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Abstract. Many content-based video copy detection (CCD) systems
have been proposed to identify the copies of a copyrighted video. Due
to storage cost and retrieval response requirements, most CCD systems
represent video contents using sparsely sampled features, which tends
to lose information to some extend and thus results in unsatisfactory
performance. In this paper, we propose a compact video representation
based on convolutional neural network (CNN) and sparse coding (SC)
for video copy detection. We first extract CNN features from the densely
sampled video frames and then encode them into a fixed length vector via
the SC method. The proposed representation presents two advantages.
First, it is compact while is regardless of the sampling frame rate. Second,
it is discriminative for video copy detection by encoding the densely
sampled frames’ CNN features. We evaluate the performance of proposed
representation on video copy detection over a real complex video dataset
and marginal performance improvement has been achieved as compared
to state-of-the-art CCD systems.

Keywords: Video copy detection · Convolutional neural network ·
Sparse coding · Video level representation · Dense sampling

1 Introduction

A copy is a duplicate segment of video derived from another video, by means
of various transformations. The task of content-based video copy detection is
to determine if a given video (query) has its copy in a set of testing videos.
Analyzing and comparing the features between the querying and testing videos
are the usual methods to cover this task. Copy detection has a wide range of
potential applications such as copyright control, business intelligence, etc., thus
has attracted lots of research efforts over the last decade [1,20].

The duplicate segments may be as long as the origin video or even shorter
than 1 s with some distortions. These distortions include simulated camcording,
picture in picture, insertions of pattern, compression, etc. [16]. Variety distortions
bring great challenges to the copy detection problem. To address these challenges,
TREC Video Retrieval Evaluation (TRECVID) released a content-based copy
detection benchmark with a large collection of synthetic queries. It launched
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the CCD competition task from 2008 to 2011 [16]. Many solutions have been
proposed to tackle this problem. Among them, the most popular way is to use
local features like SIFT [11] to match and find similar frame pairs, followed by
temporal alignment [3]. In these methods, inverted files and Bag-of-words (BoW)
representation are widely adopted for fast frame matching. Actually some of
them have achieved near-perfect performance [16].

As a simulated dataset, the TRECVID can not accurately reflect real copy
videos. There are more complicated visual transformations and more complex
temporal structures in real copy videos. The performance of current state-of-
the-art approaches is far away from satisfactory for real video copy detection,
which remains CCD still an open issue to the multimedia research community
as Jiang et al. evaluated [8].

In order to avoid unaffordable computational and storage burdens, most of
the current copy detection works extract video features on sparsely sampled
frames, e.g. sampling one or two frames per second [3,8]. We argue that sparse
sampling could miss much useful information as most frames are dropped. Thus,
if we can encode more information of a video segment, the detection performance
will be improved. Meanwhile, deep learning approaches, especially convolutional
neural network (CNN) has recently shown powerful ability in extracting dis-
tinctive image or object features. It achieved great success in general image
classification, object detection tasks and semantic analysis [10,12,24]. Jiang’s
initial attempts [9] of using CNN features for copy detection also demonstrated
its promising advantages over existing traditional methods.

Motivated by the above observations, we propose a novel video level repre-
sentation which encodes the CNN features of densely sampled frames of a short
time video into a compact descriptor, for real video copy detection. We first
extract the CNN full-connect (fc) layer features for the sampled frames of a
short video and then reduce the features dimension by using PCA. After that,
sparse coding method is adopted to sparsely assign each frame feature into a set
of M codes. So we can get an M -dimensional sparse vector for each frame. After
these steps, a max-pooling operation is performed on each component of these
vectors. A compact video level representation is finally derived.

The contributions of this paper are two-fold. (1) The proposed novel video
level representation is compact which needs less storage and enables fast retrieval
of similar video clips. Its dimension is independent to the sampling frame
rate. (2) By encoding the densely sampled frames CNN features, the pro-
posed copy detection method significantly outperforms state-of-the-art tradi-
tional approaches; it also achieves competitive precision to lately CNN based
method [9] but improve the recall rate about 10%, which is more practical to
some applications such as web video monitoring and tracking.

The reminder of this paper is structured as follows. Section 2 briefly reviews
some well-known video copy detection works and approaches. In Sect. 3, we intro-
duce our method for video feature representation and copy detection. Experi-
mental results are presented and discussed in Sect. 4. Finally, we conclude this
paper in Sect. 5.
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2 Related Work

Video copy detection has attracted a lot of research interests in recent years.
The approaches to this task mainly include two categories: local feature based
methods and global feature based methods. Local feature based methods are
widely leveraged by most works. For instance, LBP is used as visual feature in
[15], LBP-CS [5] and SIFT are used by Douze et al. [3]. In [3], the local features
are clustered into visual words and the image is represented with a BoW model.
Then inverted file is adopted to index images for fast retrieval. In [6], hamming
Embedding (HE) is employed to further divide the clusters into sub-spaces to
improve the accuracy of local feature matching. Meanwhile, weak geometry con-
sistency (WGC) [6] is used to help eliminating the wrong matching between
features. Zhao et al. [25] adopt BoW, HE and WGC to effectively annotate web
videos via near-duplicate video detection. All these above works extract local
features on sparsely sampled frames for the purpose of low memory usage and
efficiently retrieval. However, since one single video frame can produce about
one thousand local features, it is still a heavy burden to storage and retrieve the
large number of frames’ features of a very large video dataset.

As a solution, employing global features could significantly decrease the num-
ber of features. Wu et al. [22] extract color histogram as frame features to detect
similar videos. In [4], a Fisher Vector (FV) [13] alike representation is proposed
to aggregate local features to a global feature. Meanwhile, CNN has shown their
absolute advantages in image representation and high speed processing. In [9],
Jiang and Wang sample frames at fixed time interval and extract CNN based
features for each sampled frame. There are two ways to implement CNN features
in his work. One of them is the standard CNN which uses Caffe [7] toolkit with
AlexNet [10]. A 4,096-dimensional fc feature is extracted to present a frame. The
other way extracts local image patch features using a supervised CNN structure
called Siamese convolutional neural network (SCNN). Then image patches are
described by features which are ranged from 64-dimensional to 512-dimensional.
All these features are organized into a fast retrieval structure to do the match
processing. Finally the matching results are aligned to the original videos by tem-
poral network [17] according to their temporal consistency. Comparing to the
traditional Hough Voting Alignment, Jiang [8] proves that temporal network is
more suitable for temporal alignment.

As can be summarized from the above works, most approaches extract fea-
tures on sparsely sampled frames rather than densely sampled frames. Much
useful information is given up to make a heavy concession for considering the
memory usage and efficiency retrieval. We will show in the experiments that
this will cause the degrade of performance to some extend due to information
loss. To overcome this disadvantage, our target is to find a representation which
could aggregate more information and keep the final representation compact and
discriminative.
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3 Compact Video Representation

We will present the proposed compact video representation for short time video
clips in detail. The outline of our video copy detection system is shown in Fig. 1,
which is divided to three main steps: frame feature extraction, video feature
encoding and video segment matching. Video feature encoding includes com-
pression and aggregation. In this paper we pay more attention to the first two
steps which are marked by blue arrows in Fig. 1. The matching step (i.e., fast
retrieval and temporal alignment) will be introduced briefly.

Fig. 1. The outline of our video copy detection system which includes three parts:
frame feature extraction, video feature encoding and matching.

3.1 Frame Feature Extraction

Traditional works sparsely sample frames from videos for keeping balance
between accuracy and efficiency. On the contrary, our starting point is gathering
more information into final representations. So the first step of our method is to
sample frames from query and database videos densely.

The next step is to describe sampled frames via frame-based features. Differ-
ent from local feature extraction processing, CNN has shown its fast processing
speed by utilizing parallel GPUs. Although the number of frames becomes more
than ten times than the sampling methods in [3,8], the processing time may be
equal to or less than the previous methods due to the performance of GPUs.
We utilize the Caffe toolkit [7] to implement deep learning algorithm on the
densely sampled frames. According to [23], we use the deeper network architec-
ture, i.e. VGG-16layers, which is the winner of VGG ILSVRC 2014 classification
task [14]. This network contains 16 weight layers: 13 convolutional layers and 3
fully-connected layers. And other five max-pooling layers are inserted after some
convolutional layers.
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Finally, we conduct PCA-whitening on the CNN fc features since the dimen-
sion of 4,096-D fc features are too high. Up to now, a frame is represented by a
low-dimensional feature vector x with length k. We will explore the appropriate
value of k in the experiments then.

3.2 Video Feature Compression and Aggregation

We aim to use compact representation to describe the densely sampled features.
Directly calculating the distance between frame features is very sensitive to the
noise in visual feature and the result is easily influenced by even one dimension of
noise feature [18]. Since sparse coding, which models data vectors by the sparse
linear combinations of the basis dictionary, could reserve the main components
of vectors and make it possible to compactly represent the vectors. There are
several works use SC and gains great performance [19]. We compress the frame
features using sparse coding in our method. Sparse coding [2] can be regarded as
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where D indicates the overcomplete dictionary, i.e. M > k, k is the dimension
of feature x. In this work, we set M be four times of k unless otherwise noted.
s is the target sparse representation.

We investigated some solutions of sparse decomposition problem and found
that the Orthogonal Matching Pursuit (OMP) [21] is the most suitable method
for our processing:
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In this case, s could have at most T non-zeros items. We employ K-SVD to
train the dictionary. According to the greediness of OMP, the number of non-
zeros in s could be close or equal to T . This property is helpful to us while other
sparse decomposition methods may make our final features become excessively
sparse, which is insufficient to distinguish different video segments.

At this stage, each frame is essentially a sparse feature. The extracted sparse
features are then pooled and aggregated into a compact representation for the
specified length of video segment. Different from event detection and video classi-
fication, video copy detection task needs fine-grained time interval representation
for accurately aligning the time line between copies and original video. As shown
in Fig. 2, we take 1 s interval in our method.

Video pooling could be divided to three categories: max-pooling, mean-
pooling and sum-pooling. Since sparse coding describe a feature by linear com-
bination of its principal basis, it is better to conserve the maximal item among a
short time video. Thus, keeping the component-wise maximum by max-pooling
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Fig. 2. Illustration of video pooling

is our choice. Because there are some negative items in the sparse feature by the
OMP algorithm, we make a small adjustment for max-pooling:

vm = smi ,∀m ∈ M
s.t. max

i
abs (smi ) , i ∈ 1, 2, . . . , n (3)

where v is the video representation with the dimension M . si is the sparse vector
for the i-th sampled frame of the one-swcond interval clip. n is the total number
of sampled frames among the one-second interval clip. By this way, we can reserve
the most important part of each component whether or not it is positive.

After pooling and aggregating, we finally get a series of video level represen-
tations, each of which represents a one-second interval time video segment.

3.3 Video Segment Matching

The final step of video copy detection is to compare the query video with data-
base videos and identify the most similar segment pairs between them. The
matching method contains fast retrieval and temporal alignment.

We leverage the normal KD-tree to store our features and do fast retrieval.
Although we don’t specially investigate its efficiency, there is huge potential of
our sparse video features. First, the sparse feature needs less storage and could
make it possible to reside all features in memory. Second, a large number of
floating point arithmetic is no more needed due to the large amount of matching
between zero and zero.

It’s necessary to link our video level representations to a longer video segment
because each feature only describes a short-time interval clips. The longer video
segment is then associated with a starting timestamp and a ending timestamp
of a testing video. Following [8], we employ the temporal network to align our
matched video segments and adopt the following formula to measure the simi-
larity score between two features:

score = e−dis2 (4)

where dis is the Euclidean distance between these two features.
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4 Experiments

4.1 VCDB Dataset

In our experiments, we utilize the latest released copy detection dataset, namely
VCDB dataset [8] to evaluate the proposed method. The VCDB includes core-
dataset and distraction-dataset which are all collected from two video-sharing
websites: YouTube and MetaCafe. The core-dataset contains over than 500
videos with 9,236 partial copies and the distraction-dataset includes 100,000
videos. We mainly evaluate our video level representations in the core-dataset.
Same to the baseline method in [8], all the segments of the 9,236 pairs are con-
sidered as a query. If both the two segments among a detected video pairs had
intersection time with a ground-truth pair, they would be considered as a correct
pairs in spite of the length of overlapped time window. Because a video segment
with one single copy frame can be fully demonstrated as a copy pair. We use the
precision and recall to measure our features’ performance:

precision = |correctly retrieved segments|
|all retrieved segments| (5)

recall = |correctly retrieved segments|
|ground-truth copy segments| (6)

4.2 Experimental Results and Comparisons

We show the results of the proposed method and also compare it with some state-
of-the-art systems from several aspects. Our method achieves the best results
with the following settings: (1) all frames are used to generate our final repre-
sentation without sampling; (2) the dimension of features at the frame feature
extraction step is set to be 512-D, which results in a 2,048-D video segment rep-
resentation; (3) the number of non-zero components in the sparse representation
is controlled to be at most 32. These settings are both utilized on the fc6 and fc7
layers of VGG-16layer network. We adjust the threshold of the segment pairs’
matching score to draw the precision-recall curves.

The comparing of our method, the baseline system [8], standard CNN and
SCNN [9] are shown in Fig. 3. As we can see, our methods achieve remarkable
performance both on fc6 and fc7, while features extracted based on fc6 works
better than on fc7. This may suggest that fc6 is more suitable than fc7 for video
copy detection task.

The green curve represents the baseline method which is proposed in [8] and
utilizes local features, i.e., SIFT and temporal network to detect copy pairs. This
approach is widely used by previous work and has shown near-perfect perfor-
mance in TRECVID benchmark, however, it is far away from satisfactory in real
complexity copy detection.

The red curve shows the result of standard CNN method [9] that extracts
features using CNN with the AlexNet and directly uses the 4,096-D features
on fc6 for retrieving. It also proposed a fusion method by combining SCNN and
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Fig. 3. Precision-recall curves for different methods on the core-dataset of VCDB.
(Color figure online)

standard CNN to extract frame features in [9]. Our method performs better than
these two CNN based methods, owing to the densely sampled frames feature with
more information and the deeper network with better descriptive power.

To demonstrate the effectiveness of dense sampling strategy and compact
video feature representation, we also implemented standard CNN method on
fc6 using the VGG-16layers network and show its results with the orange curve
in Fig. 3. Comparing to it, our method (blue curve) significantly increases the
recall rate while maintains a good precision rate, which is more practical to some
applications such as web video monitoring and tracking where low miss is more
important.

4.3 Impacts of Parameters

Sparsity. We investigated several sparse decomposition algorithms and found
that the sparsity of our features obviously affects the performance. We employ
the OMP algorithm in our experiments due to the controllable sparsity, and
adjust the number of non-zero components in the sparse frame features to pro-
duce different sparsity of final video representations. In Fig. 4, the parameter T
indicates the maximum number of non-zero components in a sparse frame fea-
ture. We conduct experiments on different T while fix the rest parameters to see
the performance changes with the sparsity of our representation. As can be seen
from Fig. 4, fc6 performs better than fc7 and T exhibits little influence on fc7.
For fc6, the larger value of T results in higher performance. However, the per-
formance improves slowly when the value of T increases 32 from 16. Therefore,
we set T to 32 in all our experiments.
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Fig. 4. Results comparison for different sparsity of features

Dimension. The dimension of features after PCA-whitening could influence the
dimension of our final representations. It’s essential to investigate the impact of
the dimensions on the final detection results. In Fig. 5, only the dimension of
PCA is changed. From the figure, we can see that the performance is increasing
with the rise of dimension. However, the storage cost and retrieval time will
both growing exponentially. In our method, we adopt 512-D as a trade-off of
performance and resource consumption, which leads to a 2,048-D final video
representation.

Fig. 5. Results comparison for different dimension of features
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4.4 Analysis of the Impact of Sampling Rate

We are the first to utilize densely sampled frames to generate video represen-
tations for video copy detection, it is necessary to investigate whether more
frames bring better discrimination. To do so, we test the proposed method on
fc6 with different sampling rate in the pooling step. The best F1-measure (i.e.,
the harmonic mean of precision and recall) is used to evaluate the performance.

Table 1. Detection results with different sampling rate of frames

1-frame per sec 2-frames per sec 1/5 frames 1/3 frames 1/2 frames All frames

0.6695 0.6879 0.6994 0.6995 0.7026 0.7038

Table 1 shows that the detection performance increases consistently with the
sampling rate, and when the sampling rate increases to 1/5, the performance
becomes relatively steady. This is reasonable because the adjacent frames are
extremely similar and contain much redundant information. However, 1/5 of 1 s
video means 5 to 6 frames, which is denser than any existing methods and could
bring much more storage cost and much longer retrieval time to these methods.
By fusing the sparse coding and max-pooling strategies, our method elaborately
encode the densely sampled frame features into a compact yet discriminative
representation.

5 Conclusions

We have proposed a novel compact video representation to detect video copies
from large video collections. More and discriminative information is embedding
to our final representation through sparse coded CNN features extracted from
densely sampled video frames. Experimental results on the VCDB show that
this presentation is advantageous over recent state-of-the-art CCD approaches.
We significantly improve the recall rate about 10% with higher precision rate.
In the future, we will investigate the effective indexing strategy for the proposed
representation to fast and accurately retrieve very large scale video dataset.

Acknowledgements. This work is supported by National Natural Science Funds of
China (61472059, 61428202).

References

1. Chou, C.L., Chen, H.T., Lee, S.Y.: Pattern-based near-duplicate video retrieval and
localization on web-scale videos. IEEE Trans. Multimedia 17(3), 382–395 (2015)

2. Coates, A., Ng, A.Y.: The importance of encoding versus training with sparse cod-
ing and vector quantization. In: Proceedings of the 28th International Conference
on Machine Learning (ICML-2011), pp. 921–928 (2011)



586 L. Wang et al.

3. Douze, M., Jégou, H., Schmid, C.: An image-based approach to video copy detec-
tion with spatio-temporal post-filtering. IEEE Trans. Multimedia 12(4), 257–266
(2010)
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