quality depending on purpose of service.

2. Quality of providing service DR is characterized by degree of compliance to
purpose, degree of a susceptibility of the provided data and timeliness of
providing information.

3. Properties of the traffic made by service are defined by behavior of the user,
an environment of the user and way of data presentation.
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4. Intensity of a traffic of services AR when using multimedia data it is compara-
ble to a traffic of services of transfer of video that taking into account interac-
tivity of service and requirements to quality leads to increase in requirements
to a channel capacity of a communication network.

5. One of ways of reduction of requirements to a channel capacity of a network
can be application of the D2D technologies which use leads to short circuit
of a traffic, between the terminal of the user and objects of an environment,
passing networks of telecom operators.
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Abstract. In this paper we consider a Jackson type queueing network
with unreliable nodes. The network consists of m < ∞ nodes, each node
is a queueing system of M/G/1 type. The input flow is assumed to be
the Poisson process with parameter Λ(t). The routing matrix {rij} is
given, i, j = 0, 1, ..., m,

∑m
i=1 r0i ≤ 1. The new request is sent to the

node i with the probability r0i, where it is processed with the intensity
rate μi(t, ni(t)). The intensity of service depends on both time t and the
number of requests at the node ni(t). Nodes in a network may break
down and repair with some intensity rates, depending on the number
of already broken nodes. Failures and repairs may occur isolated or in
groups simultaneously. In this paper we assumed if the node j is unavail-
able, the request from node i is send to the first available node with
minimal distance to j, i.e. the dynamic routing protocol is considered
in the case of failure of some nodes. We formulate some results on the
bounds of convergence rate for such case.

Keywords: Dynamic routing · Queueing system M/G/1 · Unreliable
network · Jackson network · Convergence rate

1 Introduction

Queueing systems and networks are the most suitable mathematical tools for
modelling and performance evaluation of complex systems such as modern com-
puter systems, telecommunication networks, transport, energy and others [1–5].
The reliability is another important factor for quality assessment of these systems
[6]. So models with unreliable elements are a subject of great interest last years.
A large number of research papers study queueing systems with unreliable
servers. [7–12]. The less ones consider queueing networks. In this paper we
analyse the performance characteristics of an open queueing network, whose
nodes are subject to failure and repair. This assumption is often missed in theo-
retical papers, but it’s essential for applications, for example, for telecommuni-
cation, sensor, ad-hoc, mesh and other kind of networks.
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This work is motivated by a practical task of modelling of modern telecom-
munication networks. We consider the mathematical model of the queueing net-
work as a set of connected nodes that can break down and repair. We propose
a modification of the classical model of an open queueing network (see e.g. [13,
Chap. 2]), based on the principle of dynamic routing.

A strong mathematical definition of the term “dynamic routing” doesn’t
exist. It originally appeared in telecommunication industry. Dynamic routing is
the technology that enables active network nodes (called routers) to perform
many vital functions: detection, maintaining and modification of routes with
considering of a network’s topology, as well as some functions of routes calcu-
lation and their estimations. In difference from static routing technology routes
are calculated dynamically using any one of a number of dynamic routing pro-
tocols. Dynamic routing is crucial technology for reliable packet transmission
in case of failures. Protocols are used by routers to detect nodes availability
and find routes available for packets forwarding over network. Figure 1 shows
a simple example of four-node internetworking transmission. The transmission
between Local network 1 and Local network 4 uses the link Router D - Router C.
Assume the transmission facility between Gateway Routers C and D has failed.
This renders the link between C and D unusable and the data transmission
between Local network 1 and 2 is impossible (for static routing). The dynamic
routing protocols use a route redistribution scheme and dynamically define new
paths for transmission between Router D and Router C via B and A (dotted
line). Thus network availability can be significantly enhanced through dynamic
routing, an alternate route of more length is a redundant communications link
between nodes D and C.

Fig. 1. A four-node internetwork with some route redundancy.



Rate of Convergence to Stationary Distribution for Unreliable Jackson-Type 255

There are some math research papers where queueing networks with dynamic
routing were considered. Queueing networks with constant routing matrix were
considered in papers [14,15], each node there was modelled as a multichannel
system, principle of dynamic routing was a random selection of a channel at
the node. Kelly in his papers (see. [16]) considered a network as a set of par-
allel queues with several types of requests incoming into it, and the dynamic
routing principle is the selection of particular queue depending on the type of
request. We will adhere to interpret the dynamic routing as it’s defined in tele-
coms and we will understand it as reconstruction of the route depending on the
availability/unavailabiity of a specific node in the network, sending the requests
(message) via alternate paths. In terms of queueing networks models it means
the change the values of a routing matrix {rij}. A request will be rerouted to
the available node in the case of failure of node j, i.e., this concept is as close as
possible to this definition in telecommunication networks [18].

It is noted that other approaches can be applied to the problem of estimation
of networks reliability. For example, the Erdos-Renyi random graphs model can
be used to analyse the network connectivity (Erdos-Renyi graph) [19].

But as our task is the performance evaluation and analysis of traffic flows
in networks taking into account reliability, we use queueing theory models and
a model of Jackson network. There are some researches on unreliable queueing
networks. Several algorithms for modifying the routing matrix {rij} in the case of
failures of nodes were described in [17], the common idea which they are based on
is the principle of blocking of requests and repeated service after nodes recovery.
The result related to the rate of convergence to the stationary distribution for
unreliable network is given in [20,21]. In this paper we give some results for
unreliable networks similarly as it was done in [21], but we propose another
approach to the modification of the route matrix {rij} and consider in a more
general model for network nodes. There are several main classical problems in
the analysis of queueing systems(networks) models that have to been considered:
stability, ergodicity and probability of overflow. These problems are strongly
connected with the transient behaviour of networks and the speed of convergence
to stationary regime, so here we will concentrate on this problem for unreliable
network systems.

2 Process Definition

2.1 The Classic Jackson Network

The classical model of Jackson network consists of m nodes (m < ∞), M :=
{1, . . . , m}. Each node is a M/M/1 queueing system with the “first-come-first-
served” discipline of service. Incoming requests are indistinguishable. The exter-
nal flow into the network is a Poisson process with the parameter Λ(t), depending
on time. Incoming request is sending for the service to the node j c with prob-
ability r0j ,

∑m
j=1 r0j = r ≤ 1. A request is served at the node j with intensity

μj(nj), where nj - the numbers of requests at the node j. Xj(t) is denoted as the
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number of requests at the node j at time t, so the system state at time t is char-
acterised with a vector X(t) = (X1(t),X2(t), ..., xm(t)). The unique stationary
distribution for the process X(t) exists and is defined as

Ci = 1 +
∞∑

n=1

λn
i∏n

y=1 μi(y)
, i = 1, 2, ...,m, (1)

if the system of equations for a network traffic

λi = Λ ∗ r0i +
m∑

j=1

λjrji, i = 1, 2, ...,m (2)

has the unique solution [17].

Degradable Networks and Some Routing Mechanisms. If we consider
the servers at the nodes to be unreliable, the network’s performance is degraded
because a subset of the operating nodes is not available. Different routing mech-
anisms were considered by Daduna [17]. He provided the most extensive research
of this subject. A short survey from [17] about the methods of routing is provided
here.

The first method of routing is a blocking after service (BAS). It assumes
that after completing the service at node at time t a customer chooses the next
destination node according to his routing instruction. If at time t the destination
node is not able to accept further customers, the customer stays and blocks
current server until the situation at the destination node has changed and the
customer can enter the node. The current node is blocked during this waiting
period, i.e., it cannot start serving another customer, who might be waiting in
the waiting room. If several nodes are simultaneously blocked by the same node
j, then the first blocked - first unblocked- rule usually determines the order in
which the nodes will be unblocked when a departure occurs from the destination
node j.

The second method is blocking before present service. A customer at node
i selects the following destination node j according to the routing rule before
he starts receiving service at node i at time t. If node j is full at time t, node
i immediately becomes blocked. When a departure occurs from node j, node i
becomes unblocked and service begins. However, as soon as the destination node
j becomes full again during the customer’s service at i, the service is interrupted
and node i becomes blocked again. Depending upon whether the customer at the
blocked node i is allowed to occupy the position in front of the server or not, one
can distinguish the two cases BBS-server occupied and BBS-server not occupied.
Of course this is only meaningful when node i has finite waiting capacity.

The third one is the repetitive service. A customer after being served at node
i chooses the next destination node j according to the routing instruction. If
node j is full, the customer stays at node i to obtain another service. When this
additional service expires the customer either selects his destination node anew
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according to his routing instruction (repetitive service - random destination)
or the previously chosen node j remains his fixed destination. In this case, the
customer’s service at node i has to be repeated until at the end of a service, node
j is able to receive another customer (repetitive service - fixed destination).

The last mechanism is the skipping of unavailable set of nodes. Customers are
not allowed to enter to the node from the certain set, skipped it and immediately
performs the jump to the next one according to the routing matrix.

We provided the another approach called the dynamic routing.

2.2 Unreliable Jackson Network with Dynamic Routing

It is assumed now that nodes at the network are unreliable and may break
down or repair. Failures can be both individual and in a group (as in models
in [17,20,21]). We will refer to M0 = {0, 1, 2, ...,m} as the set of nodes, where
“0” is the “external node” (entry and exit from the network) and to D ⊂ M
as the subset of failed nodes, I ⊂ M \ D the subset of working nodes, nodes
from I may break down with the intensity αD

D∪I(ni(t)). Nodes from H ⊂ D may
recover with the intensity βD

D\H(ni(t)). It is assumed the routing matrix (sij) is
given. Additionally the adjacency matrix for our network (sij) is considered:

sij =

{
1, if rij �= 0,

0, if rij = 0.

Now we can consider all possible paths of the network graph. To find them
we need to calculate the following matrix: (sij)2, (sij)3, ..., (sij)m, m < ∞,
(sij)1 = (sij). The matrix (sij)m has the following property: the element in row
i and column j is the number of paths from node i in the unit j of length m
(including (m − 1) transitional nodes) [23].

We take the following routing scheme for network nodes from the subset D
(we call it as “dynamic routing without blocking”). Only transitions to M0 \ D
are possible for nodes from D:

rD
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if j ∈ D, i �= j,

rij + rik/sp
ik, if j /∈ D, k ∈ D

∃ i → j → i′ → j′ → ... → i′′ → k : s1ij ∗ s1ji′ ∗ s1i′j′ ∗ ... ∗ s1i′′k︸ ︷︷ ︸
p+1

�= 0,

where p = min{2, 3, ...,m : sp
ikk∈D

�= 0},

rii +
∑

k∈D
sp
ik=0 ∀ 1<p≤m

rik, if i ∈ M0 \ D, i = j,

where sp
ik - element of a matrix (sij)p.

The routing matrix is changed according to the same way for the input flow:

ΛrD
0j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Λr0j , if j ∈ M \ D,

Λ(r0j + r0k/sp
0k ∗ (s10j ∗ s1ji′ ∗ s1i′j′ ∗ ... ∗ s1i′′k)︸ ︷︷ ︸

p+1

), if j /∈ D, k ∈ D

0, otherwise.
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Futher we will refer to The modified routing matrix as RD = (rD
ij ). The

intensities of failures and recoveries depend on the state of nodes and does not
depend on network load and are defined as follows [17]:

α(D, I) =
ψ(D ∪ I)

ψ(D)
,

β(D,H) =
φ(D)

φ(D \ H)
,

where ψ, φ are positive functions with domain on all subsets of set of nodes and
taking only finite values for finite sets (ψ(∅) := 1, φ(∅) := 1).

A more general model than in [20] is considered for network nodes. It is
assumed that each network node is a queueing system type M/G/1. The system’s
dynamic will be described by a continuous in time random process X(t) taking
values from the following enlarged state space E:

ñ = ((n1, z1), (n3, z2), ..., (nm, zm),D) ∈ {Z+ × {R+ ∪ 0}}m × |D| = E,

where ni is the number of requests at the node i, zi - may be considered as
the time elapsed from the beginning of service for the current request i or as
remaining service time of the customer in service, |D| - the cardinality of set
D. Intensity rates μi(ni, zi) depend on both the number of requests at nodes
ni(t) and time zi(t). If zi(t) - the time elapsed from the beginning of service for
the current request at time t, the conditional probability of the absence of any
events occurring in a fixed interval of time [t, t+Δt) (= {no new request} ∪ {no
current service finished at all nodes} under the condition that the current value
of the process X(t)):

exp

(
−

∫ t+Δt

t

(
Λ(s) +

m∑
i=1

μi(ni(t), zi(t) + s)
)
ds

)
,

which, if Δt is small enough, equals to [24, Chap. 2–4]

1 −
∫ t+Δt

t

(
Λ(s) +

m∑
i=1

μi(ni(t), zi(t) + s)
)
ds + O(Δt)2,

if Δt → 0 terms with O((Δt)2) are negligible in comparison with the terms
without Δt or with Δt in a power one. The probability of any jump (finishing
of service in one of the nodes or new request arriving in a network) is defined
similarly:

μj(nj(t), zj(t))Δt

(

1 −
∫ t+Δt

t

(

Λ(s) +
m
∑

i�=j

μi(ni(t), zi(t) + s)
)

ds + O(Δt)2
)

, (3)

Λ(t)Δt

(
1 −

∫ t+Δt

t

( m∑
i=1

μi(ni(t), zi(t) + s)
)
ds + O(Δt)2

)
. (4)
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The following transitions in a network are possible:

Tijñ := (D,n1, · · · , ni − 1, · · · , nj + 1 · · · , nm),
T0jñ := (D,n1, · · · , nj + 1, · · · , nm),
Ti0ñ := (D,n1, · · · , ni − 1, · · · , nm),
TH ñ := (D \ H,n1, · · · , nm),
T I ñ := (D ∪ I, n1, · · · , nm).

Definition 1. The markov process X = (X(t), t ≥ 0) is called unreliable queue-
ing network if it’s defined by the following infinitesimal generator:

Q̃f(ñ) =
m∑

j=1

[f(T0jñ) − f(ñ)]Λ(t)rD
0j

+
m∑

i=1

m∑
j=1

[f(Tijñ) − f(ñ)]μi(ni(t), zi(t))rD
ij

+
∑
I⊂M

[f(T I ñ) − f(ñ)]α(D, I) (5)

+
∑

H⊂M

[f(T I ñ) − f(ñ)]β(D,H)

+
m∑

j=1

[f(Tj0ñ) − f(ñ)]μj(ni(t), zi(t))rD
j0.

3 Main Results

Like the classical and the Jackson network with blocking cases [17] the existence
of a stationary distribution for an unreliable network with dynamic routing may
be proved.

Theorem 1. It is assumed the following conditions for unreliable network from
the Definition 1

(1) inf
nj ,t

μj(nj , zj) > 0 ∀ j,

(2) time of service and time between new arrivals are independent random
variables,

(3) routing matrix RD is reversible,
then the stationary distribution for unreliable networks is defined by formulae

π(ñ) = π(D,n1, n2, · · · , nm) =
1
C

ψ(D)
φ(D)

m∏
i=1

1
Ci

λni
i∏ni

k=1 μi(k)

where

Ci =
∞∑

n=0

λni
i∏n

y=1 μi(y)
, λi =

m∑
j=0

Λ ∗ rji.
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The main result for the convergence rate is formulated in terms of the spectral
gap for unreliable queueing network. The preliminary notations and results on
the spectral gap: there is a Markov process X = (Xt, t ≥ 0) with the matrix of
transition intensities Q = [q(e, e′)]e,e′∈E, with stationary distribution π and an
infinitesimal generator given by

Qf(e) =
∑
e′∈E

(f(e′) − f(e))q(e, e′).

The usual scalar product on L2(E, π) is defined as

〈f, g〉pi =
∑
e∈E

f(e)g(e)π(e). (6)

The spectral gap for X is

Gap(Q) = inf{−〈f,Qf〉π : ‖f‖2 = 1, 〈f,1〉π = 0}.

The main result for a network is formulated in the following theorems:

Theorem 2. If X is a markov process with infinitesimal generator Q, it is
assumed that Q is bounded, the minimal intensity of service is strictly positive
infnj ,t μj(nj , zj) > 0 and the routing matrix (rD

ij ) is reversible, then Gap(Q) > 0,
if the following condition is true: for any i = 1, · · · ,m, for the birth and death
process, corresponding to the node i with parameters λi and μi(ni, zi) the spectral
gap is strictly positive Gapi(Qi) > 0.

Theorem 3. If X is a markov process with a bounded infinitesimal generator Q,
positive minimal intensity of service infnj ,t μj(nj , zj) > 0 and reversible routing
matrix (rD

ij ), then Gap(Q) > 0 iff for any i = 1, · · · ,m, the distribution π =
(πi), i ≥ 0 has light tails, i.e. the following condition infk

πi(k)∑
j>k πi(j)

> 0.

Theorem 4. (Corollary from [22]). If X is unreliable queueing network with
dynamic routing from Definition 1 with infinitesimal generator Q and transition
probabilities matrix Pt. It is assumed that routing matrix (rD

ij ) is reversible and
(rD

ij )
k > 0 dor k ≥ 1. If the distribution πi has light tails for any i = 1, · · · ,m,

then the following conditions are equivalent.

– for any f ∈ L2(E, π)

‖Ptf − π(f)‖2 ≤ e−Gap(Q)t‖f − π(f)‖2, t > 0,

– for any e ∈ E the constant C(e) > 0 exists such, that

‖δe − π(f)‖TV ≤ C(e)e−Gap(Q)t, t > 0.
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4 The Numerical Example

We consider two numerical examples of network state probabilities calculation:

Example 1: The network consists of three nodes, each node is a system with two
servers (see Fig. 2).

Example 2: The network consists of two nodes, each node is a system with three
servers (see Fig. 3).

Fig. 2. Network with two-servers nodes

Fig. 3. Network with three-servers nodes

We use the following initial data for calculations in Example 1:
the number of nodes: m = 3,
the transition probabilities matrix:

Pij =

⎛
⎜⎜⎝

0.03 0.57 0.35 0.05
0.1 0.002 0.398 0.5
0.35 0.25 0.15 0.25
0.2 0.25 0.3 0.25

⎞
⎟⎟⎠

The matrix Pij has a size of ×(m+1)x(m+1). The first row of matrix (P0j ,
j = 0, 1, 2, 3) defines the probabilities the application received by the network,
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will be sent for service to node j, the first column gives the probability that the
application leaves the system.

The intensities of input flow λ (depend on the number of customers in the
system):

λ(0) = 10,
λ(1) = 10,
λ(2) = 10,
λ(3) = 10,
λ(4) = 10,
λ(5) = 10,
λ(6) = 10,
λ(7) = 10.

The service rates μ (also depend on the node number and the number of
customers):

μ0,0 = 20.0,

μ0,1 = 10.0,

μ0,2 = 5.0,

μ0,3 = 7.0,

μ1,0 = 32.0,

μ1,1 = 30.0,

μ1,2 = 20.0,

μ1,3 = 17.0.

Server failure rates α (depend on the node number):

α0 = 1.0,

α1 = 2.0,

α2 = 3.0.

Recovery rates β (depend on the node number):

β0 = 2.0,

β1 = 4.0,

β2 = 6.0.
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The calculation results for Example 1. The stationary probabilities for
Example 1:

P0(0, 0, 0) = 0, 340448527,

P0(0, 0, 1) = 0, 010639016,

P0(0, 0, 2) = 0, 003546339,

P0(0, 1, 0) = 0, 048635504,

P0(0, 1, 1) = 0, 015198595,

P0(0, 1, 2) = 0, 005066198,

P0(0, 2, 0) = 0, 162118346,

P0(0, 2, 1) = 0, 050661983,

P0(0, 2, 2) = 0, 016887328,

P0(1, 0, 0) = 0, 017022426,

P0(1, 0, 1) = 0, 005319508,

P0(1, 0, 2) = 0, 001773169,

P0(1, 1, 0) = 0, 024317752,

P0(1, 1, 1) = 0, 007599297,

P0(1, 1, 2) = 0, 002533099,

P0(1, 2, 0) = 0, 081059173,

P0(1, 2, 1) = 0, 025330992,

P0(1, 2, 2) = 0, 008443664,

P0(2, 0, 0) = 0, 017022426,

P0(2, 0, 1) = 0, 005319508,

P0(2, 0, 2) = 0, 001773169,

P0(2, 1, 0) = 0, 024317752,

P0(2, 1, 1) = 0, 007599297,

P0(2, 1, 2) = 0, 002533099,

P0(2, 2, 0) = 0, 081059173,

P0(2, 2, 1) = 0, 025330992,

P0(2, 2, 2) = 0, 008443664.

Based on these results can be obtained by other characteristics of the network,
such as: - The probability of denial of service (the probability that all sites are
occupied) = 0.0084; - Availability factor of the system (the system is completely
free) = 0.34.
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Abstract. It is considered the model of large monitoring networks with
working independently sensors for an alarm signalization. Outlined in the
previous papers the method of group polling for alarming sensors identi-
fication used the time synchronization. The last condition is very strong
for vide distributed monitoring networks. Recently proposed method of
group polling for the alarming sensors identification in unsynchronized
wireless monitoring network is investigated. Based on numerical sim-
ulations, it is found that the group polling method may be effective
for unsynchronized networks with thousands or more sensors and the
decoding algorithm may be realized on-time using parallel executions.
Recommended number of the code signal repetitions is proposed.

Keywords: Wireless Sensor Network · Sensor for an alarm
signalization · Group polling · Unsynchronized time

1 Introduction

Wireless sensor networks (WSN) based on LTE communication protocols, satel-
lite systems, and wireless computer networks WiFi and WiMAX substantially
stimulates the development of the monitoring and telemetric systems. Such sys-
tems are widely employed in various branches due to the progress in microelec-
tronics, which led to the creation of cheap sensors that transmit the parameters
of objects. Modern WSN systems are used for monitoring of emergencies, oper-
ation of technical objects, voltage sensors in power lines, ecological problems,
urban transport, systems of the distant control of sensors of water, gas, and
electric power consumption, payment terminals, etc. Note the advent of corpo-
rate networks of distributed monitoring, for example, of gas and oil pipelines.
The stationary systems for monitoring and telemetry are supplemented with
dynamic ones. Various types of sensors are mounted on ambulance cars and
taxies, are incorporated in the positioning systems, and transmit data on the
position and state of object ([1,2]).
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In the paper [4], it was proposed the method of group polling for detecting
of alarming sensors in the monitoring network where properties of this method
were investigated under the assumption of independent activity of the alarming
sensors. It is supposed that the monitoring network is very large and contains
thousands of sensors but all sensors synchronize in time their alarm signals. The
last demand is difficult for its practical realization. But proposed in [4] method
ensures the fulfilment of a short time of an alarming sensors detection, i.e. if t is a
number of sensors in the network then the detection time is O(log t). In the paper
[3], it is proposed a generalization of this method onto a case of unsynchronized
by time alarming signal sending. The goal of our paper consists in investigating
the properties of this method by numerical modeling for optimal parameters of
the algorithms finding.

The formulation of the problem is presented in Sect. 2. It is described the
algorithm of WSN output signal modeling when alarming sensors begin their
signals in random time moments and take into account digitization in time of
the output signal.

In the next section we present the calculated results with variations in such
model parameters as the number of sensors in network t, a number of the sensor
code symbol repeats k for the methods of the alarming sensors identification. As
in [4], we examine the characteristics P1—the detection of redundant alarming
sensors is not an error, P2—the probability of incorrect identification of activity
of at least one sensor, and s—the mean number of identified sensors.

In contrast with [4] we may use codes with varied length. This problems is
illustrated in the Sect. 5. Finally, we present conclusions and recommendations
on the group polling of sensors.

2 Setting of the Problem

We will follow, in general, the notations of [3]. The sensor network contains t
sensors. We develop a polling strategy aimed at the fastest identification of s
sensors that are ready for data transmission and named as alarming sensors.
We assume that s � t (a relatively small number of the active sensors in the
network, really no more then 5). Such a scenario is typical of the sensor network
that is located at a relatively large area where the probability of local emergency
is relatively low. In contrast with [4], now a time is continuous. This means the
following. The i-th alarming sensor begins to send the signal in a random time
ui, i = 1, . . . , s, and is sending it during a time U . After the time ui + U it
repeats the signal over and over while the network supervisor does not identify
its and switches its working state. After this moment the sensor does not alarm.
Therefore, the number of simultaneously alarming sensors is no less then the
number of sensors with ui such that |ui − uj | ≤ O(U) and may be small.

The alarming signal is dropped onto N short time intervals with the length
Δ (therefore, U = NΔ), in every of this intervals the sensor may send or not
send the special signal. This interprets as sending 1 or 0, respectively. Therefore,
every sensor has its unique code a = (a1, . . . , aN ) and for the i-th sensor its
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code is denoted by ai. The first question is how to construct the vectors ai, i =
1, . . . , t. According with [5], it is proposed the procedure for the Boolean matrix
A = (ai, i = 1, . . . , t) generation with near to optimal properties, where aj

i are
independent random numbers 0 or 1 with a proper probability p0 for 1 in the
matrix.

Using a minimum number of steps N , we must identify the active sensors
in such a way that the mean probability of the false identification of one sensor
does not exceed a predetermined level (the averaging is performed with respect
to a priori uniform distribution of alarming sensors on the set T = {1, . . . , t}
denoted by P). As in [4], we use two criterions for an admissibility of alarming
sensors identification denoted by values P1 and P2.

The state of t sensors to be alarming or not is described using variables
x1, . . . , xt that can be 0 or 1 (a passive sensor, which is not alarming, and
an active sensor, which is alarming, respectively). The variables with numbers
i1, . . . , is are unities, and the remaining variables are zeros. Let S be the ordered
set of alarming sensors, i.e. S = {i1, . . . , is}. Let Ŝ be the set of identified sensors
than P1 = 1 − P(Ŝ ⊇ S) and P1 = 1 − P(Ŝ = S).

In the group polling, we simultaneously receive signals from several sensors.
The j-th column of A gives us the group of sensors involving in the j-th polling (if
aj
i = 1(0) then the i-th sensor is (is not) involved in the polling). When the group

contains at least one alarming sensor, we receive the signal that is interpreted as
1. If the group does not contain alarming sensors, we do not receive signals and
the result is 0. Thus, response of the sensors of the j-th group is represented as

fj = (aj
1 ∧ x1) ∨ · · · ∨ (aj

t ∧ xt), (1)

where ∧ is the Boolean product and ∨ is the Boolean sum.
We assume that data transmission errors are possible in the network. This

means that the value fj is known with a certain error. In each polling session,
the result is distorted regardless of the remaining polling sessions in accordance
with the stochastic transition matrix

W =
(

1 − β0, β0

β1, 1 − β1

)
(2)

where β0 is the probability of false zero (i.e., detection of 1 instead of 0 as the
output signal) and β1 is the probability of false unity (i.e., detection of 0 instead
of 1). Therefore, the result of the j-th polling is gj , which is 0 or 1 in accordance
with matrix W regardless of the results in the remaining sessions provided that
the values of fj are fixed.

In our case the problem is more difficult. Firstly, when we analyze results
g1, . . . , gN we do not know a real sequence ai for the i-th sensor since the vector
may have a cyclic shift on the researched time interval. Therefore, for the i-th
sensor we have the set of its possible codes: the code ai and all its cyclic shifts.
Therefore, the matrix A is well for alarming sensors detection if the Hamming
distance is sufficiently large not only between its rows but between all different
cyclic shifts its rows also. In the terms of the paper, it means that the number
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of “sensors” is tN . Secondly, from continuity of the time, the time ui may not
coincide with beginning of an interval of the time quantization and the result
fj may be generated uncertainly. By this reason, we propose to repeat every
signal in the sensor code k times. Therefore, every code has the length Nk and
an optimal value of k needs be found.

We need to obtain an algorithm of identification of the set S of the alarming
sensors based on the observations g1, . . . , gNk and take into account that, in
contrast with [4], random values g1, . . . , gNk are dependent variables now. The
theory of [4] does not give an specified recommendation for this case and we use
numerical methods to find a method for alarming sensors identification in our
case.

Since we consider continuity of a time, a received signal is described as a
function of the time f(u). Function values may be 0 or 1 and indicate receiving
data from alarming sensors or absence of a signal at the time u. The code ai for
the i-th alarming sensor we have is a function ai(u) of the time now and it is
calculated by the following way

ai(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if u < ui,

aj
i , if ui + (j − 1)kΔ ≤ u < ui + jkΔ, j = 1, . . . , N,

aj
i , if ui + (N + j − 1)kΔ ≤ u < ui + (N + j)kΔ,

j = 1, . . . , N,
and so on.

(3)

In this formula, ui is the time to start alarm by the i-th sensor and has the
uniform distribution on the interval [0, NkΔ]. After the time ui + NkΔ the
sensor repeats his signal as on the interval [ui, ui + NkΔ] while the sensor is
not identified and stopped. We bound the time by 2NkΔ for providing at list
one full time interval for all alarming sensors to send their signals.

Thus, we get response of the sensors at an arbitrary time is represented as

f(u) = (a1(u) ∧ x1) ∨ · · · ∨ (at(u) ∧ xt). (4)

The result output continuous signal is dropped onto short time intervals with
the length Δ, as a result, the continuous function f(u) drops onto the group of
observations (f1, f2 . . . ), that can be 0, 1 or nil.

The value nil we introduce by the following reason. We observe 0 value of
the function f(u) for a time interval of digitation in the situation of absence of
signals during the time from the interval, that means f(u) ≡ 0 on the interval.
We observe 1 value of the function f(u) at the interval if f(u) ≡ 1 on the interval.
When the function f(u) at the interval changes its value (from 0 to 1, or 1 to 0),
i.e. ∃u1, u2 : f(u1) 	= f(u2), we can not interpret the received signal correctly.
This situation is a conflict and we should mark such signals as nil. Thus, for the
j-th Δ-interval

fj =

⎧⎨
⎩

1, if f(u) ≡ 1,
0, if f(u) ≡ 0,

nil, if ∃u1, u2 : f(u1) 	= f(u2).
(5)
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This conflicts is determined by the functions ai(u) for alarming sensors also.
By the same way construct discrete values âi(j) that can be also 0, 1 or nil (i
is a number of the sensor and j is a number of the corresponding time interval).

Then, the result of an output signal for the j-th interval

fj = (â1(j) ∧ x1) ∨ · · · ∨ (ât(j) ∧ xt),

providing that 1 ∨ nil ≡ 1 and 0 ∨ nil ≡ nil.
Finally, results 0 or 1 of gj , j = 1, . . . , 2Nk, we transform in accordance

with the matrix W and we get the vector of observation ĝ = (ĝ1, . . . , ĝ2Nk).
If gj = nil then ĝj equals 0 or 1 with probability 0.5 and the observations
gj = nil can not help for an alarming sensor detection. Therefore, we lose a part
of information in contrast with the case from [4] and need to have longer sensors
codes for an alarming sensor identification with the same quality. By this reason,
we investigate a portion of loss information depend on k.

3 Algorithm of Alarming Sensors Detection

Our algorithm of alarming sensors detection are based on the factor analysis
with the aid of the maximum likelihood method. As described in the previous
section, we analyze the output signal ĝ. We use a data window of the width Nk
and the window shifts from position l = 0, i.e. we use the data (ĝ1, . . . , ĝNk), to
l = Nk. In the position l we use the data (ĝ1+l, . . . , ĝNk+l). For every sensor i
and any the window position l we calculate L(i, l,m) where m is the code shift.

We introduce vectors ãi(j) for indicating positions in the code where the
output result may be incorrect. It is calculated by the following: if ai(j) =
ai(j + 1) then ãi((j − 1)k + 1) = ãi((j − 1)k + 2) = · · · = ãi(jk) = ãi(jk + 1) =
ai(j) else ãi((j − 1)k + 1) = ãi((j − 1)k + 2) = · · · = ãi(jk − 1) = ai(j) and
ãi(jk) = ãi(jk + 1) = nil, j = 1, . . . , N − 1. For j = N if ai(N) = ai(1)
then ãi((N − 1)k + 1) = ãi((N − 1)k + 2) = · · · = ãi(Nk) = ãi(1) = ai(N)
else ãi((N − 1)k + 1) = ãi((N − 1)k + 2) = · · · = ãi(Nk − 1) = ai(N) and
ãi(Nk) = ãi(1) = nil.

Based on following data:

– x00(i, l,m) is the number of observations in the result output signal for which
ãi((j + m) mod Nk) = 0 and the output result ĝ(j+l) mod Nk = 0, j =
1, . . . , Nk;

– x11(i, l,m) is the number of observations in the result output signal for which
ãi((j + m) mod Nk) = 1 and the output result ĝ(j+l) mod Nk = 1, j =
1, . . . , Nk;

– x01(i, l,m) is the number of observations in the result output signal for which
ãi((j +m) mod Nk) = 0 or nil and the output result g(j+l) mod Nk is 0 or nil,
j = 1, . . . , Nk;

– x10(i, l,m) is the number of observations in the result output signal for which
ãi((j + m) mod Nk) = 1 and the output result g(j+l) mod Nk is 1 or nil,
j = 1, . . . , Nk.
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In accordance with [4], the contribution of numbers x00(i, l,m), x10(i, l,m),
x01(i, l,m), x11(i, l,m) to L(i, l,m) are with their weights

a10 = log
β1

1 − β0 − p∗(1 − β0 − β1)
,

a11 = log
1 − β1

β0 − p∗(1 − β0 − β1)
,

a01 = log
p̂(1 − β0 − β1) + β0

p∗(1 − β0 − β1) + β1
,

a00 = log
1 − β0 − p̂(1 − β0 − β1)

1 − β0 − p∗(1 − β0 − β1) + β1
,

where p̂ = 1 − (1 − p0)s, p∗ = 1 − (1 − p0)s.
Next, we calculate

L(i, l,m) = a00x00(i, l,m) + a01x01(i, l,m) + a10x10(i, l,m) + a11x11(i, l,m).

In contrast with [4], the codes ãi are not independent random variables and
L(i, l,m) is an approximation of the logarithm of the likelihood ratio only now.

Based on the error of the first kind, we calculate threshold L0. We conclude
that the i-th sensor is alarming if

max
l=0,...,Nk

max
m=1,...,Nk

L(i, l,m) > L0, (6)

otherwise the i-th sensor does not be alarming.

4 Numerical Results

In this section, we outline results the numerical simulations of alarming sensors
detection. We investigate the model with s = 2 (the simplest case when signals
from alarming sensors are tangled). The parameters of noise β0 = β1 = 0.01.
To evaluate the result we used a parallel execution of the numerical simulation
on a cluster of 16 servers with 24-core on each server. As it is found in [3], the
computational complexity is so big that for t = 1000 calculating time is several
hours.

In this connection we used a fft-based algorithm for the pattern matching
to reduce the calculating time. We find the minimal number of mismatches in
the result ĝi and the sensor code ãi using a polynomials multiplication ([3]).
The main idea of the algorithm is to use the convolution of polynomial coeffi-
cients to calculate the most suitable cyclic shift of ãi. This approach reduces the
asymptotic complexity to O(Nk log(Nk)) instead of O((Nk)2).

As parameters of the algorithm quality we use estimations of P1 and P2 and
the mean value of detected sensors s; s − s is the mean value of “false alarms”.
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Fig. 1. Box plot of nil signals distribution for t = 1000, N = 152, s = 2 based on 1000
simulations

It is found that the mean number of output signals with uncertainty in their
generation is similar to N (see Fig. 1). Therefore, for k = 1 results of our methods
of alarming sensors detection will be very poor (P1 and P2 near to 1).

A number of nil signals for the i-th sensor depends on the code ai and
may vary in a long interval (see Fig. 1). Every change in the code ai gives two
nil signals in the corresponding extended code ãi. Therefore, it is interesting
to investigate codes with variable length instead of the Nk-length codes with
the same properties of alarming sensors detection. As it is found in [3], the
computational complexity of a sensor detection strongly depends on its code
length and more accurate extending of the code may reduce a computational
time with the similar values of the alarming sensors detection quality. Because we
identify sensors separately and code lengths are known, the previous algorithm
may be used where L0 is non constant but a linear function of the code length
now.

For k = 2 we have unsatisfactory results also because the number of addi-
tionally identified sensors is big (see Table 1) (we expect s near of 2 but get
essentially larger number). This means that a number of non nil components in
the codes ã is small and a satisfactory detection of alarming sensors is impossible.

Table 1. Results for k = 2.

t N M P1 P2 s

500 144 1008 0.012 0.676 13.25

1000 152 1008 0.014 0.659 19.01

5000 172 1008 0.0001 0.726 72.79

For k ≥ 3 we outline results of numerical simulations below.
For different values of t and k the algorithms were simulated M times and

the results outline in the Tables 2, 3 and 4. In the tables, M is a number of
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Table 2. Results for t = 500, N = 144.

k M P1 P2 s

3 1000 0.004 0.007 1.999

4 2000 0.0025 0.004 1.999

5 3000 0.0023 0.004 1.999

Table 3. Results for t = 1000, N = 152.

k M P1 P2 s

3 1000 0.001 0.010 2.009

4 2000 0.0015 0.006 2.003

5 3000 0.0017 0.0047 2.001

Table 4. Results for t = 5000, N = 172.

k M P1 P2 s

3 1000 0.000 0.009 2.009

4 2000 0.000 0.0045 2.004

5 3000 0.000 0.0030 2.003

independent simulations our method of alarming sensors identification, P1, P2,
s are estimated values of the method quality.

It is followed from Tables 2, 3 and 4 that a probability of alarming sensor lost
is less than 1% for t = 500, is near 0.001 for t = 1000, and is practically 0 for
t = 5000 when the code length is 432, 456, and 516 consequently. The probability
decreases slowly when the number of code repetitions grows. The values s − s
is practically 0 for all cases. By this reason we may recommended k = 3 as the
number of code repetitions.

In contrast with [6], summands in the statistic L(i, l,m) are not independent
random variables. By this reason, it is difficult to corroborate the value L0 and
properties of the algorithm based on the theory of large deviations. For avoiding
this disadvantage we propose the second method of the logarithm likelihood ratio
estimating; we exchange summing onto maximum.

The total interval of observations (ĝ1+l, . . . , ĝNk+l) is dropped onto N seg-
ments with length k. For every segment we calculate

– y00(i, l,m) is the number of segments where it is existed at least one obser-
vation with ãi((j + m) mod Nk) = 0 and ĝ(j+l) mod Nk = 0, j is from the
segment;

– y11(i, l,m) is the number of segments where it is existed at least one obser-
vation with ãi((j + m) mod Nk) = 1 and ĝ(j+l) mod Nk = 1, j is from the
segment;
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– y01(i, l,m) is the number of segments where all ãi((j + m) mod Nk) are 0 or
nil with conditions on ĝ: ĝ(j+l) mod Nk are 0 or nil if ãi((j +m) mod Nk) = 0
and may be any if ãi((j + m) mod Nk) = nil;

– y10(i, l,m) is the number of segments where all ãi((j + m) mod Nk) are 1 or
nil with conditions on ĝ: ĝ(j+l) mod Nk are 1 or nil if ãi((j +m) mod Nk) = 1
and may be any if ãi((j + m) mod Nk) = nil.

Next,

L2(i, l,m) = a00y00(i, l,m) + a01y01(i, l,m) + a10y10(i, l,m) + a11y11(i, l,m).

The values y00(i, l,m), y01(i, l,m), y10(i, l,m), y11(i, l,m) are independent ran-
dom variables now.

We take decision as in (6) based on L2(i, l,m) but L0 is calculated anew.
The Tables 5, 6 and 7 correspond to the method of alarming sensors identi-

fication based on the statistic L2.
We get results similar to analogous ones for the first method of alarming

sensors detection if k = 3. If we use k = 4 or 5 then the results for P2 and s are
worse.

In general, this results correspond to analogous results in [4]; with increasing
of t the algorithms give more accurate results. The value N need be calculated as
in [4] but for tNk as a number of sensors. Minimal value of k with satisfactory
results of alarming sensors identification is 3. Therefore, the code length for

Table 5. Results for t = 500, N = 144.

k M P1 P2 s

3 1008 0.002 0.006 2.003

4 2016 0.0025 0.1736 3.31

5 3024 0.0030 0.1859 3.26

Table 6. Results for t = 1000, N = 152.

k M P1 P2 s

3 1008 0.001 0.006 2.004

4 2016 0.0015 0.197 4.92

5 3024 0.0017 0.209 4.39

Table 7. Results for t = 5000, N = 172.

k M P1 P2 s

3 1008 0.000 0.004 2.004

4 2016 0.0001 0.211 6.85

5 3024 0.00006 0.214 6.11
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t = 500 is 432, that is near to poll every sensor separately and a group polling
is not effective in this case. In contrast, for t = 5000 the code length is 516 that
is more than 9 times less than for polling every sensor separately.

5 Sensors Coding with Varied Length

In this section we analyze advantages of codes with a varied length as a method
to reduce code lengths and as a consequence to reduce computational complexity
of alarming sensors determination. In synchronized in time WSN we can not use
codes with varied length because we destroy the main advantage of such net-
works. In contrast, in unsynchronized in time WSN we can use codes with varied
length without losses because we check an activity for every sensor separately
from each other.

The method of coding consists in the following. For the i-th sensor the full
extended code we obtain by the formula (3) from the code ai and obtain the
discrete analogous âi. Now we add to the code ai additional symbols 0 and 1
between symbols 0 and 1 in the code ai and symbols 1 and 0 between symbols
1 and 0 respectively. All previous symbols of ai are repeated k − 2 times. The
new code ãri is analogous of ãi with k repetitions of code symbols and have the
same property that a number of correctly interpreted symbols is at least k − 2.

We illustrate the method on Figs. 2 and 3 for 3 sensors with codes a1 =
(1, 0, 1, 0), a2 = (1, 1, 1, 0), and a3 = (1, 1, 0, 0) and k = 3.

Fig. 2. Full extended codes for k = 3

On the Fig. 2, it is shown the full extended codes ã1 = (1, 1, 1, 0, 0, 0, 1, 1,
1, 0, 0, 0) (started in the first interval), ã2 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) (started
in the fourth interval), and ã3 = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) (started in the
second interval). On the Fig. 3, it is shown the codes with varied length where
ãr1 = (1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0) (has the same number of symbols as in the full
code), ãr2 = (1, 1, 1, 1, 1, 0, 0, 0) (has 8 symbols instead of 12 symbols in the full
code), ãr1 = (1, 1, 1, 1, 0, 0, 0, 0) (has 8 symbols instead of 12 symbols in the full
code). Therefore, effectiveness of coding with varied length depends on the code
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Fig. 3. Codes with varied length for k = 3

a. In a bottom of the figures, we illustrate the corresponding output vector ĝ
with nil or non nil values.

Further we outline the results of numerical simulation of effectiveness of cod-
ing with varied length. As a parameter of effectiveness we use the value κ = L̄

kN
where L̄ is the mean value of code lengthes. On the Figs. 4 and 5 we illustrate
κ and variation of values L

kN where L is a code length. Parameters are the
following: t = 5000, N = 172, s0 is a number of alarming sensors.

Computational complexity of alarming sensor detection reduce by 2 or more
times slowly depending on s0.

Fig. 4. Box plot of code lengthes distribution for k = 3 based on 1000 simulations

We analyze the nil signals distribution when coding with varied length is
used. Under the same parameters as used for the Fig. 1 we simulate output
signals ĝ. It is followed from Fig. 6 that a quality of noninformative observations
(nil-signals) is less than for the case with fix length codes. Therefore, coding
with varied length may give more accurate results of observations of WSN.
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Fig. 5. Box plot of code lengthes distribution for k = 4 based on 1000 simulations

Fig. 6. Box plot of nil signals distribution of coding with varied length for t = 1000,
N = 152, s = 2 based on 1000 simulations

6 Conclusions

The main result of the paper consists in that for unsynchronized in time WSN
may be constructed a group polling with O(log t) time for alarming sensors
detection. The constant before log t is more than 3 times that the analogous
constant for the synchronized WSN. Therefore, the group polling method may
be effective for WSN with thousands or more sensors.

Recommended number of the code signal repetitions k is 3 or 4. If codes with
varied length are used then recommended number of the code signal repetitions
is 1, 2, or 3 as an analogous of k = 3 or 2, 3, or 4 as an analogous of k = 4.

Computational complexity of alarming sensor detection is so big in contrast
with [4] that the algorithm optimization is necessary. An optimization may be
done by different ways as it was described in [3] and includes sensors coding with
varied length.
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The decoding procedure is more complicated for unsynchronized WSN and
requires additional investigations for WSN with dependent alarming sensors as,
for example, it is outlined in [6].
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Abstract. The paper demonstrates a way for application of a methodol-
ogy for the stochastic analysis of random processes based on the method
of moving separation of finite normal mixtures to analyze the non-
negative time series. We suggest to noise the initial data by adding
i.i.d. normal random variables with known parameters. Then the one-
dimensional distributions of observed processes are approximated by
finite location-scale mixtures of normal distributions. The finite normal
mixtures are convenient approximations to general location-scale normal
mixtures or normal variance-mean mixtures which are limit laws for the
distributions of sums of a random number of independent random vari-
ables or non-homogeneous and non-stationary random walks and hence,
are reasonable asymptotic approximations to the statistical regularities
in observed real processes. This approach allows to analyze the regu-
larities in the variation of the parameters and capturing the low-term
variability in the case of complex internal structure of data. An imple-
mentation of the methodology is shown by the examples of the intensity
for the simulated information system.

Keywords: Noisy data · Moving separation of mixtures · Finite normal
mixtures · Information systems

1 Introduction

One of the most important indicator in the characterization of the fine structure
of the processes in various modern information systems is the intensity of events,
traffic, etc. (see, for example, papers [1,2]). The values of the intensity are posi-
tive, so the results of the classical statistical techniques based on the assumption
normality of the distribution of observations (such as, say, the classical ANOVA)
may be inadequate. The paper presents a method of the statistical analysis of
the stochastic structure of random processes based on the noising of initial time
series so that the procedure of moving separation of finite normal mixtures [3]
can be correctly applied to positive time series.
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The key idea of the methodology is based on the noising of the initial data by
adding independent and identically-distributed (i.i.d.) normal random variables
with known parameters to refine the output. The one-dimensional distribution
of the noisy sample is approximated by finite location-scale mixtures of normal
distributions. It is well-known that finite normal mixtures are convenient approx-
imations to general location-scale normal mixtures or normal variance-mean mix-
tures which are limit laws for the distributions of sums of a random number of
independent random variables or non-homogeneous and non-stationary random
walks and hence, are reasonable asymptotic approximations to the statistical
regularities in observed real processes [4].

A similar approach with the noise benefit is known in the statistical signal
processing as a stochastic resonance [5–8]. The base numerical method for finding
values of the unknown parameters of the model in the suggested methodology
is the EM algorithm [9]. It is known [10] that the noising increases the average
convergence speed of the EM algorithm.

The paper proposes a way to improve the quality of the structural analysis
of the unknown processes in the real information systems. The approach allows
to analyze the regularities in the variation of the parameters and capturing
the low-term variability in the case of complex internal structure of data. An
implementation of the methodology is shown by the examples of the intensity
for the simulated information system.

2 Approximation of the Initial Data

The typical form of the analyzed data is demonstrated on the Fig. 1.

Fig. 1. The comparison of the noisy and initial data. (Color figure online)
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The values of intensities (initial data) are nonnegative (see the solid red line
on the Fig. 1), so the approximations by the finite normal mixtures with the
support R can be incorrect. For solving this problem, we suggest noising of the
initial sample by adding i.i.d. normal random variables with known parameters.
The blue dotted line on the Fig. 1 corresponds to the new “noisy” sample. The
changing of the distribution of the initial sample under noising is shown on the
Fig. 2. The left graph (Fig. 2a) corresponds to the initial data whereas the right
one (Fig. 2b) demonstrates the sample distribution of the noisy data.

Fig. 2. The histograms of the initial sample (a) and the noisy data (b).

There is a unique peak for the initial data histogram (Fig. 2a), all observations
are nonnegative. For the noisy histogram (Fig. 2b) the structure of data changes,
there are negative elements too.

To analyze the changes of the stochastic process forming the initial data, the
problem of statistical estimation of unknown parameters of the model should be
solved for a moving sample segment (which is called a window) of a fixed length
forming the sub-samples to be further analysed. Estimating parameters for the
windows, one can derive the time series of these parameters. The resulting time
series of the parameters will allow for the analysis of temporal changes in the
behavior of the so-called diffusive and the dynamical components in the process.

Assume that the cumulative density function for a given window centered at
the time moment t can be represented as

Ft(x) =
k∑

i=1

pi(t)
σi(t)

√
2π

x∫
−∞

exp
{

− (t − ai(t))2

2σ2
i (t)

}
dt, (1)
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where

k∑
i=1

pi(t) = 1, pi(t) � 0 (2)

for all x ∈ R, ai(t) ∈ R, σi(t) > 0, i = 1, . . . , k.
The model (1) is called a finite location-scale normal mixture. The parame-

ters a1(t), . . . , ak(t) are associated with the dynamic component of the internal
variability of the process, and the parameters σ1(t), . . . , σk(t) are associated with
the diffusive one, see [3]. The parameters p1(t), . . . , pk(t) are the weights satisfy-
ing condition (2). The parameter k is the number of mixture components and it
may be also treated as depending on time. When the parameters of the model (1)
are estimated for the moving segments, some weights may be very close to zero
or to be evaluated as zeroes. This implies the corresponding component to vanish
and the the number of components to decrease.

First of all, consider the approximation by normal mixtures for the initial
sample. The corresponding dynamic and diffusive components are represented
on Figs. 3 and 4. The x-axis for both graphs is a number of a window, it describes
the location of the window in the sample. The y-axis demonstrates the values
of expectations ai(t) (Fig. 3) and standard deviations σi(t) (Fig. 4) varying as
the window moves rightwards. The color bar in the right side of the figures
demonstrates the weight scale for each of components: from a deep blue for the
weights which are closed to the value 0, to deep red for the weights which are
closed to 1. The size of points on the figures is proportional to the weights too.

There is one deep red dominating component on each of the Figs. 3 and 4.
The points beyond it can be interpreted as the computational errors of the EM

Fig. 3. The dynamic component of the initial data. (Color figure online)
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Fig. 4. The diffusive component of the initial data. (Color figure online)

algorithm. The statistical structure of the process cannot be analyzed in this
trivial situation. Moreover, it is complicated to represent the set of points on the
Fig. 4 as the curve which corresponds to the diffusive component.

So, the arising problems for the analysis of the initial sample are demon-
strated. In the next section we describe a procedure of the noising and compare
the results for the initial and modified data.

3 Noising of Data

Suppose that the cumulative density function of each observation Xj can be
represented in form (1), that is

Xj ∼
k∑

i=1

pi Φ

(
x − ai

σi

)

The noising implies the following replacement of the original observations:

Xj → Xj + εj ,

for all j = 1, . . . , N , where N means a sample size, and εi ∼ N (0, σ2) (a normal
distribution with expected value 0 and standard deviation σ). As the example
we use noising with the value σ equals 1% of the sample standard deviation. The
choice of the value for the σ is a difficult problem due to the necessity to keep
initial stochastic structure of the data. The noisy data is shown on the Fig. 1 by
the blue dashed line.
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The peak values of the noisy data are closed to the initial ones, but there
are negative observations in the new sample. So, the technique, based on the
normal mixtures, is correct. It is should be noted that the Fig. 1 demonstrates
the enlarged part of the observed samples.

In terms of the finite normal mixtures (1) the noising represents the adding
of the new component with the known expectation and variance and unknown
weight. It is known, that the variance for the finite normal mixtures (1) can be
represented in the following form:

k∑
i=1

pi(t)

[
ai(t) −

k∑
i=1

pi(t)ai(t)

]2

+
k∑

i=1

pi(t)σ2
i (t). (3)

The noising by the εi ∼ N (0, σ2) does not change the first summand in the
expression (3), but the second one has the following form

k∑
i=1

pi(t)(σ2
i (t) + σ2) =

k∑
i=1

pi(t)σ2
i (t) + σ2.

We use the independence of the corresponding random variables, so

D(Xj + εj) = σ2
j + σ2.

So, it can be simply removed from the resulting approximating mixture (it
should be removed from the diffusive component while the dynamic one does
not change). It is visually demonstrated on Figs. 5 and 6.

Fig. 5. The dynamic component of the noisy data. (Color figure online)
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Fig. 6. The diffusive component of the noisy data. (Color figure online)

The “solid” red line on the Figs. 5 and 6 corresponds to the noisy component.
Due to the computational errors, the expectation close to the 0 on the Fig. 5 (but
it is not equals exactly). The red line on the Fig. 6 is the estimation of the noisy
standard deviation σ.

The blue lines represents the fine stochastic structure of the initial process.
These results can be used for the analysis. Note that the settings of the compu-
tational procedure for the initial and noisy sample are the same: width of the
window equals 120 observations, the number of components in the mixture is 3,
the computational accuracy ε equals 10−8:

max
∣∣∣θ(m)(t) − θ(m−1)(t)

∣∣∣ < ε,

where θ(m)(t) is a vector of estimated parameters at the m-th iteration step:

θ(m)(t) = (a(m)
i (t), σ(m)

i (t), p(m)
i (t)), i = 1, . . . , k.

The Figs. 7 and 8 demonstrates the results for the initial sample after remov-
ing of the noisy component. The mean and standard deviation σ are known,
so the closest values (in a sense of some metrics, for example, L1-norm) can be
interpreted as the estimators of the noisy component at each position of the
windows. The new weights p̃i(t) of the another components should be defined as
follows:

p̃i(t) =
pi(t)

1 − p(t)
,

where p(t) is the weight of the noisy component at time moment t. So, the sum
of the p̃i(t), i = 1, . . . , k − 1 equals 1 for all t (see (2)).
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The identification and removing of the noisy component leads to the correct
colors of points from blue to red. Comparing results on the Figs. 7 and 8 with the
Figs. 3 and 4, we can see more than one components in the stochastic structure
of the intensities. The diffusive component is represented by the 2–3 nontrivial
“curves” with the varying weights (from 0.6 to 1). The dynamic component is

Fig. 7. The noiseless dynamic component of the initial data. (Color figure online)

Fig. 8. The noiseless diffusive component of the initial data. (Color figure online)
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represented by the two main lines: one of them corresponds to the expectations
no more than 5 with the weights 0.6–0.9, the second component is determined
by the expectations 5–20 with the weights 0.1–0.4.

4 Conclusions

The paper empirically demonstrates the efficiency of the suggested noising
methodology to refine the output of the method of moving separation of finite
normal mixtures. The key problem of the further researches is a formulation
of the convenient conditions for the parameter σ of the noisy component. The
results of the paper [10], based on the special sets and theorems for the con-
ditional expectations, are difficult for using in practice, primarily in a sense of
the automatization of the analysis. One of the possible way is based on the
application of some information criteria (for example, the Akaike information
criterion [11] and the Kullback-Leibler divergence [12]).

So, the appropriate optimization problem should be solved. The extremum
of the log-likelihood function of the finite normal mixture (1) can be found by
the following way:

F = log
n∏

j=1

⎛
⎜⎝

k∑
i=1

pi

σi

√
2π

e
−

(xj − ai)2

2σ2
i +

pk+1

σ
√

2π
e

−
x2

j

2σ2

⎞
⎟⎠ =

=
n∑

j=1

log

⎛
⎜⎝

k∑
i=1

pi

σi

√
2π

e
−

(xj − ai)2

2σ2
i +

pk+1

σ
√

2π
e

−
x2

j

2σ2

⎞
⎟⎠ .

The derivative with the respect to the unknown parameter σ has the following
form

F ′
σ ∼

n∑
j=1

⎛
⎜⎝

k∑
i=1

pi

σi

√
2π

e
−

(xj − ai)2

2σ2
i +

pk+1

σ
√

2π
e

−
x2

j

2σ2

⎞
⎟⎠

−1

×

× pk+1

σ2
√

2π
e

−
x2

j

2σ2

[
x2

j

σ2
− 1

]
.

So, the main problem can be formulated as that of finding of an appropriate
penalty function.

Moreover, our approach can be useful for an analysis of the increments of
the initial data too. Since new process is an increment of the basic process, then
ai(t) is the expected value of the increment, i.e., the “trend” component. So,
ai(t) is the expected value of the random variable whose distribution is just
the i-th component of mixture (1). By construction, this random variable is the
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Fig. 9. The dynamic component of the initial data increments. (Color figure online)

Fig. 10. The noiseless dynamic component of the initial data increments. (Color figure
online)
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increment of the initial process at the unit time interval, that is, ai(t) is the
mean velocity of the variation of the i-th component. Thus, the set of pairs
(a1(t), p1(t)), . . . (ak(t), pk(t)) determines the distribution of the velocities over
local trends at time t.

At last, we briefly demonstrate the results for the dynamic component of
the increments. The adding, identification and removing of the noisy component
leads to the substantial form of the multivariate volatility [3]. Comparing results
on the Fig. 9 with the Fig. 10, we can see more than one components in the
stochastic structure of the initial data increments after the “noising – denoising”
procedure. The dynamic component is mainly represented by the non-trivial
(non-zero) curve (see Fig. 10) with the weight more than 0.5–0.6. The same
results can be represented for the diffusive component too.

The further investigations should be focused on both the finding of an appro-
priate penalty function and the methods of noising.
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for Basic Research (projects 15-37-20851 and 16-07-00736).
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Abstract. It is not uncommon that delay-sensitive requests cannot be
processed repeatedly in case of delivery failures, especially in real-time
systems, which results in a strong need to enhance reliability of sending of
requests. This can be achieved through concurrent transmission of copies
of a request over multiple routes in a given network to a number of simi-
lar destination nodes. However, the increase in the initial flow of requests
leads to the rise of the network load and the average residence time and
potentially to the excess of the ultimate residence time. In the research,
the usefulness of redundant distribution of requests through the network
was estimated, with the maximized probability of successful delivery and
the minimized average residence time. It was found possible to determine
the optimal redundancy order for a given set of parameters, namely the
intensity of the flow of incoming requests and the bit error rate.

Keywords: Reliability · Request · Redundancy · Multipath routing ·
Queueing systems

Constantly growing complexity of distributed computing systems, which is
ahead of the pace of the increasing reliability of storage, processing, and trans-
mission devices, gives rise to the need for developing methods to ensure high
reliability, availability, and security of distributed resources for data processing
and storage [1–8]. High availability of distributed resources is particularly impor-
tant for real-time systems, which are sensitive to delays. It is commonly provided
by introducing redundant elements into the structure of a given network and by
designing the network in the way that lets arrange redundant data transmission
and processing. In delay-sensitive systems, sending requests twice or more times
to the destination, where they are somehow processed, is often impossible or
pointless. This is due to rapid changes in the state of such systems, occurring
under complex internal or external influence. As a result, methods to introduce
redundancy into such systems turn out to be topical and prospective for in-depth
exploration.

The proposed way of redundant data transmission should be employed when
it is not possible to transmit data (a request, a data packet) through the network
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and/or process it at the destination node (a server) more than once. This app-
roach relies on the mechanism of multipath data transmission, particularly on
multipath routing, which implies at least two appropriate routes (paths) between
the sender and the receiver, or receivers – in case of multicast transmission. In
this paper, the receiver is a server belonging to a specified group of servers
(or a given cluster). The servers have similar principal characteristics and serve
incoming requests in the similar manner.

Multipath routing is widely used for multicast transmission, when data pack-
ets undergo fragmentation and the resulting fragments are sent over different
paths to be brought together again at the destination. This is intended to hasten
the process of transmission of large data packets and to secure them, especially
when it comes to the secret data. Packet fragmentation based on multipath
routing is mostly applied to load balancing.

Alternatively, using several paths for data transmission proves beneficial for
enhancing reliability and fault-tolerance of the system. The traditional approach
thereto suggests that one route is regarded as the main, the “best” path from
some point of view, i.e. a given criterion, or metrics: bandwidth, average residence
time, router and link load, and so on. Other routes are considered as alternate
ones, used in case the main path fails.

Another approach is presented in [9], where requests – more precisely, numer-
ous copies of each request – are sent over multiple paths concurrently. There is
no need to choose the “best” path, because all of them are regarded appropriate,
based on some metrics, with no ranking. On the one hand, redundant distribu-
tion of requests through the network causes the increased network load and the
higher average residence time as well as possible excess of the ultimate residence
time. On the other hand, sending copies of a request over multiple paths results
in the enhanced chance that at least one copy will be delivered successfully. The
goal of current research is to estimate the efficiency of redundant distribution
of requests through the network when their repeated transmission is impossible,
and therefore, to discover if there is a way to resolve this technical contradiction.

1 Problem Statement

Current study focuses on the process of redundant distribution of requests
through a given network with the rigid requirements for the maximum period
of time during which the requests are to be processed. In the known systems
without redundancy, a request is sent from the source of requests to the single
receiver, which might be a switching node or a server. In case of redundant sys-
tems, two or more copies of a request are transmitted from the sender to the
multiple receivers (in this paper – servers) over a number of routes, as shown in
Fig. 1.

1.1 System Design

It is assumed that there are n appropriate paths to deliver (several copies of) a
request to their destination point within the system under consideration – one of
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Fig. 1. A possible network configuration for redundant data transmission. There is
a number of routes (paths) between the sender of requests and their receivers (in
this paper – destination servers). In general case, these paths may overlap, having in
common several intermediate network devices, like switches or routers.

the servers which comprise a specified cluster. In this research, all those paths are
considered disjoint for two reasons. In the first place, addressing routes with no
common nodes facilitates modeling and further calculations, particularly in the
primary stage of such study. Secondly, it is done of practical interest, because
the failure of a common node leads to the failure of two or several routes at
once. It is a usual thing in the real world that current routing protocols accept
a limited number of common nodes, e.g. no more than one per two paths, like
Multipath Optimized Link State Routing Protocol (MOLSR).

Each path i leading from the source of requests to one of the destination
servers includes a set of di switches or routers Kij and di+1 link segments j
between them; all units of network equipment have specified characteristics of
reliability and performance. Each node Kij can be represented as a single-channel
non-preemptive M/M/1 queueing system with the infinite queue [10,11], where
the letter M refers to the Markovian arrival process (the first position of M )
and the Markovian service process (the second one).

Any errors and faults of switching nodes and link segments as well as of the
destination servers lead to the situation when requests cannot be delivered and
served. Suppose that the bit error rate Bij , which is a measure of transmission
errors for the link segment j of the path i, is known. It should be noted that
some requests will never be processed – not only those which have been lost on
the way to a destination server, because of faults of network equipment, but also
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those which have arrived at one of them but contained bit errors. Besides, it is
possible that a request reaches one of the destination servers, with no bit errors,
but finds it unavailable due to a fault or temporary shutdown. What is more, the
server might be overloaded with the requests which have arrived earlier than the
one in question and been waiting for service in the queue of the server. Thus,
the probability that the server is ready to execute incoming requests, or the
probability of server availability P0, introduced in [9], ought to be taken into
account. Also, it should be noted that by the time the server is ready to process
the request, the latter will probably be irrelevant, as it has resided in the system
too long (more than the ultimate residence time).

Copies of requests are distributed through the network over k (k = 2, ...,n)
routes, where k is the order (rate) of redundancy, or the redundancy order. It is
said that a request is delivered successfully if at least one copy of it arrives at the
destination, contains no bit errors, and is placed into the server queue or executed
immediately, within the specified time limit. Here, we admit that no copies of
the request are discarded after one of them has been delivered successfully. This
leads to the upper (pessimistic) estimation of the average residence time, or
the time in the system, needed for error-free transmission of a request from the
source to the destination.

1.2 Probability of Error-Free Transmission

To start with, let us estimate distribution of requests through the network on
the basis of server availability P0 and the bit error rate Bij , which is in fact the
probability of bit errors which might occur while transmitting a request over the
link segment j of the path i.

The probability of successful transmission of a data packet over the path i
can be calculated as following:

Ri =
di∏

j=1

(1 − Bij)N , (1)

where di is the number of link segments of the path i and N is the average data
packet length in bits. Provided that all routes under consideration are identical,
the bit error rate can be regarded a constant and (1) can be replaced with

R = (1 − B)Nd. (2)

When requests are transmitted over k redundant paths concurrently, the
probability of error-free transmission of at least one copy of a request over the
path is

Pc = 1 − (1 − P0R)k. (3)

Here, P0 is the probability that the server is available, or ready to serve incoming
requests, meaning that it is powered up and in working order and there is enough
space in its queue for the requests coming from the network. In this paper, we
suggest that all servers of the interest, i.e. belonging to the same group (cluster)
and serving requests from the same source, have similar server availability P0.
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1.3 Average Residence Time

Let us estimate the average residence time for data packets transmitted through
the network to the destination servers, depending on the intensity of the request
flow Λ. It is a period of time during which data packets reside in the system,
starting from the moment when they are initially sent to the network by the
source node until the moment when they are placed in the queue of one of the
destination servers. The delay Ti in the path i is defined as the sum of delays in
all segments of that path:

Ti =
di∑

j=1

Tij , (4)

where Tij is the delay in the segment j of the path i, or the average time needed
to transmit a data packet through the node j of the path i (with respect to the
speed of transmission in the output port):

Tij =
di∑

j=1

vij

1 − vijkΛ
n

. (5)

Here, vij is the average time of transmission in the segment j of the path i and
computed as follows:

vij =
N

Lij
, (6)

where N is the average length of data packets and Lij is the speed of
transmission.

When a data packet – i.e. its copies – is sent over k identical routes simul-
taneously, the average residence time in the system T is defined as equal to
the delay in the path over which the packet has been transmitted with no bit
errors and accepted for further processing by the destination server. Assessing
the average residence time for that path in the described above way gives an
upper (conservative) estimate. This is because the estimation does not take into
account the probability that in at least one path used to transmit copies of data
packets, the delivery time of the copy under consideration can be less than the
resulting value of T, due to the stochastic nature of the processes of servicing.

1.4 Criteria of Efficient Delivery

The efficiency of redundant distribution of requests through the network depends
on the average residence time T, which is to be minimized, and the probability of
error-free transmission Pc, which is to be maximized. The combination of these
two single criteria produces a new multiplicative criterion Mult1:

Mult1 =
Pc

T
. (7)
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For the situation when the ultimate residence time t0 is known, another
multiplicative criterion can be defined, namely

Mult2 = Pc(t0 − T ), (8)

which describes the average stock time between the ultimate and the average
residence time for the packets that have been delivered successfully.

Last but not least, let us estimate the efficiency of redundant transmission
of requests through the network based on the following additive criterion, with
the normalized residence time:

Add = Pc +
t0 − T

t0 − Tmin
, (9)

where t0 is the ultimate residence time, while Tmin is the minimal residence time.
It can be seen that the major indicator of efficiency of distributed systems,

including those with multipath routing, which is embodied in the given scalar
additive and multiplicative criteria, aggregates the average time that requests
reside in the system for and the rate at which they arrive at the destination node
successfully, i.e. containing no bit errors.

In general, the efficiency of data transmission in distributed systems and
networks is to be described with a set of indicators, which are – apart from the
indicators mentioned above, namely the average residence time and the prob-
ability of error-free transmission, – the probability of packet loss, the rate of
availability, and the rate of operational availability.

In real-time systems, when assessing the efficiency of servicing of requests, it
is also important to take into account the probability that the average residence
time does not exceed the ultimate residence time t0.

In systems with link aggregation support, when copies of each packet are
sent through multiple channels, comprising a group of redundant routes, the
probability that the residence time of at least one copy does not exceed the
ultimate residence time t0 is calculated as following [12]:

d = 1 − k

n
Λv exp

(
− t0

(
v−1 − k

n
Λ

))
, (10)

where Λ is the intensity of the flow of incoming requests, v is the average time
needed to transmit a packet of N -bit length at a bit rate of L. Equation (10)
takes into consideration the increase in the initial intensity of the flow of requests
for each of n paths (k/nΛ), with the redundancy order of k (k copies are spawned
for each request).

The probability of timely delivery D of at least one of k copies, being sent
via different channels [12–15]:

D = 1 − (1 − d)k. (11)

Here, timeliness implies that the time of a packet transmission is less than or
equal to t0.
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The indicators discussed in [12] define the probability of timely redundant
delivery of packets through one of k channels, under the assumption that those
channels are ideal in terms of reliability and inerrancy of transmission.

To evaluate the efficiency of data transmission in real-time systems compre-
hensively, in view of unreliability of redundant communication links, an aggre-
gate probabilistic indicator is proposed. The indicator is to take into account

– the probability that on entering the system, an incoming request finds it in
working order;

– the probability that k channels which are selected for transferring requests in
the redundant manner, are completely faultless;

– the probability that t0 is not exceeded in at least one of k channels used for
redundant data transmission, when sending a copy of each request;

– the probability that at least one copy of each packet, sent through one of k
channels under consideration, contains no bit errors on reaching the destina-
tion node.

When aggregating N channels, which is proposed in [12], the informal crite-
rion K has a physical meaning because it corresponds to the probability that at
least one of k copies of a packet, transferred through k out of n links, will be
delivered in a timely way.

K =
M∑

n=1

Pn

(
1 − (1 − pRd)k

)
, (12)

where Pn is the probability that a request enters the system at the moment when
n out of M aggregated channels are in working order. For each of them, p is the
probability of faultlessness, d is the probability of the residence time being less
than the ultimate residence time t0, R is the probability that a packet of N -bit
length is transferred successfully, with no bit errors.

R = (1 − B)N , (13)

Here, B is the bit error rate.
The discussed system of aggregate quality indicators, including the proba-

bility of timely and error-free redundant delivery of packets, introduced in [12],
is focused on their transmission through redundant channels. The use of the
considered criteria in assessing the efficiency of decisions on arranging multipath
routing and their optimization requires development of models that take into
account the peculiarities of multipath routing, in particular simulation models.

2 Calculations and Discussion

The efficiency of redundant distribution of requests (data packets) through the
network to the destination servers is evaluated depending on the redundancy
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order and according to the multiplicative criteria Mult1 and Mult2 and the
additive criterion Add.

Suppose that there are ten disjoint routes between the sender of requests and
the receivers (servers), n = 10. Each route contains d = 5 intermediate nodes
(switches or routers) and d + 1 link segments between those nodes.

For simplicity, we assume that the average time of transmission vij is the
same for all segments and is equal to v. Let us define values of the following
parameters of the model, to perform calculations:

– the average length of data packets N = 2048 (bit),
– the speed of transmission Lij = 100 (Mbit/s),
– and, as a result, the average time of transmission v = 2.048 × 10−5 (s).

Considering the ideal conditions, when there are no queues in the switching
nodes of any route, we can define the minimal time that a request resides in the
system:

Tmin = dv. (14)

Thus, Tmin = 1.024 × 10−4. With respect to a series of experimental estimations,
the ultimate residence time can be initialized as t0 = 7.6 × 10−4.

Suppose that the probability of server availability is reasonably high, taking
into account the fact that the considered servers might fail or be overloaded with
incoming requests from time to time: P0 = 0.9.

The intensity of the flow of requests Λ varies over time. Let us set the fol-
lowing values for Λ (1/s):

Λ1 = 9 × 103, Λ2 = 1 × 104, Λ3 = 2 × 104, Λ4 = 3 × 104.

Further estimations demonstrate that for the given values of other parame-
ters, the plausible values of the bit error rate B are in the range 10−7 to 10−5.
The results of calculations, shown in Fig. 2, are derived from the bit error rate
B = 10−7.

Figure 2 illustrates the efficiency of redundant distribution of requests over k
routes, which is computed on the basis of the multiplicative criterion Mult1(a),
the multiplicative criterion Mult2(b), and the additive criterion Add(c). The
displayed curves 1–4 in each of the three graphs correspond to the intensities of
the request flow Λ1–Λ4.

It can be seen that sending data packets through the network in the redun-
dant way increases the efficiency of transmission but only up to a certain point,
which is the maximum value of each criterion in question. This appears to be
an evidence that there is a need to solve the problem of optimization, in order
to determine the redundancy order that provides the maximum efficiency across
all proposed criteria. It is particularly important for systems with the limited
residence time.

It is important to note that the higher the intensity of the request flow Λ is,
the lesser the values of all criteria under consideration are – Mult1, Mult2, and
Add. With the increase of Λ, the maximum values of those criteria correspond to
the lesser values of the order of redundancy k, as shown in Fig. 2 and in Table 1.
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Fig. 2. The efficiency of redundant data transmission estimated on the basis of the
multiplicative criteria Mult1(a) and Mult2(b), the additive criterion Add(c).



Efficiency of Redundant Multipath Transmission of Requests 299

Table 1. The redundancy order depending on the intensities of the flow of requests
Λ1 = 9 × 103, Λ2 = 1 × 104, Λ3 = 2 × 104, Λ4 = 3 × 104 (1/s) and the bit error rate
B = 10−7 (calculations are performed using Mathcad 15 environment)

Mult1 Mult2 Add

Λ1 2.09 2.86 2.86

Λ2 2.05 2.80 2.80

Λ3 1.73 2.45 2.46

Λ4 1.54 2.23 2.24

In case the redundancy order k is a whole number or its fractional part is
insignificant, the value of k indicates how many paths (and hence copies of a
request) are needed to transmit the request through the network in the optimal
manner, i.e. as soon as possible and in the most reliable way (see the multiplica-
tive criterion Mult1 for Λ1 and Λ2 in Table 1). Otherwise, one should use some
sort of a mixed strategy when the decision on the redundancy order is made on
the probabilistic basis. Thus, it is advisable to use either two or three routes
when transmitting requests through the given network — in case of the multi-
plicative criterion Mult2 and the additive criterion Add (Table 1). For instance,
if the fractional part of k is approximately equal to 0.5 (Mult1 – Λ4, Mult2 –
Λ3, Add – Λ3), it is possible to decide for two or three paths with the probability
of 0.5.

In practice, however, it makes sense to employ generalized assessments,
derived from all criteria. For example, it is advisable to send requests over two
or three routes for the intensities of the flow of requests Λ3 and Λ4, even though
the multiplicative criterion Mult1, taken separately, denotes that a single path
should be chosen for this purpose.

3 Conclusion

The results of the conducted study support the initial hypothesis that introduc-
ing redundancy in the process of data transmission in delay-sensitive systems,
under conditions of possible transmission errors and server unavailability for
processing incoming requests, is likely to enhance those systems’ efficiency.

The efficiency is understood in terms of the increased probability of errorless
delivery of requests (data packets) and the decreased average residence time.
Delivery failures happen because of faults of network equipment and server
unavailability due to faults and temporary shutdown and due to the fact that
the server can be overloaded with the already received requests.

The scope of efficiency of redundant distribution of requests through the
network to the destination servers was determined.

On the basis of the proposed additive and multiplicative criteria, it was found
that there existed the optimal redundancy order, or the optimal number of routes
needed to transmit (copies of) requests through the network in the redundant
manner.
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It was discovered that the redundancy order depended on the intensity of the
flow of incoming requests as well as on the probability of transmission errors, or
the bit error rate.

The results of the research may appear useful for those who need to decide for
the redundancy order when sending data packets through the network, with the
purpose to improve reliability of data transmission and accelerate distribution
of requests to the destination servers.

Acknowledgments. The study is a part of the research project “Methods for design-
ing the key systems of information infrastructure” (State Registration Number is
615869) of ITMO University, St. Petersburg, Russia.
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V., Snášel, V. (eds.) IITI 2016. AISC, vol. 451, pp. 103–109. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-33816-3 11

9. Bogatyrev, V.A., Parshutina, S.A.: Redundant distribution of requests through the
network by transferring them over multiple paths. In: Vishnevsky, V., Kozyrev,
D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 199–207. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-30843-2 21

10. Aliev, T.: The synthesis of service discipline in systems with limits. In: Vishnevsky,
V., Kozyrev, D. (eds.) DCCN 2015. CCIS, vol. 601, pp. 151–156. Springer, Heidel-
berg (2016). doi:10.1007/978-3-319-30843-2 16

11. Aliev, T.I., Rebezova, M.I., Russ, A.A.: Statistical methods for monitoring travel
agencies. Autom. Control Comput. Sci. 49(6), 321–327 (2015)

http://dx.doi.org/10.3103/S014641161105004X
http://dx.doi.org/10.3103/S014641161105004X
http://link.springer.com/article/10.3103/S014641161105004X
http://link.springer.com/article/10.3103/S014641161105004X
http://dx.doi.org/10.3103/S0146411612030029
http://link.springer.com/article/10.3103/S0146411612030029
http://dx.doi.org/10.1007/978-3-319-33816-3_11
http://dx.doi.org/10.1007/978-3-319-30843-2_21
http://dx.doi.org/10.1007/978-3-319-30843-2_16


Efficiency of Redundant Multipath Transmission of Requests 301

12. Bogatyrev, V.A., Bogatyrev, S.V.: Redundant data transmission using aggregated
channels in real-time network. J. Instrum. Eng. 59(9), 735–740 (2016). doi:10.
17586/0021-3454-2016-59-9-735-740

13. Bogatyrev, V.A., Bogatyrev, A.V.: Optimization of redundant routing requests in
a clustered real-time systems. Inf. Technol. 21(7), 495–502 (2015)

14. Bogatyrev, V.A., Bogatyrev, A.V.: The model of redundant service requests real-
time in a computer cluster. Inf. Technol. 22(5), 348–355 (2016)

15. Bogatyrev, V.A.: Increasing the fault tolerance of a multi-trunk channel by means
of inter-trunk packet forwarding. Autom. Control Comput. Sci. 33(2), 70–76 (1999)

http://dx.doi.org/10.17586/0021-3454-2016-59-9-735-740
http://dx.doi.org/10.17586/0021-3454-2016-59-9-735-740


The Fault-Tolerant Structure of Multilevel
Secure Access to the Resources

of the Public Network

Vladimir Kolomoitcev(B) and V.A. Bogatyrev(B)

Department of Computation Technologies, ITMO University,
49 Kronverksky Pr., 197101 St. Petersburg, Russia

dekskornis@gmail.com, vladimir.bogatyrev@gmail.com

http://www.ifmo.ru

Abstract. The paper presents the evaluation of the effectiveness of the
structural organization of the system of multi-level secure access to exter-
nal network resources. We conducted a comparative analysis and opti-
mization of the pattern of access ‘Direct connection’, with its various
forms of implementation during the organization of a secure connection
of end-node internal network to the resources located in the external
network. The study was conducted on the basis that each security ele-
ment is included in the pattern of the secure access is able to detect and
eliminate the threats of the other elements of the system of protection.
Pattern of access ‘Direct connection’ in a general form has four vari-
ants of construction, differing from each other by mutual arrangement
of the key elements: firewall with packet-filtering, firewall with adaptive
detailed packet inspection and the router. It was a mathematical model
to calculate the reliability of the ways of construction of the pattern of
access. It is shown that the most reliable way of construction of pattern
of access is one that includes a single group of routers for the entire sys-
tem. Ways are not very different from each other reliability value that
include two groups of routers on the overall system.

Keywords: Firewalls · Corporate networks · Information security ·
Fault tolerance · Access pattern · Reliability · Networking

1 Introduction

Modern computer networks, both corporate and public, have sophisticated struc-
tures. In such networks, there are some very serious challenges of information
security. They may be at risk of unauthorized access, denial-of-service (DoS)
nodes, the loss of transmitted information, as well as threats of violations of
privacy that could lead to significant economic and other losses [1].

Threats can be both external - as a result of remote network attacks, and
internal - by various stowing software or hardware. To eliminate the challenges
of information security some actions can be taken and means of information
security located on various levels of the network can be used.
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 302–313, 2016.
DOI: 10.1007/978-3-319-51917-3 27
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Fig. 1. The standard pattern of access node to the external network

The principles of organization of a secure connection of the corporate net-
work to public network are among the most important elements for ensuring
information security. They have a significant impact on the safety and reliability
of the network. However, it is worth remembering that the most effective security
techniques usually imply some significant costs.

Currently, information security means that are often used are: firewall, pro-
tection against unauthorized access, anti-virus, encryption solutions of data
stored on disk and transmitted to the information transmission channel, any
organizational and technical actions to protect information and other means.

In this study, we investigate possibilities of the pattern for the organization
secure access to external network resources, taking into account the requirements
set out in the guidance documents (legislative and legal documents) on infor-
mation security. The study is aimed at a choice of rational options for creating
protection system, with ensuring high levels of reliability [2,3].

Mechanisms of distribution requests in clusters are known. They are beyond
the scope of this paper, so we will ignore the costs of dispatching requests.

2 Object and Objectives of the Study

The pattern which is regarded in this paper is focused on improving the level
of protection devices of the network. The key challenge of the pattern is to
organize secure access to poorly protected and/or uncontrolled portions of the
network. This pattern allows reducing the threat of DDoS-attacks, unauthorized
access to a network node, listening to the information channel and penetration
of malicious software [4].

The pattern under consideration is based on a standard network access pat-
tern to the resources of the external network: the node ‘Internal (local) network’
- Routers - ‘External network (the Internet)’ (Fig. 1). This approach minimizes
the degree of possible reorganization of existing corporate network [5–7].
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In the standard pattern of access of the end-node of the corporate network
to the nodes of the external network the protection of this end-node is based
on a built-in means: anti-virus protection (AV), a standard firewall (FW), and
possible means of protection against unauthorized access. A standard pattern at
the entrance to the network has a router.

The actions used in this pattern lead to the fact that almost all of the work to
eliminate threats from the external network rests on the end-node. For mission-
critical systems mentioned above means of protection are not enough. Therefore,
we should use the pattern that ensures a comprehensive information security. In
the role of such a pattern can be used the pattern ‘Direct connection’ [4].

As a result, we are suggested to consider the possibilities of the pattern
‘Direct connection’. The aim of this study is to explore the possibilities of various
physical interpretations of the pattern ‘Direct connection’ in terms of ensuring
high reliability of the system.

3 The Basic Version Pattern of Access ‘Direct
Connection’

Using the pattern ‘Direct connection’ involves minimal changes in the archi-
tecture of the corporate network, as well as minimal additional financial costs
to implement it. The structure of the pattern ‘Direct connection’ is presented
in Fig. 2.

In this pattern, at the entrance to the internal network (just after the router)
is set firewall with packet-filtering (FW-1). Firewall with packet-filtering is
needed to filter the packets incoming to corporate network based on the addresses
of sender and receiver of packets, ports numbers and static rules created by the
administrator. This type of firewalls allows easily separate the resources of the
network and block the access from outside to the important areas of the corpo-
rate network. Among the positive advantages of firewalls with filtering-packets is
their smaller influence on performance of network than of other firewalls. How-
ever this type of firewalls provides the worst degree of the network security as it

Fig. 2. The pattern ‘Direct connection’
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is not able to analyse payload and parameters of incoming packets. FW-1 elimi-
nates spam, reduces the total load of the channel within the network, as well as
reduces the risk of DDoS-attacks.

Firewall with adaptive detailed packet inspection (FW-2) is placed next to
the FW-1 for a deeper analysis of the contents of packages. Firewall with adaptive
detailed packet inspection, in addition to advantages of firewall with filtering-
packets, is able to recognize sessions between applications, block the packets
that break the rules of TCP/IP, counteract scan of resources or break out/slow
down the connection and prevent injection of data. In some case, it can also
check incoming data transmitted to corporate network for malicious informa-
tion. The disadvantages of using this type of firewall are high costs, difficulty
of installing the rules of work, supporting right parameters and (depending on
‘analysis depth’ of packets) decrease of network performances.

Often available as part of pattern routers can carry functional FW-1 [8].
However, the computing system architecture is not known in advance (which
will be implemented by the pattern of access). The router and the firewall will
take account of what how the different elements of the system, where the router
(as an element) is intended primarily for communication with parts of the system
together, and the FW-1 - filter traffic in a computer system. Otherwise, routers
(for communicating between a firewall in this pattern) may be combined into a
single cluster and replaced with a cluster of firewall with packet-filtering.

Once the data have passed the FW-2, they are (potentially ‘clean-data’) must
be received to the desired end-node. On end-node there are local antivirus (AV)
(with personal firewall) installed [8], as well as some systems of protection against
unauthorized access (UAA), and some secure data storage in order to reduce the
negative effects of potential insider attacks. In this pattern of access, the channel
data is to be protected, thereby reducing or even prevents the possibility of
influence an intruder on data flowing in the channel.

To improve the overall network protection from DDoS-attacks, data loss or
destruction and other threats, mission critical nodes should be reserved, and for
the data stored on them, backups are created.

4 Ways of Construction the Network Infrastructure
Pattern of Access ‘Direct Connection’

For qualitative and uninterrupted operation of the network, you must do a
backup of system components. Network architecture of the pattern ‘Direct Con-
nection’ has three main components: firewall with packet-filtering, firewall with
adaptive detailed packet inspection and routers that connect all the elements
of pattern together. There are four possible ways for the construction of this
pattern (depending on the network architecture). They are:

– Way 1 - three groups of routers for connection all devices of system and nodes
from eternal network;

– Way 2 - two groups of routers. The first group connects both groups of firewalls
and target end-nodes. The second group is needed for connection FW-1 with
resources from eternal network;
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– Way 3 - two groups of routers. The first group connects both groups of firewalls
and the nodes from eternal network. The other group connects FW-2 and end-
nodes;

– Way 4 - one group of routers to connect eternal network, firewalls and end-
nodes together.

Possible ways of constructing a network infrastructure pattern ‘Direct Con-
nection’ presented in Fig. 3.

Fig. 3. Variations network architecture pattern ‘Direct connection’



The Fault-Tolerant Structure of Multilevel Secure Access 307

The ways of connection protection means into fault tolerant clusters in the
pattern of access ‘Direct connection’ (shown in other works) suggest that each of
means can eliminate only certain field of threats [8]. This study shows systems
that use the pattern of access ‘Direct connection’ with common field of threats
elimination for different protection means (each mean of the system can eliminate
a part of threats that can be eliminated by another mean of the used pattern).

5 Estimation of Reliability of the System

Estimation of possible ways pattern ‘Direct connection’ requires a search for
multiplicity of redundant nodes in each group. Required reach the highest pos-
sible level of reliability of the system, given the limitations imposed on the cost
of implementation [9–12].

As today the challenge of memory costs is not critical any more (the same
as its overflow), every mean (router, firewall and others) has its own memory of
different volume inside. As the result, each node of the network can be examined
as a ‘queue network’ of M/M/1 type with unlimited queue.

In assessing the reliability assume that failures of nodes are independent, and
the flow of failures is exponentially distributed (as is customary in the calcula-
tion of reliability). The impact of malicious actions to reduce the reliability and
security of the system is not considered in this study.

Reliability of the system consisting of several nodes is defined as the product
of the reliability of each of the elements (groups) of the system [13]. Reliability
of the proposed patterns is equal:

P1 = P01 · Pm1 · P02 · Pm2 · P03;
P2−3 = P01 · Pm1 · P02 · Pm2;

P4 = P01 · Pm1 · Pm2.
(1)

Where Pm1 = (1 − (1 − r1)n1), Pm2 = (1 − (1 − r2)n2). Assuming that the
routers in each group are the same: P0i = (1 − (1 − r0)n0i). Here rj = e−λjt and
λ0, λ1, λ2 - failure rate of routers, FW-1 and FW-2; n0i - the number of routers
in the i-th group; n1 - the number of FW-1; n2 - the number of FW-2.

Costs for the implementation of the ways of construction of the scheme are
shows in (2) and defined as:

C1−4 = c0 ·
∑

i

n0i + c1 · n1 + c2 · n2. (2)

Here c0, c1, c2 - the cost of router, FW-1, FW-2.
Estimation of protection systems includes finding the distribution of each

type of node that provides maximum reliability of the entire system considering
the limitation of the cost of implementation: C1 ≤ C, C2 ≤ C,...,C4 ≤ C; and
compliance steady state conditions of service [14–18].

After passing through the router the input flow is filtered and, thus, the
density of the flow on the FW-1 is lower than the router. The same happens



308 V. Kolomoitcev and V.A. Bogatyrev

with the input flow received at the FW-2. After passing through the FW-1 a
certain proportion of the input flow is filtered and to the FW-2 is received smaller
input flow. As a result of limitations imposed on the capacity of each element of
the system will be equal to:

For Way 1: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 < 1;
L2 < 1;
d2 · R/n02 < 1;
L4 < 1;
d4 · R/n03 < 1;
d5 · R/n03 < 1.

For Way 2: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 < 1;
L2 < 1;
d2 · R/n02 < 1;
L4 < 1;
d4 · R/n02 < 1;
d5 · R/n02 < 1.

For Way 3: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 < 1;
L2 < 1;
d2 · R/n01 < 1;
L4 < 1;
d4 · R/n02 < 1;
d5 · R/n02 < 1.

For Way 4: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 < 1;
L2 < 1;
d2 · R/n01 < 1;
L4 < 1;
d4 · R/n01 < 1;
d5 · R/n01 < 1.

Here L1 = R/n01; L2 = d1 ·λ ·V1/n1; L4 = d3 ·λ ·V2/n2; R = λ ·V0 where di -
the proportion of the filtered input flow of previously placed node; V0, V1, V2 -
average service time of request in routers, FW-1 and FW-2; λ - the arrival rate
of requests; n0i - the number of routers in the i-th group; ni - the number of
FW-1; n2 - the number of FW-2.

The proportion of the filtered input flow of previously placed node can be
obtained by the Eqs. (3)–(7).
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After first router:
d1 = (1 − A0 · p0). (3)

After first router and FW-1:

d2 = 1 − (p1 · (p1 · (A1 − l10) + p0 · (A0 − l10) + l10 · (1 − p̄0 · p1)). (4)

After first router, FW-1 and second router:

d3 = 1 − (p1 · (p1 · (A1 − l10) + (1 − p̄20) · (A0 − l10) + l10 · (1 − p̄20 · p1)). (5)

After first router, FW-1, second router and FW-2:

d4 = 1 − (p1 · Me1 + (1 − p̄20) · (Remp) + (p2 · Me2) + (l10 − l00)·
·(1 − p̄0 · p̄1 · p̄2)) + (l20 − l00) · (1 − p̄20 · p̄2) + (l21 − l00)·
·(1 − p̄1 · p̄2) + l00 · (1 − p̄20 · p̄1 · p̄2)).

(6)

After first router, FW-1, second router, FW-2 and third router:

d5 = 1 − (p1 · Me1 + (1 − p̄30) · (Remp) + (p2 · Me2) + (l10 − l00)·
·(1 − p̄0 · p̄1 · p̄2)) + (l20 − l00) · (1 − p̄30 · p̄2) + (l21 − l00)·
·(1 − p̄1 · p̄2) + l00 · (1 − p̄30 · p̄1 · p̄2)).

(7)

where Remp = (A0 − l20 − l10 + l00); Me1 = (A1 − l21 − l10 + l00); Me2 =
(A2 − l21 − l20 + l00). At the same time A0,A1,A2 - respectively, the proportion
of threats (errors) in the input stream [20], the router detected with a probability
p0; FW-1 with a probability p1; FW-2 with a probability p2.

Results of reliability calculation, depending on the constraints imposed on
the system throughput determined by a known the arrival rate - λ are shown in
Fig. 4, when:

– r0 = 0.85, r1 = 0.9;
– V0 = 0.025 s, V1 = 0.04 s, V2 = 0.075 s;
– c0 = 10 cu, c1 = 20 cu, c2 = 35 cu, C = 500 cu;
– p0 = 0.85, p1 = p2 = 0.899;
– A0 = 0.07, A1 = 0.15, A2 = 0.26;
– l00 = 0.04, l10 = 0.04, l20 = 0.06, l21 = 0.12.

As shown in Fig. 4, for small values of the arrival rate, the reliability of each
of the ways of the pattern ‘Direct Connection’ is approximately equal. However,
with increasing the arrival rate is detected, the fourth way of pattern is more
reliable than other ways, and the first - the least reliable. Also from Fig. 4 shows
that if you want to choose one of two ways contain two groups of routers, it is a
bit more reliable to take the ‘Way 2’ than ‘Way 3’.

As a result, we can conclude that if you want to use the most reliable way of
the pattern, it is best to choose the ‘Way 4’. In the case where raises the question
of maximizing the system reliability and to select one of two options - the ‘Way
2’ or ‘Way 3’ then there is no much difference which of them to use.
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Fig. 4. Reliability pattern of access at a fixed time of operation of the computer system
based on the arrival rate of requests. Sequence numbers of curves in the graphs have a
direct accordance with sequence numbers of their defining formulas, namely the graphs
1-4 - ways of constructing pattern ‘Direct connection’

6 Conclusion

The paper analyses possibilities of the pattern of access ‘Direct Connection’
that allow you to organize a secure connection between the end-node internal
network and resources located in the external network. The study identified the
advantages and disadvantages of the pattern ‘Direct connection’, depending on
the way of its construction.

It has been shown that one of the ways of construction the pattern of access
‘Direct connection’ (using a single group of routers to the entire pattern of
access), has a higher level of reliability than the others. All things being equal,
we have the opportunity with a lower cost to organize the connection of external
and internal networks together with the required degree of reliability of the
system, when we use the way of constructing pattern of access [21,22]. On the
other hand, the ‘Way 4’ allows an attacker to ignore the used hardware security
system, if the attack on the computer system has been well-prepared. In other
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words, since we use in this way of pattern of access only one group of routers
connected to both FW-1, FW-2, and with the end-nodes of system, the attacker
can send a specially-configured packages that will ignore the FW-1 and FW-2,
but immediately go to the end-nodes of the system (which means only a part
of the node itself fighting with the threat), which makes its (hardware firewalls)
use questionable, as a part of this pattern of access.

We also show that the second and the third variants of pattern are almost
identical to each other in terms of reliability. In addition, it is worth noting that
the use of two groups of routers allows partially solve the previously mentioned
challenges with ignoring the attacker means of information security existing in
the system. In this case, in one way of constructing pattern of access (Way 2), we
are able to split the access to our network into two areas - “pre-analysis” (using
the firewall with packet-filtering) and “detailed analysis” (which includes the
firewall with adaptive detailed packet inspection and / or information security
means available on the end-node). Thereby, it enables at least partially analysis
the input data flow for threats by hardware.

For another way of constructing of the pattern of access (Way 3), access to
our network will also be divided into two zones - “hardware firewalls” and “end-
nodes”. In such a case, an attacker would first have access to the used set of
firewalls, and then, at least after passing the strongest of them (because they
are located in order to increase their features) - to the end-nodes of the system.

The way of pattern that includes three groups of routers (Way 1) also allows
to split access network area (but with mandatory hit input flow to each of
the security mean used in the pattern). However, it significantly reduces the
reliability of the computer system.

Thus, when implementing the pattern of access ‘Direct connection’ in ques-
tion of reliability, it is best to use a way of its construction using a common
pool of routers for the entire system. At the same time, the use of two groups
of routers increases the degree of information security of the corporate network
access to an external network resource by reducing the reliability of the computer
system.

In this study we published works on finding the fastest (minimum average
residence time of the request in the system) pattern configuration [4,8,19].
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Abstract. This publication covers the problem of formation the concept
of the instantaneous information security (IT-Security) audits, including
protection against zero-day threats. Various recent materials are pre-
sented to the actual problem of counter zero-day threats notes that “any
process-driven people, is unreliable. In this situation it is proposed to use
not only a technical methods to counter zero-day threats, but to offer a
combined method based on the concept of instantaneous IT-Security
audits. Methodological basis of this concept for instantaneous audits
defined both ISO 27001 and ISO 19011 standards, which extended with
the set of IT-security metrics for quantify the object protection level. In
the example for one variable was demonstrated an increase in the rate
of growth of the ISMS level variables with known IT-Security audits
process.

Keywords: Audit · Information security · Integrated management
system · Information security management system · Risk management ·
Function · Standard

1 Introduction

Recently, the application of the Integrated Management Systems (IMS) attracts
more top management attention. Nowadays there is an important problem of
running the audits in IMS and particularly, realization of complex checks of
different ISO standards in full scale with the essential reducing of available
resources. In a greater degree this problem is illustrative of supporting IT-
Security audit program, as far as negative consequences can lead to essential
damage. The realization of IT-Security management systems gets more appli-
cation in practice. Moving to analysis based on risks provides the increasing of
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 314–324, 2016.
DOI: 10.1007/978-3-319-51917-3 28
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interest to rational exploitation of modern risk-oriented ISO standards. Studying
the problem with realization of IMS audits makes the essential interest also the
search of ways of IMS audit program optimization that are based on principles
of continuous adaptation in the process of incoming data during one micro cycle
of IT-Security audit. It is supposed that new method of audit program optimiza-
tion will let us to provide more rational acceptance of the IT-Security control
solution.

2 Problem Description

The technical aspect is rather fulfilled now – a complex of means (measures)
aimed at providing IT-Security (in the notation of ISO - asset), it is accepted to
unite in the uniform IT-security management system (ISMS) created within all
organization, subordinated to the top management and periodically estimated
on certain metrics. The modern science offers various approaches for the solu-
tion of this problem; the direction of application risk-focused approach based
on system of the international standards [1–3] is represented to the most per-
spective. To provide stable development of organizations in the context of risks
of different origin, it is appear to be reasonable to apply risk-oriented standard
and implement the IMS. From the point of view for an IMS audits in supposed
method we should notice the necessity of solution of next important practical
tasks [4,5]:

1. The task of resources allocation for audit program;
2. The task of account of factors that influence on the depth of audit-leak

program, incidents, the appearance of criminal actions, revealed earlier mis-
matches and in this way the volume definition of audit program;

3. The task of collection of verifiable information;
4. The task to provide the auditors with special knowledge and skills either to

invite engineers.

It is necessary to admit that we should be aware of recommendations PAS-
99 in IMS [6–9], that allows to take into account the specific requirements of
carrying out combined audits, the account of risks, flexible controlling of IMS
audit program volume with the account of last results and the importance of
processes [4,5,10,11,13].

3 The Base Model for the Integrated Management
System Audits

The IMS model containing all the basic nature for performing audits (criteria,
evidence, object surveillance audit). It allows to create assess the IT-security
level [13]. The audit process provides an important component of the overall
(integrated) assessing the IMS effectiveness. It allows to perform the decomposi-
tion of “general” objectives in the IMS specific objectives, such as assessing the
IT-security level. The basic model for ISM audits is shown on Fig. 1.
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Fig. 1. Basic model of IMS audits

General explanations of the basic model of IMS audits as follows:

– Audit ISM involves the use of a single set of metrics on the functioning of
different interfaces for internal audits and external audits;

– Internal audits required to take into account the external audits results; con-
verse is also true;

– The impact on the assessment of the object is realized through the manage-
ment review subsystem (in accordance with the PDCA cycle).

4 Problems of a Risk Management for Complex
Industrial Facilities

Management of risk is the processes, which is carried out in the organization
for the purpose of identification, identification, management and control of the
events potentially capable to influence achievement of the complex industrial
facilities (CIF). In the offered approach all main are considered essence: forma-
tion of internal and external aspects, a context, system of a risk management
and the main types of documentary information – scales of an assessment, cri-
teria of acceptance of risks, the register of risks, the plan of processing of risks
and so forth [11–13]. The example of realization of process of management of
risk for the phase “Plan” in the cycle “Plan-Do-Check-Act” (PDCA) is shown
on Fig. 2. Problems of a risk management for CIF it is convenient to arrange as
realization of the cycle PDCA (or Deming cycle):
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Fig. 2. Process of management of risks for the phase “Plan” in PDCA cycle

1. Plan – formation of regulatory base, development of regulations, passports
of risk, definition of scales of an assessment of risks, criteria of acceptance of
risks, formation summary the card of risks for the organization.

2. Do – development of actions complex for decrease in probability (alleviation
of the consequences) at emergence of risks.

3. Check – control of completeness, timeliness and efficiency of realization of
actions complex of a risk management for the organization.

4. Act – the analysis of productivity of actions complex of a risk management
at the level of the decision-maker and formation administrative the decision
for management system for the organization optimization.

The following important question: “closed circuit” of a cycle PDCA taking
into account offered risk-focused approach. It is represented rational for CIF to
recommend:

1. Planning and carrying out internal (including technical) audits – taking into
account risk-focused standards (for example ISO 27001 or the new ISO 9001
version).
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2. Formation of the unified register of discrepancies in the integrated system of
management by all types of audits and the analysis of this register from a risk
management position (identification of critical points of refusal, the analysis
of “cascading” of risks, studying of statistics and so forth).

3. Formation of system of expeditious informing the management (for example,
based on the business continuity management standard – ISO 22301 or as a
part of IMS).

4. Accurate distribution of responsibility and powers on each task in the
approved program of internal audits, the plan of processing of risks and so
forth.

5 Principles of Organization of Flexible Audits

The suggested method of optimization of the IMS audit program is based on the
next basic principles:

1. We input the concept of integral evaluation of IT-Security that includes
the specific group index of evaluation of all submitted for IT-Security audit
processes – RISMS. This group index defines with the help of specific indexes –
RPR, multiplied on their weight coefficient in dependence of process impor-
tance in the IT-Security organization for the concrete object of evaluation.

2. After running the basic IT-Security audit, its condition is valued for the
purpose of accordance with demands of audit criteria, and also its influence
on IT-Security integral evaluation of concrete object of evaluation.

3. Next IT-Security audits are held by the given method that uses flexible app-
roach: those processes, that have the most priority in the IT-Security for the
concrete object of evaluation, and where the essential mismatches of last audit
were revealed, are exposed of more detailed check.

4. Frequency and detail, which must be differentiated for different checked
processes, comports with IT-Security too. For example, definite groups of
processes, that have priority meaning in integral evaluation (for example, it
depends on the model of actual threats of IT-Security), are exposed more
detailed and often with audits. The processes, that have the lowest priority
in the integral evaluation for the concrete object of evaluation, are checked
seldom and less detailed.

5. The depth of check and frequency of audits, each time for k-audit in micro
cycle PDCA, defines in dependence of oncoming function of integral evalu-
ation for the concrete object of evaluation to some stated objective index –
Rtarget for complex evaluation of concrete object of evaluation security.

In addition we should note the importance of implementation of new stan-
dard, ISO 55000 [6–8] – as many assets are not ruled in a proper manner.
Accordingly, the appliance of demands of one implemented standard (for exam-
ple, modern ISO 27001) substantially relieves the solution of standard problems
of security, that are solved simultaneously, therefore they must be checked simul-
taneously within the context of combined audits of all MS in organization (for
example, ISO 9001, ISO 50001, ISO 27001) [1–8].
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6 Mathematical Statement of the Problem

For the evaluation of a degree of providing IT-Security system conformance
on the IMS audits to presented requirements of IT-Security we use private and
group IT-Security indexes. For the purposes of realizing IMS audits in the aspect
of providing IT-Security we suggest to use the index of effectiveness of ISMS –
RISMS , which we can calculate in each cycle of k-audit using the additive for-
mula with the account of α-weight coefficients and index of effectiveness of each
concrete process of IT-Security – RPR:

RISMS =
n∑

i=1

αi • RPr i (1)

in this case:
n∑

i=1

αi = 1

In its turn, indexes of effectiveness of each concrete i-process of IT-Security –
RPR are calculated by additive formula with the account of β-weight coefficients
and indexes of IT-Security metrics for each concrete i-process of IT-Security –
KKPI :

RPri =
m∑
j=1

βj • KPKIj (2)

in this case:
m∑
j=1

βj = 1

The coefficients of relevancy of private indexes of IT-Security, that are used
by calculation of IT-Security group indexes, must be equal to 1 that provides
ritualization of all indexes in additive formula above (1) and (2). Accordingly,
the final index of effectiveness of ISMS – RISMS must maximize reaching 1:

RISMS =
n∑

i=1

αi • RPr i → 1 (3)

In the process of IMS audits, the constant measuring of current nonconfor-
mance for k-audit RISMS is measured as discrepancy with the objective (maxi-
mal) index:

ΔR = 1 − RISMS =
n∑

i=1

[αi • (1 − RPr i)] (4)

Regarding the results of all audits, that are carried out in a strict accordance
with IMS audit program, we fill in the following matrix with the account of IT-
Security processes – PR, IT-Security audits – k-audits and IT-Security metrics –
KPI.
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7 Basic Optimization Cycle of IMS Audit Program

In terms of known audit standards (in particular [4,5]), we offer a method of
multistage optimization of IMS audit processes for the CIF, which let us to pro-
vide the system of coordination, distribution of recourses and system of effective
reduction of results of IMS audits till the person who takes decision [13].

This method consists of scientifically grounded and object-oriented immedi-
ate functioning of IT-Security subsystem within IMS and it differs from existing
methods with cyclic continuous evaluation of effectiveness on the basis of optimal
system of IT-Security numeral indexes (metrics). The offered method consists
of two connected cycles of optimization of IMS audits program that differs with
the existence of:

1. Basic optimization cycle, which characterizes the effective carrying out of
IMS audits in terms of evaluation of efficiency for each PRi- IT-Security
process, each KPIj – IT-security metric, and also it defines cycles of resources
optimization in audits program: of depth (“Scope”), size of auditor’s sample,
number of involved auditors (engineers) and etc.

2. Fast block of evaluation of efficiency of correction measures and corrective
actions in current k-audit, that touches the changes each of next process of
IT-Security and next k+1 audit program. It is also provided fast transfer to
evaluation of efficiency indexes of IMS – RISMS in k-audit and k+1 audit for
the constant and effective optimization of all IMS audit program.

Let’s consider the basic optimization cycle of IMS audit program that was built
with the account of audit’s formal ISO standards requirements and ISAGO stan-
dards supported with new components (see Fig. 3):

Preconditions for the start of basic optimization cycle of audit program are
given below:

1. T0 – basis period of IT-Security audits;
2. S0 – basic (planned) cost of IT-Security audits;
3. V0 – basic volume of IT-Security audits (number of units);
4. F0 – basic list of functional questions of IT-Security audits;
5. O0 – basic list of attended IT-Security audit objects.

8 Mathematical Provision for Complex Industrial
Facilities Audits

With regard to the task definition is introduced unilaterally limit (more precisely,
the limit of a function on the left). The number of A ∈ R is called the left limit
of function f (x) at the point “a”, if for any positive number ε will be found
corresponding to his positive number δ, such that for all x in the interval | f
(x) – A | < ε (a −δ, a) the inequality, or:

limx → a− 0f (x) =A ⇔ ∀ ε > 0 ∃δ = δ (ε) >0 ∀ x ∈ (a−δ, a) : | f (x) −A |<ε
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Fig. 3. Basic optimization cycle of IMS audit program

The derivative of the function f (x):

lim Δx → 0 =
f (x+Δx) −f (x)

Δx
=lim

d

dx
f (x) = f

′
(x)
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The corresponding one-sided limit is called the derivative of the left-
designate f

′
−(x).

9 Partial Derivatives Definition for Instantaneous
IT-Security Audits

The left derivative allows estimate the desired interval, which is permissible
(for the time) may be made the necessary changes in the ISMS and reasonable
conduct a new IT-security audit. Consider the real function of variables y = f
(x1, x2, x3, . . . , xn), where, for example, the first 4 variables describe attributes
for IT-security audits:

x1 – frequency of audits, defined as the ratio of audits number for the ISMS in
the observed period;

x2 – the scope of the audit program, defined as the ratio of the processes number
covered by the total count of processes in the stated certification scope of the
ISMS;

x3 – metric achieve the level of protection which is defined as a measure of the
effectiveness of the ISMS Rbase/Rmax;

x4 – metric corrective actions planned for the range of IT-security audits.

Then the partial derivative of the first order by the first variable x 1 is:

lim Δx1 → 0 =
f (x1+ Δx1 . . .xk) − f (x1 . . .xk)

Δx1
=

∂

∂x1
f (x) .

The partial derivative

∂y

∂x1
= f ′x1 (x1, x2, x3, . . . ,xn)

at each point (x1, x2, x3, . . . ,xn) is a measure of the rate of change of y with
respect to x 1as fixed value of the remaining independent variables. All the partial
derivatives can be found by differentiating f (x1, x2, x3, . . . , xn), for xk, if the
other n – 1 independent variables considered as constant parameters. If y = f
(x1, x2, x3, . . . , xn) has at the point (x1, x2, x3, . . . ,xn) all continuous partial
derivatives of the first order, it is at this point the first differential:

dy =
∂f

∂x1
dx1+

∂f

∂x2
dx2+ · · · + ∂f

∂xn
dxn.

For one changed variable x1 (for example, the frequency of IT-Security
audits) will evaluate the practical value of the partial derivative (at constant
other variables), we estimate the growth rate of the ISMS security level:

∂

∂x1
= f ′x1 (x1, x2, x3, . . . .,xn) =

ΔRk

Δ t k
.
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The solution of the problem - can be shown as a reduction of the period
(increase frequency) IT-security audits in complex industrial object when using
the left function variables. In the example of one variable x1 demonstrated an
increase in the growth rate of the protection level for known ΔRk

Δ t k variables
ISMS audit process (see Fig. 4):

Fig. 4. Basic optimization cycle of IMS audit program

10 Conclusions

Given method of ISMS audit program optimization is based on the modern risk-
oriented standards and provide the constant optimization of carrying out the
IT-Security audits on the basis of joined flexible adaptive algorithms.

The proposed model for security audit based on the risk approach should be
followed the importance of the “closing” principle of PDCA cycle in the creation
and evaluation of management systems.

An approach that allows to use in assessing the management systems of
complex industrial object reduce the period of conception of IT-security audits.
This increases the speed of conducting audits process, management responses
and increase the growth of IT-security protection level.
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Abstract. Cognitive radio (CR) is a new wireless communication con-
cept of the future networks, that can help to use all available radio
resources at a local area with a great effectiveness. Cognitive radio is
based on the dynamic spectrum access (DSA) where available spectrum
segments are used in an intelligent manner with help of advanced spec-
trum analysis and probing for unoccupied radio frequencies. An imple-
mentation of the cognitive radio networks raises an issue of the medium
access control (MAC) protocol researching, in particular MAC protocol
impacts on the access delay to radio channels. In this paper uncoordi-
nated access method is studied where the event of spectrum and channel
accessing is random and determined by probabilistic value from 0.1 to
0.99 named as channel availability. The subject of research was impact
of channel availability on the access delay with simulation on the base
ns2 program simulator with CRNC patch.

Keywords: Cognitive radio · Radio terminal device · Software-defined
radio · Dynamic spectrum access · Media access control protocol ·
Simulator ns2

1 Introduction

Cognitive radio (CR) is a new wireless communication concept of the future
networks, that can help to use all available radio resources at a local area [1–3].
Cognitive radio has a clear ability to be concerning as self-configurable platform
including set of different software and hardware.

Cognitive radio is based on the dynamic spectrum access (DSA). This tech-
nology explores an opportunistic spectrum access, where available spectrum seg-
ments are used in an intelligent manner with help of advanced spectrum analysis
and probing for unoccupied radio frequencies. CR and DSA forms a new par-
adigm for radio spectrum and radio channel access and a great challenge for
the traditional radio spectrum using. Regular radio access technologies (2G, 3G,
4G/LTE, WiFi) was designed on the base of centralized principle of spectrum
allocation.
c© Springer International Publishing AG 2016
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Now this scheme has a drawback in term of flexibility and adaptability which
are the important point of advantage of cognitive radio. There are two types of
users sharing a common spectrum under DSA rules:

• Primary (licensed) users who have high-priority in spectrum access and uti-
lization within the predefined frequency bands.

• Secondary users who must access the spectrum with DSA technologies for a
limited time.

The subject of the research is secondary users’ character like as average
channel access time delay. There is a really situation on practice when the part
of frequency band previously licensed for primary user, is not being utilized by
this kind of user for a short period of time. In traditional wireless systems there
are no technologies that can help to use this unexpected “white space” for data
transmission or receiving. Cognitive radio technologies with software defined
radio (SDR) are more adaptable. But with DSA there is a time period when
SDR tried to access this temporary not-in-use channel for signal transmission and
packet exchange. The packet transmission delay between source and destination
terminal is restricted by quality of service requirements. The average channel
access time delay is the part of summarized end to end transmission delay. In this
report the DSA’s access delay is under investigation with computer simulation.

2 CR and SDR Standardization

Now cognitive radio technologies, special software and hardware for SDR, some
aspects of CR implementations in civil and military fields are the point of innova-
tions. Intellectual and self-learning program based control with receiver scheme
reconfiguration on the base of field programmable gate array (FPGA) technology
and wideband antennas supports DSA access features and bring new paradigm
of the spectrum access into reality.

One of the main problem is prevention of co-channel interference in wireless
communications under DSA mode. Next problem is cooperation between sec-
ondary users and prevention of channel access conflicts between terminals with
DSA mode. For this reason an intensively standardization activity take place in
the cognitive radio technologies and SDR fields.

Efforts in CR and SDR process of standardization are implemented by the
Institute of Electrical and Electronics Engineers (IEEE), International Telecom-
munication Union (ITU), European Telecommunications Standards Institute
(ETSI) and European Computer Manufacturers Association (ECMA) [4].

In 2004 the first CR and SDR standard IEEE 802.22 was initiated. IEEE
802.22 contained information about cognitive radio principles, technologies and
DSA base description. This standard has been designed for data transmission
devices in the wireless regional area network (WRAN). In WRAN radio terminal
uses “white spaces” in the TV frequency spectrum.

In 2004 was initiated SDR standardization project called IEEE P1900. In
2006 IEEE 802.22 and IEEE P1900 became a part of IEEE Standards Coordi-
nating Committee 41 (IEEE SCC41). Finally IEEE SCC41 was renamed as IEEE
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Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC). In
the focus of DySPAN-SC is development of CR standards.

In 2012 ECMA-392 standards was finally published with information con-
cerning physical layer and media access control layer for CR networks. A part
of ECMA-392 was devoted to the personal devices features and SDR terminals
function, including their operation modes into digital TV frequency band.

The efforts of the ETSI Reconfigurable Radio Systems Technical Committee
are concentrated on the software-defined radio (SDR) architecture, function and
use case standards.

The corpus of ETSI CR and SDR standards takes in account the regional
conditions and requirements of the European regulators in telecommunications
and TV white spaces (TVWS) with requirements for the digital TV signal char-
acteristics in European Union.

In 2012 the cognitive radio systems was defined by ITU Radiocommunica-
tion Sector (ITU-R) as a radio system employing advanced technology that pro-
vides the telecommunication system the clear facilities to obtain knowledge of its
radio environment with help of sensing and probing technologies and equipment,
to adjust operational parameters and characteristics including physical (PHY),
media access control (MAC) and network protocols attributes.

On the base of discussed standards there are three base parts in the cognitive
cycle of DSA decision making [5]:

1. Analysis of the radio environment and search of the free frequencies, which
is performed in the receiver by SDR terminal.

2. Dynamic spectrum access management, transmit power control, which are
performed in the transmitter by SDR terminal.

3. Global feedback, enabling the transmitter to act in context of information
about the radio environment feedback to it by the receiver.

MAC protocol uses data collected at the all stages. On the base of MAC
layer, cognitive radio system can learn from the obtained results and probing.

The knowledge used by the CR/SDR include parameters of operational radio
environment, information of location and available wireless networks at this area,
existing policies of spectrum access, users’ needs, preferable networks and ter-
minal features.

Sometimes for DSA realization a special devices called “coordinators” or
“arbiters” are used. These devices can collect and provide useful information
like as available frequency bands, radio access technologies (RAT) in association
with base stations locations, access points and user terminals, restriction to
the transmission power values. The coordination of base stations’ and radio
terminals’ positions and positions of another telecommunication systems can be
obtained with global position system (GPS) or wireless systems coordinating
and positioning features.
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3 Research Issue in CR Data Link Layers

The subject of research will be case with uncoordinated access as a more common
point in CR system for ad-hoc network. The idea is that the estimation of the
average access delay [6] for uncoordinated manner of access will be an upper
estimation of access delay when secondary users have to wait for a time to
get access to the spectrum and radio channel resource. The subject of further
research with computer modelling will be MAC protocol unit [7,8].

The issue of unoccupied acceptable channels selection is discovered. This
problem solution in term of open system interconnection (OSI) model is at the
data-link level where is a control access protocol that grants access to the trans-
mission medium. As it said above, it is a medium access control protocol with
specificity in the context of cognitive network and DSA.

MAC protocol operation bases on the data from the physical layer. This data
used to solve the problem of recognition of temporary unoccupied radio frequen-
cies. The next step is how to get access to the unoccupied channel. However,
information from data link layer help to find the optimal direction/transmission
path, indicating a list of available channels for the network layer. In return, the
network layer can transfer to the link layer an information about which channel
has an appropriable quality of service (QoS) for the data transferring session
initiation.

The MAC protocol for uncoordinated spectrum access supports following
main functions:

• The control and prevention of interference.
• Prevention of conflicts of access to the channel.
• Realization of the selection process and finding unoccupied radio channel.

The computer model of uncoordinated access method to the cognitive net-
work based on the Cognitive Radio Cognitive Network (CRCN) patch for net-
work simulator ns2 on the base of Linux Ubuntu 10.04 operating system [9,10]
where for CR network some special features of MAC protocol are added.

4 CRNC Features for Simulation

The CRCN patch has the input data as the amount of radio terminal devices
with SDR features and the overall number of radio channels. The main modelling
scenario provides a description of queues and channels for each SDR scenario
with help of the test scripting language (TSL) program library. Finally, the
network simulator ns2 with CRCN patch has the following functionality for
simulation cognitive MAC protocol unit:

1. The description of multi-channel data transmission medium.
2. The interface description for radio channel selecting.
3. A possibility to change and choice transmission power value.
4. Interference information.
5. Information about position of radio terminal devices.
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The CRCN patch has settings to describe the collisions on the MAC layer.
In fact, the choice of unoccupied channel depends on the MAC layer cognitive
radio. Next, in the program code to the “sendDown” procedure the function
“WirelessPhy” be added. This function includes the description of the frame
transmission process when the frame transmits to the physical layer.

To avoid access conflicts or to reduce interference between adjacent nodes
the special channel index is used in CRNC. This channel index obtained from
the MAC layer or from DSA algorithm.

A particular channel can be assigned by means of simulator to specific inter-
face radio terminal device with SDR features. The assignation may be carried
out by MAC level or can be transmitted from the network level. At the net-
work layer the routing protocol named as “ad hoc on-demand distance vector”
(AODV) is used in the model.

AODV protocol [11,12] does not depend on physical layer on wireless net-
work, but the broadcasting mode should be suppose that corresponding nodes
can detect each others’ broadcasts with “hello”. “Hello” message can help AODV
to operate independently from another underlying protocol. AODV uses dynam-
ically establishing route tables and provides only loop-free routes for finite num-
ber of nodes in the ad-hoc network. In routing table, there are addresses of active
corresponding nodes for each destination. In common case AODV can discover
and find routes for data interchange quickly and correctly.

As it showed in [13] routing process in CR ad-hoc network is realized with
the main goal to find a short route between source and destination nodes. An
advantage of AODV prorocol is the small bandwidth for maintain routing table
and AODV protocol massaging. An disadvantage is the uncertain delay of path
search, because route has to be determined before transmission and packet send-
ing. For 14 nodes in CR ad-hoc network AODV routing protocol is given the
best performance regarding the packet transmission over the different channel
than the Destination Sequence Distance Vector (DSDV) protocol.

In [14] is presented results of multipath routing protocol modelling based on
AODV, introduced next hop routing layer thought to the MAC layer, proposed
the establishment of a plurality of next hop multi next hop (MNH) a Mesh
MAC (MMAC) protocol like improved AODV. It is interesting to note that the
average end-to-end delay in cognitive radio mesh network with multi next hop
MAC protocol (MNH MAC), with AODV + MMAC protocol is from 0.6 to
0.7 s for 10 to 40 flows accordingly, where every flow has 100 packet per second,
packet length 512 bits, number of nodes is 49 into the territory with dimension
250 m to 250 m, simulation time is 40 s. The average channel access delay was
not modelled.

In [15] is presented results of compare two reactive routing protocols: AODV
and Dynamic Source Routing (DSR) by using three performance metrics packet
delivery ratio, average end to end delay and routing load for mobile ad hoc
network. Parameters of model was 5 to 30 sources of traffic, packet rate was
5 packets per 1 second with packet size 512 bytes and topology size 500 m to
500 m. The maximum value of average end to end delay was 50 ms with 10
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sources. Conclusion was when the number of sources has been increasing AODV
is better for average end to end delay. The average channel access delay was not
modelled too.

In conclusion [16] is said that AODV is more suitable for cognitive wireless
networks compared to DSR, because DSR route discovery may lead to unpre-
dictable packet length, which is not suitable for intermittent connectivity envi-
ronment of CR network.

Due to all these results and conclusions, we are considering the AODV pro-
tocol and model of “hello” packets transition and the routing of these messages
at the same time on several radio interfaces of terminal with aim to establish
communication session.

Since management of multi-channel structure is performed by simulator for
MAC layer, the test includes two stages. In the first stage, each node will send
a packet to the upper OSI layer and provides with information about the unoc-
cupied channel(s). In the second stage, the node will use selected channel to
transmit and receive data.

Evaluating the probability of channel availability was described in [17]. In
[18] a special monitoring network was proposed for classification of the channel
availability.

Simulation CRNC parameters for the study of dependence between channel
availability and average channel access delay with fixed packet size shown at the
Table 1.

Table 1. Simulation CRNC parameters

Description Value

Simulation tool ns2 (CRNC patch)

Network area 100 m × 100 m

Number of nodes 20

Number of channels 1, 3, 5

Packet size 512 bytes

Channel availability (availability) 0.1 to 0.99

Simulation time 60 s

Simulation parameters for study of dependence between channel availability
and average channel access delay with fixed packet size 512 bytes and variable
number of nodes and channels shown at the Table 2.

Three options of multichannel structure are performed for simulation. At the
first option there is 1 channel with 5, 10 and 20 nodes; at the second option
there are 3 channels with 5, 10 and 20 nodes; in the end there are a 5 channels
with 5, 10 and 20 nodes.
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Table 2. Simulation CRNC parameters with variable number of nodes

Description Value

Simulation tool ns2 (CRNC patch)

Network area 100m × 100 m

Number of nodes 5, 10, 20

Number of channels 1, 3, 5

Channel availability (availability) 0.1 to 0.99

Simulation time 60 s

5 Analysis of Computer Simulation Results

The simulation results do not provide accurate values because modeled by a
random processes. In order to estimate probability p of event, where event is the
case of channel occupation, the probing simulation was done with result in 14
success attempts of channel occupy during 50 tests, since probing p = 0, 28. The
accuracy evaluation (closeness in estimation) in all simulation experiments was
set to ε < 0.01. With the 95 % confidence interval for the 30 points used for plot
composition, the number of tests in the one statistical experiment was deter-
mined as 9939, round to 10000. During simulation was realized one experiment
with 10000 tests for CRNC parameter at the Tables 1 and 2.

The nodes placed static in random order. These nodes selected randomly
as senders or receivers data. The queue service time of each network described
by the exponential distribution. The node selection is randomly. In addition,
necessary to note that availability defined as the probability that a channel is
available for the secondary user as result of sensing and probing process.

The process of the network model includes the creation of topology and the
interaction sites. It is necessary to form the grid coordinates and the size of the
model. Next code shows the initial stages of the interaction of components:

set tcp_(0) [$ns_ create-connection TCP $node_(0) TCPSink $node_(1) 0]

$tcp_(0) set window_32

$tcp_(0) set packetSize_512

set ftp_(0) [$tcp_(0) attach-source FTP]

$ns_ at 2.5568388786897245 "$ftp_(0) start"

In this code tcp connection is created. The size of the transmitted packets
is exposed to 512 bytes. As example, the node 0 sends a welcome message to
node 1.

The more detailed description of simulation model is:

set val(chan) WirelessChannel ; #Channel Type

set val(prop) TwoRayGround ;#Radio propagation model

set val(netif) WirelessPhy ; #Network interface type

set val(ant) OmniAntenna ; #Antenna model
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set val(rp) AODV ;#Routing Protocol

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ifqlen) 500 ;# max packet in ifq

set val(mac) Mac/Macng ;# MAC type

set val(ll) LL ;# link layer type

set val(nn) 5/10/20 ;# number of nodes

set val(channum) 1/3/5 ;# number of channels per radio

set val(cp) ./random.tcl ;# topology traffic file

set val(stop) 60 ;# simulation time

This code (with some modification) is used as in the model with parameters
in the Table 1 as in the model with parameters in the Table 2.

The network layer transmits routing information about the available channel
to the lower level. MAC-level is available in the multichannel structure.

In Fig. 1 simulation is carried out with a different number of channels (1, 3, 5)
and with CRNC parameters from Table 1. Nodes get access to the channel(s) at
the same time, this procedure leads to access delay and collisions in the simulated
network.

Fig. 1. Average channel access delay for 20 nodes, 512 bytes packet size

In Fig. 1, when availability value is observed from 0.1 to 0.3 approximately,
there is a high-delay access scheme, but when the availability is increasing the
number of collisions is reduced.

Next experiments with computer model will focus on networking scheme with
fixed packet size, like 512 byte as a typical size and with CRNC parameters from
Table 2. Simulation is carried out with a different number of channels (1, 3, 5)
with 5, 10 and 20 nodes, which get access to the channel(s) at the same time,
this procedure leads to access delay and collisions in the simulated network like
in previous experiment. The code of program model is similar to program code
fragment above.
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In Fig. 2 for one-channel scheme, when availability value is observed from 0.1
to 0.3...0.4 approximately, a high-delay access scheme like in Fig. 1 take place.
There is an area of the more faster delay decreasing for an availability between 0.4
and 0.6. Plots in Fig. 2 could not be describe as monotone decreasing function
due to constant area between availability value from 0.2 to 0.4. Next we will
discuss the situation in Fig. 3.

Fig. 2. Average channel access delay in one-channel networking scheme

In Fig. 3 for 3 channel networking scheme, when the availability value is
observed from 0.1 to 0.3 approximately, a high-delay access scheme occurs. There
is an area of the more faster delay decreasing for availability between 0.4 and
0.7 like in Fig. 2, but the gradient in Fig. 3 for the area from 0.4 to 0.6 (scheme
with 10 nodes and 20 nodes) no more than the gradient in Fig. 2.

Plots in Fig. 3 could be describe as monotone decreasing function approxi-
mately, but, definitely, it is not analytical proof.

In the end, let’s discuss results in Fig. 4. For 5 channels networking scheme,
when availability value is observed from 0.1 to 0.9 there is no area with a high-
delay access scheme like in Figs. 2 and 3. The reason of this is sufficient number
of channels, which can be a kind of ‘damper’ for all types of demand channel
access requests. Clearly, plots in Fig. 4 could be characterize as monotone strictly
decreasing functions.

It is need to remark there are some unusual rises and falls in the plot in
Figs. 1, 2, 3 and 4 because the process of channel selecting is a random and the
channel availability is random value too. The results of simulation there is a
threshold value availability for static ad-hoc network in the context of average
channel access delay.

If the availability value will be at the range between 0.4...0.6 approximately
than 1 and 3 channels networking scheme (and partially, 5-channels scheme) with
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Fig. 3. Average channel access delay in 3 channels networking scheme

Fig. 4. Average channel access delay in 5 channels networking scheme

5,10 and 20 nodes, fixed packet size have the area of fast decreasing delay. This
area could be find at the scheme with 20 nodes, 1 and 5 channels and packet
size equals to 512 bytes.

If the availability value will be bigger than threshold value (approximately
0.6...0.7) than networking scheme with 3 and 5 transmission channels for 5, 10
and 20 nodes have not dramatically decreasing of delay with a large gradient as
an effect of cognitive network features. In continue, it seems that using 5-channel
networking scheme from an engineering point of view has not a great advantage
over 3-channel networking scheme. For example, if availability value is 0.5 than
for a 3-channel networking scheme with 20 nodes there is 11 ms channel access
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delay (see Fig. 3), and for a 5-channel networking scheme with 20 nodes there
is 8 ms channel access delay (see Fig. 4). It means that the number of channels
could be decrease without big losses of quality.

In the future DSA with cognitive radio principles and software configurable
radio-terminals create a wide range opportunities for reconfigurable radio net-
works in military, social works, medicine, radio access technology new generation
including cognitive wireless sensor networks.

6 Conclusions

DSA method with cognitive radio principles create a wide range opportunities for
research and applications in military, social works, medicine and new generation
of radio access technology. The main aim of DSA technology is to improve the
spectrum efficiency using for radio terminal devices with SDR features.

The actual issue is the research of future parameters estimation of the cog-
nitive radio networks, like as average channel access delay for secondary users.
The results of computer simulation for uncoordinated access method shows that
access delay value depends of availability of radio channels. There is a possibility
to decrease number of accessible channels without dramatically average channel
access delay changing at the ad-hoc network with not a great number of nodes
but only if channel availability will be more than 0.3...0.4. In many cases a rea-
sonable value of channel availability is 0.6. For the further studying, the problem
of access delay for coordinated access method and network with high-rate nodes
will be important.
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Abstract. Possible ways of increasing the probability of timely and
faultless execution of delay-sensitive requests in real-time clustered com-
puting systems, when multiple copies of requests are created and served
in different cluster nodes, are investigated. The proposed models for
queueing and functional reliability prove the existence of scope of effi-
ciency for service disciplines with redundant execution of copies of
requests, when the probability of their prompt and error-free servicing
can be increased significantly, despite the rise of load in the nodes. It was
examined how the ways to arrange redundancy and the redundancy order
affected timely and reliable servicing of requests, with possible faults
and errors in the nodes. It was shown that destruction of expired copies,
whose waiting time in the queue exceeded a given ultimate time, and
copies which became irrelevant, after one of them had been processed,
produced an essential enhancement of efficiency of the system.

Keywords: Cluster · Real-time · Reliability · Queueing systems ·
Request copies

1 Introduction

Reliability, security, and efficiency of the processes of handling and sending data
in information and communication systems and networks are highly dependent
on timely and faultless transmission of requests over redundant communication
channels and execution of those requests by servers within given clusters [1–8].
It is especially important in real-time systems, dealing with delay-sensitive data.

In distributed computing systems with multipath routing and redundant
communication channels, the probability of successful delivery and servicing of a
request, within a specified time limit, can be increased in case multiple copies of
the request are sent over different routes concurrently [9]. Under this approach
and in accordance with the requirement that at least one copy of the request
needs to be delivered and served, in order to regard delivery of this request suc-
cessful, it is possible to arrange timely and error-free delivery of data packets
without using acknowledgement-based protocols and repeated transmission.
c© Springer International Publishing AG 2016
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However, such redundant transmission of numerous copies of requests causes
the rise of the total intensity of the flow of requests and possibly the growth of
the residence (waiting) time of those copies in the system. At the same time, the
stochastic nature of sending copies of data packets over different communication
channels independently may result in the increase of the probability of timely
delivery of at least one copy. Under certain conditions, this can lead to the
reduction of the average residence (waiting) time of requests in the system. The
efficiency of redundant servicing of requests in real-time systems is determined by
a set of efficiency metrics, including the average residence time, the probability
of data packet loss, the probability of timely execution of requests, and the
probability of faultless execution of requests [3].

Thus, the choice of design solutions, used to build redundant information and
communication systems, should rely on modeling for multi-criteria evaluation of
the efficiency of applying redundancy in such systems, with the view of making
the optimal choice of a network structure and the way of data transmission and
servicing.

The efficiency of information and communication systems that can be rep-
resented by queueing models is largely determined by service disciplines [10].
There is a model for multichannel queueing systems with the common queue,
described in [11], which demonstrates the efficiency of service disciplines with
redundant execution of requests. If a request arrives at the very moment when
all service devices (namely, servers, data channels) are not busy, it is cloned and
its copies are served by several devices; otherwise, the request is put into the
waiting queue.

Also, there is an analytical model for the cluster composed of a group of n
single-channel queueing systems with the local queues, in which copies of each
request are sent to k out of n service devices, depending on the state of the local
queues [4]. The model proves that independent servicing of k copies in different
nodes leads to the increase of not only the probability of errorless execution of
requests but also – under certain conditions – the probability of timely execution
of those requests, i.e. of at least one copy.

It should be noted that when multiple copies of requests in the queues of
different nodes are processed in the redundant manner, by the time errorless
computational results are received in some node (or in two or more nodes con-
temporaneously), the rest of the copies will continue waiting in the queues, in
spite of the fact they will have become irrelevant. Therefore, on the basis of
the developed model, it was shown that discarding overdue (expired) requests,
namely those that have been waiting in the queues longer than the maximal
allowable time, was likely to cause the significant reduction in the non-productive
load of the cluster’s nodes and, as a result, to enlarge the probability of timely
and error-free execution of requests.

An analytical model to assess the (ultimate) residence time of requests is to
be developed based on the existing solutions [1–4,9] and to underlie a simulation
model needed to estimate the efficiency of redundant transmission and execution
of requests.
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2 Object and Purposes of Research

The object of the current research is a group of n servers which comprise the
cluster created in order to arrange redundant servicing of (copies of) requests,
arriving from the multilevel network (Fig. 1). Redundant execution of copies of
requests by the servers under consideration and redundant transmission of those
copies through the network to the servers serve as a basis for providing timely
and faultless servicing of at least one copy of each request.

Let us consider a distributed computing system in which copies of requests
can be transmitted in the redundant manner, i.e. over k out of n possible routes
(paths) concurrently to k servers belonging to the cluster. A request is regarded
to be served successfully if at least one copy of it has been transmitted with
no distortion to one of the servers in the cluster and the server has accepted
and executed that copy of request within a given period of time. To enhance
the performance of the system, the possibility to destroy irrelevant copies of
requests, waiting in the queue, was introduced.

The aim of the study is to develop a simulation model and tools to support
the design process of highly reliable distributed computing systems. The model
is to provide the basis for selecting the optimal design solutions, used to create
networks with redundant transmission and execution of requests, and analyzing
the efficiency of those solutions. The research focuses on the assessment of effi-
ciency and usefulness of redundant distribution of requests through the network
and their redundant servicing in the cluster.

Fig. 1. The structure of a distributed computing system with redundant transmission
and servicing of copies of requests
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3 Analytical Model Development

Consider the reliability model for the redundant computational process, like
in [4], given absolutely reliable nodes and ideal control when, by the time of
executing the request, without extra delays, information about the correctness
(validity) of the computations is generated.

Let us analyze the redundancy of the computational process in k nodes when
the condition of timeliness for computations in the system is fulfilled at least in
one of k nodes, i.e. the delay of the request in the queue is less than some limiting
value t0 at least in one of k nodes.

Taking into account the increase in the computational load for the redundant
computations in k nodes, the probability that the waiting time of requests will
not exceed the limit t0 in some (particular) node is evaluated as

r = 1 − Λvk

n
exp

(
− t0

(
v−1 − Λk

n

))
, (1)

where the computational load of the node is ρ = Λvk/n.
Taking into account the computational load generated by redundant com-

putations [10], the stationary distribution of the waiting time of requests in the
M/M/1 queueing system is calculated as

r(t) = 1 − Λvk

n
exp

(
− t

(
v−1 − Λk

n

))
. (2)

Assuming that service operations in different nodes are independent, the
probability that the delay of the request executed at least in one of k nodes is
below the threshold t0 is written as

R = 1 − (1 − r)k = 1 −
(

Λvk

n
exp

(
− t0

(
v−1 − Λk

n

)))k

, (3)

while the stationary distribution of the waiting time of requests for the redundant
execution in k single-channel infinite M/M/1 queueing systems is

R(t) = 1 −
(

Λvk

n
exp

(
− t

(
v−1 − Λk

n

)))k

. (4)

For the infinite M/M/1 queueing system, the average residence time of
requests [10], with consideration of the increase in the computational load due
to the k -tuple redundancy of requests is calculated as

w =
Λv2k/n

1 − (Λvk/n)
. (5)

Equation (5) provides the upper estimate of the average waiting time, since it
reflects the increase in the computational load due to the redundancy; how-
ever, (5) takes no account of the possibility of decreasing the average residence
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time owing to the fact that, in one of the nodes, the redundant request can wait
less time than in the other nodes.

In systems with multipath routing and the possibility to process requests in
the redundant manner, transferring packets through the network redundantly,
along a number of routes, to the group of servers in a destination cluster, leads to
the increase of load both in the network and in the cluster. Destroying irrelevant
requests, namely their irrelevant copies, both in the network and in the cluster
is a possible way to potentially reduce the negative impact of the increased load
in the system, which happens due to redundant transmission and servicing of
requests in the cluster [12]. A copy of the request is referred to as irrelevant
if its residence time in the network exceeds the ultimate residence time, i.e.
the copy is overdue, or the given number of copies of that request has already
been delivered successfully. Depending on the purpose of the system, there can
be different requirements, such as to deliver at least one packet (one copy of a
request) to the particular server or a server that belongs to a certain group of
servers in the given cluster. In case of redundant servicing of copies of requests by
a group of servers in the cluster, the specified number of those copies is expected
to be transmitted either to every server of the group or to some of them [13].

An analytical model for systems with cluster architecture and support for
redundant execution of requests is proposed in [12]. This research focuses on
the service discipline which implies that the results of calculations are registered
at some point in time t, with time counting starting immediately after a copy
of the request is put into the queue of a server in the cluster. The results of
servicing of the request are brought by using the timer which counts down to
the given moment, with respect to the ultimate time of waiting and processing
requests. The existence of such discipline can be explained by the fact that the
results of execution of requests in real-time operating systems are required to be
available by a specific point in time. After the timer has counted down to the
maximum allowable time t, the redundant copies of requests, still waiting in the
queues, will become irrelevant and be therefore destroyed. Destroying irrelevant
instances of requests is an efficient way to minimize the undue processing of
overdue redundant copies and inefficient servicing of other requests. This makes
it possible to reduce the load in the nodes and consequently to minimize the
delay time in the queues.

Applying models for redundant execution in systems with support for
destroying redundant copies of requests, waiting for servicing in the queues
longer than t, as shown in [12], yields a lower bound of the probability that
the results are delivered in time.

A model for the service discipline which assumes that redundant copies of
requests in the queues are destroyed at the end of time t is introduced in [12].
Destroying overdue copies of requests causes the decrease of the intensity of
copies that are waiting to be processed (the load in the nodes). If the redundancy
order, or the number of spawned copies of requests, is equal to k, the intensity
of copies waiting for execution increases not by a factor of k, but by a factor
of I�k (I�1) [12].
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The multiplier I is defined as the expected value of the number of nodes that
process incoming requests, if the residence time of the latter is less or equal to
the maximum allowable value of t [12]. In those nodes, copies of requests waiting
in the queues are not destroyed.

The coefficient I is calculated as

I = kr. (6)

Here, r is the probability that the waiting time in the queue of a given computing
node is not more than the ultimate allowable value of t :

r = 1 − ρ exp
(
− t

(
v−1 − ΛI

n

))
, (7)

where ρ, which is the load in the node in view of destroying overdue copies in
the queues, is

ρ =
ΛvI

n
. (8)

By replacing r in (6) with (7), we derive a new equation

I = k

(
1 − ρ exp

(
− t

(
v−1 − ΛI

n

)))
, (9)

which can be solved using the root function provided by Mathcad 15:

s := root

[
− I + k

[
1 − ΛvI

n
exp

[
− t

(
v−1 − ΛI

n

)]]
, I

]
. (10)

After computing the value of the coefficient I, taking into account the k -
tuple redundant servicing of copies of requests in the cluster, we can calculate
the probability of not exceeding the ultimate delay t in at least one of k nodes,
which is equal to (4).

For a real-time distributed computing system, the considered dependencies
can serve as the basis for optimizing the redundancy order, in case of redundant
multipath transmission of packets through the network and their redundant
processing in the cluster [14–16].

The discussed analytical model let us consider the impact of destroying over-
due requests on the probability of timely redundant execution in the single-
tier cluster, with interarrival and service times being exponentially distributed.
Besides, the model takes into account the possibility of destroying only overdue
requests.

In the distributed computing system under consideration, overdue requests
can be destroyed at different stages of transmitting their redundant copies
through the network and servicing them in the cluster. This makes it diffi-
cult to design analytical models. Therefore, we can set the task of developing
a simulation model, which takes into consideration the processes of redundant
transferring and servicing both in the network and the cluster.
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4 Simulation Model Development

Let us develop a network model to illustrate forwarding requests to the group
of servers belonging to a given cluster, where those requests are to be served.
Delivery of requests might fail due to their loss and bit errors, emerging in the
communication links with a certain probability. It is required that requests can
be sent over one or multiple routes at a time. For simplicity, we assume that

– the routes are disjoint and predefined;
– there is no loss of requests due to queue overflow;
– no acknowledgement of delivery of requests is generated;
– the servers have identical performance characteristics;
– each server can handle one request at a time;
– some constant speed of transmission of requests is maintained along the whole

path, i.e. within every link segment.

We need to compute the residence time for each request in order to calculate
the average residence time and thus to draw the line between those requests
which are processed in a timely manner and those requests which expire.

It is expected that parameters of the proposed model, particularly the redun-
dancy order of transmission of requests, can be easily adjusted and the model
contains three units (Fig. 2):

– the source of requests with the mechanism which distributes them over mul-
tiple predefined routes;

– the routes which can be configured to distort or “lose” requests;
– the servers which handle incoming requests or reject them if they are overdue

or irrelevant.

The source of requests consists of

– the generator of requests (source),
– the buffer for requests produced by the generator (queue),
– the element which delays forwarding requests over the routes (delay), and
– the balancer of requests, which distributes requests among the routes

(selectOutput).

Each route (route1, route2, ..., routeN ) is a set of the elements which are
linked between each other and can simulate

– loss of requests (loss),
– distortion of requests due to bit errors (damage), and
– delays (delay).

The servers contain the elements, which

– buffer requests (queue),
– sort out expired requests (timeouter),
– sort out irrelevant (already handled) requests (req done),
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Fig. 2. The simulation model illustrating redundant transmission of copies of requests
over k routes from the source to at least one of k servers in the cluster

– produce delays (delay), and
– destroy requests (sink).

The following parameters are to be defined for the source:

– the intensity of the flow of requests;
– the redundancy order of transmission, or the number of copies of the request

to be sent concurrently;
– the algorithm for selecting the route for each particular incoming copy of the

request;
– the algorithm for assigning numbers to the requests and their copies.

The following parameters are to be defined for each route:

– the number of hops (or transitions on the way from the source to the server);
– the speed of transmission;
– the probability of loss of requests;
– the probability of faultless delivery of requests, which is calculated as (1−b)Nh,

where b is the bit error rate for the link segment, N is the number of bits in
the packet, and h is the number of link segments.

Additionally, we should introduce an equation to compute the delay depending
on the size of the packet and the speed of transmission.
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The following parameters are to be defined for the server:

– the queue capacity;
– the algorithm for sorting out expired requests;
– the algorithm for sorting out irrelevant requests;
– the service time of requests.

Any copy of the request should contain the information about

– the number to distinguish between different copies of the request;
– the number of bits in the packet;
– the time when the source generated the copy;
– the time when the request (one of its copies) was served;
– the route which has been selected to transmit the copy.

5 Timeliness of Results with Redundant Transmission
and Redundant Execution of Copies of Requests

On the basis of the proposed model, we explored the probability of timely and
faultless distribution of requests through the network and their servicing by one
of the servers belonging to the certain cluster as depending on the redundancy
order. The simulation process involved applying different values of such para-
meters as the probability of packet loss in communication channels and the bit
error rate, with various values of the ultimate residence time allowed.

We considered that the size of packets varied from 1024 to 4096 bits and
the speed of transmission in the channels was 10 Mbit/s. The intensity of the
flow of requests generated by the source was 1000 requests per second, while
the intensity of their servicing by the server varied from 0.01 to 5 seconds.
Both intensities followed the exponential distribution. The simulation model
was developed in AnyLogic 7 simulation environment.

Figure 3 illustrates how the probability of prompt and error-free transmission
of requests through the network and their execution in the cluster depends on
the redundancy order, when their copies are transmitted through the network
over routes with different bit error rate. The increase in redundancy results in
the higher probability of the successful delivery and execution of at least one
copy of the request, but until the redundancy order is less than some particular
value.

According to Fig. 3, redundant transmission and execution of requests is effi-
cient if the redundancy order does not exceed a certain threshold value. For
example, the optimal redundancy order for the bit error rate b=0.00001 is two,
whilst it is three with b=0.0001.

The conducted study proves the efficiency of redundant transmission of
(copies of) requests through the network over multiple routes and redundant
execution of those (copies of) requests by the servers in the cluster.
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Fig. 3. The probability of timely and faultless delivery and execution of requests as
depending on the redundancy order in case the bit error rate is 0.0001 (solid line) and
0.00001 (dashed line)

6 Conclusions

The proposed simulation model makes it possible to evaluate the efficiency
of redundant distribution of requests over multiple routes in the network and
redundant (and independent) servicing of those requests by the group of servers
belonging to a certain cluster.

The efficiency of redundant transmission and execution of requests is calcu-
lated as depending on

– the probability of packet loss in the network and the bit error rate,
– the ultimate residence time of requests in the system – computed based on

the analytical model considered in the current paper, and
– the algorithm for destroying copies of requests in the queue, both expired

(because the waiting time of the request has exceeded the ultimate residence
time) and irrelevant (due to the fact that another copy of the request has
already been processed by one of the servers).

To sum up, the results of the current research prove the efficiency of redun-
dant transmission of requests (data packets) and their redundant servicing by
the servers in the cluster. Consequently, the probability of faultless delivery and
execution of at least one copy of the request within a given period of time can
be increased.
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It was found that there exists the scope of efficiency for redundant trans-
mission and servicing of requests. This scope depends on the bit error rate, the
ultimate residence time, and the algorithm for destroying expired and irrelevant
copies of requests.

The proposed models can be applied in CAD systems and underlie the
choice and the optimization process of design solutions, to create fault-tolerant
redundant distributed real-time computing systems, dealing with delay-sensitive
requests.

Acknowledgments. The study was fulfilled as a part of the research project “Meth-
ods for designing the key systems of information infrastructure” (State Registration
Number is 615869) of ITMO University, St. Petersburg, Russia.
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Abstract. Recent recommendation RFC 7567 by IETF indicates that
the problem of active queue management remains vital for modern com-
munications networks and the development of new active queue man-
agement is required. Queueing system with renovation when customers
upon service completion pushes-out other customers residing in the queue
with a given probability distribution may have potential application as
an alternative active queue management. In this paper one presents the
analytic method for the computation of the customer’s stationary waiting
time distribution in G|M |n|r queue with random renovation under FCFS
(and non-preemptive LCFS) scheduling in the terms of Laplace-Stieltjets
transform. The method is illustrated by one particular case: stationary
waiting time distribution of the customer, which either received service
or was pushed-out under FCFS scheduling.

Keywords: Queueing system · FCFS · LCFS · Renovation · Finite
capacity

1 Introduction

This paper is devoted to the analysis of stationary waiting distribution charac-
teristics in one special type of queueing systems – queueing systems with random
renovation – under FCFS scheduling. The renovation policy implies that a cus-
tomer upon service completion pushes-out (“kills”) l, l ≥ 0, other customers
residing in the queue with the given probability q(l). Random renovation means,
that if l customers are to be removed from the queue containing n ≥ l cus-
tomers, then the positions in the queue, from which the customers are to be
removed, are chosen in a purely random way. Such a random push-out mech-
anism looks similar to the well-known random order of service (ROS) policy
according to which the next customer to enter server is selected in a purely ran-
dom way (i.e. with probability 1/N if N customers are present in the queue at
the moment of service completion). Being an alternative policy to the classic
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 349–360, 2016.
DOI: 10.1007/978-3-319-51917-3 31
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ones (like FCFS/LCFS) and other more sophisticated size-oblivious and size-
based policies (like PS, SRPT, FB), both continuous and discrete time queueing
systems with ROS policy have received less attention from the research commu-
nity. Yet a plenty of results is available for them. One can refer to the recent
paper [1] (and references therein) for a respective short but informative review.
Among the results not cited in [1] one should also mention papers [3–5], where
the authors apply the theory of branching processes for analysis of the station-
ary waiting time characteristics in various single/multiple server systems with
ROS policy (like M |G|1|n with retrials, MAP |G|1, SM2|MSP |n|r and several
others).

Having potential application as an alternative active queue management
mechanism, queueing system with renovation have been a subject of extensive
research (see, for example, [7–12]). In most of the considered cases customers are
pushed-out either from the head of the queue or from the back. Being motivated
by the recent paper [2], where the authors show that ROS policy may outperform
FCFS policy, one addresses here the case when the customers are pushed-out
from the queue in a random fashion.

The main performance characteristic under consideration in this paper is
the stationary waiting time distribution. Below one presents the method for the
computation of the stationary waiting time distribution (in terms of transforms)
in G|M |n|r queue under FCFS (and also suitable for non-preemptive LCFS)
scheduling and with random renovation policy. The method leads to the recursive
algorithm for the computation of the moments of the waiting time, but does not
allow one to recover the waiting time distribution in any simple way.

2 System Description

Consider a G|M |n|r queueing system. Times between arrivals are i.i.d. with
the distribution function A(x) and finite mean. Service times are exponentially
distributed with rate μ. Any arriving customer which finds system full, is lost.
Customers are served from the queue in FCFS order.

It is assumed that the random renovation policy is implemented in the sys-
tem. This policy implies that a customer upon service completion pushes out l
customers from the queue with probability q(l), if there are more than l cus-
tomers in the queue and with the probability Q(l) =

∑r
k=l q(k) empties the

queue i.e. pushes out all customers. The pushed out customers leave the sys-
tem and further have no effect on it. The probabilities q(l), 0 ≤ l ≤ r − 1,
and Q(r) = q(r) according to [9] are called renovation probabilities. As usual
the normalization condition Q(0) =

∑r
l=0 q(l) = 1 must hold. Clearly q(0) is the

probability that the customer upon service completion leaves the system without
pushing out any customers from the queue. The choice of positions in the queue
from which the customers have to be pushed out is done in a purely random
fashion i.e. all outcomes are equally likely. After renovation is performed, one
customer (if any is left) is chosen for service from the head of the queue.

In what follows one will make use of several results, which were obtained
in [10]. Specifically one considers that the following quantities are known: the
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stationary distribution p−
i , i = 0, n + r − 1, of the number of customers in the

system at arrival instants, stationary loss probability π, stationary probability
pserv that an arbitrary customer admitted to the system will be served. Notice
that these quantities do not depend on the service order and the order in which
the customers are pushed out from the queue.

In the next section one obtains several preliminary results needed for the
calculation of the stationary waiting time distribution.

3 Auxiliary Quantities

Assume that at some time instant τ the queue is not empty and choose any
customer in the queue. Let us call it a tagged customer. It can happen that,
once the tagged customer is chosen, a number of other customers may be in
front and behind it in the queue.

Let

– τi denote the instant of the i-th service completion;
– Ns(t) denote the total number of customers in the system at instant t;
– Na(t) denote the number of arrivals in the interval (τ, τ + t);
– Nc(t) denote the number of service completions in the interval (τ, τ + t);
– Nf (t) denote the number of customers in front of the tagged customer at

instant t including those in service;
– Nb(t) denote the number of customers behind the tagged customer at instant t.

Due to the fact that the system is analysed in the stationary regime, without
the loss of generality, one can put τ = 0.

Introduce the following probabilities:

πm(i, j; i′, j′)=P
{
Nf (τm) = i′, Nb(τm) = j′∣∣

Nf (0) = i,Nb(0) = j,Na(τm) = 0, Ns(0) = i+n
}
,

m = 1, r − 1, i = m, r − 1, j = 0, r − i − 1, i′ = 0, i − m, j′ = 0, j. (1)

Notice that due to the random renovation policy adopted in the system, each
customer on service completion may remove several (or even all) other customers
from the queue. The stationary probabilities πm(i, j; i′, j′) are needed to keep
track of the number of customers in the queue after each service completion. The
relations for πm(i, j; i′, j′) can be written out using the first step analysis. It can
be verified that, due to the memoryless property of the exponential distribution,
following recursive relations hold:

πm(i, j; i′, j′) =
i−m+1∑
i′′=i′+1

j∑
j′′=j′

πm−1(i, j; i′′, j′′)π1(i′′, j′′; i′, j′),

m = 2, r − 1, i = m, r − 1, j = 0, r − i − 1, i′ = 0, i − m, j′ = 0, j, (2)
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where

π1(i, j; i′, j′) = q(i − i′ − 1 + j − j′)
Ci′+1

i Cj′
j

Ci′+j′+2
i+j+1

,

i = 1, r − 1, j = 0, r − i − 1, i′ = 0, i − 1, j′ = 0, j. (3)

Here and henceforth Ck
n denotes the number of k-combinations from a set of n

elements.
Another important observations is that after each service completion, the

tagged customer may be either “killed”, or enter service or remain in the queue.
Denote by χk the status of the tagged customer immediately after k-th service
completion. It is a random variable with three possible values: χk = 0 meaning
that the tagged customer is in the queue immediately after k-th service comple-
tion; χk = 1 means that the tagged customer is selected for service immediately
after k-th service completion; χk = −1 means that the tagged customer was
“killed” at the k-th service completion. Clearly if χk �= 0 for some k, all other
χn, n > k, are undefined.

Because one is interested in the waiting time distribution of the customer,
which was admitted to the system and eventually received service, one needs to
keep track of the service completion at which the customer is selected for service.
In order to do this, let us introduce the following probabilities:

π∗
m(i, j)=P

{
m∑

k=1

χk =1
∣∣∣∣Nf (0)= i,Nb(0)=j,Na(τm)=0, Ns(0)= i+n

}
,

m = 1, r − 1, i = m − 1, r − 1, j = 0, r − i − 1, (4)

which is the stationary probability that the tagged customer was selected for
service immediately after the m-th service completion, given that initially there
were i customer in front and j customers behind the tagged customer, all servers
were busy and until the m-th service completion there were no new arrivals. The
relations for π∗

m(i, j) can be written out using the first step analysis. It holds

π∗
m(i, j) =

i−m+1∑
i′=0

j∑
j′=0

πm−1(i, j; i′, j′)π∗
1(i

′, j′),

m = 2, r − 1, i = m − 1, r − 1, j = 0, r − i − 1, (5)

where

π∗
1(i

′, j′) =
i′+j′∑
l=i′

q(l)
Cl−i′

j′ Ci′
i′

Cl
i′+j′

, i′ = 0, r − 1, j′ = 0, r − 1 − i′. (6)

As it was mentioned above the quantities πm(i, j; i′, j′) and π∗
m(i′, j′) are

needed to keep track of the position of the tagged customer and the number of
other customers in the queue after each service completion. Now one can proceed
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to the calculation of the time T the tagged customer spends in the queue under
different initial conditions. Introduce the following two quantities:

u
m,

(i,j)
(k,l)

(x)=P
{
Nf (x) = i − k,Nb(x) = j − l, Nc(x) = m

∣∣
Nf (0) = i,Nb(0) = j,Na(x) = 0

}
,

m = 1, r − 1, i = m − 1, r − 1, j = 0, r − i − 1, k = 0, i, l = 0, j, (7)

U∗
i,j(x) = P

{
T < x,

i+n∑
k=1

χk = 1
∣∣∣∣Nf (0) = i,Nb(0) = j,Na(x) = 0

}
,

i = 0, r − 1, j = 0, r − i − 1. (8)

As each customer upon its service completion may “kill” other customers in
the queue independently of its past service time, one can use the law of total
probability and (2)–(6) to write out the exact expressions for the two quantities
defined by (7) and (8):

u
m,

(i,j)
(k,l)

(x) = πm(i, j; i − m − k, j − l)
(μnx)m

m!
e−µnx,

m = 1, r − 1, k = 0, i, l = 0, j, i = m − 1, r − 1, j = 0, r − 1 − i, (9)

u
0,
(i,j)
(k,l)

(x) = 0, k = 1, i, l = 1, j, (10)

u
0,

(i,j)
(0,0)

(x) = u0(x) = e−µnx, (11)

u∗
i,j(x) =

dU∗
k,i(x)
dx

=
i+1∑
m=1

π∗
m(i, j)

(μn)mxm−1

m!
e−µnx,

i = 0, r − 1, j = 0, r − i − 1. (12)

As one will obtain the waiting time in terms of LST, it is convenient to have
the expression for the functions u∗

k,i(x) and u
m,

(i,j)
(k,l)

(x) in terms of the following

transforms:

ũ
m,

(i,j)
(k,l)

(s)=

∞∫
0

e−sxu
m,

(i,j)
(k,l)

(x) dA(x), ũ∗
i,j(s)=

∞∫
0

e−sxu∗
i,j(x)(1−A(x))dx. (13)

Denote by α(s) and α̃(s) the LST and the Laplace transformation (LT) of the
inter-arrival distribution A(x) and by α(m)(s) and α̃(m)(s) – m-th derivatives of
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α(s) and α̃(s) with respect to s. Substituting (9)–(12) into (13) one obtains the
closed form expressions for ũ∗

k,i(s) and ũ
m,

(i,j)
(k,l)

(s):

ũ
m,

(i,j)
(k,l)

(s) = (−1)mπm(i, j; i − m − k, j − l)
(μn)m

m!
α(m)(μn + s),

m = 1, r − 1, k = 0, i, l = 0, j, i = m − 1, r − 1, j = 0, r − 1 − i, (14)

ũ0(s) = α(μn + s), (15)

ũ∗
k,i(s)=

i+1∑
m=1

π∗
m(i, k − i − 1)

((
μn

μn+s

)m

+(−1)m
(μn)m

(m−1)!
α̃(m−1)(μn+s)

)
,

k = 0, r, i = 0, r − 1. (16)

In the next section it is shown how, using the introduced quantities, one can
construct the recursive procedure for the calculation of the stationary waiting
time of the customer, which was accepted to the system and eventually selected
for service.

4 Stationary Waiting Time Distribution of the Served
Customer

Denote by Wi,j(x) the conditional stationary probability that tagged customer,
residing in the queue, will be selected for service in the interval (0, x), given
that initially there were i customers in front (excluding those in service) and j
customers behind it and all servers were busy i.e.

Wi,j(x) = P

{
T < x,

i+n∑
k=1

χk = 1
∣∣∣∣Nf (0) = i,Nb(0) = j,Ns(0) = i + n

}
,

i = 0, r − 1, j = 0, r − 1 − i.

Using this definition, the conditional stationary waiting time distribution of the
arriving customer, which finds (i + n), 0 ≤ i ≤ r − 1, customers in the system
and which will be eventually selected for service is equal to Wi,0(x). In what
follows one shows that Wi,0(x) can be calculated recursively in terms of LST
w̃i,j(s) =

∫ ∞
0

e−sxdWi,j(x).
Denote by wi,j(x) = dWi,j(x)/dx the probability density of the Wi,j(x).

Using the first step analysis and relations (13) and (16), one can write out the
following system of equations:

w0,j(x) = u∗
0,j(x)[1 − A(x)] +

x∫
0

u0(y)dA(y)w0,j+1(x − y), j = 0, r − 2, (17)
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w0,r−1(x) = u∗
0,r−1(x)[1 − A(x)] +

x∫
0

u0(y)dA(y)w0,r−1(x − y), (18)

wi,j(x) = u∗
i,j(x)[1 − A(x)]+

+
i∑

m=1

i−m∑
k=0

j∑
l=0

x∫
0

u
m,

(i,j)
(k,l)

(y)dA(y)wi−m−k,j−l+1(x − y)+

+

x∫
0

u0(x)dA(y)wi,j+1(x − y), i = 1, r − 2, j = 0, r − i − 2, (19)

wi,r−i−1(x) = u∗
i,r−i−1(x)[1 − A(x)]+

+
i∑

m=1

i−m∑
k=0

r−i−1∑
l=0

x∫
0

u
m,

(i,j)
(k,l)

(y)dA(y)wi−m−k,r−i−l(x − y)+

+

x∫
0

u0(y)dA(y)wi,r−i−1(x − y), i = 0, r − 2, (20)

wr−1,0(x) = u∗
r−1,0(x)[1 − A(x)]+

+
r−1∑
m=1

r−1−m∑
k=0

x∫
0

u
m,

(i,j)
(k,0)

(y)dA(y)wr−1−m,1(x − y)+

+

x∫
0

u0(y)dA(y)wr−1,0(x − y). (21)

Multiplication of each equation by e−sx and subsequent integration over all x,
leads to the system of linear algebraic equations for the LST w̃i,j(s).

The system of equations for the LST w̃0,j(s), j = 0, r − 1, follows from (17)
and (18):

w̃0,j(s) = ũ∗
0,j(s) + ũ0(s)w̃0,j+1(s), j = 0, r − 2,

w̃0,r−1(s) = ũ∗
0,r−1(s) + ũ0(s)w̃0,r−1(s),

Its solution can be written in the form:

w̃0,j(s) =
r−1∑

m=j+1

ũm,0(s)[ũ0(s)]m−j−1 + ũr,0(s)
[ũ0(s)]r−j−1

1 − ũ0(s)
, j = 0, r − 1.

The expressions for the LST ωi,j(s), i = 1, r − 2, j = 0, r − i − 1, are found
from the system of equations, which follows from (19) and (20):
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w̃i,j(s) = ũ∗
i,j(s)+

i∑
m=1

i−m∑
k=0

j∑
l=0

ũ
m,

(i,j)
(k,l)

(s)w̃i−m−k,j−l+1(s) + ũ0(s)w̃i,j+1(s),

i = 1, r − 2, j = 0, r − i − 2,

w̃i,r−i−1(s) = ũ∗
i,r−i−1(s)+

i∑
m=1

i−m∑
k=0

r−i−1∑
l=0

ũ
m,

(i,j)
(k,l)

(s)w̃i−m−k,r−i−l(s)+

+ ũ0(s)w̃i,r−i−1(s). i = 1, r − 2.

Its solution has the form

w̃i,j(s) =
r−1−i∑
t=j

ûi,t(s)[ũ0(s)]t−j + ûi,j(s)
[ũ0(s)]r−j−i−1

1 − ũ0(s)
,

i = 1, r − 2, j = 0, r − 1 − i,

where

ûi,t(s) = ũ∗
i,t(s) +

i∑
m=1

i−m∑
k=0

t∑
l=0

ũ
m,

(i,t)
(k,l)

(s)w̃i−m−k,t−l+1(s), t = j, r − 1 − i.

The computation of w̃i,j(s) must be performed first by fixing i (starting from
i = 1) and then iterating over j from r − 1 − i down to 0.

The last unknown LST of w̃r−1,0(s) is computed from the relation

w̃r−1,0(s) =
1

1 − ũ0(s)

(
ũ∗
r−1,0(s) +

r−1∑
m=1

r−1−m∑
k=0

ũ
m,

(i,j)
(k,0)

(s)w̃r−1−m,1(s)

)
,

which follows from (21).
The unconditional stationary waiting time distribution W (x) = P {T < x}

of the arriving customer which was admitted to the system and was eventually
selected for service, in terms of its LST w̃(s) =

∫ ∞
0

e−sxdW (x), is equal to

w̃(s) =
1

(1 − π)pserv

r−1∑
i=0

w̃i,0(s)p−
n+i,

where pserv denotes the stationary probability that an arbitrary customer admit-
ted to the system is selected for service and p−

i is the stationary probability that
a customer on arrival finds i customers in the system. Again notice that the
expressions for both pserv and p−

i have been found in [10].

5 Stationary Waiting Time Distribution
of the Pushed-Out Customer

The customer admitted to the system may not be served but may be pushed out
from the queue, while waiting for service. The derivation of the unconditional
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waiting time in terms of LST of such a customer can be performed in a com-
pletely similar manner as in Sects. 3 and 4 with minor modifications. Instead of
probabilities π∗

m(i, j) that the customer will be selected for service immediately
after the m-th service completion, one must use the probabilities π̃m(i, j) that
the customer will be pushed out from the queue immediately after the m-th
service completion i.e.

π̃m(i, j)=P

{
m∑

k=1

χk =−1
∣∣∣∣Nf (0)= i,Nb(0)=j,Na(τm)=0, Ns(0)= i+n

}
,

m = 1, r − 1, i = m − 1, r − 1, j = 0, r − i − 1.

Using the first step analysis one can obtain the following recursive procedure
for the computation of π̃m(i, j):

π̃m(i, j) =
i−m+1∑
i′=0

j∑
j′=0

πm−1(i, j; i′, j′)π̃1(i′, j′),

m = 2, r − 1, i = m − 1, r − 1, j = 0, r − i − 1,

where

π̃1(i′, j′) =
i′+j′∑
i′′=1

q(i′′)
i′′

i′ + j′ + 1
+ Q(i′ + j′ + 1),

i′ = 0, r − 1, j′ = 0, r − 1 − i′.

Next, instead of the functions U∗
i,j(x) defined by (8) one introduces functions

U−
i,j(x) = P

{
T < x,

i+n∑
k=1

χk = 1
∣∣∣∣Nf (0) = i,Nb(0) = i − j,Na(x) = 0

}
,

i = 0, r, j = 0, r − 1. (22)

Again applying the law of total probability, one gets the exact expression for
(22):

u−
i,j(x) =

dU−
k,i(x)
dx

=
i+1∑
m=1

π̃m(i, i − j − 1)
(μn)mxm−1

m!
e−µnx,

i = 0, r, j = 0, r − 1, (23)

which in terms of transformation

ũ−
i,j(s)=

∞∫
0

u−
i,j(x)(1 − A(x))dx
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has the form

ũ−
i,j(s)=

i+1∑
m=1

π̃m(j, i − j − 1)
((

μn

μn+s

)m

+(−1)m
(μn)m

(m−1)!
α̃(m−1)(μn+s)

)
,

i = 0, r, j = 0, r − 1. (24)

Denote by W−
i,j(x) the conditional stationary probability that tagged cus-

tomer, residing in the queue, will be killed in the interval (0, x) while waiting
for service, given that initially there were i customers in front (excluding those
in service) and j customers behind it and all servers were busy i.e.

W−
i,j(x) = P

{
T < x,

i+n∑
k=1

χk = −1
∣∣∣∣Nf (0) = i,Nb(0) = j,Ns(0) = i + n

}
,

i = 0, r − 1, j = 0, r − 1 − i.

The system of equations for the computation of W−
i,j(x) and the system of

linear algebraic equations for W−
i,j(x) in terms of LST w̃−

i,j(s) can be written out
by analogy with the previous section. Thus they are omitted here and only the
final solution is given below. The LST w̃−

0,j(s), j = 0, r − 1, are determined by
the following expression:

w̃−
0,j(s) =

r−1∑
m=j+1

ũ−
m,0(s)[ũ0(s)]m−j−1 + ũ−

r,0(s)
[ũ0(s)]r−j−1

1 − ũ0(s)
, j = 0, r − 1.

The expressions for the LST w̃−
i,j(s), i = 1, r − 2, j = 0, r − i − 1, have the form:

w̃−
i,j(s) =

r−1∑
t=j+i+1

ûm,i(s)[ũ0(s)]m−j−i−1 + ûr,i(s)
[ũ0(s)]r−j−i−1

1 − ũ0(s)
,

i = 1, r − 2, j = 0, r − 1 − i,

where

ût,i(s) = ũ−
t,i(s) +

i∑
m=1

i−m∑
k=0

t−i−1∑
l=0

ũ
m,

(i,t−i−1)
(k,l)

(s)w̃−
i−m−k,t−i−l(s), t = i + j + 1, r.

The computation must be performed for the fixed i (starting from i = 1) by
iterating over j from r − 1 − i down to 0. The LST w̃−

r−1,0(s) is computed from
the relation

w̃−
r−1,0(s) =

1
1 − ũ0(s)

(
ũ−
r−1,0(s) +

r−1∑
m=1

r−1−m∑
k=0

ũ
m,

(r−1,0)
(k,0)

(s)w̃−
r−1−m−k,1(s)

)
.
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Finally the unconditional stationary waiting time distribution of the arriving
customer which was admitted to the system and but was pushed out while
waiting for service in terms LST w̃−(s) is equal to

w̃−(s) =
1

(1 − π)ploss

r−1∑
i=0

w̃−
i,0(s)p

−
n+i,

where ploss denotes the stationary probability that an arbitrary customer admit-
ted to the system is pushed out of the system (before receiving service) and p−

i

is the stationary probability that a customer on arrival finds i customers in the
system.

6 Conclusion

All the presented results were obtained assuming the FCFS order. The method
does not change, if one changes the service order to non-preemptive LCFS. One
of the interesting directions of further research is to check whether the method
proposed in this paper as well as the method proposed for the computation of
stationary distribution can be applied in the markov-modulated case. This as
shown, for example, in [14] is not always possible and thus may require additional
insight into the model.
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Abstract. The article gives an approach for estimating the packet
path length between the nodes for Flying Ubiquitous Sensor Net-
works. Authors show that such networks may be represented as three-
dimensional swarms of nodes. The mathematical models for the ball and
cubic swarms are given, as well as the simulation approach for the other
shapes. Also two types of network architecture are considered – direct
transfer and multi-hop.

Simulation shows that the shape of the swarm significantly impact on
the average packet path length both for direct and multi-hop data trans-
fer cases: more centralized shapes (e.g. ball) give better results (smaller
path length) than less centralized (e.g. cube), and this difference becomes
more significant in the multi-hop mode. Number of hops for multi-hop
mode also shows the same dependency.

Keywords: Flying sensor network · Swarms of nodes · Path length ·
Floyd-Warshall algorithm

1 Introduction

Over the recent years a few new trends have appeared in the telecommunication
area. Internet of things, Flying sensor networks, Tactile Internet, and other mod-
ern conceptions have quite different requirements, applications, and technology
approaches, but also have one thing in common. All these new ideas involve
millions of new telecommunication devices.

For example, Internet of Things intends to connect almost everything to the
global telecommunication network. In this case not millions, but even billions
new devices may be connected to the network, and the spatial density of the
telecommunication units may become quite high. Tactile internet conception
complements the Internet of Things with the new requirements to the Quality
of Service for the new networks, especially to the latency [1].

Flying Ubiquitous Sensor Networks idea also involves numerous new flying
devices with a new Quality of Service requirements to be connected to the global
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 361–368, 2016.
DOI: 10.1007/978-3-319-51917-3 32
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networks [2]. Therefore, one of the most important trends in the telecommuni-
cation fields now is latency issues research in the large groups of network nodes.

The type of such nodes (mobile phones, sensors, unmanned aerial vehicles
(UAVs), or other devices) is not such important. As the large amount of nodes
is considered in modern networks, we may describe the groups of such devices
as a spatial geometric forms (e.g. ball, cube, cylinder and others) filled in with
the nodes. For example, an office building with the numerous mobile phones,
laptops, sensors may be represented as a rectangular cuboid filled in with the
eventually distributed nodes, as well as a swarm of unmanned aerial vehicles
may be described as a ball-shaped swarm, road sensors – as a long cylinder and
so on.

Since time delay depends on the distance between nodes (among other things,
such as radio channel parameters and communication protocols), in this article
we investigate the distances between nodes inside the different spatial geometri-
cal shapes. A few articles in this area may be found. For instance in [3] authors
suggest a new network models for the Flying Ad-hoc Networks. In [4] the swarm
of UAVs is considered as a queueing system, which allows to obtain more signif-
icant information about Quality of Service in such swarms.

In this research two types of network architecture are considered. The first is
a direct transfer architecture, which is typical for the traditional infrastructure
networks. In this case packets are transferred directly from the source to the
destination with the radio channel. The second approach is a multi-hop network
architecture, in which packets on a way from the source to the destination may go
through one or more intermediated nodes. Multi-hop communication is typical
for the wireless sensor networks and Device-to-Device (D2D) communication,
which can be widely used in the 5G networks. For this method besides the
distance between nodes, we also estimate the average number of hops.

The rest of the article is structured as follows. Section 1 gives the theoretical
background of the problem, Sect. 2 describes the different models for the swarm
of sensor nodes, and Sect. 3 represent the result of the modelling.

2 Theoretical Background

The problem of finding distances between random nodes inside the different
geometric shapes is a well-known line picking problem. According to [5], line
picking probabilities (i.e. probability distributions for the lengths of the lines
between two random points) and averages line lengths are known for a number
of geometrical shapes. This allows us to prove the simulation models for the dif-
ferent groups of nodes. For example, the probability distribution of the distance
between two random points within the ball is given by:

P (l) = 3
l2

R3
− 9

4
l3

R4
+

3
16

l5

R6
(1)

where R is the radius of the ball [6]. The average distance is:
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l =
36
35

R (2)

The probability function of the distance between two random points inside
the unit cube has quite complex mathematical expression and is given in [7].
The average distance is given by the Robbins constant:

Δ(3) = 0.66170... (3)

For the other spatial geometrical shapes, the probability function of the ran-
dom line length is unknown, but in some cases estimation of a mean value is
given. For instance, the mean distance between two points within the tetrahe-
dron of unit volume is approximately [8]:

l = 0.7308 ± 0.0002 (4)

3 Model Description

The following model was used to obtain the network simulation results. We used
N = 100 network nodes that were randomly distributed inside the different
spatial shapes: ball, cube, cylinder. All shapes had the same volume equal to
8 000 000m3 (see Figs. 1, 2 and 3).

The distances between all pairs of nodes for different shapes were found. In
case of direct transfer, packets should be transferred exactly on these distances.
However, in the networks with the multi-hop infrastructure such as wireless sensor
networks radio coverage area is usually limited due to the energy saving purpose.
In this case we can transform the distance matrix so that all the distances that is

Fig. 1. Ball-shaped swarm
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Fig. 2. Cubic swarm

Fig. 3. Cylinder-shaped swarm

larger than the maximum radio coverage radius R become infinite (or quite large
comparing with the other). This represents the inability of nodes to connect to
the other nodes that is farther then the node’s coverage area. The data transfer
radius for our model is equal to 50 m. Therefore, we obtained the distance matrix
for all the nodes. This matrix may be considered as a weighted graph, where the
sensor nodes are vertices and the distances are edge weights. To find shortest paths
using this graph we applied Floyd-Warshall algorithm, because it allowed to find
the shortest path not only between two specific vertices, but between all pairs of
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vertices. As a result, we obtained the matrices of distances between nodes for the
two types of network architecture: direct transfer and multi-hop.

The other aim of the simulation was number of hops estimation (for multi-
hop mode). Since the exact calculation of the number of hops with Floyd-
Warshall algorithm requires recursive function and therefore significant compu-
tation resources, the average number of hops was estimated for all the geometric
shapes using the following formula:

h =
Average multi-hop distance

Average direct distance for distances less than 50 m
(5)

The models for cube and ball were proved by comparing the theoretical
distances distribution and simulated distances distribution (direct transfer case).
The model for a cylinder could not be proved, as the theoretical form of the
distances between two random points within this geometrical shape is unknown.

4 Results

The simulation models show the following results. For all the geometrical shapes
multi-hop distances are larger than direct distances, as it might be expected.
Difference between two these distances is the smallest for the ball-shaped swarm
and the largest for a cube-shaped (see Figs. 4, 5 and 6).

Fig. 4. Comparison of the average direct transfer distance and average multi-hop dis-
tance for the swarm of nodes inside the ball

Moreover the compare shows that for the cubic swarm multi-hop transfer
distances is significantly larger than for the cylinder and ball swarms. Also the
average number of hops for the cubic-shaped swarm is larger than for the other
shapes (see Table 1) (Figs. 7 and 8).
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Fig. 5. Comparison of the average direct transfer distance and average multi-hop dis-
tance for the swarm of nodes within the cylinder

Fig. 6. Comparison of the average direct transfer distance and average multi-hop dis-
tance for the cubic swarm of nodes

Table 1. Average number of hops

Shape Ball Cylinder Cube

Average number of hops 2,3 3,1 4,8
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Fig. 7. Comparison of the average direct transfer distances for the different geometric
figures

Fig. 8. Comparison of the average multi-hop distances for the different geometric
figures

5 Conclusions

This article gives an approach for estimating the packet path length between
the nodes in three-dimensional swarms. Unfortunately, the strict mathematical
models are absent for the majority of shapes, therefore the simulation of Flying
Ubiquitous Sensor Network nodes’ swarms is the best solution for this purpose.

According to the obtained results we may conclude that shape of the swarm
significantly impact on the average packet path length both for direct and multi-
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hop data transfer cases. The simulation for simple geometrical shapes shows
that more centralized shapes (e.g. ball) give better results (smaller path length)
than less centralized (e.g. cube), and this difference becomes more significant in
the multi-hop mode. Number of hops for multi-hop mode also shows the same
dependency.

The packet path length is not the only factor that should be taken into
account when we consider such complex aspect as a Quality of Service in the
modern network. Additional studies on the communication protocols, radio prop-
agation issues and network connectiveness are also needed to obtain more com-
prehensive knowledge in this area.

Acknowledgments. The reported study was supported by RFBR, research project
No. 15 07-09431a Development of the principles of construction and methods of self-
organization for Flying Ubiquitous Sensor Networks.
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Abstract. A closed network consists of two multi-servers with n cus-
tomers. Service requirements of customers at a server have a common cdf.
State parameters of the network: for each multi-server empirical measure
of the age of customers being serviced and for the queue the number of
customers in it, all multiplied by n−1.

Our objective: asymptotics of dynamics as n → ∞. The asymptot-
ics of dynamics of a single multi-server with an arrival process as the
number of servers n → ∞ is currently studied by famous scientists K.
Ramanan, W. Whitt et al. Presently there are no universal results for
general distributions of service requirements—the results are either for
continuous or for discrete time ones; the same for the arrival process. We
develop our previous asymptotics results for a network in discrete time:
find equilibrium and prove convergence as t → ∞.

Motivation for studying such models: they represent call/contact
centers.

Keywords: Multi-server queues · GI/G/n queue · Fluid limits ·
Mean-field limits · Strong law of large numbers · Measure-valued
processes · Fluid limit equilibrium and convergence · Switching
networks · Call/contact centers

1 Introduction

1.1 Review of Investigated Contact Centers Models

In the last ten years an extensive research in mathematical models for telephone
call centers has been carried out, cf. Refs. [2–6, 8–17] of [1]. The object has been
expanded to more general customer contact centers (with contact also made by
other means, such as fax and e-mail). In order to describe the object efficiently
the state of the model must include: (1) for every customer in the queue the
time that he has spent in it and (2) for every customer in the multi-server the
time that he has spent after entering the service area, that is being received by
one of the available servers.

S. Anulova—This work was supported by RFBR grant No. 14-01-00319 “Asymptotic
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The focus of research was on a multi-server with a large number of servers,
because it is typical of contact centers. One of important relating questions is
the dynamics of the queue of a multi-server with a large number of servers. For
such queues were found fluid limits as the number of servers tends to infinity.
Notice that such a limit is a deterministic function of time with values in a
certain measure space, or in a space containing such a component.

An important particular question is the convergence of the fluid limit to
a stable state as time tends to infinity. For a discrete time model W. Whitt
has found equilibrium states (a multitude) of the fluid model and proved the
time convergence in a special case—for a primitive arrival process and for initial
condition with empty multi-server and queue, [2, Sect. 7] .

1.2 A New Model for Contact Centers and Its Fluid Limit
with Equilibrium Behavior

We have suggested in [1] a more suitable model for contact centers. The num-
ber of customers is fixed. Customers may be situated in two states: normal and
failure. There is a multi-server which repairs customers in the failure state. The
repair time/the time duration of a normal state is a random variable, indepen-
dent and identically distributed for all customers. Now “the arrival process” in
the multi-server does not correspond to that of the previous G/GI/s+GI model.
For a large number of customers and a suitable number of servers we have cal-
culated approximately the dynamics of the normalized state of the system—its
fluid limit. Now we explore the convergence of the fluid limit as time tends to
infinity and find its steady-state (or equilibrium).

We confine ourselves to a discrete time model. W. Whitt has written a very
interesting seminal article about fluid limits of multi-server dynamics [2], with
Sects. 6 and 7 in a simple discrete case. About 150 authors have cited it and made
generalizations to the continuous time. But their results do not enclose Whitt’s
discrete time ones. Walsh Zuñiga [3], with his results most close to including
discrete time, permits discrete time only for service but his arrival process is
strictly continuous.

In Whitt’s article [2] the ideas of the convergences proofs are true and very
lucid, and the proofs are clearly presented. We have transferred his proof tech-
nique to our new network model in [1]. Now we exploit his equilibrium technique.

2 Closed Multi-server Network with n Customers
and Its Fluid Limit Equilibrium

2.1 Network Description

Consider a closed network consisting of n customers. They may be situated in
two states: normal and failure. A multi-server repairs customers in the failure
state. The repair time (resp., the time duration of a normal state) is a random
variable, independent and identically distributed for all customers. For a large
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number of customers and a suitable number of servers we shall calculate the
number of current failures, so much as an approximation.

Now we give a rigorous description of this model.
Consider a closed network consisting of n customers and two multi-servers.

Multi-server 1 (further denoted MS1) consists of n servers (for the customers in
the normal state), the time they service a customer has distribution G1. Multi-
server 2 (further denoted MS2) consists of snn servers with a number sn ∈ (0, 1)
(for the customers in the failure state), the time they service a customer has
distribution G2. The distributions G1, G2 are discrete: they are concentrated on
{1, 2, . . .}. Service times are independent for both servers and all customers. We
will investigate the behavior of the net as n → ∞, namely, we shall establish a
stochastic-process fluid limit. It will be done only in a special case: discrete time
t = 0, 1, 2, . . .

We begin with a simple example of functioning of this network.

Example 1. Let at time t = 0 all n customers be in a normal state. Each customer
switches over to the failure state according to the distribution function G1 and
tries to enter multi-server 2. The early failure customers can do it, but with time
growing multi-server 2 may become fully occupied. Then the failure customers
create a queue, waiting for the first available server in multi-server 2. Recall that
the server becomes afresh available with time distribution G2.

In this example and everywhere further we demand:

Assumption 1. Customer enters service immediately upon arrival to a multi-
server if there is a server available. If the servers in MS2 are all busy, the
arriving customer waits in queue. Customers from queue are served in order of
their arrival (FCFS) by the first available MS2 server.

In MS1 no queue may arise—if all n its servers are occupied then all customers
are in MS1, therefore no new customer can arrive.

Denote the number of customers at a moment t = 0, 1, . . . in MS1 (resp.,
MS2) by B1

n(t) (resp., B2
n(t)) and the number of customers in the queue Qn(t) =

n − B1
n(t) − B2

n(t). These quantities must be defined more exactly. Namely,

Bi
n(t) =

∞∑
k=0

bin(t, k), i = 1, 2, and Qn(t) =
∞∑
0

qn(t, k)

with bin(t, k) being the number of customers in the multi-server i at the moment t
who have spent there time k, i = 1, 2, and qn(t, k) being the number of customers
in the queue at the moment t who have been there precisely for time k. bin(t, k)
may also be interpreted as the number of busy servers at time t in the multi-
server i that are serving customers that have been in service precisely for time
k, i = 1, 2.

At the same time moment t ∈ {1, 2, . . .} multiple events can take place, so
we have to specify their order.
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We must create a fictitious queue for the MS1—in fact this multi-server is so
large (n servers), that any customer of the whole quantity n trying to enter the
MS1 at once finds a free server in it.

At the time moment t the parameters b1, b2, q are taken from the previous
time t − 1 and processed to the current situation.

For both multi-servers:

– first, customers in service are served;
– second, the served customers move to another multi-server queue, to the end

of it;
– third, waiting customers in queue move into service of the multi-server accord-

ing to Assumption 1.

Customers enter service in MS2 whenever a server is available, so that the system
is work-conserving; i.e. we assume that Qn(t) = 0 whenever B2

n(t) < snn, and
that B2

n(t) = snn whenever Qn(t) > 0, t = 0, 1, 2, . . .. This condition can be
summarized by the equation

(sn − B2
n(t)/n)Qn(t) = 0 for all t and n.

2.2 Fluid Limit Dynamics

Notations
Denote for i = 1, 2:

– Gi;c(k) := 1 − Gi(k) and gi(k) := Gi(k) − Gi(k − 1), k = 1, 2, . . .
– Ei the expectation of the time the server in MSi services a customer1:

Ei :=
∞∑
k=1

kgi(k) = 1 +
∞∑
k=1

Gi(k) .

– σi
n(t) the number of service completions in MSi at time moment t = 1, 2, . . ..

Symbol ⇒ means convergence of the network state characteristics to a constant
in probability as the index n denoting the number of customers tends to infinity.

Fluid Limit Dynamics
Under certain conditions, specifically lim

n→∞ s(n) = s ∈ (0, 1), the fluid limit

exists and its dynamics is described below (the proof is given in [1, Theorem 1]).
As n → ∞,

bin(t, k)
n

⇒ bi(t, k), i = 1, 2, (1)

1 for the last equality see “Expected value” in Wikipedia.
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qn(t, k)
n

⇒ q(t, k), (2)

σi
n(t)
n

⇒ σi(t), i = 1, 2, (3)

for each t ≥ 0 and k ≥ 0, where (b1, b2, q, σ1, σ2) is a vector of deterministic
functions (all with finite values).

Further, for each t = 0, 1, . . .

Bi
n(t)
n

≡
∑∞

k=0 bin(t, k)
n

⇒ Bi(t) ≡
∞∑
k=0

bi(t, k), i = 1, 2, (4)

Qn(t)
n

≡
∑∞

k=0 qn(t, k)
n

⇒ Q(t) ≡
∞∑
k=0

q(t, k), (5)

with
B1(t), B2(t), Q(t) ≥ 0, B1(t) + B2(t) + Q(t) = 1, (6)

B2(t) ≤ s, and (s − B2(t))Q(t) = 0. (7)

The evolution of the vector (b1, b2, q, σ1, σ2)(t), t = 0, 1, 2 . . . , proceeds with
steps of t in the following way. As we go from time t−1 to t, there are two cases,
depending on whether B2(t − 1) = s or B2(t − 1) < s.

Case 1. B2(t − 1) = s. In this first case, after moment t − 1 asymptotically all
servers are busy and in general there may be a positive queue. In this case,

σi(t) =
∞∑
k=1

bi(t − 1, k − 1)
gi(k)

Gi;c(k − 1)
, (8)

bi(t, k) = bi(t − 1, k − 1)
Gi;c(k)

Gi;c(k − 1)
, k = 1, 2, . . . , i = 1, 2, (9)

b1(t, 0) = σ2(t), (10)

b2(t, 0) = min{σ2(t), Q(t − 1) + σ1(t)}, (11)
and finally q is determined with the help of an intermediate queue q′,

q′(t, 0) = σ1(t), q′(t, k) = q(t − 1, k − 1), k = 1, 2, . . . : (12)

if σ2(t) = 0 then q(t, k) = q′(t, k), k = 0, 1, . . . , (13)

if σ2(t) ≥
∞∑
k=0

q′(t, k) then q(t, k) = 0, k = 0, 1, . . . , (14)

if 0 < σ2(t) <

∞∑
k=0

q′(t, k) then with (15)

c(t) = min{i ∈ {0, 1, . . .} :
∞∑
k=i

q′(t, k) ≤ σ2(t)}, (16)
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q(t, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for k ≥ c(t),
∞∑

i=c(t)−1

q′(t, i) − σ2(t) for k = c(t) − 1,

q′(t, k) for k < c(t) − 1.

Case 2. B2(t − 1) < s. In this second case, after the time moment t − 1 asymp-
totically all servers are not busy so that there is no queue. As in the first case,
Eqs. (8), (9), and (10) hold. Instead of (11),

b2(t, 0) = min{s − B2(t − 1) + σ2(t), σ1(t)}. (17)

Then,

q(t, k) = 0 for all k > 0 and q(t, 0) = σ1(t) − b2(t, 0). (18)

In the rest of the article the queue is described less detailed than in this Sub-
sect. 2.2—no customer age is taken into account.

2.3 Fluid Limit Equilibrium

Consider the discrete time fluid limit for the closed network model dynamics
established in our article [1].

Definition 1. A point in the state space of deterministic fluid processes is called
“equilibrium” if fluid processes after reaching this point remain in it. Determinis-
tic fluid processes are formally described/characterized by sets (b1, b2, q) consist-
ing of non-negative functions of b1(t, k), b2(t, k), q(t), t = 0, 1, . . . , k = 0, 1, . . . ,
satisfying

∞∑
k=0

b2(t, k) ≤ s,

∞∑
k=0

(b1 + b2)(t, k) + q(t) = 1, t = 0, 1, . . . ,

and equilibrium points are described/characterized by sets (b∗1, b∗2, q∗) consisting
of non-negative functions b∗1(k), b∗2(k), k = 0, 1, . . . , and a non-negative number
q∗ satisfying

∞∑
k=0

b∗2(k) ≤ s,

∞∑
k=0

(b∗1 + b∗2)(k) + q∗ = 1. (19)

If the initial condition of a fluid process is an equilibrium, then this fluid process
is constant in time:

b1(0, k) = b∗1(k), b2(0, k) = b∗2(k), k = 0, 1, . . . , q(0) = q∗

implies for t = 1, 2, . . .

b1(t, k) = b∗1(k), b2(t, k) = b∗2(k), k = 0, 1, . . . , q(t) = q∗.

For equilibrium (b∗1, b∗2, q∗) denote B∗i =
∑∞

k=0 b∗i(k), i = 1, 2.
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Theorem 1. For the deterministic fluid processes there exists a single equilib-
rium point. The characteristics b∗1, b∗2, q∗ of this equilibrium point have the form

b∗i(k) = b∗i(0)Gi;c(k), k = 1, 2, . . . , i = 1, 2, and q∗ = 1 − (B∗1 + B∗2) (20)

with the values of b∗1(0) and b∗2(0) being equal and determined by the ratio of
E1 to E2:

1. B∗i = b∗i(0)Ei, i = 1, 2.

2. If
E2

E1 + E2
> s then:

B∗2 = s, b∗2(0) =
s

E2
, B∗1 = s

E1

E2
, q∗ = 1 − s

E2
(E1 + E2) > 0.

3. If
E2

E1 + E2
< s then:

B∗2 < s, b∗2(0) =
1

E1 + E2
, B∗i =

Ei

E1 + E2
, i = 1, 2, and q∗ = 0.

4. If
E2

E1 + E2
= s then:

B∗2 = s, b∗2(0) =
1

E1 + E2
, B∗i =

Ei

E1 + E2
, i = 1, 2, and q∗ = 0.

Proof. Equation (20) follows from [2, formula (7.7)]. The amount arriving at the
time step to MS2 is b∗2(0) and it equals the amount of (b∗2(k), k = 1, 2, . . .)
serviced in the time step—this is demanded by the equilibrium. But the latter
amount arrives to MS1, therefore it equals b∗1(0). Thus b∗1(0) = b∗2(0).

1.
∑∞

k=0 Gi;c(k) is equal to the expectation corresponding to the distribution
Gi, i = 1, 2. Thus

B∗i =
∞∑
k=0

b∗i(k) = b∗i(0) +
∞∑
k=1

b∗i(0)Gi;c(k) =
∞∑
k=0

b∗i(0)Gi;c(k) =

b∗i(0)
∞∑
k=0

Gi;c(k) = b∗i(0)Ei, i = 1, 2.

(21)

2. If q∗ = 0, then B∗1 + B∗2 = 1, that is

b∗2(0)(E1 + E2) = 1, b∗2(0) =
1

E1 + E2
.

Then B∗2 =
E2

E1 + E2
> s, what is impossible. This impossibility demands

q∗ to be positive and consequently B∗2 = s. Since B∗2 = b∗2(0)E2

b∗2(0) =
B∗2

E2
=

s

E2
and q∗ = 1 − (B∗1 + B∗2) = 1 − s

E2
(E1 + E2).

q∗ is really positive as
s

E2
(E1 + E2) = s/

E2

E1 + E2
< 1.
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3. If q∗ > 0, then B∗1 + B∗2 < 1, that is

b∗2(0)(E1 + E2) < 1, b∗2(0) <
1

E1 + E2
.

Then B∗2 <
E2

E1 + E2
< s, what is incompatible with q∗ > 0. This

incompatibility demands q∗ to be 0 and consequently B∗1 + B∗2 = 1. As
B∗1 + B∗2 = b∗2(0)(E1 + E2),

b∗2(0) =
B∗1 + B∗2

E1 + E2
=

1
E1 + E2

and B∗2 = b∗2(0)E2 =
E2

E1 + E2
< s.

4. As in previous item, B∗2 <
E2

E1 + E2
, thus B∗2 < s, what is incompatible

with q∗ > 0. This incompatibility demands q∗ to be 0 and consequently
B∗1 + B∗2 = 1. As B∗1 + B∗2 = b∗2(0)(E1 + E2),

b∗2(0) =
B∗1 + B∗2

E1 + E2
=

1
E1 + E2

and B∗2 = b∗2(0)E2 =
E2

E1 + E2
= s

with
b∗2(0) =

s

E2
.

2.4 Fluid Limit Convergence to Equilibrium as t → ∞
W. Whitt tried to investigate convergence of the fluid limit trajectory to equi-
librium in [2, Sect. 7]. No strong result for universal convergence has been pre-
sented, only in particular case—starting from an empty multi-server and an
empty queue, see [2, Theorem 7.3]. We shall transfer this simple theorem to our
closed network model.

With Whitt’s assumption for the initial condition (no customers either in the
multiserver or in the queue) and main expectations assumption (the expectation
of the service time is equal to 1 and the arrival rate λ is constant and at most
1) the empty multi-server adds with time steps customers with growing age and
the fluid process converges monotonically to the unique equilibrium:

for t = 1, 2, . . . b(t, k) = λGc(k), 0 ≤ k ≤ t, and b(t, k) = 0 for all k > t.

In our model this case takes the following form. If MS1 is empty and MS2
is filled with equilibrium parameters, then MS2 remains in this state, the queue
decreases and MS1 adds with time steps customers of the next age with equi-
librium parameters, like the single multi-server by Whitt, and the state of MS1
converges monotonically to the unique equilibrium state: for t = 1, 2, . . .

b1(t, k) =

{
b∗2(0)G1;c(k), 0 ≤ k < t,

b1(t, k) = 0, k ≥ t.

This convergence is evident, just like in the corresponding theorem of W. Whitt.
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Theorem 2. Suppose the fluid limit satisfies at time t = 0 the following con-
ditions: B1(0) = 0 and b2(0, ·) = b∗2 (b∗2 is the component of equilibrium point
(b∗1, b∗2, q∗), see Theorem 1). Then the fluid limit converges to the equilibrium
point as t → ∞. Namely:

– the state of MS2 remains equilibrium:

b2(t, ·) = b∗2, t = 0, 1, 2, . . . ; (22)

– the state of MS1 grows occupying its equilibrium state—with each time step
adds the next age equilibrium parameter:

b1(0, ·) ≡ 0 and for t = 1, 2, . . . b1(t, ·) = b∗1(·)It with It = I{0,1,...,t−1};
(23)

– the queue decreases—with each time step loses the amount of the previous age
MS1 equilibrium parameter:

q(0) = 1 − B∗2, q(t) = q(t − 1) − b∗1(t − 1) = 1 − B∗2 −
∑

b∗1(·)It =

1 − B∗2 −
t−1∑
l=0

b∗1(l), t = 1, 2, . . .

Proof. According to the equilibrium of b∗2, as shown in the proof of Theorem 1,
at the first time step (t = 0 → t = 1) the multiserver 2 services b∗2(0) customers.
They proceed into the multiserver 1. And exactly so many customers proceed
from the queue to the multiserver 2. Really, the queue at the time 0 is large
enough:

q(0) = 1 − (B1(0) + B2(0)) = 1 − B∗2 = B∗1 + q∗ ≥ b∗1(0) (= b∗2(0)).

We finish the proof by induction. Suppose at time t which is not less than
1 the statement of the theorem in Eq. (23) holds. By virtue of equilibrium of
b2(t, ·) = b∗2 at the time step t → t + 1 the multiserver 2 services again b∗2(0)
customers and proceeds to the state {0, b∗2(1), , b∗2(2), . . .}. The state of MS1
at the time t b1(t, ·) equals to {b∗1(0), b∗1(1), . . . , b∗1(t − 1), 0, 0, . . .}. Having
serviced its customers at time step t → t + 1 MS1 proceeds to the statement
{0, b∗1(1), . . . , b∗1(t−1), b∗1(t), 0, 0, . . .}. Now the serviced customers of MS2 pro-
ceed to MS1: the state of MS1 at time t + 1 b1(t + 1, ·) equals to

{b∗1(0), b∗1(1), . . . , b∗1(t), 0, 0, . . .}.

And how large is the queue? Does it have b∗2(0) customers to fill MS2 at time
t + 1 again up to equilibrium? The queue equals to

1 −
(

t∑
l=0

b∗1(l) +
∞∑
l=1

b∗2(l)

)
= 1 −

(
t∑

l=0

b∗1(l) +
∞∑
l=0

b∗2(l) − b∗2(0)

)
≥

1 − (
B∗1 + B∗2) + b∗2(0) = q∗ + b∗2(0) ≥ b∗2(0) as q∗ ≥ 0.

The inverse initial condition—MS1 is filled with an equilibrium expectation
and MS2 is empty—does not allow such a simple proof for its convergence to
the equilibrium.
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3 Generalization to Changing Environment

Return to the beginning of Subsect. 2.1. Now the environment of the system
is not permanent, it changes with discrete time. And the time duration of a
customer’s normal state (namely, its distribution) changes also—it corresponds
to the current environment. The multi-server which repairs customers in the
failure state is irrespective of the environment—the distribution of the customer
repair time does not change. We make this restriction on the repairing multi-
server for the simplicity of our research. We shall describe a generalization of
the fluid limit and its equilibrium in changing environment.

There is a finite number N of changing environments, each of them is denoted
by its i ∈ {1, . . . , N}. In the environment i ∈ {1, . . . , N} the time duration of
the normal state is marked by the corresponding i. So, instead of the previ-
ous distribution G1 of the time MS1 services a customer, we have distributions
G1|i, i ∈ {1, . . . , N}.

The change of environments is specified by a discrete time-homogeneous
markov chain u := u(t), t = 0, 1, . . . , with state space {1, . . . , N} and transi-
tion probabilities

P(u(1) = j|u(0) = i) = pij , i, j ∈ {1, . . . , N}.

It is obvious that the fluid limit now turns to a piecewise-deterministic Markov
process (see [4, Chap. 2]). Really, denote by τi, i = 0, 1, 2, . . ., the moments when
u receives its new value:

– τ0 = 0;
– τi is the moment when the value which u had at the moment τi−1 becomes

changed: τi = min{t > τi−1 : u(t) 	= u(τi−1)}, i = 1, 2, . . .

Then on each interval [τi, τi+1 − 1] and subspace u(τi) = j Eqs. (1)–(3) hold
with G1|j—the distributions of customers ages converge to a fluid limit, i =
0, 1, . . . , j ∈ {1, . . . , N}.

We have generalized the distribution process describing the state of the net-
work (it is defined in Subsects. 2.1 and 2.2) to a switching (see [5]) distribution
process. We explained how this switching distribution process converges as the
number of customers n → ∞. Namely, it converges in a complicated way: not to
the fluid limit, but to a quasi-fluid limit. Now we intend to find an equilibrium
for this quasi-fluid limit.

The evolution of the process with n customers goes on in such a way. At the
moment t and with u(t) = i the process makes the time step to t+1 as described
in [1], i ∈ {1, . . . , N}, and then u(t) makes the time step to u(t + 1).

The corresponding formula is:

P(u(t + 1) = i)b1|i(t + 1, k + 1) = P(u(t) = i)pii b1|i(t, k)
G1|i;c(k + 1)

G1|i;c(k)

+
∑
j �=i

P(u(t) = j)pji b1|j(t, k)
g1|j;c(k + 1)

G1|j;c(k)
.

(24)
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Now we shall describe the equilibrium points of the quasi-fluid limit process.
First of all, the markov chain u must have a stable distribution, denote it by

Pi, i ∈ {1, . . . , N}.
And quasi-fluid limit distributions b∗1|i(k), i ∈ {1, . . . , N}, k = 0, 1, . . . must

satisfy

Pib
∗1|i(k + 1) = Pipii b

∗1|i(k)
G1|i;c(k + 1)

G1|i;c(k)

+
∑
j �=i

Pjpji b
∗1|j(t, k)

g1|j(k + 1)
G1|j;c(k)

.

(25)

And quasi-fluid limit distributions b∗2|i(k), i ∈ {1, . . . , N}, k = 0, 1, . . ., do
not depend on i as G2;i ≡ G2, i ∈ {1, . . . , N}. Thus b∗2 must satisfy its original
Eq. (20)

b∗2(k) = b∗2(0)G2;c(k), k = 1, 2, . . . . (26)

Finally, similar to Subsect. 2.3 b∗1|i(0) ≡ b∗2(0), i ∈ {1, . . . , N}. To calculate
b∗2, b∗1|i, i ∈ {1, . . . , N}, q∗, we must insert b∗2(0) into the equations system (25)
and repeat the estimation of the proportion s of MS2 like in Theorem 1. Of course
for the present model it is more difficult to calculate b∗1|i and corresponding
B∗1|i, i ∈ {1, . . . , N}, than we made it without changing environment. But think
just of bounded distributions G2, G1;i, i ∈ {1, . . . , N}—surely in this case you
can calculate the equilibrium point.

4 Conclusion

The models of call/contact centers have an important approximate description
for their dynamics—fluid limit. For one multi-server and for a closed network
with two multi-servers models the time convergence of their fluid limits is inves-
tigated only in a simple case. We plan to investigate the convergence for our
model in a fully general case.

This and developed problems were stated and studied by famous scientists,
cf. Refs. [2–6, 8–17] of [1]. We respect deeply these authors and their results, but
we do not understand, why this trend is important for practical applications. To
our mind really important is the calculation of the corresponding time-dependent
expectation of the measure state of the multi-server(s) systems. The dispersion
of the corresponding random state function is limited as n → ∞ by a diffu-
sion approximation. And time convergence of this deterministic function follows
from ergodicity of the queueing process. A large class of systems possesses the
ergodicity property (this depends on distributions of service requirements).

We shall investigate the described problem after consulting specialists work-
ing in applied directions.
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On Strong Bounds of Rate of Convergence
for Regenerative Processes

Galina Zverkina(B)

Moscow State University of Railway Engineering, Moscow, Russia
zverkina@gmail.com

Abstract. We give strong bounds for the rate of convergence of the
regenerative process distribution to the stationary distribution in the
total variation metric. For this aim we propose a new modification of
the coupling method which we call stationary coupling method. Use of
this stationary coupling method improves the classic results about the
convergence rate of the distribution of the regenerative process in the case
of a heavy tail. Also this method can be applied for obtaining the bounds
of the rate of the convergence for the queueing regenerative processes.

Keywords: Regenerative process · Queuing theory · Rate of
convergence · Total variation metrics · Coupling method

1 Introduction

We study the rate of convergence of distribution of regenerative process to the
stationary distribution in the total variation metric.

Many queueing processes are regenerative, and establishing bounds for the
rate of their convergence is a very important problem for the practical applica-
tions of the queueing theory. Recall the definition of regenerative process.

Definition 1. The process (Xt, t � 0) adapted to the filtration Ft� 0 on a prob-
ability space (Ω,F ,P), with a measurable state space (X ,F(X )) is regenerative,
if there exists an increasing sequence {θn} (n ∈ Z+) of Markov moments with
respect to the filtration Ft� 0 such that Xθi

= Xθj
for all i, j ∈ Z+ and the

sequence

{Θn} =
{
Xt+θn−1 − Xθn−1 , θn − θn−1, t ∈ [θn−1, θn)

}
(n ∈ N)

consists of independent identically distributed (i.i.d.) random elements on
(Ω,F ,P). If θ0 �= 0, then the process (Xt, t � 0) is called delayed.

Denote ζn
def== θn − θn−1, and let F (s) = P {ζn � s} = P {ζ1 � s} (n ∈ N)

be the distribution function of the length of the regeneration period; we assume
that the distribution F is not lattice. Also denote ζ0

def== θ0, F(s) def== P {ζ0 � s}.

G. Zverkina—The author is supported by the RFBR, project No. 14-01-00319 A.

c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 381–393, 2016.
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Denote PX0
t (A) = P{Xt ∈ A} for the process (Xt, t � 0) with the initial

state X0. If E ζi < ∞, then for all X0 we have PX0
t =⇒ P where P is the

stationary distribution of the process (Xt, t � 0).
It is known that if E ζK

n < ∞ for some K > 1 then for every k � K − 1 and
X0 ∈ X

lim
t→∞ tk

∥∥∥PX0
t − P

∥∥∥
TV

= 0,

and if E eαζn < ∞ for some α > 0, then for every a < α and X0 ∈ X

lim
t→∞ eat

∥∥∥PX0
t − P

∥∥∥
TV

= 0

(see, e.g., [2,4,5,7,10–12] et al.). So, we know two statements:

1. If E ζK
n < ∞ for some K > 1, then for all k � K − 1 and X0 ∈ X there exists

C(X0, k) such that
∥∥∥PX0

t − P
∥∥∥

TV
� (1 + t)−kC(X0, k); (1)

2. If E eαζn < ∞ for some α > 1, then for all a < α and X0 ∈ X there exists
C(X0, α) such that

∥∥∥PX0
t − P

∥∥∥
TV

� e−atC(X0, a). (2)

Our goal is to find the bounds of the constants C(X0, k) and C(X0, a) with
sufficiently wide conditions; note that the behavior of the constants C(X0, k) and
C(X0, a) has been studied in [8,9,13–16] for some special cases of regenerative
processes. To achieve this goal, we will use a modified coupling method.

In the sequel, we suppose that

∫
{s: ∃ F ′(s)}

F ′(s) d s > 0; E ζi < ∞ (∗)

2 Denotations and the Main Results

1. The times θi (see Definition 1) form the renewal process Nt
def==

∞∑
i=0

1(θi � t).

Denote Bt
def== t − θNt−1. Bt is the backward renewal time of the process Nt. �

Remark 1. (Bt, t � 0) is the Markov regenerative process. We call it the back-
ward renewal process. �

2. For nondecreasing function F (s) we put F−1(y) def== inf{x : F (x) � y}. �
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3. F̃ (s) def== μ−1

s∫
0

(1 − F (u)) du, where μ
def==

∞∫
0

u dF (u) = E ζ. �

4. Fa(s) def==
F (s + a) − F (a)

1 − F (a)
; μ0

def== E ζ0. �

5. Let U , U ′, U ′′, Ui,U ′
i ,U ′′

i ,U ′′′
i be independent uniformly distributed on [0, 1)

random variables on some probability space
(
Ω̃, F̃ , P̃

)
. �

6. Denote ϕ(s) def== 1(∃F ′(s)) × (F ′(s) ∧ F̃ ′(s)) where 1(·) is indicator, and we

put Φ(s) def==

s∫
0

ϕ(u) du.

The condition (∗) implies κ
def==

∞∫
0

ϕ(s) d s = Φ(+∞) > 0.

Denote κ
def== 1 − κ. �

7. Denote Ψ(s) def== F (s) − Φ(s), Ψ̃(s) def== F̃ (s) − Φ(s); Ψ(+∞) = Ψ̃(+∞) = κ .

Also denote P a(ζ1)
def==

∞∫
0

e as dΨ(s). �

Remark 2. Note that κ
−1Φ(s) is the distribution function, and if κ < 1 then

κ
−1Ψ(s) and κ

−1Ψ̃(s) are the distribution functions.
If κ = 1 then Φ(s) ≡ F (s) ≡ F̃ (s) = 1 − e−λs, and Ψ(s) ≡ Ψ̃(s) ≡ 0; in this

case we put κ
−1Ψ(s) ≡ κ

−1Ψ̃(s) ≡ 0, and Ψ−1(u) = Ψ̃−1(u) = 0. �

8. Put Ξ(U ,U ′,U ′′) def== 1(U < κ)Φ−1(κ U ′) + 1(U � κ)Ψ−1(κ U ′′);
Ξ̃(U ,U ′,U ′′) def== 1(U < κ)Φ−1(κ U ′) + 1(U � κ)Ψ̃−1(κ U ′′). �

Remark 3. Clearly,
F (s) = κ

(
κ

−1Φ(s)
)

+ κ
(
κ

−1Ψ(s)
)

and F̃ (s) = κ
(
κ

−1Φ(s)
)

+ κ

(
κ

−1Ψ̃(s)
)
.

Hence,

P{Ξ(U ,U ′,U ′′) � s} = F (s), P{Ξ̃(U ,U ′,U ′′) � s} = F̃ (s),

and P{Ξ(U ,U ′,U ′′) = Ξ̃(U ,U ′,U ′′)} = κ. �

9. Denote C(X0, k) def== E ζk
0 κ

∞∑
n=1

(
(n + 1)k−1

κ
n−1

)

+E ζk
1

∞∑
n=1

( (
κn(n + 2)k−1 + (n + 1)k−1

)
κ

n−1
)
. �

10. Denote C(X0, a) def==
E eaζ1E eaζ0

1 − P a(ζ1)
. �
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Theorem 1. Suppose that the process (Xt, t � 0) satisfies (∗).

1. If E (ζ1)K < ∞ and E (ζ0)K < ∞ for some K � 1, then for all k ∈ [1,K]
∥∥∥PX0

t − P
∥∥∥

TV
� 2t−kC(X0, k).

2. If P a(ζ1) < 1 for some a > 0 and E eaζ0 < ∞, then
∥∥∥PX0

t − P
∥∥∥

TV
� 2C(X0, a) e−at.

Remark 4. The bounds in Theorem1 can be improved considering the properties
of the distribution F . �

Remark 5. Statement 1 of Theorem 1 improves the classic result ( 1). Statement
2 of Theorem 1 is weaker than the classical result (2), but here we have the
bounds for the constant C(·). �

3 Idea of the Proof of Theorem1

Coupling Method (see [6]). To prove Theorem 1, we will use the stationary
coupling method. The coupling method invented by Doeblin in [1] is used to
obtain the bounds of the rate of convergence of a Markov process to the station-
ary regime.

Let (X ′
t, t � 0) and (X ′′

t , t � 0) be two versions of Markov process (Xt, t � 0)
with different initial states,

PX′
0

t (A) def== P{X ′
t ∈ A}, PX′′

0
t (A) def== P{X ′′

t ∈ A},

and
τ (X ′

0,X
′′
0 ) def=== inf {t > 0 : X ′

t = X ′′
t } .

We suppose that Eϕ (τ (X ′
0,X

′′
0 )) = C (X ′

0,X
′′
0 ) < ∞ for some positive

increasing function ϕ(t). Then

∣∣∣PX′
0

t (A) − PX′′
0

t (A)
∣∣∣ � P {τ (X ′

0,X
′′
0 ) > t}

= P {ϕ (τ (X ′
0,X

′′
0 )) > ϕ(t)} � Eϕ (τ (X ′

0,X
′′
0 ))

ϕ(t)

by the coupling inequality and Markov’s inequality. By integration of this
inequality with respect to the stationary measure P we have

∣∣∣PX′
0

t (A) − P(A)
∣∣∣ �

∫
X

ϕ (τ (X ′
0,X

′′
0 )) dP (X ′′

0 )

ϕ(t)
=

Ĉ (X ′
0)

ϕ(t)
, (3)



Strong Bounds for Regenerative Processes 385

and
∥∥∥PX′

0
t − P

∥∥∥
TV

� 2
Ĉ (X ′

0)
ϕ(t)

.

Emphasize that the application of the coupling method is possible only for the
Markov processes. However, in queuing theory, usually the regenerative queueing
processes are not Markov. Therefore, the state space of considered regenerative
process must be extended so that the regenerative process with this state space
would become Markov.

So, for the use of the coupling method for the arbitrary regenerative process
(Xt, t � 0) we must extend the state space X of this process by such a way that
the extended process (Xt, t � 0) with the extended state space X is Markov.
For markovization of non-Markov regenerative process we can (for example) for
t ∈ [θn−1, θn) include in the state Xt full history of the process (Xt, t � 0) on
the time interval [θn−1, t]: the process Xt

def== {Xs, s ∈ [θn−1, t]| t ∈ [θn−1, θn)} is

Markov and regenerative with the extended state space X . Denote PX0

t (A) def==
P{Xt ∈ A} for the process Xt with the initial state X0 and A ∈ B(X ). If

E ζi < ∞, then PX0

t =⇒ P.

If we can prove that
∥∥∥∥PX0

t − P
∥∥∥∥

TV

� ϕ(t,X0) for all t � 0, then this inequal-

ity is true for the original non-Markov regenerative process (Xt, t � 0).
For simplicity, we assume that the process (Xt, t � 0) is homogeneous

Markov process, i.e. the transition function of this process in the period [0, θ0]
is the same as in the periods [θi, θi+1], i � 1.

Thus, in the sequel we suppose that the regenerative process (Xt, t � 0) is
homogeneous Markov process.

Notice, that in general caseP {τ (X ′
0,X

′′
0 ) < ∞} < 1 (for the Markov processes

in continuous time), and the “direct” use of coupling method is impossible.

Successful Coupling (see [3]) and Strong Successful Coupling. So, we will
construct (in a special probability space) the paired stochastic process (Zt, t �
0) = ((Z ′

t, Z
′′
t ), t � 0) such that:

1. For all t � 0 X ′
t

D= Z ′
t and X ′′

t
D= Z ′′

t .
2. P{τ(Z ′

0, Z
′′
0 ) < ∞} = 1, where τ (Z ′

0, Z
′′
0 ) = τ(Z0)

def=== inf {t � 0 : Z ′
t = Z ′′

t } .
3. Z ′

t = Z ′′
t for all t � τ (Z ′

0, Z
′′
0 ).

The paired stochastic process (Zt, t � 0) = ((Z ′
t, Z

′′
t ) , t � 0) satisfying the

conditions 1–3 is called successful coupling. If we replace the condition 2 by the
condition
2 ′. E τ(Z ′

0, Z
′′
0 ) < ∞, where τ (Z ′

0, Z
′′
0 ) = τ(Z0)

def=== inf {t � 0 : Z ′
t = Z ′′

t } , then
the paired stochastic process Zt = ((Z ′

t, Z
′′
t ) , t � 0) satisfying the conditions 1,

2 ′, 3 is called strong successful coupling.

The processes (Z ′
t, t � 0) and (Z ′′

t , t � 0) can be non-Markov, and its finite-
dimensional distributions may differ from the finite-dimensional distributions of
(X ′

t, t � 0) and (X ′′
t , t � 0) respectively; furthermore, the processes (Z ′

t, t � 0)
and (Z ′′

t , t � 0) may be dependent.
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For all A ∈ B(X ) we can use the coupling inequality in the form:

∣∣∣PX′
0

t (A) − PX′′
0

t (A)
∣∣∣ = |P{X ′

t ∈ A} − P{X ′′
t ∈ A}|

= |P{Z ′
t ∈ A} − P{Z ′′

t ∈ A}| � P{τ(Z ′
0, Z

′′
0 ) � t}

� Eϕ(τ(Z ′
0, Z

′′
0 ))

ϕ(t)
� C(Z ′

0, Z
′′
0 )

ϕ(t)
,

(4)

where C(Z ′
0, Z

′′
0 ) � Eτ(Z ′

0, Z
′′
0 ). As Z

(i)
0 = X

(i)
0 , the right-hand side of the

inequality depends only on X
(i)
0 . Then we can integrate the inequality (4) with

respect to the measure P as in (3):

∣∣∣PX′
0

t (A) − P(A)
∣∣∣ � (ϕ(t))−1

∫
X

C (Z ′
0, Z

′′
0 ) P ( dZ ′′

0 ) =
Ĉ (Z ′

0)
ϕ(t)

.

However, this integration gives some trouble.

Stationary Coupling Method. We will construct a strong successful coupling
(Zt, t � 0) = ((Zt, Z̃t), t � 0) for the process (Xt, t � 0) and its stationary
version (X̃t, t � 0), so we will estimate the random variable τ̃(X0) = τ̃(Z0)

def==
inf

{
t > 0 : Zt = Z̃t

}
. Then analogously to the inequality (4), we have

∥∥∥PX0
t (A) − P(A)

∥∥∥
TV

� 2P {τ̃(X0) > t} � 2
Eϕ(τ̃(X0))

ϕ(t)
.

4 Implementation of Idea

Theorem 2. If the process (Xt, t � 0) satisfies (∗), then there exists a strong
successful coupling (Zt, t � 0) = ((Zt, Z̃t), t � 0) for the process (Xt, t � 0) and
its stationary version (X̃t, t � 0).

Proof. The proof of Theorem2 consists of 4 steps.

1. Let us prove Theorem 2 for the process (Bt, t � 0) (Denotation 1). We will
give the construction of the strong successful coupling for the process (Bt, t �
0) and its stationary version (B̃t, t � 0) (on the some probability space
(Ω̃, F̃ , P̃) – Denotation 5).

Recall that the versions of the processes Bt and B̃t can be constructed as

follows: ζ0
def== F

−1(U0), and ζi
def== F−1(Ui) for i > 0; θi

def==
i∑

j=0

ζj ;

Zt
def== t − max{θi : θi � t} D= Bt; θ̃0 = ζ̃0

def== F̃−1(U ′
1), and
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ζ̃i
def== F−1(U ′

i) for i > 0 θ̃i
def==

i∑
j=0

ζ̃j ; Z̃0
def== F−1

θ̃0
(U ′′

1 ) (see Denotation 4);

Z̃t
def== 1(t < θ̃0)(t + Z̃0) + 1(t � θ̃0)(t − max{θ̃n : θ̃n � t}) D= B̃t.

Remark 6. P{Z̃0 � s} =

∞∫
0

Fu(s) d F̃ (u) =

∞∫
0

F (s + u) − F (u)
1 − F (u)

× 1 − F (u)
μ

du =
1
μ

s∫
0

(1 − F (u)) du = F̃ (s). �

This construction is the construction of independent versions of the processes
(Bt, t � 0) and (B̃t, t � 0). Now we will transform this construction.

2. To construct a pair of the (dependent) backward renewal processes, it is
enough to construct all renewal times of both processes (times ϑi in Fig. 1).
We will construct this pair (Zt, t � 0) = ((Zt, Z̃t), t � 0) by induction.

Basis of Induction. Put

θ0
def== F

−1(U0), θ̃0
def== F̃−1(U ′

0), Z̃0
def== F−1

θ̃0
(U ′′

0 );

and we put Zt
def== t, Z̃t

def== t + Z̃0 for t ∈ [0, ϑ0), where ϑ0
def== t0 ∧ t̃0 (in Fig. 1

ϑ0 = θ̃0).

Inductive Step. Suppose that we have constructed the process (Zt, t ∈ [0, ϑn)),
ϑn = θi ∧ θ̃j . There are three alternatives.

1. ϑn = θi = θ̃j – in Fig. 1 this situation occurs for the first time at the point
ϑ5. In this case we put

Zϑn
= Z̃ϑn

= 0, θi+1 = θ̃j+1 = ϑn+1 = F−1(Un+1) + ϑn;

and Zt = Z̃t
def== t − ϑn for t ∈ [ϑn, ϑn+1). After the first coincidence (time

τ̃ = ϑ5 in Fig. 1) the processes (Zt, t � τ̃) and (Z̃t, t � τ̃) are identical.
2. ϑn = θ̃j < θi (the times θ̃0 and θ̃3 in Fig. 1). In this case we put

Z̃ϑn
= 0, Zϑn

= Zϑn−0, θ̃j+1
def== θ̃j + F−1(Un+1);

and Z̃t
def== t − ϑn, Zt

def== t − ϑn + Zϑn
for t ∈ [ϑn, ϑn+1) where ϑn+1

def==
θi ∧ θ̃j+1.
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3. ϑn = θi < θ̃j (the times θ0, θ1 and θ2 in Fig. 1). In this case we put

θi+1
def== θi + Ξ(Un+1,U ′

n+1,U ′′
n+1); θ̃j

def== θi + Ã,

where Ã = Ξ̃(Un+1,U ′
n+1,U ′′

n+1); and Zt
def== t−ϑn, Z̃t

def== t−ϑn+F−1

Ã
(U ′′′

n+1)

for t ∈ [ϑn, ϑn+1), where ϑn+1
def== θi ∧ θ̃j+1.

3. Let us prove that the process (Zt, t � 0) = ((Zt, Z̃t), t � 0) is a strong
successful coupling for the processes (Bt, t � 0) and (B̃t, t � 0), and
E τ̃(B0) � E ζ0 + 2κ

−1E ζ1 < ∞.

Denote En
def== {Zθn

= Z̃θn
},

En
def==

(
En ∩

n−1⋂
i=0

E i

)
= {Zθn+1 = Z̃θn+1& Zθi

�= Z̃θi
, i � n}.

P
ζ0 ∼ F

ζ1 ∼ F
Ξ1 ∼ F

PP
Ξ2 ∼ F

ζ4 ∼ F

P
Ξ5 ∼ F

ζ0 ∼ Fa Ξ1 ∼ F Ξ2 ∼ F Ξ3 ∼ F ζ4 ∼ F

ζ5 = ζ4

θ3θ0 θ1 θ2 θ4 θ50

0 θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7

ϑ0 ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 = 6 ϑϑ 7τ

Fig. 1. Construction of the strong successful coupling Zt.

According to our construction of the pair (Zt, t � 0), we have P{Zθ0 �=
Z̃θ0} = 1 because the distribution F̃ (s) is absolutely continuous, and P{τ̃ =
θn+1} = P(En) = κ κ

n, where κ = 1 − κ. Now, using the inequality

E(ξ × 1(E))P(E) � E ξ (5)

for non-negative random variable ξ, and considering that E
(

ζn1
(

n−1⋂
i=1

Ei

))
=

(κ)n−1E ζn for n > 0, we have

Eτ̃ = E ζ0 + E(1(E1)ζ1) + E(1(E2)(ζ1 + ζ2)) + E(1(E3)(ζ1 + ζ2 + ζ3))

+ . . . + E

(
1(En)

n∑
i=1

ζi

)
+ . . . � E ζ0 + E ζ1

(
1 + κ

∞∑
i=0

κ
i

)

+κ E ζ2

(
1 + κ

∞∑
i=0

κ
i

)
+ κ

2E ζ3

(
1 + κ

∞∑
i=0

κ
i

)
+ . . .

+κ
nE ζn+1

(
1 + κ

∞∑
i=0

κ
i

)
+ . . . = E ζ0 + 2κ

−1E ζ1.

(6)
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4. Now we return to the Markov regenerative process (Xt, t � 0). The
regeneration times θ0, θ1, . . . of Xt form an embedded process Yt

def==
t − max {θi : θi � t} (the backward renewal time of the embedded renewal
process) with the distribution of the renewal time P {ζ � s} = F (s); the
length of i-th regeneration period is θi − θi−1 = ζi

D= ζ (i > 1).

We will apply the coupling method for extended process (Xt, t � 0) =
((Xt, Yt), t � 0) on the extended state space X̂ = X × R+.

The random element Xi = {Xt, t ∈ [θi−1, θi)} depends on the random vari-
able ζi = θi − θi−1; for A ∈ B(X ) and s ∈ [0, a) denote Ga(s,A) def==
P

{
Xθi−1+s ∈ A|ζi = a

}
; Ga(s,A) specify a conditional distribution of Xt on

the time period [θi−1, θi) given {θi − θi−1 = a}.
Therefore if we know all regeneration times of the process (Xt, t � 0), then

we know the conditional distribution of process Xt (given realization of Yt) in
every time after the first regeneration time t0: this distribution is determined by
the conditional distribution Gζi(s,A) of the random elements Xi.

Also the first regeneration time depends on the initial state; denote Ha(A) def==
P {X0 ∈ A|θ0 = a} = P{Xt ∈ A|(min{θi : θi � t} − t) = a}; Ha(A) specify a
conditional distribution of Xt given {ζ∗

t = a}, where ζ∗
t

def== (min{θi : θi � t}−t)
is a residual time of regeneration period at the time t.

Now we will construct the strong successful coupling for the extended process
(Xt, t � 0) = ((Xt, Yt), t � 0) and its stationary version (X̃t, t � 0) =
((X̃t, Ỹt), t � 0).

For this aim we construct the strong successful coupling (Wt, t � 0) =
((Wt, W̃t), t � 0) for the backward renewal process (Yt, t � 0) and its station-
ary version (Ỹt, t � 0) considering that the first renewal time θ0 of the process
(Yt, t � 0) has a distribution F(s).

After construction of renewal points {θi} of the process (Wt, t � 0) and
renewal points {θ̃i} of the process (W̃t, t � 0) we can complete them to the pairs
(Zt,Wt)

D= (Xt, Yt) and
(
Z̃t, W̃t

) D=
(
X̃t, Ỹt

)
by using Ga(s,A) and Ha(A).

In the construction of the processes (Wt, t � 0) and (W̃t, t � 0) we can apply
the technics used in the proof of Theorem2 in such a way that

τ̃(X0) = inf{t : Wt = W̃t} � t0 +
ν∑

i=1

ζi, (7)

where P{ν > n} = κ
n.

So, for t � τ̃(X0) we have Wt = W̃t, by construction of renewal processes
(Wt, t � 0) and (W̃t, t � 0). Then for t � τ̃(X0) we have

PX0
t (A) = P{Xt ∈ A} = P{X̃t ∈ A} = P(A)

as the distribution of the processes Xt and X̃t (after the first renewal point) is
determined only by renewal points.
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Theorem 2 is proved. �

Proof (of Theorem 1).

1. Using the inequality (5) and Jensen’s inequality for k � 1 in the form(
n∑

i=1

ai

)k

� nk−1

n∑
i=1

ak
i (ai � 0) we have from (6) and (7):

E(τ̃(X0))k � E

( ∞∑
n=1

(
(n + 1)k−1

(
ζk
0 +

n∑
i=1

ζk
i

)
1(En)

))

� E ζk
0 κ

∞∑
n=1

(
(n + 1)k−1

κ
n−1

)

+E ζk
1

∞∑
n=1

((
κn(n + 2)k−1 + (n + 1)k−1

)
κ

n−1
)

= C(X0, k),

this inequality implies Statement 1 of Theorem1.
2. Using the inequality (5) and considering that E(eaζi1(E i)) = P a(ζ1) for i � 1,

we have from (6):

E eaτ̃(X0) � E

( ∞∑
n=1

(
exp

(
a

(
ζ0 +

n∑
i=1

ζi

))
1(En)

))

� E eaζ0E eaζ1

(
1 +

∞∑
n=1

(P a(ζ1))n

)
=

E eaζ0E eaζ1

1 − P a(ζ1)
= C(X0, a),

that implies Statement 2 of Theorem 1. Theorem 1 is proved. �

5 Applying to the Queueing Theory

In the queuing theory the distribution of the period of the regenerative process
is often unknown. But often the regeneration period can be split into two parts,
usually this is a busy period and an idle period. And as a rule the idle period
has a known non-discrete distribution. So, in this situation the queueing process
has an embedded alternating renewal process.

If the bounds of moments of a busy period are also known, then we can apply
our construction for embedded alternating renewal process by some modification.

This modification is a construction of a strong successful coupling for alter-
nating renewal process (Xt, t � 0) and its stationary version, namely.

1. Let (Xt, t � 0) be an alternating renewal process having two states, 1 and
2, say. The time of the stay of the process (Xt, t � 0) in a state i has the
distribution function Fi(s) = P

{
ζ(i) � s

}
, and the periods of stay of the

process (Xt, t � 0) in the states 1 and 2 alternate. This process is non-
Markov.
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We complement the state of the process by the time, during which the process
located continually in this state: if completed process is, say, (Yt, t � 0) =
((nt, xt), t � 0) (denote n(Yt)

def== nt, x(Yt)
def== xt), then at the time t the process

is in the state nt, and xt
def== t − sup{s < t : n(Ys) �= nt} (for definiteness, we

assume F(s) = Fa(s), x0 = a, and xt = a + t for t ∈ [0, inf{s > 0 : ns �= n0})).
The Markov regenerative process (Yt, t � 0) has a state space {1, 2} × R+.

Put c(1) def== 2 and c(2) def== 1.
If Y0 = (i, a), then the process (Yt, t � 0) changes its first component n(Yt)

at the times ζ(a,i) = θ0,i, θ0,c(i), θ1,i, θ1,c(i), . . . .

Denote ζ
(i)
j = θj,c(i) − θj,i

D= ζ(i); ζ
(c(i))
j = θj,i − θj−1,c(i)

D= ζ(c(i));

P
{
ζ(a,i) � s

} def==
Fi(a + s) − Fi(s)

1 − Fi(s)
, and F̃i(s)

def==
1
μi

s∫
0

(1 − Fi(u)) du.

We assume that the distribution function F1(s) satisfies the condition (∗),
and the random variables ζ(a,i), ζ

(1)
j , ζ

(2)
j are mutually independent.

Suppose that Eϕ
(
ζ(i)

)
< ∞ for some increasing positive function ϕ(t).

If E ζ(i) = μi < ∞, then distribution PY0
t of the process (Yt, t � 0) with

every initial state Y0 weakly converges to the stationary distribution P; for the
stationary version (Ỹt, t � 0) of the process (Yt, t � 0) we have P{n(Ỹt) =

1} =
μ1

μ1 + μ2

def== p.

(
If we know only an estimate μ2 � m2, then p � ρ

def==

μ1

μ1 + m2

)
.

For construction of the strong successful coupling ((Zt, Z̃t), t � 0) of the
processes (Yt, t � 0) and (Ỹt, t � 0) we will again construct the times when at
least one of them changes its first component.

At the times t′i such that n(Yt′
i−0) = 2 and n(Yt′

i+0) = 1 we use (with
probability p) the random variables Ξi for (Yt, t � 0) and Ξ̃i for (Ỹt, t � 0);

P{Ξi � s} = F1(s), P{Ξ̃i � s} = F̃1(s) = (μ1)−1

s∫
0

(1 − F1(u)) du, and

P{Ξi = Ξ̃i} = κ =
∫

{s: ∃(F1(s))′}

(F1(s))′ ∧ (F̃1(s))′ d s.

And with probability q = 1 − p at the time θ′
i we use a procedure of the

prolongation of alternating renewal process Ỹt by using the distribution F̃2(s).

So, τ̃(Y0)
def== inf{t > 0 : Zt = Z̃t} � θ′

1 + ζ
(1)
ν +

ν−1∑
i=1

(
ζ
(1)
i + ζ

(2)
i

)
, where

P{ν > n} = (1 − pκ)n
(

� (1 − ρκ)n
)
.

Hence, if (1−ρκ)Eea(ζ(1)+ζ(2)) < 1 and Eeat′
0 < ∞, then we can find a bound

C(Y0, a) for Eeaτ̃(Y0): Eeaτ̃(Y0) � C(Y0, a).
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Therefore we have
∥∥∥PY0

t − P
∥∥∥

TV
� 2e−atC(Y0, a). The conditions for obtain-

ing of such estimation may be relaxed.
And if E

(
ζ(i)

)K
< ∞ for some K � 1, then we can estimate E(τ̃(Y0))k for

k ∈ [1,K]: E(τ(Y0))k � C(Y0, k).

Again we have
∥∥∥PY0

t − P
∥∥∥

TV
� 2

C(Y0, k)
tk

.

2. Now back to the queueing process (Qt, t � 0). If the regeneration period of
queueing process (Qt, t � 0) can be split into two independent parts, then
this process has an embedded alternating renewal process.

Firstly we will extend this queueing process (Qt, t � 0) to the Markov process
(Xt, t � 0).

Then we will complete the process (Xt, t � 0) by the embedded alternating
renewal process (Yt, t � 0) competed by the time from the last change of its
state (as in previous part).

Using the technique of the proof of Theorem1 we can find the bounds for
the convergence rate for the embedded alternating renewal process (Yt, t � 0);
this bounds estimate the rate of convergence of the extended queueing process
(Xt, t � 0); also this bounds are useful for the original queueing process
(Qt, t � 0).
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Convergence Evaluation of Adaptation to Losses:
The Case of Subscription Notification Delivery

to Mobile Users in Smart Spaces
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Abstract. A smart space provides a shared view on information, which
is cooperatively produced, processed, and consumed by participants
themselves in a computing environment. One of the most advanced
networked operations on this information is the subscription operation.
It supports the information-driven programming style: a notification is
delivered to all interested participants when an appropriate informa-
tion fact is formed in the smart space. In this work, we continue our
study of the notification delivery when the latter is subject to losses.
Notifications assigned to the mobile user in smart space are undelivered
though several information updates have been made by other partici-
pants. The notification delivery performance can be improved by using
active control: The client of the mobile user side proactively tracks infor-
mation updates according to individually defined time points. These
points can be selected rationally to adapt the notification delivery to
observed losses. We analytically and experimentally evaluate the con-
vergence of two active control strategies with adaptation to losses for
different loss distributions.

Keywords: Smart spaces · Internet of Things · Publish/subscribe ·
Mobile user · Notification delivery · Active control · Adaptation to
losses · Collaborative work environment · Convergence

1 Introduction

The emerging technologies of Internet of Things (IoT) lead now to the new
type of ubiquitous computing environments (IoT environments) where the role
of distributed processing of the information from multiple available sources
by multiple participants is essential [3,6]. A promising paradigm for program-
ming such an IoT environment, which consists of various information devices, is
smart spaces [1,9]. A smart space is deployed in a given computing environment
and provides a shared view on information, which is cooperatively produced,
processed, and consumed by participants themselves. Service consumption by
end-users is often performed using mobile personal devices (e.g., smartphones,
tablets), which is more suitable for ubiquitous computing (anywhere, anytime).

The publish/subscribe (pub/sub) model is widely used for organizing multi-
party interactions in distributed systems [4]. In smart spaces, the subscription
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 394–405, 2016.
DOI: 10.1007/978-3-319-51917-3 35
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operation is one of the most advanced networked operations on the shared infor-
mation [12,16]. The operation supports the information-driven programming
style: a notification is delivered to all interested participants when an appropri-
ate information fact is formed in the smart space.

In existing solutions for smart spaces, the major role in information sharing
is played by a semantic information broker (SIB) [5,9]. In particular, SIB is
responsible for detection of information changes and for subsequent delivery
of notifications to those clients that subscribed to the information. Both change
detection and notification delivery are subject to losses in network environments.

We continue our study on the active control of notification delivery for sub-
scription operation in the case of notification losses [7]. The client follows an
adaptive strategy controlling the check interval based on the number of noti-
fications lost in the latest round. This adaptive strategy is a generalization of
the TCP algorithm of additive–increase/multiplicative–decrease (AIMD). This
paper presents our extended convergence study of active control from [8]. We
analyze adaptive and multiplicative–decrease strategies for different fixed distri-
butions of notification losses.

Our previous analytical results characterize quantities of the steady state
behavior for the check interval [7]. The question of the convergence speed to
the steady state is topical especially for the IoT case with unstable networking
environments, which suffer from random fluctuations, e.g., workload or capacity
oscillations. Convergence properties characterize applicability of the analytical
evaluations. Meanwhile these issues have paid little attention in the literature. A
lot of studies, including [2,18], considered TCP congestion control convergence
properties. Nevertheless, those works studied the convergence speed focusing on
the aggressiveness and responsiveness indices. It is measured by the speed with
which the system approaches the goal state. The latter reflects such properties
of the congestion control as fairness and performance. In contrast in this work,
we apply the method presented in [15] to obtain upper bounds of the differ-
ence between transient and steady state distributions during the discrete time
evolution of the system adaptation and control.

The rest of the paper is organized as follows. Section 2 formulates the noti-
fication loss problem for the subscription operation in smart spaces. Section 3
introduces two control strategies for convergence analysis: the adaptive strategy,
which is a generalization of the AIMD algorithm of TCP, and the multiplicative–
decrease strategy. Section 4 discusses the applicability issues of the adaptive
strategy for such a particular domain as collaborative work environments.
Section 5 presents results of our convergence analysis, both theoretical and simu-
lation estimates, for the two notification loss distributions (uniform and Poisson
losses). Section 6 concludes the paper.

2 Notification Delivery Problem

Let us consider a smart space forming a sparse-connected multi-agent system
deployed in a given IoT environment [9]. Such an environment consists of vari-
ous digital devices, which act as IoT smart objects [6]. Software agents run on
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the devices and interact over the shared information content. This type of inter-
action involves, in parallel and asynchronously, a lot of informational sources
and destinations. Information sharing makes the interaction indirect, based on a
semantic information broker (SIB) [11,16]. The latter implements a shared infor-
mation storage, serving requests from agents on read/write operations. SIB acts
as an information hub maintaining knowledge of the whole environment and this
way enabling the agents to construct information services over this cooperative
knowledge generated in the smart space.

The subscription operation specifies a persistent query from each subscribed
agent (a subscriber or subscription client) to the SIB (a subscription server)
for a particular part of the shared content [12]. Whenever the specified part is
changed, the agent should receive the subscription notification. Changes are due
to parallel activity of other agents, which act as publishers in this interaction
(note that an agent may combine the roles of publisher and subscriber). SIB
monitors subscriptions of all clients and maps all incoming content changes to
the specified interests. Therefore, changes are controlled on the SIB side, and
corresponding notifications are sent to the clients. SIB acts as a passive receiver,
and we call such subscription notifications passive [7].

We employ Smart-M3 as a reference software platform for creating smart
spaces [5,11]. For each subscription, the SIB maintains a network connection
(e.g., a TCP connection) established by the client’s request [12,13]. Knowing the
set of all subscriptions, the SIB regularly checks that they are alive, removing
the subscription if its network connection is lost. Smart-M3 follows the best
effort style in subscription notification delivery. A notification should be sent to
a client if a related change in the content has happened. Some notifications can
be unsent by SIB due to its overload or internal operability faults. SIB does not
check delivery for already sent notifications, and a new notification can be sent
although the underlying network connection is broken on the client side.

The above properties do not ensure the dependable notification delivery in
Smart-M3 even if reliable network protocols are used, such as TCP. For a client
a possible solution is to have an additional mechanism reducing the number of
undelivered notifications. The obvious way is augmenting the passive notification
delivery with an active control strategy that the client performs individually on
its own [7]. We focus on the case when clients are associated with mobile end-
users for whom the mobile personal device (e.g., smartphone or tablet) is the
primary tool to access the smart space and consume its services [17]. A particular
application domain here is collaborative work environments, such as SmartRoom
system, see [10,11].

Consider the following model to formalize the key properties of the subscrip-
tion notification loss problem in smart spaces. Let i = 1, 2, . . . be the event-based
time evolution on the client side, where i is the index of notification events. An
event i is either a passive notification (i.e., received from SIB) or an explicit
check of the notification delivery (made by the client within its active control).
Denote by ti and ki the time elapsed and the number of losses occurred between
i and i + 1, respectively. Assume that some initial value t0 is always defined.
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The values for ki are non-negative integers. The active control is interested in
making ti large while keeping ki small (or even ki = 0 for all intervals).

3 Strategies of Active Control with Adaptation to Losses

In accordance with our previous work [7,8], we consider the following two strate-
gies of active control that implements “adaptation to losses” for the client. This
kind of adaptation means that the client reduces its check interval ti when losses
are observed, and increases ti in the case of no losses.

Adaptive Strategy. Let the client has observed no losses during ti−1, i.e.,
ki−1 = 0. The observation indicates the system state. The client increases addi-
tively the check interval, i.e., ti = ti−1 + δ for a fixed parameter δ > 0. On
the contrary, if the client has observed losses, i.e., ki−1 > 0, it reduces ti to
decrease the number of losses in the nearest future. The reduction applies the
multiplicative average

ti = αti−1 + (1 − α)
ti−1

ki−1 + 1

for a fixed parameter 0 ≤ α < 1. In a result, we yield the recurrent system by
which the check interval ti is reduced (multiplicative decrease) in case of losses
and incremented (additive increase) otherwise:

ti =

⎧⎨
⎩

ti−1 + δ if ki−1 = 0,
1 + αki−1

ki−1 + 1
ti−1 if ki−1 > 0.

(1)

Note that (1) is valid only for active control of subscription notifications. When
a passive notification i is delivered, then the value of ti is not set by the client.

Multiplicative–Decrease Strategy. It is a semi-adaptive approach, with halving
the check interval in case of losses and setting the check interval to some initial
(reference) value t0 otherwise:

ti =
{

ti−1/2 if ki−1 > 0,
t0 if ki−1 = 0.

(2)

Evolution (2) can be described by a discrete-time Markov chain. Since the
check interval accepts one of the values t0/2i for i = 0, 1, . . . , we consider it as
a random variable. Assume that the sequence {in}n≥0 of the indices of 2 forms
a Markov chain which is a random walk with transition probabilities pi,i+1 = qi

and pi0 = pi. Denote qi = 1 − pi for i = 0, 1, . . . . According to [15] the chain has
a steady state distribution πi = lim

n→∞ pij , if the following condition holds

∞∏
k=0

qk = lim
n→∞ q0q1 · · · qn = 0.
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The expectation of the first recurrence time in the state with the maximal check
interval (i = 0) is

1 +
∞∑

n=1

q0q1 · · · qn−1.

4 Application to Collaborative Work Environments

A particular application domain for adaptive control strategy is collaborative
work environments [14]. The smart spaces approach becomes popular for creating
such environments [11]. Our case study is SmartRoom system [10], where human
participants are mobile users. They consume services primarily from such mobile
personal devices as smartphones and tablets. From the one hand, subscription is
widely used by the mobile SmartRoom clients to detect appropriate events during
the collaborative work. On the other hand, the subscription is clear subject to
losses due to the mobility and wireless operation.

The SmartRoom system provides a set of services to assist such collabora-
tive work as conferences or meetings. Services are deployed by the environment
infrastructure and client applications are run by participants mobile devices. The
presentation service displays the current presentation slide. The current speaker
controls the slide show from his/her device. When the current slide is changing,
other participants are notified, and the slide on their mobile clients is updated.

Figure 1 shows the role of subscribtion and its active control in smart space
based collaborative work environment. Each publisher (service or participant
from his device) makes updates with a certain rate. In sum, M publishers makes
a flow of updates. Each of N subscribers perceives this flow as discrete process
where ki notification losses happen on time interval ti. These parameters can be
calculated on the mobile client side.

When a client uses the adaptive control strategy, an additional thread is
started. It implements for the client an algorithm to check for changes on a sub-
scription in parallel to client’s main thread. In particular, an unique notification

Fig. 1. Adaptive control strategy in smart space based collaborative work environment
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number can be assigned to each notification. If the number is different from
the last observed, then the value of ki can be calculated, not only the fact that
ki > 0. After that the check interval ti can be adjusted.

Parameter t0 should reflect the time when one notification is lost on average—
a tradeoff point of a control strategy. In practice, this average time is essentially
varied. For instance, in the SmartRoom system, a speaker can switch most of
slides more or less uniformly during the presentation. During the discussion
(immediately after the presentation) the behavior of slide changes is radically
different, e.g., a fast scrolling to reach a given slide and to answer to a question.
Therefore a periodic recalculation of t0 can be implemented. One way is to
estimate t0 as the average time between two subsequent passive notifications
observed by the client.

Another important issue is the strategy parameters selection, see α and δ
in (1). One of the main influencing factor is the total number of active agents,
including N subscribers and M publishers. Even if some active agents are not
involved into subscription they can create additional workload to the SIB and the
network. In the simplest case, one can set α = 0.3, i.e., the history has higher
priority over the latest observation. Taking δ = t0 reflects a kind of doubling
since the active control strategy tries to balance between ki = 0 (no loss) and
ki = 1 (one loss).

In the simulation experiments below we applied the case when t0 is fixed
based on known characteristics of the notification loss distribution. Then α = 0.3
and δ = t0. Study on effective methods for estimation and recalculation of t0 as
well as for selection of α and δ is subject of our further research.

5 Convergence Evaluation

In the subsequent analysis we consider the following distributions to model the
notification losses, in accordance with [7].

1. Let the time elapsed between consecutive losses follow a uniform distribu-
tion U {0, ξt0}. Hence, the average number of losses in any check interval is
proportional to its length ti

2. Let ki follow a Poisson process of parameter λ. Hence, the number of losses
during ti has the probability mass function

P(ki = k) =
(λti)k

k!
e−λti (3)

Convergence of the Multiplicative–Decrease Strategy to a Steady State Distrib-
ution. To estimate the convergence speed to the steady state distribution we
apply the following criterion described in [15]. Let the ergodicity coefficient be
defined as

k(n0) = 1 − 1
2

sup
i,i+1

∞∑
m=0

|pim(n0) − pjm(n0)|, (4)
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where pij(n0) is the transition probability from the state i to the state j in n0

time steps of the Markov chain.
Now we assume that qi ≤ 1−Δ < 1, i.e., the transition probability from any

state i �= 0 into the zero state satisfies the inequality pi ≥ Δ. Therefore one can
obtain the following estimation for the ergodicity coefficient k(1):

k(1) ≥ inf
i

pi ≥ Δ.

Thus the convergence rate of the Markov chain under consideration to the steady
state distribution {πj}∞

j=0 could be estimated as

sup
j

|πj(n) − πj | ≤ (1 − k(1))n−1, (5)

where πj(n) is the probability that the chain is in the state j at the step n.

For the Poisson notification losses we have p0 = e−λt0 and pn = p2
−n

0 . Then
it yields

inf
i

pi = inf
i

(
e−λt0

)2−i

= inf
i

e
−λt0
2i ≥ e−λt0 .

Consequently,
sup

j
|πj(n) − πj | ≤ (

1 − e−λt0
)n−1

.

As a result, the Markov chain convergence rate is slower for higher initial val-
ues t0.

For the uniform distribution one obtains qn = q02−n and correspondingly
pn = 1 − q02−n. Consequently, inf

i
(1 − q02−i) ≥ 1 − q0, and

sup
j

|πj(n) − πj | ≤ (1 − 1 − q0)n−1 = qn−1
0 .

As a result, the Markov chain convergence rate is slower for higher values of the
probability q0.

We can conclude this analytical evaluation that the convergence is exponen-
tial in dependence on the number of steps n.

Simulation Comparison of the Convergence for the Adaptive and Multiplicative–
Decrease Strategies. Denote lk = P[ki = k] the probability that the number of
losses is k on some interval ti. We performed simulation experiments for the
two active control strategies and for the two notification loss distributions. We
estimate lk as a frequency converging to theoretical values for the probabili-
ties P[ki = k]. The results are visualized in Figs. 2, 3, 4 and 5.

For uniform losses we set ξ = 0.1. For Poisson losses we set λ = 0.05. In both
control strategies, we take t0 = 20 s. According to the selected parameters of
the loss distributions, it means that every 20 s one notification is lost on average.
For strategy (1) we use α = 0.3 and δ = t0.

The multiplicative–decrease strategy for uniform losses (Fig. 2) has low values
of losses (i.e., ki ≤ 2). In contrast, for Poisson losses (Fig. 3) the number of
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Fig. 2. Experimental convergence of lk for the multiplicative–decrease strategy and
uniform notification losses (k = 0, 1, 2).

Fig. 3. Experimental convergence of lk for the multiplicative–decrease strategy and
Poisson notification losses (k = 0, 1, . . . , 6).

simultaneous losses per interval can be high (i.e., ki = 6 in some cases). The
adaptive strategies has higher number of losses since it can set the check interval
ti more than t0.

The experiments show that the probabilities lk are decreasing in dependence
on k = 0, 1, . . .. As a result, many simultaneous losses happen rare. The prob-
ability of no loss is highest and lies in 0.4 ≤ l0 ≤ 0.5, which means that the
strategies keep about half of check intervals in the “no loss state”. Clearly, l0
can be made higher by setting lower t0.
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Fig. 4. Experimental convergence of lk for the adaptive strategy and uniform notifica-
tion losses (k = 0, 1, . . . , 5).

Fig. 5. Experimental convergence of lk for the multiplicative–decrease strategy and
Poisson notification losses (k = 0, 1, . . . , 6).

The observed convergence of lk is fast for both strategies and all k. Figures 2,
3, 4 and 5 show that lk needs from 100 to 200 s (about 10 iterations) to reach
very close to the steady state. Table 1 shows quantitative comparison based on
efficiency metrics from [7]. Let kavg ≈ E[K] be the number of losses per interval
on average and tavg ≈ E[T ] be the average length of check interval:

kavg =
1
n

n∑
i=1

ki, tavg =
1
n

n∑
i=1

ti.

The ratio kavg/tavg shows the strategy performance: the lower the metric value
the higher the performance.
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Table 1. Performance comparison of the experimented strategies

Strategy Metric Distribution

Poisson Uniform

Multiplicative-decrease strategy kavg 0.729 0.646

tavg 14.382 13.959

kavg/tavg 0.051 0.046

Adaptive strategy kavg 1,138 0,996

tavg 22,989 20,838

kavg/tavg 0,049 0,048

Fig. 6. Experimental convergence comparison: the number of iterations iε for a strategy
to reach precision ε.

To estimate and compare the convergence we compute the metric iε (for each
check interval evolution) for given small ε > 0 as follows. Given evolution of lk(i)
over the discrete time evolution with iterations i. Let us find the minimal ik such
that for all i ≥ ik the difference |lk(i + 1) − lk(i)| < ε. Then iε = maxk ik, i.e.,
after which step all the probabilities lk become very close to their empirical
steady state values. That is, iε is the number of iterations iε to reach the given
precision ε. We experimented with 10−3 ≤ ε ≤ 10−1; the measured behavior of iε
is shown in Fig. 6.

We can conclude this experimental evaluation that the strategies have similar
performance in the terms of metric kavg/tavg. Note that this result is mainly due
to the static distribution of losses and apriory selection of t0. Nevertheless, the
adaptive strategy provides less number of iterations to converge to the steady
state from the beginning.
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6 Conclusion

This paper continued our study of active control of notification delivery for a
mobile client subscribed to certain information in the smart space. We considered
adaptive strategies of active control since they can achieve better performance
of subscription notification delivery in the terms of ratio “the number of losses
vs. the check interval”. We analyzed on the convergence property: the speed to
reach the steady state when the notification loss distribution is fixed. Our analyt-
ical and experimental evaluation shows that the convergence speed is reasonable
for such an IoT-enabled application domain as collaborative work environments.
The evaluation indicates that adaptive strategies are promising for use in modern
IoT environments with many mobile users. The performance can be improved
even more by introducing effective methods for strategy’s parameters selection
and recalculation. We leave this topic for our further research.
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Abstract. Processor sharing (PS) queuing systems are widely investi-
gated by research community and applied for the analysis of wire and
wireless communication systems and networks. Nevertheless, only few
works focus on finite queues with both PS discipline and service interrup-
tions. In the paper, compared with the previous results we analyze a finite
capacity PS queuing system with Markovian arrival process, unreliable
server, service interruptions, and an upper limit of the number of cus-
tomers it serves simultaneously. For calculating the mean sojourn time,
unlike a popular but computational complex technique of inverse Laplace
transform we use an effective method based on embedded Markov chain.
A practical example concludes the paper.

Keywords: Queuing system · Processor sharing · Egalitarian processor
sharing · Unreliable server · Interruption · Probability distribution ·
Recursive algorithm · Sojourn time · Absorbing Markov chain

1 Introduction

Processor sharing (PS) queueing systems has been widely adopted as a conve-
nient models for bandwidth sharing in computer and communication systems
[1]. Kleinrock [2] introduced the simplest and the best known class of egali-
tarian processor sharing (EPS) discipline [3]. There are two variants of such
systems: without customer waiting and with customer waiting. Both groups can
be further divided into subgroups of finite capacity queues and infinite capacity
queues. In [4], an exact expression for the Laplace transform of the distribution
of a customers response time was obtained for infinite capacity systems. In [5],
the conditional moments of the sojourn time and in [6]. Laplace transform for
the conditional sojourn time density was found for finite capacity mode. For
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infinite capacity system with exponentially distributed interarrival and service
times, a method for calculating the moments and the distribution of the response
time was presented in [7]. A recursive formula to compute the stationary sojourn
time distribution in a infinite capacity system with Markovian arrival process
was provided in [8]. General QBD model was investigated in [9], in which server
unavailability and more settings regarding arrival and service time were incorpo-
rated. Note that the most papers supposes to calculate characteristics via inverse
Laplace transform that is enough complicated process. For computational rea-
sons, a more effective procedure is the use of algorithms, e.g. see [8,10,11]. In
this paper, we study finite capacity EPS system with waiting, Markovian arrival
process, unreliable server, and apply the similar with [10,16] method for deriva-
tion of an algorithm for calculating the mean sojourn time.

The paper is organized as follows. In Sect. 2, we propose a queuing system
with service interruptions, finite buffer, PS discipline, and threshold on the num-
ber of customers as well as a method for calculating the mean sojourn time based
on an embedded Markov chain. In Sect. 3, we give a numerical example. Section 4
concludes the paper.

2 Processor Sharing System with Markovian Arrival
Process

2.1 Queuing Model

Consider a single-server queuing system with finite capacity r. The server is
unreliable, on- and off-period durations are exponentially distributed with rates
α > 0 and β > 0 correspondingly. Customers arrive according to a Markovian
Arrival Process (MAP) governed by a continuous-time finite-state Markov chain
with M states, which is called the underlying Markov chain hereafter. Arrival
process is described by matrices A0 and A1, A0 + A1 = A, where A is the
generator matrix of the underlying Markov chain [12,13]. We assume that matrix
is irreducible and denote θ the stationary probability vector of the underlying
Markov chain and 1 a vector of ones with appropriate size. Then customer arrival
rate is given by λ = θa, where a = A11. Service times of customers are assumed
to be i.i.d. having an exponential distribution with parameter μ > 0. Upon
arrival of a customer, it is placed in the queue. Customers are served according
to PS discipline, but no more than N customers at once 0 < N ≤ r. It means, if
there are k customers in the system, only k∗ = min{k,N} of them are served,
and the rest max{k − k∗, 0} customers wait in the queue. If upon arrival of a
customer, the system is full already, then customer is lost.

Behaviour of the queue with unreliable server can be described by Markov
process with states (k, j) and (i, k, j), i = 0, 1, . . . , N, k = 0, 1, . . . , r, j =
1, 2, . . . ,M. During the on-periods the process is in a state (k, j) and during
the off-periods it is in a state (i, k, j). Here k is number of customers in the sys-
tem, j is the state of the underlying Markov chain, and i indicates the number
of servicing customers in the system at the moment of the last server failure.
Total number of the states is equal to M [(N + 2)(r + 1) − N(N + 1)/2].
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Let us put the states of process in the following order:

(0, 1), ..., (0,M), (1, 1), ..., (1,M), ..., (r, 1), ..., (r, M),
(0, 0, 1), ..., (0, 0,M), (0, 1, 1), ..., (0, 1,M), ..., (0, r, 1), ..., (0, r, M),

(1, 1, 1), ..., (1, 1,M), (1, 2, 1), ..., (1, 2,M), ..., (1, r, 1), ..., (1, r, M), ...,
(N,N, 1), ..., (N,N,M), (N,N + 1, 1), ..., (N,N + 1,M), ...,

(N, r, 1), (N, r, 2), ..., (N, r,M).

(1)

With this order, the generator matrix of ξ(t) takes the following form

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

U V0 V1 · · · VN

W0 D0 0 · · · 0

W1 0 D1
. . .

...
...

...
. . . . . . 0

WN 0 · · · 0 DN

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2)

All blocks in matrix Q in turn are also block matrices with size of blocks
M × M . Block size of matrix U is (r + 1) × (r + 1),

U =

⎡
⎢⎢⎢⎢⎢⎣

A0 − αI A1

μI A0 − (α + μ)I A1

. . . . . . . . .
μI A0 − (α + μ)I A1

μI A − (α + μ)I

⎤
⎥⎥⎥⎥⎥⎦

. (3)

Matrices Wi with block size (r +1− i)× (r +1) have nonzero blocks βI only
on the diagonal, which starts at the right bottom corner and continues up to the
first row,

Wi =

⎡
⎢⎢⎢⎣

βI
βI

. . .
βI

⎤
⎥⎥⎥⎦ , i = 0, 1, ..., N. (4)

Matrices Di have block size (r + 1 − i) × (r + 1 − i) and have the following
block two-diagonal structure:

Di =

⎡
⎢⎢⎢⎢⎢⎣

A0 − βI A1

A0 − βI A1

. . . . . .
A0 − βI A1

A − βI

⎤
⎥⎥⎥⎥⎥⎦

, i = 0, 1, ..., N. (5)

And finally, matrices Vi have block size (r + 1) × (r + 1 − i), all of them,
except VN , have the only nonzero block αI at the first column of the (i+1)−th
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block row. Blocks αI in matrix VN are placed at the diagonal that starts at the
right bottom corner and continues up to the left edge:

VN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

αI
αI

. . .
αI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,Vi =

⎡
⎢⎢⎢⎢⎢⎢⎣

αI

⎤
⎥⎥⎥⎥⎥⎥⎦

, i = 0, 1, ..., N − 1. (6)

2.2 Stationary Probability Distribution of the Process

Denote q = (q0,q1, ...,qr,q00, ...,q0r,q11, ...,q1r, . . . ,qNN , ...,qNr) stationary
probabilities vector of process ξ(t). All subvectors qk and qik of vector q are
M -dimensional and meet the system of equilibrium equations qQ = 0,q1 = 1,
that can be written in the following form:

q0(A0 − αI) + μq1 + βq00 = 0,

qk(A0 − (α + μ)I) + qk−1A1 + μqk+1 + β
k∑

i=0

qik = 0, 0 < k < N,

qk(A0 − (α + μ)I) + qk−1A1 + μqk+1 + β
N∑

i=0

qik = 0, N ≤ k < r,

qr(A − (α + μ)I) + qr−1A1 + β
N∑

i=0

qir = 0;

(7)

qii(A0 − βI) + αqi = 0, 0 ≤ i < N,
qik(A0 − βI) + qik−1A1 = 0, i < k < r, 0 ≤ i < N,

qir(A − βI) + qir−1A1 = 0, 0 ≤ i < N ;
(8)

qNN (A0 − βI) + αqN = 0,
qNk(A0 − βI) + qNk−1A1 + αqk = 0, N < k < r,

qNr(A − βI) + qNr−1A1 + αqr = 0.
(9)

Proposition 1. Let matrices P,R,S be defined as P = −(A0 −βI)−1A1, R =
−(A0 − βI)−1, S = −(A − βI)−1. Then

1. Vectors q0,q1, ...,qr are solutions of the following equilibrium equations with
irreducible generator matrix

q0(A0 − αI) + μq1 + αβq0R = 0,

qk(A0 − (α + μ)I) + qk−1A1 + μqk+1 + αβ
k∑

i=0

qiPk−iR = 0,

0 < k < r,

qr(A − (α + μ)I) + qr−1A1 + αβ
r∑

i=0

qiPr−iS = 0.

(10)
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2. Vectors qik, 0 ≤ i < N , i ≤ k < r, can be calculated using the following
formulas:

qik = αqiPk−iR, i ≤ k < r,
qir = αqiPr−iS, 0 ≤ i < N ; (11)

qNk = α
k∑

i=N

qiPk−iR, N ≤ k < r,

qNr = α
r∑

i=N

qiPr−iS.
(12)

Proof. Since the generator matrix A of the underlying Markov chain is irre-
ducible, matrices A0 − βI and A − βI are non-singular with (A0 − βI)−1 ≤ 0
and (A − βI)−1 ≤ 0. After the series of simplifications Eqs. (8) and (9) can be
rewritten in form of expressions (11) and (12). Substitution of formulas (11–12)
into (7) leads to system of Eq. (10) in vectors q0,q1, ...,qr.

Note that matrix B in system of Eq. (12) is block upper nearly triangular
indecomposable generator matrix, which can be obtained from matrix Q by
B = U − VD−1W [15], where

V =
[
V0 · · · VN

]
,D =

⎡
⎢⎣
D0

. . .
DN

⎤
⎥⎦ ,W =

⎡
⎢⎣
W0

...
WN

⎤
⎥⎦ . (13)

Thus, formulas (10–12) allow to calculate stationary probabilities up to a
constant multiplier. Then, applying normalizing condition, vector q is obtained.
One can note that the sum of all subvectors of vector q is the stationary proba-
bility distribution of the underlying Markov chain, i.e.

r∑
k=0

qk +
N∑

n=0

r∑
k=n

qnk = θ. (14)

2.3 Customer Sojourn Time in the System

Let us consider absorbing Markov process ξ̃(t), that begins immediately after
the arrival of a particular customer and falls to absorbing state ω at the end of
service of the customer. Consequently, the customer sojourn time in the system
is equal to the time before absorption in process ξ̃(t). State space of ξ̃(t) can be
obtained from the state space (1) of the initial process ξ(t) by adding absorbing
state ω and by eliminating the states, that cannot be achieved immediately after
an arrival of a customer:

(1, 1), ..., (1,M), (2, 1), ..., (2,M), ..., (r, 1), ..., (r, M),
(0, 1, 1), ..., (0, 1,M), (0, 2, 1), ..., (0, 2,M), ..., (0, r, 1), ..., (0, r, M),

(1, 1, 1), ..., (1, 1,M), (1, 2, 1), ..., (1, 2,M), ..., (1, r, 1), ..., (1, r, M), ...,
(N,N + 1, 1), ..., (N,N + 1,M), (N,N + 2, 1), .., (N,N + 2,M), ...,

(N, r, 1), ..., (N, r,M), ω.
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With the introduced states order, generator matrix of ξ̃(t) takes the following
form:

C̃ =
[
C c
0 0

]
,C =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ũ Ṽ0 Ṽ1 · · · ṼN

W̃0 D̃0 0 · · · 0

W̃1 0 D̃1
. . .

...
...

...
. . . . . . 0

W̃N 0 · · · 0 D̃N

⎤
⎥⎥⎥⎥⎥⎥⎦

, c =

⎡
⎢⎢⎢⎢⎢⎣

ũ
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

. (15)

All blocks of matric C are also block matrices with size of blocks M × M .
Block size of matrix Ũ is r × r, and size of vector ũ is rM . Matrix Ũ has
block-tridiagonal structure and can written in the following form

Ũ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 − (α + μ)I A1

1
2μI A0 − (α + μ)I

. . .

2
3μI

. . .

. . . A1

A0 − (α + μ)I
. . .

N−1
N μI

. . .

. . . A1

A − (α + μ)I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ũ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1
1
2μ1
...

1
N−1μ1
1
N μ1

...
1
N μ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Matrices Ṽi, i �= 0, can be obtained from matrices Vi by eliminating of the
first block row, matrices W̃i, i �= 0, are formed from matrices Wi by eliminating
of the first block column, while matrices Ṽ0,W̃0, D̃0 are obtained by eliminating
of the first block row and the first block column from V0,W0,D0.

The initial distribution of ξ̃(t) is stationary probability distribution p =
(p1, ...,pr,p01, ...,p0r,p11, ...,p1r, . . . ,pNN , ...,pNr) of discrete time Markov
chain ξ(τn), embedded at the moments just after an arrival of a customer.
According to the properties of Markovian arrival process, probability distrib-
ution p can be calculated as it is shown below:
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pii = 0, i = 1, 2, ..., N,
pk = 1

λ(1−π)qk−1A1, k = 1, 2, ..., r,

pik = 1
λ(1−π)qik−1A1, i = 0, 1, ..., N, k = i + 1, i + 2, ..., r,

(17)

where π is the blocking probability of a customer:

π = λ−1(qr + q0r + q1r + ... + qNr)a. (18)

Probability density function g(x) of the time before absorption of the ξ̃(t) and
its Laplace-Stieltjes transformation f(s) can be found using well-known formulas
for phase-type distribution functions [14]:

g(x) = p exp(Cx)c, f(s) = p (sI − C)−1 c. (19)

Formula (19) leads to the following expression for the k-th moments of the
customer sojourn time:

mk = mk1, (20)

where

mk = k!pMk, M = −C−1. (21)

2.4 Computational Algorithms for the K-th Moment of the Sojourn
Time

The correlation of vectors mk that are needed for calculation of sojourn time
moments by formula (21) can be described by a simple recurrent relation

m0 = p, mk = kmk−1M, k = 1, 2, ... (22)

Consequently, these vectors are easy to find having matrix M = −C−1.
Exploiting special structure (15) of matrix C, we derive an efficient numerical
algorithm for their calculation.

Multiplying both sides of the Eq. (22) by matrix C, we obtain the following
expression:

mkC = −kmk−1, k = 1, 2, ... (23)

Thus, vectors mk can be found from system of linear equations xC = b by
sequential substitution the right sides of Eq. (23) to b.

Proposition 2. Solution x = (x1, ...,xr,x01, ...,x0r,x11, ...,x1r, . . . ,xNN , ...,
xNr) of system of linear equations xC = b with matrix C defined by
formula (15) and any vector b = (b1, ...,br,b01, ...,b0r,b11, ...,b1r

, . . . ,bNN ,bNN+1, ...,bNr) can be found according to the following formulas:
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x0k = −
k∑

n=1
b0nPk−nR, 1 ≤ k < r,

x0r = −
r∑

n=1
b0nPr−nS;

(24)

xik = αxiPk−iR −
k∑

n=i

binPk−nR, i ≤ k < r, 1 ≤ i < N,

xir = αxiPr−iS −
r∑

n=i

binPr−nS, 1 ≤ i < N ;
(25)

xNk = α
k∑

n=N

xnPk−nR −
k∑

n=N

bNnPk−nR, N ≤ k < r,

xNr = α
r∑

n=N

xnPr−nS −
r∑

n=N

bNnPr−nS.
(26)

Here vectors x1, ...,xr give a unique solution of the following linear system:

x1 (A0 − (α + μ)I) + 1
2μx2 + αβx1R = b1 + β(b01 + b11)R,

xk(A0 − (α + μ)I) + xk−1A1 + k
k+1μxk+1 + αβ

k∑
i=1

xiPk−iR

= bk + β
k∑

i=0

k∑
n=i

binPk−nR, 1 < k < N,

xk(A0 − (α + μ)I) + xk−1A1 + N−1
N μxk+1 + αβ

k∑
i=1

xiPk−iR

= bk + β
N∑

i=0

k∑
n=i

binPk−nR, N ≤ k < r,

xr(A − (α + μ)I) + xr−1A1 + αβ
r∑

i=1

xiPr−iS =

= br + β
N∑

i=0

r∑
n=i

binPk−nS,

(27)

with b00 = 0.

Proof. Let us rewrite system of linear equations xC = b in vector x, as the
system of linear equations in its subvectors xk and xik:

x1(A0 − (α + μ)I) + 1
2μx2 + β(x01 + x11) = b1,

xk(A0 − (α + μ)I) + xk−1A1 + k
k+1μxk+1 + β

k∑
i=0

xik = bk,

1 < k < N,

xk(A0 − (α + μ)I) + xk−1A1 + N−1
N μxk+1 + β

N∑
i=0

xik = bk,

N ≤ k < r,

xr(A − (α + μ)I) + xr−1A1 + β
N∑

i=0

xir = br;

(28)
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x01(A0 − βI) = b01,
x0k(A0 − βI) + x0k−1A1 = b0k, 1 < k < r,

x0r(A − βI) + x0r−1A1 = b0r;
(29)

xii(A0 − βI) + αxi = bii, 1 ≤ i < N,
xik(A0 − βI) + xik−1A1 = bik, i < k < r, 1 ≤ i < N,

xir(A − βI) + xir−1A1 = bir, 0 ≤ i < N ;
(30)

xNN (A0 − βI) + αxN = bNN ,
xNk(A0 − βI) + xNk−1A1 + αxk = bNk, N < k < r,

xNr(A − βI) + xNr−1A1 + αxr = bNr.
(31)

Since matrices A0−βI and A−βI are non-singular, Eqs. (30) and (31) lead to
expressions (24–26). By substitution of them into (28) system of linear Eq. (27)
in vectors x1, ...,xr is derived. Matrix B̃ of system of Eq. (27) is non-singular
generator matrix, since it can be obtained from blocks of non-singular generator
matrix C in the following way: B̃ = Ũ − ṼD̃−1W̃ [15], where

Ṽ =
[
Ṽ1 · · · ṼN

]
, D̃ =

⎡
⎢⎣
D1

. . .
DN

⎤
⎥⎦ ,W̃ =

⎡
⎢⎣
W̃1

...
W̃N

⎤
⎥⎦ . (32)

3 Numerical Analysis

In order to illustrate the application of developed recursive algorithms, plots of
the blocking probability and the mean sojourn time for different values of α and
β are presented in Figs. 1 and 2 accordingly. The calculations were performed
for the service rate μ = 5, N = 15 and r = 25 as it was done in [16] for analysis
of web browsing performance metrics in an unreliable wireless infrastructure.
Matrices defining the underlying Markov chain of the Markovian arrival process
are

A =

⎛
⎝−1 1 0

1 −3 2
0 2 −2

⎞
⎠ , A1 =

⎛
⎝2 0 0

0 3 0
0 0 4

⎞
⎠ .

As it is seen on figures, the shorter the on-period in the system, the bigger
blocking probability and longer the mean sojourn time.

Moreover, Fig. 2 shows that for nearly all of considered system parameters
the mean sojourn time does not exceed 5 s, which is defined as a maximum
permissible delay for web page download and rendering [16].
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Fig. 1. Mean sojourn time of a customer depending on the on-period duration rate α

Fig. 2. Blocking probability of a customer depending on the on-period duration rate α
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4 Conclusion

In this paper, we propose an absorbing Markov chain based method for the
analysis of sojourn time distribution in the finite capacity queuing system with
PS discipline, unreliable server and Markovian arrival process. We derived a
recurrent algorithm for stationary probability distribution of the queue. For the
analysis of mean sojourn time, we adjusted well-known absorbing Markov chain
based technique to address some peculiarities connected with the threshold on
maximum number of simultaneously served customers and unreliability of the
server.

In our further study in this field we plan to calculate other characteristics,
such as waiting time or waiting time due to interruptions, using similar technique.

Acknowledgements. The authors are grateful to the Director Research of the Service
Innovation Research Institute, Professor Valeriy Naumov, for useful advices.
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Abstract. Growing popularity of cloud services is explained by many
advantages of them. The accessibility, flexibility, scalability, ease of man-
agement, the relatively low cost of implementation can be listed among
the main advantages. The demand for cloud services with the ability to
change one cloud service provider to another one without any significant
cost for a user result in a high competition between cloud providers.
Due to this reason, it became important to find the optimal performance
measures of cloud systems. These measures, on the one hand, must meet
all the requirements of Service Level Agreement (SLA), on the other
hand, do not lead to excessive costs for provider. The paper presents the
evaluation of the main service quality characteristics of cloud systems,
including formulas for variance of residence time in the synchronization
buffer. For the analysis of a cloud system, fork-join queues with corre-
sponding methods of its approximation were used.

Keywords: Cloud computing · Fork-join queuing system · Response
time · Synchronization buffer · Synchronization time

1 Introduction

The interest in cloud systems, in addition to the main advantages of their use, is
defined by the need of commercial and research organizations in powerful com-
puting infrastructure to perform resource-intensive tasks at relatively low cost
[9]. The one of the most important indicators of quality of service for the cloud
system is the response time. In the context of the resolution of cluster problems,
that are characterized by a high level of parallelism, the request processing is
completed at the end of processing of all of its constituent tasks, so the response
time is the maximum of all tasks sojourn times. In addition, the one of the most
effective ways to reduce the response time is to send the same request to several
virtual machines, and wait for the earliest response. In this case, the response
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 418–429, 2016.
DOI: 10.1007/978-3-319-51917-3 37
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time is the minimum of the sojourn times of all tasks in the system [8]. Along
with such an important quality of service metrics as the system response time, in
recent years the time spent by sub-queries in the synchronization buffer (i.e. the
time between the end of the first and last tasks of the same request), became an
essential parameter for the parallel computing [13]. This trend is explained by
the fact that the longer the tasks assembly time, the greater should be the size of
the buffer. Moreover, as the number of virtual machines or task types increase,
the buffer size is also should be increased. In this context, it is important to
select the optimal values of system parameters to minimize the synchronization
time without sacrificing the quality of service.

1.1 The Model of a Cloud Center

The functioning of a cloud computing center can be described in terms of a
fork-join queueing system with K M/M/1-type subsystems with homogeneous
servers [12] (Fig. 1). Let us denote ξk - the sojourn time of the k-th task of a
request before it is collected at the synchronization buffer. Assume that joining
up of all tasks in the synchronization buffer occurs immediately.

Task manager Synchronisation
buffer

...

...

...

VM

VM

VM

.

.

.

.

.

.

Fig. 1. The queueing system model of the cloud center

We should note that the task sojourn times ξk are dependent random vari-
ables due to the joint moment of arrival. Because the exact solution for fork-join
system with K > 2 is unknown and the possibility of obtaining this solution is
under question [10,15], we will approximate our system by K parallel indepen-
dent Mλ/Mμ/1 type queuing systems. We can use such approximation because
the marginal probability distributions of k-th subsystem, k = 1,K, of a fork-join
system are equal to probability distributions of the M/M/1 queuing system [6].

1.2 Probability Characteristics of the System

In this section, we consider the probability characteristics of random variables
that determine performance measures of a cloud system. As mentioned above,
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for the cloud center analysis a fork-join queuing system was selected. It should
be noted that the first results of its research have been obtained for the case
of two servers with Poisson arrivals and exponential service time [10]. However,
despite the Markovian assumptions, the stationary probabilities describing the
system state explicitly have not been received even for such nominally simple
version of this model.

A good approximation of the stationary distribution for infinite capacity
queues is stationary distribution of a system of finite but comparatively large
capacity, so that the blocking probability is negligible, and in this case iterative
numerical methods are applied for solving the systems of linear equations of
large dimension [12].

Another option for calculation of stationary probabilities, which were sub-
sequently used to analyze the system response time was proposed in [1–3]. The
authors consider two models approximating the original system: a model, in
which all buffers, except the buffer of the first server, have finite capacity and
the model with predefined threshold on maximum difference between each pair
of queue lengths. Analysis of these systems is provided using matrix-geometric
methods [11], since the transition probability matrices are reduced to block-
triangular form and lead to the stationary probabilities distribution, which is
used to obtain the distribution and the moments of the response time. The
obtained expressions are upper and lower bounds for the response time moments.
This approach, according to the authors, can be adjusted to analyze the systems
with non-Poisson arrivals, and nonexponential service times on heterogeneous
servers.

Thus, the majority of authors in their works explore one of the main quality
indicators of the described queuing systems - the response time. It should be
noted that the exact expression for the average response time was obtained only
for the fork-join system with two parallel M/M/1 servers (K = 2) in [10] using
the results of [5]:

E[W2,max] =
1

μ − λ
· 12 − ρ

8
, (1)

where ρ = λ/μ < 1. For the case K > 2, the approximations of the average
response time were obtained using different methods.

One way for the response time approximation of the fork-join system with K
parallel M/M/1 servers with the same service intensities has also been proposed
in [10]. The idea of proposed estimation method emerged from observing the
behavior of the response time in numerical experiments. The upper bound for
an average response time can be obtained assuming random variables of task
sojourn time to be independent from each other, since it was proved in [10]
that random variables of a task sojourn time ξi, i = 1,K are associated random
variables with the following property:

P ( max
1≤i≤K

ξi > x) ≤ 1 −
K∏

i=1

P (ξi ≤ x).



The Estimation of Probability Characteristics of Cloud Computing Systems 421

Lower bound for the average response time is obtained if we discard the buffer.
In this case, the response time will be a maximum of K i.i.d. random variables
with mean 1/μ.

Thus, the upper and lower bounds increase with the same rate HK =∑K
i=1 1/i (a partial sum of the harmonic series), in other words, for large val-

ues of K the limits have the order of O(ln K). Then, we determine the value of
unknown constant using simulations and finally get

E[WK,max] ≈
[

HK

H2
+

4
11

(
1 − HK

H2

)
ρ

]
12 − ρ

8
1

μ − λ
, K ≥ 2. (2)

This approach, as it is shown in the numerical analysis section, has an approxi-
mation error not exceeding 5% for 2 ≤ K ≤ 32.

Authors of paper [15] also analyze a K-way exponential, infinite capacity
fork-join system. The resulting approximation is arithmetic mean of the upper
and lower bounds. For an upper bound, a modified expression of the upper bound
from of the above-mentioned paper [10] is used. The lower bound is derived by
analyzing the response time in the similar system with non-parallel queuing [14].
Thus,

1
μ

(
HK + ρ

K∑
k=1

1
k(k − ρ)

)
≤ E[WK,max] ≤ 1

μ

(
HK + ρ

K∑
k=1

1
k(1 − ρ)

)
.

Next, one may calculate the arithmetic mean of the obtained bound and finally:

E[WK,max] ≈ 1
μ

[
HK +

ρ

2(1 − ρ)

(
K∑

k=1

1
k − ρ

+ (1 − 2ρ)
K∑

k=1

1
k(k − ρ)

)]
. (3)

In [16], a different method for analyzing response times is used. The basic
idea is that, since an analytical solution is very difficult to find, but it is possible
to get asymptotic formulas for the desired characteristics. In this connection,
a combination of heavy and light traffic interpolation approximations is used.
These techniques, unlike the above-described method, do not use simulations,
but their use can be extended to the analysis of fork-join systems not only with
the exponential service time or with Poisson arrivals.

Light traffic interpolation approximations is the result of system functioning
in the low-load mode, i.e., when the intensity of the arrival flow λ is very small. In
this case, it is advisable to refer to the expansion in a Taylor series of performance
measures of the system: distribution function for the response time as a function
of λ in the neighborhood of zero. In that way, we can determine the unknown
values in the function representation as a polynomial of λ with degree n. We
consider only polynomials of zero and first degree. In the case of the heavy traffic
interpolation the fork-join system behavior is analysed in such a regime that the
value λ is very close to the value μ. The key parameter here is β, two extreme
values of which are interpreted as two bound cases: if β = 0, then it means that
the incoming flow is deterministic, if β = 1, the service time is deterministic
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and hence the ways of fork-join system are K independent D/GI/1 or GI/D/1
queue, correspondingly.

Thus, thanks to the analysis of response time function behavior in the bound-
ary values of system load, one is able - without carrying out of numerical exper-
iments to estimate the constants in the interpolation formulas - to determine
their exact expressions in closed form.

In the case of fork-join system with K M/M/1-ways, the approximation of
response time is as follows:

E[WK,max] ≈
[
HK +

(
VK − HK

)λ

μ

]
1

μ − λ
, 0 ≤ λ < μ, K ≥ 2, (4)

where

VK =
K∑

i=1

(
K

i

)
(−1)i−1

i∑
m=1

(
i

m

)
(m − 1)!

im+1
.

Also in [16], in order to obtain an estimation of the average response time
in cases with different arrival flows and distributions of service time, the heavy
traffic interpolation method was modified, and analyzed for three values of key
constant β = 0, 1/2, 1. As a result, we obtain a quadratic interpolation, and
combining it with light traffic method, the approximation formulas for average
response time were derived for the following four non-Markov cases:

– Erlang distribution with two stages for incoming flow and exponential service
time;

– Poisson incoming flow (arrival) and hyperexponential service time;
– Poisson incoming flow and Erlang distribution with two stages of service time;
– hyperexponential incoming flow and exponential service time.

Since the response time of fork-join system is classically defined as a max-
imum, and in some cases, also, as a minimum of K random variables of tasks
sojourn times, it is natural that one of the alternative ways to measure response
time is the use of order statistics theory. By definition, if ξ1, ..., ξK - final sample
defined on a probability space (Ω,F, P ) and ω ∈ Ω : xi = ξi(ω), i = 1, ...,K,
enumerate the sequence {xi}K

i=1 in decreasing order so that x(1) ≤ x(2) ≤ ... ≤
x(K−1) ≤ x(K), then this sequence is called the variational series and its mem-
bers - order statistics. The random variable ξ(k) : ξ(k)(ω) = x(k) is called the
k-th order statistic of the original sample. From the definition it is obvious that

ξ(1) = min(ξ1, ..., ξK), ξ(K) = max(ξ1, ..., ξK). (5)

Thus, the response time is WK,max = ξ(K) or WK,min = ξ(1) in terms of the order
statistics theory, where ξk, k = 1,K - positive random variables of task sojourn
time. Consequently, the mathematical expectation of the response time can be
calculated from the distribution of extreme values ξ(1) and ξ(K), the function of
the latter is actually the joint distribution function of random variable ξ1, ..., ξK :

Fξ(K)(x) = P (max(ξ1, ..., ξK) < x) = P (ξ1 < x, ..., ξK < x), (6)
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Fξ(1)(x) = P (min(ξ1, ..., ξK) < x) = 1 − P (ξ1 > x, ..., ξK > x). (7)

Denote Fk(x) the cumulative distribution function (CDF), and fk(x) - proba-
bility density function (PDF) of random variables ξk, k = 1,K. If we assume
that ξ1, ..., ξK - independent random variables, which in our case, as mentioned
above, are simplifying assumptions, then

Fξ(K)(x) = P (ξ1 < x, ..., ξK < x) =
K∏

i=1

Fi(x), (8)

Fξ(1)(x) = 1 − P (ξ1 > x, ..., ξK > x) = 1 −
K∏

i=1

[1 − Fi(x)], (9)

a n-th moment of random variable of time response can be obtained by calcu-
lating the integral:

E[Wn
K,max] ≈ E[ξn

(K)] =
∫ ∞

0

xn
K∑

j=1

fj(x)
Fj(x)

K∏
i=1

Fi(x)dx, (10)

E[Wn
K,min] ≈ E[ξn

(1)] =
∫ ∞

0

xn
K∑

j=1

fj(x)
K∏

i=1

1 − Fi(x)
1 − Fj(x)

dx. (11)

Further, if it is assumed that the servers are homogeneous, i.e., random variables
ξ1, ..., ξK not only independent but also identically distributed, and, therefore,
their CDFs and PDFs are equal Fk(x) = F (x), fk(x) = f(x),∀k, then

P (ξ1 < x, ..., ξK < x) = FK(x),
1 − P (ξ1 > x, ..., ξK > x) = 1 − (1 − F (x))K ,

and accordingly

E[ξn
(K)] = K

∫ ∞

0

xnf(x)FK−1(x)dx. (12)

E[ξn
(1)] = K

∫ ∞

0

xnf(x)(1 − F (x))K−1dx. (13)

Note that the mathematical expectation for maximum of K i.i.d. random vari-
ables can be represented in the following form:

E[ξ(K)] =
∫ ∞

0

xdFK(x) =
∫ ∞

0

[1 − FK(x)]dx. (14)

Thus, to analyze the response time it is necessary to calculate the above integrals.
To estimate the integrals, the numerical methods can be applied. For several
types of distributions, such as exponential, hyperexponential, Cox and Erlang
distribution with two stages, the result can be obtained in closed analytical form.
Note that the computational complexity increases with the growth of number of
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parallel servers (K) and with the increase in number of stages of the Erlang distri-
bution. To reduce computational complexity the characteristic maximum [12] can
be used. In particular, if the task sojourn times are independent exponentially
distributed random variables with the PDFs fk(x) = λke−λkx, x > 0, k = 1,K,
then the CDF of the response time is

FWK,max(x) ≈ Fξ(K)(x) =
K∏

i=1

(1 − e−λix). (15)

After that we obtain explicit approximation of the mathematical expectation of
the response time using formula (12):

E[WK,max] ≈
K∑

l=1

1
λl

−
∑
l �=m

1
λl + λm

+
∑

l �=m �=k

1
λl + λm + λk

+ ...+

+ (−1)2K−1 1
λ1 + λ2 + ... + λK

and variance of the response time [6]:

D[WK,max] ≈
K∑

l=1

2
λ2

l

−
∑
l �=m

2
(λl + λm)2

+
∑

l �=m �=k

2
(λl + λm + λk)2

+ ...+

+ (−1)2K−1 2
(λ1 + λ2 + ... + λK)2

−
(

K∑
l=1

1
λl

−
∑
l �=m

1
λl + λm

+

∑
l �=m �=k

1
λl + +λm + λk

+ ... + (−1)2K−1 1
λ1 + λ2 + ... + λK

)2

.

Note that for the fork-join system with K Mλ/Mμk
/1, k = 1,K ways, the last two

formulas will be valid only if the following condition holds true: λk = μk − λ,
i.e., the task sojourn time in k-th Mλ/Mμk

/1 way will have an exponential
distribution with parameter (μk − λ) [6]. If μk = μ, k = 1,K, then the following
expression holds true:

E[WK,max] ≈ 1
μ − λ

HK . (16)

In order to determine the higher order moments of maximum of K indepen-
dent exponential random variables, it is more effective from the computational
point of view to differentiate the appropriate number of times the Laplace-
Stieltjes transformation (LST) πξ(K)(s) of the CDF FWK,max(x) with respect
to s and then equate s with zero. The general expression for LST πξ(K)(s) can
be written as follows [12]:

πξ(K)(s) =
K∑

i=1

(−1)i−1

(Ki )∑
n=1

n∑
k=1

∑i
l=1 λ(k+l−1)K

s +
∑i

l=1 λ(k+l−1)K

(17)
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where (k + l − 1)K denotes modulo K addition. Besides, LST of the CDF of
the maximum of K for independent exponentially distributed random variables
with parameters λ = (λ1, ..., λK) and distribution density fK(λ, x) with LST
πK(λ, s) can be represented by the recurrent formula [7]:

(
s +

m∑
j=1

λj

)
πξ(m)(λ, s) =

m∑
j=1

λjπξ(m−1)(λ/j , s), 1 ≤ m ≤ K, (18)

where /j denotes exclusion of λj , i.e. λ/j = (λ1, ..., λj−1, λj+1, ..., λm), and
π0(0, s) = 1. Then the n-th order moment of the maximum of independent
exponentially distributed random variables is

MK(λ, n) =
n∑K

j=1 λj

MK(λ, n − 1) +

∑K
j=1 MK−1(λ/j , n)∑K

j=1 λj

, (19)

K ≥ 1, M0(0, n) = 0 for all n ≥ 1 and MK(λ, 0) = 1 for all K ≥ 0.

Table 1. The random variables that determine performance measures of a cloud system

Performance metrics Definition Random variable Notation in the
order statistics
theory

The response time The sojourn time
of the last served
task.

WK,max =
max (ξ1, ...ξK)

ξ(K)

The sojourn time
of the first served
task

WK,min =
min (ξ1, ...ξK)

ξ(1)

The synchronization time The time between
the end of the ser-
vice of the first
and the last tasks

WK = WK,max −
WK,min

WK = ξ(K)

− ξ(1) (range)

The Table 1 shows the random variables that characterize the main perfor-
mance metrics. In order to evaluate these metrics, we need to obtain expressions
for the basic probability characteristics of random variables, i.e. the expressions
for their mean and variance.

The upper bound of an approximation for the maximum of i.i.d. exponential
random variables with parameter μ − λ, as shown in [4], is

E[ξ(K)] ≤ 1
(μ − λ)

(
1 +

K − 1√
2K − 1

)
. (20)

Here after, we will consider the case of fork-join system with K Mλ/Mμ/1
ways, or rather its approximation, i.e., we assume that the task sojourn times
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are i.i.d. RVs with the CDF F (x) = 1 − e(μ−λ)x, x > 0. The expression for the
variance of the response time is given in [6,12]:

D[WK,max] ≈ 1
(μ − λ)2

(
2

K∑
k=1

(
K

k

)
(−1)k−1 1

k2
− H2

K

)
. (21)

The random variable WK,min has the following characteristics:

E[WK,min] ≈ 1
(μ − λ)K

, D[WK,min] ≈ 1
(μ − λ)K2

. (22)

Now let’s analyze the synchronization time WK . By the definition of math-
ematical expectation, the difference between two random variables WK,max and
WK,min is not affected by their dependencies, it is sufficient to know only the
first moments of them:

E[WK ] = E[WK,max] − E[WK,min] =
1

(μ − λ)

K−1∑
i=1

1
i

=
1

(μ − λ)
HK−1. (23)

But in order to obtain an expression for the dispersion of WK , it is not enough
to know the value of dispersions WK,max and WK,min. Thus, it is possible to act
in two ways. One of them is to use the CDF of the range of positive i.i.d. random
variables [13]:

FWK
(x) =

K∑
i=1

∫ ∞

0

fi(y)
K∏

j=1,j �=i

[Fj(y + x) − Fj(y)]dy. (24)

The second way is to use directly the formula for the dispersion of range of K
i.i.d. random variables with the CDF F (x) [4]:

D[WK ] = 2
∫ ∞

−∞
(1 − FK(y) − [1 − F (x)]K + [F (y) − F (x)]K)dxdy − (E[WK ])2.

(25)
In this case, F (x) = 1 − e−(μ−λ)x, x > 0, F (y) = 1 − e−(μ−λ)y, y > 0, because
the sojourn time in the Mλ/Mμ/1 subsystem has an exponential distribution
with parameter (μ−λ), and the expression under integral sign has the following
form:

(1 − FK(y) − [1 − F (x)]K + [F (y) − F (x)]K) = −
K∑

i=1

(
K

i

)
(−1)ie−(μ−λ)iy+

+
K−1∑
i=1

(
K

i

)
(−1)K−ie−(μ−λ)(K−i)ye−(μ−λ)ix + (−1)Ke−(μ−λ)Ky.
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Now we substitute this expression into (25), perform the necessary calculations
and obtain the following expression:

D[WK ] =
2

(μ − λ)

(
K∑

i=1

(
K
i

)
(−1)i−1

i2
−

K−1∑
i=1

(
K
i

)
(−1)K−i

Ki
+

+
K−1∑
i=1

(
K
i

)
(−1)K−i

i(K − i)
+

(−1)K

K2
− 1

2

(
K−1∑
i=1

1
i

)2)
.

Finally, after simplifications, we get

D[WK ] =
1

(μ − λ)2

K−1∑
i=1

1
i2

. (26)

2 Numerical Analysis

In order to illustrate the approximation accuracy of formulas (2, 3, 4, 16), the
diagrams of the mean response time in dependence on the number of tasks K
are presented in Fig. 2. The calculations were performed for the arrival rate
λ = 2 s−1 and service rate μ = 2.2 s−1. Since for K = 2 there is an exact
expression for the mean response time (21), we consider only K > 2 case.
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Fig. 2. The mean response time: 1 – formula (2), 2 – formula (3), 3 – (4), 4 – (16),
5 – (20), 6 – simulations

As it can be seen from the graphs, the formulas (2, 3, 4, 16) are presented
in descending order of approximation accuracy, and the upper bound for the
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mean value of the maximum of order statistics is the upper bound for the mean
response time.

The mean value and variance of the synchronization time are presented in
Fig. 3. One can see that the estimation of the mean synchronization time has a
low accuracy contrary to the estimation of the variance (the relative error is 7%
on average).

4,5

6,5

8,5

10,5

12,5

14,5

3 4 5 6 7 8 9 10 11

Sy
nc

hr
on

iz
at

io
n 

tim
e,

 s

The number of sub-queries

1 2

3 4

Fig. 3. The mean synchronization time: 1 – simulations, 2 – analytical model; the
variance of the synchronization time: 3 – simulations, 4 – analytical model
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Abstract. Nanonetworks is one of the most dynamically developing
areas in the field of telecommunications. Nanonetworking promises new
opportunities in different fields of science and technology. However along
with obvious advantages, the implementation of nanonetwork applica-
tions can cause a number of problems for the functioning of modern
telecommunication networks. One of them is a large number of data
packets generated by nanonetwork applications. In this regard, the actual
problem is the study of traffic nanoceramic applications and its impact
on traditional telecommunication networks. The article deals with simu-
lation of traffic from sensor nanetwork applications. The paper presents
results of nanonetwork applications traffic simulation. Simulation based
on the traffic models developed for M2M. In the simulation considered
the possibility of gateway working in two modes: without processing
messages received from nanonetwork and with it. Typical architecture
of nanonetwork medical applications involving the use of remote Inter-
net servers, was described. The results of traffic flow simulation were
analysed on the self-similarity properties.

Keywords: Internet of nano-things · Nanonetworks · Internet of
things · Traffic modeling

1 Introduction

The progress at Internet of Nano-things (IoNT) [1,2], supposes development of
many applications, using nanonetwork structures in different spheres of human
life whether it be industrial sphere, military sphere or everyday human life [3].

Medicine is one of the promising fields of nanonetwork structures use [4].
It is expected that nanonetwork applications will supplement the Internet of
Things technologies, which have already existed in medical sphere [5,6] and will
open new opportunities for diagnosing and diseases treating [7,8], environmental
monitoring, performing of surgical operation for tissue reformation at molecular
and DNA levels [9], making of smart medicines [10,11] and so on.

The development of medical applications of IoNT, promises to us personalized
medicine. Such novel approach based on detailed, on-line, individual analysis
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 430–441, 2016.
DOI: 10.1007/978-3-319-51917-3 38
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of a wide range of health parameters of each patient and preventative actions.
Preventive orientation will provide complete genetic information with subsequent
determination of risk factors of the most significant diseases, the identification of
pharmacogenetic features, followed by creating an individual program of primary
(eliminate risk factors) and secondary (early detection of diseases prevention)
treatment.

Development of such applications is supposed in three contexts: inside of
human body, on the surface of human body and in human inhabitations (apart-
ments, car, hospital room). It is planned that all above-listed applications will
have the opportunity to transfer and receive the information from remote servers
using the Internet resources [12].

Today nanonetwork structures can’t make full convergence with traditional
communication networks and now exist in the form of autonomous structures
which were created to solve the narrow-purpose problems [10,11]. However,
active researches carried out at this theme, led to the conclusion that in the
future the question of nano- and traditional networks union will be decided [8].
The development and putting in operation of many nanoapplications, generating
additional traffic flows in the Internet, will require reconsideration of established
paradigms in the sphere of telecommunication. To forecast necessary changes of
traditional networks, we need to research the behavior of nanonetwork applica-
tions traffic flows. First of all, it is necessary to answer the following questions:

1. What type of traffic flows will be generated by these nanonetwork
applications?

2. What characteristics these traffic flows will have?

In view of the fact that the Internet of Nano-things is a logical continuation
of the Internet of Things conception [12], it would be logically to suppose that
characteristics of traffic generated by nanonetwork applications will be quite
similar with the Internet of Things traffic. According to it, patterns have already
been suggested and investigated in the context of the Internet of Things [13–15]
may be also applied for Internet of Nano-things. Communication of nanonetwork
structures with computer center (remote server) is suitable for the context of
M2M conception [16,17], being its new manifestation.

In contradistinction from the Internet of Things traffic patterns, in nanonet-
work applications sensor readouts are sent to server not immediately, but firstly
get through the nanonetwork, which certainly has an influence on the transfer
characteristics. One more factor having influence on traffic parameters is avail-
ability of intermediated node (gateway) between nanonetwork and the Internet.
Gateway working algorithms, its opportunities of changing traffic parameters
and message preprocessing should be taken into account during development
and investigation of nanonetwork applications traffic patterns.

In this work we develop the pattern for nanosensor network with its connec-
tion with the Internet and make a comparison with the pattern of monitoring
system and supervisory control traffic flow. The article has the following struc-
ture. In Sect. 2 different aspects of nanonetwork applications traffic simulation
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depending on their functionality and field of application are considered. In the
third part peculiarities of traffic simulation for sensor nanonetwork are described.
In the fourth part traffic pattern for nanosensor network is developing. In the
fifths section, with the help of simulation modelling system the investigation of
this pattern and comparison of results with the pattern of monitoring system
and supervisory control traffic flow are described.

2 Architectures of Nanonetwork Medical Applications

Nanonetwork medical applications should solve a wide range of problems from
sensor readouts capture, situated as well as in environment, and directly inside
the human body, to tissue reformation and microsurgical operations. Depending
on solving problems nanonetwork applications will have different functionality
and therefore traffic flows of such applications will also be different. According
to their functional peculiarities nanonetwork applications can be divided into a
few basic classes:

(1) Autonomous application. It means autonomous work of nanonetwork devel-
oped in the environment, inside the human body or on the surface of human
body. Data interchange with remote server is not supposed for nanoapplica-
tions of this class or data interchange will be restricted (technical message
interchange in cases of critical condition, about workability of the network
and so on). So, traffic between nanonetwork and remote server either is
absent at all or relatively small volume of traffic is generated because appli-
cation responds to the critical event. The events, caused generation of traffic
are relatively rare.

(2) Sensor nanonetwork. It is the application based on nanosensor network use,
in which nanosensors are activated on demand of server or local computer
center. Such applications are used for periodical capture of information
about the state of human health or about the state of environment. Traffic
of such systems will represent determinated packets flow consists of server
queries and nanonetwork application answers.

(3) Sensor-actuatory application. It is nanonetwork application which aims not
only for capture of the information about state of organism with the help
of nanosensors, but also at influence on processes in body with the help
of nanoactuators (for example, remote microscopic surgical operations in
human body). Applications of this type are very sensitive to delay and signal
distortions and can’t work off-line. Traffic of such systems can’t be classi-
fied as M2M traffic, because of the presence of the operator (experienced
surgeon), who performs the operation.

Final application can have mixed functionality and characteristics of different
classes. Taking into account that sensor-actuatory applications are very demand-
ing to QoS parameters, such systems should be developed locally, because it is
very difficult to provide necessary QoS parameters using connection via the Inter-
net. In view of this fact we can consider traffic of such applications only at local
area networks. Hereinafter we will consider only sensor nanonetworks traffic.
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3 The Peculiarities of Sensor Nanonetwork Traffic
Simulation

The work of sensor nanonetwork builds on the master-slave principle (see Fig. 1),
while data capture realized according to predetermined rules. Traffic generated
by this application will be pseudodetermined.

Fig. 1. General structure of sensor nanonetwork application

There is probability of message loss in nanonetwork applications - p because
of realization difficulties at physical level and imperfection of routing algorithms.
“Normal” probability of message loss for some nanonetwork technologies can
account for 95 percents. Message loss can happen as well as during scanning
of sensors by gateway, and during data transfer from sensors to gateway after
receiving of query. Therefore, integrated probability of sensor readouts transfer
to gateway Pdata will be expressed by (1).

Pdata = (1 − p)(1 − p) = 1 − 2p + p2 (1)

p - is probability of message loss in nanonetwork.
In spite of probability of message loss, there are different working algorithms

of gateway during scanning of sensors and during their data transfer to remote
server:

1. Without processing of messages from sensors
2. With processing of messages from sensors
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Working mode without processing of messages from sensors supposes all the
messages transferred from sensor to be sent to the remote server directly. In this
mode, sensors readouts are not processed and transferred to remote server from
each sensor separately. Gateway, working in this mode, has high response speed
concerning the second working mode and small buffer capacity. High traffic on
communication channel between gateway and remote server can be referred to
the disadvantages of such working mode. Traffic in this case is characterized by
a great amount of packets containing readouts from only one sensor.

The mode with processing of messages from sensors supposes storage and pre-
processing of sensors readouts before send them to remote server. In this mode
efficiency of use of network resources increases during data interchange between
gateway and server at the expense of data part in packets becomes consider-
ably bigger, moreover frequency and amount of messages decreases. However,
delay from the moment of server query arrival to sending of data from gateway
increases in comparison with the first mode, basically because of additional time
which requires for storage and processing of data from sensors. The architecture
of gateway in this case becomes more difficult due to high system requirements.

4 Sensor Nanonetwork Traffic Patterns with Different
Gateway Working Modes

Sensor nanonetwork traffic pattern in the working mode without processing of
messages from sensors. Traffic between server i and nanonetwork application j
with gateway working in this mode will represent determined flow consists of
server queries and nanonetwork application answers (Fig. 2). Time parameters
of system flow, in general, can be defined by time-table and have definite repeat
period Ti.

We can observe burst of intensity of sending messages from the moment of
server query arrival till the last sensor readout would be sent. Time between
server query arrival to sending of the last sensor readout we shall designate t
which will represent determinated flow. The amount of messages Npaceges sent
by the application during t time will depend on amount of sensors in nanonet-
work, which have delivered their messages.

Sensor network traffic pattern for gateway with processing of messages from
sensors. Traffic between server i and nanonetwork application j with gateway
working in this mode will be determined flow consists of server queries and
nanonetwork application answers (Fig. 3). Time parameters of system flow, in
general, can be defined by time-table and have definite repeat period Ti.

Time from the moment of server query arrival to sending readouts to server
we shall designate Δt. This time gateway inquires sensors located in nanonet-
work and processes received information. Sensors readouts are sent to server.
The amount of messages sent by gateway to server will depend on the volume of
information received from sensors. Limited quantity of information can be trans-
mitted in one message Dinfo. Quantity of useful information can be calculated
by (2).

Dinfo = Vmax − Dservice (2)



Simulation of Medical Sensor Nanonetwork Applications Traffic 435

Fig. 2. Sensor network traffic pattern for gateway without processing of messages from
sensors

where Vmax is maximal packet size for this application, Dservice is a volume of
ordering information.

In our work we will suppose that Vmax = 1500 bytes (Ethernet frame size),
Dservice = 62 bytes (the sum of headers sizes Ethernet, IP, TCP). Using (2),
1438 bytes of useful information can be transferred. The volume of information,
received from one sensor we will consider as v0 = 16 bytes (4 bytes for sensors
readouts + 4 bytes for sensor address in this nanonetwork + 4 bytes for sensor
type). Using above-listed considerations we can transfer readouts of 89 sensors in
one packet. If it is necessary to transfer readouts of greater amount of sensors, we
shall send one more message. In general case, general amount of packets which
would be necessary to transfer readouts of all the sensors Npaceges is calculated
by formula (3)

Npaceges = ceiling(Nv0/Dinfo) (3)

where N is the amount of sensors in an application. (ceiling is rounding upward),
v0 is the data volume of one sensor.

5 Results of Simulation

In this section results of traffic simulation presented for both modes. If there are
n nanonetwork applications, so for each working mode of gateway, at unchanged
phase shifts between moments of queries (answers) arrival ϕi for i = 1..n general
traffic will also represent determinated periodical process with a period equal
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Fig. 3. Sensor network traffic pattern for gateway mode with processing of messages
from sensors

to least common multiple of all scanning periods. Also at the beginning of each
period of time Ti, from i server to j application a query for receiving sensors
readouts arrives. Δti coefficient for each of systems is selected equal to 0,2*Ti;
0,4*Ti; 0,6*Ti and 0,8*Ti. The amount of sensors located in one nanonetwork
application is N = 100. For application pattern with gateway without preprocess-
ing of messages selection of time for sending readouts of one sensor to server is
drawing at random in the limits from 0 to Δti (selection of time for sending in
a pattern is given by uniform law). Results of simulation are given at the Figs. 4
and 5.

For application pattern with gateway without preprocessing of messages
selection of time for sending readouts of one sensor to server is drawing at ran-
dom in the limits from 0 to Δti (selection of time for sending in a pattern is
given by uniform law). Results of simulation are given at the Figs. 4 and 5.

Flows received during the simulation were checked for self-similarity features.
Figures 6 and 7 show evaluation of Hurst coefficient with graphs of dispersion
changing.

For gateway mode with preprocessing of messages from sensors estimated
Hurst coefficient H=0.12 at Δti= 0.2*Ti, H=0.11 at Δti= 0.4*Ti, H=0.19 at
Δti= 0.6*Ti, H= 0.19 at Δti=0.8*Ti. For gateway mode without preprocessing
of messages from sensors Hurst coefficient made up H=0.21 at Δti= 0.2*Ti,
H=0.24 at Δti= 0.4*Ti, H=0.18 at Δti= 0.6*Ti, H=0.27 at Δti=0.8*Ti.

From received results we can see that in all cases Hurst coefficient is consid-
erably less than 0.5, therefore traffic in each experiment is self-similar stochastic
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Fig. 4. Traffic flow for gateway mode with preprocessing of messages (a) Δti= 0,2*Ti

(b) Δti= 0,4*Ti (c) Δti= 0,6*Ti (d) Δti= 0,8*Ti

Fig. 5. Traffic flow for gateway mode without preprocessing of messages (a) Δti=
0,2*Ti (b) Δti= 0,4*Ti (c) Δti= 0,6*Ti (d) Δti= 0,8*Ti

process, corresponding to the class of antipersistant processes. This result was
received for all calculated data series for different correlations of periods between
T queries and time of nanonetwork application reaction Δti.

6 Conclusions

At present, medical applications of the IoT are rapidly developing and can be
useful for daily tasks (helps to keep healthy lifestyle) as well as for special tasks in
the treatment and diagnosis of diseases. Medical applications of the IoNT com-
bines the latest medical, technical and communicative knowledge, which leads
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Fig. 6. Evaluation of Hurst coefficient (for gateway mode with preprocessing of mes-
sages from sensors) (a) Δti= 0,2*Ti (b) Δti= 0,4*Ti (c) Δti= 0,6*Ti (d) Δti= 0,8*Ti
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Fig. 7. Evaluation of Hurst coefficient (for gateway mode without preprocessing of
messages from sensors) (a) Δti= 0,2*Ti (b) Δti= 0,4*Ti (c) Δti= 0,6*Ti (d) Δti=
0,8*Ti
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to their synergy in addressing medical problems. Despite the presence of mainly
theoretical developments with a single practical successes, to our opinion, many
methods of treatment and early diagnosis based on possibilities IoNT technolo-
gies are doomed to success. However, before these benefits become a part of our
daily lives, it is necessary to develop many aspects, such as:

– Development of encoding of information on nanoscale;
– Develop telecommunication protocols for ultra-low power consumption for

data transmission on nanoscale;
– Study of physical aspects of the molecular and electromagnetic communication

among nano-machines;
– Development of technologies for energy supply of nanomachines;
– Experimental research in the field of integration of biological and electronic

components;
– Study of the problems of security and information protection for medical appli-

cations of IoNT.

In this article we examine the characteristics of the traffic generated by med-
ical applications IoNT that it is necessary to integrate the data streams from
these applications to the Internet. The analysis of self-similarity feature of traffic
generated by nanonetwork applications was carried out. It is known that self-
similarity feature of traffic influence on QoS in network [18] (for many types
of nanonetwork applications, guaranteed short time of packets delivery or/and
level of packets loss are critical). Taking into account that there are two working
mode of gateway for which traffic has self-similarity features, we proved possibil-
ity of using gateway working mode without considerable deterioration of QoS.
It is can be useful for nanonetworks real-time application development.

Acknowledgments. The reported study was supported by RFBR, research project
No. 16-37-00215 Biodriver.
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Abstract. Flying Ubiquitous Sensor Networks (FUSN) are one of the
new Internet of Things applications. In such networks, Unmanned Aerial
Vehicles (UAVs) are used to collect data from the wireless sensor nodes,
located in hard to reach remote areas, and the subsequent data delivery
to the Internet. For the stable operation, it is required to solve complex
scientific problems, one of which is the choice of connectivity technologies
for the data delivery from the sensor nodes to the gateway with the IP-
network as well as the calculation of quality of service parameters. The
paper considers the problem of data delivery with the terrestrial seg-
ment of the flying ubiquitous sensor network over long distances using
repeater chain. As technology of interaction nodes terrestrial sensor net-
work considered IEEE 802.15.4 (6LoWPAN protocol), and technology
IEEE 802.15.4g is considered for UAV interaction (LoRaWAN protocol).
In the study, analytical and simulation models of the flying ubiquitous
sensor network have been developed. As a result of experiments with
the simulation model, delay and packet loss were investigated, occurring
in the all stations of transmission network at different data rates, and
conclusions on the optimal data rate of the network were made.

Keywords: FUSN · UAV · WSN · LoRa · Sensor node · Long-range ·
LPWAN · Transmission

1 Introduction

Currently, due to the active development of the concept of the Internet of Things,
the questions of networks convergence of different technologies and standards
are more relevant. We can confidently assert that the next generation networks
will be of heterogeneous structure [1–3]. Modern communication systems evolve
towards the introduction of a variety of Internet of Things devices in all spheres of
human life, such as medicine, education, transport logistics, and other vehicular
traffic [4]. Along with other technologies, FUSN concept has been actively devel-
oped [5]. Currently unmanned aerial vehicles are used for the delivery of small
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 442–453, 2016.
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freights, traffic monitoring and environmental situation, prevention of emergency
situations, data collection from the sensor fields and others [5,6]. Given that
UAVs are mainly used for data collection from remote terrain, it is necessary to
consider the problem of data delivery to the nearest gateway to the IP-network
for onward data transmission to the Internet over distances of 100 km or more.
Currently, there is a variety of data transmission protocols over long distances,
which are mainly used for telemetry data collection. The paper describes the
option to adapt long-range Internet of Things technology for use in flying ubiq-
uitous sensor networks. As a basic LPWAN technology was considered by IEEE
802.15.4g [7] and LoRa communication protocol [8]. This protocol is designed for
the data transmission on distance over a 10 km in an open space and more than
3 km in dense urban areas. However, some applications require data transmission
over distances exceeding the maximum range of these technologies, and there-
fore, it is advisable to use a repeater nodes [9,10]. In turn, each node-repeater
makes a certain delay in data transmission, which may be critical for certain
applications. Also, an additional delay is introduced receiving and transmitting
device located on the UAV that collect data from terrestrial segment (gateway
WSN-LPWAN). LoRaWAN technology is widespread in the housing and utili-
ties sector for data collection from meters and has a large number of hardware
implementations. In view of the construction of the typical architecture of flying
ubiquitous sensor networks, the architecture FUSN with a chain of repeating
units was proposed. On the basis of this architecture, an analytical model and
simulation model in AnyLogic software have been developed. While developing
the model, it was taken into account that the hardware modules LoRaWAN
function using the topology of “point to point”, “star”. Thus, for retransmitting
the data, it is necessary to use an intermediate buffer, which introduces a delay
network. As a result of research, loss and packet delay of all network site were
revealed (from sensor nodes to the gateway with the Internet) depending on the
data rate.

2 Architecture of Flying Ubiquitous Sensor Network

Taking into account the analysis of typical structures of building FUSN [5,11,
12], the architecture of data network over long distances was designed (Fig. 1),
consisting of:

1. Terrestrial Segment FUSN, consisting of a plurality of sensor nodes, combined
in a wireless sensor network (WSN) [13];

2. Flying FUSN segment, which includes:
– Unmanned aerial vehicle (UAV-gateway WSN-LPWAN), which collects

data from a terrestrial segment of the network and the subsequent data
transmission, based on LoRa technology. In fact, the equipment, installed
on the UAV, performs the role of Gateway 6LoWPAN - LoRa.

– Group of unmanned aerial vehicles (UAV- repeater), performing retrans-
mission of data on the basis of LoRaWAN technology for subsequent deliv-
ery to the gateway with the IP-network.
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3. The base station network LPWAN - Internet (LoRa-IP base station). In this
architecture, an unmanned aerial vehicle, mounted with a device acting as a
gateway, is a node that collects data from terrestrial segment of the network.

Due to the Public UAV small flight time of the and a long distance to LoRa-
IP base station, it is required to organize the data transmission channel in real
time [9,10,14]. To organize such a channel, the interim UAV, located at various
points between the UAV-gateway WSN-LPWAN and base station LoRa-IP base
station, is used. UAV-gateway WSN-LPWAN, acting as a gateway, converts the
data from the WSN and sends them to the next repeating node UAV- repeater.
Next, there is a data transmission to LoRa-IP base station through relaying
UAV network (UAV- repeater), connected to each other over the radio channel
via LPWAN modules.

Fig. 1. Architecture FUSN for data transmission over long distances

As data transmission technology for the terrestrial segment of FUSN, IEEE
802.15.4 is considered as the most common in data collecting from the sensory
fields [5,6,14]. As an example, there are protocols that use IEEE 802.15.4 stan-
dard: 6LoWPAN, RPL, ZigBee and others. As a protocol for data retransmission,
LPWAN based on IEEE 802.15.4g technology were selected. As an example of
protocols based on IEEE 802.15.4g standard, there are LoRa [8], SigFox, “Strij”.

3 Selection of the Analytical Model

The analytical model should describe the main indicators of quality network
performance, as we choose a probability of packet loss and latency data delivery.
These rates depend on data delivery processes, running on the network layers
from the Physical to Network. Therefore, the model must describe these layers
sufficient degree for practical use.
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3.1 Network Layer

Delivery route of data packets in the network between the data source S and
the destination node D contains several sections (transits) k, formed by pairs of
transceivers in the communications nodes (UAVs), Fig. 2.

Fig. 2. Model of the delivery route of the data packet

At this layer, the model parameter is only the number of transits k. Later
routing logic in the model is ignored.

3.2 Data Link Layer

Each of the transit nodes comprises a buffer for storing a certain (limited)
amount of the received data that are transmitted to the next node of the
route. Node model (route segment) may be represented as a queuing system
with combined service discipline (delay and loss). The route is generally a mul-
tiphase queuing system, formed by a sequence of individual sections of the mod-
els [12,15], Fig. 3.

The probability of packet loss on the route can be defined as Eq. 1.

p = 1 −
∏k

i=1
(1 − pi) (1)

Where pi may be determined as Eq. 2.

pi =
1 − ρ
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where C2
a and C2

s - quadratic variation coefficients respectively distributions of
the incoming flow and service time for the i-th node, nb - the buffer size, ρ - the
download of i-node.

To obtain an approximate estimate of the average time of package delivery
various streams, we will use the expression [16] Eq. 3.
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Fig. 3. Model of the delivery route of the data packet as a multiphase queuing system

Fig. 4. Dependence of the data rate from level of signal at the receiver input

Where σ2
a, σ2

s - dispersion time intervals between packets and the service
time i-th node, respectively, ᾱ - the average value of the interval between the
i-th packet assembly, t̄ - the average time to i-th node.

Then, the delivery time on the route will be the same Eq. 4.

T =
k∑

i=1

Ti (4)

Models Eqs. 1, 2, 3 and 4 provide an approximate estimate of the probability
of packet loss and average the time of arrival of the data source node S to
destination D. This model assumes that the known average valuation packet
transmission time at each of the route segments t̄i. This time depends on the
data rate at the site, and packet size. Data transmission rate, in turn, depends
on the radio propagation conditions and can be described by one of the known
models Eq. 5.

t̄i =
L̄

bri
(5)

where L - the average packet length (bits); bri - data rate for i-th area (bit/s).
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Fig. 5. Dependence of the data rate of the distance between transmitter and receiver
(with antenna height h1= h2 = 100 m)

3.3 Physical Layer

In general, at this level the processes, affecting the signal propagation conditions,
should be regarded, such as attenuation in the propagation medium, signal fading
in the channel and different kinds of interference to propagation conditions. To
simplify the model, we will associate at a given layer the data rate in the channel
only with the distance between nodes.

3.4 Distance Factor

According LoRaWAN specification [8], the data rate depends on the level at the
receiver input signal as shown in Table 1.

Table 1. The dependence of the rate of signal level at the input of the receiver

Signal level (dBm) Modulation type Transmission speed (bit/s)

−122 GFSK 50000

−120 LoRa 10937

−123 LoRa 5468

−126 LoRa 3125

−129 LoRa 1757

−132 LoRa 976

−135 LoRa 537

−137 LoRa 292
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We will describe the signal level at the receiver input as 6.

PRX = PTX − A(d) (6)

where PTX - at the transmitter output power (dBm); A(d) - dependence of the
damping distance (dB).

As attenuation model select model Eq. 7.

A(d) = 20 lg
4πd

λ
(7)

where λ - the wavelength (m); d - the distance between the transmitter and
receiver (m).

We believe that the used antennas have unity gain (0 dB).
Then, as shown in Table 1, the dependence of the data transmission rate of

the signal will be in the form of a step function shown on Fig. 4.
As the sensitivity of LoRa radio receiving module according to specifications,

can receive the signal with a low signal level (−137 dBm), and signal attenuation,
as measured according to Eq. 7, the potential transmission distance are large
enough to be considered that the curvature and height of the earth lifting antenna
devices (UAV altitude).

The distance line of sight can be defined as Eq. 8.

dmax = 3.57(
√

h1 +
√

h2) (8)

We take into account the fast fading channel by entering the empirical coef-
ficient increase damping γ = 1.1. Then, in view of Eqs. 7, 8 and the entered of
the coefficient of dependency data rate of the distance will be of the form shown
in Fig. 5.

Thus, the proposed model enables us to establish a relationship of packet
service time in the nodes (transmission time on channels), the waiting delay and
the probability of packet loss on the route parameters (distance between nodes
and the number of transits).

4 Simulation Model of the FUSN

With the above-described architecture, simulation model of data transmission
from wireless sensor network to the Internet has been developed. On the basis
of research on a model network, the baseline data for the development of a sim-
ulation model were obtained. Thus, the volume of data transmitted from the
wireless sensor network is 10 MB. These data must be transmitted over the
FUSN a distance of 120 km. Flying ubiquitous sensor network model is repre-
sented as a queuing system [12,15]. The model was performed with the help
of simulation package AnyLogic. The model describes the dependence of the
number of delivered packets and delays to the base station and the data trans-
mission rate. Restrictions on the time of the UAV are not considered. In the
simulation model, the parameters for the functioning of the modules LPWAN
Semtech SX1272 were used [17].
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Module Semtech SX1272 has the following characteristics:

1. Bandwidth (in LoRa modulation mode): 240–32600 (bit/s);
2. Range: up to 20 km (in an open space, without delivery confirmation);
3. Sensitivity transceiver (RSSI): (−117)–(−137) (dBm);
4. Transceiver power: 10–20 (dBm);
5. Data packet size: 30–256 (bytes);
6. Operating frequency: 860–1020 (MHz).

The above characteristics were used to construct LPWAN relay model. In
particular, the RSSI was obtained on the basis of the distance and depending
on the data rate of RSSI.

The developed simulation model consists of the following elements (Fig. 6):

(1) the source - an entity’s source, simulating the operation of the terrestrial
segment of the FUSN;

(2) the gateway - an agent, simulating the operation of WSN-LPWAN gateway;
(3) the module802 15 4g - an agent, simulating the operation of repeating

LPWAN devices;
(4) the sink - an entity’s point of destination, which performs the role of base

station.

The model also uses elements selectOutput (selectOutput1 - selectOut-
put4), which is used to simulate the choice of communication channel LPWAN,
according to the criteria of the buffer load and parameter of indicator RSSI
of the adjacent unit [11]. The calculation of these criteria occurs in the agent
module802 15 4g (Fig. 6).

Fig. 6. Simulation model of FUSN
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In this model, the module802 15 4g devices (Fig. 7), which simulate the work
of the repeater LPWAN devices, are combined into a chain of 19 units. The data
packet, from the moment of admission to the queuing system until reaching
the destination, overcomes 12 nodes such as module802 15 4g. Package size of
30 bytes is selected. The distance between the devices is a dynamic value varies
within 1 km from the initially set coordinates. As previously mentioned, the
distance by which to transmit data is at 120 km. Data rate is constant throughout
the transmission time. Data transfer mode: no acknowledgments and retries.

Fig. 7. Simulation model of agent module802 15 4g

Fig. 8. Graph of packet loss on the data rate

Computer experiments were performed for 10 different indicators data rate,
according to thresholds LPWAN module bandwidth. The number of transmitted
packets, corresponding to 10 MB of data, is approximately equal to 333333 pack-
ets. The results of a series of computer experiments are given below (Table 2).
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Fig. 9. Dependency network delay of data rate

Figure 8 shows the data transmission rate of loss. According to this graph,
it can be concluded that the optimal data rate for a given network architec-
ture is 240–480 bit/s, which allows to transmit data with an acceptable level
of losses (for IEEE 802.15.4g devices). The losses are associated with a large
number of nodes and constantly varying capacity for LPWAN devices, which in
turn is connected with the distance between the devices and the values of RSSI
parameter.

Figure 9 shows the network delay in sending packets on the data rate.

Table 2. The results of computer simulation

No Throughput
(bit/s)

Accepted pack-
ages (percent)

Lose packages
(percent)

Delay (sec) Model work
time (sec)

1 32600 8.78 91.22 18.44 2491

2 24800 10.95 89.05 19.31 3332

3 18400 15.27 84.73 18.43 4412

4 16200 17.12 82.88 18.72 5010

5 12800 21.54 78.46 18.89 6280

6 9600 26.29 73.71 20.68 8431

7 2400 58.50 41.50 19.56 33380

8 960 58.50 16.68 14.23 83417

9 480 90.41 9.59 13.74 166720

10 240 96.06 3.94 12.67 333354
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According to this graph, it can be concluded that the level of network delay
becomes the smallest at data rates of 240–960 bit/s, which is associated with
less waiting time of packets in the buffer LPWAN devices. Network latency can
be reduced by introducing a simulation model module LPWAN timeout, which
will increase the level of losses, but will reduce average delay. In this case, the
network can be considered tolerant to delays [18], in connection with uncertain
requirements of data transmission through the network.

According to the results, we can conclude that the optimal data transmis-
sion rate for the network architecture and the above scenario work is 240–480
bit/s. For data transmission rates, smallest delay (11–14 s) isobserved with an
acceptable level of packet loss (3–10%).

5 Conclusions

In this paper, the architecture of building FUSN was considered for the trans-
mission of data over long distances. In LPWAN, technology based on the IEEE
802.15.4g standard was considered as a technological basis for the organization
of data repeat between the unmanned aerial vehicles. The characteristics of
these devices are the most suitable for solving the transfer a small amount of
data over long distances. Based on this architecture, analytical and simulation
models were developed. Results were obtained on the basis of a series of com-
puter experiments, which have revealed the delay and packet loss, occurring in
the transmission network on all stations at different data rates, and conclusions
were drawn on the optimal data rate in a given network architecture.
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organization for Flying Ubiquitous Sensor Networks”.
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Abstract. The article presents the concept of building hardware-
software complex based on field programmable gate array (FPGA) pro-
totyping, which implements the methodology of fault-tolerant gate array
(GA) or FPGA-based aerospace-born systems-on-chip (FTS) modeling,
based on extended concept of fault injection. This complex allows to
define functional FTS design for the given parameters of the negative
impact of the external environment through the estimation of the FTS
project fault tolerance level (FTL).

Keywords: FPGA-prototyping · Fault injection · Fault tolerance ·
Fault simulation

1 Introduction

The gate array (GA) or field programmable gate array (FPGA) based aerospace -
born fault-tolerant systems-on-chip (FTS) development methods widely use
means of electronic design automation (EDA). Herewith, the FTS design flow,
involves FTS design project specification via hardware description language (Ver-
ilog/VHDL/SystemVerilog), passing it through a number of verification stages
and eventual generation of the chip topology. It is well-known approach to use
software simulators for verification, which, however, are characterized by a low
simulation speed. This limitation can become an obstacle for the FTS complex
projects optimization. Therefore, an alternative way is to use hardware software
complexes.

This article presents the concept of building hardwaresoftware complex
(HSC), used for the FTS projects simulation with verification, based on FPGA
prototyping and fault injection method. The FTS verification incorporates both
functional verification and the definition of the current fault tolerance level
(FTL) of the project.

The rest of the paper is organized as follows. In Sect. 2 we briefly describe
the proposed FTS design methodology. An extended concept of fault injec-
tion method used for FTS projects verification is proposed in Sect. 3. In
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 454–467, 2016.
DOI: 10.1007/978-3-319-51917-3_40
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Sect. 4 the comprehensive multi-phase FTS simulation methodology is proposed.
Section 5 describes the proposed HSC implementation methodology. Finally,
Sect. 6 presents our conclusions.

2 The FTS Design Methodology

We define three design stages in the FTS project development process based on
hardware description languages usage: (1) The development of the FTS design,
that provides a given functionality. (2) The FTS fault tolerance ensuring means
(FTEM) development. (3) The development of the FTS design, having required
FTL.

At the first stage, the FTS design project is created, after that the creation
of the target FPGA/GA topology description file in the form of netlist is carried
out.

The means ensuring various FTL (in other words fault tolerance ensuring
means, FTEM) of the FTS functional units of various hierarchical levels (from
individual registers and counters to large computational blocks) are developed
at the second stage.

At the third stage the FTS design, having required FTL is determined by
integrating the FTS design with given functionality, and FTEM.

The fault injection method is used for the FTS design project verification.

3 The Fault Injection Concept

To specify the environmental impact on the aerospaceborn FTS, we propose an
extended concept of fault injection method [1] which is based on the joint use of
the three models: the external influences model (EIM), the threats occurrence
model (TOM) and the fault localization model (FLM).

For the aerospace-born FTS operating in harsh environmental conditions,
the major factor limiting their lifetime is space radiation [2,3].

The EIM is used to determine the environmental parameters that have a
negative impact on the FTS elements. The launch date of the spacecraft, where
FTS is placed, the parameters of the orbit, and the characteristics of the taken
radiation protection are used as input data for EIM. The output of the EIM is the
environmental parameters (in particular, types, intensity and motion direction
of the charged particles) that determine impact of the environment on physical
environment of the chip.

The output of EIM is used as the input of TOM, which also uses the system-
on-chip technological parameters and the topology of the chip as input data.
The parameters of chip’s physical environment changing form the output of the
TOM.

The output of the TOM is in its turn the input for the FLM which also uses
the topology of the chip as the input data. Based on the input data, the FLM
generates the impact of the chip’s physical environment changing parameters
on the FTS logic elements: target elements and their type (combinational logic
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gates, memory elements), the moments of faults occurrence in this elements,
types of logical faults that occur as a result of the influence of the external
environment (bitflip, stuck-at, etc.).

Thus, when environmental influences on FTS are set, the joint usage of the
three models (EIM, TOM and FLM) leads to the generation of fault list, which
is used in the comprehensive multi-phase FTS simulation.

4 The Comprehensive Multi-phase FTS Simulation
Methodology

A comprehensive multi-phase FTS simulation methodology includes the follow-
ing phases: phase 1 - FTS model development; phase 2 - FTS model functional
testing; phase 3 - FTS model with fault injection capability (FIFTS) develop-
ment by adding fault injection means to FTS model; phase 4 - FIFTS functional
testing in the absence of faults; phase 5 - FIFTS functional testing in the pres-
ence of faults; phase 6 - FIFTS FTL definition; phase 7 - FTEM model devel-
opment; phase 8 - FTEM functional testing; phase 9 - FTS model with fault
injection capability and integrated means of fault tolerance (FIFTMS) develop-
ment through the FTEM to FIFTS inclusion; phase 10 - FIFTMS functional
testing in the absence of faults; phase 11 - FIFTMS functional testing in the
presence of faults; phase 12 - FIFTMS FTL definition.

The algorithm of implementing comprehensive multiphase FTS simulation,
is as follows (see Fig. 1).

Phase 1: based on the original FTS specifications the initial FTS model that
describes the logic circuit and the hierarchy of its functional modules, that
implement FTS core functionality, is developed.

Phase 2: FTS functional testing.
Here and further under functional testing we understand the standard
procedure of input actions submission to the inputs of the FTS model
(FIFTS/FIFTMS) and the comparison of its utput values (hereinafter
referred to as responses) with the reference values. The developer of the
FTS model must directly specify the array of the reference values on this
phase.

In the case of a successful test the transition to phase 3 is carried out,
otherwise the return to phase 1 for performing FTS model redesign is imple-
mented.

Phase 3: FIFTS model development. Fault injection means by defining the
absence or the presence of faults in individual (figure here) FTS elements
allow to imitate the impact of the external environment on FTS during
simulation.

Phase 4: FIFTS functional testing in the absence of faults. If the test is suc-
cessfully passed, the FIFTS model is equal to FTS model if we speak about
FTS core functionality implementation. In this case, the transition to phase
5 is performed. Otherwise the transition to phase 3 for the FIFTS model
refinement is performed.
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Fig. 1. The algorithm of implementing comprehensive multi-phase FTS simulation

Phase 5: FIFTS functional testing in the presence of faults. The fault types,
fault injection time instants, as well as FTS specific elements, for which fault
injection is performed, are determined via joint EIM, TOM and FLM models
usage.

Phase 6: FIFTS FTL definition. If the achieved FTL meets the FTS require-
ments, the simulation terminates. Otherwise, the transition to phase 7 is
performed.

Phase 7: FTEM model development. On each iteration of the simulation cycle a
new FTEM model is developed on this phase. It has higher FTL related to
the FTL of the FTEM developed on previous iterations.

Phase 8: FTEM functional testing. In case of successful test the transition to
phase 9 is performed, otherwise the transition to phase 7 for FTEM model
refinement is implemented.

Phase 9: FIFTMS model development via FIFTS and FTEM models integration.
Phase 10: FIFTMS functional testing in the absence of faults. In case of success-

ful test the transition to phase 11 is carried out. Otherwise, the transition to
phase 9 is performed.

Phase 11: FIFTMS functional testing in the presence of faults.
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Phase 12: FIFTMS FTL definition. If the achieved FTL meets the FTS require-
ments, the simulation terminates. Otherwise, the transition to phase 7 is
performed.

5 The Hardware-Software Complex Implementation
Methodology

The concept of building hardware-software complex (HSC) is developed to imple-
ment the aforementioned comprehensive multi-phase FTS simulation methodol-
ogy.

The complex provides the FTL estimation opportunity for the FTS with GA
or FPGA as target basis (TB).

In accordance to the concept, this complex consists of the host computer, and
4 expansion cards, each containing an FPGA. The expansion cards are combined
with the host computer in a single system via high speed PCIe interface. The
HSC block diagram is presented in Fig. 2 and the HSC appearance is presented
in Fig. 3.

Fig. 2. The HSC block diagram

The FTS FTEM, FIFTS and FIFTMS models are implemented in FPGA 1,
FPGA 2, FPGA 3 and FPGA 4 correspondingly as same-name projects, devel-
oped using hardware description languages (phases 1, 3, 7, 9).



Hardware-Software Simulation Complex 459

Fig. 3. The HSC appearance

These FPGAs are used for verification purposes (phases 2, 4, 5, 8, 10, 11).
Herewith, during the processes of the FIFTS and FIFTMS projects’ verifi-

cation (which are obtained via the sequential modification of the original FTS
project), the responses received during the successful verification of the previous
modification of the FTS project are used as reference responses. This means
that when implementing phases 4–5 the responses of FTS project, obtained on
phase 2, are used as reference responses and when implementing phases 10–11
the responses of FIFTS project, obtained on phase 4 are used in this capacity.

This solution allows to maintain continuity of the results during the simula-
tion process.

During projects verification process the HSC software generates input
actions, specifies the sequence of faults for FIFTS and FIFTMS projects (phases
5 and 11, respectively), in accordance with the fault list produced by the FLM.
Herewith, FTL is defined (phases 6 and 12), and the conclusion about the neces-
sity of project revision is made based on the achieved FTL.

The data exchange between the HSC software and the FTS FTEM, FIFTS
and FIFTMS projects implemented in the corresponding FPGAs is performed
via the PCIe interface.

The HSC contains the following functional components (see Fig. 4):

– The input actions formation system, consisting of software Input Action Gen-
erator (IAG) and hardware Input Actions Provider (IAP) modules.

– The fault injection system, consisting of software Fault Pattern Generator
(FPG) (implementing the EIM, TOM and FLM models), and hardware Fault
Injection Unit (FIU).

– The simulation management system, consisting of hardware (Local Con-
trol Unit (LCU) and RAM controller, implemented in FPGA) and software
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(Simulation Control Unit (SCU), Project Processing Unit (PPU), interface
module) parts.

– Data collection and modeling results analysis system, implemented in the form
of software Results Analysis Unit (RAU) and hardware Response Collector
(RC) modules.

– EDA tool for TB (marked on Fig. 4 as “EDA tool”) that provides the synthesis
and place & route processes implementation for FTS elements.

Fig. 4. The HSC functional diagram

The input data required for the HSC must contain: (1) The TB identification
data (type, family); (2) The arrays of input actions and a reference responses;
(3) The flight parameters of the spacecraft, where FTS is placed.

The flight parameters (orbit, launch time) are used to determine the charac-
teristics of external influences while implementing functional testing of FIFTS
and FIFTMS projects.

The FTS project that has an appropriate FTL for the specified external influ-
ences is the result of each comprehensive multi-phase simulation methodology
implementation, provided by the HSC.

Further let us describe the operation of the HSC functional components.

A The input actions formation system
1. Input Action Generator (IAG)

The IAG unit provides the following functions:
• Obtaining information about reference input data for the FTS model

(hereinafter referred to as reference data) in a specified file contain-
ing information about the time-ordered changes in input and output
reference signals of FTS model.

• Processing of reference data: conversion reference data to the required
format and generation of input actions (input actions vectors) for the
simulation.

• Transfer of input actions vectors to the simulation control unit (SCU).
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• Convert and record the generated input actions in the “value change
dump” file.

• Interaction with external test systems via the application program-
ming interface (API) provided to the FTS developer.

There are two ways to generate input actions for the simulation: by using
the reference data and by using API. In accordance with the first method
the generation of input actions is based on the using of reference data
provided by the FTS developer and performed before executing the sim-
ulation. After analyzing reference data, provided by the developer, IAG
generates an array of input actions, a set of binary vectors, each of which
corresponds to the value of the input signals of the FTS/FIFTS/FIFTMS
model at a certain time of simulation. During the simulation input actions
generated by the host computer are transferred to the expansion card one
by one and supplied to the inputs of the FTS/FIFTS/FIFTMS model.
In accordance with the second method, the input actions are generated
by the FTS developer tools dynamically during the simulation. The HSC
only provide an opportunities to transfer input actions vectors to the
FTS/FIFTS/FIFTMS models and to get responses from them via API.
API can be used in an external test system, developed by the FTS devel-
oper via SystemVerilog language. Using the API external test system
receives the response of the model simulated by the means of HSC, ana-
lyzes it, generates the next input actions vector and transmits it to the
HSC. This process is repeated until the completion of the simulation
process. The advantages of this approach are greater flexibility and the
ability to simulate wide range of FTS interface protocols. However, the
FTS simulation time is increased due to the necessity, to transmit each
response from the expansion card to the host computer for being analyzed
by external test subsystem, as well as the necessity to transfer each input
actions vector to the expansion card of HSC separately.

2. Input Actions Provider (IAP)
IAP unit is a hardware unit designed for the supplying input actions vec-
tors to the inputs of the FTS/FIFTS/FIFTMS model at each cycle of
simulation. IAP unit has three modes of operation: Idle, Wait load and
Load. In the Load mode IAP unit asserts the ready to receive data signal
for the DDR controller. After that DDR controller transfers words con-
taining values of input actions vector to the IAP unit that loads data into
the input actions register. When the data received from DDR controller
have loaded into register the IAP unit deasserts the ready to receive data
signal, generates the finish signal to control unit and switches to the Idle
mode. If the control unit deasserts the active signal the IAP unit will
switch from the Idle mode to the Wait load mode.

B The fault injection system
1. Fault Pattern Generator (FPG)

When modeling FIFTS and FIFTMS projects in addition to the input
actions and reference responses arrays, formed by IAG and RAU respec-
tively, it is also nessesary to have the fault injection program which is
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generated by FPG. This program is implemented in the form of a fault
list (FL), obtained as the output of the FLM. There are two variants
of internal organization of this list: horizontal and vertical organization.
Horizontal organization of the list is used when the number of elements
of the FTS project, for which there is a necessity to inject faults dur-
ing simulation (denote them as “target elements”) is negligible, and does
not exceed some threshold value, which is due to hardware limitations.
Otherwise, vertical organization is used. In both cases, the list is a set
of q data packets, containing identification data of target elements, fault
injection time points, and types of inserted faults. The number of packets
(q) coincides with the number of cycles of the simulation on which fault
injection is implemented. The data packets are listed in the order of use
during simulation. The format of each data packet depends on the type
of FL internal organization. When horizontal organization is used each
data packet has format which is explained further. The packet size is fixed
at N*k+32 bits in this case, where N is the number of target elements,
k - is the number of bits required to uniquely identify the fault type. It is
assumed that for all elements of the FTS project the same types of faults
are used. The data packet contains a 32-bit field named “offset” which
is located in the most significant bits of the packet. This field describes
the fault injection time point (TP) for all target elements. Its value is
determined as an offset relative to previous TP, measured in cycles of the
simulation clock. For the first packet this field contains the offset from the
beginning of the simulation. If all bits of the field “offset” is equal to “1”,
it means that this package is the latest in FL and simulation is completed
after its processing. Behind the field “offset” the packet contains N k-bit
fields, named as “type of fault for element i”, (where i could take values
from 1 to N) each of which corresponds to the i-th target element. The
data packet format for vertical organization is explained further. Each
data packet from FL has size (Ni)*24+64, where Ni is the number of
target elements for which TP corresponds to i-th offset. In other words,
the packet size can be different for different TPs (for different offsets).
The most significant 32 bits of the data packet similar to the horizontal
organization form field “offset” having the same sense. Next 32-bit word
of the packet is reserved for the “target elements quantity”. The value
of this field indicates the number of 24-bit fields, named “data of target
element i”. The format of the field “data of target element i” has two
subfields: “Type of fault” and “The element’s number”. The field, named
“Type of fault” is intended to characterize the type of faults injected in
the element, and contains the corresponding code. Used encoding allows
to simulate either basic accepted fault models (such as bit-flip, stuck-at-0,
stuck-at-1) or more complex fault models based on various combinations
of basic models. The field “The element’s number” is intended to uniquely
identify the FTS target element. The sizes of the fields composing field
“data of target element i” could be reviewed in the context of a specific
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FTS project and in the subsequent implementations of the HSC. In the
first case, the scope of the project determines the number of x binary
digits required to uniquely identify each FTS element: x - is a minimal
integer, that is greater or equal to log2 (number of FTS elements). As
a result, x bits will be allocated to the field “item number”. The size of
the field “type of fault”, y, is defined similarly: y - is a minimal integer,
that is greater or equal to log2 (number of fault types). In the current
HSC implementation the size of field “type of fault” is fixed at 3 bits.
To implement functional testing of the FTS project in the presence of
faults both input actions and faults arrays are required for each cycle
of simulation clock. In other words, each input vector from the input
actions array should be put in correspondence to the appropriate vector
of faults from faults array. If on some simulation cycle there is no need
to inject faults, then the vector of input actions corresponds to the zero
vector of faults. A set of two vectors is an exchange data packet used for
data transmission between software modules of the modeling system and
hardware ones, implemented in FPGAs. To reduce the amount of data
transmitted between hardware and software modules, the decision was
made to introduce two types of exchange data packet instead of forming
packages with a zero faults vectors. Both packages have the most sig-
nificant bit, used as a marker. Its value determines whether the current
packet have faults vector. When it is 0 - the packet contains only input
actions vector, which size is equal to the number of the primary inputs
of the simulated FTS project. When it is 1 - then, the packet contains
the sequence input actions vector and faults vector. The size of the faults
vector corresponds to the number of target elements of the simulated FTS
project. The generation of packets is performed by the SCU module.

2. Fault Injection Unit (FIU)
The fault injection unit is intended to provide fault codes to the tar-
get elements and could operate in three modes: the “Waiting download”,
“Uploading” and “Waiting”. At power-up, the FIU switches to the “Wait-
ing download” mode. In the “Waiting download” mode values from faults
codes register are set to the control inputs of target elements of the FTS/
FIFTS/FIFTMS project. If the activation signal from the LCU is received
FIU switches to the “Uploading” mode. In the “Uploading” mode the
code of “no faults” is set to the control inputs of target elements of the
FTS/FIFTS/FIFTMS project. After that, FIU informs DDR controller
that it is ready to get data. The DDR controller transfers data words
with new faults codes which are loaded in the register of faults codes.
After download is complete, FIU informs LCU about the end of opera-
tion and turns into “Waiting” mode. In the “Waiting” mode values from
the faults codes register are set to the control inputs of target elements
of the FTS/FIFTS/FIFTMS project. If the deactivation signal from the
LCU is received, FIU turns into “Waiting to download” mode.
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C The simulation management system
1. Local Control Unit (LCU)

HSC hardware units, FTS, FIFTS, FIFTMS and FTEM models inte-
grated in the same FPGA form so-called LCU+FIU+IAP+RC+RAM
controller. Control of LCU+FIU+IAP+RC+RAM controller is carried
out by LCU that can operate in five modes:
• Get responses
• Wait input data
• Set input actions
• Fault injection
• Generate clock signal

LCU controls the clock signal for the model (FTS, FIFTS, FIFTMS or
FTEM) simulated by means of the HSC. After turning on the power LCU
sets the clock signal to 0 and enters the Get responses mode. In the Get
responses mode the LCU generates the active signal for the RC. The
LCU remains in the Get responses mode until the RC unit operation is
completed and then enters the Wait input data mode. The LCU remains
in the Wait input data mode until the RAM unit generates the data ready
signal. After that LCU enters the Set input actions mode. In the Set input
actions mode the LCU generates the active signal for the IAG unit. The
LCU remains in the Get responses mode until the IAG unit operation
is completed. After that LCU enters the Fault injection mode if input
data received from RC contain fault vector. Otherwise the LCU enters
the Generate clock signal mode. In the Fault injection mode the LCU
generates the active signal for the FIU. The LCU remains in the Fault
injection mode until the FIU operation is completed and then enters the
Generate clock signal mode. In the Generate clock signal mode the LCU
inverts the value of clock signal and then enters the Get responses mode.

2. RAM controller
RAM controller is intended for data exchange between HSC hardware or
software units and RAM installed at the expansion card of HSC. RAM
controller consists of unit that realizes the logic necessary to read/write
data from/to RAM and units that serve the requests from such units
as SCU, IAP, FIU and others. RAM controller uses RAM as two FIFO-
buffers: one for storing data, coming from RC unit to the host-computer
and another for storing data coming from the host computer to IAP and
FIU units.

3. Simulation Control Unit (SCU)
SCU coordinates the operation of FPG, IAG, PPU, RAU, LCU mod-
ules, as well as the initialization of interaction with the EDA. The data
exchange with the EDA is carried out through the description files in
Verilog format. When implementing the FIFTS and FIFTMS models
the SCU initiates operation of PPU and provides its interaction with
EDA. While implementing the FTS/FIFTS/FIFTMS/FTEM simulation
stages SCU at first initiates the FPG, IAG, PPU, and RAU mod-
ules and then initiates the download of fault injection microkernel and
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FTS/FIFTS/FIFTMS/FTEM to the appropriate FPGA. Then the SCU
initiates FPG and IAG operation and when they finished their work,
generates data packets that contain information about the faults to be
injected and input actions for each step of simulation time. After the
generation of data packets SCU initiates their transmission to the LCU.
When the transmission of the packets finished SCU initiates the simu-
lation. During the simulation SCU provides the reception of the tested
model’s responses from LCU via the PCIe interface. SCU transmits these
responses to RAU, which compares them with the reference responses.
Upon completion of simulation and reception of the simulation results
from RAU, SCU module provides the HSC user with the simulation
results.

4. Project Processing Unit (PPU)
All modifications of FTS model, as well as its implementation in FPGA
with embedded fault-injection microkernel are provided by the project
processing unit - PPU. The input data for the PPU is:
• FTS model in the form of netlist of the FTS elements, described at

the level of digital functional cells of TB (hereinafter, the cells) via
Verilog language subset (structural Verilog netlist [4]), which contains
the module, endmodule, input, output, inout, wire, assign keywords
as well as identifiers, comments, and punctuation (hereinafter the
structural Verilog language);

• cells library in the basis of FPGA used for simulation (Virtex 6
LX240T FPGA) in a structural Verilog language;

• Instances of the FTS model cells (optional), to which the faults can
be injected during the simulation;

• library of the cells with embedded fault injection means in a basis of
simulation FPGA in a structural Verilog language;

• Pins of the FTS cells, from which the responses will be read.
The results of PPU include:
• FTS model with fault injection capability and means to transmit

input actions and read responses in a basis of simulation FPGA in a
structural Verilog language;

• interface to the input actions transmission module;
• interface to fault activation unit;
• interface to response collection unit (RC).

FTS model processing consists of 7 stages.
Stage “Initial analysis of the FTS model” provides a lexical analysis, pars-
ing and semantic analysis of the FTS model. Stage “Search unsupported
cells” project provides the test of the FTL model for the presence of cells
and difficult-functional units that are not supported by HSC simulation
means. Stage “Analysis of cell connections” provides the generation of the
netlist using the following fields: output of the given cell, as well as the
type, name and the output of another cell, which is connected to it Stage
“Analysis of the IC project” provides the determination and output of the
cells that are connected to the outputs of each cell on the base of data
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obtained at the “Analysis of cell connections” stage. Stage “Implementa-
tion of the input actions transmission interface and responses collection
interface” provides the generation of an interface to collect the responses
from the given GA cell (triggers) outputs. The result of “Embedding of
simulation tools without fault injection means” stage is the FTS with
embedded simulation tools in a basis of simulation FPGA. The result
of “Embedding of simulation tools and fault injection tools” stage is the
FIFTS or FIFTMS depending on the phase of the multi-phase simulation
algorithm.

D Data collection and modeling results analysis system
1. Response Collector (RS)

RC unit is intended for collecting responses of the FTS/FIFTS/FIFTMS
model elements during the simulation. After turning on the power RC
enters the Wait responses mode. After LCU generates the active signal
RC enters the Get responses mode. In the Get responses mode RC unit
sends the responses from the simulated model to the RAM controller
if it is ready to get data. After transfer is completed RC generates the
complete signal to the LCU and enters the Idle mode. In the Idle mode
RC remains until the LCU resets the active signal and then RC enters
the Wait responses mode.

2. Results Analysis Unit (RAU)
In accordance with the multi-phase FTS simulation methodology the HSC
can control the phases of FTS, FIFTS and FIFTMS models functional
testing. This control is provided by the Results Analysis Unit (RAU),
which, in addition, evaluate the FTL level of FIFTS and FIFTMS models.
In general the Results Analysis Unit (RAU) performs the following func-
tions: Comparison and analysis of the output data generated by the FTS
during the simulation (responses from FTS/FIFTS/FIFTMS/ FTEM),
and reference output data. The reference responses during the FTS
and FTEM simulation are the appropriate arrays of reference responses
provided by the developers of related projects. The array of responses
received in the result of a successful functional testing of the FTS is
used as reference responses during the FIFTS simulation. The array of
responses received in the result of successful functional testing of FIFTS is
used as reference responses during the FIFTMS simulation. Identification
of deviations from normal operation during the FTS simulation. Registra-
tion of discrepancy between obtained and reference data. Classification
of deviations found, depending on the duration (failure/refusal) Storing
all the settings and conditions of the HSC operation (model parameters,
fault patterns, etc.), corresponding to the obtained simulation results.
Classifying fault patterns depending on level of their influence on the
performance of the simulated FTS model. Analysis and evaluation of the
simulation results and the identification of the most dangerous (and most
likely lead to unacceptable consequences) impacts, HCP settings, critical
elements of FTS model. Determination of fault-tolerance level of the FTS
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model upon the simulation results. Generation of the report on simulation
results.

E EDA for TB
When implementing a multi - phase complex simulation methodology the
TSAB CAD is used at the first phase of simulation to generate the netlist
(source FTS netlist) of FTS elements described using the primitives of TSAB
technological library. At the same time the synthesizing compiler of the TSAB
CAD provides the ability to restore the hierarchy of FTS functional modules
using the original netlists.

6 Conclusions

This article presents an extended concept of fault injection method, implying
the joint use of three models: the external influences model (EIM), the threats
occurrence model (TOM) and the fault localization model (FLM). The com-
prehensive multi-phase aerospace-born FTS simulation methodology, based on
the extended concept of fault injection method is then proposed. Eventually,
the concept of hardware-software complex (HSC) is developed to implement the
aforementioned comprehensive multi phase FTS simulation methodology. The
proposed concept of HSC provides a continuous verification of the FTS project
at various design stages and the continuity of the verification results during the
whole simulation process.
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Abstract. The mathematical model of light propagation in a planar
gradient optical waveguide consists of the Maxwell’s equations supple-
mented by the matter equations and boundary conditions. In the coor-
dinates adapted to the waveguide geometry, the Maxwell’s equations are
separated into two independent sets for the TE and TM polarizations.
For each there are three types of waveguide modes in a regular planar
optical waveguide: guided modes, substrate radiation modes, and cover
radiation modes. We implemented in our work the numerical-analytical
calculation of typical representatives of all the classes of waveguide
modes.

In this paper we consider the case of a linear profile of planar gradient
waveguide, which allows for the most complete analytical description
of the solution for the electromagnetic field of the waveguide modes.
Namely, in each layer we are looking for a solution by expansion in the
fundamental system of solutions of the reduced equations for the partic-
ular polarizations and subsequent matching them at the boundaries of
the waveguide layer.

The problem on eigenvalues (discrete spectrum) and eigenvectors is
solved in the way that first we numerically calculate (approximately,
with double precision) eigenvalues, then numerically and analytically—
eigenvectors. Our modelling method for the radiation modes consists in
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reducing the initial potential scattering problem (in the case of the con-
tinuous spectrum) to the equivalent ones for the Jost functions: the Jost
solution from the left for the substrate radiation modes and the Jost
solution from the right for the cover radiation modes.

Keywords: Waveguide propagation of electromagnetic radiation ·
Equations of waveguide modes of regular waveguide · Numerical-
analytical modelling

1 Introduction

Waveguide propagation of polarized light is widely used in engineering, optoelec-
tronics and nanophotonics [4,15,26]. Most of the integrated optical waveguide
structures are formed on the basis of thin-film planar waveguides [2,9,14] and
contain all sorts of waveguide transitions [3,7,8,10,11,20–22] with gradient pla-
nar waveguides [1,4,15,16,25–27]. In this connection the analysis of the prop-
agation of guided and radiation waveguide modes in gradient waveguides is of
particular interest. Some works [5,6,17] are devoted to finding approximate solu-
tions of the electromagnetic field of the waveguide modes under the assumption
of a given analytical behavior of the transverse distribution of refractive index
in the waveguide layer. In other works [12,13,18,19], this study is carried out
initially by approximate numerical methods.

In this paper we consider the case of a linear profile of planar gradient
waveguide, which allows for the most complete analytical description of the solu-
tion for the electromagnetic field of the waveguide modes. Namely, in each layer
we are looking for a solution by expansion in the fundamental system of solu-
tions of the reduced equations for the particular polarizations and subsequent
matching them at the boundaries of the waveguide layer.

Propagation of monochromatic polarized electromagnetic radiation is
described by the system of vector homogeneous Maxwell’s equations [2,9,14]:

rotH =
1
c

∂D

∂t
, rotE = −1

c

∂D

∂t
. (1)

When there is a waveguide propagation of the radiation, at the interfaces of
the waveguide layer with the substrate and the cover (see Fig. 1) the tangential
boundary conditions are satisfied [2,9,14]:

E τ
∣∣∣
1

= E τ
∣∣∣
2
, H τ

∣∣∣
1

= H τ
∣∣∣
2
. (2)

And asymptotic conditions “at infinity” (at an infinite distance from the
waveguide layer):

lim
x→±∞

∣∣E(x, y, z)
∣∣ ≤ CE , lim

x→±∞
∣∣H (x, y, z)

∣∣ ≤ CH . (3)
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Fig. 1. Scheme of a flat three-layer dielectric waveguide. Waveguide is formed by media
1–3. The figure indications are: 1 is a framing medium or cover layer (air) with refractive
index nc; 2 is a waveguide layer (film) with a refractive index nf ; 3 is a substrate with
refractive index ns; d is the thickness of the waveguide layer. Film and substrate are
homogeneous in the x and z directions, the substrate is usually much thicker than the
film

In a Cartesian coordinate system associated with the geometry of the
waveguide (see Fig. 1), the Maxwells equations, after the separation of variables,
split into two linearly independent systems, which take the form [4,15]:

d2Ey

dx2
+ k2

0

(
εμ − β2

)
Ey(x) = 0, Hz =

1
ik0μ

dEy

dx
, Hx = −β

μ
Ey, (4)

ε
d

dx

(
1
ε

dHy

dx

)
+ k2

0

(
εμ − β2

)
Hy(x) = 0, Ez =

1
ik0ε

∂Hy

∂x
, Ex =

β

ε
Hy. (5)

Here the invariance of the process in the direction Oy is taken into account:
∂
∂y = 0.

The boundary conditions (2) are reduced to the following conditions:
conditions for TE modes

Ey

∣∣∣
1

= Ey

∣∣∣
2
, Hz

∣∣∣
1

= Hz

∣∣∣
2
, (6)

and the boundary conditions for TM modes

Hy

∣∣∣
1

= Hy

∣∣∣
2
, Ez

∣∣∣
1

= Ez

∣∣∣
2
. (7)



474 E. Ayrjan et al.

Asymptotic conditions (3) are reduced to the following conditions:

lim
x→±∞

∣∣E(x)
∣∣ ≤ CE , lim

x→±∞
∣∣H (x)

∣∣ ≤ CH . (8)

2 Statement of the Problem

Thus the problem of describing the full set of waveguide modes of regular gradi-
ent planar optical waveguide is formulated as an eigenvalue problem (for discrete
and continuous spectra) and eigenfunction problem (for classical and generalized
functions) of essentially self-adjoint ordinary differential operator of the second
order [9,14]:

− p(x)
d

dx

(
1

p(x)
dψ

dx
(k, x)

)
. (9)

Here p(x) = ε(x), V (x) = −n2(x) is piecewise-continuous (continuous in layers)
function, k2 = −β2 is spectral parameter, and

ψTE(x) = Ey(x), ψ(TM(x) = Hy(x). (10)

The function V (x) has the view shown in Fig. 2.

x
V (x)

x1 x2

V−

V1

V2

V+

Fig. 2. The potential V (x) graph

Lets introduce the auxiliary functions

ϕTE(x) =
dϕTE

dx
(x), ϕTM(x) =

1
p(x)

dϕTM

dx
(x). (11)

Using these functions we can write down reduced boundary conditions at points
of discontinuity of the potential, and therefore of the second derivative of the
solution:

ψ
∣∣
x1−0

= ψ
∣∣
x1+0

, ψ
∣∣
x2−0

= ψ
∣∣
x2+0

, (12)

ϕ
∣∣
x1−0

= ϕ
∣∣
x1+0

, ϕ
∣∣
x2−0

= ϕ
∣∣
x2+0

. (13)

Besides, the asymptotic conditions are satisfied

|ψ(x)|x→±∞ ≤ C±. (14)
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The spectrum of operator (9)–(14) consists of [23,24]:

– a finite number of discrete eigenvalues kj = iκj : k2
j ∈ (

min V (x), min(V−, V+)
)

and the corresponding classical eigenfunctions (of guided waveguide modes);
– a single continuous spectrum k−: k2

− ∈ (V−,∞) and corresponding generalized
eigenfunctions (substrate radiation modes);

– a single continuous spectrum k+: k2
+ ∈ (V+,∞) and corresponding generalized

eigenfunctions (cover radiation modes).

For a constructive description of the problem solutions, i.e. eigenfunctions of
three types, we shall restrict our consideration to piecewise-linear potential:

V (x) =

⎧⎪⎨
⎪⎩

V−, when x < x1,

ax + b, when x1 < x < x2, where a = V2−V1
x2−x1

, b = V1x2−V2x1
x2−x1

,

V+ , when x > x2.

(15)

3 The Solution to the Problem on Eigenvalues (of the
Discrete Spectrum) and Eigenfunctions (Classical)

The method of solution is the expansion on the sub-intervals of the general
solution in terms of the fundamental system of solutions. To the left and to the
right there are decreasing exponential functions in the case of real εs, εc (due to
the asymptotic conditions):

ψs(k, x) = Cs exp{γs(x − x1)}, (16)
ψc(k, x) = Cc exp{−γc(x − x2)}. (17)

In the waveguide layer (with a linear potential in the subdomain) the fun-
damental system of solutions consists of the functions Ai(x) and Bi(x), such
that

ψf (k, x) = C1Ai

(
a(x − x2) + b

(−a)2/3

)
+ C2Bi

(
a(x − x2) + b

(−a)2/3

)
. (18)

These common solutions in the subdomains form a single particular solution of
the problem (9)–(14), therefore, the equalities must be satisfied:

ψs(k, x1) = ψf (k, x1), Φs(k, x1) = Φf (k, x1), (19)
ψf (k, x2) = ψc(k, x2), Φf (k, x2) = Φc(k, x2). (20)

Thus we obtain a homogeneous system of linear algebraic equations for the
indefinite coefficients of the expansion of common solutions in terms of the fun-
damental systems of solutions, which for the TE modes has the view:

Cs = C1Ai

(−ad + b

(−a)2/3

)
+ C2Bi

(−ad + b

(−a)2/3

)
, (21)

γsCs = −C1(−a)1/3 dAi

dx

(−ad + b

(−a)2/3

)
− C2(−a)1/3 dBi

dx

(−ad + b

(−a)2/3

)
, (22)
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C1Ai(0) + C2Bi(0) = Cc, (23)

− C1(−a)1/3 dAi

dx
(0) − C2(−a)1/3 dBi

dx
(0) = −γcCc. (24)

The resulting homogeneous system of linear algebraic equations

M̂TE(k)C (k) = 0 (25)

has a non-trivial solution provided that

det M̂TE(k) = 0. (26)

Solutions of nonlinear transcendental algebraic equation kj are substituted in
SLAE(x) and then this system is solved with respect to C j = C (kj). The
obtained coefficients are substituted in the expressions for the fields. The results
of calculations are presented in Figs. 3, 4, 5 and 6.

Fig. 3. Waveguide mode TE0, nc =
1.0, nf = 2.15, ns = 1.515, βTE =
1.6752

Fig. 4. Waveguide mode TM0, nc =
1.0, nf = 2.15, ns = 1.515, βTE =
1.5955

Fig. 5. Waveguide mode TE0, nc =
1.0, nf = 2.15, ns = 1.515, βTE =
1.6752

Fig. 6. Waveguide mode TM0, nc =
1.0, nf = 2.15, ns = 1.515, βTE =
1.5955
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4 Calculation of Cover Radiation Modes

Similarly to what was done in [15,26] for piecewise-constant potentials, let’s move
from solutions of the problem (9)–(14) satisfying the asymptotic Jost conditions,
to the solutions satisfying the “scattering problem” conditions. A one-to-one
correspondence between them is set in [15,26] for the potentials of a more general
kind.

In particular, the asymptotics of the cover radiation modes ψc(k, x) corre-
spond to the problem of scattering of a plane Jost wave incident on the potential
V (x) from the right, from the region x ∼ +∞, which is reflected to the right with
reflection coefficient R−(k), and is transmitted (through the potential V (x)) to
the left with transmittance coefficient T−(k) in the form of a plane Jost wave
propagating from right to left, in the region x ∼ −∞. All solutions ψc(k, x)
satisfy these asymptotics, when k2 ∈ (Vc,∞). A sought solution, as in the case
of guided modes, is constructed by matching at the boundaries of the general
solutions of Eq. (9) in the regions of the argument (−∞, x1), (x1, x2) and (x2,∞).

So, in the region (−∞, x1) the general solutions of Eq. (9) with constant
coefficient Vs are of the form (for TE modes):

ψTE
c (k, x) = TTE

− (k) exp{−ips(x − x1)}. (27)

In the region (x2,∞) the general solutions of Eq. (9) have the form

ψTE
c (k, x) = exp{−ipc(x − x2)} + RTE

− (k) exp{ipc(x − x2)}. (28)

In the region (a, b) the general solutions of Eq. (9) have the form (for TE and
TM modes, respectively):

ψf (k, x) = C1
fAi

(
a(x − x2) + b

(−a)2/3

)
+ C2

fBi

(
a(x − x2) + b

(−a)2/3

)
. (29)

Thus, the solutions (for TE modes) are given by sets of amplitude coefficients
(TTE

− ,C1
f , C2

f ,RTE
− )T , satisfying the system of linear algebraic equations:

TTE
− (k) = C1

fAi

(−ad + b

(−a)2/3

)
+ C2

fBi

(−ad + b

(−a)2/3

)
, (30)

− ps

k0μs
TTE

− (k) = −C1
f (−a)1/3 dAi

dx

(−ad + b

(−a)2/3

)
− C2

f (−a)1/3 dAi

dx

(−ad + b

(−a)2/3

)
,

(31)
C1

fAi(0) + C2
fBi(0) = 1 + RTE

− (k), (32)

− C1
f (−a)1/3 dAi

dx
(0) − C2

f (−a)1/3 dBi

dx
(0) = − pc

k0μc

[
1 − RTE

− (k)
]
. (33)

The resulting SLAE can be rewritten as:

M̂TE(k)(TTE
− , C1

f , C2
f , RTE

− )T =
(

0, 0, 1,− pc

k0μc

)T

, (34)

so that the solution exists for any k2 ∈ (Vc,∞) and is unique up to a complex
factor (Figs. 7 and 8).
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Fig. 7. Cover radiation TE mode nc =
1.0, nf = 1.59, ns = 1.515, k2 = 0.250

Fig. 8. Cover radiation TM mode nc =
1.0, nf = 1.59, ns = 1.515, k2 = 0.250

5 Calculation of Substrate Radiation Modes

The asymptotics of substrate radiation modes ψs(k, x) correspond to the scatter-
ing problem of plane Jost wave, the potential V (x) from the left, from the region
x ∼ −∞, which is reflected to the left with reflection coefficient R+(k). At the
same time, the Jost wave coming from the left, passing through the potential
V (x), propagates to the right as the plane Jost wave with the transmittance
coefficient T+(k) when k2 ∈ (Vc,∞), and as an evanescent wave decaying to the
right with a weighting factor Ac(k) when k2 ∈ (Vs, Vc).

Solutions have different view for different values of spectral parameter k from
the two spectral subregions k2 ∈ (Vs, Vc) and k2 ∈ (Vc,∞). But for both regions
the solution, as in the case of guided modes, is constructed by matching at the
boundaries of the general solutions of Eq. (9) in the regions of the argument
(−∞, x1), (x1, x2) and (x2,∞).

In the region (−∞, x1) the general solutions of Eq. (9) with a spectral para-
meter k2 ∈ (Vs, Vc) have the form:

ψTE
s (k, x) = exp{ips(k)(x − x1)} + RTE

+ (k) exp{ips(k)(x − x1)}. (35)

In the region (x1, x2) the general solutions of Eq. (9) with a spectral para-
meter k2 ∈ (Vs, Vc) have the form:

ψf (k, x) = C1
fAi

(
a(x − x2) + b

(−a)2/3

)
+ C2

fBi

(
a(x − x2) + b

(−a)2/3

)
. (36)

In the region (x2,∞) the general solutions of Eq. (9) with a spectral parame-
ter k2 ∈ (Vs, Vc) have the form (by virtue of the asymptotic decay at infinity):

ψTE
s (k, x) = Ac exp{−γc(x − x2)}. (37)

Thus, the solutions (for TE modes) are given by sets of amplitude coefficients
(RTE

+ , C1
f , C2

f , Ac)T satisfying the system of linear algebraic equations:

1 + RTE
+ (k) = C1

fAi

(−ad + b

(−a)2/3

)
+ C2

fBi

(−ad + b

(−a)2/3

)
, (38)
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ps

k0μs

[
1−RTE

+ (k)
]

= −C1
f (−a)1/3 dAi

dx

(−ad + b

(−a)2/3

)
−C2

f (−a)1/3 dAi

dx

(−ad + b

(−a)2/3

)
,

(39)
C1

fAi(0) + C2
fBi(0) = Ac, (40)

− C1
f (−a)1/3 dAi

dx
(0) − C2

f (−a)1/3 dBi

dx
(0) = − γc

ik0μc
Ac. (41)

The resulting SLAE can be rewritten as:

M̂TE(k)(RTE
+ , C1

f , C2
f , Ac)T =

(
−1,− pc

k0μs
, 0, 0

)T

, (42)

so that there exists a solution for any k2 ∈ (Vs, Vc) and it is unique up to a
complex multiplier (Figs. 9 and 10).

Fig. 9. Substrate radiation TE mode
nc = 1.0, nf = 1.59, ns = 1.515, k2 =
−1.648 ∈ (Vs, Vc)

Fig. 10. Substrate radiation TM mode
nc = 1.0, nf = 1.59, ns = 1.515, k2 =
−1.648 ∈ (Vs, Vc)

For the spectral parameter k from the region k2 ∈ (Vc,∞), in the coordinate
regions (−∞, x1) and (x1, x2) common solutions have the same form as in the
case k2 ∈ (Vs, Vc), and in the region (x2,∞), they take the form:

ψTE
s (k, x) = TTE

+ (k) exp{ipc(k)(x − x2)}. (43)

Consequently, the second pair of boundary equations at the point x = x2 for
TE modes take the form:

C1
fAi(0) + C2

fBi(0) = TTE
+ (k), (44)

− C1
f (−a)1/3 dAi

dx
(0) − C2

f (−a)1/3 dBi

dx
(0) =

pc(k)
k0μc

TTE
+ (k). (45)

The resulting SLAE can be rewritten as:

M̂TE(k)(RTE
+ , C1

f , C2
f , TTE

+ )T =
(

−1,− ps

k0μs
, 0, 0

)T

, (46)

so that there exists a solution for any k2 ∈ (Vc,∞) and it is unique up to a
complex multiplier (Figs. 11 and 12).
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Fig. 11. Substrate radiation TE mode
nc = 1.0, nf = 1.59, ns = 1.515, k2 =
0.500 ∈ (Vc, ∞)

Fig. 12. Substrate radiation TM mode
nc = 1.0, nf = 1.59, ns = 1.515, k2 =
0.500 ∈ (Vc, ∞)

6 Conclusion

The solution of many problems of integrated optics is realized by the Galerkin
and by the Kantorovich methods, including the expansion of the desired solution
in a complete set of waveguide modes of a regular comparison waveguide [23,
24]. Computer numerical and analytical implementations of all three types of
waveguide modes are known for the class of multilayer waveguides with constant
values of the refractive indices of the layers (see., e.g., [14]).

This paper presents the numerical implementations on a computer of square-
integrable eigenfunctions corresponding to discrete spectrum kj = iκj for a
piecewise-linear potential V (x) (for the gradient waveguide). The present study
also shows the numerical implementations on a computer of the cover radiation
modes and substrate radiation modes. For modeling these modes, the problems
of scattering on the potential V (x) of Jost functions equivalent to the original
problem in the case of the continuous spectrum were used: the problems of
scattering on the left for the substrate radiation modes and the problems of
scattering on the right for the cover radiation modes.
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Buša, J., Hnatič, M. (eds.) MMCP 2011. LNCS, vol. 7125, pp. 136–147. Springer,
Heidelberg (2012)

4. Barnoski, M.: Introduction to Integrated Optics. Plenunm, New York (1974)
5. Conwell, E.: Modes in optical waveguides formed by diffusion. Appl. Phys. Lett.

23, 328–329 (1973)
6. Conwell, E.: WKB approximation for optical guide modes in a medium with expo-

nentially varying index. J. Appl. Phys. 47, 1407 (1975)



Numerical and Analytical Modeling of Guided Modes 481

7. Divakov, D.V., Sevastianov, L.A.: Application of incomplete Galerkin method to
irregular transition in open planar waveguides. Matematicheskoe Modelirovanie
27(7), 44–50 (2015)

8. Egorov, A.A., Sevastyanov, A.L., Airyan, E.A., Lovetskiy, K.P., Sevastianov, L.A.:
Adiabatic modes of smoothly irregular optical wavegide: zero-order vector theory.
Matematicheskoe Modelirovanie 22(8), 42–54 (2010)

9. Egorov, A.A., Lovetskii, K.P., Sevastianov, A.L., Sevastianov, L.A.: Integrated
Optics: Theory and Computer Modelling. RUDN Publisher, Moscow (2015)

10. Egorov, A.A., Lovetskiy, K.P., Sevastianov, A.L., Sevastianov, L.A.: Simulation
of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide
luneburg lens in the zero-order vector approximation. Quantum Electron. 40(9),
830–836 (2010)

11. Egorov, A.A., Sevastyanov, L.A.: Structure of modes of a smoothly irregu-
lar integrated-optical four-layer three-dimensional waveguide. Quantum Electron.
39(6), 566–574 (2009)

12. Fitio, V.M., Romakh, V.V., Bobitski, Y.V.: Numerical method for analysis of
waveguide modes in planar gradient waveguides. Mater. Sci. 20(3), 256–261 (2014)

13. Fitio, V.M., Romakh, V.V., Bobitski, Y.V.: Search of mode wavelengths in planar
waveguides by using Fourier transform of wave equation. Semicond. Phys. Quan-
tum Electron. Optoelectron. 19(1), 28–33 (2016)

14. Gevorkyan, M.N., Kulyabov, D.S., Lovetskiy, K.P., Sevastyanov, A.L., Sev-
astyanov, L.A.: Waveguide modes of a planar optical waveguide. Math. Modell.
Geom. 3(1), 43–63 (2015)

15. Hunsperger, R.G.: Integrated Optics: Theory and Technology. Springer, Heidelberg
(1995)

16. Marcuse, D.: Light Transmission Optics. Van Nostrand Reinhold Company, New
York (1972)

17. Nikolaev, N., Shevchenko, V.V.: Inverse method for the reconstruction of refractive
index profile and power management in gradient index optical waveguides. Opt.
Quantum Electron. 39(10), 891–902 (2007)

18. Rganov, A.G., Grigas, S.E.: Defining the parameters of multilayer waveguide modes
of dielectric waveguides. Numer. Methods Program. 10, 258–262 (2009)

19. Rganov, A.G., Grigas, S.E.: Numerical algorithm for waveguide and leaky modes
determination in multilayer optical waveguides. Tech. Phys. 55(11), 1614–1618
(2010)

20. Sevastianov, L., Divakov, D., Nikolaev, N.: Modelling of an open transition of the
“horn” type between open planar waveguides. In: EPJ Web of Conferences, vol.
108, p. 02020 (2016)

21. Sevastianov, L.A., Egorov, A.A.: The theoretical analysis of waveguide propaga-
tion of electromagnetic waves in dielectric smoothly-irregular integrated structures.
Math. Modell. Geom. 105(4), 576–584 (2008)

22. Sevastianov, L.A., Egorov, A.A., Sevastyanov, A.L.: Method of adiabatic modes
in studying problems of smoothly irregular open waveguide structures. Phys. At.
Nucl. 76(2), 224–239 (2013)

23. Sevastyanov, L.A.: The complete system of modes of open planar waveguide. In:
Proceedings of the VI International Scientific Conference Lasers in Science, Tech-
nology, and Medicine, pp. 72–76. Publishing House of IRE, Suzdal (1995)

24. Shevchenko, V.V.: On the spectral expansion in eigenfunctions and associated func-
tions of a non self-adjoint problem of sturm-liouville type on the entire axis. Differ.
Equ. 15, 2004–2020 (1979)



482 E. Ayrjan et al.

25. Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman and Hall, New
York (1983)

26. Tamir, T.: Integrated Optics. Springer-Verlag, Berlin (1979)
27. Unger, H.G.: Planar Optical Waveguides and Fibres. Clarendon Press, Oxford

(1977)



Diagram Representation for the Stochastization
of Single-Step Processes

Ekaterina G. Eferina1, Michal Hnatich3,4,5, Anna V. Korolkova1,
Dmitry S. Kulyabov1,2(B), Leonid A. Sevastianov1,3, and Tatiana R. Velieva1

1 Department of Applied Probability and Informatics,
RUDN University (Peoples’ Friendship University of Russia),

6 Miklukho-Maklaya Street, Moscow 117198, Russia
eg.eferina@gmail.com, {akorolkova,dharma,sevast}@sci.pfu.edu.ru,

trvelieva@gmail.com
2 Laboratory of Information Technologies, Joint Institute for Nuclear Research,

6 Joliot-Curie, Dubna, Moscow Region 141980, Russia
3 Bogoliubov Laboratory of Theoretical Physics,

Joint Institute for Nuclear Research,
6 Joliot-Curie, Dubna, Moscow Region 141980, Russia

hnatic@saske.sk
4 Department of Theoretical Physics, SAS, Institute of Experimental Physics,

Watsonova 47, 040 01 Košice, Slovakia
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Abstract. Background. By the means of the method of stochastiza-
tion of one-step processes we get the simplified mathematical model of
the original stochastic system. We can explore these models by standard
methods, as opposed to the original system. The process of stochasti-
zation depends on the type of the system under study. Purpose. We
want to get a unified abstract formalism for stochastization of one-step
processes. This formalism should be equivalent to the previously intro-
duced. Methods. To unify the methods of construction of the master
equation, we propose to use the diagram technique. Results. We get a
diagram technique, which allows to unify getting master equation for the
system under study. We demonstrate the equivalence of the occupation
number representation and the state vectors representation by using a
Verhulst model. Conclusions. We have suggested a convenient diagram
formalism for unified construction of stochastic systems.

Keywords: Occupation numbers representation · Fock space · Dirac
notation · One-step processes · Master equation · Diagram technique

1 Introduction

When modeling various physical and technical systems, we often can model them
in the form of a one-step processes (see [1,3,4,24]). Then there is the problem
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of adequate representation and study of the resulting model. For the statis-
tical systems in addition to representation of the state vectors (combinatorial
approach) [3,4] the representation of the occupation numbers (operator app-
roach) (see [12,13,17,19,20,23]) is also used. This representation is especially
well suited for the system with a variable number of elements description.

However, technique for obtaining models for the combinatorial approach is
quite different from the technique for the operator approach. In this paper, we
want to propose a unified methodology for both approaches on the basis of the
diagram technique.

The structure of the article is as follows. In the Sect. 2 basic notations and
conventions are introduced. The ideology of the method of stochastization of one-
step process and its components are described in the Sect. 3. Then the interaction
schemes and master equation overview are presented in the next Sects. 5 and 4.
The combinatorial method of modelling is discussed in the following Sect. 6. The
operator model approach is presented in the Sect. 7. In fact diagram technique
introduced in Sect. 8. Application of of this technique is described in Sect. 9 on
the example of Verhulst model.

2 Notations and Conventions

1. The abstract indices notation (see [22]) is used in this work. Under this nota-
tion a tensor as a whole object is denoted just as an index (e.g., xi), compo-
nents are denoted by underlined index (e.g., xi).

2. We will adhere to the following agreements. Latin indices from the middle
of the alphabet (i, j, k) will be applied to the space of the system state
vectors. Latin indices from the beginning of the alphabet (a) will be related
to the Wiener process space. Greek indices (α) will set a number of different
interactions in kinetic equations.

3 General Review of the Methodology

Our methodology is completely formalized in such a way that it is sufficient
when the original problem is formulated accordingly. It should be noted that the
most of the models under our study can be formalized as a one-step process (see
[10,18]). In fact, for this type of models we developed this methodology, but it
may be expanded for other processes.

First we transform our model to the one-step process (see Fig. 1). Next, we
need to formalize this process in the form of interaction schemes1 (see [3,4,13]).

Each scheme has its own interaction semantics. Semantics leads directly to
the master equation (see [10,18]). However, the master equation has usually
rather complex structure that makes it difficult for direct study and solution.
Our technique involves two possibilities (see Fig. 2):

1 The analogs of the interaction schemes are the equations of chemical kinetics, reac-
tion particles and etc.



Diagram Representation for the Stochastization of Single-Step Processes 485

– computational approach—the solution of the master equation with help of
perturbation theory;

– modeling approach—the approximate models are obtained in the form of
Fokker–Planck and Langevin equations.

0 1 2 . . . i − 1 i i + 1 . . . n . . .

s+
0

s−
1

s+
1

s−
2

s+
2

s−
3

s+
i−2

s−
i−1

s+
i−1

s−
i

s+
i

s−
i+1

s+
i+1

s−
i+2

s+
n−1

s−
n

s+
n

s−
n+1

Fig. 1. One-step process

Fig. 2. The general structure of the methodology

Fig. 3. Combinatorial modeling approach

The computational approach allows to obtain a concrete solution for the
studied model. In our methodology, this approach is associated with perturbation
theory (see [14–16]).
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Fig. 4. Operator modeling approach

The model approach provides a model that is convenient to study numerically
and qualitatively. In addition, this approach assumes the iterative process of
research: the obtained approximate model can be specified and changed, which
leads to the correction of initial interaction schemes.

There are two ways of building the master equation2

– combinatorial approach (see Fig. 3);
– operator approach (see Fig. 4).

In the combinatorial approach, all operations are performed in the space of
states of the system, so we deal with a particular system throughout manipula-
tions with the model.

For the operator approach we can abstract from the specific implementation
of the system under study. We are working with abstract operators. We return
to the state space only at the end of the calculations. In addition, we choose a
particular operator algebra on the basis of symmetry of the problem.

4 Interaction Schemes

The system state is defined by the vector ϕi ∈ Rn, where n is system dimen-
sion3. The operator Ii

j ∈ Nn
0 × Nn

0 describes the state of the system before the
interaction, the operator F i

j ∈ Nn
0 × Nn

0 describes the state of the system after
the interaction4. The result of interaction is the system transition from one state
to another one.

There are s types of interaction in our system, so instead of Ii
j and F i

j oper-
ators we will use operators Iiα

j ∈ Nn
0 × Nn

0 × Ns
+ and F iα

j ∈ Nn
0 × Nn

0 × Ns
+
5.

2 In quantum field theory the path integrals approach can be considered as an analogue
of the combinatorial approach and the method of second quantization as analog of
the operator approach.

3 We denote the module over the field R as R. Accordingly, N, N0, N+ are modules
over rings N, N0 (cardinal numbers with 0), N+ (cardinal numbers without 0).

4 The component dimension indices take on values i, j = 1, n.
5 The component indices of number of interactions take on values α = 1, s.
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The interaction of the system elements will be described by interaction
schemes, which are similar to schemes of chemical kinetics [11,26]:

I
iα
j ϕj

k+
α−−−⇀↽−−−

k−
α

F
iα
j ϕj , α = 1, s, (1)

the Greek indices specify the number of interactions and Latin are the sys-
tem order. The coefficients k+

α and k−
α have meaning intensity (speed) of

interaction.
We can also write (1) not in the form of vector equations but in the form of

sums:

I
iα
j ϕjδi

k+
α−−−⇀↽−−−

k−
α

F
iα
j ϕjδi, (2)

where δi = (1, . . . , 1).
Also the following notation will be used:

Iiα := I
iα
j δj , F iα := F

iα
j δj , riα := r

iα
j δj .

The state transition is given by the operator:

r
iα
j = F

iα
j − I

iα
j . (3)

5 The Master Equation

For the system description we will use the master equation,6 which describes the
transition probabilities for Markov process (see [10,18]):

∂p(ϕ2, t2|ϕ1, t1)
∂t

=
∫ [

w(ϕ2|ψ, t2)p(ψ, t2|ϕ1, t1) −w(ψ|ϕ2, t2)p(ϕ2, t2|ϕ1, t1)
]
dψ,

where w(ϕ|ψ, t) is the probability of transition from the state ψ to the state ϕ
for unit time.

By fixing the initial values of ϕ1, t1, we can write the equation for
subensemble:

∂p(ϕ, t)
∂t

=
∫

[w(ϕ|ψ, t)p(ψ, t) − w(ψ|ϕ, t)p(ϕ, t)]dψ. (4)

For the discrete domain of ϕ, the (4) can be written as follows (the states
are numbered by n and m):

∂pn(t)
∂t

=
∑
m

[wnmpm(t) − wmnpn(t)] , (5)

where the pn is the probability of the system to be in a state n at time t, wnm

is the probability of transition from the state m into the state n per unit time.
6 Master equation can be considered as an implementation of the Kolmogorov equa-

tion. However, the master equation is more convenient and has an immediate physical
interpretation (see [18]).
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6 Combinatorial Approach

There are two types of system transition from one state to another (based on one–
step processes) as a result of system elements interaction: in the forward direction
(ϕi + riα) with the probability s+

α(ϕk) and in the opposite direction (ϕi − riα)
with the probability s−

α(ϕk) (Fig. 1). The matrix of transition probabilities has
the form:

wα(ϕi|ψi, t) = s+
αδϕi,ψi+1 + s−

αδϕi,ψi−1, α = 1, s,

where δi,j is Kronecker delta.
Thus, the general form of the master equation for the state vector ϕi, chang-

ing by steps with length riα, is:

∂p(ϕi, t)
∂t

=
s∑

α=1

{
s−

α(ϕi + riα, t)p(ϕi + riα, t)

+ s+
α(ϕi − riα, t)p(ϕi − riα, t) −

[
s+

α(ϕi) + s−
α(ϕi)

]
p(ϕi, t)

}
. (6)

7 Operator Approach

7.1 Occupation Numbers Representation

Occupation number representation is the main language in the description of
many-body physics. The main elements of the language are the wave functions of
the system with information about how many particles are in each single-particle
state. The creation and annihilation operators are used for system states change.

The method of application of the formalism of second quantization for the
non-quantum systems (statistical, deterministic systems) was studied in a series
of articles (see [6,7,12,21]).

The Dirac notation is commonly used for occupation numbers representation
recording.

7.2 Dirac Notation

This notation is proposed by Dirac7 (see [5]). Under this notation, state of the
system is described by an element of the projective Hilbert space H. The vector
ϕi ∈ H is defined as |i〉, and covariant vector (covector) ϕi ∈ H∗ := H• is defined
as 〈i|. Conjunction operation is used for raising and lowering of indices8:

ϕ∗
i := ϕi = (ϕi)† ≡ 〈i| = |i〉†.

7 The notation is based on the notation, proposed by G. Grassmann in 1862 (see [2,
p. 134]).

8 In this case, we use Hermitian conjugation •†. The sign of the complex conjugate •∗

in this case is superfluous.



Diagram Representation for the Stochastization of Single-Step Processes 489

The scalar product is as follows:

ϕiϕ
i ≡ 〈i|i〉.

The tensor product is:
ϕjϕ

i ≡ |i〉〈j|.

7.3 Creation and Annihilation Operators

The transition to the space of occupation numbers is not a unitary transfor-
mation. However, the algorithm of transition (specific to each task) can be
constructed.

Let’s write the master equation (5) in the occupation number representation.
We will consider a system that does not depend on the spatial variables. For
simplicity, we consider the one-dimensional version.

Let’s denote in (5) the probability that there are n particles in our system
as ϕn:

ϕn := pn(ϕ, t).

The vector space H consists of states of ϕ.
Depending on the structure of the model, we can introduce the probability-

based or the moment-based inner products [12]. We introduce a scalar product,
exclusive (〈|〉ex) and inclusive (〈|〉in). Let |n〉 are basis vectors.

〈ϕ|ψ〉ex =
∑

n

n!p∗
n(ϕ)pn(ψ); (7)

〈ϕ|ψ〉in =
∑

n

1
k!

n∗
k(ϕ)nk(ψ).

There nk are factorial moments:

nk(ϕ) = 〈n(n − 1) · · · (n − k + 1)〉 =
∂k

∂zk
G(z, ϕ)|z=1,

G is generating function:

G(z, ϕ) =
∑

n

znpn(ϕ).

Let’s use creation and annihilation operators:

π|n〉 = |n + 1〉,
a|n〉 = n|n − 1〉

and commutation rule9:
[a, π] = 1. (8)

If the form of scalar product is (7) then from (8) follows that our system is
described by Bose–Einstein statistics.
9 In fact, aπ|n〉 − πa|n〉 = (n + 1)|n〉 − n|n〉 = |n〉.
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7.4 The Liouville Operator

In the occupation numbers formalism the master equation becomes the Liouville
equation:

∂

∂t
|ϕ(t)〉 = L|ϕ(t)〉.

The Liouville operator L satisfies the relation:

〈0|L = 0. (9)

8 Diagram Representation

We describe our proposed diagram technique for the stochastization of one-step
processes.

+k
ϕFϕI

Fig. 5. Forward interaction

−k
ϕFϕI

Fig. 6. Backward interaction

We will write the the scheme of interaction in the form of diagrams. Each
scheme (1) or (2) corresponds to a pair of diagrams (see Figs. 5 and 6) for forward
and backward interaction respectively.10 The diagram consists of the following
elements.

– Incoming lines (in the Fig. 5 are denoted by the solid line). These lines are
directed to the line of interaction. These lines are marked with the number
and type of interacting entities. You can write a single entity per a line or
group them.

– Outgoing lines (in the Fig. 5 are denoted by the solid line). These lines are
directed from the line of interaction. These lines are marked with the number
and type of interacting entities. You can write a single entity per a line or
group them.

– Line of interaction (in the Fig. 5 is denoted by the dotted line). The direction
of time is denoted by the arrow. This line is marked by the coefficient of
intensity of the interaction.

Each line is attributed to a certain factor (depending on the the approach
chosen). The resulting expression is obtained by multiplying these factors.

10 In order not to clutter the diagram, we have only one type of interacting entities left
in these schemes.
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8.1 Operator Approach

We obtain the Liouville operator when using interaction diagrams in the operator
approach. Let us assign the corresponding factor for each line. The resulting term
is obtained as the normal ordered product of factors.11

aI

+k
+k πF

ϕFϕI

Fig. 7. Forward interaction (operator
approach)

πI

−k
−k aF

ϕFϕI

Fig. 8. Backward interaction (operator
approach)

We use the following factors for each type of line (Fig. 7).

– Incoming line. This line corresponds to the disappearance of one entity from
the system. Therefore, it corresponds to the annihilation operator a. It is clear
that the line with combined capacity I corresponds to the operator aI .

– Outgoing line. This line corresponds to the emergence of one entity in the
system. Therefore, it corresponds to the creation operator π. It is clear that
the line with combined capacity F corresponds to the operator πF .

– Line of interaction. This line corresponds to the ratio of the interaction
intensity.

aI

πIaI

+k
+k
+k

πF

1

ϕFϕI

Fig. 9. Forward interaction (operator
approach), extended notation

πI

1

−k
−k
−k

aF

πFaF

ϕFϕI

Fig. 10. Backward interaction (opera-
tor approach), extended notation

That is, for the Fig. 7 we obtain a factor k+ πF aI . However, this violates the
Eq. (9). Redressing this, we have to subtract the number of entities that have
entered into interaction, multiplied by the intensity of the interaction. Then we
get a following term of the Liouville operator:

k+ πF aI − k+ πIaI = k+
(
πF − πI

)
aI . (10)

To backward interactions (Fig. 8), we use the same rules.

11 In normal ordering product all creation operators are moved so as to be always to
the left of all the annihilation operators.
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To account for the additional factor of (10) we will use the extended diagrams
(Figs. 9 and 10). Here, from the the normal ordered product of the numerators
the normal product of the denominators is subtracted.

Thus, the following Liouville operator corresponds to the scheme (1):

L =
∑
α,i

[
k+

α

(
(πi)F iα − (πi)Iiα

)
(ai)Iiα

+ k−
α

(
(πi)Iiα − (πi)F iα

)
(ai)F iα

]
.

(11)

8.2 Combinatorial Approach

For the combinatorial approach we get the master equation in the representation
of the state vectors. In this approach, with the help of diagrams, we obtain
the transition probability s+

α and s−
α. They are, as in the case of operator

approach, obtained by multiplying the diagrams factors.
However, the structure of the right-hand side of the Eq. (6) more complicated

than Liouville operator. In the representation the state vectors the additive terms
are presented in the functions arguments (dependency of the arguments from the
operator r, see (3).). Therefore, we can not use only the factors multiplication.

ϕ!
(ϕ − I)!

+k
+k 1

ϕFϕI

Fig. 11. Forward interaction (combi-
natorial approach)

1

−k
−k ϕ!

(ϕ − F )!

ϕFϕI

Fig. 12. Backward interaction (combi-
natorial approach)

We use the following factors for each type of line (Fig. 11).

– Incoming line. If all lines correspond to different state vectors, the factor of
each line is the corresponding state vector. If there are several lines corre-
sponding to the same state vector, the first line corresponds to the actual
state vector (ϕ), the second line corresponds to the value of ϕ− 1 (as the first
line has reduced the number of entities of this type in the system by one), and
so further. That is, for a combined line factor can be written as follows:

ϕ!
(ϕ − I)!

.

– Outgoing line do not give multiplicative contribution. It serves to obtain the
step coefficient r:

r = F − I.

– Line of interaction. This line corresponds to the ratio of the interaction
intensity.
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In addition, we need the transition probabilities for the previous and the next
steps:

ϕi + riα,

ϕi − riα.

Thus, for the Fig. 11 transition probability will be as follows:

s+ (ϕ) = k+ ϕ!
(ϕ − I)!

,

s− (ϕ) = k− ϕ!
(ϕ − F )!

.

For the general case:

s+
α(ϕi) = k+

α

n∏
i=1

ϕi!
(ϕi − Iiα)!

,

s−
α(ϕi) = k−

α

n∏
i=1

ϕi!
(ϕi − F iα)!

.

To backward interactions (Fig. 12), we use the same rules.
The general form of the master equation for the state vector ϕi we obtain on

the basis of formula (6).

9 Verhulst Model

As a demonstration of the method, we consider the Verhulst model [8,9,25],
which describes the limited growth12. Initially, this model was written down as
the differential equation:

dϕ

dt
= λϕ − βϕ − γϕ2,

where λ denotes the breeding intensity factor, β—the extinction intensity factor,
γ—the factor of population reduction rate (usually the rivalry of individuals is
considered)13.

The interaction scheme for the stochastic version of the model is:

ϕ
λ�
γ

2ϕ,

ϕ
β−→ 0.

(12)

The interaction schemes (12) match Figs. 13, 14, and 15.
The first relation means that an individual who eats one unit of meal is

immediately reproduced, and in the opposite direction is the rivalry between
individuals. The second relation describes the death of an individual.
12 The attractiveness of this model is that it is one-dimensional and non-linear.
13 The same notation as in the original model [25] is used.
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λϕ

ϕ

ϕ

Fig. 13. First forward
interaction

γ
ϕ

ϕ

ϕ

Fig. 14. First backward
interaction

β
ϕ

Fig. 15. Second forward
interaction

9.1 Combinatorial Approach

The interaction schemes (12) in combinatorial approach match Figs. 16, 17, and
18.

ϕ
λ

λ

1

1

ϕ

ϕ

ϕ

Fig. 16. First forward
interaction (combina-
torial approach)

1

γ

γ

ϕ

ϕ − 1

ϕ

ϕ

ϕ

Fig. 17. First backward
interaction (combinato-
rial approach)

ϕ

β

β
ϕ

Fig. 18. Second forward
interaction (combinatorial
approach)

Let’s define transition rates within the Verhults model as follows:

s+
1(ϕ) = λϕ,

s−
1(ϕ) = γϕ(ϕ − 1),

s+
2(ϕ) = βϕ.

s+
1(ϕ − 1) = λ(ϕ − 1),

s−
1(ϕ − 1) = γ(ϕ − 1)(ϕ − 2),

s+
2(ϕ − 1) = β(ϕ − 1).

s+
1(ϕ + 1) = λ(ϕ + 1),

s−
1(ϕ + 1) = γ(ϕ + 1)ϕ,

s+
2(ϕ + 1) = β(ϕ + 1).

r1 = 1, r2 = −1.

Then, based on (6), the form of the master equation is:

∂p(ϕ, t)
∂t

= − [λϕ + βϕ + γϕ(ϕ − 1)] p(ϕ, t)

+ [β(ϕ + 1) + γ(ϕ + 1)ϕ] p(ϕ + 1, t) + λ(ϕ − 1)p(ϕ − 1, t).

For particular values of ϕ (as in (5)):

∂pn(t)
∂t

:=
∂p(ϕ, t)

∂t

∣∣∣∣
ϕ=n

= − [λn + βn + γn(n − 1)] pn(t)

+ [β(n + 1) + γ(n + 1)n] pn+1(t) + λ(n − 1)pn−1(t). (13)
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9.2 Operator Approach

The interaction schemes (12) in operator approach match Figs. 19, 20, and 21.
From (12) and (11) the Liouville operator is:

L = λ(π2 − π)a + γ(π − π2)a2 + β(1 − π)a
= λ

(
(a†)2 − a†) a + γ

(
a† − (a†)2

)
a2 + β

(
1 − a†) a

= λ
(
a† − 1

)
a†a + β

(
1 − a†) a + γ

(
1 − a†) a†a2.

a

πa

λ

λ

λ

π

1
π

1

ϕ

ϕ

ϕ

Fig. 19. First forward
interaction (operator
approach)

π

1

γ

γ

γ

a

πa

a

πa

ϕ

ϕ

ϕ

Fig. 20. First backward
interaction (operator
approach)

a

πa

β

β

β

ϕ

Fig. 21. Second forward
interaction (operator app-
roach)

The master equation by Liouville operator:

∂pn(t)
∂t

=
1
n!

〈n|L|ϕ〉

=
1
n!

〈n| − [
λa†a + βa†a + γa†a†aa

]
+

[
βa + γa†aa

]
+ λa†a†a|ϕ〉

= − [λn + βn + γn(n − 1)] 〈n|ϕ〉
+ [β(n + 1) + γ(n + 1)n] 〈n + 1|ϕ〉 + λ(n − 1)〈n − 1|ϕ〉

= − [λn + βn + γn(n − 1)] pn(t) +
+ [β(n + 1) + γ(n + 1)n] pn+1(t) + λ(n − 1)pn−1(t). (14)

The result (14) coincides with the formula (13), which was obtained by com-
binatorial method.

10 Conclusions

The authors proposed a diagram technique for the stochastization of one-step
processes. At the moment, this technique allows to get main master equation.
Also, this technique makes it possible to unify different approaches to the sto-
chastization of one-step processes.
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Abstract. Three-dimensional mathematical models of population
dynamics are considered in the paper. Qualitative analysis is performed
for the model which takes into account the competition and diffusion
of species and for the model which takes into account mutual interac-
tion between the species. Nondeterministic models are constructed by
means of transition from ordinary differential equations to differential
inclusions, fuzzy and stochastic differential equations. Using the prin-
ciple of reduction, which allows us to study stability properties of one
type of equations, using stability properties of other types of equations,
as a basis, sufficient conditions of stability are obtained. The synthesis
of the corresponding stochastic models on the basis of application of the
method of construction of stochastic self-consistent models is performed.
The structure of these stochastic models is described and computer mod-
elling is carried out. The obtained results are aimed at the development
of methods of analysis of nondeterministic nonlinear models.

Keywords: Stochastic model · Single-step processes · Population
dynamics · Differential equations · Stability · Principle of a reduction ·
Computer modelling

1 Introduction

In the study of mathematical biology models one of the most pressing problems
is the problem of stability of population dynamics models [1–8]. An effective
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 498–510, 2016.
DOI: 10.1007/978-3-319-51917-3_43
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method for the analysis of stability is the method of Lyapunov functions [6–10].
A systematic approach to stability research, which considers the stability prop-
erties of the models defined by the differential equations of various types from
the uniform point of view with application of Lyapunov functions is described
in [6,9,10]. The specified approach is based on the transition from deterministic
to stochastic models and on the principle of reduction of the problem of stability
of solutions of differential inclusions to the problem of stability of other types of
equations. This approach allows performing a comparative analysis of the qual-
itative properties of mathematical models in the transition from deterministic
description to non-deterministic and justifying the construction and using of the
models of one type or another.

Two models of dynamics of populations are studied in this paper: the model
which takes into account the competition and diffusion of species and the model
considering the competition and a mutualism of populations. The deterministic
description of each of the models is given by a system of three ordinary nonlinear
differential equations. Qualitative research of the specified models is conducted.
The analysis of stability is made on the basis of the principle of reduction.

The two-dimensional models which take into account the symbiosis were
researched in [4,11–13]. The model of the population dynamics of prey and two
predators, in the presence of interactions prey-mutualist and predator-mutualist,
is considered in [14]. The models of interactions “predator–prey–mutualist” are
studied in [15]. The stability of the four-dimensional model of interaction of two
competing species with two symbionts in the deterministic and stochastic cases
are investigated in [16–18].

We use the method of constructing a self-consistent stochastic model devel-
oped in [19–21], which is based on the idea of combinatorial methodology
described in [22,23]. The synthesis of stochastic models which take into account
the competition and diffusion of species, as well as models incorporating compe-
tition and mutualism of populations is carried out. We describe the structure of
stochastic models by means of schemes of interaction of elements and the oper-
ator of change the state of the system. With the aid of Fokker–Planck equation
we formulate the transition rule to a stochastic differential equation in the form
of is carried out. We use the method of Lyapunov functions and the theory of
stochastic calculation for comparative analysis of deterministic and stochastic
models.

2 Qualitative Analysis of Deterministic Models

We consider a model described by a system of three ordinary differential equa-
tions of the form

x′
1 = x1(1 − x1 − qy1) + βx2 − γx1,

x′
2 = x2(1 − x2) + γx1 − βx2,

y′
1 = y1(1 − rx1 − y1),

(1)

where x1 and y1 are densities of populations of the competing species in the first
area of the species x and y, x2 is density of population of the species x in the
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second area, q > 0 and r > 0 are coefficients of the competition in the first area,
β and γ are coefficients of the diffusion of the species between the two areas,
while the second area is a refuge and β �= γ. Model (1) is a generalization of the
model considered in [8] in the case when diffusion velocities don’t coincide.

Besides, we consider a model described by a system of three ordinary differ-
ential equations of the form

x′ = δx(1 − x

K
) − ηxy

1 + mu
,

y′ = y(−s +
cηx

1 + mu
),

u′ = τu(1 − u

L0 + lx
),

(2)

where x, y, u represent the prey population, the predator population and the
mutualist population, respectively, τ , L0, δ, K, η, s, c are positive parameters,
l and m are mutualistic constants. Model (2) as a special case of the model
considered in [15] is characterized by logistic type growth of prey populations
in the absence of predator and by logistic growth of a population of mutualist.
In the absence of the mutualism model (2) represents a classical Lotka–Volterra
model.

Four equilibrium states of the model (1) are found: O(0, 0, 0), A1(0, 0, 1),
A2(x̄1, x̄2, 0) and A3(x̂1, x̂2, ŷ1), as a result of solving of the corresponding alge-
braic equations. Coordinates x̄1, x̄2, x̂1, x̂2, ŷ1 are found by means of Mathe-
matica computing system.

The conditions of existence of nonnegative equilibrium state A2 nd positive
equilibrium state A3 are obtained. In particular, it was discovered that if one
of the conditions: (C1) 0 < β < 1, γ > 1 − β, (C2) β > 1, γ > 0 holds, then
model (1) has the nonnegative equilibrium state A2. The conditions of existence
of positive equilibrium state A3 are formulated analogically. Estimations of the
model parameters carried out and local phase portraits are constructed. Condi-
tions of asymptotic stability of equilibrium state A3 are obtained on the basis
of the method of Lyapunov functions.

The following states of equilibrium are found for the model (2):

E0(0, 0, 0), E1(0,K, 0), E2

(
0,

s

cη
,
δ

η

(
1 − s

cηK

))
,

E3(L0, 0, 0), E4(L0 + lK,K, 0), E5

(
L0 +

lsλ

cη
,
sλ

cη
,
δλ

η

(
1 − sλ

cηK

))
,

where λ = cη(1+mL0)/(cη−lms). Let us note that all equilibrium states E0−E5

exist under condition
cηK > s(1 + m(L0 + lK)). (3)

If condition (3) and condition s ≥ τ are satisfied, then there is a unique
positive equilibrium of the model (2) and this equilibrium is asymptotically
stable [15].
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3 Construction and Stability Analysis of the Models
of Population Dynamics on the Basis of the Principle
of Reduction

From properties of differential inclusion it is possible a transition to the prop-
erties of fuzzy differential equations and stochastic differential equations. This
transition is based on the principle of reduction of the stability problem for dif-
ferential inclusions to the stability problem for fuzzy differential equations. The
fuzzy equation for each α-level, where α ∈ (0, 1], is given by the corresponding
differential inclusion. The set of all motions of the inclusion generates a multi-
valued mapping which takes into account the α-level of fuzzy function while this
function is the solution of the corresponding fuzzy differential equation.

Model (1) is presented in the form of the vector equation

dx/dt = f(x), (4)

where x = (x1, x2, y1), f(x) = (f1, f2, f3) = (x1(1 − x1 − qy1) + βx2 − γx1,
x2(1−x2)+γx1−βx2, y1(1−rx1−y1)), x ∈ R3

+ = R+×R+×R+, R+ = [0,∞),
f : R3

+ → R3
+.

The differential inclusion which corresponds to deterministic equation (4)
takes the form

dx/dt ∈ F (x), (5)

where F (x) = {f(x)|β ∈ B, γ ∈ C, q ∈ Q, r ∈ R}, B ::= [β1, β2], C ::= [γ1, γ2],
Q ::= [q1, q2], R ::= [r1, r2], F : R3

+ → 2R3
+ .

Let Φ be a set of all motions of the inclusion (5). By

B(M, r) = {x ∈ R3
+|e(x,M) ≤ r}

denote the r-neighborhood of the set M .
Let us formulate the definitions of stability and the definition of Lyapunov

function for the differential inclusion (5).
The closed set M ⊂ R3

+ regarding the inclusion (5) is called:

(1) stable in small, if

∀t0 ≥ s, ∀ε > 0 ∃δ ::= δ(ε) > 0, ∀ψ ∈ Φ

e(ψ(t0),M) < δ ⇒ Domψ ⊃ [t0,∞), e(ψ(t),M) < ε ∀t ∈ [t0,∞] ∩ Domψ;

(2) attracting in small, if

∀t0 ≥ s, ∃h > 0, ∀η > 0 ∃T ::= T (h, η) > s ∀ψ ∈ Φ e(ψ(t0),M) ≤ h ⇒
⇒ Domψ ⊃ [t0,∞), e(ψ(t),M) < η at t ∈ [t0 + T,∞] ∩ Domψ;

(3) asymptotically stable in small if it is stable in small and attracting in small.
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Let us formulate the notion of Lyapunov function regarding the differential
inclusion (5).

Continuous function V : B(M, r) → R is called Lyapunov function for the
closed set M ⊂ R3

+ regarding the inclusion (5), if there is number r > 0 and the
non-negative non-decreasing functions w1, w2 : (0, r] → R such that w1(ρ) > 0
at ρ ∈ (0, r], w2(0) = 0 and w1(e(x,M)) ≤ V (x) ≤ w2(e(x,M)) ∀x ∈ B(M, r).

The derivative of Lyapunov function V along the motions of inclusion (5) is
called the multivalued function DV : B(M, r) → 2R defined by equality

DV (x) ::= lim
Δt→0

{[V (ϕ(t + Δt)) − V (x)] /Δt : ϕ ∈ Φ, ϕ(t) = x} .

Functions D+V and D−V , for which D+V (x) :: = supDV (x) and
D−V ::= inf DV (x), are called the upper and lower derivative of Lyapunov func-
tion,
respectively.

The principle of reduction of the stability problem of the differential inclusion
to the stability problem of fuzzy differential equation is considered in [6,9,10].
The following stability conditions of differential inclusion are obtained by means
of this principle and by means of transition from model (1) to models (4) and (5):

(1) if there is a Lyapunov function V for the closed set M ⊂ R3
+ regarding the

inclusion (5), such that the inequality D+V (x) ≤ 0 ∀x ∈ B(M, r) is satisfied,
then the set M is stable in small regarding this inclusion. If the inequality
D+V (x) ≤ −w3(e(x,M)) ∀x ∈ B(M, r) is satisfied, where w3 : B(M, r) → R
is the continuous and positive function in R3

+ M , then the set M is asymp-
totically stable in small regarding the inclusion (5);

(2) if there is a Lyapunov function V for the closed set M ⊂ R3
+ regarding the

inclusion (5), such that the inequality D−V (x) ≤ 0 ∀x ∈ B(M, r) is satisfied,
then the set M is stable in small regarding this inclusion. If there is h > 0
and positive continuous function w3 : (0, r) → R such that D−V (x) <
−w3(e(x,M)) ∀x ∈ B(M,h), then the set M is asymptotically stable in
small regarding the inclusion (5).

By means of subsets of α-level Bα = {β|μB(β) ≥ α}, Cα = {γ|μ(γ) ≥ α},
Qα = {q|μQ(q) ≥ α} and Rα = {r|μR(r) ≥ α}, where α ∈ (0, 1], we make the
transition from Eq. (4) to fuzzy differential equation

dX/dt = F (x), (6)

where F : z3+ → P (R3
+), P (R3

+) is the set of all fuzzy subsets of R3
+. In terms of

subsets of α-level the corresponding to Eq. (6) the differential inclusion takes the
form dϕ/dt ∈ Fα(ϕ), where α ∈ (0, 1], Fα(ϕ) = {f(ϕ(t))|β ∈ Bα, γ ∈ Cα, q ∈
Qα, r ∈ Rα}.

Definitions of α-stability, α-attraction and asymptotic α-stability for the
model of the form (6) are given. The theorems of stability on the basis of Lya-
punov functions are proven.

Let us formulate the definition of Lyapunov function regarding the fuzzy
differential equation (6).
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Continuous function V : B(M, r) → R is called Lyapunov function for the
closed set M ⊂ (R3

+) regarding the Eq. (6), if for each α ∈ (0, 1] there is number
r ::= r(α) > 0 and the non-negative non-decreasing functions w1α, w2α : (0, r] →
R such that

w1α(ρ) > 0 at ρ ∈ (0, r], w2α(0) = 0,
w1α(e(x,Mα)) ≤ V (x) ≤ w2α(e(x,Mα)) ∀x ∈ B(Mα, r).

The derivative of Lyapunov function V along the motions of the Eq. (6) is
called multivalued function DV (x) : B(M, r) → P (R), for which α-levels values
are defined by the equality

DVα ::=
{

lim
Δt→0

[V (ϕ(t + Δt)) − V (x)] /Δt : ϕ ∈ Φα, ϕ(t) = x
}

.

Functions D+Vα(t, x) ::= supDVα(t, x) and D−Vα ::= inf DVα(t, x) are called
the upper and lower derivative of α-level of Lyapunov function, respectively.

The following stability conditions of fuzzy Eq. (6) are obtained by means of
the principle of reduction and by means of transition from model (1) to mod-
els (4) and (6):

(1) if there is a Lyapunov function V regarding the equation (6) for the closed
set M ⊂ P (R3

+), such that the inequality D+Vα(x) ≤ 0 ∀x ∈ B(M, r) is
satisfied, then the set M is α-stable in small regarding this equation. If
the inequality D+Vα(x) ≤ −w3α(e(x,M)) ∀x ∈ B(M, r) is satisfied, where
w3α : (0, r) → R is the continuous and positive function, then the set M is
asymptotically α-stable in small regarding the equation (6);

(2) if there is a Lyapunov function V regarding the Eq. (6) for the closed set
M ⊂ P (R3

+) and for some r ::= r(α), such that D−Vα(x) ≤ 0 ∀x ∈ B(Mα, r),
then the set is α-stable in small regarding this equation. If there is h > 0
and positive continuous function w3α : (0, r) → R, such that D−Vα(x) ≤
−w3α(e(x,Mα)) ∀x ∈ B(Mα, h), then the set is asymptotically α-stable in
small regarding the Eq. (6).

By means of the principle of reduction we formulate the stability conditions
of stochastic equations which correspond to model (6). It is shown that if the
trivial solution of a fuzzy equation is α-stable for every α ∈ (0, 1], then the
trivial solution of the corresponding stochastic equation is stable on probability.
If the trivial solution of the fuzzy equation is asymptotically α-stable for any
α ∈ (0, 1], then the trivial solution of the corresponding stochastic equation is
asymptotically stable on probability.

Similar stability conditions can be formulate for model (2) on the basis of
transition to the differential inclusion, to the fuzzy differential equation and to
the stochastic equation.



504 A.V. Demidova et al.

4 Synthesis of Stochastic Models of Population
Dynamics by Means of the Method for Construction
of Self-consistent Stochastic Models

Let us a realize a transition to stochastic models corresponding models (1)
and (2) using the method of construction of the self-consistent stochastic models.
Application of this method allows to obtain the stochastic differential equation in
Langevin form with coordination of stochastic and deterministic parts. Consis-
tency is understood in the sense that the stochastics in the constructed stochastic
model is associated with the structure of the system, but isn’t the description of
external perturbations.

According to the main idea of the method it is possible for the system under
consideration to describe the scheme of interaction in the form of symbolic rep-
resentation of all possible interaction between the system elements.

Then we give the intensities of transitions and master equation, for which we
can obtain an approximate Fokker–Planck equation by the aids of formal series
expansion. It is not difficult to transit from the Fokker–Planck equation to the
equivalent stochastic differential equation in Langevin form. In the practice of
the method the stochastic differential equation can be written immediately after
the representation of the interaction scheme. It is connected with the fact that
for obtained the coefficients of the Fokker–Planck equation is necessary to know
only the intensities of transitions and operators of state changes.

We present the scheme of interaction elements and the operator of state
change for the system (1) in the form:

X1 −→ 2X1,

X2 −→ 2X2,

Y −→ 2Y,

X1 + X1 −→ X1,

X2 + X2 −→ X2,

Y + Y −→ Y,

X1 + Y
q−→ Y,

X1 + Y
r−→ X1,

X1
γ−→ X2,

X2
β−→ X1,

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

−1 0 0
0 0 −1

−1 1 0
1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first three rows of the scheme of interaction correspond to natural repro-
duction species in the absence of other factors, lines 4–6 and lines 7–8 symbolize
intraspecific and interspecific competition, respectively, and the last two lines
describe the migration of species x1 and x2 between the first and the second
areas.
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The state of the system can be described by means of vector x = (x1, x2, y1).
The following relations are given for intensities of transitions from the state x
to the state x ± RA in the unit of the time:

s+1 (x1, x2, y) = x1, s+2 (x1, x2, y) = x2, s+3 (x1, x2, y) = y,

s+4 (x1, x2, y) = x1
2, s+5 (x1, x2, y) = x2

2, s+6 (x1, x2, y) = y2,

s+7 (x1, x2, y) = qx1y, s+8 (x1, x2, y) = rx1y,

s+9 (x1, x2, y) = γx1, s+10(x1, x2, y) = βx2.

Let us present Fokker–Planck equation corresponding to the model in the
form:

∂P (x, t)
∂t

= −
∑

a

∂a (Aa(x)P (x, t)) +
1
2

∑
a,b

∂a∂b (Bab(x)P (x, t)) , (7)

where

A(x) =
∑

A=1,10

[
s+A(x) − s−

A(x)
]
RA =

⎛
⎝x1(1 − x1 − qy) + βx2 − γx1,

x2(1 − x2) − βx2 + γx1,
y(1 − rx1 − y)

⎞
⎠ ,

B(x) =
∑

A=1,10

[
s+A(x) − s−

A(x)
]
RA(RA)

T
=

=

⎛
⎝x1(1 + x1 + qy) + βx2 + γx1 −βx2 − γx1 0

−βx2 − γx1 x2(1 + x2) + βx2 + γx1 0
0 0 y(1 + rx1 + y)

⎞
⎠ .

Then we obtain Langeven equations equivalent to Fokker–Planck equations
in the form

dx = a(x, t)dt + b(x, t)dW, (8)

where x ∈ R3 is the function of a state of the system, nd W ∈ R3 is the standard
three-dimensional Brownian motion.

We have the following relations for the coefficients:

A(x) = a(x), B(x) = b(x)bT (x).

It is easy to see that the equation in the moments for a stochastic differential
equation in the form of Langeven completely coincides with model (1) and this
fact can serve for study of deterministic behavior.

Investigation of the stochastic component of a stochastic differential equation
in the form of Langeven allows us to studying the influence of introduction of
stochastics on the behavior of the considered system. Transition from the vector
differential equation corresponding to model (2) to the stochastic differential
equation is similarly realized.
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Fig. 1. The phase portrait for model (1)

Similar stochastic model can be construct for model (2). In this case, the
coefficients of the Fokker–Planck equation will be:

A(z) =

⎛
⎝xδ − x2 δ

K − xyν + νmxyu,
−sy + cνxy − cνmxyu,

τu − τ
Lu2 + τl

L xu2

⎞
⎠ ,

B(z) =

⎛
⎝xδ + x2 δ

K + xyν + νmxyu 0 0
0 sy + cνxy + cνmxyu 0
0 0 τu + τ

Lu2 + τl
L xu2

⎞
⎠ .

where z = (x, y, u) is the phase vector of the system.
Numerical experiments for models (1) and (2) we have made by means of the

developed software package for the numerical solving of systems of differential
equations by stochastic Runge–Kutta methods [24,25]. The library is prepared
in the Python language with using of Numpy and Scipy modules. Algorithms
for generation of trajectories of Wiener process and multipoint distributions,
approximation of the multiple stochastic integrals, testing strong and weak con-
vergence of numerical methods and directly numerical algorithms of a stochastic
Runge–Kutta method are realized.

Numerical experiments showed that the developed software package gives
results which are completely coordinated with analytical conclusions for the
discussed deterministic models of population dynamics.

As a verification of numerical methods and the developed software package
with the analytical results, we give the phase portraits for the first model (Fig. 1)
and for the second model (Fig. 2). Here, asterisks indicate the stationary points,
obtained by analytical formulas.The graphs show that for the given parameters the
trajectories “roll” in the stationary points that correspond to the analytic results.
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Fig. 2. The phase portrait for model (2)

Fig. 3. The trajectories of average values for 100 realizations

The following parameters for the numerical experiment concerning the sto-
chastic model which takes into account the competition and diffusion of species
were selected: initial values of populations densities (x1(0), x2(0), y1(0)) ==
(1.0, 1.0, 0.5), parameter values q = 1.2, r = 0.5, γ = 0.16, β = 1.44. The
graph (Fig. 3) shows the trajectory of the average values of 100 realizations
with these initial values and parameter values for the time interval [0, 20].

The following parameters for the numerical experiment concerning the sto-
chastic model “predator–prey–mutualist” were selected: initial values of popu-
lations densities (x(0), y(0), u(0)) = (1.0, 1.0, 0.5), parameter values δ = 1.2,
K = 3.2, η = 0.2, m = 1.2, c = 2.2, s = 0.2, τ = 2.2, L = 1.2, l = 1.2. The
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Fig. 4. The trajectories of average values for 100 realizations

graph (Fig. 4) shows the trajectory of the average values of 100 realizations with
these initial values and parameter values for the time interval [0, 10].

Number of problems was revealed by the numerical experiments. Runge–
Kutta methods used for solving stochastic differential equations, give enough
good results on a short time interval. However, with increasing the time of the
experiment, due to the accumulation of error, the method ceases to work stable.
Large bursts of values are visible on the figure.

There are several ways to solve this problem. One way may be to find other
numerical methods for solving of stochastic differential equations describing the
models we studied. The second way consists in transition from solving of stochas-
tic differential equations in the form of specific implementations to the study of
the Fokker–Planck equation, the solution of which is a function of the probability
distribution.

Besides, as a result of numerical experiment there was a problem of choice of
parameters of modeling in which the physical sense of the modelled phenomenon
would remain. Thus there was a problem of detection of intervals which save
physical sense, and also tracing of change of qualitative behavior depending on
a choice of parameters not only by means of numerical modeling, but also by
preliminary qualitative analysis of model.

5 Conclusions

The developed combined approach to analysis of models of nonlinear dynamics is
based on the principle of reduction, and on the construction of self-consistent sto-
chastic models. The method for construction of self-consistent stochastic model
allowed us to synthesize the stochastic model which takes into account the com-
petition and the diffusion of species, and the stochastic model which takes into
account the mutualism. The principle of reduction allowed us to obtain the
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conditions of stability with the transition to differential inclusions, fuzzy dif-
ferential equations and stochastic differential equations. Numerical experiments
conducted using the developed software package show consistency with the ana-
lytical results for the studied deterministic models. A number of problems arising
in the numerical study of corresponding stochastic models identified, and meth-
ods for their solving are indicated. The obtained results can be used for the
study of nondeterministic nonlinear dynamic models.
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Abstract. The mathematical model of quantum tunnelling of diatomic
homonuclear molecules through repulsive barriers or scattering by an
atom is formulated in the s-wave approximation. The 2D boundary-value
problem (BVP) in polar coordinates is reduced to a 1D BVP for a set
of second-order ODEs by means of Kantorovich expansion over the set
of parametric basis functions. The algorithm for calculating the asymp-
totic form of the parametric basis functions and effective potentials of
the ODEs at large values of the parameter (hyperradial variable) is pre-
sented. The solution is sought by matching the numerical solution in
one of the subintervals with the analytical solution in the adjacent one.
The efficiency of the algorithm is confirmed by comparing the calculated
solutions with those of the parametric eigenvalue problem obtained by
applying the finite element method in the entire domain of definition
at large values of the parameter. The applicability of algorithms and
software are demonstrated by the example of benchmark calculations of
discrete energy spectrum of the trimer Be3 in collinear configuration.

Keywords: Parametric boundary-value problems · Second-order
ordinary differential equations · Finite element method

1 Introduction

The studies of tunnelling of bound particles through repulsive barriers revealed
the effect of resonance quantum transparency of the barrier: when the cluster size
is comparable with the spatial width of the barrier, one can observe enhanced
barrier transparency, the mechanism of which is analogous to the mechanism of
blooming of optical systems. At present this effect and its possible applications
is a subject of extensive studies in different physical fields, e.g., the quantum
diffusion of molecules [14,18].
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The formulation of the model of quantum tunnelling of a diatomic molecule
through Gaussian barriers in the s-wave approximation is given in the form of
2D boundary-value problems in the Cartesian and polar coordinates [11,19].
Evidently, it corresponds to the scattering of a diatomic homonuclear molecule
in a potential field of the third atom having infinite mass. Therefore, we can
consider the tunneling of a diatomic molecule through the barriers as a limiting
case of the molecule scattering by an atom, e.g., the resonance scattering of Be2
dimer by the Be atom via the compound trimer Be3: Be2+Be states. Below we
consider the statement of both problems and show both common and specific
properties of the corresponding solutions.

In the present paper using different solutions of the auxiliary boundary-value
problems with respect to the transverse variable, or the angular variable, with
parametric dependence upon the hyperradial variable as basis functions, the 2D
boundary-value problem is reduced to a system of coupled ODEs of the second
order. In the Cartesian coordinates the effective potentials decrease exponentially
(below the dissociation threshold) and in the polar coordinates they decrease as
inverse powers of the independent variable. Therefore, in the latter case it is
necessary to calculate the asymptotic expansions of matrix elements and fun-
damental solutions of the system of coupled ODEs. For their calculation it is
necessary to develop symbolic-numeric algorithms, implemented in the Maple
computer algebra system [19].

The paper is organised as follows. In Sect. 2 we give the setting of the 2D BVP.
In Sect. 3 the reduction of the BVP using the Kantorovich method is executed. As
an example, the eigenvalues and the hyperradial components of eigenfunctions
are calculated for the model of Be3 trimer in the collinear configuration. In
Sect. 4 we present the algorithms for calculating the asymptotes of parametric
basis functions in polar coordinates at large values of the parameter (hyperradial
variable) and the effective potentials. In Conclusion the results and perspectives
are discussed.

2 Setting of the Problem

Consider a 2D model of three identical particles with the mass M and the coordi-
nates xi ∈ R1, i = 1, 2, 3, coupled via the pair potential Ṽ (|xi −xj |) i, j = 1, 2, 3.
Performing the change of variables at cyclic permutation (α, β, γ) = (1, 2, 3):

x ≡ x(αβ) = xα − xβ , y ≡ y(αβ)γ =
xα + xβ − 2xγ√

3
, x0 =

√
2√
3
(x1 + x2 + x3),

we arrive at the Schrödinger equation for the wave function in a center-of-mass
system {xi ∈ R1|x1 + x2 + x3 = 0}

(
− ∂2

∂y2
− ∂2

∂x2
+

M

�2
(Ṽ (x, y) − Ẽ)

)
Ψ(y, x) = 0. (1)

In the case of a diatomic molecule with identical nuclei coupled via the pair
potential Ṽ (|x1 − x2|) and moving in the external potential field Ṽ b(|xi − x3|),
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Fig. 1. The potential curves of Be2 (in K, 1 K = 0.18 Å−2), i.e., the energy eigenvalues
depending upon the parameter ρ (in Å): a. εj(ρ) and b. ε̃j = εj(ρ)/ρ2.

i = 2, 1 of the third atom having the infinite mass, the same Eq. (1) is valid for
the variables

x = x1 − x2, y = x1 + x2,

the origin of the coordinate frame being placed on the infinite-mass atom, x3 = 0.
Here the potential function for a trimer with the pair potentials (below this

case is referred to as Task 2),

Ṽ (x, y) = Ṽ (|x|) + Ṽ (|x − √
3y

2
|) + Ṽ (|x +

√
3y

2
|), (2)

or the potential function for a dimer in the field of barrier potentials (below this
case is referred to as Task 3)

Ṽ (x, y) = Ṽ (|x|) + Ṽ b(|x − y

2
|) + Ṽ b(|x+y

2
|), (3)

is symmetric with respect to the straight line x = 0 (i.e., x1 = x2), which allows
one to consider the solutions of the problem in the half-plane x ≥ 0. Using the
Dirichlet or Neumann boundary condition at x = 0 allows one to obtain the
solutions, symmetric and antisymmetric with respect to the permutation of two
particles. If the pair potential possesses a high maximum in the vicinity of the
pair collision point, then the solution of the problem in the vicinity of x = 0 is
exponentially small and can be considered in the half-plane x ≥ xmin. In this
case setting the Neumann or Dirichlet boundary condition at xmin gives only
a minor contribution to the solution. The equation, describing the molecular
subsystem, has the form

(
− d2

dx2
+

M

�2
(Ṽ (x) − ε̃)

)
φ(x) = 0. (4)

We assume that the molecular subsystem has the discrete spectrum, consisting
of a finite number n0 of bound states with the eigenfunctions φj(x), j = 1, n and
eigenvalues ε̃j = −|ε̃j |, and the continuous spectrum of eigenvalues ε̃ > 0 with
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the corresponding eigenfunctions φε̃(x). As a rule, the solution of the discrete
spectrum problem for Eq. (4) can be found only numerically.

The proposed algorithm is illustrated by the example of the molecular inter-
action approximated by the Morse potential of Be2 with the reduced mass
M/2 = 4.506 Da of the nuclei [14,19]

V (x) =
M

�2
Ṽ (x), Ṽ (x) = D{exp[−2(x − x̂eq)α] − 2 exp[−(x − x̂eq)α]}. (5)

Here α = 2.96812 Å−1 is the potential well width, x̂eq = 2.47 Å is the
average distance between the nuclei, and D = 1280 K (1 K = 0.184766
Å−2,1 Å−2 = 5.412262 K) is the potential well depth. This potential supports
five bound states [20] having the energies εi = (M/�

2)ε̃i, i = 1, ..., n0 = 5
presented in Table 1. The parameter values are determined from the condition
(ε̃2 − ε̃1)/(2π�c) = 277.124 cm−1, 1 K/(2π� c) = 0.69503476 cm−1.

To solve the discrete spectrum problem we applied the finite element method
of the seventh order using the Hermitian interpolation polynomials with double
nodes [12]. The grid {x0, ..., xi, ..., xn} was used to calculate the values of both
the function and its derivatives.

Fig. 2. Be+Be2: The potential curves of Be3 (in K), i.e., the energy eigenvalues depend-
ing upon the parameter ρ (in Å): a. εj(ρ) and b. ε̃j = εj(ρ)/ρ2, c. the isolines of 2D
potentials of Be3 trimer, and d the diagonal effective potentials Hjj(ρ).
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Fig. 3. The effective potentials (13) a. Hjj−1(ρ), b. Qjj−1(ρ), c. Hj1(ρ), d. Qj1(ρ).

3 Reduction of the BVP Using the Kantorovich Method

Using the change of variables x = ρ sin ϕ, y = ρ cos ϕ, we rewrite Eq. (1) in polar
coordinates (ρ, ϕ), Ωρ,ϕ = (ρ ∈ (0,∞), ϕ ∈ [0, 2π])

(
−1

ρ

∂

∂ρ
ρ

∂

∂ρ
− 1

ρ2
∂2

∂ϕ2
+ V (ρ, ϕ) − E

)
Ψ(ρ, ϕ) = 0, (6)

where for a trimer with pair potentials

V (ρ, ϕ)=V (ρ| sin ϕ|) + V (ρ| sin(ϕ − 2π/3)|) + V (ρ| sin(ϕ − 4π/3)|), (7)

and for a dimer with pair potential in the external field of barrier potentials:

V (ρ, ϕ)=V (ρ| sin ϕ|) + V b(ρ| sin(ϕ − π/4)|) + V b(ρ| sin(ϕ + π/4)|). (8)

The solution of Eq. (6) is sought in the form of Kantorovich expansion

Ψio
(ρ, ϕ) =

jmax∑
j=1

φj(ϕ; ρ)χjio
(ρ). (9)

Here χjio
(ρ) are unknown functions and the orthogonal normalised basis func-

tions φj(ϕ; ρ) in the interval ϕ ∈ [0, π] are defined as eigenfunctions, correspond-
ing to the eigenvalues of the Sturm-Liouville problem for the equation



516 A.A. Gusev et al.

(
− d2

dϕ2
+ ρ2V (ρ, ϕ) − εj(ρ)

)
φj(ϕ; ρ) = 0,

∫ 2π

0

dϕφi(ϕ; ρ)φj(ϕ; ρ) = δij .

(10)

Table 1. The discrete spectrum energies of dimer Be2 and the binding energy
Eb = −(E − Ea) of even (e) and odd (o) states of trimer Be3 counted of Ea = ε̃1 =
−193.06 Å−2 = −1044 K dimer energy Be2 calculated in grid Ωρ = 4.1(20)7(10)10.

−ε̃1=1044.879 649K Eb
1,e = 196.02 Å−2 = 1060.86 K Eb

1,o = 107.52 Å−2 = 581.90 K

−ε̃2=646.157 093K Eb
2,e = 142.37 Å−2 = 770.51 K Eb

2,o = 67.41 Å−2 = 364.84 K

−ε̃3=342.791 979K Eb
3,e = 93.95 Å−2 = 508.50 K Eb

3,o = 34.60 Å−2 = 187.28 K

−ε̃4=134.784 305K Eb
4,e = 52.77 Å−2 = 285.63 K Eb

4,o = 11.79 Å−2 = 63.83 K

−ε̃5=22.134 073K Eb
5,e = 32.32 Å−2 = 174.95 K Eb

5,o = 0.8 Å−2 = 4.4 K

Eb
6,e = 22.31 Å−2 = 120.75 K

Eb
7,e = 5.14 Å−2 = 27.87 K

For the problems under consideration the potential function V (ρ, ϕ) depending
on the parameter ρ can be defined as follows.

Task 1. The case of one pair potential in the intervals ϕ ∈ (0, 2ϕα) (ϕα = π/3,
π/4 or π/2) V (ρ, ϕ) = V (ρ sin ϕ).

Task 2. The case of three pair potentials (7), in the interval ϕ ∈ (0, 2ϕα = π/3).
Task 3. The case of one pair potential and two penetrable or almost impenetrable

barrier potentials (8), in the interval ϕ ∈ (0, ϕα = π/2) or in the intervals
ϕ ∈ (0, ϕα = π/4 − ε) and ϕ ∈ (ϕα = π/4 − ε, π/2), 0 < ε � π/4.

The solutions symmetric with respect to the permutation of two particles satisfy
the Neumann boundary condition at ϕ = 0 and ϕ = 2ϕα, while the antisymmet-
ric ones satisfy the Dirichlet boundary condition. If the pair potential possesses
a high peak in the vicinity of the pair collision point, then the solution of the
problem (6) will be considered in the half-plane Ωρ,ϕ = (ρ ∈ (ρmin,∞), ϕ ∈
[ϕmin(ρ), 2ϕα − ϕmin(ρ)]) with the Neumann or Dirichlet boundary condition.
Since the potential of the boundary-value problem (10) is symmetric with respect
to ϕ = ϕα, the even φj(ϕ; ρ) = φj(2ϕα−ϕ; ρ) and odd φj(ϕ; ρ) = −φj(2ϕα−ϕ; ρ)
solutions, satisfying the Neumann or the Dirichlet boundary condition respec-
tively, will be considered separately in the interval ϕ ∈ [ϕmin(ρ), ϕα].

The system of coupled ODEs in the Kantorovich form has the form

[
−1

ρ

d

dρ
ρ

d

dρ
+

εi(ρ)
ρ2

− E

]
χiio

(ρ) +
jmax∑
j=1

Wij(ρ)χjio
(ρ) = 0, (11)

Wij(ρ) = Hji(ρ) +
1
ρ

d

dρ
ρQji(ρ) + Qji(ρ)

d

dρ
. (12)
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The effective potentials Qij(ρ) = −Qji(ρ), Hij(ρ) = Hji(ρ) are given by the
integrals calculated using the above symmetry on reduced intervals ϕ ∈ [0, ϕα]:

Qij(ρ) = −
∫ ϕα

0

dϕφi(ϕ; ρ)
dφj(ϕ; ρ)

dρ
, Hij(ρ) =

∫ ϕα

0

dϕ
dφi(ϕ; ρ)

dρ

dφj(ϕ; ρ)

dρ
. (13)

For Task 3 the effective potentials Ŵij(ρ) = Wij(ρ) + V b
ij(ρ) are sums of

Wij(ρ), calculated using the potential curves and the parametric basis func-
tions of Task 1, and the integrals of barrier potentials V b

ij(ρ) mutiplied by the
basis functions

V b
ij(ρ) =

∫ ϕα

0

dϕφi(ϕ; ρ)(V b(ρ sin(ϕ − π/4)) + V b(ρ sin(ϕ + π/4)))φj(ϕ; ρ).

As an example, we calculated the parametric basis functions of BVP (10) and
the effective potentials (13) for the models of Be2 dimer and Be3 trimer in
collinear configuration using the programme ODPEVP [1]. The results are shown
in Figs. 1, 2, and 3. For this model the eigenvalues and the hyperradial compo-
nents of 2D eigenfunctions of the BVP for the set of ODEs (11) were calculated
using the program KANTBP [12]. The discrete energy spectrum of the dimer
Be2 and a set of the binding energies of the trimer Be3 is shown in Table 1, and
the components of the trimer eigenfunctions (9) are shown in Fig. 4.

Fig. 4. Components χi,σ=e,o
j (ρ, E) ≡ χ

(i)
j (ρ) of even (e) and odd (o) bound states with

total energy E in Å−2.
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4 Asymptotes of the Parametric Basis Functions

In polar coordinates at large ρ the width of the potential well decreases with the
growth of ρ. This fact allows the linearisation of the argument ρ sin ϕ − x̂eq →
ρ(ϕ−arcsin(x̂eq/ρ)) at |x−x̂eq|/ρ � 1 in the expression for the potential function
V (ρ sin ϕ) and the reformulation of Eq. (10) in the interval ϕ = (0, ϕα) as

(
− ∂2

∂ϕ2
+ ρ2V (ρϕ) − εj(ρ)

)
φj(ϕ; ρ) = 0. (14)

By the change of variables x = ρϕ this equation is reduced to Eq. (4).
The cluster eigenfunctions of the lower part of discrete spectrum εj(ρ) < 0

are known to be localised in the potential well and exponentially small beyond it.
Therefore, the solutions of the BVP for Eq. (14) of Task 1 are determined from
the solutions of the BVP for Eq. (4) εj(ρ) = ρ2ε̃j , φj(ϕ = x/ρ; ρ) =

√
ρφj(x),

j = 1, ..., n0. Provided that the solution of the BVP was earlier calculated in
Cartesian coordinates on the grid {x0 = 1.7665, ..., xi, ..., x7999 = 9.7655} by
means of the program KANTBP 4M using FEM with the interpolating Hermite
polynomials of the fifth order and double nodes, the solution in polar coordinates

on the grid ϕi = (xi + x3
eq

6ρ2 )/ρ is recalculated as

φ0;hϕ
j;i (ρ) = φh

j (ϕi; ρ) =
√

ρφ0;hx
j;i , φ1;hϕ

j;i (ρ) =
φh

j (ϕ; ρ)
dϕ

∣∣∣∣∣
ϕ=ϕi

= ρ
√

ρφ1;hx
j;i .(15)

Let us calculate the solution of the problem at large ρ

(
− ∂2

∂ϕ2
+ ρ2V (ρ sin ϕ) − εj(ρ)

)
φj(ϕ; ρ) = 0. (16)

Using the new variable x′ defined as ϕ = x′/ρ, x′ = ρ arcsin(x/ρ) we get
(

− ∂2

∂x′2 + V (ρ sin(x′/ρ)) − εj(ρ)
ρ2

)
φj(x′; ρ) = 0. (17)

In the argument of the potential we add and subtract x′ and expand the potential
in Taylor series in the vicinity of x′, V (ρ sin(x′/ρ)) = V (x′ +(ρ sin(x′/ρ)−x′)) =
V (x′)+ dV (x′)

dx′ (ρ sin(x′/ρ)−x′)+ 1
2

d2V (x′)
dx′2 (ρ sin(x′/ρ)−x′)2 +O(ρ−6) = V (x′)−

1
ρ2

x′3
6

dV (x′)
dx′ + 1

ρ4

(
x′5
120

dV (x′)
dx′ + x′6

36
d2V (x′)

dx′2

)
. Then

(
− ∂2

∂x′2 + V (x′) − V (1)(x′)
ρ2

+
V (2)(x′)

ρ4
− εj(ρ)

ρ2

)
φj(x′; ρ) = 0, (18)

〈φi(ρ)|φj(ρ)〉 ≡
∫ x′

max

x′
0

dx′(φi(x′; ρ)φj(x′; ρ) = δij . (19)



Model of Diatomic Homonuclear Molecule Scattering 519

For the Morse potential (5) the corrections to the potential are expressed as

V (1)(x′) ≡ x′3

6
dV (x′)

dx′ =
Dαx′3

3
{exp[−2(x′ − x̂eq)α] − 2 exp[−(x′ − x̂eq)α]}

V (2)(x′) ≡
(

x′5

120
dV (x′)

dx′ +
x′6

72
d2V (x′)

dx′2

)

=
Dαx′5

180
{(10αx′ − 3) exp[−2(x′ − x̂eq)α] − (5αx′ − 3) exp[−(x′ − x̂eq)α]}

We seek the solution in the form of the power series using the second-order
perturbation theory

φj(x′; ρ) = φ
(0)
j (x′) +

φ
(1)
j (x′)
ρ2

+
φ
(2)
j (x′)
ρ4

,
εj(ρ)
ρ2

= E
(0)
j +

E
(1)
j

ρ2
+

E
(2)
j

ρ4
(20)

that yields the recurrence set of nonuniform ODEs

(
L − E

(0)
j

)
φ
(0)
j (x′) = 0, L = − ∂2

∂x′2 + V (x′),
(
L − E

(0)
j

)
φ
(1)
j (x′) +

(
V (1)(x′) − E

(1)
j

)
φ
(0)
j (x′) = 0,(

L − E
(0)
j

)
φ
(2)
j (x′)+

(
V (1)(x′)−E

(1)
j

)
φ
(1)
j (x′)+

(
V (2)(x′)−E

(2)
j

)
φ
(0)
j (x′)=0.

The first- and second-order corrections of the eigenfunctions satisfy the relations

〈φ(0)
i (x′)|φ(0)

j (x′)〉 ≡
∫ x′

max

x′
0

dx′(φ(0)
i (x′)φ(0)

j (x′) = δij ,

〈φ(0)
j (x′)|φ(1)

j (x′)〉 = 0, 〈φ(1)
j (x′)|φ(1)

j (x′)〉 + 2〈φ(0)
j (x′)|φ(2)

j (x′)〉 = 0.

and corrections of the eigenvalues are determined by integrals

E
(1)
j = 〈φ(0)

j |V (1)(x′)|φ(0)
j 〉, E

(2)
j = 〈φ(0)

j |V (2)(x′)|φ(0)
j 〉 + 〈φ(0)

j |V (1)(x′)|φ(1)
j 〉.

Substituting (20) into the effective potentials Qij(ρ) and Hij(ρ) defined by

Qij(ρ) = −〈φi(ρ)| ∂

∂ρ
|φj(ρ)〉 + Q

(0)
ij , Q

(0)
ij = −〈φi(ρ)|x

ρ

∂

∂x
+

1
2ρ

|φj(ρ)〉, (21)

Hij(ρ) = Kij(ρ) − ∂Qij(ρ)
∂ρ

, Kij(ρ) = −〈φi(ρ)|( ∂

∂ρ
+

x

ρ

∂

∂x
+

1
2ρ

)2|φj(ρ)〉,

Hij(ρ) = 〈φi(ρ)
∂ρ

|∂φj(ρ)
∂ρ

〉 +
2
ρ
〈(−1

2
− x

∂

∂x
)φi(ρ)|∂φj(ρ)

∂ρ
〉 + H

(0)
ij (ρ), (22)

H
(0)
ij (ρ) =

1
ρ2

〈∂φi(ρ)
∂x

|x2|∂φj(ρ)
∂x

〉 − 1
4ρ2

〈φi(ρ)|φj(ρ)〉, (23)
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we arrive at the required asymptotic expansions for cluster states, i, j = 1, ..., n0:

Qij(ρ) =
Q

(1)
ij

ρ1
+

Q
(3)
ij

ρ3
+ O(ρ−5), Hij(ρ) =

H
(2)
ij

ρ2
+

H
(4)
ij

ρ4
+ O(ρ−6). (24)

Remark. The effective potentials E
(1)
j + H

(0)
jj = (1/4)ρ−2 lead to asymptotic

cluster fundamental solutions of the ODEs (11), defined by the Bessel functions
J1/2(

√−E + εjρ), j = 1, ..., n0, while for pseudostates the asymptotic funda-
mental solutions of the ODEs are Jm(

√
Eρ) with integer m = (j −n0) = 1, 2, ....

The eigenfunctions of pseudostates εj(ρ) ≥ 0, (j−n0) = 1, 2, ...,, are localized
in out of the potential well. Then the (n0−1)-th node is located at the boundary
of the potential well. Here and below we consider the case of ϕα = π/2 illustrated
by Fig. 5. From this fact the estimate of the eigenvalues for pseudostates εj(ρ) ≈
(j−n0)2 follows, namely, the eigenvalues of the corresponding BVPs in Cartesian
coordinates, εj = εj(ρ)/ρ2, will be a small quantity (see Fig. 1b). Then the
numerical values of the function B(ϕi; ρ) = B(xi) and its derivative B′(ϕi; ρ) =
ρB′(xi) on the specified grid Ωϕ = {ϕ1 = ϕ0, ..., ϕi = xi/ρ, ..., ϕN = ϕε} in the
polar system of coordinates are determined via the values of the function B(xi)
and its derivative B′(xi) on the grid Ωx = {x1 = x0, ..., xi, ..., xN = xε}, found
in the form of the power series of small parameter εn:

Bj(xi) = B
(0)
i + B

(1)
i εn + B

(2)
i ε2n, B′

j(xi) = b
(0)
i + b

(1)
i εn + b

(2)
i ε2n, (25)

using the Runge-Kutta method, in which the third power of unknown εn and
the higher ones are neglected. The expansion coefficients B

(k)
i ≡ B

(k)
i (xi) and

b
(k)
i ≡ b

(k)
i (xi), k = 0, 1, 2, calculated at the grid nodes xi for the potential (5)

are presented in Fig. 6. One can see that in the vicinity of the potential well the
corrections to the eigenfunctions are small, and at x > 6 they become essential.
The coefficient b

(0)
i , the derivative of the wave function with εn = 0, becomes

constant for x > 5.5. From these observations the condition for choosing xε

follows. The interval ϕ0 ≤ ϕ ≤ π/2 is divided into two subintervals by the point
ϕε = xε/ρ: ϕ0 < ϕ ≤ ϕε and π/2 > ϕ > ϕε. In the calculations the point xε was
chosen from the condition |V (x > xε)| < ε, where ε is a preassigned number, and
the left-hand boundary of the interval ϕ0 = 0. In the case of a high barrier, at
the pair collision point, when the eigenfunctions in its vicinity are close to zero,
the left boundary of the interval changes, ϕ0 = x0/ρ > 0. The eigenfunctions
φj(ϕ; ρ) are calculated in the form

φj(ϕ; ρ) =

{
Aj(ρ)Bj(ϕ; ρ), ϕ0 ≤ ϕ ≤ ϕε,

Cj(ρ)
√

2
π

{
cos
sin

}
(
√

εj(ρ)(ϕ − π/2)), ϕε < ϕ ≤ π/2,
(26)

2
∫ π/2

ϕ0

dϕ(φn(ϕ; ρ))2 = 1. (27)
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Fig. 5. Eigenfunctions φj(ϕ; ρ) corresponding to the eigenvalues εj(ρ) ≥ 0 of the even
pseudostates j = n + 1 = 6, ..., 10 at ρ = 100.

Fig. 6. Expansion coefficients B
(k)
i and b

(k)
i , k = 0, 1, 2, calculated at the nodes xi.

Here Aj(ρ) and Cj(ρ) are the normalisation factors, and B(ϕ; ρ) is determined
from the numerical solution B(x) in Cartesian coordinates using the transforma-
tion ϕ = x/ρ. From the continuity of the eigenfunctions and their derivatives,

φn(ϕε − 0; ρ) = φn(ϕε + 0; ρ),
dφn

dϕ
(ϕε − 0; ρ) =

dφn

dϕ
(ϕε + 0; ρ), (28)

we get the equation for the eigenvalue εn(ρ):

{
tan(

√
εn(ρ)(ϕε − π

2 )) even n

−cot(
√

εn(ρ)(ϕε − π
2 )) odd n

}
−

√
εn(ρ)
R

= 0, R =
B′

n(ϕε; ρ)
Bn(ϕε; ρ)

=
ρB′

n(xε)
Bn(xε)

.

(29)

The solution εn(ρ) (εn = εn(ρ)/ρ2) of the derived equation is sought in the form
of a power series

εn(ρ) = n2 + ε(1)n ρ−1 + ε(2)n ρ−2 + O(ρ−3). (30)

Substitute (25) into (29), and then substitute (30) into the resulting equation.
Expanding both sides of the equation in inverse powers of ρ and neglecting the
terms, containing the third and higher powers of 1/ρ, we arrive at the system
of linear equations, from which the expansion coefficients ε

(1)
n and ε

(2)
n , and

then the coefficients An(ρ) and Cn(ρ) are determined. Since the values of the
function Bn(ϕ; ρ) and its derivative B′

n(ϕ; ρ) on the grid Ωϕ are known, for the
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calculation of the first integral we use the quadrature formula of the Newton-
Cotes type. The second integral is calculated analytically using the expansion
(30). We have the analytical expression in the interval ϕε(ρ) < ϕ ≤ π/2, and
the explicit dependence of its values upon the parameter ρ on the grid Ωϕ. For
the considered potential (5) we get the asymptotes of the potential curves at
n = j − n0:

εn(ρ)ρ−2 = n2ρ−2 + 4.50520671n2ρ−3 + 15.22266564n2ρ−4 + O(ρ−5). (31)

Table 2. Convergence of the expansion (31) at ρ = 50 and the numerical results
(NUM).

n2 1.00000000 4.00000000 9.00000000 16.00000000

+ε
(1)
n /ρ 1.09010413 4.36041653 9.81093720 17.44166614

+ε
(2)
n /ρ2 1.09619320 4.38477280 9.86573880 17.53909120

NUM 1.09614800 4.38462804 9.86554769 17.53908477

The calculated eigenvalues in comparison with the numerical solution
obtained by means of the program ODPEVP [1] are presented in Table 2. The
described algorithm is implemented in the Maple system. The asymptotic expan-
sions, obtained using it at ρ = 50, coincide with the numerical solution given
by the finite element method to 4–5 significant digits for the eigenvalues and
to 3–4 significant digits for the eigenfunctions. The asymptotes of the effective
potentials (13) between the states n1 = i−n0 and n2 = j−n0 of the same parity
at n0 = 5, i, j = n0 + 1, ... have the form:

Qn1n2 (ρ) =
2.27

ρ2
n2n1

(n2
1 − n2

2)
+

5.14

ρ3
n2n1

(n2
1 − n2

2)
+ O(

1

ρ4
),

Hn1n2 (ρ) =
10.27

ρ4
n2n1(n2

1 + n2
2)

(n2
1 − n2

2)
2

+
68.20

ρ5
n2n1((n2

1 − n2
2)

2 + 0.68(n2
1 + n2

2))

(n2
1 − n2

2)
2

+ O(
1

ρ6
),

Hn1n1 (ρ) = (0.64 + 2.11n2
1)

1

ρ4
+ (2.91− 10.03n2

1)
1

ρ5
+ O(

1

ρ6
). (32)

Using (15), (20) and (26) we get the asymptotic expansions for Qij(ρ) and Hij(ρ)
between the cluster states i = 1, ..., n0 and pseudostates (j − n0) = 1, 2, ...,

Qij(ρ)=
Q

(5/2)
ij

ρ5/2
+

Q
(7/2)
ij

ρ7/2
+O(ρ−9/2), Hij(ρ)=

H
(7/2)
ij

ρ7/2
+

H
(9/2)
ij

ρ9/2
+ O(ρ−11/2).

(33)

5 Conclusion

The model for quantum tunneling of a diatomic molecule through repulsive bar-
rier is formulated as a 2D boundary-value problem for the Schrödinger equation.
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This problem is reduced using the Kantorovich expansions to the boundary-value
problem for a set of second-order ordinary differential equations with the third-
type boundary conditions. The symbolic-numeric algorithms are proposed and
implemented in Maple to evaluate the asymptotic expansions (20), (32), (24) and
(33) of the parametric BVP eigensolutions and the effective potentials Wij(ρ) in
inverse powers of ρ, used for calculation of the asymptotes of the fundamental
solutions of the system of second-order ODEs at large values of ρ [19].

The proposed approach can be applied to the analysis of quantum trans-
parency effect, quantum diffusion of molecules Be2 and the Efimov effect [5–
8,21] in Be+Be2 scattering using modern theoretical and experimental results
[13,15–17] and algorithms and programs [1–4,9,10,12].
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vitskiy, P.: Symbolic-numeric algorithm for solving the problem of quantum tunnel-
ing of a diatomic molecule through repulsive barriers. In: Gerdt, V.P., Koepf, W.,
Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 472–490.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-10515-4 34

20. Wang, J., Wang, G., Zhao, J.: Density functional study of beryllium clusters, with
gradient correction. J. Phys.: Condens. Matter 13, L753–L758 (2001)

21. Zaccanti, M., Deissler, B., D’Errico, C., et al.: Observation of an Efimov spectrum
in an atomic system. Nat. Phys. 5, 586–591 (2009)

http://wwwinfo.jinr.ru/programs/jinrlib/kantbp.4m
http://dx.doi.org/10.1007/978-3-319-10515-4_34


The Coupled-Channel Method for Modelling
Quantum Transmission of Composite Systems

S.I. Vinitsky1,2(B), A.A. Gusev1, O. Chuluunbaatar1,5, A. Góźdź3,
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Abstract. The description of quantum transmission of composite sys-
tems of barriers or wells using the coupled-channel method is presented.
In this approach the multichannel scattering problem for the Schrödinger
equation is reduced to a set of coupled second-order ordinary differen-
tial equations with the boundary conditions of the third type and solved
using the finite element method. The efficiency of the proposed approach is
demonstrated by the example of analyzing metastable states that appear
in composite quantum systems tunnelling through barriers and wells and
give rise to the quantum transparency and total reflection effects.

Keywords: Coupled-channel method · Quantum tunnelling · Second-
order ordinary differential equations · Finite element method software

1 Introduction

Quantum tunnelling of composite systems through barriers is one of the prob-
lems most often occurring in nuclear physics, physics of solid state and semi-
conductor nanostructures. Usually the theory is based on considering the pen-
etration of a structureless particle through barriers within the effective mass
approximation [19]. However, the majority of important applications deal with
tunnelling of structured objects (clusters), e.g., atomic nuclei through Coulomb
barrier, where the effects of structure (multiple particles) manifest themselves
in anomalous behaviour of nuclear reaction cross-sections below the Coulomb
barrier [20]. Indeed, when the cluster size is comparable with the spatial width
of the barrier, the mechanisms arise that enhance the barrier transparency. The
effect of quantum barrier transparency depending on the internal structure of
the incident particles was revealed for a pair of coupled particles tunnelling
through a repulsive barrier [9]. The effect was shown to be due to the barrier
resonance formation under the condition that the potential energy of the com-
pound system (cluster + barriers) possesses local minima, thus providing the
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 525–537, 2016.
DOI: 10.1007/978-3-319-51917-3 45
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appearance of metastable states of the moving cluster [8]. The manifestations
and the underlying mechanisms of the effect were extensively studied in multiple
quantum phenomena [14–18,20–23], for example, near-surface quantum diffusion
of molecules [10], channelling and tunnelling of ions through multidimensional
barriers [2,5,11,22,24], and sub-barrier tunnelling of light nuclei [12], and the
collinear ternary fission [13]. A method and programs for solving the tunnelling
of a system of n identical particles coupled by oscillator-type potentials through
repulsive barriers has been presented in [1,3,4,6,7], while their application to
study of a transmission of composite systems of both barriers and wells is actual
problem in the field.

In present paper we consider the problem of a transmission of composite
systems of barriers or wells in the framework of the coupled-channel method
basing on the Galerkin-type and Kantorovich methods and discuss conditions of
their applicability. By the examples of particles with different coupling poten-
tials, transmission of composite systems as of Gaussian barriers or wells, the
transmission coefficients, and the metastable states are analyzed. The energy
dependencies of these coefficients demonstrate the phenomena of quantum trans-
parency and total reflection.

The structure of paper is following. In Sect. 2 the coupled-channel method
and the multichannel scattering problem are formulated. In Sect. 3 the trans-
mission of clusters comprising several identical particles coupled by oscillator
and double-well polynomial potentials are studied separately: tunneling through
barrier, transmission above barriers and wells. In Conclusion the results and
perspectives are discussed.

2 Problem Statement

2.1 Coupled-Channel Method

Consider the boundary-value problem (BVP) for the equation
(
Ĥf (xf ;xs) + Ĥs(xs) + V̌fs(xf , xs) − Et

)
Ψt(xf , xs) = 0 (1)

with fast xf and slow xs variables. The operators Ĥf (xf ;xs) and Ĥs(xs) describe
the fast and slow subsystem

Ĥf (xf ;xs) = − 1
g1f (xf )

∂

∂xf
g2f (xf )

∂

∂xf
+ V̌f (xf ;xs), (2)

Ĥs(xs) = − 1
g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(xs), (3)

V̌f (xf ;xs) and V̌s(xs) are the potentials of the fast and slow subsystem, and
V̌fs(xf , xs) is the interaction potential. The solution Ψt(xf , xs) of the problem (1)
with the appropriate boundary conditions is sought in the form of Kantorovich
expansion
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Ψt(xf , xs) =
jmax∑
j=1

Bj(xf ;xs)χjt(xs). (4)

The trial functions Bj(xf ;xs) are chosen to be eigenfunctions of the Hamil-
tonian Ĥf (xf ;xs) with the eigenvalues Êj(xs), parametrically depending on
xs ∈ Ω(xs):

Ĥf (xf ;xs)Bj(xf ;xs) = Êj(xs)Bj(xf ;xs). (5)

These functions satisfy the orthonormality conditions with the weighting func-
tion g1f (xf ) in the same interval xf ∈ Ωxf

(xs):∫ xmax
f (xs)

xmin
f (xs)

Bi(xf ;xs)Bj(xf ;xs)g1f (xf )dxf = δij . (6)

Substitution of (4) into (1) yields a BVP for a set of ODEs with respect to
the unknown vector functions χt(xs) = (χ1;t(xs), ..., χjmax;t(xs))T of the slow
subsystem, corresponding to the unknown eigenvalues 2Et ≡ Et,

(
D + E(xs) + W(xs) − IEt

)
χt(xs) = 0,

D = − 1
g1s(xs)

I
d

dxs
g2s(xs)

d

dxs
+ IV̌s(xs), (7)

W(xs) = V(xs) +
g2s(xs)
g1s(xs)

H(xs) +
1

g1s(xs)
dg2s(xs)Q(xs)

dxs
+

g2s(xs)
g1s(xs)

Q(xs)
d

dxs

with the effective potentials Hij(xs) and Qij(xs) defined as

Vij(xs)=Vji(xs)=
∫ xmax

f (xs)

xmin
f (xs)

Bi(xf ;xs)V̌fs(xf , xs)Bj(xf ;xs)g1f (xf )dxf ,

Hij(xs)=Hji(xs)=
∫ xmax

f (xs)

xmin
f (xs)

∂Bi(xf ;xs)
∂xs

∂Bj(xf ;xs)
∂xs

g1f (xf )dxf , (8)

Qij(xs)= − Qji(xs)= −
∫ xmax

f (xs)

xmin
f (xs)

Bi(xf ;xs)
∂Bj(xf ;xs)

∂xs
g1f (xf )dxf .

If the potential of the fast subsystem V̌f (xf ;xs) is independent of the slow vari-
able, then the expansion is referred to as Galerkin-type expansion. Its advantage
is that the eigenvalue problem (5) should be solved only once. However, if the
position of the potential well and, therefore, the localization of eigenfunctions
changes, the convergence of Galerkin-type expansions becomes very slow [5].
The example of the effective potentials of double-well potential (from Fig. 1)
for Galerkin-type and Kantorovich expansions are shown in Fig. 2. In consid-
ered case the Galerkin method is a more appropriate because effective potentials
have a smooth behavior, while in Kantorovich method effective potentials have
a sharp behavior with a large magnitude due to series of quasicrossing of the
potential curves.
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Fig. 1. Double-well interaction potential (a), the first even (solid lines) and odd (dashed
lines) eigenfunctions (b), and the corresponding 2D potential V (xf ) + V b(xf ; xs) (c).

Fig. 2. Even effective potentials for Galerkin-type (a, d) and Kantorovich (b, c, e, f)
expansions.

2.2 Scattering Problem

Consider the scattering problem with the homogeneous boundary conditions of
the third kind at xs = xmin

s � 0 and xs = xmax
s � 0:

dΦ(xs)
dxs

∣∣∣∣
xs=xmin

s

= R(xmin
s )Φ(xmin

s ),
dΦ(xs)

dxs

∣∣∣∣
xs=xmax

s

= R(xmax
s )Φ(xmax

s ), (9)

where R(xs) is an unknown N × N matrix function, Φ(xs) = {χ(j)(xs)}No
j=1 is

the desired N × No matrix solution and No is the number of open channels,
No = max2E≥εj j ≤ N .

The matrix solution Φv(xs) = Φ(xs), describing the incidence of the particle
and its scattering, with the asymptotic form “incident wave + outgoing waves”
(see Fig. 4a) is written as
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Fig. 3. The total probability of penetration through repulsive Gaussian potential bar-
riers |T|211 versus the energy E with the ground and excited initial states.

Fig. 4. Schematic diagrams of the wave functions Φv(z) at z ≡ xs having the asymp-
totic form: (a) “incident wave + outgoing waves”, (b) “incident waves + ingoing wave”.

Φv(xs → ±∞) =

⎧⎪⎪⎨
⎪⎪⎩

{
X(+)(xs)Tv, xs > 0,
X(+)(xs) + X(−)(xs)Rv, xs < 0,

v =→,{
X(−)(xs) + X(+)(xs)Rv, xs > 0,
X(−)(xs)Tv, xs < 0,

v =←,
(10)

where Rv and Tv are the reflection and transmission No × No matrices, v =→
and v =← denote the initial direction of the particle motion along the xs axis.
The leading term of the asymptotic rectangular matrix functions X(±)(xs) has
the form [5]

X
(±)
ij (xs) → p

−1/2
j exp

(
±ı

(
pjxs − Zj

pj
ln(2pj |xs|)

))
δij , (11)
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Fig. 5. The total transmission probability |T|211 versus the energy E (in oscillator
units). Two (a), three (b) and four (c) identical particles, coupled by the oscillator
potential, penetrate through the repulsive Gaussian barrier with σ = 0.1 and α =
2, 5, 10, 20. The system is initially in the ground state.

pj =
√

2E − εj i = 1, . . . , N, j = 1, . . . , No,

where Zj = Z+
j at xs > 0 and Zj = Z−

j at xs < 0. The matrix solution Φv(xs, E)
is normalized by the condition∫ ∞

−∞
Φ†

v′(xs, E
′)Φv(xs, E)dxs = 2πδ(E′ − E)δv′vIoo, (12)

where Ioo is the unit No × No matrix.
Let us rewrite Eq. (10) in the matrix form at x+

s → +∞ and x−
s → −∞ as(

Φ→(x+
s ) Φ←(x+

s )
Φ→(x−

s ) Φ←(x−
s )

)
=

(
0 X(−)(x+

s )
X(+)(x−

s )0

)
+

(
0 X(+)(x+

s )
X(−)(x−

s ) 0

)
S,(13)

where the unitary and symmetric scattering matrix S

S =
(
R→ T←
T→ R←

)
, S†S = SS† = I (14)

is composed of the reflection and transmission matrices. Detailed calculation of
the matrix solution Φv(xs) is presented in Reference [4].

3 Transmission of Clusters Comprised by Several
Identical Particles

Consider a cluster of two or three identical particles with the masses m coupled
via the pair potentials Ũpair(xtt′), xtt′ = xt − xt′ propagated the barrier or well
Ṽ (xt). The wave function of this system satisfies the Schrödinger equation⎡

⎣−
n∑

t=1

∂2

∂x2
t

+
n∑

t,t′=1;t<t′

(xtt′)2

n
+

n∑
t,t′=1;t<t′

Upair(xtt′)+
n∑

t=1

V (xt)−E

⎤
⎦ Ψ(x)=0. (15)
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Here E is the total energy of n particles, V (xt)=Ṽ (xtxosc)/Eosc is the
barrier or the well potential, V hosc(xtt′) =Ṽ hosc(xtt′xosc)/Eosc= 1

n (xtt′)2

is the harmonic oscillator potential, V pair(xtt′)=Ṽ pair(xtt′xosc)/Eosc and
Upair(xtt′)=V pair(xtt′) −V hosc(xtt′) is the effective pair potential given in the
oscillator units. In the symmetric coordinates [4,6]:

ξ0=
1√
n

n∑
t=1

xt, ξt′=
1√
n

(
x1+

n∑
t=2

a0xt +
√

nxt′+1

)
, t′=1, ..., n − 1, (16)

where a0 = 1/(1 − √
n) < 0, a1 = a0 +

√
n, Eq. (15) takes the form

[
− ∂2

∂ξ20
+

n−1∑
i=1

(
− ∂2

∂ξ2i
+ (ξi)2

)
+ U(ξ0, ..., ξn−1) − E

]
Ψ(ξ0, ..., ξn−1) = 0,

U(ξ0, ..., ξn−1) =
n∑

i,j=1;i<j

Upair(xij(ξ1, ..., ξn−1)) +
n∑

i=1

V (xi(ξ0, ..., ξn−1)). (17)

Here xs = ξ0 in the center-of-mass variable and xf = {ξ1, ..., ξn−1} is the set of
relative variables, such that at n = 2 they correspond to the Jacobi coordinates
(Fig. 8).

Double-Well Interaction Potential. Now consider a pair of particles, cou-
pled by the double-well interaction potential V (xf ) = x4

f/4 − 4x2
f (see Fig. 1a)

tunnelling through the repulsive Gaussian barriers Vi(xi) = α exp(−x2
i /2σ) with

α = 16, 32, 48, 64, σ = 1/20. In this case Eq. (15) takes the form(
− ∂2

∂x2
s

− ∂2

∂x2
f

+ V (xf ) + V b(xf ;xs) − 2E

)
Ψ(xf , xs) = 0, (18)

where V b(xf ;xs) = V1(x1) + V2(x2).
The first even and odd eigenfunctions are presented in Fig. 1b. The typical

behaviour of symmetric double-well potential eigenfunctions is seen, namely, for
E < 0 there are pairs of even and odd eigenfunctions localized in the potential
wells, with closely spaced energy levels. For E > 0 the energy levels of even and
odd states alternate. The corresponding 2D potential is demonstrated in Fig. 1c.

In this case we have two possibilities to construct the fast, slow, and inter-
action potential, corresponding either to the Galerkin-type expansion

V̌f (xf ;xs)=V (xf ), V̌s(xs)=0, V̌fs(xf , xs)=V b(xf ;xs),

or the Kantorovich expansion

V̌f (xf ;xs)=V (xf )+V b(xf ;xs), V̌s(xs)=0, V̌fs(xf , xs)=0.

The effective potentials (8) are presented in Fig. 2. It is seen that the non-
diagonal matrix elements in the case of Kantorovich expansion are small as com-
pared to the case of Galerkin-type expansion, except some areas, corresponding
to quasi-crossing of the energy levels in the problem (5) (see Fig. 2b).
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Figure 3 shows the energy dependence of the total transmission probability
|T|2ii =

∑No

j=1 |Tji(E)|2. This is the probability of a transition from a chosen
state i into any of No states, found by solving the boundary-value problem
in the Galerkin form. The behaviour of the probability versus the energy is
non-monotonic, and the observed resonances are manifestations of the quantum
transparency effect. This effect is caused by the existence of barrier metastable
states, embedded in the continuum.

Parabolic Interaction Potential. Two, three or four identical particles
(n=2,3,4) are coupled by the harmonic oscillator potential V (xt − xt′) =
(xt − xt′)2, t′, t = 1, ..., n and the Gaussian barrier (α > 0) or well (α < 0):
V (xt) = α/(

√
2πσ) exp(−x2

t /σ2).
Figure 5 shows the energy dependence of the total transmission probability

|T|2ii =
∑No

j=1 |Tji(E)|2. This is the probability of a transition from the ground
state i to any of No eigenstates of the BVP in the Galerkin form solved using
the program KANTBP [1,3]. The dependence of the probability upon the energy
is non-monotonic, and the observed resonance peaks are manifestations of the
quantum transparency effect. The multiplet structure of the peaks for symmetric
and antisymmetric states is similar. Due to the symmetry of the potential in the
case of two identical particles, the position of the maxima for symmetric and
antisymmetric states coincide. In the case of three particles peak positions for
symmetric and antisymmetric states are different, but due to the symmetry with
respect to the plane ξ0 = 0, explain the presence of doublets.

Figure 6 shows the profiles of |Ψ |2 ≡ |Ψ (−)
Em→|2 with α = 20, σ = 1/10 at the

resonance energies of the first three maxima and the second maximum and the
first minimum of the transmission coefficient, illustrating the resonance trans-
mission. It is seen that in the case of resonance transmission the energy is trans-
ferred from the centre-of-mass degree of freedom, described by the coordinate
ξ0, to the internal (transverse) one, described by ξ1 i.e., the transverse oscillator
undergoes a transition from the ground state to the excited state. On the con-
trary, in the case of total reflection the energy transfer is extremely small, and
the transverse oscillator returns to infinity in the initial state. In Fig. 7 the first
three metastable states are presented. The wave function amplitudes for these
states are seen to differ from the amplitudes of the states, corresponding to the
first three maxima in the vicinity of wells.

Figure 9 shows the profiles of probability density |Ψ(ξ0, ξ1)|2 for the sym-
metric states of A = 2 particles transmitting above Gaussian barrier α = 2,
σ = 1/10, revealing total reflection at resonance energies. In Table 1 the val-
ues of energies EM

m = �EM
m + ı�EM

m of corresponding metastable states for a
transmission of A = 2 particles above the Gaussian barrier α = 2, σ = 1/10 are
presented. One can see that the series of resonances in the transmission |T|211
from the ground state 1 are induced by metastable states from second, third,
fourth and seventh closed channels, respectively from left to right panels.

In Fig. 10 the total transmission probability |T|211 versus the energy E (in
oscillator units) for systems of the A = 2, 3, 4 particles, coupled by the oscillator
potential, propagating above the Gaussian well with σ = 0.1 and α = −1,−2
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Fig. 6. Profiles of probability densities |Ψ(ξ0, ξ1)|2 for symmetric (top panel) and anti-
symmetric (bottom panel) states of two particles, revealing resonance transmission and
total reflection at resonance energies, shown in Fig. 5.

Fig. 7. The first three metastable states corresponding to ED
i = 5.76, 9.12, 9.53.

ES
i |T|211 |T|233 EM

m

5.8228 0.3794
9.6479 0.3779 9.614−ı0.217

13.5548 0.4765 13.505−ı0.144
13.9648 0.8536 14.018−ı0.286
17.4512 0.4874 17.445−ı0.103

Fig. 8. The 2D potential for propagation of two particles (n = 2) above the Gaussian
barrier α = 2, σ = 1/10 and the values of energies EM

m = �EM
m + ı�EM

m of metastable
states corresponding to the peaks of |T|211 shown in Fig. 5a.
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Fig. 9. Profiles of probability densities |Ψ(ξ0, ξ1)|2 for symmetric states of two par-
ticles transmitted above the Gaussian barrier α = 2, σ = 1/10, revealing resonance
transmission and total reflection at resonance energies.

Fig. 10. The total transmission probability |T|211 versus the energy E (in oscillator
units). The cluster of n = 2, 3, 4 particles, coupled by the oscillator potential, propa-
gates above the Gaussian well with σ = 0.1 and α = −1, −2. The system is initially in
the ground state. The vertical lines on the epures denote the threshold energies.

are presented. In Table 1 the values of energies EM
m = �EM

m + ı�EM
m of the

corresponding metastable states for the transmission of A = 2, 3 and 4 particles
above the Gaussian well α = −2, σ = 1/10 are shown. The energies EB

m < Eth
1 of

bound states below first threshold Eth
1 shown in last row. One can see that the

resonance structure becomes enriched with increasing the number of transmitted
particles. So, in the case of A = 2 we see double-resonance structures, similar
to the double-well case. In the case of A = 3 and 4 the double structure can
appear with increasing the depth of wells |α|. Figure 11 presents the profiles of



The Coupled-Channel Method for Modelling Quantum Transmission 535

Table 1. The values of energies EM
m = �EM

m + ı�EM
m of metastable states for a

transmission of a cluster of A = 2, 3 and 4 particles above the Gaussian well α = −2,
σ = 1/10 shown in Figs. 10 and 11. The energies EB

m < Eth
1 of bound states below the

first threshold Eth
1 are shown in last row.

Eth
i EM

m (A = 2) Eth
i EM

m (A = 3) Eth
i EM

m (A = 4)

1 4.4348−ı0.2572 2 5.3307−ı0.0620 3 5.7747−ı0.0742

4.6764−ı0.0058 5.7911−ı0.0621 6.4441−ı0.1050

5 8.5158−ı0.0506 6 6.9922−ı0.0751 6.7934−ı0.0033

8.7675−ı0.1261 7.9457−ı0.0565 7 8.3668−ı0.0651

9 12.6009−ı0.1215 8 8.9601−ı0.0588 8.7797−ı0.0080

12.7330−ı0.0142 9.4950−ı0.2251 9 9.4050−ı0.1995

13 16.6841−ı0.0364 9.8617−ı0.0852 9.9926−ı0.1225

16.7050−ı0.0914 10 11.4173−ı0.1678 10.0755−ı0.0676

Bound states: −0.3588 {−0.2605, 1.5082} {−0.1938, 1.7084 2.7046}

Fig. 11. Profiles of probability density |Ψ(ξ0, ξ1)|2 for symmetric states of two particles
transmitted above the Gaussian well α = 2, σ = 1/10, revealing total reflection and
resonance transmission at the resonance energies.

probability density |Ψ(ξ0, ξ1)|2 for the symmetric states of two particles trans-
mitted above the Gaussian well α = 2, σ = 1/10, revealing the resonance trans-
mission and total reflection at resonance energies. One can see that the series
of resonances in the transmission |T|211 from the ground state 1 are induced by
Feshbach metastable states from second and the fifth closed channels, respec-
tively, from left to right panels. In contrast to the case of barrier in the vicinity
of the well resonance, we see both the resonance reflection and the transmission
(see two middle panels in Fig. 11).
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4 Conclusion

We considered the application of the coupled-channel methods to the problem
of quantum tunnelling of a cluster of particles coupled by the oscillator-type
interactions, through Gaussian potential barriers and above wells. The initial
boundary problem is reduced to that for a set ordinary differential equations
of the second order. By a few examples we demonstrate the efficiency of the
proposed approach for the cluster tunnelling problem and the capability of the
method to provide correct description of the cluster tunnelling specific features,
including the quantum transparency and total reflection phenomena induced by
the shape and Feshbach metastable states. The Kantorovich method finds a more
general application in solving multichannel scattering problems with long-range
interactions [5,11] and the break-up processes in few-body systems in hyper-
spherical adiabatic representation [25]. An important advantage of the approach
is the possibility of efficient use of symbolic-numeric software packages that con-
siderably simplify the calculations as compared to direct numerical approaches.

The work was supported by the Russian Foundation for Basic Research (grant
14-01-00420) the Bogoliubov-Infeld JINR program, and was funded within the
Agreement N 02.03.21.0008 dated 24.04.2016 between the Ministry of Education
and Science of the Russian Federation and RUDN University.
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Abstract. This paper studies program implementation problem of
pseudo-random number generators in OpenModelica. We give an
overview of generators of pseudo-random uniform distributed numbers.
They are used as a basis for construction of generators of normal and
Poisson distributions. The last step is the creation of Wiener and Poisson
stochastic processes generators. We also describe the algorithm to call
external C-functions from programs written in Modelica. This allows us
to use random number generators implemented in the C language.
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1 Introduction

In this article we study the problem of generation of uniformly distributed
pseudo-random numbers, stochastic Wiener and Poisson processes in OpenMod-
elica framework [7]. OpenModelica is one of the open source implementations of
Modelica [5] modeling language (for other implementations see [1,3,4,6,8,10]).
This language is designed for modeling various systems and processes that
can be represented as a system of algebraic or differential equations. For the
numerical solution of the equations OpenModelica uses a number of open source
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libraries [2,9,18,31]. However, in OpenModelica standard library there is no any
function even for generating uniformly distributed pseudo-random numbers.

The first part of the article provides an overview of some algorithms
for pseudo-random numbers generation, including description of pseudo-device
/dev/random of Unix OS. For most of them we provide the algorithm written
in pseudocode. We implement all described algorithms in the C language and
partly in OpenModelica. Also we tested them with dieharder—a random number
generator testing suite [17].

In the second part of the paper we describe algorithms for normal and Pois-
son distributions generation. These algorithms are based on the generators of
uniformly distributed pseudo-random numbers. Then we study the problem of
computer generation of stochastic Wiener and Poisson processes.

The third part of the article has a practical focus and is devoted to the
description of external functions (written in C language) calling directly from
OpenModelica programs code.

2 Algorithms for Uniformly Distributed Pseudo-random
Numbers Generating

In this section we will describe some of the most common generators of uniformly
distributed pseudo-random numbers. These generators are the basis for obtaining
a sequence of pseudo-random numbers of other distributions.

2.1 Linear Congruential Generator

A linear congruential generator (LCG) was first proposed in 1949 by Lehmer [24].
The algorithm is given by the formula:

xn+1 = (axn + c) mod m, n � 0,

where m is the mask or the modulus m > 1, a is the multiplier (0 � a < m), c
is the increment (0 � c < m), x0 is the seed or initial value. The result of the
repeated application of this recurrence formula is linear congruential sequence
x1, . . . , xn. A special case c = 0 is called multiplicative congruential method.

The numbers m, a, c are called “magic” because their values are specified
in the code of the program and are selected based on the experience of the use
of the generator. The quality of the generated sequence depends essentially on
the correct choice of these parameters. The sequence {x}n1 is periodic and its
period depends on the number m, which must therefore be large. In practice,
one chooses m equal to the machine word size (for 32-bit architecture—232, for
64-bit architecture—264). Knuth [24] recommends to choose

a = 6364136223846793005, c = 1442695040888963407,

m = 264 = 18446744073709551616.

In the article [26], you can find large tables with optimal values a, b m.
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Also there are generalisations of LCG, such as quadratic congruential method
xn = (ax2

n−1 + bxn−1 + d) mod m cubic congruential method xn = (ax3
n−1 +

bx2
n−1 + cxn−1 + d) mod 2e.
Currently, the linear congruential method has mostly a historical value, as

it generates relatively low-quality pseudo-random sequence compared to other,
equally simple generators.

2.2 Lagged Fibonacci Generator

The lagged Fibonacci generation can be considered as the generalization of the
linear congruential generator. The main idea of this generalisation is to use
multiple previous elements to generate current one. Knuth [24] claims that the
first such generator was proposed in the early 50-ies and based on the formula:

xn+1 = (xn + xn−1) mod m.

In practice, however, it showed itself not the best way. In 1958 George. J. Mitchell
and D. Ph. Moore invented a much better generator

xn = (xn−na
+ xn−nb

) mod m, n � max(na, nb).

It was the generator that we now call LFG—lagged Fibonacci Generator.
As in the case of LCG generator the “magical numbers” na and nb greatly

affect the quality of the generated sequence. The authors proposed to use the
following magic numbers na and nb

na = 24, nb = 55.

Knuth [24] gives a number of other values, starting from (37, 100) and finishing
with (9739, 23209). Period length of this generator is exactly equal to 2e−1(255−
1) when choosing m = 2e.

As can be seen from the algorithm an initial value and a sequence of
max(na, nb) random numbers must be used for the initialization of this gen-
erator.

In open source GNU Scientific Library (GSL) [20] the composite multi-
recursive generator is used. It was proposed in paper [25]. This generator is
a generalisation of LFG and may be expressed by the following formulas:

xn = (a1xn−1 + a2xn−2 + a3xn−3) mod m1,

yn = (b1yn−1 + b2yn−2 + b3yn−3) mod m2,

zn = (xn − yn) mod m1.

The composite nature of this algorithm allows to obtain a large period equal to
1056 ≈ 2185. The GSL uses the following parameter values of ai, bi,m1,m2:

a1 = 0, b1 = 86098, m1 = 232 − 1 = 2147483647,
a2 = 63308, b2 = 0, m2 = 2145483479,
a3 = −183326, b3 = −539608.
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Another method suggested in the paper [27] is also a kind of Fibonacci gen-
erator and is determined by the formula:

xn = (a1xn−1 + a5xn−5) mod 5,

The GSL used the following values: a1 = 107374182, a2 = 0, a3 = 0, a4 = 0,
a5 = 104480, m = 231 − 1 = 2147483647. The period of this generator is equal
to 1046.

2.3 Inverse Congruential Generator

Inverse congruential method based on the use of inverse modulo of a number.

xi+1 = (ax−1
i + b) mod m

where a is a multiplier (0 � a < n), b is an increment (0 � b < n), x0 is an initial
value (seed). In addition GCD(x0,m) = 1 and HCF(a,m) = 1 are required.

This generator is superior to the usual linear method, however, it is more com-
plicated algorithmically, since it is necessary to find the inverse modulo integers
which leads to performance reduction. The extended Euclidean algorithm [24,
§4.3.2] is usually applied for compution of the inverse of the number.

2.4 Generators with Bitwise Operations

Most generators that produce high quality pseudo-random numbers sequence
use bitwise operations, such as conjunction, disjunction, negation, exclusive dis-
junction (xor) and bitwise right/left shifting.

Mersenne Twister. Mersenne twister is considered to be one of the best
pseudo-random generators. It was developed in 1997 by Matsumoto and
Nishimura [30]. There are 32-,64-,128-bit versions of the Mersenne twister. The
name of the algorithm derives from the use of Mersenne primes 219937 − 1.
Depending on the implementation the period of this generator can be up to
2216091 − 1.

The main disadvantage of the algorithm is the relative complexity and, con-
sequently, relatively slow performance. Otherwise, this generator provides high-
quality pseudo-random sequence. An important advantage is the requirement of
only one initiating number (seed). Mersenne twister is used in many standard
libraries, for example in the Python 3 module random [12].

Due to the complexity of the algorithm, we do not give its pseudocode in
this article, however, the standard implementation of the algorithm created by
Matsumoto and Nishimura freely available at the link http://www.math.sci.
hiroshima-u.ac.jp/∼m-mat/MT/emt64.html.

XorShift Generator. Some simple generators giving a high quality pseudo-
random sequence were developed in 2003 by George. Marsala (Marsaglia) [29,33].

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html
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KISS Generator. Another group of generators, giving a high quality sequence
of pseudo-random numbers, is KISS generators family [35] (Keep It Simple
Stupid). They are used in the procedure random number() of Frotran language
(gfortran compiler [11]).

2.5 Pseudo Devices /dev/random and /dev/urandom

To create a truly random sequence of numbers using a computer some Unix sys-
tems (in particular GNU/Linux) use the collection of “background noise” from
the operating system environment and hardware. Source of this random noise are
moments of time between keystrokes (inter-keyboard timings), various system
interrupts and other events that meet two requirements: to be non-deterministic
and be difficult for access and for measurement by external observer.

Randomness from these sources is added to an “entropy pool”, which is mixed
using a CRC-like function. When random bytes are requested by the system
call, they are retrieved from the entropy pool by taking the SHA hash from its
content. Taking the hash allows not to show the internal state of the pool. Thus
the content restoration by hash computing is considered to be an impossible task.
Additionally, the extraction procedure reduces the content pool size to prevent
hash calculation for the entire pool and to minimize the theoretical possibility
of determining its content.

External interface for the entropy pool is available as symbolic pseudo-device
/dev/random, as well as the system function:

void get_random_bytes(void *buf, int nbytes);

The device /dev/random can be used to obtain high-quality random number
sequences, however, it returns the number of bytes equal to the size of the accu-
mulated entropy pool, so if one needs an unlimited number of random numbers,
one should use a character pseudo-device /dev/urandom which does not have
this restriction, but it also generates good pseudo-random numbers, sufficient
for the most non-cryptographic tasks.

2.6 Algorithms Testing

A review of quality criterias for a sequence of pseudo-random numbers can be
found in the third chapter of the book [24], as well as in paper [28]. All the algo-
rithms, which we described in this articles, have been implemented in C-language
and tested with Dieharder test suite, available on the official website [17].

Dieharder Overview. Dieharder is a tests suite, which is implemented as a
command-line utility that allows one to test a quality of sequence of uniformly
distributed pseudorandom numbers. Also Dieharder can use any generator from
GSL library [20] to generate numbers or for direct testing.
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– dieharder -l—show the list of available tests,
– dieharder -g -1—show the list of available random number generators; each

generator has an ordinal number, which must be specified after -g option to
activate the desired generator.

• 200 stdin input raw—to read from standard input binary stream,
• 201 file input raw—to read the file in binary format,
• 202 file input—to read the file in text format,
• 500 /dev/random—to use a pseudo-device /dev/random,
• 501 /dev/urandom—to use a pseudo-device /dev/urandom.

Each pseudo-random number should be on a new line, also in the first lines of the
file one must specify: type of number (d—integer double-precision), the number
of integers in the file and the length of numbers (32 or 64 - bit). An example of
such a file:

type: d
count: 5
numbit: 64
1343742658553450546
16329942027498366702
3111285719358198731
2966160837142136004
17179712607770735227

When such a file is created, you can pass it to dieharder

dieharder -a -g 202 -f file.in > file.out

where the flag -a denotes all built-in tests, and the flag -f specifies the file for
analysis. The test results will be stored in file.out file.

Table 1. Test results

The generator Fail Weak Pass

LCG 52 6 55

LCG2 51 8 54

LFG 0 2 111

ICG 0 6 107

KISS 0 3 110

jKISS 0 4 109

XorShift 0 4 109

XorShift+ 0 2 111

XorShift* 0 2 111

Mersenne Twister 0 2 111

dev/urandom 0 2 111



544 M. Gevorkyan et al.

Test Results and Conclusions. The best generators with bitwise operations
are xorshift*, xorshift+ and Mersenne Twister (see Table 1). They all give the
sequence of the same quality. The algorithm of the Mersenne Twister, however,
is far more cumbersome than xorshift* or xorshift+, thus, to generate large
sequences is preferable to use xorshift* or xorshift+.

Among the generators which use bitwise operations the best result was
showed by Lagged Fibonacci generator. The test gives results at the level of
XorShift+ and Mersenne Twister. However, one has to set minimum 55 initial
values to initialize this generator, thus its usefulness is reduced to a minimum.
Inverse congruential generator shows slightly worse results, but requires only one
number to initiate the algorithm.

3 Generation of Wiener and Poisson Processes

Let us consider the generation of normal and Poisson distributions. The choice of
these two distributions is motivated by their key role in the theory of stochastic
differential equations. The most general form of these equations uses two random
processes: Wiener and Poisson [34]. Wiener process allows to take into account
the implicit stochasticity of the simulated system, and the Poisson process—
external influence.

3.1 Generation of the Uniformly Distributed Pseudo-random
Numbers from the Unit Interval

Generators of pseudo-random uniformly distributed numbers are the basis for
other generators. However, most of the algorithms require a random number
from the unit interval [0, 1], while the vast majority of generators of uniformly
distributed pseudo-random numbers give a sequence from the interval [0,m]
where the number m depends on the algorithm and the bitness of the operating
system and processor.

To obtain the numbers from the unit interval one can proceed in two ways.
First, one can normalize existing pseudo-random sequence by dividing each its
element on the maximum element. This approach is guaranteed to give 1 as
a random number. However, this method is bad when a sequence of pseudo-
random numbers is too large to fit into memory. In this case it is better to use
the second method, namely, to divide each of the generated number by m.

3.2 Normal Distribution Generation

An algorithm for normal distributed numbers generation has been proposed in
1958 by Bux and Mueller [16] and named in their honor Box-Muller transfor-
mation. The method is based on a simple transformation. This transformation
is usually written in two formats:

– standard form (was introduce in the paper [16]),
– polar form (suggested by Bell [15] and Knop [23]).
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Standard Form. Let x and y are two independent, uniformly distributed
pseudo-random numbers from the interval (0, 1), then numbers z1 and z2 are
calculated according to the formula

z1 = cos(2πy)
√−2 ln x, z2 = sin(2πy)

√−2 ln x

and they are independent pseudo-random numbers distributed according to a
standard normal law N (0, 1) with expectation μ = 0 and the standard deviation
σ = 1.

Polar Form. Let x and y—two independent, uniformly distributed pseudo-
random numbers from the interval [−1, 1]. Let us compute additional value s =
x2 + y2. If s > 1 or s = 0 then existing x and y values should be rejected and
the next pair should be generated and checked. If 0 < s � 1 then the numbers
z1 and z2 are calculated according to the formula

z1 = x

√
−2 ln s

s
, z2 = y

√
−2 ln s

s

and they are independent random numbers distributed according to a standard
normal law N (0, 1).

For computer implementation is preferable to use a polar form, because in
this case one has to calculate only single transcendental function ln, while in
standard case three transcendental functions (ln, sin cos) have to be calculated.
An example of the algorithm shown in Fig. 1.

To obtain a general normal distribution from the standard normal distribu-
tion, one can use the formula Z = σ ·z +μ where z ∼ N (0, 1), and Z ∼ N (μ, σ).

3.3 The Generation of a Poisson Distribution

To generate a Poisson distribution there is a wide variety of algorithms [13,14,
19]. The easiest was proposed by Knut [24]. This Algorithm 2.1 uses uniform
pseudo-random number from the interval [0, 1] for it’s work. The algorithm’s
output example is depicted on Fig. 2.

Algorithm 2.1. The generator of the Poisson distribution
Require: seed, λ

Λ ← exp(−λ), k ← 0, p ← 1, u ← seed
repeat

k ← k + 1
u ← rand(u) � generation of uniformly distributed random number
p = p · u

until p > Λ
return k − 1
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Fig. 1. Normal distribution Fig. 2. Poisson distribution

3.4 Generation of Poisson and Wiener Processes

Now we going to use generators of normal and Poisson distributions to generate
Wiener and Poisson stochastic processes. For definitions of Poisson and Wiener
processes see, for example, [22,32,34].

The Generation of the Wiener Process. To simulate one-dimensional
Wiener process, one should generate the N normally distributed random num-
bers ε1, . . . , εN and build their cumulative sums of ε1, ε1 + ε2, ε1 + ε2 + ε3. As
result we will get a trajectory of the Wiener process W (t) see Fig. 3.

In the case of multivariate random process, one needs to generate m sequences
of N normally distributed random variables.

The Generation of a Poisson Process. A simulation of the Poisson process
is much like Wiener one, but now we need to generate a sequence of numbers
distributed according to the Poisson law and then calculate their cumulative
sum. The plot of Poisson process is shown in Fig. 4. The figure shows that the
Poisson process represents an abrupt change in numbers that has occurred over
time events. The intensity λ depends on the average number of events over a
period of time.

Because of this characteristic of behavior the Poisson process is also called as
a process with jumps, and stochastic differential equations, with Poisson process
as second driving process, are called equations with jumps [34]

4 Simulation of Stochastic Processes in OpenModelica

As already mentioned in the introduction, there are no any pseudoran-
dom numbers generators in OpenModelica. Thus that makes this sys-
tem unusable for stochastic processes modeling. However Noise library
build.openmodelica.org/Documentation/Noise.html developed by Klockner
(Klockner) [21] should be mentioned. The basis of this library are xorshift
generators, written in C. However, an inexperienced user may face a problem,
because one needs compile C-source files first to use that library.

http://build.openmodelica.org/Documentation/Noise.html
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Fig. 3. Wiener process Fig. 4. Poisson process

In this article we will describe the procedure required for connection of exter-
nal C functions to OpenModelica programme. That will allow the user to install
the Noise library and to connect their own random number generators. We also
provide a minimal working example of stochastic Wiener process generator and
the example of ordinary differential equation with additive stochastic part.

4.1 Connection of External C-Functions to OpenModelica Program

Let us consider the process of connection of external functions to modelica pro-
gram. The relevant section in the official documentation misses some essential
steps that’s why it will lead to an error. All steps we described, had been per-
formed on a computer with Linux Ubuntu 16.04 LTS and OpenModelica 1.11.0-
dev-15.

When the code is compiled the OpenModelica program is translated to C
code that then is processed by C-compiler. Therefore, OpenModelica has built-
in support of C-functions. In addition to the C language OpenModelica also
supports Fortran (F77 only) and Python functions. However, both languages are
supported indirectly, namely via wrapping them in the appropriate C-function.

The usage of external C-functions may be required for various reasons, for
example, implementations of performance requiring components of the program,
the usage of a fullscale imperative programming language, or the use of existing
sourcecode in C.

We give a simple example of calling C-functions from Modelica program.
Let’s create two source files: ExternalFunc1.c and ExternalFunc2.c. These
files will contain simple functions that we want to use in our Modelica program.

// File ExternalFunc1.c
double ExternalFunc1_ext(double x) { return x+2.0*x*x;}

// File ExternalFunc2.c
double ExternalFunc2(double x){return (x-1.0)*(x+2.0);}

In the directory, where the source code of Modelica program is placed, we
must create two directories: Resources and Library, which will contain
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ExternalFunc1.c and ExternalFunc2.c files. We should then create object
files and place them in the archive, which will be an external library. To do this
we use the following command’s list:

gcc -c -o ExternalFunc1.o ExternalFunc1.c
gcc -c -o ExternalFunc2.o ExternalFunc2.c
ar rcs libExternalFunc1.a ExternalFunc1.o
ar rcs libExternalFunc2.a ExternalFunc2.o

To create object files, we use gcc with -c option and the archiver ar to
place generated object files in the archive. As a result, we get two of the file
libExternalFunc1.a and libExternalFunc2.a. There is also the possibility to
put all the needed object files in a single archive.

To call external functions, we must use the keyword external. The name
of the wrapper function in Modelica language can be differ from the name of
the external function. In this case, we must explicitly specify which external
functions should be wrapped.

model ExternalLibraries

function ExternalFunc1 // Function name differs

input Real x;

output Real y;

external y=ExternalFunc1_ext(x); // Explicitly specifying C-function name

annotation(Library="ExternalFunc1");

end ExternalFunc1;

function ExternalFunc2

input Real x;

output Real y;

// The functions names are the same

external "C" annotation(Library="ExternalFunc2");

end ExternalFunc2;

Real x(start=1.0, fixed=true), y(start=2.0, fixed=true);

equation

der(x)=-ExternalFunc1(x);

der(y)=-ExternalFunc2(y);

end ExternalLibraries;

Note that in the annotation the name of the external library is specified as
ExternalFunc1, while the file itself is called libExternalFunc1.a. This is not
a mistake and the prefix lib must be added to all library’s files.

The example shows that the type Real corresponds to the C type double.
Additionally, the types of Integer and Boolean match the C-type int. Arrays
of type Real and Integer transferred in arrays of type double and int.

It should be noted that consistently works only call -functions with argu-
ments of int and double types, as well as arrays of these types. The attempt
to use specific c-type, for example, long long int or an unsigned type such as
unsigned int, causes the error.

4.2 Modeling Stochastic Wiener Process

Let us describe the implementation of a generator of the normal distribution and
Wiener process. We assume that the generator of uniformly-distributed random
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numbers is already implemented in the functions urand. To generate the normal
distribution we will use Box-Muller transformation and Wiener process can be
calculated as cumulative sums of normally-distributed numbers.

The minimum working version of the code is shown below. The key point is
the use of an operator sample(t 0, h), which generates events using h seconds
starting from the time t 0. For every event the operator sample calls the function
urand that returns a new random number.

model generator
Integer x1, x2;
Port rnd; "Random number generator’s port"
Port normal; "Normal numbers generator’s port"
Port wiener; "Wiener process values port"
Integer m = 429496729; "Generator modulo"
Real u1, u2;

initial equation
x1 = 114561;
x2 = 148166;

algorithm
when sample(0, 0.1) then

x1 := urand(x1);
x2 := urand(x2);

end when;
// normalisation of random sequence
rnd.data[1] := x1 / m;
rnd.data[2] := x2 / m;
u1 := rnd.data[1];
u2 := rnd.data[2];
// normal generator
normal.data[1] := sqrt(-2 * log(u1)) * sin(6.28 * u2);
normal.data[2] := sqrt(-2 * log(u1)) * cos(6.28 * u2);
// Wiener process
wiener.data[1] := wiener.data[1] + normal.data[1];
wiener.data[2] := wiener.data[2] + normal.data[2];

end generator;

Note also the use of a special variable of type Port which serves to connect the
various models together. In our example we have created three such variables:
lg, normal, wiener. Because of this, other models can access the result of our
generator.

connector Port
Real data[2];

end Port;
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A minimal working code below illustrates the connection example between
two models. A system of two ordinary differential equations describes van der
PolDuffing oscillator with additive stochastic part in the form of a Wiener process
(see 5). {

ẋ = y,

ẏ = x(1.0 − x2) − y + x · Wt.

It is important to mention that this equation is not stochastic. Built-in Open-
Modelica numerical methods do not allow to solve stochastic differential equa-
tions.

// the model specifies a system of ODE
model ODE

Real x, y;
Port IN;

initial equation
x = 2.0;
y = 0.0;

equation
der(x) = y ;
der(y) = x*(1-x*x) - y + x*IN.data[1];

end ODE;
model sim

generator gen;
ODE eq;

equation
connect(gen.wiener, eq.IN);

end sim;

Fig. 5. Results of van der Pol–Duffing oscillator simulation. The graphs are created
using the functionality OMEditor’a
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5 Conclusion

We reviewed the basic algorithms for generating uniformly distributed pseudo-
random numbers. All algorithms were implemented by the authors in C language
and tested using DieHarder utility. The test results revealed that the most effec-
tive algorithms are xorshift and Mersenne Twister algorithms.

Due to the fact that OpenModelica does not implement bitwise logical and
shifting operators, generators of uniformly distributed pseudo-random numbers
have to be implemented in C language and connected to the program as external
functions. We gave a rather detailed description of this process, that, as we hope,
will fill a gap in the official documentation.
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Abstract. In report the ill-posed problems in view arising at the solu-
tion of applied problems by means of the metric analysis are considered.
In the report new schemes and algorithms for smoothing and restoration
based on the metric analysis were presented. These schemes and algo-
rithms have demonstrated a high accuracy of smoothing and retrieving
the values of functions of one or many variables. Examples of such prob-
lems are problems of interpolation, filtration and forecasting of values of
functions of one and many variables claimed at the solution of applied
problems physicists, technicians, economy and other areas of researches.

Keywords: Function of many variables · Interpolation · Ill-posed prob-
lems · Metric analysis

1 Introduction

The problem of interpolation is one of primary objectives in mathematics, not to
mention its broad-ranging applications in practical problem solving. Approaches
to solving interpolation problems of one-variable functions have been proposed
since the times of Lagrange and Newton. To date, sufficiently complete results
are obtained for different interpolation methods, including an analysis of inter-
polation errors and the convergence of interpolation values to the exact values
[1,2]. The classical scheme involves representing the interpolated function in a
form of an expansion to basis functions. Thus, in Lagrange’s scheme the basic
functions are monomials. However, the Lagrange interpolation provides the uni-
form convergence of interpolation polynomials to the function only for a certain
class of smooth functions, for example, for the class of entire functions. The
reason for this divergence is the discontinuity of derivatives. As an alternative
to Lagrange’s scheme, the scheme of spline-interpolation has been developed.
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 553–564, 2016.
DOI: 10.1007/978-3-319-51917-3 47
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Spline-interpolation allows to localize the contagion of angular points and pro-
vides the uniform convergence for any continuous function [2]. The scheme of
representation of functions in the form of linear combinations of basic functions,
including polynomials and spline-approximations, simply, can be generalized on
multivariate functions, but such schemes are efficient only for functions of two, at
maximum three variables. For functions of a variables more than three there are
no effective general schemes of interpolation. Only crude approximation schemes
of local linear interpolation are in use. These schemes require a large number of
data, and even in a presence of a large quantity of data often do not provide the
necessary accuracy. An example of such schemes is the neural networks, which
allow to interpolate functions of one or many variables [3]. In this report a uni-
versal approach for solving problems of multidimensional interpolation without
holding fixed the species of functional connection of the function to its argu-
ments is presented. This approach takes into account only the information on
the mutual arrangement of the point at which we retrieve the value of func-
tion and the interpolation nodes X 1, ...,Xn as well as the values of function
Yi, i = 1, ..., n at interpolation nodes and can be put to use even in the case of
an insufficiency of initial information.

2 The Metric Analysis Interpolation Scheme

We consider the problems associated with functionality:

Y = F (X ), (1)

where the function F (X ) is unknown, and we aim to retrieve its value at
point X ∗ using the function values Yi, i = 1, ..., n at interpolation nodes
Xi = (Xi1, ...,Xim)T , i = 1, ..., n.

In accordance with the scheme of the metrical analysis we form a matrix
W of metric uncertainty for the point X ∗ on a set of points X Xi =
(Xi1, ...,Xim)T , i = 1, ..., n. [4]

W =

⎛
⎜⎜⎝

ρ2(X 1,X
∗) (X 1,X 2) . . . (X 1,Xn)

(X 2,X 1) ρ2(X 2,X
∗) (X 2,Xn)

. . . . . . . . . . . .
(Xn ,X 1) (Xn ,X 2) . . . ρ2(Xn ,X ∗)

⎞
⎟⎟⎠ , (2)

where ρ2(Xi ,X
∗) =

∑m
k=1 νk · (Xik − X∗

k)2,

(Xi ,Xj ) =
∑m

k=1 νk · (Xik − X∗
k) · (Xjk − X∗

k), νk determine the function’s
degree of tolerance with respect to its arguments. Remark. When solving applied
problems it is necessary to normalize all argument values X to an identical inter-
val before generating a matrix of metric uncertainty. This can be achieved, for
instance, by means of linear replacement of each variable Xi, i = 1, ..., n by its
increment in an interval [0, 1]. According to (2) W is a symmetric non-negative
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matrix. It is further assumed that the matrix is positive definite. The interpola-
tion formula for the retrieved value Y ∗ at the point X ∗ has the form:

Y ∗ =
n∑

i=1

zi · Yi, (3)

where the interpolation weights zi, i = 1, ..., n as expected for the interpolated
formulas satisfy to normalization condition

∑n
i=1 zi = 1 We define the numerical

characteristic σ2
mu(Y ∗) of metrical uncertainty of the retrieved value Y ∗ at the

point X ∗ by the equality:

σ2
mu(Y ∗) = (Wz , z ), (4)

where z = (z1, ..., zn)T . We pose the problem of selecting interpolation weight
values zi, i = 1, ..., n, that satisfy the normalization condition

∑n
i=1 zi = 1, for

which the numerical value of the uncertainty is minimal:
{

(Wz , z ) − min z

(z ,1) = 1,1 = (1, ..., 1)T .
(5)

The problem (5) is solved by Lagrange method. The required vector z ∗ and
interpolated value Y ∗ are given by equalities:

z ∗ =
(W−11)
(W−11)

, Y ∗ =
(W−11,Y )
(W−11,1)

, Y = (Y1, ..., Yn)T , (6)

where W−1 is the inverse matrix. The approach to interpolating multivariate
functions named metric analysis allows to consider various levels of tolerance
of function with respect to changes of its arguments’ values by means of the
coefficients νj , j = 1, ...,m. To find the coefficients νj j we consecutively exclude
function arguments and trace the values of changes of function at exclusions,
as have been proposed earlier [4–9]. In the present work two new approaches
to calculating the coefficients νj , j = 1, ...,m, based on comparing the values of
“correlation rates” to the rates of function variance with regard to its arguments
are presented. The first scheme of definition of metric scales νj , j = 1, ...,m is
based on calculating the “correlation rates” from the realized values of required
function (1) and then normalizing according to formulas

νj =
|rj |∑m

j=1 |rj | , j = 1, ...,m, (7)
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where

rj =
cov(Y,Xj)

σ(Y ) · σ(Xj)
, j = 1, ...,m,

cov(Y,Xj) =
1

n − 1

n∑
k=1

(Yk − Y )(Xkj − Xj), j = 1, ...,m,

σ2(Y ) =
1

n − 1

n∑
k=1

(Yk − Y )2,

σ2(Xj) =
1

n − 1

n∑
k=1

(Xkj − Xk)2, j = 1, ...,m,

Y =
1
n

n∑
k=1

Yk,Xj =
1
n

n∑
k=1

Xkj , j = 1, ...,m.

(8)

The second scheme of defining the metric coefficients νj , j = 1, ...,m is based
on calculating weight multipliers νj , j = 1, ...,m of the linear regression model
based on the realized values of the relevant function (1):

Y = u0 +
m∑

j=1

uj · Xj + ε. (9)

According to the method of the least squares (MLS), estimations of parame-
ters u = (u1, ..., um)T of model (9) are given by equality:

u = K−1
X cov(Y,X ), (10)

where the elements of covariance matrix KX are defined by equalities:

cov(Xi,Xj) =
1

n − 1

n∑
k=1

(Xki − Xi) · (Xki − Xi), (11)

and the vector components cov(Y,X ) = (cov(Y,X1), ..., cov(Y,Xm))T are cal-
culated from equalities:

cov(Y,Xj) =
1

n − 1

n∑
k=1

(Yk − Y )(Xkj − Xj), j = 1, ...,m, (12)

Then values of metric coefficients on the realized values of required function
(1) are calculated under formulas:

wj =
|uj |∑m

j=1 |uj | · m, j = 1, ...,m. (13)

In the case of strong correlation within a share of arguments Xi = (Xi1, ...,
Xim)T , i = 1, ..., n and, thereby, a case of matrix singularity or ill-conditioning of
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matrix KX it is necessary to conduct a regularization, replacing matrix KX by a
regularized matrix, for example, by matrix KX ,α = KX +α ·diag(K11, ...,Kmm),
α ≥ 0, where Kij , i, j = 1, ...,m are the elements of matrix KX . Let’s con-
sider the problem of smoothing and restoration of functional dependence Y =
F (X1, ...,Xn) = F (X ) in the presence of chaotic deviations from exact values.
The values of function Yi = F (Xi ), i = 1, ..., n are given with errors at the nodes
Xi = (Xi1, ...,Xim)T , i = 1, ..., n. We assume that the matrix of metric uncer-
tainty W is singular. For every node X ∗ we aim to find the smoothing value Y ∗

in the form of

Y ∗ =
n∑

i=1

zi · Yi = (z ,Y ), (14)

where the vector of weights z is the solution of the following problem of mini-
mization of the total uncertainty:

(Wz , z ) + α · (KY z , z ) − min z ,

(z ,1) = 1, (15)

where α is the smoothing parameter.
While the expression (Wz , z ) is responsible for metric uncertainty, the

expression (KY z , z ) is responsible for stochastic uncertainty. The problem (15)
can be solved using the Lagrange’s function. The smoothed value at the point
X ∗ is given by the equality:

Y ∗
sm = ((W + α · KY )−11,Y )/((W + α · KY )−11,1). (16)

When α → +∞, the smoothed value Y ∗
sm at any node X ∗ is given by

Y ∗
sm = (K−1

Y 1,Y )/(K−1
Y 1,1), (17)

Theorem. At points X ∗ = Xl when α → +0 the solution of problem (15)
converges to the value of function Yi = F (Xl ).

The proof can be realized with the help of the Lagrange function and the
analysis of the limits at α → +0 components of the vector z = (z1, ..., zn)T and
a Lagrange multiplier.

The problem (15) can be solved also by means of eigen values and eigen
vectors of matrix W . Let λ1, ..., λn be the eigen values, and φ1, ...,φn the corre-
sponding orthonormal system of eigen vectors of the matrix W . We decompose
the vector of weights z in system φ1, ...,φn

z =
n∑

i=1

ai · φi . (18)

Let’s denote by Φ = (φ1, ...,φn) the matrix columns of which are the eigen
vectors of matrix W . Then

z = Φa , a = (a1, ..., an)T . (19)



558 A. Kryanev et al.

We have:

(Wz , z ) + α · (KY z , z ) =
n∑

i=1

λi · a2
i + α ·

n∑
i,j=1

ai · aj · (Kyφi ,φj )

= (Da , a) + α · (Ba ,a)

(20)

where D = diag(λ1, ..., λn), Bij = (KY φi ,φj ), i, j = 1, ..., n,

(z ,1) =
∑n

i=1 ci · (φi ,1) = (c,φ),φ = ((φ1, 1), ..., (φn , 1))T

From problem (15) for vector z we turn to the following problem for vector a

(Da ,a) + α · (Ba ,a) − mina

(a ,φ) = 1.
(21)

We have:

L(a , u) =
1
2

· ((D + α · B)a ,a) + u · (1 − (a ,φ)),

�cL = (D + α · B)a − u · 1 = 0 ⇒ a = u · (D + α · B)−1φ,

(a ,φ) = 1 ⇒ u =
1

((D + α · B)−1φ,φ)
.

(22)

From here we deduce the vector a

a =
(D + α · B)−1φ

((D + α · B)−1φ,φ)
(23)

From (24) we deduce the vector of weights z

z = Φ
(D + α · B)−1φ

((D + α · B)−1φ,φ)
(24)

and we deduce the smoothed value

Y ∗
smo =

(Φ(D + α · B)−1φ,Y )
((D + α · B)−1φ,φ)

(25)

If a matrix of metric uncertainty W is singular, the required vector z ∗ and
the required interpolated value Y ∗, except for specially stipulated cases, are
defined by equalities [4]:

z ∗ =
W+1

(W+1,1)
, (26)

Y ∗ =
(W+1,Y )
(W+1,1)

, (27)

where W+ is the pseudoinverse or regularized matrix.
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Remark. At application of Formulas (26 and 27) it is supposed that (W+1,1) >
0. Let’s define size of metric uncertainty of value Y ∗, given by the Formula (27).
We have:

σ2
ND(Y ∗) = (Wz ∗, z ∗) =

(WW+1,W+1)
(W+1,1)2

(28)

=
(W+WW+1,1)

(W+1,1)2
=

(W+1,1)
(W+1,1)2

=
1

(W+1,1)

Here we have considered symmetry of a pseudo-return matrix W+ and equality
W+W ∗W+ = W+. Quantity

σ2
ND(X ∗/X 1, ...,Xn) =

1
(W+1,1)

> 0 (29)

we name a measure of metric uncertainty of restoration of function at a point
X ∗ using values of function at aggregate points Xi , i = 1, ..., n.

The inverse quantity

I(X ∗/X 1, ...,Xn) = (W+1,1) =
n∑

i=1

n∑
j=1

W+
ij > 0 (30)

we name the metric information at a point X ∗, concerning the set of points
X 1, ...,Xn .

From properties of pseudoinverce matrices it follows that at addition of each
new point Xn+1 to the set X 1, ...,Xn the metric information in any point X ∗

concerning the set of points X 1, ...,Xn ,Xn+1 will be not less than the metric
information at a point X ∗ concerning the set of points X 1, ...,Xn :

I(X ∗/X 1, ...,Xn ,Xn+1) ≥ I(X ∗/X 1, ...,Xn). (31)

For a measure of metric uncertainty we arrive at equality:

σ2
ND(X ∗/X 1, ...,Xn ,Xn+1) ≤ σ2

ND(X ∗/X 1, ...,Xn) (32)

Numerical results of interpolation of functions of many variables by means
of schemes of the metric analysis are presented in Figs. 1, 2, 3, 4, 5, 6, 7, 8
and Table 1. Figures 1 and 2 are presented in the form of graphs of recovery
functions of one variable using the methods of the metric analysis presented
in this paper. The initial function, which is unknown before the implementa-
tion of recovery methods is depicted in red; green line shows the given noisy
realization of the function; the dashed line represents the function recovered
by the methods of the metric analysis presented in this paper. As can be
seen from the figures, the average error of the recovered values of the func-
tion equals to less than 2 percent. Function presented in Table 1 is Y = f(x ) =
(V x ,x ) + (c,x ),x = (x1, ..., xm)T , 0 ≤ xi ≤ 1, i = 1, ...,m, where V - m × m
constant matrix, c = (c1, ..., cm)T - constant vector, m = 12 - dimension of
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Fig. 1. Recovery function 1 (Color figure online)

Fig. 2. Recovery function 2 (Color figure online)

Fig. 3. Exact function of two variables

space. Y (Xk ) = Yk, k = 1, ..., n, where Xk - nodes of interpolation, Yk - values
of the function at nodal points, n = 25 - number of nodal points. The results of
interpolating are presented in Table 1. In Fig. 3, 4, 5 the exact function of two
variables, the measured function, and the interpolated function are presented,
correspondingly.

Figures 6 and 7 exemplify the results of applying the recovery function of two
variables, the mean error of the recovered values equals to less than 1 percent.
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Fig. 4. Measured function of two variables

Fig. 5. Recovery function of two variables

Fig. 6. The surface of exact values
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Table 1. Numerical results

X Y Result of interpolation

0.3210 0.6604 0.1332 0.2217 0.7252 20.99 20.67

0.5536 0.9723 0.8545 0.1759 0.5116 37.00 36.34

0.7910 0.9280 0.1469 0.1180 0.007696 11.48 13.00

0.8445 0.9716 0.1673 0.5628 0.9920 52.78 52.09

0.5111 0.1521 0.0883 0.8863 0.9684 33.33 35.65

0.5060 0.4818 0.7105 0.4053 0.8512 39.96 39.02

0.1462 0.4970 0.5390 0.8821 0.9541 43.71 43.74

0.2640 0.0875 0.6904 0.1256 0.6399 17.26 15.52

0.3095 0.1707 0.7593 0.9395 0.7266 39.98 40.53

0.7409 0.02982 0.4092 0.01672 0.8803 20.66 21.50

0.2377 0.8600 0.8781 0.2668 0.05134 19.52 19.30

0.7078 0.04781 0.6390 0.3765 0.7470 30.04 30.08

0.8857 0.7058 0.3656 0.1155 0.7787 33.72 34.14

0.5480 0.5923 0.5340 0.9722 0.2310 34.40 34.69

0.7977 0.2799 0.01847 0.9505 0.4345 27.43 28.66

0.8280 0.5974 0.9576 0.07910 0.4444 32.21 32.25

0.7173 0.6044 0.7468 0.7145 0.5428 46.57 44.86

0.5938 0.03581 0.1608 0.6756 0.5257 20.26 19.71

0.7413 0.6747 0.8660 0.03228 0.2544 23.74 24.03

Fig. 7. Resurfacing
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Fig. 8. Exact surface

Fig. 9. Noisy surface

Fig. 10. Recovery surface
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Figures 8, 9 and 10 illustrate the results of restoration of the neutron flux distri-
bution in the reactor in cross-section of the reactor core. Comparison of Figs. 8
and 10 illustrates good agreement of the exact values with the restored values.

3 Conclusion

The numerical results of implementing the presented approaches to interpolation
based on metric analysis have demonstrated that metric analysis is a tool for
retrieving the values of multivariate functions even in the case of a little number
of interpolation nodes (even when the number of interpolation nodes is less
than the number of arguments). In the report new schemes and algorithms for
smoothing and restoration of functional values based on the metric analysis were
presented. These schemes and algorithms have demonstrated a high accuracy of
smoothing and retrieving the values of functions of one or many variables.

Methods of interpolation and smoothing of functions of several variables in a
finite space, presented in this paper can be generalized to non-linear functional
such as the infinite-dimensional functional spaces of Banach and Hilbert spaces.
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of the Russian Federation and RUDN University.
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Abstract. Tikhonov-type Cauchy problems are investigated for systems
of ordinary differential equations of infinite order with a small parame-
ter µ and initial conditions. It is studying the singular perturbated sys-
tems of ordinary differential equations of infinite order of Tikhonov-type
µẋ = F (x(t, gx), y(t, gy), t), ẏ = f(x(t, gx), y(t, gy), t) with the initial con-
ditions x(t0) = gx, y(t0) = gy, where x, gx ∈ X, X ⊂ l1 and y, gy ∈ Y ,
Y ∈ Rn, t ∈ [t0, t1] (t0 < t1), t0, t1 ∈ T , T ∈ R, gx and gy are given vec-
tors, µ > 0 is a small real parameter. The results may be applied to the
queueing networks, which arise from the modern telecommunications.

Keywords: Systems of differential equations of infinite order · Singular
perturbated systems of differential equations · Small parameter · Markov
chains

1 Introduction

The recent research of service networks with complex routing discipline in [13,20–
22] transport networks [1,5,6] and the asymptotic behavior of Jackson networks
[16] faced with the problem of proving the global convergence of the solutions of
certain infinite systems of ordinary differential equations to a time-independent
solution. Scattered results of these studies, however, allow a common approach
to their justification. This approach will be expounded here. In work [14] the
countable systems of differential equations with bounded Jacobi operators are
studied and the sufficient conditions of global stability and global asymptotic sta-
bility are obtained. In [12] it was considered finite closed Jackson networks with
N first come, first serve nodes and M customers. In the limit M → ∞, N → ∞,
M/N → λ > 0, it was got conditions when mean queue lengths are uniformly
bounded and when there exists a node where the mean queue length tends to ∞
under the above limit (condensation phenomena, traffic jams), in terms of the

c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 565–576, 2016.
DOI: 10.1007/978-3-319-51917-3 48
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limit distribution of the relative utilizations of the nodes. It was deriven asymp-
totics of the partition function and of correlation functions. Cauchy problems
for the systems of ordinary differential equations of infinite order was inves-
tigated Tihonov [17], Persidsky [15], Zhautykov [23,24], Korobeinik [8] other
researchers. For example, Kreer, Ayse and Thomas [10] investigated fractional
Poisson processes, a rapidly growing area of non-Markovian stochastic processes,
that are useful in statistics to describe data from counting processes when wait-
ing times are not exponentially distributed. They showed that the fractional
Kolmogorov-Feller equations for the probabilities at time t could be represented
by an infinite linear system of ordinary differential equations of first order in
a transformed time variable. These new equations resemble a linear version
of the discrete coagulation-fragmentation equations, well-known from the non-
equilibrium theory of gelation, cluster-dynamics and phase transitions in physics
and chemistry.

It was studied the singular perturbated systems of ordinary differential equa-
tions by Tihonov [18], Vasil’eva [19], Lomov [11] other researchers.

A particular our interest is the synthesis all these methods and its applica-
tions in telecommunications. In this paper we apply methods from [14] for the
singular perturbated systems of ordinary differential equations of infinite order
of Tikhonov-type.

1.1 Auxiliary Notations and Statements

Denote by R the set of real numbers and denote by Rn n-dimensional Euclidean
space where n ∈ N = {1, 2, ...}. The time parameter is denoted by t where
t ∈ [t0, t1] (t0 < t1), t ∈ T , T ∈ R. Let x(t) = (x1(t), x2(t), ..., xn(t))T be a
n-dimensional vector function, x(t) ∈ X, X ∈ Rn.

Let the sum

‖x(t)‖n = |x1(t)| + |x2(t)| + ... + |xn(t)| =
n∑

i=0

|xi(t)| (1)

exists for any t ∈ T . This sum induces the norm and the topology on the set
of bounded operators A : x1 → x2, ‖A‖n = supx=0 ‖Ax‖n/‖x‖n. Let l1 be a
sequence space y(t) = (y1(t), y2(t), ...)T , y(t) ∈ Y , Y ⊂ l1 where y(t) is an
infinite-dimensional vector function.

Let the sum

‖y(t)‖ = |y1(t)| + |y2(t)| + ... =
∞∑

i=0

|yi(t)| (2)

exists for any t ∈ T . This sum induces the norm and the topology on the set of
bounded operators B : l1 → l2,

‖B‖ = sup
y=0

‖By‖/‖y‖. (3)
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Let

z(t) = (x1(t), x2(t), ..., xn(t), y1(t), y2(t), ...)T = (z1(t), z2(t), ...)T (4)

be a infinite-dimensional vector z(t) ∈ Z, Z ∈ X×Y where Z is a direct products
of the spaces X,Y . Denote by S = Z × T = X × Y × T the set where S is a
direct products of the spaces X,Y and T .

Let exists the sum{
ρ(z′, z′′) =

∑∞
i=0 |z′

i(t) − z′′
i (t)|,

z′, z′′ ∈ Z,
(5)

where ρ(z′, z′′) defines the distance in the space Z. All vectors and matrices
inequalities should be understood as component-wise.

Denote by
Uε(G) = {z ∈ l1 | ‖G − z‖ < ε} (6)

the ε-neighborhood of the point G = (G1, G2, ...)T where G ∈ Z. Let’s remind
that a set is called compact if any open cover of it has a finite subcover. Subset
l1 has a compact closure in l1, and called precompact. It is known that a set is
precompact if and only if for any ε > 0 there is a finite ε-grid. Let T+

k z = z+k be
a vector (0, ..., 0, zk(t), zk+1(t), ...) (k ∈ N), which has all co-ordinates starting
with k + 1-th congruent with the corresponding coordinates of vector z(t), and
all the previous co-ordinates are equal to zero, and let T−

k z = z−
k be a vector

(z1(t), ..., zk(t), 0, ...), which has all co-ordinates starting with k-th congruent
with the corresponding coordinates of vector z(t), and all the next co-ordinates
are equal to zero.

Statement 1 (The criterion of precompactness) [9]. A set Z ⊂ l1 is pre-
compact if and only if when Z is finite and

∀ε > 0∃k ∈ N ∀z ∈ Z ‖z+k ‖ < ε. (7)

Statement 2 (The generalized fixed point principle) [9]. Let F : Z → Z
is a mapping of a complete metric space (Z, ρ) has the property that for any

z′, z′′ ∈ Z,ρ(Fz′, F z′′) ≤ q(α, β)ρ(z′, z′′), (α ≤ ρ(z′, z′′) ≤ β) (8)

and q(α, β) < 1 when 0 < α ≤ β < ∞ than F has the only fixed point z∗ and
limn→∞ ρ(Fnz′, z∗) = 0 with ∀z′ ∈ Z.

Statement 3. Let F : Z → Z is a mapping of compact metric domain (Z, p) to
itself decrease the distance, i.e. for any

z′, z′′ ∈ Z, z′ 
= z′′, ρ(Fz′, F z′′) < ρ(z′, z′′). (9)

So function F has the only fixed point

z∗ = F (z∗), lim
m→∞ ρ(Fmz′, z∗) = 0, ∀z′ ∈ Z. (10)
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Proof. Lets remove all pairs of points in Cartesian product Z×Z which have the
distance between each over strictly less than ε. For any pair of points (z′, z′′),
which is belong to a remaining set R, it is possible to define the compression
ratio

k(z′, z′′) = ρ(Fz′, F z′′)/ρ(z′, z′′) < 1 (11)

correctly. Inasmuch as R is compact, there is such a k0 < 1 that

∀(z′, z′′) ∈ R : k(z′, z′′) ≤ k0. (12)

Thus

∀z′, z′′ ∈ Z, ∀ε > 0, ∃N = N(z′, z′′, ε) > 0: ∀m > N(z′, z′′, ε), (13)

ρ(Fmz′, Fmz′′) < ε,

i.e. ρ(Fmz′, Fmz′′) → 0 and m → ∞.
Lets examine the sequence z′, F z′, F 2z′, ... (z′ ∈ Z). Because of Z is compact

this sequence has a limit point z∗, i.e.

∃k1 < k2 < ... : F kiz′ → z∗, (i ∈ N). (14)

Lets show that point z∗ could be transferred to itself by function F . The sequence
F ki+1z′ = F (F ki)z′ → Fz∗. Hence ρ(z∗, F z∗) ← ρ(F kiz′, F (F kiz′)). But we
have earlier proved that ρ(F ki+1z′, F kiFz′) → 0, in particular for z′ and z′′ =
Fz′. Hence we get z∗ = Fz∗, i.e. fixity of point z∗. The unicity is obvious, and
we have already proved the convergence.

1.2 Tikhonov-Type Cauchy Problems for Systems of Ordinary
Differential Equations of Infinite Order with a Small Parameter

Let’s consider Tikhonov-type Cauchy problems for systems of ordinary differen-
tial equations of infinite order with a small parameter μ and initial conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = f(x(t, gx), y(t, gy), t),
μẏ = F (x(t, gx), y(t, gy), t);
x(t0, gx) = gx,

y(t0, gy) = gy,

(15)

where x, f ∈ X, X ∈ Rn are n-dimensional functions; y, F ∈ Y , Y ⊂ l1 are
infinite-dimensional functions and t ∈ [t0, t1] (t0 < t1 ≤ ∞), t ∈ T , T ∈ R;
gx ∈ X and gy ∈ Y are given vectors, μ > 0 is a small real parameter;
x(t, gx) and y(t, gy) are solutions of (15). Given functions f(x(t, gx), y(t, gy), t)
and F (x(t, gx), y(t, gy), t) are continuous functions for all variables. Let S is an
integral manifold of the system (15) in X × Y × T . If any point t∗ ∈ [t0, t1]
(x(t∗), y(t∗), t∗) ∈ S of trajectory of this system has at least one common point
on S this trajectory (x(t,G), y(t, g), t) ∈ S belongs the integral manifold S
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totally. If we assume in (15) that μ = 0 than we have a degenerate system
of the ordinary differential equations and a problem of singular perturbations

⎧⎪⎨
⎪⎩

ẋ = f(x(t, gx), y(t), t),
0 = F (x(t, gx), y(t), t);
x(t0, gx) = gx,

(16)

where the dimension of this system is less than the dimension of the system (15),
since the relations F (x(t), y(t), t) = 0 in the system (16) are the algebraic equa-
tions (not differential equations). Thus for the system (16) we can use limited
number of the initial conditions then for system (15). Most natural for this case
we can use the initial conditions x(t0, gx) = gx for the system (16) and the initial
conditions y(t0, gy) = gy disregard otherwise we get the overdefined system. We
can solve the system (16) if the equation F (x(t), y(t), t) = 0 could be solved.
If it is possible to solve we can find a finite set or countable set of the roots
yq(t, gx) = uq(x(t, gx), t) where q ∈ N.

If the implicit function F (x(t), y(t), t) = 0 has not simple structure we must
investigate the question about the choice of roots. Hence we can use the roots
yq(t, gx) = uq(x(t, gx), t) (q ∈ N) in (16) and solve the degenerate system

{
ẋd = f(xd(t, gx), uq(xd(t, gx), t), t);
yd(t0, gx) = gx.

(17)

Since it is not assumed that the roots yq(t, gx) = uq(x(t, gx), t) satisfy the initial
conditions of the Cauchy problem (15) (yq(t0) 
= gx, q ∈ N), the solutions y(t, gy)
(15) and yq(t, gx) do not close to each other at the initial moments of time
t > 0. Also there is a very interesting question about behaviors of the solutions
x(t, gx) of the singular perturbated problem (15) and the solutions xd(t, gx) of
the degenerate problem (17). When t = 0 we have x(t0, gx) = xd(t0, gx). Do
these solutions close to each other when t ∈ (t0, t1]? The answer to this question
depends on using roots yq(t, gx) = uq(x(t, gx), t) and the initial conditions which
we apply for the systems (15) and (16).

1.3 Local Existence Theorem for Cauchy Problems for Systems of
Ordinary Differential Equations of Infinite Order

Let Tikhonov-type Cauchy problems for systems of ordinary differential equa-
tions of infinite order with a small parameter μ > 0 and initial conditions (15)
has a form:

{
ż = P (z(t,G, μ), t, μ),
z(t0, G, μ) = G,

(18)

where
z = (x1, x2, ..., xn, y1, y2, ...)T ,

P (z(t,G, μ), t, μ) = (f1, f2, ..., fn, μ−1F1, μ
−1F2, ...)T
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are the infinite-dimensional function;

G = (gx1, gx2, ..., gxn, gy1, gy2, ...)T

is the given vector; t ∈ [t0, t1] (t0 < t1 ≤ ∞).
Let z(t,G, μ) be a continuously differentiable solution of the Cauchy problems

(18) then there are

Φ(t,G, μ) = ∂z(t,G, μ)/∂G, (19)

Ψ(t,G, μ) = ∂z(t,G, μ)/∂μ, (20)

where Φ(t,G, μ) and Ψ(t,G, μ) satisfy of the system of ordinary differential equa-
tions in variations:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż = P (z(t,G, μ), t, μ),
Φ̇(t,G, μ) = Jz(t,G, μ)Φ(t,G, μ),
Ψ̇(t,G, μ) = Jz(t,G, μ)Ψ(t,G, μ) + Λμ(t,G, μ),
z(t0, G, μ) = G, Φ(t0, G, μ) = I, Ψ(t0, G, μ) = 0,
t0 ∈ T,

(21)

where
Jz(t,G, μ) = (∂Pi/∂zj)∞

i,j=1 (22)

is Jacobis matrix, I is an identity operator and Λμ(t,G, μ) = (∂Pi/∂μ)∞
i=1 is a

vector.

Theorem 1 (local existence theorem). Let P (z(t,G, μ), t, μ), Jz(t,G, μ),
Λμ(t,G, μ) be continuous and meet Gelder’s local condition with z ∈ Uε(G) then
the system (21) has only one solution, which meet the conditions z(t0, G, μ) = G,
z(t,G, μ) ∈ Uε(G). Thus z(t,G, μ) continuously differentiable with respect to the
initial condition, and its derivative meet the Eq. (21).

Proof. This statement is following from [4] (theorem 3.4.4) when the unlimited
operator be A = 0.

The behavior of the solution z(t,G, μ) (18) and the nonnegative condition
for the off-diagonal elements of the matrix Jz(t,G, μ) is demonstrated by the
following theorem.

Theorem 2. Let the solution z (18) be z(t,G, μ) ∈ l1 for any t ≥ 0, G ∈ l1 and
μ. The following claims are equal: (i) the off-diagonal elements Jz(t,G, μ) are
non-negative for any G; (ii) for any G and any vector h ∈ l1, h ≥ 0,

z(t,G + h, μ) ≥ z(t,G, μ). (23)
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Proof. Lets examine a convex set Z, and z(t,G, μ) ∈ Z for any G ∈ Z, derivative
Φ(t,G, μ) of function z(t,G, μ) can be specify by simultaneous equations (21).
In that case the following formula is fair for any G0, G1 ∈ Z:

z(t,G1, μ) − z(t,G0, μ) =
∫ 1

0

Φ(t, γ(s), μ)(G1 − G0)ds (24)

where
γ(s) = (1 − s)G0 + sG1, 0 ≤ s ≤ 1. (25)

In fact the function z(t,G, μ) transfer the segment γ(s) into the curve
z(t, γ(s), μ). The following formula is fair because of the continuous differen-
tiability of function z(t,G, μ)

z(t, γ(τ), μ) = z(t,G0, μ) +
∫ τ

0

∂z(t, γ(s), μ)
∂s

ds.

By the formula of complex derivative

∂z(t, γ(s), μ)
∂s

=
∂z

∂G
(γ(s))γ′(s)

Recalling that ∂z/∂G = Φ and γ′(s) = G1 − G0, with τ = 1 we get (26). Lets
suppose that statement (i) is fair. So because of (26)

z(t,G + h, μ) − z(t,G, μ) =
∫ 1

0

Φ(t, γ(s), μ)hds

where γ(s) = G + sh, 0 ≤ s ≤ 1. Because of non-negativeness of function
Jz(t,G, μ) outside of diagonal from (21) we get Φ(t, γ(s), μ) ≥ 0, so

Φ(t, γ(s), μ)h ≥ 0

whence we get statement (ii).
Lets suppose that (ii) is fair. Under the conditions of Theorem 1 P, Jz with

z ∈ Uε(G) be continuous and meet Gelder’s local condition. Let Gelder’s local
condition be ‖P‖ < M0, ‖J‖ < M1, and there are numbers

δ = min(ε/M0, 1/M1), δ > 0.

Let z(t,G, μ) = G + z∗(t,G, μ) be a solution of (21), where z∗(t,G, μ) is a
fixed point of Picard’s mapping

(
∏

θ)(t) =
∫ t

t0

P (G + θ(τ))dτ

under conditions t ∈ [t0 − δ1, t0 + δ1], δ1 < δ. Mapping
∏

is contraction with
coefficient λ = δ1M1 < 1. Consider the approximation to solution

z̃(t,G, μ) = G + z̃∗(t,G, μ) = G + (t − t0)P (z(t,G, μ), t, μ).
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Using Statement 2 we can see that

‖z̃(t,G, μ) − z(t,G, μ)‖

= ‖z̃∗(t,G, μ) − z∗(t,G, μ)‖

≤ 1
1 − λ

‖
∏

z̃(t,G, μ) − z̃(t,G, μ)‖,

∏
z̃(t,G, μ) − z̃(t,G, μ)

=
∫ t

t0

P (G + (τ − t0)P )dτ −
∫ t

t0

Pdτ

=
∫ t

t0

(P (G + (τ − t0)P ) − P )dτ = D.

Because of the derivative of the function P is limited and P meet Gelder’s
local condition with the constant M1, where

‖P (G + (τ − t0)P (G)) − P (G)‖ ≤ M1‖(τ − t0)P (G)‖ ≤ M0 M1|τ − t0|,

so
‖D‖ ≤ M0 M1(t − t0)2/2(1 − λ),

‖z̃(t,G, μ) − z(t,G, μ)‖ ≤ M0 M1(t − t0)2/2(1 − λ).

Using this estimation and for all small ζ > 0 we have that

0 ≤ z(t,G + ζej , μ) − z(t,G, μ) = ζej + (t − t0)[P (G + ζej) − P (G)] + γ(G, t),

where
‖γ(G, t)‖ ≤ M0 M1(t − t0)2/2(1 − λ)

and ej is a vector, which has all coordinates equal to 0 but j-th coordinate equal
to 1. Component i 
= j of this inequality is given by

0 ≤ (t − t0)[Pi(G + ζej) − Pi(G)] + γi(G, t).

Dividing by t − t0 > 0 and directing t → t0 on the right, considering
γi(G, t)/(t − t0) → 0 we get 0 ≤ P (G + ζej) − P (G). Let’s divide last expression
by ζ and direct ζ → 0

0 ≤ lim
ζ→0+

P (G + ζej) − P (G)
ζ

=
∂Pi

∂Gi
= Jij

what is mean the fairing of statement (i).

Theorem 3. Let Φ be Markovian mapping and G0, G1 ∈ X, t ≥ 0, μ > 0 than
‖z(t,G1, μ) − z(t,G0, μ)‖ ≤ ‖G1 − G0‖.
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Proof. Using (26) from the proofing of Theorem4 we have

‖z(t,G1, μ) − z(t,G0, μ)‖ ≤
∫ 1

0

‖Φ(t, γ(s))(G1 − G0)‖ds (26)

Let function Φ(t, γ(s)) is Markovian mapping for any

‖t ≥ 0, s ∈ [0, 1], ‖Φ(t, γ(s))(G1 − G0)‖ ≤ ‖G1 − G0‖.

Estimating the integral, considering this inequality, we get required.

This theorem shows us the following sufficient condition for the boundedness
of the norm-solution z(t,G, μ).

Corollary fact from Theorem 3. Let ∃G∗ ∈ X : z(t,G∗, μ) = G∗. Then
‖z(t,G, μ) − G∗ ≤ ‖G − G∗‖ with t ≥ 0, G ∈ X.

This fact we can use for solutions analysis of the systems (18).

1.4 Using Cutting Method for Systems of Ordinary Differential
Equations of Infinite Order

There is a cutting method of solving of systems of ordinary differential equations
of infinite order where for (18) we can get Tikhonov-type Cauchy problems

ż(M) = P (m)(z(M)(t,G, μ), t, μ); z(M)(t0, G, μ) = G, (27)

where M = n + m and

z(M) = (x1, x2, ..., xn, y1, y2, ..., ym)T ,

P (M)(z(M)(t,G, μ), t, μ) = (f1, f2, ..., fn, μ−1F1, μ
−1F2, ..., μ

−1Fm)T

are the M -dimensional function;

GM = (gx1, gx2, ..., gxn, gy1, gy2, ..., gym)T

is the given vector; t ∈ [t0, t1] (t0 < t1 ≤ ∞) and μ > 0.
Next theorem give a sufficient conditions using of this method.

Theorem 4. Let ‖P (z(M)(s,G(M), μ)) − P (M)(z(M)(s,G(M), μ))‖ < C(M, t∗)
and P (z(M)(s,G(M), μ)) − P (z(s,G, μ)) ≤ K‖z(M)(s,G(n), μ) − z(s,G, μ)‖ be
for all of s ≤ t∗ amd μ > 0 then

‖z(M)(t,G(M), μ) − z(t,G, μ)‖ ≤ [C(M, t∗) + ‖G(M) − G‖eKt − C(M, t∗)]

when 0 < t < t∗.
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Proof. Transforming the differential equations to integral, we get

Z(t,G, μ) = G +
∫ t

0

P (z(s,G))ds, z(M)(t,G(M))

= G(M) +
∫ t

0

P (M)(z(M)(s,G(M)))ds.

Considering the Gelder’s condition on function P at t < t∗

‖z(M)(t,G(M)) − z(t,G)‖ ≤ ‖G(M) − G‖

+
∫ t

0

‖P (M)(z(M)(s,G(M))) − P (z, s,G))‖ds

≤ ‖G(M) − G‖ +
∫ t

0

‖P (M)(z(M)(s,G(M))) − P (z(M)(s,G(M)))ds

+
∫ t

0

‖P (z(M)(s,G(M))) − P (z(s,G(M)))‖ds

≤ ‖G(M) − G‖ + C(M, t∗)t + K

∫ t

0

‖z(M)(s,G(M)) − z(s,G)‖ds.

Let’s note ϕ(t) = ‖z(M)(t,G(M)) − z(t,G)‖ds, so we get the integral inequality

ϕ(t) ≤ ‖G(M) − G‖ + C(M, t∗)t + K

∫ t

0

ϕ(s)ds.

Let ϕ(t) ≤ ψ(t) where

ψ(t) = ‖G(M) − G‖ + C(M, t∗)t + K

∫ t

0

ϕ(s)ds,

where
ψ(t) = (‖G(M) − G‖ + C(M, t∗))eKt − C(M, t∗).

Corollary fact from Theorem4. If ‖G(M)−G‖ → 0 and C(M, t∗) → 0 and any
μ > 0, with fixed t∗ in conditions of Theorem 4, then ‖z(M)(t,G(M) −z(t,M)‖ →
0 uniformly on any subset of the segment [0, t∗].

2 Conclusions

The boundaries of applications and possible generalizations. Some works in the
routing disciplines. All systems can be analyzed for the global stability but
with some condition that the convergence to the steady-state solution will not
coordinate-wise, but the norm. We have seen that the most serious constraints of
our methods are non-negativity of the Jacobi matrix off-diagonal elements and
the availability of the first integral, which equal to the sum of the components.
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It would be interesting to understand the physical meaning of these conditions
(mean-field conditions). It is necessary to remember that such systems describes
the behavior of the queue lengths on the devices. Roughly speaking, zk is the
proportion of units in the queue for a service, to which there is at least k requests
(including requests, which are serviced at the moment). Non-negative elements
of the Jacobi matrix indicate that the rate of change of zk (i.e., the time deriv-
ative of zk) can only grow at the expense of zj with j 
= k. It can be reduced
(or decrease) only due to uk. Thus, with the increase of the portion of queues
with a minimum number of requests j in the system, the percentage change in
intensity with the minimum number of queues requests k 
= j can only increase.

For example, mean-field conditions could be used in active queue manage-
ment schemes like RED (random early detection) that had been suggested when
multiple TCP sessions are multiplexed through a bottleneck buffer [2]. The idea
was to detect congestion before the buffer overflows and packets are lost. When
the queue length reacheed a certain threshold RED schemes drop/mark incom-
ing packets with a probability that increases as the queue size increases. The
objectives was an equitable distribution of packet loss, reduced delay and delay
variation and improved network utilization. Here we could modeling multiple
connections maintained in the congestion avoidance regime by the RED mech-
anism. The window sizes of each TCP session evolve like independent dynam-
ical systems coupled by the queue length at the buffer. We could introduce
a mean-field approximation to one such RED system as the number of flows
tends to infinity. The deterministic limiting system was described by a transport
equation.

Acknowledments. The reported study was funded within the Agreement
02.03.21.0008 dated 24.11.2016 between the Ministry of Education and Science of the
Russian Federation and RUDN University.
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Abstract. This paper is concerned with CUDA and OpenCL technolo-
gies used to solve seismic problems in elastic media. We solve the problem
of the dynamic wave disturbances spreading in geologic environment in
an elastic approach in the two-dimensional case. A grid-characteristic
method is used for numerical solution. Performance of problem solving
algorithm with the GPU is compared with the performance of solving it
on a single core CPU. We also study the influence of various optimiza-
tions on the performance of the algorithm. We measured the effectiveness
of parallelization on multiple graphics processors.

Keywords: Seismic · Grid-characteristic · CUDA · OpenCL

1 Introduction

The technology of high-performance computing on graphics processors is being
more and more intensively used in recent years. These technologies well suit to
the tasks of seismology in elastic media, since they require a large number of
computing resources. A numerical solution of hyperbolic equations is required to
solve these problems. Some papers include solutions of various problems of seis-
mology, which come to the solution of hyperbolic systems on GPU. The paper [1]
describes the implementation of a numerical method ADER-DG using CUDA
technology. The implementation of WENO schemes in GPUs is examined in
other works [2]. They study the acceleration at the solution of hyperbolic sys-
tems of equations on structured grids in GPU, compared to CPU [3]. Other prob-
lems also come to the solution of hyperbolic systems of equations. The paper [4]
contains calculations in GPU with improved accuracy - up to 60 decimal places.
Authors [8,9] obtained performance improvement in solving shallow-water equa-
tions. Magnetohydrodynamic phenomena processes are simulated on GPUs [5].
The authors of [10] implemented a discontinued Galerkin method on GPUs and
its profiling is described in detail in this paper. The same method has been

c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 577–588, 2016.
DOI: 10.1007/978-3-319-51917-3 49
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implemented on a multi-GPU in work [11], they obtained acceleration in 28.3
times on the GPU cluster, compared with CPU cluster. The comparative study
of acceleration on GPU cluster compared with a CPU cluster is presented in the
paper [12], calculated with the help of the method of the spectral components of
seismic wave propagation. Additionally CUDA technology is used to solve other
problems. The influence of a large number of I/O operations on the performance
of the algorithm is shown in [13]. GPU and CPU performances are compared in
[14–17]. The attempts are made to reduce power consumption on GPU during
computing at the same time [18] In this paper we use the grid-characteristic
method, which has proved itself well in the solution of seismic problems [20],
requiring numerical solution of hyperbolic systems [19]. This method lends itself
well to parallelization, since it uses explicit method and large computational
grids. This algorithm has been previously parallelized using MPI and OpenMP.
In this paper, the algorithm was implemented using CUDA and OpenCL tech-
nology. The impact of various performance optimizations on the implementation
of algorithm using CUDA technology was considered as well. After that, the
most effective implementation has been rewritten using OpenCL technology.
Besides, this algorithm involves multiple GPUs, so the parallelization efficiency
was measured in multiple GPUs. NVIDIA and AMD graphic cards were used
for testing. The results of OpenCL implementation on the NVIDIA GPU were
compared with the same implementation on CUDA. NVIDIA GeForce and Tesla
cards were used as well, including the latest models: Tesla k80 and Tesla k40m.
AMD GPUs of Radeon HD and Radeon R9 series were tested. We considered
differences in implementation efficiency with single and double precision. Intel
Xeon E5-2697 CPU was chosen to test consistent implementation.

2 Mathematical Model

Environment behavior is described by the model of an ideal isotropic linear-
elastic material. We consider the two-dimensional problem. The following system
of partial differential equations describes the state of the elementary volume of
elastic material in the approximation of small deformations:

ρ
∂vx
∂t

=
∂σxx

∂x
+

∂σxy

∂y
, ρ

∂vy
∂t

=
∂σxy

∂x
+

∂σyy

∂y
,

∂σxx

∂t
= (λ + 2μ)

∂vx
∂x

+ λ
∂vy
∂y

,
∂σyy

∂t
= λ

∂vx
∂x

+ (λ + 2μ)
∂vy
∂y

,

∂σxy

∂t
= μ

(
∂vx
∂x

+
∂vy
∂y

)
,

where ρ is the density of the medium; Λ, μ Lame parameters; Vx and Vy are
the horizontal and vertical components of the velocity of the particles of the
medium; σxx, σyy, σxy are the components of the stress tensor. This system can
be presented in the matrix form:

∂up

∂t
+ Apq

∂uq

∂x
+ Bpq

∂uq

∂y
= 0, (1)
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where u is the vector of 5 independent variables u = (σxx, σyy, σxy, vx, vy)
T . The

explicit form of the matrices Apq, Bpq is presented in [6]. Here in after we mean
summation over repeated indices. The eigenvalues of matrices Apq and Bpq are
as follows: s1 = −cp, s2 = −cs, s3 = 0, s4 = cs, s5 = cp, where cp and cs are the
propagation speeds of longitudinal and transverse waves in the medium.

3 Numerical Method

Using coordinate-wise splitting we can reduce the problem of constructing a
difference scheme for the system of equations (1) to the problem of constructing
a difference scheme for systems of the form:

∂up

∂t
+ Apq

∂uq

∂x
= 0 (2)

For hyperbolic system of equations (2) matrix A can be represented as A =
RΛR−1, where Λ is a diagonal, the elements of which are the eigenvalues of
A, and R is the matrix consisting of right eigenvectors of A. We introduce new
variables: w = R−1u (The so-called Riemann invariants). Then the system of
equations (2) will be reduced to a system of 5 independent scalar transport
equations.

Let’s reduce a third-order accuracy scheme to the numerical solution of one-
dimensional linear transfer equation ut + aux = 0, a > 0, sigma = aτ/h, τ is a
time step, h is step on coordinate:

un+1
m = un

m +σ(Δ0 +Δ2)/2+σ2(Δ0 −Δ2)/2+
σ(σ2 − 1)

6
(Δ1 −2Δ0 +Δ2), (3)

Δ0 = un
m−1 − un

m,

Δ1 = un
m−2 − un

m−1,

Δ2 = un
m − un

m+1.

Scheme (3) is tolerant to Courant numbers not bigger than 1. We used a grid-
characteristic criterion of monotony, it is based on the characteristic property of
the accurate solutions:

min(un
m−1, u

n
m) ≤ un+1

m ≤ max(un
m−1, u

n
m).

In places where this criterion is met, the order of scheme falls to the second one.
Once the values of the Riemann invariants on the next time step are found,

the solution: un+1 = Rwn+1 is recovered.

4 Statement of Problem

Test model is shown in Fig. 1. The dimensions are given in kilometers. A non-
reflecting boundary condition is set for bottom and side borders and free bound-
ary is set for the top. The source of perturbations is a vertical force applied
to the site from 925.7 m to 974.1 m on the day surface; its amplitude is set by
Ricker pulse frequency of 40 Hz. The calculation results are presented in Fig. 2.
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Fig. 1. Geological model of anticlinal
trap [7]

Fig. 2. The calculation result is the
wave pattern in time moment t = 0.38 s

5 Test Conditions

The two-dimensional test problem with the number of nodes 4096 × 4096 is
considered. 6500 time steps were carried out. Each grid point stored 5 floating
point variables. All calculations were performed both with a single (SP), and
a double (DP) accuracy. Grid size in memory is 320 MB for computing with
single precision and 640 MB for the calculations with double accuracy. However,
various optimizations required more memory. If the amount of stream processors
(CUDA cores) is C, frequency - F , the number GFLOPS of single accuracy -
2CF , where “2” is used due to the fact that 2 FMA operations can be carried
out per cycle (fused multiply-add). It is known how many units are contained in
different processor architectures for single-precision and double-precision. SP:DP
column contains their ratio. The amount of GFLOPS can calculated from this
for double accuracy (Table 1).

Table 1. Features of tested graphics cards

GPU Cores Clock rate, MHz GFlops (SP) SP:DP GFlops (DP)

GeForce GT 640 384 900 691 24 29

GeForce GTX 480 480 1401 1345 8 168

GeForce GTX 680 1536 1006 3090 24 129

GeForce GTX 760 1152 980 2258 24 94

GeForce GTX 780 2304 863 3977 24 166

GeForce GTX 780 Ti 2880 876 5046 24 210

GeForce GTX 980 2048 1126 4612 32 144

Tesla M2070 448 1150 1030 2 515

Tesla K40m 2880 745 4291 3 1430

Tesla K80 2496 562 2806 1.5 1870

Radeon HD 7950 1792 800 2867 4 717

Radeon R9 290 2560 947 4849 8 606
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6 Description of Algorithm

The CPU optimized version of this program was taken as the basis for the
algorithm implementation on GPUs. The most computationally expensive parts
of the algorithm were optimized. As the spatial coordinate splitting was used,
two steps were required to transfer the entire grid: on the X axis and Y axis. At
that the number of arithmetic floating point operation was calculated, required
for the conversion of one grid point in two steps - 190 Flops. Therefore, by
knowing the number of grid nodes, the number of time steps, the theoretical
amount of GFlops consumed by algorithm, can be determined. Next, knowing
the number of stream processors in GPU, its clock frequency and the number
of FMA (fused multiply-add) processors in a single processor, we calculated a
peak performance for each GPU. The real algorithm tests on GPUs have shown
lower values of performance.

Figure 4 shows results for double accuracy. The percentage of the peak per-
formance of algorithms was estimated as the ratio between two values - theoret-
ically required amount of Flops for grid converting and real consumed amount
of Flops.

6.1 Transferring Implementation from CPU to GPU - CUDA1

In the original version, the algorithm was redesigned for execution on GPUs using
CUDA technology, but it is not optimized for execution on GPUs. In this tech-
nology, the graphic processor was assigned 2 times more memory than required
to store the computational grid. It is a standard practice when working with the
algorithm designing technologies for GPUs. As a result, only the synchronization
is performed between function calls that run on GPU (CUDA kernels). This was

0 10 20 30 40
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cuda2

cuda3

cuda4

opencl1

Fig. 3. Acceleration on GPU compared to single core of CPU, double precision
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Fig. 4. Percentage of peak performance, double precision

done due to the fact that global synchronization of all graphics processor causes
large time delays, so these delays were inserted between calls of kernels. Thus, it
became possible to reduce the number of global synchronization up to two times
by one time step. Architecture of CUDA stream processors means that in one
CUDA unit, flows that perform the same code on different areas of memory are
executed simultaneously, if there are no branches in the program code. There-
fore, a situation when all flows wait for completion of one occurs only if this flow
executes any operations that differ from the rest.

All operations on the memory assigning on GPU and calls of functions run-
ning on the graphic processor, are produced by the host - CPU. Operations of
memory grid copping from the host memory and back require a lot of time, so
the grid is copied once from the host memory to GPU memory, before the start
of the main computing, and once at the end from the GPU memory to host
memory. Number of steps by the time and computational grid size was such
that the time required for calculations far exceeds the time required to copy it.
Data can be stored in grid in two ways: in the form of the array of structures
and in the form of arrays structure. The structure in this case means vector u,
consisting of 5 components. In the original version, data in the computational
grid were organized as an array of structures, i.e. data in a particular node are
stored sequentially in the memory. To set the boundary conditions of the task,
the behavior other than required by other flows at the boundary of the compu-
tational grid was required. To handle the grid boundaries in the kernel code, the
code section with five conditional blocks “if-else” is inserted in the algorithm.
Several options of the unit size were considered for this version. It was found
that the optimal size is 16× 16, at which operation time was minimal (Figs. 5,
6 and 7).
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Fig. 5. Performance, double precision

6.2 Structure of Arrays and Sequential Memory Access - CUDA2

Shared memory was used in the next optimization of CUDA block. This is due
to the fact that the latency during the interaction with this memory is less than
the interaction with the global memory. Optimization means there is only one
reading from the global memory at each step along X and Y at the beginning
of a function call that is running on the GPU and the data is copied in total
memory. Immediately after that all the flows are synchronized in the block; after
that, all calculations are performed on the data in the shared memory block. AT
the end of kernel, the result is written to the second copy of the computational
grid in the global memory.

Another optimization was the selection of a different storing method of the
calculated grid in GPU memory - array structure. After that, calls to the global
memory become coalesced which led to the increase in performance.

The above mentioned optimizations reduced the number of if-else blocks for
grid boundaries processing up to 2.

6.3 Options of Kernel Call - CUDA3

Before that, additional information, such as grid size, material, variables values,
resulting from intermediate calculations valid along all time steps were passed
to the structure in the GPU global memory as a pointer. All flows constantly
addressed the same memory section. Such data were calculated on the CPU in
CUDA3 algorithm version once before the execution of code on GPU and were
transferred through the parameters of kernel call. It was expected that each flow
would create a local copy of these values.
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Fig. 6. Acceleration of synchronization via host memory, CUDA, double precision

6.4 Block Sizes - CUDA4

It was important to choose the dimensions of the blocks so that the graphics
processor would be constantly loaded, that is, there were no part-time loaded
flow processors. It was also important to choose the block sizes multiple of the
warp sizes, as the sequential access to memory is carried out within a warp.
Another reason is that the flows of a warp can execute code simultaneously on
different memory sections, if there are no branches. In version CUDA4, block
sizes are selected so as to satisfy the above mentioned requirements and minimize
the number of nodes which require memory exchanging between the memory
blocks. At the step on X axis to convert each node of the computational grid,
values in two adjacent nodes on the X axis are required, and at step on Y-axis,
two adjacent nodes on the Y-axis are required. Therefore, one should choose the
block sizes so that the number of nodes that require values in the adjacent blocks
would be smaller. It was necessary, since the adjacent blocks of nodes require
more memory in a general memory block. If, for example, we take a block of size
M × N , then in step X for storage of nodes of adjacent blocks 4N , additional
nodes are required, and in step Y - 4M . Therefore, in step X, the size equal to
256 × 1 has been selected, as a result, block required only 4 additional nodes
in memory. In step Y, the block size was set as 16 × 16 to reach a compromise
between the number of additional memory (64 grid nodes) and the requirements
for the serial memory access.

0 0.5 1 1.5

Radeon R9 290 (float)

Radeon R9 290 (double) 1 GPU

2 GPU

Fig. 7. Acceleration of synchronization via host memory, OpenCL
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Fig. 8. Acceleration using GPUDirect, single precision
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Fig. 9. Acceleration using GPUDirect, double precision

6.5 OpenCL1

The next step was to create the OpenCL implementation of this algorithm.
Optimized version of the CUDA4 algorithm was taken as the basis for this.
Acceleration test results for all implementations are shown in Fig. 3. The maxi-
mum obtained acceleration compared with a single CPU on one graphic CPU -
55 times on the GeForce GTX 780 Ti in the computations of single precision and
44 times at Tesla K80 in double precision computations. It good results for AMD
devices should be noted, inspite of the fact that cheap desktop card were used,
they showed good results on implementations of single- and double-precision.

7 Multiple GPUs

The algorithm has been parallelized to run on multiple graphics processors. The
most optimized version was used to perform several unused GPU. At that the
computational grid was divided into several equal-sized rectangular areas. The
division was made on the Y axis, due to the selected size of the block on X axis.
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Tests with multiple GPUs were carried out only for the same GPUs. This
was made due to the fact that by using GPUs of different performance, faster
processors will cause downtime of slower graphics processors, and the effect of
their simultaneous use may be less noticeable. Synchronization of computational
grid between GPUs was carried out by sharing through host memory (CPU).
Moreover synchronization was performed only once at each time step before the
step on Y axis. If the grid size is M ×N , and the number of processors is D, the
number required for the synchronization of grid nodes equals 4M(D − 1). Test
results for a number of devices are shown in 6. OpenCL technology was used for
AMD processors; the result is shown in 7.

Also, the version based on GPUDirect was implemented. The main advantage
of GPUDirect technology in problem solution is the ability to transfer data,
which is located in GPU memory directly without the involvement of the host
via PCI Express bus, i.e., there is no need to copy data from the first graphics
processor to the host, and then from the host to the other GPU. Test results are
shown in Figs. 8 and 9.

The result of using CUDA technology does not differ significantly, when host
memory is used as an exchange buffer. The result for OpenCL technology is a
little worse.

8 Conclusion

This paper shows how the capabilities of graphic processors are involved in the
solution of problems with seismic grid-characteristic method. Here we describe
methods that allow achieving the highest performance of the algorithm when
computing on the GPU. The problem of effective GPU memory use both in case
of using one GPU, and in case of multiple GPUs is also studied. The influence of
different optimizations on the performance of the algorithm was considered. The
maximum acceleration obtained on graphic CPU compared with a single CPU -
55 times on GeForce GTX 780 Ti when computing with a single precision and 44
times at Tesla K80 at double precision computations. We managed to achieve the
performance of 460 GFlops for single accuracy, and the maximum performance of
138 GFlops for double accuracy was obtained. Maximum achieved acceleration of
the graphics processors is 7.1 times for 8 GPUs for double precision. GPUDirect
technology raised acceleration to 10% of what has been achieved without the
calculations with a single precision.

Based on these results we can draw come to a conclusion that GPUs can
be used for the solution of such problems. The results are similar for other
tasks, which use similar numerical methods (finite volume method, finite differ-
ence methods). It is also worth noting that there are good results for the AMD
processors and OpenCL technology, while CUDA technology for NVidia GPUs
is used in most works.
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Abstract. This report introduces two approaches to the efficient port-
folio selection problem, wherein the criteria and the constraints are linear
with respect to control variables. The first approach consists of uncondi-
tioned optimization of the average expected efficiency value of a portfolio
without imposing any additional constraints on the structure of selected
portfolio. For this scheme the problem of effective portfolio formation is
reduced to two linear programming problems, solving these for an effi-
cient frontier may be effectively accomplished in closed form. The second
scheme considers an additional set of group constraints, which can also
be reduced to the problem of finding the Pareto fronts of two linear
programming problems.

Keywords: Efficient portfolio · Linear formulation · Pareto frontier ·
Linear programming problem

1 Introduction

One of the primary goals of economical science is the distribution of resources
under conditions when the future efficiency of use of resources after they have
been allocated is uncertain. Currently there are a number of approaches to set-
ting up and solving problems of effective portfolio selection. The most widely
used are the setting up proposed by Markowitz and the problem statement imple-
menting the “Value at Risk” technique. The present work also addresses the
statement of effective portfolio selection problem that uses fuzzy numbers to
determine the uncertainty in efficiency values.

2 Mathematical Models of Effective Portfolio Formation

The main objective of portfolio optimization is to maximize the aggregated effi-
ciency (return) of investing or allocating the available resources. However, under
the conditions of uncertainty in true efficiency values, the portfolio optimization
problem should take into account the risk of realization of unacceptably small
values of efficiency. Currently the approach to statement and the solution of

c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 589–600, 2016.
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problems of formation of investment portfolios, proposed by Markowitz, in which
the efficiency values are treated as random variables, and the variance values are
considered to account for risk measures for both individual assets and a portfolio
as a whole, is generally used. The other criterion characterizing the investment
portfolio selected via the Markowitz’s scheme is the average expected value mp

(mathematical expectation) of return of portfolio Rp. Thus, the Markowitz’s
scheme belongs to a class of double criteria problems in which one of criteria
(mp) is aimed at maximizing the average expected value of efficiency of a port-
folio, and the second (an efficiency variance σ2

p) is aimed at minimizing. The
mathematical model of the Markowitz’s scheme without additional constraints
can be defined as follows [1–3]:

σ2
p = (Wx,x) − min

mp = (m,x) − max
n∑

i=1

xi = 1, xi ≥ 0, i = 1, ..., n. (1)

where x is a vector of shares of an investment portfolio; W is the covariance
matrix of efficiency values Ri; m = (m1, ...,mn)T is a vector of average expected
values of asset efficiency. Let’s consider statement with both of Markowitz’s
criteria whilst short-selling or selling assets on credit is allowed. Mathematically
the borrowed resources correspond to negative values of shares xi, i = 1, ..., n.

Hence, the mathematical model of effective portfolio selection problem with
both Markowitz’s criteria and without additional restrictions that includes short-
selling opportunities becomes:

σ2
p = (Wx,x) − min

mp = (m,x) − max
n∑

i=1

xi = 1. (2)

Unlike Markowitz’s problem, the short-selling statement does not require
conditions xi ≥ 0, i = 1, ..., n to be satisfied. To find the Pareto set of solutions to
the double criterion problem (2) that corresponds to the set of effective portfolios
in short-selling statement, as a preliminary we seek to solve the single criterion
problem of minimizing σ2

p :

σ2
p = (Wx,x) − min
n∑

i=1

xi = 1. (3)

The solution of the problem (3) is given by the equality:

x∗ =
W−11

(W−11,1)
, (4)
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where 1 = (1, ..., 1)T .
The problem of finding all of Pareto solutions of the problem (2) is further

reduced to the parametric class of single criterion problems concerning parameter
mp:

σ2
p = (Wx,x) − min

(m,x) = mp ≥ m∗
p,

n∑
i=1

xi = 1, (5)

where m∗
p = (m,x∗). The entire set of Pareto solutions of problem (2) as the

solutions of a problem (5) is given by equality:

x = W−1 · AT · (A · W−1 · AT )−1 · f , (6)

where A =
[

1 . . . 1
m1 . . . mn

]
is a (2 × n) matrix, f = (1,mp)T ,mp ≥ m∗

p = (m,x∗).

Vector equality (6) with regard to the components of vector x will become:

xi = ai + bi · mp, i = 1, ..., n, (7)

where
∑n

i=1 ai = 1,
∑n

i=1 bi = 0.
Equalities (6) and (7) define the apparent functional dependence of the vector

x components with regard to parameter mp and, thereby, allow to calculate the
structure of the effective portfolio set for any values mp using the formula (7)
without solving anew problem (5). Figure 1 illustrates an exemplificative result
of numerical computation of the effective portfolios presented on a plane of the
criteria mp and σp. The values used to calculate the Pareto set in Fig. 1 are listed
in Table 1.

Table 1. Input data

i m Covariance matrix

1 1.35 1.07 −0.00 −0.06 −0.02 −0.04 −0.05 −0.03 0.10 −0.04 0.09

2 1.45 −0.00 2.81 0.13 −0.07 0.54 0.00 0.08 −0.04 −0.04 −0.11

3 1.51 −0.06 0.13 2.76 −0.04 −0.07 −0.04 0.12 0.01 −0.11 −0.13

4 1.23 −0.02 −0.07 −0.04 0.61 −0.03 −0.01 −0.01 −0.01 −0.01 −0.01

5 1.26 −0.04 0.54 −0.07 −0.03 0.51 0.04 0.01 −0.01 0.01 −0.01

6 1.28 −0.05 0.00 −0.04 −0.01 0.04 0.35 −0.01 −0.00 −0.01 −0.06

7 1.27 −0.03 0.08 0.12 −0.01 0.01 −0.01 0.43 −0.02 −0.03 −0.06

8 1.23 0.10 −0.04 0.01 −0.01 −0.01 −0.00 −0.02 0.43 −0.03 0.04

9 1.30 −0.04 −0.04 −0.11 −0.01 0.01 −0.01 −0.03 −0.03 0.60 −0.02

10 1.42 0.09 −0.11 −0.13 −0.01 −0.01 −0.06 −0.06 0.04 −0.02 0.93
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Fig. 1. Set of Pareto solutions.

In the statements of the effective portfolio selection under conditions of uncer-
tainty problems presented above the values of return of developing the distrib-
uted resources were treated as random variables. Recently to characterise the
uncertainty in random variables they have been treated as fuzzy numbers with
invoking the fuzzy set framework [4].

In the present report proposes the mathematical model and the solution on its
basis of problems of optimum distribution of resources, wherein the uncertainty
in efficiency of resource development is characterised by fuzzy numbers rather
than by random variables. One of the problem statements considered allows to
reduce the effective portfolio selection problem to a linear programming problem.
This gives the opportunity to apply an effective algorithm of finding numerically
the set of Pareto solutions corresponding to solutions of the optimum distribution
of resources problems. Below one of the possible portfolio optimization problem
statements that implements the fuzzy set framework is considered [5]. In this
problem statement the mathematical model of formation of effective portfolios,
which takes into account a set of constraints can be specified as follows:

Rp =
n∑

i=1

xi · Ri − max

rp =
n∑

i=1

xi · ri − min
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αj ≤ xj1 + ... + xjnj
≤ βj , j = 1, ...,m,

0 ≤ xi ≤ 1, i = 1, ..., n,
n∑

i=1

xi · Vi = S, (8)

where Rp is the cumulative portfolio efficiency; Ri, i = 1, ..., n is the expected
value of return for i-th asset; rp is the risk value of the decrease in actualized value
of the cumulative portfolio; ri, i = 1, ..., n is the risk value for the decrease in
realized values of efficiency for i-th asset; xi, i = 1, ..., n are the shares of resources
invested in i-th asset included in portfolios under consideration; Vi, i = 1, ..., n is
the maximal possible volume that can be invested in i-th object; S - total volume
of resources of a portfolio (0 < S < V =

∑n
i=1 Vi); m - number of groups.

Problem (8), also as well as problems (1), (2) is a double criterion problem
with regard to control variables xi, i = 1, ..., n with two linear criteria Rp and
rp, aimed at maximization and minimization accordingly.

Values Ri, i = 1, ..., n of the expected values of return and ri, i = 1, ..., n -
risk measures of decrease in actualized values of return can be ascertained on
the basis of expert estimations by means of fuzzy numbers.

To find the set of Pareto solutions it is necessary to find the solutions of two
single criterion problems (9) and (10):

Rp =
n∑

i=1

xi · Ri − max

αj ≤ xj1 + ... + xjnj
≤ βj , j = 1, ...,m,

0 ≤ xi ≤ 1, i = 1, ..., n,
n∑

i=1

xi · Vi = S, (9)

and

rp =
n∑

i=1

xi · ri − min

αj ≤ xj1 + ... + xjnj
≤ βj , j = 1, ...,m,

0 ≤ xi ≤ 1, i = 1, ..., n,
n∑

i=1

xi · Vi = S (10)

(9) and (10) are linear programming problems, both have the unique solutions
x∗
1 and x∗

2, accordingly x∗
1 = (x∗

11, ..., x
∗
1n)T ,x∗

2 = (x∗
21, ..., x

∗
2n)T .

The entire set of Pareto solutions of problem (8) is defined by equality:

x∗(α) = α · x∗
1 + (1 − α) · x∗

2, (11)

where α ∈ [0, 1].
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By varying the numerical values of the priority parameter α, the individual
effective portfolio structures can be computed. In particular, at α = 1 we attain
the structure of the effective portfolio of a company that corresponds to the
maximum expected value of efficiency, and at α = 0 we attain the structure of
the effective portfolio of the company that corresponds to the minimum value of
risk.

The numerical solutions of the linear programming problems (9), (10) can be
carried out by means of an effective method of solving the linear programming
problems of the considered class [6]. In the report numerical results of effective
portfolio formation under the problem statement (8) are adduced.

In the case when the group constraints are simplified to exclusive constraints,
problem (8) takes on the following form:

Rp =
n∑

i=1

xi · Ri − max

rp =
n∑

i=1

xi · ri − min

αj ≤ xj ≤ βj , j = 1, ...,m,

0 ≤ xi ≤ 1, i = 1, ..., n,
n∑

i=1

xi · Vi = S (12)

This setting allows to illustrate the constraints, the solutions to single cri-
terion problems, and the calculated set of Pareto optimal solutions all on one
graph. Figures 2 and 3 represents some numerical results of solving problem (12).
The solutions to the partial optimization problems are depicted in red and blue,
the limitations imposed on values of xi are shaded in grey, while the set of
Pareto optimal solutions to problem (12) that correspond to various values of
α (α = 0, 0.1, ..., 1) are represented by dotted lines. It is obvious that whenever
the solutions to the single criterion problems coincide, the set of Pareto optimal
solutions of the multiple criteria problem is limited to the singular portfolio.

The group constraints in problem (8) do not allow for such a clear way
of illustrating the principle of finding the Pareto set of optimal solutions to
the multiple criteria optimization problems. For the purpose of demonstrating
this method numerical results are also presented below. Figure 4 presents the
solutions to the following problem:

Rp = 1.77x1 + 1.66x2 + 1.32x3 + 1.22x4 + 1.35x5

+ 1.79x6 + 1.99x7 + 1.85x8 + 1.05x9 + 1.05x10 − max

rp = 4.76x1 + 3.33x2 + 3.58x3 + 3.79x4 + 4.14x5

+ 4.54x6 + 4.31x7 + 4.04x8 + 3.94x9 + 3.81x10 − min

0.02 ≤ x3 + x4 + x5 + x6 + x9 ≤ 1,
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Fig. 2. Numerical results of solving problem (12) (Color figure online)
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Fig. 3. Numerical results of solving problem (12) (Color figure online)
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Fig. 4. Numerical results of solving problem (13) (Color figure online)

0.01 ≤ x1 + x4 + x9 + x10 ≤ 1,

0.04 ≤ x1 + x2 + x3 + x4 + x5 + x7 + x9 ≤ 1,

0 ≤ x1 + x3 + x4 + x5 + x6 + x10 ≤ 0.67,

0 ≤ xi ≤ 1, i = 1, ..., 10,

0.77x1 + 0.19x2 + 0.42x3 + 0.76x4 + 0.98x5

+ 0.50x6 + 0.77x7 + 0.49x8 + 0.30x9 + 0.06x10 = 0.5 (13)

The solutions to the single criterion problems of maximizing the cumulative
portfolio efficiency and minimizing the cumulative portfolio risk measure are
depicted in red and blue, whereas the Pareto optimal solutions of the multiple
criteria problem that correspond to various values of α (α = 0, 0.1, ..., 1) are
represented by dotted lines.

The problem of efficient portfolios formation arises, in particular, in the rein-
surance market, and in these markets it is one of the most important and urgent
problems. The problem of efficient portfolios formation in the reinsurance mar-
ket can be considered in the more severe conditions of group restrictions under
which the mathematical model of efficient portfolios is as follows:

n∑
i=1

xi · wi · Ri − max
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n∑
i=1

xi · wi · ri − min

0 ≤ αj ≤ xj1 + xj2 + ... + xjnj
≤ βj ≤ 1, j = 1, ...,m,

m∑
j=1

βj ≥ 1,
m∑
j=1

αj ≤ 1,
m∑
j=1

nj = n,

n∑
i=1

xi · Vi = S,

n∑
i=1

βi · Vi > S,wi =
Vi

V
, V =

n∑
i=1

Vi, (14)

where xi, i = 1, ..., n - the share of the insurance sum of the ith reinsurance con-
tract included in the portfolio; Ri, i = 1, ..., n - the expected value of return for
the ith reinsurance contract (for example, profitability and normalized return);
ri, i = 1, ..., n - the value of the insured event risk for the ith reinsurance
contract (for example, the value of the likelihood lower than expected yield);
Vi, i = 1, ..., n - the total insurance sum of the ith reinsurance contract; S - the
total insurance sum of the portfolio (0 < S < V ), n - the number of potential
reinsurance contracts, which are tested for their possible inclusion in the port-
folio of the insurance company contracts. Then problems (9), (10) transform,
respectively, to problems (15), (16):

n∑
i=1

xi · wi · Ri − max

0 ≤ αj ≤ xj1 + xj2 + ... + xjnj
≤ βj ≤ 1, j = 1, ...,m,

m∑
j=1

βj ≥ 1,

m∑
j=1

αj ≤ 1,

m∑
j=1

nj = n,

n∑
i=1

xi · Vi = S,
n∑

i=1

βi · Vi > S,wi =
Vi

V
, V =

n∑
i=1

Vi, (15)

n∑
i=1

xi · wi · ri − min

0 ≤ αj ≤ xj1 + xj2 + ... + xjnj
≤ βj ≤ 1, j = 1, ...,m,

m∑
j=1

βj ≥ 1,

m∑
j=1

αj ≤ 1,

m∑
j=1

nj = n,

n∑
i=1

xi · Vi = S,

n∑
i=1

βi · Vi > S,wi =
Vi

V
, V =

n∑
i=1

Vi, (16)

problem (12) transforms to problem (17):
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n∑
i=1

xi · wi · Ri − max

n∑
i=1

xi · wi · ri − min

0 ≤ αi ≤ xi ≤ βi ≤ 1, i = 1, ..., n,
n∑

i=1

xi · Vi = S,

n∑
i=1

βi · Vi > S,wi =
Vi

V
, V =

n∑
i=1

Vi, (17)

Then, problems (9), (10) transform, respectively, to problems (18), (19):

n∑
i=1

xi · wi · Ri − max

0 ≤ αi ≤ xi ≤ βi ≤ 1, i = 1, ..., n,
n∑

i=1

xi · Vi = S,

n∑
i=1

βi · Vi > S,wi =
Vi

V
, V =

n∑
i=1

Vi, (18)

n∑
i=1

xi · wi · ri − min

0 ≤ αi ≤ xi ≤ βi ≤ 1, i = 1, ..., n,
n∑

i=1

xi · Vi = S,

n∑
i=1

βi · Vi > S,wi =
Vi

V
, V =

n∑
i=1

Vi, (19)

Problems (15), (16) are linear programming problems, each of which has a
unique solution x∗

1, x∗
2, respectively x∗

1 = (x∗
11, ..., x

∗
1n)T , x∗

2 = (x∗
21, ..., x

∗
2n)T .

The entire set of Pareto’s solutions of (14) is defined by the equality

x∗(α) = α · x∗
1 + (1 − α) · x∗

2, (20)

where α ∈ [0, 1].
By varying the numerical value of priority parameter α, we obtain the specific

formulation of effective reinsurance portfolios. In particular, at α = 1 we obtain
the effective portfolio of reinsurance companies that corresponds to the maxi-
mum expected value of return, and at α = 0, we obtain the effective portfolio
that corresponds to the minimum value of risk.

Similarly problems (18), (19) are linear programming problems, each of
which has a unique solution x∗∗

1 , x∗∗
2 , respectively, x∗∗

1 = (x∗∗
11, ..., x

∗∗
1n)T ,

x∗∗
2 = (x∗∗

21, ..., x
∗∗
2n)T . The entire set of Pareto’s solutions of problem (17) is

defined by the equality

x∗∗(α) = α · x∗∗
1 + (1 − α) · x∗∗

2 , (21)

where α ∈ [0, 1].
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The linear relationship between the risk value r and the R is illustrated in
Fig. 5.

Numerical solutions of specific problems of linear programming type (15)–
(19) are also attained by means of the effective two-step method [6].

R

r

Fig. 5. Linear relationship between the risk value r and the R

3 Conclusion

In the report statements and solutions of effective portfolio problems are pre-
sented. For statements that allow short-selling the solutions are attained in closed
form in the analytical kind. This allows to calculate the structure of effective
portfolios without solving anew the parent criterion problem. Statement with
double linear criteria, wherein the criteria can be defined by means of fuzzy
numbers, is presented. The proposed problem statement allows to account for
the relation between the possible uncertain future efficiency values of resource
development in the case of absence of preliminary statistics on return actualiza-
tion, based entirely on the use of expert estimations.
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Abstract. In this paper we consider a class of multilayer integrated-
optical waveguides consisting of homogeneous dielectric layers of con-
stant or variable thickness, which are being systematically numerically
studied using the cross-section method. The method is based on the adi-
abatic approximation of the asymptotic expansion on the one hand and
the expansion in the complete system of modes of regular comparison
waveguide. The paper discusses the problems of numerical implemen-
tation of the cross-section method to the transformation of particular
mode in a smooth transition from one planar regular open waveguide to
another.

Luneburg proposed a model of the ideal optical instrument (in the
framework of geometrical optics), afterwards called Luneburg lens. Later
classical Luneburg lens was included in the family of the ideal optical
instruments - generalized Luneburg lenses. Zernike in his work showed
that a local increase in thickness of the waveguiding layer leads to a
local deceleration of phase velocity of the propagating waveguide mode.
This effect has led to the idea of manufacturing the waveguide (two-
dimensional) Luneburg lenses instead of volume (three-dimensional)
lenses. In this work we synthesized mathematically the thickness pro-
files of the additional (irregular in thickness) waveguide layer forming
the thin-film generalized waveguide Luneburg lens.

E. Ayrjan—The work was partially supported by RFBF grants No 14-01-00628, No
15-07- 08795, No 16-07-00556. The reported study was funded within the Agreement
No 02.a03.21.0008 dated 24.04.2016 between the Ministry of Education and Science
of the Russian Federation and RUDN University.

c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 601–611, 2016.
DOI: 10.1007/978-3-319-51917-3 51



602 E. Ayrjan et al.

Keywords: Multilayer integrated-optical waveguides · Generalized
luneburg lenses · The cross-section method

1 Introduction

We are interested in the class of so-called multilayer integrated optical
waveguides consisting of homogeneous dielectric layers of constant or variable
thickness. If the layers thicknesses are constant and the interfaces between them
are parallel planes, planar waveguides are called regular planar open waveguides.
Theoretical (analytical) description of such waveguides is made nearly half a
century ago and described in many reviews and books (see, e.g., [1–6]). A sys-
tematic description of the numerical (computer) models of regular planar open
waveguides is less common (see, e.g., [7,8]).

If one or more layers are of variable thickness, the waveguide is called
irregular. Among such waveguides we distinguish the class of waveguides with
smooth change of thickness, the so-called smoothly-irregular integrated-optical
waveguides. The theory of such waveguides, the so-called cross-section method
is created by Shevchenko V.V. and published in [9]. Subsequently relatively suc-
cessful attempts to generalize this method have been made (see, e.g., [10–16]).
At the same time, to date, the authors are unknown of systematic numerical
studies of smoothly-irregular integrated-optical waveguides based on the cross-
section method. We use a very particular embodiment of the method for the
design of thin-film generalized waveguide Luneburg lens.

2 The Cross-Section Method

The basis of the cross-section method is the adiabatic approximation of the
asymptotic expansion of locally plane waves, simplified by two additions:

(1) in the derivatives of adiabatic waveguide modes only the zero-order contribu-
tions are taken into account;

(2) instead of the tangent planes at irregular boundaries for the formulation of
boundary conditions their approximations by “horizontal projections” are
used.

Using the second assumption reduces the complete system of modes used in
the method to the system of modes of the regular comparison waveguide. Using
the first assumption leads to a system of ordinary differential equations for the
coefficients of the expansion of the general solution in the cross-section method.

In the cross-section method the propagation of polarized monochromatic light
in a smooth dielectric transition (irregular along the axis Oz) between two regular
planar dielectric waveguides is described by a complete set of modes of the regular
comparison waveguide [17,18]:

In the left regular part of the waveguide (see Fig. 1) the electromagnetic radi-
ation (monochromatic, linearly polarized) propagates in two forms: TE modes,
obeying the Helmholtz equation



Mathematical Modeling of Smoothly-Irregular Integrated-Optical Waveguide 603

Fig. 1. A homogeneous smooth dielectric transition between two planar regular dielec-
tric waveguides.

(
∂2

∂x2
+

∂2

∂z2

)
Ey + k2

0n
2 (x) Ey = 0 (1)

and TM modes, obeying the Helmholtz equation

n2 (x)
∂

∂x

(
1

n2 (x)
∂

∂x

)
Hy +

∂2Hy

∂z2
+ k2

0n
2 (x)Hy = 0 (2)

There can be modes, running from left to right, and modes, running from
right to left. Solutions of (1) and (2) (i.e., propagating modes) in the case of
regular waveguide are described in [7,17].

When the waveguide mode, which has reached during propagation from left
to right the beginning of the waveguide transition, propagates further through
the waveguide with a variable (continuously variable) section, the mode under-
goes (transverse, geometrical) transformation, its velocity of propagation changes,
and in general it no longer strictly satisfies the Helmholtz equation (1) or (2) (for
the regular part of the waveguide). Propagation in smooth transitions of open
waveguides is often described by the cross-section method. Namely, the field in
each cross-section z of this transition is represented as an expansion in a complete
system of modes of the (regular) comparison waveguide (in the section z).

We limit our consideration by the waveguide modes corresponding to the
discrete spectrum Ej

y (x; z) and Hj
y (x; z). Each of them satisfies the equations

d2

dx2

(
Ej

y

Hj
y

)
+ χ2 (βj (z))

(
Ej

y

Hj
y

)
=

(
0
0

)
. (3)

The remaining components of the electromagnetic field satisfy the relations

Hz =
1

ik0μ

dEy

dx
,Hx = −β

μ
Ey, Ez = − 1

ik0ε

∂Hy

∂x
,Ex =

β

ε
Hy. (4)

At the same time the tangential boundary conditions

Eτ(0)
∣∣∣
a1−0

= Eτ(0)
∣∣∣
a1+0

, Hτ(0)
∣∣∣
a1−0

= Hτ(0)
∣∣∣
a1+0

, (5)
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Eτ(0)
∣∣∣
a2−0

= Eτ(0)
∣∣∣
a2+0

, Hτ(0)
∣∣∣
a2−0

= Hτ(0)
∣∣∣
a2+0

, (6)

and asymptotic conditions are satisfied
∣∣∣∣Eτ(0)

∣∣∣
x→±∞

∣∣∣∣ < +∞,

∣∣∣∣Hτ(0)
∣∣∣
x→±∞

∣∣∣∣ < +∞. (7)

Further in this paper we consider the evolution of a particular mode, the
evolution of its dispersion relation and the evolution of the electromagnetic field
of this mode during propagation in a smooth transition:

C+
j (z) ψ+

j (x; z) exp

⎧⎨
⎩−ik0

z∫
βj (z) dz

⎫⎬
⎭ (8)

We do not consider the transfer of modes (this question remains outside our
consideration), but this does not mean that it does not exist.

3 Dispersion Relations for Homogeneous Smooth
Transitions

Consider a very smooth transition between the two dielectric waveguides with
thicknesses din of the left and dfin of the right waveguides. The optical refractive
indices are the same throughout the structure: ns is the refractive index of the
substrate, nf is the refractive index of the waveguide layer, nc is the refractive
index of the coating layer (air). Thickness of the waveguide transition over the
interval [zin, zfin] changes from din to dfin so that for any current z ∈ [zin, zfin]
the thickness d ∈ [din, dfin].

The problem of describing guided TE mode in a smooth transition (by the
cross-section method [19]) is formulated in the form

A+
s = A+

f + A−
f

γj
s

ik0
A+

s = χj
1

k0

(
A+

f − A−
f

)
A+

f exp
{
iχj

fd (z)
}

+ A−
f exp

{
−iχj

fd (z)
}

= A−
c exp

{−γj
cd (z)

}
χj
f

k0

(
A+

f exp
{

iχj
fd (z)

}
− A−

f exp
{

−iχj
fd (z)

})
= − γj

c

ik0
A−

c exp
{−γj

cd (z)
}

(9)

So the solution on the entire axis Ox is given (under the described matrix
model [7,17]) by the homogeneous system of linear algebraic equations

MTE
4

(
d (z) , βj (z)

)
A = 0 (10)

This system has a non-trivial solution, in particular, provided that

det
(
MTE

4

(
d (z) , βj (z)

))
= 0 (11)
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It is well known that the waveguide dispersion relation βj (d (z)) takes values
in the range βj ∈ (ns, nf ). Moreover, for each root βj there exist its critical
thickness (see, e.g., [7])

dj
cr =

arctg (γc (ns)/χf (ns) )
χf (ns)

+ jπ (12)

from which βj > ns. Note also that βj(d (z))d(z)→∞ → nf .

Non-linear transcendental algebraic equation (11) for each fixed d > dm
cr >

... > d1cr > d0cr has a finite number of roots β0 > β1 > β2 > ... > βm. In order to
calculate in a sustainable way the dispersion curves βj (d) at d > dj

cr, we apply
a stable procedure of numerical solution of the equation (11) [16].

4 Dispersion Relations for the Non-uniform (Two-Layer)
Smooth Transitions

Fig. 2. A non-homogeneous smooth dielectric transition between planar regular dielec-
tric waveguides.

The problem of describing guided TE mode in a non-homogeneous (see Fig. 2)
smooth transition (by the cross-section method [19]) is formulated as:

A+
s exp

{−γj
sd

}
= A+

f exp
{

−iχj
fd

}
+ A−

f exp
{

iχj
fd

}
γj
s

ik0
A+

s exp
{−γj

sd
}

= χj
1

k0

(
A+

f exp
{

−iχj
fd

}
− A−

f exp
{
iχj

fd
})

A+
f + A−

f = A+
l + A−

l
χj
f

k0

(
A+

f − A−
f

)
= χj

l

k0

(
A+

l − A−
l

)
A+

l exp
{

iχj
l h (z)

}
+ A−

l exp
{

−iχj
l h (z)

}
= A−

c exp
{−γj

ch (z)
}

χj
l

k0

(
A+

l exp
{

iχj
l h (z)

}
− A−

l exp
{

−iχj
l h (z)

})
= − γj

c

ik0
A−

c exp
{−γj

ch (z)
}

(13)
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So the solution for the TE mode in the whole range x ∈ (−∞,∞) is defined
by a set Ak satisfying the homogeneous system of linear algebraic equations

MTE
6

(
d, h (z) , βj (z)

)
A = 0 (14)

This system has a non-trivial solution, in particular, provided that

det
(
MTE

6

(
d, h (z) , βj (z)

))
= 0 (15)

Similar reasoning for the TM mode leads to the homogeneous system of linear
algebraic equations

MTM
6

(
d, h (z) , βj (z)

)
B = 0 (16)

which has a non-trivial solution, in particular, provided that

det
(
MTM

6

(
d, h (z) , βj (z)

))
= 0 (17)

Dispersion relations βj (d, h (z)) are calculated using stable numerical meth-
ods [16] for solving non-linear transcendental equations (15) and (17).

5 Synthesis of Generalized Luneburg Lens

Luneburg proposed a model of the ideal optical instrument (in the framework of
geometrical optics), afterwards called Luneburg lens. Later classical Luneburg
lens was included in the family of the ideal optical instruments - generalized
Luneburg lenses. Kepler and Morgan proposed alternative ways of solving the
problem of synthesis of such lenses, and Kotlyar proved their equivalence.

Generalized Luneburg lens (having a spherical symmetry in three dimensions
or circular symmetry in two-dimensional case) with a focal length f is described
by the relations:

ρ (r) = rn (r, f) , n (r, f) = exp {ω (r, f)} (18)

where

ω (r, f) =
1
π

1∫
ρ

arcsin (x/f )

(ρ2 + x2)
1/2

dx (19)

The parallel light beam (with a plane wave front) incident on the Luneburg
lens is focused on the axis of the lens at a distance F = Rf , where R is the
radius of the lens. If f = 1 the beam is focused at a point on the lens surface,
and it is called classical.

The refractive index profile of classical Luneburg lens (see [24]) has the form

n (r, 1) =
√

2 − (r/R)2 (20)

In the case f > 1, the analytical solution n (r, f) of relations (19) does not
exist. It was calculated using different approximate methods in [22,23]. Each
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of the found solutions has limitations, and only under them these solutions
have acceptable precision. In [15,16] non-linear relations (19) are solved by the
deformed polyhedron method of Nelder-Mead of the minimization of the residual,
with “relative accuracy” for all values of the parameters. The value of the integral
is calculated using the adaptive QUANC8 program based on the Newton-Cotes
formula of the 8th order.

6 Thin Film Generalized Waveguide Luneburg Lens

In the work by Zernike [21] it was shown that a local increase in thickness
of the waveguiding layer leads to a local deceleration of phase velocity of the
propagating waveguide mode. This effect has led to the idea of manufactur-
ing the waveguide (two-dimensional) Luneburg lenses instead of volume (three-
dimensional) lenses. Manufacturing of the volume lens with a variable refractive
index is difficult materials science problem. At the same time the formation of
a complex profile of the thickness of a homogeneous waveguide layer is a com-
pletely solvable problem in the dielectric thin-film technology.

Suppose that the TE (or TM) mode propagates through the regular three-
layer planar dielectric waveguide with refractive indices ns, nf , nc with a thick-
ness d/λ of the waveguide layer and the phase retardation coefficient βj

TE

(βj
TM ), and this mode is incident from the left on a local thickening of the

waveguide layer. Generalized Luneburg lens (volume lens) with a focal length
f = F/R has a refractive index distribution n (r, f) , r ≤ R. We design thin-
film generalized waveguide Luneburg lens in the form of additional cylindrically
symmetric waveguide layer with a thickness profile along the radius h (r), ensur-
ing deformation of incident waveguide mode. That means focusing of the flat
(on the regular region) wave front and of the family of rays locally orthogo-
nal to it by means of the formed by this thickening distribution of the effec-
tive refractive index neff (r, f) = n (r, f) , r ≤ R of propagating deformed
waveguide mode. In this case, the distribution of the effective coefficient of
phase retardation of the mode is equal βj

TE (r, f) = βj
TEneff (r, f) , r ≤ R

(βj
TM (r, f) = βj

TMneff (r, f) , r ≤ R). Additional waveguide layer may be
formed from the material of the main waveguide layer, as well as from a dif-
ferent material with a refractive index nl.

7 Designing the Thickness Profile of the Thin-Film
Generalized Waveguide Luneburg Lens on the Base
of Dispersion Relations of the Cross-Section Method

We now pass on to the solution of the problem of design (mathematical synthe-
sis) of the thickness profile of additional waveguide layer h (r), which ensures
“focusing” of the TE (TM) mode having “flat” (rectilinear in the plane yOz)
wave front, incident on the thin-film generalized waveguide (TFGW) Luneburg
lens. By focusing, we mean the formation “in plane” (on the line in the plane
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yOz), spaced at a distance F from the center of the lens with radius R (in the
plane yOz), of diffraction pattern of the “infinitely thin comparison lens” with
the angular aperture Ω = 2arctg (R/F ).

Consider the cross-section of TFGW Luneburg lens along the diameter of
the additional layer, so that when z ∈ (−1, 0) the radius changes r ∈ (1, 0), and
further by changing z ∈ (0, 1) the radius changes r ∈ (0, 1). The guided mode
of the regular three-layer waveguide with the thickness of waveguide layer equal
to d/λ , has the phase retardation coefficient βj

TE (βj
TM ). When the waveguide

mode is incident on the lens, it is deformed by additional waveguide layer, which
changes the thickness of the lens from zero at the edge of the lens to h (0) at
its center, and then again to zero on the opposite side of the lens. With this
βj

TE (r, f) = βj
TEneff (r, f) , r ≤ R changes from βj

TE (d, 0) to βj
TE (d, h (0)) =

βj
TEneff (0, f).

For each incident TEj (TMj) waveguide mode of the regular three-layer
waveguide with the parameters ns, nf , nc, d, we calculate the phase retarda-
tion coefficient βj

TE (βj
TM ). For each value r ∈ (0, R) we have the calculated

value neff (r, f) = n (r, f) , r ≤ R with a given focal length. As a result we get
βj

TE (r, f) = βj
TEneff (r, f) , r ≤ R (βj

TM (r, f) = βj
TMneff (r, f) , r ≤ R). The

relations (15) and (17) are the theoretical basis (a mathematical model) of the
design (synthesis) of the thickness profile h (r) of additional waveguide layer with
refractive index nl.

Namely, using the Nelder-Mead method of constrained minimization of zero
order [20] we minimize the functional at each subsequent point rk

det M(β (d, h (rk)) , d, h (rk))h(rk)
→ min (21)

with the penalty function Ω [h (rk)] = |h (rk) − h (rk−1)|2 with the initial vector
h (R) = 0, and βj

TE (R, f) = βj
TE (βj

TM (R, f) = βj
TM ).

Naturally, for each TEj (TMj) mode of the regular three-layer waveguide
as a result of minimization we obtain the particular thickness profile hTE

j (r)
(hTM

j (r)). In [22,23] the solution to the synthesis problem of TFGW Luneburg
lens was proposed only for the TE0 mode. Moreover, the method used in these
studies has not allowed to generalize the results (with different focal lengths) to
the other modes.

Our results coincide with the results in [22,23] within their accuracy, with our
results outperforming the compared results in accuracy by eight orders of mag-
nitude. Besides, the proposed method allows us to further improve the accuracy
of calculations and to obtain double-precision results at any given in advance
focal length (f → 1), while the method of Southwell does not allow it. The
thickness profiles hj

TE (r) and hj
TM (r) of additional waveguide layer for differ-

ent waveguide modes are shown in Figs. 3 and 4.

8 Conclusion

The paper discusses the problems of numerical implementation of the cross-
section method to calculate an evolution of the particular mode in a smooth
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Fig. 3. Graphs of the thickness profiles hTE
0 (r) and hTM

0 (r).

Fig. 4. Graphs of the thickness profiles hTE
1 (r) and hTM

1 (r).
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transition from one planar regular open waveguide to another. In the class of
multi-layer thin-film dielectric waveguides the problem on eigenvalues and eigen
guided modes can be reduced (by expansion in the fundamental system of solu-
tions in separate layers) to solving a system of linear algebraic equations for
the coefficients of expansion in the fundamental system of solutions. The con-
dition of non-triviality of the resulting solution in this case is the condition for
the vanishing of the determinant of the corresponding system of linear algebraic
equations.

If this transition is not homogeneous and additional waveguide layer has a
higher refractive index nl than the main one nf , the dispersion curve crosses
the level β = nf . This gives rise to additional degeneration, which leads to local
instability. We propose an algorithm that is resistant to this instability.

In this case, in the area β > nf in the dispersion curves, except for TE0−
and TM0−, there are areas (non-local) of anomalous dispersion. In these areas,
firstly, there are numerical instabilities, secondly, there is the critical convergence
of different dispersion curves. We propose algorithm which is robust to both these
phenomena.

The performance of the algorithm implemented in Delphi, was demonstrated
by plotting the particular dispersion curves and plotting a family of disper-
sion curves, demonstrating a critical convergence. As an additional result, the
thickness profiles of additional (irregular in thickness) waveguide layer, forming
a thin-film generalized waveguide Luneburg lens were synthesized. This result
generalizes results by Southwell [22,23], considering only the thickness profiles
for TE0− mode, for which there is no additional numerical instability.
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Abstract. We consider damping problem for control system with delay
described by the system of differential-difference equations of neutral
type, and establish the relationship of the variational problem for the
nonlocal functionals and the corresponding boundary value problem for
differential-difference equations. We prove the existence and uniqueness
of generalized solution to the boundary value problem for this system of
differential-difference equations.

Keywords: Control system with delay · Boundary value problem ·
Differential-difference equations · Generalized solution

1 Introduction

In recent years an interest to differential-difference equations is associated with
applications to the theory of control systems with delay [1–7], the theory of
multilayer plates and shells in the aircraft technology [8–10], to the theory of
multidimensional diffusion processes [10–13], to plasma theory [10,14,15], to the
theory of nonlinear laser systems with feedback loop [16–18] and others.

In [1], Krasovskii considered damping problem for control system with after-
effect described by differential-difference equations of delay type. He has brought
this problem to the boundary value problem for systems of differential-difference
equations with deviating argument in lower order terms. Boundary value prob-
lems for differential-difference equations with shifts of argument in highest deriv-
atives have been studied in [19,20]. In [10,21] the Krasovskii problem was gen-
eralized to the case when the equation describing the control system has neutral
type. In [22], this problem was considered in multidimensional case with one
delay.

We consider a damping problem for multidimensional control system with
several delays. The paper consists of four sections. The second section contains
the statement of problem and some auxiliary results. In the third section we
establish the relationship between a variational problem for a nonlocal functional
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and boundary value problem for a system of differential-difference equations.
The fourth section deals with a solvability of the boundary value problem for
the above system of differential-difference equations.

2 Statement of Problem and Auxiliary Results

We consider a linear control system with delay described by the system of dif-
ferential equations with delays

M∑
m=0

Amy′(t − mτ) +
M∑

m=0

Bmy(t − mτ) = u(t), 0 < t, (1)

y(t) =

⎛
⎜⎝

y1(t)
...

yn(t)

⎞
⎟⎠ , u(t) =

⎛
⎜⎝

u1(t)
...

un(t)

⎞
⎟⎠ ,

where Am, Bm are n × n matrixes with constant elements, A0 is nonsingular
matrix, the delay τ > 0 is constant, and u(t) is a control vector-function.

A previous history of the system is defined by the initial condition

y(t) = ϕ(t), t ∈ [−Mτ, 0], (2)

where ϕ(t) =

⎛
⎜⎝

ϕ1(t)
...

ϕn(t)

⎞
⎟⎠ is a given vector-function.

We shall study the problem of how to reduce the system (1)–(2) to equilib-
rium. Let us find a control vector-function u(t), 0 < t < T , such that

y(t) = 0, t ∈ [T − Mτ, T ], (3)

where T ≥ (M + 1)τ .
Vector-function y(t) satisfying the conditions (1)–(3) is not unique. So we

also assume that
∫ T

0

|u(t)|2dt → min,

where |.| is the Euclidean norm. We obtain the variational problem for functional

J(y) =
∫ T

0

∣∣∣∣∣
M∑

m=0

Amy′(t − mτ) +
M∑

m=0

By(t − mτ)

∣∣∣∣∣
2

dt → min (4)

with boundary conditions (2)–(3).
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We denote by W k
2 (a, b) the space of continuous real-valued functions having

a derivative of k-order from the space L2(a, b), with the scalar product

(v, w)Wk
2 (a,b) =

k∑
i=0

∫ b

a

v(i)(t)w(i)(t)dt.

Let Ẇ k
2 (a, b) = {w ∈ W k

2 (a, b) : w(i)(a) = w(i)(b) = 0, i = 0, ..., k − 1}.
We introduce the real spaces of vector-functions

W k,n
2 (a, b) =

n∏
i=1

W k
2 (a, b),

Ẇ k,n
2 (a, b) =

n∏
i=1

Ẇ k
2 (a, b),

Ln
2 (a, b) =

n∏
i=1

L2(a, b),

where Ln
2 (a, b) is a Hilbert space with the scalar product

(v, w)Ln
2 (a,b) =

n∑
i=1

(vi, wi)L2(a,b) =
n∑

i=1

∫ b

a

vi(t)wi(t)dt.

We consider the matrix operator R : Ln
2 (R) → Ln

2 (R)

R =

⎛
⎜⎝

R11 · · · R1n

...
. . .

...
Rn1 · · · Rnn

⎞
⎟⎠ .

Difference operators Rik : L2(R) → L2(R) are given by the formula

Riky =
N∑

j=−N

bj
iky(t − jτ), (5)

where bj
ik are real numbers (i, k = 1, ..., n).

Let d = (N + θ)τ (θ ≤ 1).
We introduce the operators

IQ : L2(0, d) → L2(R), PQ : L2(R) → L2(0, d), RQ : L2(0, d) → L2(0, d),

by the formulas

(IQv)(t) = v(t) (t ∈ (0, d)), v(t) = 0 (t ∈ (−∞, 0) ∪ (d,+∞)),
(PQv)(t) = v(t) (t ∈ (0, d)),

RikQ = PQRikIQ : L2(0, d) → L2(0, d).
(6)
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We define the matrix operator RQ : Ln
2 (0, d) → Ln

2 (0, d) as following:

RQ =

⎛
⎜⎝

R11Q · · · R1nQ

...
. . .

...
Rn1Q · · · RnnQ

⎞
⎟⎠ .

Below we shall formulate some properties of difference operators. The proofs
follow from S Sect. 2 in [10].

Lemma 1. I∗
Q = PQ, P ∗

Q = IQ, i.e. for any u ∈ L2(0, d), v ∈ L2(R) we have

(IQu, v)L2(R) = (u, PQv)L2(0,d). (7)

Lemma 2. The operators Rik : L2(R) → L2(R), RikQ : L2(0, d) → L2(0, d) are
bounded, and

R∗
iky(t) =

N∑
j=−N

bj
iky(t + jτ); R∗

ikQ = PQR∗
ikIQ. (8)

Lemma 3. The matrix operators R, RQ are bounded, and

R∗ =

⎛
⎜⎝

R∗
11 · · · R∗

n1
...

. . .
...

R∗
1n · · · R∗

nn

⎞
⎟⎠

T

, R∗
Q =

⎛
⎜⎝

R∗
11Q · · · R∗

n1Q
...

. . .
...

R∗
1nQ · · · R∗

nnQ

⎞
⎟⎠

T

.

Lemma 4. Matrix operator R (RQ) is self-adjoint if and only if

Rik = R∗
ki (RikQ = R∗

kiQ).

Definition 1. Bounded self-adjoint operator A in a Hilbert space H is called
positive, if for all nonzero y ∈ H

(Ay, y)H > 0.

Definition 2. Bounded self-adjoint operator A in a Hilbert space H is called
positive definite if there is a constant c > 0 such that for all y ∈ H

(Ay, y)H ≥ c(y, y)H .

Lemma 5. Let R be positive operator. Then RQ is also positive operator.
To study the properties of the operator RQ we introduce some additional

notation. If 0 < θ < 1, we denote Q1s = ((s−1)τ, (s−1+θ)τ), s = 1, ..., N+1, and
Q2s = ((s−1+θ)τ, sτ), s = 1, ..., N . If θ = 1, we denote Q1s = ((s−1)τ, sτ), s =
1, ..., N + 1. Thus, there are two classes of disjoint intervals, if 0 < θ < 1, and
there is only one class of intervals, if θ = 1. Every two intervals of the same class
can be obtained one from another by a shift jτ .



616 A.S. Adkhamova and A.L. Skubachevskii

Let Pα : Ln
2 (0, d) → Ln

2 (
⋃
s

Qαs) be the operator of orthogonal projection onto

Ln
2 (

⋃
s

Qαs), where Ln
2 (

⋃
s

Qαs) = {y ∈ Ln
2 (0, d) : y(t) = 0, t ∈ (0, d) \ ⋃

s
Qαs}; if

θ < 1, then α = 1, 2; if θ = 1, then α = 1 and Pα is the identity operator.

Lemma 6. Ln
2 (

⋃
s

Qαs) is an invariant subspace of the operator RQ.

We introduce an isomorphism

Uα : L2(
⋃
s

Qαs) → LK
2 (Qα1)

by the formula

(Uαu)k(t) = u(t + (k − 1)τ), t ∈ Qα1,

k = 1, ...,K;K = N + 1, if α = 1;K = N , if α = 2.
We also introduce an isomorphism of the Hilbert spaces

Ũα : Ln
2 (

⋃
s

Qαs) → LnM
2 (Qα1)

by the formula

(Ũαy)(t) = ((Uαy1)T , ..., (Uαyn)T )T (t),

where y(t) =

⎛
⎜⎝

y1(t)
...

yn(t)

⎞
⎟⎠ ∈ Ln

2 (0, d), (Uαyj)(t) = ((Uαyj)1(t), ..., (Uαyj)M (t))T .

For every α = 1, 2 we consider a block matrix Rα = {Rikα}n
i,k=1. Here Rik1

is the matrix of order (N + 1) × (N + 1) with the elements rlp = bp−l
ik , and Rik2

is the matrix of order N × N , obtained from Rik1 by deleting the last column
and the last row.

Lemma 7. The operator

RQα = ŨαRQŨ−1
α : LnM

2 (Qα1) → LnM
2 (Qα1)

is the operator of multiplication by the matrix Rα.

From Lemma 7 we obtain the following statement:

Lemma 8.

σ(RQ) =
{

σ(R1) ∪ σ(R2), if θ < 1;
σ(R1), if θ = 1,

where σ(·) denotes the spectrum of the operator.

From Lemma 8 we derive the following result:

Lemma 9. If operator RQ is positive, then operator RQ is positive definite.
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3 Relation Between Variational Problem and Boundary
Value Problem

We show that the variational problem (4), (2), (3) is equivalent to the boundary
value problem for system of differential-difference equations of second order.

Let y ∈ W 1,n
2 (−Mτ, T ) be a solution of the variational problem (2)–(4),

where ϕ ∈ W 1,n
2 (−Mτ, 0). We denote

W̃ = {v ∈ W 1,n
2 (−Mτ, T ) : v(t) = 0, t ∈ [−Mτ, 0] ∪ [T − Mτ, T ]}.

Let v(t) ∈ W̃ be an arbitrary fixed function. Then a function y + sv ∈
W 1,n

2 (−Mτ, T ) and satisfies the boundary conditions (2), (3) for every s ∈ R.
Denote J(y + sv) = F (s). Since J(y + sv) ≥ J(y) (s ∈ R), we have

dF

ds

∣∣∣∣
s=0

= 0.

It follows that

B(y, v) =
T∫
0

(
M∑
l=0

Aly
′(t − lτ) +

M∑
l=0

Bly(t − lτ)
)

×
(

M∑
m=0

Amv′(t − mτ) +
M∑

m=0
Bmv(t − mτ)

)
dt = 0.

(9)

Let d = (N + θ)τ = T − Mτ, i.e. T = (N + M + θ)τ).
In the terms containing v(t − mτ) or v′(t − mτ), we change the variable

ξ = t − mτ and return to the old variable t = ξ. Then, since v(t) = 0, t ∈
[−Mτ, 0] ∪ [T − Mτ, T ], and integrating by the parts, we have

B(y, v) =
T∫
0

M∑
l,m=0

[
y′T (t − (l − m)τ)AT

l Amv′(t)

+ y′T (t − (l − m)τ)AT
l Bmv(t) − y′T (t − (l − m)τ)BT

l Amv(t)

+ yT (t − (l − m)τ)BT
l Bmv(t)

]
dt = 0.

(10)

From (10) we obtain

(
M∑

l,m=0

y′T (t − (l − m)τ)AT
l Am)T ∈ W 1,n

2 (0, T − Nτ). (11)

Integrating by parts, we obtain

−(
M∑

l,m=0

AT
mAly

′(t − (l − m)τ))′ +
M∑

l,m=0

[BT
mAly

′(t − (l − m)τ)

−AT
mBly

′(t − (l − m)τ) + BT
mBly(t − (l − m)τ)] = 0 (t ∈ (0, T − Nτ).

(12)
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Definition 3. A function y ∈ W 1,n
2 (−Mτ, T ) is called a generalized solution

of problem (12), (2), (3), if condition (11) holds, and the function y(t) satisfies
system of Eq. (12) and the boundary conditions (2), (3).

Clearly, a function y ∈ W 1,n
2 (−Mτ, T ) is a generalized solution of problem

(12), (2), (3) if and only if it satisfies integral identity (10) for all v ∈ Ẇ 1,n
2 (0, T −

Mτ) and the boundary conditions (2), (3).
We have proved, that if a function y ∈ W 1,n

2 (−Mτ, T ) gives a minimum to
variational problem (4) with boundary conditions (2), (3), then y is a generalized
solution of the boundary value problem (12), (2), (3).

Let y ∈ W 1,n
2 (−Mτ, T ) be a generalized solution of the boundary value

problem (12), (2), (3). Then we obtain for all v ∈ W̃

J(y + v) = J(y) + J(v) + 2B(y, v),

where J(v) is non-negative quadratic functional. Since y is a generalized solution
of problem (12), (2), (3), then B(y, v) = 0. Therefore,

J(y + v) ≥ J(y)

for all v ∈ W̃ . Hence we have proved the following statement.

Theorem 1. A function y ∈ W 1,n
2 (−Mτ, T ) gives a minimum to functional (4)

with boundary conditions (2), (3) if and only if it is a generalized solution of the
boundary problem (12), (2), (3).

4 Solvability of Boundary Value Problem

In order to prove the existence and uniqueness of generalized solution of bound-
ary value problem (12), (2), (3), we obtain some auxiliary results.

We denote

J1(w) =
∫ T

0

∣∣∣∣∣
M∑
l=0

Alw
′(t − lτ)

∣∣∣∣∣
2

dt,

where w ∈ W̃ .

Lemma 10. There exists a constant c1 > 0 such that, for all w ∈ W̃

J1(w) ≥ c1||w||2
W 1,n

2 (0,T−Mτ)
. (13)

Proof. 1. First we prove that for all 0 �= y ∈ L2(R)

J0(y) =
∫ ∞

−∞

∣∣∣∣∣
M∑

m=0

Amy(t − mτ)

∣∣∣∣∣
2

dt > 0. (14)
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Using the Fourier transform, from the Plancherel theorem we obtain

J0(y) =
∫ ∞

−∞

∣∣∣∣∣
M∑

m=0

(Ame−imξ)ŷ(ξ)

∣∣∣∣∣
2

dξ,

where

ŷ(ξ) =
1√
2π

∫ ∞

−∞
e−itξy(t)dt

is the Fourier transform of the function y(t). Since

Φ(ξ) := det(
M∑

m=0

Ame−imξ)

is an analytic function and ŷ(ξ) �= 0 almost everywhere on R, then

J0(y) = 0

if and only if

det(
M∑

m=0

Ame−imξ) = 0 (15)

for all ξ ∈ R.

On the other hand, detA0 �= 0. Therefore the polynomial det(
M∑

m=0
Amλm) =

0 has at most nM roots λ1, ..., λnM . Hence Eq. (15) can have only countable
number of real roots ξ1, ξ2, .... Thus J0(y) > 0.

2. Now we can prove inequality (13).
Let RQ = P ′

QRI ′
Q, where R : Ln

2 (R) → Ln
2 (R), I ′

Q : Ln
2 (0, T − Mτ) →

Ln
2 (R), P ′

Q : Ln
2 (R) → Ln

2 (0, T − Mτ) are bounded operators given by

Ry(t) =
M∑

l,m=0

AT
mAly(t − (l − m)τ),

I ′ is the operator of extension by zero outside of (0, T −Mτ), P ′
Q is the restriction

operator of functions onto (0, T −Mτ). Then similarly to (9) from (14) we derive

J1(w) = J0(w′) = (RQw′, w′)Ln
2 (0,T−Mτ) > 0. (16)

for all 0 �= w ∈ W̃ . Here we assume that w(t) = 0 for t ∈ R\(0, T − Mτ). By
virtue of (16) the self-adjoint operator RQ : Ln

2 (0, T − Mτ) → Ln
2 (0, T − Mτ)

is positive. From Lemmas 5 and 9 it follows that it is positive definite. Finally,
using theorem on the equivalent norms, we obtain

J1(w) ≥ c0||w′||2Ln
2 (0,T−Mτ) ≥ c1||w||W 1,n

2 (0,T−Mτ),

where c0, c1 > 0 do not depend on w. �
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Lemma 11. There exist constants c2, c3 > 0 such that, for all w ∈ W̃

c2||w||W 1,n
2 (0,T−Mτ) ≤ J(w) ≤ c3||w||2

W 1,n
2 (0,T−Mτ)

. (17)

Proof. First we prove the left side of (17).

Assume to the contrary that inequality (17) does not hold for any c2 > 0.
Then, for any K = 1, 2, ... there exist a function wK ∈ W̃ such that

J(wK) ≤ 1
K

||wK ||2
W 1,n

2 (0,T−Mτ)
.

Without loss the qenerality, we assume that

||wK ||2
W 1,n

2 (0,T−Mτ)
= 1. (18)

In opposite case we consider wK/||wK ||W 1,n
2 (0,T−Mτ). Then

J(wK) ≤ 1
K

. (19)

On the other hand, from the inequality (α + β)2 ≥ α2/2 − β2(α, β ∈ R) and
Lemma 2, for every v ∈ W̃ , we obtain

J(v) ≥ k1||v||2
W 1,n

2 (0,T−Mτ)
− k2||v||2Ln

2 (0,T−Mτ). (20)

By virtue of the compactness of the imbedding operator from W into
Ln
2 (−Mτ, T ), the unit ball W̃ is a compact set in Ln

2 (−Mτ, T ). It means that
there exists a subsequence wKl

, which converges to w0 in the space Ln
2 (−τ, T ),

i.e.

||wKl
− wKm

||Ln
2 (0,T−Mτ) → 0, l,m → ∞.

Thus, from (19), (20) it follows that

k1||wKl
− wKm

||2
W 1,n

2 (0,T−Mτ)
≤ k2||wKl

− wKm
||2L2(0,T−Mτ)

+J(wKl
− wKm

) ≤ k2||wKl
− wKm

||2L2(0,T−Mτ)

+ 2/Kl + 2/Km → 0, k,m → ∞.

Hence, wKl
→ w0 in the space W̃ .

Passing to the limit in (18), we obtain

||w0||W 1,n
2 (0,T−Mτ) = 1.

Convergence to the limit in (19) gives

J(w0) =
∫ T

0

|
∣∣∣∣∣

M∑
m=0

Amw′
0(t − mτ) +

M∑
m=0

Bmw0(t − mτ)

∣∣∣∣∣
2

dt = 0, (21)
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i.e.
M∑

m=0

Amw′
0(t − mτ) +

M∑
m=0

Bmw0(t − mτ) = 0 (22)

for almost all t ∈ (0, T ).
Since w0 ∈ W̃ , a function w0 satisfies the initial condition

w0(t) = 0 (t ∈ [−Mτ, 0]). (23)

Then, if 0 < t ≤ τ, Eq. (22) takes the form

A0w
′
0(t) + B0w0(t) = 0, (t ∈ (0, τ)), (24)

and w0(0) = 0. Hence,
w0(t) = 0 (t ∈ [0, τ ]). (25)

Then Eq. (22) on the interval t ∈ (τ, 2τ) takes form (24) and w0(τ) = 0. Hence
w0(t) = 0 (t ∈ [τ, 2τ ]). For a finite number of steps we have w0(t) = 0 (t ∈
[0, T − Mτ ]). But this is impossible, since

||w0||W 1,n
2 (0,T−Mτ) = 1.

It remains to prove the right part of (17).
From the Cauchy-Bunyakovskii inequality it follows that

|J(w)| = |B(w,w)| ≤ k3||w′||2Ln
2 (0,T−Mτ) + k4||w||2Ln

2 (0,T−Mτ) ≤ c3||w||2
W

1,n
2 (0,T−Mτ)

.

�

Theorem 2. For every ϕ ∈ W 1,n
2 (−Mτ, 0), there exists a unique generalized

solution y ∈ W 1,n
2 (−Mτ, T ) of the boundary value problem (12), (2), (3), and

||y||W 1,n
2 (−Mτ,T ) ≤ c||ϕ||W 1,n

2 (−Mτ,0), (26)

where c > 0 does not depend on ϕ.

Proof. We denote

Φ(t) =

⎧⎨
⎩

ϕ(t), if − Mτ ≤ t ≤ 0;
0, if T − Mτ ≤ t ≤ T ;
ϕ(0) − ϕ(0)t/(T − Mτ), if 0 < t < T − Mτ.

It is clear that Φ ∈ W 1,n
2 (−Mτ, T ) and

||Φ||W 1,n
2 (−Mτ,T ) ≤ k1||ϕ||W 1,n

2 (−Mτ,0). (27)

Let x = y − Φ, then x ∈ W̃ . Integral identity (11) takes the form

B(Φ, v) + B(x, v) = 0, v ∈ W̃ . (28)
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By Lemma 11 in the space Ẇ 1,n
2 (0, T − Mτ) we can introduce an equivalent

scalar product by the formula

(x, v)′
Ẇ 1,n

2 (0,T−Mτ)
= B(x, v). (29)

Therefore, the Eq. (28) can be rewritten as

B(Φ, v) + (x, v)′
Ẇ 1,n

2 (0,T−Mτ)
= 0. (30)

For a fixed Φ ∈ W 1,n
2 (−Mτ, T ) functional B(Φ, v) is linear in W̃ , v ∈ W̃ . By

the Cauchy-Bunyakovskii inequality and inequalities (27), (17) we have

|B(Φ, v)| ≤ k2||Φ||W 1,n
2 (−Mτ,T )||v||W 1,n

2 (0,T−Mτ)

≤ k3||ϕ||W 1,n
2 (−Mτ,0)||v||W 1,n

2 (0,T−Mτ)

≤ k4||ϕ||W 1,n
2 (−Mτ,0)||v||′

W 1,n
2 (0,T−Mτ)

.
(31)

Thus the functional B(Φ, v) is bounded on W̃ . By virtue of (31), the norm of
the functional B(Φ, v) in Ẇ 1,n

2 (0, T − Mτ) does not exceed k4||ϕ||W 1,n
2 (−Mτ,0).

According to the Riesz theorem, there exists a function F ∈ W̃ , such that

B(Φ, v) = (F, v)′
Ẇ 1,n

2 (0,T−Mτ)

and

||F ||′
Ẇ 1,n

2 (0,T−Mτ)
≤ k4||ϕ||W 1,n

2 (−Mτ,0).

This function is unique. Thus, identity (30) can be rewritten as

(x, v)′
Ẇ 1,n

2 (0,T−Mτ)
+ (F, v)′

Ẇ 1,n
2 (0,T−Mτ)

= 0.

Consequently, the problem (12), (2), (3) has a unique generalized solution
y = Φ − F and inequality (26) holds. This proves the theorem. �
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Abstract. The use of variational methods for the construction of suf-
ficiently accurate approximate solutions of a given system requires the
existence of the corresponding variational principle - a solution of the
inverse problems of the calculus of variations. In the frame of the Euler’s
functionals there may not exist variational principles. But if we extend
the class of functionals then it could allow to get the variational formu-
lations of the given problems. There naturally arises the problem of the
constructive determination of the corresponding functionals - nonclassi-
cal Hamilton’s actions - and their application for the search of approxi-
mate solutions of the given boundary value problems. The main goal of
the paper is to present a scheme for the construction of indirect varia-
tional formulations for given evolutionary problems and to demonstrate
the effective use of the nonclassical Hamilton’s action for the construction
of approximate solutions with the high accuracy for the given dissipative
problem.

Keywords: Nonpotential operators · Non-Eulerian functionals ·
Approximate solutions · Dissipative problems · Variational methods

1 Introduction

An important problem in applications of variational methods is a representation
of the given equations in the form of the Euler-Lagrange equations. It means the
construction of the functional FN such that its extremals are solutions of the
given equations. This is known as the classical inverse problem of the calculus
of variations.

In spite of the remarkable number of papers on the subject different
approaches for constructing of integral variational principles for equations with
nonpotential operators should be developed. They will allow to obtain so-called
indirect variational formulations of given problems.

First let us introduce the following concepts of bilinear forms, Gâteaux deriv-
atives and Bu-potential operators.
c© Springer International Publishing AG 2016
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Let N be an operator such that its domain of definition D(N) ⊆ U and the
range of values R(N) ⊆ V , where U and V are real linear normed spaces, i.e.

N(u) = v, u ∈ U, v ∈ V.

If there exists a limit

δN(u, h) = lim
ε→0

1
ε
{N(u + εh) − N(u)}, u ∈ D(N), (u + εh) ∈ D(N), (1)

then it is called the Gâteaux variation of the operator N at the point u or the
first variation of the operator N at the point u.

δN(u, h) is homogeneous relative to h : δN(u, λh) = λδN(u, h), but the
operator δN(u, ·) : U → V is not always additive relative to h.

If δN(u, h) is a linear operator relative to h, when u is a fixed element of
D(N), then we say that the operator N is Gâteaux differentiable at the point
u. The expression δN(u, h) is called the Gâteaux differential and denoted by
DN(u, h). In this case we shall also write DN(u, h) = N ′

uh and say that N ′
u is

the Gâteaux derivative of operator N at the point u.
If N is a linear operator then N ′

uh = Nh, i.e. the Gâteaux derivative of the
linear operator coincides with it.

Further assume that for any given operator N : D(N) ⊂ U → V there exists
its Gâteaux derivative at any point u ∈ D(N). The domain of definition D(N ′

u)
consisits of elements h ∈ U such that (u+εh) ∈ D(N) for all ε sufficiently small.
In this case h ∈ D(N ′

u) is called an admissible element.
Note that for any linear operator Ñu which may depend on u in a nonlinear

way, the Gâteaux derivative is defined by

Ñ ′
u(g;h) = lim

ε→0

Ñu+εhg − Ñug

ε
. (2)

The second Gâteaux derivative N ′′
u of the operator N is given by

N ′′
u (h1, h2) =

∂2

∂ε1∂ε2
N(u + ε1h1 + ε2h2)

∣∣∣∣
ε1=ε2=0

. (3)

In the most general applications N ′′
u satisfies the symmetry condition

N ′′
u (h1, h2) = N ′′

u (h2, h1).

Definition 1. A mapping Φ : V × U → R is said to be a bilinear form if it is
linear relative to every argument.

Definition 2. A bilinear form Φ : V × V → R is called symmetric if

Φ(v, g) = Φ(g, v) ∀g, v ∈ V.
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Consider a bilinear form

Φ(·, ·) ≡
t1∫

t0

〈·, ·〉 dt : V × U → R (4)

such that the bilinear mapping Φ1(·, ·) ≡ 〈·, ·〉 satisfies the following conditions:

〈v1(t), v2(t)〉 = 〈v2(t), v1(t)〉 ∀v1(t), v2(t) ∈ V1, (5)

Dt 〈v(t), g(t)〉 = 〈Dtv(t), g(t)〉 + 〈v(t),Dtg(t)〉 ∀v, g ∈ C1([t0, t1];U1). (6)

If v = v(x, t), x ∈ Ω ⊂ R
n, t ∈ (t0, t1), U1 = V1 = C(Ω), then we can take for

example

〈v, g〉 =
∫
Ω

v(x, t)g(x, t) dx. (7)

Definition 3. The operator N : D(N) ⊂ U → V is said to be Bu-potential
on the set D(N) relative to the bilinear form Φ : V × U → R, if there exist a
functional FN : D(FN ) = D(N) → R and a linear operator Bu : D(Bu) ⊂ V →
V such that

δFN [u, h] = Φ(N(u), Buh) ∀u ∈ D(N), ∀h ∈ D(N ′
u, Bu),

where D(N ′
u, Bu) = D(N ′

u) ∩ D(Bu).

If Bu ≡ I is the identical operator then the operator N is called potential on
D(N) relative to bilinear form Φ.

The following theorem is needed for the sequel.

Theorem 1 [1]. Consider the operator N : D(N) ⊂ U → V and the bilinear
form Φ : V × V → R such that for any fixed elements u ∈ D(N), g, h ∈
D(N ′

u, Bu) the function ψ(ε) = Φ(N(u + εh), Bu+εhg) belongs to class C1[0, 1].
For N to be Bu-potential on the convex set D(N) relative to Φ it is necessary
and sufficient to have

Φ(N ′
uh,Bug) + Φ(N(u), B′

u(g;h)) = Φ(N ′
ug,Buh) + Φ(N(u), B′

u(h; g)) (8)
∀u ∈ D(N), ∀g, h ∈ D(N ′

u, Bu).

Under this condition the functional FN is given by

FN [u] =

1∫
0

Φ

(
N(ũ(λ), Bũ(λ)

∂ũ(λ)
∂λ

)
dλ + FN [u0], (9)

where ũ(λ) = u0 + λ(u − u0), u0 is a fixed element of D(N).
In the paper we shall use notations and notions of [1–5].



Nonclassical Hamilton’s Actions and the Numerical Performance 627

2 An Operator Equation with the Second Time
Derivative and Variational Principles

Consider the following operator equation

N(u) ≡ P2u,tutt + P1u,tut + P3u,tu
2
t + Q(t, u) = 0, (10)

u ∈ D(N) ⊆ U ⊆ V, t ∈ [t0, t1] ⊂ R,

ut ≡ Dtu ≡ d

dt
u, utt ≡ d2

dt2
u.

Here ∀t ∈ [t0, t1], ∀u ∈ U1 Piu,t : U1 → V1 (i = 1, 3) are linear operators;
Q : [t0, t1] × U1 → V1 is an arbitrary operator; D(N) is the domain of definition
of the operator N ,

D(N) = {u ∈ U : u(t) ∈ W ∀t ∈ [t0, t1], u|t=t0 = ϕ1, u|t=t1 = ϕ2,

ut|t=t0 = ϕ3, ut|t=t1 = ϕ4, ϕi ∈ U1 (i = 1, 4)}; (11)

U = C2([t0, t1];U1), V = C([t0, t1];V1), U1, V1 are real linear normed spaces,
U1 ⊆ V1. The set W ⊆ U1 is defined by the external constraints imposed on the
system.

Assume that for every t ∈ [t0, t1] and g(t), u(t) ∈ U1 the functions P1u,tg(t),
P3u,tg(t) are continuously differentiable and P2u,tg(t) is twice continuously dif-
ferentiable on (t0, t1).

Any function u ∈ D(N) is called a solution of problem (10) if it satisfies
Eq. (10).

For notational simplicity, Eq. (10) hereafter written as

N(u) ≡ P2uutt + P1uut + P3uu2
t + Q(u) = 0,

assuming that the operators Piu (i = 1, 3) and Q additionally depend on t.

Theorem 2. Let D∗
t = −Dt on D(N ′

u, Bu). Operator N (10) is Bu-potential on
the set D(N) (11) relative to bilinear form (4) ⇐⇒ ∀u ∈ D(N), ∀t ∈ [t0, t1], ∀h ∈
D(N ′

u, Bu) the following conditions are fulfilled on D(N ′
u, Bu):

B∗
uP2u − P ∗

2uBu = 0, (12)

utP
∗
3uBu − P ∗′

2u(Bu(·);ut) − P ∗
2uB′

u(·;ut) + B∗
uP3u(ut(·)) = 0, (13)

− 2
∂

∂t
(P ∗

2uBu) + P ∗
1uBu + B∗

uP1u = 0, (14)

− ∂2

∂t2
(P ∗

2uBu)h + [B′
u(·;h)]∗Q(u) − [B′

u(h; ·)]∗Q(u) +
∂

∂t
(P ∗

1uBu)h

+B∗
uQ′

uh − Q′∗
u Buh = 0, (15)
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P ∗′
1u(Buh;ut) + B∗

uP ′
1u(ut;h) − [P ′

1u(ut; ·)]∗Buh + 2ut
∂

∂t
(P ∗

3uBu)h

+P ∗
1uB′

u(h;ut) − 2
∂

∂t
P ∗′
2u(Buh;ut) + [B′

u(·;h)]∗P1uut

−2
∂

∂t
(P ∗

2uB′
u(h;ut)) − [B′

u(h; ·)]∗P1uut = 0, (16)

B∗
uP ′

2u(utt;h) − P ∗′
2u(Buh;utt) − [P ′

2u(utt; ·)]∗Buh + 2uttP
∗
3uBuh

+[B′
u(·;h)]∗P2uutt − P ∗

2uB′
u(h;utt) − [B′

u(h; ·)]∗P2uutt = 0, (17)

−P ∗′′
2u (Buh;ut;ut) + B∗

uP ′
3u(u2

t ;h) − [P ′
3u(u2

t ; ·)]∗Buh

+2utP
∗′
3u(Buh;ut) + [B′

u(·;h)]∗P3uu2
t − 2P ∗′

2u(B′
u(h;ut);ut)

−P ∗
2uB′′

u(h;ut;ut) + 2utP
∗
3uB′

u(h;ut) − [B′
u(h; ·)]∗P3uu2

t = 0. (18)

Proof. By using Eq. (10), we get

N ′
uh = 2P3u(utht)+P ′

3u(u2
t ;h)+P2uhtt +P ′

2u(utt;h)+P1uht +P ′
1u(ut;h)+Q′

uh.

In this case, criterion (8) acquires the form

t1∫
t0

(〈
2P3u(utht) + P ′

3u(u2
t ;h) + P2uhtt + P ′

2u(utt;h) + P1uht

+P ′
1u(ut;h) + Q′

uh,Bug〉 +
〈
P2uutt + P1uut + P3uu2

t

+Q(u), B′
u(g;h)〉) dt =

t1∫
t0

(〈
2P3u(utgt) + P ′

3u(u2
t ; g) + P2ugtt

+P ′
2u(utt; g) + P1ugt + Q′

ug + P ′
1u(ut; g), Buh〉

+
〈
P2uutt + P1uut + P3uu2

t + Q(u), B′
u(h; g)

〉)
dt,

or

t1∫
t0

{〈
2B∗

uP3u(utht) + B∗
uP ′

3u(u2
t ;h) + B∗

uP2uhtt + B∗
uP ′

2u(utt;h)

+B∗
uP1uht + B∗

uP ′
1u(ut;h) + B∗

uQ′
uh, g〉

+
〈
[B′

u(·;h)]∗(P2uutt + P1uut + P3uu2
t + Q(u)), g

〉
− 〈−2Dt(utP

∗
3uBuh) + [P ′

3u(u2
t ; ·)]∗Buh + D2

t (P ∗
2uBuh)

+[P ′
2u(utt; ·)]∗Buh − Dt(P ∗

1uBuh) + [P ′
1u(ut; ·)]∗Buh + Q′∗

u Buh, g〉
− 〈

[B′
u(h; ·)]∗(P2uutt + P1uut + P3uu2

t + Q(u)), g
〉}

dt = 0
∀u ∈ D(N), ∀g, h ∈ D(N ′

u, Bu). (19)
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Taking into account the second Gâteaux derivative we obtain

D2
t (P ∗

2uBuh) = Dt[Dt(P ∗
2uBuh)]

= Dt

[
P ∗
2uBuht +

∂

∂t
(P ∗

2uBu)h + P ∗′
2u(Buh;ut) + P ∗

2uB′
u(h;ut)

]

=
∂2

∂t2
(P ∗

2uBu)h + 2
∂

∂t
P ∗′
2u(Buh;ut) + 2

∂

∂t
(P ∗

2uB′
u(h;ut))

+2
∂

∂t
(P ∗

2uBu)ht + P ∗′′
2u (Buh;ut;ut) + 2P ∗′

2u(B′
u(h;ut);ut)

+2P ∗′
2u(Buht;ut) + P ∗′

2u(Buh;utt) + P ∗
2uB′′

u(h;ut;ut)
+2P ∗

2uB′
u(ht;ut) + P ∗

2uB′
u(h;utt) + P ∗

2uBuhtt. (20)

Next, we have

Dt[P ∗
1uBuh] =

∂

∂t
(P ∗

1uBu)h + P ∗′
1u(Buh;ut) + P ∗

1uB′
u(h;ut) + P ∗

1uBuht, (21)

Dt[utP
∗
3uBuh] = uttP

∗
3uBuh + ut

∂

∂t
(P ∗

3uBu)h + utP
∗′
3u(Buh;ut)

+utP
∗
3uB′

u(h;ut) + utP
∗
3uBuht. (22)

From (19) – (22) it follows that

t1∫
t0

〈
2B∗

uP3u(utht) + B∗
uP ′

3u(u2
t ;h) + B∗

uP2uhtt + B∗
uP ′

2u(utt;h)

+B∗
uP1uht + B∗

uP ′
1u(ut;h) + B∗

uQ′
uh + [B′

u(·;h)]∗(P2uutt + P1uut + P3uu2
t

+Q(u)) − ∂2

∂t2
(P ∗

2uBu)h − 2
∂

∂t
P ∗′
2u(Buh;ut) − 2

∂

∂t
(P ∗

2uB′
u(h;ut))

−2
∂

∂t
(P ∗

2uBu)ht − P ∗′′
2u (Buh;ut;ut) − 2P ∗′

2u(B′
u(h;ut);ut)

−2P ∗′
2u(Buht;ut) − P ∗′

2u(Buh;utt) − P ∗
2uB′′

u(h;ut;ut) − 2P ∗
2uB′

u(ht;ut)

−P ∗
2uB′

u(h;utt) − P ∗
2uBuhtt − [P ′

2u(utt; ·)]∗Buh + 2uttP
∗
3uBuh

+2ut
∂

∂t
(P ∗

3uBu)h + 2utP
∗′
3u(Buh;ut) + 2utP

∗
3uB′

u(h;ut) + 2utP
∗
3uBuht

−[P ′
3u(u2

t ; ·)]∗Buh + P ∗
1uBuht +

∂

∂t
(P ∗

1uBu)h + P ∗′
1u(Buh;ut)

+P ∗
1uB′

u(h;ut) − [P ′
1u(ut; ·)]∗Buh − Q′∗

u Buh

−[B′
u(h; ·)]∗(P2uutt + P1uut + P3uu2

t + Q(u)), g
〉

dt = 0.
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Therefore, condition (19) can be reduced to the form

t1∫
t0

〈(B∗
uP2u − P ∗

2uBu) htt + (2B∗
uP3u(ut(·)) + B∗

uP1u + 2utP
∗
3uBu

−2
∂

∂t
(P ∗

2uBu) − 2P ∗′
2u(Bu(·);ut) − 2P ∗

2uB′
u(·;ut) +P ∗

1uBu) ht

+B∗
uP ′

3u(u2
t ;h) + B∗

uP ′
2u(utt;h) + B∗

uP ′
1u(ut;h) + B∗

uQ′
uh

+[B′
u(·;h)]∗P2uutt + [B′

u(·;h)]∗P1uut + [B′
u(·;h)]∗P3uu2

t

+[B′
u(·;h)]∗Q(u) + 2uttP

∗
3uBuh + 2ut

∂

∂t
(P ∗

3uBu)h + 2utP
∗′
3u(Buh;ut)

+2utP
∗
3uB′

u(h;ut) − [P ′
3u(u2

t ; ·)]∗Buh − ∂2

∂t2
(P ∗

2uBu)h

−2
∂

∂t
P ∗′
2u(Buh;ut) − 2

∂

∂t
(P ∗

2uB′
u(h;ut)) − P ∗′′

2u (Buh;ut;ut)

−2P ∗′
2u(B′

u(h;ut);ut) − P ∗′
2u(Buh;utt) − P ∗

2uB′′
u(h;ut;ut)

−P ∗
2uB′

u(h;utt) − [P ′
2u(utt; ·)]∗Buh +

∂

∂t
(P ∗

1uBu)h + P ∗′
1u(Buh;ut)

+P ∗
1uB′

u(h;ut) − [P ′
1u(ut; ·)]∗Buh − Q′∗

u Buh − [B′
u(h; ·)]∗P2uutt

−[B′
u(h; ·)]∗P1uut − [B′

u(h; ·)]∗P3uu2
t − [B′

u(h; ·)]∗Q(u), g
〉
dt = 0

∀u ∈ D(N), ∀g, h ∈ D(N ′
u, Bu).

This condition is satisfied identically if and only if

(B∗
uP2u − P ∗

2uBu) htt + (2B∗
uP3u(ut(·)) + B∗

uP1u + 2utP
∗
3uBu

−2
∂

∂t
(P ∗

2uBu) − 2P ∗′
2u(Bu(·);ut) − 2P ∗

2uB′
u(·;ut) +P ∗

1uBu) ht

+B∗
uP ′

3u(u2
t ;h) + B∗

uP ′
2u(utt;h) + B∗

uP ′
1u(ut;h) + B∗

uQ′
uh

+[B′
u(·;h)]∗P2uutt + [B′

u(·;h)]∗P1uut + [B′
u(·;h)]∗P3uu2

t

+[B′
u(·;h)]∗Q(u) + 2uttP

∗
3uBuh + 2ut

∂

∂t
(P ∗

3uBu)h + 2utP
∗′
3u(Buh;ut)

+2utP
∗
3uB′

u(h;ut) − [P ′
3u(u2

t ; ·)]∗Buh − ∂2

∂t2
(P ∗

2uBu)h

−2
∂

∂t
P ∗′
2u(Buh;ut) − 2

∂

∂t
(P ∗

2uB′
u(h;ut)) − P ∗′′

2u (Buh;ut;ut)

−2P ∗′
2u(B′

u(h;ut);ut) − P ∗′
2u(Buh;utt) − P ∗

2uB′′
u(h;ut;ut)

−P ∗
2uB′

u(h;utt) − [P ′
2u(utt; ·)]∗Buh +

∂

∂t
(P ∗

1uBu)h + P ∗′
1u(Buh;ut)

+P ∗
1uB′

u(h;ut) − [P ′
1u(ut; ·)]∗Buh − Q′∗

u Buh − [B′
u(h; ·)]∗P2uutt

−[B′
u(h; ·)]∗P1uut − [B′

u(h; ·)]∗P3uu2
t − [B′

u(h; ·)]∗Q(u) = 0
∀u ∈ D(N), ∀h ∈ D(N ′

u, Bu),

and for the last relation to hold, in turn, it is necessary and sufficient that
conditions (12)–(18) be satisfied. The proof of the theorem is complete.
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Note that, the corresponding functional FN is represented in the form

FN [u] =

t1∫
t0

{〈R3u(utu), Buut〉 + 〈R2uut, Buut〉

+ 〈R1(u), Buut〉 −
〈

∂

∂t
(B∗

uR2u)u, ut

〉
+ B̃[u]

}
dt + FN [u0],

where

Φ(R1(u), Buut) =

t1∫
t0

1∫
0

〈
−P1ũ(λ)(u − u0), Bũ(λ)

∂ũ(λ)
∂t

〉
dλdt,

Φ(R2uut, Buut) =

t1∫
t0

1∫
0

〈
−P2ũ(λ)(ut − u0t), Bũ(λ)

∂ũ(λ)
∂t

〉
dλdt,

Φ(R3u(utu), Buut) =

t1∫
t0

1∫
0

〈
−P3ũ(λ)

(
∂ũ(λ)

∂t
(u − u0)

)
, Bũ(λ)

∂ũ(λ)
∂t

〉
dλdt,

B̃[u] =

1∫
0

[〈
Q(ũ(λ)), Bũ(λ)(u − u0)

〉

+λ

〈
∂

∂t
(B∗

ũ(λ)P1ũ(λ))(u − u0), u − u0

〉

− λ

〈
∂2

∂t2
(B∗

ũ(λ)P2ũ(λ))(u − u0), u − u0

〉]
dλ,

ũ(λ) = u0 + λ(u − u0), u0 is a fixed element of D(N).

3 On Performance of a Variational Method for Some
Dissipative Problems

Let us present the numerical performance of a variational method for a simple
linear ordinary differential equation with nonpotential operator.

Let us consider the following problem

N(u) ≡ u′′ − 5u′ + x4 = 0,
x ∈ [0, 1], u(0) = u(1) = 0. (23)

By D(N) = {u ∈ C2[0, 1] : u(0) = u(1) = 0} we denote the domain of
definition of the operator N .
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The exact solution of problem (23) has the form

u(x) :=
434

3125 (e5 − 1)
(
1 − e5x

)
+

125x5 + 125x4 + 100x3 + 60x2 + 24x

3125
.

Operator N (23) is not potential relative to the classical bilinear form

Φ(v, g) =

1∫
0

v(x)g(x)dx. (24)

There exists the variational multiplyer M(x) = e−5x such that the operator
Ñ(u) = M(x)N(u) is potential relative to bilinear form (24). It means that
operator N (23) is B-potential on its domain of definition D(N) relative to
bilinear form (24), where B = M(x)I, I is the identical operator.

The corresponding functional of Ñ(u) has the form

FÑ [u] =

1∫
0

e−5x
(
−0.5 (u′)2 + x4u

)
dx.

Applying the Ritz-process [6] we find out three approximate solutions of
problem (23).

The first one is

u0(x) := 7.491414512583465465 · 10−3 · x · (1 − x),

the second one -

u1(x) := x · (1 − x) · (
5.5511435176018702506 · 10−2 · x

−4.0678902532769005056 · 10−3
)
,

the third one -

u2(x) := x · (1 − x) · (−4.336202537698754952 · 10−2 · x

+0.1610369015630196335 · x2 + 7.230056822340569444 · 10−3).

Let us choose the auxiliary operator B of the kind Bu(x) = u(1 − x) and
consider the following convolution bilinear form

Φ1(v, g) =

1∫
0

v(1 − x)g(x)dx.

Operator N (23) is potential relative to that bilinear form and the corre-
sponding functional has the form

FN [u] =

1∫
0

(
0.5u′(x)u′(1 − x) − 2.5u′(x)u(1 − x) + x4u(1 − x)

)
dx.
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Applying the Ritz-process [6] we find out three approximate solutions of
problem (23).

The first approximate solution is

u0(x) :=
1
14

· x · (1 − x),

the second one -

u1(x) := x · (1 − x) ·
(

20
119

· x − 13
238

)
,

and the third one -

u2(x) := x · (1 − x) ·
(

1495
4824

· x2 − 835
4824

· x +
130
4221

)
.

Let us evaluate the deviations between approximate and the exact solutions
in the norm of space L2.

First let us consider the approximate solutions, found out with the use of the
classical bilinear form. Their deviations with the exact solution u(x) are equal
correspondingly to

R0 = 6.7713069428403088645 · 10−3,

R1 = 3.7315363415981250298 · 10−3,

R2 = 1.138326186371896467 · 10−3.

The deviations of approximate solutions, found out with the use of the con-
volution bilinear form, with the exact solution u(x) are equal correspondingly
to

r0 = 8.701 · 10−3,

r1 = 2.526 · 10−3,

r2 = 7.145 · 10−4.

4 Conclusions

In the paper we obtained the necessary and sufficient conditions for the given
operator equation with the second time derivative to admit in general an indi-
rect variational formulation and constructed the corresponding functional - vari-
ational principle. The results are applied for finding of approximate solutions of
some boundary value problems.
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Abstract. Modeling the motion of a small rigid spinning spherical par-
ticle in viscous Navier—Stokes fluid, we generalize the Rubinow—Keller
and Maxey—Riley method of estimating the force and the torque acting
on the particle to the case of shear flow and arbitrary Reynolds num-
ber. We represent the velocity of the flow near the particle as solid body
part and small perturbation. As for the velocity far from the particle, it
includes a steady external shear flow part and again small perturbation.
We use the simplest quadratic polynomial approximation for the small
velocity parts and insert it in matching condition at some intermediate
spherical surface. It appears that the force parallel to the angular velocity
of the particle proves to contain the oscillatory part, with the frequency
being proportional to the gradient of the external steady velocity.

Keywords: Viscous fluid · Spinning particle · Shear flow

1 Introduction

The equations of motion for small spinning grains in viscous fluid flow were inves-
tigated in numerous papers [1–20]. The main approach was based on the small
Reynolds number approximation. We do not use this supposition and suggest
the polynomial development of the flow velocity near the particle. As a result
the linearization procedure appears to be effective both in the nearest domain
and far from the particle. General formulae will be given for the force F and the
torque T acting on the particle. In the sequel we use the following notations:

a − radius of the sphere particle,
Ω(t) − angular velocity of the particle,
ξ(t) − the radius-vector of the particle center,

V(t) = ξ̇(t) − the velocity of the particle center,
r = (x1, x2, x3) − the coordinate radius-vector,

Y.P. Rybakov—The author expresses his gratitude to Dr. Pavel Vlasak for fruitful
discussion of the paper.

c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 635–645, 2016.
DOI: 10.1007/978-3-319-51917-3 54
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xi − the Cartesian coordinates,
u(r) − the unperturbed velocity of the steady fluid flow,

v(r, t) − the perturbed velocity of the fluid flow,

S − the surface of the particle (sphere),
a = r − ξ(t) − the relative radius-vector,
n − the unit normal vector on the surface S,

ρ − the density of the fluid,

μ − the dynamical viscosity coefficient of the fluid,

ν = μ/ρ − the kinematic viscosity coefficient of the fluid,

σik − the stress tensor of the fluid,

p − the pressure in the fluid.

2 Main Equations

The Navier—Stokes equations for the viscous fluid read:

∂tv + (v�)v = − � p/ρ + ν � v, (1)

with the condition of incompressibility

div v = 0. (2)

We divide the space out of the sphere particle into two domains:

I = {a ≤ |r − ξ(t)| ≤ r0},

II = {r0 ≤ |r − ξ(t)| ≤ ∞},
with some parameter r0 ∼ a. In the domain I one can put

v = U + w1, (3)

where U stands for
U = V + Ω × a (4)

and it is supposed that
|w1| � |U|. (5)

It can be easily seen that (4) corresponds to solid body motion of the fluid.
Inserting (3) into (1), in view of the restriction (5) one can linearize the

Eq. (1) in the domain I:

∂tw1 + (w1�)U + (U�)w1 − ν � w1 = − � p1/ρ − ∂tU − (U�)U, (6)

with the trivial boundary condition on the surface of the particle:

w1|S = 0. (7)
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As for the domain II, one can put

v = u + w2, (8)

with the natural restriction
|w2| � |u|. (9)

Inserting (8) into (1), one can linearize that equation due to (9), thus implying

∂tw2 + (w2�)u + (u�)w2 − ν � w2 = − � p2/ρ − (u�)u. (10)

Taking into account that
divU = divu = 0,

one also derives from (2) the similar equations:

divw1 = divw2 = 0, (11)

with the natural boundary and matching conditions for the velocity, pressure
and their normal derivatives:

w2|r=∞ = 0, (1 + κ∂n)(w1 + U − w2 − u)|r0 = 0, (1 + κ∂n)(p1 − p2)|r0 , (12)

where κ is an arbitrary parameter.
In particular, one can search for the solution to (6) in the form of the poly-

nomial decomposition:

w1i ≈ Ai + Bikak + Cijkajak, (13)

with coefficients vanishing on S and being some functions of time t and |a|, and
use (13) to calculate the stress tensor

σij = −p δij + μ (∂ivj + ∂jvi) . (14)

First of all we take into account that due to the formulae

Ui = ξ̇i + εijkΩjak, ∂jak = δjk,

the rotational part of the velocity does not give any contribution to the stress
tensor σij since

∂jUi = εiljΩl = −∂iUj .

Inserting (13) into (14), one gets in the first approximation with respect to a for
the viscous part of the stress tensor the following expression:

σvisc
ij = μSym

(
A′

jni + Bji + B′
jlalni + 2Cjilal

)
,

that permits one to calculate the force F and the torque T acting on the particle.
To this end, it is convenient to use the formula for spherical averaging of the
product of 2k components of the unit vector n:

〈ni(1)ni(2) · · · ni(2k)〉 =
1

(2k + 1)!!
cycle

(
δi(1)i(2) · · · δi(2k−1)i(2k)

)
.
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In particular case k = 1 one has 〈nink〉 = δik/3 and for k = 2:

〈ninknlns〉 =
1
15

(δikδls + δilδks + δisδkl) .

For the viscous part of the force one finds

F visc
i =

∮
S

njσ
visc
ij dS = 4πa2〈njσ

visc
ij 〉

≈ 8πa2μ
(
A′

j〈ninj〉 + 2Cjila〈nlnj〉 + C ′
jkla

2〈nknlninj〉
)

=
8π

3
a2μ

(
A′

i + aSi +
3
5
a2S′

i

)
,

where the denotation is used Si = Cikk for the trace of the totally symmetric
tensor Cijk. Finally, one can obtain the total force F acting on the particle:

Fi =
∮
S

njσijdS =
4π

3
a3 (−∂ip + μ � vi)0 ≈ 4π

3
a3

(
−∂ip +

2μ

a
A′

i

)
0

, (15)

where the prime denotes the radial derivative and the subscript “0” stands for
the mean value of the corresponding function in the particle domain. The latter
value, due to small size of the particle, can be obtained by extrapolation.

Similar calculations can be performed for the torque T:

Ti = aεijk

∮
S

njσklnldS ≈ 8πa3μ (Bkl〈njnl〉 + B′
lsa〈nsnknjnl〉) .

Finally, one gets for the torque T the following expression:

Ti ≈ 8π

3
a3μεijk

(
Bkj +

2
5
aB′

kj

)
, (16)

where it was taken into account that Bkk = 0, the latter property being proven
later [cf. (26)].

Denoting the mass of the particle by mp, one deduces from (15) and (16) the
following equations of motion for the spherical grain:

mp
dVi

dt
≈ 4π

3
a2 (−a∂ip + 2μA′

i)0 ,

mp
dΩi

dt
≈ 8π

3
a3μεijk

(
Bkj +

2
5
aB′

kj

)
0

.

3 Structure of Solution in the Domain I

In the domain I we use the first three terms in the decomposition (13) and the
analogous one for the pressure:

p1 ≈ P0 + Pkak + Qklakal, (17)
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where the coefficients are functions of |a| and t with the evident restrictions:

Cikl = Cilk, Qik = Qki, Qii = 0, (18)

and the Einstein rule of summation over the repeating indices is used.
Now we choose the following Cartesian components for the vectors Ω and U:

Ωi = Ω(t)δi3, Ui = ξ̇i − Ωεik3ak,

where the dot denotes the time derivative, and insert the decompositions (13)
and (17) into (6). Using the well-known formulae:

∂t|a| = −nk ξ̇k, ∂j |a| = nj , ∂jak = δjk, nk ≡ ak/|a|,
one deduces from (6) the following equation of motion:

Ȧi − Ωεjs3asBij + Ḃikak − 2Ωεjs3Cijlasal

+ Ċiklakal − Ωεij3 (Aj + Bjkak + Cjklakal)

− ν

(
A′′

i +
2
|a|A

′
i + B′′

ikak + 4B′
is

as

|a| + C ′′
iklakal + 2Si + 6C ′

isl

asal

|a|
)

= Ω̇εik3ak + Ω2akδ
⊥
ik − ẍii

− 1
ρ

(
P ′
k

aiak

|a| + Pi + Q′
kl

aiakal

|a| + 2Qilal + P ′
0

ai

|a|
)

. (19)

Multiplying this expression consequently by 1, aj , ajak and averaging over
the sphere nknk = 1, one gets the following relations:

Ȧi +
1
3
Ṡj |a|2 − Ωεij3

(
Aj +

1
3
Si|a|2

)

−ν

(
A′′

i +
2
|a|A

′
i +

1
3
|a|2S′′

i + 2Si + 2S′
i|a|

)

= −ξ̈i − 1
ρ

(
Pi +

1
3
|a|P ′

i

)
; (20)

Ḃik − Ω (εjk3Bij + εij3Bjk) − ν

(
B′′

ik +
4
|a|B

′
ik

)

= Ω̇εik3 + Ω2δ⊥
ik − 1

ρ

(
1
|a|P

′
0δik + 2Qik +

2
15

|a|Q′
ik

)
; (21)

Ȧiδjk − 2Ω
|a|2
5

(εmj3Cimk + εmk3Cimj) +
|a|2
5

(
Ṡiδjk + 2Ċijk − Ωεim3Smδjk

)

−|a|2
5

[
2εim3ΩCmjk + ν

(
S′′
i δjk + 2C ′′

ijk

)] − 6ν
|a|
5

(
S′
iδjk + 2C ′

ijk

)

= −|a|
5ρ

(
P ′
i δjk + P ′

kδji + P ′
jδik

) − ξ̈δjk (22)

and for j �= k in (22)
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Ċisl − Ω
(
εij3Cjsl + 2εj(s3Cijl)

) − ν

(
C ′′

isl +
6
|a|C

′
isl

)
= − 1

ρ|a|P
′
(lδis), (23)

where the special notations were used for the symbol δ⊥
ik = εij3εkj3 and for the

symmetrization operation: f(ik) ≡ 1/2 [fik + fki].
Executing similar procedures with the incompressibility Eq. (11), one easily

finds the following two new relations:

Bii +
|a|
3

B′
ii = 0; (24)

1
|a|A

′
i = −2Si − 1

5
|a|S′

i. (25)

Taking into account the vanishing of the radial functions on the surface of
the particle, one deduces from (24) that

Bii =
B(t)
|a|3 ,

the latter formula implying
Bii = 0. (26)

Then the Eqs. (26) and (21) imply, due to (18), the following relation:

P ′
0 =

ρ

3
|a|Ω (2Ω + εjk3Bkj) . (27)

Now we search for the solutions to the Eqs. (19)–(26) in the form of the radial
polynomial decomposition:

Qik =
∞∑

n=0

Q
(n)
ik xn, Bik =

∞∑
n=1

B
(n)
ik xn, Cijk =

∞∑
n=1

C
(n)
ijkxn, (28)

where x ≡ |a| − a.
In the cubic approximation one gets

B
(2)
ik = −2

a
B

(1)
ik − 1

2ν

[−2
ρ

(
Q

(0)
ik +

a

5
Q

(1)
ik

)
+ Ω̇εik3 + Ω2

(
δ⊥
ik − 2

3
δik

)]
; (29)

6νB
(3)
ik = Ḃ

(1)
ik − Ω

(
εjk3B

(1)
ij + εij3B

(1)
jk − 2

3
δikεjs3B

(1)
sj

)
+

20ν

a2
B

(1)
ik

+
4
a

[
− 1

5ρ

(
10Q

(0)
ik − aQ

(1)
ik − a2Q

(2)
ik

)
+ Ω̇εik3 + Ω2

(
δ⊥
ik − 2

3
δik

)]
. (30)

From (25) one derives

A′
i = −(x + a)

(
2Si +

x + a

5
S′
i

)
, (31)
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whence

Ai = −
x∫

0

dx(x + a)
(

2Si +
x + a

5
S′
i

)
. (32)

Thus, one can exclude Ai from equations of motion.

4 Structure of Solution in the Domain II

In the domain II we consider the simplest steady shear flow of the form u1 =
Λx2+u0, where Λ stands for the constant velocity gradient and u0 is the constant
velocity. In this case the Eqs. (10) take the form:

∂tw2i + (Λx2 + u0)∂1w2i + Λδi1w22 − ν � w2i = −1
ρ
∂ip2. (33)

In much the same way as in the previous section, we insert into (33) the poly-
nomial decompositions of the form:

w2i ≈ A∗
i + B∗

ikak + C∗
ijkajak; p2 ≈ P ∗

0 + P ∗
k ak + Q∗

klakal. (34)

As a result we obtain the following equations for the radial functions:

Ȧ∗
i − B∗

ik ξ̇k − |a|
3

B∗′
ik ξ̇k +

Λ

3
ξ2|a|B∗′

i1 + (Λξ2 + u0)B∗
i1 +

2Λ

15
|a|3C∗′

i12

+
2Λ

3
|a|2C∗

i12 + Λδi1A
∗
2 − ν

(
A∗′′

i +
2
|a|A

∗′
i

)
= −1

ρ

(
P ∗
i +

|a|
3

P ∗′
i

)
; (35)

Ḃ∗
ik − 1

|a|A
∗′
i − 2ξ̇s

(

C∗
iks +

1

5
|a|C∗′

iks

)

+Λ

[

ξ2

(

1

|a|A
∗′
i δk1 + C∗

ik1 +
|a|
5

C∗′
ik1

)

+ B∗
i1δk2 + B∗

2kδi1 +
|a|
5

(

B∗′
i1δk2 + B∗′

i2δk1
)

]

−ν

(

B∗′′
ik +

4

|a|B
∗′
ik

)

= −1

ρ

(

1

|a|P
∗′
0 δik + 2Q∗

ik +
2

5
|a|Q∗′

ik

)

; (36)

Ċ∗
ikl − 1

|a|B
∗′
i(k ξ̇l) + Λ

[
C∗

2klδi1 + 2C∗
i(k1δl)2 +

1
|a|

(
A∗′

i δ(k1δl)2 + ξ2B
∗′
i(kδl)1

)

+
2
7
|a|

(
C∗′

i2(kδl)1 + C∗′
i1(lδk)2

)]
− ν

(
C∗′′

ikl +
6
|a|C

∗′
ikl

)
= − 1

ρ|a|P
∗′
(kδil), (37)

where ξ2 = ξ2 + uo/Λ. Finally, the incompressibility Eq. (11) gives the relations
similar to (24) and (25):

B∗
ii +

|a|
3

B∗′
ii = 0; (38)

1
|a|A

∗′
i = −2C∗

kki − 2
5
|a|C∗′

kki. (39)



642 Y.P. Rybakov

From (38) and (26) one deduces, in view of the matching condition (12), that

B∗
ii = 0. (40)

Taking into account (39) and (40), one obtains from (35), (36) and (37) the
following relations containing the radial gradient of pressure:

Λ

[
B∗

12 + B∗
21 +

|a|
5

(
B∗′

12 + B∗′
21

)]
= − 3

ρ|a|P
∗′
0 ; (41)

Λ

[
2C∗

i12 +
4|a|
7

C∗′
i12 +

ξ2
|a|B

∗′
i1

]
− 1

|a|B
∗′
ik ξ̇k = − 1

ρ|a|P
∗′
i ; (42)

Ȧ∗
i − B∗

ik ξ̇k + Λ

(
A∗

2δi1 + ξ2B
∗
i1 − 2

35
|a|3C∗′

i12

)

−ν

(
A∗′′

i +
2
|a|A

∗′
i

)
= −1

ρ
P ∗
i . (43)

Now we search for the solutions to the Eqs. (35)–(43) in the form of decom-
positions in decreasing degrees of |a|:

P ∗
0 =

∞∑
n=0

P
∗(n)
0 |a|−n; P ∗

i =
∞∑

n=2

P
∗(n)
i |a|−n; Q∗

ik =
∞∑

n=3

Q
∗(n)
ik |a|−n;

A∗
i =

∞∑
n=1

A
∗(n)
i |a|−n; B∗

ik =
∞∑

n=2

B
∗(n)
ik |a|−n; C∗

ikl =
∞∑

n=3

C
∗(n)
ikl |a|−n,

with the coefficients depending on time t. Thus, the following relations arise:

A∗(n) =
2
5n

(3 − n)C∗(n+2)
kki ; (44)

1

ρ
P

∗(n)
0 =

Λ

15n

[

−(2 + n)B
∗(n+2)
12 + (8 − n)B

∗(n+2)
21

]

; n ≥ 1;

B
∗(2)
12 = 4B

∗(2)
21 ; (45)

1

ρ
P

∗(n)
i = B

∗(n)
ik ξ̇k − (Λξ2 + u0)B

∗(n)
i1 +

2Λ

7n
(3 − 2n)C

∗(n+2)
i12 ; n ≥ 2;

C
∗(3)
i12 = 0; (46)

Ȧ
∗(n)
i +Λδi1A

∗(n)
2 −ν(n−2)(n−3)A∗(n−2)

i +
2Λ

35n
(n−3)(n−5)C∗(n+2)

i12 = 0; (47)
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Ċ
∗(n+2)
ikl + nB

∗(n)
i(k ξ̇l) − nB

∗(n)
(ks ξ̇sδil) + Λ

[
nξ2

(
B

∗(n)
(k1 δil) − B

∗(n)
i(k δl)1

)

−nA
∗(n)
i δ(k1δl)2 + 2C

∗(n+2)
i(k1 δl)2 + C

∗(n+2)
2kl δi1

−2
7
[
(3 − 2n)C∗(n+2)

(k12 δil) + (n + 2)
(
C

∗(n+2)
i2(k δl)1 + C

∗(n+2)
i1(l δk)2

)]]

= νn(n − 5)C∗(n)
ikl ; (48)

2
ρ
(n − 5)Q∗(n)

ik = 5Ḃ
∗(n)
ik − 5ν(n − 2)(n − 5)B∗(n−2)

ik

+5A∗(n−2)
(
ξ̇k − (Λξ2 + u0)(n − 2)δk1

)
+ 2(n − 5)C∗(n)

iks ξ̇s

+Λ
[
(5 − n)B∗(n)

i1 δk2 + 5B
∗(n)
2k δi1 − nB

∗(n)
i2 δk1 − 2(n − 5)ξ2C

∗(n)
ik1

−1
3
δik

[
(10 − n)B∗(n)

21 − nB
∗(n)
12

]]
, (49)

with the natural conditions being imposed:

B
∗(n)
ii = Q

∗(n)
ii = 0. (50)

In particular, putting n = 1, n = 2 in (48) one finds in the first approximation
the following nontrivial tensor components:

C
∗(3)
111 = α = const, C

∗(3)
311 = β = const, B

∗(2)
13 = γ = const; (51)

C
∗(3)
122 =

2
5
α, C

∗(3)
133 = −7

5
α, C

∗(3)
322 = 34β, C

∗(3)
333 = −35β; (52)

A
∗(1)
1 =

4
5
α, A

∗(1)
3 = −28β; (53)

B
∗(2)
31 = ε cos(ωt) +

√
2
3
δ sin(ωt); B

∗(2)
32 = δ cos(ωt) −

√
3
2
ε sin(ωt), (54)

with ε, δ being arbitrary integration constants and ω standing for the frequency

ω =
√

6
5

Λ. (55)
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5 Matching of Solutions in Domains I and II

Substituting the solutions found above into the matching conditions (12) one
obtains the following relations for the decomposition coefficients considered as
radial functions defined on the matching sphere |a| = r0(t):

Ai − A∗
i + ξ̇i − Λδi1ξ2 = 0, A′

i − A∗′
i = 0; (56)

Bik − B∗
ik − Ωεik3 − Λδi1δk2 = 0, B′

ik − B∗′
ik = 0; (57)

Cikl − C∗
ikl = 0, C ′

ikl − C∗′
ikl = 0; (58)

P0 − P ∗
0 = 0, P ′

0 − P ∗′
0 = 0; (59)

Pi − P ∗
i = 0, P ′

i − P ∗′
i = 0; (60)

Qik − Q∗
ik = 0, Q′

ik − Q∗′
ik = 0. (61)

6 Conclusions

Using polynomial decompositions of the viscous fluid velocity in the vicinity of
small rigid particle moving in the shear flow, we found the approximate expres-
sions for the pressure and velocity and calculated the force and the torque acting
on the particle. The force parallel to the angular velocity of the particle proves
to contain the oscillatory part, with the frequency being proportional to the
gradient of the external steady velocity.

It should be emphasized that this oscillatory effect can be very important for
solving the problem of particle saltation in channels with a rough bed [21–27].
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Abstract. Smoothing is the process of removing “noise” and “insignif-
icant” fragments while preserving the most important properties of the
data structure. We propose a fast spline method for two-dimensional
smoothing. Data smoothing usually attained by parametric and nonpara-
metric regression. The nonparametric regression requires a prior knowl-
edge of the regression equation form. However, most of the investigated
data can’t be parameterized simply. From this point of view, our algo-
rithm belongs to nonparametric regression. Our simulation study shows
that smoothing with discrete cosine transform is orders of magnitude
faster to compute than other two-dimensional spline smoothers.

Keywords: Nonparametric regression · Two-dimensional estimation ·
Penalized splines · Smoothing splines · Cross-validation · Discrete cosine
transform

1 Problem Statement

Raw data of real processes are noisy and need “smoothing” before analyse.
Smoothing is attempt to filter “noise” or “insignificant” fragments while preserv-
ing the most important properties of data structure. Consider the following model

y = ŷ + ε (1)

where ε - Gaussian white noise. There are supposed that function ŷ should be
smooth, i.e. has continuous derivatives up to some order. Data smoothing is
usually carried out by a parametric or nonparametric regression. In the case of
parametric regression, it requires some a priori knowledge of regression equa-
tion form, which must well described original proccess. However, most of the
observed data is impossible to parameterize and function f(x) can’t be deter-
mined analytically. From this point of view, nonparametric and semiparametric
regression is the best approach to solving the problem (1). One of the classical
methods for smoothing data is the use of various modifications least squares with
c© Springer International Publishing AG 2016
V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 646–656, 2016.
DOI: 10.1007/978-3-319-51917-3 55
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penalty. It was first introduced in 1920 [1] and it has been extensively studied
ever since 1990 [2]. This technique consists in minimize some functional that
balances between “approximation” and “smoothness” of estimation and it has
follow form

F (ŷ) = RSS + λ · P (ŷ) = ||ŷ − y||2 + λ · P (ŷ), (2)

where || · || - Euclidean norm. The parameter λ is a real positive number con-
trolling the smoothness of solutions: smoothness of ŷ growing when parameter
increases. The regression is called smoothing spline [1,3,4], when the penalty
function written like square integral of p-order derivatives of ŷ. Apart from this,
simple and effective approach to solving problem (1) is squared form of penalty
function [5]:

P (ŷ) = ||Dŷ||2 (3)

where D - tridiagonal matrix as
⎡
⎢⎢⎢⎢⎢⎣

−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1

⎤
⎥⎥⎥⎥⎥⎦

This paper is a continuation of the authors research reviewed in papers [6,7].
Additionally, some main ideas gleaned from the articles [8,9] (Fig. 2).

2 One-Dimensional Smoothing

Suppose {xi}1≤i≤n is equally spaced points and response function follows

yi = f(xi) + εi (4)

where εi ∼ N(0, σ2). Let ŷ is an estimate of f(xi). After minimization (2) we
have

ŷ = H(λ) · y, (5)

where H(λ) = (I + λ · DT D)−1 is a projection matrix and λ is smoothing
parameter. Smoothing parameter selecting by minimization of following equation

GCV (λ) =
RSS(λ)/n

(1 − Tr(H(λ))/n)2
. (6)

This approach is called as method of cross-validation. Matrix D has some spe-
cial properties if observations is equidistant. That’s possible to simplify the
calculation GCV , because matirx D can explain UΓUT , where matrix U is uni-
tary and it is a discrete cosine transformation [9]. Then RSS can be rewritten
as follows:
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RSS = ||ŷ − y||2 = ||H(λ) · y − y||2
= ||((I + λ · DT D)−1 − I) · y||2
= ||(U · (I + λ · Γ 2)−1 − I) · UT · y||2

=
∑

i

(
1

1 + λγ2
i

− 1)2 · DCT 2
i (y).

In this case, (6) can be rewritten in more convenient for computing form

GCV (λ) =
n · ∑

i ( 1
1+λγ2

i
− 1)2 · DCT 2

i (y)

(n − ∑
i ( 1

1+λγ2
i
)2

. (7)

3 Two-Dimensional Smoothing

Suppose {(x1,i, x2,j)}1≤i≤n1,1≤j≤n2
is uniform grid and response function follows

yi,j = f(x1,i, x2,j) + εi,j (8)

where εi,j ∼ N(0, σ2). In this case, values of response function can represent
like matrix Y , where element of i-th row and j-th column is value yi,j . Then
the smoothed values will be denoted by Ŷ . Introduce the operation vec, which
represents matrix in column vector form. Then vec(Ŷ ) can be written:

vec(Ŷ ) = (Hx2 ⊗ Hx1) · vec(Y ) = Hx2,x1 · vec(Y ), (9)

where Hx1 ,Hx2 - projection matrix for corresponding dimension. Obviously, the
projection matrix has follow form

Hxi
= (Ini

+ λiD
T
ni

Dni
)−1, i = 1, 2. (10)

Applying the approach and properties of the tensor product [10], expression (9)
can be simplified as follows:

ŷ = (Hx2 ⊗ Hx1) · y

= (In2 + λ2D
T
n2

Dn2)
−1 ⊗ (In1 + λ1D

T
n1

Dn1)
−1 · y

= Ux2 · (
1

1 + λ2γ2
x2

) · UT
x2

⊗ Ux1 · (
1

1 + λ1γ2
x1

) · UT
x1

· y

= Ux2 ⊗ Ux1 · (
1

1 + λ1γ2
x1

) ⊗ (
1

1 + λ2γ2
x2

) · UT
x2

⊗ UT
x1

· y

= Ux2,x1 · Γx2,x1 · UT
x2,x1

· y

To automatically search for the best values λ1 and λ2, we use a cross-validation
adapted for two-dimensional case:

GCV (λ1, λ2) =
RSS/n

(1 − Tr(Hx2,x1)/n2)
. (11)
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Properties of tensor product of matrices [10] denotes Tr(Hx2,x1) =
∑

1
1+λ1γ2

x1
·∑

1
1+λ2γ2

x2
. Obviously, main consuming place of the estiomation is a calculation

RSS, because it requires evaluation of ŷ for all combinations λ1 and λ2 . This
calculation can be simplified:

RSS = ||ŷ − y||2 = ||Hx2,x1 · y − y||2 = ||(Hx2,x1 − In) · y||2
= ||Ux2,x1 · (Γx2,x1 − In) · UT

x2,x1
· y||2

= (Ux2,x1 · (Γx2,x1 − In) · UT
x2,x1

· y)T · (Ux2,x1 · (Γx2,x1 − In) · UT
x2,x1

· y)

= (DCT2 · y)T · (Γx2,x1 − In)2 · DCT2 · y

=
∑

(γx2,x1 − 1)2 · (DCT2 · y)2,

where DCT2 - is a two-dimensional discrete cosine transform. From the simplified
equation shows the transformation must evaluate one times and result change
with values γx2,x1 depending values λ1 and λ2. This approach implemented in
R. To demonstrate the advantages of considered approach performed numerical
experiments: with model and real data (Fig. 4).

4 Experiments

Model data: To illustrate the effectiveness of the algorithm, sample data have
been modeled from function sin(2π(x1 − 0.5)3) · cos(4πx2) with noise - random
values from normal distribution of N(0, 0.22) (Fig. 1). Smoothing was carried by
presented approach and MGCV package [11], which implements smoothing with
penalized splines, including multidimensional case with tensor product of basic
functions. Below is a table contains result of smoothing with different methods
(Table 1).

Fig. 1. Function sin(2π(x − 0.5)3) · cos(4πy): raw (left) and with noise (right).
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Fig. 2. Results of smoothing sin(2π(x − 0.5)3) · cos(4πy): GAM with 102 knots (top-
left), GAM with 202 knots (top-right) and DCT (bottom).

Table 1. The results of smoothing model data with different methods.

P-splines GAM with GAM with

with DCT 102 knots 202 knots

RSS 9.488243 11.72485 9.87163

MSE 0.001483 0.001832 0.00154

Corr. with true values 0.9993394 0.996919 0.9991624

Est. time (s) 1.941 10.237 29.875

Real data: To demonstrate the practical application of the approach, real
data of mortality in Russia have been smoothed and compared with results of
another approaches. The data are taken from the open source [12] and contains
observations for ages of 0 and 110 between years of 1959 and 2010. For exper-
iment was taken part of data, which belongs to the older ages (50–101, Fig. 3).
That part was chosen, because observations contain many errors and outliers.
Thus, analyzed data are evenly spaced values of mortality rates on grid with size
52×52. Smoothing conducted outlined approach, package MGCV and paramet-
ric model of the Lee-Carter, who has become a classic for appraisals dimensional
mortality surface. The next table contains result of estimations (Table 2).

Table 2. The results of smoothing a two-dimensional surface of Russian mortality
rates.

P-splines with DCT Lee-Carter model GAM with 122 knots

RSS 0.21637 18.5092 0.41395

MSE 0.0000905 0.0077379 0.0001731

Est. time (s) 0.49 1.194 4.185
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Fig. 3. The raw mortality rates in Russia for ages of 50 and 101 between years of 1959
and 2010.

Fig. 4. Results of smoothing mortality data: GAM with 122 knots (top-left), Lee-Carter
(top-right) and DCT (bottom).
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5 Conclusion

Obviously, described approach is very effective, because it’s fast and no need
much memory. Note, if the sample size increases then calculation speed increases
slightly with same estimation quality. Results:

1. equations obtained for two-dimensional case with two smoothing parameters;
2. the approach implemented in R for one- and two-dimensional cases;
3. the approach compared with similar approache and model.

In next studies is expected to consider the following possibilities:

– extension of the approach to the multidimensional case with many smoothing
parameters;

– use other common criteria for smoothing parameters selection, for example,
BIC or AIC;

– use a faster method for minimization GCV instead of grid search.

Appendix: R code

Program commands for model data

#Clear workspace
rm(list=ls(all=T))

library(mgcv)
library(lattice)

f1 <- function(x,y) { sin(2 * pi * (x - .5)^3) * cos (4 * pi * y) }
n <- 80
xn <- seq(0,1, length.out = n)
yn <- seq(0,1, length.out = n)
xy <- expand.grid(x = xn, y = yn)]
Ytrue <- f1(xy[,1], xy[,2])
zn <- Ytrue + rnorm(dim(xy)[1], mean = 0, sd = .2^2)

## TPRS
st <- proc.time()
b0 <- gam(zn~s(xy[,1],xy[,2], bs=’ts’, k=20^2))
en <- proc.time()
ti <- en[’elapsed’] - st[’elapsed’]
cat("Gam time passed:", ti, "\n")

wireframe(
matrix(fitted(b0), nrow=n, ncol=n),
zlim = c ( -2, 2),
xlab = expression(x[1]),
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ylab = expression(x[2]),
zlab = expression(y),
screen = list(z = 20, x = -70, y = 3)
)

#DCT
lr <- seq( 64, 66, by = .1 )
lc <- seq( 36, 38, by = .1 )
fit <- psdct2d(matrix(zn, nrow=n, ncol=n))
plot(fit, theta = -15, phi = 30, zlim = c ( -2, 2))
summary(fit)

wireframe(
matrix(fitted(fit), nrow=n, ncol=n),
zlim = c ( -2, 2),
xlab = expression(x[1]),
ylab = expression(x[2]),
zlab = expression(y),
screen = list(z = 20, x = -70, y = 3)
#screen = list(z = -60, x = -60)
)

cat("RSS DCT:", sum( (residuals(fit))^2 ), "\n")
cat("RSS GAM:", sum( (residuals(b0))^2 ), "\n")
cat("Corr DCT:", cor(fitted(fit), Ytrue), "\n")
cat("Corr GAM:", cor(fitted(b0), Ytrue))

Program commands for model data

#Clear workspace
rm(list=ls(all=T))

library(demography)

#Raw
ru.mort <- read.demogdata("data/Mx_1x1.txt",
"data/Exposures_1x1.txt", "mortality", "Russia")
plot(ru.mort, series="total")

ru.ext <- extract.ages(ru.mort, 50:101 , FALSE)
plot(ru.ext, series="total")

wireframe(
matrix(log(ru.ext$rate$total), nrow=52, ncol=52),
xlab = expression(a),
ylab = expression(y),
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zlab = expression(m),
screen = list(z = 20, x = -70, y = 3)
)

#GAM
library(mgcv)
gamst <- proc.time()
z <- as.vector(log(ru.ext$rate$total))
x <- 1:nrow(ru.ext$rate$total)
y <- 1:ncol(ru.ext$rate$total)
xy <- expand.grid(x, y)
ru.gam <- gam(z~s(xy[,1],xy[,2], bs=’ts’, k=12^2))
gamen <- proc.time()
gamel <- gamen[’elapsed’] - gamst[’elapsed’]
cat("Gam time passed:", gamel, "\n")
persp(matrix(fitted(ru.gam), nrow=length(x), ncol=length(y)))
persp(matrix(residuals(ru.gam), nrow=length(x), ncol=length(y)))
levelplot(matrix(residuals(ru.gam), nrow=length(x), ncol=length(y)))

wireframe(
matrix(fitted(ru.gam), nrow=52, ncol=52),
xlab = expression(a),
ylab = expression(y),
zlab = expression(m),
screen = list(z = 20, x = -70, y = 3)
)

#Lee-Carter
lcst <- proc.time()
ru.lc <- lca(ru.ext, adjust="e0")
plot(ru.lc)
persp(ru.lc$fitted$y)
persp(ru.lc$residuals$y)
levelplot(ru.lc$residuals$y)
lcen <- proc.time()
lcel <- lcen[’elapsed’] - lcst[’elapsed’]
cat("LC time passed:", lcel, "\n")

wireframe(
ru.lc$fitted$y,
xlab = expression(a),
ylab = expression(y),
zlab = expression(m),
screen = list(z = 20, x = -70, y = 3)
)
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#DCT
ru.dct <- psdct2d(log(ru.ext$rate$total))
persp(matrix(residuals(ru.dct2), nrow=length(x), ncol=length(y)))
levelplot(matrix(residuals(ru.dct2), nrow=length(x), ncol=length(y)))

wireframe(
matrix(fitted(ru.dct), nrow=52, ncol=52),
xlab = expression(a),
ylab = expression(y),
zlab = expression(m),
screen = list(z = 20, x = -70, y = 3)
)
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Abstract. Multidimensional data cube is a data model at the informa-
tion systems based on the multidimensional approach. If one uses a large
set of aspects for the analysis of data domain the data cubes are charac-
terized by substantial sparseness. It complicates the organization of data
storage. The proposed cluster method of description of multidimensional
data cube is based on the investigation of data domain semantics. The
dimensionalities of the multidimensional cube are the dimensions corre-
sponding to the aspects of analysis. The basis of the cluster method is a
construction of the groups of members which are semantically related to
the groups of other members. Building of associations between the groups
of different members allows to reveal the clusters in the data cube – the
sets of cells with similar properties which may be described in a same
way. Clusters are used as the main element of information system data
model.

Keywords: Multidimensional information system · Multidimensional
data model · Sparse data cube · Set of possible member combinations ·
Cluster of member combinations

1 Introduction

Multidimensional information systems based on the principles of OLAP are used
for the operational analysis of large datasets. Analytical space in a system of
this type is a multidimensional data cube. The role of the cube dimensionalities
is played by the dimensions corresponding to various aspects of the observed
phenomenon for which description the system is developed. If we use a large
amount of semantically heterogeneous data for the description of the observed
phenomenon the multidimensional cube is characterized by high sparseness and
irregular filling [1–8]. As a result, there is a problem of developing an adequate
way to describe the structure of an analytical space which use would make it
possible to effectively organize the data analysis process [9–18]. Such a correct
way should provide the accounting of semantics of the observed phenomenon.
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V.M. Vishnevskiy et al. (Eds.): DCCN 2016, CCIS 678, pp. 657–668, 2016.
DOI: 10.1007/978-3-319-51917-3 56



658 M. Fomin

2 Structure of Sparse Multidimensional Data Cube

The structure of analytical space of multidimensional information system
should reflect the characteristics of those aspects of the observed phenomenon
which are used in the data analysis process. Each aspect corresponds to one
dimension of a multidimensional cube H. A full set of dimensions forms a set
D(H) = {D1,D2, ...,Dn}, there Di is i-dimension, and n = dim(H) – dimen-
sionality of multidimensional cube. Each dimension is characterized by a set
of members D(H) = {di1, di2, ..., diki

}, there i is a number of dimension, ki –
the quantity of members. Members of Di are drawn from a set of positions of
the basic classifier which corresponds to an aspect of the observed phenomenon
associated with Di [19–24].

The multidimensional data cube is a structured set of cells. Each cell c is
defined by a combination of members c =

(
d1i1 , d

2
i2
, ..., dnin

)
. The combination

includes one member for each of the dimensions. If the analysis of the observed
phenomenon is performed using a large set of diverse aspects, not all member
combinations define the possible cells of multidimensional cube, i.e. the cells
corresponding to a certain fact. This effect occurs due to semantic inconsisten-
cies of some members from different dimensions to each other and generates a
sparseness in the cube.

The complex structure of the compatibility of members may lead to a sit-
uation where a certain dimension becomes semantically uncertain if combined
with a set of members from other dimensions. In this situation, while describing
the possible cell of multidimensional cube we will use the special value “Not in
use” to set the member of semantically unspecified dimension [25].

Thus, the structure of a multidimensional information system analytical
space defines a set of possible member combinations comporting with a set
of possible cells of multidimensional cube. To denote this set we will use the
abbreviation “SPMC”. To set the members during the process of SPMC combi-
nations forming we will use the data taken from the classifiers which match the
dimensions, and the special member “Not in use”. The set of possible member
combinations should meet the following requirements:

– if there is a combination in SPMC in which a special member “Not in use”
is set for one or more dimensions in combination with a certain set of other
members, the other combination with the same set of other members can
not exist in SPMC. In other words, the dimension is either used or not in
combination with a certain set of other members;

– there should be no combination in SPMC in which all dimensions are defined
with a special member “Not in use”.

The observed phenomenon is characterized by the values of measures spec-
ified in the possible cells of multidimensional cube. The full set of measures
composes the set V (H) = {v1, v2, ..., vm}, there vj is a j measure, and m –
the quantity of measures in a hypercube. Not all measures from V (H) may be
set in a possible cell. The possibility of such a situation arises in the case of
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semantic mismatch between the cell-defining members and some measures.
Describing the analytical space for each possible cell requires to specify its
own set of V (c) = {v1, v2, ..., vmc

}, consisting of measures specified in this cell,
mc ≤ m. To describe the measures in cell c outside the set V (c) we introduce
the special value “Not in use”. The rule must be hold: a set of measures V (c)
defined in a possible cell c can not be empty. Description of measures in cells
of multidimensional cube matching the combinations of members not included
into the SPMC does not make sense.

The challenge here is to develop a formal approach to describing of SPMC,
which allows to present the metadata of multidimensional information system
in a compact form reflecting the semantics of the observed phenomenon.

3 Cluster Approach to the Description of the Analytical
Space

To properly describe the structure of an analytical space one should perform a
semantic analysis of the compatibility of members. There may be regularities
in the compatibility of two, three or more members defining the structure of
SPMC, but in most cases the rules of SPMC compatibility are specified by the
pairwise associations between dimensions. Let us limit ourselves to such situa-
tion. As an illustrative example we consider the structure of an analytical space
of information system that describes the observed phenomenon of “Granting of
loans”. The data of the system measures will be represented in six aspects cor-
responding to the following dimensions: “Time of loan granting”, “Place of loan
granting”, “Debtor type”, “Debtor gender”, “Occupation” and “Type of loan”.
The first dimension is based on calendar data specified in the time range which
is used in the analysis. The second dimension is based on the reference book
of the territorial administrative division. The remaining dimensions are defined
with the following members:

– Debtor type = {“Legal entity”, “Natural person”};
– Debtor gender = {“Male”, “Female”};
– Occupation = {“Construction engineering”, “Trade”, “Banking”};
– Type of loan = {“Operating”, “Interbank”, “Mortgage”, “Consumer”}.

The source of information about the semantic relationships between the
dimensions is the normative documentation relating to the observed phenom-
enon. The analyst should formalize this information in the form of rules of com-
patibility allowing to build SPMC. If pairwise associations are analyzed the rules
should determine which pair of two members can occur in the SPMC combina-
tions, and which members of one dimension are incompatible with all members
of the other dimension. This approach allows to allocate the groups of members
in a set of members. The group of members is a set including one or several mem-
bers which combine with the members of some other dimension within SPMC
in a similar way.
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The method based on the allocation of groups in a set of members allows
to describe the pairwise relations between dimensions. These pairwise relations
are specified by the determination of conformity between the two groups of
members from the different dimensions for which the “identity” of compatibility
or consistency between the group in one dimension and “Not in use” member in
the other one were revealed. For the pairwise relations the following conditions
must be held:

1. If some member of the first dimension is included in the group that corre-
sponds to the group in the second dimension, it can not be included in the
group which corresponds to the “Not in use” member;

2. If “Not in use” member for the second dimension corresponds to a certain
group of members of the first dimension, the members of this group can
present in SPMC only in combination with the “Not in use” member for the
second dimension;

3. If a certain member of the first dimension is included into the group that
corresponds to the group in the second dimension, for the combination of
SPMC including this member the second dimension must either take the
member from the second group, or there must be the “Not in use” member
set for it.

There may be several types of relations between the dimensions divided in
“simple” and “complex”. Simple types of relations are as follows:

1. Association. There is an association in a pair of dimensions D1 and D2 if n
groups, n ≥ 2, can be singled out of a set of members of each of them, and a
bijection can be established between these groups which manifests as follows:
if a combination of SPMC includes the members D1 and D2, they come in
pairs, taken from the corresponding groups of members;

2. Full association. There is a full association in a pair of dimensions D1 and
D2 if a bijection can be established between the members of these dimensions
which manifests as follows: the members D1 and D2 can come in SPMC in
pairs and in any combinations;

3. Dependence. There is a dependence between dimensions D1 and D2 (D2

depends on D1) if the members of D1 can be divided in two groups of members
in such way that if a certain combination from SPMC includes the member
from the first group of members D1, the member of D2 in this combination
is possible, and if the member of the second group of members D1 is included
into the combination, the D2 in such combination is set to the “Not in use”
member.

There may be complex relationships specified in a pair of dimensions which
are the combinations of a few simple relationships:

1. Association and dependence. There is an association and dependence between
D1 and D2 if n groups can be singled out of D2, n ≥ 1, and (n+1) – out of D1

in such way that there is an association between first n groups from D1 and



Cluster Method of Description of Information System Data Model 661

D2, and if the combination of SPMC includes the member from (n+1) group
of D1 members, D2 in this combination is set to the “Not in use” member.
Besides, the members from (n + 1) group of D1 members can not be met in
other groups of this dimension;

2. Association and two-sided dependence. There is an association and two-sided
dependence between D1 and D2 if n groups can be singled out of a set of
members of each of that dimensions, n ≥ 2, in a such way that if the com-
bination of SPMC includes the member from the first group D1, the D2 in
this combination is set to the “Not in use” member, and if the combination
of SPMC includes the member from the first group D2, the D1 in such com-
bination is set to the “Not in use” member; herewith, the remaining (n − 1)
groups of members of D1 and D2 dimensions form an association;

3. Two-sided dependence. There is a two-sided dependence between D1 and D2

dimensions if the following rule holds: in case of SPMC combination includes
the member from D1, the D2 in this combination is set to the “Not in use”
member, and when the combination includes the member from D2, the D1

the in this combination is set to the “Not in use” member.

Figure 1 presents the diagrams containing the designations of the pairwise
relations between the dimensions for the case of illustrative example described
above.

Fig. 1. The types of diagrams describing the pairwise relations between the dimensions:
association (A), full association (B), dependence (C), association and dependence (D),
two-sided dependence (E)

It is convenient to use the compliance charts of the groups of members for the
description of the pairwise relations between dimensions. Figure 2 presents the
pairwise compliance charts of the groups for the proposed illustrative example.

After building of the pairwise relations between dimensions of the multidi-
mensional cube one can draw a diagram of dimensions connectivity. This diagram
should present all dimensions with the indication of all relations between them.
On the basis of this diagram the other diagram can be built – a compliance
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Fig. 2. Pairwise compliance charts of the groups of members: association (A), depen-
dence (B), association and dependence (C), two-sided dependence (D)

chart for the groups of members which shows the all groups and specifies the
relations between them. These diagrams may be used in the formation of SPMC
analytical space.

In case of there is a possibility to isolate the subset Li =
{
Dj1 ,Dj2 , ...,Djk

}
in the dimensions set D(H), there jk is a number of the dimension in the layer,
j = 1, ..., k, k is a quantity of dimensions in i layer, 1 ≤ k < dim(H), and each
dimension of that is completely associated with all dimensions not included into
Li, the compatibility of members in Li can be considered independently of other
dimensions. Let us call such a subset as “the layer of the dimensions”. The layer
of the dimensions, or dimensional layer, is a set of dimensions which members
compatibility in SPMC does not depend upon what members in combinations
are specified for the dimensions not included into the layer. In case of splitting
of a set of analytical space dimensions onto the layers one can build a diagram of
dimensions connectivity and generate a set of possible member combinations for
each of the separate layers. After the analysis of dimensional layers SPMC can be
obtained by the Cartesian product: SPMC(H) = SPMC(L1) ×SPMC(L2) ×
... × SPMC(Lm), there m is a quantity of layers. In the present example there
are three layers: L1 = {Debtor type, Debtor gender, Occupation, Type of loan},
L2 = {Time of loan granting} and L3 = {Place of loan granting}.

Figure 3 presents the diagram of dimensions connectivity for the L1 layer
from the illustrative example.

If we analyze some dimension as an element of the diagram of layer con-
nectivity and take into account the relations between the considered dimension
and all the rest dimensions of the layer, the groups of members available in this
dimension can be transformed so that they will comply with all relations of the
considered dimension simultaneously. New groups must lie at the intersection of
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Fig. 3. The diagram of dimensions connectivity for the L1 layer

the groups participating in the description of pairwise relations with different
dimensions. Using such procedure one can describe the compatibility of the full
set of dimensions in the layer. Let us call such procedure of groups formation
as a subdivision of groups of members describing the pairwise relations. When
the groups are subdivided the relations between the dimensions revealed at the
stage of the pairwise analysis must be inherited.

Figure 4 presents a fragment of the chart of group compliance illustrating the
procedure of subdivision of the groups for the dimension “Type of loan”.

Fig. 4. Fragment of the compliance chart of the groups of members for the L1 layer

All pairwise relations from the diagram of layer connectivity are used in the
procedure of subdivision of the groups. This complete set of relations allows to
distinguish the relations of “Full association” type and relations describing the
compliance of the groups which have been already accounted in the remaining
relations. These distinguished relations do not influence the result of the groups
subdivision and can be removed from the connectivity graph. Thus, the graph
can be reduced to a much more simple form without the loss of information
about the compatibility of members (Fig. 5).

After subdividing the groups describing the pairwise relations between
dimensions, one can bypass the compliance chart of the groups of members of the
analytical space or the dimensional layer. While bypassing the compliance chart
one can reveal the chains of groups of members longwise its relations, and for
several dimensions – also the special member “Not in use” instead of the group
which members are combined in the SPMC by the “all-to-all” rule. Such chains
define a set of combinations included in the SPMC which can be obtained by the
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Fig. 5. Reduced dimensions connectivity diagram for the L1 layer

Cartesian product of the groups of members and the special member “Not in use”
if it is present in the chain. Let us call such set of combinations as the “cluster of
member combinations”. Cluster of member combinations is a set of combinations
of members which can be obtained by means of the Cartesian product operation
in which the operands are the groups of members or the special member “Not
in use”, one operand for each of the dimensions, assigned in the multidimen-
sional cube or in the dimensional layer of the multidimensional cube. Figure 6
presents the clusters of member combinations corresponding to the dimensions
connectivity diagram for the L1 layer from the illustrative example.

Fig. 6. Clusters of member combinations for the L1 layer

In an absence of subdivision of the dimensions set D(H) onto the layers,
SPMC can be represented as the association of clusters corresponding to the
compatibility diagram of the analytical space dimensions.

In case of the subdivision of the dimensions set D(H) onto the layers, SPMC
for each layer must be built as an association of clusters of member combinations
of the layer, and SPMC of the members of multidimensional cube is obtained as
a result of the Cartesian product of SPMC for the layers.

There may be a situation when the very different semantic components can
be distinguished within the observed phenomenon. In this case it is possible to
separately form the subsets of member combinations corresponding to different
semantic components. For this purpose it is necessary to analyze the compati-
bility of members for each component and in accordance with this analysis to
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form the clusters of member combinations. The SPMC of the members of mul-
tidimensional cube can be computed using the set theory operations. Operands
in these operations are subsets of member combinations for the components.

We can identify two cases where such approach can be successfully used.
The first one takes place when different subdivisions of the dimensions onto
the layers occur during the analysis of different semantic components, and the
second one – when there is a simple way of building a subset describing the
SPMC redundantly, and the efficient way to describe the combinations which
are to be excluded from this subset to reduce it to the SPMC. Let’s consider
these cases in more detail.

In the first case, the decomposition of the observed phenomenon on l semantic
components corresponds to the union of member combinations subsets:

SPMC(H) = Q1 ∪ Q2 ∪ .. ∪ Ql.

Set of analytical space dimensions can be divided into layers in different ways
due to differences in semantics of the observed phenomenon components:

D(H) = L1
i ∪ L2

i ∪ .. ∪ Qmi
i ,

there i = 1, ..., l – number of component, and mi – the quantity of layers in
icomponent. Each subset Qi is formed according to its split of set of the dimen-
sions can into layers.

In the second case, set of possible member combinations is represented as the
difference of two subsets:

SPMC(H) = R\Q,

there R – set of member combinations, described with an excess (set to reduce),
and Q – set of combinations to be excluded. Set to reduce may be formed using
the following rules. It should include member combinations obtained by the
Cartesian product of all members of all dimensions. It must be supplemented
with a set of combinations that contain the special value “Not in use” for some
dimensions, for which this value is acceptable. From this set it should be excluded
those combinations which can be obtained by replacing the special value “Not
in use” by the member. This approach can be used in case the set SPMC(H)
has a complex structure and it may be offered a simple algorithm of forming a
subset Q.

4 Method of Construction of Set of Possible Member
Combinations

We can propose the algorithm of SPMC description basing on the cluster app-
roach and consisting of the following steps:

1. Allocate the n semantic components (n≥ 1) within the observed phenomenon
and juxtapose these components with the subsets of combinations Qi, i =
1, ..., n;
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2. Construct a formula for SPMC(H) using Qi and operations of set the-
ory according to the revealed relationships between the components of the
observed phenomenon;

3. Form a subset of combinations for each Qi:
(a) perform the analysis of pairwise relations between the dimensions corre-

sponding to Qi semantics, and form the groups of members expressing
these relations;

(b) allocate the layers of dimensions in a set of dimensions and build the
dimensions connectivity diagram for each layer;

(c) make the subdivision of the groups of members specified in layers accord-
ing to the relations available from the diagrams of layers connectivity;

(d) realize the formation of clusters of member combinations and consolida-
tion of these clusters in subsets of combinations for layers;

(e) execute the formation of a subset of Qi combinations by the Cartesian
product of subsets of combinations for the dimensional layers;

4. Calculate the SPMC(H) using the constructed formula.

5 Conclusion

In case of the development of large multiple-aspect multidimensional informa-
tion system the use of the cluster approach for describing the set of possible
member combinations allows to provide the compactness while specifying the
metadata and to express the semantics of the analyzed phenomenon observed.
The proposed approach is based on the identification of relations between the
dimensions which reflect the properties of the observed phenomenon, and on the
formation of the groups of members which elements are united by the similar
behavior towards these relations.
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In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737,
pp. 14–23. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45228-7 3. ISBN
978-3-540-40807-9

10. Salmam, F.Z., Fakir, M., Errattahi, R.: Prediction in OLAP data cubes. J. Inf.
Knowl. Manag. 15, 449–458 (2016)

11. Romero, O., Pedersen, T.B., Berlanga, R., Nebot, V., Aramburu, M.J., Simitsis, A.:
Using semantic web technologies for exploratory OLAP: a survey. IEEE Trans.
Knowl. Data Eng. 27, 571–588 (2015)

12. Gomez, L.I., Gomez, S.A., Vaisman, A.: A generic data model and query language
for spatiotemporal OLAP cube analysis. In: Proceedings of the 15-th International
Conference on Extending Database Technology – EDBT 2012, pp. 300–311, Berlin
(2012). ISBN: 978-1-4503-0790-1

13. Tsai, M.-F., Chu, W.: A multidimensional aggregation object (MAO) framework
for computing distributive aggregations. In: Kambayashi, Y., Mohania, M., Wöß,
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