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Abstract This chapter provides an overview of several formal approaches for the
design, specification, and verification of interactive systems. For each approach
presented, we describe how they support both modelling and verification activities.
We also exemplify their use on a simple example in order to provide the reader with
a better understanding of their basic concepts. It is important to note that this
chapter is not self-contained and that the interested reader should get more details
looking at the references provided. The chapter is organized to provide a historical
perspective of the main contributions in the area of formal methods in the field of
human–computer interaction. The approaches are presented in a semi-structured
way identifying their contributions alongside a set of criteria. The chapter is con-
cluded by a summary section organizing the various approaches in two summary
tables reusing the criteria previously derived.
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1.1 Introduction

Building reliable interactive systems has been identified as an important and dif-
ficult task from the late 1960s on (Parnas 1969), and methods and techniques
developed in computer science have been applied, adapted, or extended to fit the
need of interactive systems since then. Those needs have been thoroughly studied
over the years, and the complexity of interactive systems has followed or even
pre-empted the non-interactive part of computing systems. Such evolution is mainly
due to the technological progression of input and output devices and their related
interaction techniques.

Another important aspect is related to the intrinsic nature of the interactive
systems as clearly identified in Peter Wegner’s paper (Wegner 1997) as the input
chain is not defined prior to the execution and the output chain is processed (by the
users) before the “machine” (in the meaning of Turing machine) halts.

Two books (Harrison and Thimbleby 1990; Palanque and Paternó 1997) have
been published to gather contributions related to the adaptation and extension of
computer science modelling and verification techniques in the field of interactive
systems. Contributions in these books were covering not only the interaction side,
the computation side (usually called functional core), but also the human side by
presenting modelling techniques applied, for instance, to the description of the
user’s mental models.

Over the years, the community in Engineering Interactive Computing Systems
has been investigating various ways of using Formal Methods for Interactive
Systems but has also broadened that scope proposing architectures, processes, or
methods addressing the needs of new application domains involving new interac-
tion techniques. Simultaneously, the Formal Methods for Interactive Systems
community has been focusing on the use of formal methods in the area of inter-
active computing systems.

This chapter summarises selected contributions from those two communities
over the past years. For each approach presented, we describe how they both
support modelling as well as verification activities. We also exemplify their use on a
simple example in order to provide the reader with a better understanding of their
basic concepts. It is important to note that this chapter is not self-contained and that
the interested reader should get more details looking at the references provided.
This chapter is organized to provide a historical perspective of the main contri-
butions in the area of formal methods in the field of human–computer interaction.
Lastly, the approaches are presented in a semi-structured way identifying their
contributions alongside a set of criteria. This chapter is concluded by a summary
section organizing the various approaches in two summary tables reusing the cri-
teria previously used.
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1.2 Modelling and Formal Modelling

In systems engineering, modelling activity consists of producing a theoretical view
of the system under study. This modelling activity takes place using one or several
notations. The notation(s) allows engineers to capture some part of the system while
ignoring other ones. The resulting artefact is called a model and corresponds to a
simplified view of the real system.

In the field of software engineering, modelling is a well-established practice that
was very successfully adopted in the area of databases (Chen 1976). More recently,
it has been widely advertised by the UML standard (Booch 2005). It is interesting to
see that UML originally proposed nine different notations and thus to produce as
many different models to capture the essence of software systems. SysML (OMG
2010), the recent extension to UML, proposes two additional notations to capture
elements that were overlooked by UML as, for instance, a requirements’ notation.
Modelling is advocated to be a central part of all the activities that lead up to the
production of good software (Booch 2005). It is interesting to note that recent
software engineering approaches such as agile processes (Schwaber 2004) and
extreme programming (Beck 1999) moved away from modelling considering that
on-time delivery of software is a much more important quality than correct func-
tioning, as bugs can always be fixed in the next delivered version.

However, building models in the analysis, specification, design, and imple-
mentation of software bring a lot of advantages (Booch 2005; Turchin and Skii
2006):

• to abstract away from low-level details;
• to focus on some aspects while avoiding others (less relevant ones);
• to describe and communicate about the system under design with the various

stakeholders;
• to better understand the system under development and the choices that are

made; and
• to support the identification of relationships between various components of the

system.

Beyond these advantages, modelling (when supported by notations offering
structuring mechanisms) helps designers to break complex applications into smaller
manageable parts (Navarre et al. 2005). The extent to which a model helps in the
development of human understanding is the basis for deciding how good the model
is (Hallinger et al. 2000).

When the notation used for building models has rigorous theoretical foundations,
these models can be analysed in order to check soundness or detect flaws. Such
activity, which goes beyond modelling, is called verification and validation and is
detailed in the next section.
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1.3 Verification and Validation

The notation used for describing models can be at various levels of formality that
can be classified as informal, semi-formal, and formal (Garavel and Graf 2013):

• Informal models are expressed using natural language or loose diagrams, charts,
tables, etc. They are genuinely ambiguous, which means that different readers
may have different understanding of their meaning. Those models can be parsed
and analysed (e.g. spell checkers for natural text in text editors), but their
ambiguity will remain and it is thus impossible to guarantee that they do not
contain contradictory statements.

• Semi-formal models are expressed in a notation that has a precise syntax but has
no formal (i.e. mathematically defined) semantics. Examples of semi-formal
notations are UML class diagrams, data flow diagrams, entity relationship
graphical notation, UML state diagrams, etc.

• Formal models are written using a notation that has a precisely defined syntax
and a formal semantics. Examples of formal specification languages are alge-
braic data types, synchronous languages, process calculi, automata, Petri nets,
etc.

Thus, formal models are built using formal notations and are unambiguous
system descriptions. Such formal models can then be analysed to assess the presence
or absence of properties, analyse the performance issues (if the formal notation can
capture such elements), possibly simulate the models to allow designer checking
their behaviour, and generate descriptions in extension (such as state-space or test
cases) if the formal notation represents such elements in intention (e.g. set of states
represented in intention in Petri nets while represented in extension in an automata).

Formal verification involves techniques that are strongly rooted in mathematics.
Defects in models can be detected by formal verification. In such cases, either the
model has to be amended (to remove the defect) or the system under analysis has to
be modified, for instance, by adding barriers (Basnyat et al. 2007). Such a modified
system can then be modelled and analysed again to demonstrate that the modifi-
cations have not introduced other (unexpected) problems. This cycle (presented in
Fig. 1.1) is repeated until the analysis results match the expectations. Examples of
formal verification techniques are model checking, equivalence checking, and
theorem proving.

Theorem proving is a deductive approach for the verification of systems (Boyer
and Moore 1983). Proofs are performed in the traditional mathematical style, using
some formal deductive system. Both the system under verification and the prop-
erties that have to be verified are modelled usually using different types of formal
notations. Properties are usually expressed using declarative formal notations (e.g.
temporal logics Clarke et al. 1986) while system behaviours are usually represented
using procedural formal notations such as automata. Checking that the properties
are true on a formal model of the systems is done as a theorem demonstration using
the deductive proof calculus (see, for instance, verification of temporal logic
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formulas over Petri nets Sifakis 1979). Proofs progress by transforming a set of
premises into a desired conclusion, using axioms and deduction rules and possibly
integrating previously demonstrated theorems. Such a proof production process is
usually not fully automated: analyst guidance is required, for instance, regarding the
proof strategy to be followed. Good user interfaces for theorem provers can sig-
nificantly reduce the burden of the users as argued in Merriam and Harrison (1996).
Some formal methods have been adapted to address the specificities of interactive
systems and if they are specifically supporting theorem proving results, they have
been tuned to address interactive systems properties such as the adaptation of B
presented in Aït-Ameur et al. (2003a).

Model checking (Fig. 1.2) allows verification of whether a model satisfies a set
of specified properties. A property is a general statement expressing an expected
behaviour of the system. In model checking, a formal model of the system under
analysis must be created, which is afterwards represented as a finite-state machine
(FSM). This FSM is then subject to exhaustive analysis of its entire state space to
determine whether the properties hold or not. The analysis can be fully automated
and the validity of a property is always decidable (Cofer 2010). Even though it is
easier for a human being to express properties in natural language, it can result in
imprecise, unclear, and ambiguous properties. Expected properties should, thus, be
also formalized by means of, for instance, a temporal logic. The analysis is mainly
supported by the generation of counterexamples when a property is not satisfied.
A counterexample can be a sequence of state changes that, when followed, leads to
a state in which the property is false.

Since the introduction of model checking in the early 1980s, it has advanced
significantly. The development of algorithmic techniques (e.g. partial-order
reduction and compositional verification) and data structures (e.g. binary decision
diagrams) allows for automatic and exhaustive analysis of finite-state models with
several thousands of state variables (Aït-Ameur et al. 2010). For this reason, model
checking has been used in the past years to verify interactive systems in

Fig. 1.1 Iterative cycle of models’ construction and analysis from Palanque et al. (2009)
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safety-critical systems of several domains, such as avionics (Degani and Heymann
2002), radiation therapy (Turner 1993), and health care (Thimbleby 2010). In the
field of interactive systems, several model-checking approaches have been pro-
posed. With respect to mainstream software engineering, such approaches have
been focussing on interactive systems-specific properties (such as predictability Dix
1991 or human errors identification Curzon and Blandford 2004).

Rather than verifying the satisfiability of properties, equivalence checking
(Figs. 1.2 and 1.3) provides the ability to formally prove whether two representa-
tions of the system exhibit exactly the same behaviour or not. In order to verify
whether two systems are equivalent or not, a model of each system should also be
created, and then both models are compared in the light of a given equivalence
relation. Several equivalence relations are available in the literature (e.g. strong
bisimulation Park 1981 and branching bisimulation van Glabbeek and Weijland
1996). Which relation to choose depends on the level of details of the model and the
verification goals. As for model checking and theorem proving, results of the
analysis are exploited to identify where the models have to be amended in order to
ensure their behavioural equivalence. In the field of interactive systems, this can be
done for checking that two versions of interactive software exhibit the same
behaviour or to check that the descriptions of user tasks are equivalent to the
behaviour of the system (Palanque et al. 1995).

These three different approaches to formal verification have been applied to
interactive systems in various works. In Sect. 1.6, we present those approaches by
describing how formal models are described and how verification is addressed.

Fig. 1.2 Principle of model checking as defined in DO-178C aeronautics standard—HLR stands
for high-level requirements, LLR stands for low-level requirements (and correspond to procedural
systems descriptions)
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1.4 Criteria to Describe and Analyse the State of the Art

Each approach is presented with respect to the following structure: after a brief
introduction of the approach, it is unfolded step by step, identifying which
language/formalism is used to model the interactive system. Then, the properties
addressed by the approach are listed, together with the language/formalism used to
describe them, the verification technique employed and whether the approach is
tool supported or not. It is important to note that the approaches might be more
powerful than presented here. Indeed, we only gather information that the authors
were demonstrating in their publications. Thus, instead of presenting what an
approach can do, we present what the authors have been doing with it.

After the description of each approach, an analysis is performed according to the
following criteria:

• Modelling coverage: the verification of the system relies on the system model.
For this reason, the model coverage should be large enough for the verification
to be useful. It is analysed whether the studied approach covers aspects of the
functional core and the user interfaces or not. The functional core of a system
implements the domain-dependent concepts and functions, and the user inter-
faces implement the look and feel of the interactive system (Bass et al. 1991).
We call a “User Interface” (UI) the information that is presented to the user with
which the users can interact. In addition, it is also analysed if aspects of the users
are included in the model, in order to take into account user behaviours. The
more sophisticated the interaction techniques used to interact with these user
interfaces, the more expressive power is required for the formal description
technique. For instance, in multi-modal interactions, fusion of events is usually
based on a temporal window in which the events have been received. If the
events are too far away (in quantitative time), then they will not be fused. In
order to describe such behaviour, the formal methods must allow engineers to
describe quantitative temporal information (such as timed automata or temporal
Petri nets).

• Kinds of properties: one kind of analysis that can be performed over a system
model is property verification. In the context of safety-critical interactive

Fig. 1.3 Equivalence checking

1 State of the Art on Formal Methods for Interactive Systems 9



systems, we believe that the focus should be directed both towards dependability
(to ensure that the functioning of the system is correct), to usability (to ensure
that the system is usable; effective, efficient, and satisfactory), and to prevent
users from making errors. For each author, the kinds of properties that have been
demonstrated as verifiable using their approach are analysed.

• Application to safety-critical systems: whether each approach is applied to
safety-critical domains or not. We provide here examples of the domains
addressed, e.g. health care, air traffic management, avionics, or nuclear power.

• Scalability: while a lot of work has been performed on simple examples, we
will identify approaches that have been applied to industrial applications or at
least have demonstrated means (e.g. structuring mechanisms) for dealing with
real-life systems.

1.5 Modelling and Verification

Interactive systems models can deal with the various aspects of interactive systems.
Low-fidelity prototypes usually deal with their presentation part (i.e. how they look
and how information is presented to users) while behavioural models usually
address interaction or dialogue descriptions. While a model at specification level
would describe what the system is supposed to do, models at design levels would
describe how the system is supposed to behave. In the area of interactive systems,
formal models have been proposed at different levels. Properties are closer to the
specification level as they express constraints on system presentation or behaviour.
A presentation property would require, for instance, that all the user interface
buttons have the same size. A behavioural property, for instance, could require that
all buttons are always available. Verification activity aims at assessing whether or
not a property holds on a given system as discussed above.

Several authors propose different categories of properties. For instance, three
kinds of properties are identified in Campos and Harrison (1997): visibility prop-
erties, which concern the users’ perception, i.e. what is shown on the user interface
and how it is shown; reachability properties, which concern the user interfaces, and
deal with what can be done at the user interface and how it can be done (in the
users’ perspective); and reliability properties, which concern the underlying sys-
tem, i.e. the behaviour of the interactive system.

1.6 Succinct Presentation of the Approaches

This section will briefly describe the approaches reviewed for this chapter. The
current FoMHCI community and many of the strands of work in this review largely
owe their origin to a number of projects funded by the Alvey Programme in the UK
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in the 1980s, and particularly the “York Approach” (see Dix et al. below). How-
ever, it is possible to trace the roots deeper, in particular Reisner’s (1981) use of
BNF to describe the “action language” (what we would now call dialogue) of an
interactive graphics programme, and Sufrin’s (1982) use of the Z specification
language to specify a simple display editor (see d’Ausbourg 1998 for an early
review).

Both Reisner’s and Sufrin’s work used existing formal notations. This use of
existing notations or creation of specialized notations or methods for interactive
systems has always been one of the main strands of FoMHCI research. Many of the
approaches below and in this book use existing notations (e.g. LOTOS, Petri nets);
however, these often either need to extend or create new notations in order to be
able to effectively specify behaviours and properties of interactive systems.

While this has emerged as the dominant strand of work in the area and the main
focus of this review, there are a number of other strands that have influenced the
field, elements of which can be seen in various chapters of this book (see also Dix
2012).

• Abstract models: this used a variety of notations, but with the aim of describing
classes of systems to define generic properties and prove generic properties (see
Dix et al. below). The main legacy of this approach is the formulation of
properties including variations of predictability and observability that are
adopted by many system modelling approaches, which can be seen in many of
the approaches below.

• Architectural models: early user interface implementers reflected on their
experience. The MVC (Model–View–Controller) paradigm grew out of the
Smalltalk programming environment (Kieras and Polson 1985), and a workshop
of those developing User Interface Management Systems (UIMS) led to the
Seeheim Model (Pfaff and Hagen 1985). The former has been particularly
influential in subsequent practical UI development, and the latter in framing a
language for interaction architecture, especially the formulation of the
presentation–dialogue-functionality distinction. Within the formal modelling
community, this work was especially strongly associated with the work of
Coutaz, Nigay, and others at Grenoble including the development of the PAC
model (Coutaz 1987), which itself fed into the ARCH/Slinky metamodel (Bass
et al. 1991). The main legacy of this work has been in its inputs into modelling
of multi-modal systems and plasticity. Oddly, many current systems that
describe themselves as MVC are actually unintentionally following PAC model
(Dey 2011).

• User and task modelling: the cognitive modelling and task analysis commu-
nities have often used models that have a formal nature, although come from
different roots and have had different concerns to those adopting a more com-
puter science formal modelling approach. However, there have been many
overlaps including CCT (Cognitive Complexity Theory), which used a dual
system and cognitive model (Kieras and Polson 1985), and TAG (Task Action
Grammar), which expressed system descriptions in ways that made
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inconsistencies obvious (Payne and Green 1986). Of course, the CTT task
modelling approach (see Paterno et al. below) has been very influential in the
FoMHCI community, and, while having its roots in the LOTOS specification
notation, it is very similar to pure task analysis notations such as HTA (Shep-
herd 1989).

1.6.1 Abowd et al. (USA 1991–1995)

Early approaches to applying formal notations to the study of human–machine
interaction and the modelling of interactive systems paved the way for other
researchers to explore different alternatives to assess the quality of such systems. In
Abowd (1991), a framework for the formal description of users, systems, and user
interfaces is proposed.

1.6.1.1 Modelling

In Abowd (1991), the interactive system is modelled as a collection of agents. The
language to describe the agents borrows notations from several formal languages,
such as Z, VDM, CSP, and CSS. Such agent language contains identifiers to
describe internal (types, attributes, invariants, initially, and operations) and
external specifications of agents, as well as communication between agents
(input/output). Therefore, data, states, and events can be modelled in this language.
When describing the operations agents can execute, it is possible to define pre- and
post-conditions for each operation, which may be used to define a given ordering of
actions, allowing qualitative time to be represented. The external specification of
the language allows description of synchronous parallel composition, which can
express concurrent behaviour. Finally, multi-touch interactions can be implicitly
modelled by agents: each finger could be represented by a given agent.

Alternatively, another approach is proposed in Abowd et al. (1995), Wang and
Abowd (1994), in which interactive systems are described by means of a tabular
interface using Action Simulator, a tool for describing PPS (propositional pro-
duction system) specifications. In PPS, the dialogue model is specified as a number
of production rules using pre- and post-conditions. Action Simulator permits such
PPS specification to be represented in a tabular format, in which the columns are the
system states, and the production rules are expressed at the crossings of lines and
columns. It is possible to represent multi-modality using this approach by identi-
fying the states related to each modality, and how they relate to each other using the
production rules. However, it does not allow concurrent behaviour to be expressed:
production rules are executed sequentially. The approach covers the modelling of
the functional core and the UIs, and to some extent the modelling of the users, by
describing the user actions that “fire” the system state changes.
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1.6.1.2 Verification

The verification of specifications written using the agent language described in
Abowd (1991) can be tool supported, for instance, by using ProZ for Z specifi-
cations. However, such verification is not described in Abowd (1991).

A translation from the tabular specification of the interactive system proposed in
(Abowd et al. 1995; Wang and Abowd 1994) into SMV input language is described
in Wang and Abowd (1994). The CTL temporal language is used to formalize the
properties, allowing the following usability properties to be verified:

• Reversibility (Abowd et al. 1995): Can the effect of a given action be reversed
in a single action?

• Deadlock freedom (Abowd et al. 1995): From an initial state, is it true that the
dialogue will never get into a state in which no actions can be taken?

• Undo within N steps (Wang and Abowd 1994): From any state of a given state
set, if the next step leads the system out of the state set, can a user go back to the
given state set within N steps?

In addition, the following functional properties can be verified:

• Rule set connectedness (Abowd et al. 1995): From an initial state, can an
action be enabled?

• State avoidability (Wang and Abowd 1994): Can a user go from one state to
another without entering some undesired state?

• Accessibility (Wang and Abowd 1994): From any reachable state, can the user
find some way to reach some critical state set (such as the help system)?

• Event constraint (Wang and Abowd 1994): Does the dialogue model
ensure/prohibit a particular user action for a given state set?

• Feature assurance (Wang and Abowd 1994): Does the dialogue model
guarantee a desired feature in a given state set?

• Weak task completeness (Abowd et al. 1995): Can a user find some way to
accomplish a goal from initialization?

• Strong task completeness (Abowd et al. 1995): Does the dialogue model
ensure that a user can always accomplish a goal?

• State inevitability (Abowd et al. 1995): From any state in the dialogue, will the
model always allow the user to get to some critical state?

• Strong task connectedness (Abowd et al. 1995): From any state, can the user
find some way to get to a goal state via a particular action?

The automatic translation of the tabular format of the system states into the SMV
input language is an advantage of the approach, since it allows model checking of
properties to be performed. The tabular format of the system states and the actions
that trigger state changes provide a reasonable compact representation in a com-
prehensible form. However, it looks like the approach does not scale well to larger
specifications, unless an alternative way to store a large sparse matrix is provided.
Besides, no application to safety-critical systems is reported.
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1.6.2 Dix et al. (United Kingdom 1985–1995)

1.6.2.1 Modelling

The PIE model (Dix et al. 1987) considers interactive systems as a “black-box”
entity that receives a sequence of inputs (keystrokes, clicks, etc.) and produces a
sequence of perceivable effects (displays, LEDs, printed documents, etc.). The main
idea is to describe the user interfaces in terms of the possible inputs and their effects
(Dix 1991). Such practice is called surface philosophy (Dix 1988) and aims at
omitting parts of the system that are not apparent to the user (the internal details of
systems, such as hardware characteristics, languages used, or specification nota-
tions). The domain of input sequences is called P (standing for programs), the
domain of effects is called E, and both are related by an interpretation function I that
determines the effects of every possible command sequence (Fig. 1.4). In this sense,
the interpretation function I can be seen as a means to represent events of the
modelled system, data cannot be represented, and internal states of the system are
inferred by what is called observable effects (Dix 1991).

The effects E can be divided into permanent results (e.g. printout) and ephemeral
displays (the actual UI image). Such specialization of the effects constitutes another
version of the PIE model, called the Red-PIE model (Dix 1991).

The PIE model is a single-user single-machine model and does not describe
interleaving and the timing of the input/output events (Dix 1991). However,
extensions of the basic PIE model dealt with multi-user behaviour (including the
first formulations of collaborative undo Abowd and Dix 1992); the first formal work
on real-time interactive behaviours (Dix 1991); continuous interaction (such as
mouse dragging) through status-event analysis (Dix 1991); and non-deterministic
external behaviours (e.g. due to concurrency or race conditions) (Dix 1991).
Multi-modality can be expressed by describing the input/output and interpretation
function for each modality, the status–event analysis extensions would allow
multi-touch applications.

The PIE model is focused on the external behaviour of the system as perceived
by the user; it does not model the users themselves, nor more than minimal internal
details. Because of this, the external effects of internal behaviour such as concur-
rency behaviour or dynamic instantiation can be modelled, but not their internal
mechanisms.

Fig. 1.4 The PIE model (Dix 1991)
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1.6.2.2 Verification

The PIE model provides a generic way of modelling interactive systems and per-
mits the following usability properties to be formalized:

• Predictability (Dix 1995): The UI shall be predictable, i.e., from the current
effect, it should be possible to predict the effect of future commands.

• Simple reachability (Dix 1991): All system effects can be obtained by applying
some sequences of commands;

• Strong reachability (Dix 1988): One can get anywhere from anywhere;
• Undoability (Dix et al. 1987): For every command sequence, there is a function

“undo” which reverses the effect of any command sequence;
• Result commutativity (Dix et al. 1987): Irrespective of the order in which

different UIs are used, the result is the same.

The PIE and Red-PIE models are one of the first approaches that used formal
notations for the modelling of interactive systems and desired properties. As
abstract models, their role in respect of verification is therefore more in formulating
the user interaction properties that subsequent system modelling and specification
approaches (such as Abowd et al., above and Paterno et al., below) seek to verify
for specific systems.

Some proofs and reasoning about PIEs are quite extensive, notably Mancini’s
category theoretical proof of the universality of stack-and-toggle-based undo
(Mancini 1997). However, the mathematical notations are very abstract, and no tool
support is provided; instead, proofs follow a more traditional mathematical form.

1.6.3 Paternò et al. (Italy 1990–2003)

1.6.3.1 Modelling

Interactive systems can be formally described as a composition of interactors
(Hardin et al. 2009). Interactors are more concrete than the agent model described in
section (Abowd 1991 above), in that they introduce more structure to the specifi-
cation by describing an interactive system as a composition of independent entities
(Markopoulos 1997).

The interactors of CNUCE (Paternó and Faconti 1992) provide a communication
means between the user and the system. Data manipulated by the interactors can be
sent and received through events in both directions: towards the system and towards
the user (Paternó 1994), which are both abstracted in the model by a description of
the possible system and user actions.

The CNUCE interactors are specified using LOTOS (ISO 1989), which has
concurrent constructs. However, since LOTOS is a language with action-based
semantics, the system states cannot be represented. Besides, only qualitative time
can be modelled, dynamic instantiation cannot be modelled, neither multi-modality.
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Multi-touch interactions can be modelled by defining one interactor for each finger,
and by integrating these interactors to other interactors of the system. Despite the
fact that the approach covers mainly the modelling of user interfaces, a mathe-
matical framework is provided to illustrate how to model the user and the functional
core too (Paternó 1994).

1.6.3.2 Verification

Figure 1.5 illustrates how a formal model using CNUCE interactors can be used
afterwards for verification (Paternó 1997).

This approach has been used to verify the following usability properties:

• Visibility (Paternó and Mezzanotte 1994): Each user action is associated with
a modification of the presentation of the user interface to give feedback on the
user input;

• Continuous feedback (Paternó and Mezzanotte 1994): This property is
stronger than visibility; besides requiring a feedback associated with all possible
user actions, this has to occur before any new user action is performed;

• Reversibility (Paternó and Mezzanotte 1994): This property is a generaliza-
tion of the undo concept. It means that users can perform parts of the actions
needed to fulfil a task and then perform them again, if necessary, before the task
is completed in order to modify its result;

• Existence of messages explaining user errors (Paternó and Mezzanotte
1994): Whenever there is a specific error event, a help window will appear.

In addition, the following functional property can be verified:

• Reachability (Paternó and Mezzanotte 1994): This property verifies that a
user interaction can generate an effect on a specific part of the user interface.

Fig. 1.5 The TLIM (tasks,
LOTOS, interactors
modelling) approach (Paternó
1997)

16 R. Oliveira et al.



The approach has been applied to several case studies of safety-critical systems
in the avionics domain (Navarre et al. 2001; Paternó and Mezzanotte 1994, 1996;
Paternó 1997; Paternó and Santoro 2001, 2003). These examples show that the
approach scales well to real-life applications. Large formal specifications are
obtained, which describe the behaviour of the system, permitting meaningful
properties to be verified.

1.6.4 Markopoulos et al. (United Kingdom 1995–1998)

1.6.4.1 Modelling

ADC (Abstraction–Display–Controller) (Markopoulos 1995) is an interactor model
that also uses LOTOS to specify the interactive system (specifically, the UIs). In
addition, the expression of properties is facilitated by templates.

The ADC interactor handles two types of data: display data, which come (and
are sent to) either directly from the UI or indirectly through other interactors, and
abstraction data, which are sustained by the interactor to provide input to the
application or to other interactors (Markopoulos et al. 1998). A UI can be modelled
as a composition of ADC interactors. Once formalized in LOTOS, the ADC
interactors can be used to perform formal verification of usability properties using
model checking.

The ADC approach concerns mostly the formal representation of the interactor
model. Regarding the coverage of the model, the focus is to provide an architectural
model for user interface software. The functional core and the user modelling are
not covered. ADC emphasizes the architectural elements of the interactor: its gates,
their role, their grouping to sides, the separate treatment of dialogue and data
modelling and the composition of interactors to form complex interface specifica-
tions (Markopoulos et al. 1998). When connected to each other, ADC interactors
exchange data through gates. Connection types (aout, dout), (dout, dout), and (aout,
aout) concern pairs of interactors which synchronize over common output gates.
These can be useful for modelling multi-modal output where different output
modalities synchronize, e.g. sound and video output (Markopoulos et al. 1998).
Touch interactions can also be modelled by the combination of such interactors.

1.6.4.2 Verification

The properties to be verified over the formal model are specified in the ACTL
temporal logic. For example, the following properties can be verified:

• Determinism (Markopoulos 1997): A user action, in a given context, has only
one possible outcome;
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• Restartability (Markopoulos 1995): A command sequence is restartable if it is
possible to extend it so that it returns to the initial state;

• Undoability (Markopoulos 1995): Any command followed by undo should
leave the system in the same state as before the command (single step undo);

• Eventual feedback (Markopoulos et al. 1998): A user-input action shall
eventually generate a feedback.

In addition, the following functional properties can be verified:

• Completeness (Markopoulos 1997): The specification has defined all intended
and plausible interactions of the user with the interface;

• Reachability (Markopoulos 1997): It qualifies the possibility and ease of
reaching a target state, or a set of states, from an initial state, or a set of states.

In this approach, the CADP (Garavel et al. 2013) toolbox is used to verify prop-
erties by model checking (Markopoulos et al. 1996). Specific tools to support the
formal specification of ADC interactors are not provided (Markopoulos et al. 1998).

No case study applying the approach to the verification of critical systems is
reported. In fact, the approach is applied to several example systems (Markopoulos
1995) and to a case study on a graphical interface of Simple Player for playing
movies (Markopoulos et al. 1996), which makes it difficult to measure whether it
can scale up to realistic applications or not.

1.6.5 Duke and Harrison et al. (United Kingdom
1993–1995)

1.6.5.1 Modelling

Another interactor model is proposed by the University of York (Duke and Harrison
1995) to represent interactive systems. Compared to the CNUCE interactor model
(below), the main enhancement brought by the interactors of York is an explicit
representation of the state of the interactor.

The York interactor (Fig. 1.6) has an internal state and a rendering function (i.e.
rho in Fig. 1.6) that provides the environment with a perceivable representation
(P) of the interactor internal state. The interactor communicates with the environ-
ment by means of events. Two kinds of events are modelled:

Fig. 1.6 The York interactor
(Harrison and Duke 1995)
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• Stimuli events: They come from either the user or the environment and modify
the internal state of the interactor. Such state changes are then reflected to the
external presentation through the rendering function.

• Response events: These events are generated by the interactor and sent to the
user or to the environment.

York interactors are described using the Z notation (Spivey 1989). This notation
facilitates the modelling of the state and operations of a system, by specifying it as a
partially ordered set of events in first-order logic (Duke and Harrison 1993).
Multi-modality can be represented (Duke and Harrison 1995) as each action has an
associated modality from the given set [modality]. Besides, the authors describe
two approaches to define a notion of interaction: the one-level model and the two-
level model, which bound several interactors (Duke and Harrison 1993). This
allows multi-touch interactions to be represented by this approach. In addition, the
York interactor model provides an abstract framework for structuring the descrip-
tion of interactive systems in terms of layers. It encapsulates two specific system
layers: the state and the display (Harrison and Duke 1995), thus covering both the
functional core and the UIs in the modelling. However, concurrent behaviour
cannot be expressed, neither does it support dynamic instantiation (even though
instantiation is proposed to compose interactors (Duke and Harrison 1993), it seems
that the interactors are not dynamically instantiated).

1.6.5.2 Verification

This approach permits usability properties expressed in first-order logic formulas to
be verified. Unlike the previous approaches, the York interactor model uses theo-
rem proving as formal verification technique. Examples of properties that can be
verified are (Duke and Harrison 1995):

• Honesty: The effects of a command are intermediately made visible to the user;
• Weak reachability: It is possible to reach any state through some interaction;
• Strong reachability: Each state can be reached after any interaction p; and
• Restartability: Any interaction p is a prefix of another q such that q can achieve

any of the states that p initially achieves.

The approach is applied to a case study in a safety-critical system, an aircraft’s
fuel system (Fields et al. 1995) in which the pilot’s behaviour is modelled, thus
showing that the approach also covers the modelling of users. No further case
studies applying the approach were found in the literature, which makes it difficult
to tell whether the approach scales up to larger interactive systems or not.
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1.6.6 Campos et al. (Portugal 1997–2015)

1.6.6.1 Modelling

The York interactor model is the basis of the work proposed in Bumbulis et al.
(1995b). Here, Campos chooses MAL (Modal Action Logic) language to imple-
ment the York interactor model, since MAL’s structure facilitates the modelling of
the interactor behaviour. The use of MAL allows data to be represented, since
attributes can be expressed in the language. In Campos and Harrison (2001), the
authors propose the MAL interactor language to describe interactors that are based
on MAL, propositional logic is augmented with the notion of action, and deontic
operators allows ordering of actions to be expressed.

The approach covers the three aspects we are considering: in Campos and
Harrison (2011), the approach is used to model the functional core and user
interfaces of an infusion pump; and assumptions about user behaviours are covered
in Campos and Harrison (2007), by strengthening the preconditions on the actions
the user might execute.

A tool called i2smv is proposed in Campos and Harrison (2001) to translate
MAL specifications into the input language of the SMV model checker. However,
concurrent behaviour cannot be modelled. Although the stuttering in the SMV
modules allows interactors to evolve independently, a SMV module will engage in
an event while another module does nothing (Campos and Harrison 2001).

1.6.6.2 Verification

The approach is applied to several case studies. An application of both model
checking and theorem proving to a common case study is described. Further, deeper
investigations are performed (and tools developed) into the usage of model
checking (only), in order to verify interactive systems.

To support the whole process, a toolbox called IVY is developed (Campos and
Harrison 2009). In this framework, the properties are specified using the CTL
(computational tree logic) temporal logic, allowing the verification of usability and
functional properties (Campos and Harrison 2008). Particularly, the following
usability properties can be expressed:

• Feedback (Campos and Harrison 2008): A given action provides a response;
• Behavioural consistency (Campos and Harrison 2008): A given action causes

consistent effect;
• Reversibility (Campos and Harrison 2008): The effect of an action can be

eventually reversed/undone;
• Completeness (Campos and Harrison 2009): One can reach all possible states

with one action.
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The approach is applied to several case studies (Campos and Harrison 2001;
Harrison et al. 2013), specifically in safety-critical systems (e.g. healthcare systems
Campos 1999; Campos and Harrison 2009, 2011; Harrison et al. 2015 and avionics
systems Campos and Harrison 2007; Doherty et al. 1998; Sousa et al. 2014),
showing that the approach scales well to real-life applications.

1.6.7 d’Ausbourg et al. (France 1996–2002)

1.6.7.1 Modelling

Another approach based on the York interactor model is proposed in d’Ausbourg
(1998) and d’Ausbourg et al. (1998). These authors push further the modelling of
an interactive system by events and states initially proposed by the York approach.

Their interactor model is called CERT. It also contains an internal state, and the
interface between an interactor and its environment consists of a set of input and
output events. Both internal state and events are described as Boolean flows. Such
representation of interactors by flows allows their specification using the LUSTRE
data flow language. A system described in LUSTRE is represented as a network of
nodes acting in parallel, which allows concurrent behaviour to be represented. Each
node transforms input flows into output flows at each clock tick.

The approach can handle data in the system modelling. However, a drawback is
that it does not handle sophisticated data types. The representation of the internal
system state and events by Boolean flows considerably limits the modelling
capabilities of the approach. In LUSTRE, a flow variable is a function of time,
denoting the sequence of values that it takes at each instant (d’Ausbourg et al.
1998). Specifically, two LUSTRE operators allow qualitative time to be repre-
sented: the “previous” operator pre and the “followed-by” operator → . Besides,
quantitative time can also be represented: the expression occur-from-to(a, b, c) is a
temporal operator whose output is true when “a” occurs at least once in the time
interval [b…c] (d’Ausbourg et al. 1998).

1.6.7.2 Verification

The LUSTRE formal model is then verified by model checking. Verification is
achieved by augmenting the system model with LUSTRE nodes describing the
intended properties, and using the Lesar tool to traverse the state space generated
from this new system. The properties can be either specific or generic properties.

Specific properties deal with how presentations, states, and events are dynami-
cally linked into the UIs, and they are automatically generated from the UIL file
(they correspond to functional properties). Generic properties might be checked on
any user interface system, and they are manually specified (they correspond to
usability properties). The verification process allows the generation of test cases,
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using the behaviour traces that lead to particular configurations of the UI where the
properties are satisfied.

In particular, the following usability properties are verified (d’Ausbourg et al.
1998):

• Reactivity: The UI emits a feedback on each user action;
• Conformity: The presentation of an interactor is modified when its internal state

changes;
• Deadlock freedom: The impossibility for a user to get into a state where no

actions can be taken;
• Unavoidable interactor: The user must interact with the interactor at least once

in any interactive session of the UIs.

As well as the following functional property:

• Rule set connectedness: An interactor is reachable from any initial state.

The approach was applied to the avionics field (d’Ausbourg 2002). In this case
study, the interactions of the pilot with the system and the behaviour of the func-
tional core are modelled. Unfortunately, no evidence is given that the approach
scales well to real-life applications.

1.6.8 Bumbulis et al. (Canada 1995–1996)

1.6.8.1 Modelling

Similar to the interactor models (Campos and Harrison 2001; d’Ausbourg et al.
1998; Duke and Harrison 1995), user interfaces can be described by a set of
interconnected primitive components (Brat et al. 2013; Bumbulis et al. 1995a). The
notion of component is similar to that of interactor, but a component is more closely
related to the widgets of the UI. Such component-based approach allows both rapid
prototyping and formal verification of user interfaces from a single UI specification.

In Bumbulis et al.’s approach, user interfaces are described as a hierarchy of
interconnected component instances using the Interconnection Language (IL).
Investigations have been conducted into the automatic generation of IL specifica-
tions by re-engineering the UIs (Bumbulis et al. 1995a). However, such automatic
generation is not described in the paper. From such component-based IL specifi-
cation of the UI, a Tcl/Tk code is mechanically generated, in order to provide a UI
prototype for experimentation, as well as a HOL (higher-order logic) specification
for formal reasoning using theorem proving (Bumbulis et al. 1995a).

The approach covers only the modelling and verification of user interfaces. The
user and the functional core are not modelled. Besides, the Interconnection Lan-
guage does not provide means to represent multi-modality, multi-touch interactions,
concurrent behaviour, or time.
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1.6.8.2 Verification

Properties are specified as predicates in Hoare logic, a formal system with a set of
logical rules for reasoning about the correctness of computer programs. Proofs are
constructed manually, even though investigations to mechanize the process have
been conducted (Bumbulis et al. 1995a). No usability properties are verified in this
approach. Instead, the approach permits functional properties to be verified, which
are directly related to the expected behaviour of the modelled UI.

No application to safety-critical systems was found in the literature. Besides, it is
not clear how to model more complex UIs in this approach, since UI components
are not always bound to each other. In addition, it is not clear how multiple UIs
could be modelled, neither the navigation modelling between such UIs. All these
aspects indicate that the approach does not scale well for larger applications.

1.6.9 Oliveira et al. (France 2012–2015)

1.6.9.1 Modelling

In Oliveira et al. (2015a), a generic approach to verifying interactive systems is
proposed, but instead of using interactors, interactive systems are described as a
composition of modules. Each system component is described as such a module,
which communicates and exchanges information through channels. This approach
allows plastic UIs to be analysed. Plasticity is the capacity of a UI to withstand
variations in its context of use (environment, user, platform) while preserving
usability (Thevenin and Coutaz 1999). In this approach, interactive systems are
modelled according to the principles of the ARCH architecture (Bass et al. 1991),
and using LNT (Champelovier 2010), a formal specification language derived from
the ELOTOS standard (ISO 2001). LNT improves LOTOS (ISO 1989) and can be
translated to LOTOS automatically. LOTOS and LNT are equivalent with respect to
expressiveness, but have a different syntax. In Paternó (1997), the authors point out
how difficult it is to model a system using LOTOS, when quite simple UI beha-
viours can easily generate complex LOTOS expressions. The use of LNT alleviates
this difficulty.

The approach enhances standard LTS to model interactive systems. An LTS
represents a system by a graph composed of states and transitions between states.
Transitions between states are triggered by actions, which are represented in LTS
transitions as labels. Intuitively, an LTS represents all possible evolutions of a
system modelled by a formal model. The approach enhances LTS by proposing the
ISLTS (Interactive System LTS) (Oliveira 2015), in which two new sets are added:
a set C of UI components and a set L of action names. In addition, the set A of
actions of standard LTS is enhanced to carry a list of UI components, representing
the UI appearance after the action is performed.
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The approach covers aspects of the users, the user interfaces, and the functional
core of the system. Data and events of the system can be modelled by the ISLTS,
but not the state of the system. The ordering of transitions of the LTS can represent
qualitative time between two consecutive model elements, and LNT contains
operators that allow concurrent behaviour to be modelled. Models described with
this approach were of WIMP-type, and no evidence was given about the ability of
the approach to deal with more complex interaction techniques such as multi-touch
or multi-modal UIs (especially, dealing with quantitative time required for fusion
engines).

1.6.9.2 Verification

The approach is twofold, allowing: usability and functional properties to be verified
over the system model (Oliveira et al. 2014). Using model checking, usability
properties verify whether the system follows ergonomic properties to ensure a good
usability. Functional properties verify whether the system follows the requirements
that specify its expected behaviour. These properties are formalized using the MCL
property language (Mateescu and Thivolle 2008). MCL is an enhancement of the
modal mu-calculus, a fixed point-based logic that subsumes many other temporal
logics, aiming at improving the expressiveness and conciseness of formulas.

Besides, different versions of UIs can be compared (Oliveira et al. 2015b). Using
equivalence checking, the approach verifies to which extent UIs present the same
interaction capabilities and appearance, showing whether two UI models are
equivalent or not. When they are not equivalent, the UI divergences are listed,
providing the possibility of leaving them out of the analysis (Oliveira et al. 2015c).
In this case, the two UIs are equivalent less such divergences. Furthermore, the
approach shows that one UI can contain at least all interaction capabilities of
another (UI inclusion). Three abstraction techniques support the comparison:
omission, generalization, and elimination. This part of the approach can be used to
reason of multi-modal user interfaces, by verifying the level of equivalence between
them.

The approach is supported by CADP (Garavel et al. 2013), a toolbox for veri-
fying asynchronous concurrent systems: systems whose components may operate at
different speeds, without a global clock to synchronize them. Asynchronous sys-
tems suit the modelling of human–computer interactions well: the modules that
describe the users, the functional core, and the user interfaces can evolve in time at
different speeds, which reflects well the unordered sequence of events that take
place in human–machine interactions. Both parts of the approach can be used either
independently or in an integrated way, and it has been validated in three industrial
case studies in the nuclear power plant domain, which indicates the potential of the
approach with respect to scalability (Oliveira 2015).
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1.6.10 Knight et al. (USA 1992–2010)

1.6.10.1 Modelling

Another example of the application of formal methods to safety-critical systems,
specifically, to the nuclear power plant domain, can be found in Knight and Bril-
liant (1997). The authors propose the modelling of user interfaces in three levels:
lexical, syntactic, and semantic levels. Different formalisms are used to describe
each level. For instance, the lexical level is defined using Borland’s OWL (Object
Windows Library), allowing data and events to be represented. The syntactic level
in the approach is documented with a set of context-free grammars with one
grammar for each of the concurrent, asynchronous dialogues that might be taking
place. Such syntactic level imposes the required temporal ordering on user actions
and system responses (Knight and Brilliant 1997). Finally, Z is used to define the
semantic level. The notion of user interfaces as a dialogue between the operator and
the computer system consisting of three components (lexical, syntactic, and
semantic levels) is proposed by Foley and Wallace (1974).

Each of these three levels is specified separately. Since different notations are
used, the communication between these levels is defined by a set of tokens (Knight
and Brilliant 1997). The concept of a multi-party grammar is appropriate for rep-
resenting grammars in which tokens are generated by more than one source (Knight
and Brilliant 1997). Such representation could allow multi-modality to be covered
by the approach. However, the authors have elected to use a conventional
context-free grammar representation together with a naming convention to distin-
guish sources of tokens (Knight and Brilliant 1997).

Following this view of user interface structure, the authors develop a formal
specification of a research reactor used in the University of Virginia Reactor
(UVAR) for training nuclear engineering students, radiation damage studies, and
other studies (Loer and Harrison 2000). In order to illustrate the specification layers,
the authors focus on the safety control rod system, one of the reactor subsystems.
They give in the paper the three specifications for this subsystem.

The approach is also applied to other safety-critical systems, such as the Mag-
netic Stereotaxis System (MSS), a healthcare application for performing human
neurosurgery (Elder and Knight 1995; Knight and Kienzle 1992). UIs, users, and
the functional core of systems are covered by this approach. The UI syntactic level
in their approach defines valid sequences of user inputs on the UIs, which is to
some extent the modelling of the users, and the cypher system case study described
in Yin et al. (2008) verifies the correctness of the functional core. Finally, the
approach covers the representation of dynamic reconfiguration (Knight and Bril-
liant 1997).
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1.6.10.2 Verification

However, the formal specification is not used to perform formal verification.
According to the authors, the main goal is to develop a formal specification
approach for user interfaces of safety-critical systems. Concerning verifiability, the
authors claim that the verification of a UI specification using this approach is
simplified by the use of an executable specification for the lexical level and by the
use of a notation from which an implementation can be synthesized for the syntactic
level. For the semantic level, they argue that all the tools and techniques developed
for Z can be applied (Knight and Brilliant 1997).

Later, a toolbox called Zeus is proposed to support the Z notation (Knight et al.
1999). The tool permits the creation and analysis of Z documents, including syntax
and type checking, schema expansion, precondition calculation, domain checking,
and general theorem proving. The tool is evaluated in a development of a relatively
large specification of an international maritime software standard, showing that
Zeus meets the expected requirements (Knight et al. 1999).

Following such a separation of concerns in three levels, the authors propose
another approach called Echo (Strunk et al. 2005), and this time applied to a case
study in the avionics domain. In order to decrease complexity with traditional
correctness proofs, the Echo approach is based on the refactoring of the formal
specification (Yin et al. 2009a, b), reducing the verification burden by distributing it
over separate tools and techniques. The system model to be verified (written in
PVS) is mechanically refactored. It is refined into an implementable specification in
Spark Ada by removing any un-implementable semantics. After refactoring, the
model is documented with low-level annotations, and a specification in PVS is
extracted mechanically (Yin et al. 2008). Proofs that the semantics of the refactored
model is equivalent to that of the original system model, that the code conforms to
the annotations, and that the extracted specification implies the original system
model constitute the verification argument (Yin et al. 2009a).

An extension of the approach is proposed in Yin and Knight (2010), aiming at
facilitating formal verification of large software systems by a technique called proof
by parts, which improve the scalability of the approach for larger case studies.

The authors did not clearly define the kinds of properties they can verify over
interactive systems with their approach. The case studies to which the approach is
applied mainly focused on the benefits of modelling UIs in three layers using formal
notation.

1.6.11 Miller et al. (USA 1995–2013)

1.6.11.1 Modelling

Also in the safety-critical domain, but in avionics, deep investigation has been
conducted at Rockwell Collins of the usage of formal methods for industrial
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realistic case studies. Preliminary usage of formal methods aimed at creating con-
sistent and verifiable system specifications (Hamilton et al. 1995), paving the way
to the usage of formal methods at Rockwell Collins. Another preliminary use of
formal methods was the usage of a synchronous language called RSML
(Requirements State Machine Language) to specify requirements of a flight guid-
ance system. RSML is a state-based specification language developed by Leveson’s
group at the University of California at Irvine as a language for specifying the
behaviour of process control systems (Miller et al. 2006). Algorithms to translate
specifications from this language to the input languages of the NuSMV model
checker and the PVS theorem prover have been proposed (Miller et al. 2006),
enabling one to perform verification of safety properties and functional require-
ments expressed in the CTL temporal logic (i.e. functional properties). Afterwards,
deeper investigations are conducted to further facilitate the usage of formal
methods.

According to Miller (2009), relatively few case studies of model checking to
industrial problems outside the field of engineering equipment are reported. One of
the reasons is the gap between the descriptive notations most widely used by
software developers and the notations required by formal methods (Lutz 2000). To
alleviate the difficulties, as part of NASA’s Aviation Safety Program (AvSP),
Rockwell Collins and the research group on critical systems of the University of
Minnesota (USA) develop the Rockwell Collins Gryphon Translator Framework
(Hardin et al. 2009), providing a bridge between some commercial modelling
languages and various model checkers and theorem provers (Miller et al. 2010).
The translation framework supports Simulink, Stateflow, and SCADE models, and
it generates specifications for the NuSMV, Prover, and SAL model checkers, the
ACL2 and PVS theorem provers, and generates C and Ada code (Miller et al. 2010)
(BAT and Kind are also included as target model checkers in Cofer et al. 2012).
Alternatively, Z specifications are also covered by the approach as an input lan-
guage, since Simulink and Stateflow models can be derived from Z specifications
(Hardin et al. 2009).

Algorithms to deal with the time dependencies were implemented in the trans-
lator, allowing multiple input events arriving at the same time to be handled (Miller
et al. 2006). Concerning the modelling coverage, the approach covers only the
functional core of the avionics interactive systems that were analysed (Combéfis
2013; Miller 2009; Miller et al. 2010), but not the user interfaces nor the user
behaviour.

Tools were also developed to translate the counterexamples produced by the
model checkers back to Simulink and Stateflow models (Cofer 2012), since for
large systems it can be difficult to determine the cause of the violation of the
property only by examining counterexamples (Whalen et al. 2008).
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1.6.11.2 Verification

The technique is applied to several case studies in avionics (Cofer 2012; Combéfis
2013; Miller 2009; Miller et al. 2010; Whalen et al. 2008). The first application of
the NuSMV model checker to an actual product at Rockwell Collins is the mode
logic of the FCS 5000 Flight Control System (Miller 2009): 26 errors are found in
the mode logic.

The largest and most successful application is the Rockwell Collins ADGS-2100
(Adaptive Display and Guidance System Window Manager), a cockpit system that
provides displays and display management software for commercial aircraft (Miller
et al. 2010). The Window Manager (WM) ensures that data from different appli-
cations are displayed correctly on the display panel. A set of properties that for-
mally expresses the WM requirements (i.e. functional properties) is developed in
the CTL and LTL temporal logic: 563 properties are developed and verified, and 98
design errors are found and corrected.

The approach is also applied to an adaptive flight control system prototype for
unmanned aircraft modelled in Simulink (Cofer 2012; Whalen et al. 2008). During
the analysis, over 60 functional properties are verified, and 10 model errors and 2
requirement errors are found in relatively mature models.

These applications to the avionics domain demonstrate that the approach scales
well. Even if the approach does not take user interfaces into account, it is a good
example of formal methods applied to safety-critical systems. In addition, further
investigations of the usage of compositional verification are conducted (Cofer et al.
2008; Murugesan et al. 2013), to enhance the proposed techniques.

1.6.12 Loer and Harrison et al. (Germany 2000–2006)

1.6.12.1 Modelling

Another approach to verifying interactive systems is proposed in Loer and Harrison
(2002, 2006), also with the goal of making model checking more accessible to
software engineers. The authors claim that in the avionics and automotive domains,
requirements are often expressed as statechart models (Loer and Harrison 2002).
With statecharts, a complex system can be specified as a number of potentially
hierarchical state machines that describe functional or physical subsystems and run
in parallel (Loer and Harrison 2000). Such parallelism could represent concurrent
behaviour. The ordering of events which change the machine from one state to
another can be used to represent qualitative time. Furthermore, in the statechart
semantics, time is represented by a number of execution steps, allowing to express
the formulation “within n steps from the current state…” (Loer and Harrison 2000).

To introduce formal verification in the process, they propose an automatic
translation from statechart models (created with the Statemate toolkit) to the input
language of the SMV model checker, which is relatively robust and well supported
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(Loer and Harrison 2006). Such translation is part of the IFADIS toolbox, which
also provides guided process of property specifications and a trace visualization to
facilitate the result analysis of the model checker.

Concerning the modelling coverage of the approach, the authors describe five
pre-defined elements in which the formal model is structured (Loer and Harrison
2000):

• Control elements: Description of the widgets of the UIs;
• Control mechanism: Description of the system functionality;
• Displays: Description of the output elements;
• Environment: Description of relevant environmental properties;
• User tasks: Sequence of user actions that are required to accomplish a certain

task.

Therefore, their model covers the three aspects we are analysing: the user, UIs,
and the functional core. However, aspects such as multi-modality and multi-touch
interactions are not covered.

1.6.12.2 Verification

The properties can be verified using Cadence SMV or NuSMV model-checking
tools. Depending on the type of property, the model checker can output traces that
demonstrate why a property holds or not (Loer and Harrison 2006).

The property editor helps designers to construct temporal-logic properties by
making patterns available and helping the process of instantiation (Loer and Har-
rison 2006). Temporal-logic properties can be specified either in LTL (linear
temporal logic) or in CTL (computational tree logic). The following usability
properties can be verified:

• Reachability (Loer and Harrison 2000): Are all the states reachable or not?
• Robustness (Loer and Harrison 2000): Does the system provide fallback

alternatives in the case of a failure? or, alternatively, are the guards for unsafe
states foolproof?

• Recoverability (Loer and Harrison 2000): Does the system support undo and
redo?

• Visibility of system status (Loer and Harrison 2000): Does the system always
keep the users informed about what is going on, through appropriate feedback
within reasonable time?

• Recognition rather than recall (Loer and Harrison 2000): Is the user forced
to remember information from one part of the dialogue to another?

• Behavioural consistency (Loer and Harrison 2006): Does the same input
always yield the same effect?
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In particular, the reachability property here is classified as a usability property
because it is defined as generic property, which can be applied to any interactive
system (i.e. “are all the states reachable or not?”). This is in contrast to the clas-
sification of the reachability property, for instance, where it is classified as a
functional property because it expresses what can be done at the UI, and how can it
be done, which is something that is usually defined in the system requirements.

Although the approach is not applied to many case studies (i.e. only to the
avionics domain Loer and Harrison 2006), several reasons indicate that the
approach scales well to real-life applications. The approach is supported by a tool
that provides a translation from engineering models (statecharts) to formal models
(SMV specifications), a set of property patterns to facilitate the specification of
properties, and a trace visualizer to interpret the counterexamples generated by the
model checker. It is used in the case study described in Loer and Harrison (2006),
and an evaluation shows that the tool improves the usability of model checking for
non-experts (Loer and Harrison 2006).

1.6.13 Thimbleby et al. (United Kingdom 1987–2015)

1.6.13.1 Modelling

In the healthcare domain, several investigations of medical device user interfaces
have been conducted at Swansea University and Queen Mary University of Lon-
don. Specifically, investigations are conducted on interactive hospital beds
(Acharya et al. 2010), for user interfaces of drug infusion pumps (Cauchi et al.
2012a; Masci et al. 2014a, 2015; Thimbleby and Gow 2008), and interaction issues
that can lead to serious clinical consequences.

Infusion pumps are medical devices used to deliver drugs to patients. Deep
investigation has been done of the data entry systems of such devices (Cauchi et al.
2012b, 2014; Gimblett and Thimbleby 2013; Li et al. 2015; Masci et al. 2011;
Oladimeji et al. 2011, 2013; Thimbleby 2010; Thimbleby and Gimblett 2011; Tu
et al. 2014). If a nurse makes an error in setting up an infusion (for instance, a
number ten times larger than the necessary for the patient’s therapy), the patient
may die. Under-dosing is also a problem: if a patient receives too little of a drug,
recovery may be delayed or the patient may suffer unnecessary pain (Masci et al.
2011).

The authors report several issues with the data entry system of such pumps
(Masci et al. 2014a). Several issues are detected (Masci et al. 2014a) using the
approach depicted in Fig. 1.7. In this approach, the C++ source code of the
infusion pump is manually translated into a specification in the PVS formal lan-
guage ([a] in Fig. 1.7).

Concerning the modelling coverage, the approach deals with the display and
functionality of the devices, but does not cover the modelling of the users
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interacting with such devices. In addition, no references were found describing the
modelling of concurrent behaviour, multi-modality, nor multi-touch interactions.

1.6.13.2 Verification

Usability properties such as consistency of actions and feedback are formalized ([b]
in Fig. 1.7) as invariants to be established using theorem proving:

• Consistency of actions: The same user actions should produce the same results
in logically equivalent situations;

• Feedback: It ensures that the user is provided with sufficient information on
what actions have been done and what result has been achieved.

A behavioural model is then extracted ([c] in Fig. 1.7), in a mechanized manner,
from the PVS formal specification. This model captures the control structure and
behaviour of the software related to the handling user interactions. Theorem prov-
ing is used to verify that the behavioural model satisfies the usability properties.
Lastly, the behavioural model is exhaustively explored to generate a suite of test
sequences ([d] in Fig. 1.7) (Masci et al. 2014a).

A similar approach is described in Masci et al. (2013a), in which the PVS
specification is automatically discovered (Gimblett and Thimbleby 2010; Thim-
bleby 2007a) from reversely engineering the infusion pump software. Besides,
functional properties are extracted from the safety requirements provided by the US
medical device regulator FDA (Food and Drug Administration), to make sure that
the medical device is reasonably safe before entering the market (Masci et al.
2013a). This approach allows quantitative time to be modelled and property such as
“The pump shall issue an alert if paused for more than t minutes” to be verified
(Masci et al. 2013a).

The same FDA safety requirements are used to verify a PVS formal model of
another device, the Generic Patient Controlled Analgesia (GPCA) infusion pump
(Masci et al. 2013a). In this work, the authors propose the usage of formal methods
for rapid prototyping of user interfaces. Once verified, the formal model of the
infusion pump is automatically translated into executable code through the PVS

Fig. 1.7 Verification approach using PVS, adapted from Masci et al. (2014a)
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code generator, providing a prototype of the GPCA user interface from a verified
model of the infusion pump.

An approach to integrating PVS executable specifications and Stateflow models
is proposed in Masci et al. (2014b), aiming at reducing the barriers that prevent
non-experts from using formal methods. It permits Stateflow models to be verified,
avoiding the hazards of translating design models created in different tools.

All the work mentioned in this subsection is based on the PVS theorem prover.
Nevertheless, model checking can also be used in order to formally verify medical
devices (Masci et al. 2011, 2015; Thimbleby 2007b). For example, the authors
model the Alaris GP in Masci et al. (2015), and the B-Braun Infusomat Space
infusion pumps in the higher-order logic specification language SAL (Symbolic
Analysis Laboratory) (De Moura et al. 2004). Afterwards, model checking is
applied to verify the predictability of user interfaces, a usability property expressed
in the LTL temporal logic. Predictability is defined in Masci et al. (2011) as “if
users look at the device and see that it is in a particular display state, then they can
predict the next display state of the device after a user interaction”.

The maturity of the approach described here and its applications to numerous
case studies are evidence that the approach scales well to real-life applications.

1.6.14 Palanque et al. (France 1990–2015)

1.6.14.1 Modelling

In Palanque and Bastide (1995), another approach is proposed to modelling and
verifying interactive systems with a different formalism: Petri nets (Petri 1962).
Being a graphical model, Petri nets might be easier to understand than textual
descriptions.

Originally, the work was targeting at modelling, implementation, and simulation
of the dialogue part of event-driven interfaces (Bastide and Palanque 1990); it
nowadays covers the modelling of the entire interactive system. Early notation was
called Petri nets with Objects (Bastide and Palanque 1990) (which belongs to the
high-level Petri nets class) and was an extension of Petri nets in order to manipulate
tokens which were references to objects (in the meaning the object-oriented para-
digm). This has been further extended over the years to the ICO (Interactive
Cooperative Object) formalism (Navarre et al. 2009) which permits applications to
be prototyped and tested but also can be fully implemented by integrating Java code
in the models.

A system described using ICOs is modelled as a set of objects that cooperate to
perform the system tasks. ICO uses concepts borrowed from the object-oriented
formalism (such as inheritance, polymorphism, encapsulation, and dynamic
instantiation) to describe the structural or static aspects of systems, such as its
attributes and the operations it provides to its environment.
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Through the Petri nets with Objects formalism, data, state, and events, as well as
concurrent behaviour, can be modelled. Dynamic reconfiguration of user interfaces
are proposed in Navarre et al. (2008), allowing operators to continue interacting
with the interactive system even though part of the hardware side of the user
interface is failing. Besides, the formalism also allows the modelling of low-level
behaviour of interaction techniques including multi-touch interactions (Hamon
et al. 2013). In the multi-touch context, new fingers are detected at execution time.
Thus, the description language must be able to receive dynamically created objects.
In Petri nets, this can be represented by the creation/destruction of tokens associated
with the objects (Hamon et al. 2013). The notation has been used to model WIMP
interfaces (Bastide and Palanque 1990) and post-WIMP ones including multi-modal
interaction with speech (Bastide et al. 2004), virtual reality (Navarre et al. 2005), or
bimanual interactions (Navarre et al. 2009).

Once the system is modelled using the ICO formalism, it is possible to apply
model checking to verify usability and functional properties. How modelling,
verification, and execution are performed using Petshop (for Petri net Workshop)
(Bastide et al. 2002, 2004) (the CASE tool supporting the ICO formal description
technique) is illustrated in Chap. 20 of this book.

This work allows the integration of two different representations: tasks models
and interactive systems models as described in Palanque et al. (1996). This inte-
gration was first done by describing task models constructs as Petri net structures.
This was first done using UAN notation (Hix and Hartson 1993) as demonstrated in
Palanque et al. (1996), allowing for the verification of compatibility between the
two representations using Petri net-based bisimulation (Bourguet-Rouger 1988).
Then, connection with CTT notation (Paternó et al. 1997) was made using scenarios
as a connection artefact (Navarre et al. 2001). Such work has been extended by
developing integration of models at the syntactic level allowing for co-simulation of
models (Barboni et al. 2010) and more recently using the HAMSTERS notation that
allows structuring of models (Martinie et al. 2011a) and enables explicit repre-
sentation of data, errors, and knowledge in task models (Fahssi et al. 2015). This
work focusses on the use of multiple models jointly as presented in Martinie et al.
(2014).

1.6.14.2 Verification

For instance, the following usability properties can be verified (Palanque and
Bastide 1995):

• Predictability: The user is able to foresee the effects of a command.
• Deadlock freedom: The impossibility for a user to get into a state where no

actions can be taken.
• Reinitiability: This is the ability for the user to reach the initial state of the

system.
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• Exclusion of commands: This means the commands which must never be
offered at the same time (or, on the contrary, must always be offered
simultaneously).

• Succession of commands: The proper order in which commands may be issued;
for instance, a given command must or must not be followed by another one,
immediately after or with some other commands in between.

• Availability: A command is offered all the time, regardless of the state of the
system (e.g. a help command).

The specification is verified using Petri net property analysis tools (Palanque
et al. 1996). In order to automate the process of property verification, the ACTL can
be used to express the properties, which are then proved by model checking the
Petri net marking graph (Palanque et al. 1999).

The ICO approach also permits user’s cognitive behaviour to be modelled by a
common Petri net for system, device, and user (Moher et al. 1996). As previously
mentioned, Petshop supports the design of interactive systems according to the ICO
methodology. Alternatively, the Java PathFinder model checker is used to verify a
set of properties on a safety-critical application in the interactive cockpit systems
modelled with ICO (Boyer and Moore 1983).

The approach has been applied to case studies and real applications in
safety-critical systems not only in the space domain (see, for instance, Bastide et al.
2003, 2004; Boyer and Moore 1983; Palanque et al. 1997) but also in the air traffic
management and more recently aircraft cockpits. These case studies and the
maturity of the tools show that the approach scales well to real-life applications.

However, the verification based on the Petri net properties has limitations
exposed in Navarre et al. (2009). The analysis is usually performed on the
underlying Petri net (a simplified version of the original Petri net). A drawback is
that properties verified on the underlying Petri net are not necessarily true on the
original Petri net. Thus, the results of the analysis are essentially indicators of
potential problems in the original Petri net. This is due to the fact that the team
involved in the ICO notation has not extended work for properties verifications in
Petri nets to encompass extensions (e.g. the use of preconditions).

1.6.15 Aït-Ameur et al. (France 1998–2014)

1.6.15.1 Modelling

An alternative approach is proposed in Aït-Ameur et al. (1998b, 1999, 2003a), this
time relying on theorem proving using the B method (Abrial 1996) to specify the
interactive system. The approach permits task models to be validated. Task models
can be used to describe a system in terms of tasks, subtasks, and their temporal
relationships. A task has an initial state and a final state and is decomposed in a
sequence of several subtasks.
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The approach uses the B method for representing, verifying, and refining
specifications. The authors use the set of events to define a transition system that
permits the dialogue controller of the interactive system to be represented. The CTT
(Concur Task Tree) notation (Paternó et al. 1997) is used to represent task models.
In Aït-Ameur et al. (2003a), only the CTT operator called “sequence” between
tasks is covered. In further work (Aït-Ameur et al. 2005a, b, 2009), the authors
describe how every CTT construction can be formally described in Event B (in-
cluding the concurrency operator) allowing to translate, with generic translation
rules, every CTT construction in Event B, which is the event-based definition of B
method.

The case study described in Aït-Ameur et al. (1998a) shows that the approach
covers the modelling of users, UIs, and the functional core. In this approach,
qualitative time can be modelled using the PRE THEN substitution, which allows
one to order operations (Aït-Ameur et al. 1998b). Multi-touch interactions are also
covered by modelling each finger as a machine, and by integrating these machines
(using the EXTENDS clause) in another machine that would represent the whole
hand used for interaction (Aït-Ameur et al. 1998b). However, there is no possibility
to account for quantitative time which is needed for the description of fine grain
interaction in multi-modal interactions.

1.6.15.2 Verification

This usage of Event B to encode CTT task models is described in several case
studies (Aït-Ameur et al. 2006; Aït-Ameur and Baron 2004, 2006; Cortier et al.
2007). In particular, the approach is used to verify Java/Swing user interfaces
(Cortier et al. 2007), from which Event B models are obtained. Such Event B
models encapsulate the UI behaviour of the application. Validation is achieved with
respect to a task model that can be viewed as a specification. The task model is
encoded in Event B, and assertions ensure that suitable interaction scenario is
accepted by the CTT task model. Demonstrating that the Event B formal model
behaves as intended comes to demonstrate that it is a correct refinement of the CTT
task model.

Moreover, the following usability properties can be verified:

• Robustness (Aït-Ameur et al. 2003b): These properties are related to system
dependability.

• Visibility (Aït-Ameur et al. 1999): It relates to feedback and information
delivered to the user.

• Reachability (Aït-Ameur et al. 1999): These properties express what can be
done at the user interface and how can it be done.

• Reliability (Aït-Ameur et al. 1999): It concerns the way the interface works
with the underlying system.

• Behavioural properties (Aït-Ameur and Baron 2006): They characterize the
behaviour of the UI suited by the user.
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The proof of these properties is done using the invariant and assertion clauses of
the B method, together with the validation of specific aspects of the task model (i.e.
functional properties), thus permitting a full system task model to be validated. The
Atelier B tool is used for an automatic proof obligation generation and proof
obligation checking (Aït-Ameur 2000).

In order to compare this theorem proving-based approach to
model-checking-based approaches, the authors show how the same case study is
tackled using both theorem proving (with Event B) and model checking (with
Promela/SPIN) (Aït-Ameur et al. 2003b). The authors conclude that both tech-
niques permit the case study to be fully described and that both permit robustness
and reachability properties to be verified. The proof process of the Event B-based
approach is not fully automatic, but it does not suffer from the state-space explosion
of model-checking techniques. The Promela-SPIN-based technique is fully auto-
matic, but limited to finite-state systems on which exhaustive exploration can be
performed. The authors conclude that a combined usage of both techniques would
strengthen the verification of interactive systems.

An integration of the approach with testing is also presented in Aït-Ameur et al.
(2004). Here, the informal requirements are expressed using the semi-formal
notation UAN (Hix and Hartson 1993) (instead of CTT), and the B specifications
are manually derived from this notation. To validate the formal specification, the
authors use a data-oriented modelling language, named EXPRESS, to represent
validation scenarios. The B specifications are translated into EXPRESS code (the
B2EXPRESS tool Aït-Sadoune and Aït-Ameur 2008). This translation gives data
models that represent specification tests and permits Event B models to be
animated.

The approach is applied to several case studies in the avionics domain (Aït-A-
meur et al. 2014; Jambon et al. 2001). Specifically, the authors illustrate how to
explicitly introduce the context of the systems in the formal modelling (Aït-Ameur
et al. 2014). The approach is also applied to the design and validation of multi-
modal interactive systems (Aït-Ameur et al. 2006, 2010a; Aït-Ameur and Kamel
2004). The numerous case studies and the maturity of the approach suggest that it
might scale to real-life applications even though no evidence was given in the
papers.

1.6.16 Bowen and Reeves (New Zealand 2005–2015)

1.6.16.1 Modelling

The main focus of the approach proposed by Bowen and Reeves is the use of
lightweight models of interfaces and interactions in conjunction with formal models
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of systems in order to bridge the gap between the typical informal UI design process
and formal methods (Bowen and Reeves 2007a). UIs are formally described using a
presentation model (PM) and a presentation and interaction model (PIM), while the
underlying system behaviour is specified using the Z language (ISO 2002). The
lightweight models allow UI and interaction designers to work with their typical
artefacts (prototypes, storyboards, etc.), and a relation (PMR) is created between the
behaviours described in the UI models and the formal specification in Z which gives
a formal meaning to (and therefore the semantics of) the presentation models. The
formal semantics also then enables a description of refinement to be given which
can guide the transformation from model to implementation. Again, this is given at
both formal and informal levels so can be used within both design and formal
processes (Bowen and Reeves 2006).

While the primary use of the models is during the design process (assuming a
specification-first approach), it is also possible to reverse-engineer existing systems
into the set of models. Most examples given of this rely on a manual approach,
which can be error-prone or lead to incomplete models. Some work has been done
on supporting an automated approach. Using a combination of dynamic and static
analysis of code and Java implementations has been investigated, and this allows UI
widgets and some behaviours to be identified which can be used to partially con-
struct models and support their completion (Bowen 2015).

The presentation model uses a simple syntax of tuples of labels, and the
semantics of the model is based on set theory. It is used to formally capture the
meaning of an informal design artefact such as a scenario, a storyboard, or a UI
prototype by describing all possible behaviours of the windows, dialogues, or
modes of the interactive system (Bowen and Reeves 2007a). In order to extend this
to represent dynamic UI behaviour, a PIM (presentation and interaction model) is
used. This is essentially a finite-state machine where each state represents one
window, dialogue, or mode (i.e. individual presentation model) of the system with
the transitions representing navigational behaviours. The PIM can be visualized
using the μCharts language (Reeve and Reeves 2000) which has its own Z
semantics (and which is based on statecharts) and which therefore enables a
complete model of all parts of the system to be created and ultimately translated
into Z.

Although the approach mainly focuses on modelling the user interfaces, the
presentation model can also be used to model the user operations. The main goal is
to ensure that all user operations described in the formal specification have been
described in the UI design, and again, the PMR is used to support this. The models
can also be used post-implementation to support testing. A set of abstract tests can
be generated from the presentation models which describe the requirements of the
UI widgets and behaviours, and these can then be concretized into testing frame-
works such as JUnit and UISpec4 J (Bowen and Reeves 2013).
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1.6.16.2 Verification

The approach has been applied to several case studies. In Bowen and Reeves
(2007b), the authors use the models in the design process of UIs for the PIMed tool,
a software editor for presentation models and PIMs. However, in this work, no
automated verification of the presentation model and the PIMs of the editor is
proposed. The formal models are manually inspected. For example, in order to
verify the deadlock freedom property, the authors use a manual walk-through
procedure in the PIMs. In later work (e.g. Bowen and Reeves 2012), the verification
is automated by the ProZ tool, allowing both usability properties and functional
properties to be verified using model checking. The kinds of usability properties
that can be verified are:

• Total reachability: One can get to any state from any other state.
• Deadlock freedom: A user cannot get into a state where no action can be taken.
• Behavioural consistency: Controls with the same behaviour have the same

name.
• Minimum memory load on user: Does not have to remember long sequences

of actions to navigate through the UI.

Another case study to which these formal models have been applied relates to a
safety-critical system in the healthcare domain (Bowen and Reeves 2012). Again,
the verification is supported using ProZ. The authors model a syringe pump, a
device commonly used to deliver pain-relief medication in hospitals and respite care
homes. The device has ten widgets, which include the display screen, eight soft
keys, and an audible alarm (multi-modality). Temporal safety properties and
invariants (to check boundary values) are verified against the formal models using
ProZ and LTL.

Typically, the generated PIMs are relatively small. This is because the number of
states and transitions are bounded by the number of windows/dialogues/modes of
the system rather than individual behaviours as seen in other uses of finite-state
machines. This abstraction of presentation models into states of PIMs prevents state
explosion and enables a combination of both manual and automatic verification (as
appropriate) with reasonably low overhead. The presentation models and system
specification are created manually as part of the development and specification
process. While the creation of models of systems can be seen as an additional
overhead to a development process, the benefits provided by both the creation and
the use of the models more than compensates for this later in the process. Once the
presentation models and PMR have been created, the PIM can be automatically
generated and translation between the models, μCharts, and Z is automated using
several tools. The individual models can be used independently or in combination

38 R. Oliveira et al.



to verify different aspects of the system under consideration. Most recently, this
work has focussed on safety-critical systems, and an example of this is given in
Chap. 6.

1.6.17 Weyers et al. (Germany 2009–2015)

1.6.17.1 Modelling

In Weyers (2012) and Weyers et al. (2012a), a formal modelling approach has been
proposed, which is based on a combination of the use of a domain-specific and
visual modelling language called FILL with an accompanied transformation algo-
rithm mapping FILL models onto a well-established formal description concept:
Petri nets. In contrast to the works by Bastide and Palanque (1990) who extended
basic coloured Petri nets to the ICO formalism, the modelling is done in a
domain-specific description, which is not used directly for execution or verification.
Instead, it is transformed into an existing formalism called reference net (Kummer
2002) (a special type of Petri net) providing a formal semantic definition for FILL,
making FILL models executable using existing simulators (e.g. Renew Kummer
et al. 2000) and offering the possibility for the application of verification and
validation techniques for Petri net-based formalisms. As a modelling approach,
FILL has been used in research on collaborative learning systems in which students
created an interface for simulating a cryptographic algorithm (Weyers et al. 2009,
2010b).

As the work focuses on the model-based creation of interactive systems and less
on the creation of formal models used for their verification as done in various
related works, Weyers (2015) extended the basic approach with concepts from
software development. The main extension, which is described in Chap. 5 of this
book, addresses a component-based modelling as it offers reusability of certain
components and capabilities to structure the overall model by means of functional
and conceptual entities. The latter enables the modeller to create more complex
(scalable) models and to be able to split the model into semantically meaningful
parts. It further offers the description of complex user interfaces, which are not
restricted to basic graphical user interfaces but include multi-user interfaces as well
as mobile and other interaction devices. This is covered by a software infrastructure
that offers capabilities to run mobile devices with models generated using FILL and
its associated transferred reference nets. All is embedded into a coherent software
tool called UIEditor (Weyers 2012).

An application context in which the component-based model description plays a
central role is that of gaze guiding as a job aid for the control of technical processes
(Kluge et al. 2014; Weyers et al. 2015). Gaze guiding as a method refers to a
technique for visualizing context-dependent visual aids in the form of gaze guiding
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tools into graphical user interfaces that guide the user’s attention and support her or
him during execution of a control task. Gaze guiding tools are visual artefacts that
are added to a graphical user interface in the case the user is expected to apply a
certain operation (according to a previously defined standard operating procedure),
but the system does not recognize this awaited input. This work facilitates the
component-based description as the model describing the behaviour of the gaze
guiding is embedded as a component into the user interface description. The model
specifies in which cases or context gaze guiding tools are faded into the user
interface.

1.6.17.2 Model Reconfiguration and Formal Rewriting

As the work by Weyers et al. does not focus on the verification of interactive
systems but on the modelling and creation of flexible and executable model-based
descriptions of such systems, a formal approach for the reconfiguration and
rewriting of these models has been developed. This enables the specification of
formal adaptation of the models according to user input or algorithmic specifica-
tions and makes the models flexible. In this regard, the main goal is to maintain the
formal integrity of a model during an adaptation. Formal integrity refers to the
requirement that an adaptation approach needs to be formally well defined as well
and keeps the degree of formality on the same level with that of the model
description. This should prevent any gaps in the formalization during adaptation of
a model and thus prevent the compromise of any following verification, testing, or
debugging of the rewritten model. Therefore, Weyers et al. (2010a, 2014) devel-
oped a reconfiguration concept based on pushouts, a concept known from category
theory for the rewriting of reference nets. Together with Stückrath, Weyers
extended a basic approach for the rewriting of Petri nets based on the so-called
double-pushout approach to a method for coloured Petri nets equipped with a
rewriting of XML-based specification of inscriptions (Stückrath and Weyers 2014).

The application of formal rewriting that is driven by the user has been investi-
gated in the context of the monitoring and control of complex technical and
safety-critical systems (Burkolter et al. 2014; Weyers et al. 2012a, b). In these
works, the reconfiguration of a given user interface for controlling a simplified
nuclear power plant was reconfigured by the user according to his or her own needs
as well as to the standard operating procedures which were presented. These
adaptations of the user interface include a change not only in the visual layout of
widgets but also in the functional behaviour of the interface using the rewriting of
the underlying reference net model. Operations were offered to the user, e.g., to
generate a new widget which triggers a combination of two existing operations. For
example, it was possible to combine the opening and closing of different valves into
one new operation, which was accessible through a new single widget, e.g. a
button. By pressing this button, the user was able to simultaneously open and close
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the dedicated valves with one click instead of two. Weyers et al. were able to show
that this individualization of a user interface reduces errors in the accompanied
control task. A detailed introduction into the rewriting concept is presented in
Chap. 10 of this book.

1.6.18 Combéfis et al. (Belgium 2009–2013)

1.6.18.1 Modelling

In Combéfis (2013), a formal framework for reasoning over system and user models
is proposed, and the user models can be extracted from user manuals. Furthermore,
this work proposes the automatic generation of user models. Using his technique,
“adequate” user models can be generated from a given initial user model. Adequate
user models capture the knowledge that the user must have about the system, i.e. the
knowledge needed to control the system, using all its functionality and avoiding
surprises. This generated user model can be used, for instance, to improve training
manuals and courses (Combefis and Pecheur 2009).

In order to compare the system and the user model and to verify whether the user
model is adequate to the system model, both models should be provided. With this
goal, in this approach system and user are modelled with enriched labelled tran-
sition systems called HMI LTS (Combéfis et al. 2011a). In HMI LTS, three kinds of
actions are defined (Combéfis et al. 2011a):

• Commands: Actions triggered by the user on the system;
• Observations: Actions triggered by the system, but that the user can observe;

and
• Internal actions: Actions that are neither controlled nor observed by the user.

To be considered “adequate”, user models are expected to follow two specific
properties: full control and mode-preserving. Intuitively, a user model allows full
control of a system if at any time, when using the system according to the user
model (Combefis and Pecheur 2009): the commands that the user model allows are
exactly those available on the system; and the user model allows at least all the
observations that can be produced by the system (Combefis and Pecheur 2009).
A user model is said to be mode-preserving according to a system, if and only if, for
all possible executions of the system the users can perform with their user model,
given the observation they make, the mode predicted by the user model is the same
as the mode of the system (Combefis and Pecheur 2009). Model checking is used to
verify both properties over the user model.
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Concerning the approach’s coverage regarding modelling, the users, the user
interfaces, and the functional core are modelled and compared to each other, the
user model being extracted from the user manual describing the system. However,
there is no indication that the approach supports concurrent behaviour,
multi-modality, or multi-touch interactions.

1.6.18.2 Verification

The verification goal of this approach is to verify whether the user model is ade-
quate to the system model, rather than to verify properties over the system model. In
order to automatically generate adequate user models, the authors propose a tech-
nique based on a derivative of weak bisimulation, in which equivalence checking is
used (Milner 1980). This is called “minimization of a model modulo an equivalence
relation”. Intuitively, using equivalence checking, they generate a user model U2

from the initial user model U1; that is, U2 is equivalent to U1 with respect to specific
equivalence relations introduced by the authors.

Two equivalence relations are proposed: full-control equivalence and
mode-preserving equivalence. Full-control equivalence distinguishes commands
and observations: two equivalent states must allow the same set of commands, but
may permit different sets of observations. Minimization modulo this equivalence
produces a minimal user model that permits full control of the system.
A mode-preserving equivalence is then derived from the full-control equivalence,
by adding an additional constraint that the modes of two equivalent states must be
the same (Combefis and Pecheur 2009). Using these equivalence relations, the
authors can generate mode-preserving fully controlled user models, which can then
be used to design user interfaces and/or training manuals. Both properties (i.e.
mode-preserving and full control) and their combination are interesting because
they propose that different levels of equivalence can be shown between system
models.

A tool named jpf-hmi has been implemented in Java and uses the Java Pathfinder
model checker (Combéfis et al. 2011a), to analyse and generate user models. The
tool produces an LTS corresponding to one minimal fully controlled mental model,
or it reports that no such model exists by providing a problematic sequence from the
system (Combéfis et al. 2011a).

The approach is applied to several examples that are relatively large (Combéfis
et al. 2011b). In the healthcare domain, a machine that treats patients by admin-
istering X-ray or electron beams is analysed with the approach, which detects
several issues in the system. In the avionics domain, the approach is applied to an
autopilot system of a Boeing airplane (Combéfis 2013), and a potential-mode
confusion is identified. These are evidence that the approach scales well to real-life
applications.
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1.6.19 Synthesis

This section presents a representative list of approaches to verifying interactive
systems with respect to the specifications, i.e. general statements about the beha-
viour of the system, which are represented here as desired properties, and analysed
afterwards using formal methods. The approaches diverge on the formalisms they
use for the description of interactive systems and for the specification of properties.

Some authors use theorem proving to perform verification, which is a technique
that can handle infinite-state systems. Even though a proof done by a theorem
prover is ensured to be correct, it can quickly become a hard process (Bumbulis
et al. 1995b): the process is not fully automated, and user guidance is needed
regarding the proof strategy to follow. Simulation can also be used to assess the
quality of interactive systems. Simulation provides an environment for training the
staff before starting their daily activities (Martinie et al. 2011b). However, simu-
lated environments are limited in terms of training, since it is impossible to drive
operators into severe and stressful conditions even using a full-scale simulator
(Niwa et al. 2001). Simulation explores a part of the system state space and can be
used for disproving certain properties by showing examples of incorrect behaviours.
To the contrary, formal techniques such as model checking and equivalence
checking consider the entire state space and can thus prove or disprove properties
for all possible behaviours (Garavel and Graf 2013).

The presented approaches allow either usability or dependability properties to be
verified over the system models. We believe that in the case of safety-critical
systems, the verification approach should cover both such properties, due to the
ergonomic aspects covered by the former and the safety aspects covered by the
latter. Some approaches cover the modelling of the users, the user interfaces, and
the functional core.

1.6.20 Summary

A representative list of approaches for describing and assessing the quality of
interactive systems has been presented in this chapter.

Different formalisms are used in the system modelling (and property modelling,
when applied). Numerous case studies have shown that each formalism has its
strengths. The criteria to choose one over another would be more related with the
knowledge and experience of the designers in the formalisms. Different formal
techniques are employed, such as model checking, equivalence checking, and
theorem proving. Most of the works presented here are tool supported, even though
some authors still use manual inspection of the models to perform verification.
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Tables 1.1 and 1.2 below summarize these approaches: the former gives an
overview of the modelling coverage of the approaches, and the latter an overview of
their verification capabilities. It is important to note that those tables are only meant
at summarizing what has been presented. The cells of Table 1.1 are coloured
according to the information found in papers. An empty cell does not mean that this
aspect cannot be addressed by the notation; it only means that no paper has made
that information explicit. Indeed, the presentation in the sections usually contains
more details than the summary table.

Table 1.1 Modelling coverage of the approaches

Agent language 
(Abowd et al.)

PPS-based  
(Abowd et al.)

Red-PIE  
(Dix et al.)

TLIM  
(Paterno et al.)

ADC  
(Markopoulos et al.)

York 
(Duke et al.)

MAL  
(Campos et al.)

Lustre-based  
(d’Ausbourg et al.)

IL-based 
(Bumbulis et al.)
LNT-based  
(Oliveira et al.)

ECHO  
(Knight et al.)

Gryphon 
(Miller et al.)
IFADIS  
(Loer et al.)
PVS-based  
(Thimbleby et al.)
ICO  
(Palanque et al.)

B-based  
(Aït-Ameur et al.)

PM, PIM  
(Bowen et al.)
HMI LTS  
(Combéfis et al.)
FILL 
(Weyers et al.)
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