
Vertex Sparsification in Trees

Gramoz Goranci1(B) and Harald Räcke2

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
gramoz.goranci@univie.ac.at

2 Institut für Informatik, Technische Universität München, Garching, Germany
raecke@in.tum.de

Abstract. Given an unweighted tree T = (V, E) with terminals K ⊂ V ,
we show how to obtain a 2-quality vertex flow and cut sparsifier H with
VH = K. We prove that our result is essentially tight by providing a 2−
o(1) lower-bound on the quality of any cut sparsifier for stars.

In addition we give improved results for quasi-bipartite graphs. First,
we show how to obtain a 2-quality flow sparsifier with VH = K for
such graphs. We then consider the other extreme and construct exact
sparsifiers of size O(2k), when the input graph is unweighted.

Keywords: Graph sparsification · Vertex flow sparsifiers · Trees

1 Introduction

Graph sparsification is a technique to deal with large input graphs by “com-
pressing” them into smaller graphs while preserving important characteristics,
like cut values, graph spectrum etc. Its algorithmic value is apparent, since these
smaller representations can be computed in a preprocessing step of an algorithm,
thereby greatly improving performance.

Cut sparsifiers [4] and spectral sparsifiers [19] aim at reducing the number of
edges of the graph while approximately preserving cut values and graph spectrum,
respectively. These techniques are used in a variety of fast approximation algo-
rithms, and are instrumental in the development of nearly linear time algorithms.

In vertex sparsification [6,9,10,12,14,16,18], apart from reducing the number
of edges, the goal is also to reduce the number of vertices of a graph. In such
setting, one is given a large graph G = (V,E, c), together with a relatively small
subset of terminals K ⊆ V . The goal is to shrink the graph while preserving
properties involving the terminals. For example, in Cut Sparsification one wants
to construct a graph H = (VH , EH , cH) (with K ⊆ VH) such that H preserves
mincuts between terminals up to some approximation factor q (the quality).

Hagerup et al. [9] introduced this concept under the term Mimicking Net-
works, and focused on constructing a (small) graph H that maintains mincuts
exactly. They showed that one can obtain H with O(22

k

) vertices, where k = |K|.
Krauthgamer and Rika [13] and Khan and Raghavendra [11] independently
proved that 2Ω(k) vertices are required for some graphs if we want to preserve
mincuts exactly.
c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 103–115, 2017.
DOI: 10.1007/978-3-319-51741-4 9

104 G. Goranci and H. Räcke

Moitra [16] analyzed the setting where the graph H is as small as
possible, namely VH = K. Under this condition, he obtained a quality
O(log k/ log log k) cut sparsifier. A lower bound of Ω(

√
log k/ log log k) was pre-

sented by Makarychev and Makarychev [15]. A strictly stronger notion than a
cut sparsifier, is a flow sparsifier that aims at (approximately) preserving all
multicommodity flows between terminals. The upper bound of [16] also holds
for this version, but the lower bound is slightly stronger: Ω(

√
log k/ log log k).

Due to the lower bounds on the quality of sparsifiers with VH = K, the recent
focus has been on obtaining better guarantees with slightly larger sparsifiers.
Chuzhoy [7] obtained a constant quality flow sparsifier of size CO(log log C), where
C is the total weight of the edges incident to terminal nodes. Andoni et al. [3]
obtained quality of (1 + ε) and size O(poly(k/ε)) for quasi-bipartite graphs, i.e.,
graphs where the terminals form an independent set. This is interesting since
these graphs serve as a lower bound example for Mimicking Networks, i.e., in
order to obtain an exact sparsifier one needs size at least 2Ω(k).

In this paper we study flow and cut sparsifiers for trees. Since, for tree net-
works it is immediate to obtain a sparsifier of size O(k) and quality 1, we consider
the problem of designing flow and cut sparsifiers with VH = K as in the original
definition of Moitra. In Sect. 2 we show how to design such a flow sparsifier for
unweighted trees with quality 2. In Sect. 3 we prove that this result is essen-
tially tight by establishing a lower bound. Concretely, we prove that even for
unweighted stars it is not possible to obtain cut sparsifiers with quality 2− o(1).

As a further applicaton of our techniques, we apply them to quasi-bipartite
graphs. We first obtain a 2-quality flow sparsifier with VH = K for such graphs.
In addition we explore the other extreme and construct exact sparsifiers of size
O(2k), if the input graph is unweighted. This shows that even though quasi-
bipartite graphs serve as lower bound instances for Mimicking Networks they
are not able to close the currently large gap between the upper bound of O(22

k

)
and the lower bound of 2Ω(k) on the size of Mimicking Networks.

Finally we obtain hardness results for the problem of deciding whether a
graph H is a sparsifier for a given unweighted tree T . We prove that this problem
is co-NP-hard for cut sparsifiers, based on Chekuri et al. [5]. For flow sparsifiers
we show that for a single-source version, where the sparsifier has to preserve flows
in which all demands share a common source, the problem is co-NP-hard. Due
to space limitations the hardness results have been deferred to the full version.

1.1 Preliminaries

Let G = (V,E, c) be an undirected graph with terminal set K ⊂ V of cardinality
k, where c : E → R

+ assigns a non-negative capacity to each edge. We present
two different ways to sparsify the number of vertices in G.

Let U ⊂ V and S ⊂ K. We say that a cut (U, V \ U) is S-separating if it
separates the terminal subset S from its complement K \ S, i.e., U ∩ K is either
S or K \ S. The cutset δ(U) of a cut (U, V \ U) represents the edges that have
one endpoint in U and the other one in V \ U . The cost capG(δ(U)) of a cut
(U, V \ U) is the sum over all capacities of the edges belonging to the cutset.

Vertex Sparsification in Trees 105

We let mincutG(S,K \S) denote the S-separating cut of the minimum cost in G.
A graph H = (VH , EH , cH), K ⊂ VH is a vertex cut sparsifier of G with quality
q ≥ 1 if: ∀S ⊂ K, mincutG(S,K\S) ≤ mincutH(S,K\S) ≤ q·mincutG(S,K\S).

We say that a (multi-commodity) flow f is a routing of the demand function
d, if for every terminal pair (x, x′) it sends d(x, x′) units of flow from x to x′. The
congestion of an edge e ∈ E incurred by the flow f is defined as the ratio of the
total flow sent along the edge to the capacity of that edge, i.e., f(e)/c(e). The
congestion of the flow f for routing demand d is the maximum congestion over
all edges in G. We let congG(d) denote the minimum congestion over all flows.
A graph H = (VH , EH , cH), K ⊂ VH is a vertex flow sparsifier of G with quality
q ≥ 1 if for every demand function d, congH(d) ≤ congG(d) ≤ q · congH(d).

We use the following tools about sparsifiers throughout the paper.

Lemma 1 [14]. If H = (VH , EH , cH), VH = K is a vertex flow sparsifier of
G, then the quality of H is q = congG(dH), where dH(x, x′) := cH(x, x′) for all
terminal pairs (x, x′).

Let G1 and G2 be graphs on disjoint set of vertices with terminals K1 =
{s1, . . . , sk} and K2 = {t1, . . . , tm}, respectively. In addition, let φ(si) = ti,
for all i = 1, . . . , �, be a one-to-one correspondence between some subset of K1

and K2. The φ-merge (or 2-sum) of G1 and G2 is the graph G with terminal
set K = K1 ∪{t�+1, . . . , tm} formed by identifying the terminals si and ti for all
i = 1, . . . , �. This operation is denoted by G := G1 ⊕φ G2.

Lemma 2 ([3], Merging). Let G = G1 ⊕φ G2. Suppose G′
1 and G′

2 are flow
sparsifiers of quality q1 and q2 for G1 and G2, respectively. Then G′ = G′

1 ⊕φ G′
2

is a flow sparsifier of quality max{q1, q2} for G.

Lemma 3 (Convex Combination of Sparsifiers). Let Hi = (V ∗, Ei, ci),
i = 1, . . . , m with K ⊂ V ∗ be vertex flow sparsifiers of G. In addition, let
α1, α2, ..., αm be convex multipliers corresponding to Hi’s such that

∑
i αi = 1.

Then the graph H ′ =
∑

i αi · Hi is a vertex flow sparsifier for G.

2 Improved Vertex Flow Sparsifiers for Trees

In this section we show that given an unweighted tree T = (V,E), K ⊂ V , we
can construct a flow sparsifier H only on the terminals, i.e., V (H) = K, with
quality at most 4. We then further improve the quality to 2. The graph H has
the nice property of being a convex combination of trees.

We obtain the quality of 4 by combining the notion of probabilistic map-
pings due to Andersen and Feige [2] and a duality argument due to Räcke [17].
Our result then immediately follows using as a black-box an implicit result of
Gupta [8]. We note that a direct application of the Transfer Theorem due to
Andersen and Feige [2] does not apply, since their interchangeability argument
relies on arbitrary capacities and lengths.

Let w : E → R≥0 be a function which assigns non-negative values to edges
which we refer to as lengths. Given a tree T = (V,E,w) we use dw : V ×V → R≥0

106 G. Goranci and H. Räcke

to denote the shortest path distance induced by the edge length w. A 0-extension
of a tree T = (V,E), K ⊂ V is a retraction f : V → K with f(x) = x, for all
x ∈ K, along with another graph H = (K,EH) such that EH = {(f(u), f(v)) :
(u, v) ∈ E}. The graph H is referred to as a connected 0-extension if in addition
we require that f−1(x) induces a connected component in T .

Given a graph G = (V,E), we let P be a collection of multisets of E, which
will be usually referred to as paths. A mapping M : E → P maps every edge e to
a path P ∈ P. This mapping can be alternatively represented as a non-negative
square matrix M of dimension |E| × |E|, where M(e′, e) is the number of times
edge e lies on the path M(e′). Let M denote the collection of mappings M . If
we associate to each mapping M ∈ M a convex multiplier λM , the resulting
mapping is referred to as a probabilistic mapping.
Connected 0-Extension Embedding on Trees. Suppose we are given a tree
T = (V,E), K ⊂ V and a connected 0-extension (H, f), where H = (K,EH) and
f is a retraction. Given an edge (u, v) ∈ E from T , we can use the retraction f to
find the edge (f(u), f(v)) in H (if u and v belong to different components). Since
this edge is not an edge of the original tree T , we need a way to map it back to
T in order to be consistent with our definition of mappings. The natural thing
to do is to take the unique shortest path between f(u) and f(v) in T . Denote
by ST

u,v all the edges in the shortest path between u and v in T . Then, we let
MH,f ((u, v)) = ST

f(u),f(v) be the mapping MH,f : E → P induced by (H, f).
Let H be the family of all connected 0-extensions for T , which are also trees.

We then define the collection of mappings M for T by {MH,f : H ∈ H}.
Capacity Mappings. Given a tree T = (V,E, c), c : E → R

+ and a
connected 0-extension (H, f), the load of an edge e ∈ E under (H, f) is
loadf (e) =

∑
e′ MH,f (e′, e) · c(e′). The expected load of an edge e ∈ E under

a probabilistic mapping is
∑

i λi loadfi
(e).

Distance Mappings. Given a tree T = (V,E,w), w : E → R
+ and a connected

0-extension (H, f), the mapped length of an edge e′ = (u′, v′) ∈ E under (H, f)
is dw(f(u′), f(v′)) =

∑
e MH,f (e′, e) · w(e). The expected mapped length of an

edge e′ = (u′, v′) ∈ E under a probabilistic mapping is
∑

i λidw(fi(u′), fi(v′)).
With the above definitions in mind, for some given tree T = (V,E, c), we can

find a flow sparsifiers that is a convex combination of connected 0-extensions
using the following linear program, and its dual.

min α

s.t. ∀e
∑

i λi · loadfi
(e) ≤ α · c(e)

∑
i λi ≥ 1

∀i λi ≥ 0.

min β

s.t. ∀i
∑

e w(e) · loadfi
(e) ≥ β (∗)

∑
e w(e) · c(e) ≤ 1

∀e w(e) ≥ 0.

Next, we re-write the dual constraints of type (∗) as follows:
∑

ew(e) loadfi
(e) =

∑
e w(e)

∑
e′ MH,fi

(e′, e) · c(e′)
=

∑
e′ c(e′) (

∑
e MH,fi

(e′, e) · w(e)) =
∑

e′=(u′,v′) c(e′) · dw(fi(u′), fi(v′)).

Vertex Sparsification in Trees 107

Using this re-formulation and a few observations, the dual is equivalent to:

max
w≥0

min
i

∑

e=(u,v)
c(e) · dw(fi(u), fi(v)) /

∑

e
w(e) · c(e). (1)

For the unweighted case c(e) = 1, we can make use of the following lemma:

Lemma 4 [8, Lemma 5.1]. Given a tree T = (V,E,w), K ⊂ V , we can find a
connected 0-extension f such that

∑
e=(u,v) dw(f(u), f(v)) ≤ 4 · ∑

e we.

The above lemma tells us that optimal value of (1) is bounded by 4. This implies
that the optimal value of the dual is bounded by 4, and by strong duality, the
optimal value of the primal is also bounded by 4. The latter implies that T
admits a 4-quality vertex sparsifier of size k.

2.1 Obtaining Quality 2

Next we show how to bring down the quality of flow sparsifiers on trees to 2.
We give a direct algorithm that constructs a flow sparsifiers and unlike in the
previous subsection, it does not rely on the interchangeability between distances
and capacities. We first consider trees where terminals are the only leaf nodes,
i.e., L(T) = K. Later we show how to extend the result to arbitrary trees.

To convey some intuition, we start by presenting the deterministic version
of our algorithm. We maintain at any point of time a partial mapping f–setting
f(v) =⊥, when f(v) is still undefined, but producing a valid connected 0-
extension when the algorithm terminates. Note that f(x) = x, for all x ∈ K.
Without loss of generality, we may assume that the tree is rooted at some non-
terminal vertex and the child-parent relationships are defined. The algorithm
works as follows: it repeatedly picks a non-terminal v farthest from the root
and maps it to one of its children c, i.e., f(v) = f(c)1 (we refer to such proce-
dure as Algorithm 1. This process results in a flow sparsifier that is a connected
0-extension.

Unfortunately, the quality of the sparsifier produced by the above algorithm
can be very poor. To see this, consider an unweighted star graph S1,k, where
leaves are the terminal vertices and the center is the non-terminal vertex v. Any
connected 0-extension of S1,k is a new star graph S1,k−1 lying on the terminals,
where the center is the terminal x with f(v) = x. Now, consider a demand
function d that sends a unit flow among all edges in S1,k−1. Clearly, d can be
feasibly routed in S1,k−1. But routing d in S1,k gives a load of at least k − 1
along the edge (x, v), and thus the quality of S1,k−1 is at least k − 1 (Lemma 1).

One way to improve upon the quality is to map the non-terminal v uniformly
at random to one of the terminals. We can equivalently view this as taking con-
vex combination over all possible connected 0-extensions of S1,k. By Lemma 3
we know that such a convex combination gives us another flow sparsifier for S1,k,
and it can be checked that the quality of such a sparsifier improves to 2. Surpris-
ingly, we show that applying this trivial random-mapping of non-terminals in
1 Alternatively, one can view this step as contracting an arbitrary child-edge of v.

108 G. Goranci and H. Räcke

trees with terminals as leaves leads to a flow sparsifier H which is a random con-
nected 0-extension and achieves similar guarantees. We refer to such procedure
as Algorithm 2.

To compute the quality of H as a flow sparsifier for T , we need to bound
the congestion of every edge of T incurred by the embedding of H into T . This
embedding routes the capacity of every terminal edge (x, x′) in H along the
(unique) shortest paths between leaves x and x′ in T . First, we crucially observe
that without loss of generality, it suffices to bound the load of the edges incident
to the terminals, i.e., edges incident to leaf vertices. To see this, let (u, v) be
an edge among non-terminals in T , with v being the parent of u. Now, when
embedding H into T , we know that the demands among all terminal pairs that
lie in the subtree T (u) rooted at u cannot incur any load on the edge (u, v), as
these terminal shortest paths do not use this edge. Thus, we can safely replace
the subtree T (u) with some dummy terminal and perform the analysis as before.

First, we study edge loads under deterministic connected 0-extensions. Let
e = (x, v) be the edge incident to x ∈ K, mx denote the level of x in T and
{x, vmx−1, . . . , v0} be the set of vertices belonging to the shortest path between
x and the root r = v0 in T . Given a connected 0-extension fi output by Algo-
rithm 1, we say that x is expanded up to the �-th level if fi(vj) = x, for all
j ∈ {mx, . . . , �}. This leads to the following lemma.

Lemma 5. Let e = (x, v) be the edge incident to x ∈ K, (Hi, fi) be a connected
0-extension and recall that empty sum is defined as 0. If x is expanded up to the
�-th level, then the load of e under (Hi, fi) is loadfi

(e) ≤ 1+
∑mx−1

j=� (cj −1), � ∈
{mx, . . . , 0}, where cj denotes the number of children of non-terminal vj in T .

Let Ix
� = {(Hi, fi)} be the set of connected 0-extensions output by Algorithm 1

where x is expanded up to the �-th level. We observe that the edge e has the same
load regardless of which element of Ix

� we choose. Thus, for any (Hi, fi) ∈ Ix
� ,

we can write load�(e) = loadfi
(e).

Now, we study the expected edge loads under the random connected 0-
extension output by Algorithm 2. Let N be the number of all different connected
0-extensions that can be output by Algorithm 1. If by Zx

� we denote the event
that x is expanded up to the �-th level, then it follows that the expected load
E[loadf (e)] of e = (x, v) under (H, f) is

N∑

i=1

loadfi
(e)/N =

mx∑

�=0

of fi’s s.t. Zx
�

N
· load�(e) =

mx∑

�=0

P[Zx
�] · load�(e). (2)

Since in Algorithm 2 all non-terminals are mapped independently of each other,
we obtain P[Zx

�] = (1 − 1/c�−1)
∏mx−1

j=� 1/cj , � ∈ {mx, . . . , 1} (recall that the
empty product is defined as 1). Further, observe that P[Zx

0] = 1/
∏mx−1

j=0 cj .
Plugging the probabilities and Lemma5 in (2), we get that E[loadf (e)] is

1
∏mx−1

j=0 cj

(
1 +

mx−1∑

j=0

(cj − 1)
)

+
mx∑

�=1

(1 − 1/c�−1)
mx−1∏

j=�

1
cj

(
1 +

mx−1∑

j=�

(cj − 1)
)

.

Vertex Sparsification in Trees 109

Next, we rewrite the above as A/B, where B =
∏mx−1

j=0 cj and A is given by

1+
mx−1∑

j=0

(cj −1)+
mx−1∑

�=1

(c�−1 −1)
�−2∏

j=0

cj

(
1+

mx−1∑

j=�

(cj −1)
)

+(cmx−1 −1)
mx−2∏

j=0

cj .

The following lemma simplifies the middle expression of A.

Lemma 6. For any positive integers {c0, . . . , cmx−1} and mx ≥ 3,

mx−1∑

�=1

(c�−1 −1)
�−2∏

j=0

cj

(
1+

mx−1∑

j=�

(cj −1)
)

= (cmx−1 +1)
mx−2∏

�=0

c� −
mx−1∑

�=0

(c� −1)−2.

Proof. Let P (mx − 1) be the left-hand side expression in the statement of the
lemma. We proceed by induction on mx. For the base case mx = 3, it is easy to
argue that the claim is valid. If we assume that the lemma holds true for mx −1,
then we get that:

P (mx) =
mx−1∑

�=1

(c�−1 − 1)
�−2∏

j=0

cj

(
1 +

mx−1∑

j=�

(cj − 1) + (cmx
− 1)

)

+ (cmx−1 − 1)
mx−2∏

j=0

cj

(
(cmx

− 1) + 1
)

=
mx−1∑

�=1

(c�−1 − 1)
�−2∏

j=0

cj

(
1 +

mx−1∑

j=�

(cj − 1)
)

+ (cmx
− 1)

mx∑

�=1

(c�−1 − 1)
�−2∏

j=0

cj + (cmx−1 − 1)
mx−2∏

j=0

cj .

(3)

Note that the following expression is a simple telescoping series:

mx∑

�=1

(c�−1 − 1)
�−2∏

j=0

cj =
mx−1∏

�=0

c� − 1. (4)

Plugging this into Eq. (3) and using induction hypothesis gives:

P (m) = (cmx−1 + 1)
mx−2∏

�=0

c� −
mx−1∑

�=0

(c� − 1) − 2 + (cmx
− 1)

(mx−1∏

�=0

c� − 1
)

+ (cmx−1 − 1)
mx−2∏

j=0

cj = (cmx
+ 1)

mx−1∏

�=0

c� −
mx∑

�=0

(c� − 1) − 2.

This completes the induction step, and hence the proof of the lemma. ��
Now, plugging the above lemma in A we get that A = 2B − 1. Thus,

E[loadf (e)] = (2B − 1)/B ≤ 2. Since we consider only unweighted trees, it
follows that the expected congestion of every edge is also bounded by 2. Taking
the maximum over all edge congestions yields the following:

110 G. Goranci and H. Räcke

Lemma 7. Given a tree T = (V,E), K ⊂ V , L(T) = K, there is a 2-quality
flow sparsifier H, which is a convex combination over connected 0-extensions.

Derandomization. Next we show that Algorithm 2 can be easily derandomized.
We obtain a deterministic algorithm that runs O(n+k2α(2k)) time and gives the
same guarantees as in Lemma 7, where α(·) is the inverse Ackermann function.

We first give an O(n) time preprocessing step. For a tree T = (V,E), K ⊂ V ,
L(T) = K, we repeatedly contract edges incident to non-terminals of degree 2
in T . When all such non-terminals are deleted from T , our new tree can have at
most 2k vertices. Note that this tree exactly preserves all flows among terminals.

Now, we crucially observe that in the flow sparsifier H output by Algorithm 2,
the capacity between any two terminals x and x′ is exactly the probability that
x and x′ are connected under the random mapping f . We next show that this
probability can be computed efficiently.

Let (x, x′) be any terminal pair, lca(x, x′) denote their lowest common
ancestor in T and r denote the level of lca(x, x′) in T . Moreover, let V x

r =
{x, vmx−1, . . . , vr}, vr = lca(x, x′), be the set of vertices belonging to the shortest
path between x and the lca(x, x′). Similarly, define V x′

r = {x′, v′
mx′ −1, . . . , vr}.

Since in Algorithm 2 all non-terminals are mapped independently of each other,
we obtain

P[(f(x), f(x′)) ∈ EH] = 2 · P[f(vr) = x] · P[f(v) = x, ∀v ∈ V x
r−1]

· P[f(v′) = x′, ∀v′ ∈ V x′
r−1] =

2
cr

· ∏mx−1
j=r

1
cj

∏mx′−1
j=r

1
c′
j
.

(5)

where cj , c′
j are the number of children of the non-terminal vj , v′

j , respectively.
The above expression suggest that one should build an efficient data-structure

for T that answers queries of the form “What is the product of the elements
associated with vertices along the path from x to x′ in T?”. This problem is
known as The Tree Product Query problem. For an arbitrary tree with n vertices,
Alon and Schieber [1] show that in order to answer each Tree Product query in
at most O(α(n)) steps, an O(n) preprocessing time is sufficient.

Now we are ready to give our deterministic procedure. We first apply our
initial preprocessing step in O(n) time. Since the resulting tree has at most 2k
vertices, it takes O(k) time to preprocess the tree such that every internal vertex
knows the number of its children. Next, using O(k) preprocessing, we build a
data-structure for the Tree Product Query problem. Now, for every terminal
pair (x, x′) we can compute in O(α(2k)) time the capacity of (x, x′) in H from
the Tree product query between x and x′ and Eq. (5). Since there are at most
O(k2) terminal pairs, we get a running time of O(n + k2α(2k)). The correctness
is immediate from the above observations.
Extension to Arbitrary Trees. The above algorithm can be extended to
arbitrary trees (deferred to the full version). This leads to the following theorem:

Theorem 1. Given an unweighted tree T = (V,E), K ⊂ V , there exists a 2-
quality flow sparsifier H. Moreover, H can be viewed as a convex combination
over connected 0-extensions of T .

Vertex Sparsification in Trees 111

3 Lower Bound

In this section we present a 2 − o(1) lower bound on the quality of any cut spar-
sifier for a star graph. Since previous lower bounds relied on non-planar graph
instances, this is the first non-trivial lower bound for arbitrary cut sparsifiers on
planar graphs. The result extends to the stronger notion of flow sparsifiers.

The main idea behind our approach is to exploit the symmetries of the star
graph. We observe that these symmetries induce other symmetries on the cut
structure of the graph. This simplifies the structure of an optimal cut-sparsifier.

Let G = (K ∪ {v}, E), be an unweighted star with k terminals. Let π′ be
any permutation of K. We extend π′ to a permutation π of K ∪ {v} by setting
π(x) = π′(x),∀x ∈ K and π(v) = v. Now, for any U ⊂ K ∪ {v} and any such a
permutation π, we use the symmetry capG(δ(U)) = capG(δ(π(U))). The latter
implies that for any S ⊂ K, mincutG(S,K \ S) = mincutG(π(S),K \ π(S)).

For a cut sparsifier H of quality q for G, we show that π(H), i.e., the graph
obtained by renaming all vertices of H according to permutation π, is also
a cut sparsifier of quality q for G. Indeed, for any S ∈ K, capπ(H)(δ(S)) =
capH(δ(π−1(S))) ≥ mincutG(π−1(S),K \ π−1(S)) = mincutG(S,K \ S). Sym-
metrically, one can show that capπ(H)(δ(S)) ≤ q · mincutG(S,K \ S).

Lemma 8. A convex combination of any two cut sparsifiers with the same qual-
ity gives a new cut sparsifier with the same or better quality.

Lemma 9. For the star graph G defined as above, there exists an optimum cut
sparsifier H, which is a complete graph with uniform edges-weights.

Proof. First, we observe by Lemma 8 that if we have two cut sparsifiers with the
same quality, taking their convex combination gives a new cut sparsifier with the
same or better quality. Suppose we are given some optimum cut sparsifier H ′. We
can generate k! different cut sparsifiers by considering all possible permutations
π as defined above. By the above arguments, for each π, we know that π(H ′)
is also an optimum cut sparsifier. Taking the convex combination over k! such
sparsifiers, we obtain a complete graph H with uniform edge-weights. ��
Lemma 10. If H is uniform weighted complete graph that is an optimum cut
sparsifier for the star graph G and k even, the edge weight must be at least 2/k.

Proof. By definition, H must dominate the terminal cut that has k/2 vertices
on one side. The minimum value of such a cut in G is k/2. The number of edges
that cross such a cut in H is k2/4. Since H has uniform edge-weights, this gives
that the edge weight must be at least 2/k. ��
Theorem 2. Let G = (K ∪ {v}, E) be an unweighted star with k terminals.
Then, there is no cut sparsifier H that achieves quality better than 2 − o(1).

Proof. By the above lemmas, we can assume without loss of generality that H is
a complete graph with uniform edge-weights, where this edge weight is at least
2/k. Hence, a cut that has a singleton terminal vertex on one side has capacity
2(k − 1)/k = 2(1 − 1/k) in H but it has minimum cut value 1 in G. The latter
implies that the quality of H must be at least 2(1 − 1/k). ��

112 G. Goranci and H. Räcke

4 Improved Results for Quasi-Bipartite Graphs

In this section, we present two new tradeoffs for flow sparsifiers in quasi-bipartite
graphs. For this family of graphs, Andoni et al. [3] show how to obtain flow
sparsifier with very good quality and moderate size. Specifically, they obtain
an (1 + ε)-quality flow sparsifier of size Õ(k7/ε3). In the original definition of
flow sparsifiers, Leighton and Moitra [14] studied the version where sparsifiers
lie only on the terminals, i.e., VH = K. For this restricted setting, we obtain a
flow sparsifier of quality 2.

Exact Cut Sparsifier (a.k.a Mimicking Networks) were introduced by Hagerup
et al. [9]. In their work they show that general graphs admit exact cut sparsifiers
of size doubly exponential in k. As a second result, we show that unit weighted
quasi-bipartite graphs admit an exact flow sparsifier of size 2k.

A graph G with terminals K is quasi-bipartite if the non-terminals form an
independent set. Throughout this section we assume w.l.o.g. that we are given a
bipartite graph with terminals lying on one side and non-terminals in the other
(this can achieved by subdividing terminal-terminal edges).

A 2-Quality Flow Sparsifier of Size k. Assume we are given an unweighted
bipartite graph G with terminals K. The crucial observation is that we can view
G as taking union over stars, where each non-terminal is the center connected to
some subset of terminals. Lemma 2 allows us to study these stars independently.
Then, for every such star, we apply Lemma 7 to obtain a flow sparsifier only on
the terminals belonging to that star. Finally, we merge the resulting sparsifiers
and construct a sparsifier H with V (H) = K by another application of Lemma7.
Since the quality of every star in isolation is 2 or better, H is also a 2-quality
flow sparsifier.

We note that Lemma 7 only works for unweighted trees. There is an easy
extension that gives a similar lemma for weighted stars.

Lemma 11. Let G = (K ∪ {u}, E, c) be a weighted star with k terminals. Then
G admits a 2-quality flow sparsifier H of size k.

Applying the decomposition and merging lemma similarly to the unweighted
case leads to the following theorem:

Theorem 3. Let G = (V,E, c) with K ⊂ V be a weighted quasi-bipartite graph.
Then G admits a 2-quality flow sparsifier H of size k.

An Exact Flow Sparsifier of Size 2k . In what follows it will be convenient
to work with an equivalent definition for Flow Sparsifiers. Let λG(d) denote the
maximum fraction of concurrent flow when routing demand d among terminals
in graph G. Then H = (VH , EH , cH) with K ⊂ VH is a flow sparsifier of G with
quality q ≥ 1 if for all demand functions d, λG(d) ≤ λH(d) ≤ q · λG(d).

The high level idea of our approach is to create “types” for non-terminals
and then merge all non-terminals of the same type into a single non-terminal
(i.e., add infinity capacity among all non-terminals of the same type). The main
difficulty is to define the right types and show that the merging does not affect the

Vertex Sparsification in Trees 113

multi-commodity flow structure among the terminals. A similar approach was
developed by Andoni et al. [3], but their guarantees applies only to approximate
flow sparsifier.

We start by defining types. We say that two non-terminals u, v are of the
same type if they are incident to the same subset of terminals. Non-terminals
of the same type form groups. Note that a non-terminal belongs to an unique
group. The size of the group is the number of non-terminals belonging to that
group. Since the set of non-terminals is an independent set, by Lemma 2, we can
construct sparsifiers for each group independently. Our final sparsifier is obtained
by merging the sparsifiers over all groups. By another application of Lemma2,
if the sparsifiers of the groups are exact flow sparsifiers, then the final sparsifier
is also an exact flow sparsifier for the original graph.

Next, if we replace each group by a single non-terminal, then the size guaran-
tee of the final sparsifier follows from the fact that there are at most 2k different
subsets of terminals. Below we formalize the merging operation within groups.

Let Gi = (K ′ ∪ {v1, . . . , vni
}, Ei, c) be a group of size ni ≥ 2, where Ei =

{{vj , x} : j ∈ {1, . . . , ni}, x ∈ K ′}, K ′ ⊆ K and c(e) = 1, e ∈ Ei. We get:

Lemma 12. Let Gi with K ′ ⊂ V (Gi) be a group of size ni ≥ 2 defined as above.
Then Gi can be replaced by a star Hi = (K ′ ∪ {v1}, EHi

, cHi
) with edge weights

cHi
(e) = ni, for all e ∈ EHi

, and which preserves exactly all multicommodity
flows between terminals from K ′.

Taking the union over all sparsifiers Hi leads to the following theorem:

Theorem 4. Let G = (V,E) with K ⊂ V be a unit weighted quasi-bipartite
graph. Then G admits an exact flow sparsifier H of size at most 2k.

Proof (Lemma 12). First, observe that we can think of Hi as adding infinity
capacity edges between non-terminals in Gi. Then merging into a single non-
terminal is done by simply adding edge weights incident to the same terminal.
More precisely, let EHi

= {(vr, vs) : r, s = 1, . . . , ni, r �= s}. Then, we can
assume that Hi = (K ′ ∪ {v1, . . . vni

}, Ei ∪ EHi
, cHi

) where cHi
(e) = c(e) if

e ∈ Ei and cHi
(e) = ∞ if e ∈ EHi

.
Since we can route every feasible demand from Gi in Hi even without using

the infinity-capacity edges, it is immediate that for any demand function d,
λHi

(d) ≥ λGi
(d). Thus, we only need to show that λHi

(d) ≤ λGi
(d). To achieve

this, we will use the dual to the maximum concurrent flow problem (i.e., the
Fractional Sparsest Cut Problem). The dual problem is the following2:

min
∑ni

j=1

∑
x∈K′ �vjx

s. t. �svj
+ �vjt ≥ δst ∀{s, t} ∈ (

K′

2

)
, ∀j ∈ {1, . . . , ni}∑

{s,t}∈(K′
2) dstδst ≥ 1

�e ≥ 0, δst ≥ 0.

(6)

2 Note that the dual requires that δst is at most the length of the shortest s-t path.
In our scenario this is always a 2-hop path. Hence, the above formulation is correct.

114 G. Goranci and H. Räcke

Let d be an arbitrary demand function. Moreover, let {�e, δst} be an optimal
solution of value λGi

(d) for the LP in Eq. (6), where δst is the shortest-path
distance induced by the length assignment �. We first modify this solution and
get a new feasible solution with the same cost and a certain structure that we
will later exploit.

The modification works as follows. For every terminal we create a set of edges
incident to that terminal. Then, within each set, we replace the length of each
edge by the total average length of the group. Specifically, for every x ∈ K ′, let
Ex = {(vj , x) : j = 1, . . . , ni} be the set of edges incident to x.

The new edge lengths are defined as follows: �̃vjx =
∑

e∈Ex
�e/ni,∀x ∈

K ′,∀j = 1, . . . , ni. Let δ̃st be the new shortest-path distance induced by the
length assignment �̃. In order for {�̃e, δ̃st} to be feasible, we need to show that
δ̃ dominates δ, i.e., δ̃st ≥ δst, for every pair s, t ∈ K ′. Indeed, since edge lengths
within groups are the same, we get that for every pair s, t ∈ K ′:

δ̃st = �̃sv1 + �̃v1t =
1
ni

∑
e∈Es

�e +
1
ni

∑
e∈Et

�e =
1
ni

∑ni

j=1

(
�svj

+ �vjt

)

≥ min
j∈{1,...,ni}

{�svj
+ �vjt} ≥ δst.

Additionally, observe that the new solution has the same optimal value, namely
λ∗

G′
i
(d) =

∑ni

j=1

∑
x∈K′�vjx =

∑ni

j=1

∑
x∈K′ �̃vjx. Hence, we can assume without

loss of generality that an optimal solution satsifies: �̃v1x = . . . = �̃vni
x, ∀x ∈ K ′.

Now, we add edges (vi, vj) to Gi and set �̃vivj
= 0, for all i, j = 1, . . . , ni. Note

that shortest-path distances δ̃st do not change by this modification. Therefore,
by adding these zero edge lengths between the non-terminals, we still get an
optimum solution {�̃e, δ̃st} for the LP in (6).

Finally, let us define the dual problem for the star Hi:

min
∑ni

j=1

∑
x∈K′ �vjx

s. t.
∑

e∈Pst
�e ≥ δst ∀{s, t} ∈ (

K′

2

)
, ∀s-t paths on E ∪ EHi

∑
{s,t}∈(K′

2) dstδst ≥ 1

�e ≥ 0, δst ≥ 0, ∀e ∈ EHi
�e = 0.

(7)

It follows from above that {�̃e, δ̃st} is a feasible solution for the LP in (7). Hence,
λHi

(d) ≤ λGi
(d), what we were after. ��

References

1. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product
queries. Technical report, Tel Aviv University (1987)

2. Andersen, R., Feige, U.: Interchanging distance and capacity in probabilistic map-
pings. CoRR, arXiv:abs/0907.3631 (2009)

3. Andoni, A., Gupta, A., Krauthgamer, R.: Towards (1+ ε)-approximate flow spar-
sifiers. In: Proceedings of the 25th SODA, pp. 279–293 (2014)

http://arxiv.org/abs/abs/0907.3631

Vertex Sparsification in Trees 115

4. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n2) time. In:
Proceedings of the 28th STOC, pp. 47–55 (1996)

5. Chekuri, C., Shepherd, F.B., Oriolo, G., Scutellà, M.G.: Hardness of robust network
design. Networks 50(1), 50–54 (2007)

6. Cheung, Y.K., Goranci, G., Henzinger, M.: Graph minors for preserving terminal
distances approximately - lower and upper bounds. In: Proceedings of the 43rd
ICALP, pp. 131:1–131:14 (2016)

7. Chuzhoy, J.: On vertex sparsifiers with steiner nodes. In: Proceedings of the 44th
STOC, pp. 673–688 (2012)

8. Gupta, A.: Steiner points in tree metrics don’t (really) help. In: Proceedings of the
12th SODA, pp. 220–227 (2001)

9. Hagerup, T., Katajainen, J., Nishimura, N., Ragde, P.: Characterizing multitermi-
nal flow networks and computing flows in networks of small treewidth. J. Comput.
Syst. Sci. 57(3), 366–375 (1998)

10. Kamma, L., Krauthgamer, R., Nguyen, H.L.: Cutting corners cheaply, or how to
remove steiner points. SIAM J. Comput. 44(4), 975–995 (2015)

11. Khan, A., Raghavendra, P.: On mimicking networks representing minimum termi-
nal cuts. Inf. Process. Lett. 114(7), 365–371 (2014)

12. Krauthgamer, R., Nguyen, H.L., Zondiner, T.: Preserving terminal distances using
minors. SIAM J. Discrete Math. 28(1), 127–141 (2014)

13. Krauthgamer, R., Rika, I.: Mimicking networks and succinct representations of
terminal cuts. In: Proceedings of the 24th SODA, pp. 1789–1799 (2013)

14. Leighton, F.T., Moitra, A.: Extensions and limits to vertex sparsification. In: Pro-
ceedings of the 42nd STOC, pp. 47–56 (2010)

15. Makarychev, K., Makarychev, Y.: Metric extension operators, vertex sparsifiers
and lipschitz extendability. In: Proceedings of the 51th FOCS, pp. 255–264 (2010)

16. Moitra, A.: Approximation algorithms for multicommodity-type problems with
guarantees independent of the graph size. In: Proceedings of the 50th FOCS (2009)

17. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in
networks. In: Proceedings of the 40th STOC, pp. 255–264 (2008)

18. Räcke, H., Shah, C., Täubig, H.: Computing cut-based hierarchical decompositions
in almost linear time. In: Proceedings of the 25th SODA, pp. 227–238 (2014)

19. Spielman, D.A., Teng, S.: Spectral sparsification of graphs. SIAM J. Comput.
40(4), 981–1025 (2011)

	Vertex Sparsification in Trees
	1 Introduction
	1.1 Preliminaries

	2 Improved Vertex Flow Sparsifiers for Trees
	2.1 Obtaining Quality 2

	3 Lower Bound
	4 Improved Results for Quasi-Bipartite Graphs
	References

