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Abstract. The seminar assignment problem is a variant of the general-
ized assignment problem in which items have unit size and the amount of
space allowed in each bin is restricted to an arbitrary set of values. The
problem has been shown to be NP-complete and to not admit a PTAS.
However, the only constant factor approximation algorithm known to
date is randomized and it is not guaranteed to always produce a feasible
solution.

In this paper we show that a natural greedy algorithm outputs a solu-
tion with value within a factor of (1 − e−1) of the optimal, and that
unless NP ⊆ DTIME(nlog logn), this is the best approximation guaran-
tee achievable by any polynomial time algorithm.

Keywords: General assignment · Budgeted maximum coverage · Sem-
inar assignment problem

1 Introduction

In the Seminar Assignment problem (SAP) introduced in [8] one is given a
set of seminars (or bins) B, a set of students (or items) I, and for each seminar
b a set of integers Kb specifying the allowable number of students that can be
assigned to the seminar. Unless otherwise specified, we assume that 0 ∈ Kb for
any b ∈ B. For each student i and seminar b ∈ B let p(i, b) ∈ R represent the
profit generated from assigning student i to seminar b. A seminar assignment is
a function A : J → B where J ⊆ I and we say that the assignment is feasible
if |A−1(b)| ∈ Kb for all b ∈ B, where A−1 is the pre-image of A. The goal is to
find a feasible seminar assignment A that maximizes the total profit:

p(A) =
∑

i∈J

p(i,A(i)).

The problem has been introduced in [8] in a slightly less general version. In
the original version, for each b ∈ B the set Kb equals to {0}∪{lb, ..., ub} for some
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lower and upper bounds lb, ub ∈ N. The more general setting considered in this
paper can be useful for example when a seminar doesn’t just require a minimum
number of students and has a fixed capacity, but in addition requires students
to work in pairs and therefore would allow only an even number of students to
be registered. In addition, this generalization also simplifies notation.

SAP is a variant of the classic General Assignment problem (GAP) in
which one is given m bins with capacity B1, ..., Bm and n items. Each item i has
size s(i, b) in bin b and yields profit p(i, b). The goal is to find a packing of the
items into the bins that maximizes total profit, subject to the constraint that no
bin is overfilled. A GAP instance with a single bin is equivalent to the knapsack
problem, and a GAP instance with unit profit can be interpreted as a decision
version of the bin packing problem: can all items be packed in the m bins?

SAP is also related to the Maximum Coverage problem (MC). In the classic
version of the MC problem one is given a collection of sets S = {S1, ..., Sm} and
a budget B. The goal is to select a subcollection S ′ ⊆ S with cardinality less
than or equal to B such that | ∪S∈S′ S| is maximized.

The algorithms with the best approximation ratio for both MC and GAP
are greedy algorithms and the approximation bounds have been proved with
similar techniques. In this paper we show how to extend these analysis techniques
to SAP.

Related Work. In [8] the authors show that SAP is NP-complete even when
Kb = {0, 3} for all b ∈ B and p(i, b) ∈ {0, 1} for any i ∈ I. Moreover, they show
that SAP does not admit a PTAS by providing a gap-preserving reduction from
the 3-bounded 3-dimensional matching problem. In [1] the authors investigate
the approximability of the problem and provide a randomized algorithm which
they claim outputs a solution that in expectation has value at least 1/3.93 of
the optimal. In [2] this result is revised and the authors show that for any c ≥ 2,
their randomized algorithm outputs a feasible solution with probability at least
1 − min{ 1

c ,
ec−1

cc } and has an approximation ratio of e−1
(2c−1)·e .

The GAP is well studied in the literature, with [3,9] surveying the existing
algorithms and heuristics for multiple variations of the problem. In [11] the
authors provide a 2-approximation algorithm for the problem and in [4] it is
shown that any α-approximation algorithm to the knapsack problem can be
transformed into a (1+α)-approximation algorithm for GAP. In [6] tight bounds
for the GAP are given showing that no polynomial time algorithm can guarantee
a solution within a factor better than (1 − e−1), unless P = NP , and providing
an LP-based approximation which for any ε > 0 outputs a solution with profit
within a (1 − e−1 − ε) factor of the optimal solution value.

The GAP with minimum quantities, in which a bin cannot be used if it is not
packed at least above a certain threshold, is introduced in [8]. Because items have
arbitrary size, it is easy to see that when a single bin is given and the lower bound
threshold equals the bin capacity, finding a feasible solution with profit greater
than zero is equivalent to solving Subset Sum. Therefore, in its most general case
the problem cannot be approximated in polynomial time, unless P = NP .
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In [5,10] the authors study the problem of maximizing a non-decreasing sub-
modular function f satisfying f(∅) = 0 under a cardinality constraint. They show
that a simple greedy algorithm achieves an approximation factor of (1−e−1) which
is the best possible under standard assumptions. Vohra and Hall note that the
classic version of the maximum coverage problem belongs to this class of prob-
lems [13]. When each set Si in the MC problem is associated with a cost c(Si)
the BudgetedMaximum Coverage problem asks to find a collection of sets S ′

covering the maximum number of elements under the (knapsack) constraint that∑
Si∈S′ c(Si) ≤ B for some budget B ∈ R. In [7] the authors show that the greedy

algorithm combined with a partial enumeration of all solutions with small cardi-
nality also achieves a (1 − e−1) approximation guarantee, and provide matching
lower bounds which hold even in the setting of the classic MC problem (when all
sets have unit cost). In [12] Sviridenko generalizes the algorithm and proof tech-
nique to show that maximizing any monotone submodular function under a knap-
sack constraint can be approximated within (1 − e−1) as well.

Contributions. In Sect. 2, by a reduction from the Maximum Coverage prob-
lem, we show that there exists no polynomial time algorithm that guarantees an
approximation factor larger than (1 − e−1), unless NP ⊆ DTIME(nlog log n).
In Sect. 4 we present a greedy algorithm that outputs a solution that has profit
at least 1

2 · (1 − e−1) of the optimal solution. The algorithm is based on the
observation that when the required number of students in each seminar is fixed,
the problem is solvable in polynomial time. Finally, in Sect. 5 we show how this
algorithm can be improved to guarantee an approximation bound of (1 − e−1).

2 Hardness of Approximation

In this section we show that the problem is hard to approximate within a factor
of (1 − e−1 + ε), ∀ε > 0, even for the case when for each b ∈ B the set Kb equals
{0, n} for some integer n, and the profit for assigning any student to any seminar
is either 0 or 1. We prove this result by showing that such restricted instances of
SAP are as hard to approximate as the Maximum Coverage problem defined
below.

Definition 1. Given a collection of sets S = {S1, ..., Sm} and an integer k, the
Maximum Coverage (MC) problem is to find a collection of sets S ′ ⊆ S such
that |S ′| ≤ k and the union of the sets in S ′ is maximized.

In [7] it is shown that the MC problem is hard to approximate within a factor
of (1 − e−1 + ε), unless NP ⊆ DTIME(nlog log n). We use this result to prove
the following:

Theorem 1. For any ε > 0 the SAP is hard to approximate within a factor of
(1 − e−1 + ε) unless NP ⊆ DTIME(nlog log n).
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Proof. To prove the theorem we create a SAP instance for any given MC instance
and show that from any solution of the SAP instance we can create a solution
for the MC instance with at least equal value, and that the optimal solution of
the SAP instance has value at least equal to the optimal solution of the MC
instance. Therefore, an α-approximation algorithm for SAP can be transformed
into an α-approximation algorithm for MC.

Given a MC instance, let U = ∪S∈SS and n = |U |. For each set S ∈ S let bS
be a seminar with the allowable number of students Kb = {0, n}, and for each
element e ∈ U let ie be a student in I. The profit of a student ie assigned to a
seminar bS is 1 if the element e belongs to the set S and 0 otherwise. In addition,
let d1, ..., dn∗(k−1) be dummy students that have profit 0 for any seminar.

We first show that any feasible assignment A corresponds to a valid solution
to the given MC instance. Since every seminar requires exactly n students and
there are exactly k · n students available, clearly at most k seminars can be
assigned students in any feasible assignment. Let S ′ = {S ∈ S : A(bS) > 0}.
It is easy to see that the number of elements in ∪S∈S′S is at least equal to the
profit p(A) since a student ie has profit 1 for a seminar bS only if the set S covers
element e.

It remains to show that for any solution to the MC instance there exists a
solution to the corresponding SAP instance with the same value. Fix a collection
of sets S ′ ⊆ S with |S ′| ≤ k. For every e ∈ ∪S∈S′S let Se be a set in S ′ that
contains e and let A(ie) = bSe

. Then, assign additional dummy students to any
seminar with at least one student to reach the required n students per seminar.
Clearly, the profit of the assignment A is equal to the number of elements covered
by the collection S ′, which proves the theorem. 
�

3 Seminars of Fixed Size

In this section we show that when the allowable number of students that can be
assigned to any seminar b is a set K = {0, kb} for some integer kb, SAP can be
approximated within a factor of (1 − e−1) in polynomial time. This introduces
some of the techniques used in the general case in a simpler setting.

For an instance of the SAP, a seminar selection is a function S : B → N

with the property that S(b) ∈ Kb for any b ∈ B. We say that S is feasible if∑
b∈B S(b) ≤ |I|. In other words, a seminar selection is a function that maps

each seminar to the number of students to be assigned to it. A seminar selection
S corresponds to an assignment A if for any seminar b the number of students
assigned by A to b is S(b). We slightly abuse notations and denote by p(S)
the maximum profit over all seminar assignments corresponding to the seminar
selection S; we call p(S) the profit of S. In the remainder of this paper for a
graph G = (V,E) we denote the subgraph induced by the vertices of X ⊆ V by
G[X].

Definition 2. Given a SAP instance let Vb = {vb,1, ..., vb,kb
} for every b ∈ B

and let V = ∪b∈BVb. The bipartite representation of the instance is the complete
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bipartite graph G = (V ∪ I, E) with edge weights ω(vb, i) = p(i, b) for every
vb ∈ Vb. The bipartite representation of a seminar selection S is the graph
G[VS ∪ I] where VS = ∪b∈BVS,b and VS,b = {vb,1, ..., vb,S(b)} for every b ∈ B.

Lemma 1. For any SAP instance and any feasible seminar selection S, p(S) is
equal to the value of the maximum weight matching in the bipartite representation
of S.

Proof. Let GS = (VS ∪ I, E) be the bipartite representation of S. First observe
that any matching M of GS that matches all the vertices of VS can be interpreted
as an assignment AM of equal value by setting AM (i) = b whenever vertex i ∈ I
is matched by M to a vertex in VS,b. Since GS is complete and has non-negative
edge weights, there exists a maximum weight matching that matches all the
vertices of VS .

Similarly, any feasible assignment for the SAP instance can be interpreted as
a matching MA of equal value, which proves the lemma. 
�
Definition 3. For a given finite set A, a set function f : 2A → R is submodular
if for any X,Y ⊆ A it holds that:

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

Sviridenko shows that certain submodular functions can be maximized under
knapsack constraints, which will be useful in proving Theorem 3:

Theorem 2 ([12]). Given a finite set A, a submodular, non-decreasing, non-
negative, polynomially computable function f : 2A → R, a budget L ≥ 0, and
costs ca ≥ 0, ∀a ∈ A, the following optimization problem is approximable within
a factor of (1 − e−1) in polynomial time:

max
X⊆A

{
f(X) :

∑

x∈X

cx ≤ L

}

We relate now the value of a maximum weight matching in a bipartite graph
to the notion of submodularity.

Definition 4. For an edge weighted bipartite graph G = (A ∪ B,E), the partial
maximum weight matching function f : 2A → R maps any set S ⊆ A to the
value of the maximum weight matching in G[S ∪ B].

Lemma 2. Let f be the partial maximum weight matching function for a bipar-
tite graph G = (A∪B,E) with non negative edge weights. Then f is submodular.

Proof. Fix two sets X,Y ⊆ A and let M∩ and M∪ be two matchings for the
graphs G[(X ∩ Y ) ∪ B] and G[(X ∪ Y ) ∪ B] respectively. To prove the lemma
it is enough to show that it is possible to partition the edges in M∩ and M∪
into two disjoint matchings MX and MY for the graphs G[X ∪ B] and G[Y ∪ B]
respectively.
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The edges of M∩ and M∪ form a collection of alternating paths and cycles.
Let C denote this collection and observe that no cycle of C contains vertices from
X \ Y or Y \ X. This holds because M∩ does not match those vertices.

Let PX be the set of paths in C with at least one vertex in X \ Y and let PY

be the set of paths in C with at least one vertex in Y \ X. Two such paths are
depicted in Fig. 1.

Claim 1. PX ∩ PY = ∅.

Proof of claim: Assume by contradiction that there exists a path P ∈ PX ∩ PY .
Let x be a vertex in X \Y on path P and similarly let y be a vertex in Y \X on
path P . Observe that since neither x nor y belong to X ∩ Y they do not belong
to the matching M∩ by definition, and therefore they are the endpoints of the
path P . Moreover, since both x and y are in A, the path P has even length
and since it is an alternating path, either the first or last edge belongs to M∩.
Therefore M∩ matches either x or y contradicting its definition. 
�

X Y

PYPX

Fig. 1. MX∪Y matches each vertex in X ∪ Y to the vertex directly above it. MX∩Y

is depicted with contiguous segments, MX with dotted segments and MY with dashed
segments. Two alternating paths of P are shown in light gray.

For a set of paths P we let E(P) = {e ∈ P : P ∈ P}. Moreover, let

MX = (E(PX) ∩ M∪) ∪ (E(C \ PX) ∩ M∩)

and
MY = (E(PX) ∩ M∩) ∪ (E(C \ PX) ∩ M∪).

It is clear that MX ∪ MY = M∩ ∪ M∪ and MX ∩ MY = M∩ ∩ M∪. To prove the
theorem it remains to show that MX and MY are valid matchings for G[X ∪ B]
and G[Y ∪ B] respectively. To see that MX is a valid matchings for G[X ∪ B]
observe first that no vertex of Y \ X is matched by MX since PX does not
intersect Y \ X by Claim 1, and M∩ does not intersect Y \ X by definition.
Therefore, MX only uses vertices of X ∪ B. Second observe that every vertex
x ∈ X is matched by at most one edge of MX since otherwise x belongs to either
two edges of M∪ or two edges of M∩, contradicting the definition. This proves
that MX is a valid matching for G[X ∪B]; showing that MY is a valid matchings
for G[Y ∪ B] is similar. 
�
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Theorem 3. Any instance of SAP in which |Kb| ≤ 2 for all b ∈ B can be
approximated in polynomial time to a factor of (1 − e−1).

Proof. Fix a SAP instance and for any X ⊆ B let SX be the seminar selection
which allocates kb students to any seminar in S and 0 students to any seminar
in B \ S. Moreover, let G be the bipartite representation of the SAP instance
and f be the partial maximum weight matching function for graph G. Denote
by G[VX ∪I] the bipartite representation of SX and let g(X) = f(VX). Since f is
submodular by Lemma 2, it is easy to see that g is submodular as well. Assume
by contradiction that there exist sets X,Y ⊆ B such that the submodularity
condition for g doesn’t hold:

g(X) + g(Y ) < g(X ∪ Y ) + g(X ∩ Y ). (1)

Therefore, by definition of g we have

f(VX) + f(VY ) < f(VX ∪ VY ) + g(VX ∩ VY ),

contradicting the submodularity of f proven in Lemma 2.
Clearly g is also monotone, non-negative and polynomially computable. Let

cb = kb, ∀b ∈ B, let L = |I|, and observe that SX is feasible if and only if∑
x∈X cx ≤ L. Moreover, by Lemma 1 and the definition of g, g(X) = p(SX)

whenever the seminar selection SX is feasible and therefore the proof follows
from Theorem 2. 
�

4 A Constant Factor Greedy Algorithm

The algorithm presented in this section sequentially increments the number of
students allocated to each seminar in a greedy fashion. It is similar in nature to
the greedy algorithm of [7,12] but the details of the approximation guarantee
proof are different. In the rest of this section we denote by AS an optimal
assignment for the seminar selection S. Remember that Lemma 1 shows that
given feasible seminar selection S, an optimal seminar assignment AS can be
found in polynomial time.

We say that a seminar selection T is greater than a selection S (denoted by
T 
 S) if T (b) ≥ S(b), ∀b ∈ B, and there exists b ∈ B s.t. T (b) > S(b). The cost
of a seminar selection S is denoted by c(S) and equals

∑
b∈B S(b). When T 
 S

we define the marginal cost of T relative to S as the difference between the cost
of T and the cost of S:

cS(T ) = c(T ) − c(S)

Similarly, we define pS(T ) = p(T )− p(S), the marginal profit of T relative to
S. We say that T is an incrementing selection for a seminar selection S if T 
 S
and there exists a single seminar for which the selection T allocates more students
than selection S; more precisely, the cardinality of the set {b ∈ B : T (b) > S(b)}
is 1. For a selection S we denote the set of incrementing seminar selections that
are feasible by inc(S).

We are now ready to present our algorithm:
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Greedy

1. S0 = initial seminar selection;
2. i = 0;
3. While inc(Si) �= ∅:

(a) Si+1 ← arg maxS′∈inc(Si)(p(S′) − p(Si))/(c(S′) − c(Si));
(b) i ← i + 1

4. A1 ← ASi
;

5. A2 ← maximum assignment to any single seminar b for which
S0(b) = 0;

6. Return maxA1,A2;

In this section we analyze the algorithm starting from an empty initial sem-
inar selection. In the following section we show that by running the algorithm
repeatedly with different initial seminar selections, the approximation guarantee
can be improved.

Observe that the cardinality of inc(S) is never greater than |B| · |I| and is
therefore polynomial in the size of the input. Thus, using the maximum weight
matching reduction from the proof of Lemma 1, step 3(a) of the algorithm can
be performed efficiently.

Definition 5. For a seminar selection S and a tuple (b, kb) with b ∈ B and
kb ∈ N, let S⊕(b, kb) denote the seminar selection S′ with S′(b) = max{kb, S(b)}
and S′(b′) = S(b′) for any b′ ∈ B, b′ �= b.

Lemma 3. For any feasible seminar selections S and T , if for every seminar
b ∈ B the seminar selection S ⊕ (b, T (b)) is feasible, then it holds that:

∑

b∈B

[p(S ⊕ (b, T (b))) − p(S)] ≥ p(T ) − p(S).

Proof. For a fixed SAP instance let G be its bipartite representation and let
G[VS ∪ I] and G[VT ∪ I] be the bipartite representations of S and T respectively.
Moreover, let MS and MT be two maximum weight matchings in G[VS ∪ I]
and G[VT ∪ I] respectively. Remember that according to Lemma 1 it holds that
p(S) = ω(MS) and p(T ) = ω(MT ). To prove the lemma we create matchings
M = {Mb}b∈B for the bipartite representations of assignments p(S ⊕ (b, T (b)),
such that each edge of MT is used in exactly one of the matchings in M and
each edge of MS is used in exactly |B| − 1 of the matchings in M.

Let C be the collection of isolated components formed by the union of the
edges of MS and MT . Since both MS and MT are matchings in G, each element
of C is a path or cycle in G. For every b ∈ B let Pb = {P ∈ C : V (P ) ∩
Vb ∩ (V (MT ) \ V (MS)) �= ∅}, where V (P ) denotes the vertices of component P
(Fig. 2).

Claim 2. For any a �= b ∈ B, Pa ∩ Pb = ∅.
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Proof of claim: To prove the claim, assume that there exist P ∈ Pa ∩ Pb for
some a �= b ∈ B. Then by definition there exist va ∈ Va and vb ∈ Vb such that
va, vb ∈ V (P ) and va, vb /∈ V (MS) and therefore va and vb are the endpoints
of the alternating path P . Since neither of the endpoints of the path belong to
MS , P must have an odd number of edges. However, because both endpoints of
P belong to the same partition of the bipartite graph G, the path P must have
an even number of edges, hence the claim holds by contradiction. 
�

b1

b2

b3

P1

P2

P3

(a)

b1

(b)

b2

(c)

b3

(d)

Fig. 2. An example with 3 seminars, b1, b2, b3. (a) Two assignments MS (dashed edges)
and MT (dotted edges); the three alternating paths formed by MS ∪ MT (light gray).
q(P1) = b1 because it only intersects vertices from Vb1 ; q(P2) = b1 because P2 con-
tains a vertex V (MT ) \ V (MS) that is in Vb1 ; r(P3) = b2. (b), (c) and (d) assign-
ments for seminar selections S ⊕ (b1, 3), S ⊕ (b2, 2) and S ⊕ (b3, 2) combining edges of
MS and MT .

Let q : C → B be a map of the isolated components to the seminars with the
following properties:

1. q(P ) ∈ {b ∈ B : V (P ) ∩ Vb �= ∅};
2. if P ∈ Pb for any b ∈ B, q(P ) = b.

Since Pb are disjoint by the previous claim and since for any seminar b it holds by
definition that V (P ) ∩ Vb �= ∅ whenever P ∈ Pb, it is clear that such a mapping
q exists.

For every b ∈ B let Mb be the matching of G that uses all the edges of MT

from the alternating paths P ∈ C mapped by q to the seminar b, and all the
edges of MS from the paths P ∈ C mapped by q to some other seminar:

Mb = [MT ∩ E(q−1(b))] ∪ [MS ∩ (E(C) \ E(q−1(b)))].

Observe that any edge of MT belongs to at least one matching Mb for some
b ∈ B and that any edge of MS belongs to all but one of the matchings Mb.
Therefore,
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∑

b∈B

ω(Mb) ≥ ω(MT ) + (|B| − 1) · ω(MS).

Moreover, observe that for each b ∈ B, Mb is a matching in the bipartite
representation of the seminar selection S⊕(b, T (b)). Therefore p(S⊕(b, T (b))) =
ω(Mb) and the lemma follows. 
�
Lemma 4. Let S and T be two seminar selections such that S ⊕ (b, T (b)) is
feasible for every b ∈ B. Let S∗ = arg maxS′∈inc(S)(p(S′)−p(S))/(c(S′)− c(S)).
Then it holds that:

p(S∗) − p(S)
c(S∗) − c(S)

≥ p(T ) − p(S)
c(T )

.

Proof. By Lemma 3 we have that
∑

b∈B

[p(S ⊕ (b, T (b))) − p(S)] ≥ p(T ) − p(S). (2)

Since
∑

b∈B [c(S ⊕ (b, T (b))) − c(S)] ≤ ∑
b∈B T (b) = c(T ), inequality (2)

implies that
∑

b∈B [p(S ⊕ (b, T (b))) − p(S)]∑
b∈B [c(S ⊕ (b, T (b))) − c(S)]

≥ p(T ) − p(S)
c(T )

. (3)

Then, there exists at least one seminar b∗ ∈ B such that

p(S ⊕ (b∗, T (b∗))) − p(S)
c(S ⊕ (b∗, T (b∗))) − c(S)

≥ p(T ) − p(S)
c(T )

. (4)

Since S ⊕ (b∗, T (b∗))) is clearly in inc(S) the lemma follows directly from
Eq. (4) and the definition of S∗. 
�
Lemma 5. Let T be a feasible seminar selection and let r ∈ N be such that
Si ⊕ (b, T (b)) is feasible for every i < r and b ∈ B. Then for each i ≤ r the
following holds:

p(Si) − p(S0) ≥
[
1 −

i−1∏

k=0

(
1 − c(Sk+1) − c(Sk)

c(T )

)]
·
(
p(T ) − p(S0)

)
.

Proof. We prove the lemma by induction on the iterations i. By the definition
of the algorithm, S1 is the seminar selection with maximum marginal density in
inc(S0), and thus Lemma 4 shows that the inequality holds for i = 1. Suppose
that the lemma holds for iterations 1, ..., i. We show that it also holds for iteration
i+1. For ease of exposition, for the remainder of this proof let αi = c(Si+1)−c(Si)

c(T ) .
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p(Si+1) − p(S0) = p(Si) − p(S0) + p(Si+1) − p(Si)
≥ p(Si) − p(S0) + αi · (p(T ) − p(Si))
= (1 − αi)p(Si) + αi · p(T ) − p(S0)

≥ (1 − αi) ·
(

1 −
i−1∏

k=0

(1 − αk)

)
(p(T ) − p(S0))

+ (1 − αi) · p(S0) + αi · p(T ) − p(S0)

=

(
1 − αi −

i∏

k=0

(1 − αk)

)
(p(T ) − p(S0))

+ αi · (p(T ) − p(S0))

=

(
1 −

i∏

k=0

(1 − αk)

)
(p(T ) − p(S0)).

Where the first inequality follows from Lemma 4 and the second inequality fol-
lows from the induction hypothesis. 
�
Theorem 4. When S0 is the empty assignment the Greedy algorithm is a
1
2 · (

1 − e−1
)
approximation for SAP.

Proof. Let OPT be the seminar selection of a fixed optimal assignment solution
for the given SAP instance. Let b∗ ∈ B be the seminar that is allocated the most
students in OPT and let OPT ′ be the seminar selection for which OPT ′(b∗) = 0
and OPT ′(b) = OPT (b) for any b �= b∗ ∈ B. Let r be the first iteration of the
algorithm for which c(Sr) > c(OPT ′). Clearly, Si ⊕ (b,OPT (b)) is feasible for
every i < r and b ∈ B. Since p(S0) = 0, by applying Lemma 5 to iteration r we
obtain:

p(Sr) ≥
[
1 −

r−1∏

k=0

(
1 − c(Sk+1) − c(Sk)

c(OPT ′)

)]
· p(OPT ′)

≥
[
1 −

r−1∏

k=0

(
1 − c(Sk+1) − c(Sk)

c(Sr)

)]
· p(OPT ′). (5)

Observe that c(Sr) =
∑r−1

k=0 c(Sk+1) − c(Sk) and that for any real numbers
a0, ..., ar−1 with

∑r−1
k=0 ak = A it holds that:

r−1∏

k=0

(
1 − ak

A

)
≤

(
1 − 1

r

)r

< e−1. (6)

Therefore Eq. (5) implies p(Sr) > (1− e−1) · p(OPT ′). Since the profit of A2

is at least p(b∗, OPT (b∗)) it holds that

A1 + A2 > (1 − e−1) · p(OPT ′) + p(b∗, OPT (b∗))

≥ (1 − e−1) · p(OPT )

and therefore either A1 or A2 has profit at least 1
2 · (1 − e−1)p(OPT ). 
�
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5 Improving the Approximation

In this section we show that the algorithm can be improved by starting the greedy
algorithm not from an empty seminar selection, but from a seminar selection
that is part of the optimal solution. The improved algorithm is less efficient but
achieves the optimal approximation ratio of (1 − e−1). Let Aopt be an optimal
seminar assignment and for any b ∈ B let popt(b) be the profit obtained in this
assignment from seminar b:

popt(b) =
∑

i∈A−1
opt(b)

p(i, b).

Clearly, the profit of the optimal solution is
∑

b∈B popt(b). W.l.o.g, let b1, b2, b3
be the three seminars of the optimal solution with highest profit and let S∗ be
a seminar selection such that S∗(b) = OPT (b) if b ∈ {b1, b2, b3}, and S∗(b) = 0
otherwise.

Theorem 5. When S0 = S∗ the Greedy algorithm is a
(
1 − e−1

)
-

approximation for SAP.

Proof. Let OPT be the seminar selection corresponding to Aopt. Let b∗ be the
seminar that is allocated the most students in OPT and is not allocated students
in S∗. Moreover, let OPT ′ be the seminar selection for which OPT ′(b∗) = 0
and OPT ′(b) = OPT (b) for any b �= b∗ ∈ B. Let r be the first iteration of
the algorithm for which c(Sr) > c(OPT ′). Clearly, the seminar selection Si ⊕
(b,OPT (b)) is feasible for every i < r and b ∈ B. By applying Lemma 5 to
iteration r we obtain:

p(Sr) − p(S∗) ≥
[
1 −

r−1∏

k=0

(
1 − c(Sk+1) − c(Sk)

c(OPT ′)

)]
·
(
p(OPT ′) − p(S∗)

)

≥
[
1 −

r−1∏

k=0

(
1 − c(Sk+1) − c(Sk)

c(Sr)

)]
·
(
p(OPT ′) − p(S∗)

)
.

By applying Eq. (6) we obtain that

p(Sr) − p(S∗) ≥ (1 − 1/e) ·
(
p(OPT ′) − p(S∗)

)
,

and therefore

p(Sr) ≥ (1 − 1/e) · p(OPT ′) + p(S∗)/e

≥ (1 − 1/e) · p(OPT ) − popt(b∗) + p(S∗)/e. (7)

By hypothesis S∗ selects the three seminars with maximum profit in the
optimal assignment and allocates exactly as many students to each as OPT does.
Then, since popt(b∗) ≤ popt(bi) for i = 1, ..., 3 it holds that p(S∗) ≥ 3 · popt(b∗) >
e · popt(b∗) and the theorem follows. 
�
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Observe that the number of feasible seminar selections assigning students
to at most three seminars is polynomial in the size of the input. Therefore, by
repeatedly calling the greedy algorithm with all possible such selections our main
result follows:

Corollary 1. There exists a polynomial time (1−e−1)-approximation algorithm
for SAP.
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