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Abstract. In this paper, we consider the a priori traveling salesman
problem (TSP) in the scenario model. In this problem, we are given a
list of subsets of the vertices, called scenarios, along with a probability
for each scenario. Given a tour on all vertices, the resulting tour for a
given scenario is obtained by restricting the solution to the vertices of
the scenario. The goal is to find a tour on all vertices that minimizes the
expected length of the resulting restricted tour. We show that this prob-
lem is already NP-hard and APX-hard when all scenarios have size four.
On the positive side, we show that there exists a constant-factor approx-
imation algorithm in three restricted cases: if the number of scenarios
is fixed, if the number of missing vertices per scenario is bounded by a
constant, and if the scenarios are nested. Finally, we discuss an elegant
relation with an a priori minimum spanning tree problem.

Keywords: Traveling salesman problem · A priori optimization ·
Master tour · Optimization under scenarios

1 Introduction

In universal and a priori routing, we extend our classical routing problems to the
case that the set of clients is uncertain or changes regularly. Because reoptimizing
over and over again might be inconvenient or impossible, we want to find a single
tour. Given a tour and a set of clients, the active set, we shortcut the tour to
the active set. In universal routing, the goal is to minimize the worst-case ratio
of the value of the obtained solution and the deterministic optimal value. In a
priori routing, we want to be good on average. The problem we consider in this
paper is formally defined as follows.

In the a priori traveling salesman problem in the scenario model, we are
given a complete weighted graph G = (V,E) and a set of scenarios S with
S1, . . . , Sm ⊆ V . Scenario Sj has probability pj of being the active set, where∑

j pj = 1. We begin by finding an ordering on V , called the first-stage tour.
When an active set is released, the second-stage tour is obtained by shortcutting
the first-stage tour on the vertices of the active set. The goal is to find a first-
stage tour that minimizes the expected length of the second-stage tour.
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This problem has, for example, a direct application to the photo-lithography
processes used in semi-conductor manufacturing to transfer the geometric pat-
tern of a chip onto a wafer [1]. This is done by putting UV light through a
photomask on a photoresistant layer on top of the wafer. The entire wafer is
not exposed at once, but one square at a time. If certain parts of the square do
not need to be exposed, blades are moved in to block the UV light. Moving the
blades is a time-consuming, and hence costly, process. Since it often influences
the total processing time of a wafer in the lithography machine, minimizing the
distance reduces the processing time. The blading positions are defined in a
file. The blading positions are obtained from this file by reading it from top to
bottom and the positions are used by the machine in order of appearance. A
product will visit the photolithography machine multiple times during its fab-
rication. Every time it will use the same file that defines its blading positions,
but it will not use all blading positions defined in the file in every visit. For each
visit, there is a given subset of the blading positions that has to be used. Hence
minimizing the movement of the blades comes down to finding an ordering of the
blading positions such that the sum over all visits of the total distance between
the blading-positions is minimized.

A priori TSP has already been considered in the independent decision and
black-box model. In the independent decision model, vertex i is active with prob-
ability pi, independent of the other vertices. Shmoys and Talwar [2] showed that
a sample-and-augment approach gives a randomized 4-approximation, which can
be derandomized to an 8-approximation algorithm. This factor was improved by
van Zuylen [3] to 6.5. In the black-box model, we have no knowledge on the
probability distribution over the vertices, but we are able to sample from it, i.e.
to query the probability of any subset of the vertices. Schalekamp and Shmoys [4]
showed that one can obtain a randomized O(log n)-approximation even without
sampling. A deterministic O(log2 n)-approximation can be obtained by using the
result for universal TSP [5]. It was shown by [6] that there is an Ω(log n) lower
bound for deterministic algorithms on general metrics. By using the result of [5]
and Theorem 3 in [6], we also know that there is no deterministic algorithm with
guarantee o

(
6
√

log n/ log log n
)

for planar metrics. For randomized algorithms,
no lower bound is known for the black-box model.

The scenario model may be relevant for applications where the vertices are
not active independently, but we do have some knowledge on the distribution.
The former results give us the first results for a priori TSP in the scenario model.
First of all, we inherit the randomized O(log n)-approximation. Secondly, we
know that a deterministic algorithm that does not use the information given in
the scenarios will not achieve an approximation guarantee better than O(log n).
The main question is whether we can use the scenarios to improve upon the
O(log n) upper bound and which restrictions we can put on the scenarios in
order to obtain constant-factor approximability.

The scenario model has not been studied extensively for other optimization
problems. Immorlica et al. [7] investigated stochastic versions of Vertex Cover
and Shortest Path. Ravi and Sinha [8] also looked at these problems and also
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defined stochastic scenario versions of Bin Packing, Facility Location and Set
Cover. The problems in [8] differ from our setting in the sense that the weights
used in the instance differ between scenarios. On the other hand, the work of
[9] investigates a two-stage stochastic scheduling problem, where the set of jobs
to be processed is uncertain. Finally, in [10], the classical scheduling problem of
minimizing the makespan on two machines is considered in the a priori model
with scenarios. It would be interesting to consider other stochastic combinatorial
optimization problems in this framework.

In this paper, we will first examine the most natural lower bound, called the
master tour lower bound. We use this lower bound to show that there exists
a constant factor approximation algorithm for the problem if the number of
scenarios is fixed. However, we also show that this lower bound cannot be used
to improve upon the O(log n)-approximation. We then look at several natural
restrictions on the scenarios, namely small, big and nested. For small scenarios,
we give strong inapproximability results. After that, we analyze the performance
of the optimal tour on V for big scenarios. For nested scenarios, we show that
there exists a 9-approximation algorithm. Finally, we show that there exists an
elegant connection to an a priori minimum spanning tree problem. We end with
a discussion on some open problems.

2 Master Tour Lower Bound

In this section, we explore the master tour lower bound. Here, we use that the
contribution of scenario Sj to the objective value of an optimal solution, denoted
by Opt, is at least pjT

∗
j , where T ∗

j is the length of the optimal tour on Sj , so
Opt ≥ ∑

j pjT
∗
j . Two natural algorithms for a priori TSP in the scenario model

are as follows. For each scenario, find an α-approximate tour, where α is the best
approximation ratio available for TSP, and sort the scenarios on their resulting
tour lengths Tj . Rename the scenarios such that T1 ≤ T2 ≤ . . . ≤ Tm. Now
traverse the tours 1, 2, . . . ,m, skipping already visited vertices, resulting in tour
τ1. Alternatively, rename the scenarios such that p1 ≥ p2 ≥ . . . ≥ pm and
traverse the tours 1, 2, . . . ,m, skipping already visited vertices, resulting in tour
τ2. We get the following result.

Theorem 1. Tours τ1 and τ2 are (2m − 1)-approximations for a priori TSP in
the scenario model, where m ≥ 2 is the number of scenarios.

Proof. Let us analyze tour τ1. Consider an arbitrary scenario Sj . If Dj is the
diameter of G restricted to Sj , we have T ∗

j ≥ 2Dj . Note that when analyzing
the contribution of scenario Sj , it might happen that two tours, say Tx and Ty,
with x, y < j, Sx ∩ Sj �= ∅ and Sy ∩ Sj �= ∅, belong to disjoint scenarios. In this
case, we have to go from Tx to Ty. If d(A,B) denotes the maximum distance
between a vertex in A and a vertex in B, then this move costs us at most an
extra d(Sx ∩ Sj , Sy ∩ Sj). In the worst case, all scenarios before Sj have a non-
empty intersection with Sj . For j = 1, the contribution is just p1T1 ≤ αp1T

∗
1 .

For j ≥ 2, the contribution of Sj to the objective value of our solution is at most
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pj(T1 + d(S1 ∩ Sj , S2 ∩ Sj) + T2 + . . . + d(Sj−2 ∩ Sj , Sj−1 ∩ Sj) + Tj−1 + Tj)

≤pj(jTj + (j − 2)Dj) ≤ pj(αjT ∗
j + (j − 2)

1
2
T ∗

j ) = ((α +
1
2
)j − 1)pjT

∗
j .

Note that you do not have to incur an extra distance from Sj−1 to Sj , since they
have a non-empty intersection. In general, this holds for the last scenario that
intersects with Sj . The objective value is at most

αp1T
∗
1 +

m∑

j=2

((α +
1
2
)j − 1)pjT

∗
j ≤

((

α +
1
2

)

m − 1
)

Opt.

Since α = 1.5 [11], we get a 2m − 1-approximation algorithm. The analysis for
τ2 is similar. �	

It turns out that the master tour lower bound will not give a constant approx-
imation for general metrics. This can be deduced from Theorem 2 in [6], which
roughly states the following. Suppose you are given a d-regular Ramanujan graph
G on n vertices with girth g ≥ 2

3 logd−1 n. Take a random walk of length 70g
in G and let S be the vertices visited in this walk. Now, fix a first-stage tour.
Theorem 2 in [6] states that for each of the first g/2 steps of the tour restricted
to S, the probability that the edge has length Ω(log n) is bounded from below
by a constant.

Theorem 2. There is an instance such that Opt = Ω(log n)
∑

j pjT
∗
j and

Opt = Ω(log m)
∑

j pjT
∗
j .

Proof. As before, suppose you are given a d-regular Ramanujan graph G on n
vertices with girth g ≥ 2

3 logd−1 n. The scenarios correspond to vertex sets induced
by random walks of length 70g in G. For a fixed first-stage tour, Theorem 2 in [6]
states that in each of the first g/2 steps of the second-stage tour, there is a constant
fraction of the scenarios that use an edge of length Ω(log n). This implies that the
expected length of the first g/2 steps of the tour have expected length Ω(log n).
Since this is true for a constant number of steps, the lower bound also holds for the
entire tour. Hence, we have an instance such that Opt = Ω(log n)

∑
j pjT

∗
j . The

number of scenarios is equal to the number of possible walks of length 70g. This
is equal to n · d70g = O(ndlog n) = O(nlog d). Since d is a constant, this number is
polynomially bounded. Hence, we have Θ(log m) = Θ(log n), which gives us the
second lower bound. �	

A similar question one can ask is whether a given instance has an optimal
value that is equal to the master tour lower bound. Stated differently, is there
a tour such that if we shortcut on the vertices of a scenario, we get the optimal
solution for that scenario? This problem is known as the Master Tour problem.
In the original problem, every subset of vertices was a scenario. Deineko et al.
[12] showed that this problem is polynomially solvable. We can reformulate the
problem to the case where we are given a set of scenarios and we only have to be
optimal for these scenarios. It turns out that this problem is Δp

2-complete [13].
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3 Small Scenarios

We start with showing that a priori TSP is still NP-complete when all scenarios
are very small. We reduce from the Max Cut problem [14]. Here, we are given
a graph G = (V,E) and our goal is to find a set S ⊆ V such that |δ(S, S̄)| is
maximized, where δ(A,B) is the set of edges in the cut separating A from B.

Theorem 3. A priori TSP is NP-complete when |Sj | ≤ 4 for all j.

Proof. We are given an instance of Max Cut. Create an instance of a priori
TSP by making a complete graph G′ on V ∪ {s, t}. All edges with s or t as
endpoint, except edge (s, t), have length 1 and all other edges have length 2 (see
Fig. 1). For every edge (a, b) in E, we create a scenario {a, b, s, t}. All scenarios
have equal probability. Note that a scenario can only have a contribution to the
objective value of 4 or 6. We say that a scenario is satisfied if its resulting tour
has length 4. Hence, minimizing the expected length is equivalent to maximizing
the number of satisfied scenarios.

Suppose there is a cut of size at least k in G, say (Q1, Q2). First, visit the
vertices of Q1 in arbitrary order. After that, we visit s. Finally, we visit the
vertices of Q2 in arbitrary order followed by t. It is easy to see that every scenario
corresponding to an edge in the cut has length 4, whereas other scenarios have
length 6. Hence, there is a tour satisfying at least k scenarios.

On the other hand, suppose that we have a tour in G′ satisfying at least k
scenarios. Without loss of generality, the tour can be written as sR1tR2, where
R1 and R2 are sequences of vertices. The only way to satisfy a scenario is by
putting one vertex in R1 and one vertex in R2. Hence, the k satisfied scenarios
correspond to edges in the cut (R1, R2) which has size at least k. �	

s t...
...

a b
2

Kn

11

11

11

2

Fig. 1. Graph G′ as in the proof of Theorem 3.

By adjusting the proof of Theorem 3, we can prove that the master tour
problem with scenarios is NP-complete when |Sj | ≤ 5. This is done by reducing
from Set Splitting instead of Max Cut. The fact above follows because 3-Set
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Splitting is NP-complete [15]. The master tour problem with scenarios is still
open for |Sj | ≤ 4.

Note that the graph we used in the proof above can be obtained by taking the
metric completion of K2,n. This graph is planar, bipartite and it has treewidth
and pathwidth equal to 2. Deterministic TSP would be polynomially solvable
on such a graph with bounded treewidth. Furthermore, there is a PTAS for
deterministic TSP in planar graphs [16]. The next theorem shows that this is not
the case for a priori TSP (since the proof uses the same graph as before, a metric
completion of K2,n). This theorem relies on the fact that Max Cut cannot be
approximated within the Goemans-Williamson [17] constant, i.e. approximately
0.878567, unless the Unique Games Conjecture (UGC) fails [18], and it cannot
be approximated within a factor 16

17 , unless P = NP [19].

Theorem 4. There is no 1.0117-approximation for a priori TSP with |Sj | ≤ 4,
unless P=NP, and no 1.0242-approximation under UGC.

Proof. Consider the reduction from the proof of Theorem 3. Let OptTSP and
OptCUT be the optimal values of a priori TSP in the created instance and
of Max Cut in the original instance respectively. We have OptTSP = 6|E| −
2OptCUT. If we have an (1 + α)-approximation algorithm, we get a tour with
total length at most (1 + α)(6|E| − 2OptCUT). This implies that there are at
least (1 + α)OptCUT − 3α|E| satisfied scenarios. These correspond to edges in
the cut, hence we have

Size of cut ≥ (1 + α)OptCUT − 3α|E|
≥ (1 + α)OptCUT − 6αOptCUT

= (1 − 5α)OptCUT,

where the second inequality follows from OptCUT ≥ |E|/2. Assuming P �= NP or
the Unique Games Conjecture, this means that there is no (1+α)-approximation
for our problem for α’s with 1−5α ≥ 16

17 or 1−5α ≥ 0.878567 respectively. These
inequalities are tight for α ≈ 0.0117 and α ≈ 0.0242 respectively. �	

One could also consider the path-version of a priori TSP. In fact, the appli-
cation on photolithography is modeled as the path-version. It is easy to see that
this problem is trivial when |Sj | ≤ 2 for all j. If we delete t from the graph
created in the reduction of Theorem 3, we can use this graph and the same
reduction to show that the path-version of a priori TSP is NP-complete when
|Sj | ≤ 3. It is easy to see that this graph can be obtained by taking the metric
completion of the star graph. Since the star has pathwidth 2, the problem is
NP-complete on graphs with this property. On the other hand, the problem is
trivially solvable on path graphs. Note that we can also adjust Theorem 4 to
the path-version which will give the same inapproximability result, i.e. there is
no 1.0117-approximation, unless P= NP, and there is no 1.0242-approximation
under UGC.

We can strengthen the inapproximability of a priori TSP by using strong
results on Permutation CSP’s [20]. The problem that we need will be called 4-
Undirected Cyclic Ordering (4-UCO). In this problem, we are given a ground
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set T and a set of 4-tuples Δ using elements from T . Our goal is to construct an
ordering on T that maximizes the number of satisfied 4-tuples. We say that
4-tuple (a, b, c, d) is satisfied if one of the following sequences is a subse-
quence of the total ordering: (a, b, c, d), (b, c, d, a), (c, d, a, b), (d, a, b, c), (d, c, b, a),
(c, b, a, d), (b, a, d, c), (a, d, c, b). In other words, we get a collection of cycles and
we want to find an ordering maximizing the number of cycles that can be embed-
ded in it. To the best of our knowledge, the problem has never been considered.
For completeness, we first show that the problem is NP-complete by using a
reduction from Cyclic Ordering. In this problem, we are given a set of ordered
triples Δ of ground set T . The question is whether there exists a cyclic order-
ing on all elements such that each triple is ordered in the right direction. This
problem is NP-complete [21].

Theorem 5. 4-Undirected Cyclic Ordering is NP-complete.

In [20], it is shown that every Permutation CSP of constant arity is approx-
imation resistant. This means that, under the Unique Games Conjecture, the
best we can do is constructing a random ordering. Classical problems like Cyclic
Ordering and Betweenness are in this class of problems. It is easy to see that
4-UCO is also in this class. A corollary of the work of Guruswami et al. is that
there is no approximation algorithm with guarantee greater than 1

3 , assuming
the Unique Games Conjecture is true. The natural generalization of 4-UCO is
5-UCO. For this problem, there is no algorithm having a guarantee greater than
1
12 . This gives the following results.

Theorem 6. Under UGC, there is no α-approximation for a priori TSP with

(a) α < 10
9 when |Sj | ≤ 6,

(b) α < 7
6 when |Sj | ≤ 8,

(c) α < 71
60 when |Sj | ≤ 10.

For the path-version, we can strengthen previous results by using the maxi-
mization version of Betweenness. In this problem, we are given a set of triples Δ
from elements of T . The triple (a, b, c) is satisfied if (a, b, c) or (c, b, a) is a sub-
sequence of the total ordering. The goal is to find an ordering on T maximizing
the number of satisfied triples. By [20], the best approximation ratio is 1

3 , unless
the Unique Games Conjecture fails. Under the assumption that P �= NP, there
is no approximation for Max Betweenness with a factor better than 1

2 [22].

Theorem 7. There is no 9
8 -approximation for a priori path-TSP with |Sj | ≤ 5,

unless P=NP, and no 7
6 -approximation under UGC.

Finally, we note that by using twice the diameter of a scenario as a lower
bound, we can show that an arbitrary tour is a c/2-approximation when |Sj | ≤ c.
A random tour gives a value of at most (c2 − 3c + 4/2c − 2) times the optimal
value in expectation. This factor approaches c/2 for c large. Similar results hold
for the path-version.
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4 Big Scenarios

In this section, we investigate the special case of big scenarios, i.e. the case when
each scenario has size at least n − c, for small c. One would expect that the
optimal tour on the entire instance would perform well on these instances. Here,
we analyze this option. Let us denote Opt(S) for the optimal value of a tour on
S. Further, let Opt(S)|T denote the value of the optimal tour on S shortcutted
to T . As before, let DS denote the diameter of the graph restricted to S.

Lemma 1. For S ⊂ V and 1 ≤ c ≤ 
n/2� such that |S| = n − c, we have

Opt(V )|S ≤ Opt(S) + cDS .

Proof. Suppose S = V \ {a1, . . . , ac}. Let Δai

S = minu∈S d(u, ai) for i = 1, . . . , c.
Since we can extend our tour on S to V by going back and forth to each ai,
we have Opt(V ) ≤ Opt(S) + 2

∑c
i=1 Δai

S . We want to show that Opt(V )|S ≤
Opt(S) + cDS . Suppose this is not the case, i.e. Opt(V )|S > Opt(S) + cDS .
Furthermore, suppose w.l.o.g. that bi and di are the two nodes in S that are
visited before and after ai in the optimal tour of V . If two consecutive vertices
on the tour are not in S, then one can reconstruct the tour accordingly without
increasing the length of the tour restricted to S. Then

Opt(V ) = Opt(V )|S +
c∑

i=1

(d(bi, ai) + d(ai, di) − d(bi, di))

≥ Opt(V )|S +
c∑

i=1

(2Δai

S − d(bi, di))

≥ Opt(V )|S − cDS + 2
c∑

i=1

Δai

S

> Opt(S) + 2
c∑

i=1

Δai

S

But this is a contradiction to our previous observation. Hence Opt(V )|S ≤
Opt(S) + cDS . �	
Theorem 8. The optimal solution on V is a (1+ c

2 )-approximation for a priori
TSP with |Si| ≥ n − c, where 1 ≤ c ≤ 
n

2 �.

5 Nested Scenarios

Let us now consider the case of nested scenarios, i.e. S1 ⊆ S2 ⊆ . . . ⊆ Sm. Here,
the following algorithm gives a constant factor approximation. First, compute
an 1.5-approximate tour Tj for scenario Sj for all j. Let α1 = 1. Next, for
h = 2, 3, . . . let αh be the largest number k > αh−1 for which Tk ≤ 2Tαh−1 . If no
such k exists then let αh = αh−1 +1. The first-stage tour is obtained by visiting
vertices in the order Tα1 , Tα2 , . . . .
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Theorem 9. The algorithm above is a 9-approximation for nested scenarios.

Proof. Consider scenario Sj . The last vertices of this scenario will be visited on
the tour Tαh

, where h is the smallest index such that αh ≥ j. Note that for any
h ≥ 2, we have Tαh

> 2Tαh−2 . Hence, we can decompose the concatenated tour
up to Tαh

into two parts which correspond to even and odd h respectively, such
that both parts have geometrically increasing tour lengths. The length of the
concatenated tour up to Tαh

is therefore at most

2Tαh−1 + 2Tαh
.

If αh = j then the length of the tour is at most 2Tαh−1 + 2Tαh
≤ 4Tαh

= 4Tj ≤
6T ∗

j .
If αh > j then we must have Tαh

≤ 2Tαh−1 so the length of the tour is at
most 2Tαh−1 + 2Tαh

≤ 6Tαh−1 ≤ 6Tj ≤ 9T ∗
j . �	

The problem is still open for laminar scenarios, i.e. when for each i, j, either
Si ∩Sj = ∅ or Si ⊆ Sj or Sj ⊆ Si. It is even open in the case when the scenarios
have the following structure.

Si ∩ Sj = ∅ for i �= j, i, j = 1, . . . , m − 1, and Sm =
m−1⋃

j=1

Sj .

It would be interesting if one could get a constant factor approximation for these
“starlike” (the inclusion graph is a star) instances.

6 Relation with Minimum Spanning Tree Problems

It would be nice to have a similar relation between a priori TSP and a priori
MST as in the deterministic setting. We consider two versions of a priori MST.
The first one is defined by Bertsimas [23], who called it a priori MST, while it
seems more natural to call it a priori Steiner Tree. The second problem is defined
by Boria et al. [24], who called it Probabilistic MST under Closest Ancestor. In
both problems, we have a graph G = (V,E) and a probability distribution over
subsets of vertices. The second problem also has a root r that is always active.
This is optional in the first problem. The goal is to construct a tree on the entire
vertex set in the first stage. A subset S of the vertices, drawn according to the
probability distribution, is revealed in the second stage. In the a priori MST, the
second-stage tree will be obtained by deleting inactive vertices, provided that
the remaining tree stays connected. In the Probabilistic MST under Closest
Ancestor, the second-stage tree only contains active vertices. This is done by
taking an edge between an active vertex and its closest active ancestor in the
rooted first-stage tree. In both problems, the goal is to construct a first-stage
tour that minimizes the expected length of the second-stage tree.

Unfortunately, it turns out that the expected length of the optimal a priori
MST defined by Bertsimas is not smaller than the optimal a priori TSP in
general. The gap between the optimal values of a priori MST and a priori TSP
can be arbitrarily large.
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Theorem 10. The optimal value of the a priori MST can be arbitrarily greater
than the optimal value of the a priori TSP.

However, the Probabilistic MST under Closest Ancestor can be used as a
lower bound for a priori TSP. In fact, we only lose a factor 2. Note that this
only works for the rooted case, since Probabilistic MST under Closest Ancestor
is defined with a root vertex.

Theorem 11. If there is an α-approximation for the Probabilistic MST under
Closest Ancestor, then there is a 2α-approximation for the a priori TSP, and
vice versa.

Proof. We show that the following inequalities are valid, where OptMST and
OptTSP denote the optimal values of Closest Ancestor and a priori TSP
respectively.

OptMST ≤ OptTSP ≤ 2OptMST ≤ 2OptTSP.

The first inequality can be proven by taking the optimal a priori TSP-tour and
deleting one edge. This gives a spanning tree on V , called T . If we look at a
specific active set S, then the optimal a priori TSP-tour restricted to S will
have exactly on edge less than before. Namely, if we delete edge (a, b) from tour
(1, . . . , a, b, . . . , n), only edge (max{k ∈ S : k ≤ a},min{k ∈ S : k ≥ b}) will
disappear from the restricted tour on S. Note that for active set S, the tour
without this edge is the same as T shortcutted to S. Hence, this is a feasible
solution for Probabilistic MST under Closest Ancestor with cost no larger than
the optimal value of a priori TSP, and the first inequality has been proven.

The second inequality is proven by doubling the optimal tree and shortcutting
the obtained Eulerian tour. In each scenario, the cost of the edges is at most twice
the cost of the edges in the tree restricted to the scenario. The third inequality
follows from the first inequality. �	
Corollary 1. There is a randomized 8-approximation and a deterministic 13-
approximation for Probabilistic MST under Closest Ancestor in the independent
decision model. There is also a O(log n)-approximation in the black-box model.

Unfortunately, this does not imply a 2-approximation for a priori TSP, since we
can prove that Probabilistic MST under Closest Ancestor is NP-complete in the
scenario model. For this, we need the following lemma.

Lemma 2. If Probabilistic MST under Closest Ancestor is NP-complete in the
non-metric case, then it is NP-complete in the metric case.

Boria et al. [24] showed that Probabilistic MST under Closest Ancestor is NP-
complete in the independent decision model, but only for the non-metric case.
Using Lemma 2, we obtain the following corollary.

Corollary 2. Probabilistic MST under Closest Ancestor is NP-complete in the
independent decision model, even if the triangle inequality is satisfied.
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Theorem 12. Probabilistic MST under Closest Ancestor in the scenario model
is NP-complete.

Proof. We reduce the problem from the NP-complete problem Exact Cover by
3-Sets [14]. In this problem, we are given 3q elements, x1, . . . , x3q, and m sets,
y1, . . . , ym, containing three elements. The problem asks whether there are q
sets that together cover all elements. Create the graph as in Fig. 2. Non-present
edges have weight equal to M , where M is a large number. There are m scenarios
with probability 1/m. In each scenario, all xj ’s, r and s are active as is one of
the yi’s.

x1 x2 x3q

y1 y2 ym

r s

Edge (yi, xj) if xj ∈ yi

· · ·

· · ·

Fig. 2. Graph used in proof of Theorem 12. Edges (r, s) and (r, yi) have length 0. Edges
(s, yi) and (yi, xj) have length 1. Edges (s, xj) have length 2. Non-drawn edges have
length M .

If there is an exact cover, then construct the following solution. If set yi is
chosen in the cover, then use edge (s, yi) and the edges from vertex yi to the
corresponding elements of yi. If set yi is not in the cover, then use edge (r, yi).
Finally, use edge (r, s). This solution has expected value equal to q(1/m · 4 +
(m − 1)/m · 6) = q(6 − 2/m).

Note that an optimal tree will never use edges with weight M or a combina-
tion of edges that enforce using an edge of weight M in the shortcut solution.
This leaves five ways of connecting a specific set vertex yi and element vertex
xj , where j is in set i, to r and s. The five subtrees are depicted in Fig. 3.

Tree T3 is dominated by T1, since T1 only has cost 2 for connecting xj when
yi is inactive while T3 always has cost 2. Similarly, T4 is dominated by T2 and T5

is dominated by T1. So, an optimal tree is a combination of T1 and T2. Suppose
that the tree connects k set vertices to s which connect � elements vertices.
The other set vertices are connected to r whereas the other element vertices are
connected to s. Number the k set vertices connected to s as 1, . . . , k and say
that set vertex i connects �i element vertices. This tree has an expected value of

1
m

k∑

i=1

((�i + 1) − 2(3q − �i)) +
m − k

m
6q = 6q +

1
m

(k − �),
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xj

yi

s

r

xj

yi

s

r

xj

yi

s

r

xj

yi

s

r

xj

yi

s

r

Fig. 3. Subtrees T1 up to T5.

which is equal to q(6 − 2/m) if and only if k = q and � = 3q. Hence, there is
a tree with expected value at most q(6 − 2/m) if and only if there is an exact
cover. Using Lemma 2 completes the proof. �	

7 Conclusion

In this paper, we showed how to get constant factor approximation for some
well-structured problem instances. An interesting question that remains unan-
swered is whether there exists a constant factor approximation for laminar sce-
narios. More specifically, it is still open whether we can do this on “starlike”
scenarios. One could also consider instances with restricted metrics. In Sect. 3
we showed that there is no PTAS for planar graphs. We do not have such results
in the Euclidean plane. It would be interesting to settle the approximability of
the problem in this metric. It is easy to construct examples where the optimal
solution crosses itself and hence the non-crossing property does not hold. This
property was a crucial ingredient of the PTAS by Arora [25] for the deterministic
problem. So far, we have not been able to show any lower bound or improve the
upper bound for this special case.

We did not succeed in improving the O(log n)-approximation for the gen-
eral problem. Next to the master tour lower bound, we investigated minimum
spanning tree and linear programming approaches. However, preliminary results
suggest that these approaches might not help us to break the barrier. In fact, we
conjecture that there is no o(log n)-approximation algorithm for a priori TSP
in the scenario model in the general case.
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