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GEODIM: A Semantic Model-Based
System for 3D Recognition of Industrial
Scenes
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Ángel García Crespo and Cynthya García de Jesús

Abstract Keeping an inventory of the facilities within a factory implies high costs in
terms of time, effort, and knowledge, since it demands the detailed, orderly, and
valued description of the items within the plant. One way to accomplish this task
within scanned industrial scenes is through the combination of an object recognition
algorithm with semantic technology. This research therefore introduces GEODIM, a
semantic model-based system for recognition of 3D scenes of indoor spaces in
factories. The system relies on the two aforementioned technologies to describe
industrial digital scenes with logical, physical, and semantic information. GEODIM
extends the functionality of traditional object recognition algorithms by incorporat-
ing semantics in order to identify and characterize recognized geometric primitives
along with rules for the composition of real objects. This research also describes a real
case where GEODIM processes were applied and presents its qualitative evaluation.

Keywords Semantic rules � Recognized geometric primitives � Industrial scenes

7.1 Introduction

Describing in digital scenes what humans perceive by themselves is challenging,
due to the large amount of information that must be handled in different contexts.
Although several studies such as [1–10] have addressed 3D object recognition with
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excellent results, they may lack from semantic information to describe these
objects.

According to [11], an inventory is a detailed, orderly, and valued relationship
between elements that make up the assets of a company or person at a given time. It
is detailed because the characteristics of each of the elements that integrate the
patrimony are specified. It is considered orderly since it groups elements in their
respective accounts. Finally, an inventory is valued because the value of every asset
is expressed in units.

This research paper was carried out from an industrial approach. It focuses on
the description of industrial scenes to create inventories of the elements that
compose them. However, the analysis of such scenes may face certain difficulties,
such as the size of the plant, the diversity of elements to recognize, or their amount.
Also, in the real world, creating an inventory of the facilities of a factory implies
several visits to the plant in order to identify and verify all the elements. Therefore,
GEODIM aims to create a digital 3D mockup from a scanned 3D point cloud of a
medium-large size industrial facility. This model includes all the information
required to be familiar with all the types of objects involved and their features.

As proof of concept, GEODIM is applied to the 3D point cloud of the facility,
and an enriched digital mockup with logical, physical, and semantic information is
obtained as a result. The real case for this study involves the real indoor scene of an
actual factory, and two evaluations are presented to assess the quality of classifi-
cation of GEODIM.

The remainder of this research is thus structured as follows: Sect. 7.2 describes
recent advances in the state of the art on object recognition and semantics in object
recognition. Then, GEODIM is described in Sect. 7.3, while the real use case and
the evaluation of the system are described in Sects. 7.4 and 7.5, respectively.
Finally conclusions and future work are addressed in the Sect. 7.6.

7.2 State of the Art

Scenes of indoor factory facilities, building scenes, or even generation of product
models, are examples of digital models in the industrial sector. Many efforts have
been currently made to create these digital mockups in different contexts and with
different objectives. Nevertheless, although their generation is a significant advance,
they have failed to describe scenes from a semantic sense. The challenge now is
therefore to describe the environment seen in a virtual scene in such a way that its
physical and semantic properties are detailed.

Due to the nature of this research, the state of the art has been divided into a
couple of subsections to describe the two main processes involved in GEODIM:
object recognition and semantics in object recognition.
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7.2.1 Object Recognition

Every method for 3D object recognition has special features depending on the
domain or field where it is used. For instance, authors in [1] presented a technique
for the recognition and reconstruction of surfaces from 3D data by applying line
element geometry. Also, researchers in [2] modeled a gesturing hand through the
use of key geometrical features of a hand and by constructing a skeletal hand
model. Similarly, the work of [3] described a biometric-based security system using
hand recognition. In general, the system relied on abductive learning and hand
geometric features.

Other examples are the study presented by [4], where authors made use of color
information to improve content-based retrieval of 3D models, and the work of [5],
who incorporated highly discriminative affine invariant 3D information much ear-
lier in the process of matching. Also, an approach for recognizing 3D objects was
described by [6], where authors employed model synthesis to define a large number
of possible geometric interpretations of images.

In addition, system identification was used for an emotion recognition model in
[7]. The model included an extended Kohonen self-organizing map created by
using a 26-dimensional facial geometric feature vector. On the other hand,
researchers in [8] analyzed the detection effect of classic edge detection operators in
infrared images. In the same year, a features recognition system was also proposed
by [10], where the object-oriented structure was used for the generation of a geo-
metric database. Finally, the work of [9] introduced a hybrid system that combined
probabilistic graphical models with semantic knowledge for objects recognition in
order to identify object in scenes for intelligent mobile robots.

Table 7.1 compares the different object recognition algorithms present in the
literature. Although works [1, 8, 10] analyzed scenes and images by considering
geometrical features of the objects and also detected existing objects, these studies
failed to recognize such items. Similarly, in the area of Biometrics, despite positive

Table 7.1 Comparison of object recognition algorithms

Authors Type of analysis Semantics

Reconstruction Detection Recognition

[1] ✓ ✓ ✗

[2] ✓ ✗

[3] ✓ ✗

[4] ✓ ✗

[5] ✓ ✗

[6] ✓ ✗

[7] ✓ ✗

[8] ✓ ✗

[9] ✓ ✓

[10] ✓ ✗
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results obtained in the contexts of hand and emotion analysis, works [2, 3, 7]
limited to object recognition without a semantic sense. They could have thus
extended their functionality to meet extra information of the people identified based
on semantic models. Meanwhile, works by [5, 6] considered the geometric features
of objects as discriminant classification, while [4] relied on their color. However,
none of these studies managed to provide a semantic meaning to those elements.
Therefore, it is crucial to go beyond object recognition and expand the functionality
of models, so they can describe a digital scene just as people perceive it. Similar to
GEODIM, research by [9] relied on object recognition and used ontologies.
However, the work made inferences by analyzing the context of the scenes sup-
ported by a knowledge base, such as: How long should a table measure so it can be
considered as such? This type of knowledge is not applicable to GEODIM system,
since tubes and objects from industrial scenes largely vary in size, although their
shape is consistent. Therefore, identifying cylinders, tori, and spheres is valuable.
GEODIM actually applies semantic rules to validate and correct the classification of
objects and creates their topology. Furthermore, it is possible to extend its semantic
meaning to connect to external ontologies.

7.2.2 Semantic on Object Recognition

As previously mentioned, GEODIM seeks to extend the object recognition process
to enrich data obtained semantically in order to ease the inventory making process
in factories. From this perspective, ten relevant works were found in the literature
review within the scope of semantic technologies applied to 3D recognition.

First, authors in [12] proposed a feedback algorithm based on supervised feature
extraction techniques; the algorithm used relevant feedback to retrieve
semantically-similar objects. Also, a visual system was introduced by [13] to
identify objects based on their functionality in an unknown terrain. Moreover,
within the area of urban environments, a system for recognizing objects in 3D point
clouds was described by [14]. The system recognized small objects in city scans.

A system for building object maps of indoor household environments was also
developed by authors in [15], and the system relied on techniques for statistical
analysis and feature extraction. Similarly, authors in [16] considered the spatial
relationships between geometric primitives as part of the definition of the object and
used ontological reasoning to solve the classification through SWRL rules.
Likewise, a dataset called IAIR-CarPed was introduced by [17], which is the
fine-grained and layered object recognition dataset with human annotations.

Recently, researchers in [18] developed a knowledge-based detection approach
of 3D objects using the OWL ontology language known as WiDOP, which used
VRML language to define the ontology of an indexed scene. In addition [19],
introduced a framework that recognized materials on the surface of an object. The
framework aimed to resolve the multi-label material recognition issue by exploiting
object information. In that same year, a semantic mapping approach called
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ASCCbot was also proposed by [20]. It relied on human activity recognition in a
human–robot coexisting environment and enabled to create metric maps. Finally,
researchers in [21] focused on the development of a framework that used top-down
information to estimate the 3D indoor layout from a single image. The framework
employed a semantic segmentation feature and an orientation map.

Table 7.2 compares algorithms of those studies that used semantics in object
recognition. Although papers mentioned relied on semantics in different contexts,
they limited themselves to labeling. On the other hand, GEODIM has the ability to
provide semantic meaning to objects through the use of ontologies, so it is also
possible to make inferences, obtain valuable information from the proposed model,
or even go further, since the ontology of GEODIM can be linked to external sources
of semantic information. On the one hand, Table 7.2 shows that, while studies from
[12, 14, 15, 19] managed to identify elements within scanned scenes, they did not
provide a semantic meaning to the segments. Consequently, they were unable to
make inferences between elements or additional relevant information. On the other
hand, not only does GEODIM make annotations to objects by means of tags, but it
also provides these objects with a semantic meaning and describes their main
features according to their type. From another perspective, research in [13, 20]
created representation of spatial relations and maps by human-user and human–
robot interactions, respectively. Likewise, GEODIM creates spatial relations of the
objects by using Jena rules in order to define the topology of the elements of the
scene. Moreover, its functionality is extended when the system adds extra infor-
mation to objects in order to enrich the scanned scenes. The study by [21] was a
much closer approach to our work, although the difference is that GEODIM ana-
lyzes scenes formed by clouds of points and does not train the model to classify.
GEODIM also calculates the geometric characteristics of the objects, which allows
it to migrate to other scenarios without needing so many changes in the core. The
semantics is applied to infer topological position of the elements and correct
classification problems. Moreover, the system provides the user with a better idea of
the actual scene by having it fully available, instead of projecting a simple

Table 7.2 Comparison of
semantic recognition
algorithms

Authors Type of analysis Semantic by Tagging

Recognition Detect

[12] ✓ ✓

[13] ✗ ✓ ✓

[14] ✓ ✓

[15] ✓ ✓

[16] ✓ ✓

[17] ✓ ✓

[18] ✗ ✓ ✓

[19] ✓ ✓

[20] ✗ ✓ ✓

[21] ✓ ✓
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incomplete image. With all this in mind, GEODIM innovates in terms of extending
the operation of recognition algorithms reported in the literature by using the
semantics of objects to improve their classification within a 3D point cloud.

This paper presents an extension of a conceptual model for the representation of
digital mockups. The proposed model serves as a basis for the exchange of logical,
physical, and semantic information of objects through a method of inverse engi-
neering and by applying semantic technology and calculating spatial relationships.
The model is able to recognize complex shapes from a 3D point cloud obtained
from real objects in factories.

7.3 GEODIM Overview

GEODIM is an algorithm able to enrich models of indoor scenes of factories with
logical, physical, and semantic information of the objects involved and by means of
two processes: recognition of geometric primitives and semantic enrichment. These
processes depicted in Fig. 7.1 are supported by a semantic model that contains all
the information obtained through the execution of the algorithm. These processes
and the model are described in the sections below.

Figure 7.2 depicts the workflow of GEODIM system, which starts by (1) re-
ceiving a point cloud of a real scene from a laser scanner. The process of geometric
primitives recognition (:PrimitivesRecognition) analyzes the point cloud and then
segments it in order to generate a simple classification of its elements (without
semantic sense) and create a list of segments (2). From that point on, the semantic
enrichment process calculates (3) specific properties according to their shape in
(:GeometricFeatures), such as the trajectory, length, and diameter. Then, the list of
(4) segments and their geometric features is sent to (:Topology) and (5) the spatial
relationship of the segments are calculated by applying sematic rules. Afterward,
the segments with their topology calculated by semantic rules are (6) sent to
(:SemanticValidation). This task avoids issues of over- and under-segmentation of
building primitives by (7) joining some segments or deleting others, so it is nec-
essary to complete (8) the list of segments with spatial relationships and (9) recal-
culate in (:GeometricFeatures) the geometric features of the new segments formed.
The result (10) is validated in (:ValidationByExperts), where expert users can
(11) modify relationships as they deem appropriate. The list of modified-by-the-
expert-user segments (12) is sent back to (:ValidationByExperts). Finally, all this
calculated data are handled by (13) the Ontology Manager, which populates
(14) the proposed ontology. The result would thus be a logical, physical, and
semantic representation of a digital mockup obtained from real objects within an
industrial environment. A more comprehensive description of the processes of the
GEODIM algorithm is provided in the following section.
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7.3.1 Process of Geometric Primitives Recognition

This process segments the point cloud according to its geometric characteristics.
The entry of this process is the complete point cloud and the output is a list of
objects segmented according to their geometric features. The geometric primitives
analyzed by this process are cylinders, tori, and spheres.

Fig. 7.1 Architecture of GEODIM
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The semi-automatic process of recognizing geometric primitives in GEODIM
was inspired by the work of authors in [22]. However, certain characteristics were
adapted to the needs of this new system. GEODIM is categorized as a
semi-automatic model, because it suggests a classification of objects into the point
cloud, but this classification can be modified according to the knowledge of experts.
The process of geometric primitives recognition is therefore composed of two
sub-processes, Preprocess and Classification, which are described below.

a. Preprocess. It seeks to reduce the information to improve the quality of the
original scene [23]. In GEODIM duplicated information was removed and points
were ordered with a space-partitioning data structure, i.e., a Kd-tree structure.
Normal values were also calculated to support the Classification sub-process.

b. Classification. It converts raw data into meaningful, useful, and understandable
information [24]. Every object in GEODIM is classified with its corresponding
geometric primitive according to its features, which are in turn obtained by
calculating the percentage of fit of each primitive (cylinder, tori, sphere, and
plane). These percentages are evaluated and the primitive type with the highest
percentage of fit is selected and assigned to its corresponding object. The
combination of geometric primitives allows for the generation of complex
geometric shapes that describe real-world objects.

Fig. 7.2 Workflow of GEODIM
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Since this research centers on industrial environments, every primitive has been
assigned to a real element according to their similarity by semantic rules, which are
described in the next section. Up to this point, GEODIM has a cloud of segmented
points, and each segment is assigned to a class of primitive. In other words,
GEODIM has created the logical representation of the scene. This list of segmented
objects is the entry for the next process.

7.3.2 Semantic Enrichment Process

As entry, this process counts on a list of objects segmented according to their
geometric characteristics, and as output, it provides with a logical, physical, and
semantic representation of a digital mockup. To achieve this, GEODIM calculates
the geometric properties of objects and their topologies, but it also semantically
verifies the possible issues with over- and under-segmentation of building primi-
tives by applying semantic rules.

Calculating geometric features and spatial relationships allows for the description
of objects in a logical, physical, and semantic form. On the one hand, geometric
features such as height, width, perimeter, and radius are considered logical infor-
mation to GEODIM. On the other hand, spatial relationships and properties such as
position, size, or number of points are viewed as physical information. Finally,
semantic information for GEODIM involves matching every object with its corre-
sponding element in the ontology proposed into the semanticmodel. However,merely
the first two (logical and physical) tasks are calculated in the semantic enrichment
process, while semantic information is described in “The topology of objects” [26].

a. Calculating geometric characteristics. This sub-process calculates specific
geometric properties (trajectory, length, diameter, height, radius, etc.) according
to the type of geometric primitive (cylinder, plane, torus, and sphere). All this
information is stored based on the definition of the proposed ontology. Table 7.3
shows the geometric properties selected for every type of geometric primitive.

b. Calculating topology. Topology is a mathematical model used to define the
location of and relationships between entities [25]. A topological 3D model
should always be designed for specific requirements according to the application,
due to its complexity and variation [26]. For this reason, GEODIM describes the

Table 7.3 Geometric properties allowed for every geometric primitive

Primitive Number
of points

Length Height Radius Diameter Minor
radius

Major
radius

Cylinder ✓ ✓ ✓ ✓ ✓

Torus ✓ ✓ ✓ ✓

Sphere ✓ ✓ ✓

Plane ✓ ✓ ✓
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topology of objects by means of two concepts: spatial representation and spatial
relationships via the design of semantic rules, depending on aspects such as the
type of object and relationships permitted in the real world. To accomplish all
assertions and constrains, different semantic rules were created and organized into
three groups: (I) Spatial Relationship rules, (II) Spatial Representation rules, and
(III) Redundant Shapes rules and Union of Shapes rules.

I. Spatial representations. In this case, “Meet, Overlap, Equal, Inside, and
Contains” are the five spatial representations for two simple 3D objects
without embedded holes selected for GEODIM. These are the most common
relationships in industrial scenes. Table 7.4 shows the spatial representations
that may exist in industrial scenes. For instance, to GEODIM spatial rela-
tionships between two pipes can only be of type Overlap, Equal, Inside, and
Contains. However, the same pipe may have Overlap and Meet spatial rep-
resentations with an elbow.

The assertions and constraints that describe the spatial relationships are verified
in GEODIM by semantic rules, which were created and added to the semantic
model. There is a rule for every combination according to the objects participating
in the relationship. An example of this type of rules is described below.

A spatial representation Meet or Overlap of a pipe is valid if—and only if—the
pipe has free connections, the Relatum is an elbow, a pipe, or a tee, and if there is a
spatial relationship type Meet between them of at least 10% of their points.

SRP-Pipe-Elbow:

(?i rdf:type ont:SpatialRelation) ^ (?i ont:has_a_relatum ?rel) ^

(?i ont:has_a_referent ?ref) ^ (?rel rdf:type ont:Elbow) ^

(?ref rdf:type ont:Pipe) ^ (?ref ont:number_connections ?num) ^

lessThan(?num; 3) ^ (?i ont:hassome ?adj) ^

(?adj rdf : type ont:Total_Adjacency) ^ (?adj ont: percentage ?per) ^

greaterThan(?per; 10) ^ (?i ont:has_some ?adjs) ^

(?adjs rdf:type ont:Side_Adjacency) ^ (?adjs ont:isValid ont : TRUE)

→ (?adj ont:isValid ont : TRUE)

Table 7.4 Spatial
representations allowed for
each entity

Object Pipe Elbow Tee Valve Plane

Pipe O, E, I, C O, M O, M O, M

Elbow O, M E, I, C

Tee O, M E, I, C O, M

Valve O, M E

Plane O, M E

O Overlap, E Equal, I Inside, C Contains, M Meet
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SRP-Pipe-Elbow rule describes the conditions for the relationship between a
pipe and an elbow. The rule verifies conditions about spatial relationship, adja-
cency, and the adjacency type of this relationship. In this case, an elbow is nec-
essary as Relatum and a pipe as reference. If the pipe has free connections, 10% or
more should be the percentage of total adjacency in this relationship and a valid
one.

II. Spatial relationships. Spatial relationships between objects are described
according to the position of the first relative object called Referent towards
intrinsic orientation of another object called Relatum. In a relative reference
system, the relative position of a Referent toward its Relatum is described from
the point of view of a third position called the Origin [13]. That is, the relative
spatial position of an object depends on the viewing angle from which it is
observed and its sensitivity to the rotation angle of the figure. Hence, for this
model the Origin is equal to the position of the laser with respect to the scene.
In GEODIM, the spatial relationships of objects are described by “Front,”
“Back,” “Left,” “Right,” “Above,” and “Below,” a reference system of
projective-relative relationships [27–30]. From this perspective, and considering
that GEODIM is focused on the analysis of industrial scenes, elements to rec-
ognize have been limited to pipes, elbows, tees, and valves. Therefore, not all
spatial relationships are permitted. Table 7.5 introduces the possible relation-
ships for every Referent object according to its real features with its expected
Relatum. For instance, a tube may have only two connections, which can be
elbows or tees, while a valve has only one connection, since valves are usually
only connected to tees.

Different spatial relationship rules were created, which are responsible for
constructing spatial relationships between two objects called A and B. The fol-
lowing example shows the semantic rule for the relationship LEFT, considering that
the remaining spatial relationships have similar behaviors.

Table 7.5 Spatial
relationships for GEODIM

Referent Possible
relations

Relatum expected

Pipe 2 Elbow, Tee, or Plane

Elbow 2 Pipe

Tee 3 2 Pipes and 1 valve, or 3
pipes

Valve 1 Tee

Plane n Pipe, or Plane
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A connection type A Left B is valid if—and only if—the left points of Shape A
are at least 90% close to the right points of Shape B.

SRL-Left:

(?i ont:percentage ?x) ^ greaterThan(?x; 90) ^

(?i ont:refers_to_side ont:SIDE_LEFT) ^ (?i rdf:type ont:Side_Adjacency)

→ (?i ont:isValid ont:TRUE)

SRL-Left rule describes the conditions for the relationship between a pipe and a
tee. The rule verifies conditions about the adjacency of the relationship; 90% or
more should be the percentage of adjacency in this relationship and an adjacency
type = LEFT.

III. Semantic validation. Results from the recognition process of geometric
primitives sometimes contain some over- and under-segmentation problems.
GEODIM tries to avoid these issues through two types of semantic rules:
Redundant Shapes and Union of Shapes rules. The former prevent
over-segmentation by identifying the elements with the issue and joining them
together as a single segment. The latter focuses on the same issue but under
different conditions; it seeks the over-segmentation of objects that compose a
real element. GEODIM has a Redundant Shapes rule for every type of com-
bination of elements. The rule for two elbows is showed below as an example.

Combine segments A and B if—and only if—the Referent A and the Relatum B
are of the same type, their centroids are at least 95% close, and all points are at least
85% close. That is, if A Equals B, A Inside B, or A Contains B.

RS-Elbow-Elbow:

(?i rdf : type ont : SpatialRelation) ^ (?i ont : has a relatum ?rel) ^

(?i ont : has a referent ?ref) ^ (?rel rdf : type ont : Elbow) ^

(?ref rdf : type ont : Elbow) ^ (?i ont : has some ?adj) ^

(?adj rdf : type ont : TotalAdjacency) ^ (?adj ont : percentage ?per) ^

greaterThan(?per; 85) ^ (?rel ont : has some ?cd) ^

(?cd rdf : type ont:CentroidDistance) ^ (?cd ont : percentage ?cdP erc) ^

greaterThan(?cdP erc; 95)

→ (?adj ont : isV alid ont : TRUE)

The RS-Elbow-Elbow rule describes the conditions for the relationship between
two redundant elbows. The rule verifies conditions about spatial relationship,
adjacency, and the centroids of the objects. Two Elbows as Relatum and as
Reference are verified, 85% or more should be the percentage of total adjacency in
this relationship, and the centroids between the two elbows should be 95% close.

Over-segmentation of segments belonging to the same cylinder has been
observed as a result of primitives recognition algorithms. As previously stated,
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GEODIM seeks to abolish these incorrectly classified segments and join the points
in a single segment by means of Union Shapes rules:

Join segments if – and only if – the Referent A and the Relatum B are pipes and have a
spatial representation Meet or Overlap.

US-Pipe-Pipe:

(?i rdf : type ont : SpatialRelation) ^ (?i ont : has a relatum ?rel) ^

(?i ont : has a referent ?ref) ^ (?rel rdf : type ont : Pipe) ^

(?ref rdf : type ont : Pipe) ^ (?i ont : hassome ?adj) ^

(?adj rdf : type ont : Total Adjacency) ^ (?adj ont : percentage ?per) ^

greaterThan(?per; 10) ^ (?i ont : has some ?adjs) ^

(?adjs rdf : type ont : Side Adjacency) ^ (?adjs ont : isV alid ont : TRUE)

→ (?adj ont : isV alid ont : TRUE)

The US-Pipe-Pipe rule shows the conditions for the relationship between two
connected pipes. The rule verifies conditions of spatial relationship, adjacency, and
adjacency side. Both the Relatum and the Referent are pipes, and 10% or more
should be both the percentage of total adjacency in this relationship and a valid
adjacency percentage.

c. Validation by experts. GEODIM is a semi-automatic model that suggests a
classification of objects into the point cloud. In this sub-process an expert can
modify items according to his/her knowledge. The expert can thus reclassify
objects, delete them, or modify their properties. This sub-process was considered
to support the quality of data classification.

7.3.3 Semantic Model

Semantic modeling helps define data in entities and their relationships. The set of
entities of the proposed semantic model includes a taxonomy of classes used to
support GEODIM in the representation of a digital scene as it is perceived in the
real world. This approach is represented by an ontology. Figure 7.3 shows the
semantic model proposed by GEODIM, which faithfully represents the behavior of
the entities and their relationships in a real industrial scene, including assertions and
limitations.

Table 7.6 describes the main elements of the proposed ontology.
The combination of geometric primitives allows for the generation of complex

geometric figures that describe real-world objects. This ontology defines the objects
(and their topology) recognized by the proposed model and it can link to external
ontologies that will enrich the semantic meaning of such items.
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7.4 A Real Use Case: Objects Recognition in an Industrial
Facility

This section describes the real use case that shows the functionality of GEODIM by
explaining the stages of 3D reconstruction process. The problem is described
below:

A great number of industrial facilities nowadays were built during the decades of
1960, 1970, or even 1980. Therefore, their plans have always been available in 2D,
which makes them outdated and obsolete for today’s needs due to continuous
modifications, additions, or alterations that those establishments have suffered. As a
result, the maintenance, reparation, and expansion of these places may become an
extremely expensive, laborious, and—to a great extent—dangerous task. Since it is
impossible to be completely familiar with the exact type, number, location, or
dimension of objects, foremen and/or builders usually must leave the field and
observe. This delays works and implies extra working hours. However, the solution
to this issue is scanning inside the industrial facilities and recognizing existing
objects with the help of GEODIM.

GEODIM was therefore employed in the use case for the creation of a digital 3D
mockup from a scanned 3D point cloud of an industrial facility of medium-large
size. Figure 7.4 represents the 360° view of a section of the industrial facility,
which has 2,884,079 points. First, the shapes that GEODIM had to recognize for
this studio were pipes and planes. Such information was useful to create more
intelligent objects and enrich the 3D digital mockup.

The two main process of GEODIM, primitives recognition and semantic
enrichment, are now described:

Fig. 7.3 GEODIM ontology
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Table 7.6 Description of ontology

Entity Description

PointCloud The PointCloud object represents a set of points in a three-dimensional
coordinate system, which describes a real-world scene

Centroid It describes a point in the three-dimensional coordinate system that is
located just at the center of an object

Voxel It represents a grid in 3D space on the cloud of points. A Voxel object
delimits, under spatial boundaries, a Shape belonging to the point cloud

Shape It is a three-dimensional geometric object that occupies a place in space.
A shape is classified as Surface or Volumetric. Every Shape element belongs
to a particular CloudPoint

SpatialRelation It describes spatial interactions between a Referent and a Relatum

Surface It is a type of Shape describing an object that has length and width

Plane It is a surface composed of points following a same direction. It is easy to
find planar objects in the real world. Examples are tables, ceilings, walls,
sidewalks, streets, and paper sheets

Volumetric It describes a three-dimensional geometric Shape that has volume.
A Volumetric element can be of type Sphere, Torus, Cone, or Cylinder

Sphere It describes all elements having a spherical surface. Spheres can be found in
both artificial environments and nature. A ball, a lemon, a doorknob, and a
light bulb are examples of spheres

Torus It is an element of the ontology describing a small circle that turns along a
line drawn by another circle. Many real-life objects have a torus, such as
donuts, a Roman cushion, a tire, or a light bulb

Cylinder It describes elements formed by the simplest curves created by moving a
straight line around the circumference of a circle. It is possible to find a
cylinder in the real world in form of bottles, soda cans, columns, and pipes,
for instance

Fig. 7.4 Industrial point cloud
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7.4.1 Recognition Process of Geometric Primitives

In this process the scene was segmented according to its geometric properties by the
primitive recognition algorithm (detailed description of this algorithm is beyond the
scope of this paper). Table 7.7 summarizes segments obtained by the algorithm.

At this stage GEODIM has a list of classified elements belonging to the real
industrial scene without semantic sense. That is, GEODIM has created the logical
representation of the scene. The next step is the semantic enrichment process.

7.4.2 Semantic Enrichment Process

In this process GEODIM calculated extra information into describe the industrial
scene with logical, physical, and semantic information by applying the following
four sub-processes:

(a) Calculating geometric characteristics. GEODIM calculated specific geo-
metric properties for every element of the list previously obtained. The system
calculated the properties according to restrictions showed in Table 7.3, and it
generated a list of elements classified with logical information.

(b) Calculating topology. The topology in GEODIM is defined by calculating
spatial relationship, spatial representation, and a semantic validation of ele-
ments that belong to the point cloud by using semantic rules. The spatial
relationship rules were applied for this use case to clarify the obtained result.
An example of a created spatial relationships is presented: the relationships of
plane_006 are detailed by a graphic and a scheme. In the real world, plane_006
represented the floor of the industrial walkway surrounded by two handrails;
tubes represented the basis of these handrails. Figure 7.5 shows six spatial
relationships created for plane_006 type ABOVE with 6 pipes: pipe_150,
pipe_153, pipe_066, pipe_056, pipe_035, and pipe_033.

Next, the spatial representations (Meet, Overlap, Equal, Inside, and Contains) of
elements were calculated by applying Spatial Representations rules. A visual
example of the created spatial relationship is shown in Fig. 7.6, where a real
industrial walkway is shown. This walkway was composed of different objects, six

Table 7.7 Classified segments

Size (number of
points)

Primitive Total
segments

Segments classified
correctly

Success rate
(%)

2,884,079 Cylinder 112 103 86

Planes 49 8 88

Tori 0 0 0

Total 161 111 68
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of which are depicted. Therefore, pipe_017 has four spatial representations type
MEET with pipe_101, pipe_085, pipe_056, and with pipe_014, which in turn has a
spatial representation with pipe_119.

Semantic validation tries to avoid issues in the process of geometric primitives
recognition in terms of over- and under-segmentation. Figure 7.7 shows a sample of
over-segmentation, where pipe_017 and pipe_075 stood for the same real object
and had a spatial representation type EQUAL. Once the Semantic Validation rules
were applied, the elements with a spatial representation type EQUAL were joined,
creating only one element. In this example, the brand new element created was
called pipe_u017.

Up to this moment, GEODIM always has an industrial scene with an extra
definition of logical, physical, and semantic information. However, certain errors of
classification or semantics may still exist. An expert validation is thus needed.

(a) Validation by experts. Expert users checked the elements in order to verify the
classifications, properties, and the topology. They could correct any faults
within the semantic model according to their experience. Figure 7.8 shows a
classification error modified by the expert in the plane classification.

After all corrections, the semantic enrichment process was repeated until
information was correct according to the viewpoint of experts. The final result of
GEODIM was an industrial scene described with logical, physical, and semantic

Fig. 7.5 Result of spatial relationships

Fig. 7.6 Result of spatial representations
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information. This model enabled the description of all objects into the industrial
scene via semantic modeling. Figure 7.9 shows a portion of the final result after the
use of GEODIM. The end result of GEODIM was the logical, physical, and
semantic description of the elements that comprised the scanned point cloud. All
this information allowed for the creation of the industrial inventory required by the
factory.

Fig. 7.7 Result from semantic validation

Fig. 7.8 Error recognition process

Fig. 7.9 Portion of the final result with GEODIM implementation
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7.5 Evaluation

Evaluating a geometric primitives recognition system is not an easy task. Literature
carried out for this research managed to describe and carry out different types of
evaluations, although these cannot always be useful for other systems. Algorithms
evaluation actually varies depending on diverse factors, such as the amount of
points in the point cloud, density, or the type of elements involved. However, from
a general perspective, two different methods are possible to assess software and
tools:

(a) Quantitative evaluation methods. They are based on the assumption that the
software product has at least a measurable property that can change as a result
of using the methods/tools to be evaluated. Quantitative evaluations can be
developed in three different ways: case studies, formal experiments, and sur-
veys. For instance, authors in [31] introduced experiments to validate the
effectiveness of their proposed QDFT descriptor under geometric transforma-
tion. Similarly, the one-versus-rest multiclass classification experiments was
addressed by [32], where true and false samples were labeled differently.
Authors used accuracy rates to evaluate the performance of different methods.
Furthermore [33], proposed a performance comparison of their work and pre-
sented seven other studies. The comparison aimed at measuring average pre-
cision. Finally, authors in [9] discussed the success of object recognition of the
research, and different aspects were measured, such as the inclusion of con-
textual information about the objects, their geometric and appearance features,
and their classification based on their type. Metrics used were precision and
recall.

(b) Qualitative methods. The term Feature Analysis is used in literature to describe
a qualitative evaluation, which is based on (1) identifying the requirements that
users have for a particular task or activity and (2) mapping those requirements
to features that a method/tool aimed at supporting that task/activity should
possess. An example of this qualitative assessment is the qualitative compar-
ison provided by [34], where two methods were analyzed. In total, 31 clusters
were extracted out of the computed hierarchy for a particular model. Then,
results from the two methods were compared to determine which one managed
to generate the best stylized model.

In the end, a quantitative approach was selected to evaluate the quality of
classification of GEODIM. Measurements employed were: Segments Classified and
Segments Classified Correctly; i.e., true positive (TP), false positive (FP), false
negative (FN), precision (P), and recall (R). Two evaluations were proposed. The
former was used for the classification results in the process of geometric primitives
recognition, whilst the latter was carried out for the final results of GEODIM in
order to compare results and demonstrate how GEODIM improved the traditional
classification in an industrial point cloud.
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Segments Classified referred to the number of segmented elements belonging to
the original point cloud, while Segments Classified Correctly or TP concerned those
segments correctly classified according to their geometric properties. Similarly, FP
stood for segments incorrectly classified, whilst FN comprised segments not clas-
sified based on their corresponding geometric primitive. Also, in this case P and R
were defined as a set of classified segments and a set of relevant segments. That is,
P referred to the fraction of classified segments relevant to the process, while R
indicated the fraction of the segments relevant to the process but which were also
successfully classified.

P ¼ TP= TPþ FPð Þ: ð7:1Þ

R ¼ TP= TPþ FNð Þ ð7:2Þ

Table 7.8 shows the result from the process of geometric primitives recognition.
The point cloud was segmented in 161 elements, most of which were cylinders and
planes, in addition to some tori elements. The table shows low precision and recall
metrics, since the algorithm misclassified 32 elements as tori. In the case of
cylinders, precision P was 0.86, whilst planes had a precision of 0.88, although its
recall measure was low due to 41 elements that were incorrectly classified. In total,
this method had a precision of 0.69 and a recall of 0.68.

The implementation of the semantic enrichment process of GEODIM improved
these results, such as Table 7.9 shows. It can be observed from the new table that
precision and recall for cylinders and planes became 100%. However, certain

Table 7.8 Results from object recognition process

S Primitive TS TP FN FP P R

2,884,079 Cylinders 112 103 9 16 0.86 0.92

Planes 49 8 41 1 0.88 0.16

Tori 0 0 0 32 0 0

Total 161 111 50 49 0.69 0.68

S Size of point cloud, TS Total of segments, TP True Positive, FP False Positive, P Precision,
R Recall

Table 7.9 Results from semantic enrichment process

S Primitive TS TP FN FP P R

2,884,079 Cylinders 84 84 0 0 1 1

Planes 41 41 0 0 1 1

Tori 0 0 0 18 0 0

Total 125 125 0 18 0.87 1

S Size of point cloud, TS Total of segments, TP True Positive, FP False Positive, P Precision,
R Recall
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elements were still misclassified, since they were sets of points that did not fit any
geometric primitive analyzed. This can be considered as lost information, and, for
this reason, precision in the process was 87%. The table also shows that the total
number of segments decreased due to the semantic validation process, wherein the
over-segmentation was solved.

7.6 Conclusions and Future Work

This research introduced GEODIM, a semantic model-based system for the
recognition of industrial scenes that creates a conceptual model for semantic rep-
resentation of digital mockups (i.e., a semi-automatic inventory). GEODIM enables
users to enrich models of indoor scenes of factories with logical, physical, and
semantic information by using a semantic model and applying two processes:
geometric primitives recognition and semantic enrichment.

Geometric primitives recognition actually classifies the elements of the scanned
scene according to their geometric characteristics, while the semantic enrichment
process calculates valuable information for every item, including their topology, by
using semantic rules. These rules describe the assertions and restrictions of behavior
in the real world of industrial elements used (pipes, planes, elbows, and valves). To
validate the functionality of GEODIM, the real use case of an industrial facility was
thus introduced, and the research also addressed two quantitative evaluations in
order to show the classification quality of GEODIM.

Results obtained showed that GEODIM does improve the classification of
objects with 87% of success in this case, although elements incorrectly classified
remained present due to under-segmentation issues. Future work will thus seek to
include the composition of complex industrial elements based on the combination
of several recognized objects in order to improve the recognition of a wide range of
both simple and complex real industrial objects. Further research will also aim at
including automatic element recognition to improve the quality of the classification
and enrich industrial scenes. Mechanisms to avoid under-classification of elements
will also be pursued.
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