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Abstract. We consider the online Dynamic Traveling Repair Problem
(DTRP) with an arbitrary size time window. In this problem we receive
a sequence of requests for service at nodes in a metric space and a time
window for each request. The goal is to maximize the number of requests
served during their time window. The time to traverse between two points
is equal to the distance. Serving a request requires unit time. Irani et al.,
SODA 2002 considered the special case of a fixed size time window. In
contrast, we consider the general case of an arbitrary size time window.
We characterize the competitive ratio for each metric space separately.
The competitive ratio depends on the relation between the minimum
laxity (the minimum length of a time window) and the diameter of the
metric space. Specifically, there exists a constant competitive algorithm
only when the laxity is larger than the diameter. In addition, we charac-
terize the rate of convergence of the competitive ratio, which approaches
1, as the laxity increases. Specifically, we provide matching lower and
upper bounds. These bounds depend on the ratio between the laxity and
the optimal TSP solution of the metric space (the minimum distance
to traverse all nodes). An application of our result improves the previ-
ously known lower bound for colored packets with transition costs and
matches the known upper bound. In proving our lower bounds we use
an embedding with some special properties.

1 Introduction

Consider an employee in the Google IT division. He is responsible for replac-
ing malfunctioning disks in Google’s huge computer farms. During his shift he
receives requests to replace disks at some points in time. Each request is associ-
ated with a deadline. If the disk will not be replaced before the deadline, there is
a high probability that the performance of the Search Engine will experience a
significant hit. Replacing a disk takes unit time (service time). However, before
the employee can replace it, he must travel from his current location to the loca-
tion of the disk. The goal is to maximize the number of disks replaced before
their deadline. What path should the employee take and how should the path
change with new requests? Irani et al., SODA 2002 [15,18] called this online
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problem the Dynamic Traveling Repair Problem (DTRP). They considered
the special case of a fixed size time window, where the window of a request
is the period between its release time and its deadline. In contrast, we consider
the general case of an arbitrary size time window. In this paper we characterize
the competitive ratio for each metric space separately. We determine whether
the competitive ratio is constant or not depending on the minimum laxity (the
minimum length of a time window) and the diameter of the metric space (the
maximum distance between nodes in the metric space). In addition, we consider
the case where the laxity is large compared to the optimal TSP solution of the
metric space (the minimum distance to traverse all nodes). Specifically, we pro-
vide matching lower and upper bounds for these cases. These bounds depend on
the ratio between the laxity and the optimal TSP solution of the metric space.

We note that even when the service time is not negligible, our problem can
be reduced to TSP with time windows and zero service time [5] by changing
the metric space. However, our competitive ratio depends on the properties of
the metric space and the reduction might change the parameters of the metric
space significantly. Hence, it might influence a crucial parameter which deter-
mines the competitive ratio. Therefore, we take service time into account in our
model. Moreover, in our main result, where the laxity is larger than the optimal
TSP solution of the metric space, without service time it is easy to design a
1-competitive algorithm by traveling over an optimal TSP solution periodically.

Offline Problem. Note that in the offline case (i.e., when the sequence is known
in advance), if the service time is negligible compared to the minimum positive
distance between nodes (or 0) then the problem becomes TSP (or vehicle rout-
ing) with time windows and zero service time [5]. Moreover, if in addition all
deadlines are the same and all release times are zero then the problem reduces to
the (offline) orienteering problem [1,3,14]. Vehicle routing problem (with time
windows and zero service time) has been extensively studied both in computer
science and the operations research literature, see [11,12,19–22]. For an arbitrary
metric space Bansal et al. [5] showed an O(log2 n)-approximation (for certain
cases a better approximation can be achieved [8]). Constant factor approxima-
tions have been presented for the case of points on a line [6,17,23]. For the
orienteering problem, i.e., all release times are zero, all deadlines are the same,
and the service time is zero, there are constant factor approximation algorithms
[5,7,9,10]. A restricted online version of the Vehicle Routing problem (without
deadlines) was considered in [2,13,16].

Application for Packet Scheduling. Another motivation for our problem is
the Colored Packets with Deadlines and Metric Space Transition Cost problem.
In this setting we are given a sequence of incoming colored packets. Each colored
packet is of unit size and has a deadline. There is a reconfiguration cost (setup
cost) to switch between colors (the cost depends on the colors). The goal is
to find a schedule that maximizes the number of packets that are transmitted
before the deadline. Note that for one color the earliest deadline first (EDF)
strategy is known to achieve an optimal throughput. The unit cost color has
been considered in [4]. In particular, when we apply our results to the uniform
metric space we improve the previous lower bound and match the known upper
bound.
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1.1 Our Results

Denote by σ the sequence of requests. The window of request i is [ri, di], where
ri is the release time of the request and di is the deadline of the request. Let
L = mini∈σ{di − ri} ≥ 1 be the minimum laxity of the requests (the minimum
length of a time window). Note that the laxity has to be at least 1 since the
service time equals 1. Denote by Δ(G) the diameter of the metric space G,
i.e., the largest distance between two nodes. Denote by TSP (G) the weight of
a minimal TSP solution in the metric space G and MST (G) the weight of a
minimal spanning tree.

In this paper we characterize when it is possible to achieve a Θ(1) competitive
algorithm for the Dynamic Traveling Repair Problem with an arbitrary time
window, and when the best competitive algorithm is unbounded. Moreover, we
characterize the rate of convergence of the competitive ratio, which approaches 1
as the laxity increases. Specifically, we provide matching lower and upper bounds
depending on the ratio between the laxity and the optimal TSP solution of the
metric space.

It is also interesting to mention that in many cases the competitive ratio of
an algorithm is computed as the supremum over all metric spaces while lower
bounds are proved for one specific metric space. In contrast, we prove more
refined results. Specifically, we show an upper bound and a lower bound for
each metric space separately. Hence, one cannot design a better competitive
algorithm for the specific metric space that one encounters in the real specific
instance. Hence, even for specific metric spaces, we show it is impossible to do
better.

We consider three cases. The last two cases are done for completeness of the
result while the first case is our main result.

– Case A: L > TSP (G). Let δ = TSP (G)/L < 1. We show a strictly larger
than 1 lower bound. Specifically, if δ ≤ 1

256 we provide a lower bound of
1 + Ω

(√
δ
)

as well as a matching upper bound of 1 + O
(√

δ
)
.

We note that without service time it is easy to design 1-competitive algorithm
by traveling over an optimal TSP solution periodically. Recall that there is a
reduction from the service time model to a model without service time that
seems to contradict the lower bound (see [5]). However, the reduction modifies
the metric space and hence increases δ such that δ is not smaller than 1

256 .
– Case B: 3Δ(G) < L ≤ TSP (G). We design a O(1)-competitive algorithm

and a 1.00054 lower bound.
– Case C: L < Δ(G)/2. For any metric space the competitive ratio of any

deterministic online algorithm is unbounded (easily proved). For randomized
algorithms the competitive ratio depends on the metric space. For example, for
a metric space which consists of 2 points one can easily show a 4-competitive
algorithm even for L = 0. In contrast, in a uniform metric space the compet-
itive ratio is at least |V | where V is the number of nodes in the metric space,
even for L < Δ(G).
Note that in the remaining cases, i.e., Δ(G)/2 ≤ L ≤ 3Δ(G), the question of
whether there exists a constant competitive algorithm depends on the met-
ric space for both deterministic and randomized algorithms. Specifically, for
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deterministic algorithms where L = Δ(G) it is easy to prove that there is
no constant competitive algorithm for the uniform metric space. In contrast,
there is a constant competitive algorithm for the line metric space. As men-
tioned above, for randomized algorithms the bound depends on the number
of nodes in the metric space for a given diameter.

Application. For the uniform metric space (when all distances are unit size),
our problem is equivalent to the Colored Packets with Deadlines problem. In
this case our result improves the lower bound of [4]. Specifically, we improve
their 1 + Ω

(
δ
)

lower bound to 1 + Ω
(√

δ
)

and match their upper bound for the
uniform metric space.

Embedding Result. One of the techniques that we use for the lower bound is
the following embedding. Let w(S) denote the weight of the star metric S (i.e.,
the sum of the weights of the edges of S). We prove that for any given metric
space G on nodes V and for any vertex v0 ∈ V there exists a star metric S with
leaves V and an embedding f : G → S from G to S (f depends on v0) such that:

1. w(S) = MST(G).
2. The weight of every Steiner tree in S that contains v0 is not larger than the

weight of the Steiner tree on the same nodes in G.

Note that this embedding is different from the usual embedding since we do
not refer specifically to distances between vertices. Typically, an embedding is
used to prove an upper bound by simplifying the metric space. In contrast, our
embedding is used to prove a lower bound.

In order to prove the lower bound we first establish it for the star metric, and
then extend it to general metric spaces. Note that a lower bound for a sub-graph
is not a lower bound for the original graph. For example, a lower bound for an
MST of a metric space G is not a lower bound for G since the algorithm may
use additional edges to reduce the transition time.

2 The Model

We formally model the Dynamic Traveling Repair Problem with an arbitrary
time window as follows. Let G = (V,w) be a given metric space where V is a set
of n nodes and w is a distance function. Let s ∈ V be a given initial node. We are
given an online sequence of requests for service. Each request is characterized
by a pair ([ri, di], vi), where ri ∈ N+ and di ∈ N+ are the respective arrival
time and deadline of the request, and vi ∈ V is a node in the metric space G.
The time to traverse from node vi to node vj is w(vi, vj). For simplicity we
assume that w(vi, vj) is integral. Serving a request at some node requires unit
size service time. The goal is to serve as many requests as possible within their
time windows [ri, di], starting from node s.

Note that when all ri are equal to 0 and all di are equal to B and the service
time is negligible the problem reduces to the well-known orienteering problem
with budget B and a prize for each node which is equal to the number of requests
at this node. That is, finding a path of total distance at most B that maximizes
the prize of all visited nodes.
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Let ALG(σ), OPT(σ) denote the respective throughput of the online, optimal
offline algorithms with respect to a sequence σ. We consider a maximization
problem and hence infσOPT(σ)/ALG(σ) ≥ 1.

3 Lower Bounds

3.1 Lower Bound for a Small Diameter Laxity Ratio
(Case A and B)

In this section we consider Cases A and B. Let δ = TSP (G)/L. If δ < 1 (Case A),
we show a strictly larger than 1 lower bound. Specifically, if δ ≤ 1

256 we provide
a lower bound of 1+Ω

(√
δ
)
. If δ > 1 (Case B) we can use requests with a laxity

of 256TSP (G) (i.e., δ = 1
256 ), and obtain a lower bound of 1.00054. Therefore,

from now on we only consider Case A.

Lower Bound for a Star Metric. In this section we consider the case where
the traveling time between nodes is represented by a star metric. This is also
equivalent to the case where the traveling time from node i is wi.

The general idea is that the adversary creates many requests with a large
deadline at node v0 at each time unit, and also blocks of fewer requests with
close deadlines at other nodes. Any online algorithm must choose between serving
many requests with a large deadline or traveling between many nodes and serving
requests with close deadlines.

Recall that w(S) denotes the weight of the star metric S (i.e., the sum of
the weights of the edges of S). Let wi denote the weight of the edge incident to
vertex vi. We define F =

√
w(S)L. Let δ = TSP(G)

L = 2w(S)
L .

Theorem 1. No deterministic or randomized online algorithm can achieve a
competitive ratio better than 1+Ω

(√
δ
)
for any given star metric S when δ ≤ 1

256 .
Otherwise, if δ > 1

256 , the bound becomes 1.00054.

Proof. Let S be a given star metric with nodes V = {v0, . . . , vn−1}. We will
construct a sequence σ(S,ALG) such that:

OPT(σ)
E(ALG(σ))

≥ min

⎧
⎨

⎩
3 − δ

3 − 1
8

(√
δ/2

) ,
3

3 − 1
4

(√
δ/2

) ,
3

3 − 1
48

(√
δ/2

)

⎫
⎬

⎭

Note that we can assume, without loss of generality, that δ ≤ 1
256 , since otherwise

one may use requests with a laxity of 256w(S) (i.e., δ = 1
256 ), and obtain a lower

bound of 1.00054. Let v0 ∈ V be a type A node and the rest of the nodes type
B. Let type A requests and type B requests refer to requests at a type A node
and type B node, respectively. We begin by describing the sequence σ(S,ALG).

Sequence Structure: Recall that each request is characterized by a pair
([ri, di], vi), where ri ∈ N+ and di ∈ N+ are the respective arrival time and dead-
line of the request, and vi is a node in S. There are up to N = L

3F = 1
3

√
L

w(S)
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blocks, where each block consists of 3F time units. Let ti = 1 + 3(i − 1)F
denote the beginning time of block i. For each block i, where 1 ≤ i ≤ N , F
requests located at various nodes arrive at the beginning of the block. Specif-
ically, wj

w(S)−w0
F type B requests ([ti, L + ti], vj), for each 1 ≤ j ≤ n − 1, are

released. A type A request ([t, 3L], v0) is released at each time unit t in each
block. Once the adversary stops the blocks, additional requests arrive (we call
this the final event). The exact sequence is defined as follows:

1. i ← 1.
2. Add block i.
3. If with probability at least 1/4 there are at least F/2 unserved type B requests

at the end of block i (denoted by Condition 1), then L requests ([ti+1, L +
ti+1], v1) are released and the sequence is terminated. Clearly, ti+1 is the time
of the final event. Denote this by Termination Case 1.

4. Else, if with probability at least 1/4, at most 2F requests are served during
block i (denoted by Condition 2), then 3L requests ([ti+1, 3L], v0) are released
and the sequence is terminated. Clearly, ti+1 is the time of the final event.
Denote this by Termination Case 2.

5. Else, if i = N (there are N blocks, none of which satisfy Conditions 1 or 2)
then 3L requests ([L+1, 3L], v0) are released, and the sequence is terminated.
Clearly, L+1 is the time of the final event. Denote this by Termination Case
3.

6. Else (i < N) then i ← i + 1, Goto 2.

We make the following observations: (i) Each block consists of 3F time units.
Hence, if ALG served at most 2F requests during a block, there must have been
at least F idle time units. (ii) There are up to 1

3

√
L

w(S) blocks and each block

consists of 3
√

w(S)L time units. Hence, the time of the final event is at most
L + 1. (iii) Exactly one type A request arrives at each time-slot until the final
event. Hence, at most L type A requests arrive before (not including) the final
event. (iv) During each block, exactly F type B requests arrive, which sum up to
at most L/3 type B requests before (not including) the final event.

Now we can analyze the competitive ratio of σ(S,ALG). Consider the follow-
ing possible sequences (according to the termination type):

1. Termination Case 1: Let Y denote the number of requests in the sequence.
According to the observations, the sequence consists of at most L type A
requests, and at most 4

3L type B requests (L/3 until the final event and L at
the final event). Hence, Y ≤ L + 4

3L ≤ 3L.
– We bound the performance of ALG: At time ti+1 there is a probability

of at least 1/4 that ALG has L+F/2 unserved type B requests. Since type
B requests have a laxity of L, ALG can serve at most L + 1 of them, and
must drop at least F/2 − 1. The expected number of served requests is

E(ALG(σ)) ≤ Y − 1
4
(F/2 − 1) = Y − 1

8
F + 1/4.

– We bound the performance of an algorithm OPT′: OPT′ serves the
requests in three stages:
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• Type B requests that arrive before the final event: Recall that
all type B requests in a block arrive at once in the beginning of the
block. In each block OPT′ first serves all requests at node v1, then all
requests at node v2, and so on. It is clear that OPT′ needs at most
F + 2w(S) time units to serve the requests (F for serving and 2w(S)
for traveling). OPT′ serves the requests starting from the beginning
of the block. Recall that L ≥ 256w(S) and F =

√
w(S)L. Therefore

2F ≥ 512w(S). Since the block’s size is 3F , there are enough time units.
Moreover, since L ≥ 256w(S), L ≥ 16

√
w(S)L = 16F > F + 2w(S).

Hence, all requests can be served before their deadline.
• Type B requests that arrive during the final event: The L

requests ([ti+1, L + ti+1], v1) that arrive during the final release time
are served by OPT′ consecutively from time ti+1. OPT′ can serve L
requests, except for one travel phase, and hence may lose at most 2w(S)
requests. According to our observations, the time of the final event ti+1

is at most L + 1. Hence, OPT′ serves all type B requests until time
unit 2L.

• Type A requests: OPT′ serves the L type A requests consecutively
from time unit 2L+1. Since the deadlines are 3L, OPT′ serves all type
A requests.

We conclude that OPT(σ) ≥ OPT′(σ) ≥ Y − 2w(S).
The competitive ratio is

OPT(σ)
E(ALG(σ))

≥ Y −2w(S)

Y − 1
8F+1/4

≥ 3L−2w(S)

3L− 1
8F+1/4

≥ 3L−2w(S)

3L− 1
8

(√
w(S)L

)
+1/4

= 1 + Ω
(√

δ
)

.

Here the second inequality holds since Y ≤ 3L, the number is above 1 and
the numerator and the denominator increase by the same value.

2. Termination Case 2: The sequence consists of more than 3L type A requests,
and all deadlines are at most 3L.
– We bound the performance of ALG: The probability that ALG was

idle for F time units is at least 1/4. Hence, the expected number of served
requests is E(ALG(σ)) ≤ 3L − 1

4F.
– We bound the performance of OPT′: At each time unit until the final

event, OPT′ serves the type A request that arrived at that particular time
unit. Consequently, from the final event until time unit 3L, OPT′ serves
the type A requests that arrived at the final event. Therefore, OPT′ serves
3L type A requests, and so OPT(σ) ≥ OPT′(σ) ≥ 3L.

The competitive ratio is

OPT(σ)
E(ALG(σ))

≥ 3L

3L − 1
4F

=
3L

3L − 1
4

(√
w(S)L

) = 1 + Ω
(√

δ
)

.

3. Termination Case 3: the sequence consists of 3L type A requests, and all
deadlines are at most 3L.
– We bound the performance of ALG: Let Ui be the event that the

number of unserved type B requests at the end of block i is less than
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F/2. If Ui occurs, then let jk, 1 ≤ k ≤ r, be the type B nodes visited by
ALG in block i. At least F/2 requests that arrived in this block have to
be served (recall that F type B requests arrive at the beginning of each
block). Therefore,

wj1

w(S) − w0
F +

wj2

w(S) − w0
F + · · · +

wjr

w(S) − w0
F ≥ F/2,

and so

wj1 + wj2 + · · · + wjr ≥ w(S) − w0

2
.

Let Ei be the event that more than 2F requests are served during block
i. If event Ui−1 and Ei occur, then there are at most 3F/2 unserved type
B requests in the beginning of block i (F arrived at the beginning of the
block and there are at most F/2 from the previous block) but more than
2F requests were served. Therefore, at least one type A request was served
during the block. Combining the results, if Ui, Ui−1, and Ei occur then:

• During block i at least (w(S)−w0)/2 time units were used for traveling
between type B nodes.

• A Type A request was served during the block.
A block i is called good if the events Ui, Ui−1, and Ei occur. For any two
(consecutive) good blocks the traveling cost is at least (w(S)−w0)/2+w0 ≥
w(S)/2. Since none of the blocks satisfy Condition 1 or 2, it follows that
for all i such that 1

3

√
L

w(S) ≥ i ≥ 1 we have: Pr[Ui] ≥ 3/4,Pr[Ui−1] ≥ 3/4,

and Pr[Ei] ≥ 3/4. Therefore:

Pr[Ui ∩ Ui−1 ∩ Ei] = 1 − Pr[¬(Ui ∩ Ui−1 ∩ Ei)]
= 1 − Pr[¬Ui ∪ ¬Ui−1 ∪ ¬Ei] ≥ 1 − 1/4 − 1/4 − 1/4 = 1/4.

The sequence consists of 1
3

√
L

w(S) blocks. Therefore, the expected number

of good blocks is 1
4 · 1

3

√
L

w(S) = 1
12

√
L

w(S) and of disjoint pairs of blocks is

1
24

√
L

w(S) . Consequently, the expected number of lost requests is at least

1
24

√
L

w(S)
w(S)
2 and of served requests is:

E(ALG(σ)) ≤ 3L − 1
48

w(S)

√
L

w(S)
= 3L − 1

48

(√
w(S)L

)
.

– We bound the performance of OPT′: At each time unit until the final
event, OPT′ serves the type A request that arrived at the same time unit.
Consequently, from the final event until time unit 3L, OPT′ serves the type
A requests that arrived at the final event. Therefore, OPT′ serves 3 L type
A requests, and so OPT ≥ OPT′ ≥ 3L.
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The competitive ratio is

OPT(σ)
E(ALG(σ))

≥ 3L

3L − 1
48

(√
w(S)L

) = 1 + Ω
(√

δ
)

.

Note that in all 3 cases we get 1 + Ω
(√

δ
)
. This completes the proof. �

The following straightforward corollary improves the lower bound of 1 +
Ω

(
C/L

)
from [4]. Recall that n is the number of nodes in the metric space.

Corollary 1. No deterministic or randomized online algorithm can achieve a
competitive ratio better than 1 + Ω

(√
n/L

)
when all traveling times takes one

unit of time and L ≥ 256n. Otherwise, if L < 256n, the bound becomes 1.00054.

Proof. Let S be a star metric such that the weight of each edge is equal to 1/2.
Clearly, traveling between any two nodes requires one time unit and w(S) = n/2.
Applying Theorem1, we obtain the lower bound of 1 + Ω

(√
n/L

)
(note that in

this case δ = n/L). �

Embedding of Metric Spaces. In this section we describe an embedding of
a general metric space into a star metric with special properties. We begin by
introducing some new definitions:

– We define w(T) =
∑

e∈V

w(e) for a rooted tree T = (V,E), and let PT(v) denote

the parent of node v in a rooted tree T.
– Let S be a star metric with a center c. We define wS(V ) =

∑

v∈V

w(c, v) =
∑

vi∈V

wi. It is clear that for a star S with leaves V , wS(V ) = w(S).

– Let TG(V ) be the minimum weight connected tree that contains the set V
(i.e., the minimum Steiner tree on these points) in the metric space G.

Recall that MST (G) denotes the weight of the minimal spanning tree (MST) in
the metric space G.

Theorem 2. For any given metric space G on nodes V and for any vertex
v0 ∈ V there exists a star metric S with leaves V and an embedding f : G → S
from G to S (f depends on v0) such that:

1. Property 1: w(S) = MST (G).
2. Property 2: For every V ′ ⊆ V such that v0 ∈ V ′, w(TG(V ′)) ≥ wS(V ′).

Proof. We prove the theorem by describing a star metric that satisfies the
required properties. Let G be a given metric space on nodes V with a vertex
v0 ∈ V . Let T be the MST for G created by applying Prims’ algorithm with
the root v0. Let S be a star metric with leaves V such that for each u ∈ V ,
wu = w(u, PT(u)). Clearly, wv0 = 0. We prove that S and v0 satisfy the theo-
rem’s properties:
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Property 1: Clearly, w(S) = w(T), and since T is a MST for G, w(S) = w(T) =
MST(G).

Property 2: Assume by a contradiction that there exists V ′ = {v0, vi1 , . . . ,

vir−1} ⊆ V such that w(TG(V ′)) < wS(V ′) =
∑r−1

j=1 w(vij , PT(vij )).

Let V ′′ = {v0, vi1 , . . . , vir−1, . . . , vik} be the vertices of TG(V ′) (note that V ′ ⊆
V ′′). Consider the following process. Let T ′ = TG(V ′). Run Prim’s algorithm
from node v0. Each time Prim’s adds a new node not in T ′, we add Prim’s edge
to T ′. Note that Prim starts from node v0 ∈ TG(V ′) and we add each node not in
T ′. Hence, when Prim’s algorithm finishes, T ′ is a tree on nodes V . Moreover, T ′
is T where edges

(
vi1 , PT(vi1)

)
, . . . ,

(
vik , PT(vik)

)
were replaced by the edges of

TG(V ′). Since we assumed that w(TG(V ′)) <
∑r−1

j=1 w(vij , PT(vij )), and clearly
∑r−1

j=1 w(vij , PT(vij )) ≤ ∑k
j=1 w(vij , PT(vij )), we have w(T ′) < w(T ). This is a

contradiction since T is an MST. �

Lower Bound for a General Metric Space. In this section we consider the
case where the traveling time between nodes is represented by a metric space G.
Note that a lower bound for a star metric space does not imply a lower bound
for a general metric space. Recall that δ = TSP(G)/L < 1.

We use the embedding from Theorem 2 to prove a 1 + Ω
(√

δ
)

lower bound.

Theorem 3. No deterministic or randomized online algorithm can achieve a
competitive ratio better than 1 + Ω

(√
δ
)
for any given metric space G, when

δ ≤ 1
256 . Otherwise, if δ > 1

256 , the bound becomes 1.00054.

3.2 Lower Bound for a Large Diameter Laxity Ratio (Case C)

In this section we consider the case where L < Δ(G)/2 (recall that Δ(G) is the
diameter and L is the laxity), and we show that the competitive ratio of any
deterministic algorithm is unbounded.

Theorem 4. No deterministic online algorithm can achieve a bounded compet-
itive ratio for any metric space in which L < Δ(G)/2.

Proof. Let G be any metric space. Every Δ(G) + 1 units of time we introduce
a request with a laxity of L to a node which is at a distance of at least Δ(G)/2
from the current location of the online algorithm (note that there is always such
a node). It is clear that the algorithm can not serve any requests while OPT can
serve all the requests. �

4 Upper Bounds

4.1 Asymptotically Optimal Algorithm for Case A

In this section we design a deterministic online algorithm, for a general metric
space. The algorithm achieves a competitive ratio of 1+o(1) when the minimum
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Fig. 1. Algorithm TSP-EDF.

laxity of the requests is asymptotically larger than the weight of the TSP (as
shown in the previous sections, this is essential).

The algorithm is a natural extension of the BG algorithm from [4]. Our algo-
rithm, which we call TSP-EDF, formally described in Fig. 1, works in phases of
K =

√
TSP(G)L time units. In each phase the algorithm serves requests node by

node. The order of the nodes is determined by the minimum TSP or an approx-
imation. The algorithm achieves a competitive ratio of 1 + O

(√
TSP(G)/L

)
for

L > 10TSP(G).

Theorem 5. The algorithm TSP-EDF attains a competitive ratio of 1 +
O

(√
TSP(G)/L

)
.

4.2 Constant Approximation Algorithm for Case B

In this section we design a deterministic online algorithm, for a general metric
space where L > 9Δ(G) (recall that Δ(G) is the diameter of G). The algo-
rithm achieves a constant competitive ratio. As shown in the previous section,
no online algorithm can achieves a competitive ratio better 1.00054. A more
precise analysis can replace L > 9Δ(G) with L > (2 + ε)Δ(G) for any ε > 0 and
the approximation becomes O( 1ε ).

The algorithm which we call ORIENT-WINDOW (Fig. 2) combines the fol-
lowing ideas.

– The algorithm works in phase of K = 3Δ(G). In each phase the algorithm
serves only requests that arrived in the previous phases, and will not expired
during the phase. Due to this perturbation we lose a constant factor.

– The decision which requests will be served in a phase ignore their deadlines.
Due to this violation of EDF we lose a constant factor.
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Fig. 2. Algorithm ORIENT-WINDOW

– In each phase the algorithm serves requests node by node. The order of the
nodes is determined by solving an orienteering problem. Since a constant
approximation algorithm is known to the orienteering problem, we lose a con-
stant factor.

Theorem 6. The algorithm ORIENT-WINDOW attains a competitive ratio of
O(1).
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