Chapter 7
Activity Modelling for Low-Intention
Interaction

Alan Dix

Abstract When modelling user interactions, we normally assume that the user is
acting with intention: some very explicit such as opening a valve in a nuclear power
station, others more tacit, hardly needing any thought, for example tipping a tablet
to turn a page. However, there are also a range of system behaviours that make use
of unintentional user actions, where the user acts, but the system decides that the
action has meaning, and how to make use of that meaning. Again, these may
operate on a variety of levels from ‘incidental interactions’, which operate entirely
without the user realising, perhaps subtle changes in search results based on past
activity, to more ‘expected interactions’ such as automatic doors that open as you
approach. For intentional interaction, there is long-standing advice—making sure
that the user can work out what controls do, where information is, interpret the
available information, receive feedback on actions—and also long-standing mod-
elling techniques. Low-intention interactions, where the system has more auton-
omy, require different design strategies and modelling techniques. This chapter
presents early steps in this direction. Crucial to this is the notion of two tasks: the
sensed task, which the system monitors to gain information and the supported task,
which the system augments or aids. First, this chapter demonstrates and develops
techniques in the retrospective modelling of a familiar low-intention interaction
system, car courtesy lights. These techniques are then applied proactively in the
design of a community public display, which is now deployed and in everyday use.
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7.1 Introduction

Mostly, when modelling user interactions, we assume that the user is acting with
intention. Indeed, the presence of a goal is central to Norman’s (1990) influential
‘seven stages’ model. Traditional hierarchical task analysis also starts with a
top-level goal, which then leads to a set of tasks to achieve that goal and sub-tasks
of those top-level tasks. In a more dynamic fashion, means-end analysis decom-
poses by creating sub-goals when plans encounter impasses. Sometimes, these
intentional actions are very explicit, for example opening a valve in a nuclear power
station to alter pressure in the containment vessel; some are ‘implicit’, hardly
needing any thought, for example tipping a tablet to turn a page.

However, there is also a range of system behaviours that make use of unin-
tentional user actions, or to be precise where the use made by the system is not the
primary intention of the action. The most extreme are ‘incidental interactions’. In
these situations, the user’s intention and actions are focused on a primary goal.
Because of these actions, the system is able to gather some direct or sensed
information, which can then be used to help the user or other agents achieve some
secondary goal. Somewhere between these and fully intentional interaction are
‘expected interactions’, for example walking into a room and the automatic light
coming on. You usually enter the room because you want to be inside, but expect
that the light will come on and would be surprised if it did not.

For intentional interaction, there is long-standing advice: make sure that the user
can work out what controls do, where information is, interpret the available
information and receive feedback on actions (e.g. Nielsen’s (1993) ten heuristics or
Shneiderman’s (1998) golden rules). While some of these design principles and
heuristics need interpretation by a graphical, interaction or user experience
designer, others can be operationalised in well-known formal models and formal-
isations of usability principles (e.g. variants of visibility in Dix 1991).

Low-intention interaction is more problematic, as it is not so much a matter of
presenting the user with controls and behaviours that are as clear as possible, but
instead interpreting the user’s actions performed for a variety of other purposes.

This chapter shows how a level of activity modelling can be used in order to
ascertain actions or signs that may already be sensed, or where additional sensors
can be added, so that this provides sufficient information for informed system
action. Context-aware systems do this by creating very explicit system models of
user actions. This chapter, in contrast, will focus on designer models of user
activity, which can then be analysed to reveal potential triggers for automated
action. Crucially, these models need to adopt some level of probabilistic reasoning,
although this may be qualitative.

This chapter starts by explaining in more detail what is meant by ‘low-intention
interaction’, using a series of examples, and this includes the two tasks (sensed and
supported) mentioned above. This is followed by a short review of related literature
including notions of implicit interaction, natural interaction and architectures and
tools to support the design and construction of sensor-rich systems. This leads into a



7 Activity Modelling for Low-Intention Interaction 185

further discussion of design issues for low-intention interaction, notably the way
user models do not necessarily embody the same notions of transparency and
feedback of intentional systems, and the implications for privacy. Finally, this is
brought to bear on the explicit design of low-intention systems centred around the
separate analysis of the sensed task (in order to determine what can be known of the
users’ actions) and of the supported task (in order to determine what are desirable
interventions). The initial motivating example will be car courtesy lights (previ-
ously described in Dix et al. 2004; Dix 2006), as the technique is most well suited
for non-safety critical applications. However, it is then applied to the design of a
deployed public display system, which has since been in operation for several years.

The underlying methods used in this chapter date back over ten years and parts
draw heavily on early work in incidental interaction (Dix 2002), and its incorpo-
ration in the author’s HCI textbook (Dix et al. 2004) and online material (Dix 2006)
on design methods for incidental interaction. Some of the concepts and methods are
developed further and made explicit, but the principal contribution of this chapter is
the reporting of how the techniques were applied in practice in the design of
TireeOpen, the Internet-enabled open sign.

7.2 What Is Low-Intention Interaction?

7.2.1 Intentional and Low-Intention Interaction

As noted, traditional user interaction principles have focused on the user being in
control of precisely what the computer system does. This is at the heart of direct
manipulation (Shneiderman 1982; Hutchins et al. 1986); the system state is rep-
resented faithfully in the user interface, and as the user modifies the representation,
the system immediately updates accordingly. Norman’s seven-stage model of
interaction starts with a goal, and the user translates this into actions on the system
and then evaluates the results of the action. Users are assumed to know what they
want to do, and the computer’s job is to perform the actions requested as reliably
and transparently as possible.

Intentional systems may use intelligent algorithms. For example, the Kinect uses
complex vision processing to work out your body position and gestures, but this
is in order to be able to accurately understand your intended movements, say to
swing a golf club. The goal and the intent lie clearly with the user, and the system
merely works to enact or interpret the user’s intention.

In contrast, some autonomic systems operate at such a level that the user may be
unaware that they are doing anything at all. For example, an intelligent heating
system may use mobile phone GPS and other sensors to work out when you are due
home, whether you have been walking through the rain, doing a workout at the gym
or merely driving back. If the heating system is good enough at predicting the right
temperature, you may be completely unaware that it has been making adjustments.
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In such systems, the user has no little or no explicit intention; if there is intent, it
is on the system’s part.

7.2.2 The Intentional Spectrum

Incidental interaction was coined to describe an extreme form of low-intention
interaction:

Incidental interaction—where actions performed for some other purpose or unconscious
signs are interpreted in order to influence/improve/facilitate the actors’ future interaction or
day-to-day life (Dix 2002).

In fact, there is a spectrum with explicitly intended actions at one end and
incidental interaction at the other extreme (see Fig. 7.1). In between are ‘expected’
system actions, for example if you work in an office building with automatic lights,
you expect the lights to turn on as you enter a room, even though you do not
explicitly flick a switch.

Near to the intentional end are actions such as tipping an e-book reader to turn a
page as well as very explicit actions such as pressing a button. At this intentional
end, we find actions that are invoked entirely by the user, but are low awareness as
they are automatic or even autonomic; when reading a (physical) book you are
rarely explicitly aware of turning the page, similarly when using a tool you are often
focused on the work at hand, not the tool itself, Heidegger’s (1927) ‘Ready at
hand’.

7.2.3 Examples of Low-Intention Interaction

Many research systems include aspects of low-intention or incidental interaction.

The Pepys system in Xerox EuroPARC used infrared badges to track researchers
in the office and then created automatic diaries at the end of each day (Newman
et al. 1991). Here, the primary, intentional task was simply to walk to a colleague’s
office, but, incidentally, the location was tracked and the diary produced.

Fig. 7.1 Continuum of intentional 4 press light switch
intentionality (from Dix et al.
2004)

expected walk into room expecting lights to switch on

walk into room ... unbeknown to you
... air conditioning increases

T

incidental ¥
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One of the defining ubiquitous computing applications was MediaCup (Beigl
et al. 2001; Gellersen et al. 1999). MediaCup added a small sensor pack to the base
of ordinary mugs measuring pressure (whether the cup was full or empty), tem-
perature and tip sensors. As the cup owner filled and drank their coffee, the system
collected the sensor data and relayed this to others who could then build an idea of
the cup owner’s activity and availability. Again, the primary (sensed) task was
drinking the coffee, but, incidentally, other people were able to improve their
interpersonal interactions.

In the author’s own work in the late 1990s, onCue provided an intelligent
desktop task bar (Dix et al. 2000b). Whenever the user cut or copied things into the
clipboard (primary task), onCue analysed the clipboard contents and then suggested
possible additional things that could be done using the clipboard content on the
Internet or desktop. For example, when you copied a postcode, onCue would
suggest Web-based mapping services, or when you copied tabular data, onCue
would suggest Web graphing tools or copying into Excel on the desktop.

Even in the age of the Internet of Things (IoT), Internet-enabled mugs are not
common. However, incidental interactions are common in day-to-day life.

As you walk towards a building, the doors open, lights go on as you enter a
room, toilets flush as you leave the cubicle, and when you get into your car, the
courtesy lights go on. In each case, your primary task is simply going in or out of a
room, car or toilet cubicle, but the system senses aspects of your primary activity
and then performs additional actions aimed to help you. Location-aware apps in
phones and wearables use our movements in the environment to enhance secondary
goals: telling friends where we are, recording fitness information.

To some extent, this trend is still accelerating as the availability of low-power,
small-sized and, crucially, cheap sensors and networking is only just making the
visions of 1990s ubiquitous computing commercially possible (Greenfield 2006).

However, in the purely digital domain, where sensing is simply a matter of
logging digital interactions, these interactions abound. When we use a shopping
site, our primary task may be to buy a particular book or device, but incidentally,
the data collected is used to enhance recommendations for other shoppers. When
we search, our preferences for clicking through on certain topics (primary task) are
often analysed to improve subsequent search result ranking. Possibly less welcome,
we also know that our visits to many sites are tracked, sometimes by hundreds of
tiny ‘beacons’, which are then used to gather marketing information and channel
particular advertisements to us.

7.2.4 Intentional Shifts

We have seen that there is a continuum between incidental interaction, where users
may have no awareness that information is being sensed or the way this is
enhancing their interactions, to fully intentional interaction, where users explicitly
control a system to fulfil their goals.
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Fig. 7.2 Fluidity of intentionality (from Dix et al. 2004)

Sometimes, parts of a system, or even our own actions of which we are normally
unaware, may become more apparent. This might be because some part of the
system does not behave seamlessly. Heidegger’s (1927) ‘breakdowns’ occur pre-
cisely when more tacit actions are forced into conscious attention, for example if a
hammer head works loose. At this point, one shifts into a fully intentional form of
interaction.

Even where a system is working correctly, we may become aware of its beha-
viour. As we begin to understand the rules of sensor-based systems, actions that
were entirely below awareness (incidental) may become expected. For example, if
the lights in a building operate automatically based on sensors, you may not
explicitly intend the lights to switch on when you enter, but you certainly do not
expect to be left in darkness.

Once we understand the rules well enough to be ‘expected’, we may co-opt the
system behaviour to exert explicit control over what were originally intended to be
incidental interactions. For example, you might open and close a car door to get the
courtesy lights to turn on for a longer period, or wave your arms to activate the
movement sensor if you want the lights to turn on (see Fig. 7.2).

7.2.5 Two Tasks

As mentioned previously, it is important to recognise that there are two different
user tasks to consider:

sensed task—the task related to the user’s primary goal during the behaviour that
is being sensed by the systems and

supported task—the task that is in some way supported or enhanced by the
information inferred from the sensor data.

Sometimes, these are entirely different tasks, for example with the MediaCup
(Beigl et al. 2001; Gellersen et al. 1999), the sensed task is about drinking coffee
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while the supported task is about meeting at appropriate times. However, in other
cases, it may be that these are part of the same overall activity (indeed, in the car
courtesy light, in the next section, this is precisely the case). Even when the two are
actually the same or related tasks, we are using the task analysis in different ways.

In the case of the sensed task, the user’s primary goal is not necessarily being
supported, but enables us to interpret the sensors, turning raw data into behavioural
information. For example, during normal use, if a car door is opened after the car
has been stationary for a period, it is likely that someone has got into the vehicle.

Sometimes, this sensing is purely passive, but we may choose to modify the
systems around this sensed task. Where the sensed data is insufficient to interpret
behaviour, we may choose to add sensors, for example adding an infrared move-
ment sensor to a car interior to be sure that passengers are present. Alternatively, we
may choose to modify the actual user interaction on the sensed task.

For example, consider a library website. We have two design alternatives:

(i) show full information as lots of book ‘cards’ in a large scrollable page, rather
like Pinterest (https://about.pinterest.com/).

(i) show shorter descriptions (title + teaser) but where the full book details
appear as a pop-up when the user hovers over or clicks an item.

Let us assume that you decide (i) is more usable, but that the difference is slight.
However, from (ii), it is far easier to identify the user’s interests. You may then
deliberately decide to adopt (ii), even though it is slightly less usable for the sensed
task, because you know that by having more information about the user, the system
is better able to make suggestions. In other words, you may choose to trade
usability between the sensed and supported tasks.

Turning to the supported tasks, there are various ways in which this support can
occur.

While the sensing may be low intention, the information gathered by this may be
explicitly presented to the user. For example, onCue monitors the user cutting and
copying to the clipboard (the sensed task) and infers the kind of thing in the
clipboard (e.g. postcode, personal name, table of numbers); this is all automatic,
without user attention (Dix et al. 2000b). However, it then alters the toolbar to show
actions that the user can perform using the clipboard contents. The user explicitly
interacts with the toolbar; that is the supported task is intentional.

In other cases, system modifications to the supported tasks may also be low
attention and/or low intention. For example, the order of search results in the library
system may be subtly altered based on inferred interest, or the heating in the room
may adjust to be slightly warmer when you are sitting and cooler when you are
busily moving around.

Note that low intention and low attention are related but different properties. The
level of intention is about the extent to which the user controls the initiation of
actions, whereas levels of attention are about how much conscious focus is directed
towards actions and their results. A system action might be autonomous and
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unexpected (not the user’s intention), but still very obvious and salient (high
attention). Likewise, a user’s action might be fully intentional but low awareness,
for example drinking from a cup of tea while chatting.

7.3 Frameworks and Paradigms

There have been a number of models and frameworks that, in different ways, help
understand, analyse, design or construct sensor-rich user interactions. In this brief
overview of the most related literature, we will first look at various design concepts
in the area, followed by a more in-depth analysis of the notion of ‘naturalness’ as
this is closely related to, but distinct from, low attention. Finally, we look at some of
the related architectural frameworks and modelling notations.

7.3.1 Design Concepts

In the 1990s, as ubiquitous computing began to mature, the concept of context-
aware computing emerged (Schilit et al. 1994; Schmidt 2013). Whereas, in tradi-
tional computer applications, user input was interpreted solely in terms of the state
of the system, context-aware systems looked to the environment or context. Dey
defined this context as:

any information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves (Dey 2001).

Schilit et al.’s (1994) early identification of context-aware applications was
inspired by PARCTAB, a deployment of Olivetti infrared tracking badges deployed
at EuroPARC (Want et al. 1995). More generally, while other kinds of context were
considered, mobility and location were often the defining contexts for early work in
the area (Dix et al. 2000a). This in turn led to a number of related
interaction-focused design concepts.

Schmidt developed the design concept of implicit interaction partly to deal with
interactions such as tipping a mobile device to turn a page or move a map.

Implicit human computer interaction is an action, performed by the user that is not pri-
marily aimed to interact with a computerized system but which such a system understands
as input (Schmidt 2000).

In many ways, this can be seen as a precursor to the recent focus on, so-called,
natural user interfaces or NUIs (Wigdor and Wixon 2011). NUIs are characterised
by the detection of ordinary human actions such as gaze direction, body movement,
or touch, for example touch tables or Kinect games. The use of the term ‘so-called’
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at the start of this paragraph is because the ‘naturalness’ of NUIs is often chal-
lenged; while the actions are natural ones, the ways in which these are interpreted
are often far from natural (Norman 2010).

Ju and Leifer (2008) developed a design framework around Schmidt’s notion of
implicit interaction. The issue of attention is important in their framework, which is
particularly focused around two interaction distinctions: attentional demand (fore-
ground vs background) and initiative (reactive vs. proactive).

The concept of Kinetic User Interfaces (KUI) emerged during the uMove project
(Pallotta et al. 2008) inspired partly by the author’s work on incidental interaction
(Dix 2002). KUIs are where either direct bodily movement, or the user’s movement
of objects in the environment, is sensed and used for ‘unobtrusive’ interactions.
Like implicit interaction, KUIs embody a particular kind of low-intention
interaction.

Wilde et al. (2010) reviewed interaction patterns for pervasive systems based on
Alexander et al.’s (1977) architectural pattern language and its uses within software
engineering (Gamma et al. 1995). Wilde et al. break down pervasive interaction
patterns into three broad classes: interactions with mobile systems, intelligent
environments and collaborative work, although many pervasive interactions will of
course include elements of each. Forbrig et al. (2013) also consider models and
patterns for smart environments building on their concept of supportive user
interfaces. The patterns are more domain specific than Wilde et al.’s, focusing on
smart meeting rooms as an example application area.

Much of the early conceptual work in ubicomp and context-aware computing
was primarily descriptive or focused on structuring implementation. The expected,
sensed and desired framework (ESD) sought to transform much of the practical
experience of creating instances of context-aware systems into a more structured
ideation and early process (Benford et al. 2005). Expected movements are those that
a person might naturally do (e.g. twist a screen, or move in the environment to see
something better); sensed movements are those that can be detected by some sort of
existing, or easy to add, sensor; and desired movements are the actions you might
like to perform (e.g. zoom a display to see more detail).

By making this distinction, it is possible to compare them, for example identi-
fying expected movements that are not sensed suggesting the potential for adding
new sensors, or expected movements that can be sensed, which might be used to
control desired actions.

Note, in incidental interaction terms, the expected and sensed movements are
primarily concerned with the primary goal (sensed task), whereas the desired
movements concern the supported task. Also, while the earliest work leading to this
chapter predated ESD, aspects of the formulation later in this chapter are influenced
very much by ESD.
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7.3.2 Low Intention and Naturalness

The concepts of implicit interaction and natural user interfaces (NUIs) are partic-
ularly relevant to low-intention interaction. Figure 7.3 shows some of the distinc-
tions they raise.

At the top left are the most artificial actions, for example when you come to a
new interface and have to work out which of the new icons or menu choices you
need to use. However, with practice, they become second nature (bottom left), and
you may not even be aware that you are doing them.

On the far bottom right are the ‘most natural’ interactions, those that you never
have to think about at all. These may be truly instinctive; one particular case of this
is where there is a ‘natural inverse’ (Ghazali and Dix 2006) (e.g. push/pull, twist
left/twist right); in such cases, users automatically do the opposite action when they
‘overshoot’ a target, for example correcting on a steering wheel. Often they are
themselves learnt, for example swinging your arm is in a sense an unnatural action
to control a computer simulation, but when faced with a Kinect and an image of a
golf ball, it recruits already learnt physical actions.

Many NUI interactions are not so obvious. Early research on touch tables found
that given free choice, most people used the same dragging, twisting and stretching
actions, but beyond these, there was little agreement. However, after a period of
use, even the less intuitive gestures become automatic, and perhaps more quickly
learnt than abstract icons, as they are able to employ kinesthetic or other forms of
Sensory memory.

NUIs cover the whole of the right-hand side of the figure, whether immediately
obvious and later learnt, or so immediate you never know you are doing them. The
early examples of implicit interaction are in this space, notably the turning of pages
by tipping a device.

From a low-/high-attention point of view, actions may be very artificial (e.g.
shifting gears in a car), but so automatic that you are unaware you are doing them,

However, when we consider the sensed and supported tasks of incidental
interaction, in fact, even very explicit and artificial actions may be part of a wider
low-intention interaction.

Fig. 7.3 Various forms of

natural interaction . new icons most touch and
high :
and menus gesture interfaces
/
awareness learning | kinesthetic
of interaction (slow) [ memory
; m
i habitual/ learnt ,,SD ﬁe r:'.ar,
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Consider an example of a sensed task. When you browse on Amazon, this is an
explicit action and may include some high-awareness actions (what shall I search
for) and some low-attention learnt interactions (clicking through for more details).
However, all of this may be used by Amazon to build its profile of you; the actions
are explicit, but the way information is collected about them is not.

Similarly, in the supported task, there may be entirely autonomous actions that
the system executes based on your past behaviour (top right of Fig. 7.4, Ju and
Leifer’s (2008) ‘proactive’ initiative). For example, an intelligent heating system
might automatically set the temperature just right for when you enter your home in
the evening. However, you might also execute an explicit action, the effect of which
is modified based on previous behaviour or current context (bottom right Fig. 7.4,
Ju and Leifer’s (2008) ‘reactive’ initiative). For example, if you hit ‘cooler’ on the
heating system, this might be interpreted as a short blast of cool air, but gradually
returning to normal if the system knows (say from phone sensors) that you have just
come in after running hard, but behave differently if it is pressed after you have
been at home for a while.

That is the key difference for the supported task is whether the action is fixed or
contextual based on previous sensed behaviour.

7.3.3 Architecture and Modelling

Dey’s definition of ‘context’ quoted above was influenced by the development of
the context toolkit (Salber et al. 1999), which was important in signalling the
movement from more specific bespoke developments towards more principled
design and reusable architecture. The author’s own work in the area included the
development of the onCue context-sensitive toolbar, which was built on top of an
agent-based framework, aQtive space, specifically architected to support
context-sensitive interaction (Dix et al. 2000b).

Fig. 7.4 Supported actions
. autonomous
system cron (Unix)
systems
initiation
of action
direct context-aware
user : ;
manipulation systems
fixed contextual

execution of action
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Fig. 7.5 Context description
from Schmidt (2000) <context interaction>
<context>

<group match=’one’>
sensor _module.touch
pilot.on
</group>
<group match='"none’>
sensor _module.alone
pilot.pen down
</group>
</context>
<action trigger=’enter’ time=’'3’'>
pilot.notepad.confidential
</action>

</context interaction>

The aQtive space framework itself was built directly upon earlier formal mod-
elling concepts of status—event analysis (Dix and Abowd 1996). While many
intentional user interactions are event based (e.g. pressing a key) as are low-level
computer implementations, sensor data are more often a status, that is there is
always an underlying value even if it is only sampled periodically. Work following
on from this has included an XML component-based notation (Dix et al. 2007).

Schmidt’s work on implicit interaction also included an XML-based specifica-
tion notation (Fig. 7.5), and other work in the area has included discrete event
modelling (Hinze et al. 2006) and context-aware architecture derived from MVC
(Rehman et al. 2007).

There have been a number of projects which have created combinations of
models, tools and evaluation methods for pervasive systems or smart environments.

In addition to the Kinetic User Interface approach, the uMove project led to the
creation of a framework including conceptual modelling, architectural design and
implementation tools as well as an evaluation method, IWaT (Interactive
Walk-Through) (Bruegger et al. 2010; Bruegger 2011).

Wurdel addressed similar broad goals, but focused more on task modelling using
a notation CTML (Wurdel 2011). CTML is an extension to CTT (Paterno 2012)
with additional primitives to deal with both actions that are not explicitly addressed
to the system (but may be sensed by it), and autonomous system behaviours
including those that directly or indirectly affect the user. The resulting task models
are used partly to drive model-based system development and partly as input to
hidden Markov models.

Another very similar project by Tang et al. (2014) creates a variety of
OWL-based notations and integrated design and development tools for pervasive
applications including task specification and service design.
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7.4 Modelling Low-Intention Interactions

In order to explore ways to formally model these behaviours, we will use a rational
reconstruction of the design of car courtesy lights (originally developed in Dix et al.
2004; Dix 2006). These usually include an explicit off/on switch, but also turn on
automatically at times.

7.4.1 Modelling Process

We will not create a new notation, but instead augment standard task and state
description formalisms. The task descriptions here will be simple scenarios aug-
mented by state-space models, but richer descriptions could be used such as HTA
(Shepherd 1989), CTT (Paterno 2012) or CTML (Wurdel 2011).

The critical steps are to:

(i) annotate the supported task to see where augmentation or assistance would be
useful. In the examples, this is in the form of + or — to indicate how desirable
or undesirable a particular assistance would be.

(i) annotate the sensed task to see where existing or new sensors could give useful
information and to assess the likelihood that sensed state matches the target
context in the real world.

Often sensors are attached to objects in the environment; so for (ii), it can be
useful to model explicitly the states of physical (or virtual) objects.

Note that the assessment of desirability in (i) is a core design decision. It may be
a matter of discussion and it may include more or less desired states as well as hard
and fast ones. This is particularly important as sensed input in (ii) is rarely precise.
This imprecision may be because of limitations in sensors, because sensed user
actions may be typical but not guaranteed, or because the target world state may not
be directly able to be monitored, meaning some proxy has to be sensed instead. By
having an explicit notion of both desirability and precision, we can ensure that
sensors are chosen to ensure the best behaviour in critical situations, with leeway in
the less critical ones (Fig. 7.6). For example, we may be able to adjust threshold
values to ensure correct behaviour in the critical areas (ticks and crosses) but simply
achieve ‘good enough’ results in the less critical areas (grey ‘leeway’).

As we work through the examples adding annotations to the task models, we will
develop a form of secondary notation (Green and Petre 1996). In particular, when
looking at the supported task, we will use + and — to denote the desirability or
otherwise of a particular intervention. However, these are not intended to be a
closed set of annotations; indeed, the ‘bomb’ annotation in Fig. 7.7 was added
when the example was being used in class and the need arose to highlight partic-
ularly problematic situations.
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Fig. 7.6 Matching
desirability of intervention in i
the supported task (support, definite yes X & V
augmentation, autonomous g
actlgn) Wlth reliability of reliability uncertain x X
sensing in the sensed task of sensor N
;
definite no V < x

definite not  maybe  definite yes
desirability of intervention

Fig. 7.7 Car courtesy light— 1 deactivate alarm 0 )
getting into the car (from Dix o \walk up to car - — & s this safe?
et al. 2004) + signifies would 3. keyin door _
like light on, o 4. opendoor & take key  +
— signifies would like light :
¢ R 5. getin ++
off, ‘bomb’ signifies that
safety is a major issue 6. close door 0
¥ J 7 adjust seat +
8. find road map ++
9.  look up route +++
10. find right key +
11. Kkey in ignition -
12. start car 0
13. seat belt light flashes 0
14. fasten seat belt + ~
15. drive off -— "‘ safe? legal?

7.4.2 Car Courtesy Lights

In the case of the car courtesy light, the sensed task and the supported task are
identical. Figure 7.7 shows the task of getting into the car (there would be other
tasks such as stopping and getting out, sitting in the car to have a picnic). The main
steps are listed and against each one whether or not the courtesy light is wanted.

The pluses mean it would seem good to have it on, the more pluses, the more
beneficial. The minus signs show where it would be best to have it off, and the
bomb situations where there could be safety issues. Step 15 is obviously prob-
lematic and it may be distracting if the courtesy light stays on while driving, and in
some places may even be illegal. Step 2 is also marked as potentially unsafe as it
might allow a mugger to see which car you are going to, although could also be
useful in helping you find your car. Cars vary on whether they choose to turn lights
on in these circumstances.

In addition, we ought to look at the scenarios such as when the driver is leaving
the car, picking up or dropping off passengers. However, on the whole, the lights
want to be (a) on when you are sitting in the car, (b) not left on for long periods
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unlock start
people car
in car “———\ driving
lock stop
doors closed open \ ‘ open \ [
doors open close close
getin
K people
I in car
get out

lgnition off  Ignition on

Fig. 7.8 States of the physical car

when you are not in the car (so as not to drain the battery), but (c) not on when you
are actually driving (for safety). Of these, (c) is an absolute requirement, (a) is a
‘good to have’ (you can always turn them on or off explicitly) and (b) is a strong
requirement, although the precise time can be quite relaxed.

One could add sensors to the car, for example a PIR (passive infrared) sensor in
the car to detect movement so that you can tell if it is occupied. However, cars
already have a range of sensors that are reused by the manufacturers to produce
automatic lighting. Notably, there is typically a door sensor that triggers a warning
if the car is driven without closing the doors properly, and also it is possible to
detect the power when the ignition is turned on.

Figure 7.8 shows the main states of the car in terms of people’s presence
(omitting unusual cases such as people locking themselves inside). These are
divided into the states that can be distinguished by the two available sensors.

Note that it is the two states in bold, when people are in the car, which are where
we would like the light to be on.

It is possible to tell with certainty when the car is being driven as the ignition is
on, so this is a reliable sensor to use to ensure that the lights are not automatically
turned on. Most cars gradually dim the lights as soon as the ignition is turned on.

However, it is impossible to tell from these sensors the difference between
opening the car door and then realising you have forgotten something and going
back into the house to get it, unless you lock the car. Most cars simply use a timer
for this, turning the light on when the car doors are first opened, and then off after a
period. This is based on the assumption that the sojourn in the ‘people in car’ state
before transitioning to ‘car driving’ is brief. The timer means that the light is likely
to be on most of the time during this state (fulfilling the soft requirement), while
also ensuring the light is not on for too long in the ‘car empty’ state (hard but
variable time requirement).

It is clear that having access to the car lock state or a PIR would be useful, as the
latter is often fitted as part of the car alarm system. Presumably, the alarm
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subsystem in most cars is relatively isolated from the rest of the car subsystems for
security reasons and may often be fitted by third parties, so cannot be accessed by
the courtesy light subsystem. However, it would not be hard to imagine a future
in-car IoT framework to allow more creative use of sensors.

7.5 Into Practice: The Internet-Enabled Shop Open Sign

The interaction styles and techniques in this paper were put into practical use in the
design of a community public display system on the Isle of Tiree. This was pro-
duced largely as part of the biannual Tiree Tech Wave series of technology/maker
meetings (tireetechwave.org). The system is a long-term 24/7 deployment, and the
overall data and public display architecture are described in detail in Chap. 4.

In this section, we will focus on the design of two particular elements of this, the
Internet-enabled open sign and LED ticker-tape display, which provide sensor input
to the data infrastructure. We start with an initial ‘provotype’-style (Boer and
Donovan 2012) design concept (the fish and chip van that tweets) and then move on
to the Internet-enabled open sign, which has been in operation now for several
years.

7.5.1 Concept—The Chip Van That Tweets

At the first Tiree Tech Wave, several themes came together around the creation of a
concept mini-project, the ‘Chip Van That Tweets’ (Dostal and Dix 2011).

There was a fish and chip van positioned quite close to the location of the event.
Many island businesses are run by a single individual and so can be fragile: if the
individual or one of their family is ill, or there is some other kind of emergency, the
shop or van may be late opening or close early.

On the mainland, if you went to the fish and chip shop, but found it unexpectedly
shut, there would be another close by. On the island, you may have driven perhaps
up to ten miles (15 km), over bumpy roads, and there is nowhere else to go.
Occasionally, people would ring friends who were within sight of the chip van to
ask whether it was open before setting off.

As a light-hearted exemplar, the participants created a prototype to address the
issue.

A near full-size mock-up of the van front was constructed out of cardboard. On
the flap at the front of the van, an Arduino was positioned with a tilt switch. When
the van flap was opened, the tilt switch was activated and the Arduino connected to
a mobile phone and sent a tweet via SMS ‘#tireechipvanopen’. When the van flap
closed, the Arduino sent the tweet ‘#tireechipvanclosed’.

Software that could run on an islander’s computer at home listened using the
Twitter API and when it saw ‘#tireechipvanopen’ or ‘#tireechipvanclosed’, it sent a
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Fig. 7.9 Tiree chip van— 0. Serving chips
sensed task (owner) 1. drive to van
2. enterinto van (opens side door)
3.  prepare for evening:
turns on power, lights, deep fat fryer
4.  open serving flap (at opening time)
** sensed by system — tweets #tireechipvanopen
5.  serving customers
take order, fry food, wrap cooked food, take money
6. close serving flap (at closing time)
** sensed by system — tweets #tireechipvanclosed
7. tidy up
leave van (close side door)
9. gohome

o

Fig. 7.10 Tiree chip van— 0. Buy and eat chips
supported task (customer) 1. decide would like fish and chips
2. checkif open
21 check current time and opening hours (old)
2.2 look at chip van model on mantlepiece (new)

3.  drive to chip van
4.  buy fish and chips (if open)
or
5. disappointed and hungry (if closed)
6. drive home

message to another Arduino, which was connected to a model fish and chip van,
maybe sitting on the potential customer’s mantlepiece. A small motor then opened
or closed the model to match the real-world fish and chip van.

This is a form of incidental interaction, and Figs. 7.9 and 7.10 show the sensed
and supported tasks. While the chip van owner is opening and serving the focus is
always on preparing and opening the van, incidentally this leads to improving the
customer’s interaction efficiency (at 2.2) and experience (4 rather than 5!).

7.5.2 TireeOpen—The Internet-Enabled Open Sign

The chip van that tweets was created as a concept project. It exemplified many
important and very practical issues of island life and also was interesting techno-
logically, using Twitter as middleware and an ‘Internet of things’ architecture.
However, it was playful and probably slightly over the top in terms of technology.

Although the technology for the prototype was largely working, there was a gap
as the correct kind of phone was not available, so the step between the Arduino
detecting the open serving flap and the tweet SMS being sent was emulated by the
Arduino flashing an LED and the tweet being sent by hand.
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In one way, it would have been a small step to deploy this as a form of tech-
nology probe (Hutchinson et al. 2003), but the patchy mobile signal on the island
would probably render even the SMS tweeting unreliable.

This last point is not inconsiderable for the practical application of Internet of
Things—it only works if you have the Internet, or at least some data
communications.

The Cobbled Cow café is based at the Rural Centre on Tiree, the venue of the
Tiree Tech Wave. The Cobbled Cow has some of the same issues as the chip van
(small family business, illness or other unexpected events can lead to late opening,
etc.); however, unlike the chip van, Wi-fi is available.

The closest equivalent to the chip-van serving flap is unlocking the café door,
but it is harder to add a sensor to a door lock, than to a flap opening, and it would
mean modifying the physical fabric of the café. However, there is also an LED
‘open’ sign in the window, which is switched on as part of the opening up process
(see Fig. 7.11). This already has low-voltage power, hence easy and safe to modify.
Modifying the open sign also has the advantage that it could easily be replicated for
different kinds of businesses.

The supported task is the customer experience deciding whether or not to visit
the café (Fig. 7.12). It is pretty much identical, equivalent to the chip-van customer
task (Fig. 7.10).

Rory Gianni created the Internet-enabled open sign (probably the world’s first),
using an Electric Imp (see Fig. 7.13). The Electric Imp contains a Wi-fi and cloud
enabled processor in a package rather like a large SD card. This has been specifically
designed for Internet of Things applications and can be connected to various sensors
and actuators. It is programmed and runs code through Electric Imp’s cloud plat-
form. For this purpose, no explicit sensor was needed as the power for the device was
simply connected to the open sign’s low-voltage power input, meaning it is only on
when the open sign is on. When it powers up, it sends a periodic message back to the
cloud platform, which in turn calls a small script on the Tiree Tech Wave site where a

Fig. 7.11 Cobbled Cow 0. Running cafe
café—sensed task (owner) 1. drive to cafe
2.  enter cafe (through side door)
3.  prepare for opening:
turns on power, lights, etc.
4.  open up cafe (at opening time)

4.1 turn on open sign
** sensed by system
4.2 open café doors

5.  serving customers
take order, cook and serve food, wrap, take money
6. close up cafe (at closing time)

6.1 close café doors
6.2 turn off open sign
** sensed by system
7. tidy up
8. leave cafe (side door)

9. gohome
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0. Eat out at café

1. decide would like food at café

2. check if open
21 check current time and opening hours (old)
2.2 look at open sign on web page (new)

3.  drive to café

4.  buy and eat food (if open)
or

5. disappointed and hungry (if closed)

6. drive home

Fig. 7.12 Cobbled Cow café—supported task (customer)

Fig. 7.13 Left Internet-enabled open sign under development (photograph Rory Gianni). Right
Electric Imp module (photograph www.electricimp.com media resources)

log is stored. When the Web-based status page is requested, this checks the logs and
can display a Web open sign, which reflects the state of the physical one.

The Internet-enabled open sign was deployed at the Cobbled Cow and has been
running now for more than 2 years.

In many ways, the system at the Cobbled Cow resembles the chip van prototype,
with a few differences. Technically, rather than Twitter as middleware, the Electric
Imp cloud service is being used, and rather than a model chip van on the
mantlepiece, a simple Web sign is used for displaying the status. More critically,
there are differences in the interaction probabilities.

In the case of the chip van, it is impossible to serve customers without opening
the flap. That is for the chip van sensed task (Fig. 7.9), sub-task 4 (open flap) will
always happen before sub-task 5 (serve customers). In contrast, for the Cobbled
Cow sensed task (Fig. 7.11), sub-task 4.1 (turn on open sign) is a matter of routine,
but it is physically possible to open the café (sub-task 5) without turning on the
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sign; that is sub-task 4.1 is likely but not certain to occur. Similarly, it is possible to
close the shop without turning off the sign (sub-task 6.2), although this is likely to
be noticed at sub-task 8 (leave shop) as the glow of the sign would be visible except
in high summer.

That is the uncertain nature of tasks being sensed means that there is a possibility
that the Web sign might be off in the daytime when the café is actually open, or on
at night when it is actually closed. The latter is fairly obvious to the viewer, but the
former could mean they do not go to the café when it is in fact open. Arguably, this
is not as bad as a customer going when it is actually closed, but still a problem.

Figure 7.14 shows these issues using a diagram of the main states of the café,
similar to that for the car courtesy light in Fig. 7.8. In Fig. 7.14, the states where we
would like the Internet version of the sign to show ‘open’ (when the shop is open) are
shown with thick edges. The states shown dashed are those where the sign is ‘wrong’
(on when the shop is closed or vice versa). The transitions labelled with roman
numerals (i), (ii), (iii), (iv), (v), and (vi) are the normative path corresponding,

(vi) go home

s

(i) arrive

(a) forget ,"""'\ (v) close

at café . ;

café prepare sign ( café ‘cafe daprs tidying

empty to open open [ up

h ﬂ,

open sign off (ii) switch | (b) remember | (iv) switch | (d) rememberl

open sign on on sign S|gn$ off sign SIgn
[ café 3 { prepare ‘, café I' tidying

| empty (f' ', to open .' (iii) open open (c) forget ‘\ up

A “.____.~7 cafédoors sign

Internet sign correctly off 1 Internet sign incorrectly off

Internet sign incorrectly on

——— likely transition

unlikely state : il
———————— » unlikely transition

Internet sign Correctl on { \
O 2 Y <7/

Fig. 7.14 States of the café
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Fig. 7.15 Public LED
‘ticker-tape’ display showing
local weather, news, etc

respectively, to steps in Fig. 7.11: 2, 4.1, 4.2, 6.2, 6.1 and 8. So long as the café
owners follow these transitions, the sign will always be correct.

However, some transitions lead from good states to bad states: (a) forgetting to
turn on the sign when the café is opened; and (c) forgetting to turn it off when
closing. In each case, there is a possible correction: (b) noticing the sign is off when
the café is open, and (d) noticing it is on when the café is being tidied up at the end
of the day. Transition (b) is marked dashed and in grey to signify that it is less likely
to occur, because in the daytime it is not easy to see that the sign is not on from
inside the café. In contrast, transition (d) is solid to signify it is more likely to occur,
as the glow of the sign is pretty obvious as you turn out lights, although sometimes
this could be well after the shop is actually closed. Because of the latter, the
transition denoting leaving with the sign on is greyed out to signify it is unlikely.
Based on the likelihoods of these transitions, some states have been marked in grey
to signify that they are unlikely to occur.

As can be seen, the only state that is both wrong and likely to occur is the sign
being off when the café is open. This could be addressed by finding some means to
make forgetting to turn on the sign (a) less likely. Alternatively, one could try to
make it easier to notice when the sign is not on. As an attempt to partly address this,
the LED ‘ticker-tape’ information display (Fig. 7.15) was wired so that both it and
the open sign are turned on together. While the open sign faces outwards through
the window, the ticker-tape faces inwards into the café. This can still be forgotten,
but it is more likely that it will be noticed, that is making transition (b) more likely
to occur at all, and transition (d) likely to occur more promptly after the shop has
closed.

7.6 Further Design Considerations for Low Intention

The techniques above have been focused on the ‘functional” design of low-intention
systems, choosing appropriate sensors from the sensed task to allow suitable
interventions to the supported task. However, these are far from the only important
design issues. We will look at two of these: user models and privacy.
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7.6.1 User Models

This chapter is principally concerned with designer models for low-intention
interaction, but of course, users also have (or maybe fail to have) models of these
systems. This is well explored for more traditional systems with considerable work
on metaphors, and design guidelines related to aspects such as visibility, consis-
tency and feedback, which help the user to understand the system states, the
available actions and the effects of these on the system.

Considering context-aware systems, Schmidt (2013) suggests that the user
interface should seek to minimise ‘awareness mismatch’, making it clear to users
what sensory information is being used, so that the user can make satisfactory
explanations of why system effects occurred and valid inferences about how to
create desired outcomes.

For some of the best low-intention and low-attention interfaces, none of this is
necessary. If users are unaware that modifications are happening, and any alter-
ations in interaction are sufficiently good, then they do not need to build any sort of
model. For example, many users are unaware that search results are tuned to their
past click-through behaviour.

However, if the user does become aware, for example that the heating or lighting
levels spontaneously change, then the interaction may become ‘spooky’, as if there
are ghosts in the walls changing the very environment. Intentional interactions may
sometimes be indirect (e.g. waving your arm to control the character on a video
game), but are extensions of the physical actions of day-to-day life. Autonomous
behaviour, however, often suggests animate beings at work. This is rather like the
‘uncanny valley’ (Mori 1970) for human-like robots, the more intelligent and
human-like autonomous action becomes, the more like magic, or the supernatural it
becomes.

This suggests that, on a moment-to-moment basis, low-intention systems need
not follow Schmidt’s (2013) ‘awareness mismatch’ advice. However, some sort of
model should be available when users want it. The latter also helps address some of
the ethical issues of making modifications that are not apparent to users. In Europe,
this issue is likely to become increasingly important following the General Data
Protection Regulation of the Council of the European Union (2016), which bans or
severely regulates black box automatic decision-making in any legally sensitive
area (Goodman and Flaxman 2016).

7.6.2 Privacy

Sensor-rich environments also raise privacy and security issues. The definition of
incidental interaction says sensed data is collected ‘in order to
influence/improve/facilitate the actors’ future interaction or day-to-day life’ (Dix
2002)—that is the individual or group being sensed also personally benefits from
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that sensing. This was phrased deliberately to exclude surveillance where data are
collected purely for the benefit of others.

Of course, even where benefits do accrue to the person being sensed, this does
not mean that their data may not be deliberately or accidentally misused. The usage
data that sites such as Google or Twitter collect are used to enhance your own
experience, but also to feed marketing databases. Cloud-based systems can serve to
make this worse, and there have been a number of recent news articles worrying
about smart TVs and voice interaction dolls, which send anything spoken in their
vicinity to central servers to be processed and often stored.

There have been attempts to use similar technology to reverse the balance. Steve
Mann and colleagues deliberately use personal wearable technology to record as a
visitor in environments, such as shops, where CCTV and other means are usually
used to record those coming in, a practice they term ‘sousveillance’ (Mann et al.
2003).

Of course, this itself may invade the privacy of others and create a new disparity,
potentially leading to antagonism against ‘cyborgs’, perhaps most notably when
Mann’s ‘EyeTap’ digital glasses were removed in a Paris McDonald’s restaurant
(Biggs 2012; Popper 2012). As this kind of technology becomes commoditised, for
example with Google Glass or even ubiquitous mobile phone video, both kinds of
privacy issue converge.

7.6.3 Can Task Models Help?

None of the above issues are explicitly dealt with by the task modelling suggested
in this chapter, but the two-task view does help to elucidate some of the issues and
the way they relate to one another.

The user modelling issues are primarily related to the supported task. Clearly
identifying the points at which interventions happen in this can at least help the
designer to assess the potential for ‘spookiness’ and also make it easier to create
explanation systems. The uncertainty related to sensors can of course make this
worse as system actions are less predictable, for example if your phone battery dies
and so the heating system adjusts the house based on the wrong inferred prior
activity.

In contrast, privacy issues are primarily related to the sensed task. While such
issues are not ‘solved’ by task modelling, having a clear specification of where and
when data are gathered makes it easier both to avoid unintended disclosure and to
explain to users what is being gathered and why, thus ensuring informed consent.

Both issues are made more problematic by complex inference algorithms used as
either part of sensor fusion or context-sensitive interactions.

Privacy frameworks in the ubicomp literature focus on restricting information
flows, in the belief that less information means more privacy. However, the earliest
work on privacy in HCI showed that on occasions, less information, even highly
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anonymised information, could be more personally sensitive than full information
(Dix 1990); indeed, half-stories are the grist of gossip and the downfall of many a
politician.

Just as problematic are actions based on black box algorithms. Again, the
author’s early work on the HCI implications of pattern matching technology
highlighted the danger that algorithms could unintentionally produce sexist or racist
outputs (Dix 1992). This issue has taken some time to become apparent, but has
now come to public attention with high-profile reporting of apparently racist search
results (Gibbs 2015) and photo tagging (BBC 2015; Hern 2015). More mundane
examples such as intelligent heating might seem immune from such issues, except
that it has been recently argued that office workplace temperature standards are
effectively sexist, based on typical male metabolism and hence disadvantaging
women (Kingma and van Marken Lichtenbelt 2015). Because the standards are
public, this can be exposed, challenged and debated. Quite possibly, a more
intelligent office air-conditioning system might avoid this problem, basing tem-
perature on actual occupancy, but equally it could make things worse by intro-
ducing new implicit and potentially illegal bias. Most worrying, it would be far
harder to tell whether it was discriminatory or, even if it is not, defend against the
accusation that it is.

In both cases, provenance of data and perspicuity of algorithms are at the heart of
helping to ensure that users of these systems can make sense of the outcomes. The
two-task analysis helps in the former, because it factors the gathering of data from the
application of that data; but it does not solve the problem of inscrutable algorithms.

7.7 Discussion

We have seen how it is possible to analyse the twin tasks for low-intention inter-
action to identify the potential, albeit uncertain, sensor data from the sensed task, in
order to modify system behaviour for the supported task. In the first example, the
car courtesy lights, the two tasks were effectively the same activity, whereas in the
second example, the Internet-enabled open sign, the sensed and supported tasks
were different.

Critical in both examples has been the assessment of the likelihood that certain
sensor measurements will indicate particular user behaviour. In some cases, this can
be clear-cut: if the car has started and is moving, then it is occupied. In others, it is
not definitive, merely indicative: in the car example, opening the doors may mean a
person is getting in the car; when the sign is powered on, it may indicate that the
shop is open; but in both cases, there are circumstances when the sensor and user
behaviour may not match.

Note also that in some cases there are physical processes at work that constrain
user behaviour (e.g. you cannot get into a car normally without opening a door), but
in others, we rely on habit, routine or ‘typical’ user behaviour (e.g. the café owner’s
opening up rituals).
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To some extent, the methods and techniques described in this chapter have
become ‘second nature’ to the author, and so during the design process for Tir-
eeOpen, the formal models were mostly ‘in the head’ rather than on paper; how-
ever, the steps described in Sect. 6 accurately reflect the processes and analyses
used.

This chapter has not presented a specific notation, but instead has shown how
standard notations for describing tasks, scenarios and physical models can be
annotated and analysed in order to aid the design of low-intention systems. Also, it
has not attempted to connect this design modelling to the more
implementation-oriented context-modelling notations. Doing this could enable a
level of verification of the implemented system with respect to the design
intentions.

As noted, low-intention systems are already ubiquitous in the digital domain,
and we encounter mundane examples in day-to-day life. However, as the Internet of
Things and ubiquitous computing move from vision to reality, we will live in an
increasingly digitally augmented physical environment. The techniques in this
chapter are one step in addressing some of the issues that arise as we seek to design
systems for this emerging world.

Acknowledgements Many thanks to Rory Gianni who created the Internet-enabled open sign.
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