Chapter 8
Combining World Map Projections

Bernhard Jenny and Bojan Savri¢

Abstract Cartographers have developed various techniques for deriving new
projections from existing projections. The goal of these techniques is to substitute a
disadvantageous trait of one of the source projections with the second source
projection. This chapter discusses creating new projections by the juxtaposition and
blending of two existing projections. It also presents a new approach for selectively
combining projection characteristics. The emphasis in this chapter is on projections
for world maps, as the described techniques are most useful for this scale.

8.1 Introduction

There are various techniques for creating new map projections from existing pro-
jections. These techniques are applied to substitute a disadvantageous trait of one of
the source projections with the second source projection. This chapter discusses
juxtaposition and blending, the two most commonly used techniques for combining
two existing projections. A recent technique for combining selected projection
characteristics is also presented. The techniques are useful for creating new pro-
jections for world maps.
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8.2 Compositing Projections Along Parallels

The first technique creates a new projection by the juxtaposition of two existing
projections. This fusion technique is almost exclusively applied to create pseudo-
cylindrical projections by aligning two pseudocylindrical source projections along
two straight parallels. It is generally limited to projections with regularly spaced
meridians, otherwise the longitudes would not align along the fusion parallel.
Compositing two cylindrical projections with this technique is possible, but used
rarely. While compositing azimuthal projections is a theoretical possibility that
serves little purpose, the technique cannot generally be applied to conic projections
(Fenna 2007).

The Goode homolosine is the best-known example of a combined projection
(Goode 1925). It combines the Sanson sinusoidal and the Mollweide projection
(Fig. 8.1). The projection is commonly used in interrupted form and is equal-area.
The Goode homolosine, like most other combined projections, shows a disconti-
nuity in the graticule where the sinusoidal and Mollweide projections join (Gede
2011). This crease, which may be visually disturbing, is a typical trait of combined
projections.

Goode chose to combine the sinusoidal and the Mollweide projections along the
parallel at 40° 44’ 12"N and S, since this is the latitude of equal length for both
projections. The sinusoidal projection retains the scale along all parallels, and can
therefore be combined with a variety of pseudocylindrical projections along the
parallel of the second projection where true scale is retained (Fenna 2007, p. 174).

When none of the source projections is the sinusoidal, or when an arbitrary
parallel is chosen to combine the two source projections, one of the two projections
must be scaled. The scaling brings the parallels along which projections are fused to
the same length. For example, Erdi-Krausz connected a transformed sinusoidal
projection with the Mollweide projection (Erdi-Krausz 1968). To bring the fusion
parallels to the same length, he scaled one of the source projections (Gede 2011).

McBryde (1978) has created combined projections called P3, S2, S3, and Q3.
The S3, perhaps the best known of this group, is a fusion along 55° 51'N and S of
the McBryde-Thomas flat-polar and the sinusoidal projection.

A composition of two equal-area projections can still be equal-area as in the
Goode homolosine. This can be achieved when the x coordinate is multiplied by a

! VG N _I_HHYHH\\\_//HW/ \\\
NARNSE T AW A
WY YOO oY

Sinusoidal Mollweide Goode homolosine

Fig. 8.1 The Goode homolosine combines the sinusoidal and the Mollweide projections. It is
commonly used in interrupted form



8 Combining World Map Projections 205

Mercator Equirectangular (¢ =70°) Kavrayskyi |

Fig. 8.2 The cylindrical Kavrayskyi I combines the Mercator and the equirectangular projections

scale factor that brings the length of the fusion parallels to the same length, and the
y coordinate is divided by this same factor. This results in stretching and com-
pressing one of the two source projections, but this transformation does not alter its
equal-area property.

A rare example of a composite of two cylindrical projections is the Kavrayskyi I
projection (Fig. 8.2). It combines the Mercator projection with the equirectangular
projection along 70°N and S, thereby reducing the gross areal distortion of the
Mercator projection. The equation for the x coordinate is x = / for the unary sphere.
The vertical coordinate is computed with the equations below

oo Ty for ¢ > @,
y = (got((;: — dy for < — @

In tan(45° + ) otherwise

where: d, = In tan(45° + %) and ¢, = 70°.

8.3 Projection Blending

An alternative approach to combining two projections along parallels is computing
the mean of two source projections. The spherical coordinates, longitude and lat-
itude, are first converted with both projections, resulting in two pairs of Cartesian
coordinates, x;, y; and x,, y,. The blended coordinates are then computed with an
arithmetic mean: x =w-x;+ (1-w)-x, and y =w-y; + (1—w) - y,, with the
weight 0 < w < 1.

Any pair of projections can theoretically be blended, but a self-intersecting
graticule may result if the projection geometries differ considerably. For example,
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Mercator Lambert cylindrical equal-area Arden-Close

Fig. 8.3 The cylindrical Arden-Close is a blending of the Mercator and the Lambert cylindrical
equal-area projection. The Mercator and the Arden-Close projections are truncated at 85°N and S

blending an azimuthal and a pseudocylindrical projection would result in a curvy
and folded graticule (Jenny 2012).

The Arden-Close projection (Fig. 8.3)is a cylindrical projection (straight parallels
and straight meridians), created by blending the Mercator and the Lambert cylindrical
equal-area projections (Arden-Close 1947). It is a rare example of a cylindrical
projection created by blending two cylindrical source projections. This combination
compensates the gross enlargement of polar areas by the Mercator projection with the
vertical compression of the Lambert cylindrical projection. However, since the
Mercator projection has an infinite vertical extension, the blended Arden-Close
projection also places the poles at infinite distance from the equator, which requires
the graticule to be truncated along parallels close to the poles. The projection is not
frequently used for this reason.

A series of more useful pseudocylindrical projections have been created in the
past by blending two source projections with an arithmetic mean. The majority of
these blended projections combine a cylindrical projection, such as the equirect-
angular projection, and a pseudocylindrical projection with meridians converging at
pole points, such as the sinusoidal. For example, the Eckert V projection combines
the sinusoidal and the plate carrée projections (Eckert 1906). Winkel generalized
this approach by replacing the plate carrée with the equirectangular projection using
any standard parallel (Winkel 1921). For his Winkel I projection (Fig. 8.4), he
proposed standard parallels at 50° 28'N and S such that the total area of the map is
at correct scale (Snyder 1993, p. 195). Putnins proposed two projections called P1’
and P3’, which are both arithmetic means of the plate carrée and projections created
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Sinusoidal Equirectangular (% = 50° 28’) Winkel |

Fig. 8.4 The Winkel I is a blending of the sinusoidal and the equirectangular with standard
parallels at 50° 28'N and S
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Fig. 8.5 The Putnins P1’ is a blending of the plate carrée and the Putnins P1 projections
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Aitoff Equirectangular (€ = 50° 28’) Winkel Tripel

Fig. 8.6 The Winkel Tripel is a blending of the Aitoff and the equirectangular with standard
parallels at 50° 28'N and S

by the same author (Putnin$ 1934). Figure 8.5 shows the Putnin$ P1’ projection
(name with apostrophe) with a polar line as a result of the arithmetic mean between
the Putnins P1 (name without apostrophe) that has pointed poles and the cylindrical
plate carrée projection.

The Winkel Tripel projection (Fig. 8.6) combines the Aitoff and the cylindrical
equirectangular projection with standard parallels at 50° 28'N and S (Winkel 1921).
Because the Aitoff projection does not have straight parallels, the Winkel Tripel
also has bent parallels and is not a pseudocylindrical projection.

Unlike the compositing technique discussed before, blending two source pro-
jections does not create an equal-area projection, even if the two source projection
are equal-area. If the equal-area property is to be retained, only the x or the y co-
ordinate can be a blend, and the other coordinate must be mathematically derived
from the equal area condition (Tobler 1973). An example of a well known
equal-area blend is the Boggs eumorphic projection (Fig. 8.7), which is the arith-
metic mean of the sinusoidal and the Mollweide projections only for the y coordi-
nate (Boggs 1929). The equation for the x coordinate is adjusted such that the
resulting projection does not distort area. Foucaut (1862), Hammer (1900), and
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Fig. 8.7 The equal-area Boggs eumorphic projection blends the y coordinate of the sinusoidal and
Mollweide projections
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Stereographic Lambert azimuthal equal-area Breusing

Fig. 8.8 The azimuthal Breusing projection uses a geometric means of the radii of the conformal
stereographic and the equal-area azimuthal projections

Tobler (1973) have averaged the cylindrical equal-area and the sinusoidal projec-
tions to create other equal-area projections with similar techniques (after Snyder
1977).

The arithmetic blending technique, described above, uses constant weights w;
and w, for the two projections. An extension to this approach is to vary weights
with the location. A simple approach is to vary weights with the latitude, as
described by Anderson and Tobler (2011): w; = w(¢p) > 0, and w, = 1 — wy, with
one of the weights decreasing from one at the equator to zero at the poles.

Computing the geometric mean of two projections is an alternative to the
arithmetic means. Tobler (1973) explores this method for creating pseudocylin-
drical projections. The projection by Breusing is a rare example of an azimuthal
projection that blends two source projections involving a geometric mean (Snyder
1993, pp. 129-130). It combines the azimuthal equal-area projection and the
conformal stereographic azimuthal projection (Fig. 8.8). The radius from the pro-
jection center is computed with a geometric mean of the radii of the two source
projections.

8.4 Selective Combinations

When combining two source projections to create a new projection, the goal is to
replace an unfavorable trait of one projection with the characteristics of another
projection. Jenny and Patterson (2013) introduce an alternative approach to the
blending and compositing techniques discussed above that aims at selectively
combining the traits of two projections. This software-based technique first extracts
the geometric characteristics of the two source projections and builds tables with
according values, then lets the user selectively mix these tables, and finally converts
the mixed tables back to a new projection. The tables encode (1) the horizontal
length of parallels, (2) the vertical distance of parallels from the equator, (3) the
distribution of meridians, and (4) the bending of parallels. The tables contain values
for every 5° or 10° of increasing longitude and latitude. This selective combination
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Fig. 8.9 Combination of selected projection traits of the Eckert IV and the Winkel Tripel
projections with Flex Projector

technique is available in Flex Projector, a specialized software application for
designing new world map projections (Jenny and Patterson 2007; Jenny et al.
2008). The user can adjust the geometry of a single projection, or combine two
source projections using the methods described in this chapter.

The user can adjust weights using four sliders (Fig. 8.9, top right). For example,
in Fig. 8.9, the Eckert IV and the Winkel Tripel (itself a blend of the Aitoff and the
equirectangular) are combined. The length of the resulting parallels is a 50/50 blend
of the two source projections. The parallels are vertically distributed as in the Eckert
IV projection. Parallels are bent, but not as severly as in the Winkel Tripel pro-
jection, due to a 25/75 blend. With a height-to-width aspect set to 0.54, a compact
graticule results with distinctly curved meridians near pole lines. The reader is
referred to Jenny and Patterson (2013) and Jenny et al. (2010) for additional
examples and more details on the algorithmic procedure.

8.5 Conclusion

The techniques for combining two source projections to create a new projection,
outlined in this chapter, allow for the creation of a large variety of projections. The
mentioned techniques can also be extended. For example, the Geocart software by
Mapthematics can blend projection parameters, such as the latitude of standard
parallels, between two source projections (Strebe 2010). Alternatively, more than
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two projections can be combined to form a new one. The extreme case would be an
infinite number of differently parameterized projections, which is the concept
behind polyconic (Fenna 2007) and polycylindric projections (Tobler 1986).

The designer of new map projections is not limited to the techniques discussed in
this chapter. There are alternative methods for creating a new projection from
scratch, deriving it from existing ones, or adjusting projection parameters to create a
new one (Canters 2002; Snyder 1993). Some of these techniques are used in the
adaptive composite projections for Web maps, a new field of map projection
research (Jenny 2012). The goal of this research is to develop an alternative to the
Web Mercator projection for small-scale Web maps, where maps automatically use
an optimum projection depending on the map scale, the map’s height-to-width ratio,
and the central latitude of the displayed area. Multiple projections are combined
with seamless transitions, using projection blending for compromise projections, or
Wagner’s method (Wagner 1949) to transform projections into each other by
adjusting transformation parameters.
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