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Abstract. In the firefighter problem on trees, we are given a tree
G = (V, E) together with a vertex s ∈ V where the fire starts spread-
ing. At each time step, the firefighters can pick one vertex while the fire
spreads from burning vertices to all their neighbors that have not been
picked. The process stops when the fire can no longer spread. The objec-
tive is to find a strategy that maximizes the total number of vertices that
do not burn. This is a simple mathematical model, introduced in 1995,
that abstracts the spreading nature of, for instance, fire, viruses, and
ideas. The firefighter problem is NP-hard and admits a (1−1/e) approx-
imation via LP rounding. Recently, a PTAS was announced in [1].(The
(1 − 1/e) approximation remained the best until very recently when
Adjiashvili et al. [1] showed a PTAS. Their PTAS does not bound the
LP gap.)

The goal of this paper is to develop better understanding on the power
of LP relaxations for the firefighter problem. We first show a matching
lower bound of (1 − 1/e + ε) on the integrality gap of the canonical LP.
This result relies on a powerful combinatorial gadget that can be used to
derive integrality gap results in other related settings. Next, we consider
the canonical LP augmented with simple additional constraints (as sug-
gested by Hartke). We provide several evidences that these constraints
improve the integrality gap of the canonical LP: (i) Extreme points of
the new LP are integral for some known tractable instances and (ii) A
natural family of instances that are bad for the canonical LP admits
an improved approximation algorithm via the new LP. We conclude by
presenting a 5/6 integrality gap instance for the new LP.

1 Introduction

Consider the following graph-theoretic model that abstracts the fire spreading
process: We are given graph G = (V,E) together with the source vertex s where
the fire starts. At each time step, we are allowed to pick some vertices in the
graph to be saved, and the fire spreads from burning vertices to their neighbors
that have not been saved so far. The process terminates when the fire can-
not spread any further. This model was introduced in 1995 [13] and has been
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used extensively by researchers in several fields as an abstraction of epidemic
propagation.

There are two important variants of the firefighters problem. (i) In the max-
imization variant (Max-FF), we are given graph G and source s, and we are
allowed to pick one vertex per time step. The objective is to maximize the num-
ber of vertices that do not burn. And (ii) In the minimization variant (Min-FF),
we are given a graph G, a source s, and a terminal set X ⊆ V (G), and we are
allowed to pick b vertices per time step. The goal is to save all terminals in X ,
while minimizing the budget b.

In this paper, we focus on the Max-FF problem. The problem is n1−ε hard
to approximate in general graphs [2], so there is no hope to obtain any reasonable
approximation guarantee. Past research, however, has focused on sparse graphs
such as trees or grids. Much better approximation algorithms are known on trees:
The problem is NP-hard [15] even on trees of degree at most three, but it admits
a (1 − 1/e) approximation algorithm. For more than a decade [2,5,6,10,14,15],
there was no progress on this approximability status of this problem, until a
PTAS was recently discovered [1].

Besides the motivation of studying epidemic propagation, the firefighter prob-
lem and its variants are interesting due to their connections to other classical
optimization problems:

– (Set cover) The firefighter problem is a special case of the maximum coverage
problem with group budget constraint (MCG) [7]: Given a collection of sets
S = {S1, . . . , Sm} : Si ⊆ X, together with group constraints, i.e. a partition
of S into groups G1, . . . , G�, we are interested in choosing one set from each
group in a way that maximizes the total number of elements covered, i.e. a
feasible solution is a subset S ′ ⊆ S where |S ′ ∩ Gj | ≤ 1 for every j, and
|
⋃

Si∈S′ Si| is maximized. It is not hard to see that Max-FF is a special case
of MCG. We refer the readers to the discussion by Chekuri and Kumar [7] for
more applications of MCG.

– (Cut) In a standard minimum node-cut problem, we are given a graph G
together with a source-sink pair s, t ∈ V (G). Our goal is to find a collection
of nodes V ′ ⊆ V (G) such that G \ V ′ has s and t in distinct connected
components. Anshelevich et al. [2] discussed that the firefighters’ solution can
be seen as a “cut-over-time” in which the cut must be produced gradually
over many timesteps. That is, in each time step t, the algorithm is allowed to
choose vertex set V ′

t to remove from the graph G, and again the final goal is
to “disconnect” s from t.1 This cut-over-time problem is exactly equivalent to
the minimization variant of the firefighter problem. We refer to [2] for more
details about this equivalence.

1.1 Our Contributions

In this paper, we are interested in developing a better understanding of the
Max-FF problem from the perspective of LP relaxation. The canonical LP
1 The notion of disconnecting the vertices here is slightly non-standard.



New Integrality Gap Results for the Firefighters Problem on Trees 67

relaxation has been used to obtain the known (1−1/e) approximation algorithm
via straightforward independent LP rounding (each node is picked independently
with probability proportional to its LP-value). So far, it was not clear whether an
improvement was possible via this LP, for instance, via sophisticated dependent
rounding schemes.2 Indeed, for the corresponding minimization variant, Min-
FF, Chalermsook and Chuzhoy designed a dependent rounding scheme for the
canonical LP in order to obtain O(log∗ n) approximation algorithm, improving
upon an O(log n) approximation obtained via independent LP rounding. In this
paper, we are interested in studying this potential improvement for Max-FF.

Our first result refutes such possibility for Max-FF: we show that the inte-
grality gap of the standard LP relaxation can be arbitrarily close to (1 − 1/e).

Theorem 1. For any ε > 0, there is an instance (G, s) (whose size depends on
ε) such that the ratio between optimal integral solution and fractional one is at
most (1 − 1/e + ε).

Our techniques rely on a powerful combinatorial gadget that can be used to
prove integrality gap results in some other settings studied in the literature. In
particular, in the b-Max-FF problem, the firefighters can pick up to b vertices
per time step, and the goal is to maximize the number of saved vertices. We
provide an integrality gap of (1 − 1/e) for the b-Max-FF problem for every
constant b ∈ N, thus matching the algorithmic result of [9]. In the setting where
an input tree has degree at most d ∈ [4,∞), we show an integrality gap result
of (1 − 1/e + O(1/

√
d)). The best known algorithmic result in this setting was

previously a (1 − 1/e + Ω(1/d)) approximation due to [14].
Motivated by the aforementioned negative results, we search for a stronger LP

relaxation for the problem. We consider adding a set of valid linear inequalities,
as suggested by Hartke [12]. We show the following evidences that the new LP
is a stronger relaxation than the canonical LP.

– Any extreme point of the new LP is integral for the tractable instances studied
by Finbow and MacGillivray [11]. In contrast, we argue that the canonical LP
does not satisfy this integrality property of extreme points.

– A family of instances, capturing the integrality gap instances of Theorem1,
admits a better than (1 − 1/e) approximation algorithm via the new LP.

– When the LP solution is near-integral, e.g. for half-integral solutions, the new
LP is provably better than the old one.

Our results are the first rigorous evidences that Hartke’s constraints lead
to improvements upon the canonical LP. All the aforementioned algorithmic
results exploit the new LP constraints in dependent LP rounding procedures.
In particular, we propose a two-phase dependent rounding algorithm, which can
be used in deriving the second and third results. We believe the new LP has an
integrality gap strictly better than (1 − 1/e), but we are unable to analyze it.

2 Cai et al. [5] claimed an LP-respecting integrality gap of (1−1/e), but many natural
rounding algorithms in the context of this problem are not LP respecting, e.g. in [6].
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Finally, we show a limitation of the new LP by presenting a family of
instances, whose integrality gap can be arbitrarily close to 5/6. This improves the
known integrality gap ratio [12], and puts the integrality gap answer somewhere
between (1 − 1/e) and 5/6. Closing this gap is, in our opinion, an interesting
open question.

Organization: In Sect. 2, we formally define the problem and present the LP
relaxation. In Sect. 3, we present the bad integrality gap instances. We present
the LP augmented with Hartke’s constraints in Sect. 4 and discuss the relevant
evidences of its power in comparison to the canonical LP. Some proofs are omit-
ted for space constraint, and are presented in the full version.

Related Results: King and MacGillivray showed that the firefighter problem
on trees is solvable in polynomial time if the input tree has degree at most three,
with the fire starting at a degree-2 vertex. From exponential time algorithm’s
perspective, Cai et al. showed 2O(

√
n log n) time, exact algorithm. The discrete

mathematics community pays particularly high attention to the firefighter prob-
lem on grids [10,16], and there has also been some work on infinite graphs [13].

The problem also received a lot of attention from the parameterized com-
plexity perspectives [3,5,8] and on many special cases, e.g., when the tree has
bounded pathwidth [8] and on bounded degree graphs [4,8].

Recent Update: Very recently, Adjiashvili et al. [1] showed a polynomial time
approximation scheme (PTAS) for the Max-FF problem, therefore settling the
approximability status. Their results, however, do not bound the LP integrality
gap. We believe that the integrality gap questions are interesting despite the
known approximation guarantees.

2 Preliminaries

A formal definition of the problem is as follows. We are given a graph G and
a source vertex s where the fire starts spreading. A strategy is described by
a collection of vertices U = {ut}n

t=1 where ut ∈ V (G) is the vertex picked by
firefighters at time t. We say that a vertex u ∈ V (G) is saved by the strategy U if
for each path P = (s = v0, . . . , vz = u) from s to u, we have vi ∈ {u1, . . . , ui} for
some i = 1, . . . , z. A vertex v not saved by U is said to be a burning vertex. The
objective of the problem is to compute U so as to maximize the total number of
saved vertices. Denote by OPT(G, s) the number of vertices saved by an optimal
solution.

When G is a tree, we think of G as being partitioned into layers L1, . . . , Lλ

where λ is the height of the tree, and Li contains vertices whose distance is
exactly i from s. Every strategy has the following structure.

Proposition 1. Consider the firefighters problem’s instance (G, s) where G is
a tree. Let U = {u1, . . . , un} be any strategy. Then there is another strategy
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U ′ = {u′
t} where u′

t belongs to layer t in G, and U ′ saves at least as many
vertices as U does.

We remark that this structural result holds only when G is a tree.

LP Relaxation: This paper focuses on the linear programming aspect of the
problem. For any vertex v, let Pv denote the (unique) path from s to v, and
let Tv denote the subtree rooted at v. A natural LP relaxation is denoted by
(LP-1): We have variable xv indicating whether v is picked by the solution, and
yv indicating whether v is saved.

(LP-1) (LP-2)

max
∑

v∈V

yv max
∑

v∈X
yv

∑

v∈Lj

xv ≤ 1 for each layer j
∑

v∈Lj

xv ≤ 1 for each layer j

yv ≤
∑

u∈Pv

xu for each v ∈ V yv ≤
∑

u∈Pv

xu for each v ∈ X

xv, yv ∈ [0, 1] for each v xv, yv ∈ [0, 1] for each v

Let LP(T, s) denote the optimal fractional LP value for an instance (T, s).
The integrality gap gap(T, s) of the instance (T, s) is defined as gap(T, s) =
OPT(T, s)/LP(T, s). The integrality gap of the LP is defined as infT gap(T, s).

Firefighters with Terminals: We consider a more general variant of the prob-
lem, where we are only interested in saving a subset X of vertices, which we call
terminals. The goal is now to maximize the number of saved terminals. An LP
formulation of this problem, given an instance (T, v,X ), is denoted by (LP-2).
The following lemma argues that these two variants are “equivalent” from the
perspectives of LP relaxation.

Lemma 1. Let (T,X , s), with |X | > 0, be an input for the terminal firefighters
problem that gives an integrality gap of γ for (LP-2), and that the value of the
fractional optimal solution is at least 1. Then, for any ε > 0, there is an instance
(T ′, s′) that gives an integrality gap of γ + ε for (LP-1).

We will, from now on, focus on studying the integrality gap of (LP-2).

3 Integrality Gap of (LP-2)

We first discuss the integrality gap of (LP-2) for a general tree. We use the
following combinatorial gadget.
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Gadget: A (M,k, δ)-good gadget is a collection of trees T = {T1, . . . , TM},
with roots r1, . . . , rM where ri is a root of Ti, and a subset S ⊆

⋃
V (Ti) that

satisfy the following properties:

– (Uniform depth) We think of these trees as having layers L0, L1, . . . , Lh, where
Lj is the union over all trees of all vertices at layer j and L0 = {r1, . . . , rm}.
All leaves are in the same layer Lh.

– (LP-friendly) For any layer Lj , j ≥ 1, we have |S ∩Lj | ≤ k (and |S ∩L0| = 0).
Moreover, for any tree Ti and a leaf v ∈ V (Ti), the unique path from ri to v
must contain exactly one vertex in S.

– (Integrally adversarial) Let B ⊆ {r1, . . . , rM} be any subset of roots. Consider
a subset of vertices U = {uj}h

j=1 such that uj ∈ Lj . For ri ∈ B and a leaf
v ∈ Lh ∩ V (Ti), we say that v is (U ,B)-risky if the unique path from ri to v

does not contain any vertex in U . There must be at least (1− 1/k − δ) |B|
M |Lh|

vertices in Lh that are (U ,B)-risky, for all choices of B and U .

We say that vertices in S are special and all other vertices are regular.

Lemma 2. For any integers k ≥ 2, M ≥ 1, and any real number δ > 0, a
(M,k, δ)-good gadget exists. Moreover, the gadget contains at most (k/δ)O(M)

vertices.

We first show how to use this lemma to derive our final construction. The
proof of the lemma follows later.

Construction: Our construction proceeds in k phases, and we will define it
inductively. The first phase of the construction is simply a (1, k, δ)-good gad-
get. Now, assume that we have constructed the instance up to phase q. Let
l1, . . . , lMq

∈ Lαp
be the leaves after the construction of phase q that all lie in

layer αq. In phase q +1, we take the (Mq, k, δ)-good gadget (Tq, {rq},Sq); recall
that such a gadget consists of Mq trees. For each i = 1, . . . , Mq, we unify each
root ri with the leaf li. This completes the description of the construction.

Denote by S̄q =
⋃

q′≤q Sq′ the set of all special vertices in the first q phases.
After phase q, we argue that our construction satisfies the following properties:

– All leaves are in the same layer αq.
– For every layer Lj , |Lj ∩ S̄q| ≤ k. For every path P from the root to v ∈ Lαi

,
|P ∩ S̄q| = q.

– For any integral solution U , at least |Lαq
| ((1 − 1/k)q − qδ) vertices of Lαq

burn.

It is clear from the construction that the leaves after phase q are all in the
same layer. As to the second property, the properties of the gadget ensure that
there are at most k special vertices per layer. Moreover, consider each path P
from the root to some vertex v ∈ Lαq+1 . We can split this path into two parts
P = P ′ ∪ P ′′ where P ′ starts from the root and ends at some v′ ∈ Lαq

, and P ′′

starts at v′ and ends at v. By the induction hypothesis, |P ′ ∩ S̄q| = q and the
second property of the gadget guarantees that |P ′′ ∩ Sq+1| = 1.
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To prove the final property, consider a solution U = {u1, . . . , uαq+1}, which
can be seen as U ′ ∪ U ′′ where U ′ = {u1, . . . , uαq

} and U ′′ = {uαq+1, . . . , uαq+1}.
By the induction hypothesis, we have that at least ((1 − 1/k)q − qδ) |Lαq

| ver-
tices in Lαq

burn; denote these burning vertices by B. The third property of the
gadget will ensure that at least (1 − 1/k − δ) |B|

Mq
|Lαq+1 | vertices in Lαq+1 must

be (U ′′,B)-risky. For each risky vertex v ∈ Lαq+1 , a unique path from the root
to v′ ∈ B does not contain any vertex in U ′, and also the path from v′ to v
does not contain a vertex in U ′′ (due to the fact that it is (U ′′,B)-risky.) This
implies that such vertex v must burn. Therefore, the fraction of burning vertices
in layer Lαq+1 is at least (1−1/k − δ)|B|/Mq ≥ (1−1/k − δ)((1−1/k)q − qδ), by
induction hypothesis. This number is at least (1−1/k)q+1−(q+1)δ, maintaining
the invariant.

After the construction of all k phases, the leaves are designated as the termi-
nals X . Also, Mq+1 ≤ (k/δ)2Mq , which means that, after k phases, Mk is at most
a tower function of (k/δ)2, that is, (k/δ)2(k/δ)···

with k−1 such exponentiations.
The total size of the construction is

∑
q(k/δ)2Mq ≤ (k/δ)2Mk = O(Mk+1).

For an example construction (k = 2), refer to the full version.

Theorem 2. A fractional solution, that assigns xv = 1/k to each special vertex
v, saves every terminal. On the other hand, any integral solution can save at
most a fraction of 1 − (1 − 1/k)k + ε.

3.1 Proof of Lemma 2

We now show that the (M,k, δ)-good gadget exists for any value of M ∈ N,
k ∈ N, k ≥ 2 and δ ∈ R>0. We first describe the construction and then show
that it has the desired properties.

Construction: Throughout the construction, we use a structure which we call
spider. A spider is a tree in which every node except the root has at most one
child. If a node has no children (i. e. a leaf), we call it a foot of the spider. We
call the paths from the root to each foot the legs of the spider.

Let D = 
4/δ�. For each i = 1, . . . , M , the tree Ti is constructed as follows.
We have a spider rooted at ri that contains kDi−1 legs. Its feet are in Di−1

consecutive layers, starting at layer αi = 1 +
∑

j<i Dj−1; each such layer has
k feet. Denote by S(i) the feet of these spiders. Next, for each vertex v ∈ S(i),
we have a spider rooted at v, having D2M−i+1 feet, all of which belong to layer
α = 1+

∑
j≤M Dj−1. The set S is defined as S =

⋃M
i=1 S(i). This concludes the

construction. We will use the following observation:

Observation 1. For each root ri, the number of leaves of Ti is kD2M .

Analysis: We now prove that the above gadget is (M,k, δ)-good. The construc-
tion ensures that all leaves are in the same layer Lα.

The second property also follows obviously from the construction: For i �= i′,
we have that S(i) ∩ S(i′) = ∅, and that each layer contains exactly k vertices
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from S(i). Moreover, any path from ri to the leaf of Ti must go through a vertex
in S(i).

The third and final property is established by the following two lemmas.

Lemma 3. For any ri ∈ B and any subset of vertices U = {uj}h
j=1 such that

uj ∈ Lj, a fraction of at least (1 − 1/k − 2/D) of S(i) are (U ,B)-risky.

Lemma 4. Let v ∈ S(i) that is (U ,B)-risky. Then at least (1− 2/D) fraction of
descendants of v in Lα must be (U ,B)-risky.

Combining the above two lemmas, for each ri ∈ B, the fraction of leaves of
Ti that are (U ,B)-risky are at least (1−1/k−2/D)(1−2/D) ≥ (1−1/k−4/D).
Therefore, the total number of such leaves, over all trees in T , are (1− 1/k − δ)
|B||Lα|/M .

We extend the construction to other settings in the full version.

4 Hartke’s Constraints

Due to the integrality gap result in the previous section, there is no hope to
improve the best known algorithms via the canonical LP relaxation. Hartke [12]
suggested adding the following constraints to narrow down the integrality gap
of the LP.

∑

u∈Pv∪(Tv∩Lj)

xu ≤ 1 for each vertex v ∈ V (T ) and layer Lj below the layer of v

We write the new LP with these constraints below:

(LP’)

max
∑

v∈V

yv

∑

u∈Pv∪(Tv∩Lj)

xu ≤ 1 for each layer j below vertex v

yv ≤
∑

u∈Pv

xu for each v ∈ V

xv, yv ∈ [0, 1] for each v

Proposition 2. Given the values {xv}v∈V (T ) that satisfy the first set of con-
straints, then the solution (x, y) defined by yv =

∑
u∈Pv

xv is feasible for (LP’)
and at least as good as any other feasible (x, y′).

In this section, we study the power of this LP and provide three evidences
that it may be stronger than (LP-1).
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4.1 New Properties of Extreme Points

In this section, we show that Finbow et al. tractable instances [11] admit a
polynomial time exact algorithm via (LP’) (in fact, any optimal extreme point
for (LP’) is integral.) In contrast, we show that (LP-1) contains an extreme point
that is not integral.

We first present the following structural lemma.

Lemma 5. Let (x,y) be an optimal extreme point for (LP’) on instance T rooted
at s. Suppose s has two children, denoted by a and b. Then xa, xb ∈ {0, 1}.

Finbow et al. Instances: In this instance, the tree has degree at most 3 and
the root has degree 2. Finbow et al. [11] showed that this is polynomial time
solvable.

Theorem 3. Let (T, s) be an input instance where T has degree at most 3 and
s has degree two. Let (x, y) be a feasible fractional solution for (LP’). Then there
is a polynomial time algorithm that saves at least

∑
v∈V (T ) yv vertices.

Bad Instance for (LP-1): We show in Fig. 1 a Finbow et al. instance as well
as a solution for (LP-1) that is optimal and an extreme point, but not integral.

ba

dc

Fig. 1. Instance with a non-integral extreme point for (LP-1). Gray vertices: xv = 1/2;
otherwise: xv = 0.

4.2 Rounding 1/2-Integral Solutions

We say that the LP solution (x, y) is (1/k)-integral if, for each v, we have xv =
rv/k for some integer rv ∈ {0, . . . , k}. By standard LP theory, one can assume
that the LP solution is (1/k)-integral for some polynomially large integer k.

In this section, we consider the case when k = 2 (1/2-integral LP solutions).
From Theorem2, (LP-1) is not strong enough to obtain a 3/4+ ε approximation
algorithm, for any ε > 0. Here, we show a 5/6 approximation algorithm based
on rounding (LP’).

Theorem 4. Given a solution (x, y) for (LP’) that is 1/2-integral, there is a
polynomial time algorithm that produces a solution of cost 5/6

∑
v∈V (T ) yv.

We believe that the extreme points in some interesting special cases will be
1/2-integral.
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Algorithm’s Description: Initially, U = ∅. Our algorithm considers the layers
L1, . . . , Ln in this order. When the algorithm looks at layer Lj , it picks a vertex
uj and adds it to U , as follows. Consider Aj ⊆ Lj , where Aj = {v ∈ Lj : xv > 0}.
Let A′

j ⊆ Aj contain vertices v such that there is no ancestor of v that belongs
to Aj′ for some j′ < j, and A′′

j = Aj \ A′
j , i.e. for each v ∈ A′′

j , there is another
vertex u ∈ Aj′ for some j′ < j such that u is an ancestor of v. We choose the
vertex uj based on the following rules:

– If there is only one v ∈ Aj , such that v is not saved by U so far, choose uj = v.
– Otherwise, if |A′

j | = 2, pick uj at random from A′
j with uniform probability.

Similarly, if |A′′
j | = 2, pick uj at random from A′′

j .
– Otherwise, we have the case |A′

j | = |A′′
j | = 1. In this case, we pick vertex uj

from A′
j with probability 1/3; otherwise, we take from A′′

j .

4.3 Ruling Out the Gap Instances in Sect. 3

In this section, we show that the integrality gap instances for (LP-1) presented
in the previous section admit a better than (1 − 1/e) approximation via (LP’).
To this end, we introduce the concept of well-separable LP solutions and show
an improved rounding algorithm for solutions in this class.

Let η ∈ (0, 1). Given an LP solution (x, y) for (LP-1) or (LP’), we say that a
vertex v is η-light if

∑
u∈Pv\{v} xu < η; if a vertex v is not η-light, we say that

it is η-heavy. A fractional solution is said to be η-separable if for each layer j,
either all vertices in Lj are η-light, or they are all η-heavy. For an η-separable LP
solution (x, y), each layer Lj is either an η-light layer that contains only η-light
vertices, or η-heavy layer that contains only η-heavy vertices.

Observation 2. The LP solution presented in Sect. 3 is η-separable for all val-
ues of η ∈ {1/k, 2/k, . . . , 1}.

Theorem 5. If the LP solution (x, y) is η-separable for some η, then there
is an efficient algorithm that produces an integral solution of cost (1 − 1/e +
f(η))

∑
v yv, where f(η) is some function depending only on η.

Algorithm: Let T be an input tree, and (x, y) be a solution for (LP’) on T
that is η-separable for some constant η ∈ (0, 1). Our algorithm proceeds in two
phases. In the first phase, it performs randomized rounding independently for
each η-light layer. Denote by V1 the (random) collection of vertices selected
in this phase. Then, in the second phase, our algorithm performs randomized
rounding conditioned on the solutions in the first phase. In particular, when
we process each η-heavy layer Lj , let L̃j be the collection of vertices that have
not yet been saved by V1. We sample one vertex v ∈ L̃j from the distribution{

xv

x(L̃j)

}

v∈L̃j

. Let V2 be the set of vertices chosen from the second phase. This

completes the description of our algorithm.
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4.4 Integrality Gap for (LP’)

In this section, we present an instance where (LP’) has an integrality gap of
5/6 + ε, for any ε > 0. Interestingly, this instance admits an optimal 1

2 -integral
LP solution.

Fig. 2. Gadget used to get 5/6 integrality gap. Special vertices are colored gray.

Gadget: The motivation of our construction is a simple gadget represented in
Fig. 2. In this instance, vertices are either special (colored gray) or regular. This
gadget has three properties of our interest:

– If we assign an LP-value of xv = 1/2 to every special vertex, then this is a
feasible LP solution that ensures yu = 1 for every leaf u.

– For any integral solution U that does not pick any vertex in the first layer of
this gadget, at most 2 out of 3 leaves of the gadget are saved.

– Any pair of special vertices in the same layer do not have a common ancestor
inside this gadget.

Our integrality gap instance is constructed by creating partially overlapping
copies of this gadget. We describe it formally below.

Construction: The first layer of this instance, L1, contains 4 nodes: two special
nodes, which we name a(1) and a(2), and two regular nodes, which we name b(1)
and b(2). We recall the definition of spider from Sect. 3.1.

Let α = 5 
1/ε�. The nodes b(1) and b(2) are the roots of two spiders. Specif-
ically, the spider Z1 rooted at b(1) has α feet, with one foot per layer, in con-
secutive layers L2, . . . , Lα+1. For each j ∈ [α], denote by b′(1, j), the jth foot of
spider Z1. The spider Z2, rooted at b(2), has α2 feet, with one foot per layer, in
layers Lα+2, . . . , Lα2+α+1. For each j ∈ [α2], denote by b′(2, j), the jth foot of
spider Z2. All the feet of spiders Z1 and Z2 are special vertices.

For each j ∈ [α], the node b′(1, j) is also the root of spider Z ′
1,j , with α2

feet, lying in the α2 consecutive layers L2+α+jα2 , . . . , L1+α+(j+1)α2 (one foot
per layer). For j′ ∈ [α2], let b′′(1, j, j′) denote the j′-th foot of spider Z ′

1,j that
lies in layer L1+α+jα2+j′ . Notice that we have α3 such feet of these spiders
{
Z ′
1,j

}α

j=1
lying in layers L2+α+α2 , . . . , L1+α+α2+α3 . Similarly, for each j ∈ [α2],

the node b′(2, j) is the root of spider Z ′
2,j with α2 feet, lying in consecutive layers
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L2+α+α3+jα2 , . . . , L1+α+α3+(j+1)α2 . We denote by b′′(2, j, j′) the j′-th foot of this
spider.

The special node a(1) is also the root of spider W1 which has α+α3 feet: The
first α feet, denoted by a′(1, j) for j ∈ [α], are aligned with the nodes b′(1, j),
i.e. for each j ∈ [α], the foot a′(1, j) of spider W1 is in the same layer as the foot
b′(1, j) of Z1. For each j ∈ [α], j′ ∈ [α2], we also have a foot a′′(1, j, j′) which
is placed in the same layer as b′′(1, j, j′). Similarly, the special node a(2) is the
root of spider W2 having α2 +α4 feet. For j ∈ [α2], spider W2 has a foot a′(2, j)
placed in the same layer as b′(2, j). For j ∈ [α2], j′ ∈ [α2], W2 also has a foot
a′′(2, j, j′) in the layer of b′′(2, j, j′). All the feet of both W1 and W2 are special
vertices.

Finally, for i ∈ {1, 2}, and j ∈ [αi], each node a′(i, j) has α5−i children,
which are leaves of the instance. For j ∈ [α], j′ ∈ [α2], the nodes b′′(i, j, j′),
a′′(i, j, j′) have α3−i children each which are also leaves of the instance. The set
of terminals X is simply the set of leaves.

Proposition 3. We have |X | = 6α5. Moreover, (i) the number of terminals
in subtrees Ta(1) ∪ Tb(1) is 3α5, and (ii) the number of terminals in subtrees
Ta(2) ∪ Tb(2) is 3α5.

Fractional Solution: Our construction guarantees that any path from root
to leaf contains 2 special vertices: For a leaf child of a′(i, j), its path towards
the root must contain a′(i, j) and a(i). For a leaf child of a′′(i, j, j′), its path
towards the root contains a′′(i, j, j′) and a(i). For a leaf child of b′′(i, j, j′), the
path towards the root contains b′′(i, j, j′) and b′(i, j).

Lemma 6. For each special vertex v, for each layer Lj below v, the set Lj ∩ Tv

contains at most one special vertex.

Notice that, there are at most two special vertices per layer. We define the
LP solution x, with xv = 1/2 for every special vertex v and xv = 0 for all other
vertices. It is easy to verify that this is a feasible solution.

Integral Solution: We argue that any integral solution cannot save more than
(1 + 5/α)5α5 terminals. The following lemma is the key to our analysis.

Lemma 7. Any integral solution U : U ∩ {a(1), b(1)} = ∅ saves at most (1 +
5/α)5α5 terminals.

Lemma 8. Any integral solution U : U ∩ {a(2), b(2)} = ∅ saves at most (1 +
5/α)5α5 terminals.

Since nodes a(1), a(2), b(1), b(2) are in the first layer, it is only possible to
save one of them. Therefore, either Lemma 7 or Lemma 8 apply, which concludes
the analysis.
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5 Conclusion and Open Problems

In this paper, we settled the integrality gap question for the standard LP relax-
ation. Our results ruled out the hope to use the canonical LP to obtain better
approximation results. While a recent paper settled the approximability status
of the problem [1], the question whether an improvement over (1 − 1/e) can be
done via LP relaxation is of independent interest. We provide some evidences
that Hartke’s LP is a promising candidate for doing so. Another interesting ques-
tion is to find a more general graph class that admits a constant approximation
algorithm. We believe that this is possible for bounded treewidth graphs.
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