
Chapter 10
Formal Description of Adaptable Interactive
Systems Based on Reconfigurable User
Interface Models

Benjamin Weyers

Abstract This chapter presents an approach for the description and implementation

of adaptable user interfaces based on reconfigurable formal user interface models.

These models are (partially) defined as reference nets, a special type of Petri nets.

The reconfiguration approach is based on category theory, specifically on the double

pushout approach, a formalism for the rewriting of graphs. In contrast to the related

single pushout approach, the double pushout approach allows the definition of recon-

figuration rules that assure deterministic results gained from the rewriting process.

The double pushout approach is extended to rewrite colored (inscribed) Petri nets in

two steps: first, it has already been extended to basic Petri nets and second, the rewrit-

ing of inscriptions has been added to the approach in previous work of the author.

By means of a case study, this approach is presented for the interactive reconfigu-

ration of a given user interface model that uses a visual editor. This visual editor

is equipped with an XML-based rewriting component implemented in the UIEditor

tool, which has been introduced as a creation and execution tool for FILL-based user

interface models in Chap. 5. This chapter is concluded with a discussion of limita-

tions and a set of future work aspects, which mainly address the rule generation and

its application to broader use cases.

10.1 Introduction

Human users of interactive systems are highly individual. Their needs, skills, and

preferences vary, as do task and context. To address the applicability of interactive

systems to different tasks, concepts such as task modeling and task-driven develop-

ment have been investigated in previous work (Paternò 2004, 2012). Among other

concepts, adaptive and reconfigurable user interfaces can incorporate the individ-

ual needs and preferences of a specific user. Reconfiguration of user interfaces has

proved beneficial in various ways, such as increased usability and a decreased num-
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ber of errors in interacting with the user interface (Jameson 2009). Langley defines an

adaptive user interface as “. . . an interactive software artifact that improves its ability

to interact with a user based on partial experience with that user” (Langley and Hirsh

1999 p. 358). Here, Langley refers to the ability of a user interface to adapt to the

user based on its interactions with that user by facilitating concepts from machine

learning and intelligent systems research. These inferred adaptations must be applied

to the user interface, which therefore needs to be reconfigurable. A reconfigurable

user interface can be changed in its outward appearance and its functional behavior

(physical representation and interaction logic, see Chap. 5).

The formal specifications for reconfiguring user interfaces have been also dis-

cussed as formal methods in human-computer interaction. Nevertheless, the pro-

posed solutions lack a fully fledged formalization for the creation, execution, and

reconfiguration of user interface models based on one coherent concept (see

Sect. 10.2). Such a concept would not only offer the opportunity to formally validate

a created or reconfigured user interface model but also enable the documentation and

analysis of the reconfiguration process itself. This can be of interest in cases where

the user (and not an intelligent algorithm) applies changes to the user interface, espe-

cially in cases of safety critical systems (such as that described in Sect. 10.5) but also

for other kinds of user interfaces, for example, for intelligent house control or ambient

intelligent systems. To use intelligent systems to derive the needed reconfigurations,

it is also possible to enable the intelligent algorithm (and not the user) to generate

the adaptation rule, thus instigating the formalized change. Therefore, the approach

presented here addresses system- as well as user-driven reconfiguration of formal

user interface models; the latter will be examined in Sect. 10.5 as this has been the

topic of earlier research.

This chapter primarily presents an approach to the description and implemen-

tation of reconfigurable user interfaces based on formal, executable, and reconfig-

urable models of user interfaces. A corresponding modeling method for user inter-

face models is presented in Chap. 5 based on a visual modeling language (called

FILL) and including a transformation algorithm to reference nets (Kummer 2009), a

special type of colored Petri nets (Jensen and Rozenberg 2012). In addition to the for-

mal semantics provided by this transformation, the transformed model is executable,

based on the existing simulator for reference nets called Renew (Kummer et al. 2000).

Therefore, the reconfiguration approach presented in this chapter assumes models

based on reference nets or colored Petri nets in more general terms. The reconfigura-

tion approach is based on category theory (Pierce 1991), specifically on the double

pushout approach (Ehrig et al. 1997), which has been developed for the rule-based

rewriting of graphs. It offers the definition of rewriting rules such that they can be

applied to graph models in a deterministic form, which is not always the case, as with

the single pushout approach (Ehrig et al. 1997). The general approach described here,

which is applicable for rewriting any graph, was first extended to Petri nets by Ehrig

et al. (1997). Then, Weyers (2012) extended the rewriting to inscribed Petri nets

on an algorithmic and implementation basis. Stückrath and Weyers (2014b) extend

thisrewriting further by formally specifying the rewriting of inscribed Petri nets,

http://dx.doi.org/10.1007/978-3-319-51838-1_5
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which extends the double pushout approach through the application of a concept

based on lattice theory for the representation of inscriptions.

Furthermore, this chapter discusses the problem of generating rules for rewriting

graphs. Rewriting based on the double pushout approach is only a formal and tech-

nical basis for the adaptation of user interface models. It offers mainly a formal con-

cept for the modeling of adaptable and adaptive user interfaces such that not only the

initial user interface model but also its adaptation is defined formally, which offers

formal verification. By storing the applied rules to an initial user interface model,

the adaptation process is made completely reproducible and, within certain bound-

aries, reversible. Nevertheless, rule generation is by design not formally specified.

As mentioned above, there are two main options for rule generation: manual genera-

tion by the user and generation by an intelligent algorithm. This chapter will present

an algorithmic approach, which includes the user in the adaptation process to define

which parts of a given user interface model have to be reconfigured and how. Based

on this information, an algorithm generates a rule that is applied by the reconfig-

uration component of the UIEditor (see Chap. 5) to the user interface model. This

component is an implementation of the double pushout approach able to rewrite ref-

erence nets provided as a serialization in the Petri Net Markup Language (PNML)

(Weber and Kindler 2003). For consistency, the reconfiguration concept will refer to

the familiar user interface model used in the nuclear power plant case study, which

was described in Chap. 4.

The next section presents related work on the formal reconfiguration of user

interface models. Section 10.3 offers a detailed introduction of the formal rewriting

approach, which will serve as a basis for the description of reconfigurable user inter-

faces and the core technique for enabling fully fledged formal description of reconfig-

urable user interface models. Then, Sect. 10.4 presents an interactive approach to rule

generation. Rules define the specific reconfiguration applied to a given user interface

model. To demonstrate the feasibility of this approach as a combination of formal

rewriting and interactive rule generation, Sect. 10.5 presents a case study involving

the creation of new functionality and the change of automation offered by an earlier

user interface model. The latter was investigated in a previously published user study

(Weyers 2012) that found that individualizing a user interface model through formal

reconfiguration led to a decrease in user error. Section 10.6 concludes the chapter.

10.2 Related Work

Adaptive user interfaces are an integral part of human-computer interaction research.

Various studies have discussed use case-dependent views of adaptive user interfaces,

and all have a similar goal: to make interaction between a user and a system less

error-prone and more efficient. Jameson (2009) gives a broad overview of various

functions of adaptive user interfaces that support this goal. One function he iden-

tifies is “supporting system use”. He subdivides this into the functions of “taking

over parts of routine tasks”, “adapting the interface”, and “controlling a dialog”, all

of which are of interest in the context of this chapter. Lavie and Meyer (2010) iden-

http://dx.doi.org/10.1007/978-3-319-51838-1_5
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tify three categories of data or knowledge needed for the implementation of adaptive

user interfaces: task-related, user-related, and situation-related, that is, related to the

situation in which the interaction takes place. They characterize situations as either

routine or non-routine. They also discuss level of adaptivity, which specifies how

much adaptation can be applied to a given user interface. These functions are pro-

vided by various implementations of and studies on adaptive user interfaces. A gen-

eral overview of task and user modeling is provided by Langley and Hirsh (1999)

and by Fischer (2001). However, none of these studies address how the data and

knowledge is gathered or described; instead, they concentrate on how it can be used

for applying changes to a given formal user interface model in an interactive fashion.

Various examples can be found of the successful implementation of adaptive

user interfaces that address the aspects discussed above. For instance, Reinecke and

Bernstein (2011) described an adaptive user interface implementation that takes the

cultural differences of users into consideration. They showed that users were 22%

faster using this implementation. Furthermore, they made fewer errors and rated the

adapted user interface as significantly easier to use. Cheng and Liu (2012) discussed

an adaptive user interface using eye-tracking data to retrieve users’ preferences. Kahl

et al. (2011) present a system called SmartCart, which provides a technical solu-

tion for supporting customers while shopping. It provides context-dependent infor-

mation and support, such as a personalized shopping list or a navigation service.

Furthermore, in the context of ambient intelligent environments, Hervás and Bravo

(2011) present their adaptive user interface approach, which is based on Semantic

Web technologies. The so-called ViMos framework generates visualization services

for context-dependent information. Especially in the context of ambient assisted liv-

ing, there are various types of adaptive systems that include the user interface. For

instance, Miñón and Abscal (2012) described a framework that adapts user interfaces

for assisted living by supporting daily life routines. They focus on home supervision

and access to ubiquitous systems.

Previous work has shown that formal models of user interfaces can be adapted

to change their outward appearance, behavior, or both without necessarily aban-

doning the formalization that describes the user interface model. Navarre et al.

(2008a, b) described the reconfiguration of formal user interface models based on

predefined replacements that are used in certain safety-critical application scenarios,

such as airplane cockpits. Blumendorf et al. (2010) introduced an approach based on

so-called executable models that changes a user interface during runtime by com-

bining design information and the current runtime state of the system. Interconnec-

tions between system and user interface are changed appropriately during runtime.

Another approach that applies reconfiguration during runtime was introduced by

Criado et al. (2010).

Thus, adaptive user interfaces play a central role in human-computer

interaction and are still the focus of ongoing research. Formal techniques in their

development, creation, and reconfiguration are still discussed in the literature, offer-

ing various advantages regarding modeling, execution, and verification. Petri net-

and XML-based approaches are already in use in various application scenarios.

Nevertheless, none of these approaches presents a full-fledged solution for the cre-
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ation and reconfiguration of user interface models in one coherent formalization.

Furthermore, none of the approaches discusses a closely related concept that enables

computer-based systems to generate and apply reconfiguration flexibly and indepen-

dently of use cases. This chapter introduces a self-contained approach for visual

modeling and creation (based on the approach presented in the Chap. 5 on FILL),

rule-based reconfiguration, and algorithmic rule generation of user interfaces that

builds a formal framework for the creation of adaptive user interfaces.

This approach has previously been explored in various publications. In Burkolter

et al. (2014) and Weyers et al. (2012) the interactive reconfiguration of user inter-

faces models was used to reduce errors in interaction with a simulation of a simplified

nuclear reactor. In Weyers et al. (2011), Weyers and Luther (2010), the reconfigu-

ration of a user interface model was used in a collaborative learning scenario. In

Weyers (2015), the approach was used to describe adaptive automation as part of

a user interface model. Publications specifically focusing on the rule-based adapta-

tion of FILL-based user interface models are Stückrath and Weyers (2014b), Weyers

(2012), Weyers et al. (2014), Weyers and Luther (2010).

10.3 Formal Reconfiguration

This section introduces a reconfiguration approach (where reconfiguration refers to

the adaptation of interaction logic) that is based on the double pushout approach,

which originated with category theory and assumes a formal model of a user inter-

face as has been specified in Chap. 5. Thus, the basic architecture of a user interface

model is assumed to differentiate between a physical presentation and an interac-

tion logic. The physical representation comprises a set of interaction elements with

which the user directly interacts. Each interaction element is related to the interaction

logic, which models the data processing between the physical representation and the

system to be controlled. It is further assumed that reconfiguration will be applied to

the interaction logic. Nevertheless, in various cases changing the interaction logic

also implies changes in the physical representation. This will be the topic of the gen-

eration of rules and the case study for the application of reconfiguration described

in Sects. 10.4 and 10.5. Before presenting the approach itself, the following descrip-

tion will briefly examine the reasons for using a graph-rewriting approach rather than

other means of adapting formal models.

10.3.1 Double Pushout Approach-Based Reconfiguration

As mentioned in the introduction to this section, formal reconfiguration can be differ-

entiated from redesign, where redesign refers to changes in the physical representa-

tion of a user interface model, while reconfiguration refers to changes in itsinteraction

http://dx.doi.org/10.1007/978-3-319-51838-1_5
http://dx.doi.org/10.1007/978-3-319-51838-1_5
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logic. Here, it is assumed that the interaction logic is modeled using FILL and

then transformed to reference nets. Thus, reconfiguration means changing reference

nets, necessitating a method that is (a) able to change reference net models and (b)

defined formally to prevent reconfigurations from being nondeterministic. Various

graph transformations and rewriting approaches can be found in the literature. Shürr

and Westfechtel (1992) identify three different types of graph rewriting systems.

The logic-oriented approach uses predicate logic expressions to define rules. This

approach is not widespread due to the complexity of its implementation. Another

approach defines rules based on mathematical set theory, which is flexible and eas-

ily applied to various applications. Still, it has been shown that irregularities can

occur when applying set-theoretical rules to graph-based structures. The third class

of techniques is based on graph grammars. Using graph grammars for reconfigura-

tion means changing production rules instead of defining rules to change an existing

graph. At a first glance, this seems uncomfortable and counterintuitive for the recon-

figuration of interaction logic.

Thus, graph rewriting based on category theory as forth option seems the best

starting point for reconfiguration. First of all, pushouts (see Definition 1) as part of

category theory are well-behaved when applied to graphs—especially the double

pushout (DPO) approach, as discussed by Ehrig et al. (1997). The DPO approach

specifies rules that explicitly define which nodes and edges are deleted in the first

step and added to the graph in the second. This is not true of the single-pushout (SPO)

approach, which is implementation-dependent or generates results that are unlikely

to be valid graphs (Ehrig et al. 1997). To give a simple example, the SPO approach

can result in dangling edges, which are edges having only a source or a destination

but not both. A further problem can be the implicit fusion of nodes, which could have

negative implications for the rewriting of interaction logic. These aspects have been

resolved in the DPO approach by deleting and adding of nodes and edges explicit and

by defining a condition that prevents rules from being valid if they produce dangling

edges.

A further argument supporting the use of the DPO approach for rewriting inter-

action logic is that it has been extended and discussed in the context of Petri nets as

introduced by Ehrig et al. (2006, 2008), who offer a solid basis for the reconfigura-

tion of reference net-based interaction logic. Another argument for choosing the Petri

net-based DPO approach as described by Ehrig et al. is that it can be easily extended

to colored Petri nets. Within certain boundaries, the semantics of the inscription can

also be taken into account, as described in detail by Stückrath and Weyers (2014b).

Here, the treelike structure of the XML-based definition of inscription is ambiguous,

which is discussed in greater detail in Sect. 10.3.2.

Like the SPO, the DPO relies on the category theory-based concept of pushouts.

Assuming a fundamental understanding of category theory (otherwise consider, e.g.,

Pierce 1991), a pushout is defined as follows.

Definition 1 Given two arrows f ∶ A → B and g ∶ A → C, the triple (D, g∗ ∶ B →
D, f ∗ ∶ C → D) is called a pushout, D is called the pushout object of (f , g), and it is

true that
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Fig. 10.1 A pushout

diagram

1. g∗◦f = f ∗◦g, and

2. for all other objects E with the arrows f ′ ∶ C → E and g′ ∶ B → E that fulfill

the former constraint, there has to be an arrow h ∶ D → E with h◦g∗ = g′ and

h◦f ∗ = f ′.

The first condition specifies that it does not matter how A is mapped to D, whether

via B or via C. The second condition guarantees that D is unique, except for isomor-

phism. Thus, defining (f , g) there is exactly one pushout (f ∗, g∗,D) where D is the

rewritten result, also called the pushout object. In general, A and B are produced by

defining the changes applied to C, the graph to be rewritten. Therefore, a rewriting

rule can be specified as a tuple r = (g, f ,A,B), such that D is the rewritten result

by calculating the pushout (object). This procedure is mainly applied in the SPO

approach. The resulting diagram is shown in Fig. 10.1.

To define the DPO approach, the pushout complement has to be defined first.

Definition 2 Given two arrows f ∶ A → B and g∗ ∶ B → D, the triple (C, g ∶ A →
C, f ∗ ∶ C → D) is called the pushout complement of (f , g∗) if (D, g∗, f ∗) is a pushout

of (f , g).

A DPO rule is then defined based on the definition of a production corresponding

to the former discussion of pushouts in category theory.

Definition 3 A matching is a mapping m ∶ L → G; a production is a mapping p ∶
L → R, where L, R, and G are graphs. The corresponding mappings of m and p are

defined as mapping m∗ ∶ R → H and p∗ ∶ G → H, where H is also a graph.

Definition 4 A DPO rule s is a tuple s = (m, (l, r),L, I ,R) for the transformation

of a graph G, with l ∶ I → L and r ∶ I → R, which are two total homomorphisms

representing the production of s; m ∶ L → G is a total homomorphism matching L
to graph G. L is called the left side of s, R is called the right side of s, and I is called

an interface graph.

Given a rule s, the pushout complementC can first be calculated using L, I ,m, and

l with a given graph G to be rewritten. In the DPO approach, this step deletes nodes
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Fig. 10.2 Example for a DPO rule showing its application to a Petri net G

and edges from G. Second, the pushout is calculated using I , R, and r applied to C
resulting in the graph H. This step adds nodes and edges to C. Finally, the difference

between L and I specifies the part deleted from G, where the difference between I
and R defines those elements, which are added to C and finally to G. The result of

applying s to G is the graph H as can be seen in Fig. 10.2.

Nevertheless, the pushout complement is not unique in all cases and probably

does not even exist. However, if the total homomorphisms l and m fulfill the glu-
ing condition given below, the pushout complement can be considered to exist. The

gluing condition is defined as follows.

Definition 5 There are three graphs I = (VI ,EI , sI , tI ), L = (VL,EL, sL, tL), and G =
(VG,EG, sG, tG). Two graph homomorphisms l ∶ I → L and m ∶ L → G fulfill the

gluing condition if the following assertions are true for both l and m:

∄e ∈ (EG ⧵ m(EL)) ∶ sG(e) ∈ m(VL ⧵ l(VI )) ∨ tG(e) ∈ m(VL ⧵ l(VI )), (10.1)

and

∄x, y ∈ (VL ∪ EL) ∶ x ≠ y ∧ m(x) = m(y) ∧ x ∉ l(VI ∪ EI ). (10.2)

Condition 10.1 is called dangling condition. The homomorphism l of a DPO rule

that defines which nodes are to be deleted from a graph fulfills the dangling condi-

tion if it also defines which edges associated with the node will be removed. Thus,

the dangling condition avoids dangling edges; a dangling edge is an edge that has

only one node associated with it as its source or target. Condition 10.2 is called iden-
tification condition. The homomorphism m fulfills the identification condition if a
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node in G that should be deleted has no more than one preimage in L. However, if

one node in G has more than one preimage in L defined by m and one of these has to

be deleted, it is not defined whether the node will still exist in G or must be deleted.

This confusion is avoided by applying the identification condition.

The problems of the SPO approach discussed above are mainly solved by the glu-

ing condition being an integral part of the DPO approach. The pushout complement

is not unique but exists if the gluing condition is fulfilled. If l and m are injective, the

pushout complement will be unique except in the case of isomorphy. This is further

discussed by Heumüller et al. (2010) and in Weyers (2012, p. 107).

Finally, rule descriptions have to be serialized in a computer-readable form. This

is necessary for the implementation-side use of rewriting rules presented in the

next section. Therefore, an existing XML-based description language for Petri nets

(PNML Weber and Kindler 2003) has been used with an extension that structures

and describes the rule-specific elements, such as indicating L as deleteNet, I as

interface, and R as insertNet. Thus, every net (as embedded in a < net >
node) is given as a PNML-based description of the respective left, interface, or

right graph of the DPO rule. The < mapping > node specifies l and r as a set of

< mappingElements > that are representations of tuples of XML ids. Mapping to G
is not part of the rule serialization because a rule is first and foremost independent

from a graph being rewritten. An example of such an XML-based representation of

a rule can be seen in Fig. 10.2 on the side of the DPO diagram, which also shows the

rule applied to a Petri net G.

10.3.2 Rewriting Inscriptions

For the rewriting of inscriptoins, the rewriting approach introduced previously

involves only two steps. First, the node that carrying the inscription to be rewrit-

ten is deleted. Second, a new node carrying the new inscription is added. This new

node must have the same connection as the deleted node; otherwise, the rewriting

would also change the structure of the graph, which should not be the case since only

the inscription is being rewritten. The problem with this approach is that the rule has

to map all incoming and outgoing edges, which can increase the effort involved in

generating rules. If this is not done carefully, edges will be delete that are not mapped

to prevent dangling edges, generating unintended changes in the net. Furthermore,

detailed rewriting of inscriptions offers finer-grained changes to be applied to a Petri

net. Thus, slight changes can be made in, for example, guard conditions without the

need to rewrite the structure of the net.

Therefore, the previous rewriting approach has been extended such that the rule

is not only aware of the nodes and edges in the graph but also of the node’s inscrip-

tions. The complete definition and proof of this extension can be found in Stückrath

and Weyers (2014a, b). The discussion in this section will focus on deletion-focused

PNML-based rewriting. It is assumed that the net and the inscriptions are given as
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PNML-based serialization, as introduced above. An XML-based inscription can be

formally defined as follows.

Definition 6 Let (Val,≤⋅) be a disjoint union of complete lattices Vali of values with⨄
i∈I Vali = Val and let N be a set of IDs sorted such that it can be partitioned in Ni

with N =
⨄

i∈I Ni. An XML inscription 𝑥𝑚𝑙N ,Val is a directed rooted tree (V ,E, r, 𝛾)
of finite height, where V is a set of vertices (nodes), E ⊆ V × V is a set of edges,

r ∈ V is the root and 𝛾 ∶ V →
⋃

i∈I (Ni × Vali) maps properties to each vertex. Addi-

tionally, for every two edges (v1, v2), (v1, v3) ∈ E with 𝛾(vi) = (ni,wi) (for i ∈ {2, 3}),

it holds that n2 ≠ n3.

For every v ∈ V we define v↓ = (V ′
,E′

, v, 𝛾 ′) to be the subtree of 𝑥𝑚𝑙N ,Val with

root v, which is an XML inscription itself.

Thus, an XML-based inscription is nothing but a tree structure of nodes and

edges, which can be organized into subtrees in a well-defined manner. For the rewrit-

ing, it is important to define an order for these trees, so that it is clear whether a sub-

tree is part of another subtree and whether this second subtree is smaller or larger.

This is important for deciding what is to be deleted or added and thus for calculating

the differences between right side, interface, and left side of the rule. The order is

defined on a lattice basis.

Definition 7 Let XMLN ,Val be the set of all XML inscriptions 𝑥𝑚𝑙N ,Val. We define

the ordered set (XMLN ,Val, ⊑), where for two elements (V1,E1, r1, 𝛾1) ⊑ (V2,E2, r2, 𝛾2)
holds if and only if 𝛾i(ri) = (ni,wi) for i ∈ {1, 2}. Then n1 = n2, w1 ≤⋅w2, and for all

v1 ∈ V1 with (r1, v1) ∈ E1, there is a v2 ∈ V2 with (r2, v2) ∈ E2 such that v1↓ ⊑ v2↓.

10.3.2.1 Deletion-Focused Rewriting

Deletion-focused rewriting refers to rewriting that prefers the deletion of an inscrip-

tion and thereby prevents undefined behavior by the rewriting rule. An example can

be seen in Fig. 10.3. The rewriting is based on the DPO approach, calculating dele-

tion and adding elements in the inscription by first computing the pushout comple-

ment 𝛿
′

and then computing the pushout object 𝛿
′′

. What is to be deleted or added

(as with the DPO net rewriting) is identified based on the definition of the difference

between the left side and the interface graph of the rule (here 𝛼 and 𝛽) and between

the interface graph and the right side (here 𝛽 and 𝛾). As defined above, these dif-

ferences are derived using the lattice-based specification of (XML) tree-structured

inscriptions. Furthermore, the pushout complement and the pushout itself are cal-

culated using a strategy called deletion-focused rewriting. This strategy is needed to

prevent the rewriting of undefined behavior if the pushout complement is not unique

(see discussion in the previous section). In deletion-focused rewriting, the pushout

complement with the smallest result (defined by the lattice) is chosen.

To make this strategy clearer, Fig. 10.3 shows an example of the deletion-focused

rewriting of a net using the rule and rewriting shown in the upper part of the figure.

The mapping of the left side to the net to be rewritten is shown as hatching pattern,
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Fig. 10.3 Example for rewriting of an XML-based inscription of a petri net. The upper half shows

the DPO rule for rewriting the net; the lower half shows the DPO rule based on lattice-structured

inscription for rewriting the inscription of one transition (middle gray) in the upper DPO rule (see

𝛼, 𝛽, 𝛾 and 𝛿 to 𝛿

′′
)
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where a similar pattern defines the mapping of two nodes (in L and G) to one another.

in the lower part of Fig. 10.3, the rewriting of the inscription of a transition (vertical

hatching) is visible. Various types of XML nodes are involved, such as the inscription

node < i >, guard condition < g >, style node < s > and nodes for color < c > and

position < p >. The rule assumes that, after the deletion of the node (g, e) (specified

as difference between 𝛼 and 𝛽), the resulting inscription node no longer has a guard

condition, and it therefore prefers to delete rather than preserve an inscription. One

could assume a preservation-focused rewriting, which deletes only nodes that are

equal to or smaller than the matched one. In the present case, the matched node is

larger and thus contains non-empty content (x > 3); therefore, it would not be deleted

because the preservation-focused rewriting rule would be inapplicable (Stückrath

and Weyers 2014b).

With deletion-focused rewriting, the outcome is different. Nodes are also deleted

if they are larger as shown in the example. The rule specifies the deletion of the

guard inscription node such that the push-out complement 𝛿
′
, as shown in Fig. 10.3,

is derived. In this case, the complete node will be deleted. In addition to the deletion

of the guard condition (g, x > 3) from graph 𝛿, the rule specifies adding a color to the

style inscription node. Similar to the rewriting of Petri nets, the rules specify a new

subnode of the (s, 𝜖) node. Applying this adding operation to 𝛿

′
yields the graph 𝛿

′′
.

The result is a style node defining a position (0, 0) and a color blue for the inscribed

transition.

10.4 Interactive Reconfiguration and Rule Generation

The previous sections introduced the basic theory of rule-based rewriting of colored

Petri nets based on the DPO approach including an extension for deletion-focused

rewriting of tree-structured inscriptions. This section will introduce an approach for

generating rules in a given context including the use of explicit user input and using

algorithms to generate rules for rewriting the interaction logic based on user input.

It will also explore how rewriting interaction logic influences the physical represen-

tation of a user interface model.

The interactive reconfiguration of formally specified user interfaces based on

FILL is a component of the UIEditor (see Chap. 5). This component implements

algorithms for the generation of rules as well as a visual editor that enables the user

to apply these reconfiguration operations to a given user interface model. With this

editor, the user can select individual or a group of interaction elements and apply

a reconfiguration operation to this selection. Thus, this interactive approach to rule

generation uses the physical representation as a front end for the user to define which

parts of the underlying interaction logic are to be reconfigured.

The user interface of this visual editor is shown in Fig. 10.4. The workspace

presents the physical representation of the user interface to be reconfigured. The tool

bar at the top right of the editor window offers a set of reconfiguration operations.

For instance, the user can select two buttons and choose a reconfiguration operation

http://dx.doi.org/10.1007/978-3-319-51838-1_5
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Fig. 10.4 Reconfiguration editor of the UIEditor showing an exemple user interface. In the upper
right corner is a tool bar with various buttons for the applying reconfiguration operations to a

selection of interaction elements

that creates a new button that triggers the operations associated with the two selected

buttons in parallel with only one click. The selected buttons indicate which part(s)

of the interaction logic must be rewritten. The specific parts of the interaction logic

affected are determined by simple graph-traversing algorithms. Selecting the oper-

ation (here, parallelization) specifies the kind of extension or change to be

applied to the interaction logic.

An rule resulting from the aforementioned interactive rule generation can be seen

in Fig. 10.5 on the left. Here, the user selected the buttons labeled Input A and

Input B. By applying the parallelization operation to this selection, the underly-

ing algorithm generated the rule shown in the lower half of Fig. 10.5. Applying this

rule to the interaction logic creates the net on the right labeled “Reconfiguration”,

which is also related to a new interaction element, here a newly added button. This

example shows that this kind of reconfiguration always implies a change in the physi-

cal representation—here, the addition of a new button that triggers the newly created

part of the interaction logic.

Another example of an implemented reconfiguration operation is shown in the

middle of Fig. 10.5, where the discretization of a continuous interaction ele-

ment is shown. The term continuous refers to the types of values that are gener-

ated via an interaction element—here, a slider is used to generate values in a certain

range. In contrast to a slider, which can generate any of a range of values, a button

is a discrete interaction element and can only generate one specific value: an event.

Thus, discretization is a reconfiguration operation that maps a continuous
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Fig. 10.5 Three examples of reconfiguration operations applied to a user interface. Left applica-

tion of a parallelization operation to two buttons, creating a new button that combines the

functions of the original two; middle application of a discretization operation to a slider

generating a button that sets a preset value to the system parameter controlled by the slider; right
application of a direct reconfiguration operation that influences the behavior of two interaction

elements by making them dependent on each other

interaction element to a discrete one. In Fig. 10.5, a slider is mapped to a button. The

button generates a single value from the slider’s interval—here, the value 50.

The last example presented in Fig. 10.5 is of a type of rule that cannot be generated

interactively. Here, a certain part of the underlying interaction logic of an interaction

element is changed. The added subnet changes the status of the buttonInput. Based

on the value selected with the slider, the button is disabled or enabled: If the value is

≤50, it will be disabled; if the value is >50, it will be enabled. This type of reconfig-

uration operation can be pre-defined or determined by using extended methods for

rule generation, as discussed in Weyers et al. (2014) in detail.

10.5 Case Study

To demonstrate how interaction logic can be rewritten, this section discusses its use

in the nuclear power plant case study (see Chap. 4). This user interface model (as

partially described in Chap. 5) includes a simple interaction logic that triggers the

operations as indicated by the interaction elements’ labels (see Fig. 10.6). However,

the user interface used in the study offers no complex operations such as the SCRAM

operation for emergency shutdown the reactor. Such an operation can be added to

the user interface model as an extension of its interaction logic; this process will be

http://dx.doi.org/10.1007/978-3-319-51838-1_4
http://dx.doi.org/10.1007/978-3-319-51838-1_5
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Fig. 10.6 The initial user interface for the control of a simplified simulation of a nuclear power

plant running in UIEditor

explained in the next subsection. The following subsection examines the effect of a

user-driven reconfiguration on the basis of a user study. A final subsection discusses

these results and various aspects of future work.

10.5.1 Case Study: SCRAM Operation

The so-called SCRAM operation is currently missing as part of the user interface.

As described in Chap. 4, the SCRAM operation shuts down the reactor immediately

and returns it to a safe state. This includes the complete insertion of the control rods

into the reactor, which controls the thermal output of the core and stops the chain

reaction. The pumps have to continue to cool the core, and the turbine should be shut

off from the steam circuit. Finally, the condenser pump has to continue working to

condense the steam still being produced by the reactor and thus cool the core.

To implement the SCRAM operation into the given user interface model, users

could apply a limited number of reconfigurations to the user interface. Firstly,

they could select a slider to define the position of the control rods and apply the

discretization operation. Here, selecting 0 created a button that set the posi-

tion of the control rods to 0, such that they were completely inserted in the core.

Thus, by pressing the newly created button, the chain reaction would be stopped and

the core would produce only residual heat.

Second, the Buttons to open SV2, close SV1, open WV1 and close WV2 should be

combined to one button by applying the parallelization operation. Thus, the

http://dx.doi.org/10.1007/978-3-319-51838-1_4
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Fig. 10.7 A user interface showing the various operations needed for a SCRAM operation, which

has been also added. The user interface shows the result of the application of various reconfiguration

operations to an initial user interface through interactive and sequential application of reconfigura-

tion operations

new Button subsumes all relevant valve operations needed for the SCRAM operation.

Third, the water pumps WP1 and CP have to be set to a certain speed: WP1 to 800

rpm and CP to 1600 rpm. Therefore, the user selects first the slider for WP1 and

applies the discretization operation as she did for the control rod position.

She repeats this with the slider for CP. The final step is to fuse all the newly created

Buttons into one using the parallelization operation. The resulting physical

representation of the created user interface can be seen in Fig. 10.7.

10.5.2 User Study: Error Reduction Through
Individualization

In addition to the extension of the user interface’s functionality by creating new inter-

action elements extending the interaction logic, the effect of such extension on the

interaction process between the human user and the system must also be analyzed.

To do this, a user study was conducted to measure the effect of the individualization

of a given user interface model on the number of errors users committed while work-

ing with that interface. For the user study, participants had to control the simplified

simulation of the nuclear power plant. The nuclear power plant simulation had been

selected to keep the attention of the participants as high as possible (because they
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all know about the criticality of faulty control of nuclear plants) and to be as flexi-

ble as possible regarding the degree of complexity for the control task. The control

process was simple to adapt for the study in that it could be learned in a limited time

but was complex enough to make any effects visible. The results of the study indi-

cated a reduction of errors in controlling the power plant when participants used their

individually reconfigured user interfaces (Burkolter et al. 2014; Weyers et al. 2012).

In total 72 students of computer science (38 in the test group) participated in the

study. First, all participants responded to a pre-knowledge questionnaire to ensure

that the groups were balanced regarding knowledge about nuclear power plants.

Next, all participants were introduced to the function of a nuclear power plant and

its control. This introduction was a slide-based presentation that was read aloud to

keep content and time equal among all groups of participants. Afterwards, partici-

pants participated in an initial training session on the controls for the nuclear power

plant simulation; the instructions were presented on paper. In total three procedures

were practiced: starting the reactor, shutting it down, and returning the reactor to a

safe state after one of the feedwater pumps failed. Participants were allowed enough

time that every participant was able to complete each procedure at least once. After

the training in each procedure, the participants in the test group had the chance to

apply reconfiguration operations to the initial state of the user interface and test their

changes. For this, they had a specific amount of time after each training run. To keep

time on task equal for both the test and the control group, the control group watched a

video on simulation in general (not of nuclear plants) for the same amount of time as

the test group had to apply reconfigurations to their user interface. To apply changes

to the initial user interface, they used the interactive rule generation procedure as

implemented in UIEditor. An example of an outcome of this kind of individualiza-

tion can be seen in Fig. 10.8.

After the training and reconfiguration phases, the participants had to start up and

shut down the reactor several times, simulating real use of the system. In the last run-

through, a feedwater pump broke down. Participants had been trained in the response

to this event, but had not been informed in advance that it would occur.

During the trials, errors were measured in the sense of wrongly applied opera-

tions. An operation was classified as wrongly applied if it did not match the expected

operation for the startup or shutdown of the reactor or for the response to the water

pump breakdown in the final runthrough. Various types of errors were detected,

based on the classification defined by Hollnagel (1998). All error types identified

are shown in Fig. 10.9, which also shows how the log files were evaluated by manu-

ally looking for patterns and mismatches.

The results show that the control group using the individualized user interface

models made fewer errors in interacting with the reactor than did the control group,

which used the initial user interface without individualization. Furthermore, the test

group was able to respond to the system failure more effectively than the control

group. These results are shown in Table 10.1. This study shows the potential for

this type of adaption of user interface models. It has been previously published in

Burkolter et al. (2014) and Weyers et al. (2012).
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Fig. 10.8 An example of a reconfigured user interface for the control of a simplified simulation of

a nuclear power plant

Fig. 10.9 Different error types evaluated. The errors were identified by comparing the interaction

logs gathered during the use of the system with the expected operation sequences, which were

provided to the participants as control operation sequences on paper

10.5.3 Discussion

In addition to the benefits of a user-driven reconfiguration of a user interface model

as shown above, there are various side conditions to be considered. First, by adding

more abstract operations to the user interface, the degree of automation is increased
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Table 10.1 Startup of reactor and practiced system fault: mean, standard deviation (in parenthe-

ses), and results of the applied t-test for comparing the means of the group using the initial user

interface (NonRec-group) and the grouping using their individualized/reconfigured user interface

(Rec-group)

Error types Rec-group NonRec-

group

t(df), p (One-tailed), ES r

Magnitude error
Oversteering 0.38 (0.70) 2.38 (1.72) t(45.86) = −6.13, p = 0.000, r = 0.67

Understeering 0.15 (0.37) 0.15 (0.36) t(58) = 0.07, p = 0.472, r = 0.01

Sequence error
Swap 0.04 (0.20) 0.47 (0.86) t(37.40) = −2.83, p = 0.004, r = 0.42

Premature 0.23 (0.43) 0.24 (0.50) t(58) = −0.04, p = 0.486, r = 0.01

Belated 0.42 (0.58) 0.38 (0.70) t(58) = 0.24, p = 0.405, r = 0.03

Repetition 0.38 (0.70) 0.09 (0.29) t(31.54) = 2.04, p = 0.003, r = 0.34

False operation 0.96 (1.25) 1.82 (1.90) t(56.87) = −2.12, p = 0.020, r = 0.27

Total 2.48 (1.93) 5.53 (2.71) t(59) = −4.93, p = 0.000, r = 0.54

which is known to have a potentially negative influence on task performance. This is

especially true in critical situations (Parasuraman et al. 2000). However, it is ques-

tionable at which point this also becomes true for automation added to the user inter-

face model by the users themselves. The study described argues for a higher task

performance through user-driven increases in automation. However, there is no data

on whether this is still true if the user works with the reconfigured user interface over

a longer period of time. The interactive process of creating more abstract operations

could also have a certain effect on training and user understanding of the interac-

tive system controls. The effects of increased automation and the enhancement of

training through interactive reconfiguration are aspects to be considered in future

work.

A related problem is the creation of erroneous operations which a user could

implement while individualizing the user interface. Erroneous operations could

result in unexpected system operation or faulty system states. The scenario discussed

above does not prevent users from adding erroneous operations to the user interface

model. However, the underlying seamless formalization of the user interface model

and the reconfiguration process constitute the basis for a formal validation of the

assumed outcome of a reconfiguration. Thus, the user can be informed of potential

problems arising from the application of a certain reconfiguration rule. Such a val-

idation approach is also of interest for automatic non-user-driven reconfiguration.

Nevertheless, the development of “on-the-fly” validation is not trivial, especially if

the underlying system is not known. Initial studies on this subject have been con-

ducted by facilitating a SMT solver (Nieuwenhuis et al. 2006) for the validation of

interaction logic. Here, the generated reference net was transformed algorithmically

into an expression of first-order logic. This expression was composed by the pre- and

post-conditions for the transitions in the reference net and is being tested by the SMT



292 B. Weyers

solver for satisfactory performance. It could be extended by certain pre-conditions

relevant to the use case, making it possible to check whether an extended interac-

tion logic generates input values to the system that are not valid or specified for the

system to be controlled.

The approach shown offers other benefits related to creation rather than the use of

such user interface models. By formalizing the user interface model and its reconfig-

uration, both models and reconfiguration rules can be reused and facilitated as prove-

nance information describing the reconfiguration process. If the underlying system

is replaced by, for example, a newer version or a similar system, the user interface

model can be reused as a whole—assuming, of course, that there are no changes in

the system interface providing the access to the system values to be controlled. How-

ever, if changes have been applied to that interface, these can simply be adopted in

the user interface model as well without the need to touch any code. It is imaginable

that such changes could be applied automatically by applying reconfiguration rules

gathered from a (hopefully formalized) description of the API changes.

The user study presented addresses only the use of reconfigured user interfaces

by using the interactive rule generation approach discussed in Sect. 10.4. No deeper

evaluation of UIEditor has been conducted, especially addressing the creation of

user interface models. The exception is results gathered from items in the post-study

questionnaire of the study described above, which indicated no problems with the

reconfiguration concept. However, an important goal of future work is to intensify

the research and development effort on measuring and enhancing the usability and

user experience of UIEditor. The use of UIEditor by non-experts in HCI and user

interface modeling is also of great interest. This user group, which would include

mechanical engineers among others, would benefit from the simplified creation and

rapid prototyping of user interfaces without having to resign the benefits of formal

validation and reuse of such models.

As these case studies show, the reconfiguration approach is well-suited for the

individualization of user interface models. Nevertheless, the approach offers the

algorithmic generation of reconfiguration rules by, for example, intelligent

algorithms, as is the case with adaptive or intelligent interactive systems (Langley

and Hirsh 1999). An initial approach to the automatic generation of reconfigura-

tion rules was presented in Weyers et al. (2014). Such an extension to the current

approach could also enable its integration into frameworks like CAMELEON (Cal-

vary et al. 2003; Pleuss et al. 2013). The CAMELEON framework focuses mainly

on the application of abstract user interface models to specific contexts and systems

in final user interface models. Nevertheless, it does not address the underlying func-

tionality, that is, the interaction logic of a user interface. The approach presented

here could embed interaction logic into the transformation from abstract to concrete

user interface models. Starting with an abstract interaction logic and reconfiguring it

step-wise using rule-based rewriting and applying the transformation to the physical

representation makes that interaction logic specific to a certain context, user, task,

or device.
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10.6 Conclusion

This chapter presents a solution for the reconfiguration of formal user interface mod-

els based on reference nets, a special type of Petri nets. This reconfiguration is based

on a graph rewriting approach called the double pushout approach, which has been

extended to inscribed/colored Petri nets. This extension was based on lattice theory

to define a formal structure for XML node and edge inscription, making it possible to

rewrite inscriptions in such a way that it is not necessary to apply any changes to the

net structure. The applicability of this approach was demonstrated in a case study in

which new operations were added to an initial user interface for the control of a sim-

plified nuclear power plant simulation. For this reconfiguration, an interactive rule

generation approach was facilitated which enabled the user to specify the relevant

parts of the user interface to be reconfigured as well as the type of reconfiguration

to be applied. This tool is part of UIEditor as introduced in Chap. 5.
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