
Chapter 14
The Specification and Analysis of Use
Properties of a Nuclear Control System

Michael D. Harrison, Paolo M. Masci, José Creissac Campos
and Paul Curzon

Abstract This chapter explores a layered approach to the analysis of the Nuclear

Power Plant Control System described in Chap. 4. A model is specified to allow

the analysis of use-centred properties based on generic templates. User interface

properties include the visibility of state attributes, the clarity of the mode structure

and the ease with which an action can be recovered from. Property templates are

used as heuristics to ease the construction of requirements for the control system

interface.

14.1 Introduction

Formal modelling can offer substantial benefits when developing an interactive sys-

tem. It enables systematic clarification of assumptions made about a design and sup-

ports verification that specified requirements have been met. This paper considers the

nuclear power plant control system described in Chap. 4. The use cases introduced in

the book offer slightly different perspectives that might suggest different approaches

to analysis. Broadly, analysis approaches may be classified as task-orientated or

task-based on the characteristics of the interface. In the first category, there are

informal approaches, for example Cognitive Walkthrough (Polson et al. 1992), and

formal approaches such as those of Bolton et al. (2012). These approaches are con-

cerned with the representation of the intended task and then to analyse the system

M.D. Harrison (✉)

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK

e-mail: michael.harrison@ncl.ac.uk

P.M. Masci ⋅ J.C. Campos

Dep. Informática/Universidade do Minho & HASLab/INESC TEC, Braga, Portugal

e-mail: paolo.masci@inesctec.pt

J.C. Campos

e-mail: jose.campos@di.uminho.pt

P. Curzon

EECS, Queen Mary University of London, Mile End Road, London, UK

e-mail: p.curzon@qmul.ac.uk

© Springer International Publishing AG 2017

B. Weyers et al. (eds.), The Handbook of Formal Methods
in Human-Computer Interaction, Human-Computer Interaction Series,

DOI 10.1007/978-3-319-51838-1_14

379

http://dx.doi.org/10.1007/978-3-319-51838-1_4
http://dx.doi.org/10.1007/978-3-319-51838-1_4

380 M.D. Harrison et al.

that is intended to perform the task. In the second category, analysis may be based

on the characteristics of the interface (for example, Heuristic Evaluation Nielsen

and Molich (1990) and formal approaches such as those of Campos and Harrison

(2009). These approaches focus on, for example, the visibility or perceivability of

key attributes of the device and analyse the properties of the supported actions (e.g.

their predictability or undoability). The approach taken in this paper supports both

styles of analysis. In the case of the task approach, the focus is on the constraints that

determine the activities that the user performs, rather than focusing on prescribed

normative behaviours. Constraints include the visibility of information (e.g. func-

tion key displays) that help the user to decide what action to be taken next.

A modelling approach based on the layers of specification is designed to unify

these two approaches to analysis, with the aim of maintaining the integrity of the

specification. Analysis of the interactive system is facilitated by the use of property

templates.

This chapter is organised as follows: Sect. 14.2 describes the features of the exam-

ple that are relevant to illustrating the analysis. Section 14.3 discusses the structure

of the model that describes the interactive behaviour of the system. Section 14.4

describes the tools, including the set of property templates that are used to drive the

analysis. Section 14.5 details the model of the example and describes the process

of instantiating the property templates to be theorems over the model. Finally, we

describe related work (Sect. 14.6) and conclusions (Sect. 14.7).

14.2 The Use Case

In the present example, two analytic perspectives are taken.

∙ How well does the interface support operating procedures
1

developed to help the

controller start up or close down the system?

∙ Is the operator able to monitor and make appropriate adjustments to the process?

Is there sufficient information for operators to understand what is happening and

are suitable actions visible and available?

These two perspectives require different styles of analysis. The first is concerned with

how effectively the display, and the actions it supports, can be invoked as required

by an operator who is following the start-up and close-down operating procedures.

The second is concerned with the display, the graphics, the status display, the slid-

ers, the enabled actions and how these change the display and reflect the state of

the underlying process. Whatever the level of analysis of the user interface, it is

important to understand the interface to the underlying system. The interface of the

system should aid understanding by making parts of the underlying process visible

to the user; producing visible feedback to enable the operators to assess what has

been done. Interactive systems of any complexity have a common characteristic that

some elements of the state of the system are perceivable (e.g. visible or audible) and

that user actions transform the state (Duke and Harrison 1993). Furthermore, not

1
http://www.hci-modeling.org/nppsimulator/BWRSimulationDescription.pdf.

http://www.hci-modeling.org/nppsimulator/BWRSimulationDescription.pdf

14 The Specification and Analysis of Use Properties . . . 381

all actions are permitted all of the time, and the behaviour of actions can depend

on distinguished state attributes called modes, see Gow et al. (2006) for further dis-

cussion. The modes in this case determine, for example, whether the control rods

are being controlled automatically or manually. Modes also determine specific inter-

actions related to the behaviour of the mouse: its position and whether the mouse

button is pressed or not. For example, when the mouse button is pressed and the cur-

sor position coincides with a slider on the screen, and the slider is not in automatic

mode, then dragging the cursor moves the position of the slider thus changing the

relevant behaviour of the component of the process that it represents.

Users have difficulty in understanding the progress of a system when the elements

of the state of the system that are relevant to that understanding are not visible in a

form that makes sense to them. At the same time, confusion can arise when actions

relevant to the current activity are, apparently or actually, disabled by the system, or

when the actions have an unexpected or inconsistent effect with respect to the users’

knowledge and experiences of the system. Actions and states are therefore elemental

in understanding interactive behaviour. Modes are also important. It is unusual that

an interactive system is so simple that actions always have the same effect.

To achieve the goals and activities required of the users, most interactive systems

are designed more or less effectively to ensure that the information required (we call

them information resources (Campos et al. 2014)) is made explicitly available, and in

a form that can be easily understood by the users. A role of a model of the interactive

system is therefore to make these information resources explicit, so that assumptions

about the constraints they impose may be analysed.

14.3 Structure of the Models

It is important to distinguish between the interactive systems and the components of

interactive systems. Interactive systems are socio-technical systems involving peo-

ple, devices and artefacts (desks, pieces of paper, pens, tablets and so on). The pri-

mary focus of the modelling approach illustrated here is on the interactive devices

that are the components of the interactive system. The presented property templates

capture aspects of the system that can facilitate device–user interaction.

14.3.1 The Interface Specification

The specification of an interactive system includes a definition of the set of actions,

including user actions, that are possible within them. These actions affect and are

affected by the state of the system. The behaviour of actions is often determined by

the mode of the device. The proposed model of the interactive system also makes

explicit the information resources that are assumed to aid the use of the system.

Assumptions about the activities for which the system is designed are also made

382 M.D. Harrison et al.

explicit. An action is a transformation supported directly by the interface. An activity

is a means to achieve some work goal, for example achieving a steady state of the

system with maximum voltage.

The interface specification describes what the display shows and captures the

effects of user-level actions. The display will show some features of the state of the

reactor, and these features may be encoded as part of the interface. It will also show

the user actions that are translated into actions within the reactor. The specification

includes display widgets, showing simple status information. These include widgets

labelled 𝑅𝐾𝑆, 𝑅𝐾𝑇 , 𝐾𝑁𝑇 , 𝑇𝐵𝑁 , 𝑊𝑃1, 𝑊𝑃2, 𝐶𝑃 , 𝐴𝑈 . These displays are

associated with a range of colours indicating status. The display also shows actions

associated with the valves: 𝑆𝑉 1, 𝑆𝑉 2, 𝑊 𝑉 1, 𝑊 𝑉 2 and sliders that change the

position of the control rods and the status of the valves.

Analysis of an interactive device is then concerned with proving that relevant

feedback is given on completing an action, that relevant information is available

before an action is carried out, that it is possible to recover from an action in specified

circumstances, and that it is always possible simply to step to some home mode

whatever the state of the device and that actions can be completed consistently.

14.3.2 Structuring Specifications

The model of the interactive system is structured into four layers. The first layer

simply specifies the constants and types used throughout the specification. It includes

types related to the devices involved and the entities that are in the broader system.

For example, in the case of the reactor these types would include notions such as

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑣𝑜𝑙𝑢𝑚𝑒 and 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. There would also be types associated with pumps

and valves. Constants would include maximum and minimum values required to

trigger error events in certain situations.

The second layer describes assumptions about the underlying process, managed or

controlled by the devices that are required to enable the analysis of the characteristics

of the interactive device. This layer is often reused across families of device models

when exploring the effects of differing user interfaces. For example, in Harrison

et al. (2015b), different brands of IV infusion devices share the same pump layer.

The process layer, in the case of the nuclear process, is the simplest model of the

nuclear reactor that will allow a proper consideration of interactive behaviour of

the control system. A specification of the underlying reactor, describing the details

of the relation between reactor core and turbine, would include attributes defining

water level and pressure for each. The specification at this level would also define the

characteristics of the pumps and valves. The pumps would be associated with rates

per minute, and the valves would be on or off. A number of actions will be specified at

this level. An action 𝑡𝑖𝑐𝑘 is used to represent the interval of one minute and update the

attributes to describe the evolving process. There will be further actions switching

pumps on and off, opening and closing valves and changing the value of flow in the

pump, for example.

14 The Specification and Analysis of Use Properties . . . 383

The third layer describes the interface to the interactive device or system. This

model uses the process description described in the second layer. It makes those

aspects of the state that are visible explicit through the interface. It describes the user

actions, including how the sliders or buttons or other display widgets work. The third

layer of the specification of the nuclear power plant control user interface specifies

how the user sets, controls and views the operation of the reactor. It is specific to

this particular interface, whereas the reactor specification (given in the second layer)

may be more generic and therefore used with several user interfaces. It provides

an opportunity to explore the variety of user interfaces that may be appropriate for

supporting human–machine interactions necessary to control the reactor.

The fourth, and final, layer makes explicit the information resources that are

required for different actions in different circumstances. It captures constraints on

action based on the goals and activities that the user achieves (Campos et al. 2014).

This layer contains an interactive system view. The activities and actions are

“resourced” by user interfaces for devices that are used in the interactive system

or, indeed, any other source of relevant information that is present within the inter-

active system. It adds attributes that are not captured by the devices and includes

(meta-)actions that describe activities that may involve the actions of the interactive

devices. An example of this fourth layer used in a different context can be found in

Masci et al. (2012).

The models to be considered have some or all of the following characteristics

depending on layer.

∙ A set of actions a ∶ A = S ⟼ S, where S is a set of states. Actions are partial

functions. They are made total by including a value “undefined” (⊥). A permission

function per takes an action and determines whether it is defined for a value in its

domain per ∶ A → (S → T) such that per(a)(s) = true if a(s) ≠ ⊥.

∙ A state is a set of attributes. Functions of the form 𝑓𝑖𝑙𝑡𝑒𝑟 ∶ S → C, where C is

an attribute will often be used to extract an attribute of the state. The attribute is

itself a domain, for example temperature or pressure. Similarly, some elements of

the state are part of the interface and are perceivable. p_𝑓𝑖𝑙𝑡𝑒𝑟 will often be used

to describe the filter that extracts the corresponding visual attribute to the value

extracted by 𝑓𝑖𝑙𝑡𝑒𝑟. Alternatively, a predicate 𝑣𝑖𝑠_𝑓𝑖𝑙𝑡𝑒𝑟 ∶ C → T may be used

to assert that the value of the filtered attribute is visible.

∙ The function mode is a particular form of 𝑓𝑖𝑙𝑡𝑒𝑟, namely 𝑚𝑜𝑑𝑒 ∶ S → MS. It

extracts the modes of the model, where MS is an attribute that ranges over a set

of modes. In the example, one set of modes relates to the types of variable being

entered through number entry.

384 M.D. Harrison et al.

14.4 Tool Support

Two approaches to specification and proof are feasible for the kinds of model

described here: model checking and theorem proving. The theorem-proving approach

is appropriate here because a potentially important feature of the analysis, not dis-

cussed further in this short chapter, concerns the mechanisms for number entry. Since

the domain of numbers is relatively large, proof using model checking can result in

analyses of very large models that can be intractable. Interested readers are redirected

to Harrison et al. (2015a) for an application where the layered approach described in

this paper is used in an example involving number entry.

14.4.1 Representing and Proving the Model

The analysis is performed using the Prototype Verification System (PVS) (Shankar

et al. 1999), an automated theorem prover developed at SRI. The system combines

a specification language based on higher-order logic with an interactive prover. PVS

has been used extensively in several application domains. The higher-order logic

supports the usual basic types such as boolean, integer and real. New types can

be introduced either in a declarative form (these types are called uninterpreted) or

through type constructors. Examples of type constructors used in the present specifi-

cation are function and record types. Function types are denoted [D -> R], where

D is the domain type and R is the range type. Predicates are Boolean-valued func-

tions. Record types are defined by listing the field names and their types between

square brackets and hash symbols. Predicate subtyping is a language mechanism

used for restricting the domain of a type by using a predicate. An example of a

subtype is {x:A | P(x)}, which introduces a new type as the subset of those

elements of type A that satisfy the predicate P. The notation (P) is an abbreviation

of the subtype expression above. Predicate subtyping is useful for specifying partial

functions. This notion is used to restrict actions to those that are permitted explic-

itly by the permission predicates mentioned when describing the models in general

terms. Specifications in PVS are expressed as a collection of theories, which consist

of declarations of names for types and constants, and expressions associated with

those names. Theories can be parametrised with types and constants, and can use

declarations of other theories by importing them. The prelude is a standard library

automatically imported by PVS. It contains a large number of useful definitions and

proved facts for types, including common base types such as Booleans (boolean)

and numbers (e.g. nat, integer and real), functions, sets and lists.

The specification of the models takes a standard form as described in Sect. 14.3.2.

A model consists of a set of actions and a set of permissions that capture when the

actions can occur.

action: TYPE = [state -> state]

14 The Specification and Analysis of Use Properties . . . 385

For each action, there is a predicate:

per_action: TYPE = [state -> boolean]

that indicates whether the action is permitted.

14.4.2 Property Templates

Property templates are generic mathematical formulae designed to help developers to

construct theorems appropriate to the analysis of user interface features. The aim is to

make these programmable devices more predictable and easy to use. The particular

set of templates considered here is derived from Campos and Harrison (2008). A

formulation of these properties based on actions, states andmodes is presented, along

with a brief summary of the use-related concerns captured by the template. There

are two types of property: properties that relate states where a specific action has

taken place, and properties that relate a state to any state that can be reached by any
action from that state. The relation 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 ∶ S × S relates states that can be reached

by any action. For a particular model, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 will be instantiated to connect states

by the actions provided by the system.

Completeness. This template checks that the interactive system allows the user to

reach significant states in one (or a few steps). For example, being able to reach

“home” from any device screen in one step is a completeness property. The com-

pleteness template asserts that a user action will transform any state that satisfies a

predicate 𝑔𝑢𝑎𝑟𝑑 ∶ S → T into another state that satisfies a predicate 𝑔𝑜𝑎𝑙 ∶ S → T .

The guard is introduced to make it possible to exclude states that may not be relevant.

Completeness

∀𝑠 ∈ 𝑆 ∶ 𝑔𝑢𝑎𝑟𝑑(𝑠) ∧ ∼ 𝑔𝑜𝑎𝑙(𝑠)
⟹ ∃𝑎 ∈ 𝐴 ∧ 𝑝𝑒𝑟(𝑎)(𝑠) ∧ 𝑔𝑜𝑎𝑙(𝑎(𝑠)) (1)

Feedback. When certain important actions are taken, a user needs to be aware of

whether the resulting device status is appropriate or problematic (AAMI 2010).

Feedback breaks down into state feedback, requiring that a change in the state (usu-

ally specific attributes of the state rather than the whole state) is visible to the user,

and action feedback, requiring that an action always has an effect that is visible to

the user.

State feedback
∀𝑠1, 𝑠2 ∈ 𝑆, 𝑔𝑢𝑎𝑟𝑑(𝑠1) ∧ 𝑔𝑢𝑎𝑟𝑑(𝑠2) ∧ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡(𝑠1, 𝑠2)∧

𝑓𝑖𝑙𝑡𝑒𝑟(𝑠1) ≠ 𝑓𝑖𝑙𝑡𝑒𝑟(𝑠2)
⟹ 𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠1) ≠ 𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠2) (2)

386 M.D. Harrison et al.

Action feedback
∀𝑎 ∈ 𝑆 → 𝑆, ∀𝑠 ∈ 𝑆 ∶ 𝑝𝑒𝑟(𝑎)(𝑠)∧

𝑔𝑢𝑎𝑟𝑑(𝑠) ∧ (𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) ≠ 𝑓𝑖𝑙𝑡𝑒𝑟(𝑎(𝑠)))
⟹ 𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) ≠ 𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑎(𝑠)) (3)

In the case of state feedback, the guard may be used, for example, to restrict the

analysis to ensure that the device or system is considered to be in the same mode as

a result of the state transition. Variants of the feedback properties will also be used

that assume separate visible attributes are not specified in the model. Instead, a rele-

vant predicate 𝑣𝑖𝑠_𝑓𝑖𝑙𝑡𝑒𝑟 ∶ S → T is linked to 𝑓𝑖𝑙𝑡𝑒𝑟 ∶ S → A. 𝑣𝑖𝑠_𝑓𝑖𝑙𝑡𝑒𝑟(s) is true

for s ∈ S if 𝑓𝑖𝑙𝑡𝑒𝑟(s) is visible. Both these variants will be used in Sect. 14.5. The

choice is based on how the model is constructed.

Consistency. Users quickly develop a mental model that embodies their expectations

of how to interact with a user interface. Because of this, the overall structure of a user

interface should be consistent in its layout, screen structure, navigation, terminology

and control elements (AAMI 2010). The consistency template is formulated as a

property of a group of actions Ac ⊆ ℘(S → S), or it may be the same action under

different modes, requiring that all actions in the group have similar effects on spe-

cific state attributes selected using a filter. The relation 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 connects a filtered

state, before an action occurs, with a filtered state after the action. The description of

the filters and the 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 relation capture the consistency across states and across

actions.

Consistency

∀𝑎 ∈ 𝐴
𝑐
⊆ ℘(𝑆 → 𝑆), 𝑠 ∈ 𝑆,𝑚 ∈ 𝑀𝑆 ∶

𝑔𝑢𝑎𝑟𝑑 ∶ 𝑆 ×𝑀𝑆 → 𝑇

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ∶ 𝐶 × 𝐶 → 𝑇

𝑓𝑖𝑙𝑡𝑒𝑟_𝑝𝑟𝑒 ∶ 𝑆 ×𝑀𝑆 → 𝐶

𝑓𝑖𝑙𝑡𝑒𝑟_𝑝𝑜𝑠𝑡 ∶ 𝑆 ×𝑀𝑆 → 𝐶

𝑔𝑢𝑎𝑟𝑑(𝑠, 𝑚) ∧
𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡(𝑓𝑖𝑙𝑡𝑒𝑟_𝑝𝑟𝑒(𝑠, 𝑚),

𝑓 𝑖𝑙𝑡𝑒𝑟_𝑝𝑜𝑠𝑡(𝑎(𝑠), 𝑚) (4)

Consistency is a property of, for example, the cursor move actions when the mouse

button is pressed. It may be used to prove that while the button is down, the move

actions will continue to be interpreted in the relevant mode.

Reversibility. Users may perform incorrect actions, and the device needs to provide

them with functions that allow them to recover by reversing the effect of the incor-

rect action. The reversibility template is formulated using a 𝑔𝑢𝑎𝑟𝑑 ∶ S → T and a

𝑓𝑖𝑙𝑡𝑒𝑟 ∶ S → FS, which extracts a set of focus attributes of the state:

14 The Specification and Analysis of Use Properties . . . 387

Reversibility

∀𝑠 ∈ 𝑆 ∶ 𝑔𝑢𝑎𝑟𝑑(𝑠) ⟹ ∃𝑏 ∶ 𝑆 → 𝑆 ∶
𝑓𝑖𝑙𝑡𝑒𝑟(𝑎(𝑏(𝑠)) = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) (5)

Some properties simply maintain invariants for any state. Examples of such prop-

erties are visibility and universality. There are alternative formulations of these two

properties. The first asserts that a predicate applied to one filtered value is true if and

only if an appropriate predicate is true of the other filtered value. The second asserts

that a filtering of the first value is equal to the determined filter of the second value.

These two formulations are appropriate in different circumstances as will be briefly

explored in Sect. 14.5. The style of interface described in this case study lends itself

particularly to the second option.

Visibility. This property describes an invariant relation between a state variable that

is not necessarily visible to the user and a user interface value that is visible to the

user. Examples of these properties are as follows: the current operational mode is

always unambiguously displayed; a slider that shows the position of the control rods

always shows the actual position of the control rods in the underlying process; the

colour of the status attribute describes general characteristics of the value of the

attribute. 𝑓𝑖𝑙𝑡𝑒𝑟(s) and p_𝑓𝑖𝑙𝑡𝑒𝑟(s) are the filters for the attribute and its perceivable

counterpart.

Visibility

∀𝑠1, 𝑠2 ∈ 𝑆 ∶ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡(𝑠1, 𝑠2) ∧ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑠1) ⟹ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑠2) (6)

where 𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑠) = 𝑝𝑟𝑒𝑑_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) ⇔ 𝑝𝑟𝑒𝑑_𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) or 𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑠) = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) = 𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠)

Universality. Universality generalises the visibility property requiring that given two

filters of the state: 𝑓𝑖𝑙𝑡𝑒𝑟1 and 𝑓𝑖𝑙𝑡𝑒𝑟2, there are predicates on the filters that are

equivalently true.

Universality

∀𝑠1, 𝑠2 ∈ 𝑆 ∶ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡(𝑠1, 𝑠2) ∧ 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙(𝑠1) ⟹ 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙(𝑠2) (7)

where 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙(𝑠) = 𝑝𝑟𝑒𝑑_𝑓𝑖𝑙𝑡𝑒𝑟1(𝑠) ⇔ 𝑝𝑟𝑒𝑑_𝑓𝑖𝑙𝑡𝑒𝑟2(𝑠) or 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙(𝑠) = 𝑓𝑖𝑙𝑡𝑒𝑟1(𝑠) = 𝑓𝑖𝑙𝑡𝑒𝑟2(𝑠)

14.5 Modelling the Nuclear Power Plant Control User
Interface

The fragments of specification described in this section were taken from the descrip-

tion to be found in Chap. 4 and a simulator (see the simulator description and code
2
)

that includes a version of an interface to the nuclear controller. A more thorough

description of the user interface was required than was available in the use case

2
http://www.hci-modeling.org/nppsimulator/BWRSimulationDescription.pdf.

http://dx.doi.org/10.1007/978-3-319-51838-1_4
http://www.hci-modeling.org/nppsimulator/BWRSimulationDescription.pdf

388 M.D. Harrison et al.

material to do a thorough analysis using the property templates. The analysis of IV

infusion pumps described in Harrison et al. (2015a) illustrates the more thorough

approach. If such a detailed description had been available, then it could be fur-

ther explored using PVSio-web (Masci et al. 2015) to ensure that assumptions made

seem realistic and to demonstrate where properties of the system fail to be true. This

would provide confidence that the behaviour of the interface as specified conforms

with the expected user experience. The issue of validation of the model of the system

is explored in more detail in Harrison et al. (2014). The introduction to the use case

contains the following paragraph.

The operation of a nuclear power plant includes the full manual or partially manual starting

and shutdown of the reactor, adjusting the produced amount of electrical energy, changing

the degree of automation by activating or deactivating the automated steering of certain

elements of the plant, and the handling of exceptional circumstances. In case of the latter, the

reactor operator primarily observes the process because the safety system of today’s reactors

suspends the operator step by step from the control of the reactor to return the system back

to a safe state.

The interface involves schematics of the process, the availability of actions as buttons

and graphical indications of key parameters, for example temperature and levels. The

specification of the model can be layered using the levels described in Sect. 14.3 as

follows.

14.5.1 Types and Constants

This contains generic definitions that will be used throughout other layers of the

theory. It defines types such as:

pump_type: TYPE = [# speed: speed_type,

on: boolean

#]

The pump attribute is defined to have a speed of flow and to be either on or off.

There are several pumps with the same characteristics as defined by the following

function type:

pumps_type: TYPE = [vp_number -> pump_type]

This type definition allows the definition of multiple pumps indexed by an integer

(vp_number). This type relates to the process layer. The following types are used in

the interface layer.

cursor_type = TYPE [* x: x_type,

y: y_type *]

The typecursor_type specifies the type of the cursor on the controller display.

It is tied to the physical position of the mouse. The details of how this is done will not

14 The Specification and Analysis of Use Properties . . . 389

be described here. It will be assumed that there is a function mouse that extracts the

current cursor position of the mouse. The slider which is also found in the interface

layer is specified as follows:

slider_type : TYPE =

[# ypos: y_type,

lx: x_type,

rx: x_type,

xpos: x_type #]

The slider type specifies the current x-position of the cursor when the slider has

been selected (xpos). It specifies the left and right limits of the slider (lx and rx)

and the y-position of the slider (ypos). As a simplification for the illustration, the

slider is assumed to have no depth. In the real system, sliders also have a depth and

therefore the y-coordinates will also have boundaries.

14.5.2 The Process Layer

The process layer describes sufficient details of the underlying process of the nuclear

reactor to provide an adequate underpinning for the interface. The interface captures,

for example, those situations where the process automates and therefore removes the

ability of the operator to change settings manually. The model describes the ongoing

process in terms of a single action 𝑡𝑖𝑐𝑘 that updates the attributes of the pump state

as time progresses.

tick(st: npp): npp =

st WITH

[time := time(st) +1,

sv :=

LAMBDA (n: vp_number):

COND

n=1 -> (#

flow :=

COND

sv(st)(1)‘on ->

(reactor(st)‘pressure -

condensor(st)‘pressure)/10,

ELSE -> 0

ENDCOND,

on := sv(st)(1)‘on

#),

n=2 -> (#

flow :=

390 M.D. Harrison et al.

COND

sv(st)(2)‘on ->

(reactor(st)‘pressure -

condensor(st)‘pressure)/2.5,

ELSE -> 0

ENDCOND,

on := sv(st)(2)‘on

#)

ENDCOND,

poi_reactor :=

LET num_reactor =

(old_pos_rods_reactor(st) -

pos_rods_reactor(st))

IN (

COND

num_reactor >= 0 ->

num_reactor / (time(st) -

time_delta_pos(st)),

ELSE ->

- num_reactor /

(time(st) - time_delta_pos(st))

ENDCOND),

bw := (2*(100 - pos_rods_reactor(st))*

(900-reactor(st)‘pressure))/620,

...

]

This fragment of specification illustrates the form of the process layer. The action

that is described is tick. Its function is to update the process state (defined by

type npp) attributes. Some of these attributes can be changed by actions that can be

invoked by the operator (e.g. the two valves wv(1) and wv(2)), while others are

internal to the process (e.g. poi_reactor and bw).

Further actions determine transformations of the process that can be invoked

directly through the user interface. For example control_rods is an action that

updates the process state to its new position. This position is determined by where

the cursor is, as represented in the control rods slider, when the rod’s position is not

under automatic control.

14.5.3 The Interface Layer

The interface layer describes those attributes of the state of the process that are vis-

ible to the user and the actions that can be performed by the operator. The interface

presents the state of the process to provide the operator with situation awareness.

14 The Specification and Analysis of Use Properties . . . 391

There are also displayed attributes that indicate sliders and buttons that can be used

by the operator to control aspects of the process.

An illustration of the layer considers the mouse actions: 𝑚𝑜𝑣𝑒, 𝑐𝑙𝑖𝑐𝑘 and 𝑟𝑒𝑙𝑒𝑎𝑠𝑒.

The actions𝑚𝑜𝑣𝑒 and 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 have effects that depend on the modes that the interface

is in. The action 𝑐𝑙𝑖𝑐𝑘 changes the mode. The change in mode depends on the posi-

tion of the cursor. Two sets of modes are specified. One set relates to the sliders on

the display (slider_mode), while the other relates to the actions that are offered

by the display (action). When the mouse has not been clicked or is over a space

in the display that does not correspond to a slider or an action, then slider_mode
= nulslimo and action = null_action. When the mouse is clicked, then

a boolean attribute clicked is true. The permission that allows click to be an

available action is as follows:

per_click(st: npp_int): boolean = NOT clicked(st)

𝑐𝑙𝑖𝑐𝑘 is an action that:

1. assigns a value to slider mode if the cursor is at the appropriate y-coordinate

(ypos) and in the relevant range of x-coordinates for the slider (in reality, there

may also be a range of y-coordinates) otherwise it sets the slider mode to the

relevant null value.

2. assigns a value to action, the action mode, if the x- and y-coordinates are within

the relevant range of an action button and the action is enabled. If the cursor is

outside the defined button ranges, then the action is set to null.

Fragments of the action specification are given below. They show the effect when

the mouse is within the slider for the pump 𝑤𝑝1 and the effect when the mouse is in

the area of the action button that sets control rods to automatic mode.

click(st : npp_int): npp_int =

LET x = cursor(st)‘x AND y = cursor(st)‘y IN

st WITH

[slidermode :=

COND

y = wp1_slider(st)‘ypos AND

(x >= wp1_slider(st)‘lx) AND

(x <= wp1_slider(st)‘rx) AND

NOT auto_wp1s(st) -> wp1s,

...

ELSE -> nulslimo

ENDCOND,

action :=

COND

((x <= acrarea(st)‘lx) AND

(x >= acrarea(st)‘rx) AND

392 M.D. Harrison et al.

(y <= acrarea(st)‘dy) AND

(y >= acrarea(st)‘uy)) ->

COND

auto_cr -> acroff,

ELSE -> acron

ENDCOND,

...

ELSE -> null_action

ENDCOND,

...

clicked := true

]

Different actions and therefore modes are specified depending on whether the

pumps or the control rods are in automatic mode. Moving the cursor has different

significance, depending on whether the mouse is clicked or not. When the mouse is

clicked outside the sensitive areas or when the mouse button is not depressed, then

the cursor coordinates only are changed. If the mouse is clicked within the space,

then the appropriate mode is taken. If the mode is related to a slider, then the cursor

on the slider is moved.

move(st: npp_int): npp_int =

LET new_cursor = mouse(st) IN

st WITH [

cursor := new_cursor,

new_wp1speed :=

COND

(slidermode = wp1s) AND

(new_cursor‘x > wp1_slider(st)‘lx) AND

(new_cursor‘x <= wp1_slider(st)‘rx)

-> (wp1_slider(st)‘lx - new_cursor‘x) * max_flow /

(wp1_slider(st)‘lx - wp1_slider(st)‘rx),

ELSE -> new_wp1speed(st)

ENDCOND,

new_wp2speed := ...,

new_cpspeed := ...,

new_crposition := ...,

]

𝑟𝑒𝑙𝑒𝑎𝑠𝑒 has the effect of invoking actions in the process layer if the slider mode

is non-null and also the action is non-null. Hence, for example, if slidermode =
wp1s, that is the flow rate of 𝑤𝑝1 is being changed, then a function is invoked that

changes the flow rate of the pump. This function is defined as part of the interface

layer, but it invokes the relevant function in the process layer.

14 The Specification and Analysis of Use Properties . . . 393

release(st: npp_int): npp_int =

COND

slider_mode(st) = wp1s ->

modify_wp1flow(st),

slider_mode(st) = wp2s ->

modify_wp2flow(st),

slider_mode(st) = cps ->

modify_cpflow(st),

slider_mode(st) = crs ->

modify_crpos(st),

ELSE -> perform_action(st)

ENDCOND

Aspects of the status of the process are captured in indicators (e.g. RKS, RKT).

The colours of the indicators are linked to the states of the underlying reactor (mod-

elled in the second layer), for example if the value of a process attribute is outside

specified bounds then the indicator shows the colour red. The model also specifies

that the user can perform open/close actions on valves by highlighting the available

option in the display.

14.5.4 Proving Properties of the Interface Layer

Two examples will be used to illustrate how the template properties are instantiated

in the interface layer. The first example is concerned with the visibility of different

aspects of the underlying process, while the second is concerned with the consis-
tency when releasing the mouse button. The concern in the first example is with the

CP pump as it transports water through the cooling pipes in the condenser. A dis-

play, specified by the attribute that is part of the interaction mode, 𝑠𝑡𝑎𝑡𝑢𝑠_𝑐𝑝 simply

indicates whether the pump flow is normal (green) or out of bounds (red). The prop-

erty to prove is that the display shows these colours correctly. This can be proved by

instantiating the visibility property template (Eq. 6 in Sect. 14.4.2).

cp_status_visible: THEOREM

FORALL (pre, post: npp_int):

init_state(pre) => cp_visible(pre) AND

transit(pre, post) AND cp_visible(pre) =>

cp_visible(post)

This theorem contains an induction based on the accessible states. The initial state

is specified by the predicate init_state. The visibility property to be proved is:

cp_visible(st: npp_int):

394 M.D. Harrison et al.

(pred_cp_filter(st) <=> pred_p1_cp_filter(st)) AND

(NOT pred_cp_filter(st) <=> pred_p2_cp_filter)

The filter predicates are specified as follows:

pred_cp_filter(st: npp_int): boolean =

process(st)‘cp‘speed > max_flow

pred_p1_cp_filter(st: npp_int): boolean =

status_cp(st) = red

pred_ps_cp_filter(st: npp_int): boolean =

status_cp(st) = green

Similar properties can be proved of a range of display features relating to, for

example, the status of the process attributes; whether the pumps and control rods

are in automatic mode; the values of pump flows and the position of control rods;

whether it is possible to switch pumps on or off.

To illustrate the consistency property (Eq. 4 in Sect. 14.4.2), the 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 action is

considered in relation to the sliders. The theorem instantiates the template properties

indicated in the formulation of the property. The guard and consistency predicates

are specified over all the slider modes. We therefore slightly modify the formulation.

The aim is to prove the property:

consistency_sliders(st: npp_int): boolean =

con_guard(st) IMPLIES con_release(st)

There are four modes to be considered in 𝑀𝑆, namely wp1s, wp2s, cps and

crs. The guard checks that the mouse cursor is in the relevant region of the display

depending on mode that release is permitted and that the particular function is not

currently automated.

con_guard(st: npp_int): boolean =

x_in_area(cursor(st)‘x, slidermode(st), st) AND

per_release(st) AND NOT auto(slidermode(st), st)

The predicate x_in_area checks that the cursor is in a relevant position in

relation to the slider.

x_in_area(x: x_type, sl: slimo_type, st: npp_int): boolean =

((sl=wp1s) AND

(x>=wp1_slider(st)‘lx) AND (x<=wp1_slider(st)‘rx)) OR

((sl=wp2s) AND

(x>=wp2_slider(st)‘lx) AND (x<=wp2_slider(st)‘rx)) OR

((sl=wp1s) AND

(x>=cp_slider(st)‘lx) AND (x<=cp_slider(st)‘rx)) OR

14 The Specification and Analysis of Use Properties . . . 395

((sl=wp2s) AND

(x>=rods_slider(st)‘lx) AND (x<=rods_slider(st)‘rx))

The consistency relation is distributed across these modes as follows:

con_release(sl: slimo_type, st: npp_int): boolean =

release(st) =

st WITH

[pump :=

COND

sl = wp1s -> pump(st)‘wp1_flow(

(cursor(st)‘x - wp1_slider(st)‘lx)*

(flow_range/sliderrange)),

sl = wp2s -> pump(st)‘wp2_flow(

(cursor(st)‘x - wp2_slider(st)‘lx)*

(flow_range/sliderrange)),

sl = cps -> pump(st)‘cp_flow(

(cursor(st)‘x - wp2_slider(st)‘lx)*

(flow_range/sliderrange)),

sl = crs -> pump(st)‘control_rods(

(cursor(st)‘x - crs_slider(st)‘lx)*

(control_range/sliderrange)),

ELSE -> pump(st)

ENDCOND,

slider_mode := nulslimo,

action := nullaction]

The relation 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 is equally distributed over the modes; the filter_pre

indicates what the new state of the process should be, that is for each mode a function

in the underling process should be invoked that updates the relevant state attribute.

filter_pre(st) =

st WITH

[pump :=

COND

sl = wp1s -> pump(st)‘wp1_flow(

(cursor(st)‘x - wp1_slider(st)‘lx)*

(flow_range/sliderrange)),

sl = wp2s -> pump(st)‘wp2_flow(

(cursor(st)‘x - wp2_slider(st)‘lx)*

(flow_range/sliderrange)),

sl = cps -> pump(st)‘cp_flow(

(cursor(st)‘x - wp2_slider(st)‘lx)*

(flow_range/sliderrange)),

396 M.D. Harrison et al.

sl = crs -> pump(st)‘control_rods(

(cursor(st)‘x - crs_slider(st)‘lx)*

(control_range/sliderrange)),

ELSE -> pump(st)

ENDCOND,

slider_mode := nulslimo,

action := nullaction]

and filter_post(st) = release(st). Consistency relates the change in state

filter_post(st) to the state before the action in which the mode determined

action takes place in the process layer. It determines that 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 always invokes

the mode-relevant process action (changing pump flow or control rod position). The

instantiated consistency theorem is an induction on the actions of the interaction

model.

consistency_sliders_thm: THEOREM

FORALL (pre, post: npp_int):

(init_state(pre) IMPLIES consistency_sliders(pre))

AND

(consistency_sliders(pre) AND transit(pre, post)) =>

consistency_sliders(post)

Attempting to prove this theorem identifies an issue with the simulator display.

The four sliders occupy the same x-space. The sliders are implemented so that the

slider will continue to be dragged across even when the y-coordinate is not in the

slider area relating to the mode. It would be imagined that this characteristic would

not be a feature of the real control room display.

14.5.5 The Activity Layer

The purpose of the activity layer is to specify assumptions about how the attributes

specified in the interface layer, as well as other specified attributes that may be exter-

nal, are used to carry out the intended activities of the system. It is clearly necessary

to know what the activities are that will be performed by the controllers. Typically,

this information would be gathered by observing existing processes, by interviewing

controllers, or by developing scenarios with domain experts that relate to anticipated

constraints in terms of new design concepts. The approach is described in more detail

in Campos et al. (2014).

Given the limited information provided by the use case, it is difficult to develop

and assess plausible assumptions. However, we do have operating procedures asso-

ciated with starting up and closing down the reactor. This will be the information

that provides the basis for sketches of the activity layer given here.

14 The Specification and Analysis of Use Properties . . . 397

The aim of start-up is to bring output power to 700 MW (100% of possible out-

put power) and to hold the water level in the reactor tank stable at 2100 mm. The

operating procedure is as follows:

1. Open SV2

2. Set CP to 1600 u/min

3. Open WV1

4. Set WP1 to 200 u/min

5. Stabilise water level in the reactor tank at 2100 mm by pulling out the control

rods

6. Open SV1

7. . . .

The process of developing the activity model involves, for each step in the operat-

ing procedure, considering the information resources that are conjectured to enable

the user to take the appropriate action in the interface. The action is resourced if infor-

mation relevant to the use of the action is clear in the interface. The activity model

also considers how the user is notified what the next action is to be performed. In the

case of this fragment, it will be assumed that the written operating procedure will be

used to decide the sequence. However, in other circumstances it should be consid-

ered whether the user will be allowed by the control system to change the order of

the operating procedure and what the effect of such a change would be. The action

OpenSV2 is expressed in the model as

open_valve(st WITH [action := opensv2])

The open valve action is generic to the valves supported by the interface and is

made specific by the attribute action. It may be assumed that this action would be

triggered if

∙ the openSV2 button area is enabled, that is it is highlighted: highlightosv2
= true. This should only be true if sv2_open = false, a property checked

of the interface model.

∙ the cursor is within the osv2 area:

(cursor(st)‘x <= osv2area(st)‘lx) AND

(cursor(st)‘x >= osv2area(st)‘rx) AND

(cursor(st)‘y <= osv2area(st)‘dy) AND

(cursor(st)‘y >= osv2area(st)‘uy)

The resource layer specifies all the constraints based on assumptions about what

triggers the actions supported by the interface as well as activities that are to be per-

formed. When these assumptions have been specified, they can be used as additional

constraints when proving theorems based on the templates. The resource layer makes

it possible to prove whether the properties are true in circumstances that afford some

measures of plausibility in relation to what users do.

398 M.D. Harrison et al.

Additional actions may be specified that characterise the activities performed by

users. For example, consider the user activity 𝑟𝑒𝑐𝑜𝑣𝑒𝑟, in contrast to the autonomous

action that causes recovery. This activity would involve several actions before the

goal of the activity is achieved. Information resources would help the operator to

begin the activity. This means that the activity also has information resource con-

straints. For example, it would specify that “increasing pressure”, using the relevant

action in the interface layer, would occur only if other actions had already been com-

pleted and the displayed tank, valve and pump parameters specified in the second

layer were displayed (in the interface layer), indicating particular values.

Further activities include, for example, “monitor recovery”. This would be

expressed as an action that describes the constraints on the operator when moni-

toring an autonomous recovery. The specification of the action would include the

information resources that would be required in the monitoring process at different

stages of the recovery and would specify the conditions in which any user actions

would take place.

The value of expressing constraints in this way is that theorems that are instanti-

ations of property patterns of Sect. 14.4.2 can be proved subject to the resource con-

straints. Properties can be considered that only relate to plausible interactions. This

would be relevant if it was considered inappropriate to analyse properties across

sequences of actions that would not plausibly occur. The implications of such an

analysis are that an understanding of whether an action is plausible becomes more

relevant, and this requires an understanding of the human factors of a situation. This

topic is considered in more detail in Harrison et al. (2016). It can also be proved that,

for the steps of the operating procedures, the constraints are satisfied.

14.6 Related Work

Models, of the type outlined, have been developed for other interactive systems using

both model checking approach and theorem-proving approach (Masci et al. 2012;

Harrison et al. 2014, 2015b; Campos et al. 2016). The advantage of model checking

is that it is possible to explore, more readily, reachability properties as well as poten-

tial non-determinisms. The disadvantage is that the size of model is seriously limited.

It is possible to explore the essential details of the control of the nuclear power plant

using a model checking approach, but as soon as a realistic process model is used this

becomes impossible. Making the model abstract enough, to make analysis feasible,

would restrict what could be asked of the model. It would be more difficult to prove

relevant properties.

Theorem proving allows analysis of larger models but properties may be more

difficult to formulate and prove. In particular, while model checking allows sim-

ple formulations of reachability properties, these are difficult to specify using a

theorem-proving approach. There is a trade-off to be made between the effort needed

to develop a model amenable to verification and the effort needed to carry out the

proofs. Typically, a theorem proving-based approach will gain advantage in the for-

14 The Specification and Analysis of Use Properties . . . 399

mer, because of more expressive languages, and model checking in the latter, because

of more automated analysis. In all the cases, how to identify and express the proper-

ties of interest is also an issue.

Design patterns and property templates have been extensively studied in engi-

neering practices. Most of the effort, however, has been devoted to creating patterns

and templates for the control part of a system, rather than for the human–machine

interface. Vlissides et al. (1995) established a comprehensive set of standard design

patterns for software components of a system. An example pattern is the abstract fac-
tory, which facilitates the creation of families of software objects (e.g. windows of

a user interface). Another example is the adapter pattern, which converts the inter-

face of software components to enable the integration of otherwise incompatible

software components. These patterns are a de facto standard in the software engi-

neering community, and they are widely adopted in engineering practices to solve

common problems related to the realisation of software components. Konrad and

Cheng (2002) discuss design patterns for the elements of embedded systems. An

example pattern is the actuator–sensor pattern, providing a standard interface for

sensors and actuators connected to the control unit of an embedded system. Similarly,

Sorouri et al. (2012) present a design pattern for representing the control logic of an

embedded system. Lavagno et al. (1999) introduced Models of computation (MoC)
as design patterns for representing interactions between distributed system compo-

nents. Recently, Steiner and Rushby (2011) have demonstrated how these MoC can

be used in model-based development of systems, to represent in a uniform way dif-

ferent time synchronisation services executed within the system. These and similar

activities are concerned with the design patterns for the control part of a system,

as opposed to the human–machine interface—e.g. problems like how to correctly

design the behaviour of data entry software in human–machine interfaces are out of

scope.

Various researchers have introduced design patterns for the analysis of complex

systems. For example, in Li et al. (2014), verification patterns are introduced that

can be used for the analysis of safety interlock mechanisms in interoperable med-

ical devices. Although they use the patterns to analyse use-related properties such

as “When the laser scalpel emits laser, the patient’s trachea oxygen level must not
exceed a threshold 𝛩O2

”, the aim of their patterns is to facilitate the introduction

of a model checker in the actual implementation of the safety interlock, rather than

defining property templates for the analysis of use-related aspects of the safety inter-

lock. Other similar work, e.g. Tan et al. (2015), King et al. (2009), Larson et al.

(2012), also introduce design patterns for the verification of safety interlocks, but the

focus of the patterns is again on translating verified design models into a concrete

implementation—in Tan et al. (2015), for example—the design patterns are devel-

oped for the automatic translation of hybrid automata models of a safety interlock

into a concrete implementation.

Proving requirements similar to the properties produced from the templates of

this paper has been the focus of previous work. For example, a mature set of tools

has been developed using SCR (Heitmeyer et al. 1998). Their approach uses a tabular

notation to describe requirements which makes the technique relatively acceptable

400 M.D. Harrison et al.

to developers. Combining simulation with model checking has also been a focus,

in other work, for example Gelman et al. (2013). Recent work concerned with sim-

ulations of PVS specifications provides valuable support to this complementarity

(Masci et al. 2013). Had the specification been developed as part of a design process,

then a tool such as Event B (Abrial 2010) might have been used. In such an approach,

an initial model is first developed that specifies the device characteristics and incor-

porates the safety requirements. This model is gradually refined using details about

how specific functionalities are implemented.

In our previous work, we have introduced modelling patterns for decomposing

interactive (human–machine) system models into a set of layers to facilitate mod-

els reuse (Harrison et al. 2015b). Bowen and Reeves (2015), who are concerned

with design patterns for user interfaces, complements our work on modelling pat-

terns. They have introduced four modelling patterns: the callback pattern, represent-

ing the behaviour of confirmation dialogues used to confirm user operations; the

binary choice pattern, representing the behaviour of input dialogues used to acquire

data from the user; the iterator pattern, representing the behaviour of parametric user

interface widgets that share the same behaviour but have a different value parame-

ter, such as the numeric entry keys 0–9; and the update pattern, for representing the

behaviour of a numeric display.

14.7 Discussion and Conclusions

Two approaches to specification and proof are possible with the considered exam-

ples: model checking and theorem proving. Model checking is the more intuitive of

the two approaches. Languages such as Modal Action Logic with interactors (MAL)

(Campos 2008) express state transition behaviour in a way that is more acceptable

to non-experts. The problem with model checking is that state explosion can com-

promise the tractability of the model so that properties to be proved are not feasible.

Model checking, hence, is more convenient for analysing high-level behaviour, for

example when checking the modal behaviour of the user interface. Theorem proving,

while being more complex to apply, provides more expressive power. This makes it

more suitable when verifying properties requires a high level of detail, such as those

related to a number entry system, because the domain of numbers is relatively large.

To employ the strength of the two approaches, simple rules can be used to translate

from the MAL model to the PVS model that is used for theorem proving. Actions are

modelled as state transformations, and permissions that are used in MAL to specify

when an action is permitted are described as predicates. The details of the specifi-

cation carefully reflects its MAL equivalent. This enables us to move between the

notations and verification tools, choosing the more appropriate tool for the verifica-

tion goals at hand.

14 The Specification and Analysis of Use Properties . . . 401

One aspect that has not been discussed in this chapter is the analysis and interpre-

tation of verification results. Interpretation may be facilitated through the animation

of the formal models to create prototypes of the modelled interfaces. These proto-

types make it easier to discuss the results of verification with stakeholders. Such

prototypes can be used either to replay traces produced by a model checker or inter-

actively to both discuss the findings of the verification or help identify relevant fea-

tures of the system that should be addressed by formal analysis. This approach is

described in Masci et al. (2014).

Acknowledgements José Creissac Campos and Michael Harrison were funded by project ref.

NORTE-07-0124-FEDER-000062, co-financed by the North Portugal Regional Operational Pro-

gramme (ON.2 O Novo Norte), under the National Strategic Reference Framework (NSRF), through

the European Regional Development Fund (ERDF), and by national funds, through the Portuguese

foundation for science and technology (FCT). Paul Curzon, Michael Harrison and Paolo Masci

were funded by the CHI+MED project: Multidisciplinary Computer Human Interaction Research

for the design and safe use of interactive medical devices project, UK EPSRC Grant Number

EP/G059063/1.

References

AAMI (2010) Medical devices—application of usability engineering to medical devices. Technical

Report ANSI AMI IEC 62366:2007, Association for the advancement of medical instrumenta-

tion, 4301 N Fairfax Drive, Suite 301, Arlington VA 22203-1633

Abrial JR (2010) Modeling in event-B: system and software engineering. Cambridge University

Press

Bolton ML, Bass EJ, Siminiceanu RI (2012) Generating phenotypical erroneous human behav-

ior to evaluate human-automation interaction using model checking. Int J Human-Comput Stud

70:888–906

Bowen J, Reeves S (2015) Design patterns for models of interactive systems. In: 2015 24th Aus-

tralasian software engineering conference (ASWEC). IEEE, pp 223–232

Campos JC, Harrison MD (2008) Systematic analysis of control panel interfaces using formal

tools. In: Graham N, Palanque P (eds) Interactive systems: design, specification and verifica-

tion, DSVIS ’08. Springer, no. 5136 in Springer lecture notes in computer science, pp 72–85

Campos JC, Harrison MD (2009) Interaction engineering using the IVY tool. In: Graham T, Gray

P, Calvary G (eds) Proceedings of the ACM SIGCHI symposium on engineering interactive

computing systems. ACM Press, pp 35–44

Campos JC, Doherty G, Harrison MD (2014) Analysing interactive devices based on information

resource constraints. Int J Human-Comput Stud 72:284–297

Campos JC, Sousa M, Alves MCB, Harrison MD (2016) Formal verification of a space system’s

user interface with the IVY workbench. IEEE Trans Human Mach Syst 46(2):303–316

Duke DJ, Harrison MD (1993) Abstract interaction objects. Comput Graph. Forum 12(3):25–36

Gelman G, Feigh K, Rushby J (2013) Example of a complementary use of model checking and

agent-based simulation. In: 2013 IEEE international conference on, systems, man, and cyber-

netics (SMC), pp 900–905. doi:10.1109/SMC.2013.158

Gow J, Thimbleby H, Cairns P (2006) Automatic critiques of interface modes. In: Gilroy S, Har-

rison M (eds) Proceedings 12th international workshop on the design, specification and verifi-

cation of interactive systems. Springer, no. 3941 in Springer lecture notes in computer science,

pp 201–212

http://dx.doi.org/10.1109/SMC.2013.158

402 M.D. Harrison et al.

Harrison M, Campos J, Masci P (2015a) Patterns and templates for automated verification of user

interface software design in pvs. Technical report TR-1485, School of computing science, New-

castle university

Harrison M, Campos J, Masci P (2015b) Reusing models and properties in the analysis of similar

interactive devices. Innovations Syst Soft Eng 11(2):95–111

Harrison M, Campos J, Ruksenas R, Curzon P (2016) Modelling information resources and their

salience in medical device design. In: EICS ’16 proceedings of the 8th ACM SIGCHI symposium

on engineering interactive computing systems. ACM Press, pp 194–203

Harrison MD, Masci P, Campos JC, Curzon P (2014) Demonstrating that medical devices sat-

isfy user related safety requirements. In: Proceedings of fourth symposium on foundations of

health information engineering and systems (FHIES) and sixth software engineering in health-

care (SEHC) workshop. Springer, in press

Heitmeyer C, Kirby J, Labaw B (1998) Applying the SRC requirements method to a weapons con-

trol panel: an experience report. In: Proceedings of the second workshop on formal methods in

software practice (FMSP ’98), pp 92–102

King AL, Procter S, Andresen D, Hatcliff J, Warren S, Spees W, Jetley R, Raoul P, Jones P,

Weininger S (2009) An open test bed for medical device integration and coordination. In: ICSE

companion, pp 141–151

Konrad S, Cheng BHC (2002) Requirements patterns for embedded systems. In: Proceedings of

IEEE joint international conference on requirements engineering. IEEE, pp 127–136

Larson B, Hatcliff J, Procter S, Chalin P (2012) Requirements specification for apps in medical

application platforms. In: Proceedings of the 4th international workshop on software engineering

in health care. IEEE Press, pp 26–32

Lavagno L, Sangiovanni-Vincentelli A, Sentovich E (1999) Models of computation for embedded

system design. In: System-level synthesis. Springer, pp 45–102

Li T, Tan F, Wang Q, Bu L, Cao J, Liu X (2014) From offline toward real time: a hybrid systems

model checking and CPS codesign approach for medical device plug-and-play collaborations.

IEEE Trans Parallel Distrib Syst 25(3):642–652

Masci P, Huang H, Curzon P, Harrison MD (2012) Using PVS to investigate incidents through the

lens of distributed cognition. In: Goodloe AE, Person S (eds) NASA formal methods, Lecture

notes in computer science, vol 7226. Springer, Berlin, Heidelberg, pp 273–278. doi:10.1007/

978-3-642-28891-3_27

Masci P, Ayoub A, Curzon P, Lee I, Sokolsky O, Thimbleby H (2013) Model-based development

of the generic PCA infusion pump user interface prototype in PVS. In: Bitsch F, Guiochet J,

Kaâniche M (eds) Computer safety, reliability, and security, Springer lecture notes in computer

science, vol 8153. Springer, pp 228–240

Masci P, Zhang Y, Jones P, Curzon P, Thimbleby HW (2014) Formal verification of medical device

user interfaces using PVS. In: 17th international conference on fundamental approaches to soft-

ware engineering, ETAPS/FASE2014. Springer, Berlin, Heidelberg

Masci P, Oladimeji P, Curzon P, Thimbleby H (2015) PVSio-web 2.0: joining PVS to

human-computer interaction. In: 27th international conference on computer aided verification

(CAV2015). Springer, Tool and application examples available at http://www.pvsioweb.org

Nielsen J, Molich R (1990) Heuristic evaluation of user interfaces. In: Chew J, Whiteside J (eds)

ACM CHI proceedings CHI ’90: empowering people, pp 249–256

Polson PG, Lewis C, Rieman J, Wharton C (1992) Cognitive walkthroughs: a method for theory-

based evaluation of user interfaces. Int J Man-Mach Stud 36(5):741–773

Shankar N, Owre S, Rushby JM, Stringer-Calvert D (1999) PVS system guide, PVS language ref-

erence, PVS prover guide, PVS prelude library, abstract datatypes in PVS, and theory interpre-

tations in PVS. Computer science laboratory, SRI international, Menlo Park, CA. http://pvs.csl.

sri.com/documentation.shtml

Sorouri M, Patil S, Vyatkin V (2012) Distributed control patterns for intelligent mechatronic sys-

tems. In: 2012 10th IEEE international conference on industrial informatics (INDIN). IEEE, pp

259–264

http://dx.doi.org/10.1007/978-3-642-28891-3_27
http://dx.doi.org/10.1007/978-3-642-28891-3_27
http://www.pvsioweb.org
http://pvs.csl.sri.com/documentation.shtml
http://pvs.csl.sri.com/documentation.shtml

14 The Specification and Analysis of Use Properties . . . 403

Steiner W, Rushby J (2011) TTA and PALS: formally verified design patterns for distributed cyber-

physical systems. In: 2011 IEEE/AIAA 30th digital avionics systems conference (DASC). IEEE

Tan F, Wang Y, Wang Q, Bu L, Suri N (2015) A lease based hybrid design pattern for

proper-temporal-embedding of wireless CPS interlocking. IEEE Trans Parallel Distrib Syst

26(10):2630–2642

Vlissides J, Helm R, Johnson R, Gamma E (1995) Design patterns: elements of reusable object-

oriented software, vol 49, no 120. Addison-Wesley, Reading, p 11

	14 The Specification and Analysis of Use Properties of a Nuclear Control System
	14.1 Introduction
	14.2 The Use Case
	14.3 Structure of the Models
	14.3.1 The Interface Specification
	14.3.2 Structuring Specifications

	14.4 Tool Support
	14.4.1 Representing and Proving the Model
	14.4.2 Property Templates

	14.5 Modelling the Nuclear Power Plant Control User Interface
	14.5.1 Types and Constants
	14.5.2 The Process Layer
	14.5.3 The Interface Layer
	14.5.4 Proving Properties of the Interface Layer
	14.5.5 The Activity Layer

	14.6 Related Work
	14.7 Discussion and Conclusions
	References

