
Resource Allocation Games with Multiple
Resource Classes

Roy B. Ofer(B) and Tami Tamir(B)

School of Computer Science, The Interdisciplinary Center, Herzliya, Israel
royofr@gmail.com, tami@idc.ac.il

Abstract. We define and study a resource-allocation game, arising
in Media on Demand (MoD) systems where users correspond to self-
interested players who choose a MoD server. A server provides both
storage and broadcasting needs. Accordingly, the user’s cost function
encompasses both positive and negative congestion effects.

A system in our model consists of m identical servers and n users.
Each user is associated with a type (class) and should be serviced by
a single server. Each user generates one unit of load on the server it is
assigned to. The load on the server constitutes one component of the
user’s cost. In addition, the service requires an access to an additional
resource whose activation-cost is equally shared by all the users of the
same class that are assigned to the same server. In MoD systems, the
bandwidth required for transmitting a certain media-file corresponds to
one unit of load. The storage cost of a media-file on a server is shared
by the users requiring its transmission that are serviced by the server.

We provide results with respect to equilibrium existence, computation,
convergence and quality. We show that a pure Nash Equilibrium (NE)
always exists and best-response dynamics converge in polynomial time.
The equilibrium inefficiency is analyzed with respect to the objective
of minimizing the maximal cost. We prove that the Price of Anarchy
is bounded by m and by the size of the smallest class and that these
bounds are tight and almost tight, respectively. For the Price of Stabil-
ity we show an upper bound of 2, and a lower bound of 2− 1

m
. The upper

bound is proved by introducing an efficient 2-approximation algorithm
for calculating a NE. For two servers we show a tight bound of 3

2
.

1 Introduction

Resource allocation problems consider scenarios in which tasks or clients have
to be assigned to resources under a set of constraints. Resource allocation appli-
cations exist in a variety of fields ranging from production planning to operat-
ing systems. Game theoretic considerations have been studied in many resource
allocation problems. The game theoretic view assumes that users have strategic
considerations acting to maximize their own utility, rather than optimizing a

A brief-announcement introducing this work was presented in the 8th International
Symposium on Algorithmic Game Theory (SAGT), 2015.

c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 155–169, 2017.
DOI: 10.1007/978-3-319-51741-4 13

156 R.B. Ofer and T. Tamir

global objective. In resource allocation problems, this means that users choose
which resources to use rather than being assigned to resources by a centralized
designer. Media streaming is among the most popular services provided over the
Internet. The lack of a central authority that controls the users, motivates the
analysis of Media on Demand (MoD) services using game theoretic concepts.

Two main approaches exist with respect to the cost function associated with
the usage of a resource. One approach considers congestion games in which user’s
cost increases with the load on the resource. The other approach considers cost
sharing games in which users share the activation-cost of a resource, and thus,
user’s cost decreases with the load on the resource. Feldman and Tamir intro-
duced and studied a model in which both considerations apply [4]. In this work we
generalize this model further and study games corresponding to systems in which
resources have both positive and negative congestion effects, and different users
may require different resources. Our work is motivated by Media-on-Demand
systems, in which the above cost scheme applies.

A system in our model consists of a set of identical servers. Each user of the
system is associated with a type (class) and should be serviced by a single server.
Every user generates one unit of load on the server it is assigned to. In addition,
the service requires an access to an additional resource whose activation-cost is
equally shared by all the users of the same type that are assigned to the server.

A configuration of the system is characterized by an allocation of users to
servers. The cost of a user in a given allocation is the sum of two components:
the load-cost determined by the total load on his server, and his share in the
class activation-cost.

A pure Nash equilibrium (NE) is a configuration in which no individual player
can migrate and reduce his cost. We study the multi-class resource model with
respect to NE existence, calculation and efficiency. When considering equilibrium
inefficiency we use the standard measures of price of anarchy (PoA) [7] and
price of stability (PoS) [2]. For the PoA and PoS measures we use an egalitarian
objective function, i.e., we measure the maximal cost among users compared with
the maximal cost in an optimal allocation. In addition to the theoretical analysis
of this model, we present efficient algorithms for finding good stable solutions.
The algorithms combine load-balancing ideas used in packing algorithms, such
as element-grouping and handling the elements in decreasing-size order, together
with ideas used in algorithmic game theory, such as performing a sequence of
improving steps in a specific, supervised, order.

Applications: There are several real-world systems that fit the above multi-
class resource allocation scenario. In particular, our study is motivated by media-
on-demand (MoD) systems. A MoD system (see, e.g., [13,17]) consists of a large
database of media files and a set of servers. The servers provide both storage and
broadcasting needs. Each client specifies a media stream request and receives the
stream via one of the servers. The server’s bandwidth corresponds to the load
resource – each client generates one unit of load on the server. The media-file
specifies the client’s class. Each media-file (class) has an activation-cost reflecting

Resource Allocation Games with Multiple Resource Classes 157

the cost of copying the media file from the central database, and storing it in
the server’s local memory. The server’s bandwidth (load) is distributed among
all its clients, while the class activation-cost is shared among all clients requiring
the same media file stream.

Another example is infrastructure-as-a-service (IAAS) in cloud computing.
IAAS (see e.g. [10]) is a cloud computing service model which offers comput-
ers, either physical or virtual machines. Each client has a task that has to be
performed on a machine. In IAAS system, each machine acts as a server. The
machine’s network bandwidth corresponds to the load resource and the required
software installation for the client’s task specifies the class. The load on the vir-
tual machine affects all the machine’s clients, while the software installation cost
is shared among all clients requiring it.

Production planning is another example of a multi-class resource allocation
application, arising in computer systems and in many other areas. Consider a
set of machines, each having a limited capacity of some physical resource (e.g.
quantity of production materials). In addition, hardware specifications allow
each machine to produce items of different types, each associated with some
configuration set-up or training. The quality of service reduces with the total
congestion on the resource. The configuration set-up cost is required for every
class on every machine.

1.1 Model and Preliminaries

An instance of the multi-class resource allocation game is defined by a tuple
G = 〈I,M,A,U〉, where I is a set of players, M is a set of servers and A is a set
of classes. Let n = |I| and m = |M |. Each player belongs to a single class from A,
thus, I = I1 ∪ I2 · · · ∪ I|A|, where all players from Ik belong to class k. For i ∈ I,
let ai ∈ A denote the class to which player i belongs. The parameter U ∈ IR+ is
the class activation-cost, which is assumed to be uniform for all classes.

An allocation of players to servers is a function f : I → M . Given an alloca-
tion, the load on server j, denoted by Lj(f), is the number of players assigned
to j. We denote by Lj,k(f) the number of players from Ik assigned to j. When
clear in the context we omit f and use Lj and Lj,k, respectively.

The cost of a player i in an allocation f consists of two components: the
load on the server the player is assigned to, and the player’s share in the class
activation-cost. The class activation-cost is shared evenly among the players from
this class serviced by the server. Formally, cf (i) = Lf(i) + U

Lf(i),ai

.
A step by a player i with respect to an allocation f is a unilateral deviation

of i, i.e., a change of f to f ′ such that ∀� �=if
′(�) = f(�) and f ′(i) �= f(i). An

improving step of player i with respect to an allocation f is a step which reduces
the player’s cost, that is, cf ′(i) < cf (i). An allocation f is said to be a Pure
Nash Equilibrium (NE) if no player has an improving step, i.e., for each player
i and for every allocation f ′ such that ∀� �=if

′(�) = f(�) it holds cf (i) ≤ cf ′(i).
Best-Response Dynamics (BRD) is a local search method where in each step

some player is chosen and plays its best improving step, given the strategies of
the other players.

158 R.B. Ofer and T. Tamir

It is well known that decentralized decision-making may lead to sub-optimal
solutions from the point of view of society as a whole. We quantify the ineffi-
ciency incurred due to self-interested behavior according to the PoA and PoS
measures. The PoA is the worst-case inefficiency of a NE, while the PoS measures
the best-case inefficiency of a NE. Formally, let G be a family of games, and let
G ∈ G be some game in this family. Let NE(G) be the set of Nash equilibria of
the game G, let val(f) be the social cost of a NE f with respect to some objective
function, and let OPT (G) be the value of an optimal solution. If NE(G) �= ∅,
then PoA(G) = maxf∈NE(G)

val(f)
OPT (G) , and PoA(G) = SupG∈GPoA(G). Simi-

larly, PoS(G) = minf∈NE(G)
val(f)

OPT (G) , and PoS(G) = SupG∈GPoS(G).
In this paper, we evaluate the performance of a solution with respect to the

objective of minimizing the maximal cost among the players; that is, given an
allocation f , the social cost of f is given by cmax(f) = maxi∈I cf (i).

1.2 Related Work

The study of resource allocation games with multiple resource classes combines
challenges arising in the two classical problems of multi-dimensional packing and
resource-sharing games. Class-constrained multiple knapsack (CCMK) [13,14] is
the variant of a centralized packing problem closest to our model. In CCMK each
item has a type, a size and a value. Each knapsack has in addition to its size, a
number of compartments which define the number of different item types it can
contain. The optimization goal in CCMK is to maximize the total value of items
packed into the knapsacks. The problem is NP-hard even with unit size and unit
profit items. In our game, as in [13], all items have unit size. The main difference
between the models is that servers in our game have no limited capacity, thus
a placement that packs all the items always exists. The load-component in our
cost-function provides the incentive to avoid highly loaded servers and to balance
the load among the servers.

In cost-sharing games, a possibly unlimited amount of resources is available.
The activation of a resource is associated with a cost which is shared among
the players using it. A well-studied cost sharing game is network design. Nash
equilibrium always exists in network design games and the price of stability with
respect to the total-cost objective function is H(k), where k is the number of
players and H is the harmonic function [1]. In cost sharing games, congestion
has a positive effect, and players have an incentive to use resources that are used
by others. Other related work deal with congestion games, in which congestion
has a negative effect, and players wish to avoid loaded resources. In congestion
games, the cost of using a resource increases with the load on it. Congestion
games were first introduced in [11], and arise naturally in network routing (see
e.g. [12]), and job-scheduling [16].

In [4], Feldman and Tamir studied a model incorporating both positive and
negative congestion effects. In their model, a job-scheduling setting with unlim-
ited set of identical machines is studied. Each job j has a length pj and each
machine has a fixed activation cost U . The set of players corresponds to the set

Resource Allocation Games with Multiple Resource Classes 159

of individual jobs and the action space of each player j is the set of machines.
The cost function of job j in a given schedule is composed of the load on the job’s
machine and the job’s share in the machine’s activation cost. For the uniform
sharing rule in which the machine’s activation cost is uniformly shared between
the jobs allocated to it, a NE may not exists. For the proportional sharing rule
in which the share of a job in the machine’s activation cost is proportional to
its length, the price of anarchy with respect to the makespan can be arbitrarily
high. The price of stability is tightly bounded by 5/4. This model of conflict-
ing congestion effects was studied further in [3], where equilibrium inefficiency
was studied with respect to the total-cost objective, and in [5,8], where closer
analysis of the PoA and PoS is provided. In this work, we generalize the model
of conflicting congestion effects, by allowing several resources on a single server.
This generalization provides one additional step in modeling real-world systems
using game theoretical tools.

1.3 Our Results

We provide answers to the basic questions regarding resource allocation games
with multiple resource classes. Namely, equilibrium existence, convergence, cal-
culation and efficiency. We present polynomial-time algorithms for calculating a
stable solution whose cost almost matches the bound for the PoS.

We prove that a NE exists for any instance of the game by presenting an
exact potential function for the game. By analyzing this function we conclude
that any application of better-response dynamics converges to a NE within time
O(n4). The equilibrium inefficiency is analyzed with respect to the objective of
minimizing the maximal cost among the players. We first provide several lower-
bounds on the optimal solution, and then combine them to present a tight bound
of m for the PoA. An additional almost tight bound depends on the size of a
least popular class. Let θ = min1≤k≤|A| |Ik|. We show that PoA ≤ θ + 1, and a
game for which PoA ≥ θ − ε exists.

We show that for any number of servers, there exists a game for which the
PoS is 2 − 1

m . This lower bound is almost matched - we present a polynomial
time algorithm that constructs a NE with max-cost at most twice the optimum.
For two servers, we present a matching upper bound: that is - a polynomial time
algorithm that constructs a NE with max-cost at most 3/2 times the optimum.

Our algorithms for finding a good stable assignment are based on two new
methods:

1. While all the players create the same unit-load on the servers, our algorithms
group the players into sets, based on their classes. An initial assignment is
found by considering these sets as an instance of a multiple-knapsack packing
problem with arbitrary-size elements. This method enables analysis of the
assignment using known packing techniques and their properties.

2. The stabilization phase that follows the initial assignment consists of itera-
tions in which the algorithm may reassign complete sets of players, or per-
form a supervised sequence of improving steps. The sequence is initiated by

160 R.B. Ofer and T. Tamir

one player i, and is then limited to players of i’s class who may benefit from
following i by performing exactly the same migration. Analyzing the configu-
ration after each improving step is complex; however, it is possible to analyze
the effect of each supervised sequence of improving steps on the potential
function and to bound the cost of an assignment derived by this method.

It is interesting to compare our results with the model studied in [4], in which
all users belong to a single class, and the number of servers is unlimited. In our
model, it is not relevant to study instances with unlimited number of servers,
since players from different classes have only negative effect on the cost of each
other, thus, different classes will never share a server, and the problem reduces
to a single-class problem. The PoA is not bounded by a constant in both models,
however, in our model it is bounded by m – the number of servers and θ + 1
- where θ is the size of the smallest class, while in [4] it is bounded by 1+U

2
√

U
–

which is a function of the class (machine) activation-cost.
A tight bound of 5

4 for the PoS is shown in [4]. Our bound on the PoS
implies that increasing the number of classes from 1 to arbitrary |A| only slightly
increases the PoS - from 5

4 to 2. Thus, in both models the PoS is a relatively
small constant.

Due to space constraints, some proofs as well as the 3
2 -approximation algo-

rithm for two servers are omitted from this extended abstract.

2 Equilibrium Existence and BRD Convergence

We show that the multi-class resource allocation game is a potential game [9].
This implies that a series of improving steps always converges to a NE. Given
an allocation f , consider the following potential function,

Φ(f) =
∑

1≤j≤m

U · (HLj,1(f) + HLj,2(f) + . . . + HLj,|A|(f)) +
Lj(f)2

2
, (1)

where Hk is the kth harmonic number, that is, H0 = 0, and Hk = 1+ 1
2 + . . .+ 1

k .

Theorem 1. Φ(f) is an exact potential function.

Thus, BRD converges and a NE exists. Next, we show that BRD converges
to a NE in polynomial time. Specifically,

Theorem 2. For every instance G, BRD converges to a NE within O(n4) steps.

Proof. Consider the potential function defined in (1), since Hk ≤ k, and for all
1 ≤ j ≤ m and 1 ≤ i ≤ |A|, Lj,i ≤ Lj , the left addend of the sum can be
bounded as follows,

∑

1≤j≤m

U · (HLj,1(f) + HLj,2(f) + . . . + HLj,|A|(f)) ≤
∑

1≤j≤m

U · Lj = U · n.

Resource Allocation Games with Multiple Resource Classes 161

The right addend of the potential function is trivially bounded by n2

2 and we
conclude that for all f , Φ(f) ≤ U · n + n2

2 . Consider an improving step by
some player i. Since the potential function is an exact potential function, the
difference in the potential is exactly the improvement in i’s cost. That is ΔΦ =
cf (i) − cf ′(i) = Δc�(i) + Δcs(i). The difference in the load is an integer while
the difference in the activation-cost is U

Lf(i),a(f)+1 − U
Lf(i),a(f)

where a is the class
of i. Since Lj,a is an integer and Lj,a ≤ n for all a, j, the denominator of the
activation-cost diff is at most n(n − 1). Thus, an improving step reduces the
potential by at least 1

n(n−1) , that is, ΔΦ ≥ 1
n(n−1) . Since the potential is always

positive, BRD converges in at most maxf Φ(f)
minΔΦ = O(n2)

Ω(1
n2)

= O(n4) steps. �

3 Equilibrium Inefficiency - Price of Anarchy

In this section we study the inefficiency caused due to strategic behavior, as
quantified by the Price of Anarchy (PoA). We evaluate the performance of a
solution with respect to the objective of minimizing the highest cost among
all the players; that is, given an allocation f , the social cost of f is given by
cmax(f) = maxi∈I cf (i). For a server j, define the cost of j as the maximal cost
among players allocated to j. That is, cf (j) = maxf(i)=j cf (i). Let OPT denote
the maximal cost of a player in an optimal assignment minimizing the maximal
cost. Some of our bounds are a function of θ = min1≤k≤|A| |Ik|, the size of a
least popular class. For simplicity, we use θ to denote both the class and its size.
We prove a tight bound of m for the PoA, and an almost tight bound of θ + 1,
implying that the existence of a single small class guarantees low PoA. We start
with the lower bound based on the number of servers. Specifically, we show that
the PoA may be m − ε for any ε > 0.

Theorem 3. For any m ≥ 2 servers and any ε > 0, there exists an instance G
for which PoA(G) > m − ε.

Proof. Let k be an integer such that 1
mk ≤ ε. Consider an instance G with

n = mk+3 players, U = n and a single class. Let f be the allocation in which
all the players are allocated to a single server. The cost of each player in f is
c1 = n + 1 = mk+3 + 1. A player migrating to an empty server would have a
cost of 1 + U = n + 1 = c1. Thus, f is stable. On the other hand, consider an
allocation f ′ in which the players are equally distributed between the servers.
Each server is allocated with mk+2 players, each having cost c′

1 = mk+2 + m.
Therefore,

PoA(G) ≥ c1
c′
1

=
mk+3 + 1
mk+2 + m

> m − 1
mk

≥ m − ε.

�
In order to prove the upper bound, we first provide several lower bounds on

OPT . Let d = max(n
m ,

√
U).

162 R.B. Ofer and T. Tamir

Claim 4. OPT ≥ max(n+U
θ

m ,
⌈

n
m

⌉
, U

θ , 2
√

U, d + U
d).

When θ ≤ n
m , we can bound OPT further as a function of θ and U .

Claim 5. If θ ≤ n
m , then OPT ≥ θ + U

θ .

Theorem 6. For any resource allocation game G with multiple resource classes,
PoA(G) ≤ m.

Proof. Let f be a stable allocation, and let j1 be a server such that cf (j1) =
cmax(f). Let i be a class with minimal group-size on j1. Thus, c1 = L1 + U

Lj1,i
is

the maximal cost of a player in f . We show that c1 ≤ n + U
θ . By Claim 4, this

implies that the PoA is at most m.
If j1 is the only server that services players from class i then Lj1,i ≥ θ. Thus,

c1 ≤ n + U
θ .

If players from class i are assigned in f to more than a single server, let j2 �= j1
be a least loaded server that services class-i players in f . Denote �1 = Lj1,i and
�2 = Lj2,i. The cost of a class-i player on j2 is c2 = L2 + U

�2
. Since f is stable, a

migration of an i-player from j1 to j2 is not beneficial. Combining the fact that
c2 ≤ c1, we get

L2 +
U

�2
≤ L1 +

U

�1
≤ L2 + 1 +

U

�2 + 1
. (2)

Equation (2) implies that U ≤ �2(�2 + 1).
On the other hand, a migration of an i-player from j2 to j1 is also not

beneficial. Thus, L2 + U
�2

≤ L1 + 1 + U
�1+1 and we get

L2 + 1 +
U

�2 + 1
≤ L2 + 1 +

U

�2
≤ L1 + 2 +

U

�1 + 1
. (3)

Combining Eqs. (2) and (3), we conclude that

U ≤ min(2�1(�1 + 1), �2(�2 + 1)). (4)

If class-i players are allocated to exactly two servers, the analysis is techni-
cally involved and is omitted due to space constraints.

If class-i players are allocated to more than two servers then since j2 is the
least loaded server with class-i players, except possibly j1, we have �2 ≤ L2 < n

2

and c1 ≤ L2 + 1 + U
�2+1 ≤ L2 + 1 + �2 < n. Thus, for every possible allocation of

class-i players, we showed that c1 ≤ n + U
θ ≤ m · OPT . �

Our next bound depends on the size of the smallest class. We start with the
upper bound.

Theorem 7. For any resource allocation game G with multiple resource classes,
and any ε > 0, PoA(G) ≤ θ + 1.

Resource Allocation Games with Multiple Resource Classes 163

Proof. Let f be a stable allocation, and let j be a server such that cf (j) =
cmax(f). Let L1 be the load on j and let L0 be the load on the least loaded
server in f . If L1 ≤ ⌈

n
m

⌉
then cmax(f) ≤ ⌈

n
m

⌉
+U . Otherwise, by the pigeonhole

principle, L0 <
⌈

n
m

⌉
. Since f is stable, cf (j) ≤ L0 +U +1 ≤ ⌈

n
m

⌉
+U . By Claim

4, OPT ≥ max(
⌈

n
m

⌉
, U

θ). Thus, PoA ≤ � n
m�+U

OPT ≤ θ + 1. �
This bound is almost matched.

Theorem 8. For any θ ≥ 1 and ε > 0, there exists an instance G for which
PoA(G) > θ − ε.

Proof. Given ε and θ, let U be a constant such that ε ≥ θ3

U+θ2 . Consider an
instance with n = U(1 − 1

θ) players from two classes, where |I1| = θ and |I2| =
n−θ. Let m = n/θ. Note that U can be selected such that n and m are integers.

Let f be the allocation in which all the players are allocated to a single server.
Players of I1 have the max-cost in f , which is c1 = n + U

θ . A player migrating
to an empty server would have a cost of U + 1. Since U = n + U

θ = c1, such
a migration is not beneficial. Thus, f is stable. On the other hand, consider an
allocation f ′ in which the players are equally distributed between the servers,
each server accommodating θ players from the same class. All the players have
cost c′ = θ + U

θ . Therefore,

PoA(G) ≥ c1
c′ =

n + U
θ

θ + U
θ

=
U

θ + U
θ

≥ θ − ε.

�

4 Equilibrium Inefficiency - Price of Stability

In this section we analyze the Price of Stability with respect to the max-cost
objective. For systems with arbitrary number of servers, m, we show that 2− 1

m ≤
PoS ≤ 2. For two servers, the lower bound is tight. Specifically, we present an
O(|A| log |A| + n)-time algorithm for calculating a NE assignment that achieves
max-cost at most 3

2OPT . The algorithm is omitted from this extended abstract.
Our main result is an algorithm for arbitrary number of servers. The algo-

rithm combines load-balancing ideas used in packing algorithms, such as element-
grouping and handling of elements in decreasing-size order, together with ideas
used in algorithmic game theory, such as performing BRD in a specific order.

We begin with a lower bound of 2 − 1
m .

Theorem 9. For every ε > 0 and a system with m ≥ 2 servers, there exists an
instance G such that PoS(G) > 2 − 1

m − ε.

Proof. Given ε > 0, let n = max(
⌈
4(m−1)

ε

⌉
, 4m). Consider an instance G with

m ≥ 2 servers, and A = {a1, a2}, where a single player belongs to class a1 and all

164 R.B. Ofer and T. Tamir

other players belong to class a2. Let U = n−1
m−1 − 2. A possible allocation for this

instance is illustrated in Fig. 1(a). The players who belong to a2 are split evenly
among m − 1 servers and the player of a1 is solely allocated to the remaining
server. The maximal cost for this allocation is for players who belong to a2 and is
c1 = n−1

m−1 +1− 2(m−1)
n−1 . The only NE (up to server renaming) for this instance is

illustrated in Fig. 1(b). The player of a1 has the maximal cost for this allocation
c2 = n

m + n−1
m−1 − 2. A player of a2 has cost at most c3 = n

m + U
n
m −1 , a player of

a2 migrating to a different server would have cost at least c4 = n
m + 1 + U

n
m+1 .

Since n ≥ 4m and m ≥ 2, n−1
m−1 − 1 < n

m and U < n
m − 1. Thus, c3 < c4 and the

allocation is stable. We conclude that the PoS is at least

c2
c1

=
n
m + n−1

m−1 − 2
n−1
m−1 + 1 − 2(m−1)

n−1

≥
n
m + n−1

m−1 − 2
n−1
m−1 + 1

≥ 2 − 1
m

− 4(m − 1)
n

≥ 2 − 1
m

− ε.

�

...

...

...

... ...

...

...

......

Fig. 1. (a) An optimal non-stable allocation, (b) A best NE.

4.1 An Algorithm for Multiple Servers

For a system with an arbitrary number of servers, we present a polynomial
time algorithm that constructs a NE with max-cost at most 2OPT . We use the
term big classes when referring to classes with at least n

m players. Similar to
the case m = 2, Algorithm 1, given below, assigns complete classes to servers
while only splitting big classes. This initial assignment is similar to Longest
Processing Time (LPT) algorithm for job scheduling [6], that is, it assigns the
sets greedily, in non-increasing order, on a least loaded server. If the resulting
assignment is not stable, a stabilization phase is performed. This phase consists
of migrations of complete classes or sequences of supervised improving steps. The
improvement steps are in ‘Follow-a-leader’ phases. That is, once one member of
a class performs a beneficial migration, an identical migration is considered for
other members of his class. While it is complex to analyze the change in the
social cost of arbitrary sequence of improving steps, we are able to analyze it for
this structured stabilization phase. Recall that d = max(n

m ,
√

U).

Resource Allocation Games with Multiple Resource Classes 165

Algorithm 1. An algorithm for finding a NE achieving max-cost at most 2OPT .

Let d = max(
√
U, n

m
).

1. Consider the players according to their classes.

2. Partition any class Ik such that Ik ≥ d to
⌊

Ik
d

⌋
sets of equal sizes (up to a rounding

difference of 1).
3. Sort the resulting sets by their size in decreasing order.
4. Consider the sets according to the sorted order, assign all the players of the next

set to a least loaded server.
5. If the schedule is not stable, perform a Stabilization Phase (Algorithm 2).

Let f denote the allocation produced in step 4. We start by characterizing f
and show that cmax(f) < 2OPT . We then consider the case that f is not stable
and the stabilization phase is applied. We show that this phase is guaranteed to
converge to a NE allocation f ′ for which cmax(f ′) < 2OPT . We first characterize
some cases in which any NE f0 fulfills cmax(f0) < 2OPT , and then analyze the
stabilization phase for the remaining cases.

Claim 10. The maximal load on a server in the allocation f is at most 2d− 1.

Proof. Assume by contradiction that there is a server s with load at least 2d.
Step 2 guarantees that the maximal set-size is at most 2d−1. Thus, there are at
least two different sets allocated to s. Let Γ be the first set allocated to s that
increases the load beyond 2d−1. Let � be the load on s before Γ is added. Since
the sets are ordered by decreasing order of their sizes, Γ ≤ �. If � ≥ n

m then by
the pigeonhole principle there is a server s0 such that Ls0 < n

m , contradicting
the assignment of Γ to s. If � < n

m then |Γ | + � ≤ 2� < 2n
m ≤ 2d, contradicting

the assumption that s gets load at least 2d. �
Lemma 11. cmax(f) < 2OPT .

Proof. Consider a server s such that cmax(f) = cf (s). By Claim 10 the maximal
load on s is at most 2d − 1. If all the players in s belong to the same class,
cf (s) ≤ 2d−1+ U

d < 2d+ U
d . By Claim 4, OPT ≥ d+ U

d . Thus, cmax(f) < 2OPT .
Let θ0 be the last set assigned to s, if s is assigned with players of different
classes, then θ0 < n

m since the sets are assigned by LPT order. By the pigeonhole
principal, the load on s is at most n

m + θ0. Thus, cf (s) ≤ n
m + θ0 + U

θ0
. Since

θ ≤ θ0 ≤ n
m and x + U

x is a convex function, using Claims 4 and 5, we conclude
θ0 + U

θ0
≤ max(θ + U

θ , n
m + Um

n) ≤ OPT and cf (s) < 2OPT . �
Next, we show the stabilization phase converges to a stable assignment. The

proof of the following claim is based on analyzing the change in the potential
function Φ(f) defined in (1). We show that every iteration of Step 1 of Algorithm
2 reduces the potential. By Theorem 1, this is valid also for Step 2.

166 R.B. Ofer and T. Tamir

Algorithm 2. Stabilization Phase
Repeat until convergence:

1. While there exists a server s1 and a class Ik such that all players from Ik are on
s1 and L1 ≥ |Ik| + n

m
, move Ik from s1 to some server s2 for which L2 < n

m
.

2. Perform a ‘follow a leader’ sequence of improving steps:
2.1. Let i1 be some player that has a beneficial move. Assume i1 ∈ Ik and denote

by s1 the server to which i1 is assigned.
2.2. Let i1 perform a beneficial step from s1 to some server s2.
2.3. As long as there exists another unsatisfied player i ∈ Ik assigned to s1, for

which migrating to s2 is beneficial, let i migrate to s2.

Claim 12. The stabilization phase converges to a NE.

We turn to analyze the cost of the stable assignment f ′ produced by the stabi-
lization phase. For some cases, a 2-ratio can be shown for any stable assignment.

Lemma 13. If U ≤ n
m or n

m < U < 4 or θ = 1, then for any NE f ′ it holds
that cmax(f ′) ≤ 2OPT .

For the remaining cases, we analyze the outcome of the stabilization phase.
We use below known properties of assignment produced by LPT algorithm.

Claim 14. If f is not stable then U < 2d.

Proof. By Claim 10, the maximal load on a server in f is at most 2d−1. Let i be
a player in server s1 with a beneficial move to s2. The load difference between s1
and s2 is at most 2d−1. The big classes are equally distributed in Step 2 to sets
of size at least d. Since d ≥ n

m and the sets are allocated in non-increasing order
of size, servers with a set of a big class are only assigned players of that class.
Thus, since d ≥ √

U , players of big classes can only have a beneficial move to
servers not servicing the same class. Players of small classes are all in the same
set generated in Step 1 and are all allocated to the same server. Obviously, such
players can only have a beneficial move to a server not assigned with their class.
Let Γ be the last set assigned to s1 in Step 4. Since the sets are assigned in non-
increasing order of size, L1 − L2 < |Γ | and the cost of i prior to the improving
step is at most c1 = L1 + U

|Γ | . The cost after the step is c2 = L2 + 1 + U . Since

c2 < c1 we have L2 + 1 + U < L1 + U
|Γ | . Thus, U(|Γ |−1

|Γ |) < L1 − L2 − 1 ≤ |Γ | − 1
and U ≤ |Γ | ≤ 2d − 1. �
Lemma 15. If U ≥ 4 and θ > 1, then Step 2 of the stabilization phase results
in an allocation with at least two players in any class allocated to a server.

Lemma 16. The maximal load on a server in the allocation f ′ is at most 2d−1.

We summarize with the following Theorem.

Resource Allocation Games with Multiple Resource Classes 167

Theorem 17. Algorithm 1 produces a NE assignment with max-cost at most
2OPT .

Proof. If the allocation f generated in Step 3 is stable then by Lemma 11 its
max-cost is at most 2OPT . If f is not stable, and θ = 1 or U ≤ n

m or n
m < U < 4,

then by Lemma 13, any NE has max-cost at most 2OPT . If f is not stable, θ > 1,
U > n

m and U ≥ 4 then by Claim 12 and Lemma 15, the stabilization phase
converges to a stable allocation f ′ in which the smallest set on each server is of
size at least 2. Assume by contradiction that cmax(f ′) > 2OPT . Let s be a server
such that cf ′(s) > 2OPT . The cost of s is at most Lf ′(s) + U

2 . Using Claim 14
we have U < 2d thus cf ′(s) < Lf ′(s) + d and Lf ′(s) > d. If there is a single
class allocated to s then cf ′(s) ≤ Lf ′(s) + 2d

Lf′ (s) . By Lemma 16, Lf ′(s) < 2d

and cf ′(s) < 2d. If there are multiple classes allocated to s then by Lemma 15
the smallest set of a players Γ who belong to the same class on s is at least
2. Since Γ was not moved by Step (1) of the stabilization phase, we conclude
cf ′(s) ≤ n

m − 1 + |Γ | + U
|Γ | ≤ d − 1 + |Γ | + U

|Γ | . Since 2 ≤ |Γ | ≤ n
m we have

|Γ |+ U
Γ ≤ max(2+ U

2 , n
m + Um

n ≤ d+ U
d). Claim 4 implies that 2OPT ≥ 2d+ 2U

d

and also 2d + U
2d ≥ d − 1 + |Γ | + U

|Γ | . Finally, since 2d + 2U
d ≥ 2d + U

2d , we get
cmaxf ′(s) ≤ 2OPT . �

5 Conclusions and Open Problems

We studied a resource-allocation game with multiple resource classes in which
user’s cost function encompasses both negative and positive, class-dependent,
congestion effects. Our study of the game reveals that even for the basic model
of unit-load players and identical servers, the equilibrium inefficiency may by
very high. On the other hand, an assignment whose cost is at most twice the
optimum exists and can be calculated in poly-time. We list below some open
problems and possible directions for future work.

1. Heterogeneous systems: our work considers systems with identical servers and
unit-load requirements. One possible generalization is to study systems with
unrelated servers and/or non-identical load requirements. In the classic load
balancing game, there is a significant difference between the results regarding
related and unrelated systems. It would be interesting to study the corre-
sponding differences in the multi-class model.

2. Players with class preferences or with multiple classes: In our work players
belong to a single class. In a possible generalization of this game (studied in
[15] for the centralized model), a player may belong to several classes and has
preferences regarding his class. This scenario fits for example MoD systems
in which a client is ready to see one of several movies, and provides his
preferences for broadcast. In the corresponding game, the utility of a player
depends also on the class to which it is assigned. Another direction is to
study systems in which a player requires more than a single resource for his
processing. Thus, a player may belong to multiple classes and needs to pay
his share in the activation cost of all the resources he needs.

168 R.B. Ofer and T. Tamir

3. We calculated inefficiency with respect to the max-cost objective function.
Future work could also consider other objective functions such as sum-cost.

4. BRD convergence time: We have shown that BRD converges within an upper
bound of O(n4) steps. A lower bound of Ω(n log n) steps follows from the
analysis in [4] for a single class. Closing the gap and providing a tight bound
for BRD convergence time remains open.

5. Strong Equilibrium: In a work in progress we have shown that a SE may not
exist for U > 2, while for U = 0 a SE always exist. The existence of SE for
0 < U ≤ 2 is an open question. Characterizing conditions in which an SE
exists and analyzing SE inefficiency are additional open directions.

6. Capacitated Model: We assumed that servers have unlimited capacity. Study-
ing the capacitated game, in which servers have limited storage and/or limited
load capacities arise new challenges.

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgar-
den, T.: The price of stability for network design with fair cost allocation. SIAM
J. Comput. 38(4), 1602–1623 (2008)

2. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Rough-
garden, T.: The price of stability for network design with fair cost allocation. In:
Symposium on the Foundations of Computer Science (FOCS), pp. 295–304 (2004)

3. Chen, B., Gürel, S.: Efficiency analysis of load balancing games with and without
activation costs. J. Sched. 15(2), 157–164 (2012)

4. Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games.
J. Oper. Res. 60(3), 529–540 (2012)

5. Fang, X., Zhe, X., Yuzhong, Z., Qingguo, B.: Scheduling games on uniform
machines with activation cost. Theo. Comput. Sci. 580, 28–35 (2015)

6. Graham, R.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17, 263–269 (1969)

7. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2),
65–69 (2009)

8. Lin, L., Yan, Y., He, X., Tan, Z.: The PoA of scheduling game with machine
activation costs. In: Chen, J., Hopcroft, J.E., Wang, J. (eds.) FAW 2014. LNCS, vol.
8497, pp. 182–193. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08016-1 17

9. Monderer, D., Shapley, L.S.: Potential games. Game. Econ. Behav. 14, 124–143
(1996)

10. Prodan, R., Ostermann, S.: A survey and taxonomy of infrastructure as a service
and web hosting cloud providers. In: IEEE/ACM International Conference on Grid
Computing, pp. 17–25 (2009)

11. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int.
J. Game Theory 2, 65–67 (1973)

12. Roughgarden, T.: Chapter 18: Routing games. In: Nisan, N., Roughgarden, T.,
Tardos, E., Vazirani, V.V. (eds.) Algorithmic Game Theory. Cambridge University
Press, Cambridge (2007)

13. Shachnai, H., Tamir, T.: On two class-constrained versions of the multiple knapsack
problem. Algorithmica 29, 442–467 (2001)

http://dx.doi.org/10.1007/978-3-319-08016-1_17

Resource Allocation Games with Multiple Resource Classes 169

14. Shachnai, H., Tamir, T.: Tight bounds for online class-constrained packing. Theo-
ret. Comput. Sci. 321(1), 103–123 (2004)

15. Tamir, T., Vaksendiser, B.: Algorithms for storage allocation based on client pref-
erences. J. Comb. Optim. 19, 304–324 (2010)

16. Vöcking, B.: Chapter 20: Selfish load balancing. In: Nisan, N., Roughgarden, T.,
Tardos, T., Vazirani, V.V. (eds.) Algorithmic Game Theory. Cambridge University
Press, Cambridge (2007)

17. Wolf, J.L., Yu, P.S., Shachnai, H.: Disk load balancing for video-on-demand sys-
tems. ACM Multimedia Syst. J. 5, 358–370 (1997)

	Resource Allocation Games with Multiple Resource Classes
	1 Introduction
	1.1 Model and Preliminaries
	1.2 Related Work
	1.3 Our Results

	2 Equilibrium Existence and BRD Convergence
	3 Equilibrium Inefficiency - Price of Anarchy
	4 Equilibrium Inefficiency - Price of Stability
	4.1 An Algorithm for Multiple Servers

	5 Conclusions and Open Problems
	References

