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Abstract. We introduce the Scenario Submodular Cover problem. In
this problem, the goal is to produce a cover with minimum expected
cost, with respect to an empirical joint probability distribution, given as
input by a weighted sample of realizations. The problem is a counterpart
to the Stochastic Submodular Cover problem studied by Golovin and
Krause [6], which assumes independent variables. We give two approxi-
mation algorithms for Scenario Submodular Cover. Assuming an integer-
valued utility function and integer weights, the first achieves an approx-
imation factor of O(logQm), where m is the sample size and Q is the
goal utility. The second, simpler algorithm achieves an approximation
factor of O(logQW ), where W is the sum of the weights. We achieve our
bounds by building on previous related work (in [4,6,15]) and by exploit-
ing a technique we call the Scenario-OR modification. We apply these
algorithms to a new problem, Scenario Boolean Function Evaluation.
Our results have applciations to other problems involving distributions
that are explicitly specified by their support.

1 Introduction

The Submodular Cover problem is a fundamental problem in submodular opti-
mization that generalizes the classical NP-complete Set Cover problem. Adaptive
versions of this problem have applications to a number of other problems, notably
machine learning problems where the goal is to build a decision tree or strategy
of minimum expected cost. Examples of such problems include entity identifica-
tion (exact learning with membership queries), classification (equivalence class
determination), and decision region identification (cf. [1,6,7,11]). Other applica-
tions include reducing expected prediction costs for learned Boolean classifiers,
given attribute costs [5].

Previous work on Stochastic Submodular Cover assumes independence of the
variables of the probability distribution. Optimization is performed with respect
to this distribution. We consider a new version of the problem that we call
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Scenario Submodular Cover, that removes the independence assumption. In this
problem, optimization is with respect to an input distribution given explicitly
by its support (with associated probability weights). We give approximation
algorithms solving Scenario Submodular Cover over discrete distributions.

In generic terms, an adaptive submodular cover problem is a sequential
decision problem where we must choose items one by one from an item set
N = {1, . . . , n}. Each item has an initially unknown state, which is a member
of a finite state set Γ . The state of an item is revealed only after we have chosen
the item. We represent a subset S ⊆ N of items and their states by a vector
x ∈ (Γ ∪ {∗})n where xi = ∗ if i �∈ S, and xi is the state of item i otherwise.
We are given a monotone, submodular1 utility function g : (Γ ∪{∗})n → Z≥0. It
assigns a non-negative integer value to a subset of the items where the value can
depend on the states of the items. There is a non-negative goal utility value Q,
such that g(a) = Q for all a ∈ Γn. There is a cost associated with choosing each
item, which we are given. In distributional settings, we are also given the joint
distribution of the item states. We continue choosing items until their utility
value is equal to the goal utility, Q. The problem is to determine the adaptive
order in which to choose items so as to minimize expected cost (in distributional
settings) or worst-case cost (in adversarial settings).

Stochastic Submodular Cover is an adaptive submodular cover problem in
a distributional setting. In this problem, the state of each item is an indepen-
dent random variable. The distributions of the variables are given as input.
Golovin and Krause introduced a simple algorithm for this problem, called Adap-
tive Greedy, achieving an approximation factor of O(log Q). Another algorithm
for the problem, called Adaptive Dual Greedy, was presented by Deshpande
et al. [5]. These algorithms have been useful in solving other stochastic optimiza-
tion problems, which can be reduced to Stochastic Submodular Cover through
the construction of appropriate utility functions (e.g., [2,5,7,11]).

The problem we study, Scenario Submodular Cover (Scenario SC), is also a
distributional, adaptive submodular cover problem. The distribution is given by
a weighted sample. Each element of the sample is a vector in Γn, representing
an assignment of states to the items in N . Associated with each assignment is
a positive integer weight. The sample and its weights define a joint distribution
on Γn, where the probability of a vector γ in the sample is proportional to its
weight. (The probability of a vector in Γn that is not in the sample is 0.) As in
Stochastic Submodular Cover, the problem is to choose the items and achieve
utility Q, while minimizing expected cost. However, because proofs of results for
the Stochastic Submodular Cover problem typically rely on the independence
assumption, they do not apply to the Scenario SC problem.

Results. We present Mixed Greedy, an approximation algorithm for the Scenario
SC problem that uses two different greedy criteria. It is a generalization of the

1 The definitions “monotone” and “submodular,” for state-dependent utility functions,
has not been standardized. We define these terms in Sect. 2. In the terminology used
by Golovin and Krause [6], g is pointwise monotone and pointwise submodular.
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algorithm of Cicalese et al. [4] for Equivalence Class Determination (also called
Group Identification and Discrete Function Evaluation). Our analysis uses the
the same basic approach as that used by Cicalese et al., but the proof of their
main technical lemma does not apply to our problem. We replace it with a
histogram proof similar to that used in [15] for Min-Sum Submodular Cover.

The approximation factor achieved by Mixed Greedy for Scenario SC is
O( 1ρ log Q), where ρ is a technical quantity associated with utility function g.
The utility function constructed for the Equivalence Class Determination prob-
lem has constant ρ, but this is not the case in general.

To achieve a better bound for other problems, we present a modified version
of Mixed Greedy, which uses an existing construction in a novel way. The existing
construction produces the OR of two monotone submodular functions with goal
values (cf. [5,9]). We apply this construction to g and to another utility function
based on the sample, to get a new monotone, submodular function gS , for which ρ
is constant. We call the transformation of g and the sample into gS the Scenario-
OR modification.

Once gS is constructed, Mixed Greedy is run on gS with goal value Qm,
where m is the size of the sample. We show that the resulting algorithm, Scenario
Mixed Greedy, achieves an O(log Qm) approximation factor for any Scenario SC
problem.

In addition to Mixed Greedy, we also present a simpler, more efficient
algorithm for the Scenario SC problem, Scenario Adaptive Greedy, with a
worse approximation bound. It is based on the Adaptive Greedy algorithm of
Golovin and Krause. However, the approximation bound proved by Golovin and
Krause [6] for Adaptive Greedy depends on the assumption that g and the
distribution defined by the sample weights jointly satisfy adaptive submodular-
ity. This is not the case for general Scenario SC instances. Scenario Adaptive
Greedy is obtained by modifying Adaptive Greedy using a weighted version of
the Scenario-OR modification. Scenario Adaptive Greedy combines g and the
weighted sample to obtain a modified utility function gW , having goal utility
QW . Scenario Adaptive Greedy then applies Adaptive Greedy to gW . We prove
that gW and the distribution defined by the weights jointly satisfy adaptive sub-
modularity. Using the existing approximation bound for Adaptive Greedy then
implies a bound of O(log QW ) for Scenario Adaptive Greedy, where W is the
sum of the weights.

The constructions of gS and gW are similar to constructions in work on
Equivalence Class Determination and related problems (cf. [1–3,7]). Our proof
of adaptive submodularity uses the approach of showing that a certain function
is non-decreasing along a path between two points. This approach was used
before (cf. [2,3,7]) but our problem is more general and our proof differs.

Previously, applying ordinary Adaptive Greedy to solve sample-based prob-
lems required constructing a utility function g, and then proving adaptive sub-
modularity of g and the distribution on the weighted sample. The proof could
be non-trivial (see, e.g., [1,3,7,11]). With our approach, one can get an approxi-
mation bound with Adaptive Greedy by proving only submodularity of g, rather
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than adaptive submodularity of g and the distribution. Proofs of submodularity
are generally easier. Also, the OR construction used in Sect. 2 preserves submod-
ularity, but not Adaptive Submodularity [2].

Given monotone, submodular g with goal value Q, we can use our algorithms
to obtain three approximation results for the associated Scenario SC problem:
O( 1ρ log Q) with Mixed Greedy, O(log Qm) with Scenario Mixed Greedy, and
O(log QW ) with Scenario Adaptive Greedy.

Assuming the costs ci are integers, and letting C =
∑

i ci, we note that
applying the “Kosaraju trick” (first used by Kosaraju et al. in [13]) to Scenario
Adaptive Greedy yields a bound of O(log QmC) instead of O(log QW ). See [6]
for a similar use of the trick.

After the appearance of a preliminary version of this paper [8], Navidi
et al. [14] presented a new algorithm solving a generalization of the Scenario
SC problem. It achieves the O(log Qm) bound of Scenario Mixed Greedy using
a single greedy rule, different from the one used in Scenario Adaptive Greedy.
Their algorithm can be applied to problems where there is a distinct monotone
submodular function for each scenario.

Applications. The Scenario SC problem has many applications. As an example,
consider the query learning problem of identifying an unknown hypothesis h from
a hypothesis class {h1, . . . , hm} by asking queries from the set {q1, . . . , qn}. The
answer to each query is 0 or 1, and we are given an m × n table D where
D[i, j] is the answer to qi for hj . Each pair of hypotheses differs on at least
one query. Suppose there is a given cost ci for asking query qi, and each hj has
a given prior probability pj . The problem is to build a decision tree (querying
procedure) for identifying h, minimizing expected query cost, assuming h is
drawn with respect to the pj . View the qi as items i ∈ N , the hj as scenarios,
and the answer to qi as the state of item i. Represent answers to queries asked
so far as a partial assignment b ∈ {0, 1, ∗}n where bi = ∗ means qi has not been
asked. Define utility function g : {0, 1, ∗}n → Z≥0 whose value on b ∈ {0, 1, ∗}n

is min{m − 1, r(b)} where r(b) = |{hj | ∃i such that bi �= ∗ and D[i, j] �= bi}|.
Function g is monotone and submodular. Further, g(b) = m−1 iff the answers in
b uniquely identify h. Building a decision tree with minimum expected decision
cost is equivalent to solving Scenario SC for g with goal value Q = m − 1, for
costs ci and weights proportional to the pi. An algorithm with an approximation
bound of O(log m) for this problem was first presented by [10].

Equivalence Class Determination is a generalization of the query learning
problem where in addition to D, we are given a partition of the hj into equiva-
lence classes. The decision tree must just identify the class to which h belongs.
This problem can also be seen as a Scenario SC problem, using the “Pairs” util-
ity function of Cicalese et al., which has goal value Q = O(m2) [4]. Applying our
Scenario Mixed Greedy bound to this utility function yields an approximation
bound of O(log m), matching the bound of Cicalese et al.

Our bound on Scenario Mixed Greedy yields a new approximation bound for
the Decision Region Identification problem studied by Javdani et al. [11], which is
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an extension of Equivalence Class Determination. They define a utility function
whose value is a weighted sum of hyperedges cut in a certain hypergraph. We
define a utility function whose value is the number of hyperedges cut. Using
Mixed Greedy with this function yields an approximation bound of O(k log m),
where k is a parameter associated with the problem, and m is the sample size.
In contrast, the bound in [11] is O(k log( W

wmin
)), where wmin is the minimum

weight on a realization in the sample. (The recent paper of Navidi et al. [14]
gives a further bound.)

We can apply our algorithms to Scenario BFE (Boolean Function Evaluation)
problems, which we introduce here. These problems are a counterpart to the
Stochastic BFE problems2 studied in AI, operations research, and in learning
with attribute costs (see e.g., [5,12,16]). In a Scenario BFE problem, we are
given a representation of a Boolean function f : {0, 1}n → {0, 1}. For each i ∈
{1, . . . , n}, we are given ci > 0, the cost of obtaining the value of the ith bit of
an initially unknown a ∈ {0, 1}n. We are given a weighted sample S ⊆ {0, 1}n.
The problem is to compute a (possibly implicit) decision tree computing f ,
minimizing the expected cost of evaluating f on a ∈ {0, 1}n using the tree. The
expectation is with respect to the distribution defined by the sample weights.

Deshpande et al. [5] gave approximation algorithms for some Stochastic BFE
problems that work by constructing a monotone, submodular utility function g
and running Adaptive Greedy. By substituting the sample-based algorithms in
this paper in place of Adaptive Greedy, we obtain results for analogous Sce-
nario BFE problems. For example, using Mixed Greedy, we obtain an O(k log n)
approximation for the Scenario BFE problem for k-of-n functions, a bound that
is independent of sample size. Details are in the full version of the paper.

We note that the Scenario BFE problem differs from the function evaluation
problem considered by Cicalese et al. [4]. In that problem, the decision tree
must only compute f correctly on assignments a ∈ {0, 1}n in the sample, while
in Scenario BFE the tree must compute f correctly on all a ∈ {0, 1}n. Also, in
Scenario BFE we assume function f is given with the sample, and we consider
particular types of functions f .

2 Definitions

Let N = {1, . . . , n} be the set of items and Γ be a finite set of states. A sample
is a subset of Γn. A realization is an element a ∈ Γn, representing an assignment
of states to items, where for i ∈ N , ai represents the state of item i. We also
refer to an element of Γn as an assignment.

We call b ∈ (Γ ∪ {∗})n a partial realization. Partial realization b represents
the subset I = {i | bi �= ∗} where each item i ∈ I has state bi. For γ ∈ Γ , the
quantity bi←γ denotes the partial realization produced from b by setting bi = γ.
For b, b′ ∈ (Γ ∪ {∗})n, b′ is an extension of b, written b′ 	 b, if b′

i = bi for all
bi �= ∗. We use b′ 
 b to denote that b′ 	 b and b′ �= b.
2 In the Operations Research literature, Stochastic Function Evaluation is often called
Sequential Testing or Sequential Diagnosis.
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Let g : (Γ ∪ {∗})n → Z≥0 be a utility function. Function g : (Γ∪{∗})n → Z≥0

has goal value Q if g(a) = Q for all realizations a ∈ Γn. We define Δg(b, i, γ) :=
g(bi←γ) − g(b).

A standard utility function is a set function f : 2N → R≥0. It is monotone if
for all S ⊂ S′ ⊆ N , f(S) ≤ f(S′). It is submodular if in addition, for i ∈ N − S,
f(S∪{i})−f(S) ≥ f(S′∪{i})−f(S′). We extend definitions of monotonicity and
submodularity to (state-dependent) function g : (Γ ∪ {∗})n → Z≥0 as follows:

– g is monotone if for b ∈ (Γ ∪ {∗})n, i ∈ N such that bi = ∗, and γ ∈ Γ , we
have g(b) ≤ g(bi←γ)

– g is submodular if for all b, b′ ∈ (Γ ∪ {∗})n such that b′ 
 b, i ∈ N such that
bi = b′

i = ∗, and γ ∈ Γ , we have Δg(b, i, γ) ≥ Δg(b′i, γ).

Let D be a probability distribution on Γn. Let X be a random variable drawn
from D. For a ∈ Γn and b ∈ (Γ ∪ {∗})n, we define Pr[a | b] := Pr[X = a | a 	 b].
For i such that bi = ∗, we define E[Δg(b, i, γ)] :=

∑
a∈Γn:a�b Δg(b, i, ai) Pr[a | b].

– g is adaptive submodular with respect to D if for all b′, b such that b′ 
 b, i ∈ N
such that bi = b′

i = ∗, and γ ∈ Γ , we have E[Δg(b, i, γ)] ≥ E[Δg(b′, i, γ)].

Intuitively, we can view b as partial information about states of items i in a
random realization a ∈ Γn, with bi = ∗ meaning the state of item i is unknown.
Then g measures the utility of that information, and E[Δg(b, i, γ)] is the expected
increase in utility that would result from discovering the state of i.

For g : (Γ ∪ {∗})n → Z≥0 with goal value Q, and b ∈ (Γ ∪ {∗})n and i ∈ N ,
where bi = ∗, let γb,i be the state γ ∈ Γ such that Δg(b, i, γ) is minimized (if
more than one exists, choose one arbitrarily). Thus γb,i is the state of item i that
would produce the smallest increase in utility, and thus is “worst-case” in terms
of utility gain, if we start from b and then discover the state of i.

For fixed g : (Γ ∪ {∗})n → Z≥0 with goal value Q, we define an associated
quantity ρ, as follows:

ρ := min
Δg(b, i, γ)
Q − g(b)

(1)

where the minimization is over b, i, γ, where b ∈ (Γ ∪ {∗})n such that g(b) < Q,
i ∈ N such that bi = ∗, and γ ∈ Γ − {γb,i}.

Intuitively, when the state of item i is discovered, the distance between the
utility achieved and the goal utility is reduced by some fraction (possibly zero).
The fraction can vary depending on item state. Parameter ρ equals the small-
est possible value for the fraction associated with the next-to-worst case state,
starting from any partial realization, and considering any item i whose state is
about to be discovered.

An instance of the Scenario SC problem is a tuple (g,Q, S,w, c), where g : (Γ∪
{∗})n → Z≥0 is an integer-valued, monotone submodular utility function with
goal value Q > 0, S ⊆ Γn, w : S → Z

n
>0 assigns a weight to each realization

a ∈ S, and c ∈ R
n
>0 is a cost vector. We consider a setting where we select

items without repetition from the set of items N , and the states of the items
correspond to an initially unknown realization a ∈ Γn. Each time we select an
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item, the state ai of the item is revealed. The selection of items can be adaptive,
in that the next item chosen can depend on the states of the previous items.
We continue to choose items until g(b) = Q, where b is the partial realization
representing the states of the chosen items.

The Scenario SC problem asks for an adaptive order in which to choose the
items (i.e. a strategy), until goal value Q is achieved, such that the expected sum
of costs of the chosen items is minimized. The expectation is with respect to the
distribution on Γn that is proportional to the weights on the assignments in the
sample: Pr[a] = 0 if a �∈ S, and Pr[a] = w(a)

W otherwise, where W =
∑

a∈S w(a).
We call this the sample distribution defined by S and w and denote it by DS,w.

The strategy corresponds to a decision tree. The internal nodes of the tree
are labeled with items i ∈ N , and each such node has |Γ | children, one for each
state γ ∈ Γ . We refer to the child corresponding to state γ as the γ-child. Each
root-leaf path in the tree is associated with a partial realization b such that for
each consecutive pairs of nodes v and v′ on the path, if i is the label of v, and
v′ is the γ-child of v, then bi = γ. If i does not label any node in the path,
then bi = ∗. The tree may be output in an implicit form (for example, in terms
of a greedy rule), specifying how to determine the next item to choose, given
the previous items chosen and their states. Although realizations a �∈ S do not
contribute to the expected cost of the strategy, we require the strategy to achieve
goal value Q on all realizations a ∈ Γn.

We will use an existing “OR construction,” a method for taking the OR of two
utility functions [5,9]. It is a method for combining two monotone submodular
utility functions g1 and g2 defined on (Γ ∪ {∗})n, and values Q1 and Q2, into a
new monotone submodular utility function g. For b ∈ (Γ ∪ {∗})n,

g(b) = Q1Q2 − (Q1 − g1(b))(Q2 − g2(b)) (2)

If for all a ∈ Γn, g1(a) = Q1 or g2(a) = Q2, then g(a) = Q1Q2 for all a ∈ Γn.

3 Mixed Greedy

Mixed Greedy is a generalization of the approximation algorithm developed by
Cicalese et al. for the Equivalence Class Determination problem [4]. That algo-
rithm solves the Scenario Submodular Cover problem for a particular “Pairs”
utility function associated with Equivalence Class Determination. In contrast,
Mixed Greedy can be used on any monotone, submodular utility function g.
Following Cicalese et al., we present Mixed Greedy as outputting a tree. If the
strategy is only to be used on one realization, it is not necessary to build the
entire tree.

3.1 Algorithm

The Mixed Greedy algorithm builds a decision tree for a Scenario SC instance
(g,Q, S,w, c). The tree is built top-down, and is structured as described at the
end of Sect. 2.
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Algorithm 1
Procedure MixedGreedy(g, Q, S, w, c, b)

1: If g(b) = Q then return a single (unlabeled) leaf l
2: Let T be an empty tree
3: N ′ ← {i : bi = ∗}
4: For i ∈ N ′, σi ← argminγ∈Γ Δg(b, i, γ)

5: Define g′ : 2N′ → Z≥0 such that for all U ⊆ N ′, g′(U) = g(bU ) − g(b), where bU is
the extension of b produced by setting bi = σi for all i ∈ U .

6: B ← FindBudget(N ′, g′, c), spent ← 0, spent2 ← 0, k ← 1
7: I ← {i ∈ N ′|ci ≤ B}
8: For all R ⊆ I, define DR := {a ∈ S|a � b and ai 	= σi for some i ∈ R}
9: Define h : 2I → Z≥0 such that for all R ⊆ I, h(R) =

∑
a∈DR

w(a)
10: R ← ∅
11: repeat
12: Let i be an item which maximizes h(R∪{i})−h(R)

ci
among all items i ∈ I

13: Let tk be a new node labeled with item i
14: If k = 1 then make t1 the root of T
15: else make tk the σj-child of tk−1

16: j ← i
17: for every γ ∈ Γ such that γ 	= σi do
18: T γ ← MixedGreedy(g, Q, S, w, c, bi←γ)
19: Attach T γ to T by making the root of T γ the γ-child of tk

20: bi ← σi, R ← R ∪ {i}, I ← I − {i}, spent ← spent + ci, k ← k + 1
21: until spent ≥ B
22: repeat
23: Let i be an item which maximizes Δg(b,i,σi)

ci
among all items i ∈ I

24: Let tk be a node labeled with item i
25: Make tk the σj-child of tk−1

26: j ← i
27: for every γ ∈ Γ such that γ 	= σi do
28: T γ ← MixedGreedy(g, Q, S, w, c, bi←γ)
29: Attach T γ to T by making the root of T γ the γ-child of tk

30: bi ← σi, I ← I − {i}, spent2 ← spent2 + ci, k ← k + 1
31: until spent2 ≥ B or I = ∅
32: T ′ ← MixedGreedy(g, Q, S, w, c, b); Attach T ′ to T by making the root of T ′ the

σj-child of tk−1

33: Return T

Mixed Greedy works by calling recursive function MixedGreedy, which we
present in Algorithm 1. In the initial call, b = (∗, . . . , ∗). Only the value of
parameter b changes between recursive calls. Each call constructs a subtree of
the full tree for g, rooted at a node v of that tree. In the call building the subtree
rooted at v, b is the partial realization corresponding to the path from the root
to v in the full tree: bi = γ if the path includes a node labeled i and its γ-child,
and bi = ∗ otherwise.

The algorithm of Cicalese et al. [4] is essentially the same as Mixed Greedy in
the special case where g is equal to their “Pairs” function. Like their algorithm,
Mixed Greedy uses a subroutine, FindBudget, that relies on a greedy algorithm
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of Wolsey for Budgeted Submodular Cover [17]. FindBudget is presented in the
full version [8] of this paper and is omitted here due to space constraints.

If g(b) = Q, then MixedGreedy returns an (unlabeled) single node, which
will be a leaf of the full tree for g. Otherwise, MixedGreedy constructs a tree
T . It does so by computing a special realization called σ, and then iteratively
using σ to construct a path descending from the root of this subtree, which is
called the backbone. It uses recursive calls to build the subtrees “hanging” off the
backbone. The backbone has a special property: for each node v′ in the path,
the successor node in the path is the σi-child of v′, where i is the item labeling
node v′.

The backbone is constructed as follows. Using FindBudget, MixedGreedy
computes a lower bound B on the minimum cost required to achieve a fraction
of approximately 1

3 of the goal value Q, assuming we start with partial realization
b (Step 6).

After calculating B, MixedGreedy constructs the backbone in two stages,
using a different greedy criterion in each to determine which item i to place
in the current node. In the first stage, corresponding to the first repeat loop,
the goal is to remove weight (probability mass) from the backbone, as cheaply
as possible. That is, consider an a ∈ Γn to be removed from the backbone (or
“covered”) if i labels a node in the backbone and ai �= σi; removing a from the
backbone results in the loss of weight w(a) from the backbone. The greedy choice
used in the first stage in Step 12 follows the rule of maximizing bang-for-the-
buck : the algorithm chooses i such that the amount of weight removed from the
backbone, divided by ci, is maximized. In making this choice, it only considers
items that have cost at most B. The first stage ends as soon as the total cost
of the items in the chosen sequence is at least B. For each item i chosen during
the stage, bi is set to σi.

In the second stage, corresponding to the second repeat loop, the goal is to
increase utility as measured by g, under the assumption that we already have
b, and that the state of each remaining item i is σi. The algorithm again uses
a bang-for-the-buck rule, choosing the i that maximizes the increase in utility,
divided by ci (Step 23). In making this choice, it again considers only items with
cost at most B. The stage ends when the total cost of the items in the chosen
sequence is at least B. For each item i chosen during the stage, bi is set to σi.

In Sect. 2, we defined ρ. The way B is chosen guarantees that the updates to
b during the two greedy stages cause the value of Q − g(b) to shrink by at least
a fraction min{ρ, 1

9} before each recursive call. We use this fact to prove the
following theorem. The proof can be found in the full version of the paper [8].

Theorem 1. Mixed Greedy is an approximation algorithm for Scenario Sub-
modular Cover that achieves an approximation factor of O( 1ρ log Q).

4 Scenario Mixed Greedy

We now use the Scenario-OR modification to obtain a modified version of Mixed
Greedy, called Scenario Mixed Greedy, that eliminates the dependence on ρ in
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the approximation bound in favor of a dependence on m, the size of the sample.
Rather than running Mixed Greedy with g, it first combines g and the sample to
produce a new utility function gS , and then runs Mixed Greedy with gS , rather
than with g. Utility function gS is produced by combining g with another utility
function hS , using the OR construction described at the end of Sect. 2. Here
hS : (Γ ∪ {∗})n → Z≥0, where hS(b) = m − |{a ∈ S : a 	 b}| and m = |S|.
Thus hS(b) is the total number of assignments that have been eliminated from
S because they are incompatible with the partial state information in b. Utility
m for hS is achieved when all assignments in S have been eliminated. Clearly,
hS is monotone and submodular.

When the OR construction is applied to combine g and hS , the resulting
utility function gS reaches its goal value Qm when all possible realizations of
the sample have been eliminated or when goal utility is achieved for g.

In an on-line setting, Scenario Mixed Greedy uses the following procedure to
determine the sequence of items to choose on an initially unknown a. We note
that the third step in the procedure is present because goal utility Q must be
reached even for realizations a not in S.

Scenario Mixed Greedy:

1. Construct utility function gS by applying the OR construction to g and utility
function hS .

2. Adaptively choose a sequence of items by running Mixed Greedy for utility
function gS with goal value Qm, with respect to the sample distribution DS,w.

3. After goal value Qm is achieved, if the final partial realization b computed
by Mixed Greedy does not satisfy g(b) = Q, then choose the remaining items
in N in a fixed but arbitrary order until g(b) = Q.

Theorem 2. Scenario Mixed Greedy approximates Scenario Submodular Cover
with an approximation factor of O(log Qm), where m is the size of sample S.

Proof. Scenario Mixed Greedy achieves utility value Q for g when run on any
a ∈ Γn, because the b computed by Mixed Greedy satisfies a 	 b, and the
third step ensures Q is reached. Let c(g) and c(gS) denote the expected cost
of the optimal strategies for Scenario SC problems on g and gS respectively,
with respect to sample distribution DS,w. Let τ be an optimal strategy for g
achieving expected cost c(g). It is also a valid strategy for the problem on gS ,
since it achieves utility Q for g on all realizations, and hence achieves goal utility
Qm for gS on all realizations. Thus c(gS) ≤ c(g).

Functions g and hS are monotone and submodular. Since gS is produced
from them using the OR construction, gS is monotone and submodular. Let ρS

be the value of parameter ρ for the function gS . By the bound in Theorem 1,
running Mixed Greedy on gS , for the sample distribution DS,w, has expected
cost that is at most a O( 1

ρS
log Qm) factor more than c(gS). Its expected cost is

thus also within an O( 1
ρS

log Qm) factor of c(g). Making additional choices on
realizations not in S, as done in the last step of Scenario Mixed Greedy, does
not affect the expected cost, since these realizations have zero probability.



126 N. Grammel et al.

Generalizing an argument from [4], we now prove that ρS is lower bounded by
a constant fraction. Consider any b ∈ (Γ ∪{∗})n and i ∈ N such that bi = ∗, and
any γ ∈ Γ where γ �= γb,i. Let Cb = |S| − hS(b) = |{a ∈ S | a 	 b}|. Since sets
{a ∈ S | a 	 b and ai = γ} and {a ∈ S | a 	 b and ai = γb,i} are disjoint, both
cannot have size greater than Cb

2 . Thus ΔhS(b, i, γ) ≥ Cb

2 or ΔhS(b, i, γb,i) ≥ Cb

2
or both. By the construction of gS (recall the definition of the OR construction
in (2)), we have that ΔgS(b, i, γ) ≥ (Q−g(b))Cb

2 or ΔgS(b, i, γb,i) ≥ (Q−g(b))Cb

2 or
both. Since γb,i is the “worst-case” setting for bi with respect to gS , it follows
that ΔgS(b, i, γ) ≥ ΔgS(b, i, γb,i), and so in all cases ΔgS(b, i, γ) ≥ (Q−g(b))Cb

2 .
Also, (Q − g(b))Cb = Qm − gS(b). Therefore, ρS ≥ 1

2 . The theorem follows from
the bound in Theorem 1. ��

5 Scenario Adaptive Greedy

Scenario Adaptive Greedy works by first constructing a utility function gW ,
produced by applying the OR construction to g and utility function hW . Here
hW : (Γ ∪ {∗})n → Z≥0, where hW (b) = W −∑

a∈S:a�b w(a). Intuitively, hW (b)
is the total weight of assignments eliminated from S because they are incompati-
ble with the information in b. Utility W is achieved for hW when all assignments
in S have been eliminated. Clearly hW is monotone and submodular. The func-
tion gW reaches its goal value QW when all possible realizations of the sample
have been eliminated or when goal utility is achieved for g. Once gW is con-
structed, Scenario Adaptive Greedy runs Adaptive Greedy on gW .

In an on-line setting, Scenario Adaptive Greedy uses the following procedure
to determine the sequence of items to choose on an initially unknown a.

Scenario Adaptive Greedy:

1. Construct modified utility function gW by applying the OR construction to
g and utility function hW .

2. Run Adaptive Greedy for utility function gW with goal value QW , with
respect to sample distribution DS,w, to determine the choices to make on a.

3. After goal value QW is achieved, if the partial realization b representing the
states of the chosen items of a does not satisfy g(b) = Q, then choose the
remaining items in N in arbitrary order until g(b) = Q.

The analysis of Scenario Adaptive Greedy is based on the following lemma.

Lemma 1. Utility function gW is adaptive submodular with respect to sample
distribution DS,w.

The proof of Lemma 1 can be found in the full version of the paper.

Theorem 3. Scenario Adaptive Greedy is an approximation algorithm for Sce-
nario Submodular Cover achieving an approximation factor of O(log QW ), where
W is the sum of the weights on the realizations in S.
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Proof. Since gW is produced by applying the OR construction to g and hW ,
which are both monotone, so is gW . By Lemma 1, gW is adaptive submodu-
lar with respect to the sample distribution. Thus by the bound of Golovin and
Krause on Adaptive Greedy, running that algorithm on gW yields an ordering
of choices with expected cost that is at most a O(log QW ) factor more than the
optimal expected cost for gW . By the analogous argument as in the proof of
Theorem 2, it follows that Scenario Adaptive Greedy solves the Scenario
Submodular Cover problem for g, and achieves an approximation factor of
O(log QW ). ��
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