
Non-greedy Online Steiner Trees on Outerplanar
Graphs

Akira Matsubayashi(B)

Division of Electrical Engineering and Computer Science, Kanazawa University,
Kanazawa 920-1192, Japan

mbayashi@t.kanazawa-u.ac.jp

Abstract. This paper addresses the classical online Steiner tree prob-
lem on edge-weighted graphs. It is known that a greedy (nearest neigh-
bor) online algorithm has a tight competitive ratio for wide classes of
graphs, such as trees, rings, any class including series-parallel graphs,
and unweighted graphs with bounded diameter. However, we did not
know any greedy or non-greedy tight deterministic algorithm for other
classes of graphs. In this paper, we observe that a greedy algorithm
is Ω(logn)-competitive on outerplanar graphs, where n is the number
of vertices, and propose a 5.828-competitive deterministic algorithm on
outerplanar graphs. Our algorithm connects a requested vertex and the
tree constructed thus far using a path that is constant times longer than
the distance between them. The algorithm can be applied to a 21.752-
competitive file allocation algorithm against adaptive online adversaries
on outerplanar graphs. We also present a lower bound of 4 for arbitrary
deterministic online Steiner tree algorithms on outerplanar graphs.

1 Introduction

This paper addresses the classical online Steiner tree problem (STP) on edge-
weighted graphs. We are given a graph G = (VG, EG) with non-negative edge-
weights w : EG → R

+ and a subset R of vertices of G. The (offline) Steiner tree
problem is to find a Steiner tree, i.e., a subtree T = (VT , ET) of G that contains
all the vertices in R and minimizes its cost c(T) =

∑
e∈ET

w(e). In the online
version of this problem, vertices r1, . . . , r|R| ∈ R are revealed one by one, and for
each i ≥ 1, we must construct a tree containing ri by growing the constructed
tree for r1, . . . , ri−1 (null tree for i = 1) without information of ri+1, . . . , r|R|.

Imase and Waxman [12] proposed a greedy (nearest neighbor) online algo-
rithm that is O(log n)-competitive on arbitrary graphs with n vertices. They also
proved that no deterministic algorithm is o(log n)-competitive even on series-
parallel graphs [12]. Westbrook and Yan [15] refined these upper and lower
bounds to Θ(log(diam|R|/opt)) with improving analysis, where diam is the
diameter of the underlying graphs, and opt is the cost of a minimum Steiner
tree. The refined upper bound implies that the greedy algorithm is O(log diam)-
competitive for unweighted graphs. The greedy algorithm is trivially 1- and 2-
competitive on trees and rings, respectively. With these results, the greedy algo-
rithm has a tight competitive ratio for trees, rings, any class of graphs including
c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 129–141, 2017.
DOI: 10.1007/978-3-319-51741-4 11

130 A. Matsubayashi

series-parallel graphs, and unweighted graphs with bounded diameter. However,
we did not know any greedy or non-greedy tight deterministic algorithm for
other classes of graphs. As for randomized algorithms, a probabilistic embed-
ding of outerplanar graphs into tree metrics with distortion 8, presented by
Gupta et al. [11], implies an 8-competitive online Steiner tree algorithm against
oblivious adversaries on outerplanar graphs. This embedding was generalized
to k-outerplanar graphs with distortion 200k by Chekuri et al. [9], implying a
200k-competitive online Steiner tree algorithm against oblivious adversaries on
k-outerplanar graphs.

Online Steiner trees on the Euclidean space are studied in [1,4]. Various gen-
eralizations of the online Steiner tree problem are also studied, such as general-
ized STP [5,8,15], asymmetric STP [3,4], priority STP [2,3], and vertex-weighted
STP [14].

In this paper, we observe that the greedy algorithm is Ω(log n)-competitive
on outerplanar graphs, and propose a 3+2

√
2 ≈ 5.828-competitive deterministic

algorithm on outerplanar graphs. Our algorithm connects a requested vertex and
the tree constructed thus far using a path of a maximal length within α > 1
times longer than the distance between them. We prove that our algorithm is
(α

α−1 + 2α)-competitive, implying a (3 + 2
√

2)-competitive algorithm at α =
1 + 1/

√
2 (Sect. 4). A technical overview will be discussed in the beginning of

Sect. 4 after we observe the Ω(log n) competitiveness of the greedy algorithm
in Sect. 3. Though we do not know if our analysis is tight for α = 1 + 1/

√
2,

we observe a lower bound for our algorithm that matches our analysis with any
α ≥ 2. We also present a lower bound of 4 for arbitrary deterministic online
Steiner tree algorithms on outerplanar graphs (Sect. 5). Previous and our results
are summarized in Table 1.

An application of the online Steiner tree problem is the file allocation problem,
which is to find dynamic allocations of multiple copies of a data object, called
file, of size D ≥ 1 on a network G, such that the total cost of servicing online
read/write requests and reallocating the copies is minimized [6,7,13]. Bartal,
Fiat, and Rabani [7] proposed a (2 +

√
3)c-competitive file allocation algorithm

Table 1. Summary of results of online STP on weighted graphs

Graphs Competitive ratio Adversary type

General graphs O(log n) Deterministic [12]

Series-parallel graphs Ω(logn) Deterministic [12]

General graphs Θ(log(diam|R|/opt)) Deterministic [15]

Outerplanar graphs 5.828 Deterministic This paper

Outerplanar graphs ≥4 Deterministic This paper

Rings 2 Deterministic [7]

Outerplanar graphs 8 Oblivious [11]

k-outerplanar graphs 200k Oblivious [9]

Non-greedy Online Steiner Trees on Outerplanar Graphs 131

against adaptive online adversaries based on any c-competitive online Steiner
tree algorithm against adaptive online adversaries. Combined with this result,
our algorithm implies a (2 +

√
3)(3 + 2

√
2) ≈ 21.752-competitive file allocation

algorithm against adaptive online adversaries on outerplanar graphs.

2 Preliminaries

Graphs considered here are undirected and have non-negative edge-weights,
w(e) ≥ 0 for any edge e. For a graph G, we denote its vertex set and edge
set by VG and EG, respectively. We use the notation of w also for graphs, i.e.,
w(G) :=

∑
e∈EG

w(e). For a subset R of vertices of G, a Steiner tree of G for
R is a subtree T of G such that R ⊆ VT . T is said to be minimum if T has the
minimum cost w(T) overall Steiner trees of G for R.

Suppose that G is a planar graph. The weak dual of G is a graph H such
that VH is the set of bounded faces of G, and EH is the family of sets consisting
of two bounded faces that have a common edge. The graph G is outerplanar if
it can be drawn on the plane so that all the vertices belong to the unbounded
face, or equivalently, if H is a forest [10]. We say an edge of G to be outer if the
edge is contained in the unbounded face, inner otherwise.

In the rest of the paper, we assume that G is a biconnected outerplanar
graph, because finding a minimum Steiner tree of G can easily be reduced to
finding minimum Steiner trees of biconnected components of G. This assumption
implies that H is a tree. Let dG(u, v) be the distance of vertices u and v in G.
We use the notation of dG also for the distance between a graph and a vertex,
i.e., dG(G′, v) := min{dG(u, v) | u ∈ VG′} for a subgraph G′ of G and v ∈ VG.

3 Lower Bound for Greedy Algorithms

In this section, we prove that a greedy algorithm, which always takes a shortest
path between a requested vertex and the current tree, is Ω(log n)-competitive on
outerplanar graphs. The proof will be a hint of our algorithm and general lower
bound in the following sections. We note that the lower bound is also admitted
by another type of greedy algorithm that always takes a shortest path between
the current request and one of the previously requested vertices.

Theorem 1. For any integer k ≥ 0, there exists a (2k + 1)-vertex outerpla-
nar graph Gk such that if a greedy online Steiner tree algorithm on Gk is ρ-
competitive, then ρ ≥ 1 + k/2.

Proof. Gk is recursively defined: G0 consists of two vertices joined by an edge
of weight 1. These vertices and edge are said to be of level 0. For i ≥ 1, Gi is
obtained from Gi−1 by adding a new vertex u and edges su and ut of weight
2−i + ε for each edge st of level i− 1, where ε > 0. The added vertices and edges
are said to be of level i. We illustrate G4 in Fig. 1.

132 A. Matsubayashi

Fig. 1. Outerplanar graph G4

If all the vertices of Gk are requested in an increasing order with regard
to their levels, then a greedy algorithm chooses the unique edge of level 0 first
and then 2i−1 edges in each level 1 ≤ i ≤ k. On the other hand, a minimum
Steiner tree has a cost at most that of the tree consisting only of edges of level
k. Therefore, the competitive ratio is at least 1+

∑k
i=1 2i−1(2−i+ε)

2k(2−k+ε)
, which tends to

1 + k/2 as ε → 0. 	

4 Algorithm α-Detour and Its Competitiveness

In this section, we define our algorithm, called α-Detour with α > 1, and prove
its competitiveness.

4.1 Overview

The basic idea of our algorithm is to suppress the cost of a greedy algorithm
against the adversary in the proof of Theorem1. Suppose that the greedy algo-
rithm takes an edge of level i of Gk in the proof of Theorem 1. Then, the vertices
incident to the edge can also be connected using edges with level higher than i.
For ε close to 0, the edge of level i and the detour have nearly the same length.
The greedy algorithm incurs an expensive cost of O(log n) since it takes edges
of each level even in such a case. But obviously, we can avoid such an expensive
cost by taking the detour with a single penalty of the detour. In our algorithm
α-Detour, we take a certain detour of maximal length within the factor of α using
edges of higher level. We formally define α-Detour and prove its correctness in
Sects. 4.2 and 4.3, respectively. We will introduce in the definition a rooted forest
structure of edges with regard to their levels. In Gk, for example, edges su and
ut of level i added to an edge st of level i − 1 are children of st.

In our analysis of the competitiveness, intuitively (not precisely), we charge
the weight of each edge uv chosen by α-Detour to the path connecting u and v in a
minimum Steiner tree. For an edge e of the minimum Steiner tree, edges charged
to e are of three types: (i) ancestor edges of e, (ii) descendant edges of e or e itself,
and (iii) otherwise. The amounts charged to e by edges of type (i) are essentially
fragments of weights exponentially decreasing by the factor α−1. Hence, the total
charged amount of this type is at most

∑
i≥1 α−(i−1)w(e) < α

α−1w(e). For each
of types (ii) and (iii), by the property of detours based on shortest paths, the
total charged amount is at most w(e) multiplied by α. Summing these amounts,

Non-greedy Online Steiner Trees on Outerplanar Graphs 133

we derive that α-Detour is (α
α−1 +2α)-competitive as desired. We formally prove

this in Sect. 4.4. One non-intuitive part of the proof is that we charge an edge
uv chosen by α-Detour to not the whole but only a part of the path joining uv
in the minimum Steiner tree. Specifically, we do not charge uv to any part of
the tree that was constructed by α-Detour before uv is chosen. The charging
process is defined through dynamically modifying the graph and forest structure
of edges, in such a way that the forest precisely represents the relation between
shortest paths and their detours.

4.2 Definition

For the first requested vertex r1, we suppose that the weak dual H of G is a
tree rooted by a face containing r1. We introduce a forest F with VF = EG as
follows. If a face C is the root of H, then all the edges of C are the roots of the
connected components of F . If C is a face of G, and C ′ is a child of C in H,
then all the edges in EC′ \ EC are the children of the unique edge e ∈ EC ∩ EC′

in F . For any inner edge e of G, let Ge be the subgraph of G induced by the
descendant edges of e in F . We note that Ge does not contain e. To clarify our
discussion, we use the term links to denote elements of EF .

For the ith requested vertex ri, α-Detour constructs a tree Ti as follows:

α-Detour

1. If i = 1, then return the tree T1 consisting only of r1.
2. Suppose i ≥ 2. If ri ∈ VTi−1 , then return Ti := Ti−1.
3. Otherwise, find a shortest path Pi = (p1, p2, . . . , p|Pi|) between a vertex p1 in

Ti−1 and p|Pi| = ri.
4. For j = 1 to |Pi|−1, if pj+1 /∈ VTi−1 , then call DetourEdge(α, pj , pj+1) defined

below.
5. Return Ti := Ti−1.

DetourEdge(β, u, v) is a procedure to modify Ti−1 by adding a path between
Ti−1 and v of maximal length at most β · w(uv). The inputs are β ≥ 1 and an
edge uv such that u ∈ VTi−1 , v /∈ VTi−1 , and w(uv) ≤ dG(Ti−1, v). The procedure
is formally defined as follows:

DetourEdge(β, u, v)

1. If uv is outer, then add uv to Ti−1 and return.
2. If uv is inner, then find a shortest path Quv = (q1, . . . , q|Quv|) from a vertex

q1 in Ti−1 to q|Quv| = v in Guv.
3. If w(Quv)/w(uv) > β, then add uv to Ti−1.
4. Otherwise, call DetourEdge(β ·w(uv)/w(Quv), qj , qj+1) for j = 1 to |Quv|−1.
5. Return.

134 A. Matsubayashi

4.3 Correctness

Since α-Detour and DetourEdge only add edges to Ti−1, Ti contains Ti−1 as a
subgraph. Therefore, it suffices to show that α-Detour connects ri to Ti−1 with
a path of length at most α · dG(Ti−1, ri).

Lemma 1. DetourEdge(β, u, v) adds a path of length at most β · w(uv) between
a vertex of Ti−1 and v.

Proof Sketch. Induction on the height of uv in F . 	

Since α-Detour calls DetourEdge(α, pj , pj+1) for each j unless pj+1 has

already been contained in Ti−1, by Lemma 1, we have the following lemma:

Lemma 2. For i ≥ 2, α-Detour connects ri to Ti−1 with a path of length at
most α · dG(Ti−1, ri).

4.4 Competitiveness

We first introduce dynamic modification of G and F in such a way that any
Quv found in DetourEdge(β, u, v) is a path connecting u and v. According to
the modified graph and forest, we then charge the weights of edges of Pi in Step
3 of α-Detour to their descendant edges that are potentially used by a minimum
Steiner Tree. We finally estimate the competitiveness by comparing the charged
amounts multiplied by α, including the case that edges of Pi are charged not to
their descendants, to the cost of the minimum Steiner Tree.

Modifying Graph. Every time DetourEdge(α, pj , pj+1) is called in Step 4 of
α-Detour, we mark pjpj+1 “greedy”. Before entering DetourEdge(α, pj , pj+1),
we perform the following:

ModifyGraph

1. For each “greedy” edge pp′ such that pjpj+1 is an ancestor of pp′, and that
there is no “greedy” edge that is a descendant of pjpj+1 and an ancestor of
pp′, we decompose the graph into the subgraph induced by pp′ and its all
descendants and the subgraph induced by other edges. We then contract the
latter subgraph by identifying p and p′. If there is a self-loop of the identified
vertex, then we remove it.

2. According to the modified graph, we modify the forest structure as well. I.e.,
we remove the link of the forest between pp′ and its parent. This yields a
subtree rooted by pp′. We then remove from the forest any self-loop of the
identified vertex.

We note that if we performed ModifyGraph before calling DetourEdge
(α, pj , pj+1) in Step 4 of α-Detour, then DetourEdge(α, pj , pj+1) would choose
the same edges of the path between the current Steiner tree and pj+1. More-
over, the path Pi chosen in Step 3 of α-Detour is not affected either. These
are because we decompose or contract the graph only at “greedy” edges whose

Non-greedy Online Steiner Trees on Outerplanar Graphs 135

end-vertices are already contained in the Steiner tree. Therefore, we may discuss
as if α-Detour and DetourEdge were performed with modifying the graph. We
observe some properties related to the modification of the graph as stated in the
following lemmas. To clarify our discussion, we use G and F to denote the initial
graph and forest before processing r1, respectively, and G∗ and F ∗ to denote the
final graph and forest after processing r1, . . . , r|R|, respectively. We also use G∗

e

just as defined for G.

Lemma 3. For any edge uv such that DetourEdge(β, u, v) is called, Quv

is a path connecting u and v in the modified graph at the point that
DetourEdge(β, u, v) is processed.

Proof Sketch. Previous ModifyGraph for some “greedy” edge makes the current
Steiner tree into a single vertex in the subgraph induced by descendant edges of
the “greedy” edge. After that, any DetourEdge for an edge e constructs a path
using only descendant edges of e. Since uv is not a descendant of such e, this
means that when DetourEdge(β, u, v) is processed, u is the unique vertex of the
current Steiner tree in the subgraph induced by the descendants of uv. 	

Lemma 4. For any edge uv such that DetourEdge(β, u, v) is called, uv and
edges of Quv are contained in the same connected component of G∗.

Proof Sketch. By Lemma 3, Quv connects u and v at the point that
DetourEdge(β, u, v) is processed. After that, therefore, any edge that is a descen-
dant of uv and an ancestor of an edge of Quv cannot be “greedy”. 	

Lemma 5. For any edge uv such that DetourEdge(β, u, v) is called, Quv is a
shortest path between u and v in G∗

uv.

Proof Sketch. By Lemma 4, uv and Quv are contained in the same connected
component of G∗. If there is a path Q′ between u and v in G∗

uv shorter than
Quv, then ModifyGraph for some “greedy” descendant pp′ of uv must shorten
Q′ so that w(Q′) < w(Quv). This means that before this ModifyGraph, Q′

contained a subpath between p and p′ with descendant edges of pp′, some of
which are removed by the ModifyGraph. However, since pp′ is “greedy”, the
resulting subpath cannot be shorter than pp′. This means that ModifyGraph
does not make Q′ shorter than Quv. 	

By Lemma 5, we immediately have the following:

Lemma 6. For any edge e′ in Qe for some edge e, w(e′) is at most the distance
between the end-vertices of e′ in G∗

e′ .

Charging Weights. For a “greedy” edge e, we define the amount charged to
any descendant e′ of e in F ∗ as w(e) multiplied by a factor fe→e′ . Essentially,
fe→e′ is defined as the ratio w(e′)/w(Qe) for e′ in Qe. Moreover, we define the
factor to be transitive, i.e., fe→e′ = fe→e′′ · fe′′→e′ if fe→e′′ and fe′′→e′ are
defined. To extend this definition to any e′, we extend the notion of Qe to any
edge e.

136 A. Matsubayashi

We formally define the factor as follows: For any edge e in G∗, let Se be
a shortest path connecting the end-vertices of e in G∗

e if e is inner, e itself
otherwise. We note that if e has Qe, then w(Qe) = w(Se) by Lemma 5. Suppose
that e and e′ are an edge and its descendant in F ∗, respectively. If e′ is in Se,
then let fe→e′ := w(e′)/w(Se). If e′ is an ancestor of an edge of Se, then let
fe→e′ := w(Se′)/w(Se). We note that Se′ is a subpath of Se in this case. If e′ is a
descendant of an edge of Se, then there is a sequence of edges e1 = e, e2, . . . , eh =
e′ such that ei+1 is in Sei

for 1 ≤ i ≤ h − 2, and either eh is in Seh−1 or Seh
is

a subpath of Seh−1 . For such e′, we define fe→e′ :=
∏h−1

i=1 fei→ei+1 . In addition,
we define fe→e := 1.

Lemma 7. For any edge e and a path P connecting the end-vertices of e in G∗
e,

it follows that
∑

e′∈EP
fe→e′ = 1.

Proof Sketch. Induction on the height of e in F ∗. 	

Lemma 8. For any edge e and its descendant e′ in F ∗, fe→e′ ≤ w(e′)/w(Se).

Proof Sketch. By the definition of fe→e′ and Lemma 6. 	

Lemma 9. Suppose that uv is a “greedy” edge, and that Duv is the path between
the Steiner tree and v constructed by DetourEdge(α, u, v) in Step 4 of α-Detour.
If e is an edge in G∗

e′ for an edge e′ in Duv, then w(e) > αfuv→ew(uv).

Proof Sketch. We prove the lemma by induction on the number of recursive levels
for DetourEdge(α, u, v) to output e′. For the base case, i.e., uv = e′, by Lemmas 8
and 5 and w(Quv)/w(uv) > α, we can obtain w(e) > αfuv→ew(uv). For an
induction step, assuming DetourEdge(β, u′, v′) called with β = α·w(uv)/w(Quv)
for some edge u′v′ in Quv, we can obtain w(e) > αfuv→ew(uv) by Lemma 5. 	

Comparison to Minimum Steiner Tree. Suppose that Z is any Steiner tree
for R in G. Our aim is to decompose G into subgraphs according to Z, associate
“greedy” edges with the decomposed subgraphs, and to estimate the amount
charged to the edges of Z by “greedy” edges in each decomposed subgraph.

Specifically, for any edge e of Z, we decompose G into the subgraph induced
by e and its descendant in F and the subgraph induced by edges that are not
descendants of e in F . Decomposing G by all edges of Z, we obtain a set B of
outerplanar subgraphs of G, each of which has edges of Z only in its unbounded
face. For a subgraph B ∈ B, B has either at most one edge or the all edges of
the root face of G. If B has at most one edge of the root face, then B has a root
edge eB in B, i.e., an ancestor of all the other edges of B in F . We note that Z
has eB . If B has the entire root face, then for convenience, we suppose that Z
has a null edge eB = r1r1 with the weight of 0, and that eB is the parent of the
other edges in the root face. I.e., we suppose that eB is an ancestor of all the
other edges of B also in this case. Let ZB be the path induced by EB ∩ EZ .

We associate a “greedy” edge uv with B if EB \ EZ ∪ {eB} contains an
edge of Duv, where Duv is the path between the Steiner tree and v constructed

Non-greedy Online Steiner Trees on Outerplanar Graphs 137

by DetourEdge(α, u, v). A “greedy” edge is said to be open in B if the edge is
associated with B, and is an outer edge in EB \ EZ or an ancestor of an outer
edge in EB \ EZ in F ∗. A “greedy” edge associated with B and not open in
B is said to be closed in B. In other words, all the outer edges of B that are
descendants in F ∗ of a “greedy” edge closed in B are contained in Z.

Lemma 10. For any edge z in ZB\eB, the total amount charged to z by “greedy”
edges associated with B is less than w(z)/(α − 1).

Proof Sketch. Let e1, . . . , eh be the “greedy” edges associated with B such that
in F ∗, ei is an ancestor of ei+1 for 1 ≤ i < h, and eh is an ancestor of z. By
Lemma 9, we can prove that the amount charged to z by ei is less than w(z)

αh−i+1 .
Summing this overall i, we have the lemma. 	

Lemma 11. Let XB be the set of “greedy” edges open in B. If there is x ∈
XB \ EB, then w(XB \ x) + fx→eB

w(x) ≤ w(ZB). Otherwise, w(XB) ≤ w(ZB).

Proof. Let XB = {e1, . . . , e|XB |}, and suppose that for each i ≥ 1, ei is marked
“greedy” earlier than ei+1 is. We first assume that XB \ EB = ∅. When e1 is
marked “greedy”, e1 is contained in a shortest path P from the current Steiner
tree to a request vertex. Since e1 is the first open edge marked “greedy”, e1 is
incident to at least one vertex s1 of ZB . For otherwise, the current Steiner tree
has a vertex not incident to an edge of ZB , which implies that there must be an
edge open in B and marked “greedy” earlier than e1. Because P must reach the
request vertex, which is contained in ZB , we can find the vertex t1 ∈ VZB

∩VP \s1
nearest to s1 on P . We note that the subpath P 1 of P between s1 and t1 consists
only of open edges, say e1, . . . , ej . This is justified through observing that eh

(1 < h ≤ j) cannot be closed if eh−1 is open and the vertex incident to both eh

and eh−1 is not in ZB . We charge the weights of e1, . . . , ej to the subpath Z1
B of

ZB between s1 and t1. We note that since P is a shortest path, the total charged
amount is at most w(Z1

B).
We continue the similar process for the remaining edges of XB . I.e., we find

the vertex t2 in ZB nearest to ej+1 on a shortest path P ′ from the current Steiner
tree to a request vertex. One exception is that since ej+1 is not the first open
edge in XB , ej+1 may join two vertices in VB \ VZB

. In this case, we set s2 to
the vertex in {s1, t1} that is closer to t2. If ej+1 is incident to a vertex in ZB,
then we set s2 to the vertex as done for s1. We charge the weights of the open
edges in the subpath P 2 of P ′ from ej+1 to t2 to the subpath Z2

B of ZB between
s2 and t2. We note again that P 2 consists only of open edges, and that the total
charged amount is at most w(Z2

B). Moreover, Z1
B and Z2

B are edge-disjoint. For
otherwise, s2 or t2 is in VZ1

B
\ {s1, t1}. In either case, ej+1 joins two vertices of

the cycle formed by P 1 and Z1
B . By the definition of ModifyGraph, all the edges

of P 1 that are descendants of ej+1 in F are identified to a single vertex in the
subgraph of G∗ containing ej+1. These situations imply that ej+1 is neither an
outer edge in EB \EZ nor an ancestor of such an outer edge in F ∗, contradicting
that ej+1 is open in B. Repeating this process, we can charge all the edges in
XB to ZB in such a way that w(XB) ≤ w(ZB).

138 A. Matsubayashi

We then assume that there is x ∈ XB \ EB . Such x is an ancestor of eB

and unique. We process e1, e2, . . . as describe above, except that we charge
fx→eB

w(x) to eB for x, i.e., eB is the subpath Zi
B for some i when processing x.

We observe that the subpaths Z1
B , . . . , Zi−1

B do not contain eB . For otherwise,
there is a subpath P i′

with i′ < i such that Zi′
B contains eB . When x is marked

“greedy”, P i′
is identified to a single vertex in the subgraph of G∗ containing x.

This implies that x is not open in B. We also observe that the subpaths Zi+1
B , . . .

do not contain eB . This is because the assumption that x is associated with B
implies that the end-vertices of eB are added to α-Detour’s Steiner tree when x
is detoured. Thus, we can charge all the edges in XB to ZB in such a way that
w(XB \ x) + fx→eB

w(x) ≤ w(ZB). 	

Lemma 12. It follows that w(T|R|) < (α/(α − 1) + 2α)w(Z).

Proof Sketch. We can observe that each “greedy” edge e is associated with at
least one subgraph B in B. Moreover, if e is open in B, then w(e) is directly
charged to ZB as described in Lemma 11. If e is closed in B, then w(e) is fully
charged to ZB by Lemma 7. Thus, if we denote the set of “greedy” edges closed
in B by YB , then it follows from Lemma2 that

w(T|R|) ≤ α
∑

B∈B

[∑

e∈YB

w(e)

+

{∑
e∈XB\x w(e) + fx→eB

w(x) if ∃x ∈ XB \ EB
∑

e∈XB
w(e) otherwise

]

.

Applying Lemmas 10 and 11,

w(T|R|) ≤ α
∑

B∈B

⎡

⎣
∑

z∈EZB
\eB

w(z)
α − 1

+ w(ZB)

⎤

⎦

= α
∑

B∈B

[
w(ZB \ eB)

α − 1
+ w(ZB \ eB) + w(eB)

]

= α
∑

B∈B

[(
1

α − 1
+ 1

)

w(ZB \ eB) + w(eB)
]

=
(

α

α − 1
+ 2α

)

w(Z).

	

Setting α = 1 + 1/

√
2, we have the following theorem.

Theorem 2. Algorithm (1 + 1/
√

2)-Detour is 3 + 2
√

2 ≈ 5.828-competitive.

We do not know if the upper bound of 5.828 is tight. However, our analysis
of Lemma 12 is tight for α ≥ 2.

Theorem 3. For any α > 1, there exists an outerplanar graph Gα such that if
α-Detour is ρ-competitive on Gα, then ρ ≥ min{3α, α/(α − 1) + 2α}.

Non-greedy Online Steiner Trees on Outerplanar Graphs 139

5 Lower Bound for Arbitrarily Algorithms

In this section, we prove a lower bound of 4 for any deterministic Steiner tree
algorithm on outerplanar graphs.

Overview. Our idea is based on Theorem 1. We recursively define a class of
outerplanar graphs just as done in the proof of the theorem, except that arbi-
trarily many vertices and edges of level i are added to an edge of level i − 1.
Our adversary generates requests in phases; in the ith phase, vertices along the
children of the online algorithm’s tree up to the (i − 1)st phase are requested.
An online algorithm possibly chooses detours with (variable) factor α. The key
of our proof is to define a sequence of upper bounds γi of α to be ρ-competitive
at the ith phase. In fact, we can prove that for any ρ < 4, there is i such that
γi = 1. This means that if there is a ρ-competitive algorithm with ρ < 4, then
it tends to a greedy algorithm; however, this is impossible.

Definition of Graph. Let m be a positive integer and ε be a positive real
number. Let G0 be a path consisting of a single edge of weight 1. The unique
edge of G0 is said to be of level 0. For i ≥ 1, let Gi be the graph obtained from
Gi−1 by adding mi edges of weight (1 + ε)i/

∏i
j=1 mj to each edge of level i − 1

in such a way that the added mi edges form a path connecting the end-vertices
of the edge of level i−1. All the added edges are said to be of level i. We suppose
G := Gi with sufficiently large i. We define F as the rooted tree with VF = EG

such that for an edge e of level i − 1, mi edges added to e are children of e in F .
We note that such children has the total weight of (1 + ε)w(e).

Adversary. We use a sequence Ki for i ≥ 0 defined as follows: Let K0 := 1
and K1 be less than but sufficiently close to 3. For i ≥ 1, we define Ki+1 :=
(K0 + K1)(Ki − Ki−1) if Ki < (K0 + K1)(Ki − Ki−1), and Ki+1 := Ki if
Ki ≥ (K0 + K1)(Ki − Ki−1).

Our adversary adv generates a request sequence against a deterministic
Steiner tree algorithm alg on G. In the initial phase, called the 0th phase,
adv defines Z0 := G0 and requests vertices of Z0. Let T0 be the Steiner tree
computed by alg for these requests, and P0 be the path in T0 connecting the
requests. For the ith phase with i ≥ 1, adv defines the path Zi consisting of chil-
dren of edges of Pi−1, and requests vertices of Zi that have not been requested.
Let Ti be the Steiner tree computed by alg for all the requested vertices thus
far. For an edge e in Pi−1, vertices incident to a child of e must be contained in
the subgraph S of Ti induced by the descendants of e. If S is connected, then
there is a path Qe in S connecting the end-vertices of e. Otherwise, since Ti is
connected, there is a unique child me such that S ∪me has a path Qe connecting
the end-vertices of e. Let Pi be the path obtained by concatenating Qe for all
edges e in Pi−1. We can inductively observe that Pi and Zi are Steiner trees

140 A. Matsubayashi

for the requests up to the ith phase. If w(Pi) > γiw(Pi−1), then adv quits gen-
erating requests, where γi := Ki/Ki−1 ≥ 1. Otherwise, alg performs the next
phase.

Analysis. The following lemma is used to guarantee that adv quits in finite
phases.

Lemma 13. There exists 	 ≥ 1 such that K�+1 = K�.

Proof Sketch. Observing that a sequence (ai)i≥0 with the recurrence ai+1 =
b(ai − ai−1) oscillates for 0 < b < 4, we have the lemma. 	

Lemma 13 implies γ�+1 = K�+1/K� = 1. On the other hand,

w(Pi) ≥ w(Zi) = (1 + ε)w(Pi−1) (1)

by the definitions of Pi and Zi. Therefore, adv performs at most 	 + 1 phases.
The following lemma is used to estimate the ratio of the cost of alg to the

cost of adv.

Lemma 14.
∑j

i=0 Ki/Kj−1 ≥ K0 + K1 for any j ≥ 1.

Proof Sketch. Induction on j. 	

Lemma 15. If adv quits at the qth phase, then w(Tq)/w(Zq) tends to 4 as
m → ∞, ε → 0, and K1 → 3.

Proof. By definition, Pi consists of descendants of edges in Pi−1. This means that
Pi and Pi−1 are edge-disjoint. Therefore, it follows that w(Tj) ≥ ∑q

i=0 w(Pi)−δ,
where δ is the sum of w(me) overall edges e in P0, . . . , Pq−1 having me. We can
upper bound δ by summing weight of one child of all edges; therefore,

δ ≤
∑

i≥1

(∏i−1

j=1
mj

)
(1 + ε)i

∏i
j=1 mj

=
∑

i≥1

(
1 + ε

m

)i

<
1+ε
m

1 − 1+ε
m

→ 0 [m → ∞].

Since adv quits at the qth phase, it follows that w(Pi) ≤ γiw(Pi−1) for
1 ≤ i < q and w(Pq) > γqw(Pq−1). Therefore, it follows from Lemma 14 that

lim
m→∞

w(Tq)
w(Zq)

=
∑q

i=0 w(Pi)
w(Zq)

≥
∑q−1

i=0 w(Pi) + w(Pq)
(1 + ε)w(Pq−1)

[by (1)]

>

∑q−1
i=0

∏q−2
j=i γ−1

j+1w(Pq−1)
(1 + ε)w(Pq−1)

+
γq−1

1 + ε
=

1
1 + ε

(∑q−1
i=0 Ki

Kq−1
+

Kq

Kq−1

)

≥ K0 + K1

1 + ε
→ 4. [ε → 0,K1 → 3,K0 = 1]

	

Thus, we have the following theorem.

Theorem 4. If a deterministic online Steiner tree algorithm is ρ-competitive
on outerplanar graphs, then ρ ≥ 4.

Non-greedy Online Steiner Trees on Outerplanar Graphs 141

References

1. Alon, N., Azar, Y.: On-line steiner trees in the Euclidean plane. Discret. Comput.
Geom. 10, 113–121 (1993)

2. Angelopoulos, S.: Online priority steiner tree problems. In: Dehne, F.,
Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp.
37–48. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03367-4 4

3. Angelopoulos, S.: Parameterized analysis of online steiner tree problems. In: Adap-
tive, Output Sensitive, Online and Parameterized Algorithms. Dagstuhl Seminar
Proceedings (2009). http://drops.dagstuhl.de/opus/volltexte/2009/2121

4. Angelopoulos, S.: On the competitiveness of the online asymmetric and Euclidean
steiner tree problems. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol.
5893, pp. 1–12. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12450-1 1

5. Averbuch, B., Azar, Y., Bartal, Y.: On-line generalized steiner problem. Theor.
Comput. Sci. 324, 313–324 (2004)

6. Awerbuch, B., Bartal, Y., Fiat, A.: Competitive distributed file allocation. Inf.
Comput. 185(1), 1–40 (2003)

7. Bartal, Y., Fiat, A., Rabani, Y.: Competitive algorithms for distributed data man-
agement. J. Comput. Syst. Sci. 51(3), 341–358 (1995)

8. Berman, P., Coulston, C.: On-line algorithms for steiner tree problems. In: Pro-
ceedings of the 29th ACM Symposium on Theory of Computing, pp. 344–353
(1997)

9. Chekuri, C., Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Embedding k-
outerplanar graphs into �1. SIAM J. Discret. Math. 20(1), 119–136 (2006)

10. Fleischner, H.J., Geller, D.P., Harary, F.: Outerplanar graphs and weak duals. J.
Indian Math. Soc. 38, 215–219 (1974)

11. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees, and �1-embedding
of graphs. Combinatorica 24(2), 233–269 (2004)

12. Imase, M., Waxman, B.M.: Dynamic steiner tree problem. SIAM J. Discret. Math.
4(3), 369–384 (1991)

13. Lund, C., Reingold, N., Westbrook, J., Yan, D.: Competitive on-line algorithms
for distributed data management. SIAM J. Comput. 28(3), 1086–1111 (1999)

14. Naor, J.S., Panigrahi, D., Singh, M.: Online node-weighted steiner tree and related
problems. In: Proceedings 52nd Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 210–219 (2011)

15. Westbrook, J., Yan, D.C.K.: The performance of greedy algorithms for the on-line
steiner tree and related problems. Math. Syst. Theory 28, 451–468 (1995)

http://dx.doi.org/10.1007/978-3-642-03367-4_4
http://drops.dagstuhl.de/opus/volltexte/2009/2121
http://dx.doi.org/10.1007/978-3-642-12450-1_1

	Non-greedy Online Steiner Trees on Outerplanar Graphs
	1 Introduction
	2 Preliminaries
	3 Lower Bound for Greedy Algorithms
	4 Algorithm -Detour and Its Competitiveness
	4.1 Overview
	4.2 Definition
	4.3 Correctness
	4.4 Competitiveness

	5 Lower Bound for Arbitrarily Algorithms
	References

