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Abstract In this note we will contextualize the recently established Wiener–Hopf
Monte Carlo (WHMC) simulation technique for Lévy processes from Kuznetsov
et al. (Ann Appl Probab 21(6):2171–2190, 2011), into a more general framework
allowing us to use the same technique in a larger set of problems. We will
briefly show how the scheme can be used to approximate Lévy driven SDEs or
how to approximate different types of path dependent quantities. In a way, the
present note summarizes and connects a set of results contained in Ferreiro-Castilla
et al. (Stochastic Process Appl 124(2):985–1010, 2014; J Appl Probab 52(1):129–
148, 2015; J Appl Probab 53(1):262–278, 2016); therefore we intentionally leave
most of the technicalities aside for this note.

1 Introduction

Let X WD .Xt/t�0 be a Lévy process, i.e. a (real valued) stochastic process
starting from 0 with cadlag paths (right continuous and with left limits) and
stationary, independent increments. The Lévy–Khintchine formula entails that the
characteristic exponent ‰, defined as EŒeizXt � D e�t‰.z/ for all t � 0 and z 2 R, can
be expressed as

‰.z/ D �2

2
z2 C iaz C

Z
Rnf0g

.1 � eizx C 1fjxj<1gizx/….dx/ ; (1)

where �; a 2 R and … is a measure on R n f0g satisfying
R
Rnf0g.x

2 ^ 1/….dx/ < 1.
Of interest in several fields are quantities depending on the path of X, the com-

plete path of X is numerically intractable and, ultimately, any numerical scheme can
only be based on simulating the increments of the driving process. A first approach
consists in computing an Euler skeleton of the path; but even for a Brownian motion,
where the Euler scheme is exact, computing a simple supremum in this way leads to
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a significant bias (see Broadie–Glasserman–Kou [1]) due to the fact that the skeleton
misses the excursions of the process. In this note we are interested in constructing a
skeleton for the path based on the Wiener–Hopf factorization. Suppose that, for
any q > 0, e.q/ is an exponentially distributed random variable with mean q�1

that is independent from X. Recall that Xt WD sups�t Xs and let Xt WD infs�t Xs. The
Wiener–Hopf factorization states that the random variables Xe.q/ and Xe.q/�Xe.q/ are
independent. Thanks to the so-called principle of duality, that is to say the equality
in law of the pair fX.t�s/� � Xt W 0 � s � tg and f�Xs W 0 � s � tg, it follows
that Xe.q/ � Xe.q/ is equal in distribution to �Xe.q/. This leads to the following
factorization of characteristic functions

E.ei�Xe.q/ / D E.ei�Xe.q/ / � E.ei�Xe.q/ /;

for all � 2 R, known as the Wiener–Hopf factorization. Equivalently,

Xe.q/
dD Sq C Iq;

where Sq and Iq are independent and equal in distribution to Xe.q/ and Xe.q/,

respectively. Here, we use the notation
dD to mean equality in distribution.

The above factorization captures in one time step the nature of the path; i.e.
knowing the supremum and the infimum one would be able to answer questions
relating whether the process crossed a barrier or whether there was a big jump in
the time step. Obviously, the time step is itself a random variable but, thanks to the
equality

nX
iD1

1

n
ei.1/

a:s:! 1 as n " 1;

we can create a random partition of the interval Œ0; 1� with a mesh size EŒ 1
nei.1/�!0

as n " 1. We call our method the Euler–Poisson scheme, as one can think of the
random partition as given by the arrival times of a Poisson process.

For the sake of simplicity, recall that
Pk

iD1
1
nei.1/ has the same distribution as

a Gamma random variable which will be denoted by g.k; n/. Therefore the Euler–
Poisson scheme of the process X refers to the skeleton fXek.1=n/gk�0 or fXg.k;n/gk�0.

1.1 Heuristics Behind the Scheme

Let us give a brief discussion of the heuristics of the Euler–Poisson scheme and
an idea why this scheme should be a particular good approach to compute path
dependent quantities of Lévy processes.
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It can be inferred from Doney [3] that, for all k > 0, the random variables

Mk WD sup
g.k;n/�t<g.kC1;n/

Xt and mk WD inf
g.k;n/�t<g.kC1;n/

Xt

can be written as

Mk D S.n/
0 C Y.C/

k and mk D I.n/
0 C Y.�/

k ;

respectively, where fY.C/
k gk�0 and fY.�/

k gk�0 are random walks with the same

distribution as fXg.k;n/gk�0, and independent from S.n/
0 and I.n/

0 , respectively. Since it
is clear that mk � Xt � Mk for g.k; n/ � t < g.kC1; n/, the derivations in Doney [3]
assert that it is possible to ‘stochastically’ bound the path of X from above and below
by two random walks which are equal in distribution to the skeleton proposed in this
paper, but with different random starting points.

There is yet another heuristic justification to support the skeleton fXg.k;n=t/gk�0

as a good random walk approximation of the Lévy process to compute pathwise
quantities. The Feynman–Kac representation identifies conditional expectations of
functionals of the solution of a Stochastic Differential Equation (SDE) as solutions
of a certain Partial Integro Differential Equation (PIDE). We claim that, in some
sense, the solution of a Lévy driven SDE sampled over a random grid generated by
the arrival times of a Poisson process is equivalent to performing a discretization
in time by the method of lines to the associated Feynman–Kac equation. We are
not the first to point out this relationship. It was the basis of Carr [2], where an
approximation for American options of finite maturity is obtained by randomizing
the time horizon by an Erlang distribution. Matache–Nitsche–Schwab [9] also
pointed out, informally, the relation between a deterministic discretization in time of
a Feynman–Kac PIDE and its probabilistic counterpart. Details on this relationship
can be found in Ferreiro-Castilla–Kyprianou–Scheichl [6].

1.2 Feasibility of the Scheme

It is clear from the preceding section that the Euler–Poisson method is of practical
interest only if samples from the distribution of Xe.q/ are available. In general, there
is no reason why the latter distribution is easier to handle than the distribution of X1

itself, needed to set up a plain Euler scheme for a Lévy process. Nevertheless, recent
developments in Wiener–Hopf theory for one dimensional Lévy processes have
provided a rich enough variety of examples for which the necessary distributional
sampling can be performed and thus the Euler–Poisson scheme may lead to
simpler numerical techniques. This family of processes are called meromorphic
Lévy processes; see Kuznetsov et al. [7, 8]. For the class of meromorphic Lévy
processes, the Wiener–Hopf factors are explicit and hence we can efficiently sample
from the distribution of Xe.q/ through its factorization. One of the main advantages
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of the Euler–Poisson algorithm is its robustness with respect to the jump structure;
see, for example, Ferreiro-Castilla–Kyprianou–Scheichl–Suryanarayana [4]. Recall
that many numerical algorithms to approximate the path of a Lévy process depend
on the structure of the jump component of (1).

2 Applications

Let us now give a taste of what you can do with the Euler–Poisson scheme. For
a comprehensive exposition of the scheme and a range of applications we refer
the reader to the papers mentioned in the abstract. Assume then that we have an
algorithm to perform the Wiener–Hopf factorization of a Lévy process, then we can
keep track of pairs of the type f.Xg.k;n=t/; Xg.k;n=t//gk�0 or f.Xg.k;n=t/; Xg.k;n=t//gk�0. It
is worth noting that the theory does not allow to keep track of the exact supremum
and the infimum of the process simultaneously.

2.1 Computing the First Passage Time

We will give an example of how to use the scheme to compute the first passage time
over a level u > 0, i.e., �u WD infft > 0 j Xt > ug. Assume you can compute the
Wiener–Hopf factorization for X and keep track of the running supremum, i.e., the
sequence fXg.k;n=t/gk�0, then

k.n/
X WD inffk 2 f0; : : : ; ng j Xg.k;n=t/ > ug

is an approximation of �u. Indeed,

Theorem 1 (Ferreiro-Castilla–van Schaik, [5]) Using the same notation as
above, we have

E

�� t

n
.k.n/

X ^ n/ � �u ^ t
�2

�
� 2t2

n
:

2.2 Approximation of Lévy Driven SDEs

Since we have now an skeleton for the path of a Lévy process, it is natural to
investigate its behaviour in approximating Lévy driven SDEs. Let Y be the strong
solution of

Yt D y0 C
Z t

0

a.Ys�/dXs; (2)
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for t 2 Œ0; T�. The Euler–Poisson scheme is then given by the discrete Markov chaineY WD feYti gi�0 defined recursively by

eYti WD eYti�1 C a.eYti�1 /�Xei.n=T/;

for i � 1 and eY0 WD y0, where �Xei WD Xei.n=T/ � Xei�1.n=T/
dD Xe.n=T/ and ti WDPi

jD0 ej.n=T/. We claim that eYtn is an approximation of YT . Indeed,

Theorem 2 (Ferreiro-Castilla–Kyprianou–Scheichl, [6]) Let X have second
finite moments, and a.x/ in (2) be a Lipschitz function with constant K. Then

EŒjYT � eYtn j2� � eKn�1=2 ;

where eK is a constant depending only on K and T.
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