
Chapter 18
A Public Tool Suite for Modelling
Interactive Applications

Marco Manca, Fabio Paternò and Carmen Santoro

Abstract Model-based approaches aim to support designers and developers
through the use of logical representations able to highlight important aspects. In this
chapter, we present a set of tools for task and user interface modelling useful for
supporting the design and development of interactive applications. Such tools can
be used separately or in an integrated manner within different types of development
processes of various types of interactive applications. This tool suite is publicly
available and, as such, can be exploited in real-world case studies and university
teaching.

18.1 Introduction

Model-based approaches for interactive applications aim to exploit high-level
descriptions that allow designers to focus on the main semantic aspects rather than
starting immediately to address implementation details. They have been considered
also because such features can be exploited in order to obtain better device inter-
operability through many possible implementation languages. Even the recent
HTML51 has adopted some model-based concepts by providing some tags that
explicitly characterise the semantics of the associated element. However, this lan-
guage is limited to graphical user interfaces while we will show that model-based
languages (such as the ones supported by the tools presented here) can be exploited
to support multimodal user interfaces as well.

M. Manca (✉) ⋅ F. Paternò ⋅ C. Santoro
CNR-ISTI, HIIS Laboratory, Pisa, Italy
e-mail: marco.manca@isti.cnr.it

F. Paternò
e-mail: fabio.paterno@isti.cnr.it

C. Santoro
e-mail: carmen.santoro@isti.cnr.it

1https://www.w3.org/TR/html5/.

© Springer International Publishing AG 2017
B. Weyers et al. (eds.), The Handbook of Formal Methods
in Human-Computer Interaction, Human-Computer Interaction Series,
DOI 10.1007/978-3-319-51838-1_18

505

https://www.w3.org/TR/html5/


Over the years, research in model-based approaches for interactive applications
has led to many approaches and related tools. However, while some approaches
identified in the academic field remained of interest of just a limited community of
scientists and researchers, other approaches have stimulated interest also at an
industrial one, resulting in quite a large community. Such interest has also prompted
initiatives at standardisation level. One of them has been the W3C Working Group
on model-based UI,2 which produced documents regarding various aspects, pri-
marily task models and abstract user interfaces.

In this chapter, we present a tool suite that covers various types of model-based
support to user interface design, particularly focusing on recent evolutions of such
tools in order to meet novel requirements. In particular, Sect. 18.2 provides some
background information useful to better understand the contribution described in
this chapter, while in Sect. 18.3, we provide an overview of the set of tools
belonging to the suite. Then, in the next sections, each considered tool will be
presented separately. In particular, we highlight some recent contributions con-
cerning how to support the development of task models also through touch-based
mobile devices (see Sect. 18.4), how to obtain model-based generation of multi-
modal user interfaces (see Sect. 18.5) and how to reverse-engineer Web imple-
mentations at various abstraction levels (Sects. 18.6 and 18.7). Finally, at the end of
the chapter, we summarise and discuss the main current trends identified within the
model-based area, also sketching out future directions for research in this field.

18.2 Background

The community working on model-based approaches for human–computer interac-
tion has mainly considered the abstraction levels that are indicated in the CAME-
LEON Reference Framework (Calvary et al. 2002). It identifies four abstraction
levels: Task and Domain, Abstract UI, Concrete UI, Final UI. In this section, for each
level, we describe the most relevant concepts, languages and tools of the proposed
suite. This will be useful to introduce the tool suite presented in the next sections. In
software engineering communities, the model-based approaches have been consid-
ered with slightly different concepts because they have a different scope and do not
address the specific issues in user interface design and development. For instance, a
different conceptual approach is the model-driven architecture (MDA) proposed by
OMG (http://www.omg.org/mda/). The OMG’s model-driven architecture
(MDA) specifies a generic approach for model-driven software engineering and
distinguishes four different levels of abstraction: the computation-independent model
(CIM), the platform-independent model (PIM), the platform-specific model
(PSM) and the implementation (or implementation-specific model—ISM).

2http://www.w3.org/2011/mbui/.

506 M. Manca et al.

http://www.omg.org/mda/
http://www.w3.org/2011/mbui/


According to (Raneburger et al. 2013), the CAMELEON Reference Framework is
compliant to the MDA and can be seen as a specialisation in the context of UI
development.

The Task and Domain models level considers the tasks that need to be per-
formed for achieving users’ goals and the corresponding relationships and domain
objects. As mentioned before, in our approach, this level is mainly covered by the
ConcurTaskTrees (CTT) notation (Paternò 1999).

The Abstract User Interface (AUI) level describes a UI through the interaction
semantics, without referring to a particular device capability, modality or imple-
mentation technology. In addition, at this level, the behaviour and the description of
the data types manipulated by the user interface are specified. For this purpose, we
use the MARIA language (Paternò et al. 2009), which also includes a data model,
defined by using the standard XML Schema Definition constructs. More specifi-
cally, the AUI is composed of presentations that contain interactors and/or com-
position operators. The interactors are the elementary user interface elements,
which can be either interactive or output-only, while the composition elements
indicate how to put together elements that are logically associated. Examples of
abstract interactive elements are single choice, multiple choice, text edit, numerical
edit, activator and navigator, while examples of output-only elements are those
supporting descriptions and alerts. Navigator elements allow users to move from
one presentation to another, while activators are those elements that activate some
functionalities. The composition operators are grouping (a group of elements log-
ically connected to each other), relation (when two groups of elements have some
type of relation, e.g. a set of input elements and a set of buttons to send their values
to the server or clear them) and repeat (when a set of elements are grouped together
since they share the same similar structure). The MARIAE tool (Paternò et al. 2011)
provides automatic support for translating CTT task models into MARIA AUI
specifications. This is a type of transformation that cannot be performed through
simple mappings because task models and user interfaces involve different concepts
and relationships. Since the user interface is structured into presentations, the first
step is to identify them from the task model. For this purpose, we developed an
algorithm that first identifies the so-called presentation task sets (PTSs): each PTS is
a set of tasks enabled in the same period of time and thus it should be associated
with a given abstract presentation. This is done by taking into account the formal
semantics of the CTT temporal operators. After the identification of the abstract
presentations, the interactors and the dialogue models associated with them are
generated taking into account the following: (i) temporal relations among tasks
(because the user actions should be enabled in such a way to follow the logical flow
of the activities to perform); (ii) task hierarchy (because if one task is decomposed
into subtasks, it is expected that the interactions associated with the subtasks are
logically connected and this should be made perceivable to the user; thus, a cor-
responding grouping composition operator should be specified in the abstract
specification); (iii) the type of task (which provides useful information to identify

18 A Public Tool Suite for Modelling Interactive Applications 507



the most suitable interaction technique for the type of activity to perform, for
instance, if it is a task supporting a selection of one element among several ones, a
single choice interactor should be provided).

A Concrete User Interface (CUI) provides platform-dependent but imple-
mentation language-independent details of a UI. A platform is a set of software and
hardware interaction resources that characterises a given set of devices, such as
desktop, mobile, vocal and multimodal. Each CUI is a refinement of an AUI,
specifying how the abstract concepts can be represented in the current platform
taking into account the interaction modality available. MARIA currently supports
various platforms: graphical desktop and mobile, vocal, gestural, and multimodal
(which combines graphical and vocal modalities in various ways). For instance, in
the graphical concrete description corresponding to Web implementations, the
abstract element single choice is refined into either a radio button, or a drop-down
list, or a list box, or an image map, while the multiple choice is refined into a check
box or a list box, the navigator into a link button or an image map. The other
elements are similarly refined to support the semantics of the corresponding abstract
elements. In the case of a multimodal concrete language, we have to consider
refinements for multiple modalities and indicate how to compose them. In partic-
ular, the MARIA concrete language for composing graphical and vocal modalities
is based on the two previously defined concrete languages (one for the graphical
and one for the vocal modality). It adds the possibility to specify how to compose
them through the CARE (Complementarity, Assignment, Redundancy, Equiva-
lence) properties (Coutaz et al. 1995), which can occur between the interaction
techniques available in a multimodal user interface. Indeed, as we introduced
before, the MARIA abstract language structures a user interface into a set of pre-
sentations. Each presentation has composition operators, which contain interactors
that can be either interaction or only-output interface basic components. Such
interactors can have event handlers associated with them indicating how they react
to events. Each of these elements of the language, ranging from presentations to
elementary interactors, has different refinements for the graphical and the vocal
modality, and in the multimodal concrete language, we indicate how to compose
them. Thus, a multimodal presentation has associated both graphical attributes
(such as background colour or image or font settings) and vocal attributes (such as
speech recogniser or synthesis attributes). For example, a grouping composition in
the multimodal concrete language can exploit both visual aspects (using attributes
such as position, dimension, border backgrounds) and vocal techniques (i.e.
inserting keywords/sounds/pauses or changing synthesis properties). The interac-
tors are enabled to exploit both graphical events (associated with mouse and key-
boards) or vocal-specific ones (such as no input or no match input or help request).

The Final UI (FUI) corresponds to the UI in terms of some implementation
language. From the CUI, different final user interfaces can be derived. A FUI can be
represented in any UI programming (e.g. Java UI toolkit) or markup language (e.g.
HTML).

508 M. Manca et al.



18.3 The Proposed Tool Suite

In this section, we briefly introduce the main characteristics of the tools that will be
presented in detail in this chapter. The set of tools discussed in this chapter covers
the various abstraction levels indicated in the CAMELEON Reference Framework.
In particular, the Task and Domain level is covered by the CTT language, which is
supported by the desktop ConcurTaskTrees Environment (CTTE) and the
ResponsiveCTT tool (see Sect. 18.4). The other abstraction levels can be specified
by using the MARIA language and are supported by the MARIAE tool. The tool set
supports the possibility of transforming representations at one abstraction level into
another, which supports forward engineering transformations, the ones going from
the most abstract levels down to the more concrete ones. In addition, it is worth
noting that each described tool, apart from supporting such transformations, also
enables the user to handle (i.e. create, edit, save) the concerned relevant models.
There is another tool that supports transformations going from the most concrete
levels to the higher ones (reverse engineering tool). Figure 18.1 provides an
overview of the languages and the tools that have been developed. A different
colour has been assigned to each of the three tools: light grey to ReverseCTT (see
Sect. 18.7), black to MARIAE (see Sect. 18.5) and grey to ReverseMARIA (see
Sect. 18.6).

The task model language has been recently adopted as the basis for the task
model standardisation within W3C.3 The language also supports the possibility of
specifying task pre- and post-conditions (even combined in complex Boolean
expressions), which can be exploited not only within an interactive simulation of
the specification but also in the user interface generation process in order to derive
meaningful and consistent user interface implementations.

CTT is supported by two main tools: Desktop CTTE and ResponsiveCTT.
Desktop CTTE was also integrated with tools for model checking in order to
formally reason about task properties (Paternò and Santoro 2000). Both tools allow
the user to exploit the cloud to store and share task models remotely, which also
facilitates potential sharing and collaboration among designers. ResponsiveCTT
can be accessed through touch-based mobile devices such as smartphones and
tablets. The tool is responsive as it provides adapted user interfaces to better support
task modelling through various types of devices. For this purpose, it also exploits
some information visualisation techniques, i.e. representations that make users
comfortably analyse/modify task model specifications, which is especially useful
when medium-to-large task models are rendered on the limited screen size of
mobile devices.

In addition, in this chapter, we also focus on the relationships between task
model specifications and models for user interface definition exploited in multi-
device contexts. In particular, we focus on how task models can be exploited to
derive user interface models at various abstraction levels and for various platforms,

3http://www.w3.org/TR/task-models/.

18 A Public Tool Suite for Modelling Interactive Applications 509

http://www.w3.org/TR/task-models/


with particular attention to the UI models generated by MARIAE environment.
Regarding the latter tool, an aspect addressed is how to provide support for the
development of interactive applications able to access and exploit Web services,
even from different types of interactive devices. The MARIAE tool is able to aid in
the design of new interactive applications that access pre-existing Web services,
which may also contain annotations supporting the user interface development. In
addition, in MARIAE, various automatic generators are available for a number of
platforms (e.g. desktop, mobile multimodal, vocal, distributed), even directly from a
CTT task model. Indeed, one of the advantages of using a model-based language
such as MARIA over modern languages such as HTML5 is the ability to describe
and support even multimodal interfaces by still exploiting a set of core concepts.
Another integrated contribution is a reverse engineering tool, which will be dis-
cussed to show how to derive interactive systems’ descriptions at the various
possible abstraction levels starting with Web application implementations.

The development of the tools presented in this chapter has been done according
to a number of requirements that were identified and evolved over the years.
Regarding the software tools covering Abstract UI, Concrete UI and Final UI, some
requirements have been discussed in previous work. For instance, for a predecessor
of MARIAE, requirements were identified in Mori et al. (2004): the tool should
support mixed initiative, handle multiple logical levels described through
XML-based languages and enable different entry points within the multilevel UI
specification of CAMELEON conceptual framework. Further requirements for the
MARIAE tool were identified in Paternò et al. (2009): the tool should provide

Fig. 18.1 Overview of the languages and the tools proposed

510 M. Manca et al.



designers with effective control of the user interfaces produced, the transformations
for generating the corresponding implementations should not be hard-coded in the
tool, the tool should provide support also for creating front ends for applications in
which the functionalities are implemented in Web services.

Also for the Task and Domain level and in particular the CTTE Desktop tool, a
number of requirements were identified in previous work (Mori et al. 2002): the
tool is expected to provide support for modelling and analysis of single-user and
cooperative CTT task models, more specifically, visualise/edit/simulate/check the
validity of task models, save task models in various formats, support multiple
interactive views of task model specifications, support the generation of task models
from Web service descriptions (WSDL). ResponsiveCTT, as being more recently
developed having in mind mobile devices, posed further requirements which will be
discussed in detail in Sect. 18.4.1.

Regarding the tool suite on a more comprehensive level, a main requirement was
that it should support all the levels of the CAMELEON framework and associated
top-down/bottom-up transformations, which is fully satisfied in our case (see
Fig. 18.1).

18.4 Task Modelling

This section introduces the CTT notation for task models. Such notation is supported
by two tools: Desktop CTTE is a Java desktop application, and ResponsiveCTT is a
responsive Web application, which can be used from various types of devices.

18.4.1 CTT Task Models

Task models indicate the tasks that need to be performed for achieving users’ goals
by interacting with the UI. Various task model notations are available, e.g. UsiXML
(Limbourg et al. 2005), ConcurTaskTrees (Paternò 2000), Hamsters (Martinie et al.
2011), which differ on aspects such as the syntax, the level of formality and/or the
operators. A key factor for their adoption is the availability of automatic environ-
ments that support model editing, analysis and transformation. However, not all
task model notations are supported by (publicly available) tools, and the vast
majority of such tools are limited to desktop-based environments. ConcurTaskTrees
allows designers to concentrate on the activities that users aim to perform, which
are the most relevant aspects when designing interactive applications, and
encompasses both user- and system-related aspects. This approach allows designers
to avoid dealing with low-level implementation details, which at the design stage
would obscure the decisions to make. CTT has a hierarchical structure: this is
generally considered as very intuitive since often when people have to solve a
problem they tend to decompose it into smaller problems still maintaining the

18 A Public Tool Suite for Modelling Interactive Applications 511



relationships among the various parts of the solution. Figure 18.2 shows an
example of task model related to interacting with a content management system.

The hierarchical structure of this specification has two advantages: it provides a
wide range of granularity allowing large and small task structures to be reused, and
it enables reusable task structures to be defined at both low and high semantic
levels. A rich set of temporal relationships between tasks have also been identified.
How the performance of the task is allocated is indicated by the related category
and is explicitly represented by using icons. While the category of a task indicates
the allocation of its performance, the type of a task allows designers to classify tasks
depending on their semantics. Each category has its own types of tasks. In the
interaction category, examples of task types are as follows: selection, when the task
allows the user to select some information; control, when the task allows the user to
trigger a control event that can activate a functionality; editing, when the task
allows the user to enter a value; zooming, the possibility to zoom in/out; filtering,
the possibility to filter out some irrelevant details. Depending on the type of task to
be supported, a suitable interaction or presentation technique will be selected in the
development process. Frequency of use is another useful type of information
because the interaction techniques associated with more frequent tasks need to be
better highlighted to obtain an efficient user interface. The platform attribute
(desktop, cellular) allows the designer to indicate the types of devices the task is
suitable for. This information is particularly useful in the design of applications that
can be accessed through multiple types of platforms, because some tasks could not
be available in some platforms. For each task, it is possible to indicate the objects
that have to be manipulated to perform it. Since the performance of the same task in
different platforms can require the manipulation of different sets of objects, it is
possible to indicate for each platform which objects should be considered. It is also
possible to exploit such objects to define pre- and post-conditions associated with
the tasks. The presence of objects and conditions is indicated in the graphical
representation of the model through some cues (see the small rounded icons beside
some task icons in Fig. 18.2). Objects can be shared across multiple tasks, and each
involved task can have different conditions associated with the object.

The language is also able to model multiuser applications through specific task
models for each role involved and an additional model to indicate their relation-
ships. The notation has long been supported by a Java-based desktop tool, the
ConcurTaskTrees Environment (CTTE) (Mori et al. 2002), which provides a set of

Fig. 18.2 Example of a CTT task model

512 M. Manca et al.



functionalities for editing, analysis and interactive simulations of the dynamic
performance of sequence of tasks. It can be downloaded at http://giove.isti.cnr.it/
tools/CTTE/home.

18.4.2 ResponsiveCTT

As mobile devices are now indisputably part of everyday life and widely applied in
various domains, we judged it interesting to investigate the possibilities offered by
them for task modelling. We focused on truly mobile devices, i.e. those that can be
fully and comfortably used even when the user is on the go. As for task modelling
tools, some approaches have been put forward, such as CTTE, HAMSTERS and
K-MADe (Caffiau et al. 2010), although they all focused on desktop platforms.
Attempts to consider modelling tasks on a different platform were carried out
mainly in Eggers et al. (2013) and Spano and Fenu (2014). So, apart from a few
attempts considering task modelling for mobile use, tools supporting task modelling
have been mainly confined to considering desktop platforms. Thus, we have also
investigated the possibilities of touch-based modelling on mobile devices through a
new tool (ResponsiveCTT4). The development of the tool was driven by a number
of requirements identified in our experience of several projects and work in which
task modelling was exploited. First, in order to widen the impact and possible
adoption of the tool, it was developed as a Web application exploiting HTML5,
CSS3 (for the presentation) and JavaScript (for the dynamic aspects) accessible by
any browser-enabled device. Also, the tool was conceived to support responsive
design to effectively adapt the model representations to the screen area of the
device, which is particularly important when mobile devices are used. In addition,
since the screen size of mobile devices is a key factor for an effective analysis and
editing of task models, we judged relevant to exploit information visualisation
techniques for dynamically representing task models so as to harness the power of
visualization anytime, anywhere, while requiring more limited cognitive effort than
in stationary settings. Finally, to store and share task models remotely, the appli-
cation is cloud-based, which also facilitates collaboration among users.

With the new tool, to edit the task model on a touch-based mobile device, users
can touch an empty screen area to create a new task root and perform a tap gesture
on a task to edit it, i.e. edit name, type, objects and precondition or add a task as a
sibling or as a sub-task, copy/cut and paste a task and/or its children.

In the tool, a focus+context, fisheye-based visualisation technique (Cockburn
et al. 2008) has been used as an interactive visual aid to support the visualization,
exploration and navigation of task models on touch-based mobile devices, where
precise task selections are difficult due to their small screen and limited accuracy of
touch commands. In particular, the visualisation of a task model is arranged so that

4Available at http://ctt.isti.cnr.it.

18 A Public Tool Suite for Modelling Interactive Applications 513

http://giove.isti.cnr.it/tools/CTTE/home
http://giove.isti.cnr.it/tools/CTTE/home
http://ctt.isti.cnr.it


the tasks closest to the one that currently has the focus (the task Check Login Data
in Fig. 18.4) are more emphasised in terms of larger screen space of the associated
icons, with a progressive fall-off in magnification towards the upper/bottom model
edges. So, in our case, the focus area is determined by the selected task and includes
its nearest siblings and children tasks, while the “context” is composed of the
remaining tasks of the model. When selecting a task, the application sets the focus
to that task and changes the fisheye visualisation of the model accordingly. When
users tap on the task currently having the focus, a semi-transparent circular menu
appears (see Fig. 18.3), showing the actions that can be executed on that task:
change its properties, add new tasks, add objects and pre- and post-conditions
associated with it. When users select a new task, the visualisation of the task model
is dynamically recalculated to show the new task having the focus on a prominent
position of the window and rearrange the model visualisation accordingly. By
selecting the icon of a temporal operator, a contextual menu appears, visualising the
possible operators (see Fig. 18.3, right part), presented according to their priority.
Furthermore, a number of gestures are supported: “pinch to zoom” for zooming on
the task model, “swipe down/up” to move up/down in the task model level. It is

Fig. 18.3 UI for editing task (left) and operators (right)

514 M. Manca et al.



also possible to change various task attributes (e.g. task name, category) and add the
specification of objects manipulated by the task and pre-/post-conditions associated
with it. Finally, users can also save models in a dedicated cloud-based service.

As mentioned, the task that has the focus is supposed to be the currently most
“important” one; thus, it is always placed in a central position within the working
window and highlighted by a specific colour. More generally, every task has a
degree of interest dynamically calculated, which is inversely proportional to its
distance from the currently selected task. The dimension of the graphical repre-
sentation of each task varies according to this distance factor: the further the
focused task is, the smaller the icon of the considered task will be, where the
“distance” between two tasks is represented by the number of levels that need to be
traversed in the model to reach one task from the other. This algorithm is performed
whenever a task model is loaded or any editing operation modifies its structure.
When it becomes difficult to graphically represent some tasks in a way sufficiently
perceivable by the user because of the limited space, they are replaced with a
cue-based technique that shows numbers indicating how many tasks are currently
hidden (see Fig. 18.4 right part). The numbers are visualised at the same task level
and side as the hidden tasks, with the size of the numbered icon proportional to the
number itself. By interactively selecting a numbered icon, the previously hidden
tasks at the considered level are shown.

Tasks can have some preconditions visualised in the task model through a small
coloured rounded icon close to the task icon, whose colour changes during the
simulation phase according to the precondition state: if it is true the colour is green,

Fig. 18.4 (left) Complete task model (desktop); (right) Task model on a mobile platform

18 A Public Tool Suite for Modelling Interactive Applications 515



otherwise it is red. Figure 18.5 shows an example while the task model simulator is
running.

First-user studies (Anzalone et al. 2015) delivered encouraging results in how
the tool supported users in handling task models on mobile devices. They also
indicate that tablets are more suitable for supporting task modelling than smart-
phones since modelling tasks are medium-/long-term, cognitively demanding
activities which are better performed when the supporting devices allow for per-
forming them in a comfortable manner.

18.5 Modelling and Generating Multimodal User
Interfaces

While the previous section focused on the Task model level, in this section, we
describe how to model user interfaces and obtain a corresponding implementation.
MARIA has an abstract language and various concrete refinements that depend on
the modalities considered. In order to illustrate how to model and generate user
interfaces, it can be fruitful to consider the multimodal case, since little work has
been dedicated to it and it is an important trend in the HCI area to obtain more
natural interfaces. MARIA was developed to address various limitations in previous
model-based languages such as TERESA (Berti et al. 2004). One important

Fig. 18.5 Rendering tasks with preconditions within the ResponsiveCTT simulator

516 M. Manca et al.



contribution of MARIA and the associated environment (MARIAE5) is the possi-
bility of generating multimodal interactive applications, which can be executed in
any browser-enabled device supporting the Web Speech APIs. This is relevant
since most model-based approaches have focused only on graphical user interfaces.
A model-based Framework for Adaptive Multimodal Environments (FAME) has
been proposed in Duarte and Carrico (2006), but it does not provide support for
automatic application development, as in our case. Octavia et al. (2010) describe an
approach to design context-aware applications using a model-based design process,
but they do not address multimodal adaptation. The model-based approach was also
considered in Sottet et al. (2007) for its flexibility, although run-time adaptation is
considered only by regenerating the whole UI and multimodal adaptation is not
addressed. MyUI (Peissner et al. 2011) provides a framework for run-time adap-
tations while supporting accessibility. However, its design pattern-based approach
can quickly become cumbersome.

Our solution is able to generate multimodal interactive Web applications and
does not require using any particular API in addition to standard HTML, CSS and
JavaScript. Such implementations are obtained from the concrete language in
MARIA addressing multimodal user interfaces. It supports various combinations of
graphical and vocal modalities, and it can be easily extended to address other
modalities. At various granularities levels, it is possible to indicate the modalities
that should be used to support the considered user interface part. There are four
possibilities indicated by the CARE properties: complementarity, which means that
part is associated with one modality and part with another one; assignment indicates
that only one modality should be considered; redundancy is used to indicate that
multiple modalities should be used for the same user interface part; equivalence is
used when there is the possibility to choose one modality or another for the cor-
responding user interface elements. Depending on the modality indicated, the
corresponding concrete attributes are specified.

The multimodal user interface generator produces HTML implementations
structured in two parts: one for the graphical user interface and one for the vocal
one. The implementation exploits the Web Speech APIs6 for automatic speech
recognition (ASR) and text-to-speech synthesis (TTS). The generator annotates the
elements that need vocal support. Such annotations are detected through scripts that
are activated when the page is loaded and call the vocal libraries for ASR and TTS.
In particular, each UI element is annotated with a specific CSS class in the
implementation generation, according to the indications of the CARE properties. If
it contains a vocal part and the CARE value is redundancy or vocal assignment, the
class tts for the output elements and the prompt part of interaction element are
added, while the class asr is added for the input parts of interaction elements only if
the CARE value of this part is equivalent or vocal assignment. The generated
elements are marked with these classes because the multimodal scripts use them to

5Available at http://giove.isti.cnr.it/tools/MARIAE/home.
6https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html.

18 A Public Tool Suite for Modelling Interactive Applications 517

http://giove.isti.cnr.it/tools/MARIAE/home
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html


identify all the graphical elements having an associated vocal part. Figure 18.6
shows an implementation example for multimodal interaction generated from a
concrete user interface (CUI).

In Fig. 18.7, we consider an excerpt of the MARIA multimodal concrete
specification related to the definition of the single choice element corresponding to
the selection of the departure city in a task aimed to search for a particular flight.

The considered UI element defines the CARE properties for each interaction part
(see Fig. 18.7 line 1): for the input element, the CARE value is equivalent, which
means that input can be entered through either the graphical modality or the vocal
one; prompt and feedback phases are both redundant; thus, they are visible and
vocally synthesised. The single choice element is refined as a drop-down list (line
5) from the graphical point of view and as a single vocal selection (line 10) for the
vocal specification. The vocal part defines the vocal prompt, feedback and the
events related to the vocal interaction.

Figure 18.8 shows an excerpt of the code generated from the MARIA multi-
modal specification in Fig. 18.7. Since the single choice element is specified in a
multimodal way (see the CARE properties in Fig. 18.7 line 1), the corresponding
generated code is composed of a graphical part (Fig. 18.8 from line 1 to 9) and a
vocal part (Fig. 18.8 from line 10 to 26) that are not visible but still accessible from
the multimodal scripts described before. The label element is annotated with the tts
class to indicate that there is an associated vocal part with the same id plus the tts

Fig. 18.6 Multimodal generated user interface

518 M. Manca et al.



suffix (Fig. 18.8 line 2 and line 12). Since the select element is an input element, it
is annotated with the asr class to indicate that there is an associated vocal part
(Fig. 18.8 line 5 and 16).

Figure 18.9 shows another example of multimodal user interfaces for a car rental
application. The first page supports a multimodal search through which users can
provide the search parameters (also using the vocal modality): for all the interaction

Fig. 18.7 Excerpt of the MARIA multimodal concrete specification

Fig. 18.8 Excerpt of multimodal generated code

18 A Public Tool Suite for Modelling Interactive Applications 519



elements, the prompt and the feedback part are redundant (thus they are rendered
both graphically and vocally), while the input part is equivalent (users can choose
either modality). The second page is the search result, rendered in a redundant way
as well: all the output elements are both graphical and vocal.

18.6 Reverse Engineering User Interface Logical
Descriptions

While the previous two sections mainly analysed forward engineering transfor-
mations, in this section, we analyse ReverseMARIA, a tool able to reverse any web
page (local or remote) to build the corresponding specification in the MARIA
graphical Concrete UI language, and then it is also possible to obtain its Abstract UI
specification. The tool is available at https://hiis.isti.cnr.it:8443/WebReverse/
indexRev.html, and its development was aimed to facilitate building models
associated with existing applications. Such models can then be used to obtain the
specification of user interfaces more suitable for different contexts of use, for
example for devices with different features (Paternò et al. 2008).

Fig. 18.9 Multimodal car rental application

520 M. Manca et al.

https://hiis.isti.cnr.it:8443/WebReverse/indexRev.html
https://hiis.isti.cnr.it:8443/WebReverse/indexRev.html


In general, there are two main approaches to reverse engineering user interfaces:
pixel-based and code-based. Pixel-based approaches analyse the correlations
between the display’s pixels to find the set of interface components (buttons, forms)
and the hierarchy amongst them. Although being implementation language—neu-
tral—see Dixon et al. (2014) as an example—the main problem of pixel-based
approaches is that they are able to retrieve only information about the visual pre-
sentation of UIs, and not about the behaviour of components, because they depend
on the hidden source code implementation. Source-code reverse engineering in turn
can be done in two ways: using static analysis through the application code, or
analysing the running application in a dynamic way (dynamic analysis). It is also
possible to perform hybrid analysis when static and dynamic analyses are used
together. There are various tools that exploit the static analysis-based approach (see
e.g. Bernardi et al. 2009a; Da Silva 2010). The benefit of static analysis is that all
the information is stored in the code and ready to be processed, but it is not able to
retrieve the part of the implementation that is not detectable unless the code is
executed. Dynamic analysis solves this problem by analysing the behaviour of the
user interface during execution. Examples of dynamic analysis are described in
Maras et al. (2011) and (Morgado et al. 2010). For Web applications, a risk related
to dynamic approaches is leaving many interface states unexplored and thus
obtaining an incomplete interface model. For this reason, a hybrid analysis
approach (see Silva and Campos 2013; Li and Wohlstadter 2008) can be more
thorough with respect to either static or dynamic techniques.

We followed a novel hybrid approach for reverse engineering web pages to
enable analysing them both when stored on a server and when loaded client side,
also considering the current internal state of the UI and the user inputs. Our tool
reverse-engineers web pages by taking as input the DOM representation which can
be obtained in two ways: (i) getting the input page through an http request to the
server, and generating the DOM from the HTML code using an external library7;
(ii) serialising the HTML DOM on the client side through either the browser or a
proxy. In addition to the extraction of DOM, the tool

• Associates the significant CSS properties with the related HTML elements;
• For each event associated with an HTML element, determines the type of event,

the JavaScript functions invoked on its activation and their parameters;
• Transforms the result obtained into an equivalent MARIA element;
• Serialises the MARIA elements in an XML file using JAXB8 technology.

7We used the Java Tidy Parser, available at http://tidy.sourceforge.net/, modified by us to handle
HTML5 tags as well.
8Java Architecture for XML Binding.

18 A Public Tool Suite for Modelling Interactive Applications 521

http://tidy.sourceforge.net/


18.6.1 The Reverse Algorithm

The tool has a first pre-processing phase in which it creates the DOM (see
Fig. 18.10), moves all the JavaScript nodes to an external file and stores in cache
memory all the CSS properties that are in external files or in style nodes. At the
beginning, it creates the MARIA interface element, which contains information
regarding the MARIA version and schema, and a presentation element, which
contains the default page properties taken from the HEAD part of the page (e.g.
page title). Then, it performs a depth-first search visit of the DOM starting from the
body node. For each node, it first analyses the type and its attributes, then adds the
id attribute if it is not set and introduces an attribute used to analyse the nodes’
textual properties. Then, it analyses the neighbouring node to retrieve correlations
between nodes and classifies single nodes according to their content and visual
properties. The result obtained is the logical representation of the DOM structure.
The following example (involving the Yahoo home page) shows how the numbered
parts of the HTML structure and CSS properties of the page shown in Fig. 18.11
are transformed into the MARIA descriptions shown in Figs. 18.12 and 18.13.

Figure 18.12 shows the MARIA elements (a grouping and a description ele-
ment) that correspond to the HTML elements indicated by (1) in Fig. 18.11, while
MARIA attributes correspond to CSS properties.

In Fig. 18.13, the red part (2) represents the input text element in the considered
web page (see Fig. 18.11), while the green part (3) represents the submit button.

Fig. 18.10 Reverse engineering algorithm

522 M. Manca et al.



Fig. 18.11 Yahoo Home page

Fig. 18.12 Result corresponding to element 1

Fig. 18.13 Results corresponding to elements 2 and 3

18 A Public Tool Suite for Modelling Interactive Applications 523



Parts 2 and 3 are contained in a relation MARIA element, which represents an
HTML form.

Part 4 in Fig. 18.11 corresponds to a link, with its label composed of a picture
and a text. This HTML part corresponds to a MARIA navigator element, along with
a connection indicating the target presentation.

18.7 Reverse Engineering Task Models

In this section, we present the ReverseCTT tool, which covers the Abstract
UI-to-Task Model transformation of the CAMELEON Reference Framework.
While ReverseMARIA is a tool able to reverse any web page (local or remote) and
build the corresponding specification in the graphical desktop concrete language of
MARIA and then obtain its abstract description, ReverseCTT reverses the
MARIA AUI specification into a CTT task model description. Thus, it has a more
modular approach than WebRevenge (Paganelli and Paternò 2003b), which aimed
to create task models directly from the website code.

The ReverseCTT process is articulated into a number of rules. In order to
understand them, it is important to briefly remind the characteristics of the input that
this transformation receives, namely the AUI. Every AUI is structured into a set of
presentations, and each presentation has a name attribute. The relationships
between the AUI presentations are modelled through connections, which can be
elementary or complex, and which mainly support navigation between the different
presentations belonging to each AUI. In other terms, connections are the
logical/abstract counterpart of navigational links in Web UIs. The structure of each
presentation is articulated into a set of abstract interactors (which can have different
types ranging from editing, navigation, choice, to description and activators), whose
relationships are modelled through operators (e.g. grouping, relation) defined in the
language. Our assumption is that, after a user selects a presentation, the same
pattern repeats, regardless of the specific presentation selected. This pattern is the
following (for each presentation): load the (selected) presentation, handle the pre-
sentation (for user’s goals) and then select a new presentation.

Having said that, the idea is that for each AUI presentation, a new task model is
created, whose root name is derived by the name of the AUI presentation (by
concatenating “Access” + <AUI presentation name>). The root task just created
has three children: one is an application task (“Load” + <AUI presentation name>.
This application task is followed (through an enabling operator) by an abstract task
(“Handle” + <AUI presentation name>), which in turn is disabled by a second
abstract task (“Select new page” + <AUI presentation name>). The resulting CTT
task model after this step is shown in Fig. 18.14.

In the second step, the process analyses the elements of type “elementary con-
nection” in the AUI, which mainly represent HTML anchors/links. For instance,

524 M. Manca et al.



when they are anchors, this means that the navigation remains within the same
page/presentation at hand; therefore, the “Handle title” node created in the first step
will be expanded. This will be done by adding two new tasks (an abstract task and
an interactive task) combined through a suspend/resume operator (see “Handle title
page” |> “Select Anchors title” in Fig. 18.15, left part). Then, for each anchor
found, an interactive task is created as child of the lastly created task. All such
interactive tasks will be linked together through a choice operator (see Fig. 18.15,
left part).

In the next step, the algorithm continues by analysing the type of the AUI
interactors included in the AUI presentation and translating each of them into the
corresponding CTT task models. For instance, if the AUI contains an element
supporting a multiple choice, all the choice elements referring to the same multiple
choice elements are translated into interactive tasks linked together through an
interleaving operator (see Fig. 18.15, right part). In Fig. 18.16, a screenshot of the
tool showing an example of translation of an AUI description into a CTT task
model specification is shown.

Fig. 18.14 From AUI to
CTT: the model after the first
step of the transformation

Fig. 18.15 From AUI to CTT: the resulting CTT model after translating elementary connections
associated with HTML anchors (left part) and multiple choice elements (right part)

18 A Public Tool Suite for Modelling Interactive Applications 525



18.8 Conclusions and Future Work

We have presented an integrated set of model-based languages and associated tools
for supporting design and development of interactive applications also using var-
ious modalities. They can be applied in various domains such as safety-critical
systems (see for example at https://www.eurocontrol.int/ehp/?q=node/1617), ERP,
workflow management systems and Ambient Assisted Living.

Some of such tools have been used by a broad community since they are
publicly available (see http://giove.isti.cnr.it/tools.php), and over time, external use
has provided suggestions for small improvements.

Future work will be dedicated to investigating how they can be exploited in
combination with agile methodologies. This represents an interesting challenge
since modelling requires some time and this may conflict with the fast pace adopted

Fig. 18.16 Tool for reverse engineering CTT task models

526 M. Manca et al.

https://www.eurocontrol.int/ehp/?q=node/1617
http://giove.isti.cnr.it/tools.php


in such methodologies. However, the use of model-based tools able to support fast
prototyping can be able to address this issue. Another important area is how to
exploit task models in analysing user behaviours. Previous tools, such as Web-
RemUsine (Paganelli and Paternò 2003a), have addressed how to compare client
side Web logs representing actual behaviour with desired behaviour represented by
the task model. It can be interesting to extend this approach to analyse broader
human behaviour detected through various sensors and compare it with that
described by task models in order to identify potential issues.

We also plan to continue to carry out studies in order to investigate improve-
ments for the usability of the languages and the associated tools.

References

Anzalone D, Manca M, Paternò F, Santoro C (2015) Responsive task modelling. In: Proceedings
of ACM SIGCHI symposium on engineering interactive computing systems, pp 126–131

Bernardi ML, Di Lucca GA, Distante D (2009a) The RE-UWA approach to recover user centered
conceptual models from web applications. Int J Softw Tools Technol Transf 11(6):485–501

Berti S, Correani F, Paternò F, Santoro C (2004) The TERESA XML language for the description
of interactive systems at multiple abstraction levels. In: Proceedings workshop on developing
user interfaces with XML: advances on user interface description languages, pp 103–110

Caffiau S, Scapin D, Girard P, Baron M, Jambon F (2010) Increasing the expressive power of task
analysis: systematic comparison and empirical assessment of tool-supported task models.
Interact Comput 22(6):569–593 (2010)

Calvary G, Coutaz J, Thevenin D, Bouillon L, Florins M, Limbourg Q, Souchon N,
Vanderdonckt J, Marucci L, Paternò F (2002) The CAMELEON reference framework.
Deliverable D 1

Cockburn A, Karlson A, Bederson B (2008) A review of overview+detail, zooming, and focus
+context interfaces. ACM Comput Surv 41(1):2

Coutaz J, Nigay L, Salber D, Blandford A, May J, Young R (1995) Four easy pieces for assessing
the usability of multimodal interaction: the CARE properties. Proc Interact 1995:115–120

da Silva CBE (2010) Reverse engineering of rich internet applications. Master thesis, Minho
University, 2010

Dixon M, Laput G, Fogarty J (2014) Pixel-based methods for widget state and style in a runtime
implementation of sliding widgets. In: Proceedings of annual conference on human factors in
computing systems, pp 2231–2240

Duarte C, Carriço L (2006) A conceptual framework for developing adaptive multimodal
applications. In: Proceedings of IUI 2006, pp 132–139

Eggers J, Hülsmann A, Szwillus G (2013) Aufgabenmodellierung am Multi-Touch-Tisch. In:
Boll S, Maaß S, Malaka R (eds) Mensch & Computer 2013: Interaktive Vielfalt, pp 325–328

Li P, Wohlstadter E (2008) View-based maintenance of graphical user interfaces. In: Proceedings
of 7th international conference on aspect-oriented software development, p 156

Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, López-Jaquero V (2005) UsiXML: a
language supporting multi-path development of user interfaces. In: Proceedings of engineering
human computer interaction and interactive systems, pp 200–220

Maras J, Stula M, Carlson J (2011) Reusing web application user-interface. Lect Notes Comput Sci
6757:228–242

Martinie C, Palanque P, Winckler M (2011) Structuring and composition mechanisms to address
scalability issues in task models. In: Proceedings of INTERACT, pp 589–609

18 A Public Tool Suite for Modelling Interactive Applications 527



Morgado IC, Paiva AC, Pascoal Faria J (2010) Dynamic reverse engineering of graphical user
interfaces. Int J Adv Softw 5(3):224–236

Mori G, Paternò F, Santoro C (2002) CTTE: support for developing and analyzing task models for
interactive system design. IEEE Trans Softw Eng 28(8):797–813

Mori G, Paternò F, Santoro C (2004) Design and development of multidevice user interfaces
through multiple logical descriptions. IEEE Trans Softw Eng 30(8):507–520

Octavia JR, Vanacken L, Raymaekers C, Coninx K, Flerackers E (2010) Facilitating adaptation in
virtual environments using a context-aware model-based design process. In: England D,
Palanque P, Vanderdonckt J, Wild PJ (eds) Proceedings of TAMODIA 2009, pp 58–71

Paganelli L, Paternò F (2003a) Tools for remote usability evaluation of web applications through
browser logs and task models. Behav Res Methods Instrum Comput Psychon Soc Publ 35
(3):369–378

Paganelli L, Paternò F (2003b) A tool for creating design models from web site code. Int J Softw
Eng Knowl Eng World Sci Publ 13(2):169–189

Paternò F (1999) Model-based design and evaluation of interactive applications. Springer
Paternò F, Santoro C (2000) Integrating model checking and HCI tools to help designers verify

user interfaces properties. In: Proceedings of DSV-IS’2000, pp 135–150
Paternò F, Santoro C, Scorcia A (2008) Automatically adapting web sites for mobile access

through logical descriptions and dynamic analysis of interaction resources. Proc AVI
2008:260–267

Paternò F, Santoro C, Spano LDM (2009) A universal, declarative, multiple abstraction-level
language for service-oriented applications in ubiquitous environments. ACM Trans Comput
Human Interact 16(4):19:1–19:30

Paternò F, Santoro C, Spano LD (2011) Engineering the authoring of usable service front ends.
J Syst Softw 84:1806–1822

Raneburger D, Meixner G, Brambilla M (2013) Platform-independence in model-driven
development of graphical user interfaces for multiple devices. In: Proceedings of ICSOFT,
pp 180–195

Silva CE, Campos JC (2013) Combining static and dynamic analysis for the reverse engineering of
web applications. In: Proceedings of 5th ACM SIGCHI symposium on engineering interactive
computing systems, p 107

Sottet JS, Ganneau V, Calvary G, Demeure A, Favre JM, Demumieux R (2007) Model-driven
adaptation for plastic user interfaces. In: Baranauskas C, Abascal J, Barbosa SDJ (eds) Pro-
ceedings of INTERACT 2007, pp 397–410

Spano LD, Fenu G (2014) IceTT: a responsive visualization for task models. In: Proceedings of the
2014 ACM SIGCHI symposium on engineering interactive computing systems. ACM, pp 197–
200

528 M. Manca et al.


	18 A Public Tool Suite for Modelling Interactive Applications
	Abstract
	18.1 Introduction
	18.2 Background
	18.3 The Proposed Tool Suite
	18.4 Task Modelling
	18.4.1 CTT Task Models
	18.4.2 ResponsiveCTT

	18.5 Modelling and Generating Multimodal User Interfaces
	18.6 Reverse Engineering User Interface Logical Descriptions
	18.6.1 The Reverse Algorithm

	18.7 Reverse Engineering Task Models
	18.8 Conclusions and Future Work
	References


