
Chapter 5
Cartograms as Map Projections

Waldo Tobler

Since the time of Ptolemy 2000 years ago the objective of map projections has been
to produce maps of high metric fidelity, and this is still the prime objective today.
Thus, the emphasis is on direction, distance, and area preservation. These properties
are needed in order to serve a variety of purposes. This way of looking at maps
considers them as a type of terrestrial graph paper. This is possible because,
paraphrasing John Donne, we use “the net of Meridians and Parallels cast over the
world”. Different kinds of geographic graph papers are used for different kinds of
problems. Thus there are the classic conformal, equidistant, and equal area pro-
jections. Particular solutions are provided by the conformal projections, such as the
Mercator projection, or the stereographic. Other maps such as the azimuthal pro-
jections, including the gnomonic projection, show directions. Equal area projections
are most often used for larger regions or countries and for the depiction of statistical
information. There are also quite a large variety of lesser known properties for
which special projections are used. Still other projections serve for general purpose
maps.

Another type of map is referred to as a cartogram. It is the intent of this note to
explain how these relate to conventional maps of the two dimensional surface of the
Earth. But these cartograms are often not considered as belonging to the class of
map projections. One difference between these and, say topographic maps, is that
the phenomena depicted may change more rapidly in time, possibly often even
hourly. This suggests that animation is a proper domain for cartograms. However
not all history is quite this rapid and these maps can also be useful even if they are
based on census information for which the change may be noted only every decade
or so. In another respect cartograms have a property in common with the
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Mediterranean portolan charts of the thirteen to fifteen hundreds in that they are
based on empirical observations rather than strictly geometrical considerations.

5.1 Geographic Graphs

This notion of map projections as graph paper for spheres can be extended to serve
additional, non-traditional uses. A considerable number of these are provided by the
class of cartograms, taken to be a special type of map projection. These can be
classified in at least two ways. One grouping might be by type of problem or
purpose. One common use is simply to present a point of view. This can be as
simple as the ego-enhancing “Here’s a Representation of My Favorite Region, or
City”; these are often intended to be humorous and colorful, and sometimes appear
on post cards. Some of these can be referred to as ‘Fisheye’ maps (Rase 1997). One
more serious recoded use is to aid pilots by enlarging the vicinity of an airport, with
a kind of local bubble enlargement. Or they can depict the state of the world from
an alternate point of view, as in “The Atlas of the Real World” (Fig. 5.1).

There is also the problem-solving point of view in which the cartogram, and its
inverse, are a way of using an unusual coordinate system that renders a situation
more understandable and simpler to manage (Bunge 1966). In many fields the
choice of a proper coordinate system often clarifies a situation. An example of this
is to render the Earth on a map in geomagnetic, rather than geographic, latitude and
longitude coordinates in dealing with terrestrial magnetic problems. Today this
might be done inside of a computer, switching between projections as needed,
displaying only the final result. This problem-specific group would put the distorted
Mercator projection into the category of a warping cartogram that assists in ocean
navigation. Cartograms based on movement also seem possible but are rare.

Fig. 5.1 Mathematically computed equal world population projection. Dorling et al. (2008)
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Another approach is to group cartograms into the type of properties that they
preserve. In such a classification one might find topological maps in which inci-
dence and adjacency are preserved, but distance, area, and angles are not. The
classic case is the well known London Underground map, a style now copied
throughout the world. The usefulness of this depiction can hardly be questioned!
Another category would be based on the adjustment of distances, using time or cost
of travel as the metric instead of kilometers. Typically these cartograms resemble
the azimuthal class of map projection in that they are based on a single center. Of
course they are not geometric projections, but rather are based on empirical
information. A third type of cartogram is related to area. Here the sizes of regions or
countries are expanded, or shrunken, according to some numerical quantity, most
often population magnitude, as in Fig. 5.1, but any non-negative measure can be
used. This classification of cartograms into three general types seems to cover most
examples.

5.2 Topological Transforms

All map projections attempt to preserve neighbor and adjacency properties, and
mostly succeed except at the edges of the map. But if this is all that is preserved the
maps may appear distorted. “Mental maps” wherein individuals are asked to draw
maps of their neighborhoods, or of the world, often preserve these properties but
latitude and longitude lines drawn on such maps appear as squiggly lines. The
metric properties are not preserved, but sketch maps are still useful! I am certain
that you have made or used them. Comparing the London Underground map from
1910 (www.ltmuseum.co.uk), metrically correct, with Beck’s severely warped map
of 1933 (and the modern derivatives in use today) clearly shows what can be done
in this respect (Dobbin 2013). The current underground map has also been analyzed
for its metric properties using Tissot’s results by Jenny (2006). Such analyses are
not often performed for cartograms but one can recognize and indicate the angular,
area or distance properties if these are considered relevant. It might be of interest to
minimize the distortion of these additional properties in the cartogram since there
are always degrees of freedom in the choice of how to represent a specific car-
togram—see the equations below. This also applies to the next category.

5.3 Distance Transforms

Constructing maps from measured distances is a well understood problem in sur-
veying known as trilateration. It has been generalized in psychology and there goes
under the name of multidimensional scaling. An example is children ranking how
much they enjoy playing with other children. Well-liking is considered “closeness”,
that is, a small distance. In the computer programs relations such as this
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(the children’s locations relative to each other) are converted to coordinates to yield
a ‘map’ of the classroom. The same computer procedures can be used to make
geographic maps of travel time or cost, or some other metric. As one example
several studies have shown that the interaction between different linguistic groups
in bilingual countries, such as Belgium and Canada, are not the same. They are
quite ‘apart’ from each other, and this can be depicted in map form.

These maps seem to be of two types. In one case only isolated locations, for
example, airports with travel cost (or time) taken from a schedule, are indicated and
the intermediate places are set down between these. An example is Barrett’s map of
“The world based on airfares from London” (Barrett 1992). The intermediate places
are really just arbitrarily inserted and thus misrepresented, and the map needs to be
considered disconnected, and really as showing only discrete places. For display in
these maps directions from a center are usually retained, i.e., azimuthal. This type of
map can be extended, using multidimensional scaling, to represent time, or cost,
etc., distance between two places, and then to all places (not only from one center),
even using kilometer distances, but the distances will only be approximated,
sometimes poorly. This can also be done with sociological distances, for example
such as differences between languages, customs, gross domestic products, or any
differentiating measure. An index of the degree of the fidelity of this representation
is available as the ‘stress’, and this is an overall measure of fit; therefore it is
somewhat of an improvement on Tissot’s index which measures only local
distortion.

The second type is usually implicitly based on continuous contours (isochrones;
geographical circles in travel space) of travel time or cost from (or to) a location.
Even in this case some interpolation is required, but an attempt is made to provide a
spatially continuous representation. It could be based on any type of contour map;
including for example, populations density, but this is more rare. Obviously in these
cases there generally results in different distances in different directions—even
though azimuths are preserved! This is quite unusual in conventional projections.
Isochrones are often amoeba like in shape and even with disjoint pieces. An
analogy can be made to pole centered azimuthal projections, with the irregular
isochrones (or isotims) corresponding to parallels and the orthogonal trajectories
(gradients) similar to meridians emanating from a pole. Directions and angles are
clearly not preserved. And the maps generally relate to (or from) only one place,
and at only one instance in time.

A related analytical use has been made by Hāgerstrand (1957) of
logarithmically-scaled azimuthal maps of migration (Fig. 5.2) in order, as he puts it,
to be able to count the symbols indicating the coming and going of people. Most of
these individual movements are crowded about the origins and destinations. In other
words, this is the resultant effect of the well known distance decay in human affairs.
Obviously this logarithmic projection is a proper map to represent the phenomena;
angular and a area distortions can be calculated. The local area is of course enlarged,
and this leads directly to the next category.
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5.4 Area Transforms

Area cartograms, with region sizes made proportional to some measure such as
population or wealth, have recently become common now that a free fast computer
algorithm has become available (Gastner and Newman 2004). Typical cartography
texts include a smattering of such cartograms as examples. But these are generally
not treated as map projections but rather as graphical or pictorial illustrations. And
they often appear in newspapers, and even as exercises in lower school classes,

Fig. 5.2 Logarithmic map of Asby, Sweden, used to study migration. Hāgerstrand (1957)
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as can be confirmed by entering the term ‘cartogram’ into a search engine on the
internet. These maps offer a different view of the world and can be based on a
variety of topics (Tobler 1996; Dorling et al. 2008; Hennig 2013).

The history of these cartograms goes back to the blossoming of statistical
graphics in the mid eighteen hundreds (Tobler 1996), and this is reflected in the
terminology applied to these maps. They have been referred to as anamorphoses
(France), verzerte Karten (Germany), varivalent maps (Russia), and value-by area
maps (Raisz 1934). Many of the last type of these were prepared by E. Raisz who,
starting in the 1930s, presented rectangular depiction of regions and countries with
sizes proportional to a variety of phenomena. They have also appeared in other
publications as ‘statistical maps’. Recently this ‘rectangular’ type of cartogram has
been perfected by researchers in the Netherlands (Van Kreveld and Speckmann
2007) who have shown that they can be produced by computer (Fig. 5.3). The
geographic graticule on such a map projection might have kinks in it and not be
smooth, even though the populations are correct.

An additional use that has been made of area cartograms is for statistical pur-
poses. When doing area sampling one likes to know that all subjects have an
equally likely chance of being chosen. An area cartogram stretches (or shrinks)
space and can warp geography so that areas are proportional to the target density
(Fig. 5.4). After sampling in this domain—attacking the problem—the inverse is

Fig. 5.3 Mathematically computed equal world population projection. Van Kreveld and
Spaekcmann (2007)
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used to apply the solution. This is quite similar to the application and warping of the
world by the Mercator projection in connection with the gnomonic projection in
ocean navigation. Thus the ‘Transform–Solve–Invert’ procedure is conceptually
identical to what is done when using the Mercator projection.

5.5 Networks

When modern transportation situations are considered it is necessary to violate the
usual continuous topology. From Los Angeles to New York now costs less than
to many intermediate places. Thus the map may need to be turned inside out.

Fig. 5.4 The transform–invert–solve paradigm. Converting the USA to a population density
space, overlaying a hexagonal pattern, and then taking the inverse to partition the country into
approximately equal population regions. Tobler (1973)

5 Cartograms as Map Projections 155



Many such conditions occur. Bunge has suggested balloons with the ends of strings
glued on to constrain some places to be close together when balloon is inflated, with
the other places bulging out. This is the spherical real world model to be mapped. In
another example, parcel postage rates are a step function of distance, as are many
other transportation costs. Thus places are lumped together. If one draws postal
costs as a function of geographic distance it looks like several places coincide
(Fig. 5.5).

In the time of the Roman Empire travel by water was more rapid than travel by
land. Thus Britain was closer to Rome than was Vienna. Even central Spain was
further than Britain. The resulting isochrones are rendered graphically in the Roman
History project (orbis.stanford.edu) and depict this, but with inverted positions.

The geographic details in these situations are often best represented as a network.
Positioning of the network graphically in a two dimensional diagram must attempt to
maintain the measurements and this often distorts the conventional geography. The
placement of the isolated locations is possible, most often using a form of multi-
dimensional scaling, but if the geographic coordinates (latitude and longitude) of
these locations are known then interpolation between them can be said to be ‘dif-
ficult’. In a classification of the types of situations that occur one must recognize
inversions (geographically far places are closer than conventionally near places),

Fig. 5.5 The postal rates are a step function, seen in the lower right. This results in the collapsing
of the continuous space into a discrete set of distances. In this particular rendition directions
(azimuths) from the Seattle post office are maintained. Tobler (1961)
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interruptions (nearby places are not together), and many other violations of the
traditional assumptions. This is the case even if distances are considered from only
one location. But how badly are these maps distorted? Can this disruption be
measured? By Tissot’s indicatrix or by the stress? Is it possible to detect (that is,
calculate) how much a high speed road or railroad system distorts a country? How
warped has it become due to an expressway? Perhaps it has been turned almost
inside out, with some places very close and others relatively further away! What did
the Romans think (metrically) of the shape of the world when land travel was so
difficult? These kind of relations are quickly visible on cartograms. But parts of the
maps may overlap, which most (but not all) classic map projections prevent. Another
difficulty is that geographic travel times (or costs, etc.) are not symmetric: from A to
B is not the same as from B to A. Cartographers most now take into account these
global realities and this often requires ingenious cartograms.

5.6 The Equations

Most books on map projections do not consider cartograms. This in spite of the fact
that it can be shown, by writing out the equations (see below), that area cartograms
are a generalization of equal area map projections; the Earth’s surface area is the
particular measure preserved on an equal area projection. Stretching by population
is just a different choice of property to be preserved. And many of the distance
oriented cartograms are equivalent to azimuthal projections. A reason that such
maps are not frequently discussed in the projection literature might be that they are
of more recent origin, and that they are generally produced by individuals rather
than government sponsored national mapping agencies. They do appear in some
atlases, along with thematic maps. In this respect they are somewhat like the
retroazimuthal projections that have very restricted usage. It is certainly the case
that Tissot’s measures of angular, area, and distance properties can be calculated for
these type of maps. Measures can also be devised that indicate whether or not the
resulting maps actually match the design objective—i.e., fit what they are intended
to show. This may mean going a bit beyond the classical indices. At the moment
there do not appear to be evaluation standards for cartograms, at least there is no
consensus on this point. The large variety of possible uses makes this difficult.

There are really no books, and few scholarly articles, that consider cartograms as
their main subject. The exception is for cartograms that modify areas according to
some measure. Here a few recent books can be cited, along with those already
mentioned. In dealing with cartograms using metrogenic substitutions (cost or time,
etc.) instead of kilometers and based on a single center, the modifications can be
evaluated as are azimuthal projecionts.
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Appendix: Equations for an Area Cartogram

The equal area condition for a map projection in spherical (u, k) and plane rect-
angular coordinates (x, y) is:

@u
@x

@k
@y

� @k
@x

@u
@y

¼ R2 cosu:

The condition equation for a cartogram is:

@u
@x

@k
@y

� @k
@x

@u
@y

¼ R2Dðu; kÞ cosu;

where D(u, k) is the density distribution on the Earth, considered spherical.
Clearly, when the density distribution is constant (unity), the cartogram becomes

an equal area projection. There are many solutions to both of the foregoing partial
derivative equations. In each case the one condition does not suffice to yield the two
equations necessary [x = f(u, k), y = g(u, k)] to completely define a map pro-
jection. Thus some other criteria is applied. The obvious second condition is to
require that the angular distortion be minimized, making the image more recog-
nizable. But other conditions, for example rectangular shape or symmetry about the
equator, are often used for equal terrestrial area maps. The rectangular
Value-by-Area maps of Erwin Raisz come to mind as alternatives.

The inverse of a cartogram of this type is to be found in the usual manner using
the Jacobian defined by the partial derivatives, as described in books on advanced
calculus, e.g., Kaplan (1952: 96–100). If the defining equations are not given
explicitly then a two dimensional finite difference empirical iteration with inter-
polation needs to be used. A numerical example is given in Fig. 5.4.

References

Barrett F (1992) The World based on airfares from London. The Independent, London, 9 Feb, p 6
Bunge W (1966) Theoretical geography, 2nd edn. Lund University, Gleerup
Dobbin C (2013) London underground maps. London
Dorling D, Newman M, Barford A (2008) The atlas of the real world. Thames & Hudson, London.

www.worldmapper.com
Gastner M, Newman M (2004) Diffusion-based method for producing density-equalizing maps.

Proc Natl Acad Sci U S A 101(20):7499–7504
Hāgerstrand T (1957) Migration and area. In: Hannerberg D (ed) Migration in Sweden. University

of Lund, Sweden
Hennig B (2013) Rediscovering the world: map transformations of human and physical space.

Springer, Berlin
Jenny B (2006) Geometric distortion of schematic network maps. Bull Soc Cartographers

40:15–18
Kaplan W (1952) Advanced calculus. Addison-Wesley, Reading

158 W. Tobler

http://www.worldmapper.com


Raisz E (1934) The rectangular statistical cartogram. Geogr Rev 24:292–296
Rase W (1997) Fischauge-Projektionen als kartographische Lupen (Fish-eye projections as

cartographic lenses). Salzburger Geographische Materialien, Heft 25:115–122
Tobler W (1961) Map transformations of geographic space. PhD dissertation, Department of

Geography, University of Washington, Seattle
Tobler W (1973) A continuous transform useful for disticting. Ann N Y Acad Sci 219:215–220
Tobler W (1996) Thirty five years of computer cartograms. Ann Assoc Am Geogr 94(1):58–73
Van Kreveld M, Speckmann B (2007) On rectangular cartograms. Comput Geom Theor Appl

37(3):175–187

5 Cartograms as Map Projections 159


	5 Cartograms as Map Projections
	5.1 Geographic Graphs
	5.2 Topological Transforms
	5.3 Distance Transforms
	5.4 Area Transforms
	5.5 Networks
	5.6 The Equations
	Appendix: Equations for an Area Cartogram
	References


