
Chapter 15
Formal Analysis of Multiple Coordinated
HMI Systems

Guillaume Brat, Sébastien Combéfis, Dimitra Giannakopoulou,
Charles Pecheur, Franco Raimondi and Neha Rungta

Abstract Several modern safety-critical environments involve multiple humans

interacting not only with automation, but also between themselves in complex ways.

For example, in handling the National Airspace, we have moved from the traditional

single controller sitting in front of a display to multiple controllers interacting with

their individual display, possibly each other’s displays, and other more advanced

automated systems. To evaluate safety in such contexts, it is imperative to include

the role of one or multiple human operators in our analysis, as well as focus on prop-

erties of human automation interactions. This chapter discusses two novel frame-

works developed at NASA for the design and analysis of human–machine interac-

tion problems. The first framework supports modeling and analysis of automated

systems from the point of view of their human operators and supports the specifica-

tion and verification of HMI-specific properties such as mode confusion, controlla-

bility, or whether operator tasks are compatible with a particular system. The second

framework captures the complexity of modern HMI systems by taking a multi-agent

approach to modeling and analyzing multiple human agents interacting with each

other as well as with automation.

G. Brat ⋅ D. Giannakopoulou ⋅ N. Rungta

NASA Ames Research Center, Moffett Field, CA, USA

e-mail: Guillaume.P.Brat@nasa.gov

D. Giannakopoulou

e-mail: Dimitra.Giannakopoulou@nasa.gov

N. Rungta

e-mail: Neha.S.Rungta@nasa.gov

S. Combéfis (✉)

École Centrale des Arts et Métiers (ECAM), Woluwé-Saint-Lambert, Belgium

e-mail: sebastien.combefis@uclouvain.be; s.combefis@ecam.be

C. Pecheur

Université catholique de Louvain, Louvain-la-Neuve, Belgium

e-mail: charles.pecheur@uclouvain.be

F. Raimondi

Middlesex University, London, UK

e-mail: f.raimondi@mdx.ac.uk

© Springer International Publishing AG 2017

B. Weyers et al. (eds.), The Handbook of Formal Methods
in Human-Computer Interaction, Human-Computer Interaction Series,

DOI 10.1007/978-3-319-51838-1_15

405

406 G. Brat et al.

15.1 Introduction

In a number of complex and safety-critical environments such as health care systems,

autonomous automobiles, airplanes, and many others, the role of the human operator

has shifted from manual control to “monitor and react”. Human operators spend

a large portion of their time monitoring automated systems and a smaller portion

of their time performing actions based on the information provided by the system.

There are several examples of such automated systems in use today including auto-

pilots and collision avoidance systems in airplanes, systems that dispense prescribed

dosage of medicine to patients, and systems used to perform trading in the financial

markets. We expect this trend to continue with the introduction of autonomous cars,

unmanned aerial vehicles, remote surgeries, and smart automation in our homes,

among others.

To evaluate safety, it is imperative to consider the Human–Machine Interaction

(HMI) system as a whole, by including the role of the human operator. Our research

at NASA in this domain is targeted primarily on the National Airspace (NAS) in the

context of civil aviation, but the techniques presented in this paper can be and have

been applied to other domains as well.

The NAS is a complex environment in which humans and automated systems

interact to enable safe transportation across the USA. The NAS has been designed to

guarantee safety through human decision making with some support from automated

systems. In other words, humans are at the core of the current air traffic management

system. However, in order to accommodate increasing density of air traffic in the

USA, there is a need to increase the use of automated systems that can assist humans

such as air traffic controllers. Increased automation is also supported by FAA’s Next

Generation Air Transportation System (NextGen) program, where the FAA is the

regulatory authority for civil aviation in the USA.

The NAS is turning into a complex, interconnected system, in which humans

interact with automation extensively: we move from the traditional single controller

sitting in front of a display to multiple controllers interacting with their individual

display, possibly each other’s displays, and other more advanced automated systems.

Interactions can be as complex as information flowing from an automated system

(possibly merging information coming from several automated systems) to another

automated system with human controllers debating options to ensure safe and effi-

cient traffic flow.

Despite the fact that increased automation is essential in assisting humans to prob-

lem solve in such a complex environment, infusion of a new technology is a very con-

servative process driven by the need to maintain current levels of safety. The current

infusion process (from creating to certifying and fielding new automated systems) is

extremely slow and limits our ability to cope with increasing traffic demands. This

puts more pressure on the controllers and might result in pockets of reduced safety,

which is not acceptable.

15 Formal Analysis of Multiple Coordinated HMI Systems 407

The main reason for the slow pace of infusion of new technology is our reliance

on testing and human studies to assess the quality and consequences of fielding new

automation. Human studies are very useful and provide many insights as to how con-

trollers can react to new automation. However, they are always limited in scale and

therefore fall short of accounting for off-nominal conditions and emergent behavior

in this large, connected system that is the NAS. Clearly, we need better methods for

analyzing the implications of fielding new automation.

This chapter discusses two novel frameworks developed at NASA for the design

and analysis of human–machine interaction problems. The first framework supports

modeling and analysis of automated systems from the point of view of their human

operators in terms of observations made and commands issued. It supports the spec-

ification and verification of HMI-specific properties such as mode confusion, con-

trollability, or whether operator tasks are compatible with a particular system.

The second framework aims at directly capturing the complexity of HMI sys-

tems involving multiple users interacting with each other as well as multiple auto-

mated systems. It provides a multi-agent approach to modeling and analyzing mul-

tiple human agents, e.g., pilots and controllers, interacting with each other as well

as with automation. These models are created at a higher-level of abstraction that

allows us to express actions, tasks, goals, and beliefs of the human such that experts

in the domain of air traffic management and airspace system are able to understand

the models. The multi-agent system framework provides support for modeling and

scalable analysis to detect safety issues such as loss of separation, aircraft collision,

or other user-specified properties in complex HMI systems. We describe the appli-

cation of these two frameworks to realistic HMI systems.

15.2 From HMI Frameworks to Full-Blown
Multi-agent Systems

Automated systems are increasingly complex, making it hard to design interfaces

for human operators. Human–machine interaction (HMI) errors like automation sur-

prises are more likely to appear and lead to system failures or accidents. Our work

studies the problem of generating system abstractions, called mental models, that

facilitate system understanding while allowing proper control of the system by oper-

ators as defined by the full-control property (Combéfis et al. 2011). Both the domain

and its mental model have labeled transition systems (LTS) semantics. In this con-

text, we developed algorithms for automatically generating minimal mental models

as well as checking full-control. We also proposed a methodology and an associated

framework for using the above and other formal method-based algorithms to sup-

port the design of HMI systems. The framework, implemented in the JavaPathfinder

model checker (JavaPathfinder 2016), can be used for modeling HMI systems and

analyzing models against HMI vulnerabilities. The analysis can be used for valida-

tion purposes or for generating artifacts such as mental models, manuals, and recov-

ery procedures.

408 G. Brat et al.

Despite the flexibility of our framework in capturing and analyzing properties

that are specific to HMI systems, such as mode confusion, controllability by human

operators, or whether an operator task is supported by an automated system, it has

been clear from early stages of our research that expressing HMI systems directly

in terms of LTSs is unmanageable for realistic systems. For this reason, we bridged

our analysis framework with environments that domain experts use to model and

prototype their systems. In particular, our efforts have focused on the NASA Ames

HMI prototyping tool ADEPT (Combéfis et al. 2016). We extended the models that

our HMI analysis framework handles to allow adequate representation of ADEPT

models. We also provided a property-preserving reduction from these extended mod-

els to LTSs, to enable application of our LTS-based formal analysis algorithms. We

demonstrated our work on several examples, most notably on an ADEPT autopi-

lot (Combéfis 2013).

However, as discussed, the scale of modern HMI systems goes beyond the mod-

eling and analysis capabilities of such tools. To handle the full scale of the NAS,

where multiple humans interact with multiple automated systems, one needs to sup-

port appropriate high-level modeling mechanisms as well as a variety of analysis

capabilities that range from simulation to exhaustive verification techniques, when

possible. To address this challenge, we have moved toward modeling HMI systems

as multi-agent systems.

Multi-agent systems (MAS) offer a design abstraction and modeling approach for

systems involving humans and automation. They provide the ability for predictive

reasoning about various safety conditions such as expected behavior of the autonomy,

situational awareness of humans, workload of the human operators, and the amount

of time taken from the start to the end of a complete or partial operation or procedure.

Rational agents are commonly encoded using belief–desire–intention (BDI) archi-

tectures. BDI architectures, originally developed by Michael Bratman (1987), rep-

resent an agent’s mental model of information, motivation, and deliberation. Beliefs

represent what the agent believes to be true, desires are what the agent aims to

achieve, and intentions are how the agent aims to achieve its desires based on its cur-

rent beliefs. The BDI model is a popular model for representing rational agents, i.e.,

agents that decide their own actions in a rational and explainable way. This success is

probably due to its intuitive representation of human practical reasoning processes.

Our multi-agent framework is an extension of Brahms—a BDI-based MAS frame-

work. Brahms is a simulation and development environment originally designed to

model the contextual situated activity behavior of groups of people in a real world

context (Clancey et al. 1998; Sierhuis 2001). Brahms has now evolved to model

humans, robots, automated systems, agents, and interactions between humans and

automated systems. Our extension connects Brahms to a variety of simulation and

formal verification tools to enable the safety analysis of NAS models.

15 Formal Analysis of Multiple Coordinated HMI Systems 409

15.3 Formal Design and Analysis Techniques
for HMI Properties

In this section, we describe our work on developing an HMI-specific formal analy-

sis framework. In our framework, HMI models are represented using an extension

of labeled transition systems (LTS) and are analyzed to assert system controllabil-

ity given the commands that can be issued and the observations that can be made

by the human operator. We illustrate the capabilities of the framework with a simple

example from the medical community. Even though LTSs are an ideal abstraction for

the specification and analysis of HMI properties, it is hard to model large, complex

HMI systems directly as LTSs. We therefore also describe our work on connecting

our analysis algorithms to the ADEPT prototyping tool, which provides a more intu-

itive modeling environment for domain experts.

15.3.1 Extended LTS

Since we are interested in controllability properties and detection of automation sur-

prises, the distinction between commands and observations matters (Heymann and

Degani 2007; Javaux 2002). Our approach is based on two models: the system model,
which describes the detailed behavior of the system, and the mental model, which

represents an abstraction of the system for the human operator.
1

Our formal models are expressed with enriched labeled transition systems (LTS)

called HMI LTS. HMI LTSs are essentially graphs whose edges are labeled with

actions. The difference with classical LTSs is that three kinds of actions are defined:

1. Commands are actions triggered by the user on the system; they are also referred

to as inputs to the system;

2. Observations are actions autonomously triggered by the system but that the user

can observe; they are also referred to as outputs from the system;

3. Internal actions are neither controlled nor observed by the user; they correspond

to internal behaviors of the system that is completely hidden to the user.

The detailed formalization is available in Combéfis and Pecheur (2009), Combéfis

et al. (2011).

Formally, HMI LTS are tuples ⟨S,L c
,L o

, s0, 𝛿⟩ where S is the set of states; L c

and L o
are the sets of commands and observations, respectively; s0 is the initial

state; and 𝛿 ∶ S × (L c ∪L o ∪ {𝜏}) → 2S is the transition function. Internal actions

cannot be distinguished by the user and are thus denoted with the same symbol 𝜏,

called the internal action. The set of observable actions comprises commands and

1
The mental model is commonly referred to as conceptual model (Johnson and Henderson 2002)

in the literature, that is, an abstraction of the system which outlines what the operator can do with

the system and what she needs in order to interact with it.

410 G. Brat et al.

observations and is denoted L co = L c ∪L o
. In this chapter, HMI LTS will simply

be referred to as LTS.

When a transition exists between states s and s′ with action a, that is 𝛿(s, a) = s′,

we say that the action a is enabled in state s and we write s
a
←←←←←←←←←→ s′. A trace 𝜎 =

⟨𝜎1, 𝜎2,⋯ , 𝜎n⟩ is a sequence of observable actions in L co
that can be executed on

the system, that is s0
𝜎1
←←←←←←←←←←←←←→ s1

𝜎2
←←←←←←←←←←←←←→ ⋯

𝜎n
←←←←←←←←←←←←←→ sn. The set of traces of an LTSM is denoted

𝐓𝐫(M). Internal actions can also occur between actions of a trace, which is written

s
𝜎

⟹ s′ and corresponds to s
𝜏

∗
𝜎1𝜏

∗⋯𝜏

∗
𝜎n𝜏

∗

←←→ s′, where 𝜏

∗
means zero, one or more

occurrences of 𝜏. The set of commands that are enabled in a state s, denoted Ac(s),
corresponds to actions a such that there exists a state s′ with s

a
⟹ s′. The set of

enabled observations, denoted Ao(s), is defined similarly.

15.3.2 Properties

Given a system model and a mental model, we are interested in the notion of full
controllability that captures the fact that an operator has enough knowledge about

the system in order to control it properly, i.e., at each instant of time, the operator

must know exactly the set of commands that the system can receive, as well as the

observations that can be made.

Formally, a mental model MU = ⟨SU ,L
c
,L o

, s0U , 𝛿U⟩ allows the full-control of

a given system MM = ⟨SM ,L
c
,L o

, s0M , 𝛿M⟩
2

if and only if:

∀𝜎 ∈ L co∗
such that s0M

𝜎

⟹ sM and s0U
𝜎

←←←←←←←←←←→ sU ∶
Ac(sM) = Ac(sU) and Ao(sM) ⊆ Ao(sU) (15.1)

In other words, it means that for every trace 𝜎 that can be executed on both the

system and the mental model (s0M
𝜎

⟹ sM and s0U
𝜎

←←←←←←←←←←→ sU), the set of commands (Ac
)

that are enabled on the system model and on the mental model are exactly the same,

and the set of observations (Ao
) enabled according to the mental model contains at

least the observations enabled on the system model.

With this definition, the user must always know all the possible commands, which

is a strong requirement. In the work presented here, we use a weaker variant, where

a user may not always know all the possible commands but only those which are

relevant for interacting with the system.

The full-control property characterizes a conceptual model for a given system,

which we refer to as full-control mental model. All the behaviors of the system must

be covered by the full-control mental model, and it should allow the user to interact

2
The subscript M for the system refers to Machine and the subscript U for the mental model refers

to User.

15 Formal Analysis of Multiple Coordinated HMI Systems 411

correctly with the system. This means that the user always knows what can be done

on the system and what can be observed from it.

The full-control property captures the behavior of a given system that a user

should know in order to operate it without errors. Given a system model MM =
⟨SM ,L

c
,C o

, s0M , 𝛿M⟩, a trace 𝜎 ∈ L co∗
can be put into one of three different cate-

gories. In other words, the set of traces of MM can be partitioned into three sets: Acc
(Accepted), Rej (Rejected), and Dont (Don’t care).

Let 𝜎 be a trace and a an action (command or observation):

1. 𝜎a ∈ Rej if (i) 𝜎 ∈ Rej or (ii) 𝜎 ∈ Acc, a is a command and there exists an execu-

tion of 𝜎 where a is not enabled in the reached state. This first category highlights

the fact that the user must always know exactly the available commands.

2. 𝜎a ∈ Acc if (i) 𝜎 ∈ Acc and either a is a command which is enabled for all the

states that are reached after the execution of 𝜎 or (ii) a is an observation that is

enabled in at least one state reached after the execution of 𝜎. This second category

contains the behavior of the system of which the user must be aware.

3. In the other cases, 𝜎a ∈ Dont. This corresponds to two cases: (i) either 𝜎 ∈ Dont
or (ii) 𝜎 ∈ Acc, a is an observation and a is not enabled in any state reachable by

𝜎. That last category reflects the fact that the user may expect an observation that

will not necessarily occur in the system.

Traces from Rej are forbidden which means that they cannot be part of a full-

control mental model. Traces from Acc must be accepted which means that any full-

control mental model must contain those traces. Traces from Dont may be accepted
which means that they can belong to a full-control mental model for the system, or

not.

15.3.3 Analysis

When interacting with a system, a user does not always need to know all the behavior

of the system. Most of the time, users are interested in performing some tasks that

only partially exercise the capabilities of the system. Given the model of a system

and a set of user tasks, the system allows the operator to perform all the user tasks if

all the behavior covered by the tasks can be executed on the system. Such a system

can of course have more behavior, as long as all the tasks are supported.

A user task can be expressed as an LTS MT . Trace inclusion between the system

and the tasks (𝐓𝐫(MT) ⊆ 𝐓𝐫(MM)) can be used to ensure that all traces of the task

are supported by the system. However, trace inclusion is not a satisfactory criterion

for this type of problem as illustrated by the following example.

In Fig. 15.1, where solid lines correspond to commands and dashed lines to obser-

vations, the set of traces of the user task is a subset of the set of traces of the system.

But there is a situation where the user can be surprised. After performing an a com-

mand, the system can transition to a state where the b observation will never occur,

resulting in the user not being able to complete the task.

412 G. Brat et al.

a b c

(a) User task model.

a

a

b c

(b) System model.

Fig. 15.1 A system (on the right) which can make the operator confused in some situations, when

he wants to perform his tasks (on the left)

The full-control property can be used to achieve a more relevant check between

a system model and a user task. Formally, a system model MM = ⟨SM ,L
c
,L o

,

s0M , 𝛿M⟩ allows the operator to perform the tasks of the user task model MT =
⟨ST ,L

c
,L o

, s0T , 𝛿T ⟩ if and only if:

∀𝜎 ∈ L co∗
such that s0T

𝜎

←←←←←←←←←←→ sT and s0M
𝜎

⟹ sM ∶

Ao(sT) = Ao(sM) and Ac(sT) ⊆ Ac(sM) (15.2)

For a system to support a user task, the following must hold. At any point during

the execution of the task, if the user needs to issue a command, then that command

should be included in the commands available in the system at that point. Moreover,

at any point during the execution of the task, the task should be prepared to receive

exactly those observations available in the system at that point. Therefore, the full-

control check can be applied between the system model MM and the user task model

MT , interchanging commands and observations.

Figure 15.2 shows an example of a lamp illustrating that relation. The task model

indicates that the user should be able to switch a lamp on and off with a press com-

mand. If the user observes a burnOut signal, then the lamp is dead and nothing else can

be done. The proposed system model allows full-control of the task model (invert-

ing the roles of commands and observations). There is an additional behavior which

onoff dead

press

press burnOut

(a) Task model.

onoff

dead

fades

dies

press
fadeOut

press

endFading

burnOut

(b) System model.

Fig. 15.2 An example of a set of user task MT for a simple lamp (on the left) and a system model

MM which allows full-control of it (on the right)

15 Formal Analysis of Multiple Coordinated HMI Systems 413

allows the lamp to be dimmed down all the way to off if the user presses the fade-
Out command while in the on state. That additional behavior is not a problem since,

according to the task model, it will never be executed.

15.3.4 Example

The Therac-25 (Leveson and Turner 1993) is a medical system which was subject

to an accident due to an operator manipulation error which took place during the

interaction with the machine. The machine has the ability to treat patients by admin-

istering X-ray or electron beams. For the first treatment, a spreader has to be put in

place so that the patient does not receive too much radiation. The accident occurred

when patients were administered X-rays while the spreader was not in place.

The formal model described in Bolton et al. (2008) was represented in the

JPF framework and had 110 states and 312 transitions, among which there are

194 commands, 66 observations, and 52 internal actions. The set of commands is

{selectX, selectE, enter, fire, up}, and there is one observation corresponding to a

timeout {8 second}. The model is illustrated as a statechart on Fig. 15.3.

The result of the analysis of the Therac-25 system is that it is well-behaved (i.e., it

is full-control deterministic) and that it cannot be reduced. The minimal full-control

model is thus exactly the same as the system model, without the 𝜏 transitions. The

potential error with that system cannot be captured with the model as it has been

described.

In fact, the error is actually due to mode confusion: the operator believes that the

system was in the electron beam mode while it is in fact in the X-ray mode. That kind

of error can be found with our framework, by enriching the system model with mode

information. Loops are added on all the states where a mode is active with either X-

Fig. 15.3 Statechart model of the Therac-25 medical system (Leveson and Turner 1993). The enter
command is represented with

↱

and the up command is represented with ↑

414 G. Brat et al.

ray or E-beam, according to the mode the machine is in. These new labels are treated

as commands, reflecting the fact that the operator must know exactly which mode

the machine is in.

Analyzing that modified system leads to an error, because the system is no longer

full-control deterministic. The counterexample produced by the framework is as

follows: ⟨selectX, enter, fire,X-ray⟩. That trace corresponds to a trace that must be

accepted and must be forbidden at the same time. Indeed, after selecting X-ray beam

(selectX), validating it (enter) and administering the treatment (fire), the X-ray com-

mand may or may not be available depending on the execution followed in the sys-

tem. This means that the system may end up either in the X-ray or in the E-beam
mode, non-deterministically and with no observable difference. That behavior is due

to an internal transition that occurs when the treatment has been administered, which

represents the fact that the system is reset to its initial state. The controllability issue

indicates that there should be an observation informing the user when the system is

reset. Adding a reset observation makes the system full-controllable and a minimal

full-control mental model for it can be generated, with 24 states.

There is another issue with that system. If the operator is not aware of the

8-second timer (or does not track the countdown), the issue described in Leveson

and Turner (1993), Bolton et al. (2008) can also be found. It suffices to turn the

observation 8 second into an internal transition 𝜏 and to make the system being

reset when the operator presses enter after the treatment has been administered. The

last actions of the returned counterexample (the most relevant part) is as follows:

⟨… , selectE, up,E-beam, selectX,E-beam⟩. That corresponds to the user selecting

the electron beam mode, then changing his mind by pushing on the up button and

selecting the X-ray mode. After that, the system may either be in E-beam or X-ray
mode.

15.3.5 Analysis of ADEPT Models

Even though HMI LTSs are an ideal abstraction for the specification and analysis of

the HMI properties described above, it is hard to model large, complex HMI systems

directly as LTSs. For this reason, we have worked on connecting our analysis algo-

rithms to prototyping tools that are more familiar and intuitive for domain experts.

In particular, we have worked closely with the developers of the ADEPT tool.

ADEPT (Automatic Design and Evaluation Prototyping Toolset) (Feary 2010) is

a Java-based tool developed at NASA Ames, which supports designers in the early

prototyping phases of the design of automation interfaces. The tool also offers a set of

basic analyses that can be performed on the model under development. An ADEPT

model is composed of two elements: a set of logic tables, coupled with an interactive

user interface (UI). The logic tables describe the dynamics of the system as state

changes in reaction to user actions or to environmental events. For example, Fig. 15.4

shows a screenshot of the autopilot model opened in ADEPT. The left part of the

window shows one of the logic tables and the right part shows the user interface.

15 Formal Analysis of Multiple Coordinated HMI Systems 415

Fig. 15.4 The autopilot model opened in ADEPT, with one logic table in the left part of the window

and the user interface on the right part

The UI is composed of a set of components that are encoded as Java objects rep-

resenting graphical widgets. The logic tables can refer to the elements of the UI and

to the other components through their Java instance variables, and interact with them

through their methods, using Java syntax. In particular, UI events are seen as Boolean

variables that are set to true when the event occurs.

Behind the scene, an ADEPT model is compiled into a Java program that can

be executed in order to directly try the encoded behavior with the user interface.

That tool is meant to be used as a rapid prototyping tool. The models not only can

then be tested and simulated by the designers, but can also be analyzed by systematic

and rigorous techniques. Possible analyses include validity checks on the structure of

logic tables, for example. We have extended the analysis capabilities of ADEPT with

our framework, which requires the translation of ADEPT tables into the models that

our framework can handle. We describe our work with ADEPT through an autopilot

example.

Figure 15.5 shows one of the logic tables of the autopilot model. The table exam-

ple illustrates the way it can interact with elements of the UI. Each light gray line of

the table corresponds to a variable of the system. The variables can be related to a

component of the UI (such as pfdAirspeedTargetTape.currentValue), or they can be state

variables of the model (such as indicatedAirSpeed) or they can relate to the internal

logic of the system (airspeedSystemTable.outputState). The latter kind of variables can

be seen as a description of the mode of a particular component of the system (the

airspeed part in this example). For example, the two first lines of the output part

of the logic table example mean that the value of the currentValue field of the pfdAir-
speedTargetTape component of the UI is updated with the value of the indicatedAirspeed

416 G. Brat et al.

Fig. 15.5 An example of a

logic table: the airspeed

feedback table of the

autopilot model contains the

logic related to the update of

the UI for the airspeed part

state variable. Moreover, each column of an ADEPT table corresponds to a transi-

tion scenario. From any state of the system that satisfies the condition described by

the input part of the table, the system can move to the state of the system that results

in applying the update instructions described by the output part of the table.

The ADEPT autopilot partially models the behavior of the autopilot of a Boeing

777 aircraft. The full autopilot ADEPT model has a total of 38 logic tables. Three

major groups of tables can be identified in the model, namely one for the lateral

aspect, one for the vertical aspect, and finally, one for the airspeed aspect. For each

of these aspects, the logic tables are further partitioned into three groups: the action

tables, the system tables, and the feedback tables, successively executed in that order.

Action tables determine actions from UI events, system tables update the state of the

system according to the performed action, and feedback tables reflect the state of the

system to UI elements.

For a full account of our autopilot case study, we refer the interested reader to

(Combéfis 2013). Here, we report briefly on the extensions that we applied to our

formalisms as well as our experiences and some observations with analyzing autopi-

lot system tables. First of all, given the fact that ADEPT models are state-based and

in order to be able to easily support the automatic translation of ADEPT models

into HMI LTS for the application of our analysis algorithms, we extended our HMI

models with state information, as described in Combéfis et al. (2016). These models

15 Formal Analysis of Multiple Coordinated HMI Systems 417

are named HMI state-Valued System models, or HVS. Our techniques cannot scale

to the full size of such a large and complex model. Therefore, our analyses were

performed on parts of the autopilot model, each analysis considering subsets of the

system tables. As is typical with formal techniques, we additionally had to abstract

the infinite data domains involved in the models.

Using the outputState as a mode indicator, we performed mode confusion analy-

sis and detected a potential mode confusion on the airspeedSystemTable. This was

identified during the minimal model generation phase, where the generation algo-

rithm produced an error trace witnessing the fact that the system model was not

fc-deterministic. By analyzing the error trace manually, we localized the erroneous

behavior in the involved ADEPT tables. One of the models that was analyzed was an

HVS with 7680 states and 66242 transitions, among which 57545 are labeled with

commands and 8697 are internal 𝜏-transitions. The obtained minimal mental model

has 25 states and 180 transitions.

Our experiences described in this section lead us to the conclusion that in develop-

ing modeling and analysis techniques that can capture multiple aspects of the NAS,

we would need to move toward formalisms that enable the intuitive and scalable

modeling of multiple interacting agents (human and automation), with support for

a variety of analyses, starting from more scalable simulations and toward not only

more sophisticated, but also more resource-consuming exhaustive techniques such

as the ones we presented. These observations lead to the work that is described in

the next section.

15.4 Coordinating HMIs as Multi-agent Systems

This section describes the modeling analysis of multiple interacting HMIs specified

in the Brahms modeling language (Clancey et al. 1998; Sierhuis 2001). The input to

our framework is a Brahms model along with a Java implementation of its seman-

tics. Brahms is a multi-agent simulation system in which people, tools, facilities,

vehicles, and geography are modeled explicitly. The air transportation system of the

NAS is modeled as a collection of distributed, interactive subsystems such as air-

ports, air traffic control towers and personnel, aircraft, automated flight systems and

air traffic tools, instruments, and flight crew. Each subsystem, whether a person or

a tool such as the radar, is modeled independently with properties and contextual

behaviors. Brahms facilitates modeling various configurable realistic scenarios that

allows the analysis of the airspace in various conditions and reassignment of roles

and responsibilities among human and automation.

418 G. Brat et al.

15.4.1 The Brahms Language

Brahms is a full-fledged multi-agent, rule-based, activity programming language. It

is based on a theory of work practice and situated cognition (Clancey et al. 1998;

Sierhuis 2001). The Brahms language allows for the representation of situated activ-

ities of agents in a geographical model of the world. Situated activities are actions

performed by the agent in some physical and social context for a specified period of

time. The execution of actions is constrained (a) locally: by the reasoning capabil-

ities of an agent and (b) globally by the agents beliefs of the external world, such

as where the agent is located, the state of the world at that location and elsewhere,

located artifacts, activities of other agents, and communication with other agents or

artifacts. The objective of Brahms is to represent the interaction between people,

off-task behaviors, multitasking, interrupted and resumed activities, informal inter-

actions, and knowledge, while being located in some environment representative of

the real world.

At each clock tick, the Brahms simulation engine inspects the model to update

the state of the world, which includes all of the agents and all of the objects in the

simulated world. Agents and objects have states (factual properties) and may have

capabilities to model the world (e.g., radar display is modeled as beliefs, which are

representations of the state of the aircraft). Agents and objects communicate with

each other; the communication can represent verbal speech, reading, writing, etc.

and may involve devices such as telephones, radios, and displays. Agents and objects

may act to change their own state, beliefs, or other facts about the world.

15.4.2 MAS Formal Analysis

We use model checking-based techniques to systematically explore the various

behaviors in Brahms scenarios, i.e., in our case study collision scenarios of the

Überlingen model configuration. In Hunter et al. (2013) and Rungta et al. (2013),

we present an extensible verification framework that takes as input a multi-agent

system model and its semantics as input to some state space search engine (or a

model checker). The search engine generates all possible behaviors of the model with

respect to its semantics. The generated behaviors of the model are then encoded as a

reachability graph G = (N ,E), where N is a set of nodes and E is a set of edges. This

graph is automatically generated by the search engine. Each node n ∈ N is labeled

with the belief/facts values of the agents and objects. In Hunter et al. (2013), we gen-

erate the reachability graph using the Java PathFinder byte-code analysis framework.

An edge between the nodes represents the updates to beliefs/facts and is also labeled

with probabilities. The reachable states generated by JPF are mapped to the nodes in

a reachability graph. This reachability graph is essentially an LTS.

15 Formal Analysis of Multiple Coordinated HMI Systems 419

The verification of safety properties and other reachability properties is performed

on the fly as new states and transitions are generated. JPF is an explicit-state analysis

engine that stores the generated model in memory. Capturing the state of all the

agents and objects in Brahms including their workframes and thoughtframes can lead

to large memory requirements. Additionally, for large systems, it is often intractable

to generate and capture even just the intermediate representation in memory.

To overcome these limitations, we adopt a stateless model checking approach.

Stateless model checking explores all possible behaviors of the program or model

without storing the explored states in a visited set. The program or model is exe-

cuted by a scheduler that tracks all the points of non-determinism in the program.

The scheduler systematically explores all possible execution paths of the program

obtained by the non-deterministic choices. Stateless model checking is particularly

suited for exploring the state space of large models. In this work, we instrument

the Brahms simulator to perform stateless model checking. The instrumented code

within the Brahms engine generates all possible paths (each with different combi-

nations of activity durations) in depth-first ordering. Stateless model checkers like

VeriSoft (Godefroid 1997) do not in general store paths; however, in order to per-

form further analysis of the behaviors space, the Brahms stateless model checker can

store all the generated paths in a database.

15.4.2.1 Non-determinism in Brahms

There are two main points of non-determinism in Brahms models. The first point of

non-determinism is due to durations of primitive activities. The different primitive

activities in Brahms have a duration in seconds associated with them. The duration

of the primitive activity can either be fixed or can vary based on certain attributes

of the primitive activities. When the random attribute of a primitive activity is set to

true, the simulator randomly selects the primitive activity duration between the min

and max durations specified for the activity. The second point of non-determinism

arises from probabilistic updates to facts and beliefs of agents and objects. Updates to

facts and beliefs are made using conclude statements in Brahms. Here is an example

of a conclude statement:

conclude((Pilot.checkStall = false), bc ∶ 70, fc ∶ 70)

This states that the belief and fact, checkStall, in the Pilot agent will be updated to

false with a probability of 70%. Here, bc represents belief certainty while fc repre-

sents fact certainty.

In the Überlingen model, currently there are only deterministic updates to facts

or beliefs. The updates to facts and beliefs are asserted with a 100% probability.

Nevertheless, there is a large degree of non-determinism due to variations in activity

durations. The difference in minimum and maximum duration ranges from 2 s to a

few 100 s. This can potentially lead to a large number of timing differences between

the various events.

420 G. Brat et al.

15.4.2.2 Behavior Space

The scheduler within the stateless Brahms model checker generates all possible paths

through the different points of non-determinism in the Brahms model. Note that in

describing the output of the Brahms stateless model checker, we use the terms path

and trace interchangeably. Intuitively, a path (or trace) generated by the Brahms state-

less model checker is equivalent to a single simulation run. More formally, a path

or trace is a sequence of events executed by the simulator < e0, e1, e2, ..., ei >. Each

event in the trace is a tuple, < a, t, (u, val) > where a is the actor id, t is the Brahms

clock time, and u is the fact or belief updated to the value val. For each trace, we

generate a sequence of nodes in the intermediate representation ninit , n0, n1, n2, ..., ni.
The initial node in the sequence, ninit is labeled with the initial values of belief/facts

values for the various agents and objects. The event e0 ∶=< a0, t0, (u0, val0) > is

applied to the initial node ninit where the value assigned to u0 is updated to val0.

Each event is applied in sequence to a node in the intermediate representation to

generate ninit , n0, n1, n2, ..., ni.

15.4.3 Case Study: The Überlingen Collision

The Überlingen accident, (Überlingen 2004), involving the (automated) Traffic Col-

lision Avoidance System (TCAS), is a good example to illustrate problems arising

from multiple human operators interacting with multiple automated systems. TCAS

has the ability to reconfigure the pilot and air traffic control center (ATCC) relation-

ship, taking authority from the air traffic control officer (ATCO) and instructing the

pilot.

TCAS is an onboard aircraft system that uses radar transponder signals to operate

independently of ground-based equipment to provide advice to the pilot about con-

flicting aircraft that are equipped with the same transponder/TCAS equipment. The

history of TCAS dates at least to the late 1950s. Motivated by a number of midair col-

lisions over three decades, the United States Federal Aviation Administration (FAA)

initiated the TCAS program in 1981. The system in use over Überlingen in 2002 was

TCAS II v.7, which had been installed by US carriers since 1994: TCAS II issues

the following types of aural annunciations:

∙ Traffic advisory (TA)

∙ Resolution advisory (RA)

∙ Clear of conflict

When a TA is issued, pilots are instructed to initiate a visual search, if possible, for the

traffic causing the TA. In the cases when the traffic can be visually acquired, pilots are

instructed to maintain visual separation from the traffic. When an RA is issued, pilots

are expected to respond immediately to the RA unless doing so would jeopardize the

safe operation of the flight. The separation timing, called TAU, provides the TA alert

at about 48 s and the RA at 35 s prior to a predicted collision.

15 Formal Analysis of Multiple Coordinated HMI Systems 421

On July 1 2002, a midair collision between a Tupolev Tu-154M passenger jet trav-

eling from Moscow to Barcelona, and a Boeing 757-23APF DHL cargo jet manned

by two pilots, traveling from Bergamo to Brussels, occurred at 23:35 UTC over the

town of Überlingen in southern Germany. The two flights were on a collision course.

TCAS issued first a Traffic Advisory (TA) and then a Resolution Advisory (RA) for

each plane. Just before TCAS issued an RA requesting that the Tupolev climb, the

air traffic controller in charge of the sector issued a command to descend; the crew

obeyed this command. Since TCAS had issued a Resolution Advisory to the Boeing

crew to descend that they immediately followed, both planes were descending when

they collided.

The decision of the Tupolev crew to follow the ATC’s instructions rather than

TCAS was the immediate cause of the accident. The regulations for the use of TCAS

state that in the case of conflicting instructions from TCAS and ATCO, the pilot

should follow the TCAS instructions. In this case study, the conflict arose because

the loss of separation between the two planes was not detected or corrected by the

ATCO. The loss of separation between airplanes are frequent occurrences; it is part

of the normal work of air traffic control to detect and correct them accordingly.

There were a set of complex systemic problems at the Zurich air traffic control

station that caused the ATCO to miss detecting the loss of separation between the two

planes. Although two controllers were supposed to be on duty, one of the two was

resting in the lounge: a common and accepted practice during the lower workload

portion of night shift. On this particular evening, a scheduled maintenance proce-

dure was being carried out on the main radar system, which meant that the con-

troller had to use a less capable air traffic tracking system. The maintenance work

also disconnected the phone system, which made it impossible for other air traffic

control centers in the area to alert the Zurich controller to the problem. Finally, the

controllers workload was increased by a late arriving plane. An A320 that was land-

ing in Friedrichshafen required the ATCO’s attention, who then failed to notice the

potential separation infringement of the two planes.

The Überlingen collision proves that methods used for certifying TCAS II v7.0

did not adequately consider human–automation interactions. In particular, the certi-

fication method treated TCAS as if it were flight system automation, that is, a system

that automatically controls the flight of the aircraft. Instead, TCAS is a system that

tells pilot how to maneuver the aircraft, an instruction that implicitly removes and/or

overrides the ATCs authority. Worldwide deployment of TCAS II v7.1 was still in

process in 2012, a decade after the Überlingen collision.

15.4.3.1 Brahms’ Model

In a Brahms model, the entire work system is modeled, including agents, groups

to which they belong, facilities (buildings, rooms, offices, spaces in vehicles), tools

(e.g., radio, radar display/workstation, telephone, vehicles), representational objects

(e.g., a phone book, a control strip), and automated subsystems (e.g., TCAS), all

located in an abstracted geography represented as areas and paths. Thus, the notion of

422 G. Brat et al.

human–system interaction in Brahms terms is more precisely an interaction between

an agent and a subsystem in the model; both are behaving within the work system.

A workframe in Brahms can model the interaction between an agent’s beliefs, per-

ception, and action in a dynamic environment, for example, these characteristics are

leveraged when modeling how a pilot deploys the aircraft landing gear. A pilot uses

the on-board landing control and then confirms that the landing gears are deployed

while monitoring the aircraft trajectory on the Primary Flight Display. This is mod-

eled in Brahms as follows: a pilot (e.g., the DHL pilot) is a member of the PilotGroup,

which has a composite activity for managing aircraft energy configuration. A spe-

cific instance of a conceptual class is called a conceptual object. A particular flight

(e.g., DHX611, a conceptual object) is operated by a particular airline and consists

of a particular crew (a group) of pilots (agents) who file a particular flight plan doc-

ument (an object), and so on. Each instance of an agent and object have possible

actions defined by workframes where each workframe contains a set of activities

that are ordered and often prioritized. Certain workframes are inherited from their

group (for agents) or class (for objects). The set of possible actions are modeled at a

general level and all members of a group/class have similar capabilities (represented

as activities, workframes, and thoughtframes); however, at any time during the simu-

lation, agent and object behaviors, beliefs, and facts about them will vary depending

on their initial beliefs/facts and the environment with which they are interacting.

The model incorporates organizational and regulatory aspects implicitly, manifest

by how work practices relate roles, tools, and facilities.

A Brahms simulation model configuration consists of the modeled geography,

agents, and objects, as well as their initial facts and beliefs of agents and objects.

The different configurations allow us to perform a what-if analysis on the model.

The time of departure for a flight might be an initial fact in a Brahms model. One can

modify the model to assign a different time of departure for a flight in each simulation

run. Another example of configurable initial facts may include work schedules for air

traffic controllers. In one configuration of the work schedules, an air traffic controller

may be working alone in the ATCC, while in another configuration, two controllers

would be present in the ATCC. Initial beliefs of an agent might be broad preferences

affecting behavior (e.g., TCAS should overrule the ATC), thus initial beliefs can

be used as switches to easily specify alternative configurations of interest. Alterna-

tive configurations are conventionally called scenarios. Thus for example, a scenario

might be a variation of the Überlingen collision in which two aircraft have flight

times that put them on an intersecting path over Überlingen; the only other flight is

a late arriving flight for Friedrichshafen and maintenance degrades the radar, but the

telephones are in working order.

In general, a model is designed with sufficient flexibility to allow investigating

scenarios of interest. The set of causal factors of interest (e.g., use of control strips

when approving aircraft altitude changes, availability of telephones) constitute states

of the world and behaviors that can be configured through initial facts and beliefs.

The initial settings define a space of scenarios. Using Brahms to evaluate designs

within this space, while using formal methods to help modelers understand its bound-

15 Formal Analysis of Multiple Coordinated HMI Systems 423

aries so they can refine the model to explore alternative scenarios constitutes the main

research objective of this work.

The simulation engine determines the state of a modeled object (e.g., aircraft).

It determines the state of its facts and beliefs. Some objects are not physical things

in the world, but rather conceptual entities, called conceptual classes in the Brahms

language. These represent processes, a set of people, physical objects, and locations

(e.g., flights), and institutional systems (e.g., airlines) that people know about and

refer to when organizing their work activities.

15.4.3.2 High-Level Structure of Model

The systems that are mentioned in the accident report and play a role in accident

have been modeled in the Brahms Überlingen model. These include the pilots in

each aircraft, two ATCOs at Zurich, the relevant airspace and airports, all the air-

craft relevant to the accident, on-board automation, and other flight systems. The

following key subsystems and conditions are modeled in the Brahms Überlingen

model:

1. Interactions among Pilot, Flight Systems, and Aircraft for climb and cruise with

European geography for one plane, the DHL flight plan.

2. BTC flight, flight plan (two versions: on-time and delayed with collision) and

geography: this is independent of ATCO actions to confirm that simulation

reproduces collision with flight paths actually flown.

3. Radar Systems and Displays with ATCOs, located in Control Centers, monitor-

ing when flights are entering and exiting each European flight sector in flight

plans.

4. Handover interactions between Pilot and ATCOs for each flight phase.

5. Two ATCOs in Zurich, Radar Planner (RP), and ARFA Radar Executive (RE),

assigned to two workstations (RE has nothing to do under these conditions).

6. Add TCAS with capability to detect separation violations, generate Traffic Advi-

sory (TA) and Resolution Advisory (RA). DHL and BTC are delayed (on colli-

sion course, which tests TCAS)

7. Pilots follow TCAS instructions

8. ATCO may intervene prior to alert depending on when ATCO notices conflict in

Radar Displays since ATCO is busy communicating with other flights, moving

between workstations, and trying to contact Friedrichshafen control tower on

the phone.

9. AEF flight and flight plan so Zurich ARFA RE performs landing handoff to

Friedrichshafen controller.

10. Third plane, the AEF flight, arrives late, requiring ATCO communications and

handoff to Friedrichshafen: (a) Handled by ATCO in Zurich at right workstation

(ARFA sector) and not left East and South sector workstation. (b) Phone com-

munications for handovers, (c) Methods used by ATCO when phone contact

does not work:

424 G. Brat et al.

a. Ask Controller Assistant (CA) to get another number (pass-nr); requires

about 3 min for CA to return

b. After pass-nr fails, discuss with CA other options about 30 sec

c. When not busy handling other flights, try pass-nr again.

d. When plane is at Top-Of-Descent waypoint, as specified in STAR, for land-

ing at airport, within N nm of airport, method of last resort is to call pilots

on radio and ask them to contact the tower directly

11. STCA added to ATCO workstations (modeling normal and fallback mode with-

out optical alert). The ATCO responds to alert by advising Pilot to change flight

level based on next flight segment of flight plan.

12. Reduce to one Zurich ATCO which triggers the sequence of variations from the

nominal situation; now Zurich ATCO must operate flights from two worksta-

tions.

15.4.3.3 Analysis Results

The question that the analysis tries to answer, using both simulation and verification,

is why under certain conditions, a collision is averted, while in others it is not? In the

analysis, we try to gauge how the temporal sensitivity and variability of the interac-

tions among ATCO, TCAS, and the pilots impacts the potential loss of separation

and collision of the planes. Concretely, the questions that we ask during the analysis

are as follows:

∙ Given that the arrival of the AEF flight is disrupting the ATCOs monitoring of the

larger airspace (e.g., if it arrives sufficiently late, no collision occurs), what is the

period (relative to the BTC and DHL flights paths) when AEF’s arrival can cause

collision?

∙ During this period, does a collision always occur or are there variations of how the

AEF handoff occurs, such that sometimes the separation infringement is averted?

∙ Is there evidence that high-priority activities such as monitoring the sector are

repeatedly interrupted or deferred, implying the ATCO is unable to cope with the

workload?

The Brahms Überlingen Model defines a space of work systems (e.g., is STCA

optical functioning? are there two ATCOs?) and events (e.g., the aircraft and flights).

Every model configuration, which involves configuring initial facts, beliefs, and

agent/object relations, constitutes a scenario that can be simulated and will itself pro-

duce many different outcomes (chronology of events), because of non-deterministic

timings of agent and object behaviors. The model was developed and tested with a

variety of scenarios (e.g., varying additional flights in the sector; all subsystems are

working properly). The Überlingen accident is of special interest, in which systems

are configured as they were at the time of the accident and the DHL and BTC planes

are on intersecting routes.

15 Formal Analysis of Multiple Coordinated HMI Systems 425

The key events that occur during simulation are logged chronologically in a file

that constitutes a readable trace of the interactions among the ATCO, pilots, and

automated systems. The log includes information about the following:

(a) ATCO–pilot interaction regarding a route change, including flight level and

climb/descend instruction,

(b) Separation violation events detected by TCAS, including TAU value,

(c) Closest aircraft and separation detected by ATCO when monitoring radar,

(d) STCA optical or aural alerts, including separation detected,

(e) Agent movements (e.g., ATCO shifting between workstations),

(f) Aircraft movements, including departure, entering and exiting sectors, waypoint

arrival, landing, collision, airspeeds, and vertical,

(g) Aircraft control changes (e.g., autopilot disengaged),

(h) Radio calls, including communicated beliefs, and

(i) Phone calls that fail to complete.

The outcome of ten simulation runs of Brahms Überlingen model configured for

the collision scenario are shown in Table 15.1. In simulation runs 1, 2, and 3, the

ATCO intervenes before TCAS TA, but planes have not separated sufficiently, TCAS

will take BTCs descent into account, advising DHL to climb. In the simulation runs

4, 5, 7, 8, and 9, the ATCO intervenes between TA and RA. In these runs, whether

the planes collide depends on timing. As shown in Table 15.1 two of the five runs

results in a collision. Note that in our model, a collision is defined as occurring when

the vertical separation between the planes is less than a 100 feet. Finally, in the simu-

lation runs 6 and 10, the ATCO intervenes about 10 s after the TCAS RA, which the

BTC pilots ignore (or might be imagined as discussing for a long time); therefore,

BTC continues flying level while DHL descends and they miss each other, sepa-

rated by more than 600 ft at the crossing point. In other runs, we have also observed

that ATCO intervenes so late, he actually takes the pilots’ report about TCAS RA

instructions into account.

When ATCO intervenes in the period between the TA and RA in runs 4, 5, 7,

8, and 9, a collision is possible, like what happened at Überlingen: ATCO has to

intervene before the TA advising BTC to descend so that BTC can respond before

TCAS advises DHL to climb. In runs 4 and 7, collision is narrowly averted because

BTC begins to descend 4 or 5 s after the TCAS RA, which is sufficient for a narrow

miss (just over 100 feet). In run 9, the BTC descent begins 5 s before the RA, hence

the aircraft miss by more than 200 feet). Runs 5 and 8 lead to a collision because

the TCAS RA and BTC AP disengage occur at the same time, like what happened

at Überlingen.

Because the model uses the Überlingen descent tables to control the BTC and

DHL aircraft during the emergency descent, simulation matches the paths of the

aircraft at Überlingen guaranteeing a collision (within defined range of error). In

both cases, TCAS did not instruct DHL to climb because BTC was above DHL at

that time and of course had not begun its descent.

When ATCO intervenes after the RA, the BTC pilots in the simulations ignore

the RA advice and continue level flight, which itself averts the collision, even though

426 G. Brat et al.

Ta
bl
e
15
.1

O
u

tc
o

m
e
s

o
f

te
n

s
im

u
la

ti
o

n
r
u

n
s

o
f

Ü
b
e
rl

in
g
e
n

s
c
e
n

a
r
io

.
B

o
ld

in
d

ic
a
te

s
g

re
a
te

s
t

p
o
te

n
ti

a
l

fo
r

c
o

ll
is

io
n

(A
T

C
O

in
te

r
v
e
n

e
s

b
e
tw

e
e
n

T
A

a
n

d
R

A
;

b
o
th

a
ir

c
ra

ft
d
e
s
c
e
n
d
in

g
)

R
u
n

C
o

ll
id

e
?

E
x

p
la

n
a
ti

o
n

A
T

C
O

-B
T

C
T

C
A

S
R

A
-D

H
L

A
T

C
O

re
la

ti
v
e

T
A

/R
A

1
N

o
T

C
A

S
d
e
te

c
ts

B
T

C
p
la

n
e

d
e
s
c
e
n
d
in

g
d
u
e

to
A

T
C

O
;

s
o

a
d
v
is

e
s

D
H

L
to

C
li

m
b

D
e
s
c
e
n
d

C
li

m
b

B
e
fo

re

2
N

o
T

C
A

S
d
e
te

c
ts

B
T

C
p
la

n
e

d
e
s
c
e
n
d
in

g
d
u
e

to
A

T
C

O
;

s
o

a
d
v
is

e
s

D
H

L
to

C
li

m
b

D
e
s
c
e
n
d

C
li

m
b

B
e
fo

re

3
N

o
T

C
A

S
d
e
te

c
ts

B
T

C
p
la

n
e

d
e
s
c
e
n
d
in

g
d
u
e

to
A

T
C

O
;

s
o

a
d
v
is

e
s

D
H

L
to

C
li

m
b
.

A
E

F
fl

ig
h
t

a
r
r
iv

e
s

v
e
r
y

la
te

a
ft

e
r

T
C

A
S

T
A

D
e
s
c
e
n
d

C
li

m
b

B
e
fo

re

4
N

o
D

H
L

T
C

A
S

D
e
s
c
e
n
d
;

B
T

C
a
b
o
v
e
.

P
la

n
e
s

c
ro

s
s
e
d

>
1
0
0

ft
v
e
r
ti

c
a
l

s
e
p
a
ra

ti
o
n

D
e
s
c
e
n
d

D
e
s
c
e
n
t

D
u
r
in

g

5
Y

E
S

D
H

L
T

C
A

S
D

e
s
c
e
n
d
;

B
T

C
a
b
o
v
e
.

B
T

C
A

P
tu

r
n
e
d

o
ff

a
t

D
H

L
R

A
.

P
la

n
e
s

c
ro

s
s
e
d

<
2
0

ft
v
e
r
ti

c
a
l

s
e
p
a
ra

ti
o
n

D
e
s
c
e
n
d

D
e
s
c
e
n
t

D
u
r
in

g

6
N

o
D

H
L

T
C

A
S

D
e
s
c
e
n
d
;

B
T

C
a
b
o
v
e
.

A
T

C
O

la
te

r
th

a
n

R
A

,
s
o

B
T

C
le

v
e
l.

P
la

n
e
s

c
ro

s
s
e
d

>
6
0
0

ft
v
e
r
ti

c
a
l

s
e
p
a
ra

ti
o
n

D
e
s
c
e
n
d

D
e
s
c
e
n
t

A
ft

e
r

7
N

o
D

H
L

T
C

A
S

D
e
s
c
e
n
d
;

B
T

C
a
b
o
v
e
.

D
H

L
tu

r
n
e
d

o
ff

2
s

b
e
fo

re
B

T
C

.
P

la
n
e
s

c
ro

s
s
e
d

>
1
0
0

ft
v
e
r
ti

c
a
l

s
e
p
a
ra

ti
o
n

D
e
s
c
e
n
d

D
e
s
c
e
n
t

D
u
r
in

g

8
Y

E
S

D
H

L
T

C
A

S
D

e
s
c
e
n
d
;

B
T

C
a
b
o
v
e
.

P
la

n
e
s

c
ro

s
s
e
d

<
5
0

ft
v
e
r
ti

c
a
l

s
e
p
a
ra

ti
o
n

D
e
s
c
e
n
d

D
e
s
c
e
n
t

D
u
r
in

g

9
N

o
D

H
L

T
C

A
S

D
e
s
c
e
n
d
;

B
T

C
a
b
o
v
e
.

P
la

n
e
s

c
ro

s
s
e
d

>
2
0
0

ft
v
e
r
ti

c
a
l

s
e
p
a
ra

ti
o
n

D
e
s
c
e
n
d

D
e
s
c
e
n
t

D
u
r
in

g

1
0

N
o

D
H

L
T

C
A

S
D

e
s
c
e
n
d
;

B
T

C
a
b
o
v
e
.

A
T

C
O

la
te

r
th

a
n

R
A

,
s
o

B
T

C
le

v
e
l.

P
la

n
e
s

c
ro

s
s
e
d

>
6
0
0

ft
v
e
r
ti

c
a
l

s
e
p
a
ra

ti
o
n

D
e
s
c
e
n
d

D
e
s
c
e
n
t

A
ft

e
r

15 Formal Analysis of Multiple Coordinated HMI Systems 427

ATCO advises BTC to descend (which implies ignoring that DHL is below them).

We of course do not know what the BTC pilots would have done if ATCO had not

intervened. With more than one pilot interpreting TCAS correctly, it appears possible

the BTC would have climbed.

The final AEF handoff (directing the pilots to contact the tower) always occurs

in the simulation after the TCAS RA; at Überlingen, it occurred prior to the TA.

This discrepancy raises many questions about what variability is desirable. In the

verification of the system, we were able to find certain cases where the final AEF

handoff occurs before the TCAS TA and the planes collide.

15.5 Related Work

Several research groups have worked on modeling and analysis of HMI systems and

properties and have taken a variety of approaches to the problem. There has been

been work on fomalising user models such as CCT and PUMS since the 1980s, but

most of these modeling approaches do not focus on the verification aspect Young

et al. (1989), Butterworth and Blandford (1997), Bovair et al. (1990).

Campos and Harrison (2008, 2011) propose a framework for analyzing HMI

using model checking. They define a set of generic usability properties (Campos

and Harrison 2008), such as the possibility to undo an action. These properties can

be expressed in a modal logic called MAL and checked with a model checker on

the system. This approach targets specific and precise usability properties, whereas

our approaches revolve around the higher-level “full-control” characteristic that we

defined for an HMI system and as such is complementary to their analysis.

Thimbleby and Gow (2007), Thimbleby (2010) use graphs to represent mod-

els. They study usability properties of the system by analyzing structural proper-

ties of graphs such as the maximum degree and the value of centrality measures. In

their approach, there is no distinction among actions and there is little focus on the

dynamic aspects of the interaction.

Curzon et al. (2007) use a framework based on defining systems with modal logic.

Properties of the model are checked using a theorem prover. Similarly to Campos et

al., properties of interest are more targeted to a specific usability property while our

approach is more generic.

Navarre et al. (2001), Bastide et al. (2003) also developed a framework to analyze

interactive systems. Their focus is on the combination of user task models and system

models, which we have also explored in the context of our work (Combéfis 2009).

Bolton et al. (2008, 2011), Bolton and Bass (2010) developed a framework used to

help predicting human errors and system failures. Models of the system are analyzed

against erroneous human behavior models. The analysis is based on task-analytic

models and taxonomies of erroneous human behavior. All those models are merged

into one model which is then analyzed by a model checker to prove that some safety

properties are satisfied. Modeling human error is something that can be incorporated

into our Brahms models and taken into account in our analysis.

428 G. Brat et al.

Bredereke and Lankenau (2002, 2005) formalized mode confusions and devel-

oped a framework to reduce them. The formalization is based on a specification/

implementation refinement relation. Their work is targeted on mode confusion while

the work presented here is targeted to more general controllability issues.

Model-based testing has been used to analyze systems modeled as Input-Output

Labeled Transition Systems (IOTS) (Tretmans 2008). The IO conformance relation

(IOCO) is defined to describe the relationship between implementations and speci-

fications. The IOCO relation states that the outputs produced by an implementation

must, at any point, be a subset of the corresponding outputs in the specification. This

is triggered by the fact that IOCO is used in the context of testing implementations.

Outputs are similar to observations in our context. The full-control property defined

in our work needs to consider commands (inputs) in addition to observations.

The works discussed above all focus on analysis of HMI properties but none of

them have looked at the issue of facilitating the modeling and analysis of complex

multi-agent systems. In a way, this is an orthogonal concern, and the techniques

discussed above can be incorporated with a framework like Brahms.

There has been a large body of work in the verification safety-critical systems in

the domain of civil aviation in the US as well as in Europe. The DO-178B titled Soft-
ware considerations in airborne systems and equipment certification is the official

guideline for certifying avionics software. Several model checking and formal ver-

ification techniques have been employed to verify avionic software in Miller et al.

(2010), Ait Ameur et al. (2010) in accorrdance with the DO-178B. Recent work

describes how changes in aircraft systems and in the air traffic system pose new

challenges for certification, due to the increased interaction and integration (Rushby

2011). The certification is defined for the deployed software.

For the verification of model-based development, in Miller et al. (2010), the

authors present a framework that supports multiple input formalisms tomodel avionic

software: these include MATLAB Simulink/Stateflow and SCADE. These formalisms

are then translated into an intermediate representation using Luster, a standard mod-

eling language employed to model reactive systems with applications in avionics.

Finally, Lustre models are translated to the input language of various model check-

ers, including NuSMV, PVS, and SAL. These models, however, do not account for

the behavior of the human operators.

The work of Yasmeen and Gunter (2011) deals with the verification of the behav-

ior of human operators to check the robustness of mixed systems. In this approach,

the authors employ concurrent game structures as the modeling language and trans-

late the verification problem to a model checking instance using SPIN. Our approach

is different in that we do not perform syntactic translations, and we reason explicitly

about probabilities and beliefs of the agents in the model.

15 Formal Analysis of Multiple Coordinated HMI Systems 429

15.6 Conclusions and Future Work

NASA has engaged in research to develop new analytical techniques that can model

human–machine interactions and represent the real complexity of the NAS. These

techniques represent and analyze scenarios with single users interacting with a single

piece of automation as well as multiple humans interacting with multiple automated

systems. In this chapter, we described our efforts in developing HMI-specific formal

analysis algorithms, connecting them to models that domain experts are familiar

with, and finally moving toward multi-agent modeling formalisms that are able to

capture in a more scalable fashion the intricate interactions between agents in the

NAS. We illustrated our work with a variety of relevant case studies.

In the future, we want to build a fast time simulation and analysis framework

based on these technologies to evaluate design concepts for Air Traffic Management

operations. Our ultimate goal is to provide algorithms and tool support for the quan-

titative analysis of safety, performance, and workload for human operators early in

the design process. This will allow airspace designers to evaluate various design

concepts before implementing them.

To this end, in recent ongoing work, we have developed Brahms models for

arrivals and departures at the La Guardia airport based on the work on Departure

Sensitive Arrival Scheduling (DSAS) concept developed by the Airspace Operations

Lab (AOL) at NASA Ames (Lee et al. 2015). The DSAS concept provides the ability

to maximize departure throughput at the LaGuardia Airport in the New York metro-

plex without impacting the flow of the arrival traffic; it was part of a research effort

to explore solutions to delays incurred by departures in the New York metroplex. We

are able to successfully model DSAS scenarios that consist of approximately 1.5 h

real flight time. During this time, there are between 130 and 150 airplanes being

managed by four enroute controllers, three TRACON controllers, and one tower

controller at LGA who is responsible for departures and arrivals. The planes are

landing at approximately 36–40 planes an hour (Rungta et al. 2016). On this model,

airspace designers can evaluate different design candidates in terms of the safety,

performance, and workload. Our goal is to then turn the modeled constructs into

templates for a general framework that would allow airspace designers to extend

components based on their needs.

References

Ameur YA, Boniol F, Wiels V (2010) Toward a wider use of formal methods for aerospace systems

design and verification. Int J Softw Tools Technol Transf 12(1):1–7. ISSN 1433-2779. doi:10.

1007/s10009-009-0131-4

Bastide R, Navarre D, Palanque P (2003) A tool-supported design framework for safety critical

interactive systems. Interact Comput 15(3):309–328

Bolton M, Siminiceanu R, Bass E (2011) A systematic approach to model checking human-

automation interaction using task analytic models. IEEE Trans Syst Man Cybern Part A: Syst

Hum 41(5):961–976

http://dx.doi.org/10.1007/s10009-009-0131-4
http://dx.doi.org/10.1007/s10009-009-0131-4

430 G. Brat et al.

Bolton M, Bass E (2010) Using task analytic models and phenotypes of erroneous human behavior

to discover system failures using model checking. In: Proceedings of the 54th annual meeting of

the human factors and ergonomics society, pp 992–996

Bolton M, Bass E, Siminiceanu R (2008) Using formal methods to predict human error and system

failures. In: Proceedings of the second international conference on applied human factors and

ergonomics (AHFE 2008)

Bovair Susan, Kieras DE, Polson PG (1990) The acquisition and performance of text-editing skill:

a cognitive complexity analysis. Hum Comput Interact 5(1):1–48

Bratman M (1987) Intention, plans, and practical reason

Bredereke J, Lankenau A (2002) A rigorous view of mode confusion. In: Proceedings of the

21st international conference on computer safety, reliability and security (SAFECOMP 2002).

Springer, pp 19–31, Sept 2002

Bredereke J, Lankenau A (2005) Safety-relevant mode confusions–modelling and reducing them.

Reliab Eng Syst Saf 88(3):229–245

Butterworth R, Blandford A (1997) Programmable user models: the story so far. Middlesex Uni-

versity, London

Campos JC, Harrison MD (2008) Systematic analysis of control panel interfaces using formal tools.

In: Nicholas Graham TC, Palanque PA (eds) Proceedings of the 15th international workshop on

design, specification and verification of interactive systems (DSV-IS 2008), vol 5136. Springer,

Lecture notes in computer science, pp 72–85

Campos JC, Harrison MD (2011) Model checking interactor specifications. Autom Softw Eng

8(3):275–310

Clancey WJ, Sachs P, Sierhuis M, Van Hoof R (1998) Brahms: simulating practice for work systems

design. Int J Hum Comput Stud 49(6):831–865

Combéfis S (2009) Operational model: integrating user tasks and environment information with

system model. In: Proceedings of the 3rd international workshop on formal methods for interac-

tive systems, pp 83–86

Combéfis S (2013) A formal framework for the analysis of human-machine interactions. PhD thesis,

Université catholique de Louvain

Combéfis S, Giannakopoulou D, Pecheur C (2016) Automatic detection of potential automation

surprises for ADEPT models. IEEE Trans Hum Mach Syst Spec Issue Syst Approaches Hum

Mach Interface Improv Resil Robust Stab 46(2):

Combéfis S, Giannakopoulou D, Pecheur C, Feary M (2011) A formal framework for design and

analysis of human-machine interaction. In: Proceedings of the IEEE international conference on

systems, man and cybernetics, Anchorage, Alaska, USA, 9–12 Oct 2011. IEEE, pp 1801–1808.

ISBN 978-1-4577-0652-3. doi:10.1109/ICSMC.2011.6083933

Combéfis S, Pecheur C (2009) A bisimulation-based approach to the analysis of human-computer

interaction. In: Calvary G, Nicholas Graham TC, Gray P (eds) Proceedings of the ACM SIGCHI

symposium on engineering interactive computing systems (EICS’09)

Curzon P, Rukšėnas R, Blandford A (2007) An approach to formal verification of human-computer

interaction. Formal Aspects Comput 19(4):513–550

Feary MS (2010) A toolset for supporting iterative human—automation interaction in design. Tech-

nical Report 20100012861, NASA Ames Research Center, March 2010

Godefroid P (1997) Model checking for programming languages using verisoft. In: Proceedings of

the 24th ACM SIGPLAN-SIGACT symposium on principles of programming languages. ACM,

pp 174–186

Heymann M, Degani A (2007) Formal analysis and automatic generation of user interfaces:

approach, methodology, and an algorithm. Hum Factors: J Hum Factors Ergon Soc 49(2):311–

330

Hunter J, Raimondi F, Rungta N, Stocker R (2013) A synergistic and extensible framework

for multi-agent system verification. In: Proceedings of the 2013 international conference on

autonomous agents and multi-agent systems. International Foundation for Autonomous Agents

and Multiagent Systems, pp 869–876

http://dx.doi.org/10.1109/ICSMC.2011.6083933

15 Formal Analysis of Multiple Coordinated HMI Systems 431

JavaPathfinder (JPF) (2016). http://babelfish.arc.nasa.gov/trac/jpf/

Javaux D (2002) A method for predicting errors when interacting with finite state systems. How

implicit learning shapes the user’s knowledge of a system. Reliab Eng Syst Saf 75:147–165

Johnson J, Henderson A (2002) Conceptual models: begin by designing what to design. Interactions

9:25–32

Lee PU, Smith NM, Homola J, Brasil C, Buckley N, Cabrall C, Chevalley E, Parke B, Yoo HS

(2015) Reducing departure delays at laguardia airport with departure-sensitive arrival spacing

(dsas) operations. In: Eleventh USA/Europe air traffic management research and development

seminar (ATM)

Leveson NG, Turner CS (1993) Investigation of the therac-25 accidents. IEEE Comput 26(7):18–41

Miller SP, Whalen MW, Cofer DD (2010) Software model checking takes off. Commun ACM

53(2):58–64. ISSN 0001-0782. doi:10.1145/1646353.1646372

Navarre D, Palanque P, Bastide R (2001) Engineering interactive systems through formal methods

for both tasks and system models. In Proceedings of the RTO Human Factors and Medicine

Panel (HFM) specialists’ meeting, pp 20.1–20.17, June 2001

Rungta N, Brat G, Clancey WJ, Linde C, Raimondi F, Seah C, Shafto M (2013) Aviation safety:

modeling and analyzing complex interactions between humans and automated systems. In: Pro-

ceedings of the 3rd international conference on application and theory of automation in com-

mand and control systems. ACM, pp 27–37

Rungta N, Mercer EG, Raimondi F, Krantz BC, Stocker R, Wallace A (2016) Modeling complex

air traffic management systems. In: Proceedings of the 8th international workshop on modeling

in software engineering. ACM, pp 41–47

Rushby JM (2011) New challenges in certification for aircraft software. In: Chakraborty S, Jerraya

A, Baruah SK, Fischmeister S (eds) EMSOFT. ACM, pp 211–218. ISBN 978-1-4503-0714-7

Sierhuis M (2001) Modeling and simulating work practice. BRAHMS: a multiagent modeling and

simulation language for work system analysis and design. PhD thesis, Social Science and Infor-

matics (SWI), University of Amsterdam, SIKS Dissertation Series No. 2001-10, Amsterdam,

The Netherlands

Thimbleby H (2010) Press on: principles of interaction programming. The MIT Press, Jan 2010.

ISBN 0262514230

Thimbleby H, Gow J (2007) Applying graph theory to interaction design. In Gulliksen J, Harning

MB, Palanque P, van der Veer G, Wesson J (eds) Proceedings of the engineering interactive

systems joint working conferences EHCI, DSV-IS, HCSE (EIS 2007). Lecture notes in computer

science, vol 4940, pp 501–519. Springer, Mar 2007

Tretmans J (2008) Model based testing with labelled transition systems. In: Hierons R, Bowen

J, Harman M (eds) Formal methods and testing. Lecture notes in computer science, vol 4949.

Springer, pp 1–38

uberlingeng (2004) Investigation Report AX001-1-2/02. Technical report, German Federal Bureau

of Aircraft Accidents Investigation

Yasmeen A, Gunter EL (2011) Automated framework for formal operator task analysis. In Dwyer

MB, Tip F (eds) ISSTA. ACM, pp 78–88

Young RM, Green TRG, Simon T (1989) Programmable user models for predictive evaluation of

interface designs. In: ACM SIGCHI bulletin, vol 20. ACM, pp 15–19

http://babelfish.arc.nasa.gov/trac/jpf/
http://dx.doi.org/10.1145/1646353.1646372

	15 Formal Analysis of Multiple Coordinated HMI Systems
	15.1 Introduction
	15.2 From HMI Frameworks to Full-Blown Multi-agent Systems
	15.3 Formal Design and Analysis Techniques for HMI Properties
	15.3.1 Extended LTS
	15.3.2 Properties
	15.3.3 Analysis
	15.3.4 Example
	15.3.5 Analysis of ADEPT Models

	15.4 Coordinating HMIs as Multi-agent Systems
	15.4.1 The Brahms Language
	15.4.2 MAS Formal Analysis
	15.4.3 Case Study: The Überlingen Collision

	15.5 Related Work
	15.6 Conclusions and Future Work
	References

