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Abstract. In this study we compare three different fine-tuning strate-
gies in order to investigate the best way to transfer the parameters of
popular deep convolutional neural networks that were trained for a visual
annotation task on one dataset, to a new, considerably different dataset.
We focus on the concept-based image/video annotation problem and use
ImageNet as the source dataset, while the TRECVID SIN 2013 and PAS-
CAL VOC-2012 classification datasets are used as the target datasets.
A large set of experiments examines the effectiveness of three fine-tuning
strategies on each of three different pre-trained DCNNs and each tar-
get dataset. The reported results give rise to guidelines for effectively
fine-tuning a DCNN for concept-based visual annotation.
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1 Introduction

Concept-based video annotation, also known as video concept detection, refers
to the problem of annotating a video fragment (e.g., a keyframe) with one or
more semantic concepts (e.g., “table”, “dog”) [14]. The state of the art approach
to doing this is to train a deep convolutional neural network (DCNN) on a set
of concepts [3,5,12]. Then, a test keyframe can be forward propagated by the
DCNN, to be annotated with a set of concept labels. DCNN training requires
the learning of millions of parameters, which means that a small-sized training
set could easily over-fit the DCNN on the training data. It has been proven that
the bottom layers of a DCNN learn rather generic features, useful for different
domains, while the top layers are task-specific [18]. Transferring a pre-trained
network in a new dataset by fine-tuning its parameters is a common strategy
that can take advantage of the bottom generic layers and adjust the top layers
to the target dataset and the new target concepts [2,5,18].

In this study we compare three fine-tuning methods in order to investigate
the best way to transfer the parameters of a DCNN trained on a source dataset
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to a different target dataset that requires a different set of concepts. Although
DCNN fine-tuning has been presented in previous studies [2,5,18], this is the first
work, to our knowledge, that performs a large number of experimental compar-
isons considering three different pre-trained DCNNs, two different subsets of
concepts for which the pre-trained networks will be fine-tuned, two different tar-
get datasets, and three fine-tuning strategies with many parameter evaluations
for each of them, with the purpose of comparing these strategies. Experiments
performed on the TRECVID 2013 SIN [10] and the PASCAL VOC-2012 clas-
sification [4] datasets show that increasing the depth of a pre-trained network
with one more fully-connected layer and fine-tuning the rest of the layers on the
target dataset can improve the network’s concept detection accuracy compared
to other fine-tuning approaches.

2 Related Work

Fine-tuning is a process where the weights of a pre-trained DCNN are used as
the starting point for a new target training set and they are modified in order
to adapt the pre-trained DCNN to the new target dataset. Then, the fine-tuned
DCNN can be used either as feature generator, i.e., the output of one or more
hidden layers is typically used as a global keyframe/image representation [13],
or as standalone classifier that performs the final class label prediction directly.

Different DCNN-based transfer learning approaches have been successfully
applied in many datasets. The most straight-forward approach replaces the
classification layer of a pre-trained DCNN with a new output layer that cor-
responds to the categories that should be learned with respect to the target
dataset, [2,5,18]. Generalizing this approach, the weights of the first K network
layers can remain frozen, i.e., they are copied from the pre-trained DCNN and
kept unchanged, and the rest of the layers (be it just the last one or more than
one) are learned from scratch [1,9]. Alternatively, the copies of the first K layers
could be allowed to adapt to the target dataset with a low learning rate. For
example, [18] investigates which layers of Alexnet [7] are generic, i.e., can be
directly transferred to a target domain, and which layers are dataset-specific.
Furthermore, experiments in [18] show that fine-tuning the transferred layers
of a network works better than freezing them. However, neither of these stud-
ies investigates how low the learning rate for the aforementioned layers should
be, relative to the new layers, during fine-tuning. Other studies extend the pre-
trained network by one or more fully connected layers, which seems to improve
the above transfer learning strategies [1,8,9,15]. However, the optimal number of
extension layers and the size of them has not been investigated before. Although
fine-tuning has been applied in many studies, a complete understanding of what
fine-tuning parameters (e.g., number/size of extension layers, learning rate) work
better has not been extensively examined. Furthermore, a thorough comparison
of all the available fine-tuning alternatives is yet to appear in the literature.
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Fig. 1. Fine-tuning strategies outline.

3 Comparison of Fine-Tuning and Extension Strategies
for DCNNs

Let Ds denote a pre-trained DCNN, trained on Cs categories using a source
dataset, and Dt denote the target DCNN, fine-tuned on Ct categories of a dif-
ferent target dataset. In this section we present the three fine-tuning strategies
(Fig. 1) that we compare for the problem of visual annotation, in order to effec-
tively fine-tune DCNNs Ds that were trained on a large visual dataset for a new
target video/image dataset. These three fine-tuning strategies are as follows:

– FT1-def: Default fine-tuning strategy: This is the typical strategy that modifies
the last fully-connected layer of Ds to produce the desired number of outputs
Ct, by replacing the last fully-connected layer with a new Ct-dimensional
classification fully-connected layer.

– FT2-re: Re-initialization strategy: In this scenario, similar to FT1-def, the last
fully-connected layer is replaced by a new Ct-dimensional classification layer.
The weights of the last N layers, preceding the classification layer, are also
re-initialized (i.e., reset and learned from scratch).

– FT3-ex: Extension strategy: Similar to the previous two strategies, the last
fully-connected layer is replaced by a new Ct-dimensional classification fully-
connected layer. Subsequently, the network is extended with E fully-connected
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layers of size L that are placed on the bottom of the modified classification
layer. These additional layers are initialized and trained from scratch during
fine-tuning, at the same rate as the modified classification layer. One example
of a modified network after the insertion of one extension layer for two popular
DCNN architectures that were also used in our experimental study in Sect. 4,
is presented in Fig. 2. Regarding the GoogLeNet architecture, which has two
additional auxiliary classifiers, an extension layer was also inserted in each of
them.

Each fine-tuned network Dt is used in two different ways to annotate new
test keyframes/images with semantic concepts. (a) Direct classification: Each

Fig. 2. A simplified illustration of the CaffeNet [7] (left) and GoogLeNet [16] (right)
architectures used after insertion of one extension layer. Each of the inception layers
of GoogLeNet consists of six convolution layers and one pooling layer. The figure also
presents the direct output of each network and the output of the last three layers that
were used as features w.r.t. FT3-ex strategy. Similarly, the corresponding layers were
used for the FT1-def and FT2-re strategies.
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test keyframe/image is forward propagated by Dt and the network’s output is
used as the final class distribution assigned to the keyframe/image. (b) Dt is used
as feature generator: The training set is forward propagated by the network and
the features extracted from one or more layers of Dt are used as feature vectors
to subsequently train one supervised classifier (e.g., Logistic Regression) per
concept. Then, each test keyframe/image is firstly described by the DCNN-based
features and subsequently these features serve as input to the trained Logistic
Regression classifiers.

4 Experimental Study

4.1 Datasets and Experimental Setup

The TRECVID SIN task 2013 [10] dataset and the PASCAL VOC-2012 [4]
dataset were utilized to train and evaluate the compared fine-tuned networks.
The TRECVID SIN dataset consists of low-resolution videos, segmented into
video shots; each shot is represented by one keyframe. The dataset is divided into
a training and a test set (approx. 600 and 200 h, respectively). The training set is
partially annotated with 346 semantic concepts. The test set is evaluated on 38
concepts, i.e., a subset of the 346 concepts. The PASCAL VOC-2012 [4] dataset
consists of images annotated with one object class label of the 20 available object
classes. PASCAL VOC-2012 is divided into training, validation and test sets
(consisting of 5717, 5823 and 10991 images, respectively). We used the training
set to train the compared methods, and evaluated them on the validation set.
We did not use the original test set because ground-truth annotations are not
publicly available for it (the evaluation of a method on the test set is possible
only through the evaluation server provided by the PASCAL VOC competition,
submissions to which are restricted to two per week).

For each dataset we fine-tuned the following three pre-trained DCNNs:
(i) CaffeNet-1k, the reference implementation of Alexnet [7] by Caffe [6], trained
on 1000 ImageNet categories, (ii) GoogLeNet-1k [16], trained on the same
1000 ImageNet [11] categories and (iii) GoogLeNet-5k, trained using 5055
ImageNet [11] categories. Each of these networks was fine-tuned on the 345
TRECVID SIN concepts (i.e., all the available TRECVID SIN concepts, except
for one which was discarded because only 5 positive samples are provided for
it), which resulted to a training set of 244619 positive examples. CaffeNet-1k
was also fine-tuned on a subset of 60 TRECVID SIN concepts. We refer to each
of these fine-tuned networks as CaffeNet-1k-345-SIN, GoogLeNet-1k-345-SIN,
GoogLeNet-5k-345-SIN and CaffeNet-1k-60-SIN, respectively. In addition, each
of these original networks was fine-tuned on the positive examples of the PAS-
CAL VOC-2012 training set. These networks are labeled as CaffeNet-1k-VOC,
GoogLeNet-1k-VOC and GoogLeNet-5k-VOC, respectively.

In performing pre-trained DCNN fine-tuning, we compared the three fine-
tuning strategies presented in Sect. 3. Specifically, in all cases we discarded and
replaced the classification fully-connected (fc) layer of the utilized pre-trained
network, with a 60-dimensional or a 345-dimensional fc classification layer for
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the 60 or 345 concepts of the TRECVID SIN dataset respectively, or with a
20-dimensional classification layer for the 20 object categories of the PASCAL
VOC-2012 dataset. We examined two values for parameter N of the FT2-re
strategy; we refer to each configuration as FT2-re1 (for N = 1) and FT2-
re2 (for N = 2). The FT3-ex strategy was examined for two settings of net-
work extensions E ∈ {1, 2}: i.e., extending the network by one or two fc lay-
ers, respectively, followed by ReLU (Rectified Linear Units) and Dropout lay-
ers. The size of each extension layer was examined for 7 different dimensions:
L ∈ {64, 128, 256, 512, 1024, 2048, 4096}. We refer to these configurations as FT3-
exE-L. The new layers’ learning rate and momentum was set to 0.01 and 5e−4,
whereas the mini-batch size was restricted by our hardware resources and set to
256 and 128 for the CaffeNet and GoogLeNet configurations, respectively.

For the purpose of evaluation, we then tested each fine-tuned network on the
TRECVID SIN 2013 test set that consists of 112677 representative keyframes
and 38 semantic concepts on the indexing problem; that is, given a concept,
return the 2000 test keyframes that are more likely to represent it. In addition,
we examined classification performance on the PASCAL VOC-2012 validation
set, consisting of 5823 images and 20 object categories. We fine-tuned the total
of 17 configurations times 7 networks on a Tesla K40 GPU, over a period of
2 months. All networks were trained and implemented in Caffe [6].

4.2 Preliminary Experiments for Parameter Selection

A set of preliminary experiments on the CaffeNet-1k-60-SIN and the FT1-def
strategy was performed, in order to investigate how the learning rate of the
pre-trained layers and the number of training epochs affect the performance of a
fine-tuned network. Specifically, we partitioned the training set of the TRECVID
SIN dataset into training and validation sets, which resulted to 71457 and 3007
keyframes, respectively. Momentum and weight decay were set to 0.9 and 5e−4,
respectively. We examined learning rate values for the pre-trained layers equal to
LRpre = k×LRnew, where k ∈ {0, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1} and LRnew =
0.01 is the learning rate of the new classification layer that will be trained from
scratch. A value of k = 0 keeps the pre-trained layers’ weights “frozen”, while
the value of 1 makes them learn as fast as the new layers. To investigate the
effect of the training epochs, each fine-tuning run was examined for a range of
maximum epochs equal to: {0.25, 0.5, 1, 2, 4, 8, 16, 32}.

Table 1 presents the results w.r.t. the accuracy on the validation set, as this
metric is implemented in the Caffe framework. We can observe that smaller
learning rate values for the pre-trained layers and higher values for the training
epochs improve accuracy. Consequently, we selected the best values of 0.1 and 32
for the learning rate multiplier and the maximum number of epochs, respectively,
and kept them fixed for the rest of the experiments.
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Table 1. Classification accuracy for the CaffeNet-1k-60-SIN and the FT1-def strategy
for different values of the learning rate multiplier of the pre-trained layers (k), in the
vertical axis, and different number of training epochs (e), in the horizontal axis. For
each value of parameter e the best accuracy reached is underlined. The globally best
accuracy is bold and underlined.

k/e 0.25 0.5 1 2 4 8 16 32

0.050 0.348 0.362 0.402 0.417 0.437 0.434 0.451 0.462

0.075 0.341 0.349 0.388 0.412 0.438 0.453 0.462 0.462

0.100 0.346 0.354 0.388 0.420 0.434 0.455 0.463 0.470

0.250 0.328 0.361 0.397 0.421 0.430 0.450 0.455 0.468

0.500 0.306 0.354 0.388 0.415 0.439 0.447 0.451 0.444

0.750 0.284 0.349 0.381 0.410 0.431 0.443 0.448 0.448

1.000 0.257 0.321 0.367 0.390 0.430 0.442 0.450 0.436

4.3 Main Findings of the Study

Table 2 presents the results, in terms of Mean Extended Inferred Average Pre-
cision (MXinfAP), of the CaffeNet-1k-60-SIN (left) and the CaffeNet-1k-345-
SIN (right), for the three fine-tuning strategies of Sect. 3. In addition, Table 3
presents the MXinfAP of the GoogLeNet-1k-345-SIN (top) and GoogLeNet-5k-
345-SIN (bottom). MXinfAP [17] is an approximation of the MAP, suitable for
the TRECVID SIN partially annotated dataset. Similarly, Table 4 presents the
results in terms of MAP of the CaffeNet-1k-VOC and Table 5 presents the MAP
of the GoogLeNet-1k-VOC (top) and GoogLeNet-5k-VOC (bottom).

For each pair of utilized network and fine-tuning strategy we evaluate: (i) The
direct output of the network (Tables 2, 3, 4 and 5: col. (a)). (ii) Logistic regres-
sion (LR) classifiers trained on DCNN-based features. Specifically, the output
of each of the three last layers of each fine-tuned network was used as feature
to train one LR model per concept (Tables 2, 3, 4 and 5: col. (b)–(d)). Further-
more, we present results for the late-fused output (arithmetic mean) of the LR
classifiers built using the last three layers (Tables 2, 3, 4 and 5: col. (e)). For the
GoogLeNet-based networks evaluations are also reported for the two auxiliary
classifiers (Tables 3 and 5: col. (f)–(i)). The details of the two DCNN architec-
tures mentioned above (CaffeNet, GoogLeNet) and the extracted features are
also illustrated in Fig. 2. Based on the results reported in the aforementioned
tables, we reach the following conclusions:

(a) According to Table 2, fine-tuning a pre-trained network on more concepts
(going from 60 to 345) leads to better concept detection accuracy for all the
fine-tuning strategies.

(b) Across all the networks and for both datasets, the FT3-ex strategy almost
always outperforms the other two fine-tuning strategies (FT1-def, FT2-re)
for specific (L, E) values.
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Table 2. MXinfAP (%) for CaffeNet-1k-60-SIN (sub-table (A), left) and
CaffeNet-1k-345-SIN (sub-table (B), right). For each sub-table, the best result
per column is underlined. The globally best result per sub-table is bold and
underlined.

Conf./layer (A) CaffeNet-1k-60-SIN (B) CaffeNet-1k-345-SIN

Direct Last 2nd last 3rd last Fused Direct Last 2nd last 3rd last Fused

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

FT1-def 16.86 23.60 22.93 20.86 24.74 18.26 24.10 23.51 20.84 25.21

FT2-re1 15.35 22.09 21.52 20.79 23.93 17.43 23.36 22.88 20.71 24.48

FT2-re2 13.97 19.76 17.49 18.46 20.16 15.74 22.52 19.50 20.81 23.12

FT3-ex1-64 18.74 23.22 22.80 23.46 24.69 20.36 22.89 21.44 22.92 24.79

FT3-ex1-128 18.49 24.45 23.74 23.09 25.35 20.30 24.21 22.96 22.92 25.26

FT3-ex1-256 17.25 24.02 23.23 23.29 25.04 19.79 24.72 24.01 23.00 25.63

FT3-ex1-512 17.01 24.49 23.10 23.13 25.27 19.64 25.23 23.99 23.46 25.94

FT3-ex1-1024 16.53 24.19 21.37 22.16 24.78 18.59 25.29 22.39 23.65 25.64

FT3-ex1-2048 15.81 24.40 20.97 22.75 24.77 18.22 25.25 22.03 22.54 25.45

FT3-ex1-4096 14.94 24.11 19.88 21.42 24.02 17.67 24.79 21.50 23.18 25.05

FT3-ex2-64 17.26 20.53 21.03 21.48 21.61 17.02 19.53 20.23 19.62 20.67

FT3-ex2-128 17.72 22.17 22.27 22.36 22.88 19.42 22.93 22.24 21.79 23.13

FT3-ex2-256 17.17 23.46 23.12 23.20 24.19 19.35 24.09 23.98 23.60 24.80

FT3-ex2-512 16.77 23.71 23.65 23.72 24.96 19.00 24.89 24.01 23.90 25.52

FT3-ex2-1024 16.18 24.14 22.88 22.78 24.82 18.48 25.08 23.66 23.07 25.37

FT3-ex2-2048 15.67 24.17 22.36 21.42 24.59 18.20 25.55 22.13 22.50 25.08

FT3-ex2-4096 16.34 24.12 21.66 20.33 24.59 17.64 25.23 22.08 21.94 25.07

(c) With respect to the direct output, FT3-ex1-64 and FT3-ex1-128 consti-
tute the top-two methods for the TRECVID SIN dataset irrespective of
the employed DCNN. On the other hand, FT3-ex1-2048 and FT3-ex1-
4096 are the top-two methods for the PASCAL VOC-2012 dataset and the
GoogLeNet-based networks, while FT3-ex1-512 and FT3-ex1-1024 are the
best performing strategies for the CaffeNet network on the same dataset.
That is, the FT3-ex strategy with one extension layer is always the best
solution, but the optimal dimension of the extension layer varies, depending
on the target domain dataset and the network architecture.

(d) The highest concept detection accuracy for each network is always reached
when LR classifiers are trained on features extracted from the last and the
second last fully connected layer for TRECVID SIN and PASCAL VOC-2012
dataset, respectively, using the FT3-ex strategy. That is, features extracted
from the top layers are more accurate than layers positioned lower in the net-
work, but the optimal layer varies, depending on the target domain dataset.

(e) DCNN-based features significantly outperform the direct output alternative
in the vast majority of cases. However, in a few cases the direct network out-
put works comparably well. The choice between the two approaches should
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Table 3. MXinfAP (%) for GoogLeNet-1k-345-SIN (sub-table (A), top) and
GoogLeNet-5k-345-SIN (sub-table (B), bottom). For each sub-table, the best result
per column is underlined. The globally best result per sub-table is bold and under-
lined.

Conf./layer Final classifier Middle classifier First classifier

Direct Last 2nd last 3rd last Fused Direct Fused Direct Fused

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(A) GoogleNet-1k-345-SIN

FT1-def 21.67 28.15 28.29 - 29.05 22.70 28.62 20.36 25.95

FT2-re1 19.80 26.85 26.97 - 27.97 22.17 28.13 20.08 25.29

FT2-re2 19.32 26.90 26.71 - 27.65 21.61 27.60 19.40 25.01

FT3-ex1-64 24.18 27.46 25.77 28.59 28.60 22.08 26.27 18.07 22.49

FT3-ex1-128 24.44 28.90 28.10 28.82 30.09 22.65 27.38 20.03 24.53

FT3-ex1-256 23.93 29.48 28.61 28.64 30.23 22.04 27.54 19.87 25.00

FT3-ex1-512 23.63 29.82 28.34 28.11 30.43 22.15 28.19 19.94 25.33

FT3-ex1-1024 23.01 29.95 27.37 28.28 30.05 21.87 28.41 19.90 26.03

FT3-ex1-2048 23.34 30.21 27.05 28.80 30.42 21.41 28.69 19.93 26.18

FT3-ex1-4096 22.47 30.43 26.90 28.44 30.27 21.60 28.33 19.48 26.59

FT3-ex2-64 15.91 16.72 18.55 17.83 18.49 10.65 13.58 9.50 12.03

FT3-ex2-128 22.09 24.38 24.86 24.74 25.59 17.58 21.65 14.10 18.05

FT3-ex2-256 23.91 27.80 27.82 27.95 28.75 20.77 24.46 17.56 21.51

FT3-ex2-512 23.06 28.31 28.02 28.45 29.04 21.16 26.19 18.95 23.18

FT3-ex2-1024 22.77 29.01 28.63 28.86 29.92 20.58 26.64 18.87 24.15

FT3-ex2-2048 22.84 29.53 28.53 27.99 29.83 20.44 27.07 18.86 24.87

FT3-ex2-4096 22.36 29.90 27.85 27.49 29.93 20.72 27.32 19.01 25.44

(B) GoogleNet-5k-345-SIN

FT1-def 22.45 29.60 29.80 - 30.58 23.08 29.41 21.25 26.00

FT2-re1 20.88 28.44 28.43 - 29.58 22.51 28.55 20.37 25.16

FT2-re2 19.08 27.21 27.17 - 28.02 21.73 28.44 20.07 25.74

FT3-ex1-64 25.48 28.86 26.86 29.22 29.62 23.30 28.37 20.20 24.47

FT3-ex1-128 25.52 29.75 28.66 29.57 30.60 23.98 28.82 20.87 25.38

FT3-ex1-256 24.79 30.16 28.99 30.26 31.11 23.62 29.56 21.06 26.32

FT3-ex1-512 24.28 30.86 29.26 29.68 31.47 23.54 29.86 20.71 26.32

FT3-ex1-1024 24.03 31.02 28.78 29.35 31.55 23.43 29.90 20.53 26.57

FT3-ex1-2048 23.37 31.02 27.24 29.37 31.02 23.29 29.94 20.56 26.61

FT3-ex1-4096 23.07 30.91 28.98 29.61 31.57 22.85 29.64 20.82 26.26

FT3-ex2-64 16.44 17.51 19.62 19.95 20.09 11.43 15.12 10.65 13.33

FT3-ex2-128 23.87 26.19 26.73 26.05 27.02 18.70 23.64 14.87 19.95

FT3-ex2-256 24.46 28.94 28.69 28.68 29.57 22.68 26.98 18.75 23.10

FT3-ex2-512 23.95 29.44 29.07 28.94 30.14 22.72 28.22 20.20 24.79

FT3-ex2-1024 23.41 30.03 28.80 29.54 30.63 22.79 29.10 19.74 25.68

FT3-ex2-2048 23.38 30.74 28.98 28.21 30.61 22.29 29.34 19.57 26.23

FT3-ex2-4096 23.07 31.21 28.94 27.98 30.93 22.11 29.40 19.64 26.11
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Table 4. MAP % for CaffeNet-1k-VOC. For the FT-re strategy we trained the network
with learning rate 10 times lower that of all the other cases. Otherwise, the network
did not converge. The best result per column is underlined. The globally best result is
bold and underlined.

Conf./layer CaffeNet-1k-VOC

Direct Last 2nd last 3rd last Fused

(a) (b) (c) (d) (e)

FT1-def 72.77 69.80 72.59 69.95 73.29

FT2-re1 8.22 8.22 8.22 27.87 27.57

FT2-re2 23.53 25.05 26.33 25.74 29.27

FT3-ex1-64 72.61 70.27 72.75 69.70 73.86

FT3-ex1-128 73.53 71.59 74.20 69.96 74.52

FT3-ex1-256 73.63 71.90 74.59 69.78 74.81

FT3-ex1-512 73.84 72.34 74.18 69.64 74.85

FT3-ex1-1024 73.76 72.42 72.49 69.91 74.48

FT3-ex1-2048 73.41 72.59 72.46 69.39 74.30

FT3-ex1-4096 73.04 71.14 74.17 69.44 74.70

FT3-ex2-64 51.42 43.82 59.64 64.63 61.55

FT3-ex2-128 62.33 58.36 67.95 71.16 69.24

FT3-ex2-256 67.97 64.64 72.64 73.52 73.04

FT3-ex2-512 70.89 68.38 74.94 73.80 75.04

FT3-ex2-1024 72.55 71.22 75.28 73.26 75.65

FT3-ex2-2048 73.02 72.37 73.80 72.31 75.29

FT3-ex2-4096 66.43 60.83 69.10 71.69 72.67

be based on the application that the DCNN will be used. E.g., real time
applications’ time and memory limitations would most probably render using
DCNNs as feature extractors in conjunction with additional learning (LR
or SVMs) prohibitive. Furthermore, we observe that the features extracted
from the final classifier of GoogLeNet-based networks outperform the other
two auxiliary classifiers, in most cases.

(f) Using DCNN layers’ responses as feature vectors, on the one hand, FT3-
ex1-512 is in the top-five methods irrespective of the employed DCNN, the
extracted feature and the used dataset. Regarding the PASCAL VOC-2012
dataset this is always the case except for the features extracted from the
third last layer of the CaffeNet network (Table 4: col. (d)). On the other
hand, FT3-ex2-64 is always among the five worst fine-tuning methods. The
rest of the FT3-ex configurations, present fluctuations of their performance
across the different utilized DCNNs and DCNN-based features.

(g) Finally, it is better to combine features extracted from many layers; specifi-
cally, performing late fusion on the output of the LR classifiers trained with
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Table 5. MAP % for GoogleNet-1k-VOC (sub-table (A), top) and GoogleNet-5k-VOC
(sub-table (B), bottom). For each sub-table, the best result per column is underlined.
The globally best result per sub-table is bold and underlined.

Conf./layer Final classifier Middle classifier First classifier

Direct Last 2nd last 3rd last Fused Direct Fused Direct Fused

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(A) GoogleNet-1k-VOC

FT1-def 82.00 85.83 86.31 - 87.69 80.71 84.01 78.93 79.01

FT2-re1 80.42 83.77 86.34 - 86.66 79.39 81.73 78.06 76.92

FT2-re2 77.34 77.43 82.51 - 82.31 75.94 77.46 74.28 73.01

FT3-ex1-64 78.98 80.29 85.19 85.76 86.11 76.07 81.93 71.46 76.58

FT3-ex1-128 80.14 83.86 87.74 86.22 87.64 77.89 83.52 73.64 78.00

FT3-ex1-256 81.11 84.97 88.04 86.46 87.95 78.95 83.96 75.00 79.01

FT3-ex1-512 81.42 85.41 87.70 86.57 88.16 79.54 84.35 76.03 79.39

FT3-ex1-1024 81.82 85.85 86.95 86.69 88.08 80.06 84.27 76.86 79.37

FT3-ex1-2048 82.18 86.36 86.31 86.81 87.99 80.70 84.38 77.33 79.08

FT3-ex1-4096 82.01 86.49 86.23 86.93 87.86 80.96 84.26 78.30 79.56

FT3-ex2-64 44.81 42.04 52.48 51.70 52.19 36.57 44.36 33.32 38.77

FT3-ex2-128 75.11 67.81 81.32 81.70 80.54 61.05 70.30 52.39 61.69

FT3-ex2-256 78.05 76.65 85.38 85.49 85.00 69.45 77.59 62.56 71.45

FT3-ex2-512 80.06 82.70 87.12 86.69 87.09 73.35 81.16 67.26 74.49

FT3-ex2-1024 81.26 84.32 86.75 86.39 87.39 76.46 82.53 70.19 76.38

FT3-ex2-2048 81.72 85.08 86.46 85.96 87.52 78.20 83.19 73.10 78.19

FT3-ex2-4096 81.71 84.82 86.14 85.05 87.00 78.93 83.14 74.08 77.80

(B) GoogleNet-5k-VOC

FT1-def 82.39 86.75 86.74 - 88.01 81.10 84.25 78.96 79.06

FT2-re1 80.50 85.21 86.91 - 87.44 79.58 82.76 77.78 77.23

FT2-re2 77.73 78.81 83.13 - 83.11 75.28 77.34 71.99 69.65

FT3-ex1-64 79.74 82.86 86.41 86.26 86.92 76.36 82.72 72.32 77.51

FT3-ex1-128 80.47 85.50 88.26 86.56 88.12 78.57 84.12 74.01 78.76

FT3-ex1-256 81.43 85.81 88.33 86.73 88.36 79.31 84.48 75.29 79.12

FT3-ex1-512 81.65 85.91 87.84 86.90 88.33 79.99 84.76 76.25 79.69

FT3-ex1-1024 82.30 86.48 87.01 86.89 88.20 80.68 84.56 77.32 79.32

FT3-ex1-2048 82.51 86.93 86.80 86.96 88.23 81.15 84.51 77.97 79.62

FT3-ex1-4096 82.39 87.20 86.37 87.05 88.13 81.52 84.45 78.43 79.65

FT3-ex2-64 43.85 45.11 53.99 51.67 52.81 39.10 47.22 32.42 38.72

FT3-ex2-128 75.89 70.96 82.85 83.34 82.51 63.27 72.34 54.45 63.64

FT3-ex2-256 78.94 80.30 86.44 86.43 86.01 69.19 77.67 65.31 72.75

FT3-ex2-512 80.47 82.83 87.56 87.00 87.38 75.17 81.44 66.50 74.38

FT3-ex2-1024 81.47 84.54 86.81 86.53 87.58 76.99 82.85 71.09 76.74

FT3-ex2-2048 82.11 85.49 86.90 86.28 87.76 78.15 83.24 73.55 77.69

FT3-ex2-4096 80.50 83.83 85.82 84.71 86.64 77.49 81.79 74.66 78.21
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each one of the last three fully connected layers almost always outperforms
using a single such classifier irrespective of the employed network (Tables 2,
3, 4 and 5: col. (e)). The above conclusion was also reached for the auxiliary
classifiers of GoogLeNet-based networks but for space-limitations we only
present the fused output for each of these auxiliary classifiers (Tables 2, 3, 4
and 5: col. (g), (i)).

5 Conclusions

In this paper we presented a large comparative study of three fine-tuning strate-
gies on three different pre-trained DCNNs and two different subsets of semantic
concepts. Experiments performed on the TRECVID 2013 SIN dataset [10] and
PASCAL VOC-2012 classification dataset [4] show that the method of increas-
ing the depth of a pre-trained network with one fully-connected layer and fine-
tuning the rest of the layers on the target dataset can improve the network’s
concept detection accuracy, compared to other fine-tuning approaches. Using
layers’ responses as feature vectors for a learning model such as logistic regres-
sion can lead to additional gains, compared to using the direct network’s output,
at an additional cost of computation time and memory.
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