
Chapter 11
Learning Safe Interactions and Full-Control

Guillaume Maudoux, Charles Pecheur and Sébastien Combéfis

Abstract This chapter is concerned with the problem of learning how to interact

safely with complex automated systems. With large systems, human–machine inter-

action errors like automation surprises are more likely to happen. Full-control mental

models are formal system abstractions embedding the required information to com-

pletely control a system and avoid interaction surprises. They represent the internal

system understanding that should be achieved by perfect operators. However, this

concept provides no information about how operators should reach that level of com-

petence. This work investigates the problem of splitting the teaching of full-control

mental models into smaller independent learning units. These units each allow to

control a subset of the system and can be learned incrementally to control more and

more features of the system. This chapter explains how to formalize the learning

process based on an operator that merges mental models. On that basis, we show

how to generate a set of learning units with the required properties.

11.1 Introduction

The field of human–computer interaction (HCI) studies how humans interact with

automated systems and seeks to improve the quality of these interactions. In HCI, for-

mal methods allow to unambiguously describe behaviours of both humans and inter-

active systems. Given a formal description of humans and/or computer systems, it

is possible to mechanically check properties on their interactions such as the control
property, which we will describe later on. The automated verification of properties

is called model checking. Model checking techniques can also be used to generate
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models that satisfy desirable properties. In this chapter, we will use that capability

to produce formal descriptions of the knowledge required to interact safely with a

formally defined system.

Safe interactions are achieved when a system behaves in accordance with the user

expectations. Any discrepancy between these expectations and the actual behaviour

of the system is called an automation surprise (Sarter et al. 1997; Palmer 1995).

To formalize our analysis of automation surprises, two models are used: one model

describes the behaviour of the system and the other describes how the system is

assumed to behave from the point of view of the user. The latter is called a mental
model (Rushby 2002). A user can build a mental model of a system from training, by

experimenting with the system or by reusing knowledge applicable to other similar

systems. In this work, a user is assumed to behave according to her mental model.

This assumption does not always hold as users may get distracted or make errors

when manipulating a system, but we are not considering these kinds of faults here.

The control property describes the relation between a mental model and a system

such that their interactions cannot lead to surprises. It is important to ensure that the

mental model of the user allows control of the system in use. Or, less formally, that

the user knows enough about the features she uses to avoid any surprise. To interact

safely with a system, a user need not know all of its features. With most systems,

knowing nothing about their behaviour is sufficient to never get surprised. These

devices remain idle or turned off while waiting for a human to initiate the interaction.

In the case of a plane at rest, for example, not interacting with it ensures that it will

not behave unexpectedly. Some systems however require some knowledge in order

to avoid surprises. Phones are an excellent example, as one could get surprised by

an incoming ringtone if not warned that it may happen.

Generating mental models that ensure proper control provides a mean to train

operators of critical systems. If the learning process ensures that their mental model

controls the system, we can avoid automation surprises. In particular, new system

features should be taught in such a way that the new mental model of the operators

still ensures proper control of the system. This also means that operators must not

interact with the system until the end of a learning phase and cannot perform their

duties during that period.

Operators that have learnt all the possible behaviours of a system have built a

full-control mental model. Such models have been defined by Combéfis and Pecheur

(2009), and techniques to build minimal ones have been described in Combéfis and

Pecheur (2011a, b). These mental models allow users to safely control all the fea-

tures of a system. However, teaching a full-control mental model is impractical as

it is equivalent to teaching all the features of the system at once, in one big step.

For example, newly hired operators would be useless until they master the full com-

plexity of the system. Large systems might even be too complex for one operator to

manage. In that case, the operation of the system must be split in tasks dedicated to

different operators and the generated full-control mental model cannot be used at all.

To be practical, learning processes should provide a set of learning units in the

form of small, compatible mental models that can be combined incrementally into

bigger models. Each intermediate mental model should ensure safe interactions with
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the system without necessarily describing all of its features. Learned sequentially,

these units should increase the mental model of the operator until her mental model

reaches full-control over the system. We will see that it is possible to decompose a

full-control mental model into learning units units with such properties.

In this chapter, we first summarize the necessary concepts. Section 11.2 will

describe Labelled Transition Systems for Human Machine Interactions (HMI-LTSs)

as a specialization of Labelled Transition Systems (LTSs) and use these to formally

define mental models, control, and full-control. In Sect. 11.3, we introduce a merge
operator that describes the mental model resulting of learning two other mental

models, and we argue that it is coherent with the intuition of learning a system.

In Sect. 11.4, we explore the decomposition induced by the merge operator on HMI-

LTSs. We show that some HMI-LTSs are too basic to be worth further decomposing,

and that decomposing mental models into such basic elements is a finite process. We

also provide an algorithm to automate this decomposition. Finally, we demonstrate

that it is possible to generate a set of learning units with the desired properties by

decomposing full-control mental models. This is presented with many examples in

Sect. 11.5.

11.2 Background

In this section, we define HMI-LTSs, mental models, and the (full-)control property.

We also formally introduce full-control mental models, a concept that lies at the inter-

section of these three notions. A deeper discussion of the background information

provided in this section can be found in Combéfis (2013).

To formalize systems and mental models, we use Labelled Transition Systems
for Human–Machine Interactions (HMI-LTSs) which are slightly modified Labelled
Transition Systems (LTSs). An LTS is a state transition system where each transi-

tion has a label, also called action. LTSs interact with their environment based on

this set of actions. Additionally, LTSs can have an internal 𝜏 action that cannot be

observed by the environment. The representations of three different LTSs are shown

in Figs. 11.1 and 11.2.

Definition 1 (Labelled Transition System) A labelled transition system (LTS) is a

tuple ⟨S,L , s0,→⟩ where S is a finite set of states, L is a finite set of labels repre-

senting visible actions, s0 ∈ S is the initial state and → ⊆ S × (L ∪ {𝜏}) × S is the

transition relation, where 𝜏 ∉ L is the label for the internal action.

The executions of LTSs can be observed from the environment via traces. An

execution of an LTS is a sequence of transitions s0
a1
→ s1 … sn−1

an
→ sn where each

(si−1, ai, si) ∈ →. It represents the system moving from state to state by firing transi-

tions. A trace of an LTS is a sequence 𝜎 = a1, a2,… , an ∈ L 𝜔
such that there exists

an execution s0
𝜏
∗a1𝜏∗⟶ s1 ⋯ sn−1

𝜏
∗an𝜏∗⟶ sn. The notation s

𝜏
∗a𝜏∗
⟶ s′ represents a transi-

tionlabelled a preceded and followed by any number of invisible 𝜏 transitions. Its
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Fig. 11.1 HMI-LTS model of a reactor inspired from the nuclear power plant example (cf.

Chap. 4). Observations are represented with a dashed edge. This model will be used as the main

example through the remainder of this chapter

A on

off

off
B

τ
on
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unplug

Fig. 11.2 Two examples of nondeterministic systems. A can be turned on then off at least once,

but it is impossible to determine if it can be turned on again. B can be turned on and off, but it can

also unobservably change to a state where the only way to restart it is to unplug it

only observable action is a. A trace is a sequence of visible actions that the system

may produce in one of its executions. For example, the Reactor system of Fig. 11.1

can produce the trace “start, lowerRods, underPressure” and the trace “start, over-

Pressure, delay, SCRAM” among infinitely many others.

To model interactions, we need to distinguish inputs from outputs. HMI-LTSs

refine LTSs by distinguishing two kinds of actions, commands and observations.
Like any I/O transition system, observations are uncontrollable outputs generated

by the system and commands are controllable inputs. HMI-LTSs are very similar to

LTS/IOs described by Tretmans (2008).

Definition 2 (Human-Machine Interaction LTS) A human-machine interaction

labelled transition system (HMI-LTS) is a tuple ⟨S,L c
,L o

, s0 ,→⟩ where ⟨S,L c ∪
L o

, s0,→⟩ is a labelled transition system, L c
is a finite set of command labels and

L o
is a finite set of observation labels. The two sets L c

and L o
are disjoint and the

set of visible actions is L = L c ∪L o
.

HMI-LTSs are used to describe both systems and mental models. Mental models

represent the knowledge an operator has about the system she controls. It is impor-

http://dx.doi.org/10.1007/978-3-319-51838-1_4
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tant to note that mental models do not represent the behaviour of a user, but the

behaviour of a system as seen by a user. Therefore, a command in a mental model

corresponds exactly to the same command on the system. The interactions between a

system S and an operator behaving according to its mental model M are defined by

the synchronous parallel composition S ∥ M . This distinguishes HMI-LTSs from

LTS/IOs where inputs of the system must be synchronized on the outputs of the user

and vice versa.

Notions on LTSs can be easily lifted to HMI-LTSs due to their high similarity.

The set of states that can be reached from state s with an observable trace 𝜎 is repre-

sented as s after 𝜎. This definition applies as is to LTSs and HMI-LTSs. We also use

notations specific to HMI-LTSs. Ac(s) (resp. Ao(s)) is the set of possible commands

(resp. observations) of s. An action is possible in s if it is the first action of some

trace starting at s.
An LTS is deterministic if |s after 𝜎| ≤ 1 for any 𝜎. For example, the HMI-LTS

A from Fig. 11.2 can be in two states after the trace “on, off” and is therefore not

deterministic. Also, the HMI-LTS B has two possible actions in its middle state (‘off’

and ‘unplug’) because unplug can be the next visible action in executions firing the

𝜏 transition. It is of course also nondeterministic because after the “on” trace the

system can be in two different states.

We want mental models to control systems without surprises. In particular, we

want to avoid mental models that contain commands that are impossible on the sys-

tem and to ignore observations that the system could produce. This motivates the

introduction of the control property.

Definition 3 (Control Property) Given two HMI-LTSsS = ⟨SS ,L c
,L o

, s0S ,→S

⟩ and M =
⟨SM ,L c

,L o
, s0M ,→M ⟩, M controls S if M is deterministic and for all traces

𝜎 ∈ L ∗
such that sS ∈ s0S 𝐚𝐟𝐭𝐞𝐫 𝜎 and {sM} = s0M 𝐚𝐟𝐭𝐞𝐫 𝜎:

Ac(sS ) ⊇ Ac(sM ) and Ao(sS ) ⊆ Ao(sM ).

This definition is symmetric because it allows the mental model not to know the

full set of available commands, and it also allows the system to produce fewer obser-

vations than expected by the mental model. From now on, this is the formal definition

we refer to when we say that a mental model controls a system.

For a given system, there always exists a mental model that contains no commands

and still allows control of the system. That mental model contains only the traces of

observations available from the initial state and corresponds to the mental model

needed by an agent to avoid surprises when not interacting with a system. Think

back to the example of the phone given in the introduction. You need to know that

your desk phone may ring even when you do not want to interact with it. Someone

who ignores that fact will be surprised whenever the phone rings.
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Fig. 11.3 The only minimal

full-control mental model of

the reactor system
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We see that a mental model that controls a system does not necessarily explore

the full range of possible behaviours of that system. When a mental model ensures

control over a system and allows access to all the available commands of the system,

we say that the model fully controls the system.

Definition 4 (Full-Control Property) Given two HMI-LTSs S =
⟨SS ,L c

,L o
, s0S ,→S ⟩ and M = ⟨SM ,L c

,L o
, s0M ,→M ⟩, M is a full-control

mental model for S , which is denoted M 𝐟𝐜S , if M is deterministic and for all

traces 𝜎 ∈ L ∗
and for all sS ∈ (s0S 𝐚𝐟𝐭𝐞𝐫 𝜎) we have

Ac(sS ) = Ac(sM ) and Ao(sS ) ⊆ Ao(sM ).

where {sM} = (s0M 𝐚𝐟𝐭𝐞𝐫 𝜎) is the only state reached in M by the trace 𝜎.

A full-control mental model is therefore a deterministic HMI-LTS representing

the required information for an operator to interact with a system to the full extent

of its possibilities, and without surprises. Full-control mental models are minimal if

they have a minimal number of states compared to other full-control mental mod-

els of the same system. Also, being full-control deterministic is a property shared

by all the systems for which there exists a full-control mental model (Combéfis

and Pecheur 2009). The property states that nondeterminism in the system does not

impact controllability. Different algorithms exist to generate such models (Combéfis

and Pecheur 2009; Combéfis et al. 2011a; Delp et al. 2013).

Figure 11.3 presents FCReactor, the only minimal full-control mental model of

the Reactor system from Fig. 11.1. The two active states with no pressure warning

have been merged as they are undistinguishable from a control point of view: they

allow exactly the same commands, and their observations are compatible.

Minimal full-control mental models are important because they represent the min-

imal knowledge that a perfect operator should master. Compact training material and

user guides should therefore describe a minimal full-control mental model.
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11.3 Modelling the Learning Process with the Merge
Operator

While minimal full-control mental models are perfect in terms of control, they are

inefficient when training operators as they require to be completely mastered before

using a system. But to optimize this process, we need to describe how the mental

model of a user can be augmented with a learning unit. In this section, we define the

new merge operator that combines two mental models into a broader one, and we

claim that this operator is a natural way to encode the learning process.

The merge of two HMI-LTSs is obtained by superimposing their graphs and merg-

ing identical paths. This is a kind of lazy choice as the final behaviour does not com-

mit to behave like the first or the second operand until a decision is required. The

result may even alternate between the behaviour of its two operands. As the defini-

tion of the merge operator does not rely on observations and commands, it can easily

be generalized to LTSs. An example of the action of the merge operator is given in

Fig. 11.4.

Definition 5 (Merge)

The merge of two deterministic HMI-LTSs A = ⟨SA,L c
A ,L

o
A , s0A,→A⟩ and B =

⟨SB,L c
B ,L

o
B , s0B,→B⟩, denoted A⊕ B, is an HMI-LTS ⟨S,L c

A ∪L c
B ,L

o
A ∪

L o
B , s0,→⟩ where

1. S ∈ P(SA ⊎ SB) is the set partition defined by the equivalence relation ∼.

2. ∼ = ∪∞
i=0∼i is the equivalence relation on SA ⊎ SB such that

a. s0A and s0B are the only equivalent nodes in ∼0;

b. ∼k⊂∼k+1 and

A⊕ B⊕C
a a a c

b

d

C
a a a

d

B
a a a c

A
a a

b

Fig. 11.4 Example of the merge operation on three HMI-LTSs
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c. ∼k+1 is the finest equivalence relation such that m′ ∼k+1 n′ if there exists

m ∼k n and a such that m
a
←←←←←→A m′

and n
a
←←←←←→B n′.

3. → is the set of transitions [s]∼
a
←←←←←→ [s′]∼ such that either s

a
←←←←←→A s′ or s

a
←←←←←→B s′.

In this definition, S is always well defined. While the equivalence relation ∼ is an

infinite union, we can see that the intermediate equivalence relations are monoton-

ically increasing as they embed the previous one and can only add new equivalent

states, not remove them. If no states are added at some step, then a fixpoint is reached.

And this must happen within a finite number of steps as it must end when all the states

are equivalent (in the worst case).

From this definition, we can also see that the merge of two deterministic HMI-

LTS is unique. Were it not the case, there would be two different ways to build ∼k+1
for some k. But each ∼k+1 is uniquely defined with respect to ∼k, and ∼0 is uniquely

defined. Therefore ∼ must be unique.

The example in Fig. 11.4 uses the fact that the merge operator is associative to

write A⊕ B⊕ C instead of (A⊕ B)⊕ C or A⊕ (B⊕ C). Associativity is tedious

to prove because we need to show that (A⊕ B)⊕ C is isomorphic to A⊕ (B⊕ C).
Instead, we draw attention to the extensibility of the definition to more than two

models. It only requires minor adjustments to define the merge of three or even n
HMI-LTSs. The operator is also commutative. This property may be assumed from

the symmetry of the definition.

We can show that the result of merging two deterministic HMI-LTSs is determin-

istic. Indeed, as the two operands of the merge are deterministic, they cannot contain

𝜏 transitions and so their merge is free of 𝜏 transitions too. Neither can the result con-

tain two transitions with the same label leaving the same state. Let us assume that

the result contains two transitions outgoing from the same state, with the same label,

and leading to different states. By the definition of →, this means that there exists

(m, a,m′) ∈ →A and (n, a, n′) ∈ →B such that m ∼ n and m′ ≁ n′, which violates the

recursive property on ∼. Also, the resulting HMI-LTS can contain no 𝜏 transitions

and no fork where a transition with the same label leads to two different states. These

two conditions are sufficient to prove that the merge is deterministic.

The HMI-LTS A⊕ B can switch its behaviour from A to B provided A can reach

a state that was merged with a state of B. This conversely holds from B to A. If

the HMI-LTS can switch from A to B and from B to A, then it can alternate its

behaviour arbitrarily often. We can see that this operator is different from the tradi-

tional choice operator because it is more than the union of the traces. It can build

complex behaviours from two simple models. In Fig. 11.4, we can see that the trace

a, a, a, d, a, b, a, a, a, c is not possible on the different models but is valid on their

merge.

The merge operator is useful because the set of traces of a merge is always larger

than or equal to the union of the traces of the merged transition systems. This means

that the possible behaviours of a merge can be richer than the union of the behaviours

of its operands. This is needed to ensure that the decomposition of a big system is a

small set of small systems. Indeed, if the behaviour of a merge was exactly the sum
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Fig. 11.5 The merge operation compared to the parallel synchronization (∥) and the choice (+)

operators on (HMI-)LTSs. The result of the choice between U1 and U2 has been determinised for

readability

of the behaviour of its operands, then learning a system would reduce to enumerating

all the possible traces on it.

Figure 11.5 shows the effect of three operators on two simple models. We can

see that the merged model can perform the actions “stop” and “raiseRods” infinitely

often. This corresponds to the combined knowledge that the system can be started

and stopped infinitely often, and that when started, the rods can be raised as many

times as wished.

By comparison, the synchronous parallel composition requires the two operands

to be executed in parallel, and to be synchronized on some actions. Usually, systems

are synchronized on their common alphabet. This means that U1 ∥L1∩L2
U2 cannot

execute “start” more than once because U2 can only do it once. Unsynchronized

actions like “raiseRods” can however fire at any time, even when the reactor is shut

down. These two aspects are not desirable when modelling combined knowledge.

If we synchronize the two models on the unions of their alphabets, thenU1 ∥L1∪L2
U2 cannot perform any “stop” action because that action U2. This case is even worse

for modelling knowledge increase as it removes existing known behaviours from

their combined learning.

Finally, the choice operator does not allow to knowledge of multiple mental mod-

els to be combined either. It forms a new model that can use the knowledge of either

operand, but that prevents any interaction between the two. This is like learning addi-

tion and multiplication but not being able to use both in the same calculation.
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With these examples, we have shown that existing operators are inappropriate

for our mathematical model of learning. The new merge operator remedies to these

shortcomings. If two HMI-LTSs each represent some knowledge about a system,

then their merge represents the combined knowledge of an operator who knows these

two facts.

Furthermore, the merge operator is consistent with the interpretation of HMI-

LTSs as scenarios. When a scenario loops, the system is assumed to have returned

in a state strictly equivalent to the initial one. In particular, the scenario is assumed

to be repeatable infinitely often unless explicitly stated. When a learning unit loops

to a given state, it means that state is completely equivalent to the initial one for

controllability purposes.

While there is no way to prove that the merge operator is perfect, we have provided

examples and intuition on why it is a good way to encode how mental models grow

during the learning of a system.

11.4 Basic Learning Units

Within our formal theory of knowledge and learning, we are now able to split a learn-

ing objective into smaller elements that can be learned independently. Decomposing

a full-control mental model into independent elements amounts to find a set of men-

tal models such that their merge by the merge operator is exactly that full-control

mental model.

To define a good decomposition, we first need an order relation to tell if some sub-

elements form a valid decomposition. We need our decomposition to split a model

into elements that can be merged back into the original model, but we also need the

elements to be smaller than the original model. Were it not the case, the decompo-

sition would not be well-founded: systems could be decomposed forever into other

systems. This goes against the idea of a decomposition into simpler elements.

In this section, we first explore the order induced by the merge operator on HMI-

LTSs. We then show that this order is not well-founded and how an order based

on the size of the graphs fixes it. Finally, we introduce basic learning units, small

learning units that cannot be decomposed into smaller elements.

The merge operator naturally defines a partial order on the HMI-LTSs. The merge

order is such that A ≤
⊕
B if and only if A⊕ B is isomorphic to B, which we denote

A⊕ B ≃ B. The strict partial order relation also requires A to be different from B
(i.e. not isomorphic to B). Figure 11.6 shows four HMI-LTSs ordered according to

<
⊕

. The merge order captures the idea that B has more behaviours than A because

A ≤
⊕
B implies that Traces(A) ⊆ Traces(B).

Furthermore, due to the definition of the merge order, the set of deterministic

HMI-LTSs forms a join-semilattice: any two HMI-LTSsA andB are (upper) bounded

byA⊕ B. In a such a lattice, the decomposition is performed by finding two elements

strictly smaller than an HMI-LTS and such that their upper bound is exactly that

HMI-LTS. However, this lattice has the undesirable property of allowing infinite
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A
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B

start

lowerRods
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C

start

lowerRods
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Fig. 11.6 Illustration of the merge-order relation on HMI-LTSs. For example, we have C <
⊕
D

because C⊕ D = D and C ≠ D

a

1

= a
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a
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. . .

Fig. 11.7 A decomposition based on the merge order alone can lead to infinite decompositions

into HMI-LTSs with increasing size

decomposition chains. As illustrated in Fig. 11.7, we can see that a simple loop can

be decomposed into the merge of a 2- and a 3-loop, which can in turn be decomposed

into the merge of a 4- and 6-loop, and a 6- and 9-loop, respectively, and so forth.

To encode the fact that a decomposition should produce simpler models than the

model it comes from, we define the learning order. It restricts the merge order with

the constraint that smaller models must have a lower number of states. Ties are bro-

ken based on the number of edges. This structural size order is denoted ≤.

Definition 6 (Learning order) A deterministic HMI-LTSA is said to be smaller than

an HMI-LTS B according to the learning order if and only if A ≤ B and A ≤
⊕
B. This

is denoted A ≤
learn

B.

A decomposition will stop when we reach a model not worth splitting, which

happens when we cannot find two strictly smaller models (in the sense of the learning

order) that merge into the current model. We say that such HMI-LTSs are basic.

Definition 7 (Basic HMI-LTS) A deterministic HMI-LTS M is basic if there does

not exist two HMI-LTSs A and B such that A <
learn

M, B <
learn

M and A⊕ B = M.

It turns out that such basic HMI-LTS take the form of single sequences, single

loops, lassos or tulips as shown in Fig. 11.8. Loops and sequences can be seen as
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A B

α

C

β

D

α

β

E

β γ

F

α

β γ

Fig. 11.8 Different shapes of basic HMI-LTSs. They can be A empty, B sequences, C loops, D
lassos and E, F tulips with and without stem. Dotted lines represent any oriented sequence of states

and transitions. All these shapes are degenerated tulips where action sequences 𝛼, 𝛽 and 𝛾 can be

empty

degenerated lassos with no stem or no loop. The fully degenerated lasso is the HMI-

LTS with no transitions at all. Finally, a tulip is a branching HMI-LTS where the two

branches reunite in the last state. Like lassos, they may have no stem. When they are

comparable, lassos and tulips are always strictly greater than sequences. Lassos and

tulips are never comparable.

Any finite deterministic HMI-LTS can be decomposed into a finite set of basic

HMI-LTS. This arises from the fact that any HMI-LTS is the merge of a basic HMI-

LTS and another HMI-LTS strictly smaller than the previous one. Were it not the

case, that HMI-LTS would be basic itself. By induction on the remaining HMI-LTS,

we show that it eventually reduces to a basic HMI-LTS after a finite number of basic

HMI-LTS removal. All these basic elements form a set that we call the decomposition

of the HMI-LTS. This algorithm is shown with the FCReactor model on Fig. 11.9

and formally defined hereafter.

Algorithm 1 formalizes the enumeration of the basic units forming the decom-

position of a mental model. At line 5, this algorithm performs an unspecified explo-

ration of the graph, edge by edge. It could be a depth-first search, a breadth-first

search or any other exploration strategy. The pre mapping is used to build a spanning

tree. The algorithm looks for edges that are outside the spanning tree and removes

them permanently by calling the “extract_unit” procedure defined in Algorithm 2.

For each such edge, a basic HMI-LTS is extracted. A special case is added in line 13

to handle states with only one adjacent edge. Such states are part of a basic sequence

that does not contain edges outside of the spanning tree and a basic sequence must

be extracted at that place. That way, all the paths in the graph are covered by some

basic HMI-LTS, and basic HMI-LTSs are disjoint because they contain at least one

edge that no other unit contains.

Algorithm 2 describes “extract_unit,” which splits a model into a basic HMI-

LTS and a smaller model by removing a given edge from the model. For correctness

and efficiency, it also removes all the edges that are completely described by the

extracted basic unit. That way, the resulting model M ’ is the minimal (size-wise)

model such that M ′
⊕U = M . Note that pre is guaranteed to be defined for the

nodes used at line 6 because it forms a partial spanning tree spanning at least to x
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Fig. 11.9 Illustration of the decomposition algorithm, where basic HMI-LTSs are extracted one

by one until there is nothing more to extract
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and x′ by construction in Algorithm 1. As “extract_unit” traverses that tree upwards

from x and x′, it cannot encounter undefined values of pre. The units extracted by

the algorithm are subgraphs of the initial model. They contain a subset of the edges

of that model and the corresponding subset of nodes.

Algorithm 1 Basic HMI-LTSs enumeration

Require: M = ⟨S,L c
,L o

, s0 ,→⟩, a minimal deterministic HMI-LTS.

Ensure: U = {u1, u2,… , un}, a minimal decomposition of M into basic HMI-LTSs.

1: U ∶= ∅ ⊳ Initialise the decomposition with an empty set

2: E ∶= {(m, v,m′) ∈ → ∣ m = s0} ⊳ The set of edges yet to explore,

⊳ initialised with the edges starting at s0
3: pre ∶= [⊥,… , ⊥]
4: pre[s0] ∶= ⊤

5: while ∃(n, a, n′) ∈ E ∩→ do
6: E ∶= E ⧵ {(n, a, n′)}
7: if pre[n′] ≠ ⊥ then ⊳ Extract a tulip or a lasso

8: (M , u) ∶= extract_unit(M , pre, (n, a, n′))
9: U ∶= U ∪ {u}

10: else
11: pre[n′] ∶= (n, a, n′)
12: E ∶= E ∪ {(m, v,m′) ∈ → ∣ m = n′}
13: if deg(n′,→) = 1 then ⊳ Extract a single path

14: (M , u) ∶= extract_unit(M , pre, (n, a, n′))
15: U ∶= U ∪ {u}
16: end if
17: end if
18: end while
19: return U

A decomposition is nonredundant if it does not contain two comparable elements.

If it was the case, one of these elements could be further decomposed. The decom-

position algorithm sketched in Fig. 11.9 always produces a nonredundant decom-

position because each basic HMI-LTS contains actions that were not part of the

previously removed basic elements, and that are removed with it. For example, the

decomposition of the FCReactor system into {U1,U2,U3,U4,U5,U6,U7} as shown

in Fig. 11.9 is nonredundant.

A decomposition is minimal if no other decomposition of the same HMI-LTS

contains fewer basic elements. The size of a minimal decomposition is called the

complexity of an HMI-LTS. Minimal decompositions of the FCReactor system con-

tain exactly seven elements, so the complexity of that model is 7.

We now know how to decompose an HMI-LTS into basic elements, and that

decomposition gives us a measure of the complexity of that HMI-LTS.
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Algorithm 2 Basic units extraction

Require: M , a minimal deterministic HMI-LTS;

Require: pre ∶ S → S × (L c ∪L o) × S ∶ n ↦ pre[n], mapping nodes to preceding edges;

Require: (n, a, n′) an edge to extract.

Ensure: U , a basic HMI-LTS;

Ensure: M ′
, an HMI-LTS strictly smaller than M and such that u⊕M ′ = M .

function EXTRACT_UNIT(M = ⟨S,L c
,L o

, s0 ,→⟩, pre, (n, a, n′))
(→U ) ∶= {(n, a, n′)}
(→) ∶= (→) ⧵ {(n, a, n′)}

for x ∶= n, n′ do
while pre[x] ≠ ⊤ do

(x, v, x′) ∶= pre[x]
(→U ) ∶= (→U ) ∪ {(x, v, x′)}
if deg(x′,→) = 1 then

(→) ∶= (→) ⧵ {(x, v, x′)}
end if

end while
end for

SU ∶= {n ∈ S ∣ ∃v, x. (n, v, x) ∈ →U ∨ (x, v, n) ∈ →U }
U ∶= ⟨Su,L c

,L o
, s0,→U ⟩

S′ ∶= {s0} ∪ {n ∈ S ∣ ∃v, x. (n, v, x) ∈ → ∨ (x, v, n) ∈ →}
M ′ ∶= ⟨S′,L c

,L o
, s0,→⟩

return (M ′
, u)

end function

11.5 How to Teach Full-Control

In this section, we show that it is possible to build a set of learning units such that

each unit controls a given model, and such that all units can be combined into a

full-control mental model.

The main idea is to decompose a full-control mental model of the system into

basic subgraphs. It appears that basic subgraphs can be completed to form learning

units that can control the system. This means that the completed basic subgraphs of a

full-control mental model of a system form a set of independent, compatible mental

models that can be merged to reproduce the behaviour of the full-control mental

model.

Given two deterministic subgraphs U and U ′
of a deterministic HMI-LTS M ,

we have the property that their merge U ⊕U ′
is isomorphic to a subgraph of M .

This can be seen from the fact that ⊕ merges states that can be reached with the

same traces, and that these states must correspond to exactly one state of M , as M
is deterministic.

Starting from a full-control mental model M of a system S , we can decompose

it into a set of basic HMI-LTSs. However, these basic HMI-LTSs do not necessar-

ily control S . To achieve this property, they need to be completed with respect to
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observations. This is sufficient because a mental model that controls a system must

accept all the observations of that system but is allowed to ignore commands.

If we call →o
S the transition relation of S restricted to observations, then any

subgraph of a full-control mental model can be completed with →o
S in order to con-

trol S . Of course, only the connected component reachable from the initial state

should be kept after the completion. In particular, any basic subgraph of a mental

full-control mental model can be completed in order to control S .

Definition 8 (Observation Completion)

Given an HMI-LTS M = ⟨S,L c
,L o

, s0,→c ∪ →o⟩ and one subgraph U = ⟨SU ,

L c
,L o

, s0,→U ⟩ of M , the observation completion of U is an HMI-LTS U ′
such

that U ′
is the connected component of ⟨S,L c

,L o
, s0,→U ∪ →o⟩ reachable from

s0.

Figure 11.10 shows the completion of the basic HMI-LTSs from Fig. 11.9. Each

model is completed with reachable observations from FCReactor. The interpretation

Fig. 11.10 The observation completion of the basic HMI-LTSs from Fig. 11.9 with respect to the

only minimal full-control mental model of reactor, which is FCReactor
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of U ′
1 is that the reactor can be turned on and off again, but that the operator needs

to know that, when turned on, the reactor may emit warnings about the pressure.

If a pressure warning event happens, the operator will not be surprised. She would

however be unable to further operate the system. To unblock the situation, she could,

for example, read the user manual to improve her knowledge of the system or ask a

more experienced user.

The astute reader will have noticed that users need not to know about the delay

transition. This is because the delay has been modelled as a command. If modelled

as the observation that some time has elapsed, then no operator would be able to

prevent the system to enter SCRAM. More advanced techniques need to be used to

model passing time as a partially (un)controllable event on HMI-LTSs.

The observation completion of any subgraph of a full-control mental model M
controls the intended system. Indeed, such a completed subgraph cannot prevent

observations from occurring as the full-control mental model does not, and the com-

pleted graph has all the observations from the system. In particular, the observation

completion of basic subgraphs of full-control mental models of a system S control

that system S . These elements also have the nice property of merging into com-

pleted subgraphs of M that themselves have control over S .

Definition 9 (Basic Learning Unit)
Given a full-control mental model M = ⟨S,L c

,L o
, s0,→⟩ where → = →c

M
∪

→o
M

, a basic learning unit is a mental model U = ⟨SU ,L c
,L o

, s0,→T⟩ where →T
is the connected component of →o

M
∪→b containing s0 and ⟨SU ,L c

,L o
, s0,→b⟩

is a basic subgraph of M .

With this definition, we can state that any full-control, deterministic (fc-

deterministic) system is fully controlled by the merge of a set of basic learning units.

Theorem 1 (Decomposition)Any finite fc-deterministic HMI-LTSS can be decom-
posed into a finite set T = {U1,U2,…Un} of basic learning units such that

∙ each Ui controls S ;
∙ for each subset I ⊂ {1, 2,… n} of indices, the partial merge

⨁
i∈I Ui of elements

of T controls S ; and
∙ the complete merge

⨁n
i=1 Ui has full-control over S .

Proof By definition, any fc-deterministic HMI-LTS S has at least one minimal full-

control mental model M . We have shown that such a full-control mental model

can be decomposed into a finite set of basic learning units that are completed basic

subgraphs. Because they are completed subgraphs, these elements and any partial

merge of these elements have control over S . As the elements are the completion of

the decomposition of M into basic HMI-LTS, their full merge will be exactly M ,

and therefore fully controls S . This proves that there exists a decomposition of S
meeting the required properties.



314 G. Maudoux et al.

The decomposition of an fc-deterministic system into a set of basic learning units

may not be unique. Indeed, there may exist more than one minimal full-control men-

tal model, and each full-control mental model may have multiple decompositions

into basic learning units. Nevertheless, the minimal number of basic units required

to decompose a mental model gives a measure of its complexity. We define the learn-

ing complexity of a system as the size of the smallest set of basic learning units that

can be merged into a full-control mental model of that system. This metric measures

the number of small learning units that an operator needs to learn before being able

to control all the features of the system. This is different from the complexity of a

system as defined at the end of Sect. 11.3 because the observation completion of two

different basic units may turn to be the same basic learning unit. This metric is dif-

ferent from both the number of states and the number of transitions, which are the

most common measures of complexity for transition systems.

11.6 Related Work

The idea of generating user manuals from formal specifications has been widely

explored. Thimbleby and Ladkin (1995, 1996) provided a way to derive a complete

description of system features by enumerating the sequences of actions to reach each

state. Based on a formal description of a fax machine in the Prolog language, they

generated a complete user manual describing how to perform every possible action.

The fax machine is described as a tree of possible commands annotated with the

information displayed in each node. A skeleton user manual is then generated by enu-

merating traces to each state of the system. The trace is separated into a sequence of

actions and another sequence of observations. Finally, a technical author is required

to turn the skeleton into a natural language. By comparison, our work gives hints

on which elements should be described. Where Thimbleby and Ladkin describe one

trace to each state, we propose to split the learning into stand-alone compatible units.

More recently, Delp et al. (2013) have implemented a system to generate a com-

plete description of a system’s formal model. Spichkova et al. (2014) presented a

tool to maintain and update the technical documentation of a system based on its

formal model. All of these authors have focussed their efforts in generating a com-

plete description of the system. This work derives learning units from an ideal mental

model and therefore tries to teach users a good mental model and not the full system

itself.

Interestingly, user tasks model has been used by Kieras and Polson (1985) to

compute the user complexity of a system. Each task is formally defined as a gener-

alized transition network, and the complexity is measured by the number of states,

the number of keystroke (their system’s commands) and other direct metrics on the

transition network. Further investigations are required to compare these approaches

to the learning complexity defined here.

In this work, we used HMI-LTSs to model both systems and user mental models.

This formalism is the result of research performed by Combéfis et al. (2011a) to
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detect and avoid surprises during interaction with a system. These tools are then used

to define and verify the full-control property. Many authors have provided a formal

description of systems and verified properties on it, but few model the mental model

of users explicitly. Among them are Blandford et al. (2011) and Buth (2004). Buth

checks the trace equivalence of a system and a mental model to ensure that both

agree on the possible sequences of events. In contrast, the full-control property does

not require the system to accept all the observations expected by the user. Buth’s

works can be considered an extension of Rushby (2002), where the user and the

system are modelled separately but properties are verified on the single model of

their interactions. The framework described by Bolton et al. (2008) uses a similar

setup where erroneous mental models are derived from a correct one and combined

with a model of the interface. The resulting model is then checked for errors that

outline a vulnerability of the system to the simulated error. Finally, Campos et al.

(2004) use mental models in the form of user tasks to check advanced properties on

their systems.

The idea to generate mental models from system models has been explored sepa-

rately and conjointly by Heymann and Degani (2007), Combéfis and Pecheur (2009).

In both cases, the generation is constrained by a validity property to ensure that the

mental model preserves desirable properties when interacting with the system and

by a minimality property to ensure that the resulting models are efficient. Various

properties can be checked on formal models in addition to full-control. Campos and

Harrison (2008) define generic usability properties that could be used to generate

better mental models.

The concept of mental model itself is not new. Carroll and Olson (1987) already

proposed generalized transition networks as a formalism for mental models. They

outlined the difference between prescriptive and descriptive mental models. Descrip-

tive mental models represent actual users and can therefore only be checked against

properties. Normative mental models are generated to verify these properties and

can be used as a description of how users should behave. This is the kind of mental

models that we need to use to describe what we want to teach to operators. Staggers

and Norcio (1993) make a clear distinction between the conceptual model of the tar-

get system, the interface (or image) of that system, the actual mental model of the

user and the scientist’s conceptualization of that mental model. The power of HMI-

LTSs is that we can use them to model the actual system restricted to its interface

and the normative mental models of the users.

11.7 Conclusion

In Sect. 11.2, we described HMI-LTS and how they can be used to model interactive

systems. We formally defined the control property and its full-control extension.

These properties are defined on two HMI-LTSs representing a system interface and

a descriptive mental model of a user. These properties are important because they are

used to guide the generation of ideal, normative mental models for human operators.
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Based on these tools, we then defined the merge operation that represents how a

human augments its mental model by learning new mental models. We have provided

some evidence that this operator is a natural way to formalize the learning process.

We have also outlined the properties of the merge operator and the lattice structure

it induces on HLI-LTSs.

Finally, we have shown how full-control mental models can be decomposed into

basic learning units. These basic units have the desired properties of independence

and minimality, and each has proper control over the full-control mental model and

hence over the system. With this decomposition, we have defined a measure of the

complexity of learning an interactive system.

Of course, there remains a lot of work to show how this theory relates to existing

training material. For example, this works could be used to verify the modularity of

system design by detecting irreducible large components. We could also investigate

how the structure of existing user manual relates with sets of basic learning units,

and how basic learning units can help generating such manuals. This theory opens

the way towards formal analysis of training material.
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