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Abstract. Our results are on the online version of path coloring in trees
where each request is a path to be colored online, and two paths that
share an edge must get different colors. For each T , we come up with a
hierarchical partitioning of its edges with a minimum number of parts,
denoted by h(T ), and design an O(h(T ))-competitive online algorithm.
We then use the lower bound technique of Bartal and Leonardi [1] along
with a structural property of the hierarchical partitioning, to show a
lower bound of Ω(h(T )/ log(4h(T ))) for each tree T on the competitive
ratio of any deterministic online algorithm for the problem. This gives
us an insight into online coloring of paths on each tree T , whereas the
current tight lower bound results are known only for special trees like
paths and complete binary trees.

1 Introduction

The problem of path coloring in graphs has been motivated by the problem of
wavelength allocation in communication networks that make use of Wavelength
Division Multiplexing (WDM). In WDM, multiple optical signals are transmit-
ted simultaneously through the same fibre link but at different wavelengths of
light. Any two nodes in such a network communicate by establishing a path
between them and assigning a wavelength to the path. Paths which use the
same fibre link are assigned different wavelengths. A natural goal is to mini-
mize the number of wavelengths used in such a network. This crucial problem in
communication networks is known as the wavelength allocation problem: Given
a network and a set of requests on the network, the problem is to assign distinct
wavelengths to all requests that share a communication link. This problem may
be viewed as the problem of coloring paths on a network graph such that two
paths that share a link receive different colors (representing wavelengths in com-
munication network). One of the most well-studied network topologies in this
framework is the tree topology. Now, we formally define the path coloring problem
on trees:
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Path Coloring on Trees
Instance: A tree T and a set P of paths of T
Output: A coloring function c : P �→ {1, · · · , r} for some integer r ≥ 1
such that for every pair of distinct paths Pi and Pj in P with Pi ∩ Pj �= ∅,
c(Pi) �= c(Pj)
Goal: To obtain a function c which minimizes r.

Several researchers have extensively studied both offline and online versions of
this problem on different network topologies. In the offline setting, the topology,
and the entire request sequence are known in advance. However, in online wave-
length allocation problems, though the topology is known in advance, requests
arrive one at a time and a request has to be assigned a wavelength as soon as it is
presented (this assignment cannot be changed later). In an online algorithm, the
inputs arrive in a sequence and each input has to be processed depending only
on already received requests and served as soon as it arrives with no knowledge
of future requests. The performance of an online algorithm A is analyzed using
the competitive ratio. It is the worst-case ratio between the cost of the solution
found by the algorithm A to the cost of an optimal solution.

The path coloring problem for trees may be viewed as the vertex coloring
problem for edge intersection graph of paths on a tree, called EPT graphs, such
that no two adjacent vertices in the intersection graph get the same color. In the
edge intersection graph of the given paths, two vertices are adjacent if and only if
the corresponding paths have a common edge. The vertex intersection graphs of
paths of a tree is the class of path graphs [5], which is a subclass of chordal graphs.
Chordal graphs are the vertex intersection graphs of subtrees of a tree [4] and
can be optimally colored in polynomial time [3]. Thus, in the offline setting, path
graphs can be optimally colored in polynomial time. However, coloring of edge
intersection graph of paths in an undirected tree (EPT graph) has been shown to
be NP-complete [7]. Tarjan [16] gave a 3

2 -approximation algorithm for coloring
EPT graphs. Erlebach and Jansen [2] showed that in the case of undirected trees
of bounded degree, the path coloring problem can be solved in polynomial time.
However, for undirected trees of arbitrary degree, the problem is NP-hard and
approximation algorithm with absolute approximation ratio 4

3 and asymptotic
approximation ratio 11

10 are known [2]. Path coloring is also proved to be NP-
hard on undirected and bi-directed ring networks [2], bi-directed binary trees [2]
and bi-directed binary caterpillars [15]. Several interesting approaches have been
proposed in the literature([2,8,10,11,14,15]) for network topologies like rings,
caterpillars, trees and trees of rings. If the tree itself is a path, then the edge
intersection graph of subpaths of this path is an interval graph [6]. Therefore,
in this case, coloring algorithms for the vertex intersection graphs can be used
for optimally coloring the edge intersection graphs. The coloring of the vertex
intersection graphs on the line topology (special case of tree topology, i.e., a tree
in which no vertex has degree 3 or more) is very well studied. It is known to be
optimally polynomial time solvable in the offline setting.

The path coloring problem is also extensively studied in the online framework.
Bartal and Leonardi [1] proposed an O(log(n)) competitive online algorithm
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(described in Sect. 2 and subsequently called as the BL algorithm) for coloring
edge intersection graphs of paths on a tree. They also [1] gave a lower bound
of Ω( log n

log log n ) for the online path coloring problem on complete binary trees.
The path coloring problem on the line topology has been studied in the context
of interval graph coloring. The edge intersection graph and vertex intersection
graph of paths on line topology are both known to be interval graphs [6]. Thus,
the problem of online coloring paths on the line topology is equivalent to the
problem of online coloring vertices of interval graph which is a subclass of chordal
graphs. One of the simplest strategies adopted for the online coloring of vertices
in an interval graph is the First Fit strategy: allocate the color of least index
permissible. Several researchers have analyzed this method and have come up
with improved bounds over the years and 8 is the best known competitive ratio
[12]. However, a 3-competitive recursive algorithm by Kierstead and Trotter [9]
(subsequently called as the KT algorithm) for the online coloring of interval
graphs, was known much earlier (a detailed presentation of the algorithm can
be found in [13]). They showed a matching lower bound as well; that is, no
deterministic online algorithm can achieve a competitive ratio better than 3.

1.1 Our Motivation and Results

We address the problem of online path coloring in trees and design algorithm
that uses the Kierstead-Trotter approach [9] to color paths in the line topology.
Throughout the paper, we consider the coloring problem on edge intersection
graphs. For the online path coloring in the line topology, we use the optimal KT
algorithm on the edge intersection graph, which is an interval graph. The starting
point of our work is the BL Algorithm [1], which achieves a competitive ratio of
log n for online path coloring in trees. We show that this algorithm can be forced
to achieve Ω(log(n)) competitive ratio when applied to coloring paths in the line
topology. However, this is far from the performance of the optimal 3-competitive
algorithm by Kierstead and Trotter [9]. Our motivation is to understand this gap
between performance of KT-algorithm and BL-algorithm for line topology. We
present a simple online algorithm to solve the problem of online path coloring
on caterpillars using at most (5ω − 3) < h(T )(5ω − 3) colors, whereas the BL
algorithm can be forced to use ω log n colors by an adversary, details of which
are given in Sect. 2.

For an arbitrary tree T , we define a hierarchical partition of the vertex set
which we refer as the Hierarchical Path Partition (HPP). We associate a cater-
pillar with each part in the HPP, which results in a partition of the edge set of
tree T. We call this edge partition a Hierarchical Caterpillar Partition (HCP)
and we use an HCP in an online algorithm to color the path requests. In this
online algorithm, we follow the template of Bartal and Leonardi [1]: each level
in the HCP uses a distinct set of colors, and each coloring request is colored as
a path coloring request at the highest level in which it intersects (has an edge in
common) with a caterpillar. We denote by h(T ) the number of parts in an HPP
with the minimum number of parts, and our algorithm uses at most h(T )(5ω−3)
colors, where ω is the size of the maximum clique in the edge intersection graph
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of the given set of path coloring requests. Since ω is a lower bound on the number
of colors to be used, our algorithm is an O(h(T )) competitive algorithm. It also
gives us a refined understanding of the performance of the algorithm based on
structure of tree T . To the best of our knowledge, the concept of hierarchical
path partitioning is new and we believe it could be of significant interest in
designing online algorithms for different problems on trees.

We also present an algorithm that computes an HPP with h(T ) parts in
polynomial time. This algorithm also serves as a characterization of the opti-
mum HPP. We then show that the optimum HPP has a subtree that looks like
a complete binary tree of depth h(T ) − 1. We refer to this as a complete pseudo
binary tree. We use this subtree in conjunction with the lower bound argument
due to Bartal and Leonardi [1] to show a competitive ratio lower bound of
Ω( h(T )

log(4h(T )) ) for any deterministic online algorithm. In particular, our results
nicely generalize the results of Bartal and Leonardi [1]- we design a h(T ) com-
petitive online algorithm for path coloring in T , and also show a lower bound of
Ω( h(T )

log(4h(T )) ) on the competitive ratio of any deterministic algorithm.

Definitions and Notation: We use standard graph theoretic concepts like
graph G, vertex set V (G), edge set E(G), degree degG(v) of a vertex v, neigh-
borhood NG(v) of a vertex v, diameter Δ, path P = [v1, v2, · · · , vk] and tree T
from the textbook by Douglas B. West [17]. The size of the largest clique in G is
called its clique number and is denoted by ω(G). We use ω to denote the clique
number of the edge intersection graph of input path requests of the underlying
tree T . A caterpillar is a tree that has a dominating path. This dominating path
is called the spine and an edge for which exactly one vertex is on the spine is
called a hair. By definition all leaves other than the two on the spine are adjacent
to a vertex on the spine. A balanced tree separator is a vertex whose removal
splits the tree into multiple disjoint trees to form a forest such that each tree in
that forest consists of at most 2

3n vertices. We denote path coloring requests by
P and paths which are not path coloring requests by p.

Online Interval Coloring: Online path coloring in a tree T which is a path is
the well-studied Online Interval Coloring problem. Kierstead and Trotter [9] gave
a 3-competitive algorithm for the online interval coloring, which uses atmost 3ω−
2 colors where ω is the maximum number of pairwise intersecting intervals. They
also showed a matching lower bound; that is, no deterministic online algorithm
can achieve a competitive ratio better than 3. We refer to this online algorithm
as the KT Algorithm.

2 Caterpillar Based Online Coloring of Paths in Trees

The main result in this section is our online algorithm for coloring paths in a
tree T by partitioning the edges of T into parts, each of which is a set of vertex
disjoint caterpillars. We show that this algorithm has a competitive ratio of h(T ),
where h(T ) is a combinatorial parameter associated with T . The algorithm is
based on our observation that the online path coloring algorithm (referred to
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as the BL Algorithm) due to Bartal and Leonardi [1] essentially maintains a
partition of the edges of T , such that each part in the partition is a set of vertex
disjoint stars - a special type of caterpillar.

A Worst Case Instance for the BL Algorithm: The first observation we
make is based on the construction of a sequence of coloring requests in an n-
vertex path to show that the BL algorithm has an Ω(log n) competitive ratio. The
BL algorithm has two phases: a preprocessing phase and a coloring phase. The
preprocessing phase partitions the edges of T into log n levels. We refer to this
partition as the BL partition. The preprocessing phase and the coloring phase
are standard throughout all the algorithms we present, and the preprocessing
phase depends only on the tree T and not on the path coloring requests.

Algorithm 1. BL
1: Preprocessing Phase: The first level L0 consists of a single vertex s which is a

balanced separator of T . Iteratively, for i ≥ 1, the ith level Li consists of balanced

separators of all the subtrees in T \
⋃

0≤j≤i−1

Lj . In this way, vertices of T are

partitioned into Θ(log n) levels. The edge partition is obtained by associating with
each vertex the set of incident edges whose other end point is at a higher level.
Indeed, it is clear that each level is one set in a partition of the edges, and that the
edges associated with a vertex at any level forms a star.

2: Coloring Phase: When a coloring request for a path P arrives, the algorithm first
assigns a level identifier to it. This identifier is the minimum level number of a level
that contains a vertex of P . Then, P is assigned the minimum color which is not
assigned to any other previously colored path that has a common edge with P and
has the same level identifier.

Theorem 1 (Bartal and Leonardi [1]). The BL algorithm for online path
coloring on a tree of n vertices uses at most (2ω − 1) log n colors. Thus, the
algorithm achieves a competitive ratio of O(log n).

We now observe that BL algorithm has a competitive ratio of Ω(log n) even
if T is a path. On the other hand, the KT algorithm uses only 3ω − 2 colors to
color paths from T if it is a path. We present an input instance generated by an
adversary that forces the BL Algorithm to use (log n)OPT colors, where OPT is
the number of colors in the optimal coloring. For an integer k > 1, consider the
path T having n = 2k − 1 vertices v1 to v2k−1. Since there are 2k − 1 vertices, in
the preprocessing phase, the vertices are partitioned into L ≥ k levels in any BL
partition. Now, for each level 0 ≤ l < L − 1 in the BL partition, the adversary
selects one edge of T with one end point at level l and the other end point at
a level at least l + 1. Let these edges be e0, . . . , eL−2. Further v be a vertex in
level L (note that it has index L − 1) in the BL partition. In the path coloring
sequence, there are k(L − 1) paths consisting of exactly one edge and k paths
consisting of exactly one vertex as follows: k paths consisting of e0, followed by
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k paths consisting e1, and so on, ending with k paths consisting of eL−2 and, k
single vertex paths consisting of v. Since the BL algorithm uses a distinct set of
colors for each of the L levels, it uses at least kL ≥ (log n)k = (log n)OPT .

Online Path Coloring in Caterpillars: The BL algorithm partitions the
edges of T into O(log n) levels of stars. We explore if we can get a better com-
petitive ratio by maintaining a set of caterpillars in each level. To achieve this,
we first observe that paths in caterpillars can be colored by an online algorithm
of competitive ratio 5. We refer to the algorithm below as Algorithm OPCC.

Algorithm 2. OPCC- Online Path Coloring in Caterpillars
1: Preprocessing Phase: In the preprocessing phase, we partition the edges of T into

two sets: Es is the set of all the edges on the spine and Eh is the set of all hairs.
2: Coloring Phase: We use two disjoint set of colors, Cs to color paths which have an

edge in Es and Ch to color paths whose edges are in Eh. When a coloring request
for a path P arrives, it is colored as follows:
Case 1: P contains an edge in Es- In this case, we consider the subpath P ′ of P
formed by the edges in Es as an online path coloring request on the spine. P ′ is
colored using the KT algorithm [9] (see Sect. 1.1)and the color of P ′ is the color
given to P .
Case 2: P does not contain any edge in Es- In this case P must belong to some
star in E \ Es = Eh. P is greedily colored such that it gets a color different from
paths colored earlier with which it shares an edge.

Lemma 1. Let T be a caterpillar. Algorithm OPCC requires at most 5ω − 3
colors to color path coloring requests on T .

Proof. The paths which fall into the first case are colored by the KT Algorithm
[9] which uses at most 3ω−2 colors. Secondly, the greedy algorithm on the paths
colored in case 2 will use at most 2ω−1 colors. The reason is that each such path
has at most two edges, and if a path coloring request P cannot be colored by any
of the already used 2ω − 1 colors, then one of the two edges in P is already in at
least ω paths that have already been colored. This edge would then be common
to ω + 1 paths, contradicting the definition of ω. Hence, at most 5ω − 3 colors
are required to color all input paths. 	


2.1 A New Online Path Coloring Algorithm for Trees

While the best competitive ratio for online path coloring in caterpillars is at
most 5, we have shown that the BL algorithm has an Ω(log n) competitive ratio
when T is a caterpillar (because a simple path is a special caterpillar). We have
also observed that for each tree T , the BL algorithm maintains a partition of
the edge set into levels such that in each level, the edges form a set of vertex
disjoint stars. We now present our algorithm where in the preprocessing phase,
we maintain a partition of the edge set of T into levels such that in each level,
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the edges form a set of vertex disjoint caterpillars. In a way, this can be seen as a
strengthening of the BL Algorithm. Then, by using the online coloring algorithm
on caterpillars, we show that our online algorithm achieves a competitive ratio
of h(T ), where h(T ) is defined as the number of levels in an optimal partitioning
of the vertices that we call the Hierarchical Path Partition.

Hierarchical Path Partitioning: For a tree T , we call a partition
{H1,H2 . . . ,Hh} of V (T ) a hierarchical path partitioning (HPP) of T if the
following properties hold:

P.1 Each set Hi induces a set of vertex disjoint paths in T . The paths in Hi

are denoted by {pi,1, pi,2, · · · , pi,li}.
P.2 The sets are arranged hierarchically with one root set Hh. Note that at this

place we have an important notational difference from Bartal and Leonardi
[1] who use the level index 0 for the root.

P.3 Root set Hh contains a single path.
P.4 For each i < h, if p is a path in set Hi, then there is exactly one edge from

exactly one of the vertices of path p to one vertex of a path p′ ∈ Hj where
j > i. Further, this edge is incident on one of the end vertices of p. We refer
to p′ as the parent path of p.

P.5 For each i > 1, if p is a path in set Hi, then there are at least two edges
from one endpoint of p to endpoints of paths p′ and p′′ in Hj where j < i.
We refer to p′, p′′ as the children of p.

Hi in the partition is referred to as level i in the hierarchy. We use the HPP
output by the following algorithm and the number of parts h output by this
algorithm is referred to as h(T ).

Algorithm 3. OHPP: Optimum Hierarchical Path Partitioning
We define a sequence of non-empty subtrees {Ti} of tree T where T1 = T . The
vertex set of Ti is V (Ti−1)\Hi−1. For some h ≥ 1, if Th is a path, then Hh consists
of the single path, and the algorithm stops and outputs {H1, H2 . . . , Hh}. For each
i ≥ 1, Hi = {pi,1, pi,2 · · · , pi,li} is a set of vertex disjoint paths, such that for each
pi,j ∈ Hi, one endpoint is a leaf in Ti, the other endpoint of pi,j has a neighbor in
Ti whose degree in Ti is at least 3, and all other vertices in pi,j have degree 2 in
Ti. Clearly, Ti+1 = Ti \ Hi induces a subtree of Ti. The algorithm is illustrated in
Fig. 1.

From an HPP we naturally obtain a unique hierarchical partition of the edge set
of T into vertex disjoint sets of caterpillars as follows: For each path pi,j ∈ Hi,
1 ≤ i ≤ h, we associate a caterpillar ci,j by taking pi,j to be the spine and every
other edge e incident on vertices of pi,j such that other vertex of e is on a path
in Hk for some k < i. This produces a hierarchical partitioning of the edge set
of T into caterpillars called Hierarchical Caterpillar Partitioning (HCP) of T .
Let C1, . . . , Ch denote this family of sets of caterpillars corresponding to HPP
H1, . . . , Hh.
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Online Path Coloring Using a HCP: We now describe our Algorithm OPCT
to color path requests in a given tree T . As in the BL Algorithm 1, we have a
preprocessing phase and a coloring phase.

Algorithm 4. OPCT- Online Path Coloring in Trees
1: Preprocessing phase: Compute the natural (as described above) HCP {C1, . . . , Ch}

of the given tree T from an Optimum HPP computed using Algorithm OHPP
described in Sect. 3. Here h = h(T ).

2: Coloring Phase: For each level in the HCP, a distinct set of colors is used. When
a coloring request for a path P arrives, it is assigned a level number q which is
the maximum among all levels with which path P intersects at some edge in the
level. Let q be the largest level such that there is a caterpillar cq,j ∈ Cq with which
P intersects at an edge in cq,j (In the proof below, we use q to denote this level
associated with a coloring request P . For example, for a path P1, q1 is used to
denote this level). Then, the subpath P ′ of P consisting of edges of E(P )∩ E(cp,j)
is considered as a path coloring request in cp,j (In the proof below, we use P ′ to
denote the coloring request in cq,j associated with P . For example, for a path P1,
P ′
1 is used to denote the coloring request in cq1,j). It is colored using Algorithm

OPCC, and the color given to P ′ is taken to be the color of P .

Theorem 2. Let T be a tree, then online Algorithm OPCT requires at most
h(5ω − 3) colors to compute a valid coloring on an online request sequence of
paths from tree T such that any edge is present in at most ω paths.

Proof. To prove that the coloring is valid, we first need to observe that any
path P intersects at an edge with exactly one caterpillar in Cq. We know from
Lemma 1 that the path coloring request sequence in each caterpillar in each level
of the HCP uses at most 5ω−3 colors. Since the HCP is an induced set of vertex
disjoint caterpillars (therefore, edge disjoint), it follows that the path coloring
request sequence to each level of the HCP uses at most 5ω −3 colors. Since each
level uses a distinct set of colors, it follows that Algorithm OPCT uses at most
h(5ω − 3) colors. Let P1 and P2 be two path coloring requests that share an
edge in T . We show that the color given to P1 and P2 are distinct. If q1 and q2
are different, then P ′

1 and P ′
2 get different colors and therefore P1 and P2 get

different colors. In the case when q1 = q2, since P1 and P2 intersect at an edge,
it follows that they intersect with the same caterpillar cq1,j ∈ Cq1 . Further, it
is easy to see that they also share a common edge in cq1,j . Thus it follows that
P ′
1 and P ′

2 get different colors, and consequently P1 and P2 get different colors.
Hence the theorem. 	


3 A Lower Bound for Deterministic Online Algorithms
Using h(T )

In this section we prove a lower bound on the competitive ratio of deterministic
online algorithms as a function of h(T ). We start by illustrating in Fig. 1 a HPP
computed by Algorithm 3 and observing some bounds on h(T ).
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(a) Tree T= T1 with set H1 = {[8], [9], [5], [10], [11], [12], [13]}
1

2 3

4 6 7

(b) Tree T2 with set H2 = {[4, 2, 1), [6], [7]}

3

(c) Tree T3 with set H3=[3]

Fig. 1. Tree T with partition {H1, H2, H3}. (a) T1 with H1, (b) T2 with H2, (c) T3

with H3

Some Bounds on h(T ): We observe that, for a tree T having L leaves,
h(T ) ≤ log2 L, as the number of leaves at each level reduce by a factor of at
least 2. Formally, let li be the number of leaves in Ti. Then, li+1 ≤ li

2 . Similarly,
the diameter of Ti+1 is at most diameter of Ti minus 2. Therefore, h(T ) ≤ Δ(T )

2 ,
where Δ is the diameter.
We next show that the HPP computed by Algorithm OHPP can be used by an
adversary to ensure that any deterministic online algorithm has a bad competi-
tive ratio.

3.1 A Lower Bound Based on h(T )

To prove our lower bound on deterministic online algorithms, we use the lower
bound technique of Bartal and Leonardi [1] on path coloring requests on a com-
plete binary tree of n nodes. To use this, we show that we can perform their
adversarial lower bound argument on a complete pseudo binary tree which we
show is present in the output of Algorithm OHPP . Intuitively, the subtree of
T that we take will turn out to be a tree that looks like a complete binary tree
whose vertices correspond to paths in which each internal vertex has degree 2.
We now describe this Complete Pseudo Binary Tree. Consider the partitioning
obtained after applying the algorithm OHPP to T . We know that the out-
put of Algorithm OHPP is an optimum HPP H1, · · · ,Hh. We call a family
{S1, S2 . . . , Sh} of sets of paths a Complete Pseudo Binary Tree if the following
properties hold.

– For each 1 ≤ i ≤ h, Si ⊆ Hi, Si consists of 2h−i paths, and Sh = Hh.
– Let v be one end point on the path p ∈ Hh. Then, Sh−1 consists of exactly 2

paths, say p′ and p′′ such that v is adjacent to one end point each of p′ and p′′.
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– For each 1 ≤ i ≤ h − 1, in every path p in Si+1, there are two edges from one
end point of p to the end points of two paths in Si.

– For each 1 ≤ i ≤ h − 1, in every path p in Si there is an edge from one end
point of p to the end point of a path in Si+1.

Lemma 2. Let T be a tree, h = h(T ), and let H1, . . . , Hh be the optimal HPP
obtained from Algorithm OHPP . T has a subtree which is a complete pseudo
binary tree of height h.

Proof. We prove our claim by induction on the number of levels h(T ) in the par-
tition of T produced by our algorithm. Let h = h(T ). Let L(h) be the statement
that there exists a complete pseudo binary tree in the hierarchical path partition-
ing of at most h levels. The base case is the statement L(1). Then, L(1) is true
because there does exist a complete pseudo binary tree having 1 pseudo-node.
Suppose the statement L(h) is true. We now prove the statement L(h + 1). Let
{H1, . . . , Hh+1} be the hierarchical path partitioning having h + 1 levels out-
put by Algorithm OHPP. Now, consider the tree T2 = T \ V (H1) with HPP
{H2, . . . , Hh+1} obtained after removing all the paths in H1. By the induction
hypothesis, there exists a complete pseudo binary tree for T2 in H2, . . . , Hh+1.
Let this complete pseudo binary tree be S2, . . . , Sh+1. Now, consider the paths
in S2. For each p ∈ H2, let lp be the leaf endpoint of p in T2. By the definition
of an HPP, lp is incident on at least two edges, for each of which the second
vertex (the one different from lp) is an endpoint of a path in H1. We construct
S1 ⊆ H1 by taking any two such paths for lp for each p ∈ S2. Now, S1, . . . , Sh+1

is a complete pseudo binary tree for T . Thus, there exists a complete pseudo
binary tree of T in the output of Algorithm OHPP with at most h + 1 levels.
Hence the lemma. 	


We now use this complete pseudo binary tree to get our lower bound on
deterministic online algorithms for path coloring on a tree T . As mentioned
before, we essentially plug this complete pseudo binary tree into the lower bound
argument of Bartal and Leonardi [1].

Theorem 3. Let T be a tree. Then any deterministic online path coloring algo-
rithm has a competitive ratio of Ω( h(T )

log 4h(T ) ).

Description of the Adversarial Path Coloring Request Sequence: Before
we present a proof of this theorem, we describe the sequence of requests presented
by an adversary to a deterministic online path coloring algorithm. The lower
bound is against a deterministic online algorithm and is established by an adver-
sary by using the complete pseudo binary tree S = {S1, S2 . . . , Sh} contained in
the optimal HPP {H1,H2 . . . ,Hh} output by Algorithm OHPP. This complete
pseudo binary tree has h(T ) levels, with Sh containing the root pseudo-node, and
S1 containing all the leaf pseudo-nodes. Each pseudo-node here corresponds to a
path in S. We consider a complete binary tree T ′ of depth h(T ) − 1 where there
is a bijective correspondence between the pseudo-nodes and the vertices of T ′,
that respects the parent-child relationships between the paths in the family S.
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For example, the root of T ′ corresponds to the path in Sh, and the leaves of T ′

corresponds to the paths in S1. A path coloring request in T ′ is converted to a
path coloring request in T by expanding the pseudo-nodes into the corresponding
paths in the family S. In the following let ρ denote the best competitive ratio
possible by any deterministic online algorithm.
We now present the request sequence generated by Bartal and Leonardi [1] on
T ′. The description is identical to the description in [1] except in the Lemma 3
where we reason about the path coloring requests in T obtained from the requests
in T ′ as described below. The sequence of requests for coloring paths is generated
in stages. Maintain the following invariant at the end of any stage i ≥ 0: There
exists a set Ci of i colors, a level li, li ≤ li ≤ h(T ) − 1 − i, such that there are
at least ri = 2h(T )−1

(8ρh(T ))i pairs of paths with the following properties:

1. Each pair is formed by the two paths from two leaves in T ′ to their least
common ancestor (LCA) at level li.

2. Each vertex of level li in T ′, is the LCA of at most one pair of paths.
3. For any path in the ri pairs of paths and for any color c ∈ Ci, there is one

edge in the path included in a path coloring request with color c.
4. In T ′, any edge of a path is included in at most one request.

At stage 0, li = l0 = h(T )−1 and C0 = φ. We associate a set of r0 = 2h(T )−1

pairs of empty paths, two with each leaf, with both endpoints equal to leaf itself.
No path coloring requests are presented. Hence all 4 properties trivially hold.
At stage i + 1, ri new path coloring requests are presented, one for each pair
of paths. Let u1, u2 be the two leaves that are endpoints of the two paths of a
pair, and let LCA(u1, u2) be the LCA at level li of these two leaves. Let v be
the direct ancestor of LCA(u1, u2). For each pair of paths we present a path
coloring request having as endpoints one of the two leaves, say u1, and v. The
online algorithm must color the set of path coloring requests presented at stage
i + 1. Clearly, due to the 4 invariants being respected at the beginning of stage
i+1, any color in Ci cannot be used for these path coloring requests. These path
coloring requests on T ′ are converted to path coloring requests in the complete
pseudo binary tree. We will show in Lemma 3 that optimal number of colors
at any stage of the sequence is at most 2 in the complete pseudo binary tree.
Hence, in order for the online algorithm to be ρ competitive, it must use less
than 2ρ colors for this set of path coloring requests. Therefore, by the pigeon-
hole principle there must be a set of path coloring requests Ri of cardinality
at least ri

2ρ assigned with the same color. Let us call this color ci+1 and let
Ci+1 = Ci ∪ {ci+1}. In the following, we concentrate on this set of path coloring
requests. As shown in Bartal and Leonardi [1] we first identify a set of paths
in Ri that satisfy condition 3 and 4. Recall that each path coloring request in
Ri is from a leaf u1 to a node v, is constructed from some level i pair of paths
from the leaves u1 and u2 to LCA(u1, u2), which is a child of v. Moreover, for
any pair only one path coloring request in Ri is constructed. Therefore, for any
path coloring request in Ri, conditions 3 and 4 are satisfied at stage i + 1 for
the path connecting the leaf u2 to v or any ancestor of v. In fact, at most one
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path coloring request includes any edge from u2 to LCA(u1, u2) and any color
c ∈ Ci is associated with a path coloring request that crosses only one edge in
the path, using the invariant for level i. Moreover, the edge from LCA(u1, u2)
to v is associated with only one path coloring request with color ci+1. We thus
have a set of ri

2ρ paths satisfying conditions 3 and 4 of the invariant. We call this
set of paths Pi+1.

The level li+1 is now selected such that 2li+1+1 ≤ ri

2ρ . We derive from Pi+1 a
new set P ′

i+1 as follows: we consider each path in Pi+1 according to its ancestor
in level li+1. If a vertex in level li+1 is an ancestor of an odd number of paths we
exclude one of these paths. Since the number of vertices of level li+1 is at most
1
2

ri

2ρ , the cardinality of P ′
i+1 is at least 1

2
ri

2ρ .
We now scan paths in P ′

i+1 from left to right, following the order of the
leaves that are endpoints of those paths. We associate each pair of successive
leaves with their LCA, that is a vertex of level between li+1 and h(T ) − i − 1.
Again, as shown in [1] we know that each vertex in a binary tree is the LCA of
at most one pair of successive leaves.

Finally, let li+1 be a level between h(T ) − i − 1 and li+1, achieving the
maximum cardinality set of pairs of successive paths that have LCA at that
level. We define the set of pairs of paths for the stage i + 1 to be the set of
pairs of successive paths that have LCA at level li+1. Since the number of levels
is h(T ), it follows that the number of pairs at stage i + 1 is atleast 1

4
ri

2ρh(T )=
2h(T )−1

(8ρh(T ))i+1 = ri+1. From the above construction, it follows that both conditions
1 and 2 hold for this set of pairs. Therefore, the four invariants are satisfied at
the beginning of stage i + 1.

We now come to the crucial and only modification to the argument of Bartal
and Leonardi [1].

Lemma 3. The optimal solution in the complete pseudo binary tree for the path
coloring sequence described above uses at most 2 colors.

Proof. The proof is obtained by the fact that in T ′ each edge is included in
at most 2 path coloring requests, and that all such path coloring requests are
directed from a leaf to an ancestor. Further, at each vertex in the tree, at most
one edge to a child is present in the path coloring requests. Therefore, when
these requests are considered as requests in the complete pseudo binary tree,
each edge is present in at most two path coloring requests. Therefore, the paths
can be colored offline with 2 colors. 	

Proof of Theorem 3: Let ρ be the competitive ratio of the best deterministic
online algorithm for coloring paths in tree T . Clearly, ρ ≤ h(T )(3ω−2)

ω . Therefore,
ρ ≤ 2h(T ). The online algorithm uses at least i colors after i stages of the
construction above. Hence by Lemma 3, the competitive ratio ρ ≥ i

2 . The lower
bound on ρ is thus obtained by computing the maximum number of stages
in the sequence. To carry out the sequence, we require that li = h(T ) − 1 −
i log(8ρh(T )) ≥ 1. Since ρ ≥ i

2 , we get ρ ≥ h(T )−2
2 log(8ρh(T )) . Since we know that

ρ ≤ 2h(T ), it follows that ρ ≥ h(T )−2
2 log(16h(T )2) . Therefore, ρ is Ω( h(T )

log 4h(T ) ). Hence
the theorem. 	
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