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Preface

The aim of this book was to present a snapshot of the use of Formal Methods in
Human-Computer Interaction. Through contributed chapters and edited reviews, its
goal was to capture the state of the art and suggest potential future topics for
theoretical research and practical development.

Formal Methods have a long history in Human-Computer Interaction studies and
play a central role in the engineering of interactive systems. Modelling, execution
and simulation, as well as analysis, validation and verification, are key aspects for
the application of formal methods in the engineering of interactive systems. This
Handbook on Formal Methods in Human-Computer Interaction was motivated as
an outcome of a workshop conducted at the 7th ACM SIGCHI Symposium on
Engineering of Interactive Computing Systems (EICS) 2015 which took place in
Duisburg, Germany. The main goal of this workshop was to offer an exchange
platform for scientists who are interested in the formal modelling and description of
interaction, user interfaces and interactive systems. The workshop further picked up
the goal of a workshop organized at ACM SIGCHI conference on Human Factors
in Computing Systems (CHI’96) in Vancouver, which was the initiation of a book
publication released in 1997 edited by Palanque and Paternò.

Since then, various workshops have been conducted, among these the workshop
on Formal Aspects of the Human Computer Interface (FAHCI) in 1996 in Sheffield
and the series of workshops on “Formal methods and interactive systems” in 2006
in Macau, 2007 in Lancaster, 2009 in Eindhoven, 2011 in Limerick and 2013 in
London. Nevertheless, the last comprehensive collection of work in Formal
Methods in Human-Computer Interaction is published by Palanque and Paternò
(1997). It succeeded the book published by Harrison and Thimbleby (1990), which
presents a wide collection of techniques comparable to that by Palanque and
Paternò. In this regard, this book presents an update after nearly two decades of
work in the field.

Formal modelling in the description of interaction, user interfaces and interactive
systems is still of great interest in current research and modelling strategies. Formal
models offer advantages such as computer-based validation and verification, formal
modification capabilities and the ability to be executable. In domains such as
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aeronautics, formal methods are required by standards (such as DO 178-C sup-
plement 3331) making the use of both declarative formal approaches for require-
ments and property’s description and procedural state-based formal approaches for
systems descriptions mandatory. This use of formal methods is meant to comple-
ment (and not replace) testing approaches. Nevertheless, formal modelling has
undergone various discussions identifying disadvantages, such as inflexibility, high
modelling effort, high learning curve or inefficiency in a wider sense. The EICS
2015 workshop was intended to discuss existing formal modelling methods in this
area of conflict. Therefore, participants were asked to present their perspectives,
concepts and techniques for formal modelling by means of one or two case studies.
The recommended case studies defined a basic structure for the workshop and
further dealt as seed for discussions during the workshop. This idea has been picked
up for this book, which provides an extended set of case studies that are used by
authors throughout all chapters, which makes the presented methods and concepts
comparable to a certain degree and offers indications to which focus the presented
approaches address. The chapters are comprised of extended versions of the
workshop’s submissions as well as of chapters provided by invited authors who
present their additional perspectives on the topic of Formal Methods in
Human-Computer Interaction, complementing the workshop’s submissions.

In this regard, the Handbook on Formal Methods in Human-Computer Inter-
action presents a comprehensive collection of methods and approaches, which
address various aspects and perspectives on formal methods and highlight these by
means of a compilation of case studies. The latter have been selected as relevant
scenarios for formal methods in HCI each focusing on different aspects, such as
multi-user versus single-user scenarios, safety critical versus non-critical situations,
or WIMP-based versus multi-modal and non-WIMP-based interaction techniques.
The book offers an extensive discussion of the state of the art, highlights the
relevant topics in HCI for the application of formal methods, presents trends and
gaps in the field of study and finally introduces the previously mentioned set of case
studies. Furthermore, it contains three thematic sections in its main part.

The first section presents approaches and methods that focus on the use of formal
methods for the modelling, execution and simulation of interactive systems. It
introduces various methods for the modelling of user interfaces, description of the
user’s behaviour and a concept for the characterization of physical devices. Fur-
thermore, it presents a concept for the description of low-intention interaction as
well as a rule-based formalization of adaptable user interface models.

The second section focuses on the analysis, validation and verification of
interactive systems using formal methods. Topics in this section address the veri-
fication of interaction through task-centric approaches, e.g. based on task decom-
position or methods including models of the user’s behaviour. It further presents an

1DO-178C/ED-12C, Software Considerations in Airborne Systems and Equipment Certification,
published by RTCA and EUROCAE, 2012 and DO-333 Formal Methods Supplement to
DO-178C and DO-278A, December 2011.
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approach on the use of reasoning for the verification of interactive systems in
dynamic situations as well as the specification and analysis of user properties of
safety critical systems.

Finally, the third section concentrates on future opportunities and developments
emerging in the field of Formal Methods in Human-Computer Interaction. It dis-
cusses an approach for enhanced modelling support using domain-specific
descriptions, a tool suite for the specification of interactive multi-device applica-
tions as well as a method for the modelling of app-ensembles. Furthermore, work
on the interactive support for validation and verification is presented as well as a
perspective on dealing with faults during operations, describing fault-tolerant
mechanisms for interactive systems using formal methods.

With this selection of topics, the book targets scientists interested in and working
on formal methods for the description and analysis of interaction, user interfaces
and interactive systems as well as practitioners who are interested in employing
formal methods in the engineering of interactive systems. Through its thematic
organization, the reader can approach the topics either by diving directly into one
of these or by letting themselves be inspired by the various case studies. Further-
more, the reader can start with an overview of the past work or with a perspective
on possible future investigations. A well-structured start to read is offered by the
chapter on topics of Formal Methods in Human-Computer Interaction as it sum-
marizes all chapters and puts them into context.

Finally, we would like to acknowledge all authors and contributors of this
handbook as without their enthusiasm, work and large investment of time it would
not have been possible to bring together this great compilation of methods, concepts
and approaches that characterize the field of Formal Methods in Human-Computer
Interaction. Furthermore, we would like to thank our families and supporters who
first and foremost made it possible to write this book.

Aachen, Germany Benjamin Weyers
Hamilton, New Zealand Judy Bowen
Birmingham, UK Alan Dix
Toulouse, France Philippe Palanque
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Chapter 1
State of the Art on Formal Methods
for Interactive Systems

Raquel Oliveira, Philippe Palanque, Benjamin Weyers, Judy Bowen
and Alan Dix

Abstract This chapter provides an overview of several formal approaches for the
design, specification, and verification of interactive systems. For each approach
presented, we describe how they support both modelling and verification activities.
We also exemplify their use on a simple example in order to provide the reader with
a better understanding of their basic concepts. It is important to note that this
chapter is not self-contained and that the interested reader should get more details
looking at the references provided. The chapter is organized to provide a historical
perspective of the main contributions in the area of formal methods in the field of
human–computer interaction. The approaches are presented in a semi-structured
way identifying their contributions alongside a set of criteria. The chapter is con-
cluded by a summary section organizing the various approaches in two summary
tables reusing the criteria previously derived.
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1.1 Introduction

Building reliable interactive systems has been identified as an important and dif-
ficult task from the late 1960s on (Parnas 1969), and methods and techniques
developed in computer science have been applied, adapted, or extended to fit the
need of interactive systems since then. Those needs have been thoroughly studied
over the years, and the complexity of interactive systems has followed or even
pre-empted the non-interactive part of computing systems. Such evolution is mainly
due to the technological progression of input and output devices and their related
interaction techniques.

Another important aspect is related to the intrinsic nature of the interactive
systems as clearly identified in Peter Wegner’s paper (Wegner 1997) as the input
chain is not defined prior to the execution and the output chain is processed (by the
users) before the “machine” (in the meaning of Turing machine) halts.

Two books (Harrison and Thimbleby 1990; Palanque and Paternó 1997) have
been published to gather contributions related to the adaptation and extension of
computer science modelling and verification techniques in the field of interactive
systems. Contributions in these books were covering not only the interaction side,
the computation side (usually called functional core), but also the human side by
presenting modelling techniques applied, for instance, to the description of the
user’s mental models.

Over the years, the community in Engineering Interactive Computing Systems
has been investigating various ways of using Formal Methods for Interactive
Systems but has also broadened that scope proposing architectures, processes, or
methods addressing the needs of new application domains involving new interac-
tion techniques. Simultaneously, the Formal Methods for Interactive Systems
community has been focusing on the use of formal methods in the area of inter-
active computing systems.

This chapter summarises selected contributions from those two communities
over the past years. For each approach presented, we describe how they both
support modelling as well as verification activities. We also exemplify their use on a
simple example in order to provide the reader with a better understanding of their
basic concepts. It is important to note that this chapter is not self-contained and that
the interested reader should get more details looking at the references provided.
This chapter is organized to provide a historical perspective of the main contri-
butions in the area of formal methods in the field of human–computer interaction.
Lastly, the approaches are presented in a semi-structured way identifying their
contributions alongside a set of criteria. This chapter is concluded by a summary
section organizing the various approaches in two summary tables reusing the cri-
teria previously used.

4 R. Oliveira et al.



1.2 Modelling and Formal Modelling

In systems engineering, modelling activity consists of producing a theoretical view
of the system under study. This modelling activity takes place using one or several
notations. The notation(s) allows engineers to capture some part of the system while
ignoring other ones. The resulting artefact is called a model and corresponds to a
simplified view of the real system.

In the field of software engineering, modelling is a well-established practice that
was very successfully adopted in the area of databases (Chen 1976). More recently,
it has been widely advertised by the UML standard (Booch 2005). It is interesting to
see that UML originally proposed nine different notations and thus to produce as
many different models to capture the essence of software systems. SysML (OMG
2010), the recent extension to UML, proposes two additional notations to capture
elements that were overlooked by UML as, for instance, a requirements’ notation.
Modelling is advocated to be a central part of all the activities that lead up to the
production of good software (Booch 2005). It is interesting to note that recent
software engineering approaches such as agile processes (Schwaber 2004) and
extreme programming (Beck 1999) moved away from modelling considering that
on-time delivery of software is a much more important quality than correct func-
tioning, as bugs can always be fixed in the next delivered version.

However, building models in the analysis, specification, design, and imple-
mentation of software bring a lot of advantages (Booch 2005; Turchin and Skii
2006):

• to abstract away from low-level details;
• to focus on some aspects while avoiding others (less relevant ones);
• to describe and communicate about the system under design with the various

stakeholders;
• to better understand the system under development and the choices that are

made; and
• to support the identification of relationships between various components of the

system.

Beyond these advantages, modelling (when supported by notations offering
structuring mechanisms) helps designers to break complex applications into smaller
manageable parts (Navarre et al. 2005). The extent to which a model helps in the
development of human understanding is the basis for deciding how good the model
is (Hallinger et al. 2000).

When the notation used for building models has rigorous theoretical foundations,
these models can be analysed in order to check soundness or detect flaws. Such
activity, which goes beyond modelling, is called verification and validation and is
detailed in the next section.

1 State of the Art on Formal Methods for Interactive Systems 5



1.3 Verification and Validation

The notation used for describing models can be at various levels of formality that
can be classified as informal, semi-formal, and formal (Garavel and Graf 2013):

• Informal models are expressed using natural language or loose diagrams, charts,
tables, etc. They are genuinely ambiguous, which means that different readers
may have different understanding of their meaning. Those models can be parsed
and analysed (e.g. spell checkers for natural text in text editors), but their
ambiguity will remain and it is thus impossible to guarantee that they do not
contain contradictory statements.

• Semi-formal models are expressed in a notation that has a precise syntax but has
no formal (i.e. mathematically defined) semantics. Examples of semi-formal
notations are UML class diagrams, data flow diagrams, entity relationship
graphical notation, UML state diagrams, etc.

• Formal models are written using a notation that has a precisely defined syntax
and a formal semantics. Examples of formal specification languages are alge-
braic data types, synchronous languages, process calculi, automata, Petri nets,
etc.

Thus, formal models are built using formal notations and are unambiguous
system descriptions. Such formal models can then be analysed to assess the presence
or absence of properties, analyse the performance issues (if the formal notation can
capture such elements), possibly simulate the models to allow designer checking
their behaviour, and generate descriptions in extension (such as state-space or test
cases) if the formal notation represents such elements in intention (e.g. set of states
represented in intention in Petri nets while represented in extension in an automata).

Formal verification involves techniques that are strongly rooted in mathematics.
Defects in models can be detected by formal verification. In such cases, either the
model has to be amended (to remove the defect) or the system under analysis has to
be modified, for instance, by adding barriers (Basnyat et al. 2007). Such a modified
system can then be modelled and analysed again to demonstrate that the modifi-
cations have not introduced other (unexpected) problems. This cycle (presented in
Fig. 1.1) is repeated until the analysis results match the expectations. Examples of
formal verification techniques are model checking, equivalence checking, and
theorem proving.

Theorem proving is a deductive approach for the verification of systems (Boyer
and Moore 1983). Proofs are performed in the traditional mathematical style, using
some formal deductive system. Both the system under verification and the prop-
erties that have to be verified are modelled usually using different types of formal
notations. Properties are usually expressed using declarative formal notations (e.g.
temporal logics Clarke et al. 1986) while system behaviours are usually represented
using procedural formal notations such as automata. Checking that the properties
are true on a formal model of the systems is done as a theorem demonstration using
the deductive proof calculus (see, for instance, verification of temporal logic

6 R. Oliveira et al.



formulas over Petri nets Sifakis 1979). Proofs progress by transforming a set of
premises into a desired conclusion, using axioms and deduction rules and possibly
integrating previously demonstrated theorems. Such a proof production process is
usually not fully automated: analyst guidance is required, for instance, regarding the
proof strategy to be followed. Good user interfaces for theorem provers can sig-
nificantly reduce the burden of the users as argued in Merriam and Harrison (1996).
Some formal methods have been adapted to address the specificities of interactive
systems and if they are specifically supporting theorem proving results, they have
been tuned to address interactive systems properties such as the adaptation of B
presented in Aït-Ameur et al. (2003a).

Model checking (Fig. 1.2) allows verification of whether a model satisfies a set
of specified properties. A property is a general statement expressing an expected
behaviour of the system. In model checking, a formal model of the system under
analysis must be created, which is afterwards represented as a finite-state machine
(FSM). This FSM is then subject to exhaustive analysis of its entire state space to
determine whether the properties hold or not. The analysis can be fully automated
and the validity of a property is always decidable (Cofer 2010). Even though it is
easier for a human being to express properties in natural language, it can result in
imprecise, unclear, and ambiguous properties. Expected properties should, thus, be
also formalized by means of, for instance, a temporal logic. The analysis is mainly
supported by the generation of counterexamples when a property is not satisfied.
A counterexample can be a sequence of state changes that, when followed, leads to
a state in which the property is false.

Since the introduction of model checking in the early 1980s, it has advanced
significantly. The development of algorithmic techniques (e.g. partial-order
reduction and compositional verification) and data structures (e.g. binary decision
diagrams) allows for automatic and exhaustive analysis of finite-state models with
several thousands of state variables (Aït-Ameur et al. 2010). For this reason, model
checking has been used in the past years to verify interactive systems in

Fig. 1.1 Iterative cycle of models’ construction and analysis from Palanque et al. (2009)

1 State of the Art on Formal Methods for Interactive Systems 7



safety-critical systems of several domains, such as avionics (Degani and Heymann
2002), radiation therapy (Turner 1993), and health care (Thimbleby 2010). In the
field of interactive systems, several model-checking approaches have been pro-
posed. With respect to mainstream software engineering, such approaches have
been focussing on interactive systems-specific properties (such as predictability Dix
1991 or human errors identification Curzon and Blandford 2004).

Rather than verifying the satisfiability of properties, equivalence checking
(Figs. 1.2 and 1.3) provides the ability to formally prove whether two representa-
tions of the system exhibit exactly the same behaviour or not. In order to verify
whether two systems are equivalent or not, a model of each system should also be
created, and then both models are compared in the light of a given equivalence
relation. Several equivalence relations are available in the literature (e.g. strong
bisimulation Park 1981 and branching bisimulation van Glabbeek and Weijland
1996). Which relation to choose depends on the level of details of the model and the
verification goals. As for model checking and theorem proving, results of the
analysis are exploited to identify where the models have to be amended in order to
ensure their behavioural equivalence. In the field of interactive systems, this can be
done for checking that two versions of interactive software exhibit the same
behaviour or to check that the descriptions of user tasks are equivalent to the
behaviour of the system (Palanque et al. 1995).

These three different approaches to formal verification have been applied to
interactive systems in various works. In Sect. 1.6, we present those approaches by
describing how formal models are described and how verification is addressed.

Fig. 1.2 Principle of model checking as defined in DO-178C aeronautics standard—HLR stands
for high-level requirements, LLR stands for low-level requirements (and correspond to procedural
systems descriptions)

8 R. Oliveira et al.



1.4 Criteria to Describe and Analyse the State of the Art

Each approach is presented with respect to the following structure: after a brief
introduction of the approach, it is unfolded step by step, identifying which
language/formalism is used to model the interactive system. Then, the properties
addressed by the approach are listed, together with the language/formalism used to
describe them, the verification technique employed and whether the approach is
tool supported or not. It is important to note that the approaches might be more
powerful than presented here. Indeed, we only gather information that the authors
were demonstrating in their publications. Thus, instead of presenting what an
approach can do, we present what the authors have been doing with it.

After the description of each approach, an analysis is performed according to the
following criteria:

• Modelling coverage: the verification of the system relies on the system model.
For this reason, the model coverage should be large enough for the verification
to be useful. It is analysed whether the studied approach covers aspects of the
functional core and the user interfaces or not. The functional core of a system
implements the domain-dependent concepts and functions, and the user inter-
faces implement the look and feel of the interactive system (Bass et al. 1991).
We call a “User Interface” (UI) the information that is presented to the user with
which the users can interact. In addition, it is also analysed if aspects of the users
are included in the model, in order to take into account user behaviours. The
more sophisticated the interaction techniques used to interact with these user
interfaces, the more expressive power is required for the formal description
technique. For instance, in multi-modal interactions, fusion of events is usually
based on a temporal window in which the events have been received. If the
events are too far away (in quantitative time), then they will not be fused. In
order to describe such behaviour, the formal methods must allow engineers to
describe quantitative temporal information (such as timed automata or temporal
Petri nets).

• Kinds of properties: one kind of analysis that can be performed over a system
model is property verification. In the context of safety-critical interactive

Fig. 1.3 Equivalence checking
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systems, we believe that the focus should be directed both towards dependability
(to ensure that the functioning of the system is correct), to usability (to ensure
that the system is usable; effective, efficient, and satisfactory), and to prevent
users from making errors. For each author, the kinds of properties that have been
demonstrated as verifiable using their approach are analysed.

• Application to safety-critical systems: whether each approach is applied to
safety-critical domains or not. We provide here examples of the domains
addressed, e.g. health care, air traffic management, avionics, or nuclear power.

• Scalability: while a lot of work has been performed on simple examples, we
will identify approaches that have been applied to industrial applications or at
least have demonstrated means (e.g. structuring mechanisms) for dealing with
real-life systems.

1.5 Modelling and Verification

Interactive systems models can deal with the various aspects of interactive systems.
Low-fidelity prototypes usually deal with their presentation part (i.e. how they look
and how information is presented to users) while behavioural models usually
address interaction or dialogue descriptions. While a model at specification level
would describe what the system is supposed to do, models at design levels would
describe how the system is supposed to behave. In the area of interactive systems,
formal models have been proposed at different levels. Properties are closer to the
specification level as they express constraints on system presentation or behaviour.
A presentation property would require, for instance, that all the user interface
buttons have the same size. A behavioural property, for instance, could require that
all buttons are always available. Verification activity aims at assessing whether or
not a property holds on a given system as discussed above.

Several authors propose different categories of properties. For instance, three
kinds of properties are identified in Campos and Harrison (1997): visibility prop-
erties, which concern the users’ perception, i.e. what is shown on the user interface
and how it is shown; reachability properties, which concern the user interfaces, and
deal with what can be done at the user interface and how it can be done (in the
users’ perspective); and reliability properties, which concern the underlying sys-
tem, i.e. the behaviour of the interactive system.

1.6 Succinct Presentation of the Approaches

This section will briefly describe the approaches reviewed for this chapter. The
current FoMHCI community and many of the strands of work in this review largely
owe their origin to a number of projects funded by the Alvey Programme in the UK
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in the 1980s, and particularly the “York Approach” (see Dix et al. below). How-
ever, it is possible to trace the roots deeper, in particular Reisner’s (1981) use of
BNF to describe the “action language” (what we would now call dialogue) of an
interactive graphics programme, and Sufrin’s (1982) use of the Z specification
language to specify a simple display editor (see d’Ausbourg 1998 for an early
review).

Both Reisner’s and Sufrin’s work used existing formal notations. This use of
existing notations or creation of specialized notations or methods for interactive
systems has always been one of the main strands of FoMHCI research. Many of the
approaches below and in this book use existing notations (e.g. LOTOS, Petri nets);
however, these often either need to extend or create new notations in order to be
able to effectively specify behaviours and properties of interactive systems.

While this has emerged as the dominant strand of work in the area and the main
focus of this review, there are a number of other strands that have influenced the
field, elements of which can be seen in various chapters of this book (see also Dix
2012).

• Abstract models: this used a variety of notations, but with the aim of describing
classes of systems to define generic properties and prove generic properties (see
Dix et al. below). The main legacy of this approach is the formulation of
properties including variations of predictability and observability that are
adopted by many system modelling approaches, which can be seen in many of
the approaches below.

• Architectural models: early user interface implementers reflected on their
experience. The MVC (Model–View–Controller) paradigm grew out of the
Smalltalk programming environment (Kieras and Polson 1985), and a workshop
of those developing User Interface Management Systems (UIMS) led to the
Seeheim Model (Pfaff and Hagen 1985). The former has been particularly
influential in subsequent practical UI development, and the latter in framing a
language for interaction architecture, especially the formulation of the
presentation–dialogue-functionality distinction. Within the formal modelling
community, this work was especially strongly associated with the work of
Coutaz, Nigay, and others at Grenoble including the development of the PAC
model (Coutaz 1987), which itself fed into the ARCH/Slinky metamodel (Bass
et al. 1991). The main legacy of this work has been in its inputs into modelling
of multi-modal systems and plasticity. Oddly, many current systems that
describe themselves as MVC are actually unintentionally following PAC model
(Dey 2011).

• User and task modelling: the cognitive modelling and task analysis commu-
nities have often used models that have a formal nature, although come from
different roots and have had different concerns to those adopting a more com-
puter science formal modelling approach. However, there have been many
overlaps including CCT (Cognitive Complexity Theory), which used a dual
system and cognitive model (Kieras and Polson 1985), and TAG (Task Action
Grammar), which expressed system descriptions in ways that made
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inconsistencies obvious (Payne and Green 1986). Of course, the CTT task
modelling approach (see Paterno et al. below) has been very influential in the
FoMHCI community, and, while having its roots in the LOTOS specification
notation, it is very similar to pure task analysis notations such as HTA (Shep-
herd 1989).

1.6.1 Abowd et al. (USA 1991–1995)

Early approaches to applying formal notations to the study of human–machine
interaction and the modelling of interactive systems paved the way for other
researchers to explore different alternatives to assess the quality of such systems. In
Abowd (1991), a framework for the formal description of users, systems, and user
interfaces is proposed.

1.6.1.1 Modelling

In Abowd (1991), the interactive system is modelled as a collection of agents. The
language to describe the agents borrows notations from several formal languages,
such as Z, VDM, CSP, and CSS. Such agent language contains identifiers to
describe internal (types, attributes, invariants, initially, and operations) and
external specifications of agents, as well as communication between agents
(input/output). Therefore, data, states, and events can be modelled in this language.
When describing the operations agents can execute, it is possible to define pre- and
post-conditions for each operation, which may be used to define a given ordering of
actions, allowing qualitative time to be represented. The external specification of
the language allows description of synchronous parallel composition, which can
express concurrent behaviour. Finally, multi-touch interactions can be implicitly
modelled by agents: each finger could be represented by a given agent.

Alternatively, another approach is proposed in Abowd et al. (1995), Wang and
Abowd (1994), in which interactive systems are described by means of a tabular
interface using Action Simulator, a tool for describing PPS (propositional pro-
duction system) specifications. In PPS, the dialogue model is specified as a number
of production rules using pre- and post-conditions. Action Simulator permits such
PPS specification to be represented in a tabular format, in which the columns are the
system states, and the production rules are expressed at the crossings of lines and
columns. It is possible to represent multi-modality using this approach by identi-
fying the states related to each modality, and how they relate to each other using the
production rules. However, it does not allow concurrent behaviour to be expressed:
production rules are executed sequentially. The approach covers the modelling of
the functional core and the UIs, and to some extent the modelling of the users, by
describing the user actions that “fire” the system state changes.
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1.6.1.2 Verification

The verification of specifications written using the agent language described in
Abowd (1991) can be tool supported, for instance, by using ProZ for Z specifi-
cations. However, such verification is not described in Abowd (1991).

A translation from the tabular specification of the interactive system proposed in
(Abowd et al. 1995; Wang and Abowd 1994) into SMV input language is described
in Wang and Abowd (1994). The CTL temporal language is used to formalize the
properties, allowing the following usability properties to be verified:

• Reversibility (Abowd et al. 1995): Can the effect of a given action be reversed
in a single action?

• Deadlock freedom (Abowd et al. 1995): From an initial state, is it true that the
dialogue will never get into a state in which no actions can be taken?

• Undo within N steps (Wang and Abowd 1994): From any state of a given state
set, if the next step leads the system out of the state set, can a user go back to the
given state set within N steps?

In addition, the following functional properties can be verified:

• Rule set connectedness (Abowd et al. 1995): From an initial state, can an
action be enabled?

• State avoidability (Wang and Abowd 1994): Can a user go from one state to
another without entering some undesired state?

• Accessibility (Wang and Abowd 1994): From any reachable state, can the user
find some way to reach some critical state set (such as the help system)?

• Event constraint (Wang and Abowd 1994): Does the dialogue model
ensure/prohibit a particular user action for a given state set?

• Feature assurance (Wang and Abowd 1994): Does the dialogue model
guarantee a desired feature in a given state set?

• Weak task completeness (Abowd et al. 1995): Can a user find some way to
accomplish a goal from initialization?

• Strong task completeness (Abowd et al. 1995): Does the dialogue model
ensure that a user can always accomplish a goal?

• State inevitability (Abowd et al. 1995): From any state in the dialogue, will the
model always allow the user to get to some critical state?

• Strong task connectedness (Abowd et al. 1995): From any state, can the user
find some way to get to a goal state via a particular action?

The automatic translation of the tabular format of the system states into the SMV
input language is an advantage of the approach, since it allows model checking of
properties to be performed. The tabular format of the system states and the actions
that trigger state changes provide a reasonable compact representation in a com-
prehensible form. However, it looks like the approach does not scale well to larger
specifications, unless an alternative way to store a large sparse matrix is provided.
Besides, no application to safety-critical systems is reported.

1 State of the Art on Formal Methods for Interactive Systems 13



1.6.2 Dix et al. (United Kingdom 1985–1995)

1.6.2.1 Modelling

The PIE model (Dix et al. 1987) considers interactive systems as a “black-box”
entity that receives a sequence of inputs (keystrokes, clicks, etc.) and produces a
sequence of perceivable effects (displays, LEDs, printed documents, etc.). The main
idea is to describe the user interfaces in terms of the possible inputs and their effects
(Dix 1991). Such practice is called surface philosophy (Dix 1988) and aims at
omitting parts of the system that are not apparent to the user (the internal details of
systems, such as hardware characteristics, languages used, or specification nota-
tions). The domain of input sequences is called P (standing for programs), the
domain of effects is called E, and both are related by an interpretation function I that
determines the effects of every possible command sequence (Fig. 1.4). In this sense,
the interpretation function I can be seen as a means to represent events of the
modelled system, data cannot be represented, and internal states of the system are
inferred by what is called observable effects (Dix 1991).

The effects E can be divided into permanent results (e.g. printout) and ephemeral
displays (the actual UI image). Such specialization of the effects constitutes another
version of the PIE model, called the Red-PIE model (Dix 1991).

The PIE model is a single-user single-machine model and does not describe
interleaving and the timing of the input/output events (Dix 1991). However,
extensions of the basic PIE model dealt with multi-user behaviour (including the
first formulations of collaborative undo Abowd and Dix 1992); the first formal work
on real-time interactive behaviours (Dix 1991); continuous interaction (such as
mouse dragging) through status-event analysis (Dix 1991); and non-deterministic
external behaviours (e.g. due to concurrency or race conditions) (Dix 1991).
Multi-modality can be expressed by describing the input/output and interpretation
function for each modality, the status–event analysis extensions would allow
multi-touch applications.

The PIE model is focused on the external behaviour of the system as perceived
by the user; it does not model the users themselves, nor more than minimal internal
details. Because of this, the external effects of internal behaviour such as concur-
rency behaviour or dynamic instantiation can be modelled, but not their internal
mechanisms.

Fig. 1.4 The PIE model (Dix 1991)
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1.6.2.2 Verification

The PIE model provides a generic way of modelling interactive systems and per-
mits the following usability properties to be formalized:

• Predictability (Dix 1995): The UI shall be predictable, i.e., from the current
effect, it should be possible to predict the effect of future commands.

• Simple reachability (Dix 1991): All system effects can be obtained by applying
some sequences of commands;

• Strong reachability (Dix 1988): One can get anywhere from anywhere;
• Undoability (Dix et al. 1987): For every command sequence, there is a function

“undo” which reverses the effect of any command sequence;
• Result commutativity (Dix et al. 1987): Irrespective of the order in which

different UIs are used, the result is the same.

The PIE and Red-PIE models are one of the first approaches that used formal
notations for the modelling of interactive systems and desired properties. As
abstract models, their role in respect of verification is therefore more in formulating
the user interaction properties that subsequent system modelling and specification
approaches (such as Abowd et al., above and Paterno et al., below) seek to verify
for specific systems.

Some proofs and reasoning about PIEs are quite extensive, notably Mancini’s
category theoretical proof of the universality of stack-and-toggle-based undo
(Mancini 1997). However, the mathematical notations are very abstract, and no tool
support is provided; instead, proofs follow a more traditional mathematical form.

1.6.3 Paternò et al. (Italy 1990–2003)

1.6.3.1 Modelling

Interactive systems can be formally described as a composition of interactors
(Hardin et al. 2009). Interactors are more concrete than the agent model described in
section (Abowd 1991 above), in that they introduce more structure to the specifi-
cation by describing an interactive system as a composition of independent entities
(Markopoulos 1997).

The interactors of CNUCE (Paternó and Faconti 1992) provide a communication
means between the user and the system. Data manipulated by the interactors can be
sent and received through events in both directions: towards the system and towards
the user (Paternó 1994), which are both abstracted in the model by a description of
the possible system and user actions.

The CNUCE interactors are specified using LOTOS (ISO 1989), which has
concurrent constructs. However, since LOTOS is a language with action-based
semantics, the system states cannot be represented. Besides, only qualitative time
can be modelled, dynamic instantiation cannot be modelled, neither multi-modality.
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Multi-touch interactions can be modelled by defining one interactor for each finger,
and by integrating these interactors to other interactors of the system. Despite the
fact that the approach covers mainly the modelling of user interfaces, a mathe-
matical framework is provided to illustrate how to model the user and the functional
core too (Paternó 1994).

1.6.3.2 Verification

Figure 1.5 illustrates how a formal model using CNUCE interactors can be used
afterwards for verification (Paternó 1997).

This approach has been used to verify the following usability properties:

• Visibility (Paternó and Mezzanotte 1994): Each user action is associated with
a modification of the presentation of the user interface to give feedback on the
user input;

• Continuous feedback (Paternó and Mezzanotte 1994): This property is
stronger than visibility; besides requiring a feedback associated with all possible
user actions, this has to occur before any new user action is performed;

• Reversibility (Paternó and Mezzanotte 1994): This property is a generaliza-
tion of the undo concept. It means that users can perform parts of the actions
needed to fulfil a task and then perform them again, if necessary, before the task
is completed in order to modify its result;

• Existence of messages explaining user errors (Paternó and Mezzanotte
1994): Whenever there is a specific error event, a help window will appear.

In addition, the following functional property can be verified:

• Reachability (Paternó and Mezzanotte 1994): This property verifies that a
user interaction can generate an effect on a specific part of the user interface.

Fig. 1.5 The TLIM (tasks,
LOTOS, interactors
modelling) approach (Paternó
1997)
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The approach has been applied to several case studies of safety-critical systems
in the avionics domain (Navarre et al. 2001; Paternó and Mezzanotte 1994, 1996;
Paternó 1997; Paternó and Santoro 2001, 2003). These examples show that the
approach scales well to real-life applications. Large formal specifications are
obtained, which describe the behaviour of the system, permitting meaningful
properties to be verified.

1.6.4 Markopoulos et al. (United Kingdom 1995–1998)

1.6.4.1 Modelling

ADC (Abstraction–Display–Controller) (Markopoulos 1995) is an interactor model
that also uses LOTOS to specify the interactive system (specifically, the UIs). In
addition, the expression of properties is facilitated by templates.

The ADC interactor handles two types of data: display data, which come (and
are sent to) either directly from the UI or indirectly through other interactors, and
abstraction data, which are sustained by the interactor to provide input to the
application or to other interactors (Markopoulos et al. 1998). A UI can be modelled
as a composition of ADC interactors. Once formalized in LOTOS, the ADC
interactors can be used to perform formal verification of usability properties using
model checking.

The ADC approach concerns mostly the formal representation of the interactor
model. Regarding the coverage of the model, the focus is to provide an architectural
model for user interface software. The functional core and the user modelling are
not covered. ADC emphasizes the architectural elements of the interactor: its gates,
their role, their grouping to sides, the separate treatment of dialogue and data
modelling and the composition of interactors to form complex interface specifica-
tions (Markopoulos et al. 1998). When connected to each other, ADC interactors
exchange data through gates. Connection types (aout, dout), (dout, dout), and (aout,
aout) concern pairs of interactors which synchronize over common output gates.
These can be useful for modelling multi-modal output where different output
modalities synchronize, e.g. sound and video output (Markopoulos et al. 1998).
Touch interactions can also be modelled by the combination of such interactors.

1.6.4.2 Verification

The properties to be verified over the formal model are specified in the ACTL
temporal logic. For example, the following properties can be verified:

• Determinism (Markopoulos 1997): A user action, in a given context, has only
one possible outcome;
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• Restartability (Markopoulos 1995): A command sequence is restartable if it is
possible to extend it so that it returns to the initial state;

• Undoability (Markopoulos 1995): Any command followed by undo should
leave the system in the same state as before the command (single step undo);

• Eventual feedback (Markopoulos et al. 1998): A user-input action shall
eventually generate a feedback.

In addition, the following functional properties can be verified:

• Completeness (Markopoulos 1997): The specification has defined all intended
and plausible interactions of the user with the interface;

• Reachability (Markopoulos 1997): It qualifies the possibility and ease of
reaching a target state, or a set of states, from an initial state, or a set of states.

In this approach, the CADP (Garavel et al. 2013) toolbox is used to verify prop-
erties by model checking (Markopoulos et al. 1996). Specific tools to support the
formal specification of ADC interactors are not provided (Markopoulos et al. 1998).

No case study applying the approach to the verification of critical systems is
reported. In fact, the approach is applied to several example systems (Markopoulos
1995) and to a case study on a graphical interface of Simple Player for playing
movies (Markopoulos et al. 1996), which makes it difficult to measure whether it
can scale up to realistic applications or not.

1.6.5 Duke and Harrison et al. (United Kingdom
1993–1995)

1.6.5.1 Modelling

Another interactor model is proposed by the University of York (Duke and Harrison
1995) to represent interactive systems. Compared to the CNUCE interactor model
(below), the main enhancement brought by the interactors of York is an explicit
representation of the state of the interactor.

The York interactor (Fig. 1.6) has an internal state and a rendering function (i.e.
rho in Fig. 1.6) that provides the environment with a perceivable representation
(P) of the interactor internal state. The interactor communicates with the environ-
ment by means of events. Two kinds of events are modelled:

Fig. 1.6 The York interactor
(Harrison and Duke 1995)
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• Stimuli events: They come from either the user or the environment and modify
the internal state of the interactor. Such state changes are then reflected to the
external presentation through the rendering function.

• Response events: These events are generated by the interactor and sent to the
user or to the environment.

York interactors are described using the Z notation (Spivey 1989). This notation
facilitates the modelling of the state and operations of a system, by specifying it as a
partially ordered set of events in first-order logic (Duke and Harrison 1993).
Multi-modality can be represented (Duke and Harrison 1995) as each action has an
associated modality from the given set [modality]. Besides, the authors describe
two approaches to define a notion of interaction: the one-level model and the two-
level model, which bound several interactors (Duke and Harrison 1993). This
allows multi-touch interactions to be represented by this approach. In addition, the
York interactor model provides an abstract framework for structuring the descrip-
tion of interactive systems in terms of layers. It encapsulates two specific system
layers: the state and the display (Harrison and Duke 1995), thus covering both the
functional core and the UIs in the modelling. However, concurrent behaviour
cannot be expressed, neither does it support dynamic instantiation (even though
instantiation is proposed to compose interactors (Duke and Harrison 1993), it seems
that the interactors are not dynamically instantiated).

1.6.5.2 Verification

This approach permits usability properties expressed in first-order logic formulas to
be verified. Unlike the previous approaches, the York interactor model uses theo-
rem proving as formal verification technique. Examples of properties that can be
verified are (Duke and Harrison 1995):

• Honesty: The effects of a command are intermediately made visible to the user;
• Weak reachability: It is possible to reach any state through some interaction;
• Strong reachability: Each state can be reached after any interaction p; and
• Restartability: Any interaction p is a prefix of another q such that q can achieve

any of the states that p initially achieves.

The approach is applied to a case study in a safety-critical system, an aircraft’s
fuel system (Fields et al. 1995) in which the pilot’s behaviour is modelled, thus
showing that the approach also covers the modelling of users. No further case
studies applying the approach were found in the literature, which makes it difficult
to tell whether the approach scales up to larger interactive systems or not.
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1.6.6 Campos et al. (Portugal 1997–2015)

1.6.6.1 Modelling

The York interactor model is the basis of the work proposed in Bumbulis et al.
(1995b). Here, Campos chooses MAL (Modal Action Logic) language to imple-
ment the York interactor model, since MAL’s structure facilitates the modelling of
the interactor behaviour. The use of MAL allows data to be represented, since
attributes can be expressed in the language. In Campos and Harrison (2001), the
authors propose the MAL interactor language to describe interactors that are based
on MAL, propositional logic is augmented with the notion of action, and deontic
operators allows ordering of actions to be expressed.

The approach covers the three aspects we are considering: in Campos and
Harrison (2011), the approach is used to model the functional core and user
interfaces of an infusion pump; and assumptions about user behaviours are covered
in Campos and Harrison (2007), by strengthening the preconditions on the actions
the user might execute.

A tool called i2smv is proposed in Campos and Harrison (2001) to translate
MAL specifications into the input language of the SMV model checker. However,
concurrent behaviour cannot be modelled. Although the stuttering in the SMV
modules allows interactors to evolve independently, a SMV module will engage in
an event while another module does nothing (Campos and Harrison 2001).

1.6.6.2 Verification

The approach is applied to several case studies. An application of both model
checking and theorem proving to a common case study is described. Further, deeper
investigations are performed (and tools developed) into the usage of model
checking (only), in order to verify interactive systems.

To support the whole process, a toolbox called IVY is developed (Campos and
Harrison 2009). In this framework, the properties are specified using the CTL
(computational tree logic) temporal logic, allowing the verification of usability and
functional properties (Campos and Harrison 2008). Particularly, the following
usability properties can be expressed:

• Feedback (Campos and Harrison 2008): A given action provides a response;
• Behavioural consistency (Campos and Harrison 2008): A given action causes

consistent effect;
• Reversibility (Campos and Harrison 2008): The effect of an action can be

eventually reversed/undone;
• Completeness (Campos and Harrison 2009): One can reach all possible states

with one action.
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The approach is applied to several case studies (Campos and Harrison 2001;
Harrison et al. 2013), specifically in safety-critical systems (e.g. healthcare systems
Campos 1999; Campos and Harrison 2009, 2011; Harrison et al. 2015 and avionics
systems Campos and Harrison 2007; Doherty et al. 1998; Sousa et al. 2014),
showing that the approach scales well to real-life applications.

1.6.7 d’Ausbourg et al. (France 1996–2002)

1.6.7.1 Modelling

Another approach based on the York interactor model is proposed in d’Ausbourg
(1998) and d’Ausbourg et al. (1998). These authors push further the modelling of
an interactive system by events and states initially proposed by the York approach.

Their interactor model is called CERT. It also contains an internal state, and the
interface between an interactor and its environment consists of a set of input and
output events. Both internal state and events are described as Boolean flows. Such
representation of interactors by flows allows their specification using the LUSTRE
data flow language. A system described in LUSTRE is represented as a network of
nodes acting in parallel, which allows concurrent behaviour to be represented. Each
node transforms input flows into output flows at each clock tick.

The approach can handle data in the system modelling. However, a drawback is
that it does not handle sophisticated data types. The representation of the internal
system state and events by Boolean flows considerably limits the modelling
capabilities of the approach. In LUSTRE, a flow variable is a function of time,
denoting the sequence of values that it takes at each instant (d’Ausbourg et al.
1998). Specifically, two LUSTRE operators allow qualitative time to be repre-
sented: the “previous” operator pre and the “followed-by” operator → . Besides,
quantitative time can also be represented: the expression occur-from-to(a, b, c) is a
temporal operator whose output is true when “a” occurs at least once in the time
interval [b…c] (d’Ausbourg et al. 1998).

1.6.7.2 Verification

The LUSTRE formal model is then verified by model checking. Verification is
achieved by augmenting the system model with LUSTRE nodes describing the
intended properties, and using the Lesar tool to traverse the state space generated
from this new system. The properties can be either specific or generic properties.

Specific properties deal with how presentations, states, and events are dynami-
cally linked into the UIs, and they are automatically generated from the UIL file
(they correspond to functional properties). Generic properties might be checked on
any user interface system, and they are manually specified (they correspond to
usability properties). The verification process allows the generation of test cases,
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using the behaviour traces that lead to particular configurations of the UI where the
properties are satisfied.

In particular, the following usability properties are verified (d’Ausbourg et al.
1998):

• Reactivity: The UI emits a feedback on each user action;
• Conformity: The presentation of an interactor is modified when its internal state

changes;
• Deadlock freedom: The impossibility for a user to get into a state where no

actions can be taken;
• Unavoidable interactor: The user must interact with the interactor at least once

in any interactive session of the UIs.

As well as the following functional property:

• Rule set connectedness: An interactor is reachable from any initial state.

The approach was applied to the avionics field (d’Ausbourg 2002). In this case
study, the interactions of the pilot with the system and the behaviour of the func-
tional core are modelled. Unfortunately, no evidence is given that the approach
scales well to real-life applications.

1.6.8 Bumbulis et al. (Canada 1995–1996)

1.6.8.1 Modelling

Similar to the interactor models (Campos and Harrison 2001; d’Ausbourg et al.
1998; Duke and Harrison 1995), user interfaces can be described by a set of
interconnected primitive components (Brat et al. 2013; Bumbulis et al. 1995a). The
notion of component is similar to that of interactor, but a component is more closely
related to the widgets of the UI. Such component-based approach allows both rapid
prototyping and formal verification of user interfaces from a single UI specification.

In Bumbulis et al.’s approach, user interfaces are described as a hierarchy of
interconnected component instances using the Interconnection Language (IL).
Investigations have been conducted into the automatic generation of IL specifica-
tions by re-engineering the UIs (Bumbulis et al. 1995a). However, such automatic
generation is not described in the paper. From such component-based IL specifi-
cation of the UI, a Tcl/Tk code is mechanically generated, in order to provide a UI
prototype for experimentation, as well as a HOL (higher-order logic) specification
for formal reasoning using theorem proving (Bumbulis et al. 1995a).

The approach covers only the modelling and verification of user interfaces. The
user and the functional core are not modelled. Besides, the Interconnection Lan-
guage does not provide means to represent multi-modality, multi-touch interactions,
concurrent behaviour, or time.
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1.6.8.2 Verification

Properties are specified as predicates in Hoare logic, a formal system with a set of
logical rules for reasoning about the correctness of computer programs. Proofs are
constructed manually, even though investigations to mechanize the process have
been conducted (Bumbulis et al. 1995a). No usability properties are verified in this
approach. Instead, the approach permits functional properties to be verified, which
are directly related to the expected behaviour of the modelled UI.

No application to safety-critical systems was found in the literature. Besides, it is
not clear how to model more complex UIs in this approach, since UI components
are not always bound to each other. In addition, it is not clear how multiple UIs
could be modelled, neither the navigation modelling between such UIs. All these
aspects indicate that the approach does not scale well for larger applications.

1.6.9 Oliveira et al. (France 2012–2015)

1.6.9.1 Modelling

In Oliveira et al. (2015a), a generic approach to verifying interactive systems is
proposed, but instead of using interactors, interactive systems are described as a
composition of modules. Each system component is described as such a module,
which communicates and exchanges information through channels. This approach
allows plastic UIs to be analysed. Plasticity is the capacity of a UI to withstand
variations in its context of use (environment, user, platform) while preserving
usability (Thevenin and Coutaz 1999). In this approach, interactive systems are
modelled according to the principles of the ARCH architecture (Bass et al. 1991),
and using LNT (Champelovier 2010), a formal specification language derived from
the ELOTOS standard (ISO 2001). LNT improves LOTOS (ISO 1989) and can be
translated to LOTOS automatically. LOTOS and LNT are equivalent with respect to
expressiveness, but have a different syntax. In Paternó (1997), the authors point out
how difficult it is to model a system using LOTOS, when quite simple UI beha-
viours can easily generate complex LOTOS expressions. The use of LNT alleviates
this difficulty.

The approach enhances standard LTS to model interactive systems. An LTS
represents a system by a graph composed of states and transitions between states.
Transitions between states are triggered by actions, which are represented in LTS
transitions as labels. Intuitively, an LTS represents all possible evolutions of a
system modelled by a formal model. The approach enhances LTS by proposing the
ISLTS (Interactive System LTS) (Oliveira 2015), in which two new sets are added:
a set C of UI components and a set L of action names. In addition, the set A of
actions of standard LTS is enhanced to carry a list of UI components, representing
the UI appearance after the action is performed.
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The approach covers aspects of the users, the user interfaces, and the functional
core of the system. Data and events of the system can be modelled by the ISLTS,
but not the state of the system. The ordering of transitions of the LTS can represent
qualitative time between two consecutive model elements, and LNT contains
operators that allow concurrent behaviour to be modelled. Models described with
this approach were of WIMP-type, and no evidence was given about the ability of
the approach to deal with more complex interaction techniques such as multi-touch
or multi-modal UIs (especially, dealing with quantitative time required for fusion
engines).

1.6.9.2 Verification

The approach is twofold, allowing: usability and functional properties to be verified
over the system model (Oliveira et al. 2014). Using model checking, usability
properties verify whether the system follows ergonomic properties to ensure a good
usability. Functional properties verify whether the system follows the requirements
that specify its expected behaviour. These properties are formalized using the MCL
property language (Mateescu and Thivolle 2008). MCL is an enhancement of the
modal mu-calculus, a fixed point-based logic that subsumes many other temporal
logics, aiming at improving the expressiveness and conciseness of formulas.

Besides, different versions of UIs can be compared (Oliveira et al. 2015b). Using
equivalence checking, the approach verifies to which extent UIs present the same
interaction capabilities and appearance, showing whether two UI models are
equivalent or not. When they are not equivalent, the UI divergences are listed,
providing the possibility of leaving them out of the analysis (Oliveira et al. 2015c).
In this case, the two UIs are equivalent less such divergences. Furthermore, the
approach shows that one UI can contain at least all interaction capabilities of
another (UI inclusion). Three abstraction techniques support the comparison:
omission, generalization, and elimination. This part of the approach can be used to
reason of multi-modal user interfaces, by verifying the level of equivalence between
them.

The approach is supported by CADP (Garavel et al. 2013), a toolbox for veri-
fying asynchronous concurrent systems: systems whose components may operate at
different speeds, without a global clock to synchronize them. Asynchronous sys-
tems suit the modelling of human–computer interactions well: the modules that
describe the users, the functional core, and the user interfaces can evolve in time at
different speeds, which reflects well the unordered sequence of events that take
place in human–machine interactions. Both parts of the approach can be used either
independently or in an integrated way, and it has been validated in three industrial
case studies in the nuclear power plant domain, which indicates the potential of the
approach with respect to scalability (Oliveira 2015).
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1.6.10 Knight et al. (USA 1992–2010)

1.6.10.1 Modelling

Another example of the application of formal methods to safety-critical systems,
specifically, to the nuclear power plant domain, can be found in Knight and Bril-
liant (1997). The authors propose the modelling of user interfaces in three levels:
lexical, syntactic, and semantic levels. Different formalisms are used to describe
each level. For instance, the lexical level is defined using Borland’s OWL (Object
Windows Library), allowing data and events to be represented. The syntactic level
in the approach is documented with a set of context-free grammars with one
grammar for each of the concurrent, asynchronous dialogues that might be taking
place. Such syntactic level imposes the required temporal ordering on user actions
and system responses (Knight and Brilliant 1997). Finally, Z is used to define the
semantic level. The notion of user interfaces as a dialogue between the operator and
the computer system consisting of three components (lexical, syntactic, and
semantic levels) is proposed by Foley and Wallace (1974).

Each of these three levels is specified separately. Since different notations are
used, the communication between these levels is defined by a set of tokens (Knight
and Brilliant 1997). The concept of a multi-party grammar is appropriate for rep-
resenting grammars in which tokens are generated by more than one source (Knight
and Brilliant 1997). Such representation could allow multi-modality to be covered
by the approach. However, the authors have elected to use a conventional
context-free grammar representation together with a naming convention to distin-
guish sources of tokens (Knight and Brilliant 1997).

Following this view of user interface structure, the authors develop a formal
specification of a research reactor used in the University of Virginia Reactor
(UVAR) for training nuclear engineering students, radiation damage studies, and
other studies (Loer and Harrison 2000). In order to illustrate the specification layers,
the authors focus on the safety control rod system, one of the reactor subsystems.
They give in the paper the three specifications for this subsystem.

The approach is also applied to other safety-critical systems, such as the Mag-
netic Stereotaxis System (MSS), a healthcare application for performing human
neurosurgery (Elder and Knight 1995; Knight and Kienzle 1992). UIs, users, and
the functional core of systems are covered by this approach. The UI syntactic level
in their approach defines valid sequences of user inputs on the UIs, which is to
some extent the modelling of the users, and the cypher system case study described
in Yin et al. (2008) verifies the correctness of the functional core. Finally, the
approach covers the representation of dynamic reconfiguration (Knight and Bril-
liant 1997).
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1.6.10.2 Verification

However, the formal specification is not used to perform formal verification.
According to the authors, the main goal is to develop a formal specification
approach for user interfaces of safety-critical systems. Concerning verifiability, the
authors claim that the verification of a UI specification using this approach is
simplified by the use of an executable specification for the lexical level and by the
use of a notation from which an implementation can be synthesized for the syntactic
level. For the semantic level, they argue that all the tools and techniques developed
for Z can be applied (Knight and Brilliant 1997).

Later, a toolbox called Zeus is proposed to support the Z notation (Knight et al.
1999). The tool permits the creation and analysis of Z documents, including syntax
and type checking, schema expansion, precondition calculation, domain checking,
and general theorem proving. The tool is evaluated in a development of a relatively
large specification of an international maritime software standard, showing that
Zeus meets the expected requirements (Knight et al. 1999).

Following such a separation of concerns in three levels, the authors propose
another approach called Echo (Strunk et al. 2005), and this time applied to a case
study in the avionics domain. In order to decrease complexity with traditional
correctness proofs, the Echo approach is based on the refactoring of the formal
specification (Yin et al. 2009a, b), reducing the verification burden by distributing it
over separate tools and techniques. The system model to be verified (written in
PVS) is mechanically refactored. It is refined into an implementable specification in
Spark Ada by removing any un-implementable semantics. After refactoring, the
model is documented with low-level annotations, and a specification in PVS is
extracted mechanically (Yin et al. 2008). Proofs that the semantics of the refactored
model is equivalent to that of the original system model, that the code conforms to
the annotations, and that the extracted specification implies the original system
model constitute the verification argument (Yin et al. 2009a).

An extension of the approach is proposed in Yin and Knight (2010), aiming at
facilitating formal verification of large software systems by a technique called proof
by parts, which improve the scalability of the approach for larger case studies.

The authors did not clearly define the kinds of properties they can verify over
interactive systems with their approach. The case studies to which the approach is
applied mainly focused on the benefits of modelling UIs in three layers using formal
notation.

1.6.11 Miller et al. (USA 1995–2013)

1.6.11.1 Modelling

Also in the safety-critical domain, but in avionics, deep investigation has been
conducted at Rockwell Collins of the usage of formal methods for industrial
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realistic case studies. Preliminary usage of formal methods aimed at creating con-
sistent and verifiable system specifications (Hamilton et al. 1995), paving the way
to the usage of formal methods at Rockwell Collins. Another preliminary use of
formal methods was the usage of a synchronous language called RSML
(Requirements State Machine Language) to specify requirements of a flight guid-
ance system. RSML is a state-based specification language developed by Leveson’s
group at the University of California at Irvine as a language for specifying the
behaviour of process control systems (Miller et al. 2006). Algorithms to translate
specifications from this language to the input languages of the NuSMV model
checker and the PVS theorem prover have been proposed (Miller et al. 2006),
enabling one to perform verification of safety properties and functional require-
ments expressed in the CTL temporal logic (i.e. functional properties). Afterwards,
deeper investigations are conducted to further facilitate the usage of formal
methods.

According to Miller (2009), relatively few case studies of model checking to
industrial problems outside the field of engineering equipment are reported. One of
the reasons is the gap between the descriptive notations most widely used by
software developers and the notations required by formal methods (Lutz 2000). To
alleviate the difficulties, as part of NASA’s Aviation Safety Program (AvSP),
Rockwell Collins and the research group on critical systems of the University of
Minnesota (USA) develop the Rockwell Collins Gryphon Translator Framework
(Hardin et al. 2009), providing a bridge between some commercial modelling
languages and various model checkers and theorem provers (Miller et al. 2010).
The translation framework supports Simulink, Stateflow, and SCADE models, and
it generates specifications for the NuSMV, Prover, and SAL model checkers, the
ACL2 and PVS theorem provers, and generates C and Ada code (Miller et al. 2010)
(BAT and Kind are also included as target model checkers in Cofer et al. 2012).
Alternatively, Z specifications are also covered by the approach as an input lan-
guage, since Simulink and Stateflow models can be derived from Z specifications
(Hardin et al. 2009).

Algorithms to deal with the time dependencies were implemented in the trans-
lator, allowing multiple input events arriving at the same time to be handled (Miller
et al. 2006). Concerning the modelling coverage, the approach covers only the
functional core of the avionics interactive systems that were analysed (Combéfis
2013; Miller 2009; Miller et al. 2010), but not the user interfaces nor the user
behaviour.

Tools were also developed to translate the counterexamples produced by the
model checkers back to Simulink and Stateflow models (Cofer 2012), since for
large systems it can be difficult to determine the cause of the violation of the
property only by examining counterexamples (Whalen et al. 2008).
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1.6.11.2 Verification

The technique is applied to several case studies in avionics (Cofer 2012; Combéfis
2013; Miller 2009; Miller et al. 2010; Whalen et al. 2008). The first application of
the NuSMV model checker to an actual product at Rockwell Collins is the mode
logic of the FCS 5000 Flight Control System (Miller 2009): 26 errors are found in
the mode logic.

The largest and most successful application is the Rockwell Collins ADGS-2100
(Adaptive Display and Guidance System Window Manager), a cockpit system that
provides displays and display management software for commercial aircraft (Miller
et al. 2010). The Window Manager (WM) ensures that data from different appli-
cations are displayed correctly on the display panel. A set of properties that for-
mally expresses the WM requirements (i.e. functional properties) is developed in
the CTL and LTL temporal logic: 563 properties are developed and verified, and 98
design errors are found and corrected.

The approach is also applied to an adaptive flight control system prototype for
unmanned aircraft modelled in Simulink (Cofer 2012; Whalen et al. 2008). During
the analysis, over 60 functional properties are verified, and 10 model errors and 2
requirement errors are found in relatively mature models.

These applications to the avionics domain demonstrate that the approach scales
well. Even if the approach does not take user interfaces into account, it is a good
example of formal methods applied to safety-critical systems. In addition, further
investigations of the usage of compositional verification are conducted (Cofer et al.
2008; Murugesan et al. 2013), to enhance the proposed techniques.

1.6.12 Loer and Harrison et al. (Germany 2000–2006)

1.6.12.1 Modelling

Another approach to verifying interactive systems is proposed in Loer and Harrison
(2002, 2006), also with the goal of making model checking more accessible to
software engineers. The authors claim that in the avionics and automotive domains,
requirements are often expressed as statechart models (Loer and Harrison 2002).
With statecharts, a complex system can be specified as a number of potentially
hierarchical state machines that describe functional or physical subsystems and run
in parallel (Loer and Harrison 2000). Such parallelism could represent concurrent
behaviour. The ordering of events which change the machine from one state to
another can be used to represent qualitative time. Furthermore, in the statechart
semantics, time is represented by a number of execution steps, allowing to express
the formulation “within n steps from the current state…” (Loer and Harrison 2000).

To introduce formal verification in the process, they propose an automatic
translation from statechart models (created with the Statemate toolkit) to the input
language of the SMV model checker, which is relatively robust and well supported
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(Loer and Harrison 2006). Such translation is part of the IFADIS toolbox, which
also provides guided process of property specifications and a trace visualization to
facilitate the result analysis of the model checker.

Concerning the modelling coverage of the approach, the authors describe five
pre-defined elements in which the formal model is structured (Loer and Harrison
2000):

• Control elements: Description of the widgets of the UIs;
• Control mechanism: Description of the system functionality;
• Displays: Description of the output elements;
• Environment: Description of relevant environmental properties;
• User tasks: Sequence of user actions that are required to accomplish a certain

task.

Therefore, their model covers the three aspects we are analysing: the user, UIs,
and the functional core. However, aspects such as multi-modality and multi-touch
interactions are not covered.

1.6.12.2 Verification

The properties can be verified using Cadence SMV or NuSMV model-checking
tools. Depending on the type of property, the model checker can output traces that
demonstrate why a property holds or not (Loer and Harrison 2006).

The property editor helps designers to construct temporal-logic properties by
making patterns available and helping the process of instantiation (Loer and Har-
rison 2006). Temporal-logic properties can be specified either in LTL (linear
temporal logic) or in CTL (computational tree logic). The following usability
properties can be verified:

• Reachability (Loer and Harrison 2000): Are all the states reachable or not?
• Robustness (Loer and Harrison 2000): Does the system provide fallback

alternatives in the case of a failure? or, alternatively, are the guards for unsafe
states foolproof?

• Recoverability (Loer and Harrison 2000): Does the system support undo and
redo?

• Visibility of system status (Loer and Harrison 2000): Does the system always
keep the users informed about what is going on, through appropriate feedback
within reasonable time?

• Recognition rather than recall (Loer and Harrison 2000): Is the user forced
to remember information from one part of the dialogue to another?

• Behavioural consistency (Loer and Harrison 2006): Does the same input
always yield the same effect?
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In particular, the reachability property here is classified as a usability property
because it is defined as generic property, which can be applied to any interactive
system (i.e. “are all the states reachable or not?”). This is in contrast to the clas-
sification of the reachability property, for instance, where it is classified as a
functional property because it expresses what can be done at the UI, and how can it
be done, which is something that is usually defined in the system requirements.

Although the approach is not applied to many case studies (i.e. only to the
avionics domain Loer and Harrison 2006), several reasons indicate that the
approach scales well to real-life applications. The approach is supported by a tool
that provides a translation from engineering models (statecharts) to formal models
(SMV specifications), a set of property patterns to facilitate the specification of
properties, and a trace visualizer to interpret the counterexamples generated by the
model checker. It is used in the case study described in Loer and Harrison (2006),
and an evaluation shows that the tool improves the usability of model checking for
non-experts (Loer and Harrison 2006).

1.6.13 Thimbleby et al. (United Kingdom 1987–2015)

1.6.13.1 Modelling

In the healthcare domain, several investigations of medical device user interfaces
have been conducted at Swansea University and Queen Mary University of Lon-
don. Specifically, investigations are conducted on interactive hospital beds
(Acharya et al. 2010), for user interfaces of drug infusion pumps (Cauchi et al.
2012a; Masci et al. 2014a, 2015; Thimbleby and Gow 2008), and interaction issues
that can lead to serious clinical consequences.

Infusion pumps are medical devices used to deliver drugs to patients. Deep
investigation has been done of the data entry systems of such devices (Cauchi et al.
2012b, 2014; Gimblett and Thimbleby 2013; Li et al. 2015; Masci et al. 2011;
Oladimeji et al. 2011, 2013; Thimbleby 2010; Thimbleby and Gimblett 2011; Tu
et al. 2014). If a nurse makes an error in setting up an infusion (for instance, a
number ten times larger than the necessary for the patient’s therapy), the patient
may die. Under-dosing is also a problem: if a patient receives too little of a drug,
recovery may be delayed or the patient may suffer unnecessary pain (Masci et al.
2011).

The authors report several issues with the data entry system of such pumps
(Masci et al. 2014a). Several issues are detected (Masci et al. 2014a) using the
approach depicted in Fig. 1.7. In this approach, the C++ source code of the
infusion pump is manually translated into a specification in the PVS formal lan-
guage ([a] in Fig. 1.7).

Concerning the modelling coverage, the approach deals with the display and
functionality of the devices, but does not cover the modelling of the users
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interacting with such devices. In addition, no references were found describing the
modelling of concurrent behaviour, multi-modality, nor multi-touch interactions.

1.6.13.2 Verification

Usability properties such as consistency of actions and feedback are formalized ([b]
in Fig. 1.7) as invariants to be established using theorem proving:

• Consistency of actions: The same user actions should produce the same results
in logically equivalent situations;

• Feedback: It ensures that the user is provided with sufficient information on
what actions have been done and what result has been achieved.

A behavioural model is then extracted ([c] in Fig. 1.7), in a mechanized manner,
from the PVS formal specification. This model captures the control structure and
behaviour of the software related to the handling user interactions. Theorem prov-
ing is used to verify that the behavioural model satisfies the usability properties.
Lastly, the behavioural model is exhaustively explored to generate a suite of test
sequences ([d] in Fig. 1.7) (Masci et al. 2014a).

A similar approach is described in Masci et al. (2013a), in which the PVS
specification is automatically discovered (Gimblett and Thimbleby 2010; Thim-
bleby 2007a) from reversely engineering the infusion pump software. Besides,
functional properties are extracted from the safety requirements provided by the US
medical device regulator FDA (Food and Drug Administration), to make sure that
the medical device is reasonably safe before entering the market (Masci et al.
2013a). This approach allows quantitative time to be modelled and property such as
“The pump shall issue an alert if paused for more than t minutes” to be verified
(Masci et al. 2013a).

The same FDA safety requirements are used to verify a PVS formal model of
another device, the Generic Patient Controlled Analgesia (GPCA) infusion pump
(Masci et al. 2013a). In this work, the authors propose the usage of formal methods
for rapid prototyping of user interfaces. Once verified, the formal model of the
infusion pump is automatically translated into executable code through the PVS

Fig. 1.7 Verification approach using PVS, adapted from Masci et al. (2014a)
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code generator, providing a prototype of the GPCA user interface from a verified
model of the infusion pump.

An approach to integrating PVS executable specifications and Stateflow models
is proposed in Masci et al. (2014b), aiming at reducing the barriers that prevent
non-experts from using formal methods. It permits Stateflow models to be verified,
avoiding the hazards of translating design models created in different tools.

All the work mentioned in this subsection is based on the PVS theorem prover.
Nevertheless, model checking can also be used in order to formally verify medical
devices (Masci et al. 2011, 2015; Thimbleby 2007b). For example, the authors
model the Alaris GP in Masci et al. (2015), and the B-Braun Infusomat Space
infusion pumps in the higher-order logic specification language SAL (Symbolic
Analysis Laboratory) (De Moura et al. 2004). Afterwards, model checking is
applied to verify the predictability of user interfaces, a usability property expressed
in the LTL temporal logic. Predictability is defined in Masci et al. (2011) as “if
users look at the device and see that it is in a particular display state, then they can
predict the next display state of the device after a user interaction”.

The maturity of the approach described here and its applications to numerous
case studies are evidence that the approach scales well to real-life applications.

1.6.14 Palanque et al. (France 1990–2015)

1.6.14.1 Modelling

In Palanque and Bastide (1995), another approach is proposed to modelling and
verifying interactive systems with a different formalism: Petri nets (Petri 1962).
Being a graphical model, Petri nets might be easier to understand than textual
descriptions.

Originally, the work was targeting at modelling, implementation, and simulation
of the dialogue part of event-driven interfaces (Bastide and Palanque 1990); it
nowadays covers the modelling of the entire interactive system. Early notation was
called Petri nets with Objects (Bastide and Palanque 1990) (which belongs to the
high-level Petri nets class) and was an extension of Petri nets in order to manipulate
tokens which were references to objects (in the meaning the object-oriented para-
digm). This has been further extended over the years to the ICO (Interactive
Cooperative Object) formalism (Navarre et al. 2009) which permits applications to
be prototyped and tested but also can be fully implemented by integrating Java code
in the models.

A system described using ICOs is modelled as a set of objects that cooperate to
perform the system tasks. ICO uses concepts borrowed from the object-oriented
formalism (such as inheritance, polymorphism, encapsulation, and dynamic
instantiation) to describe the structural or static aspects of systems, such as its
attributes and the operations it provides to its environment.
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Through the Petri nets with Objects formalism, data, state, and events, as well as
concurrent behaviour, can be modelled. Dynamic reconfiguration of user interfaces
are proposed in Navarre et al. (2008), allowing operators to continue interacting
with the interactive system even though part of the hardware side of the user
interface is failing. Besides, the formalism also allows the modelling of low-level
behaviour of interaction techniques including multi-touch interactions (Hamon
et al. 2013). In the multi-touch context, new fingers are detected at execution time.
Thus, the description language must be able to receive dynamically created objects.
In Petri nets, this can be represented by the creation/destruction of tokens associated
with the objects (Hamon et al. 2013). The notation has been used to model WIMP
interfaces (Bastide and Palanque 1990) and post-WIMP ones including multi-modal
interaction with speech (Bastide et al. 2004), virtual reality (Navarre et al. 2005), or
bimanual interactions (Navarre et al. 2009).

Once the system is modelled using the ICO formalism, it is possible to apply
model checking to verify usability and functional properties. How modelling,
verification, and execution are performed using Petshop (for Petri net Workshop)
(Bastide et al. 2002, 2004) (the CASE tool supporting the ICO formal description
technique) is illustrated in Chap. 20 of this book.

This work allows the integration of two different representations: tasks models
and interactive systems models as described in Palanque et al. (1996). This inte-
gration was first done by describing task models constructs as Petri net structures.
This was first done using UAN notation (Hix and Hartson 1993) as demonstrated in
Palanque et al. (1996), allowing for the verification of compatibility between the
two representations using Petri net-based bisimulation (Bourguet-Rouger 1988).
Then, connection with CTT notation (Paternó et al. 1997) was made using scenarios
as a connection artefact (Navarre et al. 2001). Such work has been extended by
developing integration of models at the syntactic level allowing for co-simulation of
models (Barboni et al. 2010) and more recently using the HAMSTERS notation that
allows structuring of models (Martinie et al. 2011a) and enables explicit repre-
sentation of data, errors, and knowledge in task models (Fahssi et al. 2015). This
work focusses on the use of multiple models jointly as presented in Martinie et al.
(2014).

1.6.14.2 Verification

For instance, the following usability properties can be verified (Palanque and
Bastide 1995):

• Predictability: The user is able to foresee the effects of a command.
• Deadlock freedom: The impossibility for a user to get into a state where no

actions can be taken.
• Reinitiability: This is the ability for the user to reach the initial state of the

system.
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• Exclusion of commands: This means the commands which must never be
offered at the same time (or, on the contrary, must always be offered
simultaneously).

• Succession of commands: The proper order in which commands may be issued;
for instance, a given command must or must not be followed by another one,
immediately after or with some other commands in between.

• Availability: A command is offered all the time, regardless of the state of the
system (e.g. a help command).

The specification is verified using Petri net property analysis tools (Palanque
et al. 1996). In order to automate the process of property verification, the ACTL can
be used to express the properties, which are then proved by model checking the
Petri net marking graph (Palanque et al. 1999).

The ICO approach also permits user’s cognitive behaviour to be modelled by a
common Petri net for system, device, and user (Moher et al. 1996). As previously
mentioned, Petshop supports the design of interactive systems according to the ICO
methodology. Alternatively, the Java PathFinder model checker is used to verify a
set of properties on a safety-critical application in the interactive cockpit systems
modelled with ICO (Boyer and Moore 1983).

The approach has been applied to case studies and real applications in
safety-critical systems not only in the space domain (see, for instance, Bastide et al.
2003, 2004; Boyer and Moore 1983; Palanque et al. 1997) but also in the air traffic
management and more recently aircraft cockpits. These case studies and the
maturity of the tools show that the approach scales well to real-life applications.

However, the verification based on the Petri net properties has limitations
exposed in Navarre et al. (2009). The analysis is usually performed on the
underlying Petri net (a simplified version of the original Petri net). A drawback is
that properties verified on the underlying Petri net are not necessarily true on the
original Petri net. Thus, the results of the analysis are essentially indicators of
potential problems in the original Petri net. This is due to the fact that the team
involved in the ICO notation has not extended work for properties verifications in
Petri nets to encompass extensions (e.g. the use of preconditions).

1.6.15 Aït-Ameur et al. (France 1998–2014)

1.6.15.1 Modelling

An alternative approach is proposed in Aït-Ameur et al. (1998b, 1999, 2003a), this
time relying on theorem proving using the B method (Abrial 1996) to specify the
interactive system. The approach permits task models to be validated. Task models
can be used to describe a system in terms of tasks, subtasks, and their temporal
relationships. A task has an initial state and a final state and is decomposed in a
sequence of several subtasks.
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The approach uses the B method for representing, verifying, and refining
specifications. The authors use the set of events to define a transition system that
permits the dialogue controller of the interactive system to be represented. The CTT
(Concur Task Tree) notation (Paternó et al. 1997) is used to represent task models.
In Aït-Ameur et al. (2003a), only the CTT operator called “sequence” between
tasks is covered. In further work (Aït-Ameur et al. 2005a, b, 2009), the authors
describe how every CTT construction can be formally described in Event B (in-
cluding the concurrency operator) allowing to translate, with generic translation
rules, every CTT construction in Event B, which is the event-based definition of B
method.

The case study described in Aït-Ameur et al. (1998a) shows that the approach
covers the modelling of users, UIs, and the functional core. In this approach,
qualitative time can be modelled using the PRE THEN substitution, which allows
one to order operations (Aït-Ameur et al. 1998b). Multi-touch interactions are also
covered by modelling each finger as a machine, and by integrating these machines
(using the EXTENDS clause) in another machine that would represent the whole
hand used for interaction (Aït-Ameur et al. 1998b). However, there is no possibility
to account for quantitative time which is needed for the description of fine grain
interaction in multi-modal interactions.

1.6.15.2 Verification

This usage of Event B to encode CTT task models is described in several case
studies (Aït-Ameur et al. 2006; Aït-Ameur and Baron 2004, 2006; Cortier et al.
2007). In particular, the approach is used to verify Java/Swing user interfaces
(Cortier et al. 2007), from which Event B models are obtained. Such Event B
models encapsulate the UI behaviour of the application. Validation is achieved with
respect to a task model that can be viewed as a specification. The task model is
encoded in Event B, and assertions ensure that suitable interaction scenario is
accepted by the CTT task model. Demonstrating that the Event B formal model
behaves as intended comes to demonstrate that it is a correct refinement of the CTT
task model.

Moreover, the following usability properties can be verified:

• Robustness (Aït-Ameur et al. 2003b): These properties are related to system
dependability.

• Visibility (Aït-Ameur et al. 1999): It relates to feedback and information
delivered to the user.

• Reachability (Aït-Ameur et al. 1999): These properties express what can be
done at the user interface and how can it be done.

• Reliability (Aït-Ameur et al. 1999): It concerns the way the interface works
with the underlying system.

• Behavioural properties (Aït-Ameur and Baron 2006): They characterize the
behaviour of the UI suited by the user.
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The proof of these properties is done using the invariant and assertion clauses of
the B method, together with the validation of specific aspects of the task model (i.e.
functional properties), thus permitting a full system task model to be validated. The
Atelier B tool is used for an automatic proof obligation generation and proof
obligation checking (Aït-Ameur 2000).

In order to compare this theorem proving-based approach to
model-checking-based approaches, the authors show how the same case study is
tackled using both theorem proving (with Event B) and model checking (with
Promela/SPIN) (Aït-Ameur et al. 2003b). The authors conclude that both tech-
niques permit the case study to be fully described and that both permit robustness
and reachability properties to be verified. The proof process of the Event B-based
approach is not fully automatic, but it does not suffer from the state-space explosion
of model-checking techniques. The Promela-SPIN-based technique is fully auto-
matic, but limited to finite-state systems on which exhaustive exploration can be
performed. The authors conclude that a combined usage of both techniques would
strengthen the verification of interactive systems.

An integration of the approach with testing is also presented in Aït-Ameur et al.
(2004). Here, the informal requirements are expressed using the semi-formal
notation UAN (Hix and Hartson 1993) (instead of CTT), and the B specifications
are manually derived from this notation. To validate the formal specification, the
authors use a data-oriented modelling language, named EXPRESS, to represent
validation scenarios. The B specifications are translated into EXPRESS code (the
B2EXPRESS tool Aït-Sadoune and Aït-Ameur 2008). This translation gives data
models that represent specification tests and permits Event B models to be
animated.

The approach is applied to several case studies in the avionics domain (Aït-A-
meur et al. 2014; Jambon et al. 2001). Specifically, the authors illustrate how to
explicitly introduce the context of the systems in the formal modelling (Aït-Ameur
et al. 2014). The approach is also applied to the design and validation of multi-
modal interactive systems (Aït-Ameur et al. 2006, 2010a; Aït-Ameur and Kamel
2004). The numerous case studies and the maturity of the approach suggest that it
might scale to real-life applications even though no evidence was given in the
papers.

1.6.16 Bowen and Reeves (New Zealand 2005–2015)

1.6.16.1 Modelling

The main focus of the approach proposed by Bowen and Reeves is the use of
lightweight models of interfaces and interactions in conjunction with formal models
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of systems in order to bridge the gap between the typical informal UI design process
and formal methods (Bowen and Reeves 2007a). UIs are formally described using a
presentation model (PM) and a presentation and interaction model (PIM), while the
underlying system behaviour is specified using the Z language (ISO 2002). The
lightweight models allow UI and interaction designers to work with their typical
artefacts (prototypes, storyboards, etc.), and a relation (PMR) is created between the
behaviours described in the UI models and the formal specification in Z which gives
a formal meaning to (and therefore the semantics of) the presentation models. The
formal semantics also then enables a description of refinement to be given which
can guide the transformation from model to implementation. Again, this is given at
both formal and informal levels so can be used within both design and formal
processes (Bowen and Reeves 2006).

While the primary use of the models is during the design process (assuming a
specification-first approach), it is also possible to reverse-engineer existing systems
into the set of models. Most examples given of this rely on a manual approach,
which can be error-prone or lead to incomplete models. Some work has been done
on supporting an automated approach. Using a combination of dynamic and static
analysis of code and Java implementations has been investigated, and this allows UI
widgets and some behaviours to be identified which can be used to partially con-
struct models and support their completion (Bowen 2015).

The presentation model uses a simple syntax of tuples of labels, and the
semantics of the model is based on set theory. It is used to formally capture the
meaning of an informal design artefact such as a scenario, a storyboard, or a UI
prototype by describing all possible behaviours of the windows, dialogues, or
modes of the interactive system (Bowen and Reeves 2007a). In order to extend this
to represent dynamic UI behaviour, a PIM (presentation and interaction model) is
used. This is essentially a finite-state machine where each state represents one
window, dialogue, or mode (i.e. individual presentation model) of the system with
the transitions representing navigational behaviours. The PIM can be visualized
using the μCharts language (Reeve and Reeves 2000) which has its own Z
semantics (and which is based on statecharts) and which therefore enables a
complete model of all parts of the system to be created and ultimately translated
into Z.

Although the approach mainly focuses on modelling the user interfaces, the
presentation model can also be used to model the user operations. The main goal is
to ensure that all user operations described in the formal specification have been
described in the UI design, and again, the PMR is used to support this. The models
can also be used post-implementation to support testing. A set of abstract tests can
be generated from the presentation models which describe the requirements of the
UI widgets and behaviours, and these can then be concretized into testing frame-
works such as JUnit and UISpec4 J (Bowen and Reeves 2013).
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1.6.16.2 Verification

The approach has been applied to several case studies. In Bowen and Reeves
(2007b), the authors use the models in the design process of UIs for the PIMed tool,
a software editor for presentation models and PIMs. However, in this work, no
automated verification of the presentation model and the PIMs of the editor is
proposed. The formal models are manually inspected. For example, in order to
verify the deadlock freedom property, the authors use a manual walk-through
procedure in the PIMs. In later work (e.g. Bowen and Reeves 2012), the verification
is automated by the ProZ tool, allowing both usability properties and functional
properties to be verified using model checking. The kinds of usability properties
that can be verified are:

• Total reachability: One can get to any state from any other state.
• Deadlock freedom: A user cannot get into a state where no action can be taken.
• Behavioural consistency: Controls with the same behaviour have the same

name.
• Minimum memory load on user: Does not have to remember long sequences

of actions to navigate through the UI.

Another case study to which these formal models have been applied relates to a
safety-critical system in the healthcare domain (Bowen and Reeves 2012). Again,
the verification is supported using ProZ. The authors model a syringe pump, a
device commonly used to deliver pain-relief medication in hospitals and respite care
homes. The device has ten widgets, which include the display screen, eight soft
keys, and an audible alarm (multi-modality). Temporal safety properties and
invariants (to check boundary values) are verified against the formal models using
ProZ and LTL.

Typically, the generated PIMs are relatively small. This is because the number of
states and transitions are bounded by the number of windows/dialogues/modes of
the system rather than individual behaviours as seen in other uses of finite-state
machines. This abstraction of presentation models into states of PIMs prevents state
explosion and enables a combination of both manual and automatic verification (as
appropriate) with reasonably low overhead. The presentation models and system
specification are created manually as part of the development and specification
process. While the creation of models of systems can be seen as an additional
overhead to a development process, the benefits provided by both the creation and
the use of the models more than compensates for this later in the process. Once the
presentation models and PMR have been created, the PIM can be automatically
generated and translation between the models, μCharts, and Z is automated using
several tools. The individual models can be used independently or in combination
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to verify different aspects of the system under consideration. Most recently, this
work has focussed on safety-critical systems, and an example of this is given in
Chap. 6.

1.6.17 Weyers et al. (Germany 2009–2015)

1.6.17.1 Modelling

In Weyers (2012) and Weyers et al. (2012a), a formal modelling approach has been
proposed, which is based on a combination of the use of a domain-specific and
visual modelling language called FILL with an accompanied transformation algo-
rithm mapping FILL models onto a well-established formal description concept:
Petri nets. In contrast to the works by Bastide and Palanque (1990) who extended
basic coloured Petri nets to the ICO formalism, the modelling is done in a
domain-specific description, which is not used directly for execution or verification.
Instead, it is transformed into an existing formalism called reference net (Kummer
2002) (a special type of Petri net) providing a formal semantic definition for FILL,
making FILL models executable using existing simulators (e.g. Renew Kummer
et al. 2000) and offering the possibility for the application of verification and
validation techniques for Petri net-based formalisms. As a modelling approach,
FILL has been used in research on collaborative learning systems in which students
created an interface for simulating a cryptographic algorithm (Weyers et al. 2009,
2010b).

As the work focuses on the model-based creation of interactive systems and less
on the creation of formal models used for their verification as done in various
related works, Weyers (2015) extended the basic approach with concepts from
software development. The main extension, which is described in Chap. 5 of this
book, addresses a component-based modelling as it offers reusability of certain
components and capabilities to structure the overall model by means of functional
and conceptual entities. The latter enables the modeller to create more complex
(scalable) models and to be able to split the model into semantically meaningful
parts. It further offers the description of complex user interfaces, which are not
restricted to basic graphical user interfaces but include multi-user interfaces as well
as mobile and other interaction devices. This is covered by a software infrastructure
that offers capabilities to run mobile devices with models generated using FILL and
its associated transferred reference nets. All is embedded into a coherent software
tool called UIEditor (Weyers 2012).

An application context in which the component-based model description plays a
central role is that of gaze guiding as a job aid for the control of technical processes
(Kluge et al. 2014; Weyers et al. 2015). Gaze guiding as a method refers to a
technique for visualizing context-dependent visual aids in the form of gaze guiding
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tools into graphical user interfaces that guide the user’s attention and support her or
him during execution of a control task. Gaze guiding tools are visual artefacts that
are added to a graphical user interface in the case the user is expected to apply a
certain operation (according to a previously defined standard operating procedure),
but the system does not recognize this awaited input. This work facilitates the
component-based description as the model describing the behaviour of the gaze
guiding is embedded as a component into the user interface description. The model
specifies in which cases or context gaze guiding tools are faded into the user
interface.

1.6.17.2 Model Reconfiguration and Formal Rewriting

As the work by Weyers et al. does not focus on the verification of interactive
systems but on the modelling and creation of flexible and executable model-based
descriptions of such systems, a formal approach for the reconfiguration and
rewriting of these models has been developed. This enables the specification of
formal adaptation of the models according to user input or algorithmic specifica-
tions and makes the models flexible. In this regard, the main goal is to maintain the
formal integrity of a model during an adaptation. Formal integrity refers to the
requirement that an adaptation approach needs to be formally well defined as well
and keeps the degree of formality on the same level with that of the model
description. This should prevent any gaps in the formalization during adaptation of
a model and thus prevent the compromise of any following verification, testing, or
debugging of the rewritten model. Therefore, Weyers et al. (2010a, 2014) devel-
oped a reconfiguration concept based on pushouts, a concept known from category
theory for the rewriting of reference nets. Together with Stückrath, Weyers
extended a basic approach for the rewriting of Petri nets based on the so-called
double-pushout approach to a method for coloured Petri nets equipped with a
rewriting of XML-based specification of inscriptions (Stückrath and Weyers 2014).

The application of formal rewriting that is driven by the user has been investi-
gated in the context of the monitoring and control of complex technical and
safety-critical systems (Burkolter et al. 2014; Weyers et al. 2012a, b). In these
works, the reconfiguration of a given user interface for controlling a simplified
nuclear power plant was reconfigured by the user according to his or her own needs
as well as to the standard operating procedures which were presented. These
adaptations of the user interface include a change not only in the visual layout of
widgets but also in the functional behaviour of the interface using the rewriting of
the underlying reference net model. Operations were offered to the user, e.g., to
generate a new widget which triggers a combination of two existing operations. For
example, it was possible to combine the opening and closing of different valves into
one new operation, which was accessible through a new single widget, e.g. a
button. By pressing this button, the user was able to simultaneously open and close

40 R. Oliveira et al.



the dedicated valves with one click instead of two. Weyers et al. were able to show
that this individualization of a user interface reduces errors in the accompanied
control task. A detailed introduction into the rewriting concept is presented in
Chap. 10 of this book.

1.6.18 Combéfis et al. (Belgium 2009–2013)

1.6.18.1 Modelling

In Combéfis (2013), a formal framework for reasoning over system and user models
is proposed, and the user models can be extracted from user manuals. Furthermore,
this work proposes the automatic generation of user models. Using his technique,
“adequate” user models can be generated from a given initial user model. Adequate
user models capture the knowledge that the user must have about the system, i.e. the
knowledge needed to control the system, using all its functionality and avoiding
surprises. This generated user model can be used, for instance, to improve training
manuals and courses (Combefis and Pecheur 2009).

In order to compare the system and the user model and to verify whether the user
model is adequate to the system model, both models should be provided. With this
goal, in this approach system and user are modelled with enriched labelled tran-
sition systems called HMI LTS (Combéfis et al. 2011a). In HMI LTS, three kinds of
actions are defined (Combéfis et al. 2011a):

• Commands: Actions triggered by the user on the system;
• Observations: Actions triggered by the system, but that the user can observe;

and
• Internal actions: Actions that are neither controlled nor observed by the user.

To be considered “adequate”, user models are expected to follow two specific
properties: full control and mode-preserving. Intuitively, a user model allows full
control of a system if at any time, when using the system according to the user
model (Combefis and Pecheur 2009): the commands that the user model allows are
exactly those available on the system; and the user model allows at least all the
observations that can be produced by the system (Combefis and Pecheur 2009).
A user model is said to be mode-preserving according to a system, if and only if, for
all possible executions of the system the users can perform with their user model,
given the observation they make, the mode predicted by the user model is the same
as the mode of the system (Combefis and Pecheur 2009). Model checking is used to
verify both properties over the user model.
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Concerning the approach’s coverage regarding modelling, the users, the user
interfaces, and the functional core are modelled and compared to each other, the
user model being extracted from the user manual describing the system. However,
there is no indication that the approach supports concurrent behaviour,
multi-modality, or multi-touch interactions.

1.6.18.2 Verification

The verification goal of this approach is to verify whether the user model is ade-
quate to the system model, rather than to verify properties over the system model. In
order to automatically generate adequate user models, the authors propose a tech-
nique based on a derivative of weak bisimulation, in which equivalence checking is
used (Milner 1980). This is called “minimization of a model modulo an equivalence
relation”. Intuitively, using equivalence checking, they generate a user model U2

from the initial user model U1; that is, U2 is equivalent to U1 with respect to specific
equivalence relations introduced by the authors.

Two equivalence relations are proposed: full-control equivalence and
mode-preserving equivalence. Full-control equivalence distinguishes commands
and observations: two equivalent states must allow the same set of commands, but
may permit different sets of observations. Minimization modulo this equivalence
produces a minimal user model that permits full control of the system.
A mode-preserving equivalence is then derived from the full-control equivalence,
by adding an additional constraint that the modes of two equivalent states must be
the same (Combefis and Pecheur 2009). Using these equivalence relations, the
authors can generate mode-preserving fully controlled user models, which can then
be used to design user interfaces and/or training manuals. Both properties (i.e.
mode-preserving and full control) and their combination are interesting because
they propose that different levels of equivalence can be shown between system
models.

A tool named jpf-hmi has been implemented in Java and uses the Java Pathfinder
model checker (Combéfis et al. 2011a), to analyse and generate user models. The
tool produces an LTS corresponding to one minimal fully controlled mental model,
or it reports that no such model exists by providing a problematic sequence from the
system (Combéfis et al. 2011a).

The approach is applied to several examples that are relatively large (Combéfis
et al. 2011b). In the healthcare domain, a machine that treats patients by admin-
istering X-ray or electron beams is analysed with the approach, which detects
several issues in the system. In the avionics domain, the approach is applied to an
autopilot system of a Boeing airplane (Combéfis 2013), and a potential-mode
confusion is identified. These are evidence that the approach scales well to real-life
applications.
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1.6.19 Synthesis

This section presents a representative list of approaches to verifying interactive
systems with respect to the specifications, i.e. general statements about the beha-
viour of the system, which are represented here as desired properties, and analysed
afterwards using formal methods. The approaches diverge on the formalisms they
use for the description of interactive systems and for the specification of properties.

Some authors use theorem proving to perform verification, which is a technique
that can handle infinite-state systems. Even though a proof done by a theorem
prover is ensured to be correct, it can quickly become a hard process (Bumbulis
et al. 1995b): the process is not fully automated, and user guidance is needed
regarding the proof strategy to follow. Simulation can also be used to assess the
quality of interactive systems. Simulation provides an environment for training the
staff before starting their daily activities (Martinie et al. 2011b). However, simu-
lated environments are limited in terms of training, since it is impossible to drive
operators into severe and stressful conditions even using a full-scale simulator
(Niwa et al. 2001). Simulation explores a part of the system state space and can be
used for disproving certain properties by showing examples of incorrect behaviours.
To the contrary, formal techniques such as model checking and equivalence
checking consider the entire state space and can thus prove or disprove properties
for all possible behaviours (Garavel and Graf 2013).

The presented approaches allow either usability or dependability properties to be
verified over the system models. We believe that in the case of safety-critical
systems, the verification approach should cover both such properties, due to the
ergonomic aspects covered by the former and the safety aspects covered by the
latter. Some approaches cover the modelling of the users, the user interfaces, and
the functional core.

1.6.20 Summary

A representative list of approaches for describing and assessing the quality of
interactive systems has been presented in this chapter.

Different formalisms are used in the system modelling (and property modelling,
when applied). Numerous case studies have shown that each formalism has its
strengths. The criteria to choose one over another would be more related with the
knowledge and experience of the designers in the formalisms. Different formal
techniques are employed, such as model checking, equivalence checking, and
theorem proving. Most of the works presented here are tool supported, even though
some authors still use manual inspection of the models to perform verification.
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Tables 1.1 and 1.2 below summarize these approaches: the former gives an
overview of the modelling coverage of the approaches, and the latter an overview of
their verification capabilities. It is important to note that those tables are only meant
at summarizing what has been presented. The cells of Table 1.1 are coloured
according to the information found in papers. An empty cell does not mean that this
aspect cannot be addressed by the notation; it only means that no paper has made
that information explicit. Indeed, the presentation in the sections usually contains
more details than the summary table.

Table 1.1 Modelling coverage of the approaches

Agent language 
(Abowd et al.)

PPS-based  
(Abowd et al.)

Red-PIE  
(Dix et al.)

TLIM  
(Paterno et al.)

ADC  
(Markopoulos et al.)

York 
(Duke et al.)

MAL  
(Campos et al.)

Lustre-based  
(d’Ausbourg et al.)

IL-based 
(Bumbulis et al.)
LNT-based  
(Oliveira et al.)

ECHO  
(Knight et al.)

Gryphon 
(Miller et al.)
IFADIS  
(Loer et al.)
PVS-based  
(Thimbleby et al.)
ICO  
(Palanque et al.)

B-based  
(Aït-Ameur et al.)

PM, PIM  
(Bowen et al.)
HMI LTS  
(Combéfis et al.)
FILL 
(Weyers et al.)
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B-based 
(Aït-Ameur et al.)

PM, PIM 
(Bowen et al.)

HMI LTS
(Combéfis et al.)

FILL 
(Weyers et al.) 
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Chapter 2
Topics of Formal Methods in HCI

Judy Bowen, Alan Dix, Philippe Palanque and Benjamin Weyers

Abstract In this chapter, we present an overview of some of the general themes

and topics that can be seen in research into formal methods in human–computer

interaction. We discuss how the contents of the rest of the book relate to these topics.

In particular, we show how themes have evolved into particular branches of research

and where the book contents fit with this. We also discuss the areas of research that

are relevant, but are not represented within the book chapters.

2.1 Introduction

This chapters of this book are organised into three sections: modelling, execution,

and simulation; analysis, validation, and verification; and future opportunities and

developments. These represent specific themes of intended use under which we can

group the work presented. While these (somewhat) broad groupings provide a par-

ticular categorisation, there are wider topics of interest we can describe when we
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consider the literature of formal methods in HCI, under which the chapters of this

book can also be considered.

HCI is in itself a broad topic and covers aspects of humans and their cognitive

and physical capabilities, as well as machines and interface design at varying levels

of detail. HCI must also consider the combination of these two things. When we

introduce formal methods into the process, they may similarly be used for some, or

all, of these considerations. Formal methods are also used in different ways across

the HCI topics, and this is typically driven by the rationale behind the method being

used and the purpose of its use within the process. While the benefits of using formal

methods across all parts of the design process may be more obvious when working

in safety-critical domains (health care, finance, transport, power generation, to name

but a few), there is much to be gained from specific applications of use in other

domains too, particularly when we consider the increasing levels of sophistication

of both interfaces and interaction techniques as well as the ubiquity of such systems

in the modern world. We can see examples of each of these approaches in the chapters

that follow.

While it may appear that the differences between the HCI practitioner and the

formal method practitioner are many, this is primarily an artefact of the approaches

they use. In fact, both approaches have a common goal: the ability to reason about the

software under construction in order to ensure it satisfies some set of requirements.

Whether these requirements are expressed formally (as a specification for example)

or as a set of user goals and tasks is then irrelevant, the point is to have some mech-

anism for ensuring these are met, and it is here that the use of formal methods for

HCI becomes more obvious.

In the early years of research into formal methods for HCI, several approaches

were developed which were based upon the use of existing formal methods and lan-

guages which were then applied to the topics of UI design and HCI, for example

Jacky’s use of Z to describe the interface to a radiation machine (Jacky 1997). Spe-

cialised approaches for interactive elements were developed, but still based on exist-

ing formalisms, such as the description of interactors in Z (Bramwell et al. 1995),

VDM (Doherty and Harrison 1997), Lotos (Paternò et al. 1995), etc. This subse-

quently led to the development of new formalisms, or extensions to existing lan-

guages and notations, which were more suited for considerations of the user inter-

face, interactions, and human users. While the design process for interfaces and inter-

actions typically focuses on creating shared artefacts that can be used to communi-

cate with all stakeholders in the process (as we would see in a typical user-centred

design approach), this does not mesh naturally with the notations required for a more

formal process.

Research into formal methods for HCI provides ways of supporting the devel-

opment of interactive systems at differing levels of rigour and formality so that we

gain the advantages that come from a more formal approach, while recognising the

differences in process required when we must also consider users and interactions.

While the nature of interfaces and types of interaction has changed considerably in

the intervening years, many of the crucial factors in ensuring reliability, usability,

safety, and soundness (e.g.) have not.
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In this chapter, we consider topics of formal methods and HCI more generally

and discuss how this has influenced work in the domain. We also describe how the

chapters presented in the rest of the book contribute to these themes and build on the

existing body of work.

2.2 Describing the Human User of Interactive Systems

HCI methods used to understand the human user have many of their roots in the

disciplines of psychology, ergonomics, and pedagogy, as they seek to understand

human capabilities (cognitive and physical) in order to design interactive systems

that are usable and learnable, and which support the required tasks. While the com-

plexity of human thought and behaviour in combination with proposed interactions

may seem like a good fit for the use of formal methods, it is not without its chal-

lenges. One of the main problems faced when trying to formalise the user and their

behaviour is that of unpredictability: we can never be certain what the user will do,

and we can only surmise how they might behave. Typically then, most approaches

abstract the problem by defining particular aspects of human behaviour rather than

trying to capture full details of a user’s thought process, understanding, motivations,

and memory. These more abstract representations of users can then be used in con-

junction with a model of a UI, or proposed set of interactions, to try and find areas

of system interaction that may be problematic for a user and therefore more likely to

lead to erroneous behaviour.

In Curzon and Blandford (2002), Curzon and Blandford used formal models of

user cognition and actions. These are defined as rational actions a user will take to

achieve a goal (so abstract away from random or malicious behaviours). The method

is concerned with generic user models and examines how users may make mistakes

in particular interfaces and how specific design rules would prevent this. This work

has been developed over the years (and has its own basis in the earlier programmable

user model concepts (Butterworth and Blandford 1997)), forming the foundation for

several research approaches to user modelling. An example can be seen in Chap. 8,

which builds on these models to develop the notion of user salience and then com-

bines this with activation theory to try and predict likelihood of user error for partic-

ular designs. This enables a comparison of different designs so that those less likely

to be problematic for users can be selected.

While the approach of Chap. 8 considers the user in terms of actions that are

related to their goals and tasks, these are distinct from any model of the interactive

system (allowing different combinations to then be considered). In contrast, Chap. 13

shows how human behaviour can be incorporated into larger formal models of the

system to support verification. Here, the user behaviour (or the behaviour of several

users) is described as a collection of tasks which are composed of a hierarchy of

activities and actions. This is an example of how a well-used HCI technique (task

analysis) can be enhanced through a formal approach (we will see the use of task

http://dx.doi.org/10.1007/978-3-319-51838-1_8
http://dx.doi.org/10.1007/978-3-319-51838-1_8
http://dx.doi.org/10.1007/978-3-319-51838-1_13
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analysis in several of the chapters) and then subsequently be used to build larger

combined models of the system and interface/interactions (a theme that is revisited

in Chap. 6).

Another use of task analysis, in this case task decomposition, is presented in

Chap. 11 which describes how to create mental models from task decompositions

for the purpose of assisting users in learning and using an interactive system. Again,

there is an abstraction of user behaviour, in this case into rational task decomposi-

tion. However, this is different from the approach mentioned above in terms of the

use of formal methods. Rather than using them to support design decisions or sys-

tem verification, here the unambiguity supports a structured approach to guiding the

use of the system. In common with the work above though, the starting point is the

human user and the actions they can perform.

2.3 Formal Methods for Specific Types of Interactive
Systems

Although we talk about interactive systems collectively as if they are all essentially

the same, there are of course vast differences between these systems, ranging from

single-user desktop-based systems to multi-user mobile adaptive systems, and every-

thing in between. These differences, and their inherent complexities, have led to

another strand of research in the use of formal methods for interactive systems which

is to assist with reasoning about these different types of interface, interaction, and

use type. We still see elements of user modelling in this work (particularly where the

concern is multi-user systems), but typically the primary focus is on aspects of the

interaction design itself.

Adaptive, context-aware, and plastic interfaces are good examples of categories

of interface that lend themselves to formal analysis. The designer must be able to

reason about how, and when, the interface changes to suit its context of use or plat-

form. These types of UI are the focus of several different approaches. We see some

examples of this in Chaps. 5, 7, 12, and 18 which demonstrate the range of different

methods which can be used in this area. The notion of transformation of interfaces

(either for plasticity or adaptivity) has a long history, much of it related to the use

of XML-based languages such as XIML (Puerta and Eisenstein 2002) or USIXML

(Limbourg et al. 2004) which have subsequently been incorporated into larger groups

of tools (e.g. Michotte and Vanderdonckt 2008) or development frameworks such as

TERESA (Correani et al. 2004).

There are other transformation approaches that have been developed, some based

on more traditional refinement concepts from formal methods (see, e.g. Bowen and

Reeves 2009; Oliveira et al. 2015) and others which combine several approaches,

such as that of Chap. 10 which is based on Petri nets, category theory, and graph

rewrite rules. There are also considerations beyond the interface which must be rea-

soned about when we investigate context-aware systems, and works such as Abi-Aad

http://dx.doi.org/10.1007/978-3-319-51838-1_6
http://dx.doi.org/10.1007/978-3-319-51838-1_11
http://dx.doi.org/10.1007/978-3-319-51838-1_5
http://dx.doi.org/10.1007/978-3-319-51838-1_7
http://dx.doi.org/10.1007/978-3-319-51838-1_12
http://dx.doi.org/10.1007/978-3-319-51838-1_18
http://dx.doi.org/10.1007/978-3-319-51838-1_10
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et al. (2003) and Costa et al. (2006) address this by describing models of the con-

text itself, which can then be used in combination with system models. A different

approach to formally modelling the context of use is also demonstrated in Chap. 12

where it is the combination of context model with interaction model that is used to

determine suitability of a system under a particular set of circumstances.

While consideration of specific types of interactive systems is based on properties

of the system itself, we can also consider types of UI under the umbrella of their use-

domain, for example safety-critical systems. While these may be intended for use

in very different use-scenarios (aircraft cockpits, medical devices, driverless trains,

banking systems, etc.), they share common requirements. There are aspects of these

systems which can potentially lead to serious loss or harm and as such we apply

formal methods to such systems in order to reason about the safety criteria.

Although the focus of the chapters in this book is on the case studies presented

in Chap. 4 (two of which are, of course, safety-critical applications), several of the

chapters describe work which has been used in other safety-critical domains. Chap-

ters 6, 8, 12, 13, and 14, for example, present work which has been used with medical

devices, and the methods described in Chaps. 17 and 20 have been used in aircraft

cockpit specifications.

Not all systems and interfaces are used by individuals. In complex systems, it is

common for several users to work on individual interfaces which are all part of the

same system. Systems which enable collaboration of users (or which provided mech-

anisms for collaboration) are sometimes termed ‘groupware’ or more commonly now

‘multi-user systems’. These come under the umbrella of ‘computer-supported coop-

erative work’ (CSCW) where the users, and use, are often considered along dimen-

sions such as synchronous or asynchronous and colocated or remote. This matrix,

first described in detail in Baecker et al. (1995), is the basis for several frameworks

which were developed to help manage the design of such systems, see Greenberg

(1996), Guicking et al. (2005), Antonaya and Santos (2010) for example.

Dealing with several users and multiple interfaces increases the difficulty when

trying to ensure the system will behave as expected. As such, it is not surprising

that this attracts the attention of formal practitioners. An example of such a system

is seen in Chap. 15 where multiple interfaces in an air traffic control domain are

modelled as multi-agent systems to consider human–machine, human–human, and

machine–machine interactions.

Another way to approach this problem is to develop interface models which are

modular and can therefore be composed (to develop the sort of system above) or

exchanged and reused to either develop new systems from existing components or

update parts of a system and be sure that certain behaviour is preserved. An example

is shown in Chap. 5 where the appearance elements of the interface and the inter-

action logic are modelled separately to enable either (or both) to be considered as

components of a larger system.

A factor of these more complex systems is that there are often elements of automa-

tion at play, which can themselves be considered as a type of interaction, and must

certainly be reasoned about, in conjunction with the human user, in order to fully

understand how such a system might behave. Chapter 7 discusses this showing how

http://dx.doi.org/10.1007/978-3-319-51838-1_12
http://dx.doi.org/10.1007/978-3-319-51838-1_4
http://dx.doi.org/10.1007/978-3-319-51838-1_6
http://dx.doi.org/10.1007/978-3-319-51838-1_8
http://dx.doi.org/10.1007/978-3-319-51838-1_12
http://dx.doi.org/10.1007/978-3-319-51838-1_13
http://dx.doi.org/10.1007/978-3-319-51838-1_14
http://dx.doi.org/10.1007/978-3-319-51838-1_17
http://dx.doi.org/10.1007/978-3-319-51838-1_20
http://dx.doi.org/10.1007/978-3-319-51838-1_15
http://dx.doi.org/10.1007/978-3-319-51838-1_5
http://dx.doi.org/10.1007/978-3-319-51838-1_7
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explicit system automated behaviours can be identified using activity modelling,

whereas in Chap. 19, we see how interconnection of small interactive systems (in

this case apps) can be described to consider how they might usefully be connected.

2.4 Descriptions of the Modelling Process
and Supporting Tools

Not all formal modelling is aimed at specific design purposes as shown above. There

is a body of work where the focus is on suitable models for interactive systems (the

hows, whys, and wherefores) where the models can be used more generally across the

design process. Some of these focus on aspects such as model-checking, verification,

and validation with the aim of showing how these can be applied in the domain of

interactive systems. These can be used for ensuring safety properties are met (in

critical systems, for example Loer and Harrison 2002; Bowen and Reeves 2013) or

to explicitly manage error-prone interaction types that may occur in many systems,

such as number entry (Thimbleby 2015).

These general modelling approaches have to tackle the problem of separation of

concerns between interface and functional elements, while at the same time manag-

ing the relationship between the two. This can be done either by explicitly separating

the two parts within the modelling (as we see, for example, in Chaps. 6 and 14), or by

focussing on properties of the interactive components which can then be considered

as a separate entity, as in the approach shown in Chap. 9.

Going beyond the standard formal approaches of model-checking and verifica-

tion and moving into the domain of code generation has also been considered. In

some ways, UIs are well suited for such automation as specific widgets and layout

types can be derived from models (see, for example Eisenstein and Puerta 2000).

However, there are also known problems with fully automating the interface design

process as typically the aesthetics suffer and usability and appearance may also be

compromised.

It can be problematic to introduce new languages into the design process as they

may not suitable for supporting the necessary collaboration between design team and

end-user. As such, visual notations or domain-specific languages may be more suited

in these environments. Chapter 16 addresses this problem by discussing domain-

specific languages and shows how these can be used in interactive system develop-

ment as a more intuitive solution for experts in the field (as opposed to experts in

formal methods). Similarly, the use of support tools to simplify the inclusion of for-

mal methods into design is another way to try and reduce the gulf of understanding.

This is seen in the earlier discussed work on XML-based languages which incor-

porates a number of different design tools to make such integration easier and is

represented here in Chap. 18 which describes tools which support task and interface

modelling at different levels of abstraction.

http://dx.doi.org/10.1007/978-3-319-51838-1_19
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2 Topics of Formal Methods in HCI 63

2.5 Summary

Finally, beyond the practical modelling approaches, tools, and methods which are

presented, there is also reflective work which seeks to consider some of the larger

encompassing challenges that all such work must address. For example, just as the

interactive systems we develop must be useful and usable for their intended use-

groups, so too the methods and design models we create must similarly be useful

within the design process and understandable by designers. The models and for-

malisms we use also have different types of users (designers, developers, end-users,

etc.). We must also ensure that they are appropriate for each user and perhaps pro-

vide different views (via visualisations for end-users of specifications for software

engineers e.g.) of the models created. Two chapters in this book address this issue,

Chap. 17 from the perspective of usability of verification tools, while Chap. 20 con-

siders the gaps which may still be present, however thorough the specification and

verification process may be.

The characterisations of the work presented in this book via the topics of the

four sections are not necessarily that clear cut. Similarly, the work discussed in this

chapter encompasses many different topics of the book chapters rather than being

neatly segregated as described. The intention is to show some of the common themes

that exist in formal methods and HCI research and provide an overview of how the

chapters support these, rather than imply that all of the work fits exactly under just

these headings.

Not all of the topics and areas that can be identified are represented in this book.

This is hardly surprising as the domains of both HCI and formal methods continue

to grow and expand almost as quickly as the systems they describe. Some of the

areas not covered here can be found in the proceedings of relevant conferences such

as (EICS, INTERACT, CHI, FM, ICFEM, etc.) and are also discussed further in

Chap. 3.
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Chapter 3
Trends and Gaps

Alan Dix, Benjamin Weyers, Judy Bowen and Philippe Palanque

Abstract This chapter attempts to identify future research directions for formal
methods in HCI. It does this using two main approaches. First, we will look at
trends within HCI more broadly and the challenges these pose for formal methods.
These trends in HCI are often themselves driven by external technical and societal
change, for example the growth of maker/hacker culture and the increasing
dependence of basic citizenship on digital technology, effectively establishing
external requirements for the field. Second, we will look inwards at the FoMHCI
literature, the user interaction phenomena it is trying to address and the processes of
interaction design it is intended to support. Through this second analysis, we will
identify internally generated trends. This does not lead to a single overarching
research agenda but does identify a number of critical areas and issues, and hence
establishes opportunities for further research to expand the state of the art.
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3.1 Introduction

This book attempts to capture a snapshot of the state of the art of research in formal
methods in human–computer interaction. In this chapter, we ask where it is going
and where it could go. Where are the gaps, the opportunities and the challenges for
the next decade?

The first part of the chapter looks outward, at broader changes in HCI, how
technology and the role of technology is changing, from big data and the Internet of
Things to the pivotal role of information technology in modern society.

The second looks more inward at the role of formalism: which aspects of user
interaction are being studied and modelled, how formal methods fit into and are
addressing different parts of the design and deployment process, and how the
techniques and methods within formal methods in HCI are changing.

For each issue, we attempt to identify the challenges this poses for formal
methods research in HCI and so create a road map, especially for those starting in the
field looking for open questions and avenues for theoretical and practical research.

3.2 HCI Trends

The roots of HCI can be traced back many years, indeed the first true HCI paper was
Brian Shackel’s ‘Ergonomics for a Computer’ in (1959); however, the discipline
formed properly in the 1980s including the foundation of many of the major inter-
national conferences. The study of formal methods in HCI can be traced back to this
same period including Reisner’s (1981) use of BNF, Sufrin’s (1982) Z specification
of a display editor and the first PIE paper (Dix and Runciman 1985).

This flowering of HCI research of all kinds was closely aligned to the growth of the
personal computer, which moved computing from the domain of a few technical
specialists behind sealed doors, to ordinary professionals on their desktops. In the
intervening thirty-five years, both technology and the use of technology have changed
dramatically.Many of the old concerns are still important today, but there are also new
directions in HCI and these create new challenges for the use of formal methods.

In this section, we will trace some of those trends based largely on a recent JVLC
article that examined future trends of HCI (Dix 2016). We will then use these general
HCI trends to highlight some of the formalisation challenges they present. The trends
are divided into three kinds: changing user interaction, changing technology, and
changing design and development. Of course, these are not independent; indeed, as
noted, the whole discipline of HCI effectively grew out of a particular technological
change, the introduction of the desktop computer, and this close interplay between
technology and use has continued. While available technology does not necessarily
determine the use of that technology, it certainly makes new things possible.
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3.2.1 Changing User Interaction

The use of computation has evolved from the desktop to virtually every aspect of
our day-to-day lives.

Choice and ubiquity—In the early days of HCI, computers were largely used as
a part of work, your job and employer largely dictated whether you used a computer
and, if so, the hardware or software you used. The justifications for usability were
therefore essentially about the efficiency of the workforce. The rise of home
computing in the 1990s, and particularly the growth of the Internet in the early
2000s, meant that the range of users was far wider, and furthermore, the users were
customers and had choice—if applications were not usable and enjoyable, they
would be rapidly dumped! This process has continued as prices and form factors
have made computing (in some form) available to ever-wider groups worldwide.
However, in recent years, this ubiquity has meant that computer access is assumed.
In commerce, Internet shopping is not only commonplace, but it is usually the
cheapest way to obtain many items; for example, online check-in can be far cheaper
than at the airport. In civic society, e-Government services are not only common,
but some countries are seeking to make them the only way to access certain ser-
vices, for example, in the UK, the so-called universal benefits, which integrate
many kinds of different welfare payments, can only be accessed via an Internet
portal, despite low levels of digital literacy among precisely the social groups who
are likely to be claimants (Citizens Advice Bureau 2013; Sherman 2013). That is
computer, and in particular Internet, services are beginning to underpin society, so
that digital exclusion becomes social exclusion; use is no longer a choice but a
necessity for participation in civic society.

Formal challenges: The change from optional to necessary use of digital ser-
vices makes it more important to be able to deal with all kinds of people and also
limited digital access. One of the strengths of formal methods is that it can help us
analyse and design for situations and people we do not naturally experience or
understand. The way this works out for people and for devices and contexts is
explored in the next two trends.

Diverse people—HCI has always had strands that focus on those who are dif-
ferent from the ‘norm’: those with varying abilities and disabilities, different cul-
tures or different ages. Of course, this ‘norm’ has been contested; for example, the
tendency to use undergraduate students as the principal subjects in experiments has
meant that what is assumed to be universal human behaviour turns out to be very
biased towards Western culture (Henrich et al. 2010). Proponents of universal
design have long argued that we are all ‘disabled’ under certain circumstances, for
example effectively blind to dials and controls while our visual attention is on
driving, and therefore that if design that is good for those with some form of
perceptual, motor or cognitive disability is in fact design that is good for all.
Although for many years forms of anti-discrimination legislation have made ‘design
for all’ mandatory, it has still remained a marginal area.
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This has long been problematic, but now, because computation is becoming
essential for day-to-day life, it is impossible to ignore. The necessity of access
combined with ageing populations in many countries means that universal access is
now essential. This is exacerbated in many countries where ageing populations mean
that some levels of perceptual, motor or cognitive impairment are now ‘normal’ and
universally where broadening societal use includes those with low digital literacy
and indeed low literacy, including the so-called next billion users in the developing
world. Increasingly, we need to consider those at the social, geographic and eco-
nomic margins, not just the professional ‘class A/B’ users of the 1980s.

Formal challenges: Within the formal methods community, work on
multi-modal systems and various forms of model-based interfaces (e.g. Chap. 18;
Coutaz 2010; Meixner et al. 2011), go some way to addressing these issues. In
professional development, internationalisation is a normal practice for product
delivery, and ability checklists are used to tune technology to individual abilities
(Dewsbury and Ballard 2014; Whittington and Dogan 2016). The latter are often
‘formal’ in the sense that they have codified knowledge, but whereas most work on
formal methods is based around relatively complex analysis of relatively simple
specifications, practical development has relatively large corpora of codified
knowledge, but with very simple, tick-box-style reasoning.

There are clear opportunities to create user models that encompass the wide
variations in human abilities, and formal technical challenges to combine the kinds
of codified knowledge already available with other forms of formal reasoning.

Diverse devices and contexts—The mobile-first design philosophy has for some
time emphasised that for majority users mobile devices may be their principal, or in
the case of the ‘next billion’ possibly first and only, access to computation. Com-
mercially, the growing range of devices commonly used now includes smartphones,
tablets, smart TV, game consoles, and public displays as well as various forms of
laptop or desktop computers. Perhaps as important, when we look at need for uni-
versal access ‘at the margins’, we have to consider poor network connectivity, ‘last
generation’ technology and in many areas intermittent or total lack of power.

Formal challenges: The challenges of designing for multiple devices are being
dealt with fairly well, both in the formal community with work on plasticity and
professional practice, notably responsive design. More generally, this suggests we
need methods that model both device characteristics, and their environment.
Chapter 12 is a good example of the latter, capturing interactions between envi-
ronmental aspects such as noise, with device modalities, such as audible output. It
would be good to see these areas of research expand, in particular to include
infrastructure context such as limited networks or power, not just screen size. We
often do not even have adequate vocabulary for these: for example, rural networks
often experience frequent short glitches, complete drops in connectivity for a few
seconds or minutes; with no word or formal metric for these drops, adequate service
cannot be specified in the way that bandwidth or latency can. Theoretical work in
these areas may have very immediate practical benefits; despite the widespread
focus on responsive design, it is common to have failings such as drop-down menus
that do not fit on small-screen devices, and even when executed well, responsive
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design rarely breaks the mould of simple screen size, rather than more radical
modification of the interaction style to fit the device and infrastructure context.

Physicality and embodiment—One of the defining features of early
user-interface design was the identification of key abstract interaction primitives,
not least the windows, icons, menus and pointers of WIMP. Having these
abstractions made it possible to easily design applications in the knowledge that
while the details of how these primitives appear and behave may vary between
specific devices, they can be assumed to exist and in some ways isolate the
application from the vagaries of specific devices and even operating systems. On
the other hand, as Apple have exploited particularly well, there has always been a
close relationship between physical design and software design.

In more recent years, various factors have made the physical, embodied and
situated nature of digital technology more significant. Some of this is connected
with new interaction modalities such as bodily interaction with Kinect or
geo-spatial interaction such as Pokemon Go. Ultrahaptics now means it is even
possible to give holodeck-like mid-air haptic feedback (Carter et al. 2013). In
addition, as computation has become embedded in everyday objects and the
environment, it becomes hard to separate the digital and physical design: this is
evident both in research fields such as tangible user interfaces (Ishii 2003) and
ubiquitous computing (Weiser 1991), as well as practical design such as
screen-based washing machines, or public displays.

Formal challenges: The abstraction offered by WIMP has been helpful in formal
specification, which has typically been able to operate well above the physical inter-
action layer of ARCH/Slinky (UIMS 1992; Gram and Cockton 1996). There is some
work that deals with the more physical nature of devices including Eslambolchilar’s
(2006) work on cybernetic modelling of human and device interactions, Thimbleby’s
(2007) work on physical control layout, physigrams as described in Chap. 9 in this
volume, and the use of space syntax and other formalisms for movement in the envi-
ronment (Fatah gen Schieck et al. 2006; Pallotta et al. 2008). However, compared with
more abstracted user-interface specification, this work is still nascent.

Really invisible—Weiser’s (1991) vision of ubiquitous computing has computers
becoming ‘invisible’; however, this was in the sense that there are displays every-
where at various scales, but we are so used to them, they fade into the background.
This is clearly happening, indeed it is an interesting exercise to walk around your
house and count the displays. However, not all computers have obvious displays,
and yet this computation embedded into the environment is becoming ever more
common (e.g. a modern train has many hundreds of computers in each carriage
controlling everything from lighting to toilet doors). Sometimes there is an explicit
non-visual user interface, such as body interaction to control a public display or Star
Trek-style voice commands. Sometimes there may be more implicit sensing leading
to apparent effects, such as a door opening or light coming on. Some sensing may
operate to facilitate user interactions in ways that are far less apparent, including the
low-attention and incidental interactions described in Chap. 7.

Formal challenges: There has been some work in formal methods dealing with
the architectural design of this form of environmentally embedded system (e.g.
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Bruegger 2011; Wurdel 2011), some (e.g. Chap 7) dealing with non-UI interactions
and some including models of the physical environment (e.g. Chaps. 7–9, 12, 15).
However, like the related area of physical interactions, this work has nothing like
the maturity of more abstracted direct interactions.

Experience and values—The shift in the 2000s from the professional to the
domestic domain and the associated shift from employer decision to consumer choice
meant that ‘satisfaction’, the oft-ignored lesser sibling of ‘effectiveness, efficiency and
satisfaction’, began to take centre place. Themost obvious sign of this was the job title
changes from ‘usability’ and ‘interaction design’ to ‘user experience’. However, this
change in job title represented a more fundamental shift in focus towards the aesthetic
and emotional aspects of design (Norman 2005). Furthermore, increasing scrutiny of
the ways in which user interfaces permeate commercial and societal life has led to an
examination of theways inwhich values are purposefully or accidentally embodied in
designs (Cockton 2004; Harper et al. 2008).

Formal challenges: While important trends, it is less clear, given the current
state of knowledge, how these issues can be dealt with in a more formal way. One
potential path might be to enable forms of annotation and argumentation around
designs. Notations such as QOC or gIBIS allow the formalisation of argumentation
structures, even though the semantic content of the arguments is entirely captured in
textual labels and descriptions. As well as offering potential ways to document and
track emotional and value aspects of a design, encouraging the user experience
designer to create more formal descriptions could allow automated analysis of more
workaday aspects of usability.

Social and personal use—Communication has always been a core part of
computer use, from simple email to rich collaborative work; however, the growth of
social networking has changed the dominant kinds of communication from func-
tional to phatic. Furthermore, individual use of computers is often very personal,
not least the collection of data related to health and well-being. From an interaction
point of view, the focus is, as in the last issue, more about communicating feelings
than information. From a governance point of view, there are increasing worries
about the way information and images once shared cannot easily be recalled, the
potential for abusive interactions, and the ways in which data analysis can be used
by commercial and government bodies in ways which we had never imagined when
simply posting a tweet.

Formal challenges: Several of the chapters in this book include multiple actors
(e.g. Chaps. 13, 15), but dealt with largely in terms of the functional effects of their
interactions. There has also been work formalizing collaborations in terms of beliefs
(e.g. Ellis 1994) including the way this could be used to make sense of certain
artistic installations (Dix et al. 2005). The most extensive formal work on the actual
social aspects of interaction is in social network analysis, but to date this is entirely
separate from interface-level analysis.

In the area of personal data, the earliest paper on privacy in HCI included simple
formalism (Dix 1990), and there have been multiple works on privacy preserving
frameworks and, perhaps most relevant, ways of exposing the implications of data
sharing (Langheinrich 2002; Hong and Landay 2004). Issues of authentication,
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security and provenance are heavily formalized; however, as with the more social
aspects, this is currently in ways which are largely disjoint from user-interface
specification and analysis.

Notification-based interaction—Most social network applications are strongly
oriented around streams and notifications. These shift the locus of control away
from the user and to the choices that the system makes of what to show and when to
make it known. There is concern that this can lead to loss of focus and efficiency;
indeed, a survey of American college students found that more than 90% reported
that digital technologies cause some distraction from their studies, and 34% more
serious distraction (McCoy 2016), and another study found that in-class cell phone
use (presumably for texting) led to a drop of a one-third of a grade point (Duncan
et al. 2012).

Formal challenges: The majority of formal user-interface specification tech-
niques are oriented around explicit user-controlled interaction with only a small
amount of work in the formal domain on interruptions (Dix et al. 2004) and dealing
with interactions at difference paces (Dix 1992b). However, there is extensive
non-formal literature on the impacts of interruptions and multitasking (Adamczyk
and Bailey 2004; Czerwinski et al. 2004; Bailey and Konstan 2006) and the
opportunity to find ways to match the pace and timing of delivery of notifications to
the user’s tasks (Dix and Leavesley 2015).

Basic HCI—Although we have had over thirty years of ‘standard’ usability, still
we do not get it right! For example, Apple is often seen as the pinnacle of design,
yet, when you turn on a MacOS or iOS device, the splash screen invites interaction
(password for MacOS, slide to unlock for iOS) well before the system is ready to
interpret your actions. Some of this is probably due to the shift of foci towards
aesthetic and emotive design; some to do with the very success of user interfaces
meaning more and more people are creating web interfaces in particular, but with
less intense training and background than was once the case.

Formal challenges: Tool support could help this, and indeed, several of the
Chaps. 17 and 18 describe tool suites that aid designers (although in some cases
quite engineering-savvy ones) to develop and analyse user interfaces. Work clearly
needs to be done still to improve both (i) the level and kinds of analysis so that they
can truly be used as expert guidance for the novice and (ii) be targeted so that a
designer without a formal/mathematical background can use them. The
domain-specific modelling notations described in Chaps. 5 and 16 are one approach
to achieving this.

3.2.2 Changing Technology

New and emerging technologies pose fundamental challenges for people and
society, with corresponding challenges for formalisation.

Vast assemblies—Smartphone users may have many dozens, even hundreds of
apps, albeit the majority of interaction is with only a few. In the physical world, the
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Internet of Things (IoT) promises to fill homes and workplaces with large numbers
of potentially interacting small devices. Users will need means to manage and
configure these devices, understanding how they can work together to solve specific
problems. The larger the collection of devices or apps, the harder this will become.
Furthermore, these vast assemblies of small items are likely to suffer from feature
interactions, that is where two features, each potentially valuable in their own right,
interact badly together. For example, imagine that your kitchen smoke detectors are
programmed to increase their sensitivity when they detect the house is empty as no
cooking is expected; however, if the Internet-enabled kettle turns itself on a few
minutes before you arrive back from work, the steam may well set off the fire alarm.

Formal challenges: Dealing with large numbers of simple objects seems like
ideal territory for formal methods. On the configuration side, Chap. 16 shows how
workflow notations can be used to connect together apps to make larger func-
tionality; this could be combined with techniques to infer or tangibly program
connections (Turchi and Malizia 2016). Feature interactions have been studied for
many years in telecoms, so there should be knowledge that could be borrowed and
modified to deal with other kinds of complex assemblies.

Big data—Various forms of big data have been the subject of government
funding, popular press and of course extensive commercial interest; this ranges
from social networks, as discussed above, to large-scale science, such as at CERN.
User interfaces to analysis tools and visualisation have some novel features, but in
some ways not so dissimilar to relatively long-standing work in visualisation, data
analysis and visual analytics (Thomas and Cook 2005; Keim et al. 2010). However,
the vast scale does introduce new issues: how to get an overview of data that is too
big to scan; how to track ownership and provenance; and new opportunities, for
example the success of recommender systems.

Formal challenges: As with the discussion of social network analysis, while the
tools for much of this are already formal, it is less clear how, or whether it is
valuable, for these to directly connect to user-interface models, or whether sup-
porting big data analysis is ‘just’ another application area. However, there is cer-
tainly great opportunity for big data to be used as part of the formal development
process; for example, trace data can be mined to propose common interaction
patterns and can be used as part of validation or to drive simulations. Also big data
about applications domains could be used as part of knowledge-rich methods (see
below).

Autonomy and complexity—Large volumes of data have led to a greater focus
on complex algorithms to deal with that data including various forms of machine
learning, not least ‘deep learning’ which has recently been used to master Go
(Silver et al. 2016). Many problems that used to be thought to require rich symbolic
reasoning, such as translation, are now being tackled using shallow but
high-volume techniques (Halevy et al. 2009). However, these algorithms are often
opaque, an issue that was highlighted concerning the very earliest machine-
learning-based user interfaces, warning of the potential for unethical or even illegal
discrimination and bias (Dix 1992a). As the use of these algorithms has become
more common, these dangers have become more apparent leading to the General
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Data Protection Regulation of the Council of the European Union (2016), which
mandates that, for certain forms of critical areas, algorithms need to be able to
explain their decisions (Goodman and Flaxman 2016).

The successes of machine learning have also led to a general resurgence of
interest in the potential and dangers of intelligent algorithms. Sometimes this
intelligence is used to aid user-driven interactions and sometimes to act autono-
mously. The latter have sometimes reached the popular press: for example, when
scientists called for a ban on autonomous battlefield robots (Hawking et al. 2015) or
when a driver was killed in a self-driving Tesla car (Yadron and Tynan 2016). In
the case of Uber, even when there is a driver in the car, the driver’s itinerary and
fares are driven by computer algorithms, effectively high-level autonomy.

Formal challenges: The knowledge needed for algorithms to be both intelligent
and explicable will draw on expertise from or similar to that found in HCI. Indeed,
the UK funding body EPSRC (2016) has identified human-like computing as an
important research area, deliberately drawing on cognitive science and human
factors as well as artificial intelligence research. Some of this will be at a different
level than the issues usually studied by those looking at formal methods in HCI,
effectively providing application semantics for the user interface. However, the
shifts of autonomy do need to be taken into account. There has been work on
dynamic function allocation in cockpit and control situations (Hildebrandt and
Harrison 2003), and a few chapters (e.g. Chaps. 7, 15) deal either explicitly or
implicitly with more autonomous action sometimes simply at the level of opaque
internal transitions.

3.2.3 Changing Design and Development

New ways of creating software and physical artefacts are altering the processes and
people involved in user-interface design and hence the notations, tools and analysis
techniques needed.

Maker/hacker culture and mass customisation—A new digital DIY-culture has
emerged,made possible by accessible electronics such asArduino andRaspberryPi and
the availability of digital fabrication from fully equipped FabLabs to hobbyist-budget
MakerBots. At an industrial scale, high-budget digital fabrication, such as metal
printers, means that the complex and costly spare parts storage and distribution may
soon be a thing of the past, replaced by just-in-time printing of everything from spare
door handles to gear boxes.Between the two, there is the potential for a new niche of the
digital artisan ‘modding’ consumer products, using open-source 3D-print files, or
maybe iTunes-style commercial versions. At both industrial and artisan scale, there will
certainly be greater scope for individual configuration and semi-bespoke design at a
level beyond even today’s ideas of mass customisation.

However, if everyone can make their own TV remote or washing machine facia
panel, how do you ensure safety and usability of the resulting interfaces. Further-
more, if things do go wrong, who gets sued? For non-critical devices, it may be that

3 Trends and Gaps 73



we see the HCI equivalent of house makeover television programmes and
DIY-style how to books aimed at mass-market. However, for both legal and brand
protection, products may need to limit acceptable adaptations.

Formal challenges: At first it seems that DIY-culture could not feel further from
formal methods; but in fact the need for guaranteed properties on highly config-
urable interfaces is precisely the kind of problem that formal analysis could address.
Specification of usability properties goes back to the earliest days of the FoMHCI
community (Dix and Runciman 1985; Thimbleby and Harrison 1990; Dix 1991a)
and issues of plasticity and model-based design have been studied for many years
(e.g. Coutaz 2010) and are represented in this book (Chap. 18).

The level of configuration is different from those that are typically addressed
(e.g. changes in physical form) and the design audience is somewhat different. It is
likely that at least two kinds of designer-users need to be addressed: those in
commercial enterprises or large open-hardware projects determining the properties
required and the range of variations that may be possible; and end-users, or those
near to the end use (e.g. the digital artisan), who are performing modifications with
some sort of tool support. The level of formal expertise needed even to understand
the outputs of current tool and reasoning support is still far too high, but both the
domain-specific languages in Chap. 16 and the layered approach in Chap. 14 seem
like potential approaches.

Agile and test-driven development—Although there are domains where
monolithic development processes dominate, agile development methods are
common in many areas, especially web-based systems. Rather like maker culture, at
first glance the apparent ‘try it and see’ feel of agile systems seems at odds with
formal development, but in fact agile methodologies are highly disciplined, typi-
cally combining a strong use-case orientation with test-driven development. Fur-
thermore, for massive-scale systems user-interface development is supported by big
data, notably A/B testing (Kohavi et al. 2009; Fisher et al. 2012).

Formal challenges: Although these are very different cultures, there are clear areas
where formal methods could make a greater input into agile development. First is use
cases, which may already use UML or similar formalisms, and could easily be inte-
grated into an appropriate task modelling framework. This could help with a problem
of agile development that it is often hard to keep track of the ‘big picture’ when
constantly creating and deploying incremental change. On the testing side, while
some test-based development includes user interfaces, for example by using headless
web browser simulations, this is still a problematic area. Early work has shown that
formal property specification could have a place to play, especially in looking at
properties that span across individual units of delivery (Bowen and Reeves 2011).
Finally, the volume of data available from large-scale traces of user behaviour is
perfect input for performance models such as variants of MHP (Card et al. 1980,
1983), as well as other purposes described previously when looking at big data.

To achieve this would not be without theoretical and practical challenges
including addressing presenting methods in ways that are accessible to the ordinary
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developer, and creating specification methods that can more easily be addressed to
facets of an evolving system.

3.3 Formalising Interaction: What and How

Having examined the driving forces from changes in HCI, we now turn to formal
methods themselves. We look under four headings.

The first two concern the subject of formal methods in HCI, what they model.
The first of these looks at the various actors and entities in the milieu of human
interaction with computers, which are currently being modelled and which could
be. The second is about different levels of abstraction, generalisation and granu-
larity, the kinds of phenomena that we model and reason about.

The third and fourth headings are more about the process and nature of formal
modelling. The first of these looks at the development process for interactive
systems and asks when in the process our methods are valuable and who in this
process is supported. Finally, we look at how our models work, the kinds of
reasoning and modelling we are currently using and how this may need to change or
be augmented, especially if we seek to support practical development.

3.3.1 What—Actors and Entities

The majority of the earliest work on HCI was focused almost entirely on the direct
interaction between a single user and desktop computer or other form of computing
device (Fig. 3.1). There was always an interest in the varied stakeholders and other
context that surrounded such interactions, but most research, and in particular
detailed interaction design and engineering, concerned this dyad. Not surprisingly,
this has also been an important theme for formal methods in HCI.

Of course this dyadic interaction is important, but not the whole story; even
today, students need to be constantly reminded to consider the broader context.
Figure 3.2 shows some of the agents and entities in this wider picture. Typically,
users do not interact with a single device but several either at different times, or at
the same time, for example the mobile phone as ‘second screen’ while watching

Fig. 3.1 Human–computer
interaction: early days—one
person, one computer
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television. Users also interact with people and with other aspects of the world: from
cars and cats to central heating systems and chemical plants; these interactions may
simply set the context for direct computer interaction (e.g. noise as in Chap. 12), but
may also in various ways concern the computer, for example finding your way
around a city using a smartphone map.

As well as direct connections, there are indirect interactions: including sensors
and actuators on physical objects such as self-driving cars and pervasive comput-
ing; computer-mediated communication and social networks; virtual elements
overlaid on the physical world in augmented reality such as Pokémon Go; com-
putational interfaces embedded into physical appliances such as washing machines;
and even computational devices embedded in the user or other people.

Formal challenges: While there is still a strong concentration on direct inter-
actions, the notations and techniques in the chapters in this book do include dif-
ferent elements in this picture. Several include some element of user or task
modelling (Chaps. 8, 11, 13), building on traditions such as MHP (Card et al. 1980,
1983), ICS (Barnard 1985) and CCT (Kieras and Polson 1985), and some include
ways to represent multiple actors (Chaps. 13, 15). As noted under Physicality and
embodiment above, there is some work in modelling direct and indirect interactions
with the physical environment (Chaps. 7–9, 15), but these are still rudimentary.

Even the nature of direct interactions has been changing as noted in discussions
of notification-based interaction, invisibility and autonomy. There has been a line of
work in formal methods dealing with multi-modal interfaces, but now there are
fresh challenges, for example dealing with artful interactions such as in crafts or
music making and physical movement in the environment.

In general, while formal methods have stepped beyond the single user—single
machine dyad, there seems to be substantial room for further work on the richer
picture.

Fig. 3.2 Human–computer
interaction: agents and entities
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3.3.2 What—Levels of Abstraction

Computer scientists, and especially formalists, love abstractions, and the for-
malisms in this book and in the community at large vary over a number of
dimensions of abstraction.

Granularity—We can view user interaction at a very high/coarse level in terms
of task analysis or workflows; the basic unit at this level might be quite substantial,
such as interacting with an app (Chap. 19). We can also look at a very low/fine level
of basic motor actions and physical interactions, such as Fitts’ Law or physigrams
as in Chap. 9. Between these, there are many intermediate levels, including the
architectural levels in the ARCH/Slinky model. The majority of formal modelling
work seems to live in this area where the basic unit of interaction is an abstract
button press, or similar action (e.g. Chap. 5).

Formal challenges: This suggests two opportunities for future work: first to
expand the focus of methods to encompass more of the higher and lower levels;
second to fit different levels of models together to enable reasoning across these.
This may not be trivial as interactions regarded as atomic at one level have structure
at lower levels.

Continuity and time—In some ways, the finest level of interaction involves
continuous action in continuous time. Despite early work on status–event analysis
(Dix 1991a, b; Dix and Abowd 1996) and the TACIT European project (TACIT
1998; Faconti and Massink 2002), this is still an understudied area.

Formal challenges: Again there are complex formal issues, but in the broader
formal methods community hybrid systems have been studied for many years, so
there is clear opportunity to improve coverage. However, as with granularity, the
ability to link targeted modelling at different levels seems crucial.

Level of generality—In the earliest strands of formal methods in HCI, there was
work on notations and methods for specifying specific systems, for example
Reisner’s (1981) use of BNF and GOMS (Card et al. 1980, 1983); but also work on
very abstract models looking at generic properties of all systems, for example the
PIE model (Dix and Runciman 1985); and work on properties of undo (Dix 1991a;
Mancini 1997). In this book, the majority of work is towards the specification of
specific systems, but there is also some work that bridges the extremes of generality
including DSL in Chap. 16 and the high-level properties in Chap. 14, which both
offer ways to create specifications or properties that apply to a sub-class of systems.
While several chapters use variations of generic systems properties such as pre-
dictability of actions or visibility of results, there seems to be little current work
directed at this generic level.

Formal challenges: The lack of work at a generic level may be because there are
very limited things one can say at this level of generality and the early work
saturated the area. However, the work in this volume that operates generically over
a sub-class of systems suggests a potential path that allows formalists to work
alongside domain experts to create intermediate notations, formal properties and
tools that can then be used by other designers.
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Syntax versus semantics—Some philosophers, such as Searle (1997), would
argue that by definition anything done in a computer is merely syntax, symbol
juggling, and never true semantics as meaning cannot be reduced to rules. However,
it is clear that some aspects of computation are more ‘semantic’ than others. Formal
methods often talks about the syntax–semantics distinction, but it is noteworthy that
both the Seeheim model (Pfaff and Hagen 1985) and ARCH/Slinky model (UIMS
1992; Gram and Cockton 1996) stop at adaptors/wrappers for application seman-
tics. As noted under granularity, the majority of formal work is focused on the
dialogue level and, hence, largely about the syntax of interaction, the order of
actions and observations, but not their ‘meaning’. There are exceptions to this. At a
generic level, early analysis of undo included use of category theory to model the
meaning of undo parameterised over the state semantics of arbitrary systems. At a
more specific level, task analysis, cognitive models and domain modelling capture
elements of the social, individual and application meaning. The use of ontologies
and OWL in Chap. 12 is particularly interesting as these are languages of
‘semantics’.

Formal challenges: It is possible that rich models of semantics of systems and
the environment could become intractable; indeed, model checking of user-interface
specifications already requires some form of abstract interpretation of value
domains and faces challenges of combinatorial explosion. However, if formal
methods in HCI are to reason about the entire human–computer work system, then
there need to be models of each of the elements, so that the physical properties of
the world, the human cognition and action, application ‘semantics’ and dialogue
syntax can be verified to all work together to achieve specified goals. Of course,
complete models of all of these would be intractable; the greatest challenge will be
in determining appropriate levels of detail and abstraction to enable useful results.

3.3.3 Who and When (and Why?)

Just as we looked at the actors and flows involved in interaction itself, we can
consider the actors, activities and products involved in the design process for
interactive systems (see Fig. 3.3). As noted previously, moves towards agile
development methods mean these stages are likely to be highly iterative including
deployment itself, where some web-based systems may have many hundreds of
releases per week.

Very early, indeed before the start of the design process proper, are the formal
experts involved in the formulation of notations, properties and tool creation. As
noted, this may also include high-level domain experts helping to create more
domain-specific variants.

During the early stages of the design process for a specific system, there are
many actors including interaction designers, product designers, user experience
specialists; engineers, customers, management, domain experts; and hopefully

78 A. Dix et al.



some users! In theory, appropriate notations and tools should help to clarify the
design and communicate between stakeholders. The formal outcomes of this stage
are detailed specifications, which potentially may be checked using model checkers
or other tools.

As the design is turned into code, the formal specification may be translated into
executable code; embedded into in-code verification; or used to create test suites.

Finally during use, executable specifications may actually be running in the
code, or the user may use manuals that have been in part created, or verified using
formal methods (as in Chap. 11). Traces of use may be collected and used as input
for analysis tools for future systems. During this, some systems may be open to
end-user modifications or appropriation.

Formal challenges: Although there is potential for formal methods to be useful
at many stages in this process, in practice there is little real use beyond limited
research case studies and some safety critical systems. Indeed, in a 2009 ACM
Computer Surveys study of industrial use of formal methods all of the systems
surveyed had a critical element and only 10% involved human–computer interaction
(Woodcock et al. 2009). The two main barriers are the expertise needed to
understand the methods and the time costs of the detailed specification analysis
needed even when one has the requisite expertise. Safety critical systems are one of
the few areas where the benefits can justify the extreme costs. This leads to three
clear challenges: reducing formal expertise, reducing effort and increasing benefit.
These are not new, 20 years ago Clarke and Wing (1996) concluded:

Fig. 3.3 Design process: processes and people
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Success in formal specification can be attributed to notations that are accessible to system
designers and to new methodologies for applying these notations effectively (Clarke and
Wing 1996)

The focus on tool support in several chapters is encouraging as is the use of
domain-specific properties and languages (Chaps. 14, 16) as this can help to make
the methods more accessible to non-formalists (reducing formal expertise).
Ensuring any such tools are usable is also critical, as Chap. 17 emphasises (re-
ducing effort). Indeed, it is interesting to see work where the design process is the
subject of formal or structured analysis or modelling, including Chap. 17’s use of
Norman’s model of action to analyse toolset usability and Bowen and Dittmar
(2016) semi-formal framework for design spaces.

Using toolsets also means that there is greater opportunity to take the same
designer input (in the form of task descriptions, interface specifications, etc.) and use
it for different purposes, thus increasing the benefit. As several chapters were using
ontologies, RDF and OWL, this suggests the potential for offering some form of
expert-system-driven guidance (reducing formal expertise), perhaps the outcomes of
formal analysis could be used to drive more knowledge-rich explanation systems.

As Chap. 6 points out, designers already create many artefacts such as sketches
and low-fidelity prototypes; these could be used more effectively in formal methods
in the way Denim (Lin et al. 2000) and subsequent systems did for executable
prototypes, that is using computational effort to understand the designer’s language.
These all become even more important when we consider end-user development,
although the use of graph transformations for reconfigurable UIs (Chap. 10) may
offer one approach to this.

3.3.4 How

The above take us back to the kinds of formalisms we apply and the ways these
might already be changing, or perhaps should change in the future based on some of
the challenges we have seen.

Types of reasoning—Many of the chapters in this book use notations and
methods that are similar in kind to those found in earlier collections (Thimbleby and
Harrison 1990; Palanque and Paterno 1997), albeit used in different ways. There is
substantial use of textual notations based on sets, functions, predicates and logics,
and also more graphical notations including variants of Petri nets, statecharts and
hierarchies for task analysis. A major difference from the early years is that many
are subject to some form of automated checking or analysis as well as analysis by
hand. Another new development is the use of OWL and similar notations and tools.
Unfortunately, as already noted there is still very little use of the mathematics of
continuous values or time.
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Knowledge-rich reasoning—The use of OWL suggests the potential for more
knowledge-rich reasoning. Traditional mathematics tends to be based on relatively
few rules with relatively complex reasoning, in contrast to expert systems in AI
with large rule sets (or knowledge bases) and relatively shallow reasoning. How-
ever, user-interface specification, and indeed formal specification in general, tends
to already have relatively large specification with relatively simple (possibly
automated) analysis. The whole of number theory can be (largely) built from nine
Peano axioms, plus a little set theory, even ‘toy’ interface specifications have more!
Furthermore, big data has proved ‘unreasonably’ effective in using statistical and
shallow machine-learning techniques to address problems, such as natural language
processing, that had formerly been seen as requiring symbolic artificial intelligence
(Halevy et al. 2009). This suggests the potential for using techniques that bring
together large data volume knowledge with specifications to address issues such as
the inclusion of semantics as well as syntax, and the generation of automated design
guidance.

Flexible levels of detail—We have seen how different formal notations and
techniques operate at different levels of granularity, from workflows on apps to
human–motor system analysis. In professional use, different levels will be appro-
priate for different aspects of a system; indeed, among the conclusions of an
analysis of an early successful formal user-interface specification case study (Dix
2002a, b) was the need to be useful (address a real problem) and appropriate (no
more detailed than needed), both of which may vary depending on which aspect of
the system is under consideration.

Imagine a simple map-based system that includes buttons to select options, such
as satellite imagery versus schematic, but then uses mouse movement and scroll
wheel to drag and zoom the map: when the map is clicked a third-party gazetteer
application opens in a pop-up showing additional information about the location.
Unless the options buttons are particularly unusual, it will be appropriate to deal
with them using a dialogue-level notation such as labelled state transitions
(Chaps. 11, 15) or ICO (Chap. 17; Palanque 1992). At this level of specification, the
map interactions would be abstracted, possibly to separate zoom and scroll func-
tions, or maybe even to a single ‘select location’. Similarly, as the gazetteer is
pre-existing, we might abstract it to a single ‘view gazetteer’ operation and not
attempt to model its interface even at the level of buttons and dialogue. However,
we may also want to use a more detailed analysis of the map interactions them-
selves, perhaps making use of multi-scale Fitts’ Law (Guiard et al. 2001).

There are two separate challenges here. First is dealing with systems at multiple
levels of detail. This is already studied, for example, Chap. 6 on combining models
and Chaps. 17 and 18, which have toolsets including notations at different levels;
however, this may be more challenging when the notations used involve different
paradigms (see below). The second, and perhaps more complex, is when different
facets of the system are analysed at different levels so that the specification at
certain levels of detail is not ‘complete’.
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Multiple notations—Many of the chapters in this book use multiple notations.
Sometimes this is to deal with different levels as described above and sometimes
because different aspects of the system use different notations, for example user and
system models (Chaps. 8, 11) or physical and digital models (Chap. 9). Even when
considering the same aspect at the same level of detail, different notations are
required for different analysis techniques or tools, a translation process which is
usually automated; for example, in Chap. 5 a user-interface model is translated into
a form of Petri net for execution and in Chap. 16 domain-specific languages are
translated into a form of UML and into linear temporal logic.

If the underlying paradigms are very close, then this may be relatively
unproblematic; however, typically languages have different strengths, and infor-
mation is lost in transforming from one model to another, for example, a single
entity in one might correspond to several entities in another, or have no corre-
spondence at all. If one notation is semantically richer than the other, then it may be
possible to reason across the two by translation, but even then it can be problematic
to translate the outputs of analysis back. A trivial example of this was the early days
of Java Server Pages (JSP) before the development of ‘Source Map’ files (Oracle
2003): compiler messages referred to lines in often unintelligible generated Java
code. Verifying the connection between notations also requires some sort of explicit
or, more often, implicit shared semantics.

Generic descriptions and standards—Whether we are dealing with multiple
notations within a single toolset or project, or trying to share artefacts (e.g. UI
specifications, traces of user behaviour) between projects, there seems to be a need
for different methods, notations and tools to be able to talk to one another. In this
book, the nuclear power station case study is specified in some detail in Chap. 4, but
how do we know that the formulation of this in other chapters refers to the ‘same’
thing? In general, as a community do we need some form of standardised means to
share?

At a concrete level, this could be ways to specify elements of interaction such as
layouts, behaviours or states, so that it is possible to use these to validate whether
two specifications really are talking about the ‘same’ system. Given the differences
between notations and models, the likelihood is that this may need to be partial,
perhaps instance based: this particular state has this particular visual appearance and
after a specific action modifies to a specified new state. Alternatively it may be
possible to have a number of agreed ways of sharing more complex behaviours but
limited to particular styles of specification.

At a more abstract level, we could seek semantic models that are not necessarily
useful for actual specification (e.g. too verbose or complex), but can be used as a
basis for giving semantics for other notations, rather like denotational semantics
does for programing languages (Stoy 1977). If two notations are given semantics in
such a shared semantic model, then it would become possible to assert reliably
whether a specification in one is equivalent to one in another, or whether a trans-
lation algorithm between the two notations is valid.

One suggestion (Dix 2002a) has been that traces could act as a form of universal
semantics, both at a concrete level and as a semantic model, as is used by process
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algebras. The advantage of this is that while different notations vary in how they
abstract and parameterise behaviour, the actual realised behaviours are observable
and shared. Traces are not without issues, notably continuous versus discrete time,
and even discrete time at different granularities. A similar argument could be made
for visual appearance at least for standard control panels with buttons, drop-downs,
etc. Richer system or interface behaviour is more difficult, although a number of
notations are enhanced versions of simpler ones such as labelled transition systems,
or Petri nets; even if it is not possible to have a single interchange model, it may be
possible to have a small selection.

3.4 Summary

Tables 3.1 and 3.2 summarise the principal topics and challenges that have emerged
in this chapter; they are quite diverse and offer many opportunities for fruitful future
research and real societal and economic impact. From these lists, we can bring out a
few broader issues.

Table 3.1 HCI trends: summary and formal challenges

Trend Formal challenge

Changing user interaction

Choice and ubiquity Importance of diversity (below)
Diverse people Model-based interfaces to take into account varying abilities
Diverse devices and contexts Plastic interfaces beyond screen size
Physicality and embodiment Modelling beyond syntax layer
Really invisible Radically new models of interaction
Experience and values Linking argumentation to formal modelling
Social and personal use Modelling multiple actors, privacy and provenance
Notification-based interaction Modelling when uses not in control—matching pace and

timing of notifications to user tasks
Basic HCI Better tool support, especially for non-experts
Changing technology

Vast assemblies Application workflows and configuration; feature interactions
Big data Use in formal development, e.g. mining trace data;

knowledge-rich methods (below)
Autonomy and complexity Human-like computing; dynamic function allocation;

autonomous action beyond internal transitions
Changing design and development

Maker/hacker culture and
mass customisation

Guaranteed properties for configurable systems; tools for near
end-users

Agile and test-driven
development

Formalising use cases; generating tests; trace data
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We need to extend the kinds of issues we approach, including: users of different
abilities; varying devices and infrastructure; physical and semantic interface issues;
and privacy. This may include ways to at least partially connect with hard to
formalise areas including cognition, emotion and human values.

We need to be able to deal with systems where the computational part is more
intelligent, autonomous and proactive; this includes issues such as
notification-based systems, Internet of Things and robotics.

Some of these new or understudied uses may offer ‘easy wins’ for FoMHCI, for
example in dealing with the complexities of IoT interactions that are hard for
human assessment, or applications to agile methodologies.

We need a range of different levels and kinds of model and the ability to connect
these: this includes links between existing modelling approaches in FoMHCI, and
other approaches such as formal argumentation or large knowledge bases.

Applications in safety critical domains are likely to remain a core area of study
for FoMHCI as these justify societally and economically the costs of extensive
analysis. However, there are opportunities for FoMHCI to become more

Table 3.2 Formalising interaction: summary and formal challenges

Topic Formal challenge/issues

What—actors, entities

Actors and entities Broadening scope of FoMHCI; modelling users and tasks; physical
aspects; artful interactions

What—levels of abstraction

Granularity Modelling beyond syntax layer; connecting models at different
levels of abstraction

Continuity and time Moving beyond discrete-event dialogue; hybrid systems
Level of generality Domain-specific generic models
Syntax versus semantics Modelling domain semantics
Who and when (and why?)

Reducing formal
expertise

e.g. domain-specific notations, expert-system guidance

Reducing effort e.g. toolset development
Increasing benefit e.g. using formal models for multiple purposes
How

Types of reasoning Broad range of notations used; increasing use of automatic analysis;
limited knowledge-rich methods; continuity and time still poor

Knowledge-rich
reasoning

Linking formal specifications and large knowledge bases;
application semantics; automated design advice

Flexible levels of detail Dealing with multiple levels of detail; working with incomplete
specifications

Multiple notations Translating between notations; verifying connections (shared
semantics)

Generic descriptions and
standards

Interchange models for specifications, physical layout, case studies,
etc.; shared semantics (e.g. traces)
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mainstream both by tackling the ‘easy win’ areas and by seeking ways for formal
analysis to become more cost-effective and more accessible to domain experts,
developers and end-users.
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Chapter 4
Case Studies
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and Philippe Palanque

Abstract This chapter introduces a set of case studies that are used in the rest of
the book. They encompass well-known problem domains in human–computer
interaction research and provide a practical focus for the approaches presented in
this book. The set of case studies includes case studies concerned with the con-
troller interface to a (semiautomated) nuclear power plant; a partly autonomous
arrival management interactive system in the domain of air traffic control; a user
interface for new interactive cockpits; and an interactive system used in rural and
urban areas to maintain wind turbines. The final case study brings an interesting
perspective for formal techniques, namely interactive public displays.
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4.1 Introduction

This chapter introduces a set of case studies that encompass well-known problem
domains in human–computer interaction research. They offer a basic set of case
studies for the various approaches to formal methods presented in this book. The set
includes case studies concerned with the controller interface to a (semiautomated)
nuclear power plant; a partly autonomous arrival management interactive system in
the domain of air traffic control; a user interface for new interactive cockpits; and an
interactive system used in rural and urban areas to maintain wind turbines. The final
case study brings an interesting perspective for formal techniques, namely inter-
active public displays. The first three case studies are presented in detail, while the
other two are presented more briefly. We categorize the case studies according to
how many users are involved, whether there is a formal system definition, whether
it is safety critical, and what kind of interaction technique it offers (WIMP,
post-WIMP, etc.). Additionally, Table 4.1 specifies in which chapters of the book
the presented case studies have been used. Beside these categories, some specific
characteristics will be given under the category “others” that are specific to the
individual case study. Besides aspects such as the number of persons involved or
WIMP versus post-WIMP, the case studies were selected according to the challenge
they pose to formal methods in human–computer interaction (these are indicated in
the rightmost column in Table 4.1).

Case study 1 “nuclear power plant” offers a formal specification of a technical
system and defines a set of standard operating procedures, which should be mapped
to a user interface design and implementation. It further raises the challenge of
implementing interactive systems for semiautomated systems and to answer the
question as to how far formal methods can tackle the challenge of automation in the
control of safety critical systems.

Case study 2 “air traffic control” picks up the combination of an automated and
safety critical system and maps this scenario to a team of 2–3 controllers. Thus, it
poses the challenge to formal methods to address multi-user interaction scenarios in
a safety-critical context, which includes a high degree of automation and also
post-WIMP interaction techniques and concepts.

Errors and faults are a major issue in human–computer interaction research,
which is especially relevant for users who control safety-critical systems but also
for scenarios which address non-safety-critical systems but for which performance
is a concern. Case study 3 “interactive aircraft cockpit” presents the role of hard-
ware and software failures in the context of system certification. The challenge
posed here is to which extend formal methods can support the design and devel-
opment of interactive systems and user interfaces for certified technical systems.
For this case study, software and hardware failures are addressed explicitly.

Case study 4 “wind turbine maintenance” and case study 5 “public display”
leave the context of safety-critical systems and pose other challenges to formal
methods. Case study 4 describes a distributed and multi-device scenario that raise
the problem domain of coordination between devices, the distribution of interaction
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and information, and synchronous versus asynchronous communication. Case study
5 instead addresses post-WIMP interaction in a complete different spatial context. It
further poses the challenge of addressing a completely unknown user base which is
heterogeneous regarding preknowledge, interaction behavior, and training status.
The question here is how formal methods support the development of such
open-space interactive systems.

4.2 Case Study 1—Control of a Nuclear Power Plant

The control of a nuclear power plant involves a high degree of automation required
to support the human controllers’ tasks. These tasks include the full manual or
partial manual starting and shutdown of the reactor, adjusting the produced amount
of electrical energy, changing the degree of automation by activating or deacti-
vating the automated management of certain elements of the plant, and handling the
exceptional circumstances. In the case of the latter, the reactor operator’s primary
role is to observe the process as the reactor’s safety system gradually suspends the
operator from control until the system is returned to its safe state.

Table 4.1 Classification of all presented case studies according to four characteristics and a set of
specific attributes only addressing each individual case study

#people
involved

Safety
critical

Formal
specification

Post-WIMP Used in
chapter

Challenge to formal
methods

1—Nuclear
power plant

1 ✓ ✓ –
a 5, 6, 10,

11, 14,
16, 19

∙ Semiautomated system

2—Air
traffic
control

2–3 ✓ – ✓ 13 ∙ Automation
∙ Description of
collaborative activities

3—
Interactive
aircraft
cockpit

1–2 ✓ – –
b 15, 17,

20
∙ Need for reconfiguration
mechanisms
∙ Conformity with
certification
requirement/need to deal
with faults

4—Wind
turbine
maintenance

1 – – –
c 9, 19 ∙ Distributed system

5—Public
display

n ≥ 1 – – ✓ 7, 12 ∙ Context information

aWIMP
bWIMP including multi-modal graphical input
cWIMP as physical implementation
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Figure 4.1 shows a simplified boiling water reactor (BWR) design (United States
Nuclear Regulation Commission 2016) as sketch on the left and as process flow
diagram on the right. It comprises of three main components: the reactor core
(lower left) containing the fuel elements and control rods, the turbine, which is
connected to a generator, and the condenser, which condenses the steam generated
by the reactor core back to fluid water. The whole process is driven by water
pumps: two pumps pumping feedwater (purified water in contact with the reactor
core) from the condenser into the reactor core (WP1 and WP2) and one pump
transporting water through the cooling pipes in the condenser (CP). Thus, the latter
controls the amount of water returned from steam, which is then transported back
into the reactor core where WP1 and WP2 control the amount of water pumped into
the reactor core for cooling and steam production.

The reactor (core) is responsible for the production of heat in the system. The
amount of produced heat in the core, and thereby the amount of steam producing
electrical energy in the turbine, is controlled by two parameters: (a) the amount of
water pumped into the core (WP1 and WP2) and (b) the position of the control rods.
Control rods are equipped with the material that is able to absorb neutrons, thereby
reducing the chain reaction responsible for the emerging heat. Because the feedwater
acts as moderator, increasing the amount of water pumped into the core increases the
quantity of fissionable neutrons in the core, thereby increasing the heat. A safe state
of the reactor core is specified as being in the range of up to 70 bar pressure and up to
286 °C (Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH 2016).
Further control parameters and observables are the water level in the reactor and the
condenser as well as the output power of the generator. Finally, valves can be used to
control the flow of water and steam in the system, as shown in Fig. 4.1. WV1 and
WV2 are able to cut off the feedwater; SV1 controls the steam for the turbine and
SV2 the by-pass of steam which is then sent directly to the condenser.

Fig. 4.1 Sketch of a simplified circuit of a boiled water reactor. On the left the process is
presented as a sketch; on the right the process is presented as process flow diagram
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4.2.1 Formalization of the Simplified BWR Design

The previously introduced design for a BWR can be formalized in various ways and
with different types of formalizations as is done in Chap. 6 using Z (O’Regan 2014)
or in Chap. 16 using a domain-specific and visual formal language. In this section,
formalization is given as a PVS language-based listing (Owre et al. 1992) origi-
nating from the work presented in Chap. 14, which has been slightly changed to the
specification given in (Gesellschaft für Anlagen- und Reaktorsicherheit
(GRS) gGmbH 2016).

Listing 1 specifies the boundary conditions in which the system can be con-
sidered as safe. If the system leaves one of these ranges, it has to be considered as
unstable or critical.

Listing 1 Maximum values

1 max_vp                 : nat = 2
2 reactor_max_level      : nat = 4000
3 condensor_max_level    : nat = 8000
4 reactor_max_pressure   : nat = 550
5 condensor_max_pressure : nat = 180
6 max_pressure           : posnat = 900
7 control_rods_max_level : nat = 100
8 max_flow               : posnat = 2000

Listing 2 lists the various types used for the specification of the nuclear power
plant system. Some types are equipped with restrictions based on the boundaries
defined in Listing 1, and some are composed values, e.g., valve_type.

Listing 2 Type definitions 

1 itimes          : TYPE = posnat
2 temperature     : TYPE = nonneg_real
3 rods_level_type : TYPE = {x: nonneg_real | 
4 x <= control_rods_max_level}
5 pos_type        : TYPE = nonneg_real
6 volume_type     : TYPE = nonneg_real
7 press_type      : TYPE = {x: nonneg_real | x <= max_pressure}
8 speed_type      : TYPE = nonneg_real
9 flow_val        : TYPE = real
10 vp_number       : TYPE = {n: upto(max_vp) | n > 0}
11
12 valve_type      : TYPE = [# flow: flow_val, on: Boolean #]
13 valves_type     : TYPE = [ vp_number -> valve_type]
14 pump_type       : TYPE = [# speed: speed_type, on: Boolean #]
15 pumps_type      : TYPE = [vp_number -> pump_type]
16
17 process_type    : TYPE = [# level : volume_type, 
18 pressure: press_type #]
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The various types define the various components relevant in the process through
their characteristic parameters, such as temperature or rods_level_type as
one specific characteristic for the reactor. The process that represents the system
state of the modeled system has been defined as a complex type (see Listing 3).

9 reactor : process_type,
10 pos_rods_reactor : rods_level_type,
11 old_pos_rods_reactor : rods_level_type,
12 time_delta_pos : itimes,   
13 condensor : process_type,
14 bw : temperature, 
15 poi_reactor : pos_type,    
16 rest_heat  : temperature,
17 cooled_water : temperature, 
18 boiled_water : temperature
19 #]

Listing 3 System definition as a tuple of system values.

1 IMPORTING definitions_th[]
2
3 npp: TYPE = [#
4 time : itimes,
5 sv : valves_type,
6 wv : valves_type,
7 wp : pumps_type,
8 cp : pump_type,

The nuclear power plant and the reactor as a central part are defined as a set of
values or parameters, which will be related to each other in the following specifi-
cations and descriptions and equipped with dynamic behavior in Listing 5. The first
definition is the water flow (flow_val, Listing 4 line 2) for each water valve wv. In
case if a water valve is opened and its associated water pump is running (e.g., WV1
with WP1, cf. Fig. 4.1), the water flow is set to the current speed of the
pump. Otherwise, the flow is set to 2 or −2 to simulate the effect of communicating
vessels if the difference of the water level in the condenser and the reactor tank
differs more than 470 mm (see Listing 4, ll. 7–11 and ll. 13–17).
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Listing 4 Definition of the flow value for each water valve in the system.

1 flow_update(n: vp_number, st: npp): 
2 flow_val =
3 EQPF (wv(st)(n)`on CPF wp(st)(n)`speed > 0 CPF
4 condensor(st)`level > 0) 
5 /@ wp(st)(n)`speed,
6
7 (wv(st)(n)`on AND wp(st)(n)`speed = 0 CPF
8 condensor(st)`level > 0 CPF
9 ((condensor(st)`level - reactor(st)`level) > 470) CPF
10 (sv(st)(n)`on OR sv(st)(n)`on)) 
11 /@ 2,
12
13 (wv(st)(n)`on AND wp(st)(n)`speed = 0 CPF
14 condensor(st)`level > 0 CPF
15 ((condensor(st)`level - reactor(st)`level) < 470) CPF
16 (sv(st)(n)`on OR sv(st)(n)`on)) 
17 /@ -2,
18
19 GNUG"/@ 0
20 GPFEQPF

The dynamic change of the system is defined as a function tick, which describes
the time-dependent evolution of the individual system values specified in Listing 3.
Therefore, Listing 5 specifies the update of the various system values for each time
step for an instance st of the nuclear power plant process type npp. First, the timer is
increased (l.3). In the next step, the steam flow through the two steam valves is
updated (ll. 6–13 for SV1 and ll. 15–21 for SV2). Additionally, for both valves, the
current on-status is propagated (l.13 and l.21).

During operation, the reactor gets effected by chemical reactions that change the
behavior of the reactor, reflected in a poisoning factor (poi_reactor, ll. 25–34).
The poisoning of the reactor is positively correlated with the change in the control
rod position over time (l.26, 27). It influences the produced amount of steam. If the
poisoning is high, the reactor generates more heat because the poisoning chemical
acts as moderator. As a stopped reactor still produces heat because of fuel decay, a
factor of rest heat (rest_heat) is calculated if the reactor is shut off
(pos_rods_reactor(st) = 100, l.37). The amount of boiled water
(boiled_water, l. 46–58) is calculated most simply using the amount of water
boiled by the chain reaction (factor bw, ll. 43,44), the rest heat and the poisoning
factor as multiplier. The produced cooled water (cooled_water, ll. 60, 61) is
calculated depending on the speed of the condenser pump CP and the pressure in
the condenser vessel. The water pumped from the condenser into the reactor vessel
is determined using the flow_update function given in Listing 4 (ll. 63–71).
Finally, the reactor (ll. 73–78) and condenser (ll. 80–85) pressure and water-level
parameter are updated according to the boiled water in case of the reactor and
cooled water in case of the condenser vessel.
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Listing 5 Dynamic behaviour of the nuclear power plant as discrete simulation.

1 tick(st: npp):
2 npp = st WITH [ 
3 time := time(st) +1, 
4
5 sv := LAMBDA (n: vp_number):
6 COND n=1 
7 -> (# flow :=
8 COND sv(st)(1)`on
9 -> (reactor(st)`pressure - condensor(st)`pressure)/10,
10
11 ELSE -> 0
12 ENDCOND,
13 on := sv(st)(1)`on #),
14
15 n=2 
16 -> (# flow := 
17 COND sv(st)(2)`on
18 -> (reactor(st)`pressure - condensor(st)`pressure)/2.5,
19
20 ELSE -> 0
21 ENDCOND,
22 on := sv(st)(2)`on #)
23 ENDCOND,
24
25 poi_reactor := 
26 LET num_reactor = 
27 (old_pos_rods_reactor(st) - pos_rods_reactor(st))
28
29 IN (
30 COND num_reactor >= 0
31 -> num_reactor / (time(st) - time_delta_pos(st)),
32
33 ELSE -> -num_reactor / (time(st) - time_delta_pos(st))
34 ENDCOND),
35
36 rest_heat :=
37 COND (pos_rods_reactor(st) = 100) AND (poi_reactor(st)=0) 
38 -> rest_heat(st)/1.05,
39
40 ELSE -> 0
41 ENDCOND,
42
43 bw := (2*(100 - pos_rods_reactor(st))
44 *(900-reactor(st)`pressure))/620,
45
46 boiled_water :=
47 COND (pos_rods_reactor(st) = 100 AND poi_reactor(st) = 0)
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51 -> (bw(st) + rest_heat(st))*poi_reactor(st),
52
53 (pos_rods_reactor(st) < 100 AND poi_reactor(st) = 0) 
54 -> bw(st),
55
56 (pos_rods_reactor(st) < 100 AND poi_reactor(st) > 0) 
57 -> bw(st)*poi_reactor(st)
58 ENDCOND,
59
60 cooled_water := 0.003 * cp(st)`speed *
61 SQRT(condensor(st)`pressure),
62
63 wv := LAMBDA (n: vp_number):
64 COND n=1
65 -> (# flow := flow_update(1, st), 
66 on := wv(st)(1)`on #),
67
68 n=2 
69 -> (# flow := flow_update(2, st), 
70 on := wv(st)(2)`on #)
71 ENDCOND,
72
73 reactor := 
74 (#pressure := 0.25 * (reactor(st)`pressure - sv(st)(1)`flow –
75 sv(st)(2)`flow + boiled_water(st)), 
76
77 level := reactor(st)`level + wv(st)(1)`flow +
78 wv(st)(2)`flow - boiled_water(st)#),
79
80 condensor := 
81 (#pressure := condensor(st)`pressure + sv(st)(1)`flow + 
82 sv(st)(2)`flow - cooled_water(st),
83
84 level := condensor(st)`level - wv(st)(1)`flow –
85 wv(st)(2)`flow + 4 * cooled_water(st)#)
86 ]

48 -> bw(st) + rest_heat(st),
49
50 (pos_rods_reactor(st) = 100 AND poi_reactor(st) > 0) 

4.2.2 Standard Operating Procedures

For the operation of the presented system, three illustrative standard operating
procedures (SOPs) are presented below. These procedures explain how the reactor
controller is to define (e.g., through a user interface) the various parameters of the
system. The SOP Start-up defines how to start the reactor to produce electrical
energy where the SOP Shut-down defines the stopping of the reactor. The SOP
System Failure WP1 is an example of how the reactor controller should react if
WP1 has a failure and stops working.
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SOP Start-up

Aim

1. Bring output power to 700 MW, i.e., 100% of possible output power.
2. Hold water level in the reactor tank stable at 2100 mm.

SOP

1. Open FV2.
2. Set KP to 1600 U/min.
3. Open WV1.
4. Set WP1 to 200 U/min.
5. Stabilize water level in the reactor tank at 2100 mm by pulling out the control

rods.
6. Open FV1.
7. Close FV2.
8. Increase U/min of WP1 and, in parallel, pull out control rods so that the water

level in the reactor tank is stable at 2100 mm.
9. At 700 MW power output, stop pulling out the control rods. Water level of the

reactor tank has to be stable at 2100 mm.

SOP Shut-Down

Aim

1. Reduce output power to 0 MW.
2. Hold water level in the reactor tank stable at 2100 mm.

SOP

1. Reduce output power to 200 MW by reducing the speed (U/min) of WP1 and, in
parallel, push the control rods into the core. Hold water level in the reactor tank
stable at 2100 mm.

2. Open FV2.
3. Close FV1.
4. Reduce output power to 0 MW so that:

a. Control rods are completely pushed into the core,
b. WP1 is stopped, and
c. The water level in the reactor tank is stable at 2100 mm.

5. Close WV1.
6. Set KP to 0 U/min.
7. Close FV2.
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SOP System Failure of WP1

Aim

1. Prevent a reactor meltdown.
2. Reduce power output to 0 MW in case of breakdown of WP1.
3. Hold water level in the reactor tank stable at 2100 mm.

SOP

1. Discharge control rods immediately into the core.
2. Open WV2.
3. Set WP2 to 800 U/min.
4. Control WP2 in such a way that the water level in the reactor tank stays stable at

2100 mm.
5. After residual heat is completely dissipated and pressure in the reactor tank and

the condenser is equal to 0 bar:

a. Close FV1, FV2, WV1, WV2 and
b. Set all pumps to 0 U/min.

4.2.3 Automation

Automation is an essential part in controlling a nuclear power plant. In the context
of this case study, the simplified BWR, as shown in Fig. 4.1, will be considered in
the context of the following description of automation. Therefore, two main aspects
of automation can be separated: (a) automation of control of certain components in
the BWR and (b) automation of the safety system, which takes the control of the
reactor when problems are detected in the system to bring the BWR back to a safe
state.

(a) Automation in Control

The control of the BWR can be automated as follows:

1. Feedwater Pumps: The amount of feedwater pumped into the reactor core can
be controlled by means of the water level (to keep it at, e.g., 2100 mm in the
reactor tank), the (preselected) output power, and the pressure in the reactor
tank. Therefore, the automation controls the pump’s speed as variable. The used
strategy can be manifold, e.g., using a linear transfer function.

2. Control Rods: The position of the control rods can be controlled automatically
by keeping the water level and pressure constant in the reactor vessel, to reach
the (preselected) output power.
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3. SCRAM: The system could additionally offer an operation implementing an
emergency reactor shutdown that pushes the control rods completely into the
reactor core to stop the chain reaction, opens both feedwater valves, sets all
pumps to a predefined speed as well as shuts down the steam flow to the turbine,
and opens the pass-by channel for keeping the circulation of steam and water
open. The constant water flow ensures the ongoing cooling of the reactor core
after the shutdown.

(b) Automation in Error Cases

In a real nuclear power plant, the safety system excludes the user from the
manual control of the system when there is a recognized system failure. This
exclusion differentiates between 3 stages:

1. Abnormal Operation: This category specifies failures that can be handled, while
the reactor is running without risks to the environment and the structure and
function of the reactor.

2. Design Basis Accident: This category describes failures that endanger the
structure and function of the reactor. It is necessary for the system to shut down
immediately.

3. Nuclear Accident: This category describes failures which endanger the envi-
ronment. The system is shut down automatically, and the controller is not able to
restart it.

In case 1, the system partially excludes the user from the control. If certain
system values are exceeded or do not reach certain boundaries, the system regulates
itself back into a safe state. In cases 2 and 3, the system excludes the operator
completely from the system and shuts down the reactor by executing the SCRAM
procedure.

4.2.4 Connection with Formal Methods

The main challenge for an interactive system in scenario (a) (automation in control)
is to offer a relevant interaction mechanism to monitor the automated systems as
well as to offer relevant interaction operations, which enable the controller of the
system to react if necessary. For instance, this is the case if failures occur which
cannot be handled by the system but needs intervention by the system controller.
An additional research question is in how far the mental model of the controller is
influenced by this partial automation of the system control. Both the design of the
interactive system and the reaction of the user on the partial automation offer a
variety of challenges to be addressed in HCI research from which the use of formal
methods can benefit.

As in scenario (a), the perspective on the system’s design in scenario (b) (au-
tomation in error cases) as well as on the user raises various research questions.
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Compared to scenario (a), scenario (b) considers full automation as well as the
exclusion of the user in some circumstances. Based on this, the presented system
allows the investigation of system designs as well as the user’s behavior in cases of
error-driven automation of the system, which is a specific type of research on the
interaction with automated systems.

4.3 Case Study 2—Arrival Manager Within an Air Traffic
Control Workstation

The air traffic control activity in the TMA (terminal maneuvering area) is an intense
collaborative activity involving at minimum two air traffic controllers (see Fig. 4.2)
communicating with more than one aircraft. The TMA is the area where controlled
flights approach and depart in the airspace close to the airport. The planner con-
troller (left-hand side of Fig. 4.2) is in charge of planning clearances (orders) to be
sent to pilots by the executive controller (right-hand side of Fig. 4.2) who uses a
radar screen.

The AMAN (Arrival MANager) tool is a software planning tool suggesting to
the air traffic controller an arrival sequence of aircraft and providing support in
establishing the optimal aircraft approach routes. Its main aims are to assist the
controller to optimize the runway capacity (by determining the sequence) and/or to
regulate/manage (meter) the flow of aircraft entering the airspace, such as a TMA
(EUROCONTROL 2010). It helps to achieve more precisely defined flight profiles
and to manage traffic flows, to minimize the airborne delay, and to lead to improved
efficiency in terms of flight management, fuel consumption, time, and runway
capacity utilization. The AMAN tool uses the flight plan data, the radar data, an
aircraft performance model, known airspace/flight constraints, and weather infor-
mation to provide to the traffic controllers, via electronic display, two kinds of
information:

Fig. 4.2 Two TMA controllers working collaboratively
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• A Sequence List (SEQ_LIST), an arrival sequence that optimizes the efficiency
of trajectories and runway throughput (see Fig. 4.3)

• Delay management advisories, for each aircraft in the ATCO’s airspace of
competence.

The EXC_TMA is the controller delegated to handle the ground/air/ground
communications, communication with pilots and releasing clearances to aircraft.
He/she has the tactical responsibility of the operations, and he/she executes the
AMAN advisories to sequence aircraft according to the sequence list. For the case
study scenario, we propose that the pilots assume a passive role, limited to the
reception and execution of the clearances. Other more active roles (such as
requesting an emergency landing) can be considered but are likely to make things
significantly more complicated.

Fig. 4.3 Screenshot of a subpart of an AMAN User Interface (arrival sequence)
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4.3.1 Air Traffic Controller Tasks

Tasks of the EXEC_TMA air traffic controller is described in Fig. 4.4 using the
HAMSTERS notation (Martinie et al. 2011; Forbrig et al. 2014). The notation,
presented in Martinie et al. (2014), explicitly supports collaborative activities
among users. Figure 4.4 details the “Manage aircraft arrivals” task (first row of
Fig. 4.4). This task consists of performing concurrently four different tasks (second
row of Fig. 4.4): monitoring AMAN advisories, providing clearances to pilots,
ensuring distance separation between planes, and ensuring flights’ positions. The
“monitor AMAN advisories” abstract task is refined as follows (see row 4 of
Fig. 4.4). First, the AMAN system displays the advisories, then the air traffic
controller perceives these advisories, and finally, the air traffic controller analyzes
these advisories. This task is followed by the “Provide clearance to pilots” task that
is further refined in Fig. 4.4. Due to lack of space, “Ensure distance separation” and
“Ensure flights’ position” tasks’ representation are collapsed in Fig. 4.4.

4.3.2 User Interface of the Air Traffic Control Radar Screen

An example of an ATC radar screen is shown in Fig. 4.5. In this figure, one can see
the labels associated with each aircraft including information such as aircraft
callsign and cleared flight level. The line ahead of the aircraft spot is called the
speed vector and describes the position of the aircraft in 3-min time. The longer the
line, the faster the aircraft. That line does not take into account the change in
heading if any; i.e., if the aircraft is changing heading, then it will not be where the
speed vector indicates in 3 min. Behind the spot that indicates the position of the
aircraft, the set of dots identifies the previous positions of the aircraft (usually 5 of
them).

4.3.3 Connection with Formal Methods

This case study addresses various challenges for formal methods in HCI. First, the
tasks that have to be performed by the air traffic controllers involve several oper-
ators using a complex workstation with multiple screens and multiple input devices.
Second, the operators’ tasks are highly collaborative, including collocated and
remote collaborations (e.g., communications between the two air traffic controllers
and between the air traffic controllers and the aircraft pilots within the sector). It
also highlights the integration of partly autonomous support to operator’s tasks (via
the AMAN software) that raise the issue of complacency, situation awareness,
control, and behavior forecasting of the autonomous systems.
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For many years, interaction with the ATC workstations was limited to zooming
on a CRT (cathode ray tube) display. Recently, a lot of effort has been deployed in
integrating new technologies such as tactile interactions, which raises more con-
straints in terms of specification of interactive systems and their related interaction
techniques.

4.4 Case Study 3—Interactive Aircraft Cockpits

With the introduction of the ARINC 661 specification (Airlines Electronic Engi-
neering Committee 2002) in the early 2000s, the new generation of aircraft (e.g.,
Airbus A380, A350 WXB, Boeing 787…) includes graphical interfaces in their
cockpits. These graphical interfaces are applications that feature graphical input and
output devices and interaction techniques such as you would find in any other
digital interactive systems (office and home computers, Web applications…). The
set of graphical user interfaces (GUIs) in the cockpit is called the Control and
Display System.

As illustration, the example of the Airbus A380 cockpit is shown in Fig. 4.6.
The Control and Display System is composed of eight output devices called Dis-
play Units (composed of a LCD screen, a graphics processing unit and a central
processing unit) and two input devices called Keyboard and Cursor Control Units
(KCCUs). The pilots can interact with some of the applications displayed on the
Display Unit by using the keyboard and track ball of the KCCU.

Fig. 4.5 ATC radar screen (each label representing an aircraft)
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This section first presents an example of an interactive application within
interactive cockpits as defined by the Flight Control Unit Software (FCUS). The
interactive cockpit architecture (instantiated within the FCUS application) is then
detailed, followed by a description of the tasks that have to be performed by the
pilots when using this application. Finally, the connection between this case study
and formal approaches is discussed.

4.4.1 The FCUS Application

This case study focuses on a single application: the FCUS application (see
Fig. 4.8). It is inspired by the FCU Backup application that is designed to allow the
crew members to interact with the Auto-Pilot and to configure flying and navigation
displays. It is composed of two interactive pages Electronic Flight Information
System Control Panel (EFIS CP) (left-hand side of Fig. 4.7) and Auto Flight
System Control Panel (AFS CP) (right-hand side of Fig. 4.7) and is displayed on
two (one for each flying crew member) of the eight Display Units. The crew
members can interact with the application via the Keyboard and Cursor Control
Units.

Figure 4.8 details the interactive system architecture in the cockpit. In this figure,
we present the display of the FCUS on a single Display Unit. The interactive system
architecture in the cockpit and the interactive applications are based on ARINC 661
specification (Airlines Electronic Engineering Committee 2002) as this is the
required standard in the area of interactive cockpits for large civil aircraft. More
precisely, the ARINC 661 standard specifies firstly the communication protocol
between the Control and Display System and the aircraft system and secondly the
software interface of interactive objects (namely the widgets).

Fig. 4.6 Airbus A380 interactive cockpit
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Fig. 4.7 Two windows of the FCUS application, inspired by the A380 FCU Backup

Fig. 4.8 Interactive cockpits architecture exemplified with the FCUS application
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The Control and Display System is composed of the following components (as
depicted in Fig. 4.8):

• FCUS widget set: It is composed of a set of all the interactive graphical elements
called widgets composing the FCUS application. The widgets are organized in a
hierarchical way and correspond to the interactive facilities for the FCUS User
Application. The hierarchical widget organization is managed by the server.

• Server: It is responsible for the following: (i) the management of the Keyboard
and Cursor Control Unit graphical cursor, (ii) the rendering of graphical
information on the DU, (iii) the management of the widget hierarchy, and
(iv) the dispatching of Keyboard and Cursor Control Units events to the targeted
widgets (usually called picking in HCI). The server is also in charge of the
management of several widget sets, each one corresponding to one User
Application.

• Input and output devices: Keyboard and Cursor Control Unit and LCD screen
(Display Unit). They allow the interaction between crew members and the
interactive system. They are related to software components (device drivers) that
are not pictured here and that will not be considered in this paper.

As shown in Fig. 4.8, following the ARINC661 protocol, the Control and
Display System provides information for the following:

• Crew members (captain and first officer): Their role is to fly the aircraft by
(i) monitoring all aircraft systems through their associated displays (LCD
screens) and (ii) controlling these systems through the associated input devices
(Keyboard and Cursor Control Units). Their goal is to maintain the aircraft and
to complete the mission, i.e., take the aircraft from the departing airport to its
destination.

Aircraft systems: They are composed of two components: The first one called
User Application (in this example, the FCUS) is the software interface to the
physical aircraft component. The User Application is responsible for managing
information to and from the Control and Display System: It processes the
A661_Events(val) from the Control and Display System and triggers commands
related to the physical aircraft components. The User Application can update the
application display through the A661_setParameters(val) methods (applicable to
the graphical widgets) to provide feedback to the crew about the actual state of the
aircraft component. Graphically speaking, the User Application consists of one
graphical user interface composed of a set of widgets stored in the Control and
Display System. Its behavior defines the availability of widgets (enabled, visible,
…) that are not presented here for the sake of brevity (more details can be found in
Barboni et al. 2006). The flying crew interacts with this user interface to perform
their operations by triggering commands and perceiving the status of the aircraft
system.
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4.4.2 Pilots Tasks

The tasks of the flying crew are rather complex covering both aircraft and mission
management as explained above. Providing a full description of these tasks goes
beyond the level of details of the description of these case studies. However,
Fig. 4.9 provides a description of a subset of these tasks dedicated to the config-
uration of the barosettings (upper left part of Fig. 4.7). Before landing, crew
members may be asked to configure the barometric pressure as relevant to the local
airport context. The barometric pressure is used by the altimeter as an atmospheric
pressure reference in order to process correctly the plane altitude. When the pilot is
asked to enter a new value for the pressure reference, he/she first chooses the QNH
mode (interactive input task “Click on QNH”). Then, he/she configures the pressure
unit by choosing hPa (interactive input task “Click on InHg to hPa button”) or InHg
(interactive input task “Click on hPa to InHg button”). He/she can then choose to

Fig. 4.9 Subset of the tasks of the flying crew interacting with the FCUS
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edit the value in hPa (interactive input task “Enter value in hPa”) or in InHg
(interactive input task “Enter value in InHg”). The STD mode (interactive input task
“Click on STD”) is used during the cruise.

4.4.3 Connection with Formal Methods

This case study addresses various challenges for formal methods in HCI. First, it
corresponds to an embedded interactive system used for controlling a safety-critical
system. As this presents a public risk, this system must be conformant with certi-
fication requirements as expressed in DO-178C (RTCA and EUROCAE 2012) and
CS 25 (EASA 2014). While addressing these certification needs is common in
airborne software, HCI has so far remained out of the loop and certification of
interactive systems remains an agenda for the research community.

On the contrary, the interaction techniques involved in the interactive cockpit
context remain rather simple and follow the transposed IBM CUA 89 (IBM 1989)
WIMP standard to interactive cockpit (called ARINC 661 specification Airlines
Electronic Engineering Committee 2002). However, it is important to note that the
presence of two graphical input devices (the KCCU of the captain and the one of
the first officer) brings the issue of multi-modal interaction (similar to bimanual
interactions for a single user Bier et al. 1993).

Lastly, the requirements for dependability of the interactive cockpits require
taking into account the possible failures of hardware and software calling for
reconfiguration mechanisms (of the interactive system—moving required infor-
mation from a faulty display to functioning one). The same holds for interaction
technique reconfiguration in case of input devices failures (Navarre et al. 2008).

4.5 Case Study 4—Interactive Systems in Rural
Areas—Maintenance of Wind Turbines

Wind turbines as a technical facility to produce electrical energy from wind get
more and more important in times of depleting fossil sources and reduced
acceptability of atomic energy within the community. Wind turbines are often
colocated in huge groups, so-called wind parks, or can be single installations. They
are almost exclusively found in rural areas. To keep the reliability of these instal-
lations high and reduce technical failures, regular maintenance is necessary. This is
applied by trained technicians who follow specified processes offered by the pro-
ducing company.1 These involve access to technical information. This information

1http://archive.northsearegion.eu/files/repository/20120320111424_PC_Skills-
Compendiuminmaintenance.pdf.
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includes details of the inspected installation (such as previous maintenance and
repairs), as well as the maintenance process. The latter specifies which regular
repairs have to be applied to the installation, which inspections have to be done
(such as visual inspections of technical parts or temperature inspection using
infrared cameras) and what the documentation looks like.

Interactive systems are mainly used in this scenario for leading the maintenance
process; providing general information for the maintenance- and process-specific
details of the procedure; enabling documentation; and finally planning and applying
the maintenance process. This last use comprises the plan of which wind turbines
have to be inspected, where to find them, and how different technicians are to
coordinate. The information collected during maintenance is further post-processed
to report the costs, trigger further repair requests if the inspection reveals problems
that could not be fixed during the maintenance, or schedule the next regular
maintenance.

4.5.1 Tilley—A Community Wind Turbine

Tilley is a community-owned 900 kW Enercon E44 wind turbine installed in 2009
(TREL 2016). Power from Tilley is fed into the grid, and the income from this is
used to fund various island community projects.

The island’s electricity supply is connected to its neighboring island Coll via an
undersea cable, and this in turn is connected with the larger island of Mull and from
there to the mainland and National Electricity Grid (see Fig. 4.10). The island
typically consumes between 1MW and 2MW, including the power for the “golf
ball,” the radar that serves civilian North Atlantic air traffic control.

Fig. 4.10 a Tilley the Tiree wind turbine. b Power generation and distribution on Coll and Tiree
(map OpenStreetMap, CC BY-SA)
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As Tilley can provide such a large proportion of the island’s electricity, its
correct functioning is particularly important as a malfunction could distort the
island electricity supply. This is a particular issue when there are problems in the
undersea cables and the island relies on the 3.5 MW diesel backup power station.
At these times, Tilley has to be braked to “ticking over speeds” as the largely
manually controlled power station cannot cope with the potential rapid changes in
supply as the wind speed changes.

The large proportion of Tilley’s operation is operated remotely from Germany
using an industry standard SCADA (Supervisory Control And Data Acquisition)
interface. The turbine includes an SMS telemetry device from which operational
data can be downloaded and to which commands can be sent. However, there is
also a small internal control area within the wind turbine tower for use during
on-site maintenance or when the mobile signal fails (a common hazard at a remote
location).

The two main control panels are shown in Figs. 4.11 and 4.12. It should be
noted that this is by definition in an exposed location on the island, that the control
area has no heating, and that the engineer may well have been climbing up further
inside, or have come from the outside, potentially in a winter storm. All the controls
must therefore be capable of being used with wet, cold, and potentially gloved
hands.

Fig. 4.11 Digital display and control panel in Tilley (photograph © William Simm)
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Figure 4.11 is the “digital” display and control panel. On the right it has status
indicators (small LEDs) and on the left are numeric outputs for wind speed, rotation
speed, power output, etc. Between these is an area with a numeric keypad and
screen for entering more detailed parameters. Figure 4.12 is the “physical” panel,
with large buttons and knobs including an emergency stop button, which is par-
ticularly important to be able to operate with gloved hands. Although these are
described as “digital” and “physical,” the “digital” panel has physical buttons albeit
of the flat membrane type.

4.5.2 Connection with Formal Methods

Formal methods can help to describe and analyze certain aspects of the user
interfaces shown in Figs. 4.11 and 4.12. The buttons and display in the digital panel
(Fig. 4.11) can be modeled using a range of dialoge-level techniques and standard
properties verified such as the predictability of actions or reachability of the state
(Dix et al. 2004). However, one of the key features of the turbine controls is their
physical nature, in two senses. First, as with the previous three case studies, the
majority of controls directly affect some physical process, such as the wind turbine
angle of attack. The second is that the physical properties of the buttons on the
control panel in Fig. 4.12 is crucial to their operation; for example, the emergency
stop button is large enough to be easily pressed with gloved hands, but has enough
resistance so that it is not activated accidentally. Chapter 9 of this book gives one
example of analyzing the latter using physiograms, and another approach would be

Fig. 4.12 Physical control panel in Tilley (photograph © Maria Angela Ferrario)
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to use detailed force–displacement graphs (Zhou et al. 2014). Ideally, one would
“unplug” the Tilley control panel to experiment with the feel of physical buttons, or
experiment with the live panel to get the “feel” of the buttons, but Tilley is in
constant use, so this was not possible for this case study. However, during the
design of an interface such as this, detailed physical examination and specification
would be possible.

Further work in formal description and analysis could focus on various other
types of interactive systems and devices supporting maintenance work of wind
turbines. For instance, mobile devices could be used to provide and to collect
information in the field during the maintenance procedure, e.g., using the
SMS-based communication interface of Tilley, or to implement a cooperative
communication infrastructure between various technicians. Alternatively, aug-
mented reality devices could be facilitated to offer installation and maintenance
information while looking at the machines and user interfaces to be worked on.
Thus, this case study addresses various challenges for formal methods in HCI. First,
more than one mobile device can be involved as well as more than one user.
Second, it has to be considered that asynchronous and synchronous communication
patterns exist. Third, various aspects of information processing and presentation
have to be considered: location, workflow, and unknown situations. Finally, the
case studies address physical and technical interfaces that have to work in rough
environment raising unusual requirements.

4.6 Case Study 5—Interactive Systems in Public Areas—
Interactive Public Displays

Nowadays, large interactive displays can be found in various types of public areas
either in urban or in rural spaces. Their main purpose is to provide information or to
entertain people. More and more relevant are displays that are interactive or even
persuasive. They react to a person’s input, whether to provide personalized infor-
mation or to change its content according to the context or the intended information
provided. For these interactive displays, various interaction methods and concepts
have been developed, such as gesture-based interaction, face detection, or other
possible input devices. This interaction with the public display could involve not
only a single person but also multiple persons, such as shown in the example of the
“Domain Mall Interactive Display”2 or the “The Magic Carpet” (Paradiso et al.
1997). Another class of public displays is presented by community information
displays focusing on the information rather than on the entertainment aspect of
public displays (Vogel et al. 2004) .

2https://www.youtube.com/watch?v=NRhDpDxTsLA.
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4.6.1 Community Information Displays—The
Internet-Enabled Shop-Open Sign

A community public display system on the Isle of Tiree has been produced as part of
the biannual Tiree Tech Wave, a series of technology/maker meetings. The system is
a long-term 24/7 deployment. At several Tiree Tech Wave events, islanders have
talked with participants about different aspects of island life. Communication has
often emerged as an issue, while the archetypal view of rural life supposes everyone
knows everyone else’s business; in fact with a widely distributed population, it can be
harder to tell people about events and news than in a city.

This has led to a number of community communication interventions including
an SMS broadcast system for youth work, a Web-based “Dashboard” (Fig. 4.13),
and a public tickertape display in an island café (Fig. 4.14.).

The Dashboard and public display share a common data-oriented architecture
(see Fig. 4.15). Raw data sources are gathered using a variety of techniques:

1. APIs and RSS feeds of public services (e.g., BBC local news),
2. scraping of Web-based information,
3. dedicated information entry interfaces (e.g., island events calendar), and
4. sensor data.

This raw data is then sampled in different ways to create parts of the data suitable
for the different displays. This data is then passed to the final display device. In the
case of the public display, this is converted into plain text for the tickertape, and in
the case of the Dashboard, JSON formatted data to be passed into dedicated
Dashboard “apps.”

Fig. 4.13 TireeDashboard (http://tireetechwave.org/TireeDashboard)
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Much of the information is from existing public sources (1 and 2), and some
created explicitly (3), and the sensor data (4). Data extracted from Web APIs and
Web page scrapping includes weather, tide times, BBC News headlines, local
Twitter feeds, and up-to-date travel status for plane and ferry. The last of these is
particularly critical as the extreme island weather can often cause transport dis-
ruption. In addition, there are dedicated Web forms for the café and island com-
munity trust to add messages about upcoming events to compliment Web scrapes of
the island “what’s on” page.

Many public display projects are in large cities or institutions such as university
campuses or airports. In these contexts, it is possible to have staff whose job

Fig. 4.14 LED public tickertape display

Fig. 4.15 Tiree data architecture

116 B. Weyers et al.



includes monitoring and keeping information current. In a small community public
display, it is crucial that there is a baseline of information that is current and
valuable (hence regional news, weather, transport, etc.) so that displays are useful
without additional effort. If displays, both Web-based and physical, are actively
used, then this makes it more worthwhile for community members to add useful
information and hence creates a virtuous spiral.

Live sensor data is used to adapt the information displayed. For example, the
island data infrastructure includes an Internet-enabled “open” sign (see Fig. 4.16),
which is installed in the Cobbled Cow café’ on the island. The sign constantly
broadcasts its status to the Web data infrastructure, and this is used to display
whether the shop is open or closed.

However, in general, it cannot be assumed that all sensor data is always reliable.
Figure 4.17 shows an analysis of the tasks performed by the café owner during a
typical day. Crucially, tasks 4.1 and 6.2, when the sign is turned on and off, are
performed as a matter of routine, but could be forgotten, and it is physically
possible to open the shop without turning on the sign. Similarly, it is possible to
close the shop without turning off the sign, although this is likely to be noticed as
the glow of the sign would be visible except in high summer. These issues are
described in greater detail in Chap. 7.

The final part of the island public display infrastructure is a projected tabletop
display (Dix et al. 2016). So far, this has not been included as part of the data
architecture and instead used for stand-alone projects including the launch of Frasan
(Fig. 4.18), the island mobile heritage app (Dix 2013). The display consists of an
LCD projector and Kinect-style depth camera; these are mounted in a
custom-designed enclosure fixed to the ceiling (Fig. 4.19). The enclosure rotates so
that the display can be used on either the tabletop (also custom designed for the space)
or the wall. The system was designed to enable multi-user, multi-touch interactions

Fig. 4.16 (Left)
Internet-enabled open sign
under development
(photograph Rory Gianni);
(right) electric imp module
(photograph http://www.
electricimp.com media
resources)
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(Bellucci et al. 2011), but could also be used for other depth-based installations, such
as shifting sand piles to drive geographic simulations (Kirn 2011), and has already
been used for BYOD (bring your own device) tangible interactions (Turchi et al.
2015).

0. Running cafe
 1. drive to cafe 
 2. enter cafe (through side door) 
 3. prepare for opening: 
   turns on power, lights, etc. 
 4. open up cafe (at opening time) 
  4.1 turn on open sign 
   ** sensed by system 
  4.2 open café doors 
 5. serving customers 
   take order, cook and serve food, wrap, take money
 6. close up cafe (at closing time) 
  6.1 close café doors 
  6.2 turn off open sign 
   ** sensed by system  
 7. tidy up 
 8. leave cafe (side door) 
 9. go home 

Fig. 4.17 Task analysis Cobbled Cow café

Fig. 4.18 Tabletop display in
use at launch of Frasan
mobile heritage app
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4.6.2 Connection with Formal Methods

The community information display case study is unusual in that insights from
formal analysis directly influenced the design of some elements; this is described in
detail in Chap. 7. There are also particular issues for formal modeling and analysis
that are highlighted by this case study.

The island environment has many technical and social constraints that are dif-
ferent from those in city-based displays, formal descriptions of these could help
designers who are not familiar with the context of use. The shop sign showed the
importance of understanding these rich contexts and the pitfalls that may arise.

The complex environment also means that a broad range of types of display are
included in the island deployment: the simple on–off open sign, the non-interactive
LED ticker tape with short text messages, the interactive touch table, and
Web-based dashboard. This range is wider than typically considered by standard
tools such as responsive designs, ranging from tangible to non-interactive, and
graphical to textual displays. Model-based formal methods could help understand
the way information is mapped in different ways to these radical different devices.
The range of data sources as well as display modalities suggests the potential for
rich information models that take into account different timeliness, locality, and
dependability of information flows.

A variety of further challenges and research questions can be identified for the
use of formal methods in context of public displays in general. First, the design and
description of interaction methods for public displays raises various challenges. As
the needed interaction methods are not WIMP based as classic input devices are not
available, e.g., mouse and keyboard, methods are needed that range from
gesture-based interaction to 3D user interfaces or speech-based interaction to only
mention a few. Second, both the presented content and the used interaction methods
could or should be adaptable to the individual user and the context of use. In this
case, the user has to be assumed as completely unknown and the context as
completely uncontrolled. Here, the question is how far formal methods could

Fig. 4.19 Custom table design (left) and ceiling enclosure for projector and depth camera (right)
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support the gathering process of information to generate user models, to describe
such models, and to support the validation of such systems in use. The validation
could be of value during runtime as well as beforehand or after the usage phase. The
same is true for the context; thus, how far, formal methods enable the description
and handling of the dynamic context and the emerging conditions. As public dis-
plays influence public areas, it is relevant to investigate the newly created
sociotechnical system. This finally is an aspect less discussed in the context of
formal methods’ research and offers a new perspective in research on formal
methods in HCI. The main challenge and opportunity in this regard is the modeling
and analysis of these systems using formal methods.
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Part II
Modeling, Execution and Simulation



Chapter 5
Visual and Formal Modeling of Modularized
and Executable User Interface Models

Benjamin Weyers

Abstract This chapter presents the visual Formal Interaction Logic Language

(FILL) for the description of executable user interface models. This modeling

approach is based on an architecture called 3LA, which separates a user interface

from its outward appearance as a set of interaction elements called physical repre-

sentation, and its functional part called interaction logic, which connects the physical

representation with the system to be controlled. The latter refers in general terms to a

business model of an interactive system, where the interaction logic is further meant

to describe dialog-specific aspects, e.g., the availability of widgets depending on the

system state or other widgets. FILL is algorithmically transformed to reference nets,

a special type of Petri nets, which makes it executable and equips FILL with formal

semantics through the formal semantics of reference nets. FILL models are modu-

larization which enables the description of multidevice user interface models as well

as the reuse and exchange of parts of the model. For the creation and execution of

FILL-based user interface models, the UIEditor tool is presented. It offers editors

for modeling the physical representation and the modularized FILL-based interac-

tion logic. It further implements the transformation algorithm for generating refer-

ence nets out of a given FILL model and finally the execution environment for the

user interface model. The applicability of this modeling approach will be shown by

means of a case study for the control of a simplified nuclear power plant. The chapter

will conclude with a broader view to future challenges this approach is facing.

5.1 Introduction

Formal methods are a well-known class of approaches used in human–computer

interaction research and applications. The major benefits of formal modeling meth-
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ods are the application of formal verification and analysis methods as well as formal

reconfiguration and adaption mechanisms and their description in machine-readable

and, in certain cases, executable form. Nevertheless, for general modeling tasks in

engineering interactive systems, formal methods are often considered too complex

to learn and too inflexible to perform tasks such as fast prototyping (Dix 1991). Their

complexity can be reduced by using visual modeling languages, which are easier to

learn than textual description concepts (Gaines 1991). A well-known class of formal

modeling languages that includes a visual representation and has been used in mod-

eling interactive systems is Petri nets (de Rosis et al. 1998; Jensen and Rozenberg

2012; Navarre et al. 2009; Petri 1962). Petri nets are supported by a visual represen-

tation for modeling and a broad variety of simulators, which makes them well suited

for interactive systems engineering. However, Petri nets were not specifically devel-

oped to model user interfaces, and their use requires a deep understanding of their

nature and function. Furthermore, they have to be adapted to the specific purpose of

the application domain in question—in this case, interactive systems. To overcome

these limitations, a domain specific and formal description must be compatible with

the powerful concept of Petri nets but at the same time more specific to the appli-

cation domain (here, the description of user interfaces) by addressing its specific

requirements.

To specify these requirements in modeling user interfaces, it is crucial to take the

user’s perspective. According to research in human factors on solving tasks (John and

Kieras 1996; Rasmussen 1983) and on user and task modeling (Paternò et al. 1997),

users follow a hierarchical task decomposition first by means of the task itself and

then by means of their mental model of the system to be controlled. The latter is sig-

nificantly influenced and defined by the functionality of the system provided through

a user interface. By providing this functionality, the user interface abstracts from the

underlying system, mapping (ideally) the user’s needs and expectations. Thus, the

underlying system implementation can be treated as a black box and be represented

only by a well-defined interface that provides access to its internal state and control

variables. Thus, a formal description of user interfaces must not only provide a def-

inition of its surface (buttons, sliders, etc.) but also specify a functional abstraction

of the underlying system. Taking into account the technical perspective on this func-

tional abstraction layer reveals a possible interpretation of it as an event-driven data

processing layer. Events initiated by the user (e.g., pressing a button) or by the sys-

tem (e.g., emerging from system state changes) are processed either by generating

input to the system interface or by extracting information to be presented to the user.

This motivates a domain-specific modeling approach following a process-oriented

handling of events (represented below as data objects), which represents the intended

functionality through interaction elements presented to the user. In summary, to over-

come the aforementioned challenges of formal methods and simultaneously address

the boundary conditions presented, a formal modeling approach for user interfaces

should

(R1) be formally specified,

(R2) have a (simple-to-learn domain-specific) visual representation,

(R3) be flexible and executable,
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(R4) be adapted to the modeling of the functional abstraction layer of a user interface

model, and

(R5) follow the concept of a process-oriented handling of events.

Formal Interaction Logic Language (FILL) is a formal modeling approach that

addresses these requirements. FILL is a modeling approach for the description of

interactive systems with a focus on the modeling of user interfaces. Its goal is, on

the one hand, to utilize concepts from object-oriented software development for the

formal specification of user interfaces and, on the other hand, to offer a formal recon-

figuration concept for the adaptation of existing user interfaces. The latter is the topic

of Chap. 10 and will not be further discussed in this chapter.

FILL is intended to describe user interfaces by combining the advantages of a

visual modeling language with the advantages of formal methods, such as verifi-

cation and validation capabilities. Furthermore, a FILL model is executable, which

makes the modeled interactive system directly applicable without further implemen-

tation efforts. This makes FILL highly suitable for uses such as the prototyping of

interactive systems. FILL is based on the concept of component-based modeling,

which prevents FILL-based models from being monolithic and makes components

reusable and interchangeable. FILL’s component-based modeling makes it possible

to cope with well-known modeling strategies for engineering interactive systems,

such as the need for separate business logic and dialog models. Components in FILL

specify functional units with well-defined interfaces, which differs from other defi-

nitions in software research, such as those presented in Szyperski (1997). Thus, the

term components conforms with how FILL is used—for example, on a more general

meta level, in the context of UML component diagrams.
1

Finally, FILL addresses the

description of interactive systems using post-WIMP interaction (Beaudouin-Lafon

2000; Van Dam 1997) as well as multidevice user interfaces (Berti et al. 2004). This

is accomplished by abstracting FILL from specific types of devices or interaction

methodologies, such as WIMP or gesture interaction.

5.2 Overview and Terminology

FILL is equipped with features to describe component-based models of interaction
logic, as discussed in greater detail in Sect. 5.5. The term interaction logic refers

to the aforementioned abstraction layer in a user interface model with functionality

that describes the processing of events originating with the physical representation

of the user interface or in the underlying (black box) system to be controlled. For

these events to be processed, each is mapped to a data object. The physical repre-
sentation is the surface of the user interface—that is, the part of the interface with

which the user directly interacts. A physical representation can be defined as a set of

interaction elements that are built into a device. Interaction elements in this context

can be understood as WIMP widgets as well as general artifacts, such as gestures.

(These aspects will be detailed in Sect. 5.5.) The system to be controlled by the user

1
http://agilemodeling.com/artifacts/componentDiagram.htm.

http://dx.doi.org/10.1007/978-3-319-51838-1_10
http://agilemodeling.com/artifacts/componentDiagram.htm
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interface is considered a black box system offering a well-defined interface, such as

a set of input and output values, also referred to as the system interface. Physical

representation, interaction logic, and system interface constitute a three-layer archi-

tecture (referred to below as 3LA), which is discussed in detail in Sect. 5.4.

FILL is formalized by (a) an accompanying formal definition of FILL as a graph-

based visual language (see Sect. 5.5.1 and Definition 1) and (b) an algorithmic trans-

formation (see Sect. 5.5.3) to reference nets (Kummer 2009), which are a special

type of colored Petri nets. The latter provides formal semantics to represent FILL

and makes FILL models executable using the companion simulation engine called

Renew (Kummer et al. 2004). Reference nets further offer mechanisms that enable

the component-based structure of a FILL model to be mapped onto its reference net-

based representation, which is discussed in detail in Sect. 5.5.3.1. This mechanism

can couple a reference net-based representation of interaction logic to an underlying

system.

In conclusion, FILL is a modeling approach based on 3LA (R4) and comprises

∙ a formal syntax definition (R1),

∙ a visual modeling language (R2),

∙ a process-oriented, data-based event handling mechanism (R5),

∙ a transformation algorithm that transforms a FILL-based user interface model to

reference nets, offers formal semantics (R2), and allows model execution (R3),

∙ a reconfiguration mechanism (R3) based on formal graph rewriting (discussed in

Chap. 10), and

∙ an interactive tool called UIEditor, which is capable of creating, transforming, and

executing FILL models (R2, R3).

Thus, FILL meets all the requirements derived above and offers a new domain-

specific modeling approach to user interface creation that simplifies the use of formal

methods in interactive systems engineering. It also enables the formal adaption of

user interfaces, which is implemented as part of the software tool UIEditor.

The following section will introduce related work (Sect. 5.3), highlighting distinct

differences between FILL and other modeling approaches, such as BPMN (Chinosi

and Trombetta 2012) or ICO (Navarre et al. 2009). Section 5.4 introduces FILL’s

architecture by comparing it to existing architectures, such as interactors (Duke et al.

1994) or the ARCH model (Bass et al. 1991). Section 5.5 introduces FILL and its

transformation to reference nets. This is followed by a description of the UIEditor

tool in Sect. 5.6. The applicability of this modeling approach will be demonstrated

by means of a case study in Sect. 5.7. The chapter ends with a conclusion in Sect. 5.8.

5.3 Background

There are various formal methods for the description of user interfaces, some of

which may be executable and/or are based on Petri nets. For instance, Navarre et al.

(2009) present their Interactive Cooperative Objects (ICO) approach, which is based

on Petri nets. Using their interpreter, PetShop (Sy et al. 2000), models of an inter-

active system can be directly executed and validated. Barboni et al. (2013) extended

http://dx.doi.org/10.1007/978-3-319-51838-1_10
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the ICO approach by adding a graphical user interface markup language called

UsiXML (Limbourg et al. 2005) to define the physical representation. UsiXML is

an XML-based user interface description language that offers a “multipath develop-

ment” process, enabling the user to describe a user interface on different levels of

abstraction based on the CAMELEON framework (Calvary et al. 2003; Florins and

Vanderdonckt 2004). Still, UsiXML primarily defines the physical representation

and only specifies which sort of functionality is connected to it without describing it

explicitly. APEX is a system presented by Silva et al. (2014) that addresses similar

goals for the prototyping and analyzing ubiquitous interactive systems by facilitat-

ing CPN Tools, a modeling tool for colored Petri nets as specified by Janssen et

al. (1993). They present an approach that is conceptually close to the concept pre-

sented in this chapter but focuses on ubiquitous systems and does not address the

need for an easy-to-use domain-specific visual modeling language like the one pre-

sented in this chapter. Further formal modeling approaches can be found, such as the

Petri net-based approach described by de Rosis et al. (1998). However, none of these

approaches facilitates the use of Petri nets as a modeling method as discussed in the

Introduction.

The modeling approach introduced in this chapter focuses on the description of

interaction logic as part of a user interface model. As described in the Introduction,

the interaction logic describes a process-oriented handling of events, which are rep-

resented as data objects. Each type of event is handled by a specific process that

deals with the generated data object by such means as converting or redirecting it.

To describe processes, various visual languages exist, for instance, BPMN (Chinosi

and Trombetta 2012) or UML diagrams such as sequence diagrams or activity dia-
grams (Kecher and Salvanos 2015). In general, UML is not equipped with a complete

formal semantic definition. The UML standard
2

defines the syntax on inscriptions

in the diagram formally using the Backus-Naur Form but keeps the semantic defin-

ition on the level of natural language. BPMN is a description language for business

processes. It is not fully formally defined, but in the BPMN specification a partial

mapping to BPEL is specified (see the OMG standard,
3

Sect. 14). BPEL is a formally

defined XML-based notation for the description of executable business processes.
4

Unfortunately, BPEL is not a visual language as argued for in the Introduction. As

BPMN is a visual modeling notation for business processes and not fully formal-

ized, it is also not fully applicable for modeling interaction logic. However, BPMN

offers concepts that are beneficial for describing interaction logic and have therefore

been used in the specification of FILL (see Sect. 5.5). Because of its only partial

formalization as well as its relation to business processes, BPMN was not entirely

usable for modeling interaction logic. For instance, interaction logic is meant to han-

dle typed data objects, whereas BPMN only describes general information entities

without formally specifying the type of each entity.

2
http://www.omg.org/spec/UML/2.5/PDF/.

3
http://www.omg.org/spec/BPMN/2.0/PDF/.

4
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.

http://www.omg.org/spec/UML/2.5/PDF/
http://www.omg.org/spec/BPMN/2.0/PDF/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
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Besides execution, formal methods permit the validation and verification of user

interface models through model checking or other formal verification methods. Brat

et al. (2013) discuss an approach using model checking to verify and validate formal

descriptions of dialogs. This is a central interest in the modeling of user interfaces

in safety critical situations, for example Barboni et al. (2010, 2015), Bastide et al.

(2003). Furthermore, Paternò and Santoro (2001) discuss the use of formal verifica-

tion in the investigation of multiuser interaction.

Various examples of the above-mentioned modeling languages (e.g., ICO) reveal

the relevance of modularization addressing aspects such as encapsulation, exchange-

ability, or abstraction. Modularization has been also identified as beneficial in soft-

ware engineering, especially in the description of interactive systems, as has been

discussed by Bass et al. (1992), among others. Various architectures for interactive

systems that follow this notion have been proposed, such as the ARCH model (Bass

et al. 1991) and the SEEHEIM model (Pfaff 1985). The main objectives of these

developments in the 1980s and 1990s were the reutilization of models or parts of

them, the simplification of their evaluation, and the structuring of complex models

to make them easier for modelers to understand. We argue that these requirements

are no less important for the creation of formal models in user interface creation

or, therefore, for the work presented in this chapter. These needs become even more

important if multidevice systems are also to be modeled because their description

increases the complexity of the resulting models.

Previous versions of FILL have already been presented (Weyers 2012, 2013a;

Weyers and Luther 2010). These papers concentrated on defining FILL and its use

without addressing multidevice or component-based user interface models in detail,

which is the goal here. Furthermore, FILL has been used in various application

domains. The papers Weyers et al. (2009, 2011) explain how FILL has been used

in collaborative learning systems; students used FILL in a collaborative modeling

task to describe cryptographic algorithms as an interaction logic model. In Weyers

et al. (2011), it was shown that collaborative modeling supports learning of crypto-

graphic algorithms. FILL has also been used to control technical systems. The papers

Burkolter et al. (2014), Weyers et al. (2010, 2012) demonstrated that using FILL to

individualize user interfaces reduces user errors as measured during the control of a

simplified simulation of a nuclear power plant. Finally, Weyers (2013b) presented a

concept for using FILL to model adaptive automation as part of the interaction logic

in a user interface model.

5.4 Architecture

This section presents in detail the previously described architecture 3LA. It will illus-

trate the relation between this architecture and well-known architectural concepts and

existing patterns. This description is meant to present and define the terms used and

the role of FILL models in this approach and to show how FILL is used to create

formal user interface models.
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Fig. 5.1 Representation of the model–view–controller architectural pattern from three different

perspectives: its classic definition, an extension that describes widgets with their own functionality,

and a mapping of this extended version to the intended architecture of FILL

3LA is conceptually related to the model–view–controller (MVC) pattern (Kras-

ner et al. 1988). Figure 5.1 compares the classic MVC pattern and a slightly restruc-

tured version (in the middle) that makes interaction elements into the functional ele-

ments of a user interface. Here, the MVC’s controller is directly associated with the

view of an interaction element which can trigger changes in the element’s appear-

ance and state; these changes are then encapsulated as an interaction element model.

The interaction element controller further encapsulates all functionalities needed to

generate events as data objects based on user interaction such as clicking on the rep-

resentation of the interaction element. Thus, an interaction element can be modeled

to conform to the MVC architectural pattern on its own regardless of the concept of

interaction logic. Nevertheless, a user interface can be assumed to comprise more

than one interaction element, which means that, on the interaction element level,

the MVC exists n times for n interaction elements in one user interface. This set of

interaction elements can be mapped to the physical representation layer.

The controller for noninteraction elements (also shown in the middle of Fig. 5.1)

comprises all relevant functionalities for updating the (global) model represent-

ing the state of the controlled system and processes events emitted from the inter-

action elements (here, the individual controllers of the interaction element). This

global controller relates to the interaction logic in FILL’s terminology, where the

global model can be associated with the system interface (see Fig. 5.1, right). FILL

addresses the modeling of the interaction logic, where the combination of a physical

representation description and the interaction logic is referred to as the user interface
model.

The architecture specifies a macroscopic, horizontal, and layered representation

of an interactive system. A microscopic (vertical) view of single-interaction ele-

ments, and their associated part of the interaction logic of a user interface model
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Fig. 5.2 Interactors as described by Paternò (1994), defining interaction objects as comprising an

abstraction element processing output from outside of the interactor, an input element processing

input from the user and a presentation element encapsulating the state of the outward appearance

of the interactor. ARCH was introduced by Bass et al. (1991). It structures an interactive system in

the components shown here, where the communication is defined by specific types of data objects

obtains a modeling structure similar to that presented by Duke et al. (1994), Paternò

(1994), which is shown in Fig. 5.2. These so-called interactors not only describe

interaction elements including a specific visual representation but also model multi-

layer networks of interactors through a hierarchical combination of inputs and out-

puts from interactors. Each interactor is related to a specific (elementary) task the

user wants to work on with the system.

As can be seen in Fig. 5.2, an interactor comprises three main elements:

(a) the abstraction element, which contains the description of data to be visualized,

(b) the input element, which processes the input from the user to be redirected to

the application or influence the third component, which is

(c) the representation element, which defines the appearance of the interaction

object.

A combination of the two views presented (MVC and interactors) on user inter-

face architectures can result in the 3LA presented in Fig. 5.3, which is the architec-

ture used by FILL-based user interface models. As described above, interactors such

as smaller components can be modeled (a widget combined with one or more FILL

components) as can the more monolithic view of interaction logic as a controller. For

the fine-grained structure of interaction logic, FILL offers mechanisms for structur-

ing interaction logic into reusable and exchangeable components. A set of FILL com-

ponents can be specified through various functional semantics, for instance, compo-

nents that model the communication of interaction elements with the system to be

controlled (as interactors do). FILL components can also be classified as interaction

element-specific (also referred to as interaction process) if they directly relate to one

interaction element or to a set of interaction elements (represented as vertical boxes

in Fig. 5.3) or are only related to other components (also referred to as global compo-
nents, represented as horizontal boxes in Fig. 5.3). Consider the ARCH model (Bass

et al. 1991, 1992; Coutaz 2001), which specifies various functional components of
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Fig. 5.3 FILL architecture 3LA has three layers: The physical representation, containing a set

of interaction elements (widgets) used for direct interaction with the user; the component-based

interaction logic, modeling the processing of data emerging from the physical representation or

from the third layer; and the system interface, representing the system to be controlled as set of

system values

different levels of abstraction (see Fig. 5.2, right). Similar to the proposed architec-

ture, the ARCH model identifies the application or functional core as a set of domain-

dependent concepts and functions located in the 3LA system layer. The other extreme

in the ARCH model is the interaction toolkit component, or the physical represen-

tation component, which has the same functionality as the physical representation

layer in 3LA. Both components are connected via three additional elements, whereby

the dialog component is the central key element of the ARCH model. Its role can be

defined as controlling task-sequencing. In 3LA, the dialog component can be mod-

eled as one or more global components. The two other components in the ARCH

model represent adaptors of the dialog component to the application (function core

adaptors) and the interaction toolkit component (logical presentation component).

The latter can be modeled as an interaction process and thus as a FILL component

directly related to an interaction element and connected to a global component in the

3LA representing the dialog component. The function core adaptor can act as another

global component in the 3LA related both to the global component representing the

dialog component and to the underlying system. This exemplary mapping of 3LA

to a well-established architecture demonstrates the applicability of 3LA following

this architecture and also shows that 3LA is not limited to this architectural struc-

ture. An interaction process is still able to access the system directly, which makes it

possible to implement simple user interface models. If the model becomes more
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complex, 3LA still offers the abstraction layers proposed by the ARCH model and

thus enables the engineer to structure the user interface model accordingly. The next

section will introduce the various modeling elements of FILL that enable the above-

mentioned modeling of component-based interaction logic.

5.5 Modeling—Formalization

The following sections will introduce FILL as modeling language, following a

bottom-up approach. In the first step, FILL’s visual representation will be introduced

by presenting the different types of modeling concepts used (Sect. 5.5.1). In the fol-

lowing, the component-based modeling will be introduced and how components are

specified in a FILL model (Sect. 5.5.2). This description includes the modeling of

multiview and multidevice user interfaces. These descriptions are followed by an

introduction to the transformation of FILL models to a reference net (Sect. 5.5.3)

(Kummer 2009), which is a specific type of colored Petri net (Jensen and Rozenberg

2012). Reference nets will be briefly introduced in Sect. 5.5.3.1. The whole modeling

concept will be illustrated by means of a case study in Sect. 5.7 and by two smaller

examples throughout this section.

5.5.1 Formal Interaction Logic Language—FILL

FILL has been developed as part of 3LA to describe interaction logic. As interac-

tion logic connects the physical representation and the system to be controlled, it is

defined to specify data flows that process emerging events from the physical repre-

sentation or from the system layer. Events are represented by data objects; therefore,

they can be handled by formally specified data processing. This data processing is

described by a FILL model. Consider the following case: The user presses a button

on a user interface. This creates a data object representing the press event. The goal

of FILL is to model a data flow that processes this event and generates input data

for the underlying system to be controlled. For example, it might specify the open-

ing of a valve in a water flow system. Similarly, state changes in the system can be

used to trigger processes in a FILL model, which are then propagated to the physical

representation. Thus, FILL specifies event-driven processes for data handling.

5.5.1.1 Informal Introduction to FILL

Every FILL model is described as a graph composed of nodes as defined by FILL’s

visual representation, and is shown in Fig. 5.4. FILL defines various types of opera-

tion nodes. Nodes that set or read system values to or from the system to be controlled

are called system operations. Nodes that transform data, such as events resulting
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Fig. 5.4 FILL is a graph-based visual language composed of various types of nodes and edges:

operation nodes (to process data), proxy nodes (to connect interaction elements to the FILL model),

BPMN nodes (to branch and fuse FILL graphs), and two types of edges to define data flow or to

couple FILL components

from user interaction, data generated by changes in the system state, or data stem-

ming from other parts of the interaction logic are called interaction-logic operations.
In Fig. 5.4, system operations are indicated by a solid frame, while interaction-logic

operations are indicated by a dashed border. Nodes that connect different FILL com-

ponents to each other are called channel operations and are indicated as gray lines

between components in Fig. 5.3. Channel operations are indicated by having only one

input or one output port representing the entry (input channel operation) or exit (out-

put channel operation) point of a channel (indicated by a dashed arrow in Fig. 5.4).

The concept of components will be described in detail in Sect. 5.5.2.

The ports of operation nodes define the connecting points of incoming or outgo-

ing data objects and are visualized as thick arrows. Therefore, ports are identified



136 B. Weyers

according to which the type of data objects can be consumed (input port) or will

be emitted (output port) into the FILL graph. All operation nodes and descriptions

of the various elements (e.g., ports) of an operation node are shown on the left in

Fig. 5.4. Furthermore, FILL defines a terminator, which consumes all incoming data

objects and is used to define the sink of a FILL graph.

In addition to operation nodes, which cope with the processing of data objects

and the structuring of FILL models, FILL borrows nodes from the BPMN model-

ing language (White and Miers 2008). BPMN was originally defined for the visual

description of business process models. In FILL, nodes called gateways in BPMN are

used to branch and fuse processes. They can be further equipped with guard condi-

tions, which can be used to define conditions under which incoming data objects are

redirected to outgoing connections. These conditions can be further used to control

redirection; in the case of branching nodes, for example, gateways determine which

outgoing connection will be instantiated with the incoming data object, and in the

case of fusion, which of the incoming data objects will be redirected to the outgoing

connection. Guard conditions are Boolean expressions based on propositional logic.

For instance, consider two incoming data values a and b of type Integer at an AND
BPMN node and the guard condition

guard a > 20& b < 30 → a;

The part between the key word guard and the arrow sign → is evaluated as a Boolean

expression. For instance, if a = 30 and b = 20, a is redirected to the next process of

the BPMN node. The latter information is indicated by the arrow →. For the AND

node, the guard condition is only evaluated if a and b are both mapped to a value by

an incoming data object. The semantics of the BPMN nodes will be discussed in the

context of transformation in Sect. 5.5.3.

To define data flow in a FILL graph, FILL nodes are connected via directed edges,

which start and end at ports at the top and the bottom of an operation node or at

BPMN nodes, as can be seen in Fig. 5.5 on the right. These so-called data flow edges
can be further inscribed to make data objects that can be sent to BPMN nodes or

referred to in guard conditions. Thus, data objects in the FILL graph can be treated

as variables (see description of example in Fig. 5.5).

Another type of edge is defined for the representation of channels in a FILL

model. These channel reference edges are used for sending data objects from one

FILL component to another. They always begin at an input channel operation and

end at an output channel operation. These edges are visualized in Fig. 5.4 as a dashed

arrow indicating the direction.

Ports that are not part of operation nodes are called proxy nodes and represent con-

nections to interaction elements in the physical representation. Output proxy nodes

represent events that occur during run-time. If, for example, the user presses a but-

ton, an event object is created and sent to the FILL graph via the output proxy node

related to the button. This event data object is then passed through the FILL graph

along the data flow and channel reference edges and thus processed by operations.

To send data objects back to interaction elements, they are passed to input proxy
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Fig. 5.5 Example of a simple FILL-based user interface model with a physical representation

containing one interaction element (a button) related to a single FILL component (shown on the

right in detail), which is related to an underlying system interface. The FILL graph models the

toggling of the value of the system value SV2

nodes associated with interaction elements able to process the specified data type

and present it to the user.

5.5.1.2 Formal Definition of FILL

Based on this informal introduction to FILL by means of its visual representation as

shown in Fig. 5.4, FILL’s syntax can be formally defined as follows:
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Definition 1 The Formal Interaction Logic Language (FILL) is a 19-tuple

(S, I,CI ,CO,PI ,PO,XI ,XO,B,T ,P,E, l, g, c, t, 𝜔,L ,B),

where S is a finite set of system operations and I is a finite set of interaction-logic

operations; PI and PO are finite sets of input and output ports; XI and XO are finite

sets of input and output proxies; CI is a finite set of input channel operations; CO is

a finite set of output channel operations; T is a finite set of data types; B is a subset

of BPMN nodes, with

B = {⊕, ⊗, ⊙}. (5.1)

S, I, CI , CO, PI , PO, XI , XO, T , and B are pairwise disjoint. P is a finite set of pairs

P = {(p, o) | pI(p) = o} ∪ {(p, o) | pO(p) = o}∪
{(p, o)|p′I(p) = o} ∪ {(p, o)|p′O(p) = o},

(5.2)

where pI ∶ PI → S ∪ I and pO ∶ PO → S ∪ I are functions with

∀s ∈ S ∶ (∃1(p, s) ∈ P ∶ pI(p) = s)∧
(∃1(p, s) ∈ P ∶ pO(p) = s), and

(5.3)

∀i ∈ I ∶ ∃1(p, i) ∈ P ∶ pO(p) = i, (5.4)

and where p′I ∶ PI → CI and p′O ∶ PO → CO are functions with

∀c ∈ CI ∶ (∃1(p, c) ∈ P′ ∶ p′I(p) = c)∧
(∄(p, c) ∈ P′ ∶ p′O(p) = c), and

(5.5)

∀c ∈ CO ∶ (∃1(p, c) ∈ P′ ∶ p′O(p) = c)∧
(∄(p, c) ∈ P′ ∶ p′I(p) = c).

(5.6)

E is a finite set of pairs, with

E = {(pO, pI) | e(pO) = pI}∪
{(p, b) | e′(p) = b, b ∈ B}∪
{(b, p) | e′(b) = p, b ∈ B},

(5.7)

where e ∶ PO ∪ XO → PI ∪ XI ∪ {𝜔} is an injective function, 𝜔 is a terminator, and

∀(pO, pI) ∈ E ∶ (pO ∈ XO ⇒ pI ∉ XI)∧
(pI ∈ XI ⇒ pO ∉ XO),

(5.8)

and where
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e′ ∶ PO ∪ XO ∪ B → PI ∪ XI ∪ B ∪ {𝜔} (5.9)

is a function with

∀b ∈ B ∶ (#{(p, b)|(p, b) ∈ E′} > 1 ⇒ ∃1(b, p) ∈ E′)
∨(#{(b, p)|(b, p) ∈ E′} > 1 ⇒ ∃1(p, b) ∈ E′).

(5.10)

l is a function with

l ∶ E′ → L , (5.11)

where L is a set of labels.

g is a function with

g ∶ B → B, (5.12)

where B is a set of Boolean expressions, also called guard conditions or guard

expressions.

c is a relation with

c ∶ CI → CO. (5.13)

t is a total function with

t ∶ (PI ∪ PO ∪ XI ∪ XO) → T . (5.14)

The following example of a simple FILL graph will present the syntactic structure

and semantics of a FILL graph in greater detail and complement the descriptions

above.

5.5.1.3 FILL Example

This section examines how a button is used to control a valve in a simplified simu-

lation of a nuclear power plant (cf. Chap. 4). The user interface model including the

button and the accompanying FILL graph can be seen in Fig. 5.5. On the left is the

user interface model from an architectural point of view based on 3LA presented in

Sect. 5.4. On the right is one FILL graph, representing the user interface’s interaction

logic.

When the user presses the button, which is embedded in the physical represen-

tation of a classic WIMP-based device (e.g., in a window of a Windows desktop),

an event object is sent to the FILL graph by the proxy node shown at the top of the

graph. The proxy node is indicated in Fig. 5.5 by (1). This object is passed to a system

operation called getSV2Status, where it is consumed and triggers a get function

on a system value called SV2Status. In the simplified simulation of a nuclear

power plant (cf. Chap. 4), this system value represents the status of a steam valve

(steam valve 2). This system call as well as the data processing function call associ-

ated with interaction logic operations will be described in greater detail in Sect. 5.5.3.

http://dx.doi.org/10.1007/978-3-319-51838-1_4
http://dx.doi.org/10.1007/978-3-319-51838-1_4
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The relation between system operations and the underlying system to be controlled

is indicated by (2) in Fig. 5.5, which shows the system operation’s representation of

the system interface in the FILL model. The returned value—a Boolean value indi-

cating whether steam valve 2 is open (true) or closed (false)—is sent to the FILL

graph and passed to the succeeding (branching) BPMN XOR node. In this case, the

guard condition specifies that if the incoming value x is false, the incoming value

is redirected to the edge inscribed with a, whereas if x is true, it is redirected to

edge b. In both cases, the redirected Boolean value triggers an interaction-logic oper-

ation called createBooleanValue, which generates a negated Boolean value.

This new Boolean value is then passed via a fusing XOR node to a system operation

that sets this new value to the same system value SV2Status. In this case, the XOR
node just forwards every incoming data object to its outgoing branch. A terminator

node finally consumes the value. Thus, the FILL graph describes the toggling of the

state of steam valve 2 in the nuclear power plant simulation.

5.5.2 Component-Based and Multidevice Models

The creation of component-based, multidevice models is an extension of the basic

FILL definition introduced above. This extension specifies three new types of enti-

ties for FILL, namely devices D, views V , and components C, which are used in

the descriptions above. Devices represent a combination of software and hardware

used as interaction gateways between user and interaction logic that simultaneously

provide the physical representation of the modeled user interface. A smart phone, a

headset, or a window on a Windows desktop are all examples of such devices. Views

represent a specific part of the physical representation of a device, which allows the

modeling of more structured physical representations. A device can have more than

one view, which means that a physical representation can not only be separated into

interaction elements but into views containing interaction elements. This enables

the interaction logic model to specify a change between different views of a device.

Every view is related to a specific type of physical representation, such as a classi-

cal GUI for a smart phone or a set of audio files for a headset. The connection of

a FILL graph to the view-based physical representation is defined by proxy nodes.

Therefore, Definition 2 specifies the function d, which matches every proxy node to

exactly one view. A view can be matched to various proxy nodes since a view might

comprise more than one interaction element.

5.5.2.1 Component-Based Extension of the Formal FILL Definition

A formal definition of this extension of FILL models to a component-based descrip-

tion concept can be specified as given below.

Definition 2 A modularized FILL model is a 7-tuple
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(D,V ,C, d, c, v,F),

where D is a finite set of devices, V is a finite set of views, C is a finite set of com-

ponents, and F is a FILL graph. D, C, and all sets of F are pairwise disjoint.

v is a function, such that

v ∶ V → D. (5.15)

d is an injective function, such that

d ∶ (XI ∪ XO) → V , (5.16)

where XI and XO are input and output proxies from F.

c is an injective function, such that

c ∶ (S ∪ I ∪ CI ∪ CO ∪ XI ∪ XO) → C, (5.17)

where S, I, CI , CO, XI , and XO are operation and proxy nodes of F.

However, the above definition does not exclude cases in which a component refer-

ences proxies of different views. The UIEditor modeling tool (see Sect. 5.6) assumes

that a single component is used for all proxies of an interaction element to sim-

plify the visual modeling and prevent overly large graphs from being edited at once.

Moreover, components can be modeled without being mapped to proxy nodes. Such

components are referred to as global components because they are independent and

can only be integrated by channel operations into other view-dependent components.

This separation of two types of components (view-dependent and global FILL com-

ponents) will have further implications for the transformation and execution of FILL

models that will be discussed in greater detail in Sect. 5.5.3.

For the component-based description of the interaction logic, all operation and

proxy nodes are matched to components (elements of set C). Nodes matched to dif-

ferent components should not be connected by data flow edges. This restriction keeps

the components exchangeable and internally valid. For instance, by deleting a com-

ponent from the interaction logic, a direct connection via a data flow edge can change

the semantics of the remaining component or even make it nonfunctional. Channels

allow a well-defined encapsulation of components to prevent structural dependencies

of this nature. Therefore, channel operations should be used to connect components

to one another. Channels can also be used internally in a component.

5.5.2.2 Component-Based FILL Example

The example presented in Sect. 5.5.1.3 (see Fig. 5.5) can be extended. As can be

seen in Fig. 5.6, a new interaction element has been added: a lamp with four possible

states—red/blinking (0), green/blinking (1), red/steady (2), and green/steady (3). The

lamp is used if a new value for the steam valve is entered by pressing the button on
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A

A

Fig. 5.6 Extended version of the user interface model presented in Fig. 5.5. The model offers a

second interaction element (a lamp) associated with a second FILL component that controls the

lamps’ state. The two components are connected via a channel

the interface. Due to the delay in the system (time needed to mechanically open or

close the valve), the new status is not directly applied. During this lag time, the lamp

blinks.

To model this functionality, a new component (B) is added to the interaction

logic model. The component (A) has been slightly extended, such that the selected

value is transferred to component (B) via the channel between the input channel

operation in component (A) and the output channel operation in component (B).

The transferred value is stored in component (B) (interaction-logic operation

storeValue(Boolean)) for multiple use. At intervals, an update of the lamp’s

status is triggered by an interaction-logic operation called ticker. This operation

periodically generates a data object and pushes it into the FILL graph. This object

is duplicated by the succeeding BPMN AND node and simultaneously triggers the

restoration of the previously stored value and the current status of the valve. Finally,
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the guard conditions of the secondAND node specify which output is generated based

on the desired lamp state (0 to 3) in response to the combination of incoming values.

The output is then transferred to the lamp via the input proxy node in component (B).

5.5.3 Transformation to Reference Nets

The next step in the modeling process is the transformation of FILL models into an

executable representation. This transformation provides formal semantics for FILL.

Before the transformation algorithm is presented in Sect. 5.5.3.2, a short introduction

to reference nets will be given. Reference nets offer executability and define FILL’s

formal semantics.

5.5.3.1 Reference Nets

Reference nets were originally described by Kummer (2009) as an extension of

classic-colored Petri nets. Reference nets support typed (in the sense of object-

oriented data types) tokens and places as well as the inscription of places, transitions,

and arcs in the net, including guard conditions for transitions. The latter are especially

relevant for the transformation of FILL’s BPMN nodes. The following introduction

to reference nets assumes basic knowledge of colored Petri nets. For more informa-

tion on these modeling concepts, please see Jensen and Rozenberg (2012), Priese

(2008).

The main difference between reference nets and classic-colored Petri nets is the

handling of tokens. Classic-colored Petri nets limit the existence of a token to a sin-

gleton. Reference nets lift this restriction by allowing multiple instances of a net,

which can be bound to tokens as references on a net instance. For the synchroniza-

tion of transitions, reference nets support synchronous channels. Synchronous chan-

nels synchronize the firing of two or more transitions. To fire, the pre-conditions

for all bound transitions have to be fulfilled. If this is the case, the transitions are

fired simultaneously. This feature set makes reference nets—compared to other col-

ored Petri net formalisms—a very good candidate for transforming FILL models. By

using net patterns and instances, a component-based description of a FILL model can

be transferred into a reference net-based model, which preserves the FILL model’s

structure. This makes it possible to instantiate more than one device of a type meant

to use the same interaction logic as has been modeled as a FILL-based description.

Figure 5.7 shows an example of a simple reference net. On the left are the so-

called net patterns. These define the prototype of a net being instantiated during the

reference net simulation. On the right is the situation after the creator net has

been instantiated and the upper transition inscribed with the instantiation calls for

the worker net has been fired. Two instances of the worker net pattern are cre-

ated, each referenced by one token in the creator net instance. Both are shown at

the bottom-right of Fig. 5.7. In the displayed status of the net, the transitions in the
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Fig. 5.7 Example of a reference net with two net patterns shown on the left and a snapshot of a

running simulation of the net on the right. The example illustrates the features of reference nets by

offering the instantiation of net patterns such that a token is not restricted to a singleton instantiation.

The use of synchronous channels is illustrated

creator net instance inscribed with x:proc() and y:proc() are activated and

can fire. If transition x:proc() is fired, the transitions in worker[1] inscribed

with :proc() are fired at the same time because the inscriptions define a syn-

chronous channel identified by the name proc. Synchronous channels are specified

using a colon : between the name of the instance—here x—and the name of the

channel—here proc. The result is that the token in the incoming place of transition

:proc() in net worker[1] is consumed, and a token in the subsequent place in

the same transition is generated.

5.5.3.2 Transformation

The transformation of a given FILL model comprises the following steps:

1. The complete model is examined according to its components and its physical

representation (structure of devices and views).

2. The net pattern representing the controlNet is generated; this net pattern han-

dles

∙ the instantiation of all other net patterns, each representing one FILL compo-

nent,

∙ the FILL channel-based communication between these components, and

∙ the management of multidevice user interfaces.

3. Every FILL component is transformed to a net pattern.
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4. All net patterns are integrated into one reference net.

An initial examination is conducted to identify the relations between FILL com-

ponents, views, devices, interaction elements, and the implementations used for the

system interface and the interaction-logic operations as defined in the given user

interface model. In the case of the UIEditor (see Sect. 5.6), the system interface

as well as the interaction-logic operations each has to be implemented as a JAVA

class. The language dependency is specific for the UIEditor but not for FILL. In a

UIEditor-based implementation of FILL, every system and interaction-logic oper-

ation is mapped to one method in the corresponding JAVA class. Ids are used to

resolve the mapping of components via channels (channel reference edges) and to

interaction elements. Furthermore, ids simplify the control of data flow in the refer-

ence net and the algorithmic transformation. The following mapping functions are

used in the transformation:

Definition 3 Assume a FILL graph FG. Being FG a graph, the functions f , 𝜅, id,

are defined as follows:

f is a function with

f ∶ S ∪ I ∪ CI ∪ CO → F , (5.18)

where F is a set of function calls and S are system operations, I interaction-logic

operations, and CI and CO are channel operations that originate from FG. For ele-

ments of S and I, F represent JAVA methods and for CI and CO channel names.

𝜅 is a function, with

𝜅 ∶ XI ∪ XO → I , (5.19)

where I is a set of references of interaction elements (ids) on the physical represen-

tation of the user interface, and XI and XO are proxy nodes from FG.

id is a total bijective function, with

id ∶ S ∪ I ∪ CI ∪ CO ∪ PI ∪ PO ∪ XI ∪ XO ∪ B → ID , (5.20)

where ID is a set of ids that uniquely identifies any node, port, or proxy in the FILL

graph FG.

The following definition further specifies elements and functions relevant for the

transformation, which are not directly related to a given FILL graph but necessary

for the transformation.

Definition 4 Should be ids, S′, ieID, and procID defined as follows:

ids ∶ S′ → ID is a total bijective function that matches a place in a reference net

to an id.

S′ ⊆ S is a subset of places in the reference net representing connections to and

from a BPMN node. This function is necessary for the transformation of BPMN

nodes; it compensates for the fact that a BPMN node does not have ports associated

with ids as it is the case for operation nodes.
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Fig. 5.8 Table presenting the transformation of operation and proxy nodes of FILL to reference

nets. The second column lists the node type, and the third column the resulting reference net. The

mapping functions used are defined in Definitions 3 and 4

ieID and procID are ids that are generated in the transformation process. ieID
indicates the id associated with the interaction element that triggers or is triggered

by the interaction process. procID is used to specify the data flow.
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The following introduces the transformation of the different FILL elements.

Transformation of operation nodes—The transformation of interaction logic or

system operation nodes results in the generation of two transitions: one for call-

ing an associated (JAVA) method and one for re-entering the net after the method

returns. The inscriptions of these transitions differ in the name of the synchro-

nous channel that calls the associated method (systemOperationCall versus

ilOperationCall) and specifies the re-entering point (systemOperation-
Callback versus ilOperationCallback). They also differ in the number of

variables that are sent to the method, which is indicated by its name f (op), where op
is the operation node to be transformed to. Data values sent to and from operation

nodes are associated with variables, here indicated by v and v0 to v2.

The main difference between the transformation of a system operation node (as

shown in Fig. 5.8 first row) and the transformation of an interaction-logic operation

node (as shown in Fig. 5.8 second row) is the transformation of input ports. Accord-

ing to FILL’s syntax definition, every interaction-logic operation has 0 or 1 output

port and 0 to n input ports. For system operation nodes, there is exactly 1 input and

1 output port. In general, input and output ports are transformed into an edge/place

combination as can be seen in Fig. 5.8, third row.

The transformation of channel operations follows the same concept as system or

interaction-logic operations (see Fig. 5.8, fourth and fifth rows). The connection of

input to output channel operations by channel reference edges is transformed using

the synchronous channel concept of reference nets. If these connections are speci-

fied internally in a FILL component, the synchronous channels are specified inter-

nally in the net pattern by using the this keyword. The net instances that represent

connected FILL components need a mechanism to control how nets reference one

another. To that end, the controlNet can redirect transition firings and simulta-

neously distribute the reference to the different net instances. For each component,

a combination of a transition and a place is added that represents the connection

between the controlNet and the component net. This is used to forward the data

object to the controlNet that contains the reference to the corresponding net

component. This feature will be discussed in greater detail below.

Proxy nodes—Proxy nodes represent data connectors to and from interaction

elements. 𝜅 is a function relating a proxy node to its associated interaction element by

a unique reference. This reference is a specification of a channel name for an output

proxy node (see Fig. 5.8, third row), such that an event can be uniquely redirected

to the correct proxy node in the reference net. The callback function from the net to

the physical representation and the associated interaction element is specified by a

fixed channel name called widgetCallback. To identify the correct interaction

element for the physical representation, its identifier (given by 𝜅) is passed to the

channel as the parameter.

Transformation of BPMN nodes—For BPMN nodes, the transformation into

reference nets focuses even more on the structure of the generated net than is the

case for operation nodes. Here, the firing semantics of reference nets is actively used

to model the semantics of BPMN nodes as used in FILL. Below, the transformations

are described per BPMN node for the fusion and branching of interaction processes.
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This description includes a detailed presentation of the semantics of each BPMN

node type. For the transformation of BPMN nodes, a place is generated in the created

reference net for any incoming and outgoing branches which define the entrance or

exit point of the BPMN node, as can be seen in Fig. 5.9.

AND(fusion): The outgoing branch is triggered only if all incoming branches pro-

vide one or more data objects. This semantic is reflected in the structure of the refer-

ence net by defining the places representing the incoming processes as a precondition

for the transition t. The associated guard condition specifies which data object (here

the object associated with the variable a) is copied to the outgoing process. The

guard condition is obligatory in a FILL graph. The syntax of guard conditions has

been specified as compatible with the guard conditions of reference nets (Kummer

2009) (see also Sect. 5.5).

AND(branch): All outgoing branches will be triggered if the incoming branch

provides a data object. This semantic is realized by specifying all places represent-

ing an outgoing branch as a post-condition of the transition t representing the AND

node. The guard condition shown in Fig. 5.9 is optional and specifies under which

condition the incoming data object is redirected to the outgoing branch.

XOR(fusion): Every incoming data object is redirected to the outgoing edge by

copying the data object. Therefore, for every incoming branch, one transition is gen-

erated that is optionally inscribed by a guard condition corresponding to the guard

condition specified in the FILL graph.

XOR(branch): Only one of the outgoing branches is triggered for an incoming

data object. Therefore, any outgoing branch is represented as a transition in the

transformed reference net. An outgoing branch must be triggered, but which will

be triggered has to be defined by a guard condition.

OR(fusion): Groups of processes can be defined by edge inscriptions in the FILL

graph as can be seen in Fig. 5.9: g1 and g2 specify one group each. Subsequently,

the transformation generates an AND-like subnet for every group and behaves like an

XOR node between groups. If each of the incoming branches in one group provides a

data object, the group’s associated transition fires independently from other groups.

Guard conditions control which data objects are redirected to the outgoing branch.

OR(branch): Groups of outgoing branches are triggered in accordance with the

guard condition. The assignment of the guard conditions to the group is defined by

an arrow in the FILL graph’s guard condition, as is the case for all guard condition

assignments for edges in the above cases of AND and XOR nodes.

Transformation of data flow edges—Data flow edges are transformed at the

very end of the transformation process, after all nodes have been transformed into

subnets. Every data flow edge is transformed into one transition, which is connected

to the places representing the connected ports or BPMN nodes. The final result is a

connected reference net representing the inputted FILL graph.

Generation of the controlNet—The controlNet implements mainly four

functionalities in total:

1. the initialization of devices by instantiating their associated net patterns, which

represent the interaction logic components
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Fig. 5.9 Transformation of BPMN nodes in FILL to reference nets. The second column contains

the node type (separated into branch and fusion), and the third column shows the resulting reference

net

2. the initialization of global FILL components

3. the calling of functions on the device sent from an interaction logic component

4. the connection between different net instances representing interaction logic com-

ponents
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Fig. 5.10 Example of a controlNet showing the result of a possible transformation of a FILL

model as represented in Fig. 5.6. Two components and one device are defined. Furthermore, this

controlNet shows how three global FILL components are handled; they are defined indepen-

dently from devices

In Fig. 5.10, an exemplary controlNet is shown in which all the transitions

with a dashed border represent transitions that are fired or called by the Event
Interface that is a part of the UIEditor execution component (see Sect. 5.6.2).

Through a server–client architecture, the EventInterface connects the imple-

mentations of the system to be controlled, the interaction logic operations, and the

devices (see Sect. 5.6.2). All transitions associated with synchronous channels are

indicated by the hatching overlay in Fig. 5.10. For reasons of simplification, in the

following description, all net patterns that are transformed FILL components will be

called component nets.
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The entire upper part of the controlNet shown in Fig. 5.10 is dedicated to

the initialization (see upper left block of Fig. 5.10) of the component nets associated

with a device type defined in the model. Information about which component nets

are associated with which device type is gathered from the first-generation step by

inspecting the FILL model. The relation of views and devices to FILL components

can also be gathered by the mapping functions defined in Definition 3.

For each component net associated with a device type, a transition is generated

in the controlNet that instantiates one net instance per component net. In Fig. 5.10,

the transitions (t1) and (t2) are examples of such instantiation transitions, in

this case to instantiate the net components L_1 and L_2. The component net is

associated with a specific device instance by mapping the deviceID to the com-

ponent net instances. The device id is initially passed to the controlNet by the

EventInterface by calling the transition (ti). This process generates tokens

representing the device id passed and activates the transitions (t1) and (t2). The

result of each transition is a tuple associating the net instance of the particular compo-

nent net with the device id. This makes it possible to instantiate more than one device

of the same type, simultaneously making it possible to multiplex the callbacks from

the interaction logic to the specific device. The generated tuples are added to place

(a).

During the initialization phase of the net instances representing interaction logic

components associated with a device, a reference to the controlNet is sent

to the newly created net instance by firing the transition inscribed with :init
in the component nets. Using this reference as a callback to the controlNet,

it is possible to process calls from component nets to the device. The callback

from a device to a component net is handled by the EventInterface firing the

deviceOperationCallback transition. For examples of these processes, see

component net L_2 in Fig. 5.10. Finally, thecontrolNet handles the communica-

tion between component nets as described by channel operations in the FILL model.

The transition inscribed with controlNet:ccCall(...) in L_1 fires the asso-

ciated transition in the controlNet, which matches the component net instances

to the passed id. The associated transition inscribed with :ccCallback(...) in

L_2 is then fired synchronously.

In the controlNet, for each global component (a component not related to

a device or a view) a transition is specified to instantiate the associated net pat-

tern. The main difference for global components is that a global component is only

instantiated once and is not mapped to a device id. The instantiation is triggered

by firing the transition inscribed with :initGlobalComponents(), which

can be seen in Fig. 5.10 on the left in the controlNet. Firing is triggered by

the EventInterface. Every generated net instance is initiated by firing the

transition inscribed with netInstance:init(...). This sends the

controlNet reference to the net instance for channel calls and callbacks. Another

difference from device-dependent components is that the net ids of global nets are

predefined during the transformation of FILL graphs to reference nets. Thus, the ids

do not have to be concatenated with a device id (see inscriptions of transitions (L1)
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and (L2)) during run-time because the global components exist exactly once and

are independent of devices.

An example of a reference to a global component can be seen in L1 (Fig. 5.10,

upper-right). The mechanism used is identical with the one for referring to device-

dependent components but without the need to include the previously transferred

device id.

In the following, we will introduce a software tool that implements the entire

architecture, including the event interface, the server–client architecture, and the cou-

pling of all classes with Renew, the reference net simulator.

5.6 Modeling and Editing

The UIEditor is a JAVA-based software tool for modeling, running, and reconfig-

uring formally described user interface models with FILL. The UIEditor can be

used in three different modes: creation, execution, and reconfiguration. Reconfig-

uration is discussed in Chap. 10. Every mode is combined with a specific interactive

editor or visualization. The different modes and their accompanying editors, visu-

alizations, and algorithms will be described in greater detail below. For the execu-

tion of a multidevice user interface model, the UIEditor implements a server–client

architecture. It enables the initialization of the devices as well as communication

between the interaction logic simulation on the server side and the physical repre-

sentation on the client side. Additionally, it couples the simulator for the reference

net-based representation of the component-based interaction logic with the system

and implements the interaction-logic operation. Devices are coupled by the imple-

mented EventInterface, as shown in Fig. 5.10.

5.6.1 UIEditor—Creation

Figure 5.11 shows a two-part editor: the FILL canvas for modeling FILL graphs on

the left and the physical representation canvas for modeling a WIMP interface on the

right. To add an element to a canvas, it has to be dragged from a palette on the left into

the canvas on the right. Further positioning and resizing of the operation nodes or

interaction elements is performed by clicking on the node using the resize handles or

right-clicking on the context menu to set the parameters of the operations, such as the

initial parameters or the parameters of the interaction elements (colors, labels, etc.).

Other actions—such as deleting operation nodes or interaction elements, duplicating

nodes, or adding channel operations to the FILL graph—are supported by toolbars

at the top of any canvas. Additional tools—for loading and saving a user interface

model as an XML-based description, adding a system interface, and interaction-

logic operations—are accessed through the menu bar. System interface operations

are read via JAVA’s reflection mechanism from their loaded implementation. Here,

http://dx.doi.org/10.1007/978-3-319-51838-1_10
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Fig. 5.11 UIEditor in creation mode showing two drag-and-drop-based visual editors for the cre-

ation of FILL models on the left and a WIMP-based physical representation on the right. The editors

offer various editing operations in tools bars and menus

each getter and setter method is interpreted and represented as an output or input sys-

tem operation, respectively. While running the user interface model, these methods

are called when the appropriate operation is triggered in the FILL process. The same

principal is used for interaction-logic operations. Therefore, data transformation rou-

tines represented as interaction-logic operations in a FILL graph are implemented as

JAVA methods and called while running the user interface model. This is possible

due to the referencing mechanism of reference nets, which synchronizes the firing

of transitions in the net and the calling of methods.

In the current version, only a visual editor for WIMPs for the physical representa-

tion has been implemented. The UIEditor offers extensibility for adding other types

of devices. The serialization mechanism could be used to send the model of the

physical representation created with the UIEditor to the devices. This distribution

of the physical representation is currently under development. Because it abstracts

interaction elements to widgets, the UIEditor can offer a specific set of proxy nodes

for the FILL graph description without knowing the device-specific presentation of

interaction elements.

5.6.2 UIEditor—Execution

The first step is to load a user interface model for execution. The FILL graph is

passed to a converter, which transfers it to a reference net as a PNML file using

the transformation described above (see Sect. 5.5.3.2). PNML is a standard markup
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language for the serialization of Petri nets (Weber and Kindler 2003). The physical

representation is passed to a renderer, which generates a JAVA Swing-based con-

tainer defining interaction elements with their specified parameters, such as position

and size. In the case of a multidevice setting, messages are sent to all devices in

order to initialize their individual physical representations. All devices have to be

registered in advance on the UIEditor’s server. The message passing during exe-

cution is based on a simple server–client architecture in which the UIEditor repre-

sents the server and the devices represent the clients (see Fig. 5.10). After loading

the user interface model, the reference net is passed to the execution component of

the UIEditor. This component passes the reference net to Renew. By linking Renew

with the loaded interaction logic and the EventInterface, it is ready to start the

execution (see Sect. 5.5.3.2 and Fig. 5.10). To do so, Renew executes the reference

net-based interaction logic model. The execution component of the UIEditor loads

the system interface and interaction-logic operation implementations and connects

them to the EventInterface. The EventInterface implements the connec-

tor with Renew in order to execute the interaction logic, the system interface, and the

interaction-logic operation implementations, as well as the server for communica-

tion with the distributed devices or the WIMP-based standard implementation. This

entire concept is laid out in Fig. 5.10.

To enable the execution of multidevice models, the UIEditor offers a client–server

architecture as an extension to the basic execution framework for WIMP user inter-

faces. The server encapsulates the EventInterface and provides a message

socket for sending messages to and from the devices. The data protocol between

clients and server uses comma-separated values:

[Time,Device,View,Method,Content]

The first value defines the time an event was sent by the interaction device. The

second and third values specify the source or target device and target view. This

process uses ids that were generated during the instantiation of the reference net and

the devices. The Method value specifies the entry point to the interaction logic or the

physical representation. For instance, the device has to know in which text field to

place new content (from the interaction logic executed on the server side). The last

parameter represents the content being transferred. The entire architecture is shown

at the bottom of Fig. 5.10.

5.7 Case Study

In this section, the nuclear power plant case study as presented in Chap. 4 will be used

to exemplify a user interface model incorporating the UIEditor and the presented

FILL modeling approach. This model neglects the multidevice aspect of FILL. This

is because the multidevice concept only affects the initialization of the reference net

model and not the interaction logic model itself.

http://dx.doi.org/10.1007/978-3-319-51838-1_4
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The physical representation of the modeled user interface can be seen in Fig. 5.12.

It has four buttons that are equipped with lamps, representing the current status of the

valve (green corresponds to open and red to closed). There are also four sliders—one

for each water pump and one to control the position of the control rods responsible for

the reactor’s thermal output. The physical representation offers a set of output values

that show the current selected speed of the pumps or the position of the control rods

and the current pressure and water level in the vessels. One of these output values

represents the power output of the plant. The physical representation features a lamp

showing whether the SCRAM state has been reached or not. SCRAM stands for an

emergency shutdown of nuclear power plants in case of system’s critical situations,

such as an decreasing water level under a certain threshold. SCRAM can be exe-

cuted automatically by the control system (as presented here) or manually through

the human operator.

Figure 5.13 shows the FILL model that corresponds to the physical representation

presented. For simplification, only one FILL graph is shown for redundant parts of

Fig. 5.12 Physical representation of the user interface model for monitoring and control of a sim-

plified nuclear power plant. It comprises a button panel that controls water and steam valves and

sliders that control water pump speed and the control rods in the reactor core. Lamps and numerical

labels provide user feedback by indicating the current status of the nuclear power plant



156 B. Weyers

Fig. 5.13 Complete model of the case study: a simple user interface including a model for a simple

implementation of the SCRAM operation. The model is comprised of five local components (LD_1
to LD_5), each of which is related to an interaction element. Some of them are redundant, existing

in several slightly adapted versions in the interaction logic model; for example, LD_1. G_1 is a

global component modeling the SCRAM operation
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the interaction logic model, such as the valve buttons (LD_1). In the FILL graph

LD_1, the event object sent from the corresponding button (WV1) triggers a sys-

tem operation, which itself transmits a system value (status of WV1) to the graph.

Depending on that value, the left or right branch of the succeeding BPMN node is

triggered, which ultimately generates the opposite Boolean value. This value is set

to WV1 by triggering the system operation setWV1Status. This component in the

model is identical to the one in the example presented in Fig. 5.5.

The LD_2 component represents the corresponding FILL graph for sending the

current status of the valve to the lamp, which is green when the valve is open (true)

and red when it is closed (false). For each lamp, one instance of this component exists

in the model, each triggering a different system operation that returns the status of

the corresponding valve. Component LD_3 contains the FILL graph related to the

slider setting the speed of the condenser pump. For each slider that sets the speed

of a water pump, a similar component is specified in the interaction logic. These

components differ in the system operation the value of the slider is sent to. The

LD_4 and LD_5 components use channel operations to connect to the global FILL

component G_1. LD_4 represents the callback to the lamp inscribed with SCRAM

in the physical representation. This lamp indicates whether the SCRAM operation

has been executed, which is modeled in G_1. The channel output operation in LD_4
is connected to the channel input operation CH_IN_#2 in G_1. LD_5 shows the

FILL graph related to the slider controlling the position of the control rods in the

reactor tank. The position in the system is set by changing the position of the slider;

the FILL graph is similarly modeled for LD_3. To execute the SCRAM procedure,

the new position of the rod position defined in G_1 is also sent to the slider, reflecting

the new value in its position through the given output channel operation in LD_5.

This channel operation is connected to operation CH_IN_#0 in G_1.

G_1 (partially) implements the SCRAM operation as discussed in Chap. 4. The

ticker operation at the top of the FILL graph in component G_1 periodically trig-

gers the getWaterLevelReactor system operation, which transmits the current

water level of the reactor vessel to the graph. At the subsequent BPMN XOR node,

this value is redirected to one of the subsequent branches in accordance with the

evaluation of the inscribed guard condition. If the water level is above 1900 mm,

a false Boolean value is generated and sent to a channel operation that redirects

this value to LD_4 and thus to the SCRAM lamp. If the water level is under (or

equal to) 1900 mm, the left branch is triggered, generating an integer equal to zero.

This integer is set as a new control rod position and then sent to a channel and an

interaction logic operation by passing a branching AND node. The channel operation

transfers the value to LD_5 (operation CH_OUT_#0) and sets the slider position to

zero. For the other branch, a true Boolean value is generated and sent over the

channel operation CH_IN_#2 to the SCRAM lamp (LD_4), switching it to green.

The SCRAM procedure, which is modeled only by setting the control rod position

to zero (completely in the core), can be extended. For instance, valves can be opened

or closed, and the pump speed can be set to a certain value to continue cooling the

core. This can be done by adding branches to the AND BPMN node in G_1, which

currently triggers only FILL components (LD_3 and LD_4). Furthermore, due to the

http://dx.doi.org/10.1007/978-3-319-51838-1_4
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component-based structure of FILL-based interaction-logic models, it is possible to

exchange the SCRAM procedure with another model if necessary. Finally, modeling

the SCRAM procedure as a global component makes it independent from other parts

of the interaction logic. Thus, when interaction elements are added to or deleted from

the physical representation, the corresponding parts of the interaction logic have no

impact on the model of the SCRAM procedure.

5.8 Conclusion

This chapter introduced a formal modeling concept combined with a visual descrip-

tion language for modeling interaction logic called FILL. The model of a user inter-

face using this description concept is based on the three-layer component architec-

ture 3LA, which has been derived from various well-known architectural concepts

in HCI, such as MVC and interactors, and has been mapped to the ARCH model.

This architecture divides a user interface into a physical representation, an interac-

tion logic, and the system interface that represents the system to be controlled. The

physical representation is described as a set of interaction elements with which the

user directly interacts. The interaction-logic model processes the events transmitted

by the physical representation (originally triggered by the user through such means

as pressing a button) or by the system. The interaction-logic model is structured into

components to make the parts of the model exchangeable and reusable. This supports

the semantic structuring of interaction logic models separately from one another by

such means as defining dialog or business models as part of the interaction logic as a

whole (cf. ARCH). Finally, the applicability of the approach introduced was demon-

strated through a case study: a user interface for a simplified simulation of a nuclear

power plant. This model was discussed in detail to show the various features of FILL

in a model of a user interface.
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Chapter 6
Combining Models for Interactive System
Modelling

Judy Bowen and Steve Reeves

Abstract Our approach for modelling interactive systems has been to develop mod-

els for the interface and interaction which are lightweight but with an underlying

formal semantics. Combined with traditional formal methods to describe functional

behaviour, this provides the ability to create a single formal model of interactive

systems and consider all parts (functionality, user interface and interaction) with the

same rigorous level of formality. The ability to convert the different models we use

from one notation to another has given us a set of models which describe an inter-

active system (or parts of that system) at different levels of abstraction in ways most

suitable for the domain but which can be combined into a single model for model

checking, theorem proving, etc. There are, however, many benefits to using the indi-

vidual models for different purposes throughout the development process. In this

chapter, we provide examples of this using the nuclear power plant control system

as an example.

6.1 Introduction

Safety-critical interactive systems are software or hardware devices (containing soft-

ware) operating in an environment where incorrect use or failure may lead to loss,

serious harm or death, for example banking systems, ATMs, medical devices, air-

craft cockpit software, nuclear power plant control systems and factory production

cells. Avoiding such errors and harm relies on the systems being developed using

robust engineering techniques to ensure that they will behave correctly and also that

they can be used successfully.

Developing suitable interfaces for safety-critical systems requires two things.

First, they must be usable in their environments by their users—i.e. they must be
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developed using a sound user-centred design (UCD) process and following known

HCI principles. Secondly, we must be able to verify and validate the user interface

and interaction with the same rigour as the underlying functionality. While we can

(we hope) assume the former, the latter is harder and requires us to develop suitable

techniques which not only support these requirements but which will also be useful

(and used) by the interface developers of such systems.

We have developed modelling techniques for the user interface (UI) and inter-

activity of a system which take as a starting point typical informal design artefacts

which are produced as part of a UCD process, e.g. prototypes (at any level of fidelity),

scenarios and storyboards. In addition to the interface modelling techniques, we also

have mechanisms for combining these models with more traditional functional spec-

ifications (which deal with the requirements for the system behaviour) in order to be

able to reason about the system as a whole.

In the rest of this chapter, we provide details of the models and notations we use to

describe the different parts of an interactive system. We also discuss how these can

be combined into a single model to give a single, formal ‘view’ of the entire system.

This cohesive model allows us to consider important properties of the system (which

generally involves proving safety properties and ensuring the system as specified will

behave in known, safe ways at all times) which encompasses aspects of the UI and

interaction as well as functional behaviour. At the same time, however, the individual

component models used to create this single model have their own benefits. They

give us the ability to consider different aspects of the system (either specific parts or

different groups of behaviours, for example) using different levels of abstraction or

different modes of description to suit the domain. Essentially, they provide us with

a set of options from which we can select the most appropriate model for a given

use. Because these component models are developed as part of the design process

and form part of the overall system model, we essentially get this ‘for free’ (that is

without additional workload).

We use the nuclear power plant control system as an example to show how these

models can be used independently, as well as in combination, to consider different

properties of interest during a development process.

6.2 Related Work

In early years, formal methods were developed as a way of specifying and reasoning

about the functionality of systems which did not have the sorts of rich graphical

user interfaces provided by today’s software. Some formal methods were used to

reason about interaction properties, e.g. (Jacob 1982; Dix and Runciman 1985), but

as user interfaces evolved and became more complex, and the importance of their

design became increasingly obvious, the disciplines of HCI and UCD evolved to

reflect this. However, these two strands of research—formal system development and

UI design research—remained primarily separate and the approaches used within

them were also very different. On the one hand were formal languages and notations

based on mathematical principles used to formally reason about a system’s behaviour
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via specification, proof, theorem proving, model checking, etc., while on the other

were design processes targeted at usability based on psychological principles and

involving shared, informal design artefacts, understanding end-users and their tasks,

evaluation of options and usability, etc.

This gap between the formal and informal has been discussed many times, notably

as far back as 1990 by Thimbleby (1990). Numerous approaches have been taken

over the years to try and reduce the gap between the two fields, particularly as the

need to reason about properties of UIs has become increasingly necessary due to

the prevalence of interactive systems in general and the increase in safety-critical

interactive systems in particular. We can generalise key works in this area into the

following categories:

∙ development of new formal methods specifically for UIs (Puerta and Eisenstein

2002; Courtney 2003; Limbourg et al. 2004)

∙ development of hybrid methods from existing formal methods and/or informal

design methods. (Duke and Harrison 1995; Paternò et al. 1995)

∙ the use of existing formal methods to describe UIs and UI behaviour (Harrison

and Dix 1990; Thimbleby 2004)

∙ replacing existing human-centred techniques with formal model-based methods.

(Hussey et al. 2000; Paternò 2001; Reichart et al. 2008)

These, and other similar works, constitute a concerted effort and a step forward

in bringing formal methods and UI design closer together. However, in many cases,

the resulting methods, models and techniques continue to either retain the separation

of UI and functionality in all stages of the development process, or seek to integrate

them by creating new components within the models which combine elements of

both in a new way (Duke et al. 1994, 1999).

When we first began to consider the problem and investigate and develop mod-

elling techniques for interactive systems, we had a number of criteria, including a

desire to model at the most natural level of granularity (describe the existing com-

ponents as they appear) as well as come up with an approach that could fit with both

formal and HCI methodologies. In contrast to other approaches, our starting point

is that of design artefacts (of both interface and system) which may be developed

separately, and perhaps at different times, during the development life cycle. Unlike

more recent work such as (Bolton and Bass 2010), we do not include models of user

behaviour or consider the UI in terms of the tasks performed or user goals. Rather,

we model at a higher level of abstraction which enables us to consider any available

behaviours of the system via the UI rather than constraining this to expected actions

of the user based on predefined goals.

So, just as the interfaces we design must be suitable for their systems and users,

the models we use to reason about these interactive systems must also be usable and

useful to their users (designers, formal practitioners, etc.). Rather than having an

expectation that UI designers should throw away their usual, and necessarily infor-

mal,design processes in favour of a new formal approach, we are of the opinion that
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these should be incorporated into our approach rather than being replaced by it.

We start with the assumption that traditional, informal user-centred design prac-

tice has been used, as usual, to produce many artefacts relating to the ‘look and feel’

of the system. These will include design ideations such as prototypes, scenarios, and

storyboards and will be the result of collaboration between designers and end-users,

as well as other stakeholders. Keeping this point in mind is very important when it

comes to understanding the modelling techniques that we discuss in this chapter.

In the same way that we assume the interface has been developed using well-

known and appropriate design methodologies, we similarly assume that the design

of the functional behaviour of the system has likewise followed a rigorous develop-

ment process which leads to the development of formal artefacts such as a system

specification or some other formal model of the system’s behaviour. Given that we

are interested in safety-critical systems, where erroneous behaviour can lead to injury

or even death, this assumption seems a reasonable one.

In order to be able to reason about all parts of the system and not just the functional

behaviour, we need a way of considering the informal design artefacts with the same

level of formality as the functional specification. To do this, we create formal models

of these design artefacts. By creating a formal representation of the informal design

artefacts (in essence creating a different abstraction of the UI which happens to be

in a formal notation), we gain the ability to combine the two representations (system

and UI) into another model which gives a single view of the system as a whole. This

then allows us to reason about the interactive system in a way which captures all of

the information (both UI and system) and perform activities such as model checking

and theorem proving to show that all parts of the system will have the properties we

desire (Bowen and Reeves 2008, 2013).

We next give an overview of the different models used in our process and then go

on to provide examples of these in use for the nuclear power plant example.

6.3 Background

Our starting point for the modelling process is to consider the two main components

of the system (functionality and interactivity—which includes the interface) sepa-

rately. This separation of concerns is, in some sense, an artificial division. While it

is often the case that one group within a design team may focus on appearance and

look and feel of the interface while another focusses on core functionality, we are

not aiming to reflect the divisions and complexities that exist within design groups.

Rather, the separation allows us to consider different parts of the system in differ-

ent, and appropriate, ways, and provides the basis for our use of different levels of

abstraction to describe different components within that system. Such separation is

a common approach taken in this type of modelling, although it can be done at dif-

fering levels of granularity. For example in Chap. 5, we see functional behaviours

described as components which are then associated with related widgets and com-

posed using channels, whereas Chap. 14 uses a layered approach where different

parts of the system and model are described in different layers.

http://dx.doi.org/10.1007/978-3-319-51838-1_5
http://dx.doi.org/10.1007/978-3-319-51838-1_14
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Fig. 6.1 Overview of model components

We rely on a combination of existing languages and models to specify the func-

tionality. Typically, for us, this means creating a Z specification (ISO/IEC 13568

2002; Henson et al. 2008) and/or 𝜇charts (Reeve 2005) to reason about functional

and reactive behaviours, although any similar state-based notation could be substi-

tuted for Z. The ProZ component of the ProB tool
1

is used for model checking the

specification, or we can use Z theorem provers such as Proofpower.
2

These allow us

to ensure that the system not only does the right thing (required behaviour) but also

does not do the wrong thing (behaviour that is ruled out), irrespective of the circum-

stances of use. Figure 6.1 gives an overview of how each of the models relates to the

system under consideration.

The presentation model describes the user interface elements that are present but

not the layout of the interface. It also describes the types of interaction each widget

exhibits (which suggests how a user interacts) and labels the behaviour associated

with that widget. The presentation interaction model (PIM) also describes the user

interface but at a higher level of abstraction which hides the general behaviours and

widgets of the interface and focusses on the navigation that is possible through the

different modes/windows, etc.

The presentation model relation (PMR) relates some of the labels of widget

behaviours to operations in the specification, and as such gives a very high-level

view of the interaction between system and UI. Not all functionality is expressed via

the user interface (the user can only directly access certain behaviours) and hence

the split in the system functionality box where the grey sections are those functions

which do relate to user actions.

1
http://stups.hhu.de/ProB/.

2
http://www.lemma-one.com/ProofPower/index/index.html.

http://stups.hhu.de/ProB/
http://www.lemma-one.com/ProofPower/index/index.html
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𝜇Charts is used as an alternative notation for PIMs, and so describes the same

properties of the user interface, but can also be used to describe aspects of system

functionality to show cause and effect behaviours. The specification on the other

hand describes only the system functionality in terms of what can be achieved and

abstracts away all details of how it might be achieved.

Finally, the models can be combined into single representation which gives a

low-level description of the what and how of the interface and system and their

interaction. We do not explicitly model the user at all in our approach nor any back-

end processes such as database connectivity and networks. In the next section, we

describe each of the models in more detail using examples from the nuclear power

plant example.

6.3.1 Presentation Model

This is a behavioural model of the interface of a system described at the level of

interactive components (widgets), their types and behaviours. We group the wid-

gets based on which components of the interface (e.g. windows and dialogues) they

appear in (or in the case of modal systems, which modes they are enabled in). The

presentation model can be derived from early designs of interfaces (such as proto-

types and storyboards), final implementations, or anything in between. As such they

can be produced from the sorts of artefacts, interface designers are already working

with within a user-centred design process. The presentation model does not in any

sense replace the design artefacts it describes. Rather, we use it as an accompanying

artefact that provides a bridge between informal designs and formal models. So the

presentation model describes the ‘meaning’ of the interface (or interface design) in

terms of its component widgets and behaviours, but the layout and aesthetic attributes

are contained in the visual artefacts that the presentation model is derived from.

It is important to appreciate that we do not require widgets to be (only) buttons or

checkboxes or menu items, etc. Widgets are any ‘devices’ through which interaction

can occur. For example, sensors attached to parts of a physical system would be

widgets: as the physical system evolves, the sensors would note this evolution and,

in response, the system would move between states. In this sort of system, we might

simply describe a collection of sensors together with the behaviours (both functional

and interactive) that their triggering or their readings cause in the system. Thus, our

idea of ‘interface’ is very general.

Each window, dialogue, mode or other interactive state of the system is described

separately in a component presentation model (pmodel) by way of its component

widgets which are described using a triple:

widget name, widget type, (behaviours)

The full interface presentation model is then simply the collection of the pmodels,
and describes all behaviours of the interface and which widgets provide the behav-
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Fig. 6.2 Nuclear plant control example interface

iours. Behaviours are split into two categories, interactive behaviours (I-behaviours)

are those which facilitate navigation through the interface (opening and closing new

windows, noting the change of a sensor state, etc.) or affect only presentational ele-

ments of the interface, whereas system behaviours (S-behaviours) provide access to

the underlying functionality of the system (the grey part in Fig. 6.1).

The syntax of the presentation model is essentially a set of labels which we use to

meaningfully describe the attributes of the widgets. Consider the interface provided

as part of the nuclear power plant example, which we repeat in Fig. 6.2. Each of the

widgets is described by a tuple in the presentation model, so for example the power

output label at the top left of the display is:

PowerDisplay, Responder, (S_OutputPower)

The category assigned is that of ‘Responder’ as this widget displays information

to the user in response to some inner stored value (which keeps track of the current

power level). As such, the behaviour it responds to is a system behaviour which out-
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puts whatever that power level currently is and hence has the label ‘S_OutputPower’.

The WP1 slider on the other hand is described as follows:

WP1Ctrl, ActionControl, (S_IncWaterPressure1,

S_DecWaterPressure1)

The category ‘ActionControl’ indicates it is a widget which causes an action to

occur (i.e. the user interacts with it to make something happen), which in this case

is to change the value of the water pressure either up or down. Again, these are

behaviours of the system and so are labelled as S-behaviours.

Once we have labelled all of the widgets in the UI, we have an overview of all the

available behaviours that are presented to a user by that UI. We subsequently give

a formal meaning to these labels via the presentation interaction model (PIM) and

presentation model relation (PMR) which we describe next.

6.3.2 Presentation Interaction Model

The presentation interaction model (PIM) is essentially a state transition diagram,

where pmodels are abstracted into states and transitions are labelled with I-behaviours

from those pmodels. As such, the PIM gives a formal meaning to the I-behaviours as

well as provides an abstract transition model of the system’s navigational possibili-

ties. The usual ‘state explosion’ problem associated with using transition systems or

finite state automata to model interactive systems is removed by the abstraction of

pmodels into states, so the size of the model is bounded by the number of individual

windows or modes of the system. While the presentation model describes all avail-

able behaviours, the PIM describes the availability of these via the user’s navigation.

For example, in a UI with multiple windows, the user may be required to navigate

through several of these windows to reach a particular behaviour. The nuclear power

plant example of Fig. 6.2 has only a single, static UI screen, and as such, the PIM is a

single-state automaton. We show later how this changes when we extend the exam-

ple to have multiple windows constraining behaviour in the case of the emergency

scenarios.

A PIM can also be used to consider aspects such as reachability, deadlock and

the complexity of the navigational space (via the lengths of navigational sequences).

Considered formally, the role of the PIM is to inform us what the allowable sequences

of Z operations are for the interactive system that we are modelling. This allows us

to make the Z definitions somewhat simpler since we do not have to introduce an

elaborate system of flags and consequent preconditions in order to disallow the use

of Z operations when the interactivity does not allow them: the PIM handles all of

this, and what Z operations are allowed at any point in the interactivity is given by

which widgets have behaviours (that are given by the Z operations) at that point.



6 Combining Models for Interactive System Modelling 169

6.3.3 Presentation Model Relation

Just as the PIM gives meaning to the I-behaviours of the presentation model, the pre-

sentation model relation (PMR) does the same for the S-behaviours. These behav-

iours represent functional behaviours of the system, which are specified in the formal

specification. The PMR is a many-to-one relation from all of the S-behaviours in a

presentation model to operations in the specification. This reflects the fact that there

are often multiple ways for a user to perform a task from the UI, and therefore, there

may be several different S-behaviours which relate to a single operation of the spec-

ification.

So, in order to understand what an S-behaviour label represents, for example the

behaviour label S_IncWaterPressure1 from the presentation model tuple above, we

identify from the PMR the name of the operation in the Z specification that it repre-

sents

S_IncWaterPressure1↦ IncreaseWaterPressure

This tells us that in the formal specification is an operation called ‘IncreaseWater-

Pressure’ which specifies what effect this operation has on the system. The specified

operation then gives the meaning to this behaviour label. We give a larger example

of the PMR for the nuclear power plant example later.

6.3.4 Specification

The formal specification of the system provides an unambiguous description of the

state of the system and the allowable changes to that state provided by the opera-

tions. Many different formal languages exist for such a specification (e.g. VDM, Z,

B, Event-B and Object-Z to name but a few), but for our approach, we rely on the Z

specification language which is based on set theory and first-order predicate logic.

In Z, we typically give a description of the system being modelled which is based on

what can be observed of it, and then the operation descriptions show how (the values

of) what is observed change. The operations are guarded by preconditions which tell

us under what circumstances they are allowed to occur (i.e. based on given values

of observations or inputs) and the postcondition defines which observations change

and which do not when the operation occurs as well as describing any output values.

The specification of the nuclear power plant example, therefore, is concerned with

observations relating to the items such as reactor pressure and water levels, con-

denser pressure and water levels, power output, speed of the pumps and status of

the valves. A Z specification can be used with theorem provers to prove properties

over the entire state space of the system (for example to show that a certain set of

observations is never possible if it describes an undesirable condition) and can also

be used with model checkers to examine the constrained state space for things such

as safety conditions.
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6.3.5 𝝁Charts

In addition to the Z specification, we also use the visual language, 𝜇Charts (Reeve

2005; Reeve and Reeves 2000a, b) (a language used to model reactive systems). PIMs

can also be represented as 𝜇charts, which provide additional benefits over a simple

PIM (including the ability to compose specific sets of behaviours in different charts

via a feedback mechanism and embed complex charts into simple states in order to

‘hide’ complexity) (Bowen and Reeves 2006a).

𝜇Charts is based on Harel Statecharts (Harel 1987) and was developed by Philipps

and Scholz (Scholz 1996; Philipps and Scholz 1998). 𝜇Charts was subsequently

extended by Reeve (2005), and we use his syntax, semantics and refinement theory.

𝜇Charts has a simpler syntax than Statecharts (and in some sense can be considered

a ‘cut-down’ version) and it also has a formal semantics. 𝜇Charts and Statecharts

differ in terms of synchrony of transitions (we imagine a clock ticking and a step

happening instantaneously at each tick), step semantics and the nature of the labels

on transitions. Labels on transitions in 𝜇charts (note, we refer to the language as

𝜇Charts and the visual representations as 𝜇charts) are of the form guard∕action,

where guards are predicates that trigger a transition if they are true, and also cause

actions to take place. For example, if a guard is simply a signal s, then the presence

of s in the current step makes the guard true (think of the guard as being the predicate

‘the signal s is present’). An example of an action is ‘emit the signal t in the current

step’. Guards are evaluated and actions happen instantaneously in the same single

step; thus, the emission of a signal from one transition which is a guard to another

transition results in both transitions occurring in the same step.

The 𝜇Charts language includes several refinement theories which in turn gives us

refinement theories for PIMs. The trace refinement theory for 𝜇Charts is particularly

useful as it can be abstracted into a much more lightweight refinement theory for

interfaces based on contractual utility (Bowen and Reeves 2006b). The semantics of

𝜇Charts is given in Z, and there is a direct translation available (via an algorithm and

tool) from a 𝜇chart to a Z specification (Reeve and Reeves 2000b) and this in turn

means we have an algorithm and means to turn a PIM into a Z specification (Bowen

and Reeves 2014).

6.3.6 Combining the Models

The models of functionality (specification) and interactivity (presentation model and

PIM) are already coupled via the PMR. This gives us a model which combines the

conventional use of Z to specify functionality together with the more visually appeal-

ing use of charts for the interactivity.

However, we can also combine the models in a way that leads to a single model,

all in Z, of the entire system. This gives us the ability to, for example, create a single

model of all parts of an interactive system (i.e. interactivity and underlying function-
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ality) that can then be used to prove safety properties about that system which might

relate to functional constraints, interface constraints or both (Bowen and Reeves

2013). It might also be used as the basis for refinement, ultimately into an implemen-

tation, via the usual refinement theories for Z (Derrick and Boiten 2014; Woodcock

and Davies 1996).

We do this single-model building by using the Z semantics of 𝜇Charts and by

expressing the PMR as a Z relation. This is then combined with the formal specifi-

cation of the functionality of the system, giving a single model where the transitions

representing the PIM are used to constrain the availability of the operations. So if

an S-behaviour given in the presentation model is only available in one state of the

UI, this is represented in the new combined Z specification as a precondition on the

related operation. Recently, we have also given a simplified semantics for the cre-

ation of a single specification from the models to reflect models of modal devices,

where the PIMs typically do not use the full expressiveness of 𝜇Charts (Bowen and

Reeves 2014).

6.4 The Nuclear Power Plant Case Study

We now consider the case study and give concrete examples of the modelling tech-

niques described above. From the general overview of the functionality of the nuclear

power plant given in the case study (along with several assumptions to fill in the

gaps), we can generate a Z specification of the desired functionality. This Z spec-

ification gives us a description of the observable states of the system (i.e. its state

space) as a Z state schema, along with the operations that can change these states

(i.e. move us around the state space). As such, it formally specifies behaviours that

can be exhibited by the system.
3

Note that we have simplified the value types for

pressure and water levels to natural numbers for convenience of specification.

The observable states of the system can be captured by observing all of the para-

meters that are described in the case study brief along with any known constraints.

For example, we know that for the state of the reactor to be considered ‘safe’, then

the reactor pressure must be no more than 70 bar while the core temperature remains

below the maximum value of 286
◦
C. So, we would have to be able to observe these

values, and ensure that they are within the required limits, in order to be able to say

that we are describing an allowed state of the system.

The state space of the system is given by a state schema like ReactorControl
below. It declares names and types for all the observations that can be made of parts

(or parameters) of the system, and it places constraints on some or all of those obser-

vations in order to ensure that the state space contains only safe states. Of course,

this is a design decision; it is equally valid to have a state space that includes unsafe

values for some observations, as long as this aspect is handled elsewhere in the spec-

3
Of course, in order to ensure this is actually true, we must also consider the preservation of these

properties in the final implementation, but we will not go into a discussion about refinement here.
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ification (e.g. perhaps there are specialised error-handling operations that come into

play once we enter a state which is allowed by the model but which is unsafe accord-

ing to the requirements).

The Z snippets below show some of the definitions used to model the system.

The ReactorControl schema is the state schema showing the observable states of

the system (via the parameters or observable values within the system), and Lower-
Rods is an operation schema that changes a state—in this case, the position of the

rods is the only part of the overall state that changes.

Once we have a complete specification of all allowable behaviours, we can then

use a model checker such as the ProZ plug-in for ProB to investigate the specification

to ensure that it behaves as expected. For example, if we have specified what it means

for the system to be in a stable state, then we should be able to show that when these

conditions are not satisfied then the system moves into one of the three error control

states—abnormal operation, accident or SCRAM.



6 Combining Models for Interactive System Modelling 173

In the same way as we describe the system observations for Stable, we also

describe the Abnormal, Accident and SCRAM states so that Status is then defined

as the disjunction of these possible states.

While this high-level view is essential in enabling us to perform the sorts of proofs

we require for a safety-critical system, we may wish to consider subsets of behaviour

in more detail. We could always, of course, add to the specification to include all

of the details needed to consider these, but it is true that the more we reduce the

level of abstraction, the more unreadable (and potentially unwieldy) the specification

becomes.

Suppose we wish to consider some specific procedures of the power plant which

combine several operations. For example, when the plant starts up or shuts down,

there are a series of required steps that must occur along with requirements of values

of certain parameters (i.e. conditions on observable values) that enable the required

steps to proceed. We could investigate the ‘start-up’ and ‘shutdown’ steps using

model checking with the Z specification as above; however, in order to more eas-

ily consider the user inputs to control these procedures (which are not included in

the specification), we might instead create a 𝜇chart which shows the required input

levels and reactions that occur in these processes.

Figure 6.3 shows the 𝜇chart of the‘start-up’ procedure for the power plant. It pro-

vides a different (and more visual) abstraction of the system than the Z specification

might be able to and is more expressive in terms of the reactive properties (the Z

is intended to describe what is and is not possible and abstracts away such reactive

and event-driven behaviour deliberately), but at the same time (via its Z semantics)

retains all of the useful properties of a formal specification. In particular, the Z spec-

ification, while it tells us precisely what the state space is and what operations can

move us around the state space, says nothing about the sequencing of operations

that are allowed or possible. This is, in part, the role of the 𝜇chart. For example, the

fact that a valve must be open before it can be closed is best handled by the chart.

It could formally be handled via setting up flags and preconditions for Z operations

in terms of those flags, but this is an example of the unwieldiness of one language

over another: picking the right language for each part of a job is part of the skill of

a modeller, and part of the elegance that comes from experience. The fact that the

modelling could all be done in Z, say, is no reason to actually do it all in Z. If there

is a better language for certain parts of the model, in this case the use of a chart for

the sequencing of operations, then the elegant solution is to do the modelling in that

way.
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[WP1rate=0, CPrate=0, Waterlevel=0]NuclearPlantStartup

PowerOff

SV2Open SetCP

WV1Open

ControlRodsSetSV1OpenSV2Close

Stable

opensv2

setCP/CPrate:=1600

setWP1/WPrate:=200

Waterlevel=2100

/Pull

opensv1

closesv2
/Pull.Turn

Waterlevel=2100

RodControl

PullRods

Pull.-Waterlevel=2100/Waterlevel:=Waterlevel+1

WP1Control

TurnValve

Turn.-Waterlevel=2100/Waterlevel:=Waterlevel+1

{Pull,Turn,Waterlevel}

Fig. 6.3 Chart of start-up procedure

The model consists of three atomic 𝜇charts (which are, in this case, just like sim-

ple finite-state machines) composed in parallel, which means that they each react in

step with each other and signals listed in the feedback box at the bottom of the chart

are shared instantaneously between all charts at each step. This modularity is another

of the advantages of using 𝜇Charts as we can explicitly model relationships between

independent components and behaviours. For example, in this chart, we can see that

once the system is in the SV2Close state, it will remain there until the water level

reaches the required value, and at each step, it outputs signals (from the self-loop

transition) Pull and Turn.
4

These signals are then shared with the RodControl and

4
Note that these two transitions happen at every clock tick since their guards are true, denoted by

convention by the absence of any guard.
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WP1Control charts which lead to transitions which ultimately affect the water level

until the required value is reached.

The transitions between the various states the system goes through are guarded

by required values on key indicators (such as water level and power output) as well

as user operations (such as opening and closing valves). In this model, we still do

not distinguish between user operations, system controlled operations and functional

monitoring of values. In this way, we still abstract from a user’s view of the system

as we are most interested here in ensuring that the correct outcomes are reached

depending on the values and that the components interact properly as shown by the

feedback mechanism of the composed charts.

Using the Z semantics of 𝜇Charts, and a tool called ZooM
5

which generates the Z

specification which expresses the meaning of a 𝜇chart, we can go on to model check

this component of behaviour to ensure that the system progresses correctly through

the start-up procedure (and similarly shutdown) only when the correct precondi-

tions/postconditions are met. Already having these two different, but interrelated,

views gives us a consistent mechanism for viewing parts of the system in different

ways.

Once we are satisfied that the system will behave correctly as described, we must

also ensure that the users can perform the required operations and that at the very

least the interface provides the necessary controls (we do not talk about the issue

of usability of the interface in this chapter—recall our comment in the introduction

about the usual artefacts being available from the UCD process—however, it is of

course equally important in ensuring that the system can be used): so we take any

design artefacts we have for the user interface to the control system and create pre-

sentation models, PIMs and PMR, as described previously.

For the nuclear power plant control system, we start with the initial design shown

in Fig. 6.2. The following presentation model and PMR snippet give an example of

the models derived from this. There is no PIM at this stage as we are dealing with a

single fixed ‘window’ which has no navigational opportunities for the user and so,

as mentioned previously, it is trivially a single-state automata.

Presentation Model
PowerDisplay, Responder, (S_OutputPower),

RWaterLevelDisplay, Responder, (S_OutputReactorWaterLevel),

RPressureDisplay, Responder, (S_OutputReactorPressure),

ControlRodCtrl, ActionControl, (S_RaiseControlRods,

S_LowerControlRods),

WP1Ctrl, ActionControl, (S_IncWaterPressure1,

S_DecWaterPressure1),

WP2Ctrl, ActionControl, (S_IncWaterPressure2, S_DecWaterPressure2),

CPCtrl, ActionControl, (S_IncCPressure, S_DecCPressure),

SV1Open, ActionControl, (S_OpenSV1),

5
http://sourceforge.net/projects/pims1/files/?source=directory.

http://sourceforge.net/projects/pims1/files/?source=directory
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SV1Close, ActionControl, (S_CloseSV1),

SV1Status, Responder, (S_OutputSV1Status)

PMR
S_OutputPower ↦ OutputPowerLevel

S_OutputReactorWaterLevel ↦ OutputReactorWaterLevel

S_OutputReactorPressure ↦ OutputReactorPressure

S_RaiseControlRods ↦ RaiseRods

S_LowerControlRods ↦ LowerRods

S_IncWaterPressure1 ↦ IncreaseWaterPressure

S_DecWaterPressure1 ↦ DecreaseWaterPressure

S_OpenSV1 ↦ OpenSV1

S_CloseSV1 ↦ CloseSV1

S_OutputSV1Status ↦ OutputSV1Status

For brevity, we do not include all of the status lights and valve controls (e.g. for

valves SV2, WV1 and WV2), but the reader can assume they are described in the

same manner as the SV1 controls and status display.

The presentation model can be used to ensure that all of the required operations

are supported by the user interface, while the PMR ensures that the UI designs are

consistent and complete with respect to the functionality of the system. For example,

if we have some S-behaviours of the presentation model which do not appear in the

PMR, then we know that the interface describes functionality that is not included in

the specification and we must therefore address this incompleteness.

We can also use these interface models to help derive alternative (restricted) inter-

faces for use in error conditions when the user may have only partial control of the

system, or when they have no control due to SCRAM mode. Initially, a presentation

model of the alternative interfaces provides information about what operations are

(and more crucially, are not) available for the user. Subsequently, we can use the

refinement theory based on 𝜇Charts trace refinement (Bowen and Reeves 2006b)

to examine alternatives and prove that they are satisfactory. The visual appearance

of the alternative interfaces may be entirely different from the original (although of

course we would want as much correspondence between interfaces for the same sys-

tem as possible to avoid user confusion). The presentation models of the different

interfaces allow us to compare behaviours (via the refinement theory), irrespective

of the appearances.

The interface in Fig. 6.2 allows the user full control of all aspects of the system,

as it occurs when it is in a stable mode. However, if it moves into one of its error

states, then the user has a reduced amount of control (or none in SCRAM mode when

the system functions in a totally automated fashion). We might propose changes to

the interface to support this restricted control and provide feedback to the user about

what is happening and what they can, and cannot, do. Figure 6.4 shows a suggested

design change to the nuclear power plant for when the control system is in ‘Abnor-

mal’ mode, and partial automated-only control is in place.

The presentation model for the interface will then differ from that of the original

example as the three pump controls are now displays rather than controls (they show
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Fig. 6.4 Restricted

interface for pump controls

the user what the automated system is doing rather than enabling the user to make

changes themselves). The widgets are still associated with the same behaviours, but

instead of generating these behaviours (as action controls do), they now respond

to them. In addition, we include the automated behaviour (which drives the mode

switch), described as a ‘SystemControl’, which leads to the interface behaviours of

changing the display.

WP1Ctrl, Responder, (S_IncWaterPressure1, S_DecWaterPressure1)

WP2Ctrl, Responder, (S_IncWaterPressure2, S_DecWaterPressure2)

CPCtrl, Responder, (S_IncCPressure, S_DecCPressure)

Status, SystemControl, (S_Stable, I_Stabilised)

Similarly we add the automated behaviour to the original presentation model to make

explicit the automation which switches into abnormal mode.

Status, SystemControl, (S_Abnormal, I_AbnormalOperation)

It is important to ensure that this new interface provides exactly the right controls

and restrictions to the user, and also that they are only present in the relevant error

states (i.e. that a user is not restricted when the system is stable).

For each of the possible error states, Abnormal, Accident and SCRAM, we can

provide different interfaces which provide only the correct levels of user interaction.

Figure 6.5 shows the PIM for the new collection of interfaces, including those of the

other error modes (Accident and SCRAM), although we do not discuss their designs

here.

The Stable state is considered the initial state (indicated by the double ellipse)

and the transitions indicate possible movements between states. The SCRAM state

is a deadlock state, in that there are no possible transitions out of this state. This is

correct for this system as the user cannot interact with the system in this mode and

the only possible behaviour for the system is to go into a safe shutdown mode.

There are several types of properties we may wish to consider once we have these

designs and their associated models. First, we should ensure that the combination

of new interface models still adhere to the original requirements. Second, as stated
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Fig. 6.5 PIM of interface modes

above, we should be sure that the correct level of control/restriction is provided in

each instance.

Typically, when we make changes to the interface or interaction possibilities of

our system during the modelling stage, we would use refinement to ensure the adher-

ence to original requirements. However, what we are doing with the new interfaces

is to restrict behaviour, so it is not the case that each of the different (new) modes

refines the original, but rather that the total interface model (the concatenation of the

four pmodels) refines the original. We reiterate that we retain all of the visual designs

of layout, etc. for both the original as well as the new UIs so that we can always refer

back to these to understand more about the actual appearance. This will, of course,

be crucial when we come to evaluate the usability aspects of the UIs. In terms of the

final considerations of refinement, however, we rely on the models alone.

Refinement for interface and interaction properties described in presentation

models and PIMs is based on the notion of contractual utility (Bowen and Reeves

2006b) and can be described by relations on the sets of behaviours of the models in

a simple way, while being formally underpinned by the trace refinement theory of

𝜇Charts. Given two arbitrary interfaces, A and C, the requirements for the two types

of behaviours are as follows:

UIA ≡SBeh UIC
I_Beh[UIA] ⊆ I_Beh[UIC]

where I_Beh[P] is a syntactic function that returns identifiers for all I-behaviours

in P.

We call the first interface (from Fig. 6.2) ‘Original’ and the new interfaces (a com-

bination of ‘Original’ with the addition of the automation and ‘Abnormal’) ‘New’.

We use the syntactic functions to extract behaviours to create the following sets:
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I_Beh[Original] = {}

S_Beh[Original] = {S_OutputPower, S_OutputReactorWaterLevel,

S_OutputReactorPressure, S_RaiseControlRods, S_LowerControlRods,

S_IncWaterPressure1, S_DecWaterPressure1, S_IncWaterPressure2,

S_DecWaterPressure2, S_OpenSV1, S_OpenSV2, S_OutputSV1Status}

I_Beh[New] = {I_AbnormalOperation, I_Stabilised}

S_Beh[New] = {S_OutputPower, S_OutputReactorWaterLevel,

S_OutputReactorPressure, S_RaiseControlRods, S_LowerControlRods,

S_IncWaterPressure1, S_DecWaterPressure1, S_IncWaterPressure2,

S_DecWaterPressure2, S_OpenSV1, S_OpenSV2, S_OutputSV1Status,

S_Stable, S_Abnormal}

The requirement on the I-behaviours permits the addition of new behaviours, and

so, this is satisfied. However, notice the inclusion of the S-behaviours for the automa-

tion to switch the system between states of the interface (S_Stable and S_Abnormal).

These are now implicit behaviours of the interface and so must also be included, but

these additional behaviours break the requirement on equality between sets of S-

behaviours of the interfaces. If we consider this further, we can understand why this

is a requirement. Our new interface depends on behaviours to switch between modes

under different states of the system which were not part of the original description;

as such, there is no guarantee that this behaviour is described anywhere in the speci-

fication. We can see from the PMR that there is no relation between these operations

and the specification, so we have added functionality to the interface that may not

(yet) be supported by system functionality. This is an indication that we need to also

increase behaviours in the functional specification which will allow these to then be

supported, or we need to ensure that we can relate any existing specified operations

(via the PMR) to the new S-behaviours. In fact, we have already discussed earlier

how we can describe the different states of the system (Stable, Abnormal, SCRAM,

etc.) in the specification, so we must now ensure that the identification of these states

along with the necessary behaviour is also described.

Now we can investigate the behaviours of the component pmodels (of each differ-

ent mode of use) via translation of the PIM (to Z) and its corresponding specification

to ensure that these correspond to permissible user behaviours in each of the system

states. We discuss the combination of models which provides this next.

6.4.1 Benefits of Combining the Models

In the previous sections, we have given examples of the use of the individual models

to consider some properties of the nuclear power plant control system which might be

of interest during the development process. There are some things, however, which

require a combined model of both UI and functionality in order to formally consider.

Suppose we want to ensure that when the system is in Abnormal mode, the user can-

not alter the water pressure (as this is one of the elements under automatic control in
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this mode). Using the ProB model checker, there are several different ways to perform

such analysis, and we have found that describing the properties as LTL formulae and

then checking these are a useful mechanism as ProB provides counterexamples con-

sisting of a history list of operations performed when a formula check fails (Bowen

and Reeves 2014).

However, the functional specification alone cannot be used for this. If we perform

some analysis to show that when the status of the system is Abnormal, the operations

to increase or decrease the water pressure are not enabled we find that this is not true.

Of course, this is exactly as it should be; although the user cannot change the water

pressure, it can still be changed (via automation) and our functional model correctly

describes this.

In order to consider the possible effects of user interactions, therefore, we need to

combine the interface models with the specification. We start by declaring types for

the states of the PIM and the transition labels.

Next, we give a description of the UI which consists of a single observation which

shows the state the UI is in (one of the states of the PIM) and create an operation

schema for each of the transitions which describes the change in state that occurs on

a given signal, for example:

This describes how the observation of ‘currentState’ changes when the transition

from ‘stable’ to abnormal’ occurs, which requires the ‘I_AbnormalOperation’ input

signal to be present.

The final step is to create a combined schema for the system and UI (so we include

the schema descriptions for each into a single schema), and then, for each of the

operation schemas, we add a precondition which gives the required state of the UI,

i.e. shows when the operation is available to a user. Now when we model check

the specification and check the condition of whether a user can change the water

pressure when the system is in an abnormal state, we find that they cannot, as none

of the user operations which change the water pressure are enabled if the system state

is abnormal.

In order to create a fuller picture, we should include all of the automation consid-

erations. We can do this by describing automatic control in exactly the same way as
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we have shown above. That is, we create the alternate set of models including auto-

mated interface behaviours (as if they were user controls) and then we can include

this with the combined model. This new model then enables us to show that the cor-

rect levels of manual (human user) or automatic control occur in all of the different

states of the system.

6.5 Conclusion

In this chapter, we have described the different models we use for reasoning about

interactive systems. Using the nuclear power plant control system as an example, we

have shown how the models can be used independently as the differing expressive

natures of the languages involved mean that they are individually suitable for dif-

ferent tasks in the process of verifying and validating safety-critical interactive sys-

tems. We have also given an example of combining the models into a single formal

description, which allows us to ensure correctness of the interactivity and interaction

in combination with the functionality.

Although the type of interface used in the nuclear power plant control exam-

ple consists of standard desktop system controls (buttons, sliders, etc.), this is not a

requirement for our methods. Any type of interaction control (speech, touch, gesture,

sensor, etc.) can be modelled in the same way as we can abstract them in the pre-

sentation models as event generating (action controls) or responding (responders) as

shown here.
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Chapter 7
Activity Modelling for Low-Intention
Interaction

Alan Dix

Abstract When modelling user interactions, we normally assume that the user is
acting with intention: some very explicit such as opening a valve in a nuclear power
station, others more tacit, hardly needing any thought, for example tipping a tablet
to turn a page. However, there are also a range of system behaviours that make use
of unintentional user actions, where the user acts, but the system decides that the
action has meaning, and how to make use of that meaning. Again, these may
operate on a variety of levels from ‘incidental interactions’, which operate entirely
without the user realising, perhaps subtle changes in search results based on past
activity, to more ‘expected interactions’ such as automatic doors that open as you
approach. For intentional interaction, there is long-standing advice—making sure
that the user can work out what controls do, where information is, interpret the
available information, receive feedback on actions—and also long-standing mod-
elling techniques. Low-intention interactions, where the system has more auton-
omy, require different design strategies and modelling techniques. This chapter
presents early steps in this direction. Crucial to this is the notion of two tasks: the
sensed task, which the system monitors to gain information and the supported task,
which the system augments or aids. First, this chapter demonstrates and develops
techniques in the retrospective modelling of a familiar low-intention interaction
system, car courtesy lights. These techniques are then applied proactively in the
design of a community public display, which is now deployed and in everyday use.
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7.1 Introduction

Mostly, when modelling user interactions, we assume that the user is acting with
intention. Indeed, the presence of a goal is central to Norman’s (1990) influential
‘seven stages’ model. Traditional hierarchical task analysis also starts with a
top-level goal, which then leads to a set of tasks to achieve that goal and sub-tasks
of those top-level tasks. In a more dynamic fashion, means-end analysis decom-
poses by creating sub-goals when plans encounter impasses. Sometimes, these
intentional actions are very explicit, for example opening a valve in a nuclear power
station to alter pressure in the containment vessel; some are ‘implicit’, hardly
needing any thought, for example tipping a tablet to turn a page.

However, there is also a range of system behaviours that make use of unin-
tentional user actions, or to be precise where the use made by the system is not the
primary intention of the action. The most extreme are ‘incidental interactions’. In
these situations, the user’s intention and actions are focused on a primary goal.
Because of these actions, the system is able to gather some direct or sensed
information, which can then be used to help the user or other agents achieve some
secondary goal. Somewhere between these and fully intentional interaction are
‘expected interactions’, for example walking into a room and the automatic light
coming on. You usually enter the room because you want to be inside, but expect
that the light will come on and would be surprised if it did not.

For intentional interaction, there is long-standing advice: make sure that the user
can work out what controls do, where information is, interpret the available
information and receive feedback on actions (e.g. Nielsen’s (1993) ten heuristics or
Shneiderman’s (1998) golden rules). While some of these design principles and
heuristics need interpretation by a graphical, interaction or user experience
designer, others can be operationalised in well-known formal models and formal-
isations of usability principles (e.g. variants of visibility in Dix 1991).

Low-intention interaction is more problematic, as it is not so much a matter of
presenting the user with controls and behaviours that are as clear as possible, but
instead interpreting the user’s actions performed for a variety of other purposes.

This chapter shows how a level of activity modelling can be used in order to
ascertain actions or signs that may already be sensed, or where additional sensors
can be added, so that this provides sufficient information for informed system
action. Context-aware systems do this by creating very explicit system models of
user actions. This chapter, in contrast, will focus on designer models of user
activity, which can then be analysed to reveal potential triggers for automated
action. Crucially, these models need to adopt some level of probabilistic reasoning,
although this may be qualitative.

This chapter starts by explaining in more detail what is meant by ‘low-intention
interaction’, using a series of examples, and this includes the two tasks (sensed and
supported) mentioned above. This is followed by a short review of related literature
including notions of implicit interaction, natural interaction and architectures and
tools to support the design and construction of sensor-rich systems. This leads into a
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further discussion of design issues for low-intention interaction, notably the way
user models do not necessarily embody the same notions of transparency and
feedback of intentional systems, and the implications for privacy. Finally, this is
brought to bear on the explicit design of low-intention systems centred around the
separate analysis of the sensed task (in order to determine what can be known of the
users’ actions) and of the supported task (in order to determine what are desirable
interventions). The initial motivating example will be car courtesy lights (previ-
ously described in Dix et al. 2004; Dix 2006), as the technique is most well suited
for non-safety critical applications. However, it is then applied to the design of a
deployed public display system, which has since been in operation for several years.

The underlying methods used in this chapter date back over ten years and parts
draw heavily on early work in incidental interaction (Dix 2002), and its incorpo-
ration in the author’s HCI textbook (Dix et al. 2004) and online material (Dix 2006)
on design methods for incidental interaction. Some of the concepts and methods are
developed further and made explicit, but the principal contribution of this chapter is
the reporting of how the techniques were applied in practice in the design of
TireeOpen, the Internet-enabled open sign.

7.2 What Is Low-Intention Interaction?

7.2.1 Intentional and Low-Intention Interaction

As noted, traditional user interaction principles have focused on the user being in
control of precisely what the computer system does. This is at the heart of direct
manipulation (Shneiderman 1982; Hutchins et al. 1986); the system state is rep-
resented faithfully in the user interface, and as the user modifies the representation,
the system immediately updates accordingly. Norman’s seven-stage model of
interaction starts with a goal, and the user translates this into actions on the system
and then evaluates the results of the action. Users are assumed to know what they
want to do, and the computer’s job is to perform the actions requested as reliably
and transparently as possible.

Intentional systems may use intelligent algorithms. For example, the Kinect uses
complex vision processing to work out your body position and gestures, but this
is in order to be able to accurately understand your intended movements, say to
swing a golf club. The goal and the intent lie clearly with the user, and the system
merely works to enact or interpret the user’s intention.

In contrast, some autonomic systems operate at such a level that the user may be
unaware that they are doing anything at all. For example, an intelligent heating
system may use mobile phone GPS and other sensors to work out when you are due
home, whether you have been walking through the rain, doing a workout at the gym
or merely driving back. If the heating system is good enough at predicting the right
temperature, you may be completely unaware that it has been making adjustments.
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In such systems, the user has no little or no explicit intention; if there is intent, it
is on the system’s part.

7.2.2 The Intentional Spectrum

Incidental interaction was coined to describe an extreme form of low-intention
interaction:

Incidental interaction—where actions performed for some other purpose or unconscious
signs are interpreted in order to influence/improve/facilitate the actors’ future interaction or
day-to-day life (Dix 2002).

In fact, there is a spectrum with explicitly intended actions at one end and
incidental interaction at the other extreme (see Fig. 7.1). In between are ‘expected’
system actions, for example if you work in an office building with automatic lights,
you expect the lights to turn on as you enter a room, even though you do not
explicitly flick a switch.

Near to the intentional end are actions such as tipping an e-book reader to turn a
page as well as very explicit actions such as pressing a button. At this intentional
end, we find actions that are invoked entirely by the user, but are low awareness as
they are automatic or even autonomic; when reading a (physical) book you are
rarely explicitly aware of turning the page, similarly when using a tool you are often
focused on the work at hand, not the tool itself, Heidegger’s (1927) ‘Ready at
hand’.

7.2.3 Examples of Low-Intention Interaction

Many research systems include aspects of low-intention or incidental interaction.
The Pepys system in Xerox EuroPARC used infrared badges to track researchers

in the office and then created automatic diaries at the end of each day (Newman
et al. 1991). Here, the primary, intentional task was simply to walk to a colleague’s
office, but, incidentally, the location was tracked and the diary produced.

Fig. 7.1 Continuum of
intentionality (from Dix et al.
2004)

186 A. Dix



One of the defining ubiquitous computing applications was MediaCup (Beigl
et al. 2001; Gellersen et al. 1999). MediaCup added a small sensor pack to the base
of ordinary mugs measuring pressure (whether the cup was full or empty), tem-
perature and tip sensors. As the cup owner filled and drank their coffee, the system
collected the sensor data and relayed this to others who could then build an idea of
the cup owner’s activity and availability. Again, the primary (sensed) task was
drinking the coffee, but, incidentally, other people were able to improve their
interpersonal interactions.

In the author’s own work in the late 1990s, onCue provided an intelligent
desktop task bar (Dix et al. 2000b). Whenever the user cut or copied things into the
clipboard (primary task), onCue analysed the clipboard contents and then suggested
possible additional things that could be done using the clipboard content on the
Internet or desktop. For example, when you copied a postcode, onCue would
suggest Web-based mapping services, or when you copied tabular data, onCue
would suggest Web graphing tools or copying into Excel on the desktop.

Even in the age of the Internet of Things (IoT), Internet-enabled mugs are not
common. However, incidental interactions are common in day-to-day life.

As you walk towards a building, the doors open, lights go on as you enter a
room, toilets flush as you leave the cubicle, and when you get into your car, the
courtesy lights go on. In each case, your primary task is simply going in or out of a
room, car or toilet cubicle, but the system senses aspects of your primary activity
and then performs additional actions aimed to help you. Location-aware apps in
phones and wearables use our movements in the environment to enhance secondary
goals: telling friends where we are, recording fitness information.

To some extent, this trend is still accelerating as the availability of low-power,
small-sized and, crucially, cheap sensors and networking is only just making the
visions of 1990s ubiquitous computing commercially possible (Greenfield 2006).

However, in the purely digital domain, where sensing is simply a matter of
logging digital interactions, these interactions abound. When we use a shopping
site, our primary task may be to buy a particular book or device, but incidentally,
the data collected is used to enhance recommendations for other shoppers. When
we search, our preferences for clicking through on certain topics (primary task) are
often analysed to improve subsequent search result ranking. Possibly less welcome,
we also know that our visits to many sites are tracked, sometimes by hundreds of
tiny ‘beacons’, which are then used to gather marketing information and channel
particular advertisements to us.

7.2.4 Intentional Shifts

We have seen that there is a continuum between incidental interaction, where users
may have no awareness that information is being sensed or the way this is
enhancing their interactions, to fully intentional interaction, where users explicitly
control a system to fulfil their goals.
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Sometimes, parts of a system, or even our own actions of which we are normally
unaware, may become more apparent. This might be because some part of the
system does not behave seamlessly. Heidegger’s (1927) ‘breakdowns’ occur pre-
cisely when more tacit actions are forced into conscious attention, for example if a
hammer head works loose. At this point, one shifts into a fully intentional form of
interaction.

Even where a system is working correctly, we may become aware of its beha-
viour. As we begin to understand the rules of sensor-based systems, actions that
were entirely below awareness (incidental) may become expected. For example, if
the lights in a building operate automatically based on sensors, you may not
explicitly intend the lights to switch on when you enter, but you certainly do not
expect to be left in darkness.

Once we understand the rules well enough to be ‘expected’, we may co-opt the
system behaviour to exert explicit control over what were originally intended to be
incidental interactions. For example, you might open and close a car door to get the
courtesy lights to turn on for a longer period, or wave your arms to activate the
movement sensor if you want the lights to turn on (see Fig. 7.2).

7.2.5 Two Tasks

As mentioned previously, it is important to recognise that there are two different
user tasks to consider:

sensed task—the task related to the user’s primary goal during the behaviour that
is being sensed by the systems and

supported task—the task that is in some way supported or enhanced by the
information inferred from the sensor data.

Sometimes, these are entirely different tasks, for example with the MediaCup
(Beigl et al. 2001; Gellersen et al. 1999), the sensed task is about drinking coffee

Fig. 7.2 Fluidity of intentionality (from Dix et al. 2004)
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while the supported task is about meeting at appropriate times. However, in other
cases, it may be that these are part of the same overall activity (indeed, in the car
courtesy light, in the next section, this is precisely the case). Even when the two are
actually the same or related tasks, we are using the task analysis in different ways.

In the case of the sensed task, the user’s primary goal is not necessarily being
supported, but enables us to interpret the sensors, turning raw data into behavioural
information. For example, during normal use, if a car door is opened after the car
has been stationary for a period, it is likely that someone has got into the vehicle.

Sometimes, this sensing is purely passive, but we may choose to modify the
systems around this sensed task. Where the sensed data is insufficient to interpret
behaviour, we may choose to add sensors, for example adding an infrared move-
ment sensor to a car interior to be sure that passengers are present. Alternatively, we
may choose to modify the actual user interaction on the sensed task.

For example, consider a library website. We have two design alternatives:

(i) show full information as lots of book ‘cards’ in a large scrollable page, rather
like Pinterest (https://about.pinterest.com/).

(ii) show shorter descriptions (title + teaser) but where the full book details
appear as a pop-up when the user hovers over or clicks an item.

Let us assume that you decide (i) is more usable, but that the difference is slight.
However, from (ii), it is far easier to identify the user’s interests. You may then
deliberately decide to adopt (ii), even though it is slightly less usable for the sensed
task, because you know that by having more information about the user, the system
is better able to make suggestions. In other words, you may choose to trade
usability between the sensed and supported tasks.

Turning to the supported tasks, there are various ways in which this support can
occur.

While the sensing may be low intention, the information gathered by this may be
explicitly presented to the user. For example, onCue monitors the user cutting and
copying to the clipboard (the sensed task) and infers the kind of thing in the
clipboard (e.g. postcode, personal name, table of numbers); this is all automatic,
without user attention (Dix et al. 2000b). However, it then alters the toolbar to show
actions that the user can perform using the clipboard contents. The user explicitly
interacts with the toolbar; that is the supported task is intentional.

In other cases, system modifications to the supported tasks may also be low
attention and/or low intention. For example, the order of search results in the library
system may be subtly altered based on inferred interest, or the heating in the room
may adjust to be slightly warmer when you are sitting and cooler when you are
busily moving around.

Note that low intention and low attention are related but different properties. The
level of intention is about the extent to which the user controls the initiation of
actions, whereas levels of attention are about how much conscious focus is directed
towards actions and their results. A system action might be autonomous and
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unexpected (not the user’s intention), but still very obvious and salient (high
attention). Likewise, a user’s action might be fully intentional but low awareness,
for example drinking from a cup of tea while chatting.

7.3 Frameworks and Paradigms

There have been a number of models and frameworks that, in different ways, help
understand, analyse, design or construct sensor-rich user interactions. In this brief
overview of the most related literature, we will first look at various design concepts
in the area, followed by a more in-depth analysis of the notion of ‘naturalness’ as
this is closely related to, but distinct from, low attention. Finally, we look at some of
the related architectural frameworks and modelling notations.

7.3.1 Design Concepts

In the 1990s, as ubiquitous computing began to mature, the concept of context-
aware computing emerged (Schilit et al. 1994; Schmidt 2013). Whereas, in tradi-
tional computer applications, user input was interpreted solely in terms of the state
of the system, context-aware systems looked to the environment or context. Dey
defined this context as:

any information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves (Dey 2001).

Schilit et al.’s (1994) early identification of context-aware applications was
inspired by PARCTAB, a deployment of Olivetti infrared tracking badges deployed
at EuroPARC (Want et al. 1995). More generally, while other kinds of context were
considered, mobility and location were often the defining contexts for early work in
the area (Dix et al. 2000a). This in turn led to a number of related
interaction-focused design concepts.

Schmidt developed the design concept of implicit interaction partly to deal with
interactions such as tipping a mobile device to turn a page or move a map.

Implicit human computer interaction is an action, performed by the user that is not pri-
marily aimed to interact with a computerized system but which such a system understands
as input (Schmidt 2000).

In many ways, this can be seen as a precursor to the recent focus on, so-called,
natural user interfaces or NUIs (Wigdor and Wixon 2011). NUIs are characterised
by the detection of ordinary human actions such as gaze direction, body movement,
or touch, for example touch tables or Kinect games. The use of the term ‘so-called’
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at the start of this paragraph is because the ‘naturalness’ of NUIs is often chal-
lenged; while the actions are natural ones, the ways in which these are interpreted
are often far from natural (Norman 2010).

Ju and Leifer (2008) developed a design framework around Schmidt’s notion of
implicit interaction. The issue of attention is important in their framework, which is
particularly focused around two interaction distinctions: attentional demand (fore-
ground vs background) and initiative (reactive vs. proactive).

The concept of Kinetic User Interfaces (KUI) emerged during the uMove project
(Pallotta et al. 2008) inspired partly by the author’s work on incidental interaction
(Dix 2002). KUIs are where either direct bodily movement, or the user’s movement
of objects in the environment, is sensed and used for ‘unobtrusive’ interactions.
Like implicit interaction, KUIs embody a particular kind of low-intention
interaction.

Wilde et al. (2010) reviewed interaction patterns for pervasive systems based on
Alexander et al.’s (1977) architectural pattern language and its uses within software
engineering (Gamma et al. 1995). Wilde et al. break down pervasive interaction
patterns into three broad classes: interactions with mobile systems, intelligent
environments and collaborative work, although many pervasive interactions will of
course include elements of each. Forbrig et al. (2013) also consider models and
patterns for smart environments building on their concept of supportive user
interfaces. The patterns are more domain specific than Wilde et al.’s, focusing on
smart meeting rooms as an example application area.

Much of the early conceptual work in ubicomp and context-aware computing
was primarily descriptive or focused on structuring implementation. The expected,
sensed and desired framework (ESD) sought to transform much of the practical
experience of creating instances of context-aware systems into a more structured
ideation and early process (Benford et al. 2005). Expected movements are those that
a person might naturally do (e.g. twist a screen, or move in the environment to see
something better); sensed movements are those that can be detected by some sort of
existing, or easy to add, sensor; and desired movements are the actions you might
like to perform (e.g. zoom a display to see more detail).

By making this distinction, it is possible to compare them, for example identi-
fying expected movements that are not sensed suggesting the potential for adding
new sensors, or expected movements that can be sensed, which might be used to
control desired actions.

Note, in incidental interaction terms, the expected and sensed movements are
primarily concerned with the primary goal (sensed task), whereas the desired
movements concern the supported task. Also, while the earliest work leading to this
chapter predated ESD, aspects of the formulation later in this chapter are influenced
very much by ESD.

7 Activity Modelling for Low-Intention Interaction 191



7.3.2 Low Intention and Naturalness

The concepts of implicit interaction and natural user interfaces (NUIs) are partic-
ularly relevant to low-intention interaction. Figure 7.3 shows some of the distinc-
tions they raise.

At the top left are the most artificial actions, for example when you come to a
new interface and have to work out which of the new icons or menu choices you
need to use. However, with practice, they become second nature (bottom left), and
you may not even be aware that you are doing them.

On the far bottom right are the ‘most natural’ interactions, those that you never
have to think about at all. These may be truly instinctive; one particular case of this
is where there is a ‘natural inverse’ (Ghazali and Dix 2006) (e.g. push/pull, twist
left/twist right); in such cases, users automatically do the opposite action when they
‘overshoot’ a target, for example correcting on a steering wheel. Often they are
themselves learnt, for example swinging your arm is in a sense an unnatural action
to control a computer simulation, but when faced with a Kinect and an image of a
golf ball, it recruits already learnt physical actions.

Many NUI interactions are not so obvious. Early research on touch tables found
that given free choice, most people used the same dragging, twisting and stretching
actions, but beyond these, there was little agreement. However, after a period of
use, even the less intuitive gestures become automatic, and perhaps more quickly
learnt than abstract icons, as they are able to employ kinesthetic or other forms of
sensory memory.

NUIs cover the whole of the right-hand side of the figure, whether immediately
obvious and later learnt, or so immediate you never know you are doing them. The
early examples of implicit interaction are in this space, notably the turning of pages
by tipping a device.

From a low-/high-attention point of view, actions may be very artificial (e.g.
shifting gears in a car), but so automatic that you are unaware you are doing them,

However, when we consider the sensed and supported tasks of incidental
interaction, in fact, even very explicit and artificial actions may be part of a wider
low-intention interaction.

Fig. 7.3 Various forms of
natural interaction
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Consider an example of a sensed task. When you browse on Amazon, this is an
explicit action and may include some high-awareness actions (what shall I search
for) and some low-attention learnt interactions (clicking through for more details).
However, all of this may be used by Amazon to build its profile of you; the actions
are explicit, but the way information is collected about them is not.

Similarly, in the supported task, there may be entirely autonomous actions that
the system executes based on your past behaviour (top right of Fig. 7.4, Ju and
Leifer’s (2008) ‘proactive’ initiative). For example, an intelligent heating system
might automatically set the temperature just right for when you enter your home in
the evening. However, you might also execute an explicit action, the effect of which
is modified based on previous behaviour or current context (bottom right Fig. 7.4,
Ju and Leifer’s (2008) ‘reactive’ initiative). For example, if you hit ‘cooler’ on the
heating system, this might be interpreted as a short blast of cool air, but gradually
returning to normal if the system knows (say from phone sensors) that you have just
come in after running hard, but behave differently if it is pressed after you have
been at home for a while.

That is the key difference for the supported task is whether the action is fixed or
contextual based on previous sensed behaviour.

7.3.3 Architecture and Modelling

Dey’s definition of ‘context’ quoted above was influenced by the development of
the context toolkit (Salber et al. 1999), which was important in signalling the
movement from more specific bespoke developments towards more principled
design and reusable architecture. The author’s own work in the area included the
development of the onCue context-sensitive toolbar, which was built on top of an
agent-based framework, aQtive space, specifically architected to support
context-sensitive interaction (Dix et al. 2000b).

Fig. 7.4 Supported actions
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The aQtive space framework itself was built directly upon earlier formal mod-
elling concepts of status–event analysis (Dix and Abowd 1996). While many
intentional user interactions are event based (e.g. pressing a key) as are low-level
computer implementations, sensor data are more often a status, that is there is
always an underlying value even if it is only sampled periodically. Work following
on from this has included an XML component-based notation (Dix et al. 2007).

Schmidt’s work on implicit interaction also included an XML-based specifica-
tion notation (Fig. 7.5), and other work in the area has included discrete event
modelling (Hinze et al. 2006) and context-aware architecture derived from MVC
(Rehman et al. 2007).

There have been a number of projects which have created combinations of
models, tools and evaluation methods for pervasive systems or smart environments.

In addition to the Kinetic User Interface approach, the uMove project led to the
creation of a framework including conceptual modelling, architectural design and
implementation tools as well as an evaluation method, IWaT (Interactive
Walk-Through) (Bruegger et al. 2010; Bruegger 2011).

Wurdel addressed similar broad goals, but focused more on task modelling using
a notation CTML (Wurdel 2011). CTML is an extension to CTT (Paterno 2012)
with additional primitives to deal with both actions that are not explicitly addressed
to the system (but may be sensed by it), and autonomous system behaviours
including those that directly or indirectly affect the user. The resulting task models
are used partly to drive model-based system development and partly as input to
hidden Markov models.

Another very similar project by Tang et al. (2014) creates a variety of
OWL-based notations and integrated design and development tools for pervasive
applications including task specification and service design.

<context_interaction>
    <context> 
        <group match=’one’> 
            sensor_module.touch 
            pilot.on 
        </group> 
        <group match=’none’> 
            sensor_module.alone 
            pilot.pen_down 
        </group> 
    </context> 
    <action trigger=’enter’ time=’3’> 
        pilot.notepad.confidential 
    </action> 
</context_interaction>

Fig. 7.5 Context description
from Schmidt (2000)
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7.4 Modelling Low-Intention Interactions

In order to explore ways to formally model these behaviours, we will use a rational
reconstruction of the design of car courtesy lights (originally developed in Dix et al.
2004; Dix 2006). These usually include an explicit off/on switch, but also turn on
automatically at times.

7.4.1 Modelling Process

We will not create a new notation, but instead augment standard task and state
description formalisms. The task descriptions here will be simple scenarios aug-
mented by state-space models, but richer descriptions could be used such as HTA
(Shepherd 1989), CTT (Paterno 2012) or CTML (Wurdel 2011).

The critical steps are to:

(i) annotate the supported task to see where augmentation or assistance would be
useful. In the examples, this is in the form of + or – to indicate how desirable
or undesirable a particular assistance would be.

(ii) annotate the sensed task to see where existing or new sensors could give useful
information and to assess the likelihood that sensed state matches the target
context in the real world.

Often sensors are attached to objects in the environment; so for (ii), it can be
useful to model explicitly the states of physical (or virtual) objects.

Note that the assessment of desirability in (i) is a core design decision. It may be
a matter of discussion and it may include more or less desired states as well as hard
and fast ones. This is particularly important as sensed input in (ii) is rarely precise.
This imprecision may be because of limitations in sensors, because sensed user
actions may be typical but not guaranteed, or because the target world state may not
be directly able to be monitored, meaning some proxy has to be sensed instead. By
having an explicit notion of both desirability and precision, we can ensure that
sensors are chosen to ensure the best behaviour in critical situations, with leeway in
the less critical ones (Fig. 7.6). For example, we may be able to adjust threshold
values to ensure correct behaviour in the critical areas (ticks and crosses) but simply
achieve ‘good enough’ results in the less critical areas (grey ‘leeway’).

As we work through the examples adding annotations to the task models, we will
develop a form of secondary notation (Green and Petre 1996). In particular, when
looking at the supported task, we will use + and – to denote the desirability or
otherwise of a particular intervention. However, these are not intended to be a
closed set of annotations; indeed, the ‘bomb’ annotation in Fig. 7.7 was added
when the example was being used in class and the need arose to highlight partic-
ularly problematic situations.
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7.4.2 Car Courtesy Lights

In the case of the car courtesy light, the sensed task and the supported task are
identical. Figure 7.7 shows the task of getting into the car (there would be other
tasks such as stopping and getting out, sitting in the car to have a picnic). The main
steps are listed and against each one whether or not the courtesy light is wanted.

The pluses mean it would seem good to have it on, the more pluses, the more
beneficial. The minus signs show where it would be best to have it off, and the
bomb situations where there could be safety issues. Step 15 is obviously prob-
lematic and it may be distracting if the courtesy light stays on while driving, and in
some places may even be illegal. Step 2 is also marked as potentially unsafe as it
might allow a mugger to see which car you are going to, although could also be
useful in helping you find your car. Cars vary on whether they choose to turn lights
on in these circumstances.

In addition, we ought to look at the scenarios such as when the driver is leaving
the car, picking up or dropping off passengers. However, on the whole, the lights
want to be (a) on when you are sitting in the car, (b) not left on for long periods

Fig. 7.6 Matching
desirability of intervention in
the supported task (support,
augmentation, autonomous
action) with reliability of
sensing in the sensed task

1. deactivate alarm 0  
2. walk up to car ++/– –  is this safe?
3. key in door –  
4. open door & take key +  
5. get in ++
6. close door 0  
7. adjust seat +  
8. find road map ++
9. look up route +++
10. find right key +  
11. key in ignition –  
12. start car 0  
13. seat belt light flashes 0  
14. fasten seat belt +  
15. drive off – –   safe?  legal?

Fig. 7.7 Car courtesy light—
getting into the car (from Dix
et al. 2004) + signifies would
like light on,
– signifies would like light
off, ‘bomb’ signifies that
safety is a major issue
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when you are not in the car (so as not to drain the battery), but (c) not on when you
are actually driving (for safety). Of these, (c) is an absolute requirement, (a) is a
‘good to have’ (you can always turn them on or off explicitly) and (b) is a strong
requirement, although the precise time can be quite relaxed.

One could add sensors to the car, for example a PIR (passive infrared) sensor in
the car to detect movement so that you can tell if it is occupied. However, cars
already have a range of sensors that are reused by the manufacturers to produce
automatic lighting. Notably, there is typically a door sensor that triggers a warning
if the car is driven without closing the doors properly, and also it is possible to
detect the power when the ignition is turned on.

Figure 7.8 shows the main states of the car in terms of people’s presence
(omitting unusual cases such as people locking themselves inside). These are
divided into the states that can be distinguished by the two available sensors.

Note that it is the two states in bold, when people are in the car, which are where
we would like the light to be on.

It is possible to tell with certainty when the car is being driven as the ignition is
on, so this is a reliable sensor to use to ensure that the lights are not automatically
turned on. Most cars gradually dim the lights as soon as the ignition is turned on.

However, it is impossible to tell from these sensors the difference between
opening the car door and then realising you have forgotten something and going
back into the house to get it, unless you lock the car. Most cars simply use a timer
for this, turning the light on when the car doors are first opened, and then off after a
period. This is based on the assumption that the sojourn in the ‘people in car’ state
before transitioning to ‘car driving’ is brief. The timer means that the light is likely
to be on most of the time during this state (fulfilling the soft requirement), while
also ensuring the light is not on for too long in the ‘car empty’ state (hard but
variable time requirement).

It is clear that having access to the car lock state or a PIR would be useful, as the
latter is often fitted as part of the car alarm system. Presumably, the alarm

Fig. 7.8 States of the physical car
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subsystem in most cars is relatively isolated from the rest of the car subsystems for
security reasons and may often be fitted by third parties, so cannot be accessed by
the courtesy light subsystem. However, it would not be hard to imagine a future
in-car IoT framework to allow more creative use of sensors.

7.5 Into Practice: The Internet-Enabled Shop Open Sign

The interaction styles and techniques in this paper were put into practical use in the
design of a community public display system on the Isle of Tiree. This was pro-
duced largely as part of the biannual Tiree Tech Wave series of technology/maker
meetings (tireetechwave.org). The system is a long-term 24/7 deployment, and the
overall data and public display architecture are described in detail in Chap. 4.

In this section, we will focus on the design of two particular elements of this, the
Internet-enabled open sign and LED ticker-tape display, which provide sensor input
to the data infrastructure. We start with an initial ‘provotype’-style (Boer and
Donovan 2012) design concept (the fish and chip van that tweets) and then move on
to the Internet-enabled open sign, which has been in operation now for several
years.

7.5.1 Concept—The Chip Van That Tweets

At the first Tiree Tech Wave, several themes came together around the creation of a
concept mini-project, the ‘Chip Van That Tweets’ (Dostal and Dix 2011).

There was a fish and chip van positioned quite close to the location of the event.
Many island businesses are run by a single individual and so can be fragile: if the
individual or one of their family is ill, or there is some other kind of emergency, the
shop or van may be late opening or close early.

On the mainland, if you went to the fish and chip shop, but found it unexpectedly
shut, there would be another close by. On the island, you may have driven perhaps
up to ten miles (15 km), over bumpy roads, and there is nowhere else to go.
Occasionally, people would ring friends who were within sight of the chip van to
ask whether it was open before setting off.

As a light-hearted exemplar, the participants created a prototype to address the
issue.

A near full-size mock-up of the van front was constructed out of cardboard. On
the flap at the front of the van, an Arduino was positioned with a tilt switch. When
the van flap was opened, the tilt switch was activated and the Arduino connected to
a mobile phone and sent a tweet via SMS ‘#tireechipvanopen’. When the van flap
closed, the Arduino sent the tweet ‘#tireechipvanclosed’.

Software that could run on an islander’s computer at home listened using the
Twitter API and when it saw ‘#tireechipvanopen’ or ‘#tireechipvanclosed’, it sent a

198 A. Dix



message to another Arduino, which was connected to a model fish and chip van,
maybe sitting on the potential customer’s mantlepiece. A small motor then opened
or closed the model to match the real-world fish and chip van.

This is a form of incidental interaction, and Figs. 7.9 and 7.10 show the sensed
and supported tasks. While the chip van owner is opening and serving the focus is
always on preparing and opening the van, incidentally this leads to improving the
customer’s interaction efficiency (at 2.2) and experience (4 rather than 5!).

7.5.2 TireeOpen—The Internet-Enabled Open Sign

The chip van that tweets was created as a concept project. It exemplified many
important and very practical issues of island life and also was interesting techno-
logically, using Twitter as middleware and an ‘Internet of things’ architecture.
However, it was playful and probably slightly over the top in terms of technology.

Although the technology for the prototype was largely working, there was a gap
as the correct kind of phone was not available, so the step between the Arduino
detecting the open serving flap and the tweet SMS being sent was emulated by the
Arduino flashing an LED and the tweet being sent by hand.

0. Serving chips
1. drive to van
2. enter into van (opens side door)
3. prepare for evening:

turns on power, lights, deep fat fryer
4. open serving flap (at opening time)

** sensed by system – tweets #tireechipvanopen
5. serving customers

take order, fry food, wrap cooked food, take money
6. close serving flap (at closing time)

** sensed by system – tweets #tireechipvanclosed
7. tidy up
8. leave van (close side door)
9. go home

Fig. 7.9 Tiree chip van—
sensed task (owner)

0.  Buy and eat chips
1. decide would like fish and chips
2. check if open

2.1 check current time and opening hours (old)
2.2 look at chip van model on mantlepiece (new)

3. drive to chip van
4. buy fish and chips (if open)

or
5. disappointed and hungry (if closed)
6. drive home

Fig. 7.10 Tiree chip van—
supported task (customer)
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In one way, it would have been a small step to deploy this as a form of tech-
nology probe (Hutchinson et al. 2003), but the patchy mobile signal on the island
would probably render even the SMS tweeting unreliable.

This last point is not inconsiderable for the practical application of Internet of
Things—it only works if you have the Internet, or at least some data
communications.

The Cobbled Cow café is based at the Rural Centre on Tiree, the venue of the
Tiree Tech Wave. The Cobbled Cow has some of the same issues as the chip van
(small family business, illness or other unexpected events can lead to late opening,
etc.); however, unlike the chip van, Wi-fi is available.

The closest equivalent to the chip-van serving flap is unlocking the café door,
but it is harder to add a sensor to a door lock, than to a flap opening, and it would
mean modifying the physical fabric of the café. However, there is also an LED
‘open’ sign in the window, which is switched on as part of the opening up process
(see Fig. 7.11). This already has low-voltage power, hence easy and safe to modify.
Modifying the open sign also has the advantage that it could easily be replicated for
different kinds of businesses.

The supported task is the customer experience deciding whether or not to visit
the café (Fig. 7.12). It is pretty much identical, equivalent to the chip-van customer
task (Fig. 7.10).

Rory Gianni created the Internet-enabled open sign (probably the world’s first),
using an Electric Imp (see Fig. 7.13). The Electric Imp contains a Wi-fi and cloud
enabled processor in a package rather like a large SD card. This has been specifically
designed for Internet of Things applications and can be connected to various sensors
and actuators. It is programmed and runs code through Electric Imp’s cloud plat-
form. For this purpose, no explicit sensor was needed as the power for the device was
simply connected to the open sign’s low-voltage power input, meaning it is only on
when the open sign is on. When it powers up, it sends a periodic message back to the
cloud platform, which in turn calls a small script on the Tiree TechWave site where a

0. Running cafe
1. drive to cafe
2. enter cafe (through side door)
3. prepare for opening:

turns on power, lights, etc.
4. open up cafe (at opening time)

4.1 turn on open sign
** sensed by system

4.2 open café doors
5. serving customers

take order, cook and serve food, wrap, take money
6. close up cafe (at closing time)

6.1 close café doors
6.2 turn off open sign

** sensed by system 
7. tidy up
8. leave cafe (side door)
9. go home

Fig. 7.11 Cobbled Cow
café—sensed task (owner)
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log is stored. When the Web-based status page is requested, this checks the logs and
can display a Web open sign, which reflects the state of the physical one.

The Internet-enabled open sign was deployed at the Cobbled Cow and has been
running now for more than 2 years.

In many ways, the system at the Cobbled Cow resembles the chip van prototype,
with a few differences. Technically, rather than Twitter as middleware, the Electric
Imp cloud service is being used, and rather than a model chip van on the
mantlepiece, a simple Web sign is used for displaying the status. More critically,
there are differences in the interaction probabilities.

In the case of the chip van, it is impossible to serve customers without opening
the flap. That is for the chip van sensed task (Fig. 7.9), sub-task 4 (open flap) will
always happen before sub-task 5 (serve customers). In contrast, for the Cobbled
Cow sensed task (Fig. 7.11), sub-task 4.1 (turn on open sign) is a matter of routine,
but it is physically possible to open the café (sub-task 5) without turning on the

Fig. 7.13 Left Internet-enabled open sign under development (photograph Rory Gianni). Right
Electric Imp module (photograph www.electricimp.com media resources)

0.  Eat out at caf
1. decide would like food at café
2. check if open

2.1 check current time and opening hours (old)
2.2 look at open sign on web page (new)

3. drive to café
4. buy and eat food (if open)

or
5. disappointed and hungry (if closed)
6. drive home

é

Fig. 7.12 Cobbled Cow café—supported task (customer)
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sign; that is sub-task 4.1 is likely but not certain to occur. Similarly, it is possible to
close the shop without turning off the sign (sub-task 6.2), although this is likely to
be noticed at sub-task 8 (leave shop) as the glow of the sign would be visible except
in high summer.

That is the uncertain nature of tasks being sensed means that there is a possibility
that the Web sign might be off in the daytime when the café is actually open, or on
at night when it is actually closed. The latter is fairly obvious to the viewer, but the
former could mean they do not go to the café when it is in fact open. Arguably, this
is not as bad as a customer going when it is actually closed, but still a problem.

Figure 7.14 shows these issues using a diagram of the main states of the café,
similar to that for the car courtesy light in Fig. 7.8. In Fig. 7.14, the states where we
would like the Internet version of the sign to show ‘open’ (when the shop is open) are
shown with thick edges. The states shown dashed are those where the sign is ‘wrong’
(on when the shop is closed or vice versa). The transitions labelled with roman
numerals (i), (ii), (iii), (iv), (v), and (vi) are the normative path corresponding,

Fig. 7.14 States of the café
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respectively, to steps in Fig. 7.11: 2, 4.1, 4.2, 6.2, 6.1 and 8. So long as the café
owners follow these transitions, the sign will always be correct.

However, some transitions lead from good states to bad states: (a) forgetting to
turn on the sign when the café is opened; and (c) forgetting to turn it off when
closing. In each case, there is a possible correction: (b) noticing the sign is off when
the café is open, and (d) noticing it is on when the café is being tidied up at the end
of the day. Transition (b) is marked dashed and in grey to signify that it is less likely
to occur, because in the daytime it is not easy to see that the sign is not on from
inside the café. In contrast, transition (d) is solid to signify it is more likely to occur,
as the glow of the sign is pretty obvious as you turn out lights, although sometimes
this could be well after the shop is actually closed. Because of the latter, the
transition denoting leaving with the sign on is greyed out to signify it is unlikely.
Based on the likelihoods of these transitions, some states have been marked in grey
to signify that they are unlikely to occur.

As can be seen, the only state that is both wrong and likely to occur is the sign
being off when the café is open. This could be addressed by finding some means to
make forgetting to turn on the sign (a) less likely. Alternatively, one could try to
make it easier to notice when the sign is not on. As an attempt to partly address this,
the LED ‘ticker-tape’ information display (Fig. 7.15) was wired so that both it and
the open sign are turned on together. While the open sign faces outwards through
the window, the ticker-tape faces inwards into the café. This can still be forgotten,
but it is more likely that it will be noticed, that is making transition (b) more likely
to occur at all, and transition (d) likely to occur more promptly after the shop has
closed.

7.6 Further Design Considerations for Low Intention

The techniques above have been focused on the ‘functional’ design of low-intention
systems, choosing appropriate sensors from the sensed task to allow suitable
interventions to the supported task. However, these are far from the only important
design issues. We will look at two of these: user models and privacy.

Fig. 7.15 Public LED
‘ticker-tape’ display showing
local weather, news, etc
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7.6.1 User Models

This chapter is principally concerned with designer models for low-intention
interaction, but of course, users also have (or maybe fail to have) models of these
systems. This is well explored for more traditional systems with considerable work
on metaphors, and design guidelines related to aspects such as visibility, consis-
tency and feedback, which help the user to understand the system states, the
available actions and the effects of these on the system.

Considering context-aware systems, Schmidt (2013) suggests that the user
interface should seek to minimise ‘awareness mismatch’, making it clear to users
what sensory information is being used, so that the user can make satisfactory
explanations of why system effects occurred and valid inferences about how to
create desired outcomes.

For some of the best low-intention and low-attention interfaces, none of this is
necessary. If users are unaware that modifications are happening, and any alter-
ations in interaction are sufficiently good, then they do not need to build any sort of
model. For example, many users are unaware that search results are tuned to their
past click-through behaviour.

However, if the user does become aware, for example that the heating or lighting
levels spontaneously change, then the interaction may become ‘spooky’, as if there
are ghosts in the walls changing the very environment. Intentional interactions may
sometimes be indirect (e.g. waving your arm to control the character on a video
game), but are extensions of the physical actions of day-to-day life. Autonomous
behaviour, however, often suggests animate beings at work. This is rather like the
‘uncanny valley’ (Mori 1970) for human-like robots, the more intelligent and
human-like autonomous action becomes, the more like magic, or the supernatural it
becomes.

This suggests that, on a moment-to-moment basis, low-intention systems need
not follow Schmidt’s (2013) ‘awareness mismatch’ advice. However, some sort of
model should be available when users want it. The latter also helps address some of
the ethical issues of making modifications that are not apparent to users. In Europe,
this issue is likely to become increasingly important following the General Data
Protection Regulation of the Council of the European Union (2016), which bans or
severely regulates black box automatic decision-making in any legally sensitive
area (Goodman and Flaxman 2016).

7.6.2 Privacy

Sensor-rich environments also raise privacy and security issues. The definition of
incidental interaction says sensed data is collected ‘in order to
influence/improve/facilitate the actors’ future interaction or day-to-day life’ (Dix
2002)—that is the individual or group being sensed also personally benefits from
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that sensing. This was phrased deliberately to exclude surveillance where data are
collected purely for the benefit of others.

Of course, even where benefits do accrue to the person being sensed, this does
not mean that their data may not be deliberately or accidentally misused. The usage
data that sites such as Google or Twitter collect are used to enhance your own
experience, but also to feed marketing databases. Cloud-based systems can serve to
make this worse, and there have been a number of recent news articles worrying
about smart TVs and voice interaction dolls, which send anything spoken in their
vicinity to central servers to be processed and often stored.

There have been attempts to use similar technology to reverse the balance. Steve
Mann and colleagues deliberately use personal wearable technology to record as a
visitor in environments, such as shops, where CCTV and other means are usually
used to record those coming in, a practice they term ‘sousveillance’ (Mann et al.
2003).

Of course, this itself may invade the privacy of others and create a new disparity,
potentially leading to antagonism against ‘cyborgs’, perhaps most notably when
Mann’s ‘EyeTap’ digital glasses were removed in a Paris McDonald’s restaurant
(Biggs 2012; Popper 2012). As this kind of technology becomes commoditised, for
example with Google Glass or even ubiquitous mobile phone video, both kinds of
privacy issue converge.

7.6.3 Can Task Models Help?

None of the above issues are explicitly dealt with by the task modelling suggested
in this chapter, but the two-task view does help to elucidate some of the issues and
the way they relate to one another.

The user modelling issues are primarily related to the supported task. Clearly
identifying the points at which interventions happen in this can at least help the
designer to assess the potential for ‘spookiness’ and also make it easier to create
explanation systems. The uncertainty related to sensors can of course make this
worse as system actions are less predictable, for example if your phone battery dies
and so the heating system adjusts the house based on the wrong inferred prior
activity.

In contrast, privacy issues are primarily related to the sensed task. While such
issues are not ‘solved’ by task modelling, having a clear specification of where and
when data are gathered makes it easier both to avoid unintended disclosure and to
explain to users what is being gathered and why, thus ensuring informed consent.

Both issues are made more problematic by complex inference algorithms used as
either part of sensor fusion or context-sensitive interactions.

Privacy frameworks in the ubicomp literature focus on restricting information
flows, in the belief that less information means more privacy. However, the earliest
work on privacy in HCI showed that on occasions, less information, even highly
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anonymised information, could be more personally sensitive than full information
(Dix 1990); indeed, half-stories are the grist of gossip and the downfall of many a
politician.

Just as problematic are actions based on black box algorithms. Again, the
author’s early work on the HCI implications of pattern matching technology
highlighted the danger that algorithms could unintentionally produce sexist or racist
outputs (Dix 1992). This issue has taken some time to become apparent, but has
now come to public attention with high-profile reporting of apparently racist search
results (Gibbs 2015) and photo tagging (BBC 2015; Hern 2015). More mundane
examples such as intelligent heating might seem immune from such issues, except
that it has been recently argued that office workplace temperature standards are
effectively sexist, based on typical male metabolism and hence disadvantaging
women (Kingma and van Marken Lichtenbelt 2015). Because the standards are
public, this can be exposed, challenged and debated. Quite possibly, a more
intelligent office air-conditioning system might avoid this problem, basing tem-
perature on actual occupancy, but equally it could make things worse by intro-
ducing new implicit and potentially illegal bias. Most worrying, it would be far
harder to tell whether it was discriminatory or, even if it is not, defend against the
accusation that it is.

In both cases, provenance of data and perspicuity of algorithms are at the heart of
helping to ensure that users of these systems can make sense of the outcomes. The
two-task analysis helps in the former, because it factors the gathering of data from the
application of that data; but it does not solve the problem of inscrutable algorithms.

7.7 Discussion

We have seen how it is possible to analyse the twin tasks for low-intention inter-
action to identify the potential, albeit uncertain, sensor data from the sensed task, in
order to modify system behaviour for the supported task. In the first example, the
car courtesy lights, the two tasks were effectively the same activity, whereas in the
second example, the Internet-enabled open sign, the sensed and supported tasks
were different.

Critical in both examples has been the assessment of the likelihood that certain
sensor measurements will indicate particular user behaviour. In some cases, this can
be clear-cut: if the car has started and is moving, then it is occupied. In others, it is
not definitive, merely indicative: in the car example, opening the doors may mean a
person is getting in the car; when the sign is powered on, it may indicate that the
shop is open; but in both cases, there are circumstances when the sensor and user
behaviour may not match.

Note also that in some cases there are physical processes at work that constrain
user behaviour (e.g. you cannot get into a car normally without opening a door), but
in others, we rely on habit, routine or ‘typical’ user behaviour (e.g. the café owner’s
opening up rituals).
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To some extent, the methods and techniques described in this chapter have
become ‘second nature’ to the author, and so during the design process for Tir-
eeOpen, the formal models were mostly ‘in the head’ rather than on paper; how-
ever, the steps described in Sect. 6 accurately reflect the processes and analyses
used.

This chapter has not presented a specific notation, but instead has shown how
standard notations for describing tasks, scenarios and physical models can be
annotated and analysed in order to aid the design of low-intention systems. Also, it
has not attempted to connect this design modelling to the more
implementation-oriented context-modelling notations. Doing this could enable a
level of verification of the implemented system with respect to the design
intentions.

As noted, low-intention systems are already ubiquitous in the digital domain,
and we encounter mundane examples in day-to-day life. However, as the Internet of
Things and ubiquitous computing move from vision to reality, we will live in an
increasingly digitally augmented physical environment. The techniques in this
chapter are one step in addressing some of the issues that arise as we seek to design
systems for this emerging world.

Acknowledgements Many thanks to Rory Gianni who created the Internet-enabled open sign.
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Chapter 8
Modelling the User

Paul Curzon and Rimvydas Rukšėnas

Abstract We overview our research on the formal modelling of user behaviour,

generic user modelling, as a form of usability evaluation looking for design flaws that

lead to systematic human error. This involves formalising principles of cognitively

plausible behaviour. We combine a user model with a device model so that the actions

of the user model are the inputs of the device, and the outputs of the device are

linked to the perceptions of the user model. In doing so, we gain a model of the

system as a whole. Rather than modelling erroneous behaviour directly, it emerges

from the interactions of the principles and the device model. The system can then be

verified against properties such as task completion. This approach can be combined

with other analysis methods, such as timing analysis, in a complementary way. It

can also be used to make the cognitive assumptions specific that have been made

for a design and explore the consequences of different assumptions. It can similarly

support human-computer interaction experimental work, giving a way to explore

assumptions made in an experiment. In addition, the same approach can be used to

verify human-centred security properties.

8.1 Introduction

Traditional formal methods for verifying computer systems often ignore users. Peo-

ple make mistakes, however. Good design processes take this into account as do

usability evaluation methods. Formal methods ought to support such processes.

There are many ways to take a human perspective into account in the formal mod-

elling of computer systems. For example, the focus can be on modelling the interface

and exploring its properties. In other approaches, the focus is on modelling the tasks

and processes the user of a system is expected to follow. This can be combined with

approaches where specific errors, such as omitting actions, are injected into task
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sequences to explore the consequences. In these approaches the human operators

are absent from the formal models, however. Some approaches do involve a model

of the user, but assume the user is capable of fault-free performance and are essen-

tially task models. Modelling human behaviour within a system explicitly gives an

alternative approach where erroneous behaviour emerges from general principles

about behaviour.

Furthermore, as the concern of interaction design, and so of modelling and veri-

fication, moves out beyond that of a single interface to multiple interfaces with mul-

tiple users, or further to socio-technical and ubiquitous systems, it becomes natural

to think of modelling each component separately, to explore the, possibly emergent,

behaviour of the system as a whole. It then becomes natural to think of modelling

the people as components of that system.

In this chapter, we explore the idea of modelling the human and their actions

more explicitly, and in particular exploring the fallibility of that behaviour. Rather

than modelling erroneous behaviour, we model cognitively plausible behaviour. It

is neither right nor wrong behaviour in itself. Human error emerges from acting in

this way, in situations where it turns out to be inappropriate. We overview the dif-

ferent strands of our work in developing generic user models based on cognitively

plausible behaviour (Butterworth et al. 2000). These models are specialised for any

specific situation by providing information about the task and context. The work has

shown how generic user models can be used to detect usability problems in inter-

active systems, as well as used in other ways such as to verify formal statements of

requirements or design rules, and combined with other analysis techniques such as

timing analysis.

8.1.1 Between Demonic and Angelic Behaviour

While the behaviour of human elements is not explicit in most verification approaches

to interactive systems, implicit assumptions about what behaviour is possible are still

being made. One can think of this as a continuum (see Fig. 8.1). At one end of the

continuum, the user of the system is assumed to potentially do anything. No restric-

tions at all are placed on their behaviour in the analysis of the system. This is a

sensible position to take when safety properties are under consideration. For exam-

ple, in a nuclear power plant controller, it is important to be sure that the interface

does not allow for user error of any kind, or indeed malicious behaviour, to lead to

a core meltdown. Similarly, in a security analysis of a system, where the interest is

in whether a malicious attacker can subvert it, the aim is likely to be that no such

subversion is possible. One must assume in these situations that the user is demonic

and will exploit any vulnerability that exists. An analysis in this context needs to

be exhaustive over all possible interaction traces. In any safety-critical context, it is

important to ascertain that whatever a user does, for whatever reason, their actions

cannot lead to identified hazards or unsafe states.
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Fig. 8.1 Continuum of user behaviour

At the other end of the spectrum, formal analysis methods may assume that the

user does exactly the right thing. This is the stereotypical position being taken when

human factors issues are just ignored. The designer of a system devises a ‘right’

way of interacting with it and assumes that the user will be trained to do exactly that,

without error, every time. If they do not, then they are to blame for the consequences:

‘The system behaved to specification. Therefore it is not the problem’. This approach,

thus, assumes an angelic user who always does the right thing. This kind of analysis

also clearly has its place. It is certainly of interest to know, and a bare minimum

requirement, that the expected process does always lead to desired outcomes. If it

does not, clearly there is a problem. The issue, however, is that the prescribed process

may be flawed in other ways too. People do make mistakes, and good design can often

prevent it or at least prevent bad consequences resulting.

While the above extreme positions are important forms of analysis, an intermedi-

ate position is too. Real people are neither angels nor demons. Their behaviour falls

somewhere in between. We have very specific cognitive limitations, and this puts

bounds on what it is possible for a human actually to do, even when highly trained.

For example, we all have a limited amount of working memory, and when it is over-

loaded things will be temporarily forgotten. We have one focus of attention, and if it

is focussed on one point then we will not see things elsewhere. We do not have access

to the designer’s conceptual model, only the system image that is presented by the

interface, manuals, and so on. This will lead to assumptions being formed about the

system that may or may not be correct. So in this sense, it is not only the angelic

approach that is unrealistic in general terms, so is the demonic approach. What is

appropriate depends, however, on the aim of the analysis.

A question though is where on the spectrum does a ‘real’ user lie? What behaviour

do we model? Humans are not computers. Behaviour varies widely from person to

person as well as at different times and in different contexts. We may well be able

to behave angelically most of the time, but under conditions of extreme stress or

when extremely busy and needing to multitask, our behaviour may be closer to being

demonic. This might suggest that modelling users is a lost cause. If anything goes,

there is nothing useful that can be modelled. However, our work shows that there is
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a range of simple but cognitively plausible behaviour that can be modelled in a way

that allows a user model-based approach to detect a wide range of usability problems.

In the uses of the above extreme, angelic and demonic, positions, the interest is

not on designing a system that is usable. If an analysis aims to support the design of

usable systems or of a good user experience, then modelling real users, rather than

angelic or demonic ones, is of interest. This matters even in safety-critical contexts.

In those contexts, we especially want designs to be as easy to use as possible. We

do not want it to be more likely than necessary that mistakes will be made. If we are

the one that is about to be infused with a potentially deadly drug, we want the dose

set by the nurse to be right today. It is no comfort that the nurse gets it right the vast

majority of the time.

In practice, with complex systems, it is often impossible to design them so that

nothing bad can possibly happen. The world is too complex, and trade-offs, ethical

and practical, may have to be made. So designers of systems that involve humans,

who wish to create usable systems, rather than unusable ones, have to take our lim-

itations in to account. User modelling is one way to do this. This matters even for

safety-critical systems. Just because you have proved that nothing bad can happen,

whatever the user does, does not mean that real users are capable of ensuring that

the desired good things do happen.

Another more practical reason why explicitly modelling more realistic user behav-

iour is of interest is that it gives a way to cut down the search space of behaviour to

consider. This may be the difference between an analysis being possible and it being

totally impractical. It offers an alternative, or perhaps complementary, way to ver-

ify abstractions of the computer system itself. Furthermore, an analysis that throws

up large numbers of false positives or negatives with respect to potential usability

problems may in actual practice be unhelpful, if the important issues are lost among

unimportant ones. User models may provide a way to cut down the number of trivial

issues raised, focussing on those that it is most important to fix. Ultimately, usability

evaluation is about issues that can be fixed, not in finding as long a list of problems

as possible, many of which will never be fixed (Nielsen 2000). Usability evaluation

is also as much as anything about persuasion (Furniss et al. 2008). A user mod-

elling approach may ultimately be more persuasive, in that problems detected are

potentially linked to an explanation of why they occur in terms of the underlying

cognitively plausible behaviour, not just to system traces.

8.2 Verifying Systems with a User Model

8.2.1 Defining Systems Involving User Models

Our approach to modelling users is an extension of hierarchical system verification. It

involves the verification of a series of separate subsystems, with each subunit treated

as a ‘black box’ represented by its specification. Each black box has inputs and out-
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Fig. 8.2 Combining user and Device Model

puts, used to interact with other units. By modelling the way the separate components

are connected, we get a description of the implementation of the whole. The outputs

of one component are the inputs to others. This combined system can be verified

against a specification of the behaviour of the whole.

We can extend this system modelling approach naturally to modelling human-

computer systems. In such a system, one or more of the components is a human.

We describe their behaviour formally and it just becomes another black box in the

system. Now the outputs of the human black box correspond to the actions of the

user that can have an effect on other components: pressing buttons, making gestures,

issuing commands, etc. Those actions are the inputs to the computer part of the

system. The outputs of the computer system, what is on the screen, lights, audible

alarms, as well as the actual buttons available, become the perceptions or inputs of

the user model (see Fig. 8.2). When the models of the human and computer systems

are combined in this way, they give a model of the human-computer system as a

whole, with the human component no different to any other.

This can be specified formally, for example, by describing the separate compo-

nents of the system as relations in higher-order logic. The USER relation is defined

to give the behaviour of the user with arguments the user’s perceptions and actions.

The DEVICE relation gives that of the device with arguments its inputs and outputs.

By equating the actions to the inputs and perceptions to the outputs, we obtain a

description of the system (defined as a relation SYSTEM)

SYSTEM (perceptions, actions, inputs, outputs) =
USER (perceptions, actions) ∧
DEVICE (inputs, outputs) ∧
actions = inputs ∧
perceptions = outputs

The arguments to SYSTEM can be represented, for example, as tuples of functions

from time to values at that time. We will refer to these as history functions. They

represent possible traces of activity over time for a single signal.

For example, one history function within actions might represent pushing a

physical ENTER button. For each time point, it would specify a boolean to indicate

whether it is pushed at that time or not. The definition USER specifies the restrictions

on what points in time it would be true, i.e. when it would be pushed. It would be

equated with the input of the device that corresponds to that button being pressed.
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The DEVICE specification determines what state changes occur in the device as a

consequence of it being pressed and so what outputs result.

The last equalities in our system specification can actually be reasonably seen as

part of the user model. They correspond to stages in models of the human action cycle

(e.g. Norman (2002)) of taking actions and perceiving results, and could themselves

be linked to error. It is easy to press a button but the press not be registered (e.g.

on touch screens, this is a common problem). Similarly, just because something is

there to be seen does not mean it will be seen immediately, if at all. A slightly more

sophisticated user model might, for example, introduce delay between an output and

its perception, rather than using equalities. Whatever the relation used to make the

link, we now include the machine inputs and outputs as part of the arguments of

the user model. The relations linking them become a part of it too. This leads to the

system being defined in the form:

SYSTEM (perceptions, actions) (inputs, outputs) =
DEVICE (inputs, outputs) ∧
USER (perceptions, actions) (inputs, outputs)

For example, consider a simple information booth: an Advice Device. It has one

button marked HAPPINESS. When pressed, Buddhist advice about how to be happy

is displayed on the screen: ‘Each day, mentally wish things go well for a random

person you see’ perhaps. The screen is otherwise blank. The device behaviour might

be specified formally in a relation which states that the message appears exactly at

times t when the button is pressed:

ADVICE_DEVICE (happinessButtonPressed,
happyMessageAppears) =

∀t: time.
happinessButtonPressed t = happyMessageAppears t

We need to define a user model relation to work with this device. It should have

appropriate values for the perception and action tuples: each a single history func-

tion: seeHappinessButton and pressHappinessButton, respectively.

ADVICE_DEVICE_USER
(seeHappyMessage, pressHappinessButton)
(happinessButtonPressed, happyMessageAppears)

Its definition specifies when the button would be pressed by a user. We will

explore how that might be defined in subsequent sections. For now, we will assume

a trivial version that just equates actions to device inputs and perceptions to device

outputs. It states just that the user sees everything that matters and they flawlessly

press the button every time they try.

ADVICE_DEVICE_USER
(seeHappyMessage, pressHappinessButton)
(happinessButtonPressed, happyMessageAppears) =
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∀t. happyMessageAppears t = seeHappyMessage t ∧
∀t. pressHappinessButton t = happinessButtonPressed t

Creating a combined system of user and device then just involves putting these

together.

ADVICE_SYSTEM
(seeHappyMessage, pressHappinessButton,
happinessButtonPressed, happyMessageAppears) =

ADVICE_DEVICE
(happinessButtonPressed, happyMessageAppears) ∧

ADVICE_DEVICE_USER
(seeHappyMessage, pressHappinessButton)
(happinessButtonPressed, happyMessageAppears)

8.2.2 System Verification Involving User Models

Once we have defined a combined system, it can then be verified. In general verifi-

cation is based around scenarios of particular tasks and whether they would always

be successfully completed by users who behave in accordance with the behaviour

specified in the user model.

Here, we illustrate the idea in its simplest form, looking at more complex ver-

sions in later sections. We first define a usability relation, which we will call TASK_
COMPLETION. In a very simple version of our Advice Device example, the property

might just be that the user gets advice when they press the button.

TASK_COMPLETION
(seeHappyMessage, pressHappinessButton) =

∀t: time.
pressHappinessButton t ⊃ seeHappyMessage t

We would then verify the property:

∀ seeHappyMessage pressHappinessButton
happinessButtonPressed happyMessageAppears .

ADVICE_SYSTEM
(seeHappyMessage, pressHappinessButton,
happinessButtonPressed, happyMessageAppears) ⊃

TASK_COMPLETION
(seeHappyMessage, pressHappinessButton)

This says that the combination of DEVICE and USER restricts the behaviour of

the system as a whole in a way that ensures the task is always completed as specified,

i.e. the history functions can only hold traces that involve the task being completed.
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Of course with our very simple user model described so far, this is a very limited

idea of usability.

This kind of usability verification can be done via model checking or theorem

proving. The best choice will depend on the specific systems and properties of inter-

est. We have used both, with a variety of technologies including HOL, PVS, SAL

and IVY. The style of specification has to vary from that given here depending on

the verification technology used of course.

8.2.3 Instantiating a Generic User Model

Just as the device model is created for each verification, a bespoke user model can

be too, as we just did for the Advice Device. However, that means that the specific

behaviours that are possible have to be reinvented each time. Our approach has been

to focus on generic user models instead. Here, core cognitively plausible behaviour is

formalised once and then used with different interactive systems by instantiating the

model with just the details specific to that system. This saves work and also means

the model needs to be validated just once.

The first step to doing this is to generalise over the user and machine states. It is

convenient to use abstract data types to represent these states. They package up all

the separate history functions in to a single structure. We use accessor functions in to

these states to refer to particular elements.

The generic user model takes this user state (ustate) and machine state

(mstate) as arguments and is defined in terms of them. Critically, each has as its

type a type variable (’u and ’m, respectively), meaning that the type is not at this

stage specified. It can be later instantiated to any appropriate tuple type, for example,

with each element holding a trace. Different devices will have different inputs and

outputs. Different tasks to be performed will involve different actions and percep-

tions. By using type variables, we do not commit to what the actual possibilities are

in the generic model.

Following this approach with our user model that just identifies inputs and actions,

outputs and possessions, we obtain a user model:

USER (actions_inputs, perceptions_outputs)
(ustate:’u) (mstate:’m) =

∀t.
LINK actions_inputs ustate mstate t ∧
LINK perceptions_outputs ustate mstate t

where LINK is given lists of pairs of accessor functions from the two states and

equates them at the given time.

The system definition now has the following form, where argument details
provides information about the actions, perceptions, etc.
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SYSTEM details ustate mstate =
DEVICE mstate ∧
USER details ustate mstate

We refer to the process of creating a concrete user model for a particular device

and task as instantiating the generic user model. To do this for our trivial version

to date, we need to give concrete types for the type variables and provide concrete

accessor functions that indicate what each element of the type represents. This would

be a tuple of traces. Each trace would be of type from time to a value type (such as

an integer or boolean type).

For our Advice Device, the user state type might be (time → bool × time → bool)

to represent the two history functions of seeing and pressing the button, bound into

a pair. For brevity, we will refer to the concrete user and machine types, and thus

defined as U and M, respectively.

In defining the types, we specify how many things there are to perceive and actions

to perform with this system under consideration. The next step of the instantiation

is to provide accessor functions into the tuples.

For our Advice Device, this means specifying concrete accessor methods for

ustate andmstate. For example,pressHappinessButtonmight be defined

to just return the first trace from the user state and seeHappyMessage the second.

The concrete user model for the Advice Device might then be defined in terms of

the generic user model as:

ADVICE_DEVICE_USER (ustate: U) (mstate: M) =
USER([(PressHappinessButton, HappinessButtonPressed)],

[(SeeHappyMessage, HappyMessageAppears)])
ustate mstate

As we create a more sophisticated generic user model we will need to provide

other information too as part of the instantiation.

8.3 A Simple Model of Cognitively Plausible Behaviour

Our work has explored variations on the kind of behaviour that might be treated as

cognitively plausible and so limit the range of behaviours assumed. Rather than spec-

ifying a user’s behaviour from scratch for each new device, we base it on a generic

model that embodies such a set of principles. This gives an abstract knowledge-level

description (Newell 1990). It is then instantiated with details of a particular task,

such as the goals and knowledge the user is assumed to have and that guide their

actions internally.

In this section, we discuss a relatively simple form of user model but that puts

restrictions on human behaviour. We have shown that even such a simple model can

be used to detect a variety of interaction design and usability problems that lead to

systematic human error (Curzon and Blandford 2000, 2001). In the next section,
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we look at more complex forms of plausible behaviour that take into account both

internal and external cues that drive actions.

The generic model (in our original HOL version) is essentially just a set of

guarded rules of the form:

guard1 t ∧ NEXT action1 actions t ∨
...

guardn t ∧ NEXT actionn actions t

Here, NEXT states that, of all the actions available, the next one taken after time

t, possibly with some delay, is actioni for each i. It only comes in to play if the

corresponding guard is true at that time. The guards and actions are determined by

the information given to the model when instantiated.

In most of our work, we have specified the models in the various versions of

higher-order logic of the different tools we have used. More recent work led by Har-

rison (Harrison et al. 2016) has used modal action logic. It is a logic that has an

explicit notion of actions and includes notions such as ‘permissions’ indicating when

actions can occur. It allows state transition models to be expressed in a style similar

to that used in industry standard tools such as Simulink statecharts. Details of this

approach can be found in Harrison et al. (2016).

In whatever formalism, the core of the user model is based on the set of actions

that can be taken to interact with the interactive system. The right-hand side of each

guarded rule specifies an action that can be taken, such as pushing a button. The

left-hand side is a guard specifying the preconditions for that action to be taken. For

example, a button on a touch screen must appear on the screen for it to be pressed.

The actions are essentially the outputs of the user model. They link to the inputs

of the other components of the system. In a simple system, there would be a single

other component: the device interacted with. In general, it could be a range of other

devices, people and physical artefacts: all possibilities we have explored (Rukšėnas

et al. 2008b, 2013).

8.3.1 Non-determinism

Because the guarded rules in the user model are relational in nature and combined

with disjunction, this framework is potentially non-deterministic. If multiple guards

are true, then multiple rules are active and corresponding actions could be taken.

This reflects the idea that if there are several cognitively plausible behaviours at any

time, then any might be chosen. The model thus does not prescribe single behaviour

but potentially specifies a range of possible behavioural traces that are plausible. Any

may be taken. This may result in correct or erroneous behaviour. Any verification

will need to consider all the allowed behaviours.

Depending on how the guards are used, this basic framework could model differ-

ent kinds of users. If the guards of all actions are set to true, then you have a demonic

user, where anything is always possible. If they are set to require specific previous
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actions to have occurred, the actions must occur in a specified required sequence, or,

more generally, exactly one guard corresponding to the ‘correct’ action is guaranteed

to be true at all times then you have an essentially angelic one.

The inclusion of non-determinism allows the model to move away from a fully

angelic model of behaviour that assumes such a single correct sequence. A user

model of this form that specifies alternative expected sequences is essentially a form

of task model. If the aim is to explore usability of designs, then this kind of user

model already gives scope for some usability issues to be discovered in a design.

Consider a verification property of whether a specific user goal is achieved as a result

of an interaction. The consequence of non-determinism is that for such a property to

be provable, the design cannot rely on any specific action definitely being taken if

there are alternatives. The property will only be provable if taking any of the actions

specified in the task-based user model at each point leads to the task being completed.

A generic user model lets us go beyond task models, however. Rather than spec-

ifying directly the possible behaviour sequences, they emerge from a general speci-

fication of plausible behaviour. We explore this idea in the subsequent sections.

8.3.2 Reactive Behaviour

We can start to turn this general framework into a more structured model by pro-

viding specific mechanisms for adding action rules. This contrasts with assuming

demonically that any action available may be taken, or adding them in an ad hoc

way. The simplest way to structure the behaviour of a user is through the process

of reacting to sensory prompts. One plausible reason for a person to take an action

is that they react to a just-in-time prompt at the point where they are able to take

an action. If a light flashes on the start button of an infusion pump, the user might,

if the light is noticed, react by pressing the button. If a light flashes on the receipt

slot of a cash machine, then that might prompt the person to take the receipt. The

generic model can be instantiated by providing a set of prompt–action pairs, that

correspond to reactive behaviours. Each pair provided is then turned in to a corre-

sponding guarded rule through a generic rule.

The following generic rule asserts that the signalprompt leads toaction being

the next action taken.

REACT actions prompt action ustate t =
(prompt ustate) t ∧ NEXT (action ustate) actions t

A collection of such guarded rules for reactive behaviour, combined by disjunc-

tion, is defined recursively in terms of REACT:

(REACTIVE actions [ ] ustate t = FALSE) ∧
(REACTIVE actions (r :: prompt_actions) ustate t =

((REACT actions (PromptOf r) (ActionOf r) ustate t))∨
(REACTIVE actions prompt_actions ustate mstate t))
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To ensure the user model is fully specified, we add an extra catch-all relation,

ABORTION that applies if no other rule fires. It asserts that if none of the other

guards is true, so no rule can fire, then the user model takes a special finished
action to abort the interaction. As we add new kinds of rules to the user model, this

relation is modified to combine their guards too.

If at any time no action at all is cognitively plausible, the user may either give

up or take random actions (such as randomly hitting buttons). The finished action

is used as an abstraction of any such behaviour. Designs that allow it have usability

problems.

We add both REACTIVE and ABORTION relations to the user model:

USER (actions, actions_inputs, perceptions_outputs,
prompt_actions, finished)
(ustate:’u) (mstate:’m) =

∀t.
REACTIVE actions prompt_actions ustate t ∧
ABORTION finished actions prompt_actions ustate t ∧
LINK actions_inputs ustate mstate t ∧
LINK perceptions_outputs ustate mstate t

Having introduced a finished signal, we can make use of it to bind the interac-

tion. We assert in the user model that once finished, the interaction remains finished

(at least for the purpose of verification). This overrides the non-deterministic rules,

so is placed in an outer if-then-else construct.

if (finished (t - 1))
then (finished t)
else non-deterministic rules

This leaves the traces of all other actions and perceptions of the model unspecified,

so that nothing can be proved about them based on the user model once finished goes

true.

To instantiate the model, we need to provide a list of pairs, linking prompts to react

to with actions. The prompts can be specified as any relation, though the simplest

form would be outputs from a device.

With just this mechanism for including guarded rules, the user model takes actions

only when there are specific external prompts to do so. This complements an inter-

action design approach often used with simple walk-up-and-use machines such as

vending machines and cash points, where prompts guide the user through the neces-

sary task sequence.

Let us alter our Advice Device so that instead of displaying a message, it releases a

capsule containing a printed message, fortune cookie style. The device now has two

inputs: one a button to press to get a message, and the other a sensor on the capsule

drawer to note the capsule has been taken. The button has a flashing light next to it

to show when it should be pressed. The capsule appears in a window with a clunk

indicating when it can be taken. Such a device would be specified as a straightforward
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finite-state machine that specifies restrictions on the history functions. We omit the

formal details here as they are straightforward.

To model the user of this version, we just provide as arguments the list of

prompt_action pairs, and the finish action, along with the other details.

ADVICE_DEVICE_USER (ustate: U) (mstate: M) =
USER (

% actions %
(PressHappinessButton, TakeCapsule),
% action-input links %
[(PressHappinessButton, HappinessButtonPressed),
(TakeCapsule, CapsuleTaken)]

% perceptions-output links %
[(HappinessbuttonLight, SeeHappinessbuttonLight),
(CapsuleReleased, SeeCapsule)]

% prompt-action pairs %
[(SeeHappinessbuttonLight, PressHappinessButton),
(SeeCapsule, TakeCapsule)]

% finished %
FinishInteraction)
ustate mstate

This now specifies the reasons for the user of our Advice Device taking actions: a

behaviour of following prompts. Our verification property might now be that when

the user sees the light next to the button, they eventually take a capsule. To prove this,

given the way the finished signal overrides all else, it will only be guaranteed to

happen if the interaction does not abort first:

DEVICE_IS_USABLE (HappinessbuttonLight, TakeCapsule)
ustate mstate =

∀t: time.
(HappinessbuttonLight mstate) t ⊃

EVENTUALLY (TakeCapsule ustate) t

This form of user model, though simple, would uncover usability problems where

a necessary prompt was missing. As we do an exhaustive exploration of the search

space, if any situation can arise when the device might fail to provide the prompt

when needed, then the verification of this property will fail.

Care has to be taken though. The above property is vacuously true if the light next

to the happiness button never comes on. The property we verify needs to be extended

with a property that it is not achieved vacuously (i.e. that the light is eventually

on). That might not be true if the device could be left in some other state by the

previous user, for example. The proof might therefore need an assumption added that

the light is on at the start of the interaction. One solution to allow that assumption

to be discharged would be to add to the design an automated time-out to reset if a

capsule was released but not taken.
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A situation where a prompt might easily be missed in a design (and often is with

real software) is when there is a processing delay. For example, suppose there was

a delay between the user of our Advice Device pressing the button and the capsule

being released. The verification would fail as the user model would have nothing to

do. This leads to the need of some kind of ‘Please Wait’ message added to the device

design —a reactive signal with corresponding action to do nothing for a period.

Verification would also uncover some issues where multiple prompts could

become active at the same time, suggesting either action was appropriate. If the

design under consideration actually required a specific order and ignored actions

in the wrong order, this would lead to the user model taking actions that would not

result in the achievement of the property being verified. On the other hand, if the

device was agnostic about the order, the verification property could still be proved.

8.3.3 Goal-Based Behaviour

A problem with this approach to reactive behaviour is that it does not take into

account the goals of the user. People do not completely follow prompts in a Pavlovian

manner. They need a reason to do so that ties to the task they are trying to achieve.

Actions need to be relevant. We can model a simple aspect of this easily. Part of

the guard of reactive rules can be that the particular action corresponds to a subgoal

needed to achieve the task that is yet to be discharged. One way to do this is to keep a

to-do list of outstanding and relevant subgoals. As they are discharged by completing

the corresponding action, they are removed from the list for future time instances.

The guards now include a check that the goal has not been discharged. This can be

done by keeping a history function of actions to be done and removing them from

that list once done.

To build this into the generic user model, we add relation, MANAGE_TODO_
LIST:

MANAGE_TODO_LIST actions todolist =
∀t. todolist (t+1) = REMOVE actions (todolist t) t

This states that at all times the to-do list is the same as at the previous time, except

with any actions just taken removed. The to-do list could be added as a new argument

to the generic user model needing to be instantiated. Alternatively, we could just use

the action list as the initial to-do list. The generic user model can automatically add

to the guard of a rule a requirement that the action of the rule is still to be done, i.e.

(ToDo action) is added.

Suppose our Advice Device requires payment: a coin has to be inserted before

the happiness button is pressed. In this design, a light next to the coin slot flashes

to highlight the coin slot. Now suppose the device design has both the coin slot and

happiness buttons flashing at the same time—the designer’s intention is perhaps that

they indicate that both the button has to be pressed and coin inserted. For this device,



8 Modelling the User 225

our user model is instantiated with extra details about the coin slot. Checking the to-

do list is automatically added to the guards so not needed in the instantiation.

ADVICE_DEVICE_USER (ustate: U) (mstate: M) =
USER (

(PressHappinessButton, InsertCoin, TakeCapsule),
[(PressHappinessButton, HappinessButtonPressed),
(InsertCoin, CoinInserted),
(TakeCapsule, CapsuleTaken)],

[(HappinessbuttonLight, SeeHappinessbuttonLight),
(CoinSlotLight, SeeCoinSlotLight),
(CapsuleReleased, SeeCapsule)]

[(SeeHappinessbuttonLight, PressHappinessButton),
(SeeCoinSlotLight, InsertCoin),
(SeeCapsule, TakeCapsule)]

FinishInteraction)
ustate mstate

With this enhanced user model, our verification property will only be provable if

the light for the button comes on only at times when the action is accepted. If the

device appears to prompt for the button to be pressed but ignores any button press

until after the coin is inserted, the model will ultimately abort on some paths, because

the button will no longer be a candidate to be pressed if pressed too soon. No guard

will be active. The verification will therefore fail.

Similarly, verification would fail, highlighting the usability problem, if the device

design is such that the prompt comes fractionally too early, before the device accepts

the corresponding button press: a common problem in interactive systems.

As we add new classes of rule to the user model as we are doing here, it opens

up the possibility of exploring the consequence of different user behaviours. We can

explore what happens when a user does just follow prompts blindly—a completely

novice user perhaps. Then using the more complex version of the model with more

complex guards, explore the consequences of a slightly more sophisticated user who

knows something of what they are trying to do.

8.3.4 Termination Behaviour

Another area of behaviour that can be easily modelled in this framework concerns

more subtle reasons for when a person might plausibly terminate an activity. We

have considered abnormal termination when there is nothing apparently possible.

However, there are more positive reasons for termination. In situations where the

activity has a well-defined goal, then the obvious reason to terminate is that that goal

has been achieved. This can be added as an extra guarded rule with goal achievement

as the guard and an action to terminate the interaction as the action.
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COMPLETION actions finished goalAchieved ustate t =
goalAchieved ustate t ∧ NEXT actions finished t

For our Advice Device the goal is that the person has an advice capsule. It can

therefore be set (i.e. passed as a new argument to the user model) as takeCapsule.

Since the verification property we are proving is also about achieving the goal,

we can now create a generic verification property too: that the goal is achieved given

an initial state.

DEVICE_IS_USABLE initstate goalachieved =
∀t: time.

initstate t ⊃

EVENTUALLY goalachieved t

Termination conditions are more subtle than this though. In many interaction sce-

narios, the user not only needs to achieve their goal but return the system to some

initial state, ready for the next interaction. This may coincide with the goal but it

may not. Examples are logging out of a system, retrieving inserted cards, switching

off a light on leaving a room, switching off the headlights and locking a car door on

arriving at a destination, and so on.

We can address this by adding an ‘interaction invariant’ property to the verifi-

cation property. We then prove that, not only should the goal be achieved, but the

invariant should also be restored. It is an invariant in the sense that it should always

be restored at the end of an interaction (it is equivalent to a loop invariant in program-

ming that must be restored at the end of the loop, where here it is the interaction that

is looping).

∀t: time.
initstate t ⊃

EVENTUALLY (goalachieved ∧ invariant) t

This allows us to show that the user model can make another class of usability-

based error: the post-completion error (Byrne and Bovair 1997). If the goal itself is

achieved before all the tidying up actions, such as those above, that are necessary

have been achieved, then those extra actions may be omitted.

For example, suppose ourAdvice Device requires the person to press a reset button

to indicate they have taken the capsule, before it resets to allow the next customer to

get a message. The goal of the user is still to take the capsule. The invariant, however,

is that the machine has returned to the start state as indicated by the happiness light

being on.

happinessbuttonLight mstate t = TRUE

We can extend the user model with extra buttons and lights corresponding to

the reset button. However, we will not be able to prove that eventually the goal is

achieved and invariant restored. Once the goal is achieved, the user model can finish

the interaction without pressing the button. People would sometimes make the post-

completion error. This is poor design, and the versions we have already considered
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that reset automatically are better. We will return to post-completion error in the next

section.

8.3.5 Modelling the Physical World

In many interaction situations, there is more than just a user and a device. Systems

are much wider than this, and this wider system and context often has to be taken into

account and so modelled too. A simple way to deal with some aspects of the context

is by including in the system specification a relation describing physical laws that

must always hold and so are universally quantified over time. One practical example

is about physical objects. We insert cards and coins, and obtain goods, for example,

even in the simplest of walk-up-and-use machines. We therefore include laws about

possessions such as that if a user gives up a possession (e.g. by inserting it in a

device), then they no longer have that possession.

For each group of possessions, such as a particular kind of coin, we can define

a relation over the states HAS_POSSESSION which keeps track over time of that

possession: whether a person has a possession, how many they possesses at each

time instance, and whether they take a new such possession (e.g. from a device) or

give one up. This relation takes as arguments accessor functions in to the states of

the user and device. An example law about possessions is that if at a moment in time

the action to take a possession occurs and the user does not also give that possession

up, then the number of that possession held goes up by 1 at the next time instance.

HAS_POSSESSION
(takepossession, givepossession,
countpossession, haspossession)

(ustate:’u) (mstate:’m) =
(∀t. (takepossession mstate t ∧

¬(givepossession mstate t)) =
(countpossession ustate (t+1) =

countpossession ustate t + 1 )) ∧
...

The value of possessions might additionally be recorded. This gives a way of

reasoning about, for example, taking cash from a cash machine.

Separate universal laws are then combined in to a single relation to either incor-

porate in to the user model itself or as a separate context relation included in the

system model.

UNIVERSAL_LAWS possessions ... ustate mstate =
HAS_POSSESSION possessions ustate mstate ∧
...

Instantiating the user model now involves also providing as argument concrete

details of specific possessions. We can also use facts about possessions as part of
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the guards of rules. For example, suppose our Advice Devicenow involves payment

by card. The card is inserted at the start and returned at the end after the capsule

has been taken. The card returns to its initial state automatically once the card is

returned. Flashing lights prompt each step. We extend our instantiated user model

accordingly with the extra actions and perceptions. The user has to have a card to

insert it, and so this will become part of the guard to the reactive rule.

The goal can now be specified, rather than as the action to take the capsule but,

treating it as a possession, that the user has a capsule. The invariant now is not just

that the machine resets, but also that the user has the card, also treated as a possession.

We need to verify the invariant:

happinessbuttonLight mstate t ∧
hasCard ustate t

A more general alternative for the invariant would be that the total value of the per-

son’s possessions is the same as it was at the outset.

In either case, this verification will fail as the user model achieves the goal and so

can terminate before the invariant is restored: before taking the card back. To fix this

problem and allow the verification to succeed, we need the device to return the card

and only then release the capsule. Then, the only traces allowed by the user model

involve the invariant becoming before the goal is achieved.

8.4 Internally Prompted Behaviour

Our model as discussed to date has focussed mainly around variations in reactive

behaviour cued by external prompts. External stimuli are not the only kind of prompts

that lead us to take action. We also have knowledge and/or experience of the task we

are attempting to do, though possibly with other device designs or in other situations.

This results in internal prompts. We already made use of this partially in the guards

of our reactive rules as the basis of giving a motivation for prompts to be followed.

However, we can also use it in more fundamental ways.

8.4.1 Cognitively-Cued Behaviour

As we have already discussed, we often know of actions we must take to achieve

a task. The device we are using may change, but particular things must be done

whatever the device. For example, to obtain money from a cash machine we must

indicate how much money we want in some way, we must indicate the account it is

to come from, and so on. These subgoals might concern information that must be

communicated to the device, such as the dose of a drug to be infused or items that

must be used with the device, such as a card that must be swiped to indicate the

account or authenticate the user. Actions related to these subgoals are likely to just



8 Modelling the User 229

spring to mind even without explicit sensory cues, especially if the opportunity to

discharge them is obvious. If we are holding a coin, know we need to pay for our

happiness advice and see the coin slot, we may insert the coin, even if sensory cues

are suggesting some other action, because our attention has focussed on the coin slot.

We can extend our generic user model to allow for this kind of behaviour by

adding a new family of non-deterministic rules. We just indicate the list of actions

with their preconditions, corresponding to this behaviour. Not all possible actions

will be included. For example, some actions may be device specific, such as con-

firmation buttons after particular actions. Those included are the ones that are nec-

essary for the task, whatever the design of the device. The guards in this family of

rules do not need to include explicit sensory cues, as with reactive rules. Instead

they correspond to whether the action is available and also whether the person has

the information or object needed to discharge the goal.

If the guard is true, suggesting the opportunity is there, people may take the action

so as to discharge the subgoals. This could happen even if reactive prompts are

present. The two families of rules, sensory-cued and cognitively-cued behaviour,

are set up in the generic user model as non-deterministic options.

Including this behaviour in a user model allows usability issues to be detected

where internal knowledge leads to external prompts being ignored. If you are hold-

ing your identity card, and first see the card reader, you may swipe it first even

if a flashing message on the screen is suggesting you must touch the screen first.

Unless the design of the interaction is such that alternate actions can be taken in any

order and still achieve the task, verification with the user model will fail, identifying

the traces that lead to the problems. This leads to a permissive style of interaction

design (Thimbleby 2001).

For our Advice Devicewhere we must pay using coins, and also press the happi-

ness button (perhaps now one of several choices of advice the device offers us), then

take the capsule, the cognitive cued action might be set to correspond to inserting

a coin and pressing the button with our choice. The additional argument included

in the generic user model that we would need to provide as part of the instantiation

would then be

[(SeesHappinessButton, PressHappinessButton),
(SeesCoinSlot ∧ HasCoin, InsertCoin)]

The generic rule will include as part of the guard that the action is on the user

models to-do list still. Once we have made our choice by pressing the button, we

would not expect to do it again. In effect, the first guard, for example, is automatically

expanded to:

(ToDo PressHappinessButton) ∧ SeesHappinessButton

The generic user model could also in fact automatically generate other parts of

the cues. In particular, in any rule that involves an action, the generic rule could

automatically add the linked history function corresponding to the opportunity for

doing it being seen.
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With this Advice Device user model, the verification will fail if the button and

coin have to be inserted in a specific order. This will still be true even if the reac-

tive prompts correctly guide the user through the correct sequence. Why? Because

whatever action is required first, the other might spring to mind and be done as the

coin slot and button are there to be seen. The user’s attention may be focussed on

the choices, for example, and so they might not see the flashing light next to the coin

slot higher up on the device. Only when they have pressed the button might their

attention be freed up to notice the flashing light. For the user model, the rules are

non-deterministic: both the behaviour of following the cue and so inserting the coin,

and of following the internal cue and pressing the button, satisfy the model. Both are

therefore possible traces.

This usability problem could be solved in several ways. One is to make the design

permissive with respect to these actions. The device does not need to care in what

order they are done, just that they are done. Alternatively, it could ensure that the

apparent opportunity to do invalid actions does not arise. For example, a touch screen

could be used instead of physical buttons, so that the choices, and corresponding

button, only appear once the coins have been inserted. In either case, the device

design could be verified: despite all the limitations embodied in the user model, we

would be able to prove it always achieved the goal with a good enough design.

8.4.2 Procedurally-Cued Behaviour

Another form of internal prompting that occurs is due to a person having followed

a procedure in the past and so internalised a sequence of actions to be done one

after the other, leading to habitual behaviour. A linkage builds up between them

in the person’s head so that one cues the next in that sequence. A user model that

includes procedural cues can make capture errors. This corresponds to the situation

where a person follows the habitual sequence without consciously intending to in an

inappropriate situation.

This can be modelled in a simple way within our framework. Now the guard

to each action in a habitual sequence is that the triggering action was done in the

previous step. We can extend the generic user model to take as a new argument lists

of such actions, turning them in to the appropriate rules as for the previous families

of behaviour.

For our running example, suppose a person has been using an Advice Device
regularly that allows a choice between asking for happiness or asking for sadness

advice. As a result, they have built up a habit of inserting the coin, making their

choice between happiness or sadness and then taking the capsule. The device uses a

screen that displays the labels for adjacent physical buttons, indicating what they do

at any particular time. We thus split the buttons from their function, since it changes.

When it appears, the happiness button is button 1. As part of the instantiation, we

provide an additional argument to the user model of this habitual sequence:
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[insertCoin, pressButton1, takeCapsule]

However, suppose a new version of the software is released. To give more per-

sonalised information before the happiness options are given, the user is now asked

to press one of the two buttons to indicate whether they are under or over 16. The

same buttons are used as for indicating the kind of advice wanted. With procedural

cuing, the user model will prevent successful verification of this new version of the

device if this scenario is explored. This is because a behaviour of the user model is

allowed where an adult user, who has built up the habit, presses button 1 thinking

they are choosing happiness but instead indicating they are under 16.

This might be avoided, allowing for successful verification against such a sce-

nario, by using different sets of buttons for the two questions, or asking for the new

information later in the interaction when it has no correspondence to something that

might be habitual.

For a more serious example, suppose a nurse normally uses one kind of infusion

pump, where the sequence of actions is to authenticate, then enter the volume to be

infused and then the rate of infusion. Each of those actions will start to act as a cue

for the next. If the nurse switches to a new ward where a different pump is used that

requires the rate to be input before the volume, then a capture error may result. The

procedural cue from authentication may lead to the nurse entering the volume next

even if the screen is clearly asking for the rate. If not noticed, this could lead to the

patient being given an overdose.

By adding procedural cuing, we are able to explore the ramifications of habits in

a scenario-driven way. This could be part of a verification of a specific design or as

part of a hazard analysis aiming to identify hazards. Such habits may cause problems

on the introduction of new devices, new versions of old devices being installed, or

just as a result of a change of context as with the nurse. It may not always be possible

to eliminate problems that arise, but such verification might at least mean the risk

can be highlighted. This is done when road layouts are changed: new signs are put up

indicating there has been a change to help avoid habitual errors. Nurses can at least be

trained in the specific risks and warned in situations such as a ward change where the

risks are increased. More robust designs that support error detection and recovery

might be developed. For example, extra screens might ask the user to review the

information, undo buttons might be provided, or error detection software included,

for example, that notices dangerously high doses being entered for the drug used.

8.4.3 Mental Commit Actions

Performing an action has two stages: an internal action when a person mentally com-

mits to acting, for example due to the internal goals or as a response to the interface

prompts, and a physical action when the actual action is taken in the world. This

distinction reflects a delay between the commitment moment and the moment when

the physical action is taken. Once a signal has been sent from the brain to the motor
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system to take an action, it cannot be revoked after a certain point, even if the person

becomes aware that it is wrong before the action is taken. We can capture this by

pairing guarded rules about pairs of actions. Each physical action has as its guard

that the mental action has occurred. This means that it is guaranteed to follow the

committing mental action after some delay. The guards of the mental action are those

that correspond to taking the action and hold true up until the mental action is taken.

After that point, they may or may not hold, but the physical action will be taken either

way. This infrastructure for pairing guards can be part of the generic model rather

than pairs of actions needing to be instantiated explicitly. A list of mental actions

and corresponding physical action can be given to be paired up in this way.

This can be used to highlight situations where an interface changes between a

user committing to an action and the action being taken, so that the stimuli they are

reacting to and the consequence of an action have changed. For example, suppose the

Advice Device has periods when it stops accepting input temporally when not being

used so as to upload log data to a central server. When it goes offline, a please wait

sign is displayed. The user model, with the mental–physical action distinction, could

now commit to an action of pressing the button at a point when the light indicating

it can be pressed was still flashing, but when it actually pressed the button it was no

longer active. Such a usability problem might be avoided by the machine only going

offline in this way immediately at the end of an interaction so that the light indicating

the button could be pressed would not come on only to go off again.

A more serious example might be an air traffic control system where flights appear

in a window in a queue-like manner, with each entry moving down a place each time

a new flight arrives. In this system, the act of touching the flight record on the screen

performs an action on that flight. A flight controller could make a decision to touch a

flight, but after this commitment is made, a new flight arrives and the flight actually

touched is a different one to that originally perceived.

8.4.4 Case Studies

We have applied models based on simple rules such as those described in this and

the last section to a variety of simple case studies based on various walk-up-and-use

machines such as cash points and vending machines, similar to our running example.

Through these simple examples, we have shown that design flaws can be detected

that lead to all the various errors discussed including post-completion errors, termi-

nation due to no clear guidance as to what to do, order errors due, for example, to a

lack of permissiveness of actions, where internal knowledge guides a user to a dif-

ferent action to prompts, and errors due to habitual behaviour interfering with what

is required of a new design. We have also shown how soft-key interfaces using touch

screens can be verified and related problems identified.

In these examples, we have also shown how these problems can be eliminated with

appropriate design changes such as those discussed in the previous sections, verify-

ing successfully modified designs. For example, by changing the order of actions, we
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have verified that post-completion errors in cash and vending machines with respect

to left cards or change have been eliminated without introducing new problems for

the user model.

This demonstrates that the approach can be used, even with fairly simple princi-

ples and rules, to go beyond assumptions of angelic or demonic users to users who

do make mistakes. It can detect a variety of usability issues with interface designs.

In conducting even these simple case studies, we also found problems that were

only discovered as a result of the verification. They had not purposefully been

designed in to the example so not expected when the case study was created. For

example, in one simple walk-up-and-use device design considered the model would

terminate early as there was no plausible option according to the rules. To fix this,

‘please wait’ feedback was needed as discussed earlier. This was only realised when

exploring the consequences of the model (Curzon and Blandford 2001). The need

for ‘please wait’ feedback had not been explicitly considered at all at this point. This

example of poor design emerged from cognitively plausible principles included for

other reasons. Similarly, another possible human error unexpectedly arose in a design

with insufficient prompting. This was due to a user model belief that all actions rel-

evant to the task had already been completed (resulting from an order error). This

was discovered when using a user model set to explore novice behaviour (Curzon

et al. 2007).

8.5 A More Complex Salience Model

The above models are based on a simple set of general principles but despite that can

detect a wide range of usability issues, so in a sense provide an interesting compro-

mise between the angelic and demonic extremes. However, for complex interactive

systems more complex models may be needed if subtler issues are to be found. Inter-

active systems often have multiple cues in play of different strengths at any time. We

have therefore explored more complex models, with a focus on the different kinds of

internal and external cues potentially having differing strengths.

The model was based on ideas from activation theory (Altmann and Trafton 2002)

and the results of a series of experiments (discussed in Sect. 8.6.2). The impetus to

take a particular action can depend on a mixture of internal and external cues that

each contribute to the overall level of salience of the action itself. The idea is that

actions which have most activation from the combination of internal and external

cues driving them are the ones most likely to be taken.

We consider three kinds of cue salience: corresponding to the families of cues

already discussed: two internal (in-the-head) forms of salience: procedural salience

and cognitive salience, and external (in-the-world) sensory salience.

We applied variations of models that include salience to a graphical user interface

version of a fire-engine dispatch system (Rukšėnas et al. 2008a, 2009), as well as

medical interfaces such as infusion pump use as part of the CHI+MED project (Cur-

zon et al. 2015).
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Determining the levels of salience for a particular device specification and sce-

nario would require a human-computer interaction specialist, though it might possi-

bly be done, at least in part, automatically in the future using programs modelling the

human vision system. An alternative way to view this though is that the user model

can be used as a tool to explore potential consequences of different cues having dif-

ferent levels of salience and so recommend where particular cues need to be strong,

and where it is less essential.

8.5.1 Different Kinds of Salience

An action has procedural salience as a result of a person forming a habit due to pre-

viously taking actions in sequence. A linkage builds up between them in the person’s

head so that one cues the next in that sequence. This can lead to capture errors. An

example of this as we saw might occur where a nurse switched from a ward using

one model of infusion pump to a different ward, where the settings are the inputs in

a different order. This may lead occasionally to the nurse entering things in the old

order into the new device. The salience of the procedural cuing may depend on how

practiced the previous habit was.

Cognitive salience refers to the situation where the need to do an action just

springs-to-mind due to it being associated with the current activity being performed.

This is the salience linked to cognitive cues. For example, when using a cash machine

to get cash you know that you are likely to have to indicate the amount of cash you

want in some form: that amount is probably on your mind anyway as it is part of the

task you are trying to complete. How and when you need to provide this informa-

tion will differ from device to device, but on seeing an opportunity you may try and

provide it. The strength of the salience may depend on how central to the task the

action is, for example.

Sensory salience is concerned with cues in the world and corresponds to reactive

behaviour. These external cues could be related to any of the senses though typically

are in the form of visual or audible cues. The salience strength may depend on the

kind of alert: a flashing message will have higher salience than a small light going

on. A klaxon sounding will have high salience.

8.5.2 Load

Experiments suggest that the salience of cues depends on the load on the user at the

time. We therefore explored generic user models that take into account two kinds of

such load: intrinsic load and extraneous load. Intrinsic load is the inherent difficulty

of the task at hand. For example, if an operator such as an emergency dispatcher

has to do complex mental calculations to decide what to do, then the load for a task

might be classified as high. Extraneous load arises from information that is present
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but that does not contribute directly to the performance of a specific goal. The need

to do visual search to find relevant information on the device that in itself does not

foster the process of performing a goal can be classified as extraneous.

Load levels can be included in the model as history functions. As with the salience

levels, determining load levels to instantiate the user model with would need to be

done by an expert in human-computer interaction or automated programs, but the

user model could be used to explore where load needed to be reduced to make the

device usable.

Experiments suggested that intrinsic load can influence the strength of procedural

cues used to perform future task critical actions. Extraneous load also influences the

awareness individuals have of sensory cues when intrinsic load is high (Rukšėnas

et al. 2009). We modelled rules based on these results. Note that the work described

here was developed in SAL, so used a different formalism of the model to our earlier

work. In the following, we sketch the approach following the notation we have used

for the rest of the paper.

8.5.3 Combining Salience

To model the interactions of different cues requires that each is given a level of

salience. To keep things simple, we modelled the strength with a small number of

levels. There may be no salience (there is no cue at a particular time), some small

level of salience (such as an LED prompt being there to be seen) or they may have

higher levels (such as an audible alarm).

We calculate the combined salience of cues ultimately driving the action as a

similar series of levels of priorities, though with an additional intermediate level.

The salience from the different kinds of cues for an action are combined according

to rules about their relative strengths and the effects of the load on the user. Actions

of the highest overall saliency level are taken if there are any. If not, then those of the

next highest level are taken, with those with the lowest level of saliency only being

taken if there are none of the higher levels.

In the simple model, an action might have several rules that cause it to fire, each

based on different kinds of cues. In this new model, each action needs only one rule

with the separate cues now combining based on their salience to form part of the

guard of that single rule.

The generic action rules therefore include an algorithm that calculates whether

there are no other actions of higher salience that are otherwise active. This is then

included in the guard of the rule so that only the actions cued with the highest salience

can be taken. There still may be multiple actions falling in to this highest salience

category, so it is still non-deterministic.

To do this, we create a series of predicates to calculate the overall salience of

an action: HighestSalience, MediumSalience and LowSalience, each

given arguments specifying the level of the different kinds of salience and load. The

guards contain an expression of the following form:
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(HighestSalience( ... ) ∨
(HighSalience( ... ) ∧

no action is of highest salience) ∨
(LowSalience( ... ) ∧

no action is of high or highest salience)

The levels of the various forms of salience for each action are each computed

separately and combined to give the above levels of salience. The highest salience

level arises, for example, if the sensory or cognitive cuing are high or if procedural

cueing is not low.

HighestSalience( ... ) =
...
(¬ (proceduralSaliency t = Low) ∨
(sensorySaliency t = High) ∨
(cognitiveSaliency t = High))

The following algorithm for procedural saliency shows how we model load as it

affects the different cue saliencies:

if (procedural_default = High) ∧ (intrinsicLoad t = High)
then proceduralSaliency (t+1) = Medium
else proceduralSaliency (t+1) = procedural_default

This states that procedural cue saliency is normally unchanged from its default level

set for that action. However, intrinsic load lowers otherwise high procedural cueing

if the load is high.

8.6 Alternate Uses of Generic User Models

So far we have considered the basic use of generic user models to evaluate the usabil-

ity of a system, with a focus on finding design flaws that lead to user error. We have

also explored other ways to use the basic models, however. We sketch these ideas in

this section.

8.6.1 Combining Error Analysis with Timing Analysis

There are other aspects to usability beyond human error, and human error analysis

does not need to be performed in isolation. It can explicitly complement other meth-

ods. Timing analysis is, for example, a successful application of cognitive modelling

as embodied in the variations of GOMS models (John and Kieras 1996) and in the

CogTools toolset (John et al. 2004). We have shown how this kind of modelling can
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be done formally within the same user modelling framework as we have used to do

human error analysis (Rukšėnas et al. 2014).

Since GOMS models are deterministic, these predictions assume and apply to

a single, usually ‘expert’, or optimal, sequence of operators. They assume a form

of angelic behaviour, though introducing aspects of cognitive limitations. However,

such perfect behaviour cannot always be assumed. With walk-up-and-use interactive

systems, typical users are not experts. They are not trained to follow optimal proce-

dures and may not even be aware of them. They are liable to choose less cognitively

demanding methods given the opportunity. Even the expert users of safety-critical

systems when under pressure may choose suboptimal plans of action, either con-

sciously or unconsciously, due to limitations in their cognitive resources. It is there-

fore worth including a broader set of cognitively plausible behaviours in to such a

KLM-GOMS style timing analysis of interactive systems going beyond just optimal

paths.

A generic cognitive model, of the form discussed in this chapter, gives a fairly

straightforward way to do this. It involves only a simple adaptation of the model.

Timing information is attached to the actions. In addition, mental operators are added

before cognitive units, though not actions that can be predicted in advance. This

follows a general principle common to GOMS analysis. In adding timings in this

way, we obtain a way to integrate timing analysis with user error-based analysis. By

adding the timings on paths explored, the timing consequences of taking those paths

can be determined. Using model checking, bounds can be predicted on the time taken

to complete tasks, based on exhaustive exploration of cognitively plausible paths.

We have applied this approach to both simple scenarios involving cash machines

(Rukšėnas et al. 2007b) and in a more complex, safety-critical context of pro-

gramming an infusion pump (Rukšėnas et al. 2014), illustrating how the approach

identifies timing and human error issues. In particular, it predicts bounds for task

completion times by exhaustive state-space exploration of the behaviours allowed by

the cognitive model. At the same time, it supports the detection of user error-related

design issues. The performance consequences of users recovering from likely errors

can be investigated in this framework. It thus gives a novel way to explore the con-

sequences of cognitive mismatches on both correctness and performance grounds at

the same time. Our case studies (Rukšėnas et al. 2014) showed how an initial design

can be explored where performance issues are identified, and then how alternate

designs aiming to fix the problem can then be analysed. This can highlight how fixes

to the performance issues found might then lead to unexpected human error conse-

quences. The variations considered in the case studies were based on features found

in real designs.
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8.6.2 Supporting Experiments by Exploring Behavioural
Assumptions

An issue about modelling user behaviour is whether the assumptions embodied in

the model are actually psychologically valid. Is one kind of cue actively weaker

than another in all contexts, for example? Cue strength almost certainly depends

on context in subtle ways, meaning that just because experiments have shown that

rules apply in one situation may not mean they remain valid in others. Our model of

salience was based on a combination of theory and experiments, but changing the

context could change the validity of the model.

Ultimately, the principles embodied in a user model and then the model itself

need to be validated experimentally across a wide range of situations. These are open

questions for psychology and experimental human-computer interaction researchers.

This issue is an important advantage of a generic user model approach, however.

The core principles and model only need to be validated once. If hand-crafted user

models are created for each new application, then the behaviour embodied in each

would need to be validated. If instead of user modelling, other techniques are used

where the behaviour assumed is implicit in the analysis, then there is no inspection

at all of the assumptions made.

However, whatever analysis technique is used, even without rigorous experimen-

tal validation, the designers of interfaces are making assumptions about such issues,

even if implicitly, every time they design. User models therefore have another role

to play. They give a way to make the assumptions being made about the user, as well

as the device, explicit. The combination of the user model and its instantiation does

this. For example, with respect to salience, the assumptions about how actions are

cued and the relative importance of those different cues are made explicit when the

user model is instantiated.

Furthermore, rather than just treating the analysis as a way to find design flaws,

we can treat user modelling as a way to explore the consequences of the assump-

tions made about user behaviour, for the usability of a particular design. This can

be done exhaustively in a way that cannot be done within experiments or simula-

tion. A similar approach can also be followed to support more basic experimen-

tal human-computer interaction research, including research aimed at understanding

cognitively plausible behaviour. Formal methods give increased analytical power to

experimental results, while experimental results inform formal modelling.

We trialled this idea with respect to developing the saliency rules described

above (Rukšėnas et al. 2009). Experiments and formal modelling then went hand

in hand to inform each other. The results of an initial experiment were turned in to

a user model embodying the behaviour assumed. Exhaustive modelling showed that

the hypothesis about the relationships between different cues made did not com-

pletely explain the behaviour recorded, however. It also suggested that variants might

fix the problem. Such variants were then modelled.

This approach can also be used to suggest gaps in knowledge from empirical

research, an approach we have trialled in a slightly different context of modelling
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processes in tandem with field work to support and understand a distributed cogni-

tion analysis (Masci et al. 2015a).

To facilitate the general approach of exploring assumptions, making it more flex-

ible, we restructured the architecture of the generic user model in to three layers.

The lowest layer captures core assumptions that are unlikely to be modified by the

approach. The intermediate layer, also part of the generic model, specifies the set

of cognitive assumptions being explored. The third layer is the instantiation of the

generic model and captures specific assumptions that relate to the details of the

device and the task to be performed on it (Rukšėnas et al. 2013).

We used this restructured model with experiments investigating the task of setting

up sets of infusion pumps for a single patient, where the separate tasks corresponding

to each pump can be done either sequentially or interleaved (Rukšėnas et al. 2013).

In this particular study, modelling was based on a set of assumptions about behav-

iour derived from the soft constraints hypothesis (Gray et al. 2006) which concerns

the way resource allocation affects behaviour. These assumptions formed the basis

of the experimental hypothesis. The experimental study appeared to back up this

assumption about how people would behave. The exhaustive analysis also predicted

that errors would be made that matched those observed in the experiment.

At first sight, this suggests that the experimental results were fully supported by

the formal analysis. However, the formal analysis highlighted a mismatch. The spe-

cific erroneous traces identified did not actually match the sequence of actions of the

participants in the experiment. The formal analysis predicted that a different form of

interleaving between the tasks would be followed. This suggests that the modelled

assumptions do not fully explain the observed behaviour. Therefore, more experi-

mentation and/or modelling is needed to fully understand the behaviour and why the

detail of the actual behaviour deviated from that predicted.

This work shows how formal methods can be integrated with laboratory-based

user evaluation and experimentation. It can either give increased confidence in the

results of the evaluation or find gaps that might otherwise be missed. It helps the

evaluator to consider the validity of the experimental design and so provides insight

into the confidence with which the results of the experiment and its interpretation can

be considered. It can highlight mismatches between the consequences of the assump-

tions and experimental results and so lead to suggestions of further experiments as

well as ruling out potential explanations for those mismatches.

The approach parallels the use of cognitive modelling to analyse user assump-

tions (Ritter and Young 2001) using cognitive architectures. However, cognitive

architectures provide extremely detailed, though deterministic, models of the cogni-

tive processes, such as visual or auditory perception, memory and learning, whereas

the above approach works at a much more abstract level. Cognitive modelling

approaches use simulation runs to analyse system properties. This means a relatively

small range of behaviour is actually considered. The idea is that each determinis-

tic trace represents average behaviour. This contrasts with the non-determinism of

our models which generate a wider range of behaviours. As our approach is based

on automated reasoning, not simulation, we can explore the consequences of the

assumptions made exhaustively.
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8.6.3 Hazards, Requirements and Design Rules

A user model can also be used to justify usability requirements or design rules

(Curzon and Blandford 2002, 2004), making explicit the assumptions they are based

on and the consequence of applying them. Design rules can be derived informally

from the user model. We did this with a variety of design rules based on one of our

earlier models of behaviour:

∙ allow the task to be finished no later than the goal;

∙ provide information about what to do;

∙ providing information is not enough;

∙ use forcing functions so that other options are not available;

∙ interfaces should be permissive where possible;

∙ controls should make visible their use;

∙ give immediate feedback;

∙ do not change the interface under the user’s feet; and

∙ where possible, determine the user’s task early.

Such rules or requirements can also be verified. Design rule correctness state-

ments are formally stated and verified against assumptions embodied in the user

model. This involves replacing the device description with a formal statement of the

design rule. It then acts as an abstract version of the interactive system. The property

verified is then a statement that the aim of the design rule has been achieved. We

demonstrated this with respect to the first, post-completion error linked design rule.

An alternative way of thinking of this is that it gives a way to explore the poten-

tial hazards that might arise from a user acting according to the cognitively plausible

behaviour. Our discussion of each principle added involved noting the consequences

of including the behaviour: essentially identifying potential hazards implied by the

assumptions of behaviour. This approach could be incorporated in to a more rig-

orous hazard analysis process when combined with a reference model of a device,

for example. This is essentially what is done by Masci et al. (2015b), developing a

hazard analysis process, though based on an informal model of human behaviour. A

formal generic user model could support a more formal version of this process, with

respect to the user’s behaviour not just the device, and apply to families of similar

devices. By exploring different assumptions in the user model, their effect on hazards

could be investigated. As with designs, a user model could be used more generally

to explore how different assumptions about plausible behaviour affect design rules,

including about how the context affects their effectiveness.

8.6.4 Security Analysis

The focus of most work with user models has concerned usability. However, there are

also applications to security. Most security research focuses on the technical aspects
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of systems. We have considered security from a user-centred point of view using a

generic user model, but verifying the system against security rather than usability

goals. This gives a focus on the cognitive processes that influence the security of

information flow between the user and the computer system, for example. Examples

have shown how some confidentiality leaks, caused by a combination of an inap-

propriate design and certain aspects of human cognition, can be detected within our

framework (Rukšėnas et al. 2007a, 2008b).

This kind of analysis has been suggested as a part of a concertina-verification

approach (Bella et al. 2015) for verifying security ceremonies: an extension of a

security protocol that takes wider issues such as human factors into account. This

involves layering the security analysis into a series of models extending out from the

security protocol itself to human interaction, and then further outwards to consider

the wider socio-technical aspects of the system. These ideas have not been tested in

depth, and the possibilities for formal user models to be used in this context need to

be investigated.

8.7 Other Forms of User Model

Our approach to modelling user behaviour has been to focus on specific individual

aspects of behaviour such as the effect of the salience of cues. Other aspects can be

formally modelled, however, and have been done in a variety of work.

8.7.1 Interactive Cognitive Subsystems

Duke et al. (1998) and Bowman and Faconti (2000) use interactive cognitive subsys-

tems (ICS) Barnard and May (1995) as the underlying model of human information

processing in their work. This work is based on lower-level cognitive models and has

a focus on simulation. Their models deal with information flow between the different

cognitive subsystems and constraints on the associated processes that transform the

information, including situations where the interaction of different paths blocks some

information flows. As a result, their work focusses on reasoning about multimodal

interfaces and analyses whether interfaces based on several simultaneous modes of

interaction are compatible with the capabilities of human cognition. Su et al. (2009)

developed an ICS-based formal cognitive model to explore low-level psychology

phenomena, and in particular, attentional blink. This concerns the deployment of

temporal attention and how the salience of items is affected by their meaning. They

have also adopted the model to simulate interactions in the presence of information

overload. This illustrates how user models can support psychology experiments as

well as more applied human-computer interaction experiments.
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8.7.2 Mental Models

People form mental models as a result of the system image they are working with.

One source of usability problem and ultimately human error results from people

forming a mental model that does not exactly match the way the system works.

Rushby (2001, 2002) formalised plausible mental models of systems, looking for

discrepancies between these and actual system behaviour. The analyses were specif-

ically concerned with automation surprises, mode errors and the ability of pilots

to track mode changes. The mental models are a form of user model, but simpli-

fied system models rather than cognitive models. They can be developed in vari-

ous ways, including an empirical approach based on questioning pilots about their

beliefs about the system. Like interface-oriented approaches, each model is individ-

ually hand-crafted for each new device. Bisimulation is used to determine whether

any important divergence results from following the abstraction, that is the mental

model rather than an accurate model of the system. In the original work, the device

and user models were intertwined. Lankenau (2001) and Bredereke and Lankenau

(2004) extended the approach, making a clear separation so that non-existent depen-

dencies could not arise in the models. They also include a relation between environ-

ment events and mental events that could in principle be lossy. This corresponds to

an operator not observing all interface events of a system. However, in practice in

their work the relation does no more than renaming of events and so is not lossy.

They do not therefore explicitly consider the operator’s imperfections. Buth (2004)

also explores the use of CSP refinement as a way of analysing the system.

The approach to modelling user behaviour we have described above is essentially

a threshold model. All behaviour is possible (and may be seen if a user is malicious,

trying to subvert the system); however, the concern is to model cognitively plausible

behaviour, i.e. behaviour that is likely to happen for systematic reasons and so passes

some threshold of concern that it may occur. An alternative is to create probabilistic

models where probabilities are assigned to actions. To be of practical use, empirical

work is needed to determine the probabilities of actions in different contexts.

8.8 Future Challenges

We have investigated only a small set of behaviours, and for more complex interactive

systems, a wider form of behaviour is likely to be needed. We must integrate more

forms of cognitively plausible behaviour in to the models. Multitasking, for example,

is a critical feature of much human endeavour in the modern world for which there

are strong theories based on decades of experiments. Developing formal models of

these theories in a form that could be integrated with this kind of user model is an

important area for further research.

Any model if it is to be used in industrial contexts ideally needs to be validated

experimentally. The principles embedded in the models have been based on those
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from the literature. The salience models were also the result of modelling the out-

comes of experiments. However, the resulting model as a whole needs to be validated

in other situations to those considered. Any model is by necessity an abstraction of

the real world, and context matters a lot with respect to usability, so the results of

a single set of laboratory-based experiments do not necessarily generalise to other

situations. As the issues modelled become more subtle, the validity of the models in

the situations analysed becomes more of an issue. At what point should a behaviour

that leads to systematic human error be considered sufficiently likely to be included?

The work described has explored the feasibility of a range of possible uses for

user models, but has generally only piloted ideas. Much more work is needed across

a range of areas. The ideas need to be applied to a wider range of case studies and

extended to be able to deal with more complex situations. The modelling described

here has mainly been concerned with single user, single-device interactions. The

focus of human-computer interaction has moved outwards to a concern with more

complex systems of teams working with multiple interfaces and to issues of the wider

socio-technical systems. Computing power is increasingly ubiquitous, embedded in

objects, and interaction increasingly involves interacting with those objects as well as

with more conventional interfaces. User modelling naturally extends to these kinds

of situation. Various of our studies have involved such concerns at least in simple

ways. The work on user-centred security involved the modelling of physical objects,

and our work on infusion pumps involved the programming of multiple devices.

However, this work has only touched the surface of the issue. Much more could be

done in this area.

If formal, generic user model-based verification is to be adopted in industrial

contexts, then work is needed on making the models accessible to non-experts, in

terms of instantiating them, in running verification and in presenting the results in

terms of the underlying principles responsible for failed behaviour traces. As with

other formal techniques, ways of integrating user model-based methods in to existing

engineering processes are needed if they are to be taken up widely.
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Rukšėnas R, Curzon P, Blandford A (2007a) Detecting cognitive causes of confidentiality leaks.

In: Curzon P, Cerone A (eds) Proceedings of the 1st International workshop on formal methods

for interactive systems. Electronic notes in theoretical computer science, vol 183. Elsevier pp

21–38. doi:10.1016/j.entcs.2007.01.059
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Chapter 9
Physigrams: Modelling Physical Device
Characteristics Interaction

Alan Dix and Masitah Ghazali

Abstract In industrial control rooms, in our living rooms, and in our pockets, the
devices that surround us combine physical controls with digital functionality. The
use of a device, including its safety, usability and user experience, is a product of
the conjoint behaviour of the physical and digital aspects of the device. However,
this is often complex; there are multiple feedback pathways, from the look, sound
and feel of the physical controls themselves, to digital displays or the effect of
computation on physical actuators such as a washing machine or nuclear power
station. Physigrams allow us to focus on the first of these, the very direct interaction
potential of the controls themselves, initially divorced from any further electronic or
digital effects—that is studying the device ‘unplugged’. This modelling uses a
variant of state transition networks, but customised to deal with physical rather than
logical actions. This physical-level model can then be connected to underlying
logical action models as are commonly found in formal user interface modelling.
This chapter describes the multiple feedback loops between users and systems,
highlighting the physical and digital channels and the different effects on the user. It
then demonstrates physigrams using a small number of increasingly complex
examples. The techniques developed are then applied to the control panel of a wind
turbine. Finally, it discusses a number of the open problems in using this kind of
framework. This will include practical issues such as level of detail and times when
it feels natural to let some of the digital state ‘bleed back’ into a physigram. It will
also include theoretical issues, notably the problem of having a sufficiently rich
semantic model to incorporate analogue input/output such as variable finger pres-
sure. The latter connects back to earlier streams of work on status–event analysis.
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9.1 Introduction

In industrial control rooms, in our living rooms, and in our pockets, the devices that
surround us combine physical controls with digital functionality. The use of any
device, including its safety, usability and user experience, involves the conjoint
behaviour of its physical and digital aspects; however, this is often complex.

The digital side of this has been the subject of extensive research in the formal
user interface modelling community. However, there has been very little work that
addresses the physical interaction, and this chapter addresses that gap. We present
physigrams, a semi-formal modelling notation for describing the physical interac-
tions of devices and how this links to underlying digital behaviour.

The chapter begins by describing the multiple feedback loops between users and
systems, highlighting the physical and digital channels and the different effects on
the user with reference to the case studies and other examples. It will then
demonstrate physigrams using a small number of increasingly complex examples,
largely of domestic appliances for which the methods were first developed.

Having laid the groundwork, we then look at a more practical use where product
designers used the notation to describe three potential options for a media-player.
This exposes some of the advantages of a semi-formal notation, as the designers
were able to extend the notation to deal with emerging issues in the design.

Finally, physigrams are used in a case study of a wind-turbine control panel.
This explores the potential for use in real-world industrial control panels and some
of the practical problems in studying detailed physical phenomena of critical
equipment while in use.

Finally, the chapter will describe some of the open problems in using this kind of
framework. This will include practical issues such as level of detail and times when
it feels natural to let some of the digital state ‘bleed back’ into a physigram. It will
also include theoretical issues, notably the problem of having a sufficiently rich
semantic model to incorporate analogue input/output such as variable finger pres-
sure. The latter will connect back to earlier streams of work on status–event
analysis.

9.2 Physical and Digital Feedback Loops

The provision of feedback is a core feature in most lists of interaction design
heuristics and guidelines. For example, in Shneiderman’s Eight Golden Rules
number three is “offer informative feedback” (Shneiderman and Plaisant 2010), and
Norman’s Execution–Evaluation Cycle is as much about interpreting feedback as it
is about formulating and performing actions (Norman 1988).

For PC-based systems, the main feedback is visual, the effects of keystrokes and
mouse/pointer movements on virtual screen objects. However, when we look at
richer digital-physical systems, we find that there are multiple feedback pathways,
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from the look, sound and feel of the physical controls themselves, to digital displays
or the effect of computation on physical actuators such as a washing machine or
nuclear power station.

Figure 9.1 looks at a number of different kinds of feedback using the paths of
action and communication between the user’s body, an input device (e.g. a control
knob, or button) and the underlying digital system. The various paths are described
in detail elsewhere (Dix et al. 2009), so here we will just work through a few
examples.

First consider a public display in a café. The café owner is about to open and so
presses the power switch for the display (physical manipulation (a)). The switch
moves and the café owner can both feel and see the switch is now on (a directly
perceived state of the control switch (b) leading to feedback loop A). In addition,
after a few seconds of boot-up, the public display system shows a message (elec-
tronic feedback (d), loop C).

As another example, the operator of a nuclear power station wishes to reduce the
reactor power output to tick-over level ready for maintenance. The operator twists a
‘soft’ dial (a). The dial is fitted with a haptic feedback system: when the system
detects the dial movement, it produces a small resistance to any movement
(physical effects in the device (ii)), but has much stiffer resistance at the point at
which the reactor would shut down completely. Because the operator is able to feel
this (digital feedback similar to physical feedback (c), feedback loop B), it is easy to
move the dial to the minimum point without danger of over-shooting the critical
level. In addition, actuators within the reactor begin to lower the control rods
(physical effects on the environment (iv), feedback loop D).

physical–logical 
mappings 

physical aspects 
knobs, dials,

buttons, location, 
orientation 

(ii) physical effects 

(iii) virtual effects 
show message,

turn light on 

motors, effectors 

(a) physical manipulation (i) sensed inputs 

logical 
system

A B
C 

(c) felt feedback 

(d)‘ electronic’ feedback

(b) perceived state 

see message on screen 

resistance,
? physical sounds ? 

turn knob, press button 

effects on 
logical objects 
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Fig. 9.1 Multiple feedback loops (from Dix et al. 2009)

9 Physigrams: Modelling Physical Device Characteristics Interaction 249



While loop D is very clearly of a different nature, the distinctions between loops
A, B and C are a little more subtle. From a system point of view, loops B and C are
effectively identical and would appear so in most formal modelling notations.
However, for the user the opposite is the case, very well designed and executed
haptic feedback (loop B) might seem just as if it were direct physical resistance in a
device (loop A). Indeed, if the implementation really is perfect, then there is no
difference for the user. However, any slight or occasional imperfections can be
critical; for example, we describe elsewhere how delays of only a fraction of a
second in simulated key-clicks made it almost impossible to triple tap on a mobile
phone (Dix et al. 2009).

All of these loops are important; however in this chapter we will focus princi-
pally on loop A, the immediately perceived effects of the physical manipulation of
the device. That is the things you feel whether or not the digital aspect of the system
is actually working. We have called this analysing the ‘device unplugged’ (Dix
et al. 2009).

9.3 The Device Unplugged

Imagine visiting a nuclear power plant that is being decommissioned. All of the
wiring and electronics have been removed, but the shell of the control room is still
there. You can twist dials, press buttons, pull levers, but nothing does anything. To
take a more day-to-day example, it is common to see a small child playing with
their parent’s phone. If the power has run out (maybe because of the child’s
playing), would there be things the child could still play with, such as buttons to
press?

The idea of considering the device unplugged is to foreground the interaction
potential of the physical controls themselves.

Affordances are an important concept in HCI. In Gibson’s original definition,
“the affordances of the environment are what it offers the animal, what it provides
and furnishes, either for good or for ill” (Gibson 1979, p. 127). Following adoption
in the HCI community, led by Norman and Gaver (Gaver 1991; Norman 1988,
1999), we often think about the apparent affordances of on-screen controls; how-
ever, Gibson was focused on more basic physical interactions: a rock affords
picking up and throwing if it is of a suitable weight and size for the hand.

Looking at a light-switch, we can consider the whole lighting system of the
house and say that the switch affords turning on the light, but before that the fact
that the switch looks and feels switch-like means it affords pressing. While later
writers have considered other aspects, such as cultural knowledge, when consid-
ering simple physical actions Gibson claimed that affordances were immediately
perceived, in the sense that our whole perceptual systems are tuned to see the
interaction potential of the world. The argument for this is that as a species we are
fitted for our environment and optimised for action. Of course, for complex digital
systems there is no guarantee that this will be the case.
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Many of the problems with pervasive technologies happen where this more
immediate affordance is missing. A common example is the water for handbasins in
public toilets. The water is often turned on by a proximity sensor, but there is little
to indicate this theoretical affordance except the knowledge that something must
make the water go on (cultural knowledge). If you imagine the bathroom ‘un-
plumbed’, with the water turned off and the pipes empty, a traditional water tap
(faucet) can still be twisted, but the sensor-based one has no physical interaction
potential at all.

Of course, the complete system is not just the physical controls, we also have to
think about the mapping between physical actions and digital effects; even if we
know that a switch can be pressed, what happens when it is pressed? However, by
initially focusing on the device unplugged we both redress the more abstract action-
and functionality-oriented descriptions that are common, and also lay proper
emphasis on the first point of contact between human and machine.

9.4 Modelling the Device Unplugged

The vast majority of more formal modelling of interaction is focused on the dia-
logue level of the Seeheim model (Pfaff and ten Hagen 1985). Many techniques are
used, from state transition networks (STNs) to Petri nets, but almost all assume user
inputs at the level of abstracted actions, such as ‘quit button pressed’, rather than the
actual physical action of pressing the button.

There are occasional descriptions of issues closer to the physical interface. For
example, in even the earliest editions of the Human–Computer Interaction textbook
(Dix et al. 2004), a case study is described where a change in the keyboard layout
led to errors as it became possible to accidentally press adjacent keys forming an
important and critical key sequence (Fig. 9.2).

Thimbleby has also looked at physical placement of buttons on a fascia and
analysed how this might affect relevant time costs of button press sequences due to
Fitts’ Law delays for longer movements (Thimbleby 2007). Also, safety cases and
accident reports include all levels of interaction: for example, the placement of a
label at Three Mile Island hid an important indicator.

As a way to model the physical aspects of the device unplugged, we use
physigrams, a variation of state-transition networks (STNs) with additional features

Fig. 9.2 Layout matters (from Dix et al. 2004). The key sequence F1–F2 meant “exit and save if
modified”, whereas F1–esc–F2 meant “exit without saving”. This was fine on keyboards where the
function and escape keys were separated, but on the above layout led to accidentally pressing the
escape when trying to hit F1–F2
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to deal with particular kinds of physical interactions (for example, buttons that
‘bounce back’ after being pressed). The name ‘physigram’ was coined by product
designers who used the notation to model prototype devices. Crucially the
STN-based notation is precise enough to give some analytic traction, whilst read-
able enough for product designers to use, even though they would normally avoid
more formal descriptions.

9.5 Physigrams—Modelling Physical States

Figure 9.3 shows the simplest example of a physigram, the states of a simple on/off
switch. It has two states, and the transition between the two is controlled solely by
the user.

Of course, just looking at the switch ‘unplugged’, you cannot tell what it does
electrically:

Is it a light switch, or controlling a cooling fan?
If it is a light switch, which light?
However, when you press the switch you can immediately see and feel that you

have changed something, even if the ultimate effect is not clear (it may be a
fluorescent light that takes a few seconds to warm up, or even an outside light that is
not visible from where you are).

Not all switches are like this; Fig. 9.4 shows an example of a bounce-back
button. This is the kind of button you quite frequently find on computers; you press
it and, as soon as you release it, the button immediately bounces back to its original
position. Although, like a click switch, it has two main states, there is only one
stable state, the other is a transient tension state that requires constant pressure to be
applied.

switch

UP

DOWN

user pushes
switch up
and down

Fig. 9.3 Physigram states of
a switch

252 A. Dix and M. Ghazali



The physigram denotes this bounce-back using the jagged spring-like arc; whilst
the solid transition is triggered by the user’s action, the bounce-back is physically
autonomous, usually just a spring inside.

These simple transitions can be used to represent more complex controls. Fig-
ure 9.5 shows the physigram of an old minidisk controller. The knob at the end can
be pulled outwards, but once released it snaps back to the ‘IN’ state (a
bounce-back). This is shown in the middle of the physigram (CENTRE
IN <-> CENTRE OUT); the pull-out transition is controlled by the user, but it has
a bounce-back transition back in. This centre part (turned on its side) is exactly the
same as Fig. 9.4, except it is a pull rather than push action for the user.

(i)

(ii) 

CENTRE
IN

LEFT
IN

RIGHT
IN

twist
left

twist
right

CENTRE
OUT

LEFT
OUT

RIGHT
OUT

twist
left

twist
right

pull out

pull out

pull out

  

Fig. 9.5 i Minidisk controller, ii physigram

OUT

IN

user pushes
switch in

bounce
back

Fig. 9.4 Physigram of a bounce-back button
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However, the minidisk controller uses this pull not to trigger some action, but
effectively as a mode control and the knob can be twisted as well. Twisting the knob
when ‘IN’ changes the volume, but while pulled out skips forward and back
through tracks.

While the effect of the twisting is not part of the physical ‘unplugged’ state, the
twists themselves are modelled in the full physigram (Fig. 9.5ii). Note that the left
and right twists are themselves bounce-backs; the only stable state is when the knob
is in the ‘IN’ position and centred; all other states are tension states requiring some
continued physical force.

As with many formal notations, there is some flexibility in terms of the level of
detail you wish to capture with a physigram. Figure 9.3 showed a simple switch,
but if you press a switch just lightly it ‘gives’ a little, yet does not snap to the other
position until you are more than half way. That is, as well as the up and down states,
there are many part-up and part-down states in between.

Figure 9.6i shows this more detailed view of the physical states and transitions
including the spring-like bounce-back and the ‘give’ as a lightning-like transition.
Note the give is similar to bounce-back as the physical properties create the tran-
sition, but whilst the bounce-back only happens when tension is released, the ‘give’
works with the user’s physical force.

Whilst this clearly provides more details about the physical interaction potential
than Fig. 9.3, arguably it could be far more detailed still as there is not a single ‘part
down’ state, but one where it is down just a little, then down a little more. The
choice of level will depend on the issues being analysed. In our previous work on
this issue, we suggested that a more detailed status–status mapping view of this

(ii)

(i)

UP

DOWN

PART
DOWN PART

UP

press
down

press
down

press
up

press
up

switch
‘gives’

switch
‘gives’

press
down

UP

DOWN

press
up

Fig. 9.6 Switch with ‘give’ i detailed physigram, ii ‘shorthand’ physigram with decorated
transition
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would be valuable, and since then Zhou et al. (2014) have produced analyses of
button pressing using force-displacement graphs and taking into account dynamics
such as weight and inertia. One could imagine being able to ‘zoom’ into the
transitions in Fig. 9.6ii and see such a graph for the particular choice of button, or
even annotating the transitions in some way to distinguish different levels of
resistance or dynamics where this is relevant.

As this slight ‘bounce-back then give’ is a common phenomenon, a shorthand
version is introduced in Fig. 9.6ii. This has much of the clarity of Fig. 9.3, but the
transition is annotated to show that it has the initial resistance.

9.6 Plugging in—Mappings to Digital State

While we have emphasised the importance of describing the device unplugged, this
is of course only part of the story. In the end we are interested in the whole system,
physical and digital. To do this we also model the logical states of the digital or
electronic side of the system, and the relationship between these and the physigram.
We will use STNs to model the logical state also, but one of the many dialogue or
system modelling notations could be used for this.

The idea of natural ‘mappings’ between controls and effects has been a core
concept in interaction design since very early days (Norman 1988). There are many
different kinds of mapping; in some cases if the controlled thing is spatial and the
controls are laid out spatially we might look for spatial correlation: the light on the
right is controlled by the switch on the right; or proximity: the switch to turn on the
light is the one closest to it.

The relationship between digital states and physigram states is more about the
dynamics of interaction.

Fig. 9.7 Logical states of an electric light map 1–1 with physigram states
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Figure 9.7 shows the physigram of a light switch on the left, and on the right the
logical states of the light, whether it is on or off. Strictly there are probably addi-
tional states, when the light bulb is defective, there is a power cut, etc., but we are
simply modelling the common illumination states.

In this case, the relationship between the physigram states and logical states is 1–
1, but of course this is not always the case. Figure 9.8 shows a bounce-back switch.
Except maybe for a signalling flashlight, it would be rare to find a bounce-back
switch in 1–1 correspondence with the logical state. Most often, a user-determined
transition in the physigram triggers a transition in the logical system.

In this example, we have labelled the physigram transition as an abstract action
(a) and then shown on the logical system where this abstract action causes transi-
tions. While state–state mappings are easy to represent diagrammatically, transi-
tion–transition mappings are harder to portray, especially as they may be
many-to-many (as in Fig. 9.8). The use of named actions to link STNs is similar
to the technique used in statecharts (Harel 1987), which, due to their adoption in
UML, are likely to be reasonably familiar to many in computing.

In the case in Fig. 9.8, we have shown the bounce-back switch as a press
on/press off button. In fact this is more likely for a light control, since powering a
computer down may cause damage to the system. Quite commonly, the
bounce-back switch is used to turn on a computer, but the ‘off’ is soft, determined
by the computer after a software shutdown.

Figure 9.9 shows this alternative. Note how the physigram of the physical
control is the same—you cannot tell by playing with the switch alone, when
unplugged from the power supply, what action it will have. However, the mapping
between physical and logical states allows us to model the different behaviour.

Fig. 9.8 Physical and logical states of a bounce-back switch
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9.7 Properties of Physical Interactions

We are now in a position to talk about some of the design properties of physical–
digital devices.

First of all, consider again the 1–1 mapping between device state and logical
state for the light switch in Fig. 9.7. This is an example of exposed state; that is
where the logical system state can be apprehended directly from some aspect
(visible, tactile) of the device. Note this does not necessarily mean that the user can
know what that logical state is (for example, whether the switch controls a light out
of sight or is in fact turning on the nuclear emergency alarm). However, once this is
known, it means that the system state is instantly observable.

The opposite of exposed state is hidden state: for example, in Fig. 9.8, the
switch does not expose the state of the computer system. Of course, you might see
the screen flicker or hear the disk start to spin, that is, in terms of Fig. 9.1, feedback
loops C or D. However, there is the danger that if there is a small delay you might
think you have not pressed the button properly and press again, accidentally turning
the computer back off in mid-boot-up.

Clearly exposed state is a very powerful property when it is possible, but it is not
always achievable.

Part of the power of digital systems is that vast amounts of system state can be
packaged into very small footprints; if every state of a typical phone were to be
made physically accessible in terms of dials, knobs, or switches, the control panel
would probably stretch over an area the size of a city.

Bounce-back buttons are most useful where there is a large or unbounded
number of logical states, for example the number of tracks on a music player.
However, here, as the physical device feedback loop (loop A) is weaker, it is
important that there is additional logical feedback. In the case of the minidisk

Fig. 9.9 Bounce-back switch only controlling one transition direction

9 Physigrams: Modelling Physical Device Characteristics Interaction 257



player, increasing/decreasing the volume will be apparent—except when it happens
to be during a quiet point. For example, “Funeral for a Friend”, the first track of
Elton John’s album “Goodbye Yellow Brick Road”, starts very quietly, with the
distant sound of an owl hoot; if you adjust the volume at this point you are likely to
be deafened moments later. Some sound controls deliberately make a small sound
immediately after the level is set, to help deal with this problem.

Another property, which is evident in the minidisk player, is the natural inverse.
The volume up is achieved by twisting the knob in one direction and the opposite
twist turns it down again.

This property is very important in two ways:

• Automatic correction—if you are trying to do something and ‘overshoot’, you
automatically do the physically ‘opposite’ action. If this does not map to the
logically opposite action you are likely to have problems.

• Discoverability—if you know that a pair of buttons always behave as natural
inverses, then even if you do not know precisely what they do, you can feel free
to experiment knowing you can correct the effect.

One of the authors used to have a phone with an up/down slider button.
Sometimes it changed menu selections, and sometimes it controlled the volume.
The author never learnt the precise rules for how this changed in each mode, but
was still able to use it knowing that it was ‘safe’ to experiment.

Indeed in experiments (Ghazali 2007; Ghazali et al. 2015), we found that if we
had completely arbitrary cognitive mappings (that is the user had no idea which
controls affected which system property), but a good natural inverse, this performed
much better than when there was a good cognitive map (the user knew precisely the
effects of any action), but a poor natural inverse. In the first situation, users had to
experiment slightly to work out which control to use, but once they did were able to
complete tasks. In the second situation, things were fine initially as they knew
which control to use, but if they overshot everything fell to pieces!

Give is also very important for discoverability, even to work out what physical
manipulation is possible. Most lever-style door handles push down to open.
However, when they do the opposite, that is you have to lift the handle to open, few
people have serious problems. This is because having pushed slightly down and felt
no ‘give’, the user is likely to automatically try to pull up slightly. The slight give
tells you which directions are possible manipulations. This is a form of low-level
and instinctive epistemic action (things you do in order to discover information).

In Fig. 9.9, we saw an example of the logical state changing autonomously. This
is of course normal for computer systems! Less common in computers, but more so
in domestic appliances, is when the system makes some change to the state of the
controls themselves.

Electric kettles are a good example of this: when the water boils, the switch
flicks to the off position.

Figure 9.10 shows a typical electric kettle. On the left is the physigram (ignore
for a moment the dotted line). The user can press the switch down or up. There is an
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exposed state relationship between the kettle switch and the power going to the
kettle. In this case when the switch is up the kettle power is on, when it is down the
power is off.

However, when the power is on and the water is boiling the sensor triggers the
switch to flick back down into the power-off state. That is the kettle achieves both
system control of the power and exposed state.

Not only that, but the way this is achieved means that if you, as the user, want to
turn the kettle off, you do exactly the same action as the system does: a property we
call compliant interaction.

Typically, when system and user control are aligned like this, it is easier to learn
how to manipulate potentially complex system states. A good example of this is the
traditional washing machine dial (Fig. 9.11). The user sets the desired programme
using the dial, and then as the washing machine moves through its cycle it moves

Fig. 9.10 Compliant interaction—matching system and user control

Fig. 9.11 Compliant interaction—the washing machine dial
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the dial. The dial therefore becomes an indicator of progress and also a means for
the user to make tweaks, perhaps cutting a stage short. Sadly, this fluid expert
behaviour has become more difficult and less common as washing machine control
panels have become more digital.

On the other hand, where these properties fail we often see problems. Many
electric toasters allow you to push down the handle to let the bread into the heat, but
pop the toast up automatically. If you want to stop the toast early, there is often a
special button. However, if in a hurry or flustered (maybe when the smoke comes
out the top!), it is easy to forget and people often try to lift the toaster handle
manually, leading to a few moments’ struggle before the frantic search for the stop
button. Other toasters effectively make lifting the handle serve this purpose, both a
natural inverse to pushing it down and also compliant interaction: the automatic
way to stop toasting and the manual way both involve the same control change.

9.8 Flexibility and Formality

Physigrams are a semi-formal notation. The STN core is amenable to analysis.
However, in practice this is usually trivial; it is an STN of the physical device
controls and manipulations: physical interactions between controls, and the com-
binatorial explosion this often causes, are rare. The real power of the physigram lies
less in these aspects than in the differing styles of transitions, which enable subtle
distinctions in behaviour to be expressed, for example, Figs. 9.3 versus 9.4 and 9.8
versus 9.9.

This more communicative power of physigrams was demonstrated very clearly
when product designers used them as part of a design exercise for a media con-
troller. They compared three different designs for a dial: two were physical movable
dials, each with slightly different tactile properties, and one was a smooth
touchpad-style dial.

Figure 9.12 shows the three physigrams produced by the designers, who had
been shown examples of physigrams, but were not aided by the formal team. In
some ways, rather like the comparison between Figs. 9.3 and 9.4, these are virtually
identical, simply a number of control states that the control cycles between.
However, when examined in detail, there are subtle differences: some controls
allow full 360° movement (ii and iii), while one has a ‘stop’ (i), so that it is logically
a linear control.

+Crucially, the designers also augmented the notation. One of the dials
(Fig. 9.12i, close-up Fig. 9.13i) had hard selections, it clicked from one to another
with a small amount of bounce-back when it was in one of them; another
(Figs. 9.12ii and 9.13ii) moved fluidly but with tangible feel as the user went over
the critical transitions; whilst for the third (Figs. 9.12iii and 9.13iii) there was only
virtual feedback.

Strictly, the numbered states in (iii) are logical states only; the physigram of the
physical interactions alone would only include the ability to move one’s finger
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smoothly round the pad and press it down. However, neither did the numbered
states denote the full controlled digital state, which might represent different menu
selections depending on mode; instead, they were somewhere in between, capturing
an early design decision that the device would always allow precisely 8 selections,
but not the exact binding of these. Note that the line is doubled in Fig. 9.13iii, as the
finger can slide over the touchpad in either direction.

This sort of touch-only device is common now with trackpads and smartphone
displays. For these devices it is not that there is no tactile feedback, you can feel that
you are in contact with the pad, and you can feel the movement through both touch
and proprioceptive senses. The control in Fig. 9.12iii is a three-state device in
Buxton’s three-state model (Buxton 1990):

• State 0 when the finger is not in contact with the touchpad

Fig. 9.12 Product designers’ use of physigrams

Fig. 9.13 Detail of transitions in Fig. 9.12
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• State 1 when the finger is in contact and dragging across the surface
• State 2 when the touchpad is pressed down

Figure 9.12iii shows a state 1–2 transition between the UP and DOWN states. In
Fig. 9.12i, ii this is a bounce-back transition as the knobs noticeably press down
and then click back into place when released (strictly this is a shorthand for lots of
bounce-back transitions between the corresponding states as the dial stays in the
same orientation when it bounces back). In contrast, the touchpad has a ‘press to
select’ action, but it is not tangible except for the internal feeling of pressing
something. The designers denoted this by showing the DOWN state as transient
(there is a device ‘down’), but with a loop transition drawn going from the UP state
through the DOWN state and back to the UP state. This denotes, as in Fig. 9.13iii,
that the user is not perceptually aware of the device state change.

Although there is tactile feedback through the internal sense of pressure for the
touch device, the relation between the felt feedback and the system detection of a
touch or movement is less clear than with the physical buttons.

It may be that felt touches are not registered by the system. For example, one of
the authors has a TV with on-screen touch buttons; it can take many touches before
it registers and turns on. This may be because he misses the ‘hot spot’ of the button
or because the system ‘de-bounces’ the finger press, treating it as electrical noise.

Alternatively, it may be that the system registers events without the user being
aware of it. For example, one of the authors cannot use a laptop with ‘tap to select’
enabled; when he types, his thumb occasionally makes contact with the touchpad,
and although this is too light to feel it registers as a ‘select’ and the typing appears
in apparently random parts of the screen.

For some purposes, the discrete version of the three-state model might be suf-
ficient, but a real physical model to deal with touch would be even more difficult
than those discussed for ‘give’ in Sect. 9.6. We will not attempt to deal with these
issues here, but the physigram does act as a communication point with the potential,
on the one hand, to drill down into the minutiae of body contact and pressure, and,
on the other, to connect to system behaviour.

Note also that the designers drew the states in a form that visually matched the
physical shape of the controller. The fact that the physical location of states in an
STN does not have a formal interpretation left it open for the designers to create a
meaning for this. This openness to interpretation is one of the design principles for
appropriation identified elsewhere (Dix 2007) and effectively allows secondary
notation (annotations that can be added which do not have formal meaning within
the notation), which has been identified as an important feature in the study of
cognitive dimensions of notations (Green and Petri 1996).

This openness of the notation is essential for physical devices because the range
of possible interactions is wider than for screen-based controls. When using
semi-formal notation for communication within a design team, it is more important
that the meaning is clear to those involved than that they shoe-horn the behaviour
into pre-defined but inappropriate categories. This also feeds back into more formal
versions of the notation, as it highlights gaps (e.g. the ‘half way logical’ states).
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On the other hand, if we wish to perform more formal analyses, some aspects
have to be more strictly defined. In previous work, we have used a more precise
meta-model to define the semantics of the various physigram primitives (Dix et al.
2009). A discrete meta-model was possible when describing the physical state
physigrams (effectively an STN with coloured states and transitions). However,
unsurprisingly, we found limitations when describing the more continuous inter-
actions; a point encountered by the first author previously in studying status–event
analysis (Dix 1991; Dix and Abowd 1996) and by others (Massink et al. 1999;
Wüthrich 1999; Willans and Harrison 2000; Smith 2006). Ideally, we would also
like to be able to model human aspects such as the level of pressure applied, and
felt, as a finger presses a switch. We should be able to describe Fig. 9.6i, ii in such a
way that we can verifiably say that one is syntactic sugar for the other. The only
work that comes close to this is Eslambolchilar’s (2006) work on cybernetic
modelling of human–device interactions.

9.9 Case Study—Tilley, a Community Wind Turbine

We will look at the control panels described in the community wind turbine case
study in Chap. 4, although the other book case studies would also include similar
panels. The particular wind turbine, Tilley, is a land-based one, on the island of
Tiree (TREL 2016), where, due to the windswept environment, it is one of the most
efficient turbines of its type in the world.

Recall there are two control panels described in detail in Chap. 4 and reproduced
in Fig. 9.14.

The ‘digital’ panel in Fig. 9.14a is mostly dedicated to outputs except for the
generic function keys and numeric keypad in the middle. This will be used for the
most complex, but not the most time critical, interactions. The individual membrane
buttons have some give, and are each bounce-back as in Fig. 9.6. As they are for

Fig. 9.14 a Digital display and control panel in Tilley (photo © William Simm), b physical
control panel in Tilley (photo © Maria Angela Ferrario)
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generic input this is a reasonable choice, so there is little more that physigrams can
say about them. However, alternative analyses would be useful, for example the
techniques applied in the CHI-MED project to medical numeric input devices
(Cauchi et al. 2014). We should note also that the numeric keypad somewhat oddly
adopts a phone-style key order (with 1 at the top) rather than the order found in
calculators or computer numeric keypads (with 1 at the bottom).

The panel in Fig. 9.14b is more interesting, with a combination of press switches
and twist knobs of various kinds. Of course it is not possible to ‘unplug’ Tilley to
experiment in the way described for domestic devices earlier in this chapter; neither
is it possible to experiment with the live panel to get the ‘feel’ of the buttons, so the
analysis here is inevitably limited. However, during the design of an interface such
as this, detailed physical examination and specification would be possible.

Note that this is an example that could benefit from the kinds of pressure
annotations discussed towards the end of Sect. 9.6. The emergency stop button
(large red button, top centre in Fig. 9.14b) needs to be firm enough not to be
pressed accidentally, but also responsive enough that it can be pressed quickly and
that you know you have pressed it successfully from its physical response. Note too
that this is large, as it, especially, needs to be operated easily even if the operator is
wearing gloves. This button is a bounce-back button and this is appropriate from a
system control point of view as the restart is expected to be a complex process, not
simply pulling the button out again (see Fig. 9.15). However, as a hidden state
control it does not have feedback of type A (Fig. 9.1). Instead, the operator would
either need to look at numeric outputs on the digital display panel or screen
(feedback loop C), or more likely simply be aware of the physical effect (loop D) as
the system shuts down.

The reset button (green to the left of the emergency stop button in Fig. 9.14b) is
also a bounce-back, although of a slightly different design as it does not need to be

OUT
bounce

turbine
systems

emergency
stop button

normal
operation
( t t )

IN

press
stop button

back

ALL
STOP

(a)(a)

complex
processes
for system 

restart

(many states)

Fig. 9.15 Emergency stop button (left) physigram (right) system state
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hit quickly like the emergency stop button. It too has hidden state, presumably
resetting various electrical systems. The effects of this may be less obvious than the
emergency stop and might require explicit checking of the digital display. However,
as it is a reset, it is idempotent, meaning that if the operator is at all uncertain
whether it was pressed, they can simply press it again.

Below the emergency stop button is a large power control knob flanked by
several small black knobs to control specific circuits. These are all visible state
controls with one-to-one mappings between physical state and controlled system
state (see Fig. 9.16). The settings of these are critical: if the engineer wrongly thinks
a circuit is off and touches it, they may be injured or killed. From the image we can
immediately see that the main control is switched on, as are three of the
sub-circuits, but the one on the right is off.

At the top right are two buttons labelled ‘+’ and ‘–’. These control the angle of
attack of the turbine blades. These are each bounce-back buttons and serve to
increase or decrease the current blade angle (see Fig. 9.17). These are hidden state
controls and the engineer would either need to go outside to look at the blades (loop
D), or more likely simply observe the impact of the change in angle on power
output.

One could imagine an alternative control that used a dial to adjust the blade
angle. This would lead to a visible state and also be faster to set a particular angle.
However, the speed is probably immaterial; the engineer has taken a three-day trip
to come to the island, a few seconds pressing ± buttons is not going to make much
difference! Also, CHI-MED has shown that often this form of increment/decrement
setting is safer as it makes it harder to perform gross errors (Oladimeji et al. 2011).

However, the positioning of the buttons is not optimal. They are clearly placed in
a neat grid, but this means there is nothing to suggest physically or visibly that the
buttons are linked. Unlike the minidisk volume controls, this does not form a
natural inverse.

Fig. 9.16 Power isolation knobs (left) physigram (right) system state
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9.10 Conclusions

We have seen how physigrams allow us:

(i) to describe the behaviour of the device ‘unplugged’, the purely physical
interaction potential of a device, enabling the exploration of sensory-motor
affordances of the physical device independent of how it is connected into the
wider system.

(ii) to link these subsequently to digital states, exposing a variety of properties of
physical–digital hybrid systems, related to but going beyond conventional
discussions of representational ‘mapping’.

The first of these often exposes subtle differences between controls that other-
wise appear superficially similar. The second both allows specific issues to be
identified and also offers the potential to create generic advice on matching physical
controls and digital state.

In addition to exposing these generic properties, we have seen how physigrams
can be used by product designers to describe aspects of their physical designs that
would otherwise only be apparent during physical exploration. This can both help
their own design activity and also allow clearer discussions with developers or more
formal analysis.
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Fig. 9.17 Blade angle control (left) physigram (right) system state
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The semi-formal nature of physigrams means that we can specify precise formal
semantics for a core set of primitives, whilst still allowing an openness to extend
and augment the notation for new circumstances. Marrying these two, flexibility for
extension and formal tractability, is still an open issue, not just for physigrams, but
for any formal notation.

Both the informal and formal uses of physigrams raise again the still open issue
of how to create comprehensible and tractable models of ‘hybrid’ interactive sys-
tems that combine both continuous (status) and discrete (event) behaviours. In
particular, these would ideally also be able to talk about the physical actions and
sensations of the user as well as more common mental states.

Finally, physigrams were used to explore the specification of the control panel of
a medium sized wind turbine. There were limitations to this as the system could not
be brought out of operation simply for the purposes of the study; so some aspects of
the behaviour had to be guessed. However, the case study gives some idea of how
the methods could be applied during the design stages of this kind of industrial
control panel.

9.11 Key to Notation

Physigrams

Symbol Meaning Used in
Figs

state—physical state of the device 3–10, 12,
13, 15–17

transient tension state—physical state which can
only be maintained by some sort of continuous user
pressure or exertion

4–6, 9, 12,
15, 17

transition—this may be labelled by the user action
that causes this, or this may be implicit. It may also
have a label to connect it with logical state (see
linkage)

3–9, 12,
13, 16

(continued)
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(continued)

Symbol Meaning Used in
Figs

self transition—special case of the above where a
user action has no effect on the system (e.g.
attempting to twist a dial beyond its limits)

6

bounce-back—when the device spontaneously
returns from a transient tension state to a stable state
when user pressure is removed

4–6, 8, 9,
12, 15, 17

give—where a button or other control moves
slightly but with resistance before ‘giving’ and
causing state change. If the user stops exerting
pressure before the ‘give’ point, it will return to the
initial state

6, 10, 12,
13, 15, 17

slide transition—designer extension to denote
situation when there are device changes that are not
perceptible to the user

6, 10, 12,
13

unfelt bounce-back—this is basically a press and
bounce-back, but where there is no perceptual
feedback

12
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Logical State

Symbol Meaning Used
in figs

state—state of the logical system 7–10,
16, 17

group—where several lower-level states can be
thought of as sub-states of a more abstract state. In the
example, ‘POWER ON’ is a higher-level state, but
within this water may be below or at boiling point

10

user–initiated state transition—logical state transition
initiated by external user activity (see also linkage)

8, 9,
17

system-initiated transition—where some internal
computation, or environmental event not connected
with the interacting user, causes a transition in the
logical system

9
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Linkage

Symbols physigram logical state Meaning Used
in
figs

state–state mapping –where
the physically visible or
tangible states in an exposed
state device correspond
precisely to states in the
underlying logical system

7, 10,
16

user-initiated transition—
where a state transition in the
physical device caused by a
user action gives rise to a
transition in the logical state.
The connection is denoted by
the label, ‘(a)’ in the example

8, 9

system–initiated transition—
where a spontaneous change or
event in the system (denoted by
the lightning symbol) triggers a
physical state change in the
device

10
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Chapter 10
Formal Description of Adaptable Interactive
Systems Based on Reconfigurable User
Interface Models

Benjamin Weyers

Abstract This chapter presents an approach for the description and implementation

of adaptable user interfaces based on reconfigurable formal user interface models.

These models are (partially) defined as reference nets, a special type of Petri nets.

The reconfiguration approach is based on category theory, specifically on the double

pushout approach, a formalism for the rewriting of graphs. In contrast to the related

single pushout approach, the double pushout approach allows the definition of recon-

figuration rules that assure deterministic results gained from the rewriting process.

The double pushout approach is extended to rewrite colored (inscribed) Petri nets in

two steps: first, it has already been extended to basic Petri nets and second, the rewrit-

ing of inscriptions has been added to the approach in previous work of the author.

By means of a case study, this approach is presented for the interactive reconfigu-

ration of a given user interface model that uses a visual editor. This visual editor

is equipped with an XML-based rewriting component implemented in the UIEditor

tool, which has been introduced as a creation and execution tool for FILL-based user

interface models in Chap. 5. This chapter is concluded with a discussion of limita-

tions and a set of future work aspects, which mainly address the rule generation and

its application to broader use cases.

10.1 Introduction

Human users of interactive systems are highly individual. Their needs, skills, and

preferences vary, as do task and context. To address the applicability of interactive

systems to different tasks, concepts such as task modeling and task-driven develop-

ment have been investigated in previous work (Paternò 2004, 2012). Among other

concepts, adaptive and reconfigurable user interfaces can incorporate the individ-

ual needs and preferences of a specific user. Reconfiguration of user interfaces has

proved beneficial in various ways, such as increased usability and a decreased num-
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ber of errors in interacting with the user interface (Jameson 2009). Langley defines an

adaptive user interface as “. . . an interactive software artifact that improves its ability

to interact with a user based on partial experience with that user” (Langley and Hirsh

1999 p. 358). Here, Langley refers to the ability of a user interface to adapt to the

user based on its interactions with that user by facilitating concepts from machine

learning and intelligent systems research. These inferred adaptations must be applied

to the user interface, which therefore needs to be reconfigurable. A reconfigurable

user interface can be changed in its outward appearance and its functional behavior

(physical representation and interaction logic, see Chap. 5).

The formal specifications for reconfiguring user interfaces have been also dis-

cussed as formal methods in human-computer interaction. Nevertheless, the pro-

posed solutions lack a fully fledged formalization for the creation, execution, and

reconfiguration of user interface models based on one coherent concept (see

Sect. 10.2). Such a concept would not only offer the opportunity to formally validate

a created or reconfigured user interface model but also enable the documentation and

analysis of the reconfiguration process itself. This can be of interest in cases where

the user (and not an intelligent algorithm) applies changes to the user interface, espe-

cially in cases of safety critical systems (such as that described in Sect. 10.5) but also

for other kinds of user interfaces, for example, for intelligent house control or ambient

intelligent systems. To use intelligent systems to derive the needed reconfigurations,

it is also possible to enable the intelligent algorithm (and not the user) to generate

the adaptation rule, thus instigating the formalized change. Therefore, the approach

presented here addresses system- as well as user-driven reconfiguration of formal

user interface models; the latter will be examined in Sect. 10.5 as this has been the

topic of earlier research.

This chapter primarily presents an approach to the description and implemen-

tation of reconfigurable user interfaces based on formal, executable, and reconfig-

urable models of user interfaces. A corresponding modeling method for user inter-

face models is presented in Chap. 5 based on a visual modeling language (called

FILL) and including a transformation algorithm to reference nets (Kummer 2009), a

special type of colored Petri nets (Jensen and Rozenberg 2012). In addition to the for-

mal semantics provided by this transformation, the transformed model is executable,

based on the existing simulator for reference nets called Renew (Kummer et al. 2000).

Therefore, the reconfiguration approach presented in this chapter assumes models

based on reference nets or colored Petri nets in more general terms. The reconfigura-

tion approach is based on category theory (Pierce 1991), specifically on the double

pushout approach (Ehrig et al. 1997), which has been developed for the rule-based

rewriting of graphs. It offers the definition of rewriting rules such that they can be

applied to graph models in a deterministic form, which is not always the case, as with

the single pushout approach (Ehrig et al. 1997). The general approach described here,

which is applicable for rewriting any graph, was first extended to Petri nets by Ehrig

et al. (1997). Then, Weyers (2012) extended the rewriting to inscribed Petri nets

on an algorithmic and implementation basis. Stückrath and Weyers (2014b) extend

thisrewriting further by formally specifying the rewriting of inscribed Petri nets,

http://dx.doi.org/10.1007/978-3-319-51838-1_5
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which extends the double pushout approach through the application of a concept

based on lattice theory for the representation of inscriptions.

Furthermore, this chapter discusses the problem of generating rules for rewriting

graphs. Rewriting based on the double pushout approach is only a formal and tech-

nical basis for the adaptation of user interface models. It offers mainly a formal con-

cept for the modeling of adaptable and adaptive user interfaces such that not only the

initial user interface model but also its adaptation is defined formally, which offers

formal verification. By storing the applied rules to an initial user interface model,

the adaptation process is made completely reproducible and, within certain bound-

aries, reversible. Nevertheless, rule generation is by design not formally specified.

As mentioned above, there are two main options for rule generation: manual genera-

tion by the user and generation by an intelligent algorithm. This chapter will present

an algorithmic approach, which includes the user in the adaptation process to define

which parts of a given user interface model have to be reconfigured and how. Based

on this information, an algorithm generates a rule that is applied by the reconfig-

uration component of the UIEditor (see Chap. 5) to the user interface model. This

component is an implementation of the double pushout approach able to rewrite ref-

erence nets provided as a serialization in the Petri Net Markup Language (PNML)

(Weber and Kindler 2003). For consistency, the reconfiguration concept will refer to

the familiar user interface model used in the nuclear power plant case study, which

was described in Chap. 4.

The next section presents related work on the formal reconfiguration of user

interface models. Section 10.3 offers a detailed introduction of the formal rewriting

approach, which will serve as a basis for the description of reconfigurable user inter-

faces and the core technique for enabling fully fledged formal description of reconfig-

urable user interface models. Then, Sect. 10.4 presents an interactive approach to rule

generation. Rules define the specific reconfiguration applied to a given user interface

model. To demonstrate the feasibility of this approach as a combination of formal

rewriting and interactive rule generation, Sect. 10.5 presents a case study involving

the creation of new functionality and the change of automation offered by an earlier

user interface model. The latter was investigated in a previously published user study

(Weyers 2012) that found that individualizing a user interface model through formal

reconfiguration led to a decrease in user error. Section 10.6 concludes the chapter.

10.2 Related Work

Adaptive user interfaces are an integral part of human-computer interaction research.

Various studies have discussed use case-dependent views of adaptive user interfaces,

and all have a similar goal: to make interaction between a user and a system less

error-prone and more efficient. Jameson (2009) gives a broad overview of various

functions of adaptive user interfaces that support this goal. One function he iden-

tifies is “supporting system use”. He subdivides this into the functions of “taking

over parts of routine tasks”, “adapting the interface”, and “controlling a dialog”, all

of which are of interest in the context of this chapter. Lavie and Meyer (2010) iden-

http://dx.doi.org/10.1007/978-3-319-51838-1_5
http://dx.doi.org/10.1007/978-3-319-51838-1_4
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tify three categories of data or knowledge needed for the implementation of adaptive

user interfaces: task-related, user-related, and situation-related, that is, related to the

situation in which the interaction takes place. They characterize situations as either

routine or non-routine. They also discuss level of adaptivity, which specifies how

much adaptation can be applied to a given user interface. These functions are pro-

vided by various implementations of and studies on adaptive user interfaces. A gen-

eral overview of task and user modeling is provided by Langley and Hirsh (1999)

and by Fischer (2001). However, none of these studies address how the data and

knowledge is gathered or described; instead, they concentrate on how it can be used

for applying changes to a given formal user interface model in an interactive fashion.

Various examples can be found of the successful implementation of adaptive

user interfaces that address the aspects discussed above. For instance, Reinecke and

Bernstein (2011) described an adaptive user interface implementation that takes the

cultural differences of users into consideration. They showed that users were 22%

faster using this implementation. Furthermore, they made fewer errors and rated the

adapted user interface as significantly easier to use. Cheng and Liu (2012) discussed

an adaptive user interface using eye-tracking data to retrieve users’ preferences. Kahl

et al. (2011) present a system called SmartCart, which provides a technical solu-

tion for supporting customers while shopping. It provides context-dependent infor-

mation and support, such as a personalized shopping list or a navigation service.

Furthermore, in the context of ambient intelligent environments, Hervás and Bravo

(2011) present their adaptive user interface approach, which is based on Semantic

Web technologies. The so-called ViMos framework generates visualization services

for context-dependent information. Especially in the context of ambient assisted liv-

ing, there are various types of adaptive systems that include the user interface. For

instance, Miñón and Abscal (2012) described a framework that adapts user interfaces

for assisted living by supporting daily life routines. They focus on home supervision

and access to ubiquitous systems.

Previous work has shown that formal models of user interfaces can be adapted

to change their outward appearance, behavior, or both without necessarily aban-

doning the formalization that describes the user interface model. Navarre et al.

(2008a, b) described the reconfiguration of formal user interface models based on

predefined replacements that are used in certain safety-critical application scenarios,

such as airplane cockpits. Blumendorf et al. (2010) introduced an approach based on

so-called executable models that changes a user interface during runtime by com-

bining design information and the current runtime state of the system. Interconnec-

tions between system and user interface are changed appropriately during runtime.

Another approach that applies reconfiguration during runtime was introduced by

Criado et al. (2010).

Thus, adaptive user interfaces play a central role in human-computer

interaction and are still the focus of ongoing research. Formal techniques in their

development, creation, and reconfiguration are still discussed in the literature, offer-

ing various advantages regarding modeling, execution, and verification. Petri net-

and XML-based approaches are already in use in various application scenarios.

Nevertheless, none of these approaches presents a full-fledged solution for the cre-
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ation and reconfiguration of user interface models in one coherent formalization.

Furthermore, none of the approaches discusses a closely related concept that enables

computer-based systems to generate and apply reconfiguration flexibly and indepen-

dently of use cases. This chapter introduces a self-contained approach for visual

modeling and creation (based on the approach presented in the Chap. 5 on FILL),

rule-based reconfiguration, and algorithmic rule generation of user interfaces that

builds a formal framework for the creation of adaptive user interfaces.

This approach has previously been explored in various publications. In Burkolter

et al. (2014) and Weyers et al. (2012) the interactive reconfiguration of user inter-

faces models was used to reduce errors in interaction with a simulation of a simplified

nuclear reactor. In Weyers et al. (2011), Weyers and Luther (2010), the reconfigu-

ration of a user interface model was used in a collaborative learning scenario. In

Weyers (2015), the approach was used to describe adaptive automation as part of

a user interface model. Publications specifically focusing on the rule-based adapta-

tion of FILL-based user interface models are Stückrath and Weyers (2014b), Weyers

(2012), Weyers et al. (2014), Weyers and Luther (2010).

10.3 Formal Reconfiguration

This section introduces a reconfiguration approach (where reconfiguration refers to

the adaptation of interaction logic) that is based on the double pushout approach,

which originated with category theory and assumes a formal model of a user inter-

face as has been specified in Chap. 5. Thus, the basic architecture of a user interface

model is assumed to differentiate between a physical presentation and an interac-

tion logic. The physical representation comprises a set of interaction elements with

which the user directly interacts. Each interaction element is related to the interaction

logic, which models the data processing between the physical representation and the

system to be controlled. It is further assumed that reconfiguration will be applied to

the interaction logic. Nevertheless, in various cases changing the interaction logic

also implies changes in the physical representation. This will be the topic of the gen-

eration of rules and the case study for the application of reconfiguration described

in Sects. 10.4 and 10.5. Before presenting the approach itself, the following descrip-

tion will briefly examine the reasons for using a graph-rewriting approach rather than

other means of adapting formal models.

10.3.1 Double Pushout Approach-Based Reconfiguration

As mentioned in the introduction to this section, formal reconfiguration can be differ-

entiated from redesign, where redesign refers to changes in the physical representa-

tion of a user interface model, while reconfiguration refers to changes in itsinteraction

http://dx.doi.org/10.1007/978-3-319-51838-1_5
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logic. Here, it is assumed that the interaction logic is modeled using FILL and

then transformed to reference nets. Thus, reconfiguration means changing reference

nets, necessitating a method that is (a) able to change reference net models and (b)

defined formally to prevent reconfigurations from being nondeterministic. Various

graph transformations and rewriting approaches can be found in the literature. Shürr

and Westfechtel (1992) identify three different types of graph rewriting systems.

The logic-oriented approach uses predicate logic expressions to define rules. This

approach is not widespread due to the complexity of its implementation. Another

approach defines rules based on mathematical set theory, which is flexible and eas-

ily applied to various applications. Still, it has been shown that irregularities can

occur when applying set-theoretical rules to graph-based structures. The third class

of techniques is based on graph grammars. Using graph grammars for reconfigura-

tion means changing production rules instead of defining rules to change an existing

graph. At a first glance, this seems uncomfortable and counterintuitive for the recon-

figuration of interaction logic.

Thus, graph rewriting based on category theory as forth option seems the best

starting point for reconfiguration. First of all, pushouts (see Definition 1) as part of

category theory are well-behaved when applied to graphs—especially the double

pushout (DPO) approach, as discussed by Ehrig et al. (1997). The DPO approach

specifies rules that explicitly define which nodes and edges are deleted in the first

step and added to the graph in the second. This is not true of the single-pushout (SPO)

approach, which is implementation-dependent or generates results that are unlikely

to be valid graphs (Ehrig et al. 1997). To give a simple example, the SPO approach

can result in dangling edges, which are edges having only a source or a destination

but not both. A further problem can be the implicit fusion of nodes, which could have

negative implications for the rewriting of interaction logic. These aspects have been

resolved in the DPO approach by deleting and adding of nodes and edges explicit and

by defining a condition that prevents rules from being valid if they produce dangling

edges.

A further argument supporting the use of the DPO approach for rewriting inter-

action logic is that it has been extended and discussed in the context of Petri nets as

introduced by Ehrig et al. (2006, 2008), who offer a solid basis for the reconfigura-

tion of reference net-based interaction logic. Another argument for choosing the Petri

net-based DPO approach as described by Ehrig et al. is that it can be easily extended

to colored Petri nets. Within certain boundaries, the semantics of the inscription can

also be taken into account, as described in detail by Stückrath and Weyers (2014b).

Here, the treelike structure of the XML-based definition of inscription is ambiguous,

which is discussed in greater detail in Sect. 10.3.2.

Like the SPO, the DPO relies on the category theory-based concept of pushouts.

Assuming a fundamental understanding of category theory (otherwise consider, e.g.,

Pierce 1991), a pushout is defined as follows.

Definition 1 Given two arrows f ∶ A → B and g ∶ A → C, the triple (D, g∗ ∶ B →
D, f ∗ ∶ C → D) is called a pushout, D is called the pushout object of (f , g), and it is

true that
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Fig. 10.1 A pushout

diagram

1. g∗◦f = f ∗◦g, and

2. for all other objects E with the arrows f ′ ∶ C → E and g′ ∶ B → E that fulfill

the former constraint, there has to be an arrow h ∶ D → E with h◦g∗ = g′ and

h◦f ∗ = f ′.

The first condition specifies that it does not matter how A is mapped to D, whether

via B or via C. The second condition guarantees that D is unique, except for isomor-

phism. Thus, defining (f , g) there is exactly one pushout (f ∗, g∗,D) where D is the

rewritten result, also called the pushout object. In general, A and B are produced by

defining the changes applied to C, the graph to be rewritten. Therefore, a rewriting

rule can be specified as a tuple r = (g, f ,A,B), such that D is the rewritten result

by calculating the pushout (object). This procedure is mainly applied in the SPO

approach. The resulting diagram is shown in Fig. 10.1.

To define the DPO approach, the pushout complement has to be defined first.

Definition 2 Given two arrows f ∶ A → B and g∗ ∶ B → D, the triple (C, g ∶ A →
C, f ∗ ∶ C → D) is called the pushout complement of (f , g∗) if (D, g∗, f ∗) is a pushout

of (f , g).

A DPO rule is then defined based on the definition of a production corresponding

to the former discussion of pushouts in category theory.

Definition 3 A matching is a mapping m ∶ L → G; a production is a mapping p ∶
L → R, where L, R, and G are graphs. The corresponding mappings of m and p are

defined as mapping m∗ ∶ R → H and p∗ ∶ G → H, where H is also a graph.

Definition 4 A DPO rule s is a tuple s = (m, (l, r),L, I ,R) for the transformation

of a graph G, with l ∶ I → L and r ∶ I → R, which are two total homomorphisms

representing the production of s; m ∶ L → G is a total homomorphism matching L
to graph G. L is called the left side of s, R is called the right side of s, and I is called

an interface graph.

Given a rule s, the pushout complementC can first be calculated using L, I ,m, and

l with a given graph G to be rewritten. In the DPO approach, this step deletes nodes
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Fig. 10.2 Example for a DPO rule showing its application to a Petri net G

and edges from G. Second, the pushout is calculated using I , R, and r applied to C
resulting in the graph H. This step adds nodes and edges to C. Finally, the difference

between L and I specifies the part deleted from G, where the difference between I
and R defines those elements, which are added to C and finally to G. The result of

applying s to G is the graph H as can be seen in Fig. 10.2.

Nevertheless, the pushout complement is not unique in all cases and probably

does not even exist. However, if the total homomorphisms l and m fulfill the glu-
ing condition given below, the pushout complement can be considered to exist. The

gluing condition is defined as follows.

Definition 5 There are three graphs I = (VI ,EI , sI , tI ), L = (VL,EL, sL, tL), and G =
(VG,EG, sG, tG). Two graph homomorphisms l ∶ I → L and m ∶ L → G fulfill the

gluing condition if the following assertions are true for both l and m:

∄e ∈ (EG ⧵ m(EL)) ∶ sG(e) ∈ m(VL ⧵ l(VI )) ∨ tG(e) ∈ m(VL ⧵ l(VI )), (10.1)

and

∄x, y ∈ (VL ∪ EL) ∶ x ≠ y ∧ m(x) = m(y) ∧ x ∉ l(VI ∪ EI ). (10.2)

Condition 10.1 is called dangling condition. The homomorphism l of a DPO rule

that defines which nodes are to be deleted from a graph fulfills the dangling condi-

tion if it also defines which edges associated with the node will be removed. Thus,

the dangling condition avoids dangling edges; a dangling edge is an edge that has

only one node associated with it as its source or target. Condition 10.2 is called iden-
tification condition. The homomorphism m fulfills the identification condition if a
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node in G that should be deleted has no more than one preimage in L. However, if

one node in G has more than one preimage in L defined by m and one of these has to

be deleted, it is not defined whether the node will still exist in G or must be deleted.

This confusion is avoided by applying the identification condition.

The problems of the SPO approach discussed above are mainly solved by the glu-

ing condition being an integral part of the DPO approach. The pushout complement

is not unique but exists if the gluing condition is fulfilled. If l and m are injective, the

pushout complement will be unique except in the case of isomorphy. This is further

discussed by Heumüller et al. (2010) and in Weyers (2012, p. 107).

Finally, rule descriptions have to be serialized in a computer-readable form. This

is necessary for the implementation-side use of rewriting rules presented in the

next section. Therefore, an existing XML-based description language for Petri nets

(PNML Weber and Kindler 2003) has been used with an extension that structures

and describes the rule-specific elements, such as indicating L as deleteNet, I as

interface, and R as insertNet. Thus, every net (as embedded in a < net >
node) is given as a PNML-based description of the respective left, interface, or

right graph of the DPO rule. The < mapping > node specifies l and r as a set of

< mappingElements > that are representations of tuples of XML ids. Mapping to G
is not part of the rule serialization because a rule is first and foremost independent

from a graph being rewritten. An example of such an XML-based representation of

a rule can be seen in Fig. 10.2 on the side of the DPO diagram, which also shows the

rule applied to a Petri net G.

10.3.2 Rewriting Inscriptions

For the rewriting of inscriptoins, the rewriting approach introduced previously

involves only two steps. First, the node that carrying the inscription to be rewrit-

ten is deleted. Second, a new node carrying the new inscription is added. This new

node must have the same connection as the deleted node; otherwise, the rewriting

would also change the structure of the graph, which should not be the case since only

the inscription is being rewritten. The problem with this approach is that the rule has

to map all incoming and outgoing edges, which can increase the effort involved in

generating rules. If this is not done carefully, edges will be delete that are not mapped

to prevent dangling edges, generating unintended changes in the net. Furthermore,

detailed rewriting of inscriptions offers finer-grained changes to be applied to a Petri

net. Thus, slight changes can be made in, for example, guard conditions without the

need to rewrite the structure of the net.

Therefore, the previous rewriting approach has been extended such that the rule

is not only aware of the nodes and edges in the graph but also of the node’s inscrip-

tions. The complete definition and proof of this extension can be found in Stückrath

and Weyers (2014a, b). The discussion in this section will focus on deletion-focused

PNML-based rewriting. It is assumed that the net and the inscriptions are given as
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PNML-based serialization, as introduced above. An XML-based inscription can be

formally defined as follows.

Definition 6 Let (Val,≤⋅) be a disjoint union of complete lattices Vali of values with⨄
i∈I Vali = Val and let N be a set of IDs sorted such that it can be partitioned in Ni

with N =
⨄

i∈I Ni. An XML inscription 𝑥𝑚𝑙N ,Val is a directed rooted tree (V ,E, r, 𝛾)
of finite height, where V is a set of vertices (nodes), E ⊆ V × V is a set of edges,

r ∈ V is the root and 𝛾 ∶ V →
⋃

i∈I (Ni × Vali) maps properties to each vertex. Addi-

tionally, for every two edges (v1, v2), (v1, v3) ∈ E with 𝛾(vi) = (ni,wi) (for i ∈ {2, 3}),

it holds that n2 ≠ n3.

For every v ∈ V we define v↓ = (V ′
,E′

, v, 𝛾 ′) to be the subtree of 𝑥𝑚𝑙N ,Val with

root v, which is an XML inscription itself.

Thus, an XML-based inscription is nothing but a tree structure of nodes and

edges, which can be organized into subtrees in a well-defined manner. For the rewrit-

ing, it is important to define an order for these trees, so that it is clear whether a sub-

tree is part of another subtree and whether this second subtree is smaller or larger.

This is important for deciding what is to be deleted or added and thus for calculating

the differences between right side, interface, and left side of the rule. The order is

defined on a lattice basis.

Definition 7 Let XMLN ,Val be the set of all XML inscriptions 𝑥𝑚𝑙N ,Val. We define

the ordered set (XMLN ,Val, ⊑), where for two elements (V1,E1, r1, 𝛾1) ⊑ (V2,E2, r2, 𝛾2)
holds if and only if 𝛾i(ri) = (ni,wi) for i ∈ {1, 2}. Then n1 = n2, w1 ≤⋅w2, and for all

v1 ∈ V1 with (r1, v1) ∈ E1, there is a v2 ∈ V2 with (r2, v2) ∈ E2 such that v1↓ ⊑ v2↓.

10.3.2.1 Deletion-Focused Rewriting

Deletion-focused rewriting refers to rewriting that prefers the deletion of an inscrip-

tion and thereby prevents undefined behavior by the rewriting rule. An example can

be seen in Fig. 10.3. The rewriting is based on the DPO approach, calculating dele-

tion and adding elements in the inscription by first computing the pushout comple-

ment 𝛿
′

and then computing the pushout object 𝛿
′′

. What is to be deleted or added

(as with the DPO net rewriting) is identified based on the definition of the difference

between the left side and the interface graph of the rule (here 𝛼 and 𝛽) and between

the interface graph and the right side (here 𝛽 and 𝛾). As defined above, these dif-

ferences are derived using the lattice-based specification of (XML) tree-structured

inscriptions. Furthermore, the pushout complement and the pushout itself are cal-

culated using a strategy called deletion-focused rewriting. This strategy is needed to

prevent the rewriting of undefined behavior if the pushout complement is not unique

(see discussion in the previous section). In deletion-focused rewriting, the pushout

complement with the smallest result (defined by the lattice) is chosen.

To make this strategy clearer, Fig. 10.3 shows an example of the deletion-focused

rewriting of a net using the rule and rewriting shown in the upper part of the figure.

The mapping of the left side to the net to be rewritten is shown as hatching pattern,
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Fig. 10.3 Example for rewriting of an XML-based inscription of a petri net. The upper half shows

the DPO rule for rewriting the net; the lower half shows the DPO rule based on lattice-structured

inscription for rewriting the inscription of one transition (middle gray) in the upper DPO rule (see

𝛼, 𝛽, 𝛾 and 𝛿 to 𝛿

′′
)
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where a similar pattern defines the mapping of two nodes (in L and G) to one another.

in the lower part of Fig. 10.3, the rewriting of the inscription of a transition (vertical

hatching) is visible. Various types of XML nodes are involved, such as the inscription

node < i >, guard condition < g >, style node < s > and nodes for color < c > and

position < p >. The rule assumes that, after the deletion of the node (g, e) (specified

as difference between 𝛼 and 𝛽), the resulting inscription node no longer has a guard

condition, and it therefore prefers to delete rather than preserve an inscription. One

could assume a preservation-focused rewriting, which deletes only nodes that are

equal to or smaller than the matched one. In the present case, the matched node is

larger and thus contains non-empty content (x > 3); therefore, it would not be deleted

because the preservation-focused rewriting rule would be inapplicable (Stückrath

and Weyers 2014b).

With deletion-focused rewriting, the outcome is different. Nodes are also deleted

if they are larger as shown in the example. The rule specifies the deletion of the

guard inscription node such that the push-out complement 𝛿
′
, as shown in Fig. 10.3,

is derived. In this case, the complete node will be deleted. In addition to the deletion

of the guard condition (g, x > 3) from graph 𝛿, the rule specifies adding a color to the

style inscription node. Similar to the rewriting of Petri nets, the rules specify a new

subnode of the (s, 𝜖) node. Applying this adding operation to 𝛿

′
yields the graph 𝛿

′′
.

The result is a style node defining a position (0, 0) and a color blue for the inscribed

transition.

10.4 Interactive Reconfiguration and Rule Generation

The previous sections introduced the basic theory of rule-based rewriting of colored

Petri nets based on the DPO approach including an extension for deletion-focused

rewriting of tree-structured inscriptions. This section will introduce an approach for

generating rules in a given context including the use of explicit user input and using

algorithms to generate rules for rewriting the interaction logic based on user input.

It will also explore how rewriting interaction logic influences the physical represen-

tation of a user interface model.

The interactive reconfiguration of formally specified user interfaces based on

FILL is a component of the UIEditor (see Chap. 5). This component implements

algorithms for the generation of rules as well as a visual editor that enables the user

to apply these reconfiguration operations to a given user interface model. With this

editor, the user can select individual or a group of interaction elements and apply

a reconfiguration operation to this selection. Thus, this interactive approach to rule

generation uses the physical representation as a front end for the user to define which

parts of the underlying interaction logic are to be reconfigured.

The user interface of this visual editor is shown in Fig. 10.4. The workspace

presents the physical representation of the user interface to be reconfigured. The tool

bar at the top right of the editor window offers a set of reconfiguration operations.

For instance, the user can select two buttons and choose a reconfiguration operation

http://dx.doi.org/10.1007/978-3-319-51838-1_5
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Fig. 10.4 Reconfiguration editor of the UIEditor showing an exemple user interface. In the upper
right corner is a tool bar with various buttons for the applying reconfiguration operations to a

selection of interaction elements

that creates a new button that triggers the operations associated with the two selected

buttons in parallel with only one click. The selected buttons indicate which part(s)

of the interaction logic must be rewritten. The specific parts of the interaction logic

affected are determined by simple graph-traversing algorithms. Selecting the oper-

ation (here, parallelization) specifies the kind of extension or change to be

applied to the interaction logic.

An rule resulting from the aforementioned interactive rule generation can be seen

in Fig. 10.5 on the left. Here, the user selected the buttons labeled Input A and

Input B. By applying the parallelization operation to this selection, the underly-

ing algorithm generated the rule shown in the lower half of Fig. 10.5. Applying this

rule to the interaction logic creates the net on the right labeled “Reconfiguration”,

which is also related to a new interaction element, here a newly added button. This

example shows that this kind of reconfiguration always implies a change in the physi-

cal representation—here, the addition of a new button that triggers the newly created

part of the interaction logic.

Another example of an implemented reconfiguration operation is shown in the

middle of Fig. 10.5, where the discretization of a continuous interaction ele-

ment is shown. The term continuous refers to the types of values that are gener-

ated via an interaction element—here, a slider is used to generate values in a certain

range. In contrast to a slider, which can generate any of a range of values, a button

is a discrete interaction element and can only generate one specific value: an event.

Thus, discretization is a reconfiguration operation that maps a continuous
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Fig. 10.5 Three examples of reconfiguration operations applied to a user interface. Left applica-

tion of a parallelization operation to two buttons, creating a new button that combines the

functions of the original two; middle application of a discretization operation to a slider

generating a button that sets a preset value to the system parameter controlled by the slider; right
application of a direct reconfiguration operation that influences the behavior of two interaction

elements by making them dependent on each other

interaction element to a discrete one. In Fig. 10.5, a slider is mapped to a button. The

button generates a single value from the slider’s interval—here, the value 50.

The last example presented in Fig. 10.5 is of a type of rule that cannot be generated

interactively. Here, a certain part of the underlying interaction logic of an interaction

element is changed. The added subnet changes the status of the buttonInput. Based

on the value selected with the slider, the button is disabled or enabled: If the value is

≤50, it will be disabled; if the value is >50, it will be enabled. This type of reconfig-

uration operation can be pre-defined or determined by using extended methods for

rule generation, as discussed in Weyers et al. (2014) in detail.

10.5 Case Study

To demonstrate how interaction logic can be rewritten, this section discusses its use

in the nuclear power plant case study (see Chap. 4). This user interface model (as

partially described in Chap. 5) includes a simple interaction logic that triggers the

operations as indicated by the interaction elements’ labels (see Fig. 10.6). However,

the user interface used in the study offers no complex operations such as the SCRAM

operation for emergency shutdown the reactor. Such an operation can be added to

the user interface model as an extension of its interaction logic; this process will be

http://dx.doi.org/10.1007/978-3-319-51838-1_4
http://dx.doi.org/10.1007/978-3-319-51838-1_5
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Fig. 10.6 The initial user interface for the control of a simplified simulation of a nuclear power

plant running in UIEditor

explained in the next subsection. The following subsection examines the effect of a

user-driven reconfiguration on the basis of a user study. A final subsection discusses

these results and various aspects of future work.

10.5.1 Case Study: SCRAM Operation

The so-called SCRAM operation is currently missing as part of the user interface.

As described in Chap. 4, the SCRAM operation shuts down the reactor immediately

and returns it to a safe state. This includes the complete insertion of the control rods

into the reactor, which controls the thermal output of the core and stops the chain

reaction. The pumps have to continue to cool the core, and the turbine should be shut

off from the steam circuit. Finally, the condenser pump has to continue working to

condense the steam still being produced by the reactor and thus cool the core.

To implement the SCRAM operation into the given user interface model, users

could apply a limited number of reconfigurations to the user interface. Firstly,

they could select a slider to define the position of the control rods and apply the

discretization operation. Here, selecting 0 created a button that set the posi-

tion of the control rods to 0, such that they were completely inserted in the core.

Thus, by pressing the newly created button, the chain reaction would be stopped and

the core would produce only residual heat.

Second, the Buttons to open SV2, close SV1, open WV1 and close WV2 should be

combined to one button by applying the parallelization operation. Thus, the

http://dx.doi.org/10.1007/978-3-319-51838-1_4
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Fig. 10.7 A user interface showing the various operations needed for a SCRAM operation, which

has been also added. The user interface shows the result of the application of various reconfiguration

operations to an initial user interface through interactive and sequential application of reconfigura-

tion operations

new Button subsumes all relevant valve operations needed for the SCRAM operation.

Third, the water pumps WP1 and CP have to be set to a certain speed: WP1 to 800

rpm and CP to 1600 rpm. Therefore, the user selects first the slider for WP1 and

applies the discretization operation as she did for the control rod position.

She repeats this with the slider for CP. The final step is to fuse all the newly created

Buttons into one using the parallelization operation. The resulting physical

representation of the created user interface can be seen in Fig. 10.7.

10.5.2 User Study: Error Reduction Through
Individualization

In addition to the extension of the user interface’s functionality by creating new inter-

action elements extending the interaction logic, the effect of such extension on the

interaction process between the human user and the system must also be analyzed.

To do this, a user study was conducted to measure the effect of the individualization

of a given user interface model on the number of errors users committed while work-

ing with that interface. For the user study, participants had to control the simplified

simulation of the nuclear power plant. The nuclear power plant simulation had been

selected to keep the attention of the participants as high as possible (because they
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all know about the criticality of faulty control of nuclear plants) and to be as flexi-

ble as possible regarding the degree of complexity for the control task. The control

process was simple to adapt for the study in that it could be learned in a limited time

but was complex enough to make any effects visible. The results of the study indi-

cated a reduction of errors in controlling the power plant when participants used their

individually reconfigured user interfaces (Burkolter et al. 2014; Weyers et al. 2012).

In total 72 students of computer science (38 in the test group) participated in the

study. First, all participants responded to a pre-knowledge questionnaire to ensure

that the groups were balanced regarding knowledge about nuclear power plants.

Next, all participants were introduced to the function of a nuclear power plant and

its control. This introduction was a slide-based presentation that was read aloud to

keep content and time equal among all groups of participants. Afterwards, partici-

pants participated in an initial training session on the controls for the nuclear power

plant simulation; the instructions were presented on paper. In total three procedures

were practiced: starting the reactor, shutting it down, and returning the reactor to a

safe state after one of the feedwater pumps failed. Participants were allowed enough

time that every participant was able to complete each procedure at least once. After

the training in each procedure, the participants in the test group had the chance to

apply reconfiguration operations to the initial state of the user interface and test their

changes. For this, they had a specific amount of time after each training run. To keep

time on task equal for both the test and the control group, the control group watched a

video on simulation in general (not of nuclear plants) for the same amount of time as

the test group had to apply reconfigurations to their user interface. To apply changes

to the initial user interface, they used the interactive rule generation procedure as

implemented in UIEditor. An example of an outcome of this kind of individualiza-

tion can be seen in Fig. 10.8.

After the training and reconfiguration phases, the participants had to start up and

shut down the reactor several times, simulating real use of the system. In the last run-

through, a feedwater pump broke down. Participants had been trained in the response

to this event, but had not been informed in advance that it would occur.

During the trials, errors were measured in the sense of wrongly applied opera-

tions. An operation was classified as wrongly applied if it did not match the expected

operation for the startup or shutdown of the reactor or for the response to the water

pump breakdown in the final runthrough. Various types of errors were detected,

based on the classification defined by Hollnagel (1998). All error types identified

are shown in Fig. 10.9, which also shows how the log files were evaluated by manu-

ally looking for patterns and mismatches.

The results show that the control group using the individualized user interface

models made fewer errors in interacting with the reactor than did the control group,

which used the initial user interface without individualization. Furthermore, the test

group was able to respond to the system failure more effectively than the control

group. These results are shown in Table 10.1. This study shows the potential for

this type of adaption of user interface models. It has been previously published in

Burkolter et al. (2014) and Weyers et al. (2012).
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Fig. 10.8 An example of a reconfigured user interface for the control of a simplified simulation of

a nuclear power plant

Fig. 10.9 Different error types evaluated. The errors were identified by comparing the interaction

logs gathered during the use of the system with the expected operation sequences, which were

provided to the participants as control operation sequences on paper

10.5.3 Discussion

In addition to the benefits of a user-driven reconfiguration of a user interface model

as shown above, there are various side conditions to be considered. First, by adding

more abstract operations to the user interface, the degree of automation is increased
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Table 10.1 Startup of reactor and practiced system fault: mean, standard deviation (in parenthe-

ses), and results of the applied t-test for comparing the means of the group using the initial user

interface (NonRec-group) and the grouping using their individualized/reconfigured user interface

(Rec-group)

Error types Rec-group NonRec-

group

t(df), p (One-tailed), ES r

Magnitude error
Oversteering 0.38 (0.70) 2.38 (1.72) t(45.86) = −6.13, p = 0.000, r = 0.67

Understeering 0.15 (0.37) 0.15 (0.36) t(58) = 0.07, p = 0.472, r = 0.01

Sequence error
Swap 0.04 (0.20) 0.47 (0.86) t(37.40) = −2.83, p = 0.004, r = 0.42

Premature 0.23 (0.43) 0.24 (0.50) t(58) = −0.04, p = 0.486, r = 0.01

Belated 0.42 (0.58) 0.38 (0.70) t(58) = 0.24, p = 0.405, r = 0.03

Repetition 0.38 (0.70) 0.09 (0.29) t(31.54) = 2.04, p = 0.003, r = 0.34

False operation 0.96 (1.25) 1.82 (1.90) t(56.87) = −2.12, p = 0.020, r = 0.27

Total 2.48 (1.93) 5.53 (2.71) t(59) = −4.93, p = 0.000, r = 0.54

which is known to have a potentially negative influence on task performance. This is

especially true in critical situations (Parasuraman et al. 2000). However, it is ques-

tionable at which point this also becomes true for automation added to the user inter-

face model by the users themselves. The study described argues for a higher task

performance through user-driven increases in automation. However, there is no data

on whether this is still true if the user works with the reconfigured user interface over

a longer period of time. The interactive process of creating more abstract operations

could also have a certain effect on training and user understanding of the interac-

tive system controls. The effects of increased automation and the enhancement of

training through interactive reconfiguration are aspects to be considered in future

work.

A related problem is the creation of erroneous operations which a user could

implement while individualizing the user interface. Erroneous operations could

result in unexpected system operation or faulty system states. The scenario discussed

above does not prevent users from adding erroneous operations to the user interface

model. However, the underlying seamless formalization of the user interface model

and the reconfiguration process constitute the basis for a formal validation of the

assumed outcome of a reconfiguration. Thus, the user can be informed of potential

problems arising from the application of a certain reconfiguration rule. Such a val-

idation approach is also of interest for automatic non-user-driven reconfiguration.

Nevertheless, the development of “on-the-fly” validation is not trivial, especially if

the underlying system is not known. Initial studies on this subject have been con-

ducted by facilitating a SMT solver (Nieuwenhuis et al. 2006) for the validation of

interaction logic. Here, the generated reference net was transformed algorithmically

into an expression of first-order logic. This expression was composed by the pre- and

post-conditions for the transitions in the reference net and is being tested by the SMT
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solver for satisfactory performance. It could be extended by certain pre-conditions

relevant to the use case, making it possible to check whether an extended interac-

tion logic generates input values to the system that are not valid or specified for the

system to be controlled.

The approach shown offers other benefits related to creation rather than the use of

such user interface models. By formalizing the user interface model and its reconfig-

uration, both models and reconfiguration rules can be reused and facilitated as prove-

nance information describing the reconfiguration process. If the underlying system

is replaced by, for example, a newer version or a similar system, the user interface

model can be reused as a whole—assuming, of course, that there are no changes in

the system interface providing the access to the system values to be controlled. How-

ever, if changes have been applied to that interface, these can simply be adopted in

the user interface model as well without the need to touch any code. It is imaginable

that such changes could be applied automatically by applying reconfiguration rules

gathered from a (hopefully formalized) description of the API changes.

The user study presented addresses only the use of reconfigured user interfaces

by using the interactive rule generation approach discussed in Sect. 10.4. No deeper

evaluation of UIEditor has been conducted, especially addressing the creation of

user interface models. The exception is results gathered from items in the post-study

questionnaire of the study described above, which indicated no problems with the

reconfiguration concept. However, an important goal of future work is to intensify

the research and development effort on measuring and enhancing the usability and

user experience of UIEditor. The use of UIEditor by non-experts in HCI and user

interface modeling is also of great interest. This user group, which would include

mechanical engineers among others, would benefit from the simplified creation and

rapid prototyping of user interfaces without having to resign the benefits of formal

validation and reuse of such models.

As these case studies show, the reconfiguration approach is well-suited for the

individualization of user interface models. Nevertheless, the approach offers the

algorithmic generation of reconfiguration rules by, for example, intelligent

algorithms, as is the case with adaptive or intelligent interactive systems (Langley

and Hirsh 1999). An initial approach to the automatic generation of reconfigura-

tion rules was presented in Weyers et al. (2014). Such an extension to the current

approach could also enable its integration into frameworks like CAMELEON (Cal-

vary et al. 2003; Pleuss et al. 2013). The CAMELEON framework focuses mainly

on the application of abstract user interface models to specific contexts and systems

in final user interface models. Nevertheless, it does not address the underlying func-

tionality, that is, the interaction logic of a user interface. The approach presented

here could embed interaction logic into the transformation from abstract to concrete

user interface models. Starting with an abstract interaction logic and reconfiguring it

step-wise using rule-based rewriting and applying the transformation to the physical

representation makes that interaction logic specific to a certain context, user, task,

or device.
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10.6 Conclusion

This chapter presents a solution for the reconfiguration of formal user interface mod-

els based on reference nets, a special type of Petri nets. This reconfiguration is based

on a graph rewriting approach called the double pushout approach, which has been

extended to inscribed/colored Petri nets. This extension was based on lattice theory

to define a formal structure for XML node and edge inscription, making it possible to

rewrite inscriptions in such a way that it is not necessary to apply any changes to the

net structure. The applicability of this approach was demonstrated in a case study in

which new operations were added to an initial user interface for the control of a sim-

plified nuclear power plant simulation. For this reconfiguration, an interactive rule

generation approach was facilitated which enabled the user to specify the relevant

parts of the user interface to be reconfigured as well as the type of reconfiguration

to be applied. This tool is part of UIEditor as introduced in Chap. 5.
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Chapter 11
Learning Safe Interactions and Full-Control

Guillaume Maudoux, Charles Pecheur and Sébastien Combéfis

Abstract This chapter is concerned with the problem of learning how to interact

safely with complex automated systems. With large systems, human–machine inter-

action errors like automation surprises are more likely to happen. Full-control mental

models are formal system abstractions embedding the required information to com-

pletely control a system and avoid interaction surprises. They represent the internal

system understanding that should be achieved by perfect operators. However, this

concept provides no information about how operators should reach that level of com-

petence. This work investigates the problem of splitting the teaching of full-control

mental models into smaller independent learning units. These units each allow to

control a subset of the system and can be learned incrementally to control more and

more features of the system. This chapter explains how to formalize the learning

process based on an operator that merges mental models. On that basis, we show

how to generate a set of learning units with the required properties.

11.1 Introduction

The field of human–computer interaction (HCI) studies how humans interact with

automated systems and seeks to improve the quality of these interactions. In HCI, for-

mal methods allow to unambiguously describe behaviours of both humans and inter-

active systems. Given a formal description of humans and/or computer systems, it

is possible to mechanically check properties on their interactions such as the control
property, which we will describe later on. The automated verification of properties

is called model checking. Model checking techniques can also be used to generate
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models that satisfy desirable properties. In this chapter, we will use that capability

to produce formal descriptions of the knowledge required to interact safely with a

formally defined system.

Safe interactions are achieved when a system behaves in accordance with the user

expectations. Any discrepancy between these expectations and the actual behaviour

of the system is called an automation surprise (Sarter et al. 1997; Palmer 1995).

To formalize our analysis of automation surprises, two models are used: one model

describes the behaviour of the system and the other describes how the system is

assumed to behave from the point of view of the user. The latter is called a mental
model (Rushby 2002). A user can build a mental model of a system from training, by

experimenting with the system or by reusing knowledge applicable to other similar

systems. In this work, a user is assumed to behave according to her mental model.

This assumption does not always hold as users may get distracted or make errors

when manipulating a system, but we are not considering these kinds of faults here.

The control property describes the relation between a mental model and a system

such that their interactions cannot lead to surprises. It is important to ensure that the

mental model of the user allows control of the system in use. Or, less formally, that

the user knows enough about the features she uses to avoid any surprise. To interact

safely with a system, a user need not know all of its features. With most systems,

knowing nothing about their behaviour is sufficient to never get surprised. These

devices remain idle or turned off while waiting for a human to initiate the interaction.

In the case of a plane at rest, for example, not interacting with it ensures that it will

not behave unexpectedly. Some systems however require some knowledge in order

to avoid surprises. Phones are an excellent example, as one could get surprised by

an incoming ringtone if not warned that it may happen.

Generating mental models that ensure proper control provides a mean to train

operators of critical systems. If the learning process ensures that their mental model

controls the system, we can avoid automation surprises. In particular, new system

features should be taught in such a way that the new mental model of the operators

still ensures proper control of the system. This also means that operators must not

interact with the system until the end of a learning phase and cannot perform their

duties during that period.

Operators that have learnt all the possible behaviours of a system have built a

full-control mental model. Such models have been defined by Combéfis and Pecheur

(2009), and techniques to build minimal ones have been described in Combéfis and

Pecheur (2011a, b). These mental models allow users to safely control all the fea-

tures of a system. However, teaching a full-control mental model is impractical as

it is equivalent to teaching all the features of the system at once, in one big step.

For example, newly hired operators would be useless until they master the full com-

plexity of the system. Large systems might even be too complex for one operator to

manage. In that case, the operation of the system must be split in tasks dedicated to

different operators and the generated full-control mental model cannot be used at all.

To be practical, learning processes should provide a set of learning units in the

form of small, compatible mental models that can be combined incrementally into

bigger models. Each intermediate mental model should ensure safe interactions with
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the system without necessarily describing all of its features. Learned sequentially,

these units should increase the mental model of the operator until her mental model

reaches full-control over the system. We will see that it is possible to decompose a

full-control mental model into learning units units with such properties.

In this chapter, we first summarize the necessary concepts. Section 11.2 will

describe Labelled Transition Systems for Human Machine Interactions (HMI-LTSs)

as a specialization of Labelled Transition Systems (LTSs) and use these to formally

define mental models, control, and full-control. In Sect. 11.3, we introduce a merge
operator that describes the mental model resulting of learning two other mental

models, and we argue that it is coherent with the intuition of learning a system.

In Sect. 11.4, we explore the decomposition induced by the merge operator on HMI-

LTSs. We show that some HMI-LTSs are too basic to be worth further decomposing,

and that decomposing mental models into such basic elements is a finite process. We

also provide an algorithm to automate this decomposition. Finally, we demonstrate

that it is possible to generate a set of learning units with the desired properties by

decomposing full-control mental models. This is presented with many examples in

Sect. 11.5.

11.2 Background

In this section, we define HMI-LTSs, mental models, and the (full-)control property.

We also formally introduce full-control mental models, a concept that lies at the inter-

section of these three notions. A deeper discussion of the background information

provided in this section can be found in Combéfis (2013).

To formalize systems and mental models, we use Labelled Transition Systems
for Human–Machine Interactions (HMI-LTSs) which are slightly modified Labelled
Transition Systems (LTSs). An LTS is a state transition system where each transi-

tion has a label, also called action. LTSs interact with their environment based on

this set of actions. Additionally, LTSs can have an internal 𝜏 action that cannot be

observed by the environment. The representations of three different LTSs are shown

in Figs. 11.1 and 11.2.

Definition 1 (Labelled Transition System) A labelled transition system (LTS) is a

tuple ⟨S,L , s0,→⟩ where S is a finite set of states, L is a finite set of labels repre-

senting visible actions, s0 ∈ S is the initial state and → ⊆ S × (L ∪ {𝜏}) × S is the

transition relation, where 𝜏 ∉ L is the label for the internal action.

The executions of LTSs can be observed from the environment via traces. An

execution of an LTS is a sequence of transitions s0
a1
→ s1 … sn−1

an
→ sn where each

(si−1, ai, si) ∈ →. It represents the system moving from state to state by firing transi-

tions. A trace of an LTS is a sequence 𝜎 = a1, a2,… , an ∈ L 𝜔
such that there exists

an execution s0
𝜏
∗a1𝜏∗⟶ s1 ⋯ sn−1

𝜏
∗an𝜏∗⟶ sn. The notation s

𝜏
∗a𝜏∗
⟶ s′ represents a transi-

tionlabelled a preceded and followed by any number of invisible 𝜏 transitions. Its
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Fig. 11.1 HMI-LTS model of a reactor inspired from the nuclear power plant example (cf.

Chap. 4). Observations are represented with a dashed edge. This model will be used as the main

example through the remainder of this chapter

A on

off

off
B

τ
on

off

unplug

Fig. 11.2 Two examples of nondeterministic systems. A can be turned on then off at least once,

but it is impossible to determine if it can be turned on again. B can be turned on and off, but it can

also unobservably change to a state where the only way to restart it is to unplug it

only observable action is a. A trace is a sequence of visible actions that the system

may produce in one of its executions. For example, the Reactor system of Fig. 11.1

can produce the trace “start, lowerRods, underPressure” and the trace “start, over-

Pressure, delay, SCRAM” among infinitely many others.

To model interactions, we need to distinguish inputs from outputs. HMI-LTSs

refine LTSs by distinguishing two kinds of actions, commands and observations.
Like any I/O transition system, observations are uncontrollable outputs generated

by the system and commands are controllable inputs. HMI-LTSs are very similar to

LTS/IOs described by Tretmans (2008).

Definition 2 (Human-Machine Interaction LTS) A human-machine interaction

labelled transition system (HMI-LTS) is a tuple ⟨S,L c
,L o

, s0 ,→⟩ where ⟨S,L c ∪
L o

, s0,→⟩ is a labelled transition system, L c
is a finite set of command labels and

L o
is a finite set of observation labels. The two sets L c

and L o
are disjoint and the

set of visible actions is L = L c ∪L o
.

HMI-LTSs are used to describe both systems and mental models. Mental models

represent the knowledge an operator has about the system she controls. It is impor-

http://dx.doi.org/10.1007/978-3-319-51838-1_4
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tant to note that mental models do not represent the behaviour of a user, but the

behaviour of a system as seen by a user. Therefore, a command in a mental model

corresponds exactly to the same command on the system. The interactions between a

system S and an operator behaving according to its mental model M are defined by

the synchronous parallel composition S ∥ M . This distinguishes HMI-LTSs from

LTS/IOs where inputs of the system must be synchronized on the outputs of the user

and vice versa.

Notions on LTSs can be easily lifted to HMI-LTSs due to their high similarity.

The set of states that can be reached from state s with an observable trace 𝜎 is repre-

sented as s after 𝜎. This definition applies as is to LTSs and HMI-LTSs. We also use

notations specific to HMI-LTSs. Ac(s) (resp. Ao(s)) is the set of possible commands

(resp. observations) of s. An action is possible in s if it is the first action of some

trace starting at s.
An LTS is deterministic if |s after 𝜎| ≤ 1 for any 𝜎. For example, the HMI-LTS

A from Fig. 11.2 can be in two states after the trace “on, off” and is therefore not

deterministic. Also, the HMI-LTS B has two possible actions in its middle state (‘off’

and ‘unplug’) because unplug can be the next visible action in executions firing the

𝜏 transition. It is of course also nondeterministic because after the “on” trace the

system can be in two different states.

We want mental models to control systems without surprises. In particular, we

want to avoid mental models that contain commands that are impossible on the sys-

tem and to ignore observations that the system could produce. This motivates the

introduction of the control property.

Definition 3 (Control Property) Given two HMI-LTSsS = ⟨SS ,L c
,L o

, s0S ,→S

⟩ and M =
⟨SM ,L c

,L o
, s0M ,→M ⟩, M controls S if M is deterministic and for all traces

𝜎 ∈ L ∗
such that sS ∈ s0S 𝐚𝐟𝐭𝐞𝐫 𝜎 and {sM} = s0M 𝐚𝐟𝐭𝐞𝐫 𝜎:

Ac(sS ) ⊇ Ac(sM ) and Ao(sS ) ⊆ Ao(sM ).

This definition is symmetric because it allows the mental model not to know the

full set of available commands, and it also allows the system to produce fewer obser-

vations than expected by the mental model. From now on, this is the formal definition

we refer to when we say that a mental model controls a system.

For a given system, there always exists a mental model that contains no commands

and still allows control of the system. That mental model contains only the traces of

observations available from the initial state and corresponds to the mental model

needed by an agent to avoid surprises when not interacting with a system. Think

back to the example of the phone given in the introduction. You need to know that

your desk phone may ring even when you do not want to interact with it. Someone

who ignores that fact will be surprised whenever the phone rings.
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Fig. 11.3 The only minimal

full-control mental model of

the reactor system
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We see that a mental model that controls a system does not necessarily explore

the full range of possible behaviours of that system. When a mental model ensures

control over a system and allows access to all the available commands of the system,

we say that the model fully controls the system.

Definition 4 (Full-Control Property) Given two HMI-LTSs S =
⟨SS ,L c

,L o
, s0S ,→S ⟩ and M = ⟨SM ,L c

,L o
, s0M ,→M ⟩, M is a full-control

mental model for S , which is denoted M 𝐟𝐜S , if M is deterministic and for all

traces 𝜎 ∈ L ∗
and for all sS ∈ (s0S 𝐚𝐟𝐭𝐞𝐫 𝜎) we have

Ac(sS ) = Ac(sM ) and Ao(sS ) ⊆ Ao(sM ).

where {sM} = (s0M 𝐚𝐟𝐭𝐞𝐫 𝜎) is the only state reached in M by the trace 𝜎.

A full-control mental model is therefore a deterministic HMI-LTS representing

the required information for an operator to interact with a system to the full extent

of its possibilities, and without surprises. Full-control mental models are minimal if

they have a minimal number of states compared to other full-control mental mod-

els of the same system. Also, being full-control deterministic is a property shared

by all the systems for which there exists a full-control mental model (Combéfis

and Pecheur 2009). The property states that nondeterminism in the system does not

impact controllability. Different algorithms exist to generate such models (Combéfis

and Pecheur 2009; Combéfis et al. 2011a; Delp et al. 2013).

Figure 11.3 presents FCReactor, the only minimal full-control mental model of

the Reactor system from Fig. 11.1. The two active states with no pressure warning

have been merged as they are undistinguishable from a control point of view: they

allow exactly the same commands, and their observations are compatible.

Minimal full-control mental models are important because they represent the min-

imal knowledge that a perfect operator should master. Compact training material and

user guides should therefore describe a minimal full-control mental model.
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11.3 Modelling the Learning Process with the Merge
Operator

While minimal full-control mental models are perfect in terms of control, they are

inefficient when training operators as they require to be completely mastered before

using a system. But to optimize this process, we need to describe how the mental

model of a user can be augmented with a learning unit. In this section, we define the

new merge operator that combines two mental models into a broader one, and we

claim that this operator is a natural way to encode the learning process.

The merge of two HMI-LTSs is obtained by superimposing their graphs and merg-

ing identical paths. This is a kind of lazy choice as the final behaviour does not com-

mit to behave like the first or the second operand until a decision is required. The

result may even alternate between the behaviour of its two operands. As the defini-

tion of the merge operator does not rely on observations and commands, it can easily

be generalized to LTSs. An example of the action of the merge operator is given in

Fig. 11.4.

Definition 5 (Merge)

The merge of two deterministic HMI-LTSs A = ⟨SA,L c
A ,L

o
A , s0A,→A⟩ and B =

⟨SB,L c
B ,L

o
B , s0B,→B⟩, denoted A⊕ B, is an HMI-LTS ⟨S,L c

A ∪L c
B ,L

o
A ∪

L o
B , s0,→⟩ where

1. S ∈ P(SA ⊎ SB) is the set partition defined by the equivalence relation ∼.

2. ∼ = ∪∞
i=0∼i is the equivalence relation on SA ⊎ SB such that

a. s0A and s0B are the only equivalent nodes in ∼0;

b. ∼k⊂∼k+1 and

A⊕ B⊕C
a a a c

b

d

C
a a a

d

B
a a a c

A
a a

b

Fig. 11.4 Example of the merge operation on three HMI-LTSs
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c. ∼k+1 is the finest equivalence relation such that m′ ∼k+1 n′ if there exists

m ∼k n and a such that m
a
←←←←←→A m′

and n
a
←←←←←→B n′.

3. → is the set of transitions [s]∼
a
←←←←←→ [s′]∼ such that either s

a
←←←←←→A s′ or s

a
←←←←←→B s′.

In this definition, S is always well defined. While the equivalence relation ∼ is an

infinite union, we can see that the intermediate equivalence relations are monoton-

ically increasing as they embed the previous one and can only add new equivalent

states, not remove them. If no states are added at some step, then a fixpoint is reached.

And this must happen within a finite number of steps as it must end when all the states

are equivalent (in the worst case).

From this definition, we can also see that the merge of two deterministic HMI-

LTS is unique. Were it not the case, there would be two different ways to build ∼k+1
for some k. But each ∼k+1 is uniquely defined with respect to ∼k, and ∼0 is uniquely

defined. Therefore ∼ must be unique.

The example in Fig. 11.4 uses the fact that the merge operator is associative to

write A⊕ B⊕ C instead of (A⊕ B)⊕ C or A⊕ (B⊕ C). Associativity is tedious

to prove because we need to show that (A⊕ B)⊕ C is isomorphic to A⊕ (B⊕ C).
Instead, we draw attention to the extensibility of the definition to more than two

models. It only requires minor adjustments to define the merge of three or even n
HMI-LTSs. The operator is also commutative. This property may be assumed from

the symmetry of the definition.

We can show that the result of merging two deterministic HMI-LTSs is determin-

istic. Indeed, as the two operands of the merge are deterministic, they cannot contain

𝜏 transitions and so their merge is free of 𝜏 transitions too. Neither can the result con-

tain two transitions with the same label leaving the same state. Let us assume that

the result contains two transitions outgoing from the same state, with the same label,

and leading to different states. By the definition of →, this means that there exists

(m, a,m′) ∈ →A and (n, a, n′) ∈ →B such that m ∼ n and m′ ≁ n′, which violates the

recursive property on ∼. Also, the resulting HMI-LTS can contain no 𝜏 transitions

and no fork where a transition with the same label leads to two different states. These

two conditions are sufficient to prove that the merge is deterministic.

The HMI-LTS A⊕ B can switch its behaviour from A to B provided A can reach

a state that was merged with a state of B. This conversely holds from B to A. If

the HMI-LTS can switch from A to B and from B to A, then it can alternate its

behaviour arbitrarily often. We can see that this operator is different from the tradi-

tional choice operator because it is more than the union of the traces. It can build

complex behaviours from two simple models. In Fig. 11.4, we can see that the trace

a, a, a, d, a, b, a, a, a, c is not possible on the different models but is valid on their

merge.

The merge operator is useful because the set of traces of a merge is always larger

than or equal to the union of the traces of the merged transition systems. This means

that the possible behaviours of a merge can be richer than the union of the behaviours

of its operands. This is needed to ensure that the decomposition of a big system is a

small set of small systems. Indeed, if the behaviour of a merge was exactly the sum
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Fig. 11.5 The merge operation compared to the parallel synchronization (∥) and the choice (+)

operators on (HMI-)LTSs. The result of the choice between U1 and U2 has been determinised for

readability

of the behaviour of its operands, then learning a system would reduce to enumerating

all the possible traces on it.

Figure 11.5 shows the effect of three operators on two simple models. We can

see that the merged model can perform the actions “stop” and “raiseRods” infinitely

often. This corresponds to the combined knowledge that the system can be started

and stopped infinitely often, and that when started, the rods can be raised as many

times as wished.

By comparison, the synchronous parallel composition requires the two operands

to be executed in parallel, and to be synchronized on some actions. Usually, systems

are synchronized on their common alphabet. This means that U1 ∥L1∩L2
U2 cannot

execute “start” more than once because U2 can only do it once. Unsynchronized

actions like “raiseRods” can however fire at any time, even when the reactor is shut

down. These two aspects are not desirable when modelling combined knowledge.

If we synchronize the two models on the unions of their alphabets, thenU1 ∥L1∪L2
U2 cannot perform any “stop” action because that action U2. This case is even worse

for modelling knowledge increase as it removes existing known behaviours from

their combined learning.

Finally, the choice operator does not allow to knowledge of multiple mental mod-

els to be combined either. It forms a new model that can use the knowledge of either

operand, but that prevents any interaction between the two. This is like learning addi-

tion and multiplication but not being able to use both in the same calculation.
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With these examples, we have shown that existing operators are inappropriate

for our mathematical model of learning. The new merge operator remedies to these

shortcomings. If two HMI-LTSs each represent some knowledge about a system,

then their merge represents the combined knowledge of an operator who knows these

two facts.

Furthermore, the merge operator is consistent with the interpretation of HMI-

LTSs as scenarios. When a scenario loops, the system is assumed to have returned

in a state strictly equivalent to the initial one. In particular, the scenario is assumed

to be repeatable infinitely often unless explicitly stated. When a learning unit loops

to a given state, it means that state is completely equivalent to the initial one for

controllability purposes.

While there is no way to prove that the merge operator is perfect, we have provided

examples and intuition on why it is a good way to encode how mental models grow

during the learning of a system.

11.4 Basic Learning Units

Within our formal theory of knowledge and learning, we are now able to split a learn-

ing objective into smaller elements that can be learned independently. Decomposing

a full-control mental model into independent elements amounts to find a set of men-

tal models such that their merge by the merge operator is exactly that full-control

mental model.

To define a good decomposition, we first need an order relation to tell if some sub-

elements form a valid decomposition. We need our decomposition to split a model

into elements that can be merged back into the original model, but we also need the

elements to be smaller than the original model. Were it not the case, the decompo-

sition would not be well-founded: systems could be decomposed forever into other

systems. This goes against the idea of a decomposition into simpler elements.

In this section, we first explore the order induced by the merge operator on HMI-

LTSs. We then show that this order is not well-founded and how an order based

on the size of the graphs fixes it. Finally, we introduce basic learning units, small

learning units that cannot be decomposed into smaller elements.

The merge operator naturally defines a partial order on the HMI-LTSs. The merge

order is such that A ≤
⊕
B if and only if A⊕ B is isomorphic to B, which we denote

A⊕ B ≃ B. The strict partial order relation also requires A to be different from B
(i.e. not isomorphic to B). Figure 11.6 shows four HMI-LTSs ordered according to

<
⊕

. The merge order captures the idea that B has more behaviours than A because

A ≤
⊕
B implies that Traces(A) ⊆ Traces(B).

Furthermore, due to the definition of the merge order, the set of deterministic

HMI-LTSs forms a join-semilattice: any two HMI-LTSsA andB are (upper) bounded

byA⊕ B. In a such a lattice, the decomposition is performed by finding two elements

strictly smaller than an HMI-LTS and such that their upper bound is exactly that

HMI-LTS. However, this lattice has the undesirable property of allowing infinite
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A

start
<⊕

B

start

lowerRods

<⊕

C

start

lowerRods

raiseRods

<⊕

D

start

lowerRods,
raiseRods

Fig. 11.6 Illustration of the merge-order relation on HMI-LTSs. For example, we have C <
⊕
D

because C⊕ D = D and C ≠ D

a

1

= a
a

2

⊕
a

a
a

3

=

⎛
⎜⎜⎝ a a

aa4

⊕
a

a
a

a
a

a
6 ⎞

⎟⎟⎠⊕

⎛
⎜⎜⎝ a

a
a

a
a

a
6

⊕
a
a a a

a
aaa

a
9 ⎞

⎟⎟⎠

. . .

Fig. 11.7 A decomposition based on the merge order alone can lead to infinite decompositions

into HMI-LTSs with increasing size

decomposition chains. As illustrated in Fig. 11.7, we can see that a simple loop can

be decomposed into the merge of a 2- and a 3-loop, which can in turn be decomposed

into the merge of a 4- and 6-loop, and a 6- and 9-loop, respectively, and so forth.

To encode the fact that a decomposition should produce simpler models than the

model it comes from, we define the learning order. It restricts the merge order with

the constraint that smaller models must have a lower number of states. Ties are bro-

ken based on the number of edges. This structural size order is denoted ≤.

Definition 6 (Learning order) A deterministic HMI-LTSA is said to be smaller than

an HMI-LTS B according to the learning order if and only if A ≤ B and A ≤
⊕
B. This

is denoted A ≤
learn

B.

A decomposition will stop when we reach a model not worth splitting, which

happens when we cannot find two strictly smaller models (in the sense of the learning

order) that merge into the current model. We say that such HMI-LTSs are basic.

Definition 7 (Basic HMI-LTS) A deterministic HMI-LTS M is basic if there does

not exist two HMI-LTSs A and B such that A <
learn

M, B <
learn

M and A⊕ B = M.

It turns out that such basic HMI-LTS take the form of single sequences, single

loops, lassos or tulips as shown in Fig. 11.8. Loops and sequences can be seen as
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A B

α

C

β

D

α

β

E

β γ

F

α

β γ

Fig. 11.8 Different shapes of basic HMI-LTSs. They can be A empty, B sequences, C loops, D
lassos and E, F tulips with and without stem. Dotted lines represent any oriented sequence of states

and transitions. All these shapes are degenerated tulips where action sequences 𝛼, 𝛽 and 𝛾 can be

empty

degenerated lassos with no stem or no loop. The fully degenerated lasso is the HMI-

LTS with no transitions at all. Finally, a tulip is a branching HMI-LTS where the two

branches reunite in the last state. Like lassos, they may have no stem. When they are

comparable, lassos and tulips are always strictly greater than sequences. Lassos and

tulips are never comparable.

Any finite deterministic HMI-LTS can be decomposed into a finite set of basic

HMI-LTS. This arises from the fact that any HMI-LTS is the merge of a basic HMI-

LTS and another HMI-LTS strictly smaller than the previous one. Were it not the

case, that HMI-LTS would be basic itself. By induction on the remaining HMI-LTS,

we show that it eventually reduces to a basic HMI-LTS after a finite number of basic

HMI-LTS removal. All these basic elements form a set that we call the decomposition

of the HMI-LTS. This algorithm is shown with the FCReactor model on Fig. 11.9

and formally defined hereafter.

Algorithm 1 formalizes the enumeration of the basic units forming the decom-

position of a mental model. At line 5, this algorithm performs an unspecified explo-

ration of the graph, edge by edge. It could be a depth-first search, a breadth-first

search or any other exploration strategy. The pre mapping is used to build a spanning

tree. The algorithm looks for edges that are outside the spanning tree and removes

them permanently by calling the “extract_unit” procedure defined in Algorithm 2.

For each such edge, a basic HMI-LTS is extracted. A special case is added in line 13

to handle states with only one adjacent edge. Such states are part of a basic sequence

that does not contain edges outside of the spanning tree and a basic sequence must

be extracted at that place. That way, all the paths in the graph are covered by some

basic HMI-LTS, and basic HMI-LTSs are disjoint because they contain at least one

edge that no other unit contains.

Algorithm 2 describes “extract_unit,” which splits a model into a basic HMI-

LTS and a smaller model by removing a given edge from the model. For correctness

and efficiency, it also removes all the edges that are completely described by the

extracted basic unit. That way, the resulting model M ’ is the minimal (size-wise)

model such that M ′
⊕U = M . Note that pre is guaranteed to be defined for the

nodes used at line 6 because it forms a partial spanning tree spanning at least to x



11 Learning Safe Interactions and Full-Control 309

Fig. 11.9 Illustration of the decomposition algorithm, where basic HMI-LTSs are extracted one

by one until there is nothing more to extract
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and x′ by construction in Algorithm 1. As “extract_unit” traverses that tree upwards

from x and x′, it cannot encounter undefined values of pre. The units extracted by

the algorithm are subgraphs of the initial model. They contain a subset of the edges

of that model and the corresponding subset of nodes.

Algorithm 1 Basic HMI-LTSs enumeration

Require: M = ⟨S,L c
,L o

, s0 ,→⟩, a minimal deterministic HMI-LTS.

Ensure: U = {u1, u2,… , un}, a minimal decomposition of M into basic HMI-LTSs.

1: U ∶= ∅ ⊳ Initialise the decomposition with an empty set

2: E ∶= {(m, v,m′) ∈ → ∣ m = s0} ⊳ The set of edges yet to explore,

⊳ initialised with the edges starting at s0
3: pre ∶= [⊥,… , ⊥]
4: pre[s0] ∶= ⊤

5: while ∃(n, a, n′) ∈ E ∩→ do
6: E ∶= E ⧵ {(n, a, n′)}
7: if pre[n′] ≠ ⊥ then ⊳ Extract a tulip or a lasso

8: (M , u) ∶= extract_unit(M , pre, (n, a, n′))
9: U ∶= U ∪ {u}

10: else
11: pre[n′] ∶= (n, a, n′)
12: E ∶= E ∪ {(m, v,m′) ∈ → ∣ m = n′}
13: if deg(n′,→) = 1 then ⊳ Extract a single path

14: (M , u) ∶= extract_unit(M , pre, (n, a, n′))
15: U ∶= U ∪ {u}
16: end if
17: end if
18: end while
19: return U

A decomposition is nonredundant if it does not contain two comparable elements.

If it was the case, one of these elements could be further decomposed. The decom-

position algorithm sketched in Fig. 11.9 always produces a nonredundant decom-

position because each basic HMI-LTS contains actions that were not part of the

previously removed basic elements, and that are removed with it. For example, the

decomposition of the FCReactor system into {U1,U2,U3,U4,U5,U6,U7} as shown

in Fig. 11.9 is nonredundant.

A decomposition is minimal if no other decomposition of the same HMI-LTS

contains fewer basic elements. The size of a minimal decomposition is called the

complexity of an HMI-LTS. Minimal decompositions of the FCReactor system con-

tain exactly seven elements, so the complexity of that model is 7.

We now know how to decompose an HMI-LTS into basic elements, and that

decomposition gives us a measure of the complexity of that HMI-LTS.
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Algorithm 2 Basic units extraction

Require: M , a minimal deterministic HMI-LTS;

Require: pre ∶ S → S × (L c ∪L o) × S ∶ n ↦ pre[n], mapping nodes to preceding edges;

Require: (n, a, n′) an edge to extract.

Ensure: U , a basic HMI-LTS;

Ensure: M ′
, an HMI-LTS strictly smaller than M and such that u⊕M ′ = M .

function EXTRACT_UNIT(M = ⟨S,L c
,L o

, s0 ,→⟩, pre, (n, a, n′))
(→U ) ∶= {(n, a, n′)}
(→) ∶= (→) ⧵ {(n, a, n′)}

for x ∶= n, n′ do
while pre[x] ≠ ⊤ do

(x, v, x′) ∶= pre[x]
(→U ) ∶= (→U ) ∪ {(x, v, x′)}
if deg(x′,→) = 1 then

(→) ∶= (→) ⧵ {(x, v, x′)}
end if

end while
end for

SU ∶= {n ∈ S ∣ ∃v, x. (n, v, x) ∈ →U ∨ (x, v, n) ∈ →U }
U ∶= ⟨Su,L c

,L o
, s0,→U ⟩

S′ ∶= {s0} ∪ {n ∈ S ∣ ∃v, x. (n, v, x) ∈ → ∨ (x, v, n) ∈ →}
M ′ ∶= ⟨S′,L c

,L o
, s0,→⟩

return (M ′
, u)

end function

11.5 How to Teach Full-Control

In this section, we show that it is possible to build a set of learning units such that

each unit controls a given model, and such that all units can be combined into a

full-control mental model.

The main idea is to decompose a full-control mental model of the system into

basic subgraphs. It appears that basic subgraphs can be completed to form learning

units that can control the system. This means that the completed basic subgraphs of a

full-control mental model of a system form a set of independent, compatible mental

models that can be merged to reproduce the behaviour of the full-control mental

model.

Given two deterministic subgraphs U and U ′
of a deterministic HMI-LTS M ,

we have the property that their merge U ⊕U ′
is isomorphic to a subgraph of M .

This can be seen from the fact that ⊕ merges states that can be reached with the

same traces, and that these states must correspond to exactly one state of M , as M
is deterministic.

Starting from a full-control mental model M of a system S , we can decompose

it into a set of basic HMI-LTSs. However, these basic HMI-LTSs do not necessar-

ily control S . To achieve this property, they need to be completed with respect to



312 G. Maudoux et al.

observations. This is sufficient because a mental model that controls a system must

accept all the observations of that system but is allowed to ignore commands.

If we call →o
S the transition relation of S restricted to observations, then any

subgraph of a full-control mental model can be completed with →o
S in order to con-

trol S . Of course, only the connected component reachable from the initial state

should be kept after the completion. In particular, any basic subgraph of a mental

full-control mental model can be completed in order to control S .

Definition 8 (Observation Completion)

Given an HMI-LTS M = ⟨S,L c
,L o

, s0,→c ∪ →o⟩ and one subgraph U = ⟨SU ,

L c
,L o

, s0,→U ⟩ of M , the observation completion of U is an HMI-LTS U ′
such

that U ′
is the connected component of ⟨S,L c

,L o
, s0,→U ∪ →o⟩ reachable from

s0.

Figure 11.10 shows the completion of the basic HMI-LTSs from Fig. 11.9. Each

model is completed with reachable observations from FCReactor. The interpretation

Fig. 11.10 The observation completion of the basic HMI-LTSs from Fig. 11.9 with respect to the

only minimal full-control mental model of reactor, which is FCReactor
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of U ′
1 is that the reactor can be turned on and off again, but that the operator needs

to know that, when turned on, the reactor may emit warnings about the pressure.

If a pressure warning event happens, the operator will not be surprised. She would

however be unable to further operate the system. To unblock the situation, she could,

for example, read the user manual to improve her knowledge of the system or ask a

more experienced user.

The astute reader will have noticed that users need not to know about the delay

transition. This is because the delay has been modelled as a command. If modelled

as the observation that some time has elapsed, then no operator would be able to

prevent the system to enter SCRAM. More advanced techniques need to be used to

model passing time as a partially (un)controllable event on HMI-LTSs.

The observation completion of any subgraph of a full-control mental model M
controls the intended system. Indeed, such a completed subgraph cannot prevent

observations from occurring as the full-control mental model does not, and the com-

pleted graph has all the observations from the system. In particular, the observation

completion of basic subgraphs of full-control mental models of a system S control

that system S . These elements also have the nice property of merging into com-

pleted subgraphs of M that themselves have control over S .

Definition 9 (Basic Learning Unit)
Given a full-control mental model M = ⟨S,L c

,L o
, s0,→⟩ where → = →c

M
∪

→o
M

, a basic learning unit is a mental model U = ⟨SU ,L c
,L o

, s0,→T⟩ where →T
is the connected component of →o

M
∪→b containing s0 and ⟨SU ,L c

,L o
, s0,→b⟩

is a basic subgraph of M .

With this definition, we can state that any full-control, deterministic (fc-

deterministic) system is fully controlled by the merge of a set of basic learning units.

Theorem 1 (Decomposition)Any finite fc-deterministic HMI-LTSS can be decom-
posed into a finite set T = {U1,U2,…Un} of basic learning units such that

∙ each Ui controls S ;
∙ for each subset I ⊂ {1, 2,… n} of indices, the partial merge

⨁
i∈I Ui of elements

of T controls S ; and
∙ the complete merge

⨁n
i=1 Ui has full-control over S .

Proof By definition, any fc-deterministic HMI-LTS S has at least one minimal full-

control mental model M . We have shown that such a full-control mental model

can be decomposed into a finite set of basic learning units that are completed basic

subgraphs. Because they are completed subgraphs, these elements and any partial

merge of these elements have control over S . As the elements are the completion of

the decomposition of M into basic HMI-LTS, their full merge will be exactly M ,

and therefore fully controls S . This proves that there exists a decomposition of S
meeting the required properties.
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The decomposition of an fc-deterministic system into a set of basic learning units

may not be unique. Indeed, there may exist more than one minimal full-control men-

tal model, and each full-control mental model may have multiple decompositions

into basic learning units. Nevertheless, the minimal number of basic units required

to decompose a mental model gives a measure of its complexity. We define the learn-

ing complexity of a system as the size of the smallest set of basic learning units that

can be merged into a full-control mental model of that system. This metric measures

the number of small learning units that an operator needs to learn before being able

to control all the features of the system. This is different from the complexity of a

system as defined at the end of Sect. 11.3 because the observation completion of two

different basic units may turn to be the same basic learning unit. This metric is dif-

ferent from both the number of states and the number of transitions, which are the

most common measures of complexity for transition systems.

11.6 Related Work

The idea of generating user manuals from formal specifications has been widely

explored. Thimbleby and Ladkin (1995, 1996) provided a way to derive a complete

description of system features by enumerating the sequences of actions to reach each

state. Based on a formal description of a fax machine in the Prolog language, they

generated a complete user manual describing how to perform every possible action.

The fax machine is described as a tree of possible commands annotated with the

information displayed in each node. A skeleton user manual is then generated by enu-

merating traces to each state of the system. The trace is separated into a sequence of

actions and another sequence of observations. Finally, a technical author is required

to turn the skeleton into a natural language. By comparison, our work gives hints

on which elements should be described. Where Thimbleby and Ladkin describe one

trace to each state, we propose to split the learning into stand-alone compatible units.

More recently, Delp et al. (2013) have implemented a system to generate a com-

plete description of a system’s formal model. Spichkova et al. (2014) presented a

tool to maintain and update the technical documentation of a system based on its

formal model. All of these authors have focussed their efforts in generating a com-

plete description of the system. This work derives learning units from an ideal mental

model and therefore tries to teach users a good mental model and not the full system

itself.

Interestingly, user tasks model has been used by Kieras and Polson (1985) to

compute the user complexity of a system. Each task is formally defined as a gener-

alized transition network, and the complexity is measured by the number of states,

the number of keystroke (their system’s commands) and other direct metrics on the

transition network. Further investigations are required to compare these approaches

to the learning complexity defined here.

In this work, we used HMI-LTSs to model both systems and user mental models.

This formalism is the result of research performed by Combéfis et al. (2011a) to
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detect and avoid surprises during interaction with a system. These tools are then used

to define and verify the full-control property. Many authors have provided a formal

description of systems and verified properties on it, but few model the mental model

of users explicitly. Among them are Blandford et al. (2011) and Buth (2004). Buth

checks the trace equivalence of a system and a mental model to ensure that both

agree on the possible sequences of events. In contrast, the full-control property does

not require the system to accept all the observations expected by the user. Buth’s

works can be considered an extension of Rushby (2002), where the user and the

system are modelled separately but properties are verified on the single model of

their interactions. The framework described by Bolton et al. (2008) uses a similar

setup where erroneous mental models are derived from a correct one and combined

with a model of the interface. The resulting model is then checked for errors that

outline a vulnerability of the system to the simulated error. Finally, Campos et al.

(2004) use mental models in the form of user tasks to check advanced properties on

their systems.

The idea to generate mental models from system models has been explored sepa-

rately and conjointly by Heymann and Degani (2007), Combéfis and Pecheur (2009).

In both cases, the generation is constrained by a validity property to ensure that the

mental model preserves desirable properties when interacting with the system and

by a minimality property to ensure that the resulting models are efficient. Various

properties can be checked on formal models in addition to full-control. Campos and

Harrison (2008) define generic usability properties that could be used to generate

better mental models.

The concept of mental model itself is not new. Carroll and Olson (1987) already

proposed generalized transition networks as a formalism for mental models. They

outlined the difference between prescriptive and descriptive mental models. Descrip-

tive mental models represent actual users and can therefore only be checked against

properties. Normative mental models are generated to verify these properties and

can be used as a description of how users should behave. This is the kind of mental

models that we need to use to describe what we want to teach to operators. Staggers

and Norcio (1993) make a clear distinction between the conceptual model of the tar-

get system, the interface (or image) of that system, the actual mental model of the

user and the scientist’s conceptualization of that mental model. The power of HMI-

LTSs is that we can use them to model the actual system restricted to its interface

and the normative mental models of the users.

11.7 Conclusion

In Sect. 11.2, we described HMI-LTS and how they can be used to model interactive

systems. We formally defined the control property and its full-control extension.

These properties are defined on two HMI-LTSs representing a system interface and

a descriptive mental model of a user. These properties are important because they are

used to guide the generation of ideal, normative mental models for human operators.
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Based on these tools, we then defined the merge operation that represents how a

human augments its mental model by learning new mental models. We have provided

some evidence that this operator is a natural way to formalize the learning process.

We have also outlined the properties of the merge operator and the lattice structure

it induces on HLI-LTSs.

Finally, we have shown how full-control mental models can be decomposed into

basic learning units. These basic units have the desired properties of independence

and minimality, and each has proper control over the full-control mental model and

hence over the system. With this decomposition, we have defined a measure of the

complexity of learning an interactive system.

Of course, there remains a lot of work to show how this theory relates to existing

training material. For example, this works could be used to verify the modularity of

system design by detecting irreducible large components. We could also investigate

how the structure of existing user manual relates with sets of basic learning units,

and how basic learning units can help generating such manuals. This theory opens

the way towards formal analysis of training material.
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Chapter 12
Reasoning About Interactive Systems
in Dynamic Situations of Use

Judy Bowen and Annika Hinze

Abstract Interactive software, systems and devices are typically designed for a

specific (set of) purpose(s) and the design process used ensures that they will perform

satisfactorily when used as specified. In many cases, users will use these systems in

unintended and unexpected ways where it seems appropriate, which can lead to prob-

lems as the differing usage situations have unintended effects on use. We have previ-

ously introduced a method of combining formal models of interactive systems with

models of usage scenarios to allow reasoning about the effects that this unintended

use may have. We now extend this approach to consider how such models might be

used when considering deliberately extending the usage scenarios of existing inter-

active systems to support other activities, for example in emergency situations. This

chapter explores a methodology to identify the effect of properties of emergency sce-

narios on the interactivity of interactive systems and devices. This then enables us

to consider when, and how, we might utilise such devices in such emergencies.

12.1 Introduction
Interactive systems are typically designed around a specific set of use-cases (and in

some cases particular users) to ensure that they will fulfil the needs of the intended
users for the intended use. As part of this design process, issues of usability will

also be addressed, and if the environment in which the system will be used is itself

challenging (which is increasingly common), then this must also be included in the

usability evaluations and user studies. While the established, and well-studied tech-

niques of user-centred design, HCI or UX, will be successful in ensuring the systems

are appropriate for their intended use, it is not always the case that systems will be

used as intended. It is well known that users will often interact with systems in unex-

pected ways, but what we consider here is use in entirely different contexts than those
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for which the systems have been designed. There has, of course, been much research

into context-aware and adaptive systems, which includes considerations of context-

of-use, but here, we address the problem of non-context-aware systems being used

in different contexts than those they were designed for.

If systems are used outside of their designed-for context, there may be unexpected

or unintended consequences. These might be considered as merely annoying to a

user. However, if the system in question is safety-critical and the user is unaware

of limitations that may occur due to a different usage situation, then more serious

consequences may result. Our original work in this area was motivated by exactly

such a problem in healthcare environments. Medical devices, such as syringe and

infusion pumps designed to be used in hospital wards or palliative care facilities,

were being used in more challenging environments (emergency rescue helicopters,

in situ accident response etc.) which could lead to problems with proper use.

Our focus on this problem led us to develop a modelling approach that allowed

for reasoning about the effects of using interactive systems in different contexts of

use. Specifically, when the system itself is not context-aware or adaptive and it is

up to the user to understand how and why they may need to adapt their behaviour

to successfully interact with the system. In this chapter, we extend this approach to

consider the deliberate appropriation of interactive systems for use outside of their

designed-for context.

We first give an overview of some of the motivations for this work and outline the

types of scenarios that are of interest. We focus specifically on the example of using

existing large-scale information displays out-of-context in situations of emergency.

We first explore the information needs that arise in such situations. Emergencies

such as earth quakes, floods or simple electricity cuts create unexpected information

needs. During a conference stay, one of the authors found themselves stuck on the 6th

floor of a darkened hotel without electricity. Established means of communication

had ceased to function (phone, WiFi), and emergency lights were not working. A

huge billboard opposite the hotel was clearly visible but did not provide any helpful

information. This chapter is about using available means of communication, such as

the large-screen billboard, in non-standard ways in case of emergency.

ICT is widely used in emergency situations. It has been observed, however,

that social and organisational concerns often go beyond the available ICT support

and even emergency-specific technological solutions and systems are abandoned

(Bodeau et al. 2010). Emergency logistics and communication needs are unpre-

dictable and may involve a number of government, private-sector or NGO agencies,

local first responders, and ad hoc groups of citizens in addition to affected people

in a disaster area. Bodeau et al. (2010) observed that the interdependent flow of

information and control “cannot be easily disentangled” nor planned ahead precisely

(Bodeau et al. 2010). Although information need and control flow between external

agencies has been recognised as being complex, involving subgroups and dynamic

cliques (Comfort and Haase 2006), we consider all of these parties as a transpar-

ent external body and abstract from the flow of control and information within this

response agency.
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Fig. 12.1 Types of communication and information flow: between external management, respon-

ders, affected individuals, and from the disaster area via sensors

Management of complex situations such as natural disasters, flooding, forest fires,

earth quakes and mass casualty accidents often leads to communication breakdown

and information loss (Parush and Ma 2012). Good situational awareness is vital for

decision making and quick response (Yang et al. 2013). A number of studies have

analysed the information requirements of emergency response teams, e.g. (Diehl

et al. 2005; Robillard and Sambrook 2008; Yang et al. 2013). Extreme importance

is given to information about environmental conditions in an intervention as well as

to response participants, status of casualties and available resources. These are to be

obtained from local people, on-site personnel and sensors in the incidence area.

We can conclude that while categories of information needs may be predicable,

detailed requirements will not be and suitability of locations will depend on the

given context. Figure 12.1 gives an overview of parties involved and communication

channels: Emergency management is typically located outside the disaster area, with

groups of helpers entering the area in which groups or single individuals may be situ-

ated. Communication is needed 1 between management and responders, 2 between

groups of responders, 3 between affected individuals, as well as 4 between individ-

uals and responders and 5 directly between individuals and management if possible.

Finally, emergency management may be able to obtain environmental information

directly from sensors 6 . The two main types of communication are information col-

lection for emergency management and provision of information to the individuals

in affected areas, using various channels. Some channels may allow two-way com-

munication, others work only uni-directional. Here, we are concerned predominantly

with communication channels 3 , 4 , 5 and 6 , which are those that cannot rely on

specialised or specifically provided communication technology (as 1 and 2 can).

In case of emergency, all available communication channels need to be used. Tra-

ditional emergency communications delivered via a central communication channel

is to known recipients and relies on specific hardware with the individual (radio,

phone etc.). If we want to exploit any existing technology in a vicinity, we need

some way of managing the information about its capabilities and its limitations under
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certain circumstances. Because traditional mechanisms of communication may be

interrupted by a disaster (e.g. phone networks) having the ability to provide large-

scale communication in other ways may be important. In situ large-screen displays

are potential communication media. It is conceivable that in situ displays can also

be used to gather information and send it back to a central point. We explore this

further in Sect. 12.4.

In this chapter, we describe a modelling approach to explore the use of large-

screen displays for emergency communication. Section 12.2 gives an overview of

how we have used this modelling approach to support interactive medical devices

in different contexts of use. We then go on in Sect. 12.3 to show how this can be

applied to understanding how public interactive displays (such as those described in

case study 5) might be used in emergency situations. Section 12.4 explores a larger

example from the area of emergency communication. In Sect. 12.5, we compare our

approach with those from related work and conclude this chapter with a summary in

Sect. 12.6.

12.2 Background

In earlier work, we investigated ways of modelling the interactions of a system or

device to understand how it might be compromised when used in particular situa-

tions where environmental factors could interfere with normal methods of interaction

(Bowen and Hinze 2012). The intention was to be able to inform users about these

compromises so that they could adapt their use (so here, the user becomes context-

aware and adaptive rather than the system) in order to successfully use the system

differently. By creating models of interactive systems and their widgets, and charac-

terising these by their interaction types (which in the broadest sense can be described

as visual, audible, tactile etc.), we could then create relations to models of locations

and limiting factors which subsequently enabled reasoning about the effects of these

limiting factors.

This approach allows us to answer the following sorts of questions about interac-

tive systems (S and T) in various situations of use (L and M):

∙ Can S be used in L?

∙ Is it better to use S or T in L?

∙ What does the user need to be aware of when using S in L?

∙ If L becomes M what effect does this have on S?

The answers can then be used to inform users and allow them to make decisions

about which devices to use when, or to understand that how they use the device or

system may need to change.

We start with an initial model of the interactive system which describes the inter-

action possibilities in terms of the widgets the system has (buttons, menus, displays

etc.) and the categories, or types of these widgets which informs the nature of the

interaction. For example, a button which requires touch for interaction can be labelled
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as haptic, whereas an alarm which sounds in a given condition would be categorised

as audible. These are lightweight descriptions which aim to capture the essential

elements only, so we do not describe the low-level descriptions of physical charac-

teristics of widgets mentioned in Chap. 9 for example. The interaction information

from this model is then combined with a model of a given situation of use, which are

properties of different situations relating to environmental attributes (such as noise

and lighting levels), tangible properties (which for our previous work in the medical

domain were things like patient/practitioner ratios), as well as less tangible attributes

such as the levels of stress experienced by users in a given location.

The models consist of descriptions and relations, and as such can be expressed,

and reasoned about using a variety of formalisms or notations. From the interaction

and location properties, we create a relationship between types of interaction and

location attributes where the interaction would be adversely affected. For example,

an audible widget (such as an alarm) would be adversely affected by a noisy environ-

ment (as the alarm might not be heard). Previously, we showed how ontologies could

be used for the purpose of describing the interaction properties and location factors

and for creating the relations between them (Bowen and Hinze 2012). We then used

the semantic web reasoning language, SWRL (Horrocks et al. 2004a) within the

ontology tool Protégé (Gennari et al. 2002) to generate classes of affected devices

in given locations. Subsequently, we incorporated the reasoning into a tool which

provides the relevant information (i.e. the answers to the questions listed above) in a

palatable form for users (Bowen et al. 2014).

The four questions listed above were originally developed from the requirements

of using medical devices outside of their intended usage scenario (for example, when

a syringe pump designed to be used in a medical ward is taken into an emergency

rescue helicopter). However, these questions are equally applicable in other domains

(for example, when Department of Conservation workers need to use field equipment

in new environments) and for other purposes (determining which equipment is most

suitable to be placed in situ in an environment which has changing conditions). Here,

we show how we can use the same approach to support dynamic reasoning about

interactive systems in emergency situations in order to support emergency manage-

ment scenarios. We are still focused on the problem of non-context-aware (and non

adaptive) interactive systems. However, rather than using the models to determine

how a user’s interaction may have to change when using a particular device in a dif-

ferent location, we consider how we might take advantage of in situ devices (such as

large-screen interactive public displays) in emergency situations by reasoning about

the available interactions, given some environmental properties which result from

that emergency. The information we are modelling remains the same, but the rea-

soning we perform and the intended results are different. As such, we have a fifth

question which we wish to answer (and so add to the list above), given a collec-

tion of interactive systems S1..n
in a location L, and a use-case U, in an emergency

situation E:

∙ Which of S1..n
in L can satisfy U in E?

http://dx.doi.org/10.1007/978-3-319-51838-1_9
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One of the differences here is that we are now considering situations where the

situational factors are not fixed, but rather occur due to some event and may change

over time. However, the ability to reason about their effect remains the same, albeit

more dynamic, and so we extend our approach to incorporate this. We will still have

models of the interactive systems and their widget types, but in this case, the models

will be for all interactive systems we know about in a given geographical location

that we can utilise for some form of emergency management or communications. The

reasoning rules will allow us to reason about what type of event attributes impact

particular types of interaction—and therefore particular interactive systems in the

domain. These will be used in conjunction with dynamic models of actual effects of

an event as it occurs. We give details of this in the following.

12.3 Models and Reasoning

We create models for each of the information types involved in the reasoning. The

first are the sets of properties of the interactive systems and devices which are

known to exist in a given location. For our previous work with safety-critical medical

devices, we typically already had initial models (based on the presentation models

of Bowen and Reeves 2008) from which we could automatically extract widget and

interaction information. As the interactive systems we are now dealing with are not

safety critical, this is less likely to be the case, and so we manually create the sets of

properties of interest. These are the types of interactions the widgets of the system

provide. The second model describes the relationships between interaction types and

all known possible effects that may result from an emergency event. In their simplest

form, these can be characterised as a binary relation where a factor affects a widget
type, such as noise affects audible, for example. However, in practice, the range of

properties and effects are much more complex and include variable attributes (actual

decibel levels of noise volume perhaps where the level affects different types of audi-

ble output). In this section, we primarily focus on binary relations as we describe the

approach generally, and we will expand on these to show more complex relationships

in Sect. 12.4 where we present a larger example.

We consider every possible effect that may hinder a particular type of interaction

as the basis to build the relation used in the reasoning. The interaction types of the

systems and the effect relation are considered to be “fixed” models, in that they can

be created ahead of time and describe the things we already know and which do

not change. Then, there is a dynamic model which is created when an event occurs.

This contains only the event factors which are relevant in the given scenario, i.e.

result from the event. It is these dynamic factors that are used to reason about the

availability of both interactive systems and their interactive capabilities in the given

emergency situation. The final description generated from the reasoning is a subset

of devices containing a subset of their interactive capabilities, which can then be used

to make decisions about which to use for any given use-case. That is, we choose from
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this subset of systems based on which still have the required interactions available

for our needs.

There are many different ways of describing the models and reasoning about them

(Bowen et al. 2014). Here, we describe the attributes and properties as sets to show

the effects of the relations, but we can practically implement the reasoning described

in several different ways, including following the ontology approach used previously.

This is particularly useful for automatic reasoning on multi-faceted attributes with

more complex relations, such as those we will present in our larger example.

The large interactive displays described in the case study are typical of the types

of systems we may wish to exploit for information provision or data gathering in

an emergency scenario. Suppose that both the Domain Mall Interactive Display and

the Magic Carpet are located in an area we wish to incorporate into our emergency

planning scenario (a large shopping mall for example). We can create initial fixed

models for their interactivity (which we separate into input and output interactions)

as follows:

Magic Carpet INPUT = {Touch}

Magic Carpet OUTPUT = {Visual, Audible}

Domain Mall Display INPUT = {Motion, Location}

Domain Mall Display OUTPUT = {Audible}

The full set of interactions for each of these systems is then the union of their input

and output sets. The set of all possible interactions for any given collection of devices

in a domain is the union of their respective interaction sets.

The second fixed model is the relation of effects to interaction types (e.g. Noise ↦
Audible). We have a set of all known situational factors and create a many-to-many

relation between this and the set of interactions. Given the example systems above

and an assumed set of factors, we can describe the following:

INTERACTIONS = {Touch, Visual, Audible, Motion, Location}

FACTORS = {Noise, Heat, Vibration }

EFFECTS = {Noise ↦ Audible, Heat ↦ Touch }

This is an example of the simplest type of relation, the binary relation where a named

factor affects an interaction. However, in real-world scenarios, the effects are typi-

cally multi-faceted, as we will see later in our larger example. The dynamic model

of scenario factors is generated in a given emergency situation. Suppose, we have

a bomb warning in a public area which has led to the sounding of the evacuation

alarms, from this we can determine that for this scenario:

FACTORS = {Noise}



326 J. Bowen and A. Hinze

Our emergency management requirements for this scenario are to provide additional

information to assist with the safe evacuation of people by directing them to partic-

ular exits and keeping them away from specific areas of the building. We therefore

only need to consider the available output interactions. We take the set of known

factors and restrict it to create the current effects relation (a subset of the elements in

effects) using the dynamic event factors. So here, we now have {Noise ↦ Audible}.

We then retrieve all interactions in the relation for these factors ({Audible}) and

remove these affected interaction(s) from the interaction set of each device to gain

an overview of remaining interactive availability, that is, the complement of affected

interactions with respect to interactions:

AVAILABLE_INTERACTIONS =

INTERACTIONS⧵AFFECTED_INTERACTIONS

If the result is the emptyset, ∅, there are no available interactions remaining for a

system and we cannot use it in the given scenario. If the remaining interactions are

a subset of total interactions, then we can use the system in a restricted capacity,

otherwise we can use it fully.

For this example then, the remaining interactions for the Domain Mall Display

and Magic Carpet would be:

Domain Mall Display = {Visual, Audible}⧵{Audible} = {Visual}

Magic Carpet = {Visual}⧵{Audible} = {Visual}

So we can use both of these devices, but the Domain Mall Display only in a limited

capacity to display information.

In order to support automated reasoning about more complex scenarios and fac-

tors, we have shown previously how we can model these relationships in an ontol-

ogy using the Protégé tool (Gennari et al. 2002). Figure 12.2 shows a snippet of the

class hierarchy for the medical device example. The members of “WidgetsRestrict-

edByEvent” are populated by the first level of reasoning using rules such as:

Widget(?w),

hasfactor(Event, ?f),

restrictsWidget(?f, ?w)

->WidgetsRestrictedByEvent

So, if an event has a factor that restricts a widget, then that widget is categorised by

the reasoner as one of the widgets restricted by that event based on their interaction

type. Similarly, we can create categories for systems affected by events (those which

have widgets in the affected category) and so on, to expand the descriptions and

generate the required information. When an event occurs, we use the effects it has as

parameters to the reasoning rules.
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Fig. 12.2 Example of the ontology hierarchy

Typically, the sets of interactions and event factors will be larger and more com-

plex than the simplistic values given above. Noise, for example, can be considered at

a more granular level within certain ranges of volume. We want to incorporate this

richness in order to be more precise about not only the details of the factors, but also

the detail of the interactions. So rather than just considering how the system can be

interacted with in terms of its categorisation, we also include details of what types
of information are associated with these interactive categories.

The Domain Mall Display for example has different types of visual outputs it can

display—images, text etc. Other systems, such as interactive maps, may be more lim-

ited, while others may have a larger range of capacities. It may be the case that only

some of these are affected by different levels of event effects and so all of the models

need to be expanded to incorporate this. These multi-faceted attributes can also be

considered within an ontology. We can then use the same approach by modelling the

event factors as objects with multiple facets of interest and extend the widget inter-

actions to include detail around types of information. A more realistic set of factors,

interactions and effects, therefore, is shown in the larger example in the next section.

12.4 Earthquake Emergency Management Example

We expand on our basic theory to describe how we can use this approach with more

complex interactive systems in scenarios with a variety of more interesting proper-

ties. The example situation is that of an earthquake, with affected areas being those
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(a) Train Station (b) In-Train Display

(c) Public Display (d) Large-screen Advertisement

Fig. 12.3 Large-screen public displays

found in a typical urban setting, e.g. shopping malls, living quarters, train stations,

central business district (CBD) and indoor and outdoor amusement parks.

Communication in Earthquake Emergency
The types of large-scale displays one would encounter in such areas range from sim-

ple moving LED displays to announce the arrival of the next train (see Fig. 12.3a,

b), interactive urban information screens (e.g. displaying maps and local information

as in Fig. 12.3c, Kostakos et al. 2012), dynamic advertisement screens (Fig. 12.3d),

media facades (Köster et al. 2015), multi-screen displays, sensor-equipped screens

for environmental monitoring, to interactive art installations (e.g. using Sensacell

technique
1

or using cameras, sensors and motion controllers Fortin et al. 2013).

Interactive large-scale displays can capture input from motion (proximity sensor)

and touch (touch screen elements) and provide output visually via the display or

audibly via speakers.

In case of emergency, we may want to use screens and displays differently from

their ordinary usage pattern. Some behaviours that are built-in (e.g. the response to

inputs in normal usage) might be usefully employed in an adapted manner. Others

might need to be used in a radically different way to their original design intention

(e.g. for providing illumination or giving directions). The emergency usage scenario

1
http://www.sensacell.com.

http://www.sensacell.com
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does not contain pre-defined event effects as our previous medical example did (see

Sect. 12.2), rather the situation needs to be evaluated as it develops. For each sce-

nario, the applicable effects need to be identified and it then needs to be reasoned

which elements of the displays can or cannot be used due to restrictions.

In the aftermath of an earthquake, there will be increased risk of collapsing build-

ings, landslides during rain and liquefaction.
2

Communication tasks for such an

example that could be supported via the large-scale displays would be:

∙ Inform: rescuers might wish to inform people in the emergency area about the

situation and warn about potential aftershocks (using text, images, audio).

∙ Direct: directions may need to be given to both first-response rescuers as well as

affected people. Examples are directions towards meeting points, safe areas, med-

ical help or away from dangerous areas (using text information, maps or arrows,

possibly via several screens).

∙ Warn: warnings about localised danger of collapsing buildings or areas of lique-

faction (so-called red zone), or about dangerous volatile substances such as carbon

monoxide risk or chemical hazards (e.g. via images, voice or alarm sound).

∙ Interact: to gain an overview of the situation, rescuers may wish to identify how

many people are located in a restricted area and their particular needs (e.g. med-

ical)

∙ Measure: any sensors on a display may be employed to gain further information

about the local situation: stability of the ground, level of chemicals, heat, etc.

Not all displays can equally support all activities and interactions. For example,

the communication via displays may further be hindered by hazards that affect the

visibility, such as darkness, dust, steam, glare, (partially) broken display and acces-

sible distance to display. Audio signals may have to be used in addition to other

information or on their own. Audio signals may be impaired by environmental noise

before or during the earthquake (so-called artillery-like “earthquake booms”)
3

and

after (e.g. from collapsing buildings or broken pipes) or obscured by broken speakers.

The earthquake survivors might be injured, disoriented, alone or in groups, trapped

inside or outside. They may be locals or tourists, with or without knowledge of the

location or local language, mobile or impaired. We now describe a selection of spe-

cific situations and their communication needs. Based on the types of communication

tasks described above and the situations that helpers and affected individuals might

find themselves during an earthquake, the following communication tasks may arise.

Directing people towards medical help: Groups of affected individuals may be sit-

uated in, or move through, the disaster area, many of which may need medical help.

One of the first responses is to set up medical emergency centres and to announce

their locations to people in the affected areas. During the initial phase of medical

response (moving from so-called solo treatment areas to disaster-medical-aid cen-

tres), traditional communication relied on runners (Schultz et al. 1996). The location

2
Liquefaction is a process in which during an earthquake soil is rearranged such that it behaves

more like a liquid than a solid.

3
http://earthquake.usgs.gov/learn/topics/booms.php.

http://earthquake.usgs.gov/learn/topics/booms.php
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of treatment areas and (once these have been established) the locations of medical-aid

centres need to be made known to affected individuals. The communication of dedi-

cated locations may use one, or several, of a variety of location indicators, such as the

name of a place or its address. These, however, may only be useful for people with

local knowledge. Better location indicators may be widely visible landmarks, maps,

signs and arrows, accompanied by simple indications of distance. LED-based dis-

plays (such as the ones shown in Fig. 12.3a, b) could be used to display text (such as

name, address, distance) and simple signs (e.g. arrows) but could not serve complex

maps. Using directional arrows relies on clear positioning information of the display

and may be liable to repositioning due to damage. Information screens, advertise-

ment or media facades (see Fig. 12.3c, d) can serve text, signs and complex maps.

Directional arrows are safer to use on stationary facades as smaller displays may have

been dislocated.

Warning about danger area: Some areas may be dangerous to enter after an earth-

quake, for example large or overhanging buildings that are in danger of collapsing,

or areas in which the ground is unstable. Signage directly affixed to buildings or near

these areas can be used to prevent people from entering. Communication via screens

or facades (see Fig. 12.3c, d) may use warning signs, images, videos and text, with

possible use of additional audio warnings. Displays in close proximity to the area

would need to name the location, and use maps and signs. As with directing people,

warnings using LED are restricted to text and simple signs with possible warning

audio.

Interacting with people in a location: In order to gain intelligence about the emer-

gency situation on the ground, and about the people affected, interaction with indi-

viduals that are located in the emergency area is crucial. Interaction may be directly

via screens that have input options (such as urban information screens and art instal-

lations), or indirectly by alerting people to available communication channels. For

example, LED screens, advertisements and media facades may show emergency tele-

phone numbers or social media contacts. Screens with interaction capabilities may

be used depending on the supported functionality, such as microphones, cameras and

touch screens.

Other communication goals may be the interaction with people in enclosed

spaces (inside collapsed building), coordination of numerous groups of first response

helpers, and provision of general information about the situation (equivalent to using

the billboard to provide information to people in a hotel without electricity).

Modelling of Earthquake Example
The nature of the data we model for both interactive systems and event effects is now

extended to consider more specific attributes as well as valued attributes. Figure 12.4

shows how these can be used to build up more complex relations than the previous

binary examples. It is no longer the case that an event effect simply restricts a type

of interaction. The level of the effect (e.g. decibel level for noise) affects a particular

type of interaction data of a system. So rather than just considering an output inter-

action to be “visual”, we use a more finely grained description which considers more

detail of the interaction (not just how it occurs) which might include items such as
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Fig. 12.4 More detailed relation of effects on interaction data types

Fig. 12.5 Icons

text, images, voice audio and alarm audio. The relation then is more specific being

between levels of effects and defined items of interaction data.

When we want to decide which of the public displays in our emergency communi-

cation area are available for us to use, we also need to identify the type of information

we wish to communicate (so again, we aim to answer the question “which system is

the best to use for this scenario?”) We also want to find out which (if any) of the avail-

able systems can provide this feature in the current event. For example, if the location

of the Media Facade has obstructions on the ground which prevent people getting

closer to it than 50 m, then it is not useful for displaying detailed text instructions

as people cannot get close enough to read them. We can, however, use it to display

images (which might include standard emergency representations such as a red cross

to indicate medical facilities or a no entry sign) or simpler, easily recognised icons

such as those shown in Fig. 12.5 for way finding or access control.

These can be viewed, recognised and identified from further away, and so will be

affected by different values of the event attribute. Legibility of public displays is an

important consideration, especially when being used in emergency scenarios. Work

by Xie et al. (2007) has proposed methods to model and validate sign visibility during

design and prototyping phases and we can imagine incorporating the data produced

by such a modelling process into our effects relation.

The full data we must now encapsulate in our models includes:

∙ interaction sets for all interactive systems available in a given geographical area,

∙ data types of the interaction sets,

∙ event effects, and attribute values and

∙ requirements of data we wish to collect or output to manage the event
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In the earthquake scenario described above, we have access to the following devices

and interactions in the geographic location of interest:

LED Display INPUTS = {}

LED Display OUTPUTS = {Text, Icons, Numbers}

Info Display INPUTS = {Touch}

Info Display OUTPUTS =

{Text, Icons, Numbers, Maps, Images, VoiceAudio, Alarm}

Media Facade INPUTS = {}

Media Facade OUTPUTS = {Images, VoiceAudio}

As we are able to gather information about the event and its effects in the given

location, we can begin to reason about the interactive systems and their available

interactions in the manner described in Sect. 12.3. Now, however, we reason about

the effects at a per system level, rather than for all systems, as the particular effect

attributes and their values may differ from system to system depending on their loca-

tion. We map the effect to the system based on precise geographical coordinates.

Our requirements are to provide information in the form of maps, text and icons

to indicate location of medical services, while at the same time trying to gather infor-

mation about the number of people in the geographical area. Our goal is to identify

which (if any) of the public displays can be used to display any or all of these types

of data (which have visual capacity for these items in this event scenario) and which

(if any) can be used to gather data from people (can both display textual instructions

and accept touch inputs which can be used as a simple counting system).

The general environmental factors of the earthquake in the specified location

are noise, unstable ground, dust, obstructions and unsafe buildings. The particular

effects for each of the interactive displays we are considering are expressed at the

more detailed levels for the known parameters as we can identify them. For exam-

ple, ground obstructions in front of a display are expressed in terms of estimated

distance.

LED Display location effects = {Noise[>100 Db], Distance[>30 m]}
Info Display location effects = {Noise[30–50 Db], LightLevels[dark]}
Media Facade location effects = {Noise[50–75 Db], Vibration}

This allows us to generate the sets and types of available interactions for each

of the displays and then coordinate our information provision on a best-fit basis.

Using a valued-relation, such as that shown in Fig. 12.4, we can now reason about

these effects. The resulting available interaction sets are generated by removing the

affected interactions based on the current effects relation:
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LED Display AFFECTED_INTERACTIONS =

{Text, Numbers, Maps, VoiceAudio, Alarm}

Info Display AFFECTED_INTERACTIONS = {VoiceAudio}

Media Facade AFFECTED_INTERACTIONS = {VoiceAudio}

LED Display AVAILABLE_INPUTS = {}

LED Display AVAILABLE_OUTPUTS = {Icons}

Info Display AVAILABLE_INPUTS = {Touch}

Info Display AVAILABLE_OUTPUTS =

{Text, Icons, Numbers, Maps, Images, Alarm}

Media Facade AVAILABLE_INPUTS = {}

Media Facade AVAILABLE_OUTPUTS = {Images}

Finally, we consider again the requirements we have for this emergency situation,

which are to provide information in the form of maps, text and icons as well as

gathering input using touch. From the restricted sets of interactions, we see that we

can use the Info Display to gather information, and all three of the devices can be

used to provide information but with limitations on which types of information they

can display. Over time, the event effects may change, for example the noise level

in the LED Display location may drop to below 50 Db; when we become aware of

the changes, we can recalculate the effects and change our information provision as

required.

We can use our previous approach of an ontology and reasoner to describe these

properties and infer the information shown above. We have been using the Protégé

(Gennari et al. 2002) tool to build ontologies using the OWL ontology language.
4

This type of ontology consists of classes, individuals (or instances) and properties.

We create two classes initially, InteractiveDevices which has three instances

(InfoDisplay, MediaFacade and LEDDisplay) and InteractionType with eight

instances (Out_Alarm, Out_Images, Out_Maps, Out_Numbers, Out_Icons, Out_Text,
In_Touch and Out_VoiceAudio). Properties are binary relations on individuals, and

we use two different types of property. First, an object property (which relates

individuals) called hasInteractionType which relates instances of the Interaction-
Type class to instances of InteractiveDevices, e.g. LED Display hasInteractionType
Out_Text. We also create the inverse of this property InteractionTypeOf and the

ontology reasoner automatically populates this relation. We then create datatype

properties (which relates individuals to data literals) for the valued properties: has-
NoiseLevel, hasDistanceFrom, hasLightLevel etc. and populate this with the indi-

vidual instance values for this scenario, e.g. MediaFacade hasNoiseLevel “>= 50”.

Figure 12.6 shows the visualisation of the classes and relations.

Once we have added all of the known data to the ontology (which consists of

both the pre-known device data as well as the current scenario data), we can cre-

ate additional classes, AffectedInteractions, AvailableLEDDisplayInteractions etc.

which will provide the dynamically generated results from the SWRL reasoning.

4
http://www.w3.org/TR/owl-guide.

http://www.w3.org/TR/owl-guide
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Fig. 12.6 Ontology structure for earthquake example

An example rule is shown below, describing the pattern to identify all devices

with output affected by noise levels of more than 100 db.

Interactive_Devices(?device),

Interaction_Type(?output),

hasInteractionType(?device, ?output),

hasNoiseVolume(?device, ?noise),

greaterThan(?noise, 100),

SameAs(?device, LED_Display)

-> hasAffectedOutput(?device, ?output)

12.4.1 Use in Practice

As previously stated, while we can use Protégé in this way to support the modelling

and reasoning via an ontology, this is not a practical approach for non-expert use. In

order to solve this problem, we use the ontology data as the input to a custom-built

tool which provides an easy-to-use front-end. This enables a user to pose specific

questions such as “Can I use this device in this situation?” and provides relevant

information to support their choice. Figure 12.7 gives an overview of the components
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Fig. 12.7 Overview of tool structure

Fig. 12.8 Prototype of end-user tool

for such a tool. The ontology is built using the information from the device models

and rules generated by the domain experts. The data from the ontology then provides

the basis for the end-user tool. A second tool can be used to update the ontology if

new data emerges during the emergency scenario allowing the reasoning to remain

dynamic.

Such a tool must be tailored to the specific end-user and their requirements—

for example a local government emergency management body. We have previously

developed such a tool for use with our medical domain example (Bowen et al. 2014)

and suggest using the same approach to develop a tool for the emergency manage-

ment scenarios.

Figure 12.8 shows a proposed prototype interface for such a tool. An interactive

map allows the user to navigate to selected areas within the disaster zone, and this
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shows the public displays that are available in that area. These are then listed with

their available interactions to enable decisions to be made about which can be used

for different communication requirements. The current effects of the situation and

their locations are also shown. Clicking the “Update” button allows the user to add

or edit location effects enabling dynamic reasoning as the situation changes over

time.

So now, to find the answer to the question posed earlier: given a collection

of interactive systems S1..n
in a location L, and a use-case U, in an emergency

situation E:

∙ Which of S1..n
in L can satisfy U in E?

we can use such a tool. In the prototype of Fig. 12.8, each interactive system (S)

is listed along with its location (L) and the available interactions in the emergency

situation (E) to show which can be used to meet the use-case (U).

12.5 Related Work

We outline here related work on disaster management communications and informa-

tion provision using large-scale public displays as well as on semantic modelling for

interactive and context-aware systems.

12.5.1 Disaster Management and Communications

Much of the research focussing on the use of technology in disaster management

and communication relates to one of two things. Firstly, there are approaches which

consider how existing large-scale technological solutions can be used to gather, dis-

seminate and manage information in emergency situations. This may include things

like the use of social media and how shared information can be mined and utilised in

uncertain conditions (Lu and Yang 2011) or the use of in situ technologies built on

data gathering from RFID or sensor technologies communication via ad hoc wireless

networks (Yang et al. 2009). Secondly are approaches which look to create better cen-

tralised views of disasters for control centres through approaches such as interactive

mapping and two-way communications via, for example smartphones. An example

of this can be seen in Schöning et al. (2008), where smartphones are used as aug-

mented reality devices through combining cameras and paper maps to relay spatial

information.

Large shared physical displays and pinboards have a long tradition, for example

for fire-fighter support (Jiang et al. 2004). Increasingly, social media is used as aux-

iliary media type in disaster response (Yates and Paquette 2011; Horita et al. 2015)

for communication between affected citizens, helpers and response agency, typically

in an ad hoc fashion. Current use of displays in public places is typically targeted to
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serve for advertisements, traffic information or as elements of public art. The latest

models of large-scale displays can now be used for delivering multimedia content and

are context-aware (i.e. using sensor input to deliver content-specific content) (Davies

et al. 2014). To remedy the lack of information, the use of large-scale displays has

been explored in Olech et al. (2012). To avoid lost time when searching for the best

route to a site, or for coordinating first responders, they propose an interactive pin-

board. Public screens being used as digital pinboards had previously been used for

artistic purposes or social communication (Cheok et al. 2007; Hosio et al. 2010; The-

len et al. 2010). Interactive public displays are used to broadcast information (i.e. as

digital signage playing video, animation, photographs) or interactively. Ojala et al.

(2012) explored the use of interactive features and found that beyond maps and con-

sumer information, services were often unexpectedly popular or unpopular and not

in keeping with previously stated information needs. They discovered that location is

a major factor for the success of a service. These displays were placed purposefully

and did not re-use in situ hardware.

The use of such pre-existing technology available in situ for signage and commu-

nication in emergency situations has been little explored. For example, Majumder

and Sajadi (2013) mentions the option of using large displays for emergency response

without giving further details. Both Rauschert et al. (2002) and Olech et al. (2012)

propose the use of large-screen displays to support interaction and information gath-

ering for emergency management. Rauschert et al. (2002) use a multi-modal inter-

face using speech and gesture recognition integrated with GIS functionality. Their

project was concerned with aspects of computer vision and speech processing. It

assumed the availability of necessary hardware in appropriate places and was not

concerned with possible restrictions due to the emergency or disaster that is being

managed. Similarly, Olech et al. (2012) aims to provide first responders with so-

called hotspot locations at which all important information is being displayed. Again,

the focus was on software features, based on the assumed available hardware support.

Both these approaches presuppose tidy access and clean communication channels.

By contrast, our work aims to establish information flow using existing in situ (inter-

active) public displays of varying quality and capability and addresses situations that

are potentially considerably less structured and orderly.

12.5.2 Semantic Modelling for Interactive
and Context-Aware Systems

The system and techniques introduced in this chapter are often discussed in relation

to context-aware systems.

Context-aware systems measure their context (e.g. location, user, environment

etc.) and change their behaviour based on the measured context (Schilit et al. 1994).

Context-aware systems are closely related to event-based systems, i.e. systems that

react to the detection of events or patterns in their data input stream (Hinze et al.
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2009). Examples of event-based systems are those that analyse social media pat-

terns in order to detect events such as earthquakes (Sakaki et al. 2010), or the use

of sensor networks in the detection of volcano eruptions (Werner-Allen et al. 2006).

The latter system is context-aware as the locations of each of the sensors are taken

into account. Other context-aware systems are those that deliver location-based data

to mobile users (Cheverst et al. 2000), or support location-based reading of digital

books (Hinze and Bainbridge 2015).

The systems described in this chapter share characteristics with context-aware

systems (i.e. measuring of contextual data) but are themselves not context-aware.

Instead they communicate to the user the implications about the use of a given inter-

active system in a given context.

Related work in modelling of, and reasoning for, interactive and context-aware

systems spans a number of research areas. Traditional knowledge-based systems

(KBS) in the field of artificial intelligence have the goal of replicating common-

sense reasoning ability. They use a knowledge base of facts to infer further facts

based on rules and conditions, typically encoded in the inference engine (Lenat and

Guha 1989). Large ontologies, such as Cyc, contain hierarchies of generic to field-

specific knowledge, and rules that give meaning to these facts.

Modelling and reasoning about interactive systems, on the other hand, are a means

to ensure the systems’ correctness and reliability (Back et al. 1999). The use of

ontologies and semantic reasoning is only one way to explore a system’s behaviour.

Our approach uses the ontology to model different contexts of use.

Our approach is most similar to the ones used in a semantic web context (Berners-

Lee et al. 2001). Semantic reasoning in the semantic web is used to infer facts and

relationships between concepts (Horrocks et al. 2004b). Our work uses such semantic

reasoning as a tool but does not focus on researching reasoning. Our approach is

rather a combination of lightweight reasoning as done in the semantic web context,

combined with concepts of event-based and context-aware systems.

12.6 Conclusions

12.6.1 Summary

In this chapter, we have discussed the use of models to capture both static and

dynamic attributes of interactive systems and their environments of use, with the

goal of allowing these to be used in non-standard ways to support communications in

emergency situations. While there may be many more types of properties and effects

than those we have envisaged here, the principles of our approach can be extended to

cope with these in the manner described. Similarly, while our initial work relied on

ontologies and reasoning using SWRL, there is no reliance on this approach and the

models can be used with other tools or methods to the convenience of those adopting

them.
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So far, we have shown two main uses for this type of context/interaction mod-

elling. The first being to support users of systems outside of their typical usage sce-

nario and the second (described in this chapter) to enable a radical approach to emer-

gency communications by providing information about available interactive systems

and their remaining behaviours in situations where these are limited by environ-

mental factors. This allows us to answer the sorts of questions posed in Sect. 12.2

regarding suitability of devices in given situations at a model/ontology level as well

as practically as discussed in Sect. 12.4.1.

There are other possible uses of these models, for example to support dynamic

configuration of multiple devices by exposing compatible interactive capabilities or

for remote management of semi-autonomous systems (like the nuclear power plant

from case study one for example) in hazard cases. However, we leave further discus-

sion of these to future work.

12.6.2 Limitations and Future Work

Although we have presented a method for modelling different types of effects (sim-

ple binary effects as well as more fine-grained valued effects such as particular noise

levels), there is no guarantee that we can capture and model every possible effect

from an unexpected event. This is partly due to the unavailability of all information

in an ongoing situation (so there may be things we do not know about which are

therefore not included in the model); It may also be due to “new” effects that have

not been experienced before which do not, therefore, fit into the modelling scenario;

There are also some effects which may be specialised to an individual (distance of

vision or acuity of hearing) or which are composed of multi-layered facets that inter-

act with each other (rubble in front of a display may not only lead to people remaining

at a certain distance from the interactive system, but may also mean they are at an

angle which could also affect vision of anything displayed). Further investigations

are required to further understand some of these more complex factors in order to

find ways of including them in the modelling approach.

The starting point for the models and subsequent user tools shown here are an

ontology. However, building and using ontologies, even with support tools, are both

time-consuming and error prone. A thorough understanding of the domains and the

reasoning required must be investigated prior to the ontology development. We have

experimented with different approaches to the reasoning which do not rely on the

ontology. We have also investigated the use of formal modelling (such as formal

concept analysis) as a mechanism for supporting the development of the ontology.

Both of these strands of research are ongoing.

The proof-of-concept tool suggested here in the prototype shown in Fig. 12.8 is

based on a similar tool we have developed for our work in the medical domain. A

fuller design project is required to analyse the requirements for this tool with relevant

emergency personnel. This should be followed by usability evaluation and testing

within the domain, in order to fine-tune the types of information provided and the

mechanisms for requesting and updating information.
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Chapter 13
Enhanced Operator Function Model
(EOFM): A Task Analytic Modeling
Formalism for Including Human Behavior
in the Verification of Complex Systems

Matthew L. Bolton and Ellen J. Bass

Abstract The enhanced operator function model (EOFM) is a task analytic

modeling formalism that allows human behavior to be included in larger formal sys-

tem models to support the formal verification of human interactive systems. EOFM

is an expressive formalism that captures the behavior of individual humans or, with

the EOFM with communications (EOFMC) extension, teams of humans as a col-

lection of tasks, each composed representing a hierarchy of activities and actions.

Further, EOFM has a formal semantics and associated translator that allow its repre-

sented behavior to be automatically translated into a model checking formalism for

use in larger system verification. EOFM supports a number of features that enable

analysts to use model checking to investigate human-automation and human-human

interaction. Translator variants support the development of different task models

with methods for accounting for erroneous human behaviors and miscommunica-

tions, the creation of specification properties, and the automated design of human-

machine interfaces. This chapter provides an overview of EOFM, its language, its

formal semantics and translation, and analysis features. It addresses the different

ways that EOFM has been used to evaluate human behavior in human-interactive

systems. We demonstrate some of the capabilities of EOFM by using it to evaluate

the air traffic control case study. Finally, we discuss future directions of EOFM and

its supported analyses.
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13.1 Introduction

In complex systems, failures often occur as a result of unexpected interactions

between components including contributions from human behaviors

(Hollnagel 1993; Perrow 1999; Reason 1990; Sheridan and Parasuraman 2005). To

design and analyze complex systems, human factors engineers use task analysis (Kir-

wan and Ainsworth 1992) to describe required normative human behaviors. Erro-

neous human behavior models provide engineers with means for exploring the poten-

tial impact of human error (Hollnagel 1993; Reason 1990). To support design and

analysis, Enhanced Operator Function Model (EOFM) (Bolton et al. 2011), based

on the Operator Function Model (Mitchell and Miller 1986), was developed to allow

engineers to represent task analytic human behavior formally and to include both nor-

mative and erroneous human behavior in formal verification analyses. EOFM with

communication (EOFMC) further supports models with coordination and commu-

nication among a team of people (Bass et al. 2011).

The analyses supported by EOFM and EOFMC have evolved from older tech-

niques that use formal verification to evaluate human-automation interaction (Bolton

et al. 2013). In particular, EOFM is similar to techniques that attempt to include

human behavior in formal verification analyses by using formal interpretations of

task analytic models. As such, EOFM supports similar sorts of evaluations offered by

other systems such as AMBOSS (Giese et al. 2008), ConcurTaskTrees (Aït-Ameur

and Baron 2006; Paternò and Santoro 2001; Paternò et al. 1997), User Action Nota-

tion (Hartson et al. 1990; Palanque et al. 1996), HAMSTER (Martinie et al. 2011,

2014), and various approaches that require task concepts to be directly represented

in other modeling formalisms (Basnyat et al. 2007; Degani et al. 1999; Fields 2001;

Gunter et al. 2009). However, EOFM and EOFMC distinguish themselves by the rich

feature set and the analyses they support. EOFM and EOFMC have formal semantics

that give the task behaviors specified by the XML language unambiguous, mathe-

matical meanings. The semantics serve as the basis for a series of translators that

automatically convert EOFMs, written in XML, into formal models that can be used

by a model checker. These translators support a number of different features that

generate alternate task models with erroneous behavior, properties that can be model

checked, and interface designs.
1

A deeper discussion about the place of EOFM in

the larger formal HAI literature can be found in Bolton et al. (2011, 2013).

This chapter provides a general overview of EOFM and EOFMC. This includes

a description of the EOFM-supported analysis process, EOFM and EOFMC syntax,

formal semantics, translation, and a description of different analyses that leverage

EOFM and EOFMC. As concepts are introduced, we illustrate some of EOFMC’s

capabilities with a variation of the air traffic control case study. Below, the case study

is introduced. This is followed by a discussion of EOFM and its capabilities along

1
The EOFM language specifications, translators, tools, documentation, and examples are freely

available at http://fhsl.eng.buffalo.edu/EOFM/.

http://fhsl.eng.buffalo.edu/EOFM/
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with applications to the case study. Finally, both the case study analysis results and

EOFM are generally discussed with pointers to additional applications and descrip-

tions of future research directions.

13.2 Case Study

To illustrate how EOFM can be used to evaluate a safety critical procedure involv-

ing human-human communication and coordination, we present a variation of Case

Study 2. Specifically, we present an EOFMC model where an aircraft heading clear-

ance is communicated by an air traffic controller (ATCo) to two pilots: the pilot flying

(PF) and the pilot monitoring (PM).

In this scenario, both the pilots and the air traffic controller have push-to-talk

switches which they press down when they want to verbally communicate informa-

tion to each other over the radio. They can release this switch to end communication.

For the aircraft, the Autopilot Flight Director System consists of Flight Con-

trol Computers and the Mode Control Panel (MCP). The MCP provides control of

the Autopilot (A/P), Flight Director, and the Autothrottle system. When the A/P is

engaged, the MCP sends commands to the aircraft pitch and roll servos to oper-

ate the aircraft flight control surfaces. Herein the MCP is used to activate heading

changes. The Heading (HDG)/Tracking (TRK) window of the MCP displays the

selected heading or track (Fig. 13.1). The numeric display shows the current desired

heading in compass degrees (from 0 and 359). Below the HDG window is the head-

ing select knob. Changes in the heading are achieved by rotating and pulling the

knob. Pulling the knob tells the autopilot to use the selected value and engages the

HDG mode.

AUTO
BANK 
LIMIT

SEL

5 25

HOLD

Fig. 13.1 Heading control and display
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The following describes a communication protocol designed to ensure that this

heading is correctly communicated from the ATCo to the two pilots:

1. The air traffic controller contacts the pilots and gives them a new heading clear-

ance.

2. The PF starts the process of dialing the new heading into the heading window.

3. The pilots then attempt to confirm that the correct heading was entered. They do

this by having the PM point at the heading window, contact the ATCo, and repeat

back the heading the PM heard from the ATCo.

4. If the heading the PF hears read back to the air traffic controller does not match the

heading he or she entered in the heading window, the PF enters the heading heard

from the PM during the read back. The PM then points at the heading window

again and repeats the heading he or she originally heard from the ATCo. This

process (step 4) repeats while the heading window heading does not match what

the PM heard from the ATCo. It completes if the heading the PF heard from the

PM matches what is in the heading window.

5. If the heading the ATCo hears read back from the pilots (from step 3) does not

match the heading the air traffic controller intended, then the entire process (start-

ing at step 1) needs to be repeated until the correct heading is read back.

6. The PF engages the entered heading.

In what follows, we will show how EOFM concepts can be applied to this appli-

cation and various EOFM features are introduced.

13.3 Enhanced Operator Function Model (EOFM)
and EOFM with Communication (EOFMC)

EOFM and EOFMC (henceforth collectively referred to as EOFM except where

additional clarification about EOFMC is required) are task analytic modeling lan-

guages for representing human task behavior. The EOFM languages support the

formal verification approach shown in Fig. 13.2. An analyst examines target sys-

tem information (i.e. design document, observational data, manuals) to manually

Translation
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Fig. 13.2 Flow diagram showing how the verification method supported by EOFM works
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model normative human operator behavior (which can be a single human operator

or a team of human operators) using a task analytic representation, a formal sys-

tem model (absent human operator behavior), and specification properties that he or

she wants to check. The task analytic model is then automatically translated into the

larger formal model by a translation process. As part of this translation process, the

analyst can specify a maximum number of erroneous behaviors that will be mod-

eled as optional paths through the formal representation of the human operator task

behavior. The formal system model and the specifications are then run through the

model checker that produces a verification report. If a violation of the specification

is found, the report will contain a counterexample. Our visualizer uses the coun-

terexample and the original human task behavior model to illustrate the sequence of

human behaviors and related system states that led to the violation.

EOFM has an XML syntax that supports the hierarchical concepts compatible

with task analytic models. This represents task behavior as a hierarchy of goal-

directed activities (representing the behaviors and strategic knowledge required to

accomplish a goal) that can decompose into sub-activities (for achieving sub-goals)

and, at the bottom of the hierarchy, atomic actions (specific things the human oper-

ator(s) can do to the environment). The language allows for the modeling of human

behavior, either individuals or groups, as an input/output system. Inputs may come

from other elements of the system like human-device interfaces or the environment.

Output variables are human actions. The operators’ task models describe how human

actions may be generated based on input and local variables (representing percep-

tual or cognitive processing as well as group coordination and communication). To

support domain specific information, variables are defined in terms of constants,

analyst-defined types, and basic types (reals, integers, and Boolean values).

To represent the strategic knowledge associated with procedural activities, activ-

ities can have preconditions, repeat conditions, and completion conditions (Boolean

expressions written in terms of input, output, and local variables as well as con-

stants) that specify what must be true before an activity can execute, when it can exe-

cute again, and what is true when it has completed execution respectively. Activities

are decomposed into lower-level sub-activities and, finally, actions. Decomposition

operators specify how many sub-activities or actions can execute and what the tem-

poral relationships are between them. Actions are either an assignment to an output

variable (indicating an action has been performed) or a local variable (representing

a perceptual, cognitive, or group communication action). Optionally an action can

include a value so that the human operator can set a value as part of the action.

All tasks in an EOFM descend from a top level activity, where there can be

many tasks. Tasks can either belong to one human operator, or, in EOFMC, they

can be shared among human operators. A shared task must be associated with two

or more associates, and a subset of associates for the general task can be identified

for each activity. This makes it explicit which human operators are participating in

which activity. While the activities in these shared tasks can decompose in the same

ways as their single-operator counterparts, they can explicitly include human-human
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communication (a non-shared activity cannot). For communication, a value (com-

municated information) from one human operator can be received by one or more

other human operators (modeled as an update to a local variable).

13.3.1 Syntax

The EOFM language’s XML syntax is defined using the REgular LAnguage for

XML Next Generation (RELAX NG) standard (Clark and Murata 2001) (see

Figs. 13.3, 13.4 and 13.5). These provide an explicit description of the EOFM lan-

guage and can thus be employed by analysts when developing their own EOFM and

EOFMC models.
2

Below we describe the EOFMC syntax. An example of the syn-

tax used in an actual model is shown in Fig. 13.7, with highlights showing specific

features.

XML documents contain a single root node whose attributes and sub-nodes define

the document. For the EOFM, the root node is called eofms. The next level of the

hierarchy has zero or more constant nodes, zero or more userdefinedtype nodes, and

one or more humanoperator nodes. The userdefinedtype nodes define enumerated

types useful for representing operational environment, human-device interface, and

human mission concepts. A userdefinedtype node is composed of a unique name

attribute (by which it can be referenced) and a string of data representing the type

construction (the syntax of which is application dependent). A constant node is

defined by a unique name attribute, either a userdefinedtype attribute (the name

attribute of a userdefinedtype node) or basictype attribute. A constant node also

allows for the definition of constant mappings and functions through the addition of

optional (zero or more) parameter attributes for defining function arguments.

The humanoperator nodes represent the task behavior of the different human

operators. Each humanoperator has zero or more input variables (inputvariable
nodes and inputvariablelink nodes for variables shared with other human operators),

zero or more local variables (localvariable nodes), one or more human action output

variables (humanaction nodes) or human communication actions (humancomaction
nodes), and one or more task models (eofm nodes). A human action (a humanac-
tion node) describes a single, observable, atomic act that a human operator can per-

form. A humanaction node is defined by a unique name attribute and a behavior
attribute which can have one of three values: autoreset (for modeling a single discrete

action such as flipping a switch), toggle (for modeling an action that must be started

and stopped as separate discrete events such as starting to hold down a button and

then releasing it), or setvalue for committing a value in a single action. This type of

human action has an additional attribute that specifies the type of the value being set

2
Note that although EOFM does not have its own language creation tool, the RELAX NG lan-

guage specification allows professional XML development environments (such as oXygen XML

Editor; https://www.oxygenxml.com/) to facilitate rapid model development with code completion

and syntax checking capabilities.

https://www.oxygenxml.com/
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Fig. 13.3 A visualization of the EOFM Relax NG language specification that species EOFM

syntax (see Syncro Soft 2016 for more details). Yellow indicates constructs added to EOFM for

EOFMC. Other colors are used to indicate nodes representing identically defined syntax elements

across Figs. 13.3, 13.4 and 13.5. The language specification for activity and sharedeofm nodes can

be found in Figs. 13.4 and 13.5 respectively
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Fig. 13.4 Syntax visualization of the activity node from Fig. 13.3

Fig. 13.5 Syntax visualization of the sharedeofm node from Fig. 13.3

(a reference to a userdefinedtype or a basictype) or a reference to a local variable

which will contain the value to be set. A human communication action (a humanco-
maction node) describes a special type of setvalue action that a human operator can

use to communicate something (a value or the value stored in an associated variable)

to one or more other human operators.

Input variables (inputvariable nodes) are composed of a unique name attribute

and either a userdefinedtype or basictype attribute (defined as in the constant node).

To support the definition of inputs that can be perceived concurrently by multiple

human operators (for example two human operators hearing the same alarm issued
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by an automated system) the inputvariablelink node allows a humanoperator node

to access input variables defined in a different humanoperator node using the same

input variable name. Local variables are represented by localvariable nodes, them-

selves defined with the same attributes as an inputvariable or constant node, with

an additional sub-node, initialvalue, a data string with the variable’s default initial

value.

The task behaviors of a human operator are defined using eofm nodes. One eofm
node is defined for each goal directed task behavior. The tasks are defined in terms of

activity and action nodes. An activity node is represented by a unique name attribute,

a set of optional conditions, and a decomposition node. Condition nodes contain

a Boolean expression (in terms of variables and human actions) with a string that

constrains the activity’s execution. The following conditions are supported:

∙ Precondition (precondition in the XML): criterion to start executing;

∙ RepeatCondition (repeatcondition in the XML): criterion to repeat execution; and

∙ CompletionCondition (completioncondition in the XML): criterion to complete

execution.

An activity’s decomposition node is defined by a decomposition operator (an

operator attribute) and a set of activities (activity or activitylink nodes) or actions

(action nodes). The decomposition operator (Table 13.1) controls the cardinal and

Table 13.1 Decomposition operators

Operator Description

optor_seq Zero or more of the activities or actions in the decomposition

must execute in any order one at a time

optor_par Zero or more of the activities or actions in the decomposition

must execute in any order and can execute in parallel

or_seq One or more of the activities or actions in the decomposition

must execute in any order one at a time

or_par One or more of the activities or actions in the decomposition

must execute in any order and can execute in parallel

and_seq All of the activities or actions in the decomposition must

execute in any order one at a time

and_par All of the activities or actions in the decomposition must

execute in any order and can execute in parallel

xor Exactly one activities or actions in the decomposition must

execute

ord All activities or actions in the decomposition must execute in

the order they appear

sync All activities or actions in the decomposition must execute

synchronously

com All activities or actions in the decomposition must execute

synchronously, where information is transferred between

human operators
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temporal execution relationships between the sub-activity and action nodes in the

decomposition (its children). The EOFM language implements the following decom-

position operators: and, or, optor, xor, ord, and sync. The com decomposition

operator is exclusive to EOFMC. Some operators have two modalities: sequential

(suffixed_seq) and parallel (suffixed_par). For the sequential mode, the activities

or actions must be executed one at a time. In parallel mode, the execution of activ-

ities and action in the decomposition may overlap in any manner. For the xor, ord,

sync, and com decomposition operators, only one modality can be defined: xor and

ord are always sequential and sync and com are always parallel.

The activity nodes represent lower-level sub-activities and are defined identically

to those higher in the hierarchy. Activity links (activitylink nodes) allow for reuse of

model structures by linking to existing activities via a link attribute which names the

linked activity node.

The lowest level of the task model hierarchy is represented by either observable,

atomic human actions or internal (cognitive or perceptual) ones, all using the action
node. For an observable human action, the name of a humanaction node is listed

in the humanaction attribute. For an internal human action, the valuation of a local

variable is specified by providing the name of the local variable in the localvariable
attribute and the assigned value within the node itself.

Shared tasks are defined in sharedeofm nodes. Each sharedeofm contains two or

more associate nodes explicitly defining which human operators collaborate to per-

form the shared tasks defined within these nodes. Tasks themselves are represented

with the same hierarchy of activities and actions as in individual human operator

tasks. The associates of each activity must be a subset of the associates of its ances-

tors. If no associates are defined in an activity, the associates are inherited from its

parent node. Each action node is associated with a humanaction, localvariable, or

communicationaction defined under the different human operators. Thus an action
in a shared task is already affiliated with a humanoperator and does not require an

explicitly defined associate.

While the activities in these shared tasks can decompose in the same ways as

their single-operator counterparts, they have an additional decomposition option.

The com decomposition operator explicitly models human-human communication.

Assuming the associates are participating in the communication, com is a special

form of the sync decomposition operator and assumes information is being trans-

ferred between human operators. The decomposition must start with the performance

of a humancomaction, which commits a value (communicated information either

explicitly defined in the XML markup or from a variable originally associated with

the humancomaction when it was defined). The decomposition ends with one or

more actions explicitly pointing to local variables to allow other human operators to

register the information communicated via the humancomaction.
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13.3.2 Visual Notation

The structure of an instantiated
3

EOFMC’s task behaviors can be represented visu-

ally as a tree-like graph structure, where actions are depicted by rectangular nodes

and activities by rounded rectangle nodes (see Fig. 13.6). In these visualizations,

conditions are connected to the activity they modify: a Precondition is represented

by a yellow, downward pointing triangle connected to the left side of the activity;

a CompletionCondition is presented as a magenta, upward pointing triangle con-

nected to the right of the activity; and a RepeatCondition is conveyed as a recursive

arrow attached to the top of the activity. These standard colors are used for condi-

tion shapes to help distinguish them from each other and the other task structures.

A decomposition is presented as an arrow, labeled with the decomposition opera-

tor, extending below an activity that points to a large rounded rectangle contain-

ing the decomposed activities or actions. Activities are labeled with the associated

activity name. Actions are labeled with the name of the associated humanaction,

localvariable, or humancomaction name. Values committed by a humanaction with

set value behavior, assigned to a localvariable assignment, or communicated by a

humancomaction are shown in bold below this label. Communication actions are

presented in the same decomposition as the local variables used for receiving the

communication. Arrows are used to show how the communicated value is sent to the

other local variables in the decomposition. These visualizations can be automatically

generated from the XML source, as is currently done with a MS Visio plugin we have

created (Bolton and Bass 2010c). The visualizations are useful because they help

communicate encapsulated task concepts in publications and presentations. They

also facilitate counterexample visualization, something discussed in more depth in

Sect. 13.3.8.

13.3.3 Case Study Model

We implemented the task from our communication protocol application in EOFMC.

Figure 13.6 depicts its visualization while Fig. 13.7 shows the corresponding XML.

The entire process starts when the ATCo has a new, correct clearance to communi-

cate to the pilots (lATCoClearance = CorrectHeading; the precondition to aChange-
Heading). This allows for the performance of aChangeHeading and its first sub-

activity aCommandAndConfirm. The ATCo performs the aToggleATCoTalk activ-

ity by pressing his push-to-talk switch (hATCoToggleTalkSwitch). Then, the ATCo

communicates the heading (aToggleATCoTalk4
) to the pilots (lATCoClearance via

the sATCoTalk human communication action), such as “AC1 Heading 070 for spac-

ing.” Both pilots remember this heading (stored in the local variables lPFHead-

3
An EOFM model created using the EOFM XML-based language.

4
In this example, all headings are modeled abstractly as either being CorrectHeading, if it matches

the heading clearance the ATCo intended to communicate, or IncorrectHeading, if it does not.
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Fig. 13.6 Visualization of the instantiated EOFMC communication protocol from Fig. 13.7. The

task is colored based on the associates (human operators) performing the task (see the legend)
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Fig. 13.7 EOFM XML for the communication protocol application. Specific EOFM language

features are highlighted and labeled with bolded italic text
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ingFromATCo and lPMHeadingFromATCo for the PF and PM respectively). The

ATCo releases the switch (under the second instance of aToggleATCoTalk; an activ-
itylink in Fig. 13.7). Then, the PF performs the procedure for changing the head-

ing in the heading window (aMakeTheChange): pushing the heading select knob

(hPFPushHeadingSelectKnob), rotating it (hPFRotateToHeading) to the heading

that the PF heard from the ATCo (lPFHeadingFromATCo), and pulling the heading

select knob (hPFPullHeadingSelectKnob).

Next, the pilots perform a read back procedure (aConfirmTheChange). They do

this by having the PM point at the heading window value (which can be observed by

the PF) and the PM performs the procedure for repeating back the heading that the

PM heard from the ATCo to the PF and the ATCo.

If the heading in the window does not match the heading the PF just heard read

back to the ATCo, the pilots must collaborate to update the heading (aUpdateThe-
Heading). To do this, the PF enters the heading he or she heard read back to the ATCo

by the PM (aCorrectThePF). If this heading in the window still does not match the

heading the PM heard from the ATCo, the PM again points at the heading window

and repeats the heading he or she heard from the ATCo back to the PF (all under

aCorrectThePF). This entire process repeats as long as the heading window does

not match the heading the PM heard from the ATCo.

If the clearance the ATCo heard read back from the pilots does not match what

the ATCo intended, aCommAndConfirm must repeat until this is true. Once this is

true, the PF engages the entered heading.

13.3.4 Formal Semantics

We now formally describe the semantics of the EOFM language’s task models:

explicitly defining how and when each activity and action in a task structure is Exe-
cuting.

An activity’s or action’s execution is controlled by how it transitions between

three discrete states:

∙ Ready: the initial (inactive) state which indicates that the activity or action is wait-

ing to execute;

∙ Executing: the active state which indicates that the activity or action is executing;

and

∙ Done: the secondary (inactive) state which indicates that the activity has finished

executing.

While Preconditions, RepeatConditions, and CompletionConditions can be used

to describe when activities and actions transition between these execution states,

three additional conditions are required. These conditions support transitions based

on the activity’s or action’s position in the task structure, the execution state of its

parent, children (activities or actions into which the activity decomposes), and sib-

lings (activities or actions contained within the same decomposition).
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∙ StartCondition: implicit condition that triggers the start of an activity or action

defined in terms of the execution states of its parent and siblings.

∙ EndCondition: implicit condition to end the execution of an activity or action

defined in terms of the execution state of its children.

∙ Reset: implicit condition to reset an activity (have it return to the Ready execution

state).

For any given activity or action in a decomposition, a StartCondition is comprised

of two conjuncts with one stipulating conditions on the execution state of its parent

and the other on the execution state of its siblings based on the parent’s decomposi-

tion operator, generally formulated as:

(𝑝𝑎𝑟𝑒𝑛𝑡.𝑠𝑡𝑎𝑡𝑒 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔) ∧
⋀

∀𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 s
(𝑠.𝑠𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔)

This is formulated differently depending on the circumstances. If the parent’s

decomposition operator has a parallel modality, the second conjunct is eliminated.

If the parent’s decomposition operator is ord, the second conjunct is reformulated

to impose restrictions only on the previous sibling in the decomposition order:

(𝑝𝑟𝑒𝑣_𝑠𝑖𝑏𝑙𝑖𝑛𝑔.𝑠𝑡𝑎𝑡𝑒 = 𝐷𝑜𝑛𝑒). If it is the xor decomposition operator, the second con-

junct is modified to enforce the condition that no other sibling can execute after one

has finished:

⋀

∀𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 s
(𝑠.𝑠𝑡𝑎𝑡𝑒 = 𝑅𝑒𝑎𝑑𝑦)

An activity without a parent (a top level activity) will eliminate the first conjunct.

Top level activities that are defined for a given humanoperator treat each other as

siblings in the formulation of the second conjunct with an assumed and_seq rela-

tionship. All other activities are treated as if they are in an and_par relationship and

are thus not considered in the formulation of the StartCondition. Top level activities

that are defined for sharedeofms treat all other activities as if they are in an and_par
relationship, thus they have StartConditions that are always true.

An EndCondition is also comprised of two conjuncts both related to an activity’s

children. Since an action has no children, an action’s EndCondition defaults to true.

The first conjunct asserts that the execution states of the activity’s children satisfy the

requirements stipulated by the activity’s decomposition operator. The second asserts

that none of the children are Executing. This is generically expressed as follows:

(
⨁

∀𝑠𝑢𝑏𝑎𝑐𝑡𝑠 c
(𝑐.𝑠𝑡𝑎𝑡𝑒 = 𝐷𝑜𝑛𝑒)

)
∧

⋀

∀𝑠𝑢𝑏𝑎𝑐𝑡𝑠 c
(𝑐.𝑠𝑡𝑎𝑡𝑒 ≠ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔)

In the first conjunct,
⨁

(a generic operator) is to be substituted with ∧ if the activ-

ity has the and_seq, and_par, sync, or com decomposition operator; and ∨ if the

activity has the or_seq, or_par, or xor decomposition operator. Since optor_seq and

optor_par enforce no restrictions, the first conjunct is eliminated when the activity

has either of these decomposition operators. When the activity has the ord decompo-
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(a) (b)

Fig. 13.8 a Execution state transition diagram for a generic activity. b Execution state transition

diagram for a generic action

sition operator, the first conjunct asserts that the last activity or action in the decom-

position has executed.

The Reset condition is true when an activity’s or action’s parent transitions from

Done to Ready or from Executing to Executing when it repeats execution. If the

activity has no parent (i.e., it is at the top of the decomposition hierarchy), Reset is

true if that activity is in the Done execution state.

The StartCondition, EndCondition, and Reset conditions are used with the Pre-
condition, RepeatCondition, and CompletionCondition to define how an activity or

action transitions between execution states. This is presented in Fig. 13.8 where states

are represented as nodes (rounded rectangles) and transitions as arcs. Guards are

attached to each arc.

The transitions for an activity (Fig. 13.8a) are described in more detail below:

∙ An activity is initially in the inactive state, Ready. If the StartCondition and Pre-
condition are satisfied and the CompletionCondition is not, then the activity can

transition to the Executing state. However, if the StartCondition and Completion-
Condition are satisfied, the activity moves directly to Done.

∙ When in the Executing state, an activity will repeat execution when its EndCondi-
tion is satisfied as long as its RepeatCondition is true and its CompletionCondition
is not. An activity transitions fromExecuting toDonewhen both theEndCondition
and CompletionCondition are satisfied.

∙ An activity will remain in theDone state until itsReset condition is satisfied, where

it returns to the Ready state.

Note that if an activity does not have a Precondition, the Precondition condition

is considered to be true. If the activity does not have a CompletionCondition, the

CompletionCondition clause is removed from all possible transitions and the Ready
to Done transition is completely removed (Fig. 13.8a). If the activity does not have

a RepeatCondition, the Executing to Executing transition is removed (Fig. 13.8a).



13 Enhanced Operator Function Model (EOFM) . . . 359

The transition criteria for an action is simpler (Fig. 13.8b) since an action cannot

have a Precondition, CompletionCondition, or RepeatCondition. Because actions do

not have any children, their EndConditions are always true. Actions in a sync or com
decomposition must transition through their execution states at the same time.

The behavior of human action outputs and local variable assignments are depen-

dent on the action formal semantics. For a humanaction with autoreset behavior,

the human action output occurs when a corresponding action node in the EOFM

task structure is Executing and does not otherwise. For a humanaction with toggle
behavior, the human action switches between occurring or not occurring when a cor-

responding action node is Executing. A humanaction with a setvalue behavior will

set the corresponding human action’s value when the action is Executing. Similarly,

a communication action or a local variable assignment associated with an action
node will occur when the action is Executing.

13.3.5 EOFM to SAL Translation

To be utilized in a model checking verification, models written using EOFM’s XML

notation must be translated into a model checking language. We use the formal

semantics to translate XML into the language of the Symbolic Analysis Laboratory

(SAL). SAL was selected for use with EOFM because of the expressiveness of its

notation, its support for a suite of checking and auxiliary tools, and its cutting edge

performance at the time of EOFM’s development. SAL is a framework for combining

different tools to calculate properties of concurrent systems (De Moura et al. 2003;

Shankar 2000). The SAL language (see De Moura et al. 2003) is designed for spec-

ifying concurrent systems in a compositional way. Constants and types are defined

globally. Discrete system components are represented as modules. Each module is

defined in terms of input, output, and local variables. Modules are linked by their

input and output variables. Within a module, local and output variables are given ini-

tial values. All subsequent value changes occur as a result of transitions. A transition

is composed of a guard and a transition assignment. The guard is a Boolean expres-

sion composed of input, output, and local variables as well as SAL’s mathematical

operators. The transition assignment defines how the value of local and output vari-

ables change when the guard is satisfied. The SAL language is supported by a tool

suite which includes state of the art symbolic (SAL-SMC), bounded (SAL-BMC),

and “infinite” bounded (SAL-INF-BMC) model checkers. Auxiliary tools include a

simulator, deadlock checker, and an automated test case generator.

The EOFM to SAL translation is automated by custom Java software that uses the

Document Object Model (Le Hégaret 2002) to parse EOFM’s XML code and con-

vert it into SAL code. Currently, several different varieties of EOFM to SAL trans-

lators exist; each supports different subsets of EOFM functionality. For example,

there is a different translator for EOFMC that allows for the modeling and analy-

ses of human-human communication and coordination. Despite the difference, the

translators generally function on the same principles.
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For a given instantiated EOFM, the translator defines SAL constants and types

using the constant and userdefinedtype nodes. The translator creates a single SAL

module for the group of human operators represented in humanoperator and share-
deofm nodes. Input, local, and output variables are defined in each module corre-

sponding to the humanoperator nodes’ inputvariable, localvariable, and humanac-
tion nodes respectively. Input and local variables are defined in SAL using the name
and type (basictype or userdefinedtype) attributes from the XML. Local variables are

initialized to their values from the markup. All output variables represent human-
actions. They are either treated as Boolean (for actions with autoreset and toggle
behavior; true indicates this action is being performed) or are given the type associ-

ated with the value they carry (for setvalue behavior).

The translator defines two Boolean variables in the group module to handle a

coordination handshake with the human-device interface module (see Bolton and

Bass 2010a):

1. An input variable InterfaceReady that is truewhen the interface is ready to receive

input; and

2. An output variableActionsSubmitted that is truewhen one or more human actions

are performed.

The ActionsSubmitted output variable is initialized to false.

The translator defines a SAL type, ActivityState, to represent the execution states

of activities and actions: Ready, Executing, or Done (Fig. 13.8). As described pre-

viously, the activity and action state transactions define the individual and coordi-

nated tasks of the group of human operators (Fig. 13.8). Each activity and action

in a task structure has an associated local variable of type ActivityState. The transi-

tions between the execution state for each activity and action are explicitly defined

as nondeterministic transitions in the module representing human task behavior.

Figure 13.9 presents patterns that show how the transitions from Fig. 13.8a for each

activity are implemented in SAL by the translator. Note that for a given activity, the

StartCondition and EndCondition are defined in accordance with the formal seman-

tics (see Sect. 13.3.4). It is also important to note that, in these transitions, if an

activity does not have a particular strategic knowledge condition, the clause in the

transition guard is eliminated. Further, if an activity does not have a repeat condi-

tion, the Executing to Executing condition is eliminated completely. If an activity

does not have a CompletionCondition, the Ready to Done transition is eliminated.

Because the Reset occurs when an activity’s parent resets, the Reset transition is han-

dled differently than the others. When a parent activity transitions from Executing
to Executing, its children’s execution state variables (and all activities and actions

lower in the hierarchy) are assigned the Ready state (see the Executing to Executing
transition in Fig. 13.9a). Additionally, for each activity at the top of a task hierar-

chy, a transition (Fig. 13.9b) is created that checks if its execution state variable is

Done. Then, in the transition assignment, this variable is assigned a value of Ready
along with the lower level activities and actions in order to achieve the desired Reset
behavior.
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(a)

(b)

Fig. 13.9 Patterns of SAL transitions used for an activity to transition between its execution state.

a Represents all but the Reset transition. b Represents the Reset transition. Note that this Reset

transition only occurs for activities at the top of a task model hierarchy (ones with no parent).

Other resets occur based on the assignments that occur in these types of transitions or in repeat

transitions (see a). In SAL notation (see De Moura et al. 2003), [] indicates the beginning of a

nondeterministic transition. This is followed by a Boolean expression representing the transition’s

guard. The guard ends with a –>. This is followed underneath by a series of variable assignments

where a ’ on the end of a variable indicates that the variable is being used in the next state. Color

is used to improve code readability. Comments are green, variables are dark blue, reserved SAL

words are light blue, and values are orange. Purple is used to represent expressions, such activity

conditions, or values that would be explicitly inserted into the code by the translator

Transitions between execution states for variables associated with action nodes

that represent humanactions are handled differently due to the variable action types

and behaviors, simpler formal semantics, and the coordination handshake. Because

resets are handled by activity transitions, explicit transitions are only required for

activity Ready to Executing and Executing to Done transitions. Figure 13.10 shows

how theReady toExecuting transitions are represented for each of the different action

types. Note that only actions that are humanactions must wait for InterfaceReady to

be true to execute. This is because these are the only actions that produce behavior

that needs to be observed by other elements in the formal model (Fig. 13.10a–c).

In the variable assignment for each of the actions, ActionsSubmitted is set to true.

Similarly, to improve model scalability, other types of human actions (local vari-

able assignments and communication actions; Fig. 13.10d, e) do not make use of the

coordination protocol. Their Executing to Done transitions also occur automatically

following the Ready to Executing because an action’s EndCondition is always true.

Thus, the transitions shown in Fig. 13.10 effectively show a Ready to Done transi-

tion with all of the work associated with the action Executing occurring. Actions

that fall in a sync decomposition are handled in accordance with the transitions in

Fig. 13.10. Specifically, the StartCondition of the first action in the decomposition
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(a) (b)

(c)

(e)

(d)

Fig. 13.10 Patterns of SAL transitions used for an action to transition from Ready to Executing
and/or Ready to Done with an implied execution in between. a The pattern used for a humanaction
with autoreset behavior. b The pattern used for a humanaction with toggle behavior. c The pattern

used for a humanaction with setvalue behavior. d The pattern used for a localvariable action.

e The pattern used for a communication action. Note that LocalVariable1–

LocalVariableN represent local variables in a com decomposition that received the

value communicated. Further note that in c, d, and e, Value is used to represent a variable or

specific value from the XML markup

must be satisfied in the transition guard and the variable assignment next state values

for all actions in the decomposition are done in accordance with their type.

Because the EndCondition for all actions is always true, the Executing to Done
transition for humanactions is handled by a single guard and transition assignment

(Fig. 13.11). In this, the guard accounts for the handshake protocol. Thus the guard

specifies that ActionsSubmitted is true and that InterfaceReady is false: verifying

that the interface has received submitted humanaction outputs. In the assignment,

ActionsSubmitted is set to true; any execution state variable associated with an Exe-
cuting humanaction is set toDone (it is unchanged otherwise); and any humanaction
output variables that supports the autoreset behavior are set to false.

Because all of the transitions are non-deterministic, multiple activities can be

executed independently of each other when _par decomposition operators are used,

when they are in non-shared task structures of different human operators, and when

they are in sharedeofms. Multiple human actions resulting from such relationships

are treated as if they occur at the same time if the associated humanaction out-

put variables change during the same interval (a sequential set of model transi-

tions) when InterfaceReady is true. However, human actions need not wait for all
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(a) (b)

(c)

(e)

(d)

Fig. 13.11 SAL transition pattern used to handle action Executing to Done transitions

possible actions to occur once InterfaceReady has become true. In this way, all pos-

sible overlapping and interleaving of parallel actions can be considered.

For our communication protocol case study, the EOFMC XML (Fig. 13.7) was

translated into SAL using the automated translator.
5

The original model contained

164 lines of XML code. The translated model contained 490 lines of SAL code. A

full listing of the model code can be found at http://tinyurl.com/EOFMCBook.
6

This

model was asynchronously composed with a simple model representing the heading

change window, where the heading can be changed when the pilot rotates the heading

knob. These two models were composed together to create the full system model used

in the verification analyses.

13.3.6 Erroneous Behavior Generation

EOFM supports three different types of erroneous behavior generation, each based

on different theory and supported by different translators. For each of these genera-

tion techniques, an analyst can specify a maximum number of erroneous behaviors

5
This translation also included miscommunication generation. This is discussed subsequently in

Sect. 13.3.6.3.

6
Note that variables presented in the text are slightly different than in the model to improve read-

ability.

http://tinyurl.com/EOFMCBook
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to consider. The associated translator then creates a formal model that will generate

a formal representation of the EOFM represented behavior with the ability to per-

form erroneous behaviors based on the theory being used. When paired with a larger

formal model and evaluated with model checking, the model checker will verify that

the specification properties are either true or not with up to the maximum number

of erroneous behaviors occurring, in all of the possible ways the erroneous behavior

can occur up to the maximum. Thus, this feature allows consideration of the impact

that potentially unanticipated erroneous behavior can have on system safety.

13.3.6.1 Phenomenological Erroneous Behavior Generation

The first erroneous behavior generation technique is only supported by non-EOFMC

versions of EOFM. In this generation technique (introduced in Bolton and Bass

2010b and further developed in Bolton et al. 2012), each action in an instantiated

EOFM task is replaced with a generative task structure that allows for the perfor-

mance of Hollnagel’s (1993) zero-order phenotypes of erroneous action (Fig. 13.12).

Specifically, when it is time to execute an action, the new model allows for the

Fig. 13.12 EOFM task pattern that replaces actions at the bottom of EOFM task hierarchies to

generate zero-order phenotypes of erroneous action
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performance of the original action, the omission of that action, the repetition of the

original action, and the commission of another action. Multiple erroneous repetitions

and commissions can occur after either the performance of the original action and/or

other repetitions or commissions. It is through multiple performances of erroneous

actions that more complicated erroneous behaviors (more complex phenotypes) are

possible.

Whenever an erroneous activity executes, a counter (PCount) increments. Pre-

conditions on each activity keep the number of erroneous acts from exceeding the

analyst specified maximum (PMax). The preconditions also ensure that there is only

one way to produce a given sequence of actions for each instance of the structure.

For example, an omission can only execute if no other activity in the structure has

executed (all other activities must be Ready) and every other activity can only exe-

cute if there has not been an omission. See Fig. 13.12 and Bolton et al. (2012) for

more details.

Note that analysts wishing to use this or the following erroneous behavior gen-

eration features will likely want to do so iteratively. That is, start with a maximum

number of erroneous behaviors of 0 and incrementally increase it while checking

desired properties at each iteration. This approach helps analysts keep model com-

plexity under control while allowing them to evaluate the robustness of a system

until they find a failure or are satisfied with the performance of their model.

13.3.6.2 Attentional Failure Generation

The second erroneous behavior generation technique (Bolton and Bass 2011, 2013)

is supported by translators for both the original EOFM and EOFMC. Rather than

generate erroneous behavior from the action level up, this second approach attempts

to replicate the physical manifestation of Reason’s slips (1990). Specifically, humans

may have failures of attention that can result in them erroneously omitting, repeat-

ing, or committing an activity. We can replicate this behavior by changing the way

the translator interprets the EOFM formal semantics. Specifically, all of the origi-

nal transitions from the original formal semantics are retained (Fig. 13.8). However,

additional, erroneous transitions are also included (Fig. 13.13) to replicate a human

operator not properly attending to the environmental conditions described in EOFM

strategic knowledge. A human operator can fail to properly attend to when an activ-

ity should be completed and perform an omission (an erroneous Ready to Done or

Executing to Done transition), can fail to properly attend to an activity’s Precon-
dition and perform an erroneous Ready to Executing transition (a commission), or

not properly attend to when an activity can repeat and perform a repetition (an erro-

neousExecuting toExecuting transition). Whenever an erroneous transition occurs, a

counter (ACount) is incremented. An erroneous transition is only allowed to occur if

the counter has not reached a maximum (ACount < AMax). More information on this

erroneous behavior generation technique can be found in Bolton and Bass (2013).
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Fig. 13.13 Additional transitions, beyond those shown in Fig. 13.8a, used to generate erroneous

behaviors caused by a human failing to attend to information in EOFM strategic knowledge condi-

tions

13.3.6.3 Miscommunication Generation

The final erroneous behavior generation is only supported by EOFMC transla-

tion and relates to the generation of miscommunications in communication events

(Bolton 2015). This generation approach works similarly to attentional failure gen-

eration in that it adds additional formal semantics representing erroneous behaviors.

Thus, miscommunication generation keeps all of the formal semantics described in

Sect. 13.3.4. However, for each transition representing a human-human communica-

tion action, an additional transition is created (Fig. 13.14). In this, the value commu-

nicated can either assume the correct value meant for the original, non-erroneous,

transition or any other possible communicable value as determined by the type of the

information being communicated. Similarly, the local variables that are assigned the

communicated value received by the other human operators can be assigned the value

of what was actually communicated or some other possible communicable value. In

this way, our method is able to model miscommunications as an incorrect message

being sent, an incorrect message being received, or both. As with the other erroneous

behavior generation methods, this approach is regulated by a counter (CCounter) and

an analyst specified maximum (CMax). Every time a miscommunication occurs, a

counter is incremented; and an erroneous transition can only ever occur if the counter

is less than the maximum. More information on this process can be found in Bolton

(2015).
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Fig. 13.14 SAL transition pattern used for generating miscommunications. In this, ComType
is meant to represent the data type of the particular communication being performed. The state-

ment IN x: ComType | TRUE is thus saying that the variable to the left of the expres-

sion can be assigned any value from the type ComType nondeterministically. Note that Value
here represents the value that should have been communicated. Since Value is in ComType,

the nondeterministic assignments can produce a correct communication. For this reason, the

IF...THEN...ELSE...ENDIF expression checks to ensure that a miscommunication actually

occurred. If it did, the CCount is incremented. Otherwise, it remains the same

In our communication protocol application, miscommunication generation was

used when the original EOFMC XML code (Fig. 13.7) was converted into SAL’s

input language with our translator. Doing this, three versions of the model were cre-

ated, starting with CMax values of 0, 1, and 2.

13.3.7 Specification and Verification

EOFM-supported verification analyses are designed to be conducted with SAL’s

symbolic model checker. Because of this, specification properties are formulated

in linear temporal logic.

In the air traffic application, the purpose of the communication protocol is to

ensure that the pilots set the aircraft to the heading intended by the air traffic con-

troller. Thus, we formulate this in linear temporal logic as follows:

G
(
(𝑎𝐶ℎ𝑎𝑛𝑔𝑒𝐻𝑒𝑎𝑑𝑖𝑛𝑔 = 𝐷𝑜𝑛𝑒)
→ (𝑖𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝑊 𝑖𝑛𝑑𝑜𝑤𝐻𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑙𝐴𝑇𝐶𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒)

)
(13.1)

This specification was checked against the formal model with varying levels of

CMax using SAL’s symbolic model checker (sal-smc) on a windows laptop with an

Intel Core i7-3667U running SAL on cygwin.

Verification analysis results are show in Table 13.2.
7

7
Note that an additional verification was conducted using the specification F(𝑎𝐶ℎ𝑎𝑛𝑔𝑒𝐻𝑒𝑎𝑑𝑖𝑛𝑔 =
𝐷𝑜𝑛𝑒) for every version of the model to ensure that (13.1) was not true due to vacuity.
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Table 13.2 Communication protocol formal verification results

Model with CMax Verification data

Outcome Time (s) Visited states

0 ✓ 3.588 6498

1 ✓ 4.461 77177

2 × 4.602 415537

Note: A ✓ indicates verification of (13.1) was successful. A × indicates verification failed and

produced a counterexample. Because verification times occur via symbolic model checking, we do

not expect the verification times to vary linearly with respect the number of visited states

These results show that for maximums of zero and one miscommunications, the

presented protocol will always be capable of allowing air traffic control to commu-

nicate headings to the pilot successfully and have the pilots execute that heading as

long as the protocol is adhered to. However, a failure occurs when there are up to

two miscommunications (𝐶𝑀𝑎𝑥 = 2).

13.3.8 Counterexample Visualization

Any produced counterexamples can be visualized and evaluated using EOFM’s

visual notation (Bolton and Bass 2010c). In a visualized counterexample, each coun-

terexample step is drawn on a separate page of a document. Any task with Executing
activities or actions is drawn next to a listing of other model variables and their val-

ues at the given step. Any drawn task hierarchy will have the color of its activities

and actions coded to represent their execution state at that step. Other listed model

variables can be categorized based on the model concept they represent: human mis-

sion, human-automation interface, automation, environment, and other. Any changes

in an activity or action execution state or variable values from previous steps are

highlighted. More information on the visualizer can be found in Bolton and Bass

(2010c).

When counterexample visualization was applied to the counterexample produced

for the communication protocol application, it revealed the following failure

sequence:

1. When the ATCo first communicates the heading to the pilots (under aComHead-
ing), a miscommunication occurs and the pilots both hear different incorrect head-

ings.

2. Then when the PM reads the heading back the ATCo and the PF (under aRead-
backHeading), a second miscommunication occurs and both the ATCo and the PF

think they heard the original intended heading and the heading originally heard

from the ATCo respectively.

3. As a result of this, the procedure proceeds without any human noticing an incor-

rect heading, and the incorrect heading is engaged.

A full listing of the counterexample visualization can be found at http://tinyurl.com/

EOFMCBook.

http://tinyurl.com/EOFMCBook
http://tinyurl.com/EOFMCBook
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13.4 Discussion

The presented application demonstrates the power of EOFM to find complex prob-

lems in systems that rely on human behavior for their safe execution, both with

normative and generated erroneous human behavior. From the perspective of the

application domain, the presented results are encouraging: as long as the protocol in

Fig. 13.6 is adhered to, heading clearances will be successfully communicated and

engaged. Ultimately it must be up to designers to determine how robust a proto-

col must be to miscommunication to support system safety. If further reliability is

required, analysts might want to use additional pilot and ATCo read backs. Addi-

tional analyses that explore how further read backs can increase reliability can be

found in Bolton (2015). Further, analysts may wish to conduct additional analyses

to see how robust to other types of erroneous human behaviors the protocol is both

with and without miscommunication. An example of how this can be done can be

found in Pan and Bolton (2015).

Beyond this case study, EOFM has demonstrated its use in the analysis of a num-

ber of applications in a variety of domains. It is also being continually developed to

improve its analyses and expand the ways it can be used in the design and evaluation

of human-machine systems. These are discussed below.

13.4.1 Applications

EOFM and EOFMC have been used to evaluate an expanding set of applications.

These are described below. While these have predominantly been undertaken by the

authors and their collaborators, the EOFM toolset is freely available (see http://fhsl.

eng.buffalo.edu/EOFM/). We encourage others to make use of these tools as EOFM

development continues.

13.4.1.1 Aviation Checklist Design

Pilot noncompliance with checklists has been associated with aviation accidents. For

example on May 31, 2014, procedural noncompliance of the flight crew of a Gulf-

stream Aerospace Corporation G-IV contributed to the death of the two pilots, a

flight attendant, and four passengers (NTSB 2015). This noncompliance can be influ-

enced by complex interactions among the checklist, pilot behavior, aircraft automa-

tion, device interfaces, and policy, all within the dynamic flight environment. We

used EOFM to model a checklist procedure and employed model checking to evalu-

ate checklist-guided pilot behavior while considering such interactions (Bolton and

Bass 2012). Although pilots generally follow checklist items in order, they can com-

plete them out of sequence. To model both of these conditions, two task models were

created: one where the pilot will always perform the task in order (enforced by an

http://fhsl.eng.buffalo.edu/EOFM/
http://fhsl.eng.buffalo.edu/EOFM/
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ord decomposition) and one where he or she can perform them in any order (using

the and_par decomposition operator).

Spoilers are retractable plates on the wings that, when deployed, slow the aircraft

and decrease lift. If spoilers are not used, the aircraft can overrun the runway (NTSB

2001). A pilot can arm the spoilers for automatic deployment using a lever. Alterna-

tively, a pilot can manually deploy the spoilers after touchdown. Arming the spoilers

before the landing gear has been lowered or the landing gear doors have fully opened

can result in automatic premature deployment which can cause the aircraft to lose

lift and have a hard landing. Spoiler deployment is part of the Before Landing check-

list. In our analyses, for the system model using the human task behavior (that is,

the Before Landing checklist) with the and_par decomposition operator, we identi-

fied that a pilot could arm the spoilers early and then open the landing gear doors, a

situation that could cause premature spoiler deployment. We explored how different

design interventions could impact the safe arming and deployment of spoilers.

13.4.1.2 Medical Device Design

EOFM has been used to evaluate the human-automation interaction (HAI) of two

different safety-critical medical devices. The first was a radiation therapy machine

(Bogdanich 2010; Leveson and Turner 1993) based on the Therac-25. This device

was a room-sized, computer-controlled, medical linear accelerator. It had two treat-

ment modes: electron beam mode is used for shallow tissue treatment, and x-ray

mode is used for deeper treatments—requiring electron beam current approximately

100 times greater than that used for the other mode. The x-ray mode used a beam

spreader (not used in electron beam mode) to produce a uniform treatment area and

attenuate the radiation of the beam. An x-ray beam treatment application without the

spreader in place could deliver a lethal dose of radiation. We used EOFM with its

phenomenological erroneous behavior generation to evaluate how normative and/or

unanticipated erroneous behavior could result in the administration of an unshielded

x-ray treatment (Bolton et al. 2012). We discovered that this could occur if a human

operated accidentally selected x-ray mode (a generated erroneous act) and corrected

it and administered treatment too quickly.

In the second medical device application, we used verifications with both norma-

tive behavior (Bolton and Bass 2010a) and attentional failure generation (Bolton and

Bass 2013) to evaluate the safety of a patient controlled analgesia (PCA) pump. A

PCA pump is a medical device that allows a patient to exert some control over intra-

venously delivered pain medication, where medication is delivered in accordance

with a prescription programmed into the device by a medical practitioner. Using

EOFM with its attentional failure generation, we were able to both discover when an

omission caused by an attentional slip could result in an incorrect prescription being

administered and how a simple modification to the device’s interface could prevent

this failure from occurring.
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13.4.1.3 Medical Device User Manual Design

The EOFM language, the ability to create new models in EOFM, and the ease of

composing formal task analytic models in SAL into larger system models helped to

provide insights relevant to patient user manual evaluation. User manual designers

generally use written procedures, figures and illustrations to convey procedural and

device configuration information. However ensuring that the instructions are accu-

rate and unambiguous is difficult. To analyze a user manual, our approach integrated

EOFM’s formal task analytic models and device models with safety specifications

via a computational framework similar to those used for checklists and procedures.

We demonstrated the value of this approach using alarm troubleshooting instructions

from the patient user manual of a left ventricular assist device (LVAD) (Abbate et al.

2016).

During the process of encoding the written instructions into the formal EOFM

task model, we discovered problems with task descriptions in the manual as state-

ments were open to interpretation. During the process of developing the XML

description of the procedure, for example, it became clear that the description in the

user manual did not define which end of a battery cable to disconnect. We also identi-

fied issues with the order of troubleshooting steps in that the procedure included steps

that did not fix the problem before ones that did. The ability to change a single decom-

position operator in the model (from ord to to _seq) and subsequent model transla-

tion allowed model checking analyses visualized with our counter example visualizer

to show that a better ordering was possible. In addition the ability to include a for-

mal device model with the formal task model highlighted that the instructions did

not consider all possible initial device conditions.

13.4.1.4 Human-Human Communication and Coordination Protocols

EOFMC has been used to evaluate the robustness of protocols humans use to com-

municate information and coordinate their collaborative efforts. In one set of such

analyses, we evaluated the protocols air traffic controllers use to communicate clear-

ances to pilots. These analyses modeled the protocols in EOFMC and were formally

verified to determine if incorrect clearances could be engaged. Analyses without

any miscommunication generation (Bass et al. 2011) did not discover any problems.

Miscommunication generation was used to identify that a maximum of one mis-

communication could cause the protocol to fail and show how this protocol could

be modified to make it robust to higher maximum numbers of miscommunications

(Bolton 2015). A variant of this protocol is used for the case study analyses presented

in the next section.

A variant of this analysis was used to evaluate the protocol that a team of engineers

use to diagnose alarms in a nuclear power plant (Pan and Bolton 2015, 2016). Rather

than simply look for binary failure conditions in the performance of the team, this

work compared different protocols based on guaranteed performance levels deter-

mined by the degree of correspondence between team member conclusions and
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system knowledge at the end of the protocol. This was used to evaluate two dif-

ferent versions of the protocol: one where confirmation or contradiction statements

were used to show agreement or disagreement respectively and one where read backs

were used. In both cases, miscommunication and attentional failure generation were

included in formal verifications. These analyses revealed that the read back proce-

dure outperformed the other, producing correct operator conclusions for any number

of miscommunications and up to one attentional slip.

13.4.2 EOFM Extensions

Three EOFM extensions beyond its standard methods (Fig. 13.2) are described next.

13.4.2.1 Scalability Improvements

As the size of the EOFM used in formal verification analyses increases, the asso-

ciated formal model size and verification times increase exponentially (Bolton and

Bass 2010a; Bolton et al. 2012). This can limit what system EOFM can be used to

evaluate. Because of this, efforts have attempted to improve its scalability. To accom-

plish this, the EOFM formal semantics (see Sect. 13.3.4) are interpreted slightly dif-

ferently. In this new interpretation, the formal representation of the execution state

are “flattened” so that they are defined as Boolean expressions purely in terms of

the execution state of actions at the bottom of the EOFM hierarchy. This allows the

transitions associated with activities to be represented in the transition logic of the

actions. As such, there are fewer intermediary transitions in the formal EOFM rep-

resentation. This has resulted in significant reductions in model size and verification

time without the loss of expressive power for both artificial benchmarks and real-

istic applications pulled from the current EOFM literature (Bolton et al. 2016). For

example, a PCA pump model that contained seven different tasks and the associated

interface and mission components of the PCA pump in the larger formal model orig-

inally had 4,072,083 states and took 90.4 s to verify a true property. With the new

translator, the model statespace size was reduced to 15,388 states and took only 5.6 s

to verify the same property (Bolton et al. 2016).

13.4.2.2 Specification Property Generation

While EOFM can be used to evaluate HAI with model checking, most work requires

analysts to manually formulate the properties to check, a process that may be error-

prone. Further, analysts may not know what properties to check and thus fail to

specify properties that could find unanticipated HAI issues. As such, unexpected

dangerous interaction may not be discovered even when formal verification is used.
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To address this, an extension of EOFM’s method (Fig. 13.2) includes automatically

generating specification properties from task models (Bolton 2011, 2013; Bolton

et al. 2014). In general, these approaches work by using modified EOFM to SAL

translators to automatically generate specification properties from the EOFM task

models.

Two types of specification generation have been developed. The first types of gen-

erated specifications are task-based usability properties (Bolton 2011, 2013). These

allow analysts to automatically check that a human-automation interface will support

the fulfillment of the goals from EOFM tasks. While initial versions of this process

only allowed the analyst to find problems (Bolton 2011), later extensions provided a

diagnostic algorithm that enabled the reason for the usability failures to be system-

atically identified (Bolton 2013). This method was ultimately used to evaluate the

usability of the PCA pump application discussed previously.

The second class of generated properties asserted qualities about the execution

state of the task models based on their formal semantics (Bolton et al. 2014). This

enabled analysts to look for problems in the HAI of a system by finding places where

the task models would not perform as expected and thus elucidate potential unantic-

ipated interaction problems. For example, properties would assert that every execu-

tion state of each activity and action were reachable, that every transition between

execution states was achievable, that all activities and actions would eventually fin-

ish, and that any human task would always eventually be performable. This method

was used to re-evaluate the previously discussed aircraft before landing checklist pro-

cedure, where it discovered an unanticipated issue (Bolton et al. 2014). It also was

used in the evaluation of an unmanned aerial vehicle control system (van Paassen

et al. 2014). These last two applications are particularly illustrative of the specifica-

tion property generation feature’s power because both discovered system problems

previously unanticipated by the analysts.

13.4.2.3 Interface Generation

User-centered design is an approach for creating human-machine interfaces so that

they support human operator tasks. While useful, user-centered design can be chal-

lenging because designers can fail to account for human-machine interactions that

occur due to the inherent concurrence between the human and the other elements of

the system. This extension of EOFM has attempted to better support user-centered

designed by automatically generating formal designs of human-machine interface

functional behavior from EOFM task models guaranteed to always support the task.

To accomplish this, the method uses a variant of the L* algorithm (Angluin 1987) to

learn a minimal finite state automation description of an interface’s behavior; it uses

a model checker and the formal representation of EOFM task behavior to answer

questions about the interface’s behavior (Li et al. 2015). This method has been used

to successfully generate a number of interfaces including light switches, a vending

machine, and a pod-based coffee machine (Li et al. 2015). All generated interfaces
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have been verified to support the various task-based properties discussed in the pre-

vious section and Bolton et al. (2014). Future work is investigating how to include

usability properties in the generation process.

13.4.2.4 Improve Tool Interoperability and Usability

The use of XML allows EOFM-supported analyses to be platform independent.

Despite this, to date, EOFM has only been used with the model checkers found in

SAL. Future work should investigate how to make EOFM compatible with other

analysis environments.

Additionally, using the XML to create task models is relatively easy for someone

who is familiar with the language and had access to sophisticated XML develop-

ment environments that support syntax checking and code completion. However, the

usability of EOFM could be significantly improved with the addition of visual mod-

eling tools that would allow model creation with a simple point and click interface.

This will be investigated in future work.

13.5 Conclusions

As the above narrative demonstrates, EOFM offers analysts a generic, flexible task

modeling system that supports a number of different formal analyses. This is evi-

denced by the different applications that have been evaluated using EOFM and the

different analyses both supported by and extending the method (Fig. 13.2). It is

important to note that although all of the analyses discussed here use the model

checking tools in SAL, this need not be the case. Given that EOFM is XML-based,

it should be adaptable to many other formal verification analysis environments. This

is further supported by the fact that SAL’s input notation is very similar to those

offered by other environments. Future work will investigate how EOFM could be

adapted to other model checkers to increase the scope of its analyses.
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Chapter 14
The Specification and Analysis of Use
Properties of a Nuclear Control System

Michael D. Harrison, Paolo M. Masci, José Creissac Campos
and Paul Curzon

Abstract This chapter explores a layered approach to the analysis of the Nuclear

Power Plant Control System described in Chap. 4. A model is specified to allow

the analysis of use-centred properties based on generic templates. User interface

properties include the visibility of state attributes, the clarity of the mode structure

and the ease with which an action can be recovered from. Property templates are

used as heuristics to ease the construction of requirements for the control system

interface.

14.1 Introduction

Formal modelling can offer substantial benefits when developing an interactive sys-

tem. It enables systematic clarification of assumptions made about a design and sup-

ports verification that specified requirements have been met. This paper considers the

nuclear power plant control system described in Chap. 4. The use cases introduced in

the book offer slightly different perspectives that might suggest different approaches

to analysis. Broadly, analysis approaches may be classified as task-orientated or

task-based on the characteristics of the interface. In the first category, there are

informal approaches, for example Cognitive Walkthrough (Polson et al. 1992), and

formal approaches such as those of Bolton et al. (2012). These approaches are con-

cerned with the representation of the intended task and then to analyse the system
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that is intended to perform the task. In the second category, analysis may be based

on the characteristics of the interface (for example, Heuristic Evaluation Nielsen

and Molich (1990) and formal approaches such as those of Campos and Harrison

(2009). These approaches focus on, for example, the visibility or perceivability of

key attributes of the device and analyse the properties of the supported actions (e.g.

their predictability or undoability). The approach taken in this paper supports both

styles of analysis. In the case of the task approach, the focus is on the constraints that

determine the activities that the user performs, rather than focusing on prescribed

normative behaviours. Constraints include the visibility of information (e.g. func-

tion key displays) that help the user to decide what action to be taken next.

A modelling approach based on the layers of specification is designed to unify

these two approaches to analysis, with the aim of maintaining the integrity of the

specification. Analysis of the interactive system is facilitated by the use of property

templates.

This chapter is organised as follows: Sect. 14.2 describes the features of the exam-

ple that are relevant to illustrating the analysis. Section 14.3 discusses the structure

of the model that describes the interactive behaviour of the system. Section 14.4

describes the tools, including the set of property templates that are used to drive the

analysis. Section 14.5 details the model of the example and describes the process

of instantiating the property templates to be theorems over the model. Finally, we

describe related work (Sect. 14.6) and conclusions (Sect. 14.7).

14.2 The Use Case

In the present example, two analytic perspectives are taken.

∙ How well does the interface support operating procedures
1

developed to help the

controller start up or close down the system?

∙ Is the operator able to monitor and make appropriate adjustments to the process?

Is there sufficient information for operators to understand what is happening and

are suitable actions visible and available?

These two perspectives require different styles of analysis. The first is concerned with

how effectively the display, and the actions it supports, can be invoked as required

by an operator who is following the start-up and close-down operating procedures.

The second is concerned with the display, the graphics, the status display, the slid-

ers, the enabled actions and how these change the display and reflect the state of

the underlying process. Whatever the level of analysis of the user interface, it is

important to understand the interface to the underlying system. The interface of the

system should aid understanding by making parts of the underlying process visible

to the user; producing visible feedback to enable the operators to assess what has

been done. Interactive systems of any complexity have a common characteristic that

some elements of the state of the system are perceivable (e.g. visible or audible) and

that user actions transform the state (Duke and Harrison 1993). Furthermore, not

1
http://www.hci-modeling.org/nppsimulator/BWRSimulationDescription.pdf.

http://www.hci-modeling.org/nppsimulator/BWRSimulationDescription.pdf
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all actions are permitted all of the time, and the behaviour of actions can depend

on distinguished state attributes called modes, see Gow et al. (2006) for further dis-

cussion. The modes in this case determine, for example, whether the control rods

are being controlled automatically or manually. Modes also determine specific inter-

actions related to the behaviour of the mouse: its position and whether the mouse

button is pressed or not. For example, when the mouse button is pressed and the cur-

sor position coincides with a slider on the screen, and the slider is not in automatic

mode, then dragging the cursor moves the position of the slider thus changing the

relevant behaviour of the component of the process that it represents.

Users have difficulty in understanding the progress of a system when the elements

of the state of the system that are relevant to that understanding are not visible in a

form that makes sense to them. At the same time, confusion can arise when actions

relevant to the current activity are, apparently or actually, disabled by the system, or

when the actions have an unexpected or inconsistent effect with respect to the users’

knowledge and experiences of the system. Actions and states are therefore elemental

in understanding interactive behaviour. Modes are also important. It is unusual that

an interactive system is so simple that actions always have the same effect.

To achieve the goals and activities required of the users, most interactive systems

are designed more or less effectively to ensure that the information required (we call

them information resources (Campos et al. 2014)) is made explicitly available, and in

a form that can be easily understood by the users. A role of a model of the interactive

system is therefore to make these information resources explicit, so that assumptions

about the constraints they impose may be analysed.

14.3 Structure of the Models

It is important to distinguish between the interactive systems and the components of

interactive systems. Interactive systems are socio-technical systems involving peo-

ple, devices and artefacts (desks, pieces of paper, pens, tablets and so on). The pri-

mary focus of the modelling approach illustrated here is on the interactive devices

that are the components of the interactive system. The presented property templates

capture aspects of the system that can facilitate device–user interaction.

14.3.1 The Interface Specification

The specification of an interactive system includes a definition of the set of actions,

including user actions, that are possible within them. These actions affect and are

affected by the state of the system. The behaviour of actions is often determined by

the mode of the device. The proposed model of the interactive system also makes

explicit the information resources that are assumed to aid the use of the system.

Assumptions about the activities for which the system is designed are also made
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explicit. An action is a transformation supported directly by the interface. An activity

is a means to achieve some work goal, for example achieving a steady state of the

system with maximum voltage.

The interface specification describes what the display shows and captures the

effects of user-level actions. The display will show some features of the state of the

reactor, and these features may be encoded as part of the interface. It will also show

the user actions that are translated into actions within the reactor. The specification

includes display widgets, showing simple status information. These include widgets

labelled 𝑅𝐾𝑆, 𝑅𝐾𝑇 , 𝐾𝑁𝑇 , 𝑇𝐵𝑁 , 𝑊𝑃1, 𝑊𝑃2, 𝐶𝑃 , 𝐴𝑈 . These displays are

associated with a range of colours indicating status. The display also shows actions

associated with the valves: 𝑆𝑉 1, 𝑆𝑉 2, 𝑊 𝑉 1, 𝑊 𝑉 2 and sliders that change the

position of the control rods and the status of the valves.

Analysis of an interactive device is then concerned with proving that relevant

feedback is given on completing an action, that relevant information is available

before an action is carried out, that it is possible to recover from an action in specified

circumstances, and that it is always possible simply to step to some home mode

whatever the state of the device and that actions can be completed consistently.

14.3.2 Structuring Specifications

The model of the interactive system is structured into four layers. The first layer

simply specifies the constants and types used throughout the specification. It includes

types related to the devices involved and the entities that are in the broader system.

For example, in the case of the reactor these types would include notions such as

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑣𝑜𝑙𝑢𝑚𝑒 and 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. There would also be types associated with pumps

and valves. Constants would include maximum and minimum values required to

trigger error events in certain situations.

The second layer describes assumptions about the underlying process, managed or

controlled by the devices that are required to enable the analysis of the characteristics

of the interactive device. This layer is often reused across families of device models

when exploring the effects of differing user interfaces. For example, in Harrison

et al. (2015b), different brands of IV infusion devices share the same pump layer.

The process layer, in the case of the nuclear process, is the simplest model of the

nuclear reactor that will allow a proper consideration of interactive behaviour of

the control system. A specification of the underlying reactor, describing the details

of the relation between reactor core and turbine, would include attributes defining

water level and pressure for each. The specification at this level would also define the

characteristics of the pumps and valves. The pumps would be associated with rates

per minute, and the valves would be on or off. A number of actions will be specified at

this level. An action 𝑡𝑖𝑐𝑘 is used to represent the interval of one minute and update the

attributes to describe the evolving process. There will be further actions switching

pumps on and off, opening and closing valves and changing the value of flow in the

pump, for example.
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The third layer describes the interface to the interactive device or system. This

model uses the process description described in the second layer. It makes those

aspects of the state that are visible explicit through the interface. It describes the user

actions, including how the sliders or buttons or other display widgets work. The third

layer of the specification of the nuclear power plant control user interface specifies

how the user sets, controls and views the operation of the reactor. It is specific to

this particular interface, whereas the reactor specification (given in the second layer)

may be more generic and therefore used with several user interfaces. It provides

an opportunity to explore the variety of user interfaces that may be appropriate for

supporting human–machine interactions necessary to control the reactor.

The fourth, and final, layer makes explicit the information resources that are

required for different actions in different circumstances. It captures constraints on

action based on the goals and activities that the user achieves (Campos et al. 2014).

This layer contains an interactive system view. The activities and actions are

“resourced” by user interfaces for devices that are used in the interactive system

or, indeed, any other source of relevant information that is present within the inter-

active system. It adds attributes that are not captured by the devices and includes

(meta-)actions that describe activities that may involve the actions of the interactive

devices. An example of this fourth layer used in a different context can be found in

Masci et al. (2012).

The models to be considered have some or all of the following characteristics

depending on layer.

∙ A set of actions a ∶ A = S ⟼ S, where S is a set of states. Actions are partial

functions. They are made total by including a value “undefined” (⊥). A permission

function per takes an action and determines whether it is defined for a value in its

domain per ∶ A → (S → T) such that per(a)(s) = true if a(s) ≠ ⊥.

∙ A state is a set of attributes. Functions of the form 𝑓𝑖𝑙𝑡𝑒𝑟 ∶ S → C, where C is

an attribute will often be used to extract an attribute of the state. The attribute is

itself a domain, for example temperature or pressure. Similarly, some elements of

the state are part of the interface and are perceivable. p_𝑓𝑖𝑙𝑡𝑒𝑟 will often be used

to describe the filter that extracts the corresponding visual attribute to the value

extracted by 𝑓𝑖𝑙𝑡𝑒𝑟. Alternatively, a predicate 𝑣𝑖𝑠_𝑓𝑖𝑙𝑡𝑒𝑟 ∶ C → T may be used

to assert that the value of the filtered attribute is visible.

∙ The function mode is a particular form of 𝑓𝑖𝑙𝑡𝑒𝑟, namely 𝑚𝑜𝑑𝑒 ∶ S → MS. It

extracts the modes of the model, where MS is an attribute that ranges over a set

of modes. In the example, one set of modes relates to the types of variable being

entered through number entry.
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14.4 Tool Support

Two approaches to specification and proof are feasible for the kinds of model

described here: model checking and theorem proving. The theorem-proving approach

is appropriate here because a potentially important feature of the analysis, not dis-

cussed further in this short chapter, concerns the mechanisms for number entry. Since

the domain of numbers is relatively large, proof using model checking can result in

analyses of very large models that can be intractable. Interested readers are redirected

to Harrison et al. (2015a) for an application where the layered approach described in

this paper is used in an example involving number entry.

14.4.1 Representing and Proving the Model

The analysis is performed using the Prototype Verification System (PVS) (Shankar

et al. 1999), an automated theorem prover developed at SRI. The system combines

a specification language based on higher-order logic with an interactive prover. PVS

has been used extensively in several application domains. The higher-order logic

supports the usual basic types such as boolean, integer and real. New types can

be introduced either in a declarative form (these types are called uninterpreted) or

through type constructors. Examples of type constructors used in the present specifi-

cation are function and record types. Function types are denoted [D -> R], where

D is the domain type and R is the range type. Predicates are Boolean-valued func-

tions. Record types are defined by listing the field names and their types between

square brackets and hash symbols. Predicate subtyping is a language mechanism

used for restricting the domain of a type by using a predicate. An example of a

subtype is {x:A | P(x)}, which introduces a new type as the subset of those

elements of type A that satisfy the predicate P. The notation (P) is an abbreviation

of the subtype expression above. Predicate subtyping is useful for specifying partial

functions. This notion is used to restrict actions to those that are permitted explic-

itly by the permission predicates mentioned when describing the models in general

terms. Specifications in PVS are expressed as a collection of theories, which consist

of declarations of names for types and constants, and expressions associated with

those names. Theories can be parametrised with types and constants, and can use

declarations of other theories by importing them. The prelude is a standard library

automatically imported by PVS. It contains a large number of useful definitions and

proved facts for types, including common base types such as Booleans (boolean)

and numbers (e.g. nat, integer and real), functions, sets and lists.

The specification of the models takes a standard form as described in Sect. 14.3.2.

A model consists of a set of actions and a set of permissions that capture when the

actions can occur.

action: TYPE = [state -> state]
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For each action, there is a predicate:

per_action: TYPE = [state -> boolean]

that indicates whether the action is permitted.

14.4.2 Property Templates

Property templates are generic mathematical formulae designed to help developers to

construct theorems appropriate to the analysis of user interface features. The aim is to

make these programmable devices more predictable and easy to use. The particular

set of templates considered here is derived from Campos and Harrison (2008). A

formulation of these properties based on actions, states andmodes is presented, along

with a brief summary of the use-related concerns captured by the template. There

are two types of property: properties that relate states where a specific action has

taken place, and properties that relate a state to any state that can be reached by any
action from that state. The relation 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 ∶ S × S relates states that can be reached

by any action. For a particular model, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 will be instantiated to connect states

by the actions provided by the system.

Completeness. This template checks that the interactive system allows the user to

reach significant states in one (or a few steps). For example, being able to reach

“home” from any device screen in one step is a completeness property. The com-

pleteness template asserts that a user action will transform any state that satisfies a

predicate 𝑔𝑢𝑎𝑟𝑑 ∶ S → T into another state that satisfies a predicate 𝑔𝑜𝑎𝑙 ∶ S → T .

The guard is introduced to make it possible to exclude states that may not be relevant.

Completeness

∀𝑠 ∈ 𝑆 ∶ 𝑔𝑢𝑎𝑟𝑑(𝑠) ∧ ∼ 𝑔𝑜𝑎𝑙(𝑠)
⟹ ∃𝑎 ∈ 𝐴 ∧ 𝑝𝑒𝑟(𝑎)(𝑠) ∧ 𝑔𝑜𝑎𝑙(𝑎(𝑠)) (1)

Feedback. When certain important actions are taken, a user needs to be aware of

whether the resulting device status is appropriate or problematic (AAMI 2010).

Feedback breaks down into state feedback, requiring that a change in the state (usu-

ally specific attributes of the state rather than the whole state) is visible to the user,

and action feedback, requiring that an action always has an effect that is visible to

the user.

State feedback
∀𝑠1, 𝑠2 ∈ 𝑆, 𝑔𝑢𝑎𝑟𝑑(𝑠1) ∧ 𝑔𝑢𝑎𝑟𝑑(𝑠2) ∧ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡(𝑠1, 𝑠2)∧

𝑓𝑖𝑙𝑡𝑒𝑟(𝑠1) ≠ 𝑓𝑖𝑙𝑡𝑒𝑟(𝑠2)
⟹ 𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠1) ≠ 𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠2) (2)
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Action feedback
∀𝑎 ∈ 𝑆 → 𝑆, ∀𝑠 ∈ 𝑆 ∶ 𝑝𝑒𝑟(𝑎)(𝑠)∧

𝑔𝑢𝑎𝑟𝑑(𝑠) ∧ (𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) ≠ 𝑓𝑖𝑙𝑡𝑒𝑟(𝑎(𝑠)))
⟹ 𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) ≠ 𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑎(𝑠)) (3)

In the case of state feedback, the guard may be used, for example, to restrict the

analysis to ensure that the device or system is considered to be in the same mode as

a result of the state transition. Variants of the feedback properties will also be used

that assume separate visible attributes are not specified in the model. Instead, a rele-

vant predicate 𝑣𝑖𝑠_𝑓𝑖𝑙𝑡𝑒𝑟 ∶ S → T is linked to 𝑓𝑖𝑙𝑡𝑒𝑟 ∶ S → A. 𝑣𝑖𝑠_𝑓𝑖𝑙𝑡𝑒𝑟(s) is true

for s ∈ S if 𝑓𝑖𝑙𝑡𝑒𝑟(s) is visible. Both these variants will be used in Sect. 14.5. The

choice is based on how the model is constructed.

Consistency. Users quickly develop a mental model that embodies their expectations

of how to interact with a user interface. Because of this, the overall structure of a user

interface should be consistent in its layout, screen structure, navigation, terminology

and control elements (AAMI 2010). The consistency template is formulated as a

property of a group of actions Ac ⊆ ℘(S → S), or it may be the same action under

different modes, requiring that all actions in the group have similar effects on spe-

cific state attributes selected using a filter. The relation 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 connects a filtered

state, before an action occurs, with a filtered state after the action. The description of

the filters and the 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 relation capture the consistency across states and across

actions.

Consistency

∀𝑎 ∈ 𝐴
𝑐
⊆ ℘(𝑆 → 𝑆), 𝑠 ∈ 𝑆,𝑚 ∈ 𝑀𝑆 ∶

𝑔𝑢𝑎𝑟𝑑 ∶ 𝑆 ×𝑀𝑆 → 𝑇

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ∶ 𝐶 × 𝐶 → 𝑇

𝑓𝑖𝑙𝑡𝑒𝑟_𝑝𝑟𝑒 ∶ 𝑆 ×𝑀𝑆 → 𝐶

𝑓𝑖𝑙𝑡𝑒𝑟_𝑝𝑜𝑠𝑡 ∶ 𝑆 ×𝑀𝑆 → 𝐶

𝑔𝑢𝑎𝑟𝑑(𝑠, 𝑚) ∧
𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡(𝑓𝑖𝑙𝑡𝑒𝑟_𝑝𝑟𝑒(𝑠, 𝑚),

𝑓 𝑖𝑙𝑡𝑒𝑟_𝑝𝑜𝑠𝑡(𝑎(𝑠), 𝑚) (4)

Consistency is a property of, for example, the cursor move actions when the mouse

button is pressed. It may be used to prove that while the button is down, the move

actions will continue to be interpreted in the relevant mode.

Reversibility. Users may perform incorrect actions, and the device needs to provide

them with functions that allow them to recover by reversing the effect of the incor-

rect action. The reversibility template is formulated using a 𝑔𝑢𝑎𝑟𝑑 ∶ S → T and a

𝑓𝑖𝑙𝑡𝑒𝑟 ∶ S → FS, which extracts a set of focus attributes of the state:
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Reversibility

∀𝑠 ∈ 𝑆 ∶ 𝑔𝑢𝑎𝑟𝑑(𝑠) ⟹ ∃𝑏 ∶ 𝑆 → 𝑆 ∶
𝑓𝑖𝑙𝑡𝑒𝑟(𝑎(𝑏(𝑠)) = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) (5)

Some properties simply maintain invariants for any state. Examples of such prop-

erties are visibility and universality. There are alternative formulations of these two

properties. The first asserts that a predicate applied to one filtered value is true if and

only if an appropriate predicate is true of the other filtered value. The second asserts

that a filtering of the first value is equal to the determined filter of the second value.

These two formulations are appropriate in different circumstances as will be briefly

explored in Sect. 14.5. The style of interface described in this case study lends itself

particularly to the second option.

Visibility. This property describes an invariant relation between a state variable that

is not necessarily visible to the user and a user interface value that is visible to the

user. Examples of these properties are as follows: the current operational mode is

always unambiguously displayed; a slider that shows the position of the control rods

always shows the actual position of the control rods in the underlying process; the

colour of the status attribute describes general characteristics of the value of the

attribute. 𝑓𝑖𝑙𝑡𝑒𝑟(s) and p_𝑓𝑖𝑙𝑡𝑒𝑟(s) are the filters for the attribute and its perceivable

counterpart.

Visibility

∀𝑠1, 𝑠2 ∈ 𝑆 ∶ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡(𝑠1, 𝑠2) ∧ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑠1) ⟹ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑠2) (6)

where 𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑠) = 𝑝𝑟𝑒𝑑_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) ⇔ 𝑝𝑟𝑒𝑑_𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) or 𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑠) = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) = 𝑝_𝑓𝑖𝑙𝑡𝑒𝑟(𝑠)

Universality. Universality generalises the visibility property requiring that given two

filters of the state: 𝑓𝑖𝑙𝑡𝑒𝑟1 and 𝑓𝑖𝑙𝑡𝑒𝑟2, there are predicates on the filters that are

equivalently true.

Universality

∀𝑠1, 𝑠2 ∈ 𝑆 ∶ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡(𝑠1, 𝑠2) ∧ 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙(𝑠1) ⟹ 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙(𝑠2) (7)

where 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙(𝑠) = 𝑝𝑟𝑒𝑑_𝑓𝑖𝑙𝑡𝑒𝑟1(𝑠) ⇔ 𝑝𝑟𝑒𝑑_𝑓𝑖𝑙𝑡𝑒𝑟2(𝑠) or 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙(𝑠) = 𝑓𝑖𝑙𝑡𝑒𝑟1(𝑠) = 𝑓𝑖𝑙𝑡𝑒𝑟2(𝑠)

14.5 Modelling the Nuclear Power Plant Control User
Interface

The fragments of specification described in this section were taken from the descrip-

tion to be found in Chap. 4 and a simulator (see the simulator description and code
2
)

that includes a version of an interface to the nuclear controller. A more thorough

description of the user interface was required than was available in the use case

2
http://www.hci-modeling.org/nppsimulator/BWRSimulationDescription.pdf.

http://dx.doi.org/10.1007/978-3-319-51838-1_4
http://www.hci-modeling.org/nppsimulator/BWRSimulationDescription.pdf
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material to do a thorough analysis using the property templates. The analysis of IV

infusion pumps described in Harrison et al. (2015a) illustrates the more thorough

approach. If such a detailed description had been available, then it could be fur-

ther explored using PVSio-web (Masci et al. 2015) to ensure that assumptions made

seem realistic and to demonstrate where properties of the system fail to be true. This

would provide confidence that the behaviour of the interface as specified conforms

with the expected user experience. The issue of validation of the model of the system

is explored in more detail in Harrison et al. (2014). The introduction to the use case

contains the following paragraph.

The operation of a nuclear power plant includes the full manual or partially manual starting

and shutdown of the reactor, adjusting the produced amount of electrical energy, changing

the degree of automation by activating or deactivating the automated steering of certain

elements of the plant, and the handling of exceptional circumstances. In case of the latter, the

reactor operator primarily observes the process because the safety system of today’s reactors

suspends the operator step by step from the control of the reactor to return the system back

to a safe state.

The interface involves schematics of the process, the availability of actions as buttons

and graphical indications of key parameters, for example temperature and levels. The

specification of the model can be layered using the levels described in Sect. 14.3 as

follows.

14.5.1 Types and Constants

This contains generic definitions that will be used throughout other layers of the

theory. It defines types such as:

pump_type: TYPE = [# speed: speed_type,

on: boolean

#]

The pump attribute is defined to have a speed of flow and to be either on or off.

There are several pumps with the same characteristics as defined by the following

function type:

pumps_type: TYPE = [vp_number -> pump_type]

This type definition allows the definition of multiple pumps indexed by an integer

(vp_number). This type relates to the process layer. The following types are used in

the interface layer.

cursor_type = TYPE [* x: x_type,

y: y_type *]

The typecursor_type specifies the type of the cursor on the controller display.

It is tied to the physical position of the mouse. The details of how this is done will not
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be described here. It will be assumed that there is a function mouse that extracts the

current cursor position of the mouse. The slider which is also found in the interface

layer is specified as follows:

slider_type : TYPE =

[# ypos: y_type,

lx: x_type,

rx: x_type,

xpos: x_type #]

The slider type specifies the current x-position of the cursor when the slider has

been selected (xpos). It specifies the left and right limits of the slider (lx and rx)

and the y-position of the slider (ypos). As a simplification for the illustration, the

slider is assumed to have no depth. In the real system, sliders also have a depth and

therefore the y-coordinates will also have boundaries.

14.5.2 The Process Layer

The process layer describes sufficient details of the underlying process of the nuclear

reactor to provide an adequate underpinning for the interface. The interface captures,

for example, those situations where the process automates and therefore removes the

ability of the operator to change settings manually. The model describes the ongoing

process in terms of a single action 𝑡𝑖𝑐𝑘 that updates the attributes of the pump state

as time progresses.

tick(st: npp): npp =

st WITH

[time := time(st) +1,

sv :=

LAMBDA (n: vp_number):

COND

n=1 -> (#

flow :=

COND

sv(st)(1)‘on ->

(reactor(st)‘pressure -

condensor(st)‘pressure)/10,

ELSE -> 0

ENDCOND,

on := sv(st)(1)‘on

#),

n=2 -> (#

flow :=
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COND

sv(st)(2)‘on ->

(reactor(st)‘pressure -

condensor(st)‘pressure)/2.5,

ELSE -> 0

ENDCOND,

on := sv(st)(2)‘on

#)

ENDCOND,

poi_reactor :=

LET num_reactor =

(old_pos_rods_reactor(st) -

pos_rods_reactor(st))

IN (

COND

num_reactor >= 0 ->

num_reactor / (time(st) -

time_delta_pos(st)),

ELSE ->

- num_reactor /

(time(st) - time_delta_pos(st))

ENDCOND ),

bw := (2*(100 - pos_rods_reactor(st))*

(900-reactor(st)‘pressure))/620,

...

]

This fragment of specification illustrates the form of the process layer. The action

that is described is tick. Its function is to update the process state (defined by

type npp) attributes. Some of these attributes can be changed by actions that can be

invoked by the operator (e.g. the two valves wv(1) and wv(2)), while others are

internal to the process (e.g. poi_reactor and bw).

Further actions determine transformations of the process that can be invoked

directly through the user interface. For example control_rods is an action that

updates the process state to its new position. This position is determined by where

the cursor is, as represented in the control rods slider, when the rod’s position is not

under automatic control.

14.5.3 The Interface Layer

The interface layer describes those attributes of the state of the process that are vis-

ible to the user and the actions that can be performed by the operator. The interface

presents the state of the process to provide the operator with situation awareness.
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There are also displayed attributes that indicate sliders and buttons that can be used

by the operator to control aspects of the process.

An illustration of the layer considers the mouse actions: 𝑚𝑜𝑣𝑒, 𝑐𝑙𝑖𝑐𝑘 and 𝑟𝑒𝑙𝑒𝑎𝑠𝑒.

The actions𝑚𝑜𝑣𝑒 and 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 have effects that depend on the modes that the interface

is in. The action 𝑐𝑙𝑖𝑐𝑘 changes the mode. The change in mode depends on the posi-

tion of the cursor. Two sets of modes are specified. One set relates to the sliders on

the display (slider_mode), while the other relates to the actions that are offered

by the display (action). When the mouse has not been clicked or is over a space

in the display that does not correspond to a slider or an action, then slider_mode
= nulslimo and action = null_action. When the mouse is clicked, then

a boolean attribute clicked is true. The permission that allows click to be an

available action is as follows:

per_click(st: npp_int): boolean = NOT clicked(st)

𝑐𝑙𝑖𝑐𝑘 is an action that:

1. assigns a value to slider mode if the cursor is at the appropriate y-coordinate

(ypos) and in the relevant range of x-coordinates for the slider (in reality, there

may also be a range of y-coordinates) otherwise it sets the slider mode to the

relevant null value.

2. assigns a value to action, the action mode, if the x- and y-coordinates are within

the relevant range of an action button and the action is enabled. If the cursor is

outside the defined button ranges, then the action is set to null.

Fragments of the action specification are given below. They show the effect when

the mouse is within the slider for the pump 𝑤𝑝1 and the effect when the mouse is in

the area of the action button that sets control rods to automatic mode.

click(st : npp_int): npp_int =

LET x = cursor(st)‘x AND y = cursor(st)‘y IN

st WITH

[ slidermode :=

COND

y = wp1_slider(st)‘ypos AND

(x >= wp1_slider(st)‘lx) AND

(x <= wp1_slider(st)‘rx) AND

NOT auto_wp1s(st) -> wp1s,

...

ELSE -> nulslimo

ENDCOND,

action :=

COND

((x <= acrarea(st)‘lx) AND

(x >= acrarea(st)‘rx) AND
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(y <= acrarea(st)‘dy) AND

(y >= acrarea(st)‘uy)) ->

COND

auto_cr -> acroff,

ELSE -> acron

ENDCOND,

...

ELSE -> null_action

ENDCOND,

...

clicked := true

]

Different actions and therefore modes are specified depending on whether the

pumps or the control rods are in automatic mode. Moving the cursor has different

significance, depending on whether the mouse is clicked or not. When the mouse is

clicked outside the sensitive areas or when the mouse button is not depressed, then

the cursor coordinates only are changed. If the mouse is clicked within the space,

then the appropriate mode is taken. If the mode is related to a slider, then the cursor

on the slider is moved.

move(st: npp_int): npp_int =

LET new_cursor = mouse(st) IN

st WITH [

cursor := new_cursor,

new_wp1speed :=

COND

(slidermode = wp1s) AND

(new_cursor‘x > wp1_slider(st)‘lx) AND

(new_cursor‘x <= wp1_slider(st)‘rx)

-> (wp1_slider(st)‘lx - new_cursor‘x) * max_flow /

(wp1_slider(st)‘lx - wp1_slider(st)‘rx),

ELSE -> new_wp1speed(st)

ENDCOND,

new_wp2speed := ...,

new_cpspeed := ...,

new_crposition := ...,

]

𝑟𝑒𝑙𝑒𝑎𝑠𝑒 has the effect of invoking actions in the process layer if the slider mode

is non-null and also the action is non-null. Hence, for example, if slidermode =
wp1s, that is the flow rate of 𝑤𝑝1 is being changed, then a function is invoked that

changes the flow rate of the pump. This function is defined as part of the interface

layer, but it invokes the relevant function in the process layer.
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release(st: npp_int): npp_int =

COND

slider_mode(st) = wp1s ->

modify_wp1flow(st),

slider_mode(st) = wp2s ->

modify_wp2flow(st),

slider_mode(st) = cps ->

modify_cpflow(st),

slider_mode(st) = crs ->

modify_crpos(st),

ELSE -> perform_action(st)

ENDCOND

Aspects of the status of the process are captured in indicators (e.g. RKS, RKT).

The colours of the indicators are linked to the states of the underlying reactor (mod-

elled in the second layer), for example if the value of a process attribute is outside

specified bounds then the indicator shows the colour red. The model also specifies

that the user can perform open/close actions on valves by highlighting the available

option in the display.

14.5.4 Proving Properties of the Interface Layer

Two examples will be used to illustrate how the template properties are instantiated

in the interface layer. The first example is concerned with the visibility of different

aspects of the underlying process, while the second is concerned with the consis-
tency when releasing the mouse button. The concern in the first example is with the

CP pump as it transports water through the cooling pipes in the condenser. A dis-

play, specified by the attribute that is part of the interaction mode, 𝑠𝑡𝑎𝑡𝑢𝑠_𝑐𝑝 simply

indicates whether the pump flow is normal (green) or out of bounds (red). The prop-

erty to prove is that the display shows these colours correctly. This can be proved by

instantiating the visibility property template (Eq. 6 in Sect. 14.4.2).

cp_status_visible: THEOREM

FORALL (pre, post: npp_int):

init_state(pre) => cp_visible(pre) AND

transit(pre, post) AND cp_visible(pre) =>

cp_visible(post)

This theorem contains an induction based on the accessible states. The initial state

is specified by the predicate init_state. The visibility property to be proved is:

cp_visible(st: npp_int):
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(pred_cp_filter(st) <=> pred_p1_cp_filter(st)) AND

(NOT pred_cp_filter(st) <=> pred_p2_cp_filter)

The filter predicates are specified as follows:

pred_cp_filter(st: npp_int): boolean =

process(st)‘cp‘speed > max_flow

pred_p1_cp_filter(st: npp_int): boolean =

status_cp(st) = red

pred_ps_cp_filter(st: npp_int): boolean =

status_cp(st) = green

Similar properties can be proved of a range of display features relating to, for

example, the status of the process attributes; whether the pumps and control rods

are in automatic mode; the values of pump flows and the position of control rods;

whether it is possible to switch pumps on or off.

To illustrate the consistency property (Eq. 4 in Sect. 14.4.2), the 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 action is

considered in relation to the sliders. The theorem instantiates the template properties

indicated in the formulation of the property. The guard and consistency predicates

are specified over all the slider modes. We therefore slightly modify the formulation.

The aim is to prove the property:

consistency_sliders(st: npp_int): boolean =

con_guard(st) IMPLIES con_release(st)

There are four modes to be considered in 𝑀𝑆, namely wp1s, wp2s, cps and

crs. The guard checks that the mouse cursor is in the relevant region of the display

depending on mode that release is permitted and that the particular function is not

currently automated.

con_guard(st: npp_int): boolean =

x_in_area(cursor(st)‘x, slidermode(st), st) AND

per_release(st) AND NOT auto(slidermode(st), st)

The predicate x_in_area checks that the cursor is in a relevant position in

relation to the slider.

x_in_area(x: x_type, sl: slimo_type, st: npp_int): boolean =

((sl=wp1s) AND

(x>=wp1_slider(st)‘lx) AND (x<=wp1_slider(st)‘rx)) OR

((sl=wp2s) AND

(x>=wp2_slider(st)‘lx) AND (x<=wp2_slider(st)‘rx)) OR

((sl=wp1s) AND

(x>=cp_slider(st)‘lx) AND (x<=cp_slider(st)‘rx)) OR
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((sl=wp2s) AND

(x>=rods_slider(st)‘lx) AND (x<=rods_slider(st)‘rx))

The consistency relation is distributed across these modes as follows:

con_release(sl: slimo_type, st: npp_int): boolean =

release(st) =

st WITH

[ pump :=

COND

sl = wp1s -> pump(st)‘wp1_flow(

(cursor(st)‘x - wp1_slider(st)‘lx)*

(flow_range/sliderrange)),

sl = wp2s -> pump(st)‘wp2_flow(

(cursor(st)‘x - wp2_slider(st)‘lx)*

(flow_range/sliderrange)),

sl = cps -> pump(st)‘cp_flow(

(cursor(st)‘x - wp2_slider(st)‘lx)*

(flow_range/sliderrange)),

sl = crs -> pump(st)‘control_rods(

(cursor(st)‘x - crs_slider(st)‘lx)*

(control_range/sliderrange)),

ELSE -> pump(st)

ENDCOND,

slider_mode := nulslimo,

action := nullaction ]

The relation 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 is equally distributed over the modes; the filter_pre

indicates what the new state of the process should be, that is for each mode a function

in the underling process should be invoked that updates the relevant state attribute.

filter_pre(st) =

st WITH

[ pump :=

COND

sl = wp1s -> pump(st)‘wp1_flow(

(cursor(st)‘x - wp1_slider(st)‘lx)*

(flow_range/sliderrange)),

sl = wp2s -> pump(st)‘wp2_flow(

(cursor(st)‘x - wp2_slider(st)‘lx)*

(flow_range/sliderrange)),

sl = cps -> pump(st)‘cp_flow(

(cursor(st)‘x - wp2_slider(st)‘lx)*

(flow_range/sliderrange)),
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sl = crs -> pump(st)‘control_rods(

(cursor(st)‘x - crs_slider(st)‘lx)*

(control_range/sliderrange)),

ELSE -> pump(st)

ENDCOND,

slider_mode := nulslimo,

action := nullaction ]

and filter_post(st) = release(st). Consistency relates the change in state

filter_post(st) to the state before the action in which the mode determined

action takes place in the process layer. It determines that 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 always invokes

the mode-relevant process action (changing pump flow or control rod position). The

instantiated consistency theorem is an induction on the actions of the interaction

model.

consistency_sliders_thm: THEOREM

FORALL (pre, post: npp_int):

(init_state(pre) IMPLIES consistency_sliders(pre))

AND

(consistency_sliders(pre) AND transit(pre, post)) =>

consistency_sliders(post)

Attempting to prove this theorem identifies an issue with the simulator display.

The four sliders occupy the same x-space. The sliders are implemented so that the

slider will continue to be dragged across even when the y-coordinate is not in the

slider area relating to the mode. It would be imagined that this characteristic would

not be a feature of the real control room display.

14.5.5 The Activity Layer

The purpose of the activity layer is to specify assumptions about how the attributes

specified in the interface layer, as well as other specified attributes that may be exter-

nal, are used to carry out the intended activities of the system. It is clearly necessary

to know what the activities are that will be performed by the controllers. Typically,

this information would be gathered by observing existing processes, by interviewing

controllers, or by developing scenarios with domain experts that relate to anticipated

constraints in terms of new design concepts. The approach is described in more detail

in Campos et al. (2014).

Given the limited information provided by the use case, it is difficult to develop

and assess plausible assumptions. However, we do have operating procedures asso-

ciated with starting up and closing down the reactor. This will be the information

that provides the basis for sketches of the activity layer given here.
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The aim of start-up is to bring output power to 700 MW (100% of possible out-

put power) and to hold the water level in the reactor tank stable at 2100 mm. The

operating procedure is as follows:

1. Open SV2

2. Set CP to 1600 u/min

3. Open WV1

4. Set WP1 to 200 u/min

5. Stabilise water level in the reactor tank at 2100 mm by pulling out the control

rods

6. Open SV1

7. . . .

The process of developing the activity model involves, for each step in the operat-

ing procedure, considering the information resources that are conjectured to enable

the user to take the appropriate action in the interface. The action is resourced if infor-

mation relevant to the use of the action is clear in the interface. The activity model

also considers how the user is notified what the next action is to be performed. In the

case of this fragment, it will be assumed that the written operating procedure will be

used to decide the sequence. However, in other circumstances it should be consid-

ered whether the user will be allowed by the control system to change the order of

the operating procedure and what the effect of such a change would be. The action

OpenSV2 is expressed in the model as

open_valve(st WITH [action := opensv2])

The open valve action is generic to the valves supported by the interface and is

made specific by the attribute action. It may be assumed that this action would be

triggered if

∙ the openSV2 button area is enabled, that is it is highlighted: highlightosv2
= true. This should only be true if sv2_open = false, a property checked

of the interface model.

∙ the cursor is within the osv2 area:

(cursor(st)‘x <= osv2area(st)‘lx) AND

(cursor(st)‘x >= osv2area(st)‘rx) AND

(cursor(st)‘y <= osv2area(st)‘dy) AND

(cursor(st)‘y >= osv2area(st)‘uy)

The resource layer specifies all the constraints based on assumptions about what

triggers the actions supported by the interface as well as activities that are to be per-

formed. When these assumptions have been specified, they can be used as additional

constraints when proving theorems based on the templates. The resource layer makes

it possible to prove whether the properties are true in circumstances that afford some

measures of plausibility in relation to what users do.
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Additional actions may be specified that characterise the activities performed by

users. For example, consider the user activity 𝑟𝑒𝑐𝑜𝑣𝑒𝑟, in contrast to the autonomous

action that causes recovery. This activity would involve several actions before the

goal of the activity is achieved. Information resources would help the operator to

begin the activity. This means that the activity also has information resource con-

straints. For example, it would specify that “increasing pressure”, using the relevant

action in the interface layer, would occur only if other actions had already been com-

pleted and the displayed tank, valve and pump parameters specified in the second

layer were displayed (in the interface layer), indicating particular values.

Further activities include, for example, “monitor recovery”. This would be

expressed as an action that describes the constraints on the operator when moni-

toring an autonomous recovery. The specification of the action would include the

information resources that would be required in the monitoring process at different

stages of the recovery and would specify the conditions in which any user actions

would take place.

The value of expressing constraints in this way is that theorems that are instanti-

ations of property patterns of Sect. 14.4.2 can be proved subject to the resource con-

straints. Properties can be considered that only relate to plausible interactions. This

would be relevant if it was considered inappropriate to analyse properties across

sequences of actions that would not plausibly occur. The implications of such an

analysis are that an understanding of whether an action is plausible becomes more

relevant, and this requires an understanding of the human factors of a situation. This

topic is considered in more detail in Harrison et al. (2016). It can also be proved that,

for the steps of the operating procedures, the constraints are satisfied.

14.6 Related Work

Models, of the type outlined, have been developed for other interactive systems using

both model checking approach and theorem-proving approach (Masci et al. 2012;

Harrison et al. 2014, 2015b; Campos et al. 2016). The advantage of model checking

is that it is possible to explore, more readily, reachability properties as well as poten-

tial non-determinisms. The disadvantage is that the size of model is seriously limited.

It is possible to explore the essential details of the control of the nuclear power plant

using a model checking approach, but as soon as a realistic process model is used this

becomes impossible. Making the model abstract enough, to make analysis feasible,

would restrict what could be asked of the model. It would be more difficult to prove

relevant properties.

Theorem proving allows analysis of larger models but properties may be more

difficult to formulate and prove. In particular, while model checking allows sim-

ple formulations of reachability properties, these are difficult to specify using a

theorem-proving approach. There is a trade-off to be made between the effort needed

to develop a model amenable to verification and the effort needed to carry out the

proofs. Typically, a theorem proving-based approach will gain advantage in the for-
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mer, because of more expressive languages, and model checking in the latter, because

of more automated analysis. In all the cases, how to identify and express the proper-

ties of interest is also an issue.

Design patterns and property templates have been extensively studied in engi-

neering practices. Most of the effort, however, has been devoted to creating patterns

and templates for the control part of a system, rather than for the human–machine

interface. Vlissides et al. (1995) established a comprehensive set of standard design

patterns for software components of a system. An example pattern is the abstract fac-
tory, which facilitates the creation of families of software objects (e.g. windows of

a user interface). Another example is the adapter pattern, which converts the inter-

face of software components to enable the integration of otherwise incompatible

software components. These patterns are a de facto standard in the software engi-

neering community, and they are widely adopted in engineering practices to solve

common problems related to the realisation of software components. Konrad and

Cheng (2002) discuss design patterns for the elements of embedded systems. An

example pattern is the actuator–sensor pattern, providing a standard interface for

sensors and actuators connected to the control unit of an embedded system. Similarly,

Sorouri et al. (2012) present a design pattern for representing the control logic of an

embedded system. Lavagno et al. (1999) introduced Models of computation (MoC)
as design patterns for representing interactions between distributed system compo-

nents. Recently, Steiner and Rushby (2011) have demonstrated how these MoC can

be used in model-based development of systems, to represent in a uniform way dif-

ferent time synchronisation services executed within the system. These and similar

activities are concerned with the design patterns for the control part of a system,

as opposed to the human–machine interface—e.g. problems like how to correctly

design the behaviour of data entry software in human–machine interfaces are out of

scope.

Various researchers have introduced design patterns for the analysis of complex

systems. For example, in Li et al. (2014), verification patterns are introduced that

can be used for the analysis of safety interlock mechanisms in interoperable med-

ical devices. Although they use the patterns to analyse use-related properties such

as “When the laser scalpel emits laser, the patient’s trachea oxygen level must not
exceed a threshold 𝛩O2

”, the aim of their patterns is to facilitate the introduction

of a model checker in the actual implementation of the safety interlock, rather than

defining property templates for the analysis of use-related aspects of the safety inter-

lock. Other similar work, e.g. Tan et al. (2015), King et al. (2009), Larson et al.

(2012), also introduce design patterns for the verification of safety interlocks, but the

focus of the patterns is again on translating verified design models into a concrete

implementation—in Tan et al. (2015), for example—the design patterns are devel-

oped for the automatic translation of hybrid automata models of a safety interlock

into a concrete implementation.

Proving requirements similar to the properties produced from the templates of

this paper has been the focus of previous work. For example, a mature set of tools

has been developed using SCR (Heitmeyer et al. 1998). Their approach uses a tabular

notation to describe requirements which makes the technique relatively acceptable
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to developers. Combining simulation with model checking has also been a focus,

in other work, for example Gelman et al. (2013). Recent work concerned with sim-

ulations of PVS specifications provides valuable support to this complementarity

(Masci et al. 2013). Had the specification been developed as part of a design process,

then a tool such as Event B (Abrial 2010) might have been used. In such an approach,

an initial model is first developed that specifies the device characteristics and incor-

porates the safety requirements. This model is gradually refined using details about

how specific functionalities are implemented.

In our previous work, we have introduced modelling patterns for decomposing

interactive (human–machine) system models into a set of layers to facilitate mod-

els reuse (Harrison et al. 2015b). Bowen and Reeves (2015), who are concerned

with design patterns for user interfaces, complements our work on modelling pat-

terns. They have introduced four modelling patterns: the callback pattern, represent-

ing the behaviour of confirmation dialogues used to confirm user operations; the

binary choice pattern, representing the behaviour of input dialogues used to acquire

data from the user; the iterator pattern, representing the behaviour of parametric user

interface widgets that share the same behaviour but have a different value parame-

ter, such as the numeric entry keys 0–9; and the update pattern, for representing the

behaviour of a numeric display.

14.7 Discussion and Conclusions

Two approaches to specification and proof are possible with the considered exam-

ples: model checking and theorem proving. Model checking is the more intuitive of

the two approaches. Languages such as Modal Action Logic with interactors (MAL)

(Campos 2008) express state transition behaviour in a way that is more acceptable

to non-experts. The problem with model checking is that state explosion can com-

promise the tractability of the model so that properties to be proved are not feasible.

Model checking, hence, is more convenient for analysing high-level behaviour, for

example when checking the modal behaviour of the user interface. Theorem proving,

while being more complex to apply, provides more expressive power. This makes it

more suitable when verifying properties requires a high level of detail, such as those

related to a number entry system, because the domain of numbers is relatively large.

To employ the strength of the two approaches, simple rules can be used to translate

from the MAL model to the PVS model that is used for theorem proving. Actions are

modelled as state transformations, and permissions that are used in MAL to specify

when an action is permitted are described as predicates. The details of the specifi-

cation carefully reflects its MAL equivalent. This enables us to move between the

notations and verification tools, choosing the more appropriate tool for the verifica-

tion goals at hand.
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One aspect that has not been discussed in this chapter is the analysis and interpre-

tation of verification results. Interpretation may be facilitated through the animation

of the formal models to create prototypes of the modelled interfaces. These proto-

types make it easier to discuss the results of verification with stakeholders. Such

prototypes can be used either to replay traces produced by a model checker or inter-

actively to both discuss the findings of the verification or help identify relevant fea-

tures of the system that should be addressed by formal analysis. This approach is

described in Masci et al. (2014).
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Chapter 15
Formal Analysis of Multiple Coordinated
HMI Systems
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Charles Pecheur, Franco Raimondi and Neha Rungta

Abstract Several modern safety-critical environments involve multiple humans

interacting not only with automation, but also between themselves in complex ways.

For example, in handling the National Airspace, we have moved from the traditional

single controller sitting in front of a display to multiple controllers interacting with

their individual display, possibly each other’s displays, and other more advanced

automated systems. To evaluate safety in such contexts, it is imperative to include

the role of one or multiple human operators in our analysis, as well as focus on prop-

erties of human automation interactions. This chapter discusses two novel frame-

works developed at NASA for the design and analysis of human–machine interac-

tion problems. The first framework supports modeling and analysis of automated

systems from the point of view of their human operators and supports the specifica-

tion and verification of HMI-specific properties such as mode confusion, controlla-

bility, or whether operator tasks are compatible with a particular system. The second

framework captures the complexity of modern HMI systems by taking a multi-agent

approach to modeling and analyzing multiple human agents interacting with each

other as well as with automation.
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15.1 Introduction

In a number of complex and safety-critical environments such as health care systems,

autonomous automobiles, airplanes, and many others, the role of the human operator

has shifted from manual control to “monitor and react”. Human operators spend

a large portion of their time monitoring automated systems and a smaller portion

of their time performing actions based on the information provided by the system.

There are several examples of such automated systems in use today including auto-

pilots and collision avoidance systems in airplanes, systems that dispense prescribed

dosage of medicine to patients, and systems used to perform trading in the financial

markets. We expect this trend to continue with the introduction of autonomous cars,

unmanned aerial vehicles, remote surgeries, and smart automation in our homes,

among others.

To evaluate safety, it is imperative to consider the Human–Machine Interaction

(HMI) system as a whole, by including the role of the human operator. Our research

at NASA in this domain is targeted primarily on the National Airspace (NAS) in the

context of civil aviation, but the techniques presented in this paper can be and have

been applied to other domains as well.

The NAS is a complex environment in which humans and automated systems

interact to enable safe transportation across the USA. The NAS has been designed to

guarantee safety through human decision making with some support from automated

systems. In other words, humans are at the core of the current air traffic management

system. However, in order to accommodate increasing density of air traffic in the

USA, there is a need to increase the use of automated systems that can assist humans

such as air traffic controllers. Increased automation is also supported by FAA’s Next

Generation Air Transportation System (NextGen) program, where the FAA is the

regulatory authority for civil aviation in the USA.

The NAS is turning into a complex, interconnected system, in which humans

interact with automation extensively: we move from the traditional single controller

sitting in front of a display to multiple controllers interacting with their individual

display, possibly each other’s displays, and other more advanced automated systems.

Interactions can be as complex as information flowing from an automated system

(possibly merging information coming from several automated systems) to another

automated system with human controllers debating options to ensure safe and effi-

cient traffic flow.

Despite the fact that increased automation is essential in assisting humans to prob-

lem solve in such a complex environment, infusion of a new technology is a very con-

servative process driven by the need to maintain current levels of safety. The current

infusion process (from creating to certifying and fielding new automated systems) is

extremely slow and limits our ability to cope with increasing traffic demands. This

puts more pressure on the controllers and might result in pockets of reduced safety,

which is not acceptable.
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The main reason for the slow pace of infusion of new technology is our reliance

on testing and human studies to assess the quality and consequences of fielding new

automation. Human studies are very useful and provide many insights as to how con-

trollers can react to new automation. However, they are always limited in scale and

therefore fall short of accounting for off-nominal conditions and emergent behavior

in this large, connected system that is the NAS. Clearly, we need better methods for

analyzing the implications of fielding new automation.

This chapter discusses two novel frameworks developed at NASA for the design

and analysis of human–machine interaction problems. The first framework supports

modeling and analysis of automated systems from the point of view of their human

operators in terms of observations made and commands issued. It supports the spec-

ification and verification of HMI-specific properties such as mode confusion, con-

trollability, or whether operator tasks are compatible with a particular system.

The second framework aims at directly capturing the complexity of HMI sys-

tems involving multiple users interacting with each other as well as multiple auto-

mated systems. It provides a multi-agent approach to modeling and analyzing mul-

tiple human agents, e.g., pilots and controllers, interacting with each other as well

as with automation. These models are created at a higher-level of abstraction that

allows us to express actions, tasks, goals, and beliefs of the human such that experts

in the domain of air traffic management and airspace system are able to understand

the models. The multi-agent system framework provides support for modeling and

scalable analysis to detect safety issues such as loss of separation, aircraft collision,

or other user-specified properties in complex HMI systems. We describe the appli-

cation of these two frameworks to realistic HMI systems.

15.2 From HMI Frameworks to Full-Blown
Multi-agent Systems

Automated systems are increasingly complex, making it hard to design interfaces

for human operators. Human–machine interaction (HMI) errors like automation sur-

prises are more likely to appear and lead to system failures or accidents. Our work

studies the problem of generating system abstractions, called mental models, that

facilitate system understanding while allowing proper control of the system by oper-

ators as defined by the full-control property (Combéfis et al. 2011). Both the domain

and its mental model have labeled transition systems (LTS) semantics. In this con-

text, we developed algorithms for automatically generating minimal mental models

as well as checking full-control. We also proposed a methodology and an associated

framework for using the above and other formal method-based algorithms to sup-

port the design of HMI systems. The framework, implemented in the JavaPathfinder

model checker (JavaPathfinder 2016), can be used for modeling HMI systems and

analyzing models against HMI vulnerabilities. The analysis can be used for valida-

tion purposes or for generating artifacts such as mental models, manuals, and recov-

ery procedures.
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Despite the flexibility of our framework in capturing and analyzing properties

that are specific to HMI systems, such as mode confusion, controllability by human

operators, or whether an operator task is supported by an automated system, it has

been clear from early stages of our research that expressing HMI systems directly

in terms of LTSs is unmanageable for realistic systems. For this reason, we bridged

our analysis framework with environments that domain experts use to model and

prototype their systems. In particular, our efforts have focused on the NASA Ames

HMI prototyping tool ADEPT (Combéfis et al. 2016). We extended the models that

our HMI analysis framework handles to allow adequate representation of ADEPT

models. We also provided a property-preserving reduction from these extended mod-

els to LTSs, to enable application of our LTS-based formal analysis algorithms. We

demonstrated our work on several examples, most notably on an ADEPT autopi-

lot (Combéfis 2013).

However, as discussed, the scale of modern HMI systems goes beyond the mod-

eling and analysis capabilities of such tools. To handle the full scale of the NAS,

where multiple humans interact with multiple automated systems, one needs to sup-

port appropriate high-level modeling mechanisms as well as a variety of analysis

capabilities that range from simulation to exhaustive verification techniques, when

possible. To address this challenge, we have moved toward modeling HMI systems

as multi-agent systems.

Multi-agent systems (MAS) offer a design abstraction and modeling approach for

systems involving humans and automation. They provide the ability for predictive

reasoning about various safety conditions such as expected behavior of the autonomy,

situational awareness of humans, workload of the human operators, and the amount

of time taken from the start to the end of a complete or partial operation or procedure.

Rational agents are commonly encoded using belief–desire–intention (BDI) archi-

tectures. BDI architectures, originally developed by Michael Bratman (1987), rep-

resent an agent’s mental model of information, motivation, and deliberation. Beliefs

represent what the agent believes to be true, desires are what the agent aims to

achieve, and intentions are how the agent aims to achieve its desires based on its cur-

rent beliefs. The BDI model is a popular model for representing rational agents, i.e.,

agents that decide their own actions in a rational and explainable way. This success is

probably due to its intuitive representation of human practical reasoning processes.

Our multi-agent framework is an extension of Brahms—a BDI-based MAS frame-

work. Brahms is a simulation and development environment originally designed to

model the contextual situated activity behavior of groups of people in a real world

context (Clancey et al. 1998; Sierhuis 2001). Brahms has now evolved to model

humans, robots, automated systems, agents, and interactions between humans and

automated systems. Our extension connects Brahms to a variety of simulation and

formal verification tools to enable the safety analysis of NAS models.
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15.3 Formal Design and Analysis Techniques
for HMI Properties

In this section, we describe our work on developing an HMI-specific formal analy-

sis framework. In our framework, HMI models are represented using an extension

of labeled transition systems (LTS) and are analyzed to assert system controllabil-

ity given the commands that can be issued and the observations that can be made

by the human operator. We illustrate the capabilities of the framework with a simple

example from the medical community. Even though LTSs are an ideal abstraction for

the specification and analysis of HMI properties, it is hard to model large, complex

HMI systems directly as LTSs. We therefore also describe our work on connecting

our analysis algorithms to the ADEPT prototyping tool, which provides a more intu-

itive modeling environment for domain experts.

15.3.1 Extended LTS

Since we are interested in controllability properties and detection of automation sur-

prises, the distinction between commands and observations matters (Heymann and

Degani 2007; Javaux 2002). Our approach is based on two models: the system model,
which describes the detailed behavior of the system, and the mental model, which

represents an abstraction of the system for the human operator.
1

Our formal models are expressed with enriched labeled transition systems (LTS)

called HMI LTS. HMI LTSs are essentially graphs whose edges are labeled with

actions. The difference with classical LTSs is that three kinds of actions are defined:

1. Commands are actions triggered by the user on the system; they are also referred

to as inputs to the system;

2. Observations are actions autonomously triggered by the system but that the user

can observe; they are also referred to as outputs from the system;

3. Internal actions are neither controlled nor observed by the user; they correspond

to internal behaviors of the system that is completely hidden to the user.

The detailed formalization is available in Combéfis and Pecheur (2009), Combéfis

et al. (2011).

Formally, HMI LTS are tuples ⟨S,L c
,L o

, s0, 𝛿⟩ where S is the set of states; L c

and L o
are the sets of commands and observations, respectively; s0 is the initial

state; and 𝛿 ∶ S × (L c ∪L o ∪ {𝜏}) → 2S is the transition function. Internal actions

cannot be distinguished by the user and are thus denoted with the same symbol 𝜏,

called the internal action. The set of observable actions comprises commands and

1
The mental model is commonly referred to as conceptual model (Johnson and Henderson 2002)

in the literature, that is, an abstraction of the system which outlines what the operator can do with

the system and what she needs in order to interact with it.
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observations and is denoted L co = L c ∪L o
. In this chapter, HMI LTS will simply

be referred to as LTS.

When a transition exists between states s and s′ with action a, that is 𝛿(s, a) = s′,

we say that the action a is enabled in state s and we write s
a
←←←←←←←←←→ s′. A trace 𝜎 =

⟨𝜎1, 𝜎2,⋯ , 𝜎n⟩ is a sequence of observable actions in L co
that can be executed on

the system, that is s0
𝜎1
←←←←←←←←←←←←←→ s1

𝜎2
←←←←←←←←←←←←←→ ⋯

𝜎n
←←←←←←←←←←←←←→ sn. The set of traces of an LTSM is denoted

𝐓𝐫(M ). Internal actions can also occur between actions of a trace, which is written

s
𝜎

⟹ s′ and corresponds to s
𝜏

∗
𝜎1𝜏

∗⋯𝜏

∗
𝜎n𝜏

∗

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ s′, where 𝜏

∗
means zero, one or more

occurrences of 𝜏. The set of commands that are enabled in a state s, denoted Ac(s),
corresponds to actions a such that there exists a state s′ with s

a
⟹ s′. The set of

enabled observations, denoted Ao(s), is defined similarly.

15.3.2 Properties

Given a system model and a mental model, we are interested in the notion of full
controllability that captures the fact that an operator has enough knowledge about

the system in order to control it properly, i.e., at each instant of time, the operator

must know exactly the set of commands that the system can receive, as well as the

observations that can be made.

Formally, a mental model MU = ⟨SU ,L
c
,L o

, s0U , 𝛿U⟩ allows the full-control of

a given system MM = ⟨SM ,L
c
,L o

, s0M , 𝛿M⟩
2

if and only if:

∀𝜎 ∈ L co∗
such that s0M

𝜎

⟹ sM and s0U
𝜎

←←←←←←←←←←→ sU ∶
Ac(sM) = Ac(sU ) and Ao(sM) ⊆ Ao(sU ) (15.1)

In other words, it means that for every trace 𝜎 that can be executed on both the

system and the mental model (s0M
𝜎

⟹ sM and s0U
𝜎

←←←←←←←←←←→ sU ), the set of commands (Ac
)

that are enabled on the system model and on the mental model are exactly the same,

and the set of observations (Ao
) enabled according to the mental model contains at

least the observations enabled on the system model.

With this definition, the user must always know all the possible commands, which

is a strong requirement. In the work presented here, we use a weaker variant, where

a user may not always know all the possible commands but only those which are

relevant for interacting with the system.

The full-control property characterizes a conceptual model for a given system,

which we refer to as full-control mental model. All the behaviors of the system must

be covered by the full-control mental model, and it should allow the user to interact

2
The subscript M for the system refers to Machine and the subscript U for the mental model refers

to User.
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correctly with the system. This means that the user always knows what can be done

on the system and what can be observed from it.

The full-control property captures the behavior of a given system that a user

should know in order to operate it without errors. Given a system model MM =
⟨SM ,L

c
,C o

, s0M , 𝛿M⟩, a trace 𝜎 ∈ L co∗
can be put into one of three different cate-

gories. In other words, the set of traces of MM can be partitioned into three sets: Acc
(Accepted), Rej (Rejected), and Dont (Don’t care).

Let 𝜎 be a trace and a an action (command or observation):

1. 𝜎a ∈ Rej if (i) 𝜎 ∈ Rej or (ii) 𝜎 ∈ Acc, a is a command and there exists an execu-

tion of 𝜎 where a is not enabled in the reached state. This first category highlights

the fact that the user must always know exactly the available commands.

2. 𝜎a ∈ Acc if (i) 𝜎 ∈ Acc and either a is a command which is enabled for all the

states that are reached after the execution of 𝜎 or (ii) a is an observation that is

enabled in at least one state reached after the execution of 𝜎. This second category

contains the behavior of the system of which the user must be aware.

3. In the other cases, 𝜎a ∈ Dont. This corresponds to two cases: (i) either 𝜎 ∈ Dont
or (ii) 𝜎 ∈ Acc, a is an observation and a is not enabled in any state reachable by

𝜎. That last category reflects the fact that the user may expect an observation that

will not necessarily occur in the system.

Traces from Rej are forbidden which means that they cannot be part of a full-

control mental model. Traces from Acc must be accepted which means that any full-

control mental model must contain those traces. Traces from Dont may be accepted
which means that they can belong to a full-control mental model for the system, or

not.

15.3.3 Analysis

When interacting with a system, a user does not always need to know all the behavior

of the system. Most of the time, users are interested in performing some tasks that

only partially exercise the capabilities of the system. Given the model of a system

and a set of user tasks, the system allows the operator to perform all the user tasks if

all the behavior covered by the tasks can be executed on the system. Such a system

can of course have more behavior, as long as all the tasks are supported.

A user task can be expressed as an LTS MT . Trace inclusion between the system

and the tasks (𝐓𝐫(MT ) ⊆ 𝐓𝐫(MM)) can be used to ensure that all traces of the task

are supported by the system. However, trace inclusion is not a satisfactory criterion

for this type of problem as illustrated by the following example.

In Fig. 15.1, where solid lines correspond to commands and dashed lines to obser-

vations, the set of traces of the user task is a subset of the set of traces of the system.

But there is a situation where the user can be surprised. After performing an a com-

mand, the system can transition to a state where the b observation will never occur,

resulting in the user not being able to complete the task.
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a b c

(a) User task model.

a

a

b c

(b) System model.

Fig. 15.1 A system (on the right) which can make the operator confused in some situations, when

he wants to perform his tasks (on the left)

The full-control property can be used to achieve a more relevant check between

a system model and a user task. Formally, a system model MM = ⟨SM ,L
c
,L o

,

s0M , 𝛿M⟩ allows the operator to perform the tasks of the user task model MT =
⟨ST ,L

c
,L o

, s0T , 𝛿T ⟩ if and only if:

∀𝜎 ∈ L co∗
such that s0T

𝜎

←←←←←←←←←←→ sT and s0M
𝜎

⟹ sM ∶

Ao(sT ) = Ao(sM) and Ac(sT ) ⊆ Ac(sM) (15.2)

For a system to support a user task, the following must hold. At any point during

the execution of the task, if the user needs to issue a command, then that command

should be included in the commands available in the system at that point. Moreover,

at any point during the execution of the task, the task should be prepared to receive

exactly those observations available in the system at that point. Therefore, the full-

control check can be applied between the system model MM and the user task model

MT , interchanging commands and observations.

Figure 15.2 shows an example of a lamp illustrating that relation. The task model

indicates that the user should be able to switch a lamp on and off with a press com-

mand. If the user observes a burnOut signal, then the lamp is dead and nothing else can

be done. The proposed system model allows full-control of the task model (invert-

ing the roles of commands and observations). There is an additional behavior which

onoff dead

press

press burnOut

(a) Task model.

onoff

dead

fades

dies

press
fadeOut

press

endFading

burnOut

(b) System model.

Fig. 15.2 An example of a set of user task MT for a simple lamp (on the left) and a system model

MM which allows full-control of it (on the right)
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allows the lamp to be dimmed down all the way to off if the user presses the fade-
Out command while in the on state. That additional behavior is not a problem since,

according to the task model, it will never be executed.

15.3.4 Example

The Therac-25 (Leveson and Turner 1993) is a medical system which was subject

to an accident due to an operator manipulation error which took place during the

interaction with the machine. The machine has the ability to treat patients by admin-

istering X-ray or electron beams. For the first treatment, a spreader has to be put in

place so that the patient does not receive too much radiation. The accident occurred

when patients were administered X-rays while the spreader was not in place.

The formal model described in Bolton et al. (2008) was represented in the

JPF framework and had 110 states and 312 transitions, among which there are

194 commands, 66 observations, and 52 internal actions. The set of commands is

{selectX, selectE, enter, fire, up}, and there is one observation corresponding to a

timeout {8 second}. The model is illustrated as a statechart on Fig. 15.3.

The result of the analysis of the Therac-25 system is that it is well-behaved (i.e., it

is full-control deterministic) and that it cannot be reduced. The minimal full-control

model is thus exactly the same as the system model, without the 𝜏 transitions. The

potential error with that system cannot be captured with the model as it has been

described.

In fact, the error is actually due to mode confusion: the operator believes that the

system was in the electron beam mode while it is in fact in the X-ray mode. That kind

of error can be found with our framework, by enriching the system model with mode

information. Loops are added on all the states where a mode is active with either X-

Fig. 15.3 Statechart model of the Therac-25 medical system (Leveson and Turner 1993). The enter
command is represented with

↱

and the up command is represented with ↑
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ray or E-beam, according to the mode the machine is in. These new labels are treated

as commands, reflecting the fact that the operator must know exactly which mode

the machine is in.

Analyzing that modified system leads to an error, because the system is no longer

full-control deterministic. The counterexample produced by the framework is as

follows: ⟨selectX, enter, fire,X-ray⟩. That trace corresponds to a trace that must be

accepted and must be forbidden at the same time. Indeed, after selecting X-ray beam

(selectX), validating it (enter) and administering the treatment (fire), the X-ray com-

mand may or may not be available depending on the execution followed in the sys-

tem. This means that the system may end up either in the X-ray or in the E-beam
mode, non-deterministically and with no observable difference. That behavior is due

to an internal transition that occurs when the treatment has been administered, which

represents the fact that the system is reset to its initial state. The controllability issue

indicates that there should be an observation informing the user when the system is

reset. Adding a reset observation makes the system full-controllable and a minimal

full-control mental model for it can be generated, with 24 states.

There is another issue with that system. If the operator is not aware of the

8-second timer (or does not track the countdown), the issue described in Leveson

and Turner (1993), Bolton et al. (2008) can also be found. It suffices to turn the

observation 8 second into an internal transition 𝜏 and to make the system being

reset when the operator presses enter after the treatment has been administered. The

last actions of the returned counterexample (the most relevant part) is as follows:

⟨… , selectE, up,E-beam, selectX,E-beam⟩. That corresponds to the user selecting

the electron beam mode, then changing his mind by pushing on the up button and

selecting the X-ray mode. After that, the system may either be in E-beam or X-ray
mode.

15.3.5 Analysis of ADEPT Models

Even though HMI LTSs are an ideal abstraction for the specification and analysis of

the HMI properties described above, it is hard to model large, complex HMI systems

directly as LTSs. For this reason, we have worked on connecting our analysis algo-

rithms to prototyping tools that are more familiar and intuitive for domain experts.

In particular, we have worked closely with the developers of the ADEPT tool.

ADEPT (Automatic Design and Evaluation Prototyping Toolset) (Feary 2010) is

a Java-based tool developed at NASA Ames, which supports designers in the early

prototyping phases of the design of automation interfaces. The tool also offers a set of

basic analyses that can be performed on the model under development. An ADEPT

model is composed of two elements: a set of logic tables, coupled with an interactive

user interface (UI). The logic tables describe the dynamics of the system as state

changes in reaction to user actions or to environmental events. For example, Fig. 15.4

shows a screenshot of the autopilot model opened in ADEPT. The left part of the

window shows one of the logic tables and the right part shows the user interface.
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Fig. 15.4 The autopilot model opened in ADEPT, with one logic table in the left part of the window

and the user interface on the right part

The UI is composed of a set of components that are encoded as Java objects rep-

resenting graphical widgets. The logic tables can refer to the elements of the UI and

to the other components through their Java instance variables, and interact with them

through their methods, using Java syntax. In particular, UI events are seen as Boolean

variables that are set to true when the event occurs.

Behind the scene, an ADEPT model is compiled into a Java program that can

be executed in order to directly try the encoded behavior with the user interface.

That tool is meant to be used as a rapid prototyping tool. The models not only can

then be tested and simulated by the designers, but can also be analyzed by systematic

and rigorous techniques. Possible analyses include validity checks on the structure of

logic tables, for example. We have extended the analysis capabilities of ADEPT with

our framework, which requires the translation of ADEPT tables into the models that

our framework can handle. We describe our work with ADEPT through an autopilot

example.

Figure 15.5 shows one of the logic tables of the autopilot model. The table exam-

ple illustrates the way it can interact with elements of the UI. Each light gray line of

the table corresponds to a variable of the system. The variables can be related to a

component of the UI (such as pfdAirspeedTargetTape.currentValue), or they can be state

variables of the model (such as indicatedAirSpeed) or they can relate to the internal

logic of the system (airspeedSystemTable.outputState). The latter kind of variables can

be seen as a description of the mode of a particular component of the system (the

airspeed part in this example). For example, the two first lines of the output part

of the logic table example mean that the value of the currentValue field of the pfdAir-
speedTargetTape component of the UI is updated with the value of the indicatedAirspeed
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Fig. 15.5 An example of a

logic table: the airspeed

feedback table of the

autopilot model contains the

logic related to the update of

the UI for the airspeed part

state variable. Moreover, each column of an ADEPT table corresponds to a transi-

tion scenario. From any state of the system that satisfies the condition described by

the input part of the table, the system can move to the state of the system that results

in applying the update instructions described by the output part of the table.

The ADEPT autopilot partially models the behavior of the autopilot of a Boeing

777 aircraft. The full autopilot ADEPT model has a total of 38 logic tables. Three

major groups of tables can be identified in the model, namely one for the lateral

aspect, one for the vertical aspect, and finally, one for the airspeed aspect. For each

of these aspects, the logic tables are further partitioned into three groups: the action

tables, the system tables, and the feedback tables, successively executed in that order.

Action tables determine actions from UI events, system tables update the state of the

system according to the performed action, and feedback tables reflect the state of the

system to UI elements.

For a full account of our autopilot case study, we refer the interested reader to

(Combéfis 2013). Here, we report briefly on the extensions that we applied to our

formalisms as well as our experiences and some observations with analyzing autopi-

lot system tables. First of all, given the fact that ADEPT models are state-based and

in order to be able to easily support the automatic translation of ADEPT models

into HMI LTS for the application of our analysis algorithms, we extended our HMI

models with state information, as described in Combéfis et al. (2016). These models



15 Formal Analysis of Multiple Coordinated HMI Systems 417

are named HMI state-Valued System models, or HVS. Our techniques cannot scale

to the full size of such a large and complex model. Therefore, our analyses were

performed on parts of the autopilot model, each analysis considering subsets of the

system tables. As is typical with formal techniques, we additionally had to abstract

the infinite data domains involved in the models.

Using the outputState as a mode indicator, we performed mode confusion analy-

sis and detected a potential mode confusion on the airspeedSystemTable. This was

identified during the minimal model generation phase, where the generation algo-

rithm produced an error trace witnessing the fact that the system model was not

fc-deterministic. By analyzing the error trace manually, we localized the erroneous

behavior in the involved ADEPT tables. One of the models that was analyzed was an

HVS with 7680 states and 66242 transitions, among which 57545 are labeled with

commands and 8697 are internal 𝜏-transitions. The obtained minimal mental model

has 25 states and 180 transitions.

Our experiences described in this section lead us to the conclusion that in develop-

ing modeling and analysis techniques that can capture multiple aspects of the NAS,

we would need to move toward formalisms that enable the intuitive and scalable

modeling of multiple interacting agents (human and automation), with support for

a variety of analyses, starting from more scalable simulations and toward not only

more sophisticated, but also more resource-consuming exhaustive techniques such

as the ones we presented. These observations lead to the work that is described in

the next section.

15.4 Coordinating HMIs as Multi-agent Systems

This section describes the modeling analysis of multiple interacting HMIs specified

in the Brahms modeling language (Clancey et al. 1998; Sierhuis 2001). The input to

our framework is a Brahms model along with a Java implementation of its seman-

tics. Brahms is a multi-agent simulation system in which people, tools, facilities,

vehicles, and geography are modeled explicitly. The air transportation system of the

NAS is modeled as a collection of distributed, interactive subsystems such as air-

ports, air traffic control towers and personnel, aircraft, automated flight systems and

air traffic tools, instruments, and flight crew. Each subsystem, whether a person or

a tool such as the radar, is modeled independently with properties and contextual

behaviors. Brahms facilitates modeling various configurable realistic scenarios that

allows the analysis of the airspace in various conditions and reassignment of roles

and responsibilities among human and automation.
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15.4.1 The Brahms Language

Brahms is a full-fledged multi-agent, rule-based, activity programming language. It

is based on a theory of work practice and situated cognition (Clancey et al. 1998;

Sierhuis 2001). The Brahms language allows for the representation of situated activ-

ities of agents in a geographical model of the world. Situated activities are actions

performed by the agent in some physical and social context for a specified period of

time. The execution of actions is constrained (a) locally: by the reasoning capabil-

ities of an agent and (b) globally by the agents beliefs of the external world, such

as where the agent is located, the state of the world at that location and elsewhere,

located artifacts, activities of other agents, and communication with other agents or

artifacts. The objective of Brahms is to represent the interaction between people,

off-task behaviors, multitasking, interrupted and resumed activities, informal inter-

actions, and knowledge, while being located in some environment representative of

the real world.

At each clock tick, the Brahms simulation engine inspects the model to update

the state of the world, which includes all of the agents and all of the objects in the

simulated world. Agents and objects have states (factual properties) and may have

capabilities to model the world (e.g., radar display is modeled as beliefs, which are

representations of the state of the aircraft). Agents and objects communicate with

each other; the communication can represent verbal speech, reading, writing, etc.

and may involve devices such as telephones, radios, and displays. Agents and objects

may act to change their own state, beliefs, or other facts about the world.

15.4.2 MAS Formal Analysis

We use model checking-based techniques to systematically explore the various

behaviors in Brahms scenarios, i.e., in our case study collision scenarios of the

Überlingen model configuration. In Hunter et al. (2013) and Rungta et al. (2013),

we present an extensible verification framework that takes as input a multi-agent

system model and its semantics as input to some state space search engine (or a

model checker). The search engine generates all possible behaviors of the model with

respect to its semantics. The generated behaviors of the model are then encoded as a

reachability graph G = (N ,E), where N is a set of nodes and E is a set of edges. This

graph is automatically generated by the search engine. Each node n ∈ N is labeled

with the belief/facts values of the agents and objects. In Hunter et al. (2013), we gen-

erate the reachability graph using the Java PathFinder byte-code analysis framework.

An edge between the nodes represents the updates to beliefs/facts and is also labeled

with probabilities. The reachable states generated by JPF are mapped to the nodes in

a reachability graph. This reachability graph is essentially an LTS.
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The verification of safety properties and other reachability properties is performed

on the fly as new states and transitions are generated. JPF is an explicit-state analysis

engine that stores the generated model in memory. Capturing the state of all the

agents and objects in Brahms including their workframes and thoughtframes can lead

to large memory requirements. Additionally, for large systems, it is often intractable

to generate and capture even just the intermediate representation in memory.

To overcome these limitations, we adopt a stateless model checking approach.

Stateless model checking explores all possible behaviors of the program or model

without storing the explored states in a visited set. The program or model is exe-

cuted by a scheduler that tracks all the points of non-determinism in the program.

The scheduler systematically explores all possible execution paths of the program

obtained by the non-deterministic choices. Stateless model checking is particularly

suited for exploring the state space of large models. In this work, we instrument

the Brahms simulator to perform stateless model checking. The instrumented code

within the Brahms engine generates all possible paths (each with different combi-

nations of activity durations) in depth-first ordering. Stateless model checkers like

VeriSoft (Godefroid 1997) do not in general store paths; however, in order to per-

form further analysis of the behaviors space, the Brahms stateless model checker can

store all the generated paths in a database.

15.4.2.1 Non-determinism in Brahms

There are two main points of non-determinism in Brahms models. The first point of

non-determinism is due to durations of primitive activities. The different primitive

activities in Brahms have a duration in seconds associated with them. The duration

of the primitive activity can either be fixed or can vary based on certain attributes

of the primitive activities. When the random attribute of a primitive activity is set to

true, the simulator randomly selects the primitive activity duration between the min

and max durations specified for the activity. The second point of non-determinism

arises from probabilistic updates to facts and beliefs of agents and objects. Updates to

facts and beliefs are made using conclude statements in Brahms. Here is an example

of a conclude statement:

conclude((Pilot.checkStall = false), bc ∶ 70, fc ∶ 70)

This states that the belief and fact, checkStall, in the Pilot agent will be updated to

false with a probability of 70%. Here, bc represents belief certainty while fc repre-

sents fact certainty.

In the Überlingen model, currently there are only deterministic updates to facts

or beliefs. The updates to facts and beliefs are asserted with a 100% probability.

Nevertheless, there is a large degree of non-determinism due to variations in activity

durations. The difference in minimum and maximum duration ranges from 2 s to a

few 100 s. This can potentially lead to a large number of timing differences between

the various events.
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15.4.2.2 Behavior Space

The scheduler within the stateless Brahms model checker generates all possible paths

through the different points of non-determinism in the Brahms model. Note that in

describing the output of the Brahms stateless model checker, we use the terms path

and trace interchangeably. Intuitively, a path (or trace) generated by the Brahms state-

less model checker is equivalent to a single simulation run. More formally, a path

or trace is a sequence of events executed by the simulator < e0, e1, e2, ..., ei >. Each

event in the trace is a tuple, < a, t, (u, val) > where a is the actor id, t is the Brahms

clock time, and u is the fact or belief updated to the value val. For each trace, we

generate a sequence of nodes in the intermediate representation ninit , n0, n1, n2, ..., ni.
The initial node in the sequence, ninit is labeled with the initial values of belief/facts

values for the various agents and objects. The event e0 ∶=< a0, t0, (u0, val0) > is

applied to the initial node ninit where the value assigned to u0 is updated to val0.

Each event is applied in sequence to a node in the intermediate representation to

generate ninit , n0, n1, n2, ..., ni.

15.4.3 Case Study: The Überlingen Collision

The Überlingen accident, (Überlingen 2004), involving the (automated) Traffic Col-

lision Avoidance System (TCAS), is a good example to illustrate problems arising

from multiple human operators interacting with multiple automated systems. TCAS

has the ability to reconfigure the pilot and air traffic control center (ATCC) relation-

ship, taking authority from the air traffic control officer (ATCO) and instructing the

pilot.

TCAS is an onboard aircraft system that uses radar transponder signals to operate

independently of ground-based equipment to provide advice to the pilot about con-

flicting aircraft that are equipped with the same transponder/TCAS equipment. The

history of TCAS dates at least to the late 1950s. Motivated by a number of midair col-

lisions over three decades, the United States Federal Aviation Administration (FAA)

initiated the TCAS program in 1981. The system in use over Überlingen in 2002 was

TCAS II v.7, which had been installed by US carriers since 1994: TCAS II issues

the following types of aural annunciations:

∙ Traffic advisory (TA)

∙ Resolution advisory (RA)

∙ Clear of conflict

When a TA is issued, pilots are instructed to initiate a visual search, if possible, for the

traffic causing the TA. In the cases when the traffic can be visually acquired, pilots are

instructed to maintain visual separation from the traffic. When an RA is issued, pilots

are expected to respond immediately to the RA unless doing so would jeopardize the

safe operation of the flight. The separation timing, called TAU, provides the TA alert

at about 48 s and the RA at 35 s prior to a predicted collision.



15 Formal Analysis of Multiple Coordinated HMI Systems 421

On July 1 2002, a midair collision between a Tupolev Tu-154M passenger jet trav-

eling from Moscow to Barcelona, and a Boeing 757-23APF DHL cargo jet manned

by two pilots, traveling from Bergamo to Brussels, occurred at 23:35 UTC over the

town of Überlingen in southern Germany. The two flights were on a collision course.

TCAS issued first a Traffic Advisory (TA) and then a Resolution Advisory (RA) for

each plane. Just before TCAS issued an RA requesting that the Tupolev climb, the

air traffic controller in charge of the sector issued a command to descend; the crew

obeyed this command. Since TCAS had issued a Resolution Advisory to the Boeing

crew to descend that they immediately followed, both planes were descending when

they collided.

The decision of the Tupolev crew to follow the ATC’s instructions rather than

TCAS was the immediate cause of the accident. The regulations for the use of TCAS

state that in the case of conflicting instructions from TCAS and ATCO, the pilot

should follow the TCAS instructions. In this case study, the conflict arose because

the loss of separation between the two planes was not detected or corrected by the

ATCO. The loss of separation between airplanes are frequent occurrences; it is part

of the normal work of air traffic control to detect and correct them accordingly.

There were a set of complex systemic problems at the Zurich air traffic control

station that caused the ATCO to miss detecting the loss of separation between the two

planes. Although two controllers were supposed to be on duty, one of the two was

resting in the lounge: a common and accepted practice during the lower workload

portion of night shift. On this particular evening, a scheduled maintenance proce-

dure was being carried out on the main radar system, which meant that the con-

troller had to use a less capable air traffic tracking system. The maintenance work

also disconnected the phone system, which made it impossible for other air traffic

control centers in the area to alert the Zurich controller to the problem. Finally, the

controllers workload was increased by a late arriving plane. An A320 that was land-

ing in Friedrichshafen required the ATCO’s attention, who then failed to notice the

potential separation infringement of the two planes.

The Überlingen collision proves that methods used for certifying TCAS II v7.0

did not adequately consider human–automation interactions. In particular, the certi-

fication method treated TCAS as if it were flight system automation, that is, a system

that automatically controls the flight of the aircraft. Instead, TCAS is a system that

tells pilot how to maneuver the aircraft, an instruction that implicitly removes and/or

overrides the ATCs authority. Worldwide deployment of TCAS II v7.1 was still in

process in 2012, a decade after the Überlingen collision.

15.4.3.1 Brahms’ Model

In a Brahms model, the entire work system is modeled, including agents, groups

to which they belong, facilities (buildings, rooms, offices, spaces in vehicles), tools

(e.g., radio, radar display/workstation, telephone, vehicles), representational objects

(e.g., a phone book, a control strip), and automated subsystems (e.g., TCAS), all

located in an abstracted geography represented as areas and paths. Thus, the notion of
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human–system interaction in Brahms terms is more precisely an interaction between

an agent and a subsystem in the model; both are behaving within the work system.

A workframe in Brahms can model the interaction between an agent’s beliefs, per-

ception, and action in a dynamic environment, for example, these characteristics are

leveraged when modeling how a pilot deploys the aircraft landing gear. A pilot uses

the on-board landing control and then confirms that the landing gears are deployed

while monitoring the aircraft trajectory on the Primary Flight Display. This is mod-

eled in Brahms as follows: a pilot (e.g., the DHL pilot) is a member of the PilotGroup,

which has a composite activity for managing aircraft energy configuration. A spe-

cific instance of a conceptual class is called a conceptual object. A particular flight

(e.g., DHX611, a conceptual object) is operated by a particular airline and consists

of a particular crew (a group) of pilots (agents) who file a particular flight plan doc-

ument (an object), and so on. Each instance of an agent and object have possible

actions defined by workframes where each workframe contains a set of activities

that are ordered and often prioritized. Certain workframes are inherited from their

group (for agents) or class (for objects). The set of possible actions are modeled at a

general level and all members of a group/class have similar capabilities (represented

as activities, workframes, and thoughtframes); however, at any time during the simu-

lation, agent and object behaviors, beliefs, and facts about them will vary depending

on their initial beliefs/facts and the environment with which they are interacting.

The model incorporates organizational and regulatory aspects implicitly, manifest

by how work practices relate roles, tools, and facilities.

A Brahms simulation model configuration consists of the modeled geography,

agents, and objects, as well as their initial facts and beliefs of agents and objects.

The different configurations allow us to perform a what-if analysis on the model.

The time of departure for a flight might be an initial fact in a Brahms model. One can

modify the model to assign a different time of departure for a flight in each simulation

run. Another example of configurable initial facts may include work schedules for air

traffic controllers. In one configuration of the work schedules, an air traffic controller

may be working alone in the ATCC, while in another configuration, two controllers

would be present in the ATCC. Initial beliefs of an agent might be broad preferences

affecting behavior (e.g., TCAS should overrule the ATC), thus initial beliefs can

be used as switches to easily specify alternative configurations of interest. Alterna-

tive configurations are conventionally called scenarios. Thus for example, a scenario

might be a variation of the Überlingen collision in which two aircraft have flight

times that put them on an intersecting path over Überlingen; the only other flight is

a late arriving flight for Friedrichshafen and maintenance degrades the radar, but the

telephones are in working order.

In general, a model is designed with sufficient flexibility to allow investigating

scenarios of interest. The set of causal factors of interest (e.g., use of control strips

when approving aircraft altitude changes, availability of telephones) constitute states

of the world and behaviors that can be configured through initial facts and beliefs.

The initial settings define a space of scenarios. Using Brahms to evaluate designs

within this space, while using formal methods to help modelers understand its bound-
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aries so they can refine the model to explore alternative scenarios constitutes the main

research objective of this work.

The simulation engine determines the state of a modeled object (e.g., aircraft).

It determines the state of its facts and beliefs. Some objects are not physical things

in the world, but rather conceptual entities, called conceptual classes in the Brahms

language. These represent processes, a set of people, physical objects, and locations

(e.g., flights), and institutional systems (e.g., airlines) that people know about and

refer to when organizing their work activities.

15.4.3.2 High-Level Structure of Model

The systems that are mentioned in the accident report and play a role in accident

have been modeled in the Brahms Überlingen model. These include the pilots in

each aircraft, two ATCOs at Zurich, the relevant airspace and airports, all the air-

craft relevant to the accident, on-board automation, and other flight systems. The

following key subsystems and conditions are modeled in the Brahms Überlingen

model:

1. Interactions among Pilot, Flight Systems, and Aircraft for climb and cruise with

European geography for one plane, the DHL flight plan.

2. BTC flight, flight plan (two versions: on-time and delayed with collision) and

geography: this is independent of ATCO actions to confirm that simulation

reproduces collision with flight paths actually flown.

3. Radar Systems and Displays with ATCOs, located in Control Centers, monitor-

ing when flights are entering and exiting each European flight sector in flight

plans.

4. Handover interactions between Pilot and ATCOs for each flight phase.

5. Two ATCOs in Zurich, Radar Planner (RP), and ARFA Radar Executive (RE),

assigned to two workstations (RE has nothing to do under these conditions).

6. Add TCAS with capability to detect separation violations, generate Traffic Advi-

sory (TA) and Resolution Advisory (RA). DHL and BTC are delayed (on colli-

sion course, which tests TCAS)

7. Pilots follow TCAS instructions

8. ATCO may intervene prior to alert depending on when ATCO notices conflict in

Radar Displays since ATCO is busy communicating with other flights, moving

between workstations, and trying to contact Friedrichshafen control tower on

the phone.

9. AEF flight and flight plan so Zurich ARFA RE performs landing handoff to

Friedrichshafen controller.

10. Third plane, the AEF flight, arrives late, requiring ATCO communications and

handoff to Friedrichshafen: (a) Handled by ATCO in Zurich at right workstation

(ARFA sector) and not left East and South sector workstation. (b) Phone com-

munications for handovers, (c) Methods used by ATCO when phone contact

does not work:
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a. Ask Controller Assistant (CA) to get another number (pass-nr); requires

about 3 min for CA to return

b. After pass-nr fails, discuss with CA other options about 30 sec

c. When not busy handling other flights, try pass-nr again.

d. When plane is at Top-Of-Descent waypoint, as specified in STAR, for land-

ing at airport, within N nm of airport, method of last resort is to call pilots

on radio and ask them to contact the tower directly

11. STCA added to ATCO workstations (modeling normal and fallback mode with-

out optical alert). The ATCO responds to alert by advising Pilot to change flight

level based on next flight segment of flight plan.

12. Reduce to one Zurich ATCO which triggers the sequence of variations from the

nominal situation; now Zurich ATCO must operate flights from two worksta-

tions.

15.4.3.3 Analysis Results

The question that the analysis tries to answer, using both simulation and verification,

is why under certain conditions, a collision is averted, while in others it is not? In the

analysis, we try to gauge how the temporal sensitivity and variability of the interac-

tions among ATCO, TCAS, and the pilots impacts the potential loss of separation

and collision of the planes. Concretely, the questions that we ask during the analysis

are as follows:

∙ Given that the arrival of the AEF flight is disrupting the ATCOs monitoring of the

larger airspace (e.g., if it arrives sufficiently late, no collision occurs), what is the

period (relative to the BTC and DHL flights paths) when AEF’s arrival can cause

collision?

∙ During this period, does a collision always occur or are there variations of how the

AEF handoff occurs, such that sometimes the separation infringement is averted?

∙ Is there evidence that high-priority activities such as monitoring the sector are

repeatedly interrupted or deferred, implying the ATCO is unable to cope with the

workload?

The Brahms Überlingen Model defines a space of work systems (e.g., is STCA

optical functioning? are there two ATCOs?) and events (e.g., the aircraft and flights).

Every model configuration, which involves configuring initial facts, beliefs, and

agent/object relations, constitutes a scenario that can be simulated and will itself pro-

duce many different outcomes (chronology of events), because of non-deterministic

timings of agent and object behaviors. The model was developed and tested with a

variety of scenarios (e.g., varying additional flights in the sector; all subsystems are

working properly). The Überlingen accident is of special interest, in which systems

are configured as they were at the time of the accident and the DHL and BTC planes

are on intersecting routes.
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The key events that occur during simulation are logged chronologically in a file

that constitutes a readable trace of the interactions among the ATCO, pilots, and

automated systems. The log includes information about the following:

(a) ATCO–pilot interaction regarding a route change, including flight level and

climb/descend instruction,

(b) Separation violation events detected by TCAS, including TAU value,

(c) Closest aircraft and separation detected by ATCO when monitoring radar,

(d) STCA optical or aural alerts, including separation detected,

(e) Agent movements (e.g., ATCO shifting between workstations),

(f) Aircraft movements, including departure, entering and exiting sectors, waypoint

arrival, landing, collision, airspeeds, and vertical,

(g) Aircraft control changes (e.g., autopilot disengaged),

(h) Radio calls, including communicated beliefs, and

(i) Phone calls that fail to complete.

The outcome of ten simulation runs of Brahms Überlingen model configured for

the collision scenario are shown in Table 15.1. In simulation runs 1, 2, and 3, the

ATCO intervenes before TCAS TA, but planes have not separated sufficiently, TCAS

will take BTCs descent into account, advising DHL to climb. In the simulation runs

4, 5, 7, 8, and 9, the ATCO intervenes between TA and RA. In these runs, whether

the planes collide depends on timing. As shown in Table 15.1 two of the five runs

results in a collision. Note that in our model, a collision is defined as occurring when

the vertical separation between the planes is less than a 100 feet. Finally, in the simu-

lation runs 6 and 10, the ATCO intervenes about 10 s after the TCAS RA, which the

BTC pilots ignore (or might be imagined as discussing for a long time); therefore,

BTC continues flying level while DHL descends and they miss each other, sepa-

rated by more than 600 ft at the crossing point. In other runs, we have also observed

that ATCO intervenes so late, he actually takes the pilots’ report about TCAS RA

instructions into account.

When ATCO intervenes in the period between the TA and RA in runs 4, 5, 7,

8, and 9, a collision is possible, like what happened at Überlingen: ATCO has to

intervene before the TA advising BTC to descend so that BTC can respond before

TCAS advises DHL to climb. In runs 4 and 7, collision is narrowly averted because

BTC begins to descend 4 or 5 s after the TCAS RA, which is sufficient for a narrow

miss (just over 100 feet). In run 9, the BTC descent begins 5 s before the RA, hence

the aircraft miss by more than 200 feet). Runs 5 and 8 lead to a collision because

the TCAS RA and BTC AP disengage occur at the same time, like what happened

at Überlingen.

Because the model uses the Überlingen descent tables to control the BTC and

DHL aircraft during the emergency descent, simulation matches the paths of the

aircraft at Überlingen guaranteeing a collision (within defined range of error). In

both cases, TCAS did not instruct DHL to climb because BTC was above DHL at

that time and of course had not begun its descent.

When ATCO intervenes after the RA, the BTC pilots in the simulations ignore

the RA advice and continue level flight, which itself averts the collision, even though
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ATCO advises BTC to descend (which implies ignoring that DHL is below them).

We of course do not know what the BTC pilots would have done if ATCO had not

intervened. With more than one pilot interpreting TCAS correctly, it appears possible

the BTC would have climbed.

The final AEF handoff (directing the pilots to contact the tower) always occurs

in the simulation after the TCAS RA; at Überlingen, it occurred prior to the TA.

This discrepancy raises many questions about what variability is desirable. In the

verification of the system, we were able to find certain cases where the final AEF

handoff occurs before the TCAS TA and the planes collide.

15.5 Related Work

Several research groups have worked on modeling and analysis of HMI systems and

properties and have taken a variety of approaches to the problem. There has been

been work on fomalising user models such as CCT and PUMS since the 1980s, but

most of these modeling approaches do not focus on the verification aspect Young

et al. (1989), Butterworth and Blandford (1997), Bovair et al. (1990).

Campos and Harrison (2008, 2011) propose a framework for analyzing HMI

using model checking. They define a set of generic usability properties (Campos

and Harrison 2008), such as the possibility to undo an action. These properties can

be expressed in a modal logic called MAL and checked with a model checker on

the system. This approach targets specific and precise usability properties, whereas

our approaches revolve around the higher-level “full-control” characteristic that we

defined for an HMI system and as such is complementary to their analysis.

Thimbleby and Gow (2007), Thimbleby (2010) use graphs to represent mod-

els. They study usability properties of the system by analyzing structural proper-

ties of graphs such as the maximum degree and the value of centrality measures. In

their approach, there is no distinction among actions and there is little focus on the

dynamic aspects of the interaction.

Curzon et al. (2007) use a framework based on defining systems with modal logic.

Properties of the model are checked using a theorem prover. Similarly to Campos et

al., properties of interest are more targeted to a specific usability property while our

approach is more generic.

Navarre et al. (2001), Bastide et al. (2003) also developed a framework to analyze

interactive systems. Their focus is on the combination of user task models and system

models, which we have also explored in the context of our work (Combéfis 2009).

Bolton et al. (2008, 2011), Bolton and Bass (2010) developed a framework used to

help predicting human errors and system failures. Models of the system are analyzed

against erroneous human behavior models. The analysis is based on task-analytic

models and taxonomies of erroneous human behavior. All those models are merged

into one model which is then analyzed by a model checker to prove that some safety

properties are satisfied. Modeling human error is something that can be incorporated

into our Brahms models and taken into account in our analysis.
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Bredereke and Lankenau (2002, 2005) formalized mode confusions and devel-

oped a framework to reduce them. The formalization is based on a specification/

implementation refinement relation. Their work is targeted on mode confusion while

the work presented here is targeted to more general controllability issues.

Model-based testing has been used to analyze systems modeled as Input-Output

Labeled Transition Systems (IOTS) (Tretmans 2008). The IO conformance relation

(IOCO) is defined to describe the relationship between implementations and speci-

fications. The IOCO relation states that the outputs produced by an implementation

must, at any point, be a subset of the corresponding outputs in the specification. This

is triggered by the fact that IOCO is used in the context of testing implementations.

Outputs are similar to observations in our context. The full-control property defined

in our work needs to consider commands (inputs) in addition to observations.

The works discussed above all focus on analysis of HMI properties but none of

them have looked at the issue of facilitating the modeling and analysis of complex

multi-agent systems. In a way, this is an orthogonal concern, and the techniques

discussed above can be incorporated with a framework like Brahms.

There has been a large body of work in the verification safety-critical systems in

the domain of civil aviation in the US as well as in Europe. The DO-178B titled Soft-
ware considerations in airborne systems and equipment certification is the official

guideline for certifying avionics software. Several model checking and formal ver-

ification techniques have been employed to verify avionic software in Miller et al.

(2010), Ait Ameur et al. (2010) in accorrdance with the DO-178B. Recent work

describes how changes in aircraft systems and in the air traffic system pose new

challenges for certification, due to the increased interaction and integration (Rushby

2011). The certification is defined for the deployed software.

For the verification of model-based development, in Miller et al. (2010), the

authors present a framework that supports multiple input formalisms tomodel avionic

software: these include MATLAB Simulink/Stateflow and SCADE. These formalisms

are then translated into an intermediate representation using Luster, a standard mod-

eling language employed to model reactive systems with applications in avionics.

Finally, Lustre models are translated to the input language of various model check-

ers, including NuSMV, PVS, and SAL. These models, however, do not account for

the behavior of the human operators.

The work of Yasmeen and Gunter (2011) deals with the verification of the behav-

ior of human operators to check the robustness of mixed systems. In this approach,

the authors employ concurrent game structures as the modeling language and trans-

late the verification problem to a model checking instance using SPIN. Our approach

is different in that we do not perform syntactic translations, and we reason explicitly

about probabilities and beliefs of the agents in the model.
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15.6 Conclusions and Future Work

NASA has engaged in research to develop new analytical techniques that can model

human–machine interactions and represent the real complexity of the NAS. These

techniques represent and analyze scenarios with single users interacting with a single

piece of automation as well as multiple humans interacting with multiple automated

systems. In this chapter, we described our efforts in developing HMI-specific formal

analysis algorithms, connecting them to models that domain experts are familiar

with, and finally moving toward multi-agent modeling formalisms that are able to

capture in a more scalable fashion the intricate interactions between agents in the

NAS. We illustrated our work with a variety of relevant case studies.

In the future, we want to build a fast time simulation and analysis framework

based on these technologies to evaluate design concepts for Air Traffic Management

operations. Our ultimate goal is to provide algorithms and tool support for the quan-

titative analysis of safety, performance, and workload for human operators early in

the design process. This will allow airspace designers to evaluate various design

concepts before implementing them.

To this end, in recent ongoing work, we have developed Brahms models for

arrivals and departures at the La Guardia airport based on the work on Departure

Sensitive Arrival Scheduling (DSAS) concept developed by the Airspace Operations

Lab (AOL) at NASA Ames (Lee et al. 2015). The DSAS concept provides the ability

to maximize departure throughput at the LaGuardia Airport in the New York metro-

plex without impacting the flow of the arrival traffic; it was part of a research effort

to explore solutions to delays incurred by departures in the New York metroplex. We

are able to successfully model DSAS scenarios that consist of approximately 1.5 h

real flight time. During this time, there are between 130 and 150 airplanes being

managed by four enroute controllers, three TRACON controllers, and one tower

controller at LGA who is responsible for departures and arrivals. The planes are

landing at approximately 36–40 planes an hour (Rungta et al. 2016). On this model,

airspace designers can evaluate different design candidates in terms of the safety,

performance, and workload. Our goal is to then turn the modeled constructs into

templates for a general framework that would allow airspace designers to extend

components based on their needs.
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Chapter 16
Domain-Specific Modelling
for Human–Computer Interaction

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers
and Hans Vangheluwe

Abstract Model-driven engineering (MDE) is an important enabler in the devel-

opment of complex, reactive, often real-time, and software-intensive systems, as it

shifts the level of specification from computing concepts (the “how”) to concep-

tual models or abstractions in the problem domain (the “what”). Domain-specific

modelling (DSM) in particular allows to specify these models in a domain-specific

modelling language (DSML), using concepts and notations of a specific domain. It

allows the use of a custom visual syntax which is closer to the problem domain and

therefore more intuitive. Models created in DSMLs are used, among others, for sim-

ulation, (formal) analysis, documentation, and code synthesis for different platforms.

The goal is to enable domain experts, such as a power plant engineer, to develop, to

understand, and to verify models more easily, without having to use concepts out-

side of their own domain. The first step in the DSM approach when modelling in

a new domain is, after a domain analysis, creating an appropriate DSML. In this

chapter, we give an introduction to DSML engineering and show how it can be used

to develop a human–computer interaction interface. A DSML is fully defined by its

syntax and semantics. The syntax consists of (i) the abstract syntax, defining the

DSML constructs and their allowed combinations, captured in a metamodel, and

(ii) the concrete syntax, specifying the visual representation of the different con-

structs. The semantics defines the meaning of models created in the domain. In this

chapter, we show how two types of semantics (operational and translational) can be
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modelled using model transformations. Operational semantics gives meaning to the

modelling language by continuously updating the model’s state, effectively building

a simulator. Translational semantics defines mappings of models in one language

onto models in a language with known semantics. This enables the automatic con-

struction of behavioural models, as well as models for verification. The former can

be used for automated code synthesis (leading to a running application), whereas the

latter leads to model checking. We choose to specify properties for model checking

using the ProMoBox approach, which allows the modelling of properties in a syntax

similar to the original DSML. A major advantage of this approach is that the mod-

eller specifies both requirements (in the form of properties) and design models in a

familiar notation. The properties modelled in this domain-specific syntax are verified

by mapping them to lower-level languages, such as Promela, and results are mapped

back to the domain-specific level. To illustrate the approach, we create a DSML for

modelling the human–computer interaction interface of a nuclear power plant.

16.1 Introduction

Developing complex, reactive, often real-time, and software-intensive systems using

a traditional, code-centric approach is not an easy feat: knowledge is required from

both the problem domain (e.g. power plant engineering) and computer programming.

Apart from being inefficient and costly, due to the need for an additional programmer

on the project, this can also result in more fundamental problems. The programmer,

who implements the software, has no knowledge of the problem domain, or basic

knowledge at best. The domain expert, on the other hand, has deep knowledge of the

problem domain, but only a limited understanding of computer programs. This can

result in communication problems, such as the programmer making false assump-

tions about the domain or the domain expert to gloss over details when explaining

the problem to the programmer. Furthermore, the domain experts will finally receive

a software component that they do not fully understand, making it difficult for them

to validate and modify if necessary. There is a conceptual gap in effect between the

two domains, hindering productivity.

Model-driven engineering (MDE) (Vangheluwe 2008) tries to bridge this gap, by

shifting the level of specification from computing concepts (the “how”) to conceptual

models or abstractions in the problem domain (the “what”). Domain-specific mod-

elling (DSM) (Kelly and Tolvanen 2008) in particular makes it possible to specify

these models in a domain-specific modelling language (DSML), using concepts and

notations of a specific domain. The goal is to enable domain experts to develop, to

understand, and to verify models more easily, without having to use concepts outside

of their own domain. It allows the use of a custom visual syntax, which is closer to

the problem domain and therefore more intuitive. Models created in such DSMLs are

used, among others, for simulation, (formal) analysis, documentation, and code syn-

thesis for different platforms. There is, however, still a need for a language engineer

to create the DSML, which includes defining its syntax and providing the mapping

between the problem domain and the solution domain.
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16.1.1 Case Study

In this chapter, we explain the necessary steps for developing a system using the

DSM approach, applied to the nuclear power plant control interface case study

(see Chap. 4). We build this human–computer interaction interface incrementally

throughout the chapter. The system consists of two parts:

1. The nuclear power plant, which takes actions as input (e.g. “lower the control

rods”), and output events in case of warning and error situations. Each nuclear

power plant component is built according to its specification, which lists a series

of requirements (e.g. “the reactor can only hold 450 bar pressure for 1 min”).

These are specified in the model of each component. Components send warning

messages in case their limits are almost reached, such that the user can take con-

trol and alleviate the problem. When the user is unable to bring the reactor to

a stable state, however, the component sends an error message, indicating that

an emergency shutdown is required to prevent a nuclear meltdown. There is a

distinction between two types of components:

a. Monitoring components, which monitor the values of their sensors and send

messages to the controller depending on the current state of the component.

An example is the generator, which measures the amount of electricity gen-

erated. Their state indicates the status of the sensors: normal, warning, or

error.
b. Executing components, which receive messages from the controller and exe-

cute the desired operation. A valve, for example, is either open or closed.

Their state indicates the physical state of the component, for example open
or closed.

2. The controller, which acts as the interface between the plant and the user. Users

can send messages to the controller by pressing buttons. It is, however, up to the

controller to pass on this request to the actual component(s) or choose to ignore

it (possibly sending other messages to components, depending on the state of the

reactor core). We implement a controller which has three main modes:

a. Normal operation, where the user is unrestricted and all messages are passed.

b. Restricted operation, where the user can only perform actions which lower

the pressure in the reactor. This mode is entered when any of the components

sends out a warning message. When all components are back to normal, full

control is returned to the user.

c. Emergency operation, where control is taken away from the user, and the

controller takes over. This mode is entered when any of the components

sends out an error message. The controller will forcefully shut down the

reactor and ignore further input from the user. As there is likely damage to

the power plant’s components, it is impossible to go back to normal opera-

tion without a full reboot.

http://dx.doi.org/10.1007/978-3-319-51838-1_4
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We construct a DSML which makes it possible to model the configuration of a

nuclear power plant and express the behaviour of each component, as well as the

controller. We intend to automatically synthesize code, which behaves as specified

in the model. Additionally, we use the ProMoBox approach (Meyers et al. 2014) to

verify that all of the desired (safety) properties are fulfilled by the modelled human–

computer interface.

We use the open-source metamodelling tool AToMPM (Syriani et al. 2013) (“A

Tool for Multi-Paradigm Modelling”) throughout this chapter, though the approach

can be applied in other metamodelling tools with similar capabilities. All aspects of

defining a new language are supported: creating an abstract syntax, defining custom

concrete syntax, and defining semantics through the use of model transformations.

16.1.2 Terminology

The first step in the DSM approach when modelling in a new domain is, after a

domain analysis, creating an appropriate DSML. A DSML is fully defined (Kleppe

2007) by:

1. Its abstract syntax, defining the DSML constructs and their allowed combina-

tions. This information is typically captured in a metamodel.

2. Its concrete syntax, specifying the visual representation of the different con-

structs. This visual representation can be either graphical (using icons), or tex-

tual.

3. Its semantics, defining the meaning of models created in the domain (Harel and

Rumpe 2004). This encompasses both the semantic domain (what is its meaning)

and the semantic mapping (how to give it meaning).

For example, 1 + 2 and (+ 1 2) can both be seen as textual concrete syntax (i.e.

a visualization) for the abstract syntax concept “addition of 1 and 2” (i.e. what con-

struct it is). The semantic domain of this operation is the set of natural numbers (i.e.

what it evaluates to), with the semantic mapping being the execution of the operation

(i.e. how it is evaluated). Therefore, the semantics, or “meaning”, of 1 + 2 is 3.

This definition of terminology is shown in Fig. 16.1. Each aspect of a formalism

is modelled explicitly, as well as relations between different formalisms. Throughout

the remainder of this paper, we present these four aspects in detail and present the

model(s) related to the use case for each.

Aside from the language definition, properties are defined that should hold for

models defined in the language and can be checked. Whereas such properties are

normally expressed in property languages, such as LTL (Pnueli 1977), we will use

the ProMoBox (Meyers et al. 2014) approach. With LTL, we would revert back to the

original problem: the conceptual gap between the problem domain and the imple-

mentation level is reintroduced. With the ProMoBox approach, properties are mod-

elled using a syntax similar to that of the original DSML. Thus, the modeller spec-

ifies both the requirements, or properties, and design models in a familiar notation,

lifting both to the problem domain. In case a property does not hold, feedback is

furthermore given by the system at the domain-specific level.
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Fig. 16.1 Terminology

16.1.3 Outline

The remainder of this chapter is structured as follows. Section 16.2 presents the dif-

ferent aspects of syntax: both abstract and concrete. Section 16.3 presents an intro-

duction to the definition of semantics, and how we apply this to our case study.

Section 16.4 explains the need for properties at the same level as the domain-specific

language and presents the ProMoBox approach. Section 16.5 concludes. Throughout

the chapter, we use the nuclear power plant case study to illustrate how each concept

is applied in practice.

16.2 Syntax

A syntax defines whether elements are valid in a specified language or not. It does

not, however, concern itself with what the constructs mean. With syntax only, it

would be possible to specify whether a construct is valid, but it might have invalid

semantics. A simple, textual example is the expression
1
0
. It is perfectly valid to write

this, as it follows all structural rules: a fraction symbol separates two recursively

parsed expressions. However, its semantics is undefined, since it is a division by zero.

16.2.1 Abstract Syntax

The abstract syntax of a language specifies its constructs and their allowed combina-

tions and can be compared to grammars specifying parsing rules. Such definitions are

captured in a metamodel, which itself is again a model of the metametamodel (Kühne

2006). Most commonly, the metametamodel is similar to UML class diagrams, as is

also the case in our case study. The metametamodel used in the examples makes it

possible to define classes, associations between classes (with incoming and outgoing

multiplicities), and attributes.
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While the abstract syntax reasons about the allowable constructs, it does not state

anything about how they are presented to the user. In this way, it is distinct from

textual grammars, as they already offer the keywords to use (Kleppe 2007). It merely

states the concepts that are usable in the domain.

A possible abstract syntax definition for the nuclear power plant use case is shown

in Fig. 16.2. It defines the language constructs, such as a reactor, pumps, and valves,

which can have attributes defining its state (e.g. a valve can be open or closed). It

also lists the allowed associations between abstract syntax elements (e.g. a generator

cannot be directly connected to a steam valve).

The constructs for modelling the behaviour of the elements are also present. The

abstract syntax requires all components to have exactly one behavioural definition.

In this definition, the component is in a specific state which has transitions to other

states. For each transition, it is possible to define cardinalities, to limit the number of

outgoing links of each type. For example, the metamodel forbids a single state from

having two outgoing transitions of certain types. While we do not yet give semantics

to our language, we already limit the set of valid models (i.e. for which semantics

needs to be defined). By preventing ambiguous situations in the abstract syntax, we

do not need to take them into account in the semantic definition, as they represent

invalid configurations.

This language definition, together with the concrete syntax definition, is used

by AToMPM to generate a domain-specific syntax-directed modelling environment,

which means that only valid instances can be created. For example, if the abstract

syntax model specifies that there can only be a single SCRAM transition, then draw-

ing a second one will give an error. This maximally constrains the modeller and

ensures the models are (syntactically) correct by construction.

16.2.2 Concrete Syntax

The concrete syntax of a model specifies how elements from the abstract syntax are

visually represented. The relation between abstract and concrete syntax elements is

also modelled: each representable abstract syntax concept has exactly one concrete

syntax construct, and vice versa. As such, the mapping between abstract and concrete

syntax needs to be a bijective function. This does not, however, limit the number of

distinct concrete syntax definitions, as long as each combination of concrete and

abstract syntax has a bijective mapping. The definition of the concrete syntax is a

determining factor in the usability of the DSML (Barišić et al. 2011).

Multiple types of concrete syntaxes exist, though the main distinction is between

textual and graphical languages. Both have their advantages and disadvantages:

textual languages are more similar to programming languages, making it easier for

programmers to start using the DSML. On the other hand, visual languages can rep-

resent the problem domain better, due to the use of standardized symbols, despite

them being generally less efficient (Petre 1995). An overview of different types of

graphical languages is given in Costagliola et al. (2004). Different tools have differ-
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Fig. 16.2 Abstract syntax definition for the nuclear power plant domain (some subclasses omitted)
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Fig. 16.3 Concrete syntax definition for the nuclear power plant domain (excerpt)

ent options for concrete syntax, depending on the expected target audience of the

tool. For example, standard parsers always use a textual language, as their target

audience consists of computer programmers who specify a system in (textual) code.

While the possibilities with textual languages are rather restricted, graphical lan-

guages have an almost infinite number of possibilities. In Moody (2009), several

“rules” are identified for handling this large number of possibilities. As indicated

beforehand, a single model can have different concrete syntax representations, so it

is possible for one to be textual and another to be graphical.

An excerpt of a possible visual concrete syntax definition for the nuclear power

plant use case is shown in Fig. 16.3. Each of the constructs presented in the concrete

syntax model corresponds to the abstract syntax element with the same name. Every

construct receives a visual representation that is similar to the one defined in the

case study. In case of standardized icons or symbols, it would be trivial to define a

new concrete syntax model. Furthermore, a specific concrete syntax was created for

the definition of the states. Each state is a graphical representation of the state of

the physical component, making it easier for users to determine what happens. We

chose to attach the graphical representation given in the case study to represent the

normal functioning of the reactor core; this results in an identical representation of

the “normal reactor state” and the “rods down state”.

Now that we have a fully defined syntax for our model, we create an instance of

the use case in AToMPM, of which a screenshot is shown in Fig. 16.4. A domain-

specific modelling environment, generated from the language definition, is loaded

into AToMPM, as displayed by the icon toolbar at the top, below AToMPM’s gen-

eral purpose toolbars. This example instance shows a model very similar to the one

in the case study. Each component additionally has a specification of its dynamic
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Fig. 16.4 Screenshot of AToMPM with an example nuclear power plant instance
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behaviour. This behaviour definition specifies when to send out messages, using the

state of the underlying system, as well as timeouts. The controller is also constructed

as per our presented case study.

While the meaning of this model might be intuitively clear, this model does not

yet have any meaning, as there is no semantics defined. Defining the semantics of

this model is the topic of the next section.

16.3 Semantics

Since the syntax only defines what a valid model looks like, we need to give a mean-

ing to the models. Even though models might be syntactically valid, their meaning

might be useless or even invalid.

It is possible for humans to come up with intuitive semantics for the visual nota-

tions used (e.g. an arrow between two states means that the state changes from the

source to the destination if a certain condition is satisfied). There is, however, a need

to make the semantics explicit for two main reasons:

1. Computers cannot use intuition, and therefore, there needs to be some operation

defined to convey the meaning to the machine level.

2. Intuition might only take us that far and can cause some subtle differences in

border cases. Having semantics explicitly defined makes different interpretations

impossible, as there will always be a “reference implementation”.

Semantics consists of two parts: the domain it maps to and the mapping itself.

Both will be covered in the next subsections.

16.3.1 Semantic Domain

The semantic domain is the target of the semantic mapping. As such, the seman-

tic mapping will map every valid language instance to a (not necessarily unique)

instance of the semantic domain. Many semantic domains exist, as basically every

language with semantics of its own can act as a semantic domain. The choice of

semantic domain depends on which properties need to be conserved. For example,

DEVS (Zeigler et al. 2000) can be used for simulation, Petri nets (Murata 1989)

for verification, Statecharts (Harel 1987) for code synthesis, and Causal Block Dia-
grams (Cellier 1991) for continuous systems using differential equations. A single

model might even have different semantic domains, each targeted at a specific goal.

For our case study, we use Statecharts as the semantic domain, as we are inter-

ested in the timed, reactive, and autonomous behaviour of the system, as well as

code synthesis. Statecharts were introduced by Harel (1987) as an extension of state

machines and state diagrams with hierarchy, orthogonality, and broadcast communi-

cation. It is used for the specification and design of complex discrete-event systems
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and is popular for the modelling of reactive systems, such as graphical user inter-

faces. The Statecharts language consists of the following elements:

∙ states, either basic, orthogonal, or hierarchical;

∙ transitions between states, either event-based or time-based;

∙ actions, executed when a state is entered and/or exited;

∙ guards on transitions, modelling conditions that need to be satisfied in order for

the transition to “fire”;

∙ history states, a memory element that allows the state of the Statechart to be

restored.

Figure 16.5 presents a Statecharts model which is equivalent to the model in our

DSML, at least with respect to the properties we are interested in. Parts of the struc-

ture can be recognized, though information was added to make the model compliant

to the Statecharts formalism. Additions include the sending and receiving of events

and the expansion of forwarding states such as in the controller. The semantic map-

ping also merged the different behavioural parts into a single Statechart. There are

two types of events in the resulting Statecharts model: discrete events coming from

the operator (e.g. lower control rods) and events coming from the environment, cor-

responding to sensor readings (e.g. water level in reactor). These discrete values are

changed into boundary crossing checks, which cannot be easily modelled using Stat-
echarts. Instead, to model these, a more suitable formalism should be chosen, such

as Causal Block Diagrams (Cellier 1991) (CBDs). These CBD models then need to

be embedded into the Statecharts model. It is necessary to connect both formalisms

semantically, such that, for example, a signal value in the CBD model translates to

an event in the Statecharts model (Boulanger et al. 2011). This is out of scope for

this paper and does not influence the properties we are interested in. We assume the

sensor readings are updated correctly and communicated to our Statecharts model.

As is usually the case, the DSML instance is more compact and intuitive, com-

pared to the resulting Statechart instance. The Statecharts language itself also needs

to have its semantics defined, as done in Harel and Naamad (1996).

In the following subsection, we define one semantic mapping that maps onto the

Statecharts language (called “translational semantics”) and one mapping that maps

the language onto itself (called “operational semantics”).

16.3.2 Semantic Mapping

While many categories of semantic mapping exist, as presented in Zhang and Xu

(2004), we only focus on the two main categories relevant to our case study:

1. Translational semantics, where the semantic mapping translates the model from

one formalism to another, while maintaining an equivalent model with respect

to the properties under study. The target formalism has semantics (again, either

translational or operational), meaning that the semantics is “transferred” to the

original model.
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Fig. 16.5 Statechart equivalent to the behaviour shown in Fig. 16.4



16 Domain-Specific Modelling for Human–Computer Interaction 447

2. Operational semantics, where the semantic mapping effectively executes, or

simulates, the model being mapped. Operational semantics can be implemented

with an external simulator, or through model transformations that simulate the

model by modifying its state. The advantage of in-place model transformations

is that semantics is also defined completely in the problem domain, making it

suitable for use by domain experts. For our case study, this means implementing

a simulator using model transformations.

Due to the possibly many semantic mappings, their chaining can be explicitly

modelled in aFormalism Transformation Graph+Process Model (FTG+PM) (Lucio

et al. 2013). An FTG+PM can encompass both automatic transformations (i.e.

through model transformations) and manual transformations (i.e. through a user cre-

ating a related model).

The semantic mapping, which translates between a source and target model, is

commonly expressed using model transformations, which are often called the heart

and soul of model-driven engineering (Sendall and Kozaczynski 2003). A model

transformation is defined using a set of transformation rules and a schedule.

A rule consists of a left-hand side (LHS) pattern (transformation precondition),

right-hand side (RHS) pattern (transformation post-condition), and possible nega-

tive application condition (NAC) patterns (patterns which, if found, stop rule appli-

cation). The rule is applicable on a graph (the host graph), if each element in the

LHS can be matched in the model, without being able to match any of the NAC pat-

terns. When applying a rule, the elements matched by the LHS are replaced by the

elements of the RHS in the host graph. Elements of the LHS that do not appear in

the RHS are removed, and elements of the RHS that do not appear in the LHS are

created. Elements can be labelled in order to correctly link elements from the LHS

and RHS.

A schedule determines the order in which transformation rules are applied. For

our purpose, we use MoTiF (Syriani and Vangheluwe 2013), which defines a set

of basic building blocks for the transformation rule scheduling. We limit ourself to

three types of rules: the ARule (apply a rule once), the FRule (apply a rule for all

matches simultaneously), and the CRule (for nesting transformation schedules).

In the following subsections, we define both the operational and translational

semantics of our modelling language.

16.3.2.1 Translational Semantics

With translational semantics, the source model is translated to a target model,

expressed in a different formalism, which has its own semantic definition. The

(partial) semantics of the source model then corresponds to the semantics of the

target model. As the rule uses both concepts of the problem domain and the target

domain (Statecharts in our case), the modeller should be familiar with both domains.

The Statecharts language, however, is still much more intuitive and, in the case of a
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real-time, reactive, and autonomous system, more appropriate to use than the average

programming language.

The schedule of our transformation is shown in Fig. 16.6, where we see that each

component is translated in turn. Each of these blocks is a composite rule, meaning

that they invoke other schedules. One of these schedules is shown in Fig. 16.7, where

the valves are translated. The blocks in the schedule are connected using arrows to

denote the flow of control: green arrows originating from a check mark are followed

when the rule executed successfully, while red arrows originating from a cross are

followed when an error occurred. Three pseudo-states denote the start, the successful

termination, and the unsuccessful termination of the transformation. Our schedule

consists of a series of FRules, which translate all different valve states to the corre-

sponding Statecharts states. After these are mapped, the transitions between them

are also translated, as shown in the example rule in Fig. 16.8. In this rule, we look

Fig. 16.6 Top-level transformation schedule
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Fig. 16.7 Transformation schedule for valves
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Fig. 16.8 Example transformation rule for translational semantics

up the Statecharts states generated from the domain-specific states and create a link

between them if there was one in the domain-specific language. For each kind of

link, there needs to be such a rule. In this case, we map the SCRAM message to

a Statecharts transition which takes a specific kind of event. Note that we do not

remove the original model, ensuring traceability.
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Fig. 16.9 Example interface in Python TkInter

The generated Statechart can be coupled to a user interface, to allow user interac-

tion. Figure 16.9 presents an example interface, created with Python TkInter. To the

left, the user is presented with a colour-coded overview of the system. The states of

operational elements (e.g. valves) are marked in grey, and elements that can emit

a warning or error message are marked in either green, orange, or red. On top,

an overview of the current state of the system is shown, indicating what level of

responsiveness the user can expect. At the bottom is a SCRAM button, which, when

pressed, will simply emit the “SCRAM” event to the Statecharts model. The visual

representation at the right labels all parts and provides more in-depth information

about each component. Elements can be clicked to interact with them. For example,

a pump can be enabled or disabled by clicking on it in the figure. The icons used in

the user interface are similar to those of the concrete syntax, to retain consistency

with the system definition (modelled in the domain-specific language). This is not

mandatory, however, and other icons could be chosen. As previously mentioned, this

interface is only a minimal example to illustrate the applicability of our approach.

After creating this interface, it needs to be coupled to the Statecharts model.

This is done through the use of events: the interface uses the interface of the model

to raise and catch events to and from the Statecharts model. For example, press-

ing the “SCRAM” button raises the “SCRAM” event. Similarly, when the interface

catches the event “warning high core pressure”, it visualizes this change by chang-
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ing the colour of the pressure reading. As such, the interface does not implement any

autonomous behaviour, but relies fully on the Statechartsmodel. Different interfaces

can be coupled, as long as they adhere to the interface of the model.

16.3.2.2 Operational Semantics

A formalism is operationalized by defining a simulator for that formalism. This sim-

ulator can be modelled as a model transformation that executes the model by contin-

uously updating its state (effectively defining a “stepping” function). The next state

of the model is computed from the current state, the information captured in the

model (such as state transitions and conditions), and the current state of the environ-

ment. Contrary to translational semantics, the source model of operational semantics

is often augmented with run-time information. This requires the creation of both a

“design formalism” and a “run-time formalism”. In our case study, for example, the

run-time formalism is equivalent to the design formalism augmented with informa-

tion on the current state and the simulated time, as well as a list of inputs from the

environment.

An example rule is shown in Fig. 16.10. The rule changes the current state by

following the “onPressure” transition. The left-hand side of the rule matches the

current state, the value of the sensor, and the destination of the transition. It is only

applicable if the condition on the transition (e.g. >450) is satisfied (by comparing it

to the value of the sensor reading). We use abstract states for both source and target

0 1

2

T...
T...

3

4
4

7

<<behavior>>

8

9

0 1

3

8

7
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10

<coded>
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<<behavior>>
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__pReactorStateIcon __pReactorStateIcon

T...
T...

Fig. 16.10 Example transformation rule for operational semantics
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of the transition, as we do not want to limit the application of the rule to a specific

combination of states: the rule should be applicable for all pairs of reactor states that

have an “onPressure” transition. The right-hand side then changes the current state

to the target of the transition.

The schedule has the form of a “simulation loop”, but is otherwise similar to the

one for translational semantics and is therefore not shown here.

16.4 Verification of Properties

DSM mainly focuses on the design of software systems, but can also greatly help in

formal verification of these systems. Requirements can be made explicit in the form

of properties: questions one can ask of the system, for which the answer is either

“yes” or “no”. Depending on the nature of the verification problem, these properties

can be checked using model checking, symbolic execution, constraint satisfaction,

solving systems of equations, etc.

The general verification process is shown in Fig. 16.11, where a formal model

and properties are fed into a verification engine. If no counterexample is found, the

system satisfies the property. If a counterexample is found, it needs to be visualized

to be able to correct the formal model, after which the verification process can be

restarted.

In the context of DSM, model-to-model transformations can be used to trans-

form the DSML instance to a formal model, on which model checking can be

applied (Risoldi 2010). In this case, the modeller needs to specify and check the

properties directly on the formal model, often in a notation as LTL (Pnueli 1977),

and needs to transform the verification results back to the DSM level. Having to

work with such intricate notations contradicts the philosophy of DSM, where mod-

els should be specified in terms of the problem domain.

One solution is to create a DSML for property specification in the same manner

as the DSML for designing systems. An example is TimeLine (Smith et al. 2001): a

Fig. 16.11 Verification of formally specified systems
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Fig. 16.12 The ProMoBox approach applied to the nuclear power plant control (NPPC) DSML

visual DSML for specifying temporal constraints for event-based systems. Develop-

ing and maintaining yet another DSML come at a great cost, again contradicting the

DSM philosophy of fast language engineering. Possible counterexamples also need

to be visualized somehow, possibly requiring yet another DSML.

In this section, we apply the ProMoBox approach (Meyers et al. 2013, 2014;

Meyers and Vangheluwe 2014) which resolves the above issues to the nuclear power

plant DSML. The ProMoBox approach for the nuclear power plant control (NPPC)

is laid out in Fig. 16.12. Minimal abstraction and annotation of the NPPC’ DSML is

required to generate the ProMoBox—a family of five DSMLs that cover all tasks of

the verification process:

∙ The design language NPPCD allows DSM engineers to design the static structure

of the system, similarly to traditional DSM approaches as described earlier in this

chapter.

∙ The run-time language NPPCR enables modellers to define a state of the system,

such as an initial state as input of a simulation, or a particular “snapshot” or state

during run-time.

∙ The input language NPPCI lets the DSM engineer model the behaviour of the

system environment, for example by modelling an input scenario as an ordered

sequence of events containing one or more input elements.

∙ The output language NPPCO is used to represent execution traces (expressed as

ordered sequences of states and transitions) of a simulation or to show verifica-

tion results in the form of a counterexample. Output models can also be created

manually as part of an oracle for a test case.

∙ The property language NPPCP is used to express properties based on modal tem-

poral logic, including structural logic and quantification.
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The bottom side of Fig. 16.12 reflects one instance using the SPIN model checker

of the verification process shown in Fig. 16.11. The modeller uses the ProMoBox to

model not only the nuclear power plant system, but also temporal properties. The

ProMoBox approach supports fully automatic compilation to LTL and Promela, ver-

ification using the SPIN model checker (Holzmann 1997), and subsequent visual-

ization of counterexamples. In conclusion, by using the ProMoBox approach, the

user can specify or inspect all relevant models at the domain-specific level, while

the development overhead is kept to a minimum.

16.4.1 Abstraction and Annotation Phase

Since model checking techniques will be applied, a simplification step might be nec-

essary to reduce the combinatorial search space of the model, to avoid long verifica-

tion time or extensive memory usage. This scalability problem is inherent to model

checking: typical culprits for state space explosion are the number of variables and

the size of variable’s domains. Attributes in the metamodel must therefore be simpli-

fied by abstracting the domain of some relevant language constructs (see Fig. 16.13).

∙ All attributes of type integer are reduced to Booleans or enumerations. We use

system information to find the enumeration values, meaning that the DSML is

reduced to an even smaller domain: the enumeration values represent ranges of

integer values (e.g. high, low, or normal water levels abstract away the actual value

of the water level, but can still be used for analysis, as we are only interested in

what “state” the water level is in).
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Fig. 16.13 The simplified and annotated metamodel (excerpt)
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∙ Conditions on transitions are reduced to denote which of the enumeration values

yield true (as a set of enumeration literals).

∙ The attribute denoting number of seconds in the after attribute of the association

is removed, since no concept of real time will be used in the properties.

Other simplifications to reduce the state space, such as rearranging the transfor-

mation schedule and breaking down metamodel hierarchy, are beyond the scope of

this chapter. The ProMoBox approach includes guidelines for simplification.

Once all necessary simplifications are performed, annotations need to be added

to the DSML’s metamodel. Annotations add semantics to elements in the metamodel

(classes, associations, and attributes), denoting whether elements are static (do not

change at run-time), are dynamic (change at run-time, thus reflecting the state of the

system), or are part of the environment. To achieve this, annotations mark in which of

the five languages these elements should be available. By default, elements are not

annotated, meaning that they appear in the design, run-time, output, and property

languages, but not in the input language.

Three annotations are provided:

∙ «rt»: run-time, annotates a dynamic concept that serves as output (e.g. a state

variable);

∙ «ev»: an event, annotates a dynamic concept that serves as input only (e.g. a mark-

ing); and

∙ «tr»: a trigger, annotates a static or dynamic concept that also serves as input (e.g.

a transition event).

Other annotations can be added to the annotations model, as long as certain con-

straints are met (e.g. availability in the design language implies availability in the

run-time language).

In Fig. 16.13, we show some attribute annotations. The attributes flow_rate, open,

rods_down, and current represent the observable state of the nuclear power plant

and are therefore annotated with «rt». The attributes water_level and pressure can

be changed by the environment and are therefore annotated with «tr». Classes, asso-

ciations, and attributes such as name and initial are not annotated, meaning that they

are only part of the static structure of the model.

The concrete syntax of the simplified DSML requires slight adaptation, such that

the enumeration values are shown instead of the integers. The simplified and anno-

tated metamodel, of which an excerpt is shown in Fig. 16.13, contains sufficient infor-

mation to generate the ProMoBox consisting of five languages.

16.4.2 ProMoBox Generation Phase

A family of five languages is generated from the annotated metamodel using a

template-based approach. For every language, the elements of the annotated meta-

model according to the annotations are combined with a predefined template.
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For example, Fig. 16.14 shows the metamodel of the generated design language
NPPCD. Generic template elements (shown as grey rectangles in Fig. 16.15) are

combined with the DSL metamodel elements through the use of inheritance. The

template consists of one simple class DesignElement with an attribute id, used

for traceability. All DSML classes transitively inherit from this single class. Some

attributes, such as flow_rate, open, rods_down, and current, are left out of the design

language. They represent state information that is only part of the running system and

not of the static structure of the system. Since the design language consists solely of

static information, attribute values of the above attributes are not visible, nor avail-

able, in the design language’s instance.

The metamodel of the run-time language NPPCR (not shown) is similar. It does,

however, include the aforementioned attributes such that the state of the system can

be represented with this language. An instance of the run-time language looks similar

to an instance of the design DSML (shown in Fig. 16.4), where the current state is

marked and attribute values are shown.

Figure 16.15 shows the metamodel of the generated output language NPPCO. The

template represents an output Trace with Transitions between system States. These

States contain OutputElements representing a run-time state of the modelled system,

such that a Trace represents a step-by-step execution trace. As the annotations dictate,

all elements of the annotated metamodel are present inNPPCO. Instances of the input

(NPPCI) and output (NPPCO) languages (not shown) look like a sequence of run-
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Fig. 16.14 The generated NPPC design language NPPCD (excerpt)



16 Domain-Specific Modelling for Human–Computer Interaction 457
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Fig. 16.15 The generated NPPC output language NPPCO (excerpt), shaded elements are part of

the template

time language instances, but can also be left implicit due to spatial constraints. They

can be “played out” step by step on the modelled system to replay the execution it

represents.

The generated metamodel of property language NPPCP, shown in Fig. 16.16,

allows the definition of temporal properties over the system behaviour by means of

four constructs:

∙ Quantification (∀ or ∃) allows the user to specify whether the following temporal

property should apply to all or at least one match of a given pattern over the design

model;

∙ Temporal patterns (based on Dwyer et al. 1999) allow the user to choose from a

number of intuitive temporal operators over occurrences of a given pattern in a

state of the modelled system, such as after the reactor is in the low water state,
it should eventually go back to the normal state. These temporal patterns can be

scoped (i.e. should only be checked) within certain occurrences of a given pattern;

∙ Structural patterns (based on Guerra et al. 2010, 2013) allow the user to specify

patterns over a single state of the modelled system, such as a component is in
warning state. Structural patterns can be composed, but are always evaluated on a

single state of the modelled system;
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Fig. 16.16 The generated NPPC properties language NPPCP (excerpt), shaded elements are part
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∙ Instead of (a subset of) the DSML, a pattern language of the DSML (generated

using the RAMification process (Kühne et al. 2009; Syriani 2011)) is used, such

that domain-specific patterns rather than models can be specified. The effects of

this are reflected in NPPCP, where all attribute types are now Conditions (expres-

sions that return a Boolean), all abstract classes are concrete, and the lower bounds

of association cardinalities are relaxed.

The resulting language has a concrete syntax similar to the DSML, and the quan-

tification and temporal patterns (instead of LTL operators) are raised to a more intu-

itive level through the use of natural language.

16.4.3 Specifying and Checking Properties Using ProMoBox

Figures 16.17 and 16.18 show properties specified in the property language NPPCP.

These patterns reuse domain-specific language elements to allow the specification of

patterns and ultimately properties in a domain-specific syntax. Figure 16.17 shows a

Response pattern, and Fig. 16.18 shows an Existence pattern, bounded by an Upper
and Lower bound.

As shown in Fig. 16.12, properties specified in the property language are compiled

to LTL, and the compiler produces a Promela model (Holzmann 1997) that includes

a translation of the initialized system, the environment, and the rule-based opera-

tional semantics of the system. This translation is generic and thus independent of

the DSML. The properties are checked by the SPIN model checker, which evaluates

every possible execution path of the system. In case of Fig. 16.17, no counterexample

is found, meaning that the system satisfies this property in every situation.

For the property modelled in Fig. 16.18, however, a counterexample is found

which we will discuss in more detail. The property is translated to the following

LTL formula: [](Q && !R -> (!R W (P && !R))) where:

∙ P = generator.state == normal
∙ Q = generator.state == warning&& reactor.state == rods_down

Fig. 16.17 Property 1: If
the generator is in the error
state, the rods will eventually
be lowered
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Fig. 16.18 Property 2: If the generator is in the warning state, the rods can only become raised if
the generator passed through the normal state

∙ R = generator.state == warning&& reactor.state == rods_up
∙ Operator W is “weak until” and defined as p W q = ([]p) || (p U q)

The counterexample found shows it is possible for two different components to go

into the warning state, after which only one of them goes back to the normal state.

If that happens, the controller will go back to the normal state, as there is no counter

to store how many components are in the warning state. In this normal state, it is

possible to raise the rods further, without having the generator go to the normal state

again, causing the property to be violated. This counterexample can be played out

with SPIN to produce a textual execution trace, which is translated back to the DSM

level as an instance of the output language. This execution trace can be played out

on the modelled system, by visualizing the states of the traces in the correct order.

The limitations of the framework are related to the mapping to Promela, as

explained in Meyers et al. (2014). In its current state, ProMoBox does not allow

dynamic structure models. Because of the nature of Promela and the compiler’s

design, boundedness of the state space is ensured in the generated Promela model.

16.5 Conclusion

In this chapter, we motivated the use of domain-specific modelling (DSM) for

the development of complex, reactive, real-time, and software-intensive systems.

Model-driven engineering, and in particular DSM, closes the conceptual gap between

the problem domain and solution (implementation) domain.

We presented the different aspects of a domain-specific modelling language:

1. abstract syntax to define the allowable constructs;

2. concrete syntax to define the visual representation of abstract syntax constructs;

3. semantic domain to define the domain in which the semantics is expressed; and
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4. semantic mapping to define the mapping to a model in the semantic domain that

defines the (partial) semantics of the domain-specific model.

Each of these aspects was explained and applied to our case study: modelling the

behaviour of a nuclear power plant controller and its subcomponents. The behav-

iour of the nuclear power plant interface is defined using both operational semantics

(“simulation”) and translational semantics (“mapping”).

We extended our discussion to property checking, which was also lifted to the

level of the problem domain. This enables domain experts to not only create mod-

els and reason about them, but also specify properties on them. Errors, or any other

kind of feedback, are also mapped back onto the problem domain, meaning that the

domain expert never has to leave his domain. All aspects of modelling were thus

pulled up from the solution domain, up to the problem domain, closing any concep-

tual gaps. Moreover, a generative approach is used, in order to limit development

overhead.
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Chapter 17
Exploiting Action Theory as a Framework
for Analysis and Design of Formal
Methods Approaches: Application
to the CIRCUS Integrated Development
Environment

Camille Fayollas, Célia Martinie, Philippe Palanque, Eric Barboni,
Racim Fahssi and Arnaud Hamon

Abstract During early phases of the development of an interactive system, future
system properties are identified (through interaction with end-users, e.g., in the
brainstorming and prototyping phases of the development process, or by require-
ments provided by other stakeholders) imposing requirements on the final system.
Some of these properties rely on informal aspects of the system (e.g. satisfaction of
users) and can be checked by questionnaires, while others require the use of verifi-
cation techniques over formal models (e.g. reinitializability) or validation techniques
over the application (e.g. requirements fit). Such properties may be specific to the
application under development or generic to a class of applications, but in all cases
verification and validation tools are usually required for checking them. The usability
of these tools has a significant impact on the validation and verification (V&V)
phases which usually remain perceived as very resource consuming. This chapter
proposes a user–centred view on the use of formal methods, especially on the use of
formal modelling tools during the development process of an interactive system. We
propose to apply Norman’s action theory to the engineer tasks of formal modelling in
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order to analyse how modelling tools impact the following engineer activities: model
editing, model verification and model validation. The CIRCUS Integrated Devel-
opment Environment serves as an illustrative example to exemplify how engineer
tasks may be impacted by modelling tools features.

17.1 Introduction

Nowadays, interactive applications are deployed in more and more complex command
and control systems including safety critical ones. Dedicated formalisms, processes and
tools are thus required to bring together various properties such as reliability,
dependability and operability. In addition to standard properties of computer systems
(such as safety or liveness Pnueli 1986), interaction-related properties have been
identified. Properties related to the use of an interactive system are called external
properties (Cockton and Gram 1996) and characterize the capacity of the system to
provide support for its users to accomplish their tasks and goals, and prevent or help
recover from errors. Although all types of properties are not always completely inde-
pendent from another (somemight also be conflicting), external properties are related to
the user’s point of view and the usability factor (International Standard Organization
1996), whereas internal properties are related to the design and construction of the
system itself (e.g. modifiability, run-time efficiency). Interactive systems have to
support both types of properties. Dedicated techniques and approaches have been
studied for this purpose, among which are formal description techniques. Formal
description techniques have proven their value in several domains and are required to
understand, design and develop interactive systems and check their properties.

Formal description techniques have been studied within the field of human–
computer interaction as a means to describe and analyse, in a complete and
unambiguous way, interactions between a user and a system. Several types of
approaches have been developed (Dix 1991), which encompass contributions about
formal description of an interactive system’s behaviour and/or formal verification of
its properties.

The use of formal methods depends on the phase of the development process
describing the activities necessary to develop the interactive system under con-
sideration. In the case of critical interactive systems, Martinie et al. (2012) proposes
a development process relying on formal methods and taking into account both
interactive and critical aspects of such systems which necessitates several formal
descriptions used by different user types (system designers, human factor special-
ists, etc.). Consequently, the usability of tools for validation and verification of
these interactive systems target will depend on their users’ activity in the devel-
opment process.

Whether being used as a means for describing in a complete and unambiguous
way the interactive system or as a means of verifying properties, formal description
techniques and their associated tools need to be designed to be usable and not error
prone.
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This chapter, extending and refining previous work presented in (Barboni et al.
2003), proposes a user-centred view on the use of formal methods, especially on the
use of formal modelling tools during the development process of an interactive
system. We propose to apply Norman’s action theory to the engineer’s tasks of
formal modelling in order to analyse how modelling tools impact the following
engineer activities: model editing, model verification and model validation.

The chapter is structured as follows. The next section details engineer’s tasks
related to the production of models, as well as Norman’s action theory (Norman
2013) and its seven stages. Section 17.3 presents the CIRCUS Integrated Devel-
opment Environment that will be used as an illustrative example, throughout the
chapter, to show how the modelling tasks are performed as well as the impact of the
modelling tools on them. Sections 17.4, 17.5 and 17.6 present how the application
of the Norman’s action theory to the main engineer’s tasks (editing, verification,
validation) can be used to investigate effectiveness and efficiency issues. Still
relying on Norman’s action theory, Sect. 17.7 presents how the synergistic use of
models can provide additional support to validation tasks. Section 17.8 discusses
how modelling tools can enhance effectiveness and efficiency by helping the
engineer in accomplishing several goals at once. Section 17.9 concludes the chapter
and presents some perspectives for this work.

17.2 A Global View on Modelling Activities During
the Development of Interactive Systems

This section presents the main goals that have to be achieved by the user of the
development tools (thus the engineer) to produce models during interactive systems
development phases. Norman’s action theory is then used as a framework to
analyse whether or not modelling tools provide support for these tasks.

17.2.1 Engineer’s Tasks When Developing Interactive
Systems

Several tasks have to be performed when producing models during the development
of an interactive system. Editing of the models, verification of the edited models
and validation of the models are the main ones. Figure 17.1 depicts how these main
tasks are organized during the development process of the models that are used to
design and develop interactive systems.

In Fig. 17.1, at the beginning of the process, the scope of the modelling activities
has to be identified in order to determine which elements (related to the interactive
system to be developed) will be modelled and which types of models will be used.
Then, the user/engineer has to analyse the extant system, as well as the needs and
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requirements for the interactive system to be developed. After this analysis step, the
production of the models starts with the editing step. That step produces a first
version of models. The verification step is then performed for checking the models
in order to ensure that they are correct and consistent. If they are not the editing step
has to be performed again to amend the models. This editing-verification loop will
be performed again until the models are fully correct and consistent.

The validation step will then be initiated to check whether or not the model
meets specified needs and requirements. If this is not the case, the user/engineer will
have to review the needs and requirements and to correct the models by going back
to the editing step, as well as editing-verification loop until the new version of the
models is correct and consistent. This new version of the models will then be
reassessed against needs and requirements during another validation step. This
editing–verification–validation loop will be performed again until the models are
complete, consistent and meet needs and requirements.

Verifica on

Valida on

Edi ng

End

Iden fica on 
of the scope 

of the 
modelling 

ac vity

Extant 
system,

needs and 
requirements 

analysis

Not OK

Are the models 
correct and 
consistent?

OK

Do the models fulfill 
needs and reqs?

OK

Models

Set of test 
results

Set of test 
results

Not OK

Fig. 17.1 The process of producing models during the development of an interactive system

468 C. Fayollas et al.



The editing, verification and validation steps will be detailed in Sects. 17.4, 17.5
and 17.6, respectively, and will be illustrated with the examples of modelling
notations and tools. In particular, we will focus on the system and task modelling
notations as they are the key types of notations that provide support for designing
and developing interactive systems.

Figure 17.2 presents the process for the combined production of task and system
models. This process is based on task modelling and system modelling. Task
modelling may have been started before system modelling (during the preliminary
task analysis phase). These two modelling activities are done following the process
presented in Fig. 17.1 and lead to the production of task models and system models.
The process then continues with the cross-validation of task and system models in
order to check whether they are complete and consistent. When both task and
system models are consistent and complete, the development process of the inter-
active system can go on (e.g. code generation, user testing). This particular
cross-model validation step will be detailed in Sect. 17.8.

17.2.2 Norman’s Action Theory and Its Application
to Models Production Tasks

Figure 17.3 presents the seven stages of Norman’s action theory (Norman 2013). The
left-hand side represents the execution path which is composed of a set of activities
that have to be carried out by the user in order to reach her/his goal. The right-hand

Task modelling

System modelling 

Task models

System models

Check 
completeness 
& consistency

Not OK

Not OK

OK

Fig. 17.2 Process for the combined production of task and system models
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side represents the evaluation path which is composed of a set of activities that has to
execute by the user in order to interpret the real world state and how it was affected by
her/his action.

This sequence of stages is iterative: the user will perform the depicted sequence
of activities until the goal is reached. The user will act on the real world and
interpret the result of the actions performed and the changes it implied in the real
world. The user will then compare the perceived state and the one desired (which is
part of his/her goal) and decide (if the goal is not reached) to perform another
action. This will be done iteratively until the goal is reached or until the user gives
up.

Figure 17.3 also depicts the main difficulties that the users may face when they
interact with a system. The gulf of execution is an indicator about how the system
support intended user actions. The gulf of evaluation is an indicator about how the
information provided by the system helps the user in assessing the system’s state.
Therefore, reducing these gulfs (and thus reducing the gap between the different
actions) helps in enhance the usability of the device.

Figure 17.4 presents the application of the seven stages of Norman’s action
theory to modelling work. That figure shows the refinement of specific activities to
take into account modelling tasks. The two main stages we are focusing on are:

• On the execution side, the activity of going from an intention to its actual
transcription into some model and

• On the evaluation side, the activity of perceiving model behaviour and inter-
preting this perception.

One of the main advantages of this model is that it provides a generic framework
for investigating where the main difficulties can occur during system modelling

Goal
(form a goal)

Perform
(the action sequence)

Interpret
(the perception)

Perceive
(the state of the world)

The world

Plan
(intention to act)

Compare
(the outcome with the goal)

Evaluation 
path

Execution 
path

Specify
(an action sequence)

Fig. 17.3 The seven stages of Norman’s action theory

470 C. Fayollas et al.



which is a highly demanding task on the engineer’s side. This framework thus
provides design rules for environments to support user’s activities and reduce their
difficulties.

Norman’s action theory provides a generic framework for investigating where
the main difficulties can occur during system modelling activities performed by an
engineer. Each engineer task described in the previous section (editing, verification,
validation and cross-type validation of models) is a goal that has to be accomplished
during the development of interactive systems. And for each of these goals, the
seven stages of Norman’s action theory can be used to analyse the low-level
activities that the engineer will execute. Sections 17.4, 17.5, 17.6 and 17.7,
respectively, present these low-level activities for the editing, verification, valida-
tion and cross-type goals. Table 17.1 is a template that will be filled in for each goal
(presented in each respective section).

The following questions (from Norman’s action theory Norman 2013) will be
used to fill in the table:

• Perceive: What happened?
• Interpret: What does it mean?
• Compare: Is this okay? Have I accomplished my goal?

Goal: model a 
system

Perform the model 
production

Interpret the meaning 
of the model

Perceive the elements 
composing the model

The world = the model

Plan how the desired system 
characteristics have to be 

modeled

Compare the meaning 
of the model with the 

expected meaning

Evaluation 
path

Execution 
path

Specify the action 
sequence to produce 

the model

Fig. 17.4 Formal modelling within Norman’s action theory

Table 17.1 The template used to describe the application of Norman’s action theory to the
different engineer task during model’s development and cross-model validation

Evaluation path Execution path

Engineer task Perceive Interpret Compare Goal Plan Specify Perform
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• Goal: What do I want to accomplish?
• Plan: What are the alternative action sequences?
• Specify: What action can I do now?
• Perform: How do I do it?

17.3 Illustrative Example: The CIRCUS Integrated
Development Environment

This section presents the CIRCUS integrated development environment that will be
used as an illustrative example, throughout this chapter, to show how the modelling
tasks are performed, as well as the impact of the modelling tools on them. In order
to illustrate these tasks, we use a small system as an illustrative example: the
weather radar application (called WXR application). This illustrative example will
be used to perform the task modelling and system modelling activities, thus helping
to highlight how the modelling tools have an impact on modelling tasks, according
to the seven stages of Norman’s action theory.

The first subsection presents the WXR application. The second subsection
presents the formal modelling of this application (both task and system modelling).
Finally, the last subsection presents the three tools composing the CIRCUS inte-
grated development environment (for task modelling, system modelling and syn-
ergistic validation of both task and system models).

17.3.1 The Weather Radar Application Description

The weather radar (WXR) presented in this chapter is built upon an application
currently deployed in many cockpits of commercial aircraft. WXR provides support
to pilots’ activities by increasing their awareness of meteorological phenomena
during the flight journey. It allows them to determine the weather ahead of the
aircraft which might end up in requesting a trajectory change, in order to avoid
storms or precipitations, for example.

Figure 17.5 presents a screenshot of the weather radar control panel, used to
operate the weather radar application. This panel provides the crew with two
functionalities. The first one (see Fig. 17.5a) is dedicated to the mode selection of
the weather radar and provides information about the radar status, to ensure that it
can be set up correctly. The mode change can be performed in the upper part of the
panel. The second functionality, available in the lower part of the window, is
dedicated to the adjustment of the weather radar orientation (Tilt angle). This can be
done in an automatic or a manual way (auto/manual buttons). Additionally, a
stabilization function aims at keeping the radar beam stable even in case of tur-
bulence. Figure 17.5b presents an image of the controls used to configure radar
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display, particularly to set up the range scale (right-hand side knob with ranges 20,
40, … nautical miles).

Figure 17.6 shows screenshots of weather radar displays according to two dif-
ferent range scales (40 NM for the left display and 80 NM for the right display).
Spots in the middle of the images show the current position, importance and size of
the clouds.

Fig. 17.5 Image of a the weather radar control panel b of the radar display manipulation

Fig. 17.6 Screenshot of weather radar displays
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17.3.2 Formal Modelling of the WXR Application

This section presents the task modelling and system modelling of the WXR
application. In order to simplify the reading, each subsection is divided in two parts:
first the notation used is presented and then the model corresponding to the WXR
application is presented.

17.3.2.1 Task Modelling

This section introduces the task modelling of the WXR application. For this pur-
pose, we first quickly introduce and then present the HAMSTERS model of the
WXR application.

Brief Presentation of HAMSTERS Notation
The HAMSTERS notation (Human-centred Assessment and Modelling to

Support Task Engineering for Resilient Systems) has initially been designed to
provide support for ensuring consistency, coherence and conformity between user
tasks and interactive systems at the model level (Barboni et al. 2010). It has then
been further enhanced and now encompasses notation elements such as a wide
range of specialized tasks types, data and knowledge explicit representations,
device descriptions, genotype and phenotypes of errors and collaborative tasks.

The HAMSTERS notation enables structuring users’ goals and subgoals into a
hierarchical tasks tree in which qualitative temporal relationship among tasks are
described by operators (Martinie et al. 2011). The output of this
decomposition/refinement is a graphical tree of nodes that can be tasks or temporal
operators.

Table 17.2 Task types in HAMSTERS

Abstract Input Output I/O Processing

Abstract
Abstract

Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

User
User abstract Perceptive Motor User Cognitive

Interactive
Abstract in-

teractive
Input Output Input/Output

Not
Applicable

System
Abstract sys-

tem
Output Input Input/Output System
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Tasks can be of several types and contain information such as a name, infor-
mation details and criticality level. The different types of tasks in HAMSTERS are
depicted in Table 17.2 (from top to bottom and left to right):

• Abstract tasks: tasks involving subtasks of any types;
• System tasks: tasks performed only by the system;
• User tasks: tasks describing a user activity that can be specialized as perceptive

tasks (e.g. reading some information), cognitive task (e.g. comparing value,
remembering information), or motor tasks (e.g. pressing a button);

• Interactive tasks: tasks describing an interaction between the user and the sys-
tem that can be refined into input task when the users provide input to the
system, output task when the system provides an output to the user and
input/output task (both but in an atomic way);

It is important to note that only the single-user high-level task types are pre-
sented here, but they can be further refined. For instance, the cognitive tasks can be
refined in analysis and decision tasks (Martinie et al. 2011a, b) and collaborative
activities can be refined in several task types (Martinie et al. 2014).

Temporal operators are used to represent temporal relationships between sub-
goals and between activities. HAMSTERS temporal operators are depicted and
defined in Table 17.3; they are similar to the ones proposed in (Wilson et al. 1993)
and then reused and extended in CTT (Paternò 1999).

Tasks can also be tagged by properties to indicate whether or not they are
iterative, optional or both (for instance, Fig. 17.7 presents two iterative tasks: the
“manage modes” and “change mode” abstract tasks). HAMSTERS expressive
power goes beyond most other tasks modelling notations particularly by providing
detailed means for describing data that is required and manipulated in order to
accomplish tasks (Martinie et al. 2013).

The HAMSTERS notation is supported by a CASE tool for editing and simu-
lation of models. This tool has been introduced in order to provide support for task
system integration at the tool level (Martinie et al. 2014). The HAMSTERS tool and
notation also provide support for structuring a large number and complex set of
tasks introducing the mechanism of subroutines, submodels and components
(Forbrig et al. 2014). Such structuring mechanisms allow describing large and

Table 17.3 Illustration of the operator types within HAMSTERS

Operator type Symbol Description

Enable T1 ≫ T2 T2 is executed after T1
Concurrent T1 ||| T2 T1 and T2 are executed at the same time
Choice T1 [] T2 T1 is executed OR T2 is executed
Disable T1 [> T2 Execution of T2 interrupts the execution of T1
Suspend-resume T1 | > T2 Execution of T2 interrupts the execution of T1, T1

execution is resumed after T2
Order
independent

T1 | = |
T2

T1 is executed then T2 OR T2 is executed then T1
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complex activities by means of task models. These structuring mechanisms enable
the breakdown of a task model in several ones that can be reused in the same or
different task models.

HAMSTERS Task Model of the WXR Application
The HAMSTERS task model, corresponding to the WXR application, describing

the crew activities when managing the WXR application, is depicted in Fig. 17.7
(due to space constraints, the managed tilt angle subparts are folded, as shown by
the symbol). When managing the modes of the WXR application, the crew
members can decide to change the mode (“decide change mode” cognitive task).
This activity is followed by choosing a mode (“change mode” iterative abstract
task). This task is refined by the choice between the five WXR modes (five
interactive input tasks corresponding to the choice of one of the five WXR modes).
After choosing a new mode, the crew members can decide that they are satisfied by
the activated mode (“decide mode is correct” cognitive task) or iterate on the same
task and select another mode.

Fig. 17.7 Task model of the manage WXR application activity
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17.3.2.2 System Modelling

This section introduces the system modelling of the WXR application. For this
purpose, we first quickly introduce the ICO notation and then present the ICO
model of the WXR application.

Brief Presentation of ICO Notation
The ICO notation (Navarre et al. 2009) (Interactive Cooperative Objects) is a

formal description technique devoted to specify interactive systems. Using
high-level Petri nets for dynamic behaviour description, the notation also relies on
an object-oriented approach (dynamic instantiation, classification, encapsulation,
inheritance and client/server relationships) to describe the structural or static aspects
of systems. This notation has been applied to formally specify interactive systems in
the fields of air traffic management (Navarre et al. 2009), satellite ground systems
(Palanque et al. 2006), and cockpits of military (Bastide et al. 2004) and civil
aircraft (Barboni et al. 2006a; Hamon et al. 2013).

A complete definition of the ICO notation can be found in (Navarre et al. 2009).
However, we describe here the notation elements that are necessary to understand
the ICO model of the WXR application presented here after: the high-level Petri
net-based behavioural description of the system. These elements are presented in
Fig. 17.8.

In few words, a Petri net is an oriented graph composed of a set of places
(usually represented by ellipses, e.g. places p0, p1 and p2 in Fig. 17.8) which
symbolize states variables holding tokens which symbolize values and a set of
transitions (usually represented by rectangles, e.g. transitions t0 and t1 in Fig. 17.8)
which symbolize actions and state changes. A set of arcs connects places to tran-
sitions (called input arcs, e.g. the arc connecting place p0 to transition t0) or
transitions to places (called output arcs, e.g. the arc connecting transition t0 to place
p2) and represents the flow of tokens through the Petri net model. The state of the
modelled system is represented by the distribution of tokens across the set of places
(called marking). The dynamic behaviour of a marked Petri net is expressed by
means of two rules, the enabling rule and the firing rule. A transition is enabled if
each input place (places linked to the transition with input arcs) contains at least as
many tokens as the weight of the input arcs it is linked to. When an enabled
transition is fired, tokens are removed from the input places of the transition and
new tokens are deposited into the output places (the number of tokens is defined by
the weight of the output arcs).

Fig. 17.8 Example of an ICO model
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The ICO notation is based on high-level Petri nets and more particularly on
Object Petri nets (Lakos and Keen 1991; Valk 1998); ICO models are Petri net in
terms of structure and behaviour, but they hold a much more complex set of
information. For instance, in the ICO notation, tokens in the places are comprised of
a typed set of values that can be references to other objects (allowing, for instance,
use in a transition of method calls) or preconditions about the actual value of some
attributes of the tokens. For instance, in Fig. 17.8, the places p0, p1 and p2 com-
prises an integer, respectively, named a, b and c. The Object Petri nets formalism
also allows the use of test arcs that are used for testing presence and values of
tokens without removing them from the input place while firing the transition (e.g.
the arc connecting place p1 to transition t0 in Fig. 17.8).

The ICO notation also encompasses multicast asynchronous communication
principles that enable, upon the reception of an event, the firing of some transitions.
For instance, the transition t1 in Fig. 17.8 is fired upon the receipt of an event
named event.

ICO System Model of the WXR Application
The ICO model of the WXR application is presented in Fig. 17.9. It describes

how it is possible to handle both mode and tilt angle of the weather radar
application.

Figure 17.9 shows the interactive means provided to the end-user of the
application:

Fig. 17.9 ICO behaviour model of the WXR mode selection and tilt angle setting
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• Switch between the five available modes (upper part of the figure) using radio
buttons (the five modes being WXON to activate the weather radar detection,
OFF to switch it off, TST to trigger a hardware check-up, STDBY to switch it on
for test only and WXA to focus detection on alerts).

• Select the tilt angle control mode (lower part of the figure) among three modes
(fully automatic, manual with automatic stabilization and manual selection of
the tilt angle).

17.3.3 Tools Within the CIRCUS Integrated Development
Environment

CIRCUS, which stands for Computer-aided design of Interactive, Resilient, Critical
and Usable Systems, is an integrated development environment embedding both
system and task modelling functionalities. The CIRCUS environment targets the
following user types: engineers, system designers and human factors specialists. It
aims at helping them to achieve their specific tasks during the design and devel-
opment of interactive critical systems. CIRCUS embeds features for the formal
verification of the system’s behaviour as well as features for assessment of com-
patibility between the user’s task and the system’s behaviour.

The CIRCUS environment integrates three tools: the HAMSTERS tool (for task
modelling), the PetShop tool (for systems modelling) and the SWAN tool (for
synergistic validation of both task and system models). This section presents these
three tools that will be used as subjects to investigate their usability issues with
respect to each stage of the Norman’s Action Theory.

17.3.3.1 HAMSTERS Tool

The HAMSTERS notation is supported by a CASE tool, named the same, for
editing and simulation of models. This tool has been introduced in order to provide
support for task system integration at the tool level (Martinie et al. 2014).
The HAMSTERS tool and notation also provide support for structuring a large
number and complex set of tasks introducing the mechanism of subroutines, sub-
models and components (Forbrig et al. 2014). Such structuring mechanisms allow
describing large and complex activities by means of task models. These structuring
mechanisms enable the breakdown of a task model in several ones that can be
reused in the same or different task models.

As task models can be large, it is important to provide the analyst with
computer-based tools for editing task models and for analysing them. To this end,
the HAMSTERS task modelling tool provides support for creating, editing, and
simulating the execution of task models.
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Editing
As depicted in Fig. 17.10, the HAMSTERS software tool for editing task models

is composed of three main areas:

• On the left-hand side, the project exploratory,
• In the centre, the task model editing area and
• On the right-hand side, the palette containing task types and temporal ordering

operators.

Visual notation elements can be added to the task model by a drag and drop
operation from the palette to the task model area (Fig. 17.10).

The task properties panel provides support, in the bottom left in Fig. 17.10, and
provides support for viewing and editing task properties (such as estimated mini-
mum and maximum time).

Simulation
The execution of task models can be launched from the project panel, by

right-clicking on a task model and then by selecting the “Run simulator” menu
option. Once this menu option has been selected, a pop-up window appears to
enable the user to choose a name for the scenario. This scenario will contain the list
of tasks that have been executed during the simulation. Once a name has been
chosen for the scenario, the simulation panel appears on the right-hand side in the
HAMSTERS software environment. At the same time, a new visual element
appears in the project explorer panel, on the left-hand side of the HAMSTERS
software environment. This visual element represents the new scenario file that has
been created (see Fig. 17.11).

Fig. 17.10 Task model editing
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The simulation panel provides information about:

• the current tasks that are available for execution (list in the upper part of the
simulation panel in Fig. 17.11) and

• the scenario, i.e. the tasks that have been executed (list in the lower part of the
simulation panel in Fig. 17.11).

The tasks which are available for execution are highlighted in green in the task
model (in the central part in Fig. 17.11).

17.3.3.2 PetShop Tool

The ICO notation is supported by a CASE tool (named PetShop Palanque et al.
2009) for editing, simulating and analysing ICO models. As system models can be
large, it is important to provide the analyst with computer-based tools for editing
system models and for analysing them. To this end, the PetShop tool provides
support for creating, editing, and simulating the execution of task models.

Editing
As depicted in Fig. 17.12, the PetShop environment is composed (as the

HAMSTERS tool) of three main areas:

• On the left-hand side, the project exploratory,
• In the centre, the ICO model editing area,
• On the right-hand side, the palette containing the elements of the ICO notation

(Petri net nodes: places and transitions and Petri net edges: arcs).

Visual notation elements can be added to the ICO model by a drag and drop
operation from the palette to the ICO model area.

Fig. 17.11 Representation of executable and executed tasks during the simulation
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Simulation and Analysis
PetShop allows, at the same time, the editing (it is possible to add/remove places,

transitions and arcs, change marking, etc.); simulation (while editing it is possible to
see the enabled transitions (shown in a darker colour in Fig. 17.12) and analysis of
the underlying Petri net structure (the set of place and transitions invariant are
computed while editing and simulating (not visible in the figure but detailed in
Sect. 6.2).

17.3.3.3 SWAN Tool

SWAN, which stands for Synergistic Workshop for Articulating Notations, is a tool
enabling the co-execution of the ICO system models with the corresponding
HAMSTERS user’s task models. This tool enables the editing of correspondences
between system and task models and their co-execution.

Editing
The editing of correspondences between the two models is done by a dedicated

editor (depicted in Fig. 17.13) enabling the matching between interactive input
tasks (from the task model) with system inputs (from the system model) and
between system outputs (from the system model) with interactive output tasks (from
the task model).

The table in the upper part of Fig. 17.13 represents the input correspondences,
e.g. the link made between an input task and an activation adapter (a user event). In

Fig. 17.12 PetShop tool screenshot
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the example, eight tasks are already connected to five user events (e.g. “switch_off”
is connected to the user event “Off”).
The table in the middle part of Fig. 17.13 represents the output correspondences,
e.g. the link made between an output task and a rendering adapter. In the example

Fig. 17.13 Editing of correspondences between tasks and system models

Fig. 17.14 WXR application and task models co-executing in the CIRCUS environment
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Fig. 17.13, one task is already connected to one rendering event: the interactive
output task “check updated value” is connected to the rendering event “token
added” in place “TILT_ANGLE”.

The lower right-hand part represents the current status of the editing of corre-
spondences. It is made up of a progress bar showing the current coverage of task
and system items by the edited correspondences.

Simulation
The co-execution of models may be launched (via the co-execution panel at the

end of the lower right-hand part), even if correspondence editing is not completed.
Figure 17.14 depicts the co-execution of the system models (left part), the task
models (right part) and the visible part of the application (lower right part). The
co-execution control panel stands in the lower part. The co-execution can be task
driven (as depicted in Fig. 17.14) or system driven.

17.4 Editing Tools for the Development of Interactive
Systems

In this section, we describe and illustrate how editing tools can feature user-centred
functionalities that minimize the sequences of actions during the execution and
evaluation paths according to Norman’s action theory presented above.

17.4.1 Norman’s Action Theory Applied to Editing Tools

In this task, the user has to edit the models. Table 17.4 details the application of the
seven stages of Norman’s action theory to the editing of formal models. In this task,
the user’s goal lies in writing the formal model using an editing tool:

Table 17.4 Norman’s action theory applied to the editing of formal models

Evaluation path Execution path
Perceive Interpret Compare Goal Plan Specify Perform

Editing Perceive
colours
and
shapes in
the tool
window

Interpret
the
notation
elements

Compare
the model
with the
desired
one

Edit a
model

Plan the
list of
notation
elements
that will
be added

Specify the
action
sequence to
edit the
model with
the identified
notation
elements

Perform
actions to
add the
identified
notation
elements
using the
tool
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• On the execution path, the user has to plan, specify and perform a sequence of
actions corresponding to the description of the formal model. For instance, if the
user has to construct a Petri net model, s/he will have to first plan the action
sequence by formulating the intention to add places, transitions and arcs to
construct the model. Then s/he will have to specify an action sequence by
ordering the actions as, for instance, the following: add a place, add an arc, add a
transition, etc. Finally, s/he will have to use the tool functionalities in order to
add the elements to the model.

• On the evaluation path, the user has to perceive, interpret and compare the result
of her/his actions with the expected model. For instance, if we stay with the
previous example of Petri net modelling, the user will perceive the output
presented by the tool such as rectangles, ellipses and arrows and will have to
interpret them as transitions, places and arcs. S/he will then have to compare
them with the model that corresponds to her/his goal.

The editing tool is used by the user during performing (at execution level) and
perceiving (at interpretation level) activities. Each of the activities presented in
Table 17.4 are separated by a gulf. Therefore, the editing tool can help reduce, at
the execution level, the gulf between the specification of action sequence and its
performance and, at the interpretation level, the gulf between the perception of
model elements and their interpretation. A user-centred editing tool should enable,
as much as possible, the reduction of these gulfs.

Graphical formal notations such as Petri nets give a good illustration of these
gulfs. In that case, a graphical editor will enable the reduction of both execution and
interpretation gulfs: at the execution level, it will simplify the transformation
between a hand-drawn model on a sheet of paper to a digital one; at the interpre-
tation level, it will simplify the interpretation as the user will not have to translate a
textual representation into a graphical one, thus easing the comparison with the
graphical one of the paper.

Another way to reduce execution and interpretation gulfs is to make available to
the user generic functionalities such as cut/copy/paste or undo/redo. This way, if the
user wants to undo a given action or set of actions, the task is directly provided by
the tool, thus sparing the user from performing several iterations within Norman’s
action theory in order to reach the desired previous state.

Each notation has a specific lexicon, syntax and semantics. The editing tools
should be as close as possible to these idiosyncratic aspects. For instance, a Petri net
is only made up of two types of nodes connected by arcs (of various types). At the
lexicon level, the tool should allow users to quickly select both of the node types.
At the syntactic level the editing tool should prevent wrong models by making it
impossible to connect a place to another place. Indeed, allowing the creation of
syntactically incorrect models would require many further modifications to be
performed by the user corresponding to iterations on Norman’s action theory.

For a better understanding of how these gulfs can be reduced, next section
describes how HAMSTERS and PetShop tools enable these gulf reductions.
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17.4.2 Illustration with CIRCUS Environment

Both HAMSTERS and ICO are graphical notations. In order to reduce execution
and interpretation gulfs at this level, both HAMSTERS and PetShop tools are
graphical editors. They also enable the creation of all the elements of the associated
notation by means of an editing palette, grouping all of them. Figure 17.15 presents
the HAMSTERS and PetShop editing palettes. HAMSTERS proposes the different
tasks, operators, data and structuring means while PetShop proposes the different
nodes (transitions and places) and arcs to connect them. In both tools, the model is
constructed by means of drag and drop actions. The tools also enable the editing of
each element’s properties. For instance, this is done in HAMSTERS tool through a
panel directly accessible under the editing palette (see task properties panel in
Fig. 17.10 enabling the editing of the properties of the corresponding highlighted
task “decide WXR is ready”). Once again, the use of this panel allows to minimize
both execution and interpretation gulf: a single click on the considered task is
sufficient to edit and see its properties.

When using both HAMSTERS and ICO notations, the user will often have to
perform typical action sequences (e.g. for ICO notation: add a place, add an arc, add
a transition, etc.). These types of typical action sequences must be made available in
order to reduce execution gulf when such action sequences have to be performed.

In order to reduce execution gulf, both HAMSTERS and PetShop tools enable
the construction of the typical action sequences of each notation. PetShop even goes
a little further by proposing a semi-automated creation of places or transitions.

Fig. 17.15 a HAMSTERS and b PetShop palettes
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Actually, in a Petri net formalism, places can only be connected to transitions and
transitions can only be connected to places (a place cannot be connected to another
place and a transition cannot be connected to another transition). Thus, when
creating an arc going from a transition, this arc only can be connected to a place. To
reduce the execution gulf, PetShop proposes the automated creation of places when
creating an arc from a transition. This is illustrated in Fig. 17.16 where we can see
that the creation of the arc (arc going from stdbycb transition in Fig. 17.16a)
automatically creates a place (named p0 in Fig. 17.16b) connected to this arc. The
same mechanism is available for automatically creating transitions when creating
arcs from places.

In order to reduce the interpretation gulf, graphical tools must also enable the
management of real size models that can be very large ones. In the HAMSTERS
and PetShop tools, this is achieved through some classical mechanisms such as
zoom-in/zoom-out actions. The palette offering these mechanisms is depicted in
Fig. 17.17. This palette also offers some aligning actions that reduce the execution
gulf for aligning elements together; alignment of model elements support the
interpret and perceive activities in Fig. 17.3.

HAMSTERS and PetShop tools and notations also propose the use of mecha-
nisms that facilitate the interpretation of large models.

For this purpose, HAMSTERS notation and tool provide the mechanisms of
subroutines, submodels and components (Forbrig et al. 2014) that enable the
breakdown of a task model in several ones that can be reused in the same or
different task models.
As for PetShop, a recurrent issue in large Petri net models is that a single place can
be connected to a large number of transitions, thus creating a big arc density. To
solve this issue, PetShop supports the creation of virtual places (i.e. virtual copies of
a single place). They adopt the display properties (such as markings) of the place

Fig. 17.16 Semi-automated place creation with PetShop

Fig. 17.17 HAMSTERS and PetShop zoom and align palette
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they copy but not the arc connections. The arcs can be connected to normal places
or to virtual places. Therefore, the display is modified allowing an easier reorga-
nization of models and increasing the model legibility through this graphical
artefact. Figure 17.18 depicts an example of the use of virtual places. Figure 17.18a
shows three places named p1 (the “source” place with a darker border and two
virtual places) each one connected to an input arc. Figure 17.18b shows the result
of the reconstitution of the place p1 (which is then connected to the three previous
arcs). The semantic definition of virtual places along with concrete examples of
how they can be used is presented in (Barboni et al. 2006b).

17.5 Verification Tools for the Development of Interactive
Systems

In this section, we describe and illustrate how verification tools can feature
user-centred functionalities that minimize the sequences of actions during the
interpretation and evaluation paths according to Norman’s action theory.

17.5.1 Norman’s Action Theory Applied to Verification
Tools

In this task, the user has to verify the models. Table 17.5 details the application of
the seven stages of Norman’s action theory to the verification of models. In this

Fig. 17.18 Real view (left)
versus semantic view (right)

Table 17.5 Norman’s action theory applied to the verification of formal models

Evaluation path Execution path
Perceive Interpret Compare Goal Plan Specify Perform

Verification Perceive
colours
and
shapes in
the tool
window

Interpret
the
notation
elements

Compare
the
notation
elements
with the
language
syntax

Verify
a
model

Plan the
list of
syntax
errors
that have
to be
corrected

Specify
the action
sequence
to correct
the model

Perform
actions
to
correct
the
model
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task, the user’s goal lies in making sure that the notation elements have been
correctly used in the produced model:

• At the execution level, the user has to plan, specify and perform a sequence of
action corresponding to the verification of the formal model. For instance, if the
user has to verify a Petri net model, s/he will have to first plan the action
sequence by formulating the list of syntax errors that needs to be corrected. Then
s/he will have to specify an action sequence by ordering the actions as, for
instance, the following: delete an arc, delete a place, modify the action of a
transition, etc.

• At the interpretation level, the user has to perceive, interpret and compare the
result of her/his actions with the expected model. For instance, if we stay with
the previous example of Petri net modelling, the user will perceive the output
presented by the tool such as rectangles, ellipses and arrows and will have to
interpret them as notation elements (places, arcs, transitions). S/he will then
have to assess whether or not their syntax is correct.

The verification tool is used by the user during the performing (at execution level)
and perceiving (at interpretation level) activities. Each of the activities presented in
Table 17.5 is separated by a gulf. Therefore, the verification tool can help reduce
both the execution gulf and the interpretation gulf. The execution gulf lies between
the planning of tasks and their performance. At the evaluation level, the gulf lies
between the perception of model elements and their interpretation. A user-centred
verification tool should enable, as much as possible, the reduction of these gulfs.

Syntax highlighting functionalities in development environments are a good
example of tools that can help to reduce both execution and interpretation gulfs.
They highlight the elements that have been edited using an unknown syntax,
helping the user to rapidly identify and correct the syntax errors.

The next section describes the mechanisms that are proposed in HAMSTERS
and PetShop to enable these gulf reductions.

Fig. 17.19 HAMSTERS behaviour when trying to connect a task to another
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17.5.2 Illustration with CIRCUS Environment

HAMSTERS and PetShop provide mechanisms to prevent syntax errors. For
example, in HAMSTERS a task cannot be connected to another task. It has to be
connected to a temporal ordering operator. When the user tries to connect a task to
another one by (a) clicking on the left mouse button on the source task and then
(b) by dragging the cursor to the targeted task (the graphical rendering of these
actions is depicted in Fig. 17.19a), the colour of the arc changes to red and even if
the user releases the left mouse button, the arc never connects to the targeted task.
When the user releases the left mouse button, the arc is not set (the graphical
rendering of these actions is depicted in Fig. 17.19b).

Another example in PetShop is the automatic creation of notation elements to
prevent wrong syntax in models. In Petri nets, a transition cannot be connected to
another transition. The “place-transition-place-transition…” sequence is mandatory.
When the user tries to connect a transition to another one by (a) clicking on the left
mouse button on the source transition and then (b) by dragging the cursor to the
targeted transition (the graphical rendering of these actions is depicted in
Fig. 17.20a), the arc never connects to the targeted transition. Instead, a place is
created in between the source and targeted transition. When the user releases the left
mouse button, the arc is not set (the graphical rendering of these actions is depicted
in Fig. 17.20b). In the same way, a transition is automatically created when a user
tries to connect a place to another one.

The PetShop tool embeds many other functionalities, but as they are related to
the Integrated Development Environment (NetBeans) on which PetShop is devel-
oped they are not presented here.

Fig. 17.20 Place creation when trying to connect a transition to another in PetShop
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17.6 Validation Tools for the Development of Interactive
Systems

In this section, we describe and illustrate how validation tools can feature
user-centred functionalities that minimize the sequences of actions during the
interpretation and evaluation paths according to Norman’s action theory.

17.6.1 Norman’s Action Theory Applied to Validation Tools

In this task, the user has to validate the models. Table 17.6 details the application of
the seven stages of Norman’s action theory to the validation of models. In this task,
the user’s goal lies in making sure that what is described in the produced models is
compliant with the requirements and needs:

• At the execution level, the user has to plan, specify and perform a sequence of
action corresponding to the validation of the formal model. For instance, if the
user has to make sure that a task model described the activities that a user will
have to perform with a system, s/he will have to first plan the action sequence by
formulating the intention to review and correct asks and temporal operators that
are in the model. Then, s/he will have to specify an action sequence by ordering
the actions as, for instance, the following: add a task, delete a task, modify an
operator, etc.

• At the interpretation level, the user has to perceive, interpret and compare the
result of her/his actions with the expected model. For instance, if we stay with
the previous example of HAMSTERS task models, the user will perceive the
output presented by the tool such as task icons and temporal operators. S/he will
have to interpret them as temporally ordered tasks. S/he will then have to assess
whether or not the described temporally ordered tasks are compliant with users
planned activities with the system.

The validation tool is used by the user during the performing (at execution level)
and perceiving (at interpretation level) activities. Each of the activities presented in

Table 17.6 Norman’s action theory applied to the validation of formal models

Evaluation path Execution path

Perceive Interpret Compare Goal Plan Specify Perform

Validation Perceive
colours
and
shapes in
the tool
window

Interpret the
signification
of the
presented
model

Compare the
signification
of the
presented
model
against
needs and
requirements

Validate a
model’s
signification

Plan the
list of
elements
that have
to be
inspected
and
corrected

Specify
the action
sequence
to correct
the model
and to
continue
to inspect

Perform
actions
to correct
the
models
and to
continue
to
inspect
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Table 17.6 is separated by a gulf. Therefore, the validation tool can help reduce
both the execution gulf and the interpretation gulf: at the execution level, the
execution gulf lies between the planning of tasks and their performance; at the
interpretation level, the gulf lies between the perception of model elements and their
interpretation. A user-centred validation tool should enable, as much as possible,
the reduction of these gulfs.

Simulation is a good example of mechanisms that provide support for reducing
the interpretation gulf. Simulation is the task where users (people building the
model) have to check that the model built exhibits the expected behaviour. The
interpretation task can be eased if the state changes in the model are shown in an
animated way, thus reducing the users’ activity of comparing the current state with
the previous one.

Next section describes the mechanisms that are proposed in HAMSTERS and
PetShop to enable these gulf reductions.

17.6.2 Illustration with CIRCUS Environment

HAMSTERS provide mechanisms to execute the task models in order to ensure that
the tasks described in the model match the different possible sequences of activities
that the user has to lead using the envisioned system. In particular, the simulation
functionality enables execution of tasks in the temporal order that has been spec-
ified at editing time. For example, the simulation mode of HAMSTERS is depicted
in Fig. 17.11. Available tasks are highlighted in green in the task model and listed
in the upper part of the simulation panel (see Fig. 17.11). Executed tasks are ticked

Fig. 17.21 Simulation of an ICO model with PetShop
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Fig. 17.22 Animation of the ICO model during simulation in PetShop
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by a green mark in the task model and listed in the lower part of the simulation
panel (see Fig. 17.11). This mode enables production of scenarios from the task
model and to confront them with existing scenarios of usage of the interactive
system under design and to ensure that the task model meets the user needs in terms
of envisioned activities.

PetShop provides mechanisms to execute the ICO models in order to ensure that
the described behaviour matches the targeted one. PetShop simulation mechanisms
enable the simplification of the execution task by showing the user the set of
enabled transitions and allowing her/him to act directly on the model. The set of
enabled transitions are depicted in violet while the disabled ones are depicted in
grey. The user can fire an enabled transition by right-clicking on it and choosing the
“Fire” or “Fire with substitution” options (see Fig. 17.21). The interpretation task is
also eased by the token shifting and the automatically update of the set of enabled
transitions following the firing of a transition. Figure 17.22 presents the evolution
of the WXR ICO model before (Fig. 17.22a) and after (Fig. 17.22b) the firing of
“switchManualcb” transition; the part of the model that has been modified is
highlighted in grey and the corresponding modification on the user interface is
highlighted in blue.

Moreover, PetShop enables a modeless execution between editing and simula-
tion. Therefore, the editing of the ICO model immediately modifies the set of
enabled transitions and is immediately reported on the user interface. This is
illustrated in Fig. 17.23 where we can see how the adding of place “p0” is
impacting the set of enabled transitions (part of the model highlighted in grey in
Fig. 17.23: the transition “wxacb” is not enabled anymore) and the corresponding
user interface (part of the model highlighted in blue in Fig. 17.23: the “WXA”
button is disabled).

Another good example of validation mechanisms relies on the analysis of the
model. PetShop provides means to analyse ICO models through the analysis of the
underlying Petri net model. For the purposes of this paper, we only use here
classical Petri net analysis terms; for further details, the interested reader can refer to

Fig. 17.23 Illustration of how the editing of the ICO model is impacting the simulation view
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(Reisig 2013). For analysis-related tasks, users check the validity of some properties
in the model. One of the issues is then to understand the analysis result (for
instance, one place is not in any “P invariant”) in Petri net tools and then to map this
analysis result with the goal (Was this place meant to be unbounded?). More
precisely, PetShop provides support for analysis (Silva et al. 2014) through
invariant analysis (place/transition invariants). It allows the user direct visualization
of the structural analysis results while editing and simulating the Petri nets’ models.
The analysis mode can be activated without stopping either the editing or the
simulation.

Fig. 17.24 WXR model structural analysis—Tabular view

Fig. 17.25 Representation of invariants with the analysis feature of PetShop CASE tool
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In this section, we emphasize the validation aspect of the system model pre-
sented in Fig. 17.9. When activated, the static analysis mode of PetShop displays a
dedicated panel (see Fig. 17.24) presenting the incidence matrix and the P/T
invariants, which allow the identification of potential deadlocks in the system
models. The results of this analysis are also displayed in the main editing view as
shown in Fig. 17.25. The green overlay on the places and transitions identifies the
node part of the model’s invariants otherwise the red overlay is used (as for the
place “UpdateAngleRequired”). Places with yellow borders are siphons whereas
traps use a blue stroke.

Fig. 17.26 Visualization of a siphon in PetShop—a pie menu enabling the display of siphons
implying “NOT_AUTO” place and b display of the siphon implying “NOT_AUTO” place

Fig. 17.27 Impact of the editing of the ICO model on the analysis visualization in PetShop
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In order to determine which nodes belong to the same invariant as another node, a
modal pop-up menu is provided, taking over the standard pop-up menu for editing.
This modal pop-upmenu can be switched from analysis mode to normal editingmode
using a dedicated icon on the toolbar. This modal pop-up menu is a pie menu (as it is
more usable than a classical menu) depicted in Fig. 17.26a for the “NOT_AUTO”
place. This place is part of both a siphon and a trap (as shown by its yellow and blue
border) and a p invariant (as shown by its green overlay). Therefore, the pie menu
proposes to showwhich nodes belong to the invariant, the siphon or the trap the place
is included in. Figure 17.26b is the result of the action of the user to display the nodes
belonging to the siphon the place “NOT_AUTO” is included in: the places included in
this siphon are highlighted in yellow (e.g. places “AUTO”, “NOT_AUTO”,
“STABILIZATION_OFF” and “STABILIZATION_ON”).

Furthermore, as for the simulation, the editing of the model has a direct impact
on the analysis and its visualization. This is illustrated in Fig. 17.27 where a
modification has been performed in the model. The arc between the place
“MODE_SELECTION” and the transition has been removed. This modification is
highlighted in grey in Fig. 17.27. This modification has the following impact:
(i) the transition “stbcb” is not part of an invariant anymore (it is shown by its red
overlay), (ii) the place “MODE_SELECTION” is not part of a siphon anymore (it is
shown by the fact that the border is not blue anymore) and (iii) the place
“MODE_SELECTION” is not an invariant anymore (it is shown by its red overlay).

17.7 Beyond Multiple Unrelated Views: Connecting
Models to Leverage V&V Tasks

System and task models provide support to design and develop interactive systems,
but there is still a need to ensure consistency between these two views of the system
in use. In order to go beyond applying Norman’s action theory to modelling
activities for each type of models used, the activities of ensuring that all the models
are consistent and compliant have to be taken into account also.

In this section, we describe and illustrate how V&V tools can feature
user-centred functionalities that minimize the sequences of actions during the
execution and evaluation paths according to Norman’s action theory for
cross-model validation.

17.7.1 Norman’s Action Theory Applied to V & V Tools

In this task, the user has to validate the completeness and consistency of models of
different types. Table 17.7 details the application of the seven stages of Norman’s
action theory to the cross-type validation of models. In this task, the user’s goal lies

17 Exploiting Action Theory as a Framework … 497



in making sure that what is described in models from both types (task and system)
is complete and consistent:

• At the execution level, the user has to plan, specify and perform a sequence of
action corresponding to the cross-type validation of the formal models. For
instance, if the user has to make sure that what is described in the task model can
be performed by the system described by the system model. S/he will have to
first plan the action sequence to correct the models (being task or system model)
and/or the correspondences between the two types of models. Then, s/he will
have to specify an action sequence by ordering the actions as, for instance, the
following: choose the first part of the model (being task or system model) that
has to be corrected, choose the notation element that has to be modified, added
or deleted, etc. S/he finally performs the specified action sequence.

• At the interpretation level, the user has to perceive, interpret and compare the
relationship between the elements of different model types both against each
other and against need and requirements. For instance, using the example of task
and system models, s/he will perceive the output presented by both tools (the
one for task modelling and the one for system modelling) such as in the case of
tasks modelling, task icons and temporal operators. S/he will have to interpret
them as temporally ordered tasks (for task models) and system behaviour (for
system models) and will then have to assess whether or not the described
temporally ordered tasks and system behaviour are compliant together.

A V&V tool can be used by the user during the performing (at execution level)
and perceiving (at interpretation level) of these activities. Each of the activities
presented in Table 17.7 is separated by a gulf. Therefore, the V&V tool can help
reduce both the execution gulf and the interpretation gulf. The execution gulf lies
between the planning of tasks and their performance. At the interpretation level, the
gulf lies between the perception of both model elements, their interpretation and
their comparison. A user-centred V&V tool should enable, as much as possible, the
reduction of these gulfs.

A good example of mechanisms that provide support for reducing the inter-
pretation gulf is to provide the user a way of putting in correspondence both model

Table 17.7 Norman’s action theory applied to the cross-type validation of models

Evaluation path Execution path

Perceive Interpret Compare Goal Plan Specify Perform

Cross-model
validation

Perceive
colours
and
shapes in
the tool
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model types
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elements
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to be
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to correct
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types. Therefore, the use of such a tool will simplify the comparison of the output of
both model types.

Co-simulation of both model types is also a good example of mechanisms that
provide support for reducing the interpretation gulf. In this case, the interpretation
task can be simplified if the state changes are linked between both model types.

17.7.2 Illustration with the CIRCUS Environment

In the CIRCUS environment, the cross-type validation of models is supported by a
specific tool named SWAN (see Sect. 3.3.3). This tool supports the co-execution of
HAMSTERS task models and ICO system models, based on a list of correspon-
dences between the two model types.

The SWAN tool therefore enables the decrease of the interpretation gulf by
allowing the user to establish the matching between interactive input tasks (from the
task model) with system inputs (from the system model) and between system
outputs (from the system model) with interactive output tasks (from the task
model). The correspondence editing panel is completed by a representation of the
current status of the editing of correspondences (see Fig. 17.13), reducing the
interpretation gulf by enabling the user with information on the current coverage of
task and system items by the edited correspondences. Therefore, the interpretation
task of checking if all of the task items are corresponding to system items (or,
respectively, if all system items are corresponding to task items) is simplified. These
functionalities provide support for the verification of the compatibility of the
models but also for the validation of the user activities with regard to the system
functions.

The SWAN tool also enables the decrease of the interpretation gulf by allowing
the user to co-execute both task and system models. This functionality provides
support for validation as it allows finding inconsistencies such as sequences of user
actions allowed by the system model and forbidden by the task model, or sequences
of user actions that should be available but which are not because of the system’s
inadequate state.

On the execution side, the CIRCUS environment also enables the reduction of
the gulf by integrating the HAMSTERS tool, the PetShop tool and the SWAN tool
in an integrated environment. Therefore, the user is able to modify task models,
system models and their corresponding correspondences in a unique environment
without having to switch tools which would considerably increase the execution
gulf.
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17.8 Discussion

In previous sections, we have shown that the seven stages of Norman’s action theory
can be used to analyse to what extent an IDE tool provides support to engineer tasks.
Table 17.8 recapitulates the engineer’s tasks according to these seven stages. This
table is intended to serve as a generic framework, detailing the activities that have to
be led by the user/engineer. This table is a support for investigating how modelling
activities can be supported at editing, verification and validation time.

For example, taking into account all the presented engineer’s tasks, the above
table helps in demonstrating that the PetShop modelling tool drastically decreases
the number of actions that the engineer has to perform. The verification task has
been completely automated within PetShop and the validation task is partly auto-
mated. Figure 17.28 presents the development process of ICO-based interactive
application using PetShop.

Edi on

Automated verifica on

Valida on (con nua on of)

End

Iden fica on 
of the scope 

of the 
modelling 

ac vity

Extant 
system,

needs and 
requirements 

analysis

Start

No
Do models fulfill 
needs and reqs ?

Yes

Models

Property 
checking 
results

Set of test 
results

Partly-
automated 
valida on 
(property 
checking)

Do property 
checking results  
fulfill needs and 

reqs?

No

Yes

Fig. 17.28 ICO-based interactive application development process
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The process depicted in Fig. 17.28 has been instantiated from the model’s
development process presented in Fig. 17.1 and has been refined according to the
PetShop tool features. In particular, as depicted in Fig. 17.28, the verification step
has been merged within the editing step as models edited within PetShop are
automatically verified at editing time. And a part of the validation step has also been
merged within the editing step as part of the properties of the models edited within
PetShop can be automatically checked. This instantiation of the model’s develop-
ment process shows that it is possible to integrate user-centred functionalities in
modelling tools that can help in reducing the gulfs of evaluation and the gulfs of
execution. Validation and verification activities can be embedded and partly
automated at editing time and there is no need to wait that a model is completely
edited to start verification and validation activities. Some parts of the models can be
checked automatically at editing time, reducing the number of actions that the user
has to perform on the valuation path and on the execution path of Norman’s action
theory.

17.9 Conclusion and Perspectives

The use of formal modelling tools during the development process of an interactive
system has an impact on the way the models will be edited, verified and validated.
Norman’s action theory has been applied to the modelling activity and provided a
generic framework for investigating how modelling activities can be supported at
editing, verification and validation time.

This chapter has identified the gulfs of the three steps of the construction of a
formal model of an interactive system. This way it provides a structured research
agenda for the engineering of tools aiming at supporting the design of interactive
systems following a model-based approach.

We have exemplified those requirements on an integrated development envi-
ronment: the CIRCUS environment. Even though the former is dedicated to task
modelling and the latter to interactive systems modelling, we have demonstrated
that:

• Norman model of the action theory provides a generic framework for identifying
execution and interpretation gulf during building models;

• Solutions for gulf reductions can be identified both at generic level (e.g.
undo/redo) and at specific level (e.g. preventing the editing of models not
compliant with the syntax of the notation.

Beyond that, we have also applied those principles in the context of a
multi-modelling approach where multiple views of the same world are used to
describe and analyse interactive systems.

In this chapter, we focused on tools support as well as engineer’s tasks about
models’ production with tools. However, notations also have an impact on the way
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the models are edited, verified and validated. To this end, Moody has proposed a set
of principles to analyse the cognitive effectiveness of visual notation (Moody 2009).
Future perspectives for this work would be to analyse the impact of the formal
modelling notations (their semantics and their visual syntax) on the engineer’s tasks
as well as to analyse the combined impact of both notation and tool on the engi-
neer’s tasks.
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Chapter 18
A Public Tool Suite for Modelling
Interactive Applications

Marco Manca, Fabio Paternò and Carmen Santoro

Abstract Model-based approaches aim to support designers and developers
through the use of logical representations able to highlight important aspects. In this
chapter, we present a set of tools for task and user interface modelling useful for
supporting the design and development of interactive applications. Such tools can
be used separately or in an integrated manner within different types of development
processes of various types of interactive applications. This tool suite is publicly
available and, as such, can be exploited in real-world case studies and university
teaching.

18.1 Introduction

Model-based approaches for interactive applications aim to exploit high-level
descriptions that allow designers to focus on the main semantic aspects rather than
starting immediately to address implementation details. They have been considered
also because such features can be exploited in order to obtain better device inter-
operability through many possible implementation languages. Even the recent
HTML51 has adopted some model-based concepts by providing some tags that
explicitly characterise the semantics of the associated element. However, this lan-
guage is limited to graphical user interfaces while we will show that model-based
languages (such as the ones supported by the tools presented here) can be exploited
to support multimodal user interfaces as well.
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Over the years, research in model-based approaches for interactive applications
has led to many approaches and related tools. However, while some approaches
identified in the academic field remained of interest of just a limited community of
scientists and researchers, other approaches have stimulated interest also at an
industrial one, resulting in quite a large community. Such interest has also prompted
initiatives at standardisation level. One of them has been the W3C Working Group
on model-based UI,2 which produced documents regarding various aspects, pri-
marily task models and abstract user interfaces.

In this chapter, we present a tool suite that covers various types of model-based
support to user interface design, particularly focusing on recent evolutions of such
tools in order to meet novel requirements. In particular, Sect. 18.2 provides some
background information useful to better understand the contribution described in
this chapter, while in Sect. 18.3, we provide an overview of the set of tools
belonging to the suite. Then, in the next sections, each considered tool will be
presented separately. In particular, we highlight some recent contributions con-
cerning how to support the development of task models also through touch-based
mobile devices (see Sect. 18.4), how to obtain model-based generation of multi-
modal user interfaces (see Sect. 18.5) and how to reverse-engineer Web imple-
mentations at various abstraction levels (Sects. 18.6 and 18.7). Finally, at the end of
the chapter, we summarise and discuss the main current trends identified within the
model-based area, also sketching out future directions for research in this field.

18.2 Background

The community working on model-based approaches for human–computer interac-
tion has mainly considered the abstraction levels that are indicated in the CAME-
LEON Reference Framework (Calvary et al. 2002). It identifies four abstraction
levels: Task and Domain, Abstract UI, Concrete UI, Final UI. In this section, for each
level, we describe the most relevant concepts, languages and tools of the proposed
suite. This will be useful to introduce the tool suite presented in the next sections. In
software engineering communities, the model-based approaches have been consid-
ered with slightly different concepts because they have a different scope and do not
address the specific issues in user interface design and development. For instance, a
different conceptual approach is the model-driven architecture (MDA) proposed by
OMG (http://www.omg.org/mda/). The OMG’s model-driven architecture
(MDA) specifies a generic approach for model-driven software engineering and
distinguishes four different levels of abstraction: the computation-independent model
(CIM), the platform-independent model (PIM), the platform-specific model
(PSM) and the implementation (or implementation-specific model—ISM).

2http://www.w3.org/2011/mbui/.
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According to (Raneburger et al. 2013), the CAMELEON Reference Framework is
compliant to the MDA and can be seen as a specialisation in the context of UI
development.

The Task and Domain models level considers the tasks that need to be per-
formed for achieving users’ goals and the corresponding relationships and domain
objects. As mentioned before, in our approach, this level is mainly covered by the
ConcurTaskTrees (CTT) notation (Paternò 1999).

The Abstract User Interface (AUI) level describes a UI through the interaction
semantics, without referring to a particular device capability, modality or imple-
mentation technology. In addition, at this level, the behaviour and the description of
the data types manipulated by the user interface are specified. For this purpose, we
use the MARIA language (Paternò et al. 2009), which also includes a data model,
defined by using the standard XML Schema Definition constructs. More specifi-
cally, the AUI is composed of presentations that contain interactors and/or com-
position operators. The interactors are the elementary user interface elements,
which can be either interactive or output-only, while the composition elements
indicate how to put together elements that are logically associated. Examples of
abstract interactive elements are single choice, multiple choice, text edit, numerical
edit, activator and navigator, while examples of output-only elements are those
supporting descriptions and alerts. Navigator elements allow users to move from
one presentation to another, while activators are those elements that activate some
functionalities. The composition operators are grouping (a group of elements log-
ically connected to each other), relation (when two groups of elements have some
type of relation, e.g. a set of input elements and a set of buttons to send their values
to the server or clear them) and repeat (when a set of elements are grouped together
since they share the same similar structure). The MARIAE tool (Paternò et al. 2011)
provides automatic support for translating CTT task models into MARIA AUI
specifications. This is a type of transformation that cannot be performed through
simple mappings because task models and user interfaces involve different concepts
and relationships. Since the user interface is structured into presentations, the first
step is to identify them from the task model. For this purpose, we developed an
algorithm that first identifies the so-called presentation task sets (PTSs): each PTS is
a set of tasks enabled in the same period of time and thus it should be associated
with a given abstract presentation. This is done by taking into account the formal
semantics of the CTT temporal operators. After the identification of the abstract
presentations, the interactors and the dialogue models associated with them are
generated taking into account the following: (i) temporal relations among tasks
(because the user actions should be enabled in such a way to follow the logical flow
of the activities to perform); (ii) task hierarchy (because if one task is decomposed
into subtasks, it is expected that the interactions associated with the subtasks are
logically connected and this should be made perceivable to the user; thus, a cor-
responding grouping composition operator should be specified in the abstract
specification); (iii) the type of task (which provides useful information to identify
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the most suitable interaction technique for the type of activity to perform, for
instance, if it is a task supporting a selection of one element among several ones, a
single choice interactor should be provided).

A Concrete User Interface (CUI) provides platform-dependent but imple-
mentation language-independent details of a UI. A platform is a set of software and
hardware interaction resources that characterises a given set of devices, such as
desktop, mobile, vocal and multimodal. Each CUI is a refinement of an AUI,
specifying how the abstract concepts can be represented in the current platform
taking into account the interaction modality available. MARIA currently supports
various platforms: graphical desktop and mobile, vocal, gestural, and multimodal
(which combines graphical and vocal modalities in various ways). For instance, in
the graphical concrete description corresponding to Web implementations, the
abstract element single choice is refined into either a radio button, or a drop-down
list, or a list box, or an image map, while the multiple choice is refined into a check
box or a list box, the navigator into a link button or an image map. The other
elements are similarly refined to support the semantics of the corresponding abstract
elements. In the case of a multimodal concrete language, we have to consider
refinements for multiple modalities and indicate how to compose them. In partic-
ular, the MARIA concrete language for composing graphical and vocal modalities
is based on the two previously defined concrete languages (one for the graphical
and one for the vocal modality). It adds the possibility to specify how to compose
them through the CARE (Complementarity, Assignment, Redundancy, Equiva-
lence) properties (Coutaz et al. 1995), which can occur between the interaction
techniques available in a multimodal user interface. Indeed, as we introduced
before, the MARIA abstract language structures a user interface into a set of pre-
sentations. Each presentation has composition operators, which contain interactors
that can be either interaction or only-output interface basic components. Such
interactors can have event handlers associated with them indicating how they react
to events. Each of these elements of the language, ranging from presentations to
elementary interactors, has different refinements for the graphical and the vocal
modality, and in the multimodal concrete language, we indicate how to compose
them. Thus, a multimodal presentation has associated both graphical attributes
(such as background colour or image or font settings) and vocal attributes (such as
speech recogniser or synthesis attributes). For example, a grouping composition in
the multimodal concrete language can exploit both visual aspects (using attributes
such as position, dimension, border backgrounds) and vocal techniques (i.e.
inserting keywords/sounds/pauses or changing synthesis properties). The interac-
tors are enabled to exploit both graphical events (associated with mouse and key-
boards) or vocal-specific ones (such as no input or no match input or help request).

The Final UI (FUI) corresponds to the UI in terms of some implementation
language. From the CUI, different final user interfaces can be derived. A FUI can be
represented in any UI programming (e.g. Java UI toolkit) or markup language (e.g.
HTML).
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18.3 The Proposed Tool Suite

In this section, we briefly introduce the main characteristics of the tools that will be
presented in detail in this chapter. The set of tools discussed in this chapter covers
the various abstraction levels indicated in the CAMELEON Reference Framework.
In particular, the Task and Domain level is covered by the CTT language, which is
supported by the desktop ConcurTaskTrees Environment (CTTE) and the
ResponsiveCTT tool (see Sect. 18.4). The other abstraction levels can be specified
by using the MARIA language and are supported by the MARIAE tool. The tool set
supports the possibility of transforming representations at one abstraction level into
another, which supports forward engineering transformations, the ones going from
the most abstract levels down to the more concrete ones. In addition, it is worth
noting that each described tool, apart from supporting such transformations, also
enables the user to handle (i.e. create, edit, save) the concerned relevant models.
There is another tool that supports transformations going from the most concrete
levels to the higher ones (reverse engineering tool). Figure 18.1 provides an
overview of the languages and the tools that have been developed. A different
colour has been assigned to each of the three tools: light grey to ReverseCTT (see
Sect. 18.7), black to MARIAE (see Sect. 18.5) and grey to ReverseMARIA (see
Sect. 18.6).

The task model language has been recently adopted as the basis for the task
model standardisation within W3C.3 The language also supports the possibility of
specifying task pre- and post-conditions (even combined in complex Boolean
expressions), which can be exploited not only within an interactive simulation of
the specification but also in the user interface generation process in order to derive
meaningful and consistent user interface implementations.

CTT is supported by two main tools: Desktop CTTE and ResponsiveCTT.
Desktop CTTE was also integrated with tools for model checking in order to
formally reason about task properties (Paternò and Santoro 2000). Both tools allow
the user to exploit the cloud to store and share task models remotely, which also
facilitates potential sharing and collaboration among designers. ResponsiveCTT
can be accessed through touch-based mobile devices such as smartphones and
tablets. The tool is responsive as it provides adapted user interfaces to better support
task modelling through various types of devices. For this purpose, it also exploits
some information visualisation techniques, i.e. representations that make users
comfortably analyse/modify task model specifications, which is especially useful
when medium-to-large task models are rendered on the limited screen size of
mobile devices.

In addition, in this chapter, we also focus on the relationships between task
model specifications and models for user interface definition exploited in multi-
device contexts. In particular, we focus on how task models can be exploited to
derive user interface models at various abstraction levels and for various platforms,

3http://www.w3.org/TR/task-models/.
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with particular attention to the UI models generated by MARIAE environment.
Regarding the latter tool, an aspect addressed is how to provide support for the
development of interactive applications able to access and exploit Web services,
even from different types of interactive devices. The MARIAE tool is able to aid in
the design of new interactive applications that access pre-existing Web services,
which may also contain annotations supporting the user interface development. In
addition, in MARIAE, various automatic generators are available for a number of
platforms (e.g. desktop, mobile multimodal, vocal, distributed), even directly from a
CTT task model. Indeed, one of the advantages of using a model-based language
such as MARIA over modern languages such as HTML5 is the ability to describe
and support even multimodal interfaces by still exploiting a set of core concepts.
Another integrated contribution is a reverse engineering tool, which will be dis-
cussed to show how to derive interactive systems’ descriptions at the various
possible abstraction levels starting with Web application implementations.

The development of the tools presented in this chapter has been done according
to a number of requirements that were identified and evolved over the years.
Regarding the software tools covering Abstract UI, Concrete UI and Final UI, some
requirements have been discussed in previous work. For instance, for a predecessor
of MARIAE, requirements were identified in Mori et al. (2004): the tool should
support mixed initiative, handle multiple logical levels described through
XML-based languages and enable different entry points within the multilevel UI
specification of CAMELEON conceptual framework. Further requirements for the
MARIAE tool were identified in Paternò et al. (2009): the tool should provide

Fig. 18.1 Overview of the languages and the tools proposed
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designers with effective control of the user interfaces produced, the transformations
for generating the corresponding implementations should not be hard-coded in the
tool, the tool should provide support also for creating front ends for applications in
which the functionalities are implemented in Web services.

Also for the Task and Domain level and in particular the CTTE Desktop tool, a
number of requirements were identified in previous work (Mori et al. 2002): the
tool is expected to provide support for modelling and analysis of single-user and
cooperative CTT task models, more specifically, visualise/edit/simulate/check the
validity of task models, save task models in various formats, support multiple
interactive views of task model specifications, support the generation of task models
from Web service descriptions (WSDL). ResponsiveCTT, as being more recently
developed having in mind mobile devices, posed further requirements which will be
discussed in detail in Sect. 18.4.1.

Regarding the tool suite on a more comprehensive level, a main requirement was
that it should support all the levels of the CAMELEON framework and associated
top-down/bottom-up transformations, which is fully satisfied in our case (see
Fig. 18.1).

18.4 Task Modelling

This section introduces the CTT notation for task models. Such notation is supported
by two tools: Desktop CTTE is a Java desktop application, and ResponsiveCTT is a
responsive Web application, which can be used from various types of devices.

18.4.1 CTT Task Models

Task models indicate the tasks that need to be performed for achieving users’ goals
by interacting with the UI. Various task model notations are available, e.g. UsiXML
(Limbourg et al. 2005), ConcurTaskTrees (Paternò 2000), Hamsters (Martinie et al.
2011), which differ on aspects such as the syntax, the level of formality and/or the
operators. A key factor for their adoption is the availability of automatic environ-
ments that support model editing, analysis and transformation. However, not all
task model notations are supported by (publicly available) tools, and the vast
majority of such tools are limited to desktop-based environments. ConcurTaskTrees
allows designers to concentrate on the activities that users aim to perform, which
are the most relevant aspects when designing interactive applications, and
encompasses both user- and system-related aspects. This approach allows designers
to avoid dealing with low-level implementation details, which at the design stage
would obscure the decisions to make. CTT has a hierarchical structure: this is
generally considered as very intuitive since often when people have to solve a
problem they tend to decompose it into smaller problems still maintaining the
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relationships among the various parts of the solution. Figure 18.2 shows an
example of task model related to interacting with a content management system.

The hierarchical structure of this specification has two advantages: it provides a
wide range of granularity allowing large and small task structures to be reused, and
it enables reusable task structures to be defined at both low and high semantic
levels. A rich set of temporal relationships between tasks have also been identified.
How the performance of the task is allocated is indicated by the related category
and is explicitly represented by using icons. While the category of a task indicates
the allocation of its performance, the type of a task allows designers to classify tasks
depending on their semantics. Each category has its own types of tasks. In the
interaction category, examples of task types are as follows: selection, when the task
allows the user to select some information; control, when the task allows the user to
trigger a control event that can activate a functionality; editing, when the task
allows the user to enter a value; zooming, the possibility to zoom in/out; filtering,
the possibility to filter out some irrelevant details. Depending on the type of task to
be supported, a suitable interaction or presentation technique will be selected in the
development process. Frequency of use is another useful type of information
because the interaction techniques associated with more frequent tasks need to be
better highlighted to obtain an efficient user interface. The platform attribute
(desktop, cellular) allows the designer to indicate the types of devices the task is
suitable for. This information is particularly useful in the design of applications that
can be accessed through multiple types of platforms, because some tasks could not
be available in some platforms. For each task, it is possible to indicate the objects
that have to be manipulated to perform it. Since the performance of the same task in
different platforms can require the manipulation of different sets of objects, it is
possible to indicate for each platform which objects should be considered. It is also
possible to exploit such objects to define pre- and post-conditions associated with
the tasks. The presence of objects and conditions is indicated in the graphical
representation of the model through some cues (see the small rounded icons beside
some task icons in Fig. 18.2). Objects can be shared across multiple tasks, and each
involved task can have different conditions associated with the object.

The language is also able to model multiuser applications through specific task
models for each role involved and an additional model to indicate their relation-
ships. The notation has long been supported by a Java-based desktop tool, the
ConcurTaskTrees Environment (CTTE) (Mori et al. 2002), which provides a set of

Fig. 18.2 Example of a CTT task model
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functionalities for editing, analysis and interactive simulations of the dynamic
performance of sequence of tasks. It can be downloaded at http://giove.isti.cnr.it/
tools/CTTE/home.

18.4.2 ResponsiveCTT

As mobile devices are now indisputably part of everyday life and widely applied in
various domains, we judged it interesting to investigate the possibilities offered by
them for task modelling. We focused on truly mobile devices, i.e. those that can be
fully and comfortably used even when the user is on the go. As for task modelling
tools, some approaches have been put forward, such as CTTE, HAMSTERS and
K-MADe (Caffiau et al. 2010), although they all focused on desktop platforms.
Attempts to consider modelling tasks on a different platform were carried out
mainly in Eggers et al. (2013) and Spano and Fenu (2014). So, apart from a few
attempts considering task modelling for mobile use, tools supporting task modelling
have been mainly confined to considering desktop platforms. Thus, we have also
investigated the possibilities of touch-based modelling on mobile devices through a
new tool (ResponsiveCTT4). The development of the tool was driven by a number
of requirements identified in our experience of several projects and work in which
task modelling was exploited. First, in order to widen the impact and possible
adoption of the tool, it was developed as a Web application exploiting HTML5,
CSS3 (for the presentation) and JavaScript (for the dynamic aspects) accessible by
any browser-enabled device. Also, the tool was conceived to support responsive
design to effectively adapt the model representations to the screen area of the
device, which is particularly important when mobile devices are used. In addition,
since the screen size of mobile devices is a key factor for an effective analysis and
editing of task models, we judged relevant to exploit information visualisation
techniques for dynamically representing task models so as to harness the power of
visualization anytime, anywhere, while requiring more limited cognitive effort than
in stationary settings. Finally, to store and share task models remotely, the appli-
cation is cloud-based, which also facilitates collaboration among users.

With the new tool, to edit the task model on a touch-based mobile device, users
can touch an empty screen area to create a new task root and perform a tap gesture
on a task to edit it, i.e. edit name, type, objects and precondition or add a task as a
sibling or as a sub-task, copy/cut and paste a task and/or its children.

In the tool, a focus+context, fisheye-based visualisation technique (Cockburn
et al. 2008) has been used as an interactive visual aid to support the visualization,
exploration and navigation of task models on touch-based mobile devices, where
precise task selections are difficult due to their small screen and limited accuracy of
touch commands. In particular, the visualisation of a task model is arranged so that

4Available at http://ctt.isti.cnr.it.
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the tasks closest to the one that currently has the focus (the task Check Login Data
in Fig. 18.4) are more emphasised in terms of larger screen space of the associated
icons, with a progressive fall-off in magnification towards the upper/bottom model
edges. So, in our case, the focus area is determined by the selected task and includes
its nearest siblings and children tasks, while the “context” is composed of the
remaining tasks of the model. When selecting a task, the application sets the focus
to that task and changes the fisheye visualisation of the model accordingly. When
users tap on the task currently having the focus, a semi-transparent circular menu
appears (see Fig. 18.3), showing the actions that can be executed on that task:
change its properties, add new tasks, add objects and pre- and post-conditions
associated with it. When users select a new task, the visualisation of the task model
is dynamically recalculated to show the new task having the focus on a prominent
position of the window and rearrange the model visualisation accordingly. By
selecting the icon of a temporal operator, a contextual menu appears, visualising the
possible operators (see Fig. 18.3, right part), presented according to their priority.
Furthermore, a number of gestures are supported: “pinch to zoom” for zooming on
the task model, “swipe down/up” to move up/down in the task model level. It is

Fig. 18.3 UI for editing task (left) and operators (right)

514 M. Manca et al.



also possible to change various task attributes (e.g. task name, category) and add the
specification of objects manipulated by the task and pre-/post-conditions associated
with it. Finally, users can also save models in a dedicated cloud-based service.

As mentioned, the task that has the focus is supposed to be the currently most
“important” one; thus, it is always placed in a central position within the working
window and highlighted by a specific colour. More generally, every task has a
degree of interest dynamically calculated, which is inversely proportional to its
distance from the currently selected task. The dimension of the graphical repre-
sentation of each task varies according to this distance factor: the further the
focused task is, the smaller the icon of the considered task will be, where the
“distance” between two tasks is represented by the number of levels that need to be
traversed in the model to reach one task from the other. This algorithm is performed
whenever a task model is loaded or any editing operation modifies its structure.
When it becomes difficult to graphically represent some tasks in a way sufficiently
perceivable by the user because of the limited space, they are replaced with a
cue-based technique that shows numbers indicating how many tasks are currently
hidden (see Fig. 18.4 right part). The numbers are visualised at the same task level
and side as the hidden tasks, with the size of the numbered icon proportional to the
number itself. By interactively selecting a numbered icon, the previously hidden
tasks at the considered level are shown.

Tasks can have some preconditions visualised in the task model through a small
coloured rounded icon close to the task icon, whose colour changes during the
simulation phase according to the precondition state: if it is true the colour is green,

Fig. 18.4 (left) Complete task model (desktop); (right) Task model on a mobile platform
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otherwise it is red. Figure 18.5 shows an example while the task model simulator is
running.

First-user studies (Anzalone et al. 2015) delivered encouraging results in how
the tool supported users in handling task models on mobile devices. They also
indicate that tablets are more suitable for supporting task modelling than smart-
phones since modelling tasks are medium-/long-term, cognitively demanding
activities which are better performed when the supporting devices allow for per-
forming them in a comfortable manner.

18.5 Modelling and Generating Multimodal User
Interfaces

While the previous section focused on the Task model level, in this section, we
describe how to model user interfaces and obtain a corresponding implementation.
MARIA has an abstract language and various concrete refinements that depend on
the modalities considered. In order to illustrate how to model and generate user
interfaces, it can be fruitful to consider the multimodal case, since little work has
been dedicated to it and it is an important trend in the HCI area to obtain more
natural interfaces. MARIA was developed to address various limitations in previous
model-based languages such as TERESA (Berti et al. 2004). One important

Fig. 18.5 Rendering tasks with preconditions within the ResponsiveCTT simulator
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contribution of MARIA and the associated environment (MARIAE5) is the possi-
bility of generating multimodal interactive applications, which can be executed in
any browser-enabled device supporting the Web Speech APIs. This is relevant
since most model-based approaches have focused only on graphical user interfaces.
A model-based Framework for Adaptive Multimodal Environments (FAME) has
been proposed in Duarte and Carrico (2006), but it does not provide support for
automatic application development, as in our case. Octavia et al. (2010) describe an
approach to design context-aware applications using a model-based design process,
but they do not address multimodal adaptation. The model-based approach was also
considered in Sottet et al. (2007) for its flexibility, although run-time adaptation is
considered only by regenerating the whole UI and multimodal adaptation is not
addressed. MyUI (Peissner et al. 2011) provides a framework for run-time adap-
tations while supporting accessibility. However, its design pattern-based approach
can quickly become cumbersome.

Our solution is able to generate multimodal interactive Web applications and
does not require using any particular API in addition to standard HTML, CSS and
JavaScript. Such implementations are obtained from the concrete language in
MARIA addressing multimodal user interfaces. It supports various combinations of
graphical and vocal modalities, and it can be easily extended to address other
modalities. At various granularities levels, it is possible to indicate the modalities
that should be used to support the considered user interface part. There are four
possibilities indicated by the CARE properties: complementarity, which means that
part is associated with one modality and part with another one; assignment indicates
that only one modality should be considered; redundancy is used to indicate that
multiple modalities should be used for the same user interface part; equivalence is
used when there is the possibility to choose one modality or another for the cor-
responding user interface elements. Depending on the modality indicated, the
corresponding concrete attributes are specified.

The multimodal user interface generator produces HTML implementations
structured in two parts: one for the graphical user interface and one for the vocal
one. The implementation exploits the Web Speech APIs6 for automatic speech
recognition (ASR) and text-to-speech synthesis (TTS). The generator annotates the
elements that need vocal support. Such annotations are detected through scripts that
are activated when the page is loaded and call the vocal libraries for ASR and TTS.
In particular, each UI element is annotated with a specific CSS class in the
implementation generation, according to the indications of the CARE properties. If
it contains a vocal part and the CARE value is redundancy or vocal assignment, the
class tts for the output elements and the prompt part of interaction element are
added, while the class asr is added for the input parts of interaction elements only if
the CARE value of this part is equivalent or vocal assignment. The generated
elements are marked with these classes because the multimodal scripts use them to

5Available at http://giove.isti.cnr.it/tools/MARIAE/home.
6https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html.
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identify all the graphical elements having an associated vocal part. Figure 18.6
shows an implementation example for multimodal interaction generated from a
concrete user interface (CUI).

In Fig. 18.7, we consider an excerpt of the MARIA multimodal concrete
specification related to the definition of the single choice element corresponding to
the selection of the departure city in a task aimed to search for a particular flight.

The considered UI element defines the CARE properties for each interaction part
(see Fig. 18.7 line 1): for the input element, the CARE value is equivalent, which
means that input can be entered through either the graphical modality or the vocal
one; prompt and feedback phases are both redundant; thus, they are visible and
vocally synthesised. The single choice element is refined as a drop-down list (line
5) from the graphical point of view and as a single vocal selection (line 10) for the
vocal specification. The vocal part defines the vocal prompt, feedback and the
events related to the vocal interaction.

Figure 18.8 shows an excerpt of the code generated from the MARIA multi-
modal specification in Fig. 18.7. Since the single choice element is specified in a
multimodal way (see the CARE properties in Fig. 18.7 line 1), the corresponding
generated code is composed of a graphical part (Fig. 18.8 from line 1 to 9) and a
vocal part (Fig. 18.8 from line 10 to 26) that are not visible but still accessible from
the multimodal scripts described before. The label element is annotated with the tts
class to indicate that there is an associated vocal part with the same id plus the tts

Fig. 18.6 Multimodal generated user interface
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suffix (Fig. 18.8 line 2 and line 12). Since the select element is an input element, it
is annotated with the asr class to indicate that there is an associated vocal part
(Fig. 18.8 line 5 and 16).

Figure 18.9 shows another example of multimodal user interfaces for a car rental
application. The first page supports a multimodal search through which users can
provide the search parameters (also using the vocal modality): for all the interaction

Fig. 18.7 Excerpt of the MARIA multimodal concrete specification

Fig. 18.8 Excerpt of multimodal generated code
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elements, the prompt and the feedback part are redundant (thus they are rendered
both graphically and vocally), while the input part is equivalent (users can choose
either modality). The second page is the search result, rendered in a redundant way
as well: all the output elements are both graphical and vocal.

18.6 Reverse Engineering User Interface Logical
Descriptions

While the previous two sections mainly analysed forward engineering transfor-
mations, in this section, we analyse ReverseMARIA, a tool able to reverse any web
page (local or remote) to build the corresponding specification in the MARIA
graphical Concrete UI language, and then it is also possible to obtain its Abstract UI
specification. The tool is available at https://hiis.isti.cnr.it:8443/WebReverse/
indexRev.html, and its development was aimed to facilitate building models
associated with existing applications. Such models can then be used to obtain the
specification of user interfaces more suitable for different contexts of use, for
example for devices with different features (Paternò et al. 2008).

Fig. 18.9 Multimodal car rental application
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In general, there are two main approaches to reverse engineering user interfaces:
pixel-based and code-based. Pixel-based approaches analyse the correlations
between the display’s pixels to find the set of interface components (buttons, forms)
and the hierarchy amongst them. Although being implementation language—neu-
tral—see Dixon et al. (2014) as an example—the main problem of pixel-based
approaches is that they are able to retrieve only information about the visual pre-
sentation of UIs, and not about the behaviour of components, because they depend
on the hidden source code implementation. Source-code reverse engineering in turn
can be done in two ways: using static analysis through the application code, or
analysing the running application in a dynamic way (dynamic analysis). It is also
possible to perform hybrid analysis when static and dynamic analyses are used
together. There are various tools that exploit the static analysis-based approach (see
e.g. Bernardi et al. 2009a; Da Silva 2010). The benefit of static analysis is that all
the information is stored in the code and ready to be processed, but it is not able to
retrieve the part of the implementation that is not detectable unless the code is
executed. Dynamic analysis solves this problem by analysing the behaviour of the
user interface during execution. Examples of dynamic analysis are described in
Maras et al. (2011) and (Morgado et al. 2010). For Web applications, a risk related
to dynamic approaches is leaving many interface states unexplored and thus
obtaining an incomplete interface model. For this reason, a hybrid analysis
approach (see Silva and Campos 2013; Li and Wohlstadter 2008) can be more
thorough with respect to either static or dynamic techniques.

We followed a novel hybrid approach for reverse engineering web pages to
enable analysing them both when stored on a server and when loaded client side,
also considering the current internal state of the UI and the user inputs. Our tool
reverse-engineers web pages by taking as input the DOM representation which can
be obtained in two ways: (i) getting the input page through an http request to the
server, and generating the DOM from the HTML code using an external library7;
(ii) serialising the HTML DOM on the client side through either the browser or a
proxy. In addition to the extraction of DOM, the tool

• Associates the significant CSS properties with the related HTML elements;
• For each event associated with an HTML element, determines the type of event,

the JavaScript functions invoked on its activation and their parameters;
• Transforms the result obtained into an equivalent MARIA element;
• Serialises the MARIA elements in an XML file using JAXB8 technology.

7We used the Java Tidy Parser, available at http://tidy.sourceforge.net/, modified by us to handle
HTML5 tags as well.
8Java Architecture for XML Binding.
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18.6.1 The Reverse Algorithm

The tool has a first pre-processing phase in which it creates the DOM (see
Fig. 18.10), moves all the JavaScript nodes to an external file and stores in cache
memory all the CSS properties that are in external files or in style nodes. At the
beginning, it creates the MARIA interface element, which contains information
regarding the MARIA version and schema, and a presentation element, which
contains the default page properties taken from the HEAD part of the page (e.g.
page title). Then, it performs a depth-first search visit of the DOM starting from the
body node. For each node, it first analyses the type and its attributes, then adds the
id attribute if it is not set and introduces an attribute used to analyse the nodes’
textual properties. Then, it analyses the neighbouring node to retrieve correlations
between nodes and classifies single nodes according to their content and visual
properties. The result obtained is the logical representation of the DOM structure.
The following example (involving the Yahoo home page) shows how the numbered
parts of the HTML structure and CSS properties of the page shown in Fig. 18.11
are transformed into the MARIA descriptions shown in Figs. 18.12 and 18.13.

Figure 18.12 shows the MARIA elements (a grouping and a description ele-
ment) that correspond to the HTML elements indicated by (1) in Fig. 18.11, while
MARIA attributes correspond to CSS properties.

In Fig. 18.13, the red part (2) represents the input text element in the considered
web page (see Fig. 18.11), while the green part (3) represents the submit button.

Fig. 18.10 Reverse engineering algorithm
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Fig. 18.11 Yahoo Home page

Fig. 18.12 Result corresponding to element 1

Fig. 18.13 Results corresponding to elements 2 and 3
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Parts 2 and 3 are contained in a relation MARIA element, which represents an
HTML form.

Part 4 in Fig. 18.11 corresponds to a link, with its label composed of a picture
and a text. This HTML part corresponds to a MARIA navigator element, along with
a connection indicating the target presentation.

18.7 Reverse Engineering Task Models

In this section, we present the ReverseCTT tool, which covers the Abstract
UI-to-Task Model transformation of the CAMELEON Reference Framework.
While ReverseMARIA is a tool able to reverse any web page (local or remote) and
build the corresponding specification in the graphical desktop concrete language of
MARIA and then obtain its abstract description, ReverseCTT reverses the
MARIA AUI specification into a CTT task model description. Thus, it has a more
modular approach than WebRevenge (Paganelli and Paternò 2003b), which aimed
to create task models directly from the website code.

The ReverseCTT process is articulated into a number of rules. In order to
understand them, it is important to briefly remind the characteristics of the input that
this transformation receives, namely the AUI. Every AUI is structured into a set of
presentations, and each presentation has a name attribute. The relationships
between the AUI presentations are modelled through connections, which can be
elementary or complex, and which mainly support navigation between the different
presentations belonging to each AUI. In other terms, connections are the
logical/abstract counterpart of navigational links in Web UIs. The structure of each
presentation is articulated into a set of abstract interactors (which can have different
types ranging from editing, navigation, choice, to description and activators), whose
relationships are modelled through operators (e.g. grouping, relation) defined in the
language. Our assumption is that, after a user selects a presentation, the same
pattern repeats, regardless of the specific presentation selected. This pattern is the
following (for each presentation): load the (selected) presentation, handle the pre-
sentation (for user’s goals) and then select a new presentation.

Having said that, the idea is that for each AUI presentation, a new task model is
created, whose root name is derived by the name of the AUI presentation (by
concatenating “Access” + <AUI presentation name>). The root task just created
has three children: one is an application task (“Load” + <AUI presentation name>.
This application task is followed (through an enabling operator) by an abstract task
(“Handle” + <AUI presentation name>), which in turn is disabled by a second
abstract task (“Select new page” + <AUI presentation name>). The resulting CTT
task model after this step is shown in Fig. 18.14.

In the second step, the process analyses the elements of type “elementary con-
nection” in the AUI, which mainly represent HTML anchors/links. For instance,
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when they are anchors, this means that the navigation remains within the same
page/presentation at hand; therefore, the “Handle title” node created in the first step
will be expanded. This will be done by adding two new tasks (an abstract task and
an interactive task) combined through a suspend/resume operator (see “Handle title
page” |> “Select Anchors title” in Fig. 18.15, left part). Then, for each anchor
found, an interactive task is created as child of the lastly created task. All such
interactive tasks will be linked together through a choice operator (see Fig. 18.15,
left part).

In the next step, the algorithm continues by analysing the type of the AUI
interactors included in the AUI presentation and translating each of them into the
corresponding CTT task models. For instance, if the AUI contains an element
supporting a multiple choice, all the choice elements referring to the same multiple
choice elements are translated into interactive tasks linked together through an
interleaving operator (see Fig. 18.15, right part). In Fig. 18.16, a screenshot of the
tool showing an example of translation of an AUI description into a CTT task
model specification is shown.

Fig. 18.14 From AUI to
CTT: the model after the first
step of the transformation

Fig. 18.15 From AUI to CTT: the resulting CTT model after translating elementary connections
associated with HTML anchors (left part) and multiple choice elements (right part)
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18.8 Conclusions and Future Work

We have presented an integrated set of model-based languages and associated tools
for supporting design and development of interactive applications also using var-
ious modalities. They can be applied in various domains such as safety-critical
systems (see for example at https://www.eurocontrol.int/ehp/?q=node/1617), ERP,
workflow management systems and Ambient Assisted Living.

Some of such tools have been used by a broad community since they are
publicly available (see http://giove.isti.cnr.it/tools.php), and over time, external use
has provided suggestions for small improvements.

Future work will be dedicated to investigating how they can be exploited in
combination with agile methodologies. This represents an interesting challenge
since modelling requires some time and this may conflict with the fast pace adopted

Fig. 18.16 Tool for reverse engineering CTT task models
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in such methodologies. However, the use of model-based tools able to support fast
prototyping can be able to address this issue. Another important area is how to
exploit task models in analysing user behaviours. Previous tools, such as Web-
RemUsine (Paganelli and Paternò 2003a), have addressed how to compare client
side Web logs representing actual behaviour with desired behaviour represented by
the task model. It can be interesting to extend this approach to analyse broader
human behaviour detected through various sensors and compare it with that
described by task models in order to identify potential issues.

We also plan to continue to carry out studies in order to investigate improve-
ments for the usability of the languages and the associated tools.
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Chapter 19
Formal Modelling of App-Ensembles

A Formal Method for Modelling Flexible
Systems of User Interfaces Driven by Business
Process Models

Johannes Pfeffer and Leon Urbas

Abstract This chapter shows how flexible systems of user interfaces with an
underlying formal model can be created by learning from the success story of apps
on mobile devices and leveraging the concept of business process modelling. It is
shown how these multi-app user interfaces are modelled and how they can be
transformed into Petri nets in order to apply existing formal analysis methods. The
created user interfaces are called App-Ensembles and resemble interactive systems
comprised of self-contained apps that are connected in a purposeful manner via
navigation links and data channels. A formal language for modelling these
App-Ensembles is introduced (AOF-L). The graphical modelling elements are
taken exclusively from BPMN 2.0 (Business Process Model and Notation). The
underlying notation is formalized using an OWL 2 ontology. It is shown how
App-Ensembles can be easily integrated into existing classical business process
models. Two use cases illustrate the utility of App-Ensembles and the practicality of
the modelling approach. This chapter demonstrates that it is useful to combine a
semi-formal graphical notation with a strictly formal mathematical model. Strengths
of the approach include the ability to run reasoning algorithms on the model, to
query the model using languages such as SPARQL, and to perform a formal ver-
ification regarding contradictions and BPMN compliance.
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19.1 Introduction

Originally, the term app was just an abbreviation for the word application. Today,
in times of ubiquitous mobile devices, the notion of app usually does not refer to a
general software application, such as an operating system or a Web server. When
speaking of apps, we usually mean a program that is installed on a mobile device by
downloading it from an app-store. Such apps have become a huge success, in
particular with the rise of the iOS and Android devices, such as smartphones and
tablets. In order to understand App-Ensembles, it helps to bring to mind the drivers
behind this success. Apps are specialized programs, mostly used on mobile devices
that assist users in completing tasks that have a clearly defined scope. They stand in
contrast to monolithic multi-purpose programs on desktop computers. Users often
prefer apps over traditional software for a number of reasons: apps are easy to
install and uninstall, easy to use due to lower complexity, mostly cheap or free, and
serve as dedicated problem-solvers: “… there’s an app for that!” In a more general
sense, apps are specialized software tools. They do not exist on mobile devices
only; some Web browsers, operating systems, automotive systems, etc., have also
adopted the concept successfully.

Additionally, in many areas, professional workflows have become more
dynamic. They change more regularly in structure, composition, and goals. Con-
sequently, large multi-purpose applications have become increasingly tedious to
keep up to date with changing requirements. Ultimately, monolithic tools may pose
a burden of implementing lean and agile work processes.

This chapter presents the research towards establishing a formal model for
App-Ensembles.

Definition App-Ensembles are interactive systems comprised of self-contained
apps that are connected in a purposeful manner via navigation links and data
channels.

App-Ensembles are especially useful in the following situations:

• when separate tools with separate UIs are used regularly to accomplish a single
goal;

• when the order in which the tools are used varies frequently; and
• when business processes for the performed tasks are available (e.g. for main-

tenance or customer care).

In the field of HCI, formal methods are typically used to model a user interface at
the level of UI elements. The language presented in this chapter models user
interfaces at a higher level. The most granular element of the modelling language is
a self-contained app. For modelling the UI of the app, another formal method may
be used.
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This chapter is organized as follows. In the following section, related work is
presented. Afterwards, the background for the presented work is briefly described.
Then, the formal modelling language for App-Ensembles is introduced and its
graphical representation is explained. Next, the textual notation of the language
using Semantic Web technologies is shown. Then, the graphical language is applied
to two use case examples for maintenance tasks of wind turbines and a nuclear
power plant. Afterwards, an approach for formal modelling of App-Ensembles is
described. Next, it is shown that App-Ensemble models can be transformed into
Petri nets and well-known algorithms can be used to identify modelling issues. The
presented work is discussed, and the chapter closes with a conclusion and outlook.

19.2 Related Work

There are other modelling approaches that share some of AOF-L’s goals. However,
they differ in several key points. Most importantly, they are not focused on mod-
elling highly encapsulated entities such as apps. While State Chart XML (Barnett
et al. 2015), short SCXML, can be used to control high-level UI components such
as dialogues (Lager 2013), it is mainly focused on Web-based UIs. The notation
provides its own state-machine-based execution environment. In BPMN (Business
Process Model and Notation), the execution environment is not part of the speci-
fication. Business processes are executed by external engines that do not necessarily
behave like state machines (Fischer 2011). Alternative process modelling approa-
ches such as the widely recognized YAWL (van der Aalst and ter Hofstede 2005)
are in some respects more expressive than BPMN. For example, YAWL contains
many additional workflow patterns. It has been used in combination with SCXML
to create a user interface for workflow management systems. In Garcia et al. (2008),
a to-do list and a workflow list are created and sequences of user dialogues are
generated. The approach focuses on the generation of user interfaces with a set of
basic GUI elements from task definitions, and there is no integration of external
encapsulated tools such as apps.

The research field of SOA (e.g. Erl 2005), namely service composition, is also
related to AOF-L. Pietschmann et al. (2009) present the idea of User Interface
Services and consequently apply the ideas of service composition to arranging UIs.
Daniel et al. (2010) go one step further and propose a model and language for
service-based composition of UIs. However, the focus lies on UI distribution and
developing mashup-like applications without the encapsulation found in mobile
apps.

Sousa et al. (2008) present a model-driven approach that is used to link business
processes with user interfaces. In their approach, BPMN elements, such as a split (a
decision), are linked to user interface elements (e.g. a drop-down list). In AOF-L,
the user interfaces are also linked to BPMN but at a much higher level. A com-
plementary BPMN model for an App-Ensemble is introduced in order to associate
an app-based user interface with a BPMN task or sequence of BPMN tasks.
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19.3 Background

Pfeffer et al. (2013) describe a concept to dynamically create mobile interactive
systems for complex tasks by orchestrating self-contained apps with defined
interfaces. The approach addresses the challenge to generate flexible, adaptable, and
easy-to-use app-based user interfaces with minimal effort. It takes into account that
data sources, workflows, users, and the apps themselves may be subject to con-
tinuous change. The approach heavily relies on the Semantic Web stack (Bizer et al.
2009) and its adaptation for industrial environments (Graube et al. 2011). For easy
integration into existing business processes and virtual manufacturing networks, it
is based on established concepts from the field of business process modelling.

One method to create useful stand-alone App-Ensembles is the App-Orches-
tration process (Ziegler et al. 2012) that consists of three steps: select, adapt, and
manage (as shown in Fig. 19.1). The process relies on an existing set of seman-
tically described mobile apps, a well-defined information space, i.e. data sources,
and a business process model that defines necessary tasks and their relations. In the
select step, a subset of apps is selected from an app pool that are best to support the
tasks given in the actual business process. To increase reusability, in addition to
commercial off-the-shelf apps, the app pool may contain generic apps tailored for
orchestration that are not yet adapted to a specific use case or information source.
Instead, they are adaptable to various specific tasks. This is done in the adapt
step. Adaptation may include the visual appearance, the interaction style, the actual
data source, and others. In the manage step, the adapted apps are connected
according to a navigation design model which is derived from the business process
model. Therefore, only useful navigation paths are presented to the user.

All three steps are performed at design time. As a result, a deployable App-
Ensemble consisting of a model and installable app artefacts is produced. The
App-Ensemble is then deployed to a device (e.g. an Android tablet). At runtime, a
workflow execution engine enforces the navigation design (switching from app to
app, allowing the user to make decisions at workflow branches) and facilitates the
information exchange between the apps. The same set of apps can be orchestrated
in many ways, depending on the needs of the underlying business process.

Fig. 19.1 App-Orchestration steps—select, adapt, manage
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In order to realize this concept, formal models and tools are required. The set of
tools and specifications for App-Orchestration is collected in the Application
Orchestration Framework (AOF). The modelling language to describe apps,
App-Ensembles and Orchestration, is called AOF-Language (AOF-L).

19.4 The AOF-Language

The AOF-Language consists of two parts that describe the following: (i) the
capabilities of a single app and (ii) the setup and structure of an App-Ensemble. The
first part defines language elements that allow semantic description of properties of
an app. This includes name, textual description, version, and others. Also, the
interface of the app is described (entry points, exit points, inputs, outputs), and other
information needed to start the app, provide data to it, and receive results. This part
of the language is not a major subject of this chapter. The current state of the
specification can be found in Pfeffer (2015).

The second part which is the main focus of this chapter allows the formal
description of an App-Ensemble. AOF-L uses BPMN 2.0 (Business Process Model
and Notation, OMG 2011) as a basis to describe App-Ensembles. It has been
chosen because the notation is easy to learn, has execution semantics, is widely
used in business and industry, and is extensible with custom modelling elements.
BPMN is standardized in the ISO/IEC standard 19510:2013. This research is only
concerned with version 2.0 of BPMN. Therefore, from here on, the version number
is omitted for brevity.

The language specification also includes a formal semantic vocabulary
(AOF-Vocabulary) specified using RDFS, the Resource Description Framework
Schema (Klyne and Carroll 2004), and concepts from the Web Ontology Language,
specifically OWL 2 (W3C OWL Working Group 2012).

The combination of a well-known business process modelling language and
Semantic Web technologies makes it possible to easily publish BPM and App-
Ensembles in form of LinkedData (Bizer et al. 2009; Graube et al. 2013). This enables
integration in collaborative Virtual Enterprises as described in (Münch et al. 2014).

For execution, the model is serialized as RDF (Resource Description Frame-
work) using concepts defined in the AOF-Vocabulary, from a BPMN Ontology1

(Rospocher et al. 2014), Friend of a friend (FOAF) (Brickley and Miller 2014),
Dublin Core (DC) (ISO-15836 2009), RDF, and RDFS (Klyne and Carroll 2004).
There is a graphical representation which is exclusively based on modelling ele-
ments of BPMN. This chapter is mainly concerned with the graphical notation
because it is well suited to illustrate an App-Ensemble model for a use case.

1Accessible at https://dkm.fbk.eu/bpmn-ontology.
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19.4.1 Graphical Modelling Elements

AOF-L uses a subset of BPMN modelling elements as shown in Fig. 19.2. BPMN
modelling elements other than those shown are not allowed. All BPMN connection
rules that apply to the allowed modelling elements are valid (for an overview see
OMG 2011, p. 40ff). None of the semantics of BPMN are contradicted. But for
simplification and analysis, additional restrictions apply that are described in this
section at the individual element explications.
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19.4.1.1 Activities

By definition, a user task is executed by a human being through a user interface. In
AOF-L, this task type is used to represent an app in an App-Ensemble. The
activity-type user task is extended in compliance with the BPMN specification
(OMG 2011, p. 55) with a reference to a semantic app-description. The activity is
completed when the app is closed by the user or an interaction with the app is
performed that yields output values.

A manual task is executed by a human without the help of an app or other type
of user interface. A typical example in the use case domain would be to open or
close a valve. Using a manual task in an App-Ensemble tasks can be modelled that
users have to perform without assistance of an app. They are treated as tasks and
have to be confirmed as completed to the execution engine before the control flow
continues past the activity.

19.4.1.2 Gateways

Gateways are used to split or join a workflow. The flow of control is affected in the
same manner as in standard BPMN. However, due to the fact that user tasks rep-
resent apps that run on a physical device and can be used by a user only one at a time,
no real parallelism is possible. Thus, when two or more branches with user tasks are
activated at the same time as a result of a split, they are placed in an App-Dash. The
App-Dash is a list of available apps—comparable to a task list in classical business
process execution engines. Where appropriate, the user is asked by the process
execution engine to choose between possible next apps to continue the workflow.

The behaviour of the gateways in an App-Ensemble is described in the following
paragraphs. This is a specialization of the behaviour specified by BPMN. In cases
where a user decision is needed (XOR-Split, OR-Split), a dialogue is presented and
the user must select the preferred action, e.g. decide between several branches.

An XOR-Split splits an App-Ensemble workflow into multiple branches (see
Fig. 19.3). Exactly one of the branches is activated based on user decision. The
other branches are not activated. An XOR-Join joins multiple workflow branches.
The workflow continues as soon as one of the incoming branches is activated. In an
App-Ensemble, this occurs when at least one app (user task) directly preceding the
gateway finishes.
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The AND-Split splits an App-Ensemble workflow into multiple branches that are
all activated at the same time. This results in multiple new apps placed in the users
App-Dash (see Fig. 19.3). An AND-Join allows the workflow to continue when all
of the incoming branches are activated, i.e. when all preceding apps have finished.

For an OR-Split, the App-Ensemble workflow is split based on user decision. The
user may decide to activate one or more branches resulting in one or more apps being
placed in the App-Dash (see Fig. 19.3). At an OR-Join, the workflow is continued
based on user decision when at least one incoming branch has been activated.
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19.4.1.3 Events

Data can be received from a superordinate process using Receiving Message Events
(intermediate or initiating) represented by a white envelope. Data can be sent to a
superordinate process using Sending Message Events (intermediate or terminating)
represented by a black envelope. The use of these events in App-Ensembles is
exemplified below in Example 2.

19.4.1.4 Connecting Objects

The Control Flow arrow is used just as in BPMN. Message Flow arrows are used to
connect an App-Ensemble with superordinate business processes. They are used to
synchronize the business process with the App-Ensemble.

19.4.1.5 Swimlanes

Optionally, App-Ensembles may be placed in their own Pool. They must be placed
in their own exclusive Pool whenever the BPM describes a collaboration (more than
one participant). Lanes may be used to organize the modelling elements in the Pool
but have, as in BPMN, no relevance to the control flow.

Start and End Events are optional according to the BPMN specification (see
OMG 2011, p. 237 and p. 246). In AOF-L, they are not allowed, except for
initiating and terminating message events.

19.4.2 Textual Notation of the Model

The notation of an App-Ensemble model is facilitated using RDF. Since the focus
of this chapter is the graphical notation for a specific use case, this shall be illus-
trated only briefly by the example of a single user task representing an app. Using
the BPMN ontology (Rospocher et al. 2014) and the AOF-Vocabulary, an
App-Ensemble can be described in Turtle RDF notation (Beckett and Berners-Lee
2008) as follows. The excerpt describes the right column of Example 1 (see section
Examples) with three user tasks and one XOR-split gateway.
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@prefix aof: <http://eatld.et.tu-dresden.de/aof/>.
@prefix app: <http://example/app-pool/>.
@prefix bpmn2: <http://dkm.fbk.eu/index.php/BPMN2_Ontology#>.
@prefix ae: <http://example/wind-turbine-maintenance/1/>.

# Tasks, Gateways
ae:userTask_3 a aof:userTask; 
bpmn2:id "userTask_3";
bpmn2:name "Visual inspection check list app";
aof:assignedApp app:VisChecker. 

ae:userTask_4 a aof:userTask; 
bpmn2:id "userTask_4";
bpmn2:name "Camera app";
aof:assignedApp app:IntegratedCameraApp.  

ae:userTask_5 a aof:userTask; 
bpmn2:id "userTask_5";
bpmn2:name "Diagnosis app";
aof:assignedApp app:WTDiagnosisApp.

ae:ExclusiveGateway_1 a bpmn2:exclusiveGateway;
bpmn2:id "ExclusiveGateway_1";
bpmn2:incoming ae:SequenceFlow_4; 
bpmn2:outgoing ae:SequenceFlow_5;  
bpmn2:outgoing ae:SequenceFlow_6;

# Sequence Flows 
ae:SequenceFlow_4 a bpmn2:sequenceFlow ;
bpmn2:id "SequenceFlow_1" ;
bpmn2:sourceRef ae:UserTask_3; 
bpmn2:targetRef ae:ExclusiveGateway_1. 

ae:SequenceFlow_5 a bpmn2:sequenceFlow ;
bpmn2:id "SequenceFlow_1" ;
bpmn2:sourceRef ae: ExclusiveGateway_1;
bpmn2:targetRef ae: UserTask_4. 

ae:SequenceFlow_6 a bpmn2:sequenceFlow ;
bpmn2:id "SequenceFlow_1" ;
bpmn2:sourceRef ae: ExclusiveGateway_1;
bpmn2:targetRef ae: UserTask_5.

...

Some information that a full App-Ensemble would in include was omitted in the
listing above because it is not relevant to the example. Especially metadata about
the creator, App-Descriptions for the apps that define data channels and state how
the app can be started are not shown. The task ae:userTask_4 is an instance of
aof:userTask (in Turtle “a” is an abbreviation for rdf:type which describes
an instance of relation). The RDF resource aof:UserTask is a class that is
derived from the original BPMN user task class. The lines with aof:as-
signedApp relate to a resource describing the app semantically. This semantic
description defines the interface of the app by stating entry points with input
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variables of a certain type and exit points with output variables (for an example of a
semantic app-description refer to the AOF-Language specification (Pfeffer 2015).

All other modelling elements, such as gateways and control flow arrows, are
written in the same fashion. Naturally, any other RDF serialization such as N3 or
RDF-XML can be used in place of Turtle.

19.5 Use Case Examples

The use case examples both focus on asset maintenance. In the field of mainte-
nance, it is often necessary to work with tools from various vendors, the order of
usage varies with the necessary tasks, and new or changed work processes are
frequently introduced.

19.5.1 Example 1: Wind Turbine Maintenance

The first example is set in the case study Interactive Systems in Rural and Urban
Areas—Maintenance of wind turbines. It is intentionally straightforward and serves
to illustrate the general principle of App-Ensembles (see Fig. 19.4). The
App-Ensemble was created along the lines of the select–adapt–manage methodol-
ogy mentioned above (see section Background) but without a previously defined
business process. To create a model for the maintenance workflow of a wind energy
technician, first, the necessary apps to accomplish the tasks are selected from a
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Fig. 19.4 Wind turbine maintenance use case (Example 1)
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repository, e.g. an app-store. In the adaptation step, the data sources for wind
turbine locations and sensor data are added to the app-descriptions. This makes it
possible to always show contextual information regarding the current point of
interest. Next, the model is jointly constructed by a modelling and a domain expert
(in this case the technician) using a graphical modelling tool for App-Ensembles. In
the manage step, a navigation design is derived from the model which is packaged
together with all required apps as an App-Ensemble that can be directly deployed to
a mobile device.

At the beginning of his or her maintenance work, the technician starts the
App-Ensemble. First, a job list is presented from which the technician may select
the maintenance job he or she would like to work on first (job list app). Then, the
location of the wind turbine is shown on a map and optional turn-by-turn navigation
is offered (wind turbine locator app). When the technician has arrived at the correct
location, he or she is asked to perform a visual inspection. This inspection is
currently done without assistance by an app; thus, it is represented by a manual
task. Next, a checklist for the visual inspection is completed (visual inspection
check list app). Afterwards, the technician may decide to take pictures of the
observations made (camera app) or may advance directly to a diagnosis tool (di-
agnosis app). This is realized by an AND-split gateway and is presented to the
technician as a decision over which app to put on the App-Stack. Depending on the
result of the diagnosis, several further tools may or may not be used at the tech-
nician’s discretion (documentation repository app, spare parts shop app, online
calibration app). The used OR-split gateway is presented to the user as a list of apps
from which he or she may select any number to be added to the App-Stack. Finally,
a report is created and sent (report app). All join gateways in the model are implicit
OR-join gateways.

In this scenario, the technician executes the App-Ensemble when needed and
repeats the workflow until the workday is over or all assigned jobs have been
completed. The following Example 2 adds to this by illustrating how
App-Ensembles can be controlled by superordinate business processes.

19.5.2 Example 2: Nuclear Power Plant Maintenance

The second use case presented here is loosely based on the case study Control of a
Nuclear Power Plant. It serves to show how existing business process models can
be used as a higher level control process for App-Ensembles. It also illustrates some
of the problems that may arise and presents a way how to mitigate these issues
using the formal model of the App-Ensemble.

A nuclear power plant is a special type of process plant with very high security
requirements. Like any other process plant, it consists of machines, devices,
physical connections (pipes, wires, etc.), sensors, and other equipment. In the
example, business process models have been created for all maintenance tasks in
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the power plant in order to improve controllability of task execution and reporting
of deviations. The use case focuses on a fraction of a business process model
(BPM) that is concerned with maintenance tasks for the feedwater pumps of the
nuclear power plant (see Fig. 19.5, left-hand side).
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Existing BPM can be adapted for execution with App-Ensembles by adding
message events before and after tasks that are completed with the help of apps.
These message events serve as synchronization points between the original BPM
and the App-Ensemble. In the use case, the BPM is triggered when the maintenance
interval for the feedwater pump is reached. The presented model has been sim-
plified for reasons of brevity, but the basic workflow is realistic.

At the beginning, the maintenance personnel checks the state of the safety valves
and performs a visual inspection of the pump (e.g. for leakage). The latter two tasks
are manual and are not supported by any tool controlled by the process. If some-
thing notable is observed, a report on the findings is created. Finally, the pump
diagnosis is performed and another report is written. In a BPM that is not supported
by an App-Ensemble, the process looks just the same, with the exception of the
additional send and receive events. Thus, existing BPM can be easily extended for
use with App-Ensembles by adding a participant (in BPMN terminology, this refers
to separate process) containing the App-Ensemble model to the collaboration.

In Fig. 19.5, right-hand side, a possible corresponding App-Ensemble is shown.
The maintenance personnel uses two apps for diagnosing the pump. The control
flow starts with a token being generated either on the receiving start message event
or on the receiving intermediate message event. In the first case, the control flow
splits into two parallel branches and the token is cloned. Now, the user must
serialize this parallelism by choosing the order in which the apps shall be presented
by selecting an app from the App-Dash. Only when both apps have been used (i.e.
the activity has been completed) and expected data has been yielded, the control
flow continues and a report can be created. There is a second entry point to the
App-Ensemble that is triggered when a report has to be written after preliminary
inspection of the pump. This shows that parts of App-Ensembles can be flexibly
reused and may be instantiated multiple times.

After the result data set (which may consist of the diagnosis result and/or the
report) is returned to the superordinate process, the token is consumed.

However, especially in complex business processes, problems with creating
correct BPMN models and App-Ensembles may arise. In the next sections, it will be
shown how the formal model of the process and its Petri net representation can be
used to identify the modelling problems as deadlocks and other model
characteristics.

19.6 Formal Modelling

On the one hand, the AOF-Language is RDF-based and represents an RDF graph.
On the other hand, it makes heavy use of concepts from BPMN. Thus, it is
self-evident to evaluate formalization via methodologies that have been used to
formalize the business process models. In the following section, this is investigated
in order to discuss the approach during the workshop.
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Since App-Ensembles can be expressed via a subset of BPMN modelling ele-
ments, it is possible to formally model an App-Ensemble process along the lines
described in Dijkman et al. (2007):

AnApp−Ensemble process is a tupleP =

ðO,A, E,G, tU
� �

, tM
� �

, eS
� �

, eIR
� �

, eIS
� �

, eE
� �

,GS,GJ ,GOS ,

GOJ ,GX ,GM ,FÞ

where

O is a set of objects which can be partitioned into disjoint sets of activities A,
events E, and gateways G;
A can be partitioned into disjoint sets of user tasks tUf g and manual tasks tMf g;
E can be partitioned into disjoint sets of start message events eS

� �
, receiving

intermediate message events eIRf g, sending intermediate message events eISf g, and
end message events eEf g; G can be partitioned into disjoint sets of splitting AND
gateways GS, joining AND gateways GJ , splitting OR gateways GOS , joining OR
gateways GOJ , splitting XOR gateways GX, and joining XOR gateways GM ;
F ⊆O×O is the control flow relation, i.e. a set of sequence flows connecting
objects.

Within this definition, an App-Ensemble is a directed graph with nodes O and
arcs F . For any node x ∈ O, input nodes of x are given by in xð Þ= ∈O j yFxf g
and output nodes of x are given by out xð Þ= ∈O j xFyf g.

19.7 Petri Net Representation

Based on this formal syntax, an App-Ensemble Model can be formulated and
requirements for it being well-formed can be defined. As shown in Dijkman et al.
(2007), the model can now be mapped to Petri nets.

Figure 19.6 shows the first part of the feedwater pump maintenance BPM. It
models the BPM until the first AND-join gateway (GJ1). The illustration has been
split for better understanding and in order to fit the format of the book. Figure 19.7
shows the remaining Petri net. All elements in the Petri net have been named
according to the formal notation defined in the previous section.

Since the resulting Petri net for the example is not very complex, a practiced
Petri net user will see immediately that it contains a deadlock. Similarly, an
experienced BPMN modeller will recognize this issue in the App-Ensemble. The
intentionally inserted deadlock is located in transition t(eIR3) (see Fig. 19.7) which
waits for firing of place P(eIS2, eIR3) that in turn can never occur due to the feedback
in transition t(eIR1). When the deadlock has been identified in the Petri net using
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well-known algorithms, it can be circumvented in the BPM and consequently in the
Petri net, e.g. by introducing a distinction of cases around t(eIR3).

While some types of analysis could also be performed on the original
App-Ensemble using existing BPMN tools, the available algorithms for reacha-
bility, liveness, and boundedness of Petri nets provide a rich additional toolbox for
finding problems in large, hierarchical, and complex models.

19.8 Discussion

It should be noted that due to ambiguities in the BPMN specification in certain
cases, the mapping from BPMN to Petri net may be problematic. For instance,
when multiple start events occur, it is not clearly defined whether a new process
instance or a new token should be created in the currently running instance.
However, aside from these ambiguities, transformation to Petri nets opens a rich
and well-established set of tool for analysis and verification of App-Ensembles.
While Petri nets could be used for modelling App-Ensembles in the first place, the
presented language is much more concise and allows for easy visual understanding
of business processes (compare Fig. 19.5 to Figs. 19.6 and 19.7).

The App-Ensemble model relies on the formal BPMN ontology (Rospocher
et al. 2014). Consequently, it inherits many of the strengths as well as limitations of
BPMN. Strengths include the ability to run reasoning algorithms on the model (e.g.
for consistency checking or inferring implicit types), the ability to query the model
using languages such as SPARQL, and the ability to perform a formal verification
regarding contradictions and BPMN compliance. Due to OWL 2 limitations, some
conditions and default values described in the BPMN specification could not be
encoded in the ontology (see Rospocher et al. 2014, p. 5f).

App-Ensembles are interactive systems of user interfaces. The granularity of the
App-Ensemble model ends at the level of the app—a self-contained user interface
that is tailored for tending to a well-contained need. If the notion of app can be seen
as a specialization of the term user interface as defined in Weyers (2012), instances

Visual and 
auditory 

inspec on

Check state of 
safety valves

P(eS1)
t(eS1)

P(eS1,GS1)

t(GS1)

P(GS1,tM1)

P(GS1,tM2)
tM2

tM1

P(tM1,GJ1)

t(GJ1)

P(tM2,GJ1)

Fig. 19.6 Petri net representation of use case 2 (part 1)
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of user interfaces in App-Ensembles can be modelled using the FILL and VFILL
language. While AOF-L is restricted to modelling input and output of an app that is
provided by a business process, FILL can model input and output that is generated
or consumed by the user (e.g. changing diagnosis parameters and viewing the
results). By linking a FILL model of an app user interface to a semantic
app-description, a model of the whole interactive system can be created. If addi-
tionally, the cognitive model of the user interface is included (Urbas and Leuchter
2005), the model becomes even more holistic and useful, e.g. for controlling or for
usability or performance evaluation.

19.9 Conclusion and Outlook

This research has presented advancements towards modelling language for
App-Ensembles. The graphical representation of this language is based on BPMN.
Its application has been shown in use cases to substantiate the ability of the lan-
guage to model interactive systems of multi-app user interfaces. At the time of
writing, the ontological formalization of the AOF-L was still in progress.

A mathematical formalization of the App-Ensembles has been presented, and it
has been shown how the models created with AOF-L can be transformed into Petri
nets in order to subject them to readily available formal analysis.

Since AOF-L is an RDF-based language, RDF-based approaches to formaliza-
tion should also be considered. In Hayes and Gutierrez (2004), bipartite graphs are
used as an intermediate model for RDF. The authors (Morales and Serodio 2007)
model RDF as a directed hypergraph which is a very concise and expressive model
for RDF graphs. These approaches will be investigated in coming research.
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Chapter 20
Dealing with Faults During Operations:
Beyond Classical Use of Formal Methods

Camille Fayollas, Philippe Palanque, Jean-Charles Fabre,
Célia Martinie and Yannick Déléris

Abstract Formal methods provide support for validation and verification of
interactive systems by means of complete and unambiguous description of the
envisioned system. Used in the early stages of the development process, they allow
detecting and correcting development faults at design and development time.
However, events that are beyond the envelope of the formal description may occur
and trigger unexpected behaviours in the system at execution time (inconsistent
from the formally specified system) resulting in failures. Sources of such interactive
system failures can be permanent or transient hardware failures, due to, e.g., natural
faults triggered by alpha particles from radioactive contaminants in the chips or
neutrons from cosmic radiation. This chapter first presents a systematic identifi-
cation of the faults that can be introduced in the system during both development
and operations time and how formal methods can be used in such context. To
exemplify such usage of formal methods, we present their use to describe software
architecture and self-checking components to address these faults in the context of
interactive systems. As those faults are more likely to occur in the high atmosphere,
the proposed solutions are illustrated using an interactive application within the
field of interactive cockpits. This application allows us to demonstrate the use of the
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concepts and their application for WIMP interactive systems (such as the ones of
the nuclear case study of the book).

20.1 Introduction

A safety-critical system is a system in which failures or errors potentially lead to
loss of life or injuries of human beings (Bowen and Stavridou 1993) while a system
is considered as critical when the cost of a potential failure is much higher than the
development cost. Whether or not they are classified as safety critical or “only”
critical, interactive systems have made their way into most of the command and
control workstations including satellite ground segments, military and civil cock-
pits, air traffic control. Furthermore, the complexity and quantity of data manipu-
lated, the amount of systems to be controlled and the high number of commands to
be triggered in a short period of time have pulled sophisticated interaction tech-
niques into most of them.

The overall dependability of an interactive system is one of its weakest com-
ponents, and there are many components in such systems ranging from the operator
processing information and physically exploiting the hardware (input and output
devices), interaction techniques, to the interactive application and possibly the
underlying non-interactive system being controlled.

Building reliable interactive systems is a cumbersome task due to their very
specific nature. The behaviour of these reactive systems is event-driven. As these
events are triggered by human operators manipulating hardware input devices, these
systems have to react to unexpected events. On the output side, information (such
as the current state of the system) has to be presented to the operator in such a way
that it can be perceived and interpreted correctly. Lastly, interactive systems require
addressing together hardware and software aspects (e.g. input and output devices
together with their device drivers).

In the domain of fault-tolerant systems, empirical studies have demonstrated
(e.g. Nicolescu et al. 2003) that software crashes may occur even though the
development of the system has been extremely rigorous. One of the many sources
of such crashes is called natural faults (Avižienis et al. 2004) triggered by alpha
particles from radioactive contaminants in the chips or neutron from cosmic radi-
ation. A higher probability of occurrence of faults (Schroeder et al. 2009) concerns
the systems deployed in the high atmosphere (e.g. aircraft) or in space (e.g. manned
spacecraft (Hecht and Fiorentino 1987)). Such natural faults demonstrate the need
to go beyond classical fault avoidance at development time (usually brought by
formal description techniques and properties verification) and to identify all the
threats that can impair interactive systems.

This chapter presents a systematic identification of the faults that can be intro-
duced in the system during both development and operations time and how formal
methods can be used in such context. To exemplify such usage of formal methods,
we present their use to describe software architecture and self-checking components
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to address these faults in the context of interactive systems. As those faults are more
likely to occur in the high atmosphere, the proposed solutions are illustrated using
an interactive application within the field of interactive cockpits which is described
in detail in the case study chapter of the book.

This chapter is structured as follows. The next section focuses on the identifi-
cation of the issues to be addressed for improving the dependability of critical
interactive systems. The third section focuses on the identification of potential
solutions for addressing these different issues, leading to the identification of issues
that have to be investigated in the future. The fourth section discusses how the use
of formal methods can help for addressing these issues. The fifth section illustrates
the discussion with the example of the use of formal methods when dealing with
both development software faults and operational natural faults in interactive
cockpits development. Section 20.6 presents the perspectives of this work and
Sect. 20.7 concludes the chapter.

20.2 Identifying Issues for the Dependability of Interactive
Systems

As mentioned in Introduction, building dependable interactive systems is a cum-
bersome task that raises the need to identify and treat the threats that can impair the
dependability of interactive systems. This section focuses first on the identification
of all the faults that can be introduced in the system during its development and all
the faults that can affect it during operations (on system, environmental and human
side). This section then presents the different ways of dealing with these faults.

20.2.1 Fault Taxonomy

To be able to ensure that the system will behave properly whatever happens, a
system designer has to consider all the issues that can impair the functioning of that
system. To this end, the domain of dependable computing has defined a taxonomy
of faults, e.g. Avižienis et al. (2004). This taxonomy leads to the identification of 31
elementary classes of faults. Figure 20.1 presents a simplified view of this taxon-
omy and makes explicit the two main categories of faults (top level of the figure):
(i) the ones made at development time (see left-hand side of the figure), including
bad designs and programming errors and (ii) the one made at operation times
(see right-hand side of the figure) including operator errors such as slips, lapses and
mistakes as defined in Reason (1990).

The leaves of the taxonomy are grouped into five different categories as each of
them brings a special problem (issue) to be addressed:

20 Dealing with Faults During Operations: Beyond Classical Use of Formal Methods 551



• Development software faults (issue 1): software faults introduced by humans
during system development. They can be, for instance, bad design errors, bugs
due to faulty coding, development mistakes.

• Malicious faults (issue 2): faults introduced by humans with the deliberate
objective of damaging the system. They can be, for instance, an external hack
causing service denial or crash of the system.

• Development hardware faults (issue 3): natural (e.g. caused by a natural phe-
nomenon without human involvement) as well as human-made faults affecting
the hardware during its development. They can be, for instance, a short circuit
within a processor (due to bad construction).

• Operational natural faults (issue 4): faults caused by a natural phenomenon
without human participation, affecting hardware as well as information stored on
hardware and occurring during the service of the system. As they affect hard-
ware, faults are likely to propagate to software as well. They can be, for
instance, a memory alteration due to a cosmic radiation.

• Operational human errors (issue 5): faults resulting from human action during
the use of the system. They include faults affecting the hardware and the soft-
ware, being deliberate or non-deliberate but do not encompass malicious ones.
Connection between this taxonomy and classical human error classification as
the one defined in Reason (1990) can be easily made with deliberate faults
corresponding to mistakes or violations (Polet et al. 2002) and non-deliberate
ones being either slips or lapses.

Fig. 20.1 Taxonomy of faults in computing systems (adapted from Avižienis et al. 2004) and
associated issues for the dependability of these systems
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20.2.2 Approaches for Addressing Faults

In the domain of dependable systems, fault-related issues have been studied, and the
current state of the art identifies four different ways of increasing systems’
dependability as presented in Avižienis et al. (2004) and Bowen and Stavridou
(1993):

• Fault prevention: avoiding as much as possible the introduction of faults during
the development of the system. It is usually performed by following rigorous
development processes, the use of formal description techniques, proving
properties over models, as well as introducing barriers as proposed in Hollnagel
(2004) and Basnyat et al. (2007).

• Fault removal: reducing the number of faults that can occur. It can be performed
(i) during system development, usually using verification of properties (Pnueli
1986), theorem proving, model checking, testing, fault injection or (ii) during
the use of the system via corrective maintenance for instance.

• Fault tolerance: avoiding service failure in the presence of faults via fault
detection and fault recovery. Fault detection corresponds to the identification of
the presence of faults, their type, and possibly their source. Fault recovery aims
at transforming the system state that contains one or more faults into a state
without fault so that the service can still be delivered. Fault recovery is usually
achieved by adding redundancy or diversity using multiple versions of the same
software. Fault mitigation is another aspect of fault tolerance whose target is to
reduce the impact of faults.

• Fault forecasting: estimating the number, future incidence and likely conse-
quences of faults (usually by statistical evaluation of the occurrence and con-
sequences of faults).

20.3 Addressing the Dependability of Interactive Systems

As mentioned previously, the dependability of an interactive system can be
achieved if and only if each group of fault identified in the previous section is
covered. In this section, we present a quick overview of the state of the art on
addressing all these groups of faults. This state of the art does not aim at describing
exhaustively all the existing approaches but targets at providing an overview of
these approaches in order to identify the issues that have been studied in the state of
the art and the issues that have to be investigated in the future for addressing all
these faults in the area of interactive systems. How formal methods can be used to
deal with these faults is presented in Sect. 20.4.
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20.3.1 Addressing Development Software Faults (Issue 1)

Development software faults are usually addressed using fault-prevention,
fault-removal and fault-tolerance approaches. Due to the intrinsic characteristics of
interactive system, standard software engineering approaches cannot be reused for
building reliable interactive systems. To address development software faults, a lot
of work has been carried out in the engineering interactive systems community
extending and refining approaches including software architecture (e.g. the ARCH
model presented in Bass et al. 1991); testing (e.g. the generation of test cases for the
graphical user interface as proposed in Memon et al. 2001); the use of dedicated
process (e.g. the process proposed in Martinie et al. (2012) taking into account the
usability and criticality of interactive systems); the use of standardization (e.g. the
Common User Access standard (IBM 1989) created by IBM to standardize WIMP
interfaces) and the use of formal methods (e.g. the temporal logics (Johnson and
Harrison 1992)). However, most of this work has been focusing on avoiding the
occurrence of faults by removing software defects prior to operation, i.e. during the
development of the interactive system, thus proposing fault prevention (processes,
formal methods) and fault removal (test analysis using formal methods) approaches.

In the area of interactive cockpits (more details about this type of application are
provided in the case study section), Barboni et al. proposed in (2006) the use of a
dedicated formal description technique for describing in a complete and unam-
biguous way widgets, windows managers and dialog controller (thus covering the
software part of the interactive system). This is in line with DO 178B/C standards
(RTCA and EUROCAE 2012) that, in that domain, promote the systematic use of
formal methods (RTCA and EUROCAE 2011).

20.3.2 Addressing Malicious Faults (Issue 2)

This issue has received a lot of attention in the field of human–computer interaction,
even leading to a specialized symposium on privacy and security called SOUPS
(Symposium on Usable Privacy and Security) since 2005. However, the human–
computer interaction community work on usability is particularly focused on
usability of authentication (e.g. the work of Wright et al. that proposed in (2012) to
apply recognition to textual passwords, thus limiting the number of errors while
typing the password). The issues of data protection and integrity are thus left to the
computing security field (e.g. the work of Reiter and Stubblebine that proposed in
(1999) a metric to evaluate the perceived confidence of an authentication
technique).

Furthermore, security issues have not been studied when it comes to critical
interactive systems. This is due to the fact that these systems were until now closed
and not accessible from the outside world, thus limiting the possibility of security
threats. However, with the introduction of new technologies such as Wi-fi
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connectivity for maintenance purposes in aeronautics, the security issue is
becoming relevant as shown, for example, in the work of Dessiatnikoff et al. that
presented in (2013) how the functioning of avionics embedded systems can be
affected by some attacks.

20.3.3 Addressing Development Hardware Faults (Issue 3)

Hardware components used for the development of interactive systems are quite
similar to the one used in other computing systems. Development hardware faults
can thus be addressed with classical hardware development processes as the one
described in the DO 254 standard (RTCA and EUROCAE 2000), providing
guidance for the development of airborne electronic hardware.

However, when considering interactive systems, the major difference with
non-interactive computing systems is that input devices have to be taken into
account in the design of the interactive system. For instance, the introduction of
multitouch interaction into an avionic cockpit cannot be done unless the screen has
been proven to have a weak probability of being faulty (e.g. the probability of
failure for the screen should be less than 10−9 per flight hour). Furthermore, a
system designer has to take into account the reliability of the hardware used for the
development of the system and can then compensate a lack of reliability through
software or interaction means. For instance, touch screen reliability can be
improved by replacing horizontal linear gestures by gestures linking two consec-
utive directions so that it is not depending on a unique grid on the touch screen.

20.3.4 Addressing Operational Natural Faults (Issue 4)

Addressing operational natural faults needs the use of fault-tolerance mechanisms
as their occurrence is unpredictable and unavoidable. As explained in Introduction,
the issue of operational natural faults has hardly been studied in the field of human–
machine interaction and just a few contributions are available about this topic. For
instance, Navarre et al. proposed in (2008) the reconfiguration of the interaction
techniques or possibly the organization of display when required by the occurrence
of hardware faults in order to guarantee the controllability of the interactive system
under input devices failures.

However, this solution only addresses hardware aspects leaving software aspects
uncovered. The issue of operational natural faults must be addressed, more par-
ticularly when dealing with safety-critical interactive systems as the one in aircraft
as a higher probability of occurrence of these faults (Schroeder et al. 2009) concerns
systems deployed in the high atmosphere (e.g. aircraft) or in space (e.g. manned
spacecraft (Hecht and Fiorentino 1987)). The occurrence of natural faults demon-
strates the need to go beyond classical fault prevention techniques at development
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time and to deal with faults that occur at operation time. Tankeu-Choitat et al.
(2011a, b) proposed to address this aspect by embedding fault-tolerance mecha-
nisms in the widgets behaviour. However, this is not sufficient as the entire inter-
active system must be fault-tolerant.

20.3.5 Addressing Operational Human Errors (Issue 5)

Human error has received a lot of attention in the field of psychology and HCI. This
type of faults can be addressed by preventing or tolerating human error (Dearden
and Harrison 1995), and several means have been identified to do so. A first way to
address human error can be the use of barriers (Hollnagel 2004) whether or not
being of software (e.g. confirmation buttons) or hardware nature (e.g. poka-yoké
also called mechanical coding). Of course knowledge acquired from the accident or
barrier analysis can be used to inform the development side. It is vital to prevent
accidents from reoccurring (Basnyat et al. 2006) by, for instance, including
socio-technical barriers which can be, in turn, modelled using a formal description
technique in order to prevent the appearance of development faults in the barriers
themselves (Basnyat et al. 2007). Human error prevention can also be done by
specialized training designed within the system development as presented in
Martinie et al. (2011) and better design of contextual help (Palanque et al. 1993)
and user manuals (Bowen and Reeves 2012). Another way to address human error
is to study user behaviour to modify the system design (e.g. the work of Rajkomar
and Blandford, using cognitive models to analyse the impact of interruptions (2012)
or the work of Palanque and Basnyat, using task patterns for taking into account
user behaviours within the system development (2004)) to propose better designs
(e.g. the work of Thimbleby and Gimblett, proposing better designs for keyed data
entry (2011)) or to generate erroneous human behaviours in order to evaluate their
impacts on the system (as in the work of Bolton et al. where model checking is used
to evaluate the behaviour of the system in the presence of erroneous human
behaviours (Bolton 2015; Bolton and Bass 2013 and Bolton et al. 2012)).

20.3.6 Concluding Remarks on the Identified Issues

The taxonomy presented in previous sections identifies all the faults that can impair
an interactive critical system. This taxonomy groups faults in five categories, each
of them raising different issues for the dependability of interactive critical systems.
For each category, we have presented existing solutions highlighting their benefits
and their limitations. While some issues have received a lot of attention from
researchers, some received little and need to be addressed in order to build resilient
interactive systems:
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• (Issue 2) the faults addressing malicious attacks,
• (Issue 3) the faults affecting hardware during system development, and
• (Issue 4) the natural faults occurring during the system operation.

In the area of safety-critical systems, issue 2 is mainly addressed by confinement,
i.e. having the system completely independent from other systems open to the
outside world. This might not be a sustainable solution in the near future as
maintenance requires opening up the systems and communication media that
become wireless removing by nature the confinement. For this reason, issue 2
belongs to the issues that have to be investigated in the future. Issue 3 has to be
addressed by the hardware manufacturers, and little can be done by researchers
beyond the solutions presented above and would remain in the issues that have to
be investigated in the future. Issue 4, on the opposite, has a strong potential for
impacting operations and should receive full attention even though researchers in
the field of HCI only start touching it.

20.4 Connection with Formal Methods

While formal methods are usually used in the field of human–computer interaction
to deal with development software faults (to ensure that the system will be working)
and operational human errors (to reduce the errors done by operators during
operations), their use can help for all the different types of faults that have been
identified in Sect. 20.2. While Sect. 20.3 has presented, for each one of the type of
faults, how they are currently covered, this section presents how formal methods
can be used to deal with them.

20.4.1 Development Software Faults

Formal methods are classically used to prevent and remove development software
faults. Even if, as detailed by Hall (1990), they cannot guarantee a perfect software
due to the imperfection of the human developers using a formal method either at
modelling time or when moving from models to the actual code of the application.
However, they are the only candidates for this purpose and their use brings many
advantages. Indeed, as detailed by Stavely (1998), the use of formal methods forces
software engineers to program more simply and clearly, thus preventing many
development software faults. These results can be improved with the performance
of software verification and testing, these two additional steps aiming at detecting
the remaining development software faults, thus allowing to remove them.

However, as presented in previous sections, considering development software
faults is not enough to guarantee the interactive system functioning as some other
events (that are beyond the envelope of the specification) may occur and trigger
unexpected behaviours from the specified system resulting in failures.
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20.4.2 Malicious Faults

Malicious faults are usually dealt with by the introduction of authentication
mechanisms such as the use of a password along with the use of stars to display it
when it is typed.

In this case, formal methods can be used to describe in a complete and unam-
biguous way these authentication mechanisms. They also enable the verification of
properties on these mechanisms along with their systematic testing.

20.4.3 Development Hardware Faults

Development hardware faults have to be addressed by the manufacturer of hard-
ware equipment. However, when considering highly interactive devices such as
multitouch interactions, tangible interactions (e.g. the use of fidget widgets as
presented in Karlesky and Isbister 2013), the hardware and software are closely
interleaved and cannot be treated separately.

In this case, formal methods can be used to develop jointly hardware and
software. They also can be used as means for a better verification and validation of
the associated hardware and software components.

20.4.4 Operational Natural Faults

Operational natural faults are usually dealt with by the introduction of detection and
recovery mechanisms such as the use of fault-tolerant architecture which is illus-
trated in the next section.

In this case, formal methods can be used to describe in a complete and unam-
biguous way these detection and recovery mechanisms. They also enable the ver-
ification of properties on these mechanisms along with their systematic testing.

20.4.5 Operational Human Errors

Operational human errors are usually dealt with by the introduction of detection and
recovery mechanisms such as the use of the rule that no action should be performed
after the goal is reached to avoid post-completion error (e.g. forgetting the credit
card after withdrawing some cash).

In this case, formal methods can be used for human behavioural modelling. They
also enable the verification of properties on the behavioural models along with the
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verification and validation of the consistence between the behavioural model and
the system model (e.g. using co-execution mechanisms enabling the coupling of
tasks models and interactive applications as presented in Martinie et al. 2015).

20.5 Illustrative Example: Dealing with Both Development
Software Faults and Operational Natural Faults
in Interactive Cockpits

This section illustrates how formal methods can be used to deal with both devel-
opment software faults (their classical use) and operational natural faults. To this
end, we first present the use of a formal notation to describe the system behaviour
(in order to prevent development software faults) and then a solution for building
fault-tolerant interactive applications (in order to address natural faults occurring at
run-time). These two approaches are illustrated using the example of the Flight
Control Unit Software (FCUS) interactive cockpits (introduced in the case study
chapter of the book).

It is important to note that we only describe here the elements that are relevant
for dealing with operational faults. More information can be found in Fayollas et al.
(2013, 2014).

This section is divided into four subsections: the first subsection describes the
hypotheses of this illustrative example and the functional failures that are taken into
account in the approach. The second subsection describes the preventive approach
to deal with development software faults and its application to the FCUS case
study. The third subsection describes the fault-tolerance approach to deal with
operational natural faults, its application to the FCUS case study and how this
approach relates to formal methods. The last subsection presents how to apply these
principles to the entire interactive system.

20.5.1 Main Hypotheses and Functional Failures Taken
into Account

Considering the case study of interactive cockpit applications and more particularly
the FCUS application (c.f., “Case Study 3—Interactive Aircraft Cockpits” section
in Chap. 4), our focus is on development software faults and operational natural
faults. We thus consider the system-side dependability of interactive system and
consider human error as out of scope. This is indeed a very strong hypothesis, but
human reliability aspects can be considered independent from the ones addressed
here as neither development software faults nor natural faults at operation time are
influenced by operator’s behaviour (and vice versa).
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More precisely, the solution presented in this section focuses on the functional
failures of the two generic software parts of the interactive cockpits architecture
(presented in the “Case Study 3—Interactive Aircraft Cockpits” section in Chap. 4
of the book, reproduced in Fig. 20.2 for sake of direct access to information)—i.e.
the widgets and the server. The User Application (which is controlling the beha-
viour of the application), the aircraft components and the input and output devices
are considered out of the scope.

The solution we describe aims at ensuring that the interactive system processes
correctly the input events from operators and renders correctly parameters received
from the User Application. To be more concrete, we are targeting at managing four
possible functional failures that could lead to catastrophic events according to the
DO-178C terminology:

• Loss of control: loss of function so that control (from crew member to User
Application) is not performed. For instance, the user clicks on the AP1 (Auto
Pilot 1) button, but the FCUS User Application does not receive the corre-
sponding A661_Event.

• Erroneous control: malfunction so that control is performed in an inappropriate
manner (wrong control or correct control sent with wrong data). For instance,
the user clicks on the AP1 button but the A661_Event corresponding to the click
on FD (for flight director) button is sent to the FCUS User Application.

Fig. 20.2 Interactive cockpits architecture exemplified with the FCUS application
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• Loss of data display: loss of function so that the data display (from User
Application to Control and Display System) is not performed. For instance, the
FCUS User Application sends a setParameter to a widget for displaying the
notification of AP1 activation but the corresponding graphical update (display of
three green bars on the AP1 button) is not performed.

• Erroneous data display: malfunction so that the data display is performed in an
inappropriate manner and thus may be misleading to crew members. For
instance, the FCUS User Application is asked to display the notification of AP1
activation but the graphical update corresponding to the activation of FD is
performed instead of it.

20.5.2 Dealing with Development Software Faults
in Interactive Cockpits

This section presents the preventive approach to deal with development software
faults. The first subsection introduces the approach, while the second presents its
application on the FCUS case study.

20.5.2.1 A Fault Prevention Approach Using Formal Description
Techniques

Building software without any development software faults is also known as
building a so-called zero-defect software which is very difficult to achieve
(Hamilton 1986). Nevertheless, it is possible to build almost zero-defect software
by the use of formal methods (Stavely 1998), thus corresponding to using fault
prevention techniques. They can then be supplemented by fault detection tech-
niques such as formal models testing or formal proofs that can then lead to fault
removal.

Our goal here is to prevent the occurrence of software development faults as
much as possible. In that intent, we propose the use of a model-based development
for the interactive software. This is achieved through the use of a formal description
technique dedicated to the specification and verification of interactive systems. To
this purpose, we propose the use of the ICO (interactive cooperative objects) for-
malism (Navarre et al. 2009). This formalism uses high-level Petri nets (Genrich
1991) to describe the behavioural aspects of the interactive system and concepts
borrowed from the object-oriented approach to describe the structural and static
aspects of the interactive system. This formalism enables the handling of the
specific aspects of interactive systems such as their event-driven nature. Its main
interest is to provide a way for the interactive system developer to create
non-ambiguous and concise models compliant with the system specifications.
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Due to space constraints, we will not present here the definition of the ICO
notation. However, the interested reader can find them in Navarre et al. (2009).
Furthermore, we only present here the description of interactive systems behaviour
using this notation, but the ICO formalism supports a process towards the reliability
of interactive software due to its formal definition and its groundings in Petri nets
theory providing means to formally verify the properties over ICO models. It thus
enables the verification of an interactive software through the structural analysis of
its ICO formal specification (as presented in Palanque and Bastide 1995) or through
the analysis of its marking graph (as presented in Palanque and Bastide 1997).
The ICO notation is supported by a tool named PetShop providing means to
develop ICO models, formally verifying properties over them and also providing a
run-time support for models’ execution. The infrastructure of PetShop and its
ability to support both prototyping and verification can be found here (Palanque
et al. 2009).

In a previous work (Barboni et al. 2006), we propose the whole modelling of the
interactive cockpit using the ICO formalism (except the server for which few
limited parts are described by Java code) in order to address reliability aspects of
such applications. Due to place and legibility issues, we will not describe in this
chapter all the interactive cockpit modelling. However, we illustrate it with the use
of the ICO formalism to describe the behaviour of a PicturePushButton (which is,
among more than 60 widgets, defined by the ARINC 661 standard (Airlines
Electronic Engineering Committee 2002), a widely used widget as demonstrated by
the FCUS application, presented in “Case Study 3—Interactive Aircraft Cockpits”
section in Chap. 4, using more than 30 instances of it). A PicturePushButton is a
simple user interface button enabling the display of information through either a
picture or a label allowing commands to be triggered. The associated command is
triggered only if an event click is received by the button and if the Pic-
turePushButton is both visible and enabled. Following the ARINC 661 specifica-
tion, the aircraft application may only modify widgets’ state by calling setParameter
method on their parameters modifiable at run-time, and widget can only raise events
to be caught by the aircraft application.

20.5.2.2 Illustration with the FCUS Case Study

Figure 20.5 presents the complete formal specification of a PicturePushButton
using the ICO formalism. The point here is not to present in detail such a speci-
fication (that in any case should be manipulated by means of a dedicated tool such
as PetShop) but to provide some insights on how the various elements of such an
interactive component are described and how these elements are connected.

The parameters accessible by an avionics application for a PicturePushButton
widget are Visible, Enable, StyleSet, PictureReference and Labelstring. Figure 20.3
details the ICO modelling of a PicturePushButton’s method SetVisible(X) (see
Visible management in Fig. 20.5). If the formal parameter X holds the value True,
then the widget is set to the state Visible. If the value is False, the widget is set to
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the state NotVisible. Using the ICO formalism, these method calls are modelled by
an input place (holding the name of the method) , and the return

value is modelled by an output place . The Petri net in between the
input and output places models the detailed behaviour of the widget in order to
process the method call.

The PicturePushButton can only send information by raising the A661_EVT_-
SELECTION event. The connection of the widgets to the input devices (as shown
on the architecture of interactive cockpits in Fig. 20.2) is done by methods call
performed by the server. This is modelled in the same way as the method calls
presented above. For the PicturePushButton, those methods are pro-
cessMouseClicked, processMouseDown, and processMouseReleased. According to
the inner state of the widget (Visible and/or Enabled), these method calls are
processed and produce different output. For instance, as detailed in Fig. 20.4, if the
widget is Enabled, Visible and already received a processMouseDown method call
(token in ButtonPressed place instead of token in ButtonReleased place), a call of
the method processMouseClicked will raise the event A661_EVT_SELECTION
(Selection transition firing).

Fig. 20.3 ICO model of the management of the visible parameter for the PicturePushButton

Fig. 20.4 ICO model of mouse click management for the PicturePushButton
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20.5.3 Dealing with Operational Natural Faults
in Interactive Cockpits

This section presents the fault-tolerance approach to deal with operational natural
faults. It is divided into four subsections: the first subsection presents related works
on fault-tolerant systems. The second subsection presents architecture for
fault-tolerant interactive components and the third subsection presents the appli-
cation of this architecture on the FCUS case study. Finally, the last subsection
presents how this work relates to formal methods.

20.5.3.1 Related Work on Fault-Tolerant Systems

In the previous section, we have presented our solution for avoiding software faults
prior to operation. However, as explained in the first section, a preventive approach,
dealing with development software faults, is not sufficient as interactive system
crashes may occur at run-time, due to one of the four other fault groups (malicious
faults, development hardware faults, operational natural faults and human error). In
this section, we focus on operational natural faults such as subtle transient faults due
to single-event effects (Normand 1996). To deal with these faults, we propose to
integrate, within the previous approach, standard dependability mechanisms.

In the area of dependable computing software, many approaches have been
investigated in order to embed fault-tolerance mechanisms into software systems.
The most commonly used techniques are self-checking components (Laprie et al.
1990 and (Yau 1975), N-Version Programming (Yeh 1996) and N-Self-Checking
Programming (Laprie et al. 1990).

The approach presented in this paper builds on top of the self-checking com-
ponents technique as many dependability strategies rely on it and as it has been
proven to be effective for many safety-critical functions in avionic systems (Tra-
verse et al. 2004).

According to Laprie et al. (1990), a self-checking approach consists in adding
redundancy to a program so that it can check its own dynamic behaviour at exe-
cution time. As presented in Fig. 20.6, a self-checking component is also called
COM-MON (Traverse et al. 2004); COM stands for COMmand (e.g. the program)
and MON stands for MONitoring (e.g. the redundancy mechanism enabling the
checking of the behaviour of the program).

Natural faults are detected by the redundancy mechanisms but only if the two
software components (COM and MON) are executed in segregated context to avoid
causality between failures (a fault in the COM generating a failure in the MON) and
to avoid common point of failure (a natural fault impacting the COM and the MON
together). The self-checking component has thus the capability to achieve fault
detection, triggering error notifications when faults are detected (when there is a
discrepancy between the behaviour of COM and MON).
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A self-checking component can only perform fault detection. It has thus to be
further extended for being able to achieve fault recovery. This can be achieved, for
instance, by introducing a specific mechanism to handle the error notification or by
using the N-Self-Checking Programming concepts. The N-Self-Checking archi-
tecture, as presented in Fig. 20.7, is composed of more than two self-checking
components which are given a sequence number. The input events are dispatched to
all self-checking components and are processed in parallel by them. Every output or
error notification is delivered to a decision mechanism. If the first self-checking
component provides a result without any error, then the output is transmitted as an
output. Otherwise, the decision mechanism does not consider the first self-checking
component anymore and uses the result of the next in a row. This is done until the
last self-checking component fails, then an error is raised. If all self-checking
widgets are faulty, then the N-self checking component is only detecting faults. If
one of the self-checking components is executed without fault, then the previous
faults (if any) have been detected and recovered.

Fig. 20.6 Architecture of a
self-checking component
(detection only)

Fig. 20.7 Fault-tolerant (including detection and recovery) architecture for interactive component
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20.5.3.2 A Self-checking Architecture for Fault-Tolerant Interactive
Components

In order to embed both fault detection and recovery (thus embedding fault toler-
ance) in interactive systems, we propose to use the self-checking mechanism along
with the introduction of specific recovery mechanisms in interactive systems. When
considering the interactive cockpit architecture (see Fig. 20.2), we choose to
address the Control and Display System for the first time as it is composed of
generic components (the server and the widgets) that will be reused for each
interactive application in the cockpit. The corresponding fault-tolerant architecture
is presented in Fig. 20.8. In this architecture, the Control and Display System is
implemented as a self-checking component: it is composed of two subcomponents
(the COM and the MON). It is therefore able to send error notifications to the User
Application which implements some recovery mechanisms.

Fig. 20.8 Fault-tolerant interactive cockpit architecture with the FCUS application
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Once this architecture is defined, a challenge remains in the definition of the
monitoring (MON) component. Several ways of implementing this component were
investigated in Fayollas et al. (2013). This investigation leads to the choice of an
implementation following an assertion-based monitoring principle. In that case, the
MON component is responsible for the verification of several properties associated
with the interactive objects organization and their semantics in operational context.
These properties are run-time assertions designed to detect errors that could lead to
system malfunctions. Each property (or assertion A) is associated with a dedicated
assertion monitor (AM). The monitoring component implements thus a state image
(i.e. State image in Fig. 20.8) that is composed of all the data necessary to compute
the monitoring of all the assertions (performed by all the assertion monitors, i.-
e. AM1 … AMn in Fig. 20.8). More details on this architecture and its implemen-
tation can be found in Fayollas et al. (2014).

The recovery here is achieved by the introduction of a specific mechanism into
the User Application behaviour to handle the error notification. The User Appli-
cation can thus implement specific mechanisms enabling the recovery from the
detected faults depending on the application semantics. Another possibility would
be that the User Application notifies the operator of detected faults. In this case,
recovery is left with the operator. This approach has the advantage of keeping the
operator in the loop and leaving with him/her the decision on how to handle the
fault. However, such an approach cannot be used when multiple faults occur in a
very short period of time.

As explained briefly in the related work section, a self-checking mechanism is
not enough to ensure fault detection if a fault occurring on one component (e.g.
COM) potentially interferes with another component (e.g. MON). This would be
the case if all the components of the architecture are executed in the same partition.
ARINC 653 (Airlines Electronic Engineering Committee 2003) defines such par-
titioning in the domain of civil aviation, and the architecture proposed in this paper
makes explicit the segregation of COM and MON being here represented by two
different virtual processors (light grey boxes in Fig. 20.8) that can be considered as
separated ARINC 653 partitions.

The next section presents an example of an assertion and its monitors within the
fault-tolerant FCUS application.

20.5.3.3 Illustration with the FCUS Case Study

To exemplify the assertion that has to be monitored and its associated monitors, we
propose to use once again the PicturePushButton example and more precisely, its
management of the reception of a processMouseClicked method call. We only
present here a small example, but the whole process for assertions monitoring is
available in Fayollas et al. (2014).

Figure 20.9 presents formal definition of the corresponding assertion. It is built
on the safety analysis of the PicturePushButton behaviour described by the ICO
model detailed in Fig. 20.4. Thus, this assertion is defined as the following: the
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sending of an A661_EVT_SELECTION by a PicturePushButton should be per-
formed if and only if the corresponding widget is Enabled, Visible, has already
received a processMouseDown method call (the ButtonPressed state being thus
true) and received call of the method processMouseClicked.

This assertion leads to the definition of two assertion monitors that are depicted
in Fig. 20.10. The first assertion monitor (AM1 in Fig. 20.10) enables the detection
of both a lack of execution and an erroneous execution of the processMouseClicked
method call. The second assertion monitor (AM2 in Fig. 20.10) enables the
detection of the sending of an A661_EVT_SELECTION without any pro-
cessMouseClicked method call.

20.5.3.4 Connection with Formal Methods

Work done in the area of fault-tolerant systems usually proposes generic solutions
remaining at a high level of abstraction such as the architecture we presented in the
two previous sections. Of course, when going to implementation, there is a need to
refine such architecture describing in detail the inputs and outputs of each com-
ponent of the architecture (COM and MON components) as well as the connections
between those components. It is then needed to produce low-level description of the
behaviour of the various components of the architecture. Such behaviour can be
rather complex and their integration even more.

This can be achieved with the use of formal methods. For instance, the
fault-tolerant architecture presented in the previous section can also be supported by
formal methods. To this purpose, we presented, in Fayollas et al. (2014), the use of
a safety process to obtain the formal definitions of the assertions that have to be
monitored. This process builds on the interactive system architecture along with the
ICO formal description of all its software components.

Therefore, the use of formal methods when dealing with operational natural
faults offers two main benefits: on the one hand, it provides support for the defi-
nition of the assertions that have to be monitored; on the other hand, it enables
taking advantages of all the benefits they provide (development faults prevention,
support for verification, analysis and fault removal techniques) for the definition of
the assertions and their monitors. Indeed, the assertion monitors are software
components, and they are thus prone to development software faults.

A1: Process mouse click in a PicturePushButton
Let w be a PicturePushButton,
let f = {source, target, functionName, parameters} be a function call,
let We = {source, eventName, parameters} be a widget event

f = {source, w, processMouseClicked, parameters} 
∧ w.buttonPressed = true ∧ w.visible = true ∧ w.enabled = true

⇔
We = {w, A661_EVT_SELECTION, } 

Fig. 20.9 Formal definition of the assertion A1: process mouse click in a PicturePushButton
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20.5.4 Dealing with These Faults for the Entire Interactive
System

When computing systems are considered in terms of dependability, the depend-
ability level of the entire system is the one of its weakest components. We have
proposed in previous sections architecture for interactive components able to detect
and recover from faults in the Control and Display System component (composed
of the server and the widgets). However, similar mechanisms have to be defined for
the other components of the interactive cockpits architecture presented in Fig. 20.2
(i.e. input and output devices, device drivers and User Application).

Furthermore, as stated in Introduction, we focused in this section on the Control
and Display System (widgets and server) and adding fault-tolerance mechanisms to

A1.AM1: ppb.processMouseClicked.assert
//MON state
boolean w.visible, w.enabled;

// ppb.processMouseClicked.assert
int errorDetected = -1;

if (functionCall == {source, w, processMouseClicked, parameters}){
if (w.visible == true && w.enabled == true){

boolean timeOut = startTimer(); 
 } 

} 
while (!timeOut){

if (! timeOut && widgetEvent.contains({w,A661_EVT_SELECTION, }){
errorDetected = 0;
sendError(functionCall, errorDetected);

 } 
} 
if (timeOut && errorDetected == -1){

errorDetected = 1;
sendError(functionCall, errorDetected);

} 

A1.AM2: A661_EVT_SELECTION.assert
//MON state
boolean w.visible, w.enabled;

// ppb.processMouseClicked.assert 
int errorDetected = 0;

if (widgetEvent == {w,A661_EVT_SELECTION, }){
if (functionCall.contains({source, w, processMouseClicked, parameters}) && w.visible == true 

&& w.enabled == true){
errorDetected = 0;
sendError(functionCall, errorDetected);

}else{
errorDetected = 1;
sendError(functionCall, errorDetected);

 } 
} 

Fig. 20.10 Implementation of the assertion monitors in C for the assertion A1: process mouse
click in a PicturePushButton
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these two components raises additional challenges due to the timing constraints
related to short feedback loop of input device event handling. We are currently
working on those aspects in the context of both WIMP interaction techniques, and
direct manipulation and multitouch (Hamon et al. 2013).

20.6 Future Work

While formal methods have proven their usefulness for developing the system right
(Boehm 1984) by allowing the verification of safety and liveness properties, the
issue of building the right system is left to the area of requirement engineering (on
the input side) and validation (on the output side). These aspects are beyond the
content of the chapter but are of course of primary importance in terms of both
functional requirements (ensuring that the system will offer the expected func-
tionalities) and non-functional requirements (ensuring properties such as usability
and safety). To this purpose, verification techniques must be complemented by
other approaches such as requirements and need elicitation techniques (e.g. per-
sonas, brainstorming) and software or usability testing.

Similarly, formal methods can be very useful for describing the dependability
mechanisms that have been presented above in order to ensure that they behave
correctly, but they will not allow to assess that these mechanisms actually detect
faults and that recovery mechanisms will be adequate and understandable by the
operators. Such objectives can only be reached by performing test campaigns
involving, for instance, fault injection techniques fed with operational data related
to the underlying fault model (Arlat et al. 1990).

Lastly, human error is usually beyond the grasp of formal methods even though
some previous work has proposed their use for workload analysis (Ruksenas et al.
2009) or human-to-human communication analysis (Bolton 2015). Human relia-
bility analysis has thus to be complemented with more informal approaches such as
the ones described in Boring et al. (2010) or based on standard tabular safety
analysis methods (Department of the Army 2006) extended to encompass human
aspects and especially human errors (Martinie et al. 2016).

20.7 Conclusion

This chapter argues that formal methods are good candidates for addressing soft-
ware development faults. However, through the presentation of a complete and
systematic taxonomy of the faults that can affect interactive systems, this chapter
argues that considering development software faults is not enough to guarantee the
interactive system dependability. Exploiting this taxonomy, this chapter has out-
lined issues that have to be investigated in the future to improve interactive sys-
tems’ dependability, taking into account the faults made at development time and
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faults occurring at operation time. These issues demonstrate that the four other
sources of failures (malicious faults, hardware development faults, operational
natural faults and operational human errors) have to be considered. Besides, this
chapter also argues that formal methods can be useful when dealing with these other
groups of faults, and we have demonstrated how they can be useful for describing
natural faults detection and natural faults recovery mechanisms. It is important to
note that the proposed formal method was the interactive cooperative objects one (a
Petri nets-based notation) but any other one with a similar expressive power would
fit.
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