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Preface

This volume contains the revised selected papers presented at WAOA 2016: the 14th
Workshop on Approximation and Online Algorithms held during August 25–26, 2016,
in Aarhus. WAOA 2016 focused on the design and analysis of approximation and
online algorithms. These algorithms have become a fundamental tool in several fields
and in many applications that cope with computationally hard problems and problems
in which the input is gradually disclosed over time.

WAOA 2016 was part of ALGO 2016, which also hosted ESA, ALGOCLOUD,
ALGOSENSORS, ATMOS, IPEC, and MASSIVE. The previous WAOA workshops
were held in Budapest (2003), Rome (2004), Palma de Mallorca (2005), Zurich (2006),
Eilat (2007), Karlsruhe (2008), Copenhagen (2009), Liverpool (2010), Saarbrücken
(2011), Ljubljana (2012), Sophia Antipolis (2013), Wraclaw (2014), and Patras (2015).
The proceedings of all these previous WAOA workshops have been published as
LNCS volumes.

Topics of interest for WAOA 2016 were: coloring and partitioning, competitive
analysis, network design, packing and covering, paradigms for design and analysis of
approximation and online algorithms, randomization techniques, real-world applica-
tions, and scheduling problems.

In response to the call for papers, we received 33 submissions. Each submission was
reviewed by at least three referees, and mainly judged on originality, technical quality,
and relevance to the topics of the conference. Based on the reviews, the Program
Committee selected 16 papers. This volume contains final revised versions of these
papers. In addition to the accepted contributions, the workshop featured two invited
lectures by Marek Cygan (University of Warsaw, Poland) and Ronald de Wolf (CWI
and University of Amsterdam, The Netherlands). Contributions of the invited lectures
are also included in this volume. We are grateful to both of them for accepting our
invitation and for their very nice lectures.

The EasyChair conference system was used to manage the electronic submissions,
the review process, and the electronic Program Committee meeting. It made our task
much easier. We wish to thank all the authors who submitted papers for consideration,
the invited speakers, the members of the Program Committee for their work, and all the
external reviewers who assisted the Program Committee in the evaluation process.
Special thanks go to the local Organizing Committee, who helped us with the orga-
nization of the workshop.

November 2016 Klaus Jansen
Monaldo Mastrolilli
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Approximation Algorithms
for the k-Set Packing Problem

Marek Cygan

Institute of Informatics, University of Warsaw, Warsaw, Poland
cygan@mimuw.edu.pl

Abstract. In the k-Set Packing problem we are given a universe and a family of
its subsets, where each of the subsets has size at most k. The goal is to select a
maximum number of sets from the family which are pairwise disjoint. It is a well
known NP-hard problem, that has been studied from the approximation per-
spective since the 80’s. During the talk we describe the history of progress on
both the weighted and un- weighted variants of the problem, with an exposition
of methods used to obtain the best known approximation algorithms mostly
involving local search based routines.

We start with an exemplatory example of the classic Maximum Matching problem.
Even though this is a polynomial-time-solvable problem it serves well at explaining the
intuition behind local search algorithm in the form of hill climbing. In particular we
will see that if it impossible to improve a matching M by removing p and adding pþ 1
edges, then M is at most pþ 2ð Þ= pþ 1ð Þ times smaller than optimum.

Next we move to the k-Set Packing problem and consider the canonical local search
algorithm for this problem, the approximation ratio of which has been analyzed in a
long-spanning sequence of papers [5, 6, 7]. For each of the mentioned results we
underline its main idea.

As the standard local search provides better approximation ratio in
quasi-polynomial time than in polynomial time, a natural direction was to explore the
logarithmic radius search space in polynomial time. This was achieved by Sviridenko
and Ward [8] and Cygan [4] by using tools from parameterized complexity such as
color coding of Alon, Yuster and Zwick [1].

Even though the standard linear relaxation of the problem has integrality gap
k � 1þ 1=k it was shown by Chan and Lau [3] that by adding clique constraints the
gap may be upper bounded by kþ 1ð Þ=2.

Finally we consider the weighed variant of the k-Set Packing problem, where the
interesting aspect is that the best known approximation algorithm is a local search
optimizing the sum of squares of weights instead of the standard weighted sum [2].

References
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On Linear and Semidefinite Programs
for Polytopes in Combinatorial Optimization

Ronald de Wolf

CWI and University of Amsterdam, Amsterdam, The Netherlands
rdewolf@cwi.nl

Ronald de Wolf—Partially supported by ERC Consolidator Grant QPROGRESS

Abstract. Combinatorial problems like TSP optimize a linear function over
some polytope P. If we can obtain P as a projection from a larger-dimensional
polytope with a small number of facets, then we get a small linear program for
the optimization problem; if we obtain P as a projection from a small spectra-
hedron, then we get a small semidefinite program. The area of extension
complexity studies the minimum sizes of such LPs and SDPs. In the 1980s
Yannakakis [7] was the first to do this, proving exponential lower bounds on the
size of symmetric LPs for the TSP and matching polytopes. In 2012, Fiorini
et al. [4] proved exponential lower bounds on the size of all (possibly
non-symmetric) LPs for TSP. This was followed by many new results for LPs
and SDPs, for exact optimization as well as for approximation. We will survey
this recent line of work [1, 2, 3, 5, 6].
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The Shortest Separating Cycle Problem

Esther M. Arkin1, Jie Gao1, Adam Hesterberg2, Joseph S.B. Mitchell1(B),
and Jiemin Zeng1

1 Stony Brook University, Stony Brook, NY, USA
{esther.arkin,jie.gao,joseph.mitchell,jiemin.zeng}@stonybrook.edu

2 Massachusetts Institute of Technology, Boston, MA, USA
achester@mit.edu

Abstract. Given a set of pairs of points in the plane, the goal of the
shortest separating cycle problem is to find a simple tour of minimum
length that separates the two points of each pair to different sides. In
this article we prove hardness of the problem and provide approximation
algorithms under various settings. Assuming the Unique Games Conjec-
ture, the problem cannot be approximated within a factor of 2. We pro-
vide a polynomial algorithm when all pairs are unit length apart with
horizontal orientation inside a square board of size 2 − ε. We provide
constant approximation algorithms for unit length horizontal or vertical
pairs or constant length pairs on points laying on a grid. For pairs with no
restriction we have an O(

√
n)-approximation algorithm and an O(log n)-

approximation algorithm for the shortest separating planar graph.

Keywords: Shortest separating cycle · Traveling salesman problem

1 Introduction

Given a set P = {(pi, qi)|1 ≤ i ≤ n} of pairs of points in the plane, we seek
a shortest separating cycle T , a tour where for every pair of points, one point
is inside the tour and the other is outside (Fig. 1). Each pair (pi, qi) can be
represented by a line segment connecting pi and qi. Therefore each segment is
cut by the tour an odd number of times. Throughout this paper, we use whichever
interpretation is more intuitive.

The motivation for this problem originates from data storage and retrieval in
a distributed sensor network [16,18]. Consider an application in which sensors are
installed at parking spots to detect if the spot is empty, while mobile users roam-
ing around in the city are in need of such information. We would need to have a
data processing, storage and retrieval scheme to allow mobile users anywhere to
quickly retrieval data of interest. The solution of always delivering the query to
the data source may suffer from a single point of failure and traffic bottleneck.
Therefore a natural solution is to adopt geographical hashing. In [18] each data
is hashed to two storage sensors by its type. While a piece of data i is delivered
from one storage site pi to the other storage location qi using multi-hop routing
it is convenient for all the nodes on the relay path to also cache the data item.
c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 1–13, 2017.
DOI: 10.1007/978-3-319-51741-4 1



2 E.M. Arkin et al.

For a mobile user seeking data of a particular type i, the user can issue a query
which only needs to visit a node that has cached the data. Say if the user query
travels along a tour that separates pi and qi, the query will hit the cached data for
sure – as any path connecting pi and qi is intersected by the tour. In this retrieval
scheme one can easily query for a collection of data of multiple types 1, 2, · · · n, as
long as the query follows a tour that separates each pair of nodes pi and its cor-
responding hashed storage node qi. This becomes precisely the separating cycle
problem [18]. Finding the shortest separating cycle is natural, as the shortest tour
minimizes energy consumption and delay.

p2

q2

q1

p1
p3

q4

q3

p4

q5

p5

p6

q6

Fig. 1. The shortest separating
cycle problem.

In computational geometry, this problem is
related to many traveling salesman problem
(TSP) variants, including the red-blue separa-
tion problem, TSP with neighborhoods, and one-
in-a-set TSP (also known as group TSP), that
have been well studied [2,12]. All of these prob-
lems are known to be NP-hard in the Euclidean
plane as they all contain the classical TSP as a
special case. The shortest separating cycle prob-
lem is different from any of these problems. In
the red-blue separation problem, given a set of red and blue points in the plane,
the aim is to find the shortest tour that separates the blue points from the red
points. In our problem, the points in the pairs need to be separated but they
are not assigned colors. Thus part of the challenge is to determine which point
of each pair is inside the tour and which one is outside.

In the TSP with neighborhoods (TSPN), given a set of regions, the goal is
to find the shortest tour that visits each region. One may attempt to connect
a line segment for each pair in our input and apply an algorithm for TSP with
neighborhoods where the neighborhoods are line segments. However, this does
not necessarily give a valid solution since the TSP with neighborhoods solution
might reflect on the edge and not enclose an endpoint in its cycle such as in
Fig. 2(i).

For the one-in-a-set TSP, we are given a collection of sets and the problem
asks for the shortest tour that visits at least one element in each set. Any one-
in-a-set TSP solution to our input can be easily modified to become a separating
cycle. However, a separating cycle does not need to visit every point it is includ-
ing or excluding so the one-in-a-set TSP solution may be excessively long. An
example of this can be seen in Fig. 2(ii).

Our Results. In this paper we are the first to study the shortest separating cycle
problem and provide both hardness and approximation results. In particular,
we consider special cases where the orientation of the input pairs, the distance
between the input pairs, and the configuration of the domain are restricted. We
vary the size of the square board the input points are confined within as well
as the range of orientations the input pairs have from strictly horizontal and/or
vertical to any orientation. Some cases have additional restrictions such as how
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far each pair of points are from each other and whether or not the input points
must lie on a grid. The results are summarized in Table 1.

(i) (ii)

Fig. 2. Shortest separating cycle is different
from TSPN or one-in-a-set TSP. (i) The TSP
with neighborhoods solution (solid) is not a
valid separating cycle and is a much shorter tour
than the shortest separating cycle (dashed). (ii)
The one-in-a-set TSP solution (dashed) is a
much longer tour than the shortest separating
cycle (solid).

In general, despite the appar-
ent similarity and connection to
many other TSP variants which
have easy constant-factor approx-
imation results, the shortest sep-
arating cycle problem is a lot
harder. Many ideas that were used
in typical TSP algorithms are not
applicable here. Indeed, Indeed,
we show that the problem is hard
to approximate for a factor of
1.3606 unless P = NP and is hard
to approximate better than a fac-
tor of 2 assuming the Unique
Games Conjecture. We provide a
polynomial time algorithm when
all pairs are unit length horizontal
segments inside a square board of
size 2− ε. We provide approxima-
tion algorithms for unit length horizontal or vertical segments or constant length
segments on points laying on a grid. These scenarios are of particular interest
to the application setting in a sensor network. Last, for arbitrary pairs we have
an O(

√
n)-approximation algorithm and an O(log n)-approximation algorithm

for the shortest separating planar graph problem, in which the objective is to
compute an embedded planar graph of minimum total edge length so that the
two endpoints of each pair are in different faces.

Table 1. Approximation algorithm and hardness results for different settings.

Board size Unit length
horizontal

Unit length
horizontal &
vertical

Unit
length
arbitrary
orient

Constant length arbitrary
orient. Points on grid

2 − ε in P 4-approx NP-hard NA

M = O(1) O(1)-approx (M2 + 1)/4-
approx

Hard to
approx

NA

n O(1)-approx O(1)-approx Hard to
approx

O(1)-approx
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Related Work

TSP. The traveling salesman problem is one of the most well known geometric
problems in history. It is one of the first problems known to be NP-hard [7,15].
In a metric setting Christofides provided a 3/2 approximation algorithm [5]. In
the Euclidean setting, the problem is known to admit a PTAS, independently
shown by Arora [2] and Mitchell [12].

TSP with Red Blue Separation. The red blue separation problem in the
plane admits a PTAS (by [12] or by [3]).

TSP with Neighborhoods. TSP with neighborhoods was first studied by
Arkin and Hassin [1] in which O(1)-approximation algorithms were developed
when the neighborhoods are translates of a convex polygon or when the neigh-
borhoods are unit disks. For general (nondisjoint) connected neighborhoods, an
O(log n)-approximation algorithm is known where n is the number of neighbor-
hood regions [8,11], and it is NP-hard to approximate within a 2 − ε ratio [17].
For fat regions of bounded depth, there is a PTAS [13] (even in doubling
metrics [4]), while for general connected regions of bounded depth, or for convex
regions, an O(1)-approximation is known in two dimensions [14].

One-of-a-set TSP or Group TSP. The one-of-a-set or group TSP is the
TSPN in which the neighborhoods are discrete sets of points (and thus discon-
nected). Safra and Schwartz [17] show the 2D problem is NP-hard to approximate
to within any constant factor; for groups that are sets of k points, they also give
approximation lower bounds (Ω(

√
k)). Slav́ık [19] gives a (3/2)k-approximation,

based on linear programming methods.

2 Hardness

The shortest separating cycle problem is NP-hard by a trivial reduction from the
traveling salesman problem (TSP). For any TSP instance with cities at location
wi, we place a pair of points pi, qi very close to each wi. In order to separate
the points, the tour will need to visit each city wi. Thus the shortest separating
cycle problem is as hard as TSP. In the following we show stronger results that
the problem is hard to approximate.

2.1 Inapproximability for Any Length Segments

Theorem 1. The shortest separating cycle problem with no restrictions on the
distance and orientation of input pairs is NP-hard to approximate better than a
factor of 1.3606. It is hard to approximate better than a factor of 2 assuming the
unique games conjecture.

Proof. Our reduction is from minimum vertex cover. Given a graph G = (V,E),
the goal of the minimum vertex cover problem is to find a minimum cardinality
subset of vertices V ∗ ⊆ V such that every edge in E is incident to at least one
vertex in V ∗.
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Now we will create a set of pairs in the plane. First we place each vertex in V
along a circle with a center w′ and designate another location w′′ at a distance
Ω(nm) from w′. Here, n = |V | and m is a constant. For every vertex v ∈ V ,
we place m endpoints overlapping a single point at w′ and their corresponding
endpoints in a

√
m × √

m grid pattern around v (as shown by dark dots in
Fig. 3). Finally, w′ and w′′ are connected by a long segment. The result is a
“wheel” composed of vertices and edges in G with “spokes” towards the center,
a hub at w′, and a large arm from w′ to w′′.

Fig. 3. Reduction from vertex cover.

For every edge e(u, v) ∈ E, we place m endpoints in a
√

m×√
m grid pattern

in a
√

m − 1 square around u and their corresponding endpoints overlapping a
single point ue near the grid. Another grid of m endpoints is placed in a similar
grid around v with their corresponding points overlapping on a point ve. These
points are shown in hallow dots in Fig. 3. These hallow grid points are extremely
close to the dark grid points. Finally, ue and ve are connected by a segment.
Therefore, for every gadget that represents an edge, exactly one set of grid
points must be inside the cycle.

Let’s first consider the super long arm from w′ to w′′, and the pairs created
by edges of G. First the separating cycle will need to include some points from
the edge gadgets. If the separating cycle also visits w′′ (to include it inside),
there is an additional cost of length of O(nm), which is so prohibitive and must
be avoided. So the separating cycle will include the points at w′ in the interior to
separate w′ and w′′. This implies that the dark dots connected to w′ by spokes
need to be outside the cycle. Now let’s consider a set of hollow grid points near
a set of dark grid points. As the dark grid points need to be outside, then the
hallow points need to be visited invidually to include them inside the cycle. Since
points in a grid are unit distance away from each other, a path that visit a grid
of points has a length of at least m.
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The optimal solution visits the minimum number of vertices in V while also
separating all pairs of points which is a minimum vertex cover of G. The parity
of the segment chains ensure that when one point of a grid is collected, all points
in that grid must be collected.

The length of an optimal separating cycle in this instance is O(|OPTV C |m+
n
√

m) where |OPTV C | is the size of the optimal solution of the corresponding
vertex cover problem. If m ≥ n, then the cost of navigating between grids at the
vertices of V dominates the cost of the optimal solution. The rest of the cost,
O(n

√
m) is from traveling between vertices and collecting w′.

Now we assume that we are given a δ-approximation to our construction of
the shortest separator problem. This path has distance at most O(δ|OPTV C |m+
δn

√
m). To convert this solution into a solution for the corresponding vertex

cover problem, any grid points collected at a vertex translates to a vertex selected
in the vertex cover. This means that any additional vertex above the optimal
solution of the vertex cover problem translates to an additional O(m) length
in the given approximation of the shortest separator instance. If we let m =
Ω(δ2n2), then the approximation solution visits at most δ|OPTV C | vertices and
is a δ-approximation for vertex cover. Therefore, the lower bounds for the vertex
cover problem apply to the shortest separator problem. This problem cannot be
approximated with a factor better than 1.3606 unless P = NP or 2 assuming
the unique games conjecture.

3 Algorithms

We describe exact and approximation algorithms for the shortest separating
cycle problem under different scenarios.

3.1 Board Size 2 − ε, Horizontal and Vertical Unit Segments

In this scenario, all n input segments are inside a square board of size 2 − ε for
some ε > 0 and are restricted to have horizontal or vertical orientations. Without
loss of generality we assume all the endpoints of different input segments do not
share a common x-coordinate or y-coordinate. This can be done by perturbing
the input slightly.

First, all unit length boxes which contain at least one endpoint of each seg-
ment are found. This can be executed in polynomial time by checking all possible
combinatorial configurations of unit length boxes. The total number of combi-
natorial types of such squares is O(n2) since we can assume without loss of
generality that the square always has two input endpoints (from two different
segments) on its boundary. Aside from the two points on the boundary, each
such box actually contains exactly one endpoint of each input segment. For the
two boudary points we enumerate all combinations of including these boundary
points inside the box. The convex hull of all endpoints inside the box is a can-
didate separating cycle. We can enumerate all such boxes to find the shortest
separating cycle.



The Shortest Separating Cycle Problem 7

B

S2

S4

S1

S3
T

)ii()i(

Fig. 4. The two cases in our algorithm for the shortest separating cycle on a 2 − ε
board. Case (i): Exactly one endpoint of each input pair can be enclosed in a unit
square. Case (ii): The curve T ′ traverses around S1 and S3.

If a unit length box that strictly contains one endpoint of every segment
cannot be found, then the board is divided into four squares each of size 1− ε/2
and are colored in a checker board pattern. The square are named S1, S2, S3, S4

in a counter clockwise manner. Consider two squares along the diagonal (named
S1 and S3, see Fig. 4(ii)). We create a tour that walks along the perimeter of
their union. To accommodate corner cases, we consider the top and left border
of S3 to be open edges. This generates a curve T ′ of length 8 − 4ε.

Theorem 2. For the shortest separating cycle problem with a square 2 − ε
domain where input pairs are exactly one apart and have either horizontal or
vertical orientation, our algorithm outputs a cycle that is a 4-approximation to
the optimal solution.

Proof. There are two cases in the algorithm which outputs two different types
of cycles. In case (i), the optimal solution fits inside a unit length box B. Every
segment has one endpoint inside B and B will be discovered in the first phase of
the algorithm. The convex hull of the points inside B is the shortest separating
tour that contains all points in B.

For case (ii) we know the optimal tour cannot be completely contained by a
unit box and therefore must have length at least 2. We first argue that T ′ is a
valid separating cycle. Since each segment has unit length, the two endpoints of
each segment cannot fit inside any single square of size 1 − ε/2 and thus cannot
both lie inside S1 ∪ S3 nor inside S2 ∪ S4. Therefore each segment must have
exactly one endpoint inside S1 ∪ S3. Therefore, T ′ is a valid separating cycle.
Since T ′ has length 8 − 4ε and the optimal tour has length at least 2, T ′ is a
4-approximation of the optimal solution.

3.2 Constant-Size Boards

We can extend the checkerboard strategy for any constant board size M , where
M is an integer. The only modification is that in the second case, a larger
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Fig. 5. Constant sized square board with cycles along the perimeter of the dark squares.
(Color figure online)

checkerboard of M × M unit squares is used. The squares are colored in a
checkerboard manner, and partitioned into white squares and dark squares. To
make the tiling a perfect partition of the plane, we consider each square pixel
to include its top edge, except for the NE corner, and to include its left edge,
except for the SW corner. Again any unit length vertical or horizontal segment
has two endpoints in different colored squares. Thus a tour T ′ that separates the
white squares from the dark squares would be a valid separating cycle. Such a
tour can always be found by taking a cycle along the boundary of the outermost
ring of the dark squares, and iterating towards the center. All the tours can be
joined into a single tour of the same length. See Fig. 5 for an illustration.

Theorem 3. We consider the case of the shortest separating cycle problem with
an M × M square domain and where the input pairs are restricted to be exactly
one apart with either horizontal or vertical orientation. Our algorithm including
the checkerboard strategy is an (M2 + 1)/4-approximation.

Proof. Our proof is similar to the proof of Theorem2. Either we can find a unit
length box containing at least one endpoint of each segment (in which case we
find the optimal solution), or the optimal tour has length at least 2. In the
second case we will take the tour T ′ along the perimeter of the union of the dark
squares. T ′ has length at most M2/2 if M is even, and at most (M2 + 1)/2 if
M is odd. Thus the approximation factor is at most (M2 + 1)/4.

3.3 Any Board Size, Horizontal and Vertical Unit Segments

If the board size M is a constant, we can apply the same checkboard idea as in
the previous section. But when M is large, we have to use a different idea to get
a constant approximation.

First, we overlay a grid of unit squares over the domain partitioning the
domain into light and dark squares in a checkerboard pattern. For each grid cell,
we consider the top edge, excluding the NE corner, and the left edge, excluding
the SW corner, as closed edges.
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We refer to dark squares that have a point (from a pair) in them as “occu-
pied”. Let S be the occupied squares. Let S′ be the 3-by-3 squares centered
on the squares of S. In the following we assume without loss of generality that
|S| ≥ 5. The case |S| ≤ 4 can have an arbitrarily small optimal value; but this
constant-size case can be easily handled.

Now we consider the shortest TSP with Neighborhoods (TSPN) tour on the
set S′ of enlarged squares and name the length as TSPN(S′). This tour connects
the regions in S′ but we must also separate the pairs of points in each region.
We further apply the constant factor approximation to each region in S′. Our
algorithm is simply this: Run a TSPN algorithm on S′ (for which there is a
PTAS [6]), and augment the tour with our approximation algorithm for square
regions of constant size.

Theorem 4. Our algorithm for the shortest separating cycle problem for input
pairs restricted to a separation of exactly 1 and only horizontal or vertical ori-
entation, is a constant approximation.

Proof. We have two cases regarding the size of S, |S| ≥ 5 and |S| ≤ 4. In the
first case, |S| ≥ 5, the length of the output is at most (1 + ε)TSPN(S′) +
O(|S|). Since the optimal solution must visit every enlarged square in S′, then
OPT = Ω(TSPN(S′)). Assuming no single point stabs all squares of S′ (i.e.,
assuming |S| ≥ 5), the standard packing argument shows that TSPN on a set
of nearly disjoint (i.e., constant depth of overlap), equal-sized squares requires
length proportional to the number of squares times the side length of the squares.
This leads us to claim that OPT = Ω(|S|). Therefore, (1+ε)TSPN(S′)+O(|S|)
is O(OPT ) and our tour is a constant approximation.

For the case where |S| ≤ 4, our strategy only changes if a single point is
contained in all squares of S′. In this case, our entire input can be contained in
a 5 × 5 square and we refer to our algorithm for constant sized domains.

3.4 Any Orientation, Bounded Aspect Ratio

We now assume that the distance between any two points (not restricted to
designated pairs) in S are greater than or equal to 1. The segments defined by
the pairs of points may have any orientation and their distances are bounded
by a constant. Let r = cL for some constant value of c ≥ 1 where L is the
length of the longest segment. The aim is to find a subset I of pairs of points
where the shortest distance between any two segments is greater than r and the
shortest distance between any input segment and it’s closest segment in I is less
than r. Then we find the TSPN path on line segments in I. Next, we divide the
region into neighborhoods by assigning the remaining segments to their nearest
segment in I. The TSPN tour of the segments, TSPN(I), is augmented with
detours that separate all of the segments in each neighborhood. The resulting
tour is a constant approximation of the optimal separating tour.

To find such an independent set, we randomly select neighborhoods of size
O(r) until all segments have been selected. A segment s is randomly chosen
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and removed from the set of input segments along with all remaining segments
within distance (shortest distance) r of s. The segment s is placed in the set I.
This procedure is repeated until all segments are removed. The shortest distance
between any two segments in I is greater than r. The shortest distance between
any segment and it’s closest segment in I is less than or equal to r. Each segment
is assigned to it’s closest segment in I. The set of segments assigned to a segment
s in I is denoted as N(s).

A tour is constructed by first finding a TSPN tour on I. Then the path is
augmented by a shorter tour within each neighborhood of each segment in I.
When a tour reaches a segment s in I, then it makes a separating detour that
separates all of the segments in N(s). The length of a tour is bounded by O(L2)
since all of the segments in N(s) is within a neighborhood of radius 2r of s and
by a packing argument, there are O(L2) possible points in such a neighborhood.
In the worst case, the separating tour visits every point in the neighborhood and
includes or excludes each point as required. Note that the detour must exclude
segments that are not in N(s).

Theorem 5. The path our algorithm produces is a O(L2) approximation of the
optimal minimum perimeter separator.

Proof. Let T be the length of the path our algorithm produces, let OPT be
the length of the optimal solution and let TSPN(I) be the length of the TSPN
path on I. Our path is a separating tour because every segment is separated by
the tour within its neighborhood and excluded by the tour everywhere else. We
claim the length of such a tour is bounded above by TSPN(I)+O(|I|L2). Since
the TSPN path of I must enter and exit the neighborhood of every segment
in I, TSPN(I) = Ω(|I|). Therefore T = O(L2 · TSPN(I)). Since OPT =
Ω(TSPN(I)) and T ≥ OPT , then T = O(L2 · OPT ).

3.5 The General Case

For general pairs of points in the plane, we observe that an O(
√

n)-approximation
follows from known results on the Euclidean TSP in the plane. Specifically, we
first compute a minimum-size square, Q, that contains at least one point of each
pair. (This is easily computed, since the n point pairs determine only O(n3)
combinatorially distinct squares.) Now, within Q, we compute an approximate
TSP tour T (using any constant-factor approximation method for TSP) on the
points that are inside (or on the boundary of) Q, making sure the approximate
tour is a simple polygon. We obtain a valid separating cycle for the input pairs
as follows: Consider traversing T , starting from an arbitrary point. Each time
we reach a point along this traversal, we either make a slight detour to include
it (if it is the first time we have encountered a point from this pair), or make a
slight detour to exclude it (if it is the second encounter with a pair). In this way,
we obtain a valid separating cycle just slightly longer than T . By classic results
on the Euclidean TSP (see, e.g., Karloff [9]), we know that the length of T is
at most O(|Q|√n), where |Q| is the side length of the square Q. Since we know
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that Ω(|Q|) is a lower bound on the length of an optimal separating cycle, we
have shown that in polynomial time one can obtain an O(

√
n)-approximation

for the general case of our problem.

3.6 Separating Subdivision Problem

We consider now a different version of the separating cycle problem – the sepa-
rating subdivision problem, in which the goal is to compute an embedded planar
graph of minimum length such that every input pair has its points in different
faces of the subdivision. We define the length of the graph to be the sum of
the lengths of all of its edges. We give an O(log n)-approximation algorithm.
We outline the approach, deferring details to the full paper. We argue that an
optimal subdivision, S, can be converted to a special (recursive) “guillotine”
structure, increasing its length by a factor O(log n); then, we show that an opti-
mal solution among guillotine structures can be computed in polynomial time,
using dynamic programming. The conversion goes as follows. First, increasing
the total edge length of S by at most a constant factor, we can convert its faces
to all be rectilinear: we enclose S with its bounding box, and replace each face
of S with a rectilinear polygon, with axis-parallel edges that lie on the grid
induced by the input point pairs, while keeping all points within their respec-
tive faces. Then, we partition each simple rectilinear face into rectangles, adding
axis-parallel chords that lie on the grid; this causes the total edge length to go
up by a factor O(log n); see [10]. Then, using the charging scheme of [10], we
know that we can convert the resulting rectangular subdivision to a guillotine
rectangular subdivision, in which one can recursively partition the subdivision
using axis-parallel “guillotine” cuts that do not enter the interior of rectangular
faces. Optimizing the length of a guillotine rectangular subdivision is done with
dynamic programming, in which subproblems are axis-aligned rectangles all of
whose boundary is (by definition) included in the edge set of the subdivision. This
implies that any input pair of points that “straddles” the boundary of a subprob-
lem, with one point inside, one point outside, is already satisfied automatically
with respect to pair separation (the points lie in different faces/rectangles). This
means that the subproblem is only responsible for the separation of the point
pairs both of whose points lie within the defining rectangle of the subproblem.
The algorithm computes a minimum-length guillotine rectangular subdivision,
separating all point pairs. Since an optimal solution can be converted to the
class of guillotine rectangular subdivisions at a lengthening factor O(log n), we
obtain the claimed approximation.

4 Conclusion and Future Work

The shortest separating cycle is a new variant of the TSP family that has not
been studied before. This paper provides the first set of hardness bounds and a
number of approximation algorithms under different settings. The gap for the
approximation ratios and hardness results is still big and narrowing or closing
the gap is the obvious future work.
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Abstract. We consider the online Dynamic Traveling Repair Problem
(DTRP) with an arbitrary size time window. In this problem we receive
a sequence of requests for service at nodes in a metric space and a time
window for each request. The goal is to maximize the number of requests
served during their time window. The time to traverse between two points
is equal to the distance. Serving a request requires unit time. Irani et al.,
SODA 2002 considered the special case of a fixed size time window. In
contrast, we consider the general case of an arbitrary size time window.
We characterize the competitive ratio for each metric space separately.
The competitive ratio depends on the relation between the minimum
laxity (the minimum length of a time window) and the diameter of the
metric space. Specifically, there exists a constant competitive algorithm
only when the laxity is larger than the diameter. In addition, we charac-
terize the rate of convergence of the competitive ratio, which approaches
1, as the laxity increases. Specifically, we provide matching lower and
upper bounds. These bounds depend on the ratio between the laxity and
the optimal TSP solution of the metric space (the minimum distance
to traverse all nodes). An application of our result improves the previ-
ously known lower bound for colored packets with transition costs and
matches the known upper bound. In proving our lower bounds we use
an embedding with some special properties.

1 Introduction

Consider an employee in the Google IT division. He is responsible for replac-
ing malfunctioning disks in Google’s huge computer farms. During his shift he
receives requests to replace disks at some points in time. Each request is associ-
ated with a deadline. If the disk will not be replaced before the deadline, there is
a high probability that the performance of the Search Engine will experience a
significant hit. Replacing a disk takes unit time (service time). However, before
the employee can replace it, he must travel from his current location to the loca-
tion of the disk. The goal is to maximize the number of disks replaced before
their deadline. What path should the employee take and how should the path
change with new requests? Irani et al., SODA 2002 [15,18] called this online
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problem the Dynamic Traveling Repair Problem (DTRP). They considered
the special case of a fixed size time window, where the window of a request
is the period between its release time and its deadline. In contrast, we consider
the general case of an arbitrary size time window. In this paper we characterize
the competitive ratio for each metric space separately. We determine whether
the competitive ratio is constant or not depending on the minimum laxity (the
minimum length of a time window) and the diameter of the metric space (the
maximum distance between nodes in the metric space). In addition, we consider
the case where the laxity is large compared to the optimal TSP solution of the
metric space (the minimum distance to traverse all nodes). Specifically, we pro-
vide matching lower and upper bounds for these cases. These bounds depend on
the ratio between the laxity and the optimal TSP solution of the metric space.

We note that even when the service time is not negligible, our problem can
be reduced to TSP with time windows and zero service time [5] by changing
the metric space. However, our competitive ratio depends on the properties of
the metric space and the reduction might change the parameters of the metric
space significantly. Hence, it might influence a crucial parameter which deter-
mines the competitive ratio. Therefore, we take service time into account in our
model. Moreover, in our main result, where the laxity is larger than the optimal
TSP solution of the metric space, without service time it is easy to design a
1-competitive algorithm by traveling over an optimal TSP solution periodically.

Offline Problem. Note that in the offline case (i.e., when the sequence is known
in advance), if the service time is negligible compared to the minimum positive
distance between nodes (or 0) then the problem becomes TSP (or vehicle rout-
ing) with time windows and zero service time [5]. Moreover, if in addition all
deadlines are the same and all release times are zero then the problem reduces to
the (offline) orienteering problem [1,3,14]. Vehicle routing problem (with time
windows and zero service time) has been extensively studied both in computer
science and the operations research literature, see [11,12,19–22]. For an arbitrary
metric space Bansal et al. [5] showed an O(log2 n)-approximation (for certain
cases a better approximation can be achieved [8]). Constant factor approxima-
tions have been presented for the case of points on a line [6,17,23]. For the
orienteering problem, i.e., all release times are zero, all deadlines are the same,
and the service time is zero, there are constant factor approximation algorithms
[5,7,9,10]. A restricted online version of the Vehicle Routing problem (without
deadlines) was considered in [2,13,16].

Application for Packet Scheduling. Another motivation for our problem is
the Colored Packets with Deadlines and Metric Space Transition Cost problem.
In this setting we are given a sequence of incoming colored packets. Each colored
packet is of unit size and has a deadline. There is a reconfiguration cost (setup
cost) to switch between colors (the cost depends on the colors). The goal is
to find a schedule that maximizes the number of packets that are transmitted
before the deadline. Note that for one color the earliest deadline first (EDF)
strategy is known to achieve an optimal throughput. The unit cost color has
been considered in [4]. In particular, when we apply our results to the uniform
metric space we improve the previous lower bound and match the known upper
bound.
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1.1 Our Results

Denote by σ the sequence of requests. The window of request i is [ri, di], where
ri is the release time of the request and di is the deadline of the request. Let
L = mini∈σ{di − ri} ≥ 1 be the minimum laxity of the requests (the minimum
length of a time window). Note that the laxity has to be at least 1 since the
service time equals 1. Denote by Δ(G) the diameter of the metric space G,
i.e., the largest distance between two nodes. Denote by TSP (G) the weight of
a minimal TSP solution in the metric space G and MST (G) the weight of a
minimal spanning tree.

In this paper we characterize when it is possible to achieve a Θ(1) competitive
algorithm for the Dynamic Traveling Repair Problem with an arbitrary time
window, and when the best competitive algorithm is unbounded. Moreover, we
characterize the rate of convergence of the competitive ratio, which approaches 1
as the laxity increases. Specifically, we provide matching lower and upper bounds
depending on the ratio between the laxity and the optimal TSP solution of the
metric space.

It is also interesting to mention that in many cases the competitive ratio of
an algorithm is computed as the supremum over all metric spaces while lower
bounds are proved for one specific metric space. In contrast, we prove more
refined results. Specifically, we show an upper bound and a lower bound for
each metric space separately. Hence, one cannot design a better competitive
algorithm for the specific metric space that one encounters in the real specific
instance. Hence, even for specific metric spaces, we show it is impossible to do
better.

We consider three cases. The last two cases are done for completeness of the
result while the first case is our main result.

– Case A: L > TSP (G). Let δ = TSP (G)/L < 1. We show a strictly larger
than 1 lower bound. Specifically, if δ ≤ 1

256 we provide a lower bound of
1 + Ω

(√
δ
)

as well as a matching upper bound of 1 + O
(√

δ
)
.

We note that without service time it is easy to design 1-competitive algorithm
by traveling over an optimal TSP solution periodically. Recall that there is a
reduction from the service time model to a model without service time that
seems to contradict the lower bound (see [5]). However, the reduction modifies
the metric space and hence increases δ such that δ is not smaller than 1

256 .
– Case B: 3Δ(G) < L ≤ TSP (G). We design a O(1)-competitive algorithm

and a 1.00054 lower bound.
– Case C: L < Δ(G)/2. For any metric space the competitive ratio of any

deterministic online algorithm is unbounded (easily proved). For randomized
algorithms the competitive ratio depends on the metric space. For example, for
a metric space which consists of 2 points one can easily show a 4-competitive
algorithm even for L = 0. In contrast, in a uniform metric space the compet-
itive ratio is at least |V | where V is the number of nodes in the metric space,
even for L < Δ(G).
Note that in the remaining cases, i.e., Δ(G)/2 ≤ L ≤ 3Δ(G), the question of
whether there exists a constant competitive algorithm depends on the met-
ric space for both deterministic and randomized algorithms. Specifically, for
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deterministic algorithms where L = Δ(G) it is easy to prove that there is
no constant competitive algorithm for the uniform metric space. In contrast,
there is a constant competitive algorithm for the line metric space. As men-
tioned above, for randomized algorithms the bound depends on the number
of nodes in the metric space for a given diameter.

Application. For the uniform metric space (when all distances are unit size),
our problem is equivalent to the Colored Packets with Deadlines problem. In
this case our result improves the lower bound of [4]. Specifically, we improve
their 1 + Ω

(
δ
)

lower bound to 1 + Ω
(√

δ
)

and match their upper bound for the
uniform metric space.

Embedding Result. One of the techniques that we use for the lower bound is
the following embedding. Let w(S) denote the weight of the star metric S (i.e.,
the sum of the weights of the edges of S). We prove that for any given metric
space G on nodes V and for any vertex v0 ∈ V there exists a star metric S with
leaves V and an embedding f : G → S from G to S (f depends on v0) such that:

1. w(S) = MST(G).
2. The weight of every Steiner tree in S that contains v0 is not larger than the

weight of the Steiner tree on the same nodes in G.

Note that this embedding is different from the usual embedding since we do
not refer specifically to distances between vertices. Typically, an embedding is
used to prove an upper bound by simplifying the metric space. In contrast, our
embedding is used to prove a lower bound.

In order to prove the lower bound we first establish it for the star metric, and
then extend it to general metric spaces. Note that a lower bound for a sub-graph
is not a lower bound for the original graph. For example, a lower bound for an
MST of a metric space G is not a lower bound for G since the algorithm may
use additional edges to reduce the transition time.

2 The Model

We formally model the Dynamic Traveling Repair Problem with an arbitrary
time window as follows. Let G = (V,w) be a given metric space where V is a set
of n nodes and w is a distance function. Let s ∈ V be a given initial node. We are
given an online sequence of requests for service. Each request is characterized
by a pair ([ri, di], vi), where ri ∈ N+ and di ∈ N+ are the respective arrival
time and deadline of the request, and vi ∈ V is a node in the metric space G.
The time to traverse from node vi to node vj is w(vi, vj). For simplicity we
assume that w(vi, vj) is integral. Serving a request at some node requires unit
size service time. The goal is to serve as many requests as possible within their
time windows [ri, di], starting from node s.

Note that when all ri are equal to 0 and all di are equal to B and the service
time is negligible the problem reduces to the well-known orienteering problem
with budget B and a prize for each node which is equal to the number of requests
at this node. That is, finding a path of total distance at most B that maximizes
the prize of all visited nodes.
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Let ALG(σ), OPT(σ) denote the respective throughput of the online, optimal
offline algorithms with respect to a sequence σ. We consider a maximization
problem and hence infσOPT(σ)/ALG(σ) ≥ 1.

3 Lower Bounds

3.1 Lower Bound for a Small Diameter Laxity Ratio
(Case A and B)

In this section we consider Cases A and B. Let δ = TSP (G)/L. If δ < 1 (Case A),
we show a strictly larger than 1 lower bound. Specifically, if δ ≤ 1

256 we provide
a lower bound of 1+Ω

(√
δ
)
. If δ > 1 (Case B) we can use requests with a laxity

of 256TSP (G) (i.e., δ = 1
256 ), and obtain a lower bound of 1.00054. Therefore,

from now on we only consider Case A.

Lower Bound for a Star Metric. In this section we consider the case where
the traveling time between nodes is represented by a star metric. This is also
equivalent to the case where the traveling time from node i is wi.

The general idea is that the adversary creates many requests with a large
deadline at node v0 at each time unit, and also blocks of fewer requests with
close deadlines at other nodes. Any online algorithm must choose between serving
many requests with a large deadline or traveling between many nodes and serving
requests with close deadlines.

Recall that w(S) denotes the weight of the star metric S (i.e., the sum of
the weights of the edges of S). Let wi denote the weight of the edge incident to
vertex vi. We define F =

√
w(S)L. Let δ = TSP(G)

L = 2w(S)
L .

Theorem 1. No deterministic or randomized online algorithm can achieve a
competitive ratio better than 1+Ω

(√
δ
)
for any given star metric S when δ ≤ 1

256 .
Otherwise, if δ > 1

256 , the bound becomes 1.00054.

Proof. Let S be a given star metric with nodes V = {v0, . . . , vn−1}. We will
construct a sequence σ(S,ALG) such that:

OPT(σ)
E(ALG(σ))

≥ min

⎧
⎨

⎩
3 − δ

3 − 1
8

(√
δ/2

) ,
3

3 − 1
4

(√
δ/2

) ,
3

3 − 1
48

(√
δ/2

)

⎫
⎬

⎭

Note that we can assume, without loss of generality, that δ ≤ 1
256 , since otherwise

one may use requests with a laxity of 256w(S) (i.e., δ = 1
256 ), and obtain a lower

bound of 1.00054. Let v0 ∈ V be a type A node and the rest of the nodes type
B. Let type A requests and type B requests refer to requests at a type A node
and type B node, respectively. We begin by describing the sequence σ(S,ALG).

Sequence Structure: Recall that each request is characterized by a pair
([ri, di], vi), where ri ∈ N+ and di ∈ N+ are the respective arrival time and dead-
line of the request, and vi is a node in S. There are up to N = L

3F = 1
3

√
L

w(S)
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blocks, where each block consists of 3F time units. Let ti = 1 + 3(i − 1)F
denote the beginning time of block i. For each block i, where 1 ≤ i ≤ N , F
requests located at various nodes arrive at the beginning of the block. Specif-
ically, wj

w(S)−w0
F type B requests ([ti, L + ti], vj), for each 1 ≤ j ≤ n − 1, are

released. A type A request ([t, 3L], v0) is released at each time unit t in each
block. Once the adversary stops the blocks, additional requests arrive (we call
this the final event). The exact sequence is defined as follows:

1. i ← 1.
2. Add block i.
3. If with probability at least 1/4 there are at least F/2 unserved type B requests

at the end of block i (denoted by Condition 1), then L requests ([ti+1, L +
ti+1], v1) are released and the sequence is terminated. Clearly, ti+1 is the time
of the final event. Denote this by Termination Case 1.

4. Else, if with probability at least 1/4, at most 2F requests are served during
block i (denoted by Condition 2), then 3L requests ([ti+1, 3L], v0) are released
and the sequence is terminated. Clearly, ti+1 is the time of the final event.
Denote this by Termination Case 2.

5. Else, if i = N (there are N blocks, none of which satisfy Conditions 1 or 2)
then 3L requests ([L+1, 3L], v0) are released, and the sequence is terminated.
Clearly, L+1 is the time of the final event. Denote this by Termination Case
3.

6. Else (i < N) then i ← i + 1, Goto 2.

We make the following observations: (i) Each block consists of 3F time units.
Hence, if ALG served at most 2F requests during a block, there must have been
at least F idle time units. (ii) There are up to 1

3

√
L

w(S) blocks and each block

consists of 3
√

w(S)L time units. Hence, the time of the final event is at most
L + 1. (iii) Exactly one type A request arrives at each time-slot until the final
event. Hence, at most L type A requests arrive before (not including) the final
event. (iv) During each block, exactly F type B requests arrive, which sum up to
at most L/3 type B requests before (not including) the final event.

Now we can analyze the competitive ratio of σ(S,ALG). Consider the follow-
ing possible sequences (according to the termination type):

1. Termination Case 1: Let Y denote the number of requests in the sequence.
According to the observations, the sequence consists of at most L type A
requests, and at most 4

3L type B requests (L/3 until the final event and L at
the final event). Hence, Y ≤ L + 4

3L ≤ 3L.
– We bound the performance of ALG: At time ti+1 there is a probability

of at least 1/4 that ALG has L+F/2 unserved type B requests. Since type
B requests have a laxity of L, ALG can serve at most L + 1 of them, and
must drop at least F/2 − 1. The expected number of served requests is

E(ALG(σ)) ≤ Y − 1
4
(F/2 − 1) = Y − 1

8
F + 1/4.

– We bound the performance of an algorithm OPT′: OPT′ serves the
requests in three stages:
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• Type B requests that arrive before the final event: Recall that
all type B requests in a block arrive at once in the beginning of the
block. In each block OPT′ first serves all requests at node v1, then all
requests at node v2, and so on. It is clear that OPT′ needs at most
F + 2w(S) time units to serve the requests (F for serving and 2w(S)
for traveling). OPT′ serves the requests starting from the beginning
of the block. Recall that L ≥ 256w(S) and F =

√
w(S)L. Therefore

2F ≥ 512w(S). Since the block’s size is 3F , there are enough time units.
Moreover, since L ≥ 256w(S), L ≥ 16

√
w(S)L = 16F > F + 2w(S).

Hence, all requests can be served before their deadline.
• Type B requests that arrive during the final event: The L

requests ([ti+1, L + ti+1], v1) that arrive during the final release time
are served by OPT′ consecutively from time ti+1. OPT′ can serve L
requests, except for one travel phase, and hence may lose at most 2w(S)
requests. According to our observations, the time of the final event ti+1

is at most L + 1. Hence, OPT′ serves all type B requests until time
unit 2L.

• Type A requests: OPT′ serves the L type A requests consecutively
from time unit 2L+1. Since the deadlines are 3L, OPT′ serves all type
A requests.

We conclude that OPT(σ) ≥ OPT′(σ) ≥ Y − 2w(S).
The competitive ratio is

OPT(σ)
E(ALG(σ))

≥ Y −2w(S)

Y − 1
8F+1/4

≥ 3L−2w(S)

3L− 1
8F+1/4

≥ 3L−2w(S)

3L− 1
8

(√
w(S)L

)
+1/4

= 1 + Ω
(√

δ
)

.

Here the second inequality holds since Y ≤ 3L, the number is above 1 and
the numerator and the denominator increase by the same value.

2. Termination Case 2: The sequence consists of more than 3L type A requests,
and all deadlines are at most 3L.
– We bound the performance of ALG: The probability that ALG was

idle for F time units is at least 1/4. Hence, the expected number of served
requests is E(ALG(σ)) ≤ 3L − 1

4F.
– We bound the performance of OPT′: At each time unit until the final

event, OPT′ serves the type A request that arrived at that particular time
unit. Consequently, from the final event until time unit 3L, OPT′ serves
the type A requests that arrived at the final event. Therefore, OPT′ serves
3L type A requests, and so OPT(σ) ≥ OPT′(σ) ≥ 3L.

The competitive ratio is

OPT(σ)
E(ALG(σ))

≥ 3L

3L − 1
4F

=
3L

3L − 1
4

(√
w(S)L

) = 1 + Ω
(√

δ
)

.

3. Termination Case 3: the sequence consists of 3L type A requests, and all
deadlines are at most 3L.
– We bound the performance of ALG: Let Ui be the event that the

number of unserved type B requests at the end of block i is less than
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F/2. If Ui occurs, then let jk, 1 ≤ k ≤ r, be the type B nodes visited by
ALG in block i. At least F/2 requests that arrived in this block have to
be served (recall that F type B requests arrive at the beginning of each
block). Therefore,

wj1

w(S) − w0
F +

wj2

w(S) − w0
F + · · · +

wjr

w(S) − w0
F ≥ F/2,

and so

wj1 + wj2 + · · · + wjr ≥ w(S) − w0

2
.

Let Ei be the event that more than 2F requests are served during block
i. If event Ui−1 and Ei occur, then there are at most 3F/2 unserved type
B requests in the beginning of block i (F arrived at the beginning of the
block and there are at most F/2 from the previous block) but more than
2F requests were served. Therefore, at least one type A request was served
during the block. Combining the results, if Ui, Ui−1, and Ei occur then:

• During block i at least (w(S)−w0)/2 time units were used for traveling
between type B nodes.

• A Type A request was served during the block.
A block i is called good if the events Ui, Ui−1, and Ei occur. For any two
(consecutive) good blocks the traveling cost is at least (w(S)−w0)/2+w0 ≥
w(S)/2. Since none of the blocks satisfy Condition 1 or 2, it follows that
for all i such that 1

3

√
L

w(S) ≥ i ≥ 1 we have: Pr[Ui] ≥ 3/4,Pr[Ui−1] ≥ 3/4,

and Pr[Ei] ≥ 3/4. Therefore:

Pr[Ui ∩ Ui−1 ∩ Ei] = 1 − Pr[¬(Ui ∩ Ui−1 ∩ Ei)]
= 1 − Pr[¬Ui ∪ ¬Ui−1 ∪ ¬Ei] ≥ 1 − 1/4 − 1/4 − 1/4 = 1/4.

The sequence consists of 1
3

√
L

w(S) blocks. Therefore, the expected number

of good blocks is 1
4 · 1

3

√
L

w(S) = 1
12

√
L

w(S) and of disjoint pairs of blocks is

1
24

√
L

w(S) . Consequently, the expected number of lost requests is at least

1
24

√
L

w(S)
w(S)
2 and of served requests is:

E(ALG(σ)) ≤ 3L − 1
48

w(S)

√
L

w(S)
= 3L − 1

48

(√
w(S)L

)
.

– We bound the performance of OPT′: At each time unit until the final
event, OPT′ serves the type A request that arrived at the same time unit.
Consequently, from the final event until time unit 3L, OPT′ serves the type
A requests that arrived at the final event. Therefore, OPT′ serves 3 L type
A requests, and so OPT ≥ OPT′ ≥ 3L.
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The competitive ratio is

OPT(σ)
E(ALG(σ))

≥ 3L

3L − 1
48

(√
w(S)L

) = 1 + Ω
(√

δ
)

.

Note that in all 3 cases we get 1 + Ω
(√

δ
)
. This completes the proof. �

The following straightforward corollary improves the lower bound of 1 +
Ω

(
C/L

)
from [4]. Recall that n is the number of nodes in the metric space.

Corollary 1. No deterministic or randomized online algorithm can achieve a
competitive ratio better than 1 + Ω

(√
n/L

)
when all traveling times takes one

unit of time and L ≥ 256n. Otherwise, if L < 256n, the bound becomes 1.00054.

Proof. Let S be a star metric such that the weight of each edge is equal to 1/2.
Clearly, traveling between any two nodes requires one time unit and w(S) = n/2.
Applying Theorem1, we obtain the lower bound of 1 + Ω

(√
n/L

)
(note that in

this case δ = n/L). �

Embedding of Metric Spaces. In this section we describe an embedding of
a general metric space into a star metric with special properties. We begin by
introducing some new definitions:

– We define w(T) =
∑

e∈V

w(e) for a rooted tree T = (V,E), and let PT(v) denote

the parent of node v in a rooted tree T.
– Let S be a star metric with a center c. We define wS(V ) =

∑

v∈V

w(c, v) =
∑

vi∈V

wi. It is clear that for a star S with leaves V , wS(V ) = w(S).

– Let TG(V ) be the minimum weight connected tree that contains the set V
(i.e., the minimum Steiner tree on these points) in the metric space G.

Recall that MST (G) denotes the weight of the minimal spanning tree (MST) in
the metric space G.

Theorem 2. For any given metric space G on nodes V and for any vertex
v0 ∈ V there exists a star metric S with leaves V and an embedding f : G → S
from G to S (f depends on v0) such that:

1. Property 1: w(S) = MST (G).
2. Property 2: For every V ′ ⊆ V such that v0 ∈ V ′, w(TG(V ′)) ≥ wS(V ′).

Proof. We prove the theorem by describing a star metric that satisfies the
required properties. Let G be a given metric space on nodes V with a vertex
v0 ∈ V . Let T be the MST for G created by applying Prims’ algorithm with
the root v0. Let S be a star metric with leaves V such that for each u ∈ V ,
wu = w(u, PT(u)). Clearly, wv0 = 0. We prove that S and v0 satisfy the theo-
rem’s properties:
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Property 1: Clearly, w(S) = w(T), and since T is a MST for G, w(S) = w(T) =
MST(G).

Property 2: Assume by a contradiction that there exists V ′ = {v0, vi1 , . . . ,

vir−1} ⊆ V such that w(TG(V ′)) < wS(V ′) =
∑r−1

j=1 w(vij , PT(vij )).

Let V ′′ = {v0, vi1 , . . . , vir−1, . . . , vik} be the vertices of TG(V ′) (note that V ′ ⊆
V ′′). Consider the following process. Let T ′ = TG(V ′). Run Prim’s algorithm
from node v0. Each time Prim’s adds a new node not in T ′, we add Prim’s edge
to T ′. Note that Prim starts from node v0 ∈ TG(V ′) and we add each node not in
T ′. Hence, when Prim’s algorithm finishes, T ′ is a tree on nodes V . Moreover, T ′
is T where edges

(
vi1 , PT(vi1)

)
, . . . ,

(
vik , PT(vik)

)
were replaced by the edges of

TG(V ′). Since we assumed that w(TG(V ′)) <
∑r−1

j=1 w(vij , PT(vij )), and clearly
∑r−1

j=1 w(vij , PT(vij )) ≤ ∑k
j=1 w(vij , PT(vij )), we have w(T ′) < w(T ). This is a

contradiction since T is an MST. �

Lower Bound for a General Metric Space. In this section we consider the
case where the traveling time between nodes is represented by a metric space G.
Note that a lower bound for a star metric space does not imply a lower bound
for a general metric space. Recall that δ = TSP(G)/L < 1.

We use the embedding from Theorem 2 to prove a 1 + Ω
(√

δ
)

lower bound.

Theorem 3. No deterministic or randomized online algorithm can achieve a
competitive ratio better than 1 + Ω

(√
δ
)
for any given metric space G, when

δ ≤ 1
256 . Otherwise, if δ > 1

256 , the bound becomes 1.00054.

3.2 Lower Bound for a Large Diameter Laxity Ratio (Case C)

In this section we consider the case where L < Δ(G)/2 (recall that Δ(G) is the
diameter and L is the laxity), and we show that the competitive ratio of any
deterministic algorithm is unbounded.

Theorem 4. No deterministic online algorithm can achieve a bounded compet-
itive ratio for any metric space in which L < Δ(G)/2.

Proof. Let G be any metric space. Every Δ(G) + 1 units of time we introduce
a request with a laxity of L to a node which is at a distance of at least Δ(G)/2
from the current location of the online algorithm (note that there is always such
a node). It is clear that the algorithm can not serve any requests while OPT can
serve all the requests. �

4 Upper Bounds

4.1 Asymptotically Optimal Algorithm for Case A

In this section we design a deterministic online algorithm, for a general metric
space. The algorithm achieves a competitive ratio of 1+o(1) when the minimum



24 Y. Azar and A. Vardi

Fig. 1. Algorithm TSP-EDF.

laxity of the requests is asymptotically larger than the weight of the TSP (as
shown in the previous sections, this is essential).

The algorithm is a natural extension of the BG algorithm from [4]. Our algo-
rithm, which we call TSP-EDF, formally described in Fig. 1, works in phases of
K =

√
TSP(G)L time units. In each phase the algorithm serves requests node by

node. The order of the nodes is determined by the minimum TSP or an approx-
imation. The algorithm achieves a competitive ratio of 1 + O

(√
TSP(G)/L

)
for

L > 10TSP(G).

Theorem 5. The algorithm TSP-EDF attains a competitive ratio of 1 +
O

(√
TSP(G)/L

)
.

4.2 Constant Approximation Algorithm for Case B

In this section we design a deterministic online algorithm, for a general metric
space where L > 9Δ(G) (recall that Δ(G) is the diameter of G). The algo-
rithm achieves a constant competitive ratio. As shown in the previous section,
no online algorithm can achieves a competitive ratio better 1.00054. A more
precise analysis can replace L > 9Δ(G) with L > (2 + ε)Δ(G) for any ε > 0 and
the approximation becomes O( 1ε ).

The algorithm which we call ORIENT-WINDOW (Fig. 2) combines the fol-
lowing ideas.

– The algorithm works in phase of K = 3Δ(G). In each phase the algorithm
serves only requests that arrived in the previous phases, and will not expired
during the phase. Due to this perturbation we lose a constant factor.

– The decision which requests will be served in a phase ignore their deadlines.
Due to this violation of EDF we lose a constant factor.
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Fig. 2. Algorithm ORIENT-WINDOW

– In each phase the algorithm serves requests node by node. The order of the
nodes is determined by solving an orienteering problem. Since a constant
approximation algorithm is known to the orienteering problem, we lose a con-
stant factor.

Theorem 6. The algorithm ORIENT-WINDOW attains a competitive ratio of
O(1).
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Abstract. The goal of the cluster editing problem is to add or delete
a minimum number of edges from a given graph, so that the resulting
graph becomes a union of disjoint cliques. The cluster editing problem
is closely related to correlation clustering and has applications, e.g. in
image segmentation. For general graphs this problem is APX-hard. In this
paper we present an efficient polynomial time approximation scheme for
the cluster editing problem on graphs embeddable in the plane with a few

edge crossings. The running time of the algorithm is 2O(ε−1 log(ε−1))n for

planar graphs and 2O(k2ε−1 log(k2ε−1))n for planar graphs with at most
k crossings.

Keywords: Graph approximation · Correlation clustering · Cluster
editing · PTAS · k-planarity · Microscopy cell segmentation

1 Introduction

The task of the cluster editing problem is to find a minimum number of edges to
be deleted or added to an input graph G to achieve a union of disjoint complete
connected components G∗. The resulting graph G∗ is the solution to the problem.

Different definitions and interpretations of this problem were first discussed
in [5,16,23]. More recently, motivated by machine learning problems concerning
document classification, Bansal et al. [4] reintroduced the same concept under
the name correlation clustering. The reformulation of the cluster editing prob-
lem as correlation clustering motivated computer scientists to apply cluster edit-
ing/correlation clustering in the field of image segmentation [17,22]. In turn, this
triggered mathematicians to start looking for efficient algorithms able to attack
the problem.The cluster editing problem isNP-hard and evenAPX-hard [8].Ageev
et al. [1] presented a polynomial time approximation scheme (PTAS) for the case of
atmost two clusters. In [15], Il’ev et al. present aPTAS for afixednumber of clusters
and graphs with sub-quadratic number of edges. Recently, Klein et al. [18] intro-
duced a PTAS for the planar two-edge-connected augmentation problem, which is
equivalent to the correlation clustering problem on planar graphs.

Parameterized complexity of the cluster editing problem was also studied
intensively, e.g., with the number of modified edges being a parameter. The
currently fastest exact algorithm for this problem is by Böcker et al. [6] and
c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 27–39, 2017.
DOI: 10.1007/978-3-319-51741-4 3
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it runs in O
(
1.82k + n3

)
time, where k is the number of modified edges and

n is the number of vertices in the input graph. To the best of our knowledge,
the cluster editing problem parameterized by the treewidth was not considered
before. In Sect. 4, we prove that the cluster editing problem parameterized by
treewidth ω belongs to FPT and can be solved in time 2O(ω log ω)n.

In the original formulation the cluster editing problem and correlation clus-
tering problem are equivalent. In correlation clustering some edges of a complete
graph are labeled with <–> and the rest with <+>. If in the solution graph two
vertices are in the same cluster and the edge between them is positive or two
vertices are in different clusters and the edge is negative, then it is an agreement.
In both other cases we have a disagreement. The goal is to partition the vertices
in such a way, that the total number of disagreements is minimized.

The correlation clustering problem was generalized to non-complete graphs
by Klein et al. [18]. In that paper, the non-existing edges are introduced as neu-
tral, so that they create neither agreements nor disagreements. In contrast to
the correlation clustering problem, cluster editing on planar graphs is a restric-
tion of the original problem. An example of an input instance for the planar
correlation clustering problem is shown in Fig. 1a. Here, the optimal correlation
clustering splits the graph in four connected components and the disagreements
correspond to the red edges. The optimal solution to the correlation clustering
has fewer clusters than the solution of the equivalent cluster editing problem in
the majority of the cases (Figs. 1b, c).

(a) Correlation
Clustering

(b) Cluster Editing
Instance

(c) Cluster Editing
Solution

Fig. 1. Graph example demonstrating the difference between the planar correlation
clustering problem and the planar cluster editing problem

Since the idea of considering planar graphs for cluster editing and correlation
clustering was originally based on its application in image segmentation, let us
recall the basic idea of image segmentation. The goal of image segmentation is
to partition the pixels of an image in such a way that the discovered clusters
correspond to certain objects located on that image. Every image can be con-
sidered as a graph of pixels, where two pixels are connected if they are likely to
be in the same cluster.

In microscopy cell segmentation [10] and in dense crowd counting [14] the
sizes of the clusters are small, which means that the distance between any two
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(a) Microscopy cell
segmentation

(b) People counting in
dense crowds

Fig. 2. Image segmentation examples with small clusters

connected pixels is bounded (Fig. 2). This results in graphs embeddable in the
plane with a few crossings per edge. Following these motivating applications, in
this paper we consider the cluster editing problem restricted to these, nearly pla-
nar graphs. The outline of the paper is as follows. We design an exact algorithm
for graphs of bounded treewidth in Sect. 4 and a PTAS for planar graphs based
on the Baker’s technique [3] in Sect. 5. In the last section we show that the intro-
duced algorithm also works for graphs embeddable with a few edge crossings per
edge.

2 Definitions and Notations

We first review some basic notation and definitions, including the definition of
treewidth, tree decomposition and nice tree decomposition.

Let G be a simple graph. We denote the set of vertices of G by V [G] and
the set of edges by E[G]. Let n be the number of vertices in G. For a subset
of vertices W ⊂ V [G] the subgraph induced by W is denoted by G[W ]. Let
δG(W1,W2) ⊂ V [G]2 be the set of edges connecting disjoint sets W1 ⊂ V [G] and
W2 ⊂ V [G]. For any v ∈ V [G] the degree of a vertex v in the graph G is denoted
by degG(v). The neighborhood of a vertex v ∈ V [G] in a graph G is denoted by
NG(v) and is defined as {w ∈ V [G] | {v, w} ∈ E[G]}.

Definition 1 (Tree Decomposition). A tree decomposition of a graph G =
(V,E) is a pair ({Xi : i ∈ I}, T = (I, F )), where {Xi : i ∈ I} is a family of
so-called bags, which are subsets of V and T is a tree, satisfying:

1.
⋃

i∈I Xi = V,
2. for any edge {u, v} ∈ E there exists an i ∈ I such that u, v ∈ Xi, and
3. for any v ∈ V , {i ∈ I : v ∈ Xi} induces a subtree of T .

The width of the tree decomposition is maxi∈I |Xi| − 1. The treewidth ω(G) (or
simply ω) of graph G is the minimum width of tree decompositions of G.
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Definition 2. A tree decomposition ({Xi : i ∈ I}, T ) of a graph G rooted at
some r ∈ I is called nice, if the following conditions are satisfied:

1. Every node of the tree T has at most two children.
2. If a node i ∈ I has two children j and k, then Xi = Xj = Xk. In this case i

is called a join node.
3. If a node i has one child j, then either

(a) Xi = Xj ∪ {w} for some w ∈ V \Xj (i is an insert node), or
(b) Xi = Xj\{w} for some w ∈ Xj (i is called a forget node).

Lemma 1 [19, Lemma 13.1.3]. Given a tree decomposition of a graph G on
O (n) nodes and of width ω, we can find a nice tree decomposition of G on O (n)
nodes and having the same width ω in O (ωn) time.

3 Cluster Editing

Given a graph G = (V,E), let M(V ) be the family of all graphs with vertex set
V and all connected components being cliques.

Definition 3. For a given graph G, the cluster editing problem is the problem
of finding a graph G∗ = (V,E∗) ∈ M(V ) that minimizes

ρ(G,G∗) = |E∗\E| + |E\E∗| .
Here, ρ(G,G∗) is the number of edges in G we have to modify, i.e., add or
delete, to get G∗. Later in this paper we consider the graph G being planar.
Notice however, this does not require the solution graph G∗ to be planar.

Lemma 2. For any connected component C of G∗ and for any subset C1 ⊂ C,
we have that

δG(C1, C\C1) ≥ 1
2

|C1| |C\C1| .

Proof. Let H∗ be a subgraph of G∗ obtained by removing all edges between C1

and C2 := C\C1. Obviously, H∗ ∈ M(V ) and since G∗ is optimal

ρ(G,G∗) ≤ ρ(G,H∗). (1)

Here ρ(G,G∗) and ρ(G,H∗) can be decomposed as follows

ρ(G,G∗) = ρ(G[C1], G∗[C1]) + ρ(G[C2], G∗[C2]) + ρ(G[V \C], G∗[V \C])
+ (|δG∗(C1, C2)| − |δG(C1, C2)|) + (|δG(C, V \C)| − |δG∗(C, V \C)|),

ρ(G,H∗) = ρ(G[C1],H∗[C1]) + ρ(G[C2],H∗[C2]) + ρ(G[V \C],H∗[V \C])
+ (|δG(C1, C2)| − |δH∗(C1, C2)|) + (|δG(C, V \C)| − |δH∗(C, V \C)|).

Substituting ρ(G,G∗) and ρ(G,H∗) in (1) proves that

|δG(C1, C2)| ≥ 1
2

|C1| |C2| .
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Lemma 3. For any connected component C of G∗

(a) degG[C](v) ≥ 1
2 (|C| − 1), for any vertex v ∈ C,

(b) degG[C](v) + degG[C](w) ≥ |C|, for any edge {v, w} ∈ E[G[C]],
(c) degG[C](v) + degG[C](w) + degG[C](u) ≥ 3

2 (|C| + 1), for any v, u, w ∈ C, s.t.
{v, w}, {v, u}, {u,w} ∈ E[G[C]],

(d) If G is planar, then |C| ≤ 8.

Proof. The first three inequalities follow directly from Lemma 2 by setting C1 =
{v}, C1 = {v, w} and C1 = {v, w, u}.

To prove the last point we use the well known corollary of Euler’s formula for
planar graphs: |E| ≤ 3 |V | − 6. Since G[C] is planar, there is a vertex of degree
at most 5 in G[C]. Therefore, by part (a) |C| ≤ 11. Using Euler’s formula again
we can prove that there is a vertex of degree at most 4, and by part (a) |C| ≤ 9.
Now, let us assume that |C| = 9. By part (a) there is no vertex of degree smaller
than 4. So, there is a vertex v0 of degree 4. Its neighboring vertices v1, v2, v3, v4
have degree at least 5 by part (b) of this corollary. W.l.o.g., by part (c), v1 and
at least one of v2, v3, v4 have degree at least 6. Summing up all the degrees of
the vertices we get at least 4 + 6 + 6 + 5 + 5 + 4 + 4 + 4 + 4 = 42, which is the
maximum degree according to Euler’s formula. Hence, v1 and v3 have degree 6,
v2, v3 have degree 5 and the remaining vertices have degree 4. So, there should
be an edge between 2 vertices of degree 4, which is a contradiction to part (b).

Lemma 4. For a connected component C of G and v ∈ C, NG∗(v) ⊂ C.

Proof. Let C1 be the connected component in G∗ containing v and C1\C �= ∅,
then subgraph H∗ of G∗, where the edges in δ(C1 ∩ C,C1\C) are deleted, has
lower objective value. This contradicts G∗ being optimal.

Alternatively, Lemma 4 states, that if G has several connected components,
then we can solve the problem separately on each of the components and then
combine the solutions.

4 Linear Time Algorithm for Graphs of Bounded
Treewidth

In this section we introduce an algorithm which solves the cluster editing problem
for any input graph G = (V,E) of bounded treewidth ω in linear time. We assume
that G is connected, otherwise by Lemma 4 we can consider each connected
component separately.

Let F ⊂ V 2 be the set of edges we modify in G to obtain G∗, then ρ(G,G∗) =
|F |. The following monadic second order formula decides if G∗ ∈ M(V ).

∀x, y, z ∈ V [y = z ∨ ∀e, f ∈ EΔF y, x ∈ e ∧ x, z ∈ f =⇒ ∃h ∈ EΔF y, z ∈ h],

where EΔF means the symmetric difference between two sets E and F , i.e.,
EΔF = E\F ∪ F\E. This formula is true if and only if in the graph G∗ every
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path of length two is a part of a cycle of length three. Since the length of the
formula is constant, by the optimization version of Courcelle’s theorem [2,9] we
can find G∗ ∈ M(V ) that minimizes ρ(G,G∗) in time O (f(ω) · n), where f(·) is
a function which doesn’t depend on the input graph G and ω is the treewidth.

The optimization version of Courcelle’s theorem [2,9] shows that for a graph
of bounded treewidth we can solve the cluster editing problem in linear time.
Unfortunately, it neither gives an implementable combinatorial algorithm for
the cluster editing problem of bounded treewidth nor a precise bound for the
running time. Therefore, in the second part of this section we introduce an
algorithm based on tree decomposition and dynamic programming with running
time 2O(ω log ω)n.

Lemma 5. Any connected component C of the solution graph G∗ consists of at
most 4ω − 1 vertices, where ω is the treewidth of the graph G[C].

Proof. By Rose [21], the number of edges in the graph G[C] of treewidth ω is
at most ω |C| − ω(ω + 1)/2. Therefore, the minimal vertex degree in G[C] is at
most 2ω − 1. By part (a) of Lemma 3, |C| ≤ 4ω − 1.

Suppose a nice tree decomposition ({Xi | i ∈ I} | T = (I, F )) of width w
on O (n) nodes is given. For each i ∈ I define Gi = (Vi, Ei) as a subgraph of G
induced by all vertices in bag i and all bags below i in the tree T .

For a set F ∈ Fi = {F ⊂ Xi × Xi | (Xi, E[G[Xi]]ΔF ) ∈ M(Xi)} and a
function S ∈ Si = {S : Xi → {0, . . . , 4ω − 2}} we restrict the cluster editing
problem on the graph Gi to the cluster editing problem where the subgraph
induced by Xi from the solution graph is (Xi, E[G[Xi]]ΔF ) and for each v ∈ Xi

the size of a clique containing v in the solution is S(v) +
∣
∣NG∗

i [Xi](v)
∣
∣ + 1. In

other words, S(v) is the number of neighbors of v in the solution graph of the
restricted problem outside the bag Xi. We refer to the solution of this restricted
problem as G∗

i (S, F ). Let fi(S, F ) = ρ(Gi, G
∗
i (S, F )).

Theorem 1. The cluster editing problem can be solved in time 2O(ω log ω)n.

Proof. For any i ∈ I, S ∈ Si, F ∈ Fi we compute G∗
i (S, F ) and fi(S, F ) using

dynamic programming. We start from the leafs of the nice tree decomposition
(X,T ) and move towards the root by considering i being a leaf, a join node, an
insert node or a forget node. Hence, when computing G∗

i (S, F ) we may assume
that for every (not necessarily immediate) successor node j of i in T , fj(Sj , Fj)
and G∗

j (Sj , Fj) are known for any Fj ∈ Fj and Sj ∈ Sj .

Leaf. In this case Gi = G[Xi]. Therefore, F uniquely defines the solution
G∗

i (S, F ) = (Xi, E[G[Xi]]ΔF ) and

fi(S, F ) =
{ |F | , if G∗

i (S, F ) ∈ M(Xi),
∞, otherwise.
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Join Node. If i is a join node, then Xi = Xj = Xk, where j and k are children
of the node i in the tree T . Since the subgraph of the solution induced by Xi is
fixed by F , G∗

i (S, F ) is a combination of G∗
j (Sj , F ) and G∗

k(Sk, F ), where S is
split into Sj and Sk to minimize fj(Sj , F ) + fk(Sk, F ), i.e.

fi(S, F ) =

⎛

⎜
⎝ min

Sj ,Sk∈Si:
∀v∈Xi Sj(v)+Sk(v)=S(v)

[fj(Sj , F ) + fk(Sk, F )]

⎞

⎟
⎠ − |F | .

Here, we subtract |F | as otherwise edges of F are counted twice.

Insert Node. Let i be an insert node, i.e. Xi = Xj ∪ {w}, where w �∈ Xj . Since
Xj ⊂ Xi, a subgraph induced by Xj from the solution is uniquely defined by
F , moreover, NG∗

i (S,F )(w) ∩ Xj is known. Let Fj = Fi ∩ (Xj × Xj) and for each
u ∈ Xj let Sj(u) = S(u).

All edges modified in Gi to get G∗
i (S, F ) are either in V [Gj ] × V [Gj ] or are

incident to w. The number of the first ones is fj(Sj , Fj). It remains to find the
number of edges incident to w to be deleted (the right upper corner on Fig. 3)
or to be added (the left lower corner on Fig. 3) in Gi to get G∗

i (S, F ).

Gi

w

(Xi, E[G[Xi]]ΔF )

known

unknown

NG∗
i (S,F )(w) V [Gj ]\NG∗

i
(S,F )(w)

Fig. 3. Insert node w.

In the optimal solution G∗
i (S, F ) w is connected to NG∗

i (S,F )(w) ∩ Xj and
NG∗

i (S,F )(w)\Xj . In the original graph G vertices of the first set are either con-
nected to w or not, where vertices of the second set are never connected to w,
because of the tree decomposition properties. So, we have to add all missing
edges from w to NG∗

j (S,F )(w) ∩ Xj (we know all these edges) and also all edges
from w to NG∗

i (S,F )(w)\Xj (the number of these edges is S(w)). We also have to
delete all edges from w to Xj\NG∗

i (S,F )(w) (we again know all these edges). We
do not have to delete edges from w to V [Gj ]\(Xj\NG∗

i (S,F )(w)), because they
are not existing in graph G since w and V [Gj ]\(Xj\NG∗

j (S,F )(w)) lie on differ-
ent sides of the bag Xj . Hence, knowing S and F we can calculate the number
fi(S, F ) of edges to be modified. Then, we reconstruct G∗

i (S, F ).
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Forget Node. Let i be a forget node, i.e., for any successor node j of i, Xj =
Xi ∪ {w}, where w �∈ Xi. Since Gi = Gj ,

fi(S, F ) = fj(Sj , Fj)

for a proper choice of Sj ∈ Sj , Fj ∈ Fj . Here, Sj and Fj depend on how w is
connected to V [Gi].

Assume that in the optimal solution G∗
i (S, F ) vertex w is not connected to

any vertex in Xi, and it is connected to exactly t ∈ {0, . . . 4ω−2} vertices outside
of Xi, then

Fj = F and Sj(u) =
{

S(u), u �= w,
t, otherwise

Otherwise, if in the optimal solution G∗
i (S, F ) vertex w is connected to some

v ∈ Xi and also to exactly t ∈ {0, . . . 4ω − 3} vertices outside of Xi, then w is
also connected to NG∗

i (S,F )(v) ∩ Xi. Therefore,

Fj = F ∪ {{w, u} | u ∈ ({v} ∪ NG∗
i (S,F )(v) ∩ Xi)Δ(NG(w) ∩ Xi))}

Sj(u) =

⎧
⎨

⎩

S(u) − 1, u ∈ NG∗
i (S,F )(v) ∨ u = v ∧ u �= w,

S(u), u �∈ NG∗
i (S,F )(v) ∧ u �= w,

t, u = w.

Out of all possibilities for NG∗
i (S,F )(w)∩Xi and t ∈ {0, . . . 4ω−2} the minimal

fj(Sj , Fj) is equal to fi(S, F ). After we found fi(S, F ) we reconstruct G∗
i (S, F ).

Root. The optimal solution G∗ for graph G can be found by enumerating of
all possible S ∈ Sr, F ∈ Fr and selecting the one minimizing fr(S, F ), i.e.,
ρ(G,G∗) = minS∈Sr,F∈Fr

fr(S, F ).
Following this scheme we find fi(S, F ) and G∗

i (S, F ) for every S ∈ Si, F ∈ Fi

and i ∈ I in time O
(
(4ω − 1)ω+1

)
. Therefore, the overall time complexity is

O
(
maxi∈I |Si| maxi∈I |Fi| (4ω − 1)ω+1n

)
. Here, maxi∈I |Si| = O

(
(4ω − 1)ω+1

)

and maxi∈I |Fi| = O
(
(ω + 1)(ω+1)

)
and therefore the overall running time is

O
(
(ω + 1)(ω+1)(4ω − 1)2(ω+1)

n
)
.

5 Baker’s Technique for Planar Graphs

The idea of Baker [3] is to divide a given planar graph into independent com-
ponents of bounded treewidth using outerplanarity. Having solved a problem on
the components, an approximate solution for the original instance can be found
by merging solutions together. In this way Baker’s technique is used to design a
polynomial time approximation schemes.

In this section the input graph is assumed to be planar and connected. If the
input graph is not connected, then by Lemma4 the connected components can
be considered separately. For a given planar embedding of a graph G = (V,E)
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we recursively assign vertices to levels. A vertex is assigned to level 1, if it is
incident to the outer face of the embedding. A vertex v is assigned to level i,
denoted by v ∈ Vi, if after removing levels from 1 through i − 1, the vertex v is
incident to the outer face.

For any d ∈ N and l ∈ {0, . . . , d − 1} we define Ed,l ⊂ V × V as all edges
between consecutive layers l (mod d) and l+1 (mod d), i.e. Ed,l =

⋃
s∈N

(Vl+sd ×
Vl+1+sd). Further, let Hd,l = (V,E\Ed,l) be the subgraph of G achieved by
deleting all edges between consecutive layers l (mod d) and l + 1 (mod d) and
let H∗

d,l be the optimal solution of the cluster editing problem on the graph Hd,l

(Fig. 4). By Lemma 4, E[H∗
d,l] ∩ Ed,l = ∅.

G
Hd,l

Ed,l

V1 V2 VlVl+1 Vl+d Vl+d+1 Vl+2d Vl+2d+1

Fig. 4. Splitting the graph G in layers.

Theorem 2. For dε = �48/ε� and lε ∈ argminl∈{0,...,dε−1} |E[G] ∩ Ed,l|, the
graph H∗

dε,lε
is an (1 + ε)-approximation of the optimal solution G∗ and it can

be computed in time 2O(ε−1 log(ε−1))n.

Proof. Since G∗ is a solution to the cluster editing problem on the graph Hd,l,
for any d ∈ N and l ∈ {0, . . . , d − 1}, we have that

ρ(Hd,l,H
∗
d,l) ≤ ρ(Hd,l, G

∗)def= |E[Hd,l]\E[G∗]| + |E[G∗]\E[Hd,l]|
Fig. 5a

= |E\Ed,l\E[G∗]| + |E[G∗]\E| + |E[G∗] ∩ E ∩ Ed,l|
= |E\E[G∗]| − |E ∩ Ed,l\E[G∗]| + |E[G∗]\E| + |E[G∗] ∩ E ∩ Ed,l|
= ρ(G,G∗) − |E ∩ Ed,l\E[G∗]| + |E ∩ Ed,l ∩ E[G∗]| . (2)
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E[G]

E[G∗]

Ed,l

E[Hd,l]\E[G∗]

E[G∗]\E[Hd,l]

(a) Equation (2)

E[G]

Ed,l

E[H∗
d,l]

E[Hd,l]ΔE[G∗]

E ∩ Ed,l ∩ E[H∗
d,l]E ∩ Ed,l\E[H∗

d,l]

(b) Equation (3)

Fig. 5. Proofs of Eqs. (2) and (3)

Then, since Hd,l = (V,E\Ed,l),

ρ(G,H∗
d,l)

Fig. 5b
= ρ(Hd,l,H

∗
d,l) − ∣

∣E ∩ Ed,l ∩ E[H∗
d,l]

∣
∣ +

∣
∣E ∩ Ed,l\E[H∗

d,l]
∣
∣ (3)

(2)
≤ ρ(G,G∗) − |E ∩ Ed,l\E[G∗]| + |E ∩ Ed,l ∩ E[G∗]|
− ∣

∣E ∩ Ed,l ∩ E[H∗
d,l]

∣
∣ +

∣
∣E ∩ Ed,l\E[H∗

d,l]
∣
∣

≤ ρ(G,G∗) + 2 |E ∩ Ed,l ∩ E[G∗]| (4)

Since the graph G is connected, to cut it in K cliques we have to delete at
least K − 1 edges. If we have to delete exactly K − 1 edges, by Lemma 3 the
graph G consists of K cliques of at most 8 vertices, each connected with K − 1
edges in a chain similar graph. The treewidth of such a graph is at most 8 and,
therefore, by Theorem1, the exact solution can be found in O (n) time.

Now, assume that at least K edges have to be deleted. Moreover, since by
Lemma 3 the largest clique has at most 8 vertices, K ≥ |V | /8. Further, since G
is planar, |E| ≤ 3 |V | − 6. Combining these facts, we get

ρ(G,G∗) ≥ K ≥ |V | /8 ≥ |E| /24. (5)

Thus, for dε = �48/ε� and lε ∈ argminl∈{0,...,d−1} |E[G] ∩ Ed,l|, we derive

ρ(G,H∗
dε,lε)

(4)
≤ ρ(G,G∗) + 2 |E[G] ∩ Edε,lε | ≤ ρ(G,G∗) + 2 |E[G]| /dε (6)

≤ (1 + 48/dε)ρ(G,G∗) ≤ (1 + ε)ρ(G,G∗)

and H∗
dε,lε

is an (1 + ε)-approximation of the original problem.

It remains to prove, that H∗
dε,lε

can be computed in time 2O(ε−1 log(ε−1))n.
Since the diameter of the planar graph Hd,l is bounded by d we can find a
tree decomposition of treewidth 3d − 2 in time O (dn) [13]. From this tree
decomposition we can construct in O (dn)-time a nice tree decomposition with
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O (n) nodes and of treewidth 3d − 2 [19]. Having a nice tree decomposi-
tion of width at most 3d − 2 by Theorem 1, H∗

dε,lε
can be computed in time

2O((3d−2) log(3d−2))n = 2O(ε−1 log(ε−1))n.

6 Cluster Editing on Graphs with a Few Crossings
per Edge

A graph is called k-planar if it has a planar embedding, where each edge is
crossed at most k times. Image segmentation often deals with k-planar graphs.
For instance, if the furthest connected pixels are on a Chebyshev distance of
at most R, then each edge is crossed at most (2R)2 times. Hence, for such
applications the input graph for the cluster editing problem is (2R)2-planar.

Let us first discuss some properties of k-planar graphs. Using the results
of Dujmović et al. [11,12], it can be easily shown that a k-planar graph with
diameter d has treewidth at most 12kd + 6k + 2d.

Lemma 6. If the input graph G is k-planar for k > 0, then any connected
component C of the cluster editing solution G∗ has at most 18

√
k vertices.

Proof. The number of edges in a k-planar graph with n vertices and k > 0 is at
most 4.108

√
kn [20]. Therefore, the minimal degree is at most 8.216

√
k and by

part (a) of Lemma 3, |C| ≤ 16.432
√

k + 1 ≤ 18
√

k.

Theorem 3. For dε = �180k/ε� and lε ∈ argminl∈{0,...,dε−1} |E[G] ∩ Ed,l|, the
graph H∗

dε,lε
is an (1 + ε)-approximation of the optimal solution G∗ and it can

be computed in time 2O(k2ε−1 log(k2ε−1))n.

Proof. The proof is similar to the proof of Theorem2. If the treewidth of the
graph G is at most 18

√
k, then by Theorem1, the cluster editing problem on the

graph G can be solved exactly in 2O(
√

k log
√

k)n time. Otherwise, similar to (5) we
prove that ρ(G,G∗) ≥ K ≥ |V |

18
√

k
≥ |E|/(4.108

√
k)

18
√

k
≥ |E|

90k . Then, for dε = �180k/ε�

and lε ∈ argminl∈{0,...,dε−1} |E[G] ∩ Ed,l|, we derive that ρ(G,H∗
dε,lε

)
(6)
≤ (1 +

180k/dε)ρ(G,G∗) ≤ (1 + ε)ρ(G,G∗).
It remains to prove that H∗

dε,lε
can be found efficiently. Since the diameter of

the graph Hdε,lε is bounded by dε, the treewidth is bounded by 6(dε + 1)(k + 1)
and, therefore, we can construct a nice tree decomposition of treewidth at most
5 · (6(dε + 1)(k + 1)) + 4 in time 2O(kdε)n = 2O(k2ε−1)n [7]. Having a nice tree
decomposition of width at most 6(d + 1)(k + 1), by Theorem 1, H∗

dε,lε
can be

computed in time O
(
26(dε+1)(k+1) log(6(dε+1)(k+1))

)
n = 2O(k2ε−1 log(k2ε−1))n.
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Abstract. Motivated by an assignment problem arising in MapReduce
computations, we investigate a generalization of the Bin Packing prob-
lem which we call Bin Packing with Colocations Problem. We are given
a weigthed graph G = (V, E), where V represents the set of items with
positive integer weights and E the set of related (to be colocated) items,
and an integer q. The goal is to pack the items into a minimum number
of bins so that (i) for each bin, the total weight of the items packed in
this bin is at most q, and (ii) for each edge (i, j) ∈ E there is at least
one bin containing both items i and j.

We first point out that, when the graph is unweighted (i.e., all the
items have equal weights), the problem is equivalent to the q-clique prob-
lem, and when furthermore the graph is a clique, optimal solutions are
obtained from Covering Designs. We prove that the problem is strongly
NP-hard even for paths and unweighted trees. Then, we propose approxi-
mation algorithms for particular families of graphs, including: a (3+

√
5)-

approximation algorithm for complete graphs (improving a previous ratio
of 8), a 2-approximation algorithm for paths, a 5-approximation algo-
rithm for trees, and an (1 + O(log q/q))-approximation algorithm for
unweighted trees. For general graphs, we propose a 3 + 2�mad(G)/2�-
approximation algorithm, where mad(G) is the maximum average degree
of G. Finally, we show how to convert any approximation algorithm for
Bin Packing (resp. Densest q-Subgraph) problem into an approximation
algorithm for the problem on weighted (resp. unweighted) general graphs.
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1 Introduction

In this paper, we study the following generalization of the classical Bin Packing
problem, which we call Bin Packing with Colocations Problem (BPCP). We are
given a weigthed graph G = (V,E), where V = {1, 2, . . . , n} represents the set
of items with positive integer weights w1, w2, . . . , wn and E the set of related (to
be colocated) items, and an integer capacity q for bins. The goal is to pack the
items into a minimum number of bins so that (i) for each bin the total weight
of the items packed in it is at most q, and (ii) for each edge (i, j) ∈ E there
is at least one bin containing both items i and j. Due to the last constraint
of colocating pairwise related items, we assume that, for each edge (i, j) ∈ E,
wi + wj ≤ q, for otherwise our problem has no feasible solution. Note also that
in a feasible solution (copies of) a vertex (item) might be packed into more than
one bin.

Our initial motivation for studying BPCP was the work of Afrati et al. [1,2]
on an assignment problem in MapReduce computations. In such computations,
the outputs of the mappers, of the form 〈key − value〉, are assigned to the
reducers and each reducer applies a reduce function to a single key and its
associated list of value’s to produce its output. However, a reducer (in fact, the
machine executing it) is subject to capacity constraints (e.g. memory size), which
limits the total size of data assigned to it. Moreover, for each required output,
there must be a reducer receiving all inputs necessary to compute its output.
For a family of problems arising in this context, an output depends on pairwise
related inputs, i.e., a situation captured by the colocation constraint in BPCP.

More generally, the BPCP models any practical situation where context-
related entities of given sizes must be assigned to physical resources of limited
capacity while fulfilling pairwise colocation constraints. For instance, when com-
puter files are placed into memory blocks of fixed size, it is natural to ask for the
colocation of pairwise related files (for example, sharing a common attribute)
in the same memory block. Moreover, in large data centers, file colocation is
essential for data chunks which are highly likely to be accessed together.

BPCP is clearly a generalization of the Bin Packing problem, which is the
particular case E = ∅. As another example of this relation, consider BPCP on
a star graph with n + 1 vertices (items), where the central vertex has weight w0

and the bin capacity is q+w0. Obviously, BPCP is equivalent to the Bin Packing
problem with input the n leaves items (with their weights) and bin capacity q. In
contrast to the Bin Packing problem, BPCP remains interesting even when all
the items have the same weight and we refer to this case as Unweighted BPCP
(U-BPCP). It is easy to see that U-BPCP is trivial on a star graph or on a path,
but we will prove that it becomes NP-hard even for trees.

Interestingly, U-BPCP for complete graphs falls in the well known area of
Combinatorial Design theory (the interested reader is referred to [7] for a survey
of this area). In this context, given a set V of n elements, a 2-(n, q, 1)-covering
design (see [10,12]) abbreviated here as (n, q)-covering is a collection of subsets,
which are called blocks, such that each block has q elements and every pair of
distinct elements of V has to appear together in at least one block. An (n, q)-
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covering is nothing else than a solution to U-BPCP for complete graphs. In
the case of perfect coverings, where each pair appears in exactly one block, the
(n, q)-covering is called a BIBD(n, q, 1) or a 2-(n, q, 1) design and a lot of work
has been done on necessary and sufficient conditions for the existence of such
designs (see [7]). The main observation here is that, if a 2-(n, q, 1)-design exists,
then it is an optimal solution to U-BPCP for complete graphs.

Furthermore, BPCP generalizes the so called q-Clique Covering Problem
studied by Goldschmidt et al. [8]. In their context, a q-clique of a graph G
is an induced subgraph with at most q vertices. The objective is to find the
minimum number of such q-cliques, such that every edge and every vertex of G
is included in at least one q-clique. This corresponds exactly to U-BPCP.

Related Work. Afrati et al. [1,2] studied BPCP for complete and complete bipar-
tite graphs. For both cases, they proved that BPCP is NP-hard, via a reduction
from the Partition problem, and they proposed greedy approximation algorithms
with ratio 8. For the U-BPCP, they also proposed a (2 + ε)-approximation algo-
rithm in the case of complete graphs.

Goldschmidt et al. [8] have proposed approximation algorithms for the q-
Clique Covering Problem which corresponds to U-BPCP on general graphs. In
fact, for the special cases where q = 3 and q = 4 (q is the bin capacity), they
obtained approximation ratios 7/5 and 7/3, respectively. When the bin capac-
ity is arbitrary, they showed that the problem admits an O(q)-approximation
algorithm.

As described above, U-BPCP on complete graphs is equivalent to finding an
(n, q)-covering with the minimum number of blocks (bins). Therefore, the results
obtained in combinatorial design theory apply to U-BPCP on complete graphs
too and we elaborate on them in Sect. 2.

Finally, as BPCP is a generalization of the Bin Packing problem, we refer the
reader to [6] for a recent review of the latter problem. Bin Packing is APX-hard
as it is NP-hard to decide between cost 2 and cost 3 (Partition). Simple greedy
algorithms as Next-Fit, First-Fit and First-Fit Decreasing achieve approximation
ratios of 2, 1.7 and 1.5, respectively. Moreover, it admits asymptotic polynomial-
time approximation schemes (APTAS).

Contributions. In Sect. 2, following the work of Afrati et al. [1,2], we begin with
the study of U-BPCP and BPCP on complete graphs. We start with U-BPCP
where we can use the results obtained on covering. We first present an algorithm
similar to the one presented in [1,2] for the case q even, but our analysis is tighter.
Our algorithm achieves an approximation ratio less than 2 when q is even and
n ≥ q2/2. This algorithm can be generalized and, by using (n, 3)-coverings (resp.
(n, 4)-coverings) we get an approximation ratio less than 3/2 (resp. 5/4) when q
is multiple of 3 (resp. multiple of 4) and n ≥ q2. For BPCP an 8-approximation
algorithm was given in [1,2]; we propose a new approximation algorithm with
ratio 6 and a refined one with ratio (3 +

√
5).

Thereafter, we move our attention to other interesting types of graphs. In
Sect. 3, we show that BPCP is strongly NP-hard even on paths and we propose
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a 2-approximation algorithm for this case. In Sect. 4, we show that U-BPCP is
NP-hard on trees and we propose an algorithm which asymptotically achieves
an approximation ratio of (1 + ε), where ε = O(log q/q). Moreover, we propose
a greedy 5-approximation algorithm for BPCP on trees. In Sect. 5, we study
U-BPCP and BPCP on general graphs. Extending our ideas for BPCP on trees
to BPCP on general graphs we derive an approximation algorithm with ratio
3 + 2	mad(G)/2
, where mad(G) is the maximum average degree of the graph.
This algorithm is efficient for sparse graphs and, for example, it achieves a 9-
approximation ratio for BPCP on planar graphs. Then, based on a simple greedy
approach, and given any ρ-approximation algorithm for the Bin Packing prob-
lem, we obtain a ρ · Δ-approximation algorithm for BPCP on general graphs,
where Δ is the maximum degree of the graph. Finally, we show that any ρ-
approximation for Densest q-Subgraph problem can be converted to a ρ · log n-
approximation algorithm for the U-BPCP on general graphs.

Due to space limitations, all proofs are deferred to the research report version
of the paper [4].

2 Complete Graphs

In the following we observe that U-BPCP on complete graphs is closely related
to the theory of combinatorial designs (see [7]). For this reason, we briefly survey
some fundamental results known in this area.

Given a set V of n elements, a 2-(n, q, 1)-design or BIBD(n, q, 1) is a col-
lection of subsets of V , called blocks, such that every pair of distinct elements
appears together in exactly one block. In other words it corresponds to a par-
tition of the edges of Kn into Kq. In such a design, every element appears in
(n−1)/(q−1) blocks and the number of blocks must be equal to n(n−1)/q(q−1).
Since these numbers must be integers, two necessary conditions for the existence
of a 2-(n, q, 1)-design are (n−1) ≡ 0 mod q −1 and n(n−1) ≡ 0 mod q(q −1).
These necessary conditions have been proved to be sufficient for certain values
of n and q (see [7]), for instance when q = 3 (known as Steiner triple systems)
and q = 4, 5 or when q is a power of a prime and n = q2 or n = q2 + q + 1.
Furthermore, Wilson [13] has proved that these necessary conditions are also
sufficient when n is large enough. Still, in many cases these conditions do not
guarantee the existence of a 2-(n, q, 1)-design; for example, as guessed by Euler
both a 2-(36, 6, 1)-design or a 2-(43, 7, 1)-design do not exist [7].

Clearly, a 2-(n, q, 1)-design is an optimal solution for U-BPCP on a complete
graph with n vertices and bin capacity q. Note that this relation was not observed
by Afrati et al. [1,2] who rediscovered basic results of design theory such as the
existence of some (n, 3, 1)-design and the existence of projective planes.

The notion of 2-(n, q, 1)-design has been also extended to packing and cov-
ering designs (see the survey [10] or chapter IV.8 in Handbook of Designs [12]).
Given a set V of n elements, a 2-(n, q, 1)-covering design (see [10,12]) abbre-
viated here as (n, q)-covering is a collection of subsets, which are called blocks,
such that each block has q elements and every pair of distinct elements of V
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appears together in at least one block. An (n, q)-covering is nothing else than a
solution to U-BPCP for complete graphs.

In the literature, there exists a significant amount of work on computing the
the minimum number of blocks in an (n, q)-covering, called the covering number
and denoted C(n, q). Therefore, for U-BPCP on complete graphs, the number
of bins of an optimal solution is equal to C(n, q).

In what follows, let L(n, q) =
⌈
n
q

⌈
n−1
q−1

⌉⌉
; this quantity will serve for lower

bounding the number of used bins in an optimal solution.

Lemma 1. It holds that C(n, q) ≥ L(n, q). Furthermore, if (n − 1) ≡ 0
mod (q − 1) and n(n − 1) ≡ 1 mod q, then C(n, q) ≥ L(n, q) + 1.

The exact values of C(n, q) have been determined only in some cases (see [10,12]).
For example, the exact value of C(n, q) is known for n <= 3q and for q = 2, 3, 4
where we have:

– C(n, 2) = L(n, 2) = n(n−1)
2 (trivial as a block contains one pair),

– C(n, 3) = L(n, 3) =
⌈
n
3

⌈
n−1
2

⌉⌉
, and

– C(n, 4) = L(n, 4) + ε, where ε = 1 when n = 7, 9, 10, ε = 2 in the case where
n = 19, and ε = 0, otherwise.

Finally, the following theorem, which has been proved by Rödl [11] via prob-
abilistic methods, bounds C(n, q) asymptotically. Interestingly, it answered a
conjecture of Erdös and Hanani (see Chap. 4 of [3] for a proof).

Theorem 1 (Rödl [11]). For any fixed q, it holds that C(n, q) ≤ (1 +
o(1))L(n, q), where the term o(1) approaches zero as n tends to infinity.

Unfortunately, this theoretical result does not give answers for practical val-
ues of n and q and, for such cases, we propose some simple greedy algorithms.

2.1 Unweighted case

The main idea for designing an approximation algorithm consists in partitioning
the items into g = 	n/�q/k

 groups of equal size �q/k
 (except possibly one),
where k is a chosen positive integer for which aand to use a (g, k)-covering. All
the items of such a group are then considered as one element and we cover the
pairs of groups with blocks of size k. For each block, we use a bin consisting of all
items of the groups in the block. As a block contains k groups, a bin will contain
at most k�q/k
 ≤ q items. Furthermore, each pair of items belongs to some bin.
Indeed, consider a pair {i, j}; i belongs to some group A and j to some group
B. Then the pair {i, j} belongs to the bin associated to the block containing the
pair of groups A and B if A and B are distinct, or to every bin containing A if
A = B.

The analysis of this general algorithm might be difficult as we have various
floors and ceils and also it assumes the existence of a good (g, k)-covering. More-
over, the approximation ratio obtained will depend of the size of the groups;
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indeed the pairs of items belonging to the same group will be repeated many
times. So we have interest to choose a large k, but very few (g, k)-coverings are
known for large k.

For k = 2, a case for which a trivial (g, 2)-covering exists, we get Algorithm 1.
This is similar with the one of [1,2] for even values of q and simpler than their
algorithm for odd values of q. However, here we present a tighter analysis result-
ing in slightly better approximation ratios.

Algorithm 1 (U-BPCP, complete graphs)
1: Partition the items into g groups each of size �q/2�, but at most one group.
2: Pack every pair of groups into a bin.

Theorem 2. Algorithm 1 achieves approximation ratios of 2 q−1
q + q−2

n , if q is
even, and 2 q

q−1 + q−1
n , if q is odd, for the U-BPCP on complete graphs.

Note that, by Theorem 2, we have an approximation ratio less than 2, when
q is even and n ≥ q2/2. When q is odd, the algorithm has no interest for q = 3
and n ≤ 3q as we know in that case the exact value of C(n, q). So, we will use
the algorithm only for q ≥ 5 and n > 3q, in which case the approximation ratio
is less than 17/6. Note also that when q is large and n tends to infinity the ratio
is near to 2.

We can also analyze the general algorithm described above for k = 3 (resp.
k = 4) and q is a multiple of 3 (resp. 4), to get an approximation ratio at most
3/2 (resp. 5/4). More generally, for any k, if n is a multiple of q and there exists
a (g, k)-covering, for g = 	kn

q 
, we get a k
k−1 -approximation ratio.

2.2 Weighted Case

In this section, we extend the previous ideas to the BPCP on complete graphs
by using an appropriate grouping of jobs. Initially, we present a 6-approximation
algorithm via a simple grouping which we then improve via a more enhanced
grouping. Our analysis uses the lower bound on the optimal number of bins, b∗,
provided by the next lemma.

Lemma 2. For the BPCP on a complete graph it holds that
b∗ ≥ 1

q

∑n
i=1 wi	 s−wi

q−wi

 > s2

q2 , where s =
∑n

i=1 wi.

In [1,2], the authors showed that Algorithm1 can also be used for weighted
graph and gives an approximation ratio of 8. In Algorithm2, we use a better
grouping which achieves a feasible solution and improves the approximation
ratio to 6. Note that, in Algorithm2, we suppose w.l.o.g. that all the weights
are at most q/2. Indeed, there can be at most one item of weight greater than
q/2 as the input graph is complete. In such a case, the large item can be packed
independently with all the other items and the remaining pairs of items can be
packed with Algorithm2.
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Algorithm 2 (BPCP, complete graphs)
1: Partition the items into three types of groups A, B, C;

the size of a group sAi , sBi , sCi is the sum of the weights of the items in the group:

– α groups of type A; Ai ∈ A has size q
3

< sAi ≤ q
2

– β groups of type B; Bi ∈ B has size q
4

< sBi ≤ q
3

– γ groups of type C; Ci ∈ C has size sCi ≤ q
4

2: Form bins containing either a pair of groups or when possible three groups.

Theorem 3. Algorithm 2 achieves an approximation ratio of 6 for the BPCP
on complete graphs.

We can refine the above idea, by partitioning the items into four types of
groups, to get an even better approximation ratio.

Theorem 4. There is a (3 +
√

5)-approximation algorithm for the BPCP on
complete graphs.

3 Paths

In this section we consider the BPCP on paths; recall that U-BPCP is trivial
on paths. We first show that the BPCP on paths is strongly NP-hard via a
reduction from the Bin Packing problem.

Theorem 5. The BPCP on paths is strongly NP-hard.

We also present a 2-approximation algorithm by a reduction to the shortest
path problem on an appropriate directed graph and the use of the Next-Fit
algorithm for the Bin Packing problem. Starting from a path G = (V,E), with
V = {1, 2, . . . , n} and E = {(i, i + 1)|1 ≤ i ≤ n − 1}, we construct an auxiliary
weighted directed graph

−→
G which contains a node for each vertex i ∈ V . Then,

for each pair (i, j) such that 1 ≤ i < j ≤ n, we denote by W (i, j) =
∑j

k=i wk the
total weight of the vertices i, i + 1, . . . , j and, if W (i, j) ≤ q, then

−→
G contains

an arc (i, j) of weight W (i, j). Clearly, any (1, n)-path (i.e. a path from node 1
to node n) P of

−→
G corresponds to a feasible solution of our problem; for each

arc (i, j) ∈ P we use a bin to pack vertices i, i + 1, . . . , j. For a path P of
−→
G ,

we denote by W (P ) =
∑

(i,j)∈P W (i, j) its total weight. The following lemma
provides a lower bound on the optimal number of bins, b∗, for the BPCP on
paths which we use in our analysis.

Lemma 3. For the BPCP on paths it holds that b∗ ≥ 1
q · W (P ∗), where P ∗ is a

minimum weight (1, n)-path in the auxiliary graph
−→
G .

Our Algorithm 3 considers each arc in a minimum weight (1, n)-path in
−→
G

as an item for the Bin Packing problem and packs them using the Next-Fit
algorithm.
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Algorithm 3 (BPCP, paths)

1: Find a minimum weight (1, n)-path P ∗ in
−→
G .

2: For each arc (i, j) ∈ P ∗, create an item of weight W (i, j).
3: Pack the new items using the Next-Fit algorithm.

Using Lemma 3 and the fact that the Next-Fit algorithm packs a set of items
of total weight W into at most 2	W/q
 bins of capacity q we get the next
theorem.

Theorem 6. Algorithm 3 achieves an approximation ratio of 2 for the BPCP
on paths.

4 Trees

In this section we deal with both U-BPCP and BPCP on trees. We show that
U-BPCP is NP-hard and that it admits an (1 + ε)-approximation algorithm.
We also propose a greedy 5-approximation algorithm for BPCP on trees.

4.1 Unweighted Case

We show first that U-BPCP on trees is NP-hard via a reduction from the 3-
Partition problem which is known to be NP-hard even for polynomially bounded
parameters.

Theorem 7. The U-BPCP on trees is NP-hard.

For our approximation algorithm, let G be the input tree of our problem and
suppose that the edges of G are oriented away from some arbitrary node which
is picked as the root and we obtain a directed tree T . A key ingredient for the
description of our algorithm is the notion of an eligible subtree. Given a directed
tree T = (V (T ), E(T )), an eligible subtree T ′ is a subtree of T rooted at some
vertex i ∈ V (T ) such that, the forest T = ((V (T ) \ V (T ′)) ∪ {i}, E(T ) \ E(T ′))
consists of a single tree. That is, the removal of all the edges and all the vertices
of T ′, but i, leaves T connected. We define the size of a tree T as the number of
vertices that it contains and we denote it by s(T ). The following decomposition
lemma is critical for designing our algorithm.

Lemma 4. There exists an eligible subtree T ′ of a tree T of size k/2 ≤ s(T ′) ≤
k, for each k ∈ [1, s(T )].

We assume, for convenience, that the bin capacity q is a power of 2, i.e.
q = 2a for some integer a > 0, but our analysis can be extended to arbitrary
values of q. We also denote by b the number of bins that our algorithm uses.
The algorithm starts with the initial tree G and, gradually, it packs vertices
into bins and removes vertices whose incident edges have been covered until a
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feasible solution is produced. More specifically, it consists of b phases and, in
each phase, a steps are performed. In the k-th phase, 1 ≤ k ≤ b, the algorithm
computes the content of the k-th bin, say Bk. During the algorithm’s execution,
we denote by fk the free space of bin Bk and by T the current remaining tree
(whose edges have not been packed before). In the beginning of the i-th step of
the k-th phase, it must be the case that fk ≤ q/2i−1. Then, if it also holds that
fk ≥ q/2i, based on Lemma 4, the algorithm computes an eligible subtree T ′ of
T (the remaining part of the initial tree) with size s(T ′) ∈ [q/2i+1, q/2i] and
it packs T ′ in Bk. Moreover, the vertices of T ′, apart from the root, as well as
the edges are removed from T . If there is sufficient space, then a second eligible
subtree of the same bounded dimension is also computed, is packed in Bk and is
removed from T . In this way, at the end of the i-th step, it holds that fk ≤ q/2i

(Lemma 5). The algorithm proceeds until T becomes the empty graph.

Algorithm 4 (U-BPCP, trees, q = 2a)
1: T : directed tree obtained by orienting the edges of G
2: k = 1, fk = q
3: while E(T ) 
= ∅ do
4: for i = 1, 2, . . . , a do
5: Repeat twice:
6: if fk ≥ q/2i then
7: Compute an eligible subtree T ′ such that s(T ′) ∈ [q/2i+1, q/2i].
8: Pack V (T ′) in bin Bk and remove T ′ from T .
9: k = k + 1

10: Return the solution found.

Lemma 5. At the end of the i-th step in the k-th phase, it holds that fk ≤ q/2i,
for 1 ≤ i ≤ a and 1 ≤ k ≤ b.

Theorem 8. Algorithm 4 achieves asymptotically an approximation ratio of
(1 + ε), where ε is O(log q/q), for U-BPCP on trees.

4.2 Weighted Case

In what follows, we present a greedy 5-approximation algorithm for BPCP on
trees. We consider a tree G = (V,E) and we assume again that the edges are
oriented away from some node r ∈ V which is chosen arbitrarily as the root
and we obtain a directed tree T . The algorithm produces a feasible solution
by considering T . Initially, every node i ∈ V is packed independently together
with all its children so as to ensure feasibility of the obtained solution. More
specifically, for each i ∈ V , all vertices in its out-neighborhood Γ+(i) are packed
into bins of capacity q−wi according to the First-Fit Decreasing algorithm. Then,
the content of every such bin together with vertex i is considered as one item
for the Bin Packing problem and they are packed using the Next-Fit algorithm.
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Algorithm 5 (BPCP, trees)
1: for each i ∈ V do
2: Pack the vertices in Γ+(i) into bins of capacity q−wi using the First-Fit Decreas-

ing algorithm.
3: For each bin containing a subset S of items, create an item of size

∑
i∈S wi.

4: Pack the created items using the Next-Fit algorithm.

It is known that number of bins used by First-Fit Decreasing algorithm for
the Bin Packing problem is at most 3/2 times the number of the optimal number
of bins. Using this fact, we can bound the number of copies of each vertex when
it is packed with its children and we get the next theorem.

Theorem 9. Algorithm 5 achieves an approximation ratio of 5 for BPCP on
trees.

5 General Graphs

In this section we deal with the BPCP and U-BPCP on a general graph G =
(V,E). We first deal with BPCP and we present two approximation algorithms.
The first one extents our approach for the BPCP on trees to general graphs and
gives an approximation ratio which is efficient for the BPCP on sparse graphs.
The second one considers each edge (i, j) ∈ E as an item of the Bin Packing
problem of weight wi + wj and gives an approximation ratio of O(Δ), where
Δ is the maximum degree of the graph. Then, we move to the U-BPCP and
we present an approximation algorithm based on its relation with Densest q-
Subgraph problem.

5.1 Weighted Case

We first, extend our approach for the BPCP on trees to BPCP on a general
graph G = (V,E). More specifically, we construct an orientation D of the graph
G and for each vertex i ∈ V we consider its in- and out-neighborhood in D.
Recall that in BPCP on trees each node is packed with its children and in one
more bin with its parent. In the BPCP on general graphs, each node is packed
with the vertices in its out-neighborhood and with each one of the vertices in
its in-neighborhood in different bins. Using similar arguments as in the proof of
Theorem 9 we obtain an approximation ratio of 3+2Δ−(D) where Δ−(D) is the
maximum in-degree of D.

The maximum average degree mad(G) of the input graph G is the maximum
of the average degrees ad(H) = 2|E(H)|/|V (H)| taken over all subgraphs H of
G, i.e., mad(G) = maxH⊆G

{
2|E(H)|
|V (H)|

}
. By applying the approach of Hakimi [9],

we can construct, in polynomial time, an orientation D of a general undirected
graph G, with maximum in-degree Δ−(D) ≤ 	mad(G)/2
. Using this result we
get the next theorem.
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Theorem 10. There is a 3 + 2	mad(G)/2
-approximation algorithm for the
BPCP on general graphs.

In the case of planar graphs, it holds that mad(G) < 6 and we obtain a 9-
approximation. More generally, any class of H-minor-free graphs have bounded
maximum average degree.

Next, we present an approximation algorithm for BPCP on a general graph
G = (V,E), which uses a ρ-approximation algorithm A for the Bin Packing
problem. We denote by Δ the maximum degree of G.

Initially, we obtain a lower bound by packing the edges of the input graph
G = (V,E) instead of its vertices. Specifically, for each edge (i, j) ∈ E, we create
an item Ii,j of weight wi + wj . Let I be the set of all such items and consider
the instance (I, q) of the Bin Packing problem. Clearly, any feasible packing of
(I, q) is a feasible solution for BPCP in general graphs. So, we get the following
lemma.

Lemma 6. Let b∗ and b∗
e be the optimal numbers bins for BPCP and the Bin

Packing problem (I, q), respectively. Then, it holds that b∗
e ≤ Δ · b∗.

Algorithm 6 (BPCP, general graphs)
1: For each edge (i, j) ∈ E, create an item of weight wi + wj .
2: Pack the items with A into bins of capacity q.

Then, Lemma 6 implies the next theorem.

Theorem 11. Algorithm 6 achieves an approximation ratio of ρ·Δ for BPCP on
general graphs, given a ρ-approximation algorithm for the Bin Packing problem.

Recall that the Bin Packing problem admits several greedy constant-factor
approximation algorithms as well as an APTAS (Asymptotic Polynomial-Time
Approximation Scheme).

5.2 Unweighted Case

In what follows, we present an approximation algorithm for U-BPCP on general
graphs by using a ρ-approximation algorithm A for the Densest q-Subgraph
problem (i.e. finding a set of q vertices with the maximum number of edges in
the subgraph induced by them). More specifically, the algorithm packs repeatedly
densest q-subgraphs of G and removes the covered edges. The procedure goes on
until all edges are covered, as in Algorithm 7 below.

Theorem 12. Algorithm 7 is ρ · log n-approximate for U-BPCP on general
graphs, given a ρ-approximation algorithm for Densest q-Subgraph problem.

The best known approximation algorithm for the Densest q-Subgraph prob-
lem was proposed by [5] and its approximation ratio is O(n1/4). Therefore,
Theorem 12 implies a O(n1/4 · ln n)-approximation algorithm for U-BPCP.



Bin Packing with Colocations 51

Algorithm 7 (U-BPCP, general graphs)
1: while E 
= ∅ do
2: Run A and let D = (V ′, E′), |V ′| = q the resulting densest q-subgraph.
3: Pack the vertices of V ′ into a new bin.
4: G = (V, E \ E′).
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Abstract. In graph coloring problems, the goal is to assign a positive
integer color to each vertex of an input graph such that adjacent vertices
do not receive the same color assignment. For classic graph coloring, the
goal is to minimize the maximum color used, and for the sum coloring
problem, the goal is to minimize the sum of colors assigned to all input
vertices. In the offline variant, the entire graph is presented at once, and
in online problems, one vertex is presented for coloring at each time, and
the only information is the identity of its neighbors among previously
known vertices. In batched graph coloring, vertices are presented in k
batches, for a fixed integer k ≥ 2, such that the vertices of a batch are pre-
sented as a set, and must be colored before the vertices of the next batch
are presented. This last model is an intermediate model, which bridges
between the two extreme scenarios of the online and offline models. We
provide several results, including a general result for sum coloring and
results for the classic graph coloring problem on restricted graph classes:
We show tight bounds for any graph class containing trees as a subclass
(e.g., forests, bipartite graphs, planar graphs, and perfect graphs), and
a surprising result for interval graphs and k = 2, where the value of the
(strict and asymptotic) competitive ratio depends on whether the graph
is presented with its interval representation or not.

1 Introduction

We study three different graph coloring problems in a model where the input is
given in batches. In this model of computation an adversary reveals the input
graph one batch at a time. Each batch is a subset of the vertex set together with its
edges to the vertices revealed in the current batch or in previous batches. After a
batch is revealed the algorithm is asked to color the vertices of this batch with col-
ors which are positive integers, the coloring must be valid or proper, i.e., neighbors
are colored using distinct colors, and this coloring cannot be modified later.
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The batch scenario is somewhere between online and offline. In an offline
problem, there is only one batch, while for an online problem, the requests arrive
one at a time and have to be handled as they arrive without any knowledge of
future events, so each request is a separate batch. Many applications might fall
between these two extremes of online and offline. For example, a situation where
there are two (or more) deadlines, an early one with a lower price and a later
one with a higher price can lead to batches.

When considering a combinatorial problem using batches, we assume that the
requests arrive grouped into a constant number k of batches. Each batch must be
handled without any knowledge of the requests in future batches. As with online
problems, we do not consider the execution times of the algorithms used within
one batch; the focus is on the performance ratios attainable. Therefore, our goal
is to quantify the extent to which the performance of the solution deteriorates
due to the lack of information regarding the requests of future batches. We also
investigate how much advance knowledge of the number of batches can help.

The quality of the algorithms is evaluated using competitive analysis. Let
A(σ) denote the cost of the solution returned by algorithm A on request sequence
σ, and let OPT(σ) denote the cost of an optimal (offline) solution. Note that
for standard coloring problems, OPT(G) = χ(G), where χ(G) is the chromatic
number of the graph G. An online coloring algorithm A is ρ-competitive if there
exists a constant b such that, for all finite request sequences σ, A(σ) ≤ ρ ·
OPT(σ) + b. The competitive ratio of algorithm A is inf{ρ | A is ρ-competitive}.
If the inequality holds with b = 0, the algorithm is strictly ρ-competitive and the
strict competitive ratio is inf{ρ | A is strictly ρ-competitive}.

The First-Fit algorithm for coloring a graph traverses the list of vertices given
in an arbitrary order or in the order they are presented, and assigns each vertex
the minimal color not assigned to its neighbors that appear before it in the list
of vertices.

Other combinatorial problems have been studied previously using batches.
The study of bin packing with batches was motivated by the property that all
known lower bound instances have the form that items are presented in batches.
The case of two batches was first considered in [9], an algorithm for this case
was presented in [6], and better lower bounds were found in [2]. A study of the
more general case of k batches was done in [7], and recently, a new lower bound
on the competitive ratio of bin packing with three batches was presented in [1].
The scheduling problem of minimizing makespan on identical machines where
jobs are presented using two batches was considered in [20].

Graph Classes Containing Trees. The first coloring problem we consider using
batches is that of coloring graph classes containing trees as a subclass (e.g.,
forests, bipartite graphs, planar graphs, perfect graphs, and graphs in general),
minimizing the number of colors used. Offline, finding a proper coloring of bipar-
tite graphs is elementary and only (at most) two colors are needed. However,
there is no online algorithm with a constant competitive ratio, even for trees.
Gyárfás and Lehel [10] show that for any online tree coloring algorithm A and
any n ≥ 1, there is a tree on n vertices for which A uses at least �log n�+1 colors.
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The lower bound is matched exactly by First-Fit [11], and hence, the opti-
mal competitive ratio on trees is Θ(log n). For general graphs, Halldórsson and
Szegedy [13] have shown that the competitive ratio is Ω(n/ log n).

We show that any algorithm for coloring trees in k batches uses at least 2k
colors in the worst case, even if the number of batches is known in advance. This
gives a lower bound of k on the competitive ratio of any algorithm coloring trees
in k batches. The lower bound is tight, since (on any graph, not only trees), a
k-competitive algorithm can be obtained by coloring each batch optimally with
colors not used in previous batches. Thus, for graph classes containing trees as
a subclass, k is the optimal competitive ratio.

Coloring Interval Graphs in Two Batches. Next we consider coloring interval
graphs in two batches, minimizing the number of colors used. An interval graph
is a graph which can be defined as follows: The vertices represent intervals on
the real line, and two vertices are adjacent if and only if their intervals over-
lap (have a nonempty intersection). If the maximum clique size of an interval
graph is ω, it can be colored optimally using ω colors by using First-Fit on the
interval representation of the graph, with the intervals sorted by nondecreasing
left endpoints. For the online version of the problem, Kierstead and Trotter [15]
provided an algorithm which uses at most 3ω − 2 colors and proved a matching
lower bound for any online algorithm.

The algorithm presented in [15] does not depend on the interval representa-
tion of the graph, but the lower bound does, so in the online case the optimal
competitive ratio is the same for these two representations (see [14,18] for the
current best results regarding the strict competitive ratio of First-Fit for coloring
interval graphs). In contrast, when there are two batches, there is a difference.
We show tight upper and lower bounds of 2 for the case when the interval repre-
sentation is unknown and 3/2 when it is known, respectively. Our results apply
to both the asymptotic and the strict competitive ratio.

Note that when the interval representation of the graph is used, the batches
consist of intervals on the real line (it is not necessary to give the edges explicitly).

Sum Coloring. The sum coloring problem (also called chromatic sum) was intro-
duced in [17] (see [16] for a survey of results on this problem). The problem is
to give a proper coloring to the vertices of a graph, where the colors are positive
integers, so as to minimize the sum of these colors over all vertices (that is, if the
coloring is defined by a function C, the objective is to minimize

∑
v∈V C(v)).

Bar-Noy et al. [3] study the problem, motivated by the following application:
Consider a scheduling problem on an infinite capacity batched machine where
all jobs have unit processing time, but some jobs cannot be run simultaneously
due to conflicts for resources. If the conflicts are given by a graph where the jobs
are vertices and an edge exists between two vertices, if the corresponding jobs
cannot be executed simultaneously (and thus each batch of jobs corresponds to
an independent set of this graph), the value s of the optimal sum coloring of the
graph gives the sum of the completion times of all jobs in an optimal schedule.
Dividing by the number of jobs gives the average response time. The problem
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when restricted to interval graphs is also motivated by VLSI routing [19]. The
first problem seems more likely to come in batches than the second.

The sum coloring problem is NP-hard for general graphs [17] and cannot be
approximated within n1−ε for any ε > 0 unless ZPP = NP [3]. Interestingly,
there is a linear time algorithm for trees, even though there is no constant upper
bound on the number of different colors needed for the minimum sum coloring
of trees [17]. For online algorithms, there is a lower bound of Ω(n/ log2 n) for
general graphs with n vertices [12].

We show tight upper and lower bounds of k on the competitive ratio when
there are k batches and k is known in advance to the algorithm. The competitive
ratio is higher if k is unknown in advance to the algorithm. We do not give a
closed form expression for the competitive ratio in this case, but give tight upper
and lower bounds on the order of growth of the competitive ratio and the strict
competitive ratio. For any nondecreasing function f , with f(1) ≥ 1, the optimal
competitive ratio for k batches is O(f(k)) if the series

∑∞
i=1

1
f(i) converges, and

it is Ω(f(k)) if the series diverges. Thus, for example, it is O(k log k(log log k)2)
and Ω(k log k log log k).

Restricting to trees, First-Fit is strictly 2-competitive for the online problem.
Thus, First-Fit gives a (strict) competitive ratio of 2 regardless of the number of
batches. See for example [4] for results on the strict competitive ratio of First-Fit
for other graph classes.

Omitted proofs and details appear in the full paper [5].

2 Graph Classes Containing Trees

In this section, we study the problem of coloring trees in k batches. The results
hold for any graph class that contains trees as a special case, including bipartite
graphs, planar graphs, perfect graphs, and the class of all graphs. If we want the
algorithm to be polynomial time, then we are restricted to graph classes where
optimal offline coloring is possible in polynomial time (e.g., perfect graphs [8]).

The construction proving the following lemma resembles that of the lower
bound of Ω(log n) for the competitive ratio for online coloring of trees [10].

Lemma 1. For any integer k ≥ 1, any algorithm for k-batch coloring of trees
can be forced to use at least 2k colors, even if k is known in advance.

The following lemma holds for any graph, not only trees.

Lemma 2. There is a strictly k-competitive algorithm for k-batch coloring, even
if k is not known in advance.

Theorem 1 below follows directly from Lemmas 1 and 2.

Theorem 1. For any graph class containing trees as a special case, the optimal
(strict) competitive ratio for k-batch coloring is k, regardless of whether or not
k is known in advance.
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3 Interval Coloring in Two Batches

Since not all trees are interval graphs, the lower bound from the previous section
does not apply here. For the case of interval graphs we show the surprising result
that while coloring in two batches has a tight bound of 2, the problem becomes
easier if we assume that the vertices of the graph are revealed together with
their interval representation (and this interval representation of vertices of the
first batch cannot be modified in the second batch). The standard results for
online coloring of interval graphs do not make this distinction: The lower bound
is obtained for the (a priori easier) case where the interval representation of a
vertex is revealed to the algorithm when the vertex is revealed, while the upper
bound holds even if such a representation is not revealed (the online algorithm
only computes a maximum clique size containing the new vertex and applies
the First-Fit algorithm on a subset of the vertices). Throughout this section,
our lower bounds are with respect to the asymptotic competitive ratio while our
upper bounds are for the strict competitive ratio, and thus the results are tight
for both measures.

Unknown Interval Representation. We start with a study of the case where the
algorithm is guarantied that the resulting graph (at the end of every batch) will
be an interval graph, but the interval representation of the vertices of the first
batch is not revealed to the algorithm (and may depend on the actions of the
algorithm). We show that in this case 2 is the best competitive ratio that can
be achieved by an online algorithm.

Theorem 2. For the problem of 2-batch coloring of interval graphs with
unknown interval representation, the optimal (strict) competitive ratio is 2.

Proof. The upper bound follows from Lemma2. Each of the two induced sub-
graphs is an interval graph, and it can be colored optimally in polynomial time
even if the interval representation is not given.

Next, we show a matching lower bound. For a given q ∈ N, let N1 =
(
4q
q

)
+ 1

and N2 =
(
4q
2q

)
+ 1. In the first batch, the adversary gives N1 + N2 pairwise

nonoverlapping cliques: N1 cliques of size q and N2 cliques of size 2q.
Assume that an algorithm uses at most 4q colors for the first batch. By

the pigeon hole principle, there are two cliques of size q that are colored with
the same set C1 of colors. The vertices of these two cliques will correspond to the
intervals [5, 6] and [9, 10], respectively. Similarly, there are two cliques of size 2q
that are colored with the same set C2 of colors. For one of these cliques, q vertices
will correspond to the interval [0, 1] and the remaining q vertices will correspond
to the interval [0, 3]. If any of these 2q vertices are colored with colors from C1,
they will correspond to the interval [0, 1]. We let C′

2 denote the set of colors used
on the vertices corresponding to the interval [0, 3]. Note that C1 ∩ C′

2 = ∅, and
hence, |C1 ∪ C′

2| = 2q. For the other of these two cliques, the q vertices colored
with C′

2 will correspond to the interval [12, 15] and the remaining q vertices will
correspond to [14, 15]. All other intervals are placed to the right of the point 15
so that they do not overlap with any of the four cliques just described.
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The second batch consists of q vertices corresponding to the interval [2, 8] and
q vertices corresponding to the interval [7, 13]. All of these 2q intervals overlap
with each other and with intervals of all colors in C1 ∪ C′

2. Thus, the algorithm
uses at least 4q colors.

No clique is larger than 2q vertices, so OPT uses 2q colors. Since q can
be arbitrarily large, no deterministic online algorithm can be better than 2-
competitive, even when considering the asymptotic competitive ratio. 
�

Known Interval Representation. We now assume that the vertices are revealed
to the algorithm together with their interval representation. For this case, we
show an improved competitive ratio of 3

2 . The proof of the following lower bound
is a special case of the lower bound proof of Kierstead and Trotter [15].

Lemma 3. For the problem of 2-batch coloring of interval graphs with known
interval representation, no algorithm can achieve a competitive ratio strictly
smaller than 3

2 .

For the matching upper bound, we give a strictly 3
2 -competitive algorithm,

called TwoBatches, using Algorithm FB to color the first batch of intervals
and Algorithm SB to color the second batch. Intervals can be open, closed, or
semi-closed. Let ω denote the maximum clique size in the full graph consist-
ing of intervals from both batches. For any interval I, let color(I) denote the
color assigned to I by TwoBatches. Similarly, for a set I of intervals, color(I)
denotes the set of colors used to color the intervals in I.

Each endpoint of a first batch interval I is called an event point, and this
event point is associated with I. If there is a point that is an endpoint of several
intervals, we have multiple copies of this point as event points each of which
is associated with a different interval. We define a total order, T , on the event
points. If p < p′, then p appears before p′ in T . For the case p = p′, there are
several cases; see the full paper [5] for details.

First Batch. It is well-known that one can color an interval graph with a max-
imum clique size of ω using ω colors, by maintaining a set of available colors,
and traversing the event points according to the total order T : Each time a left
endpoint is considered, we color its interval with a color in the set of available
colors (removing it from this set); each time a right endpoint is considered, its
interval’s color is returned to the set of available colors. One often considers
the First-Fit rule of using the minimum color in the set of available colors as a
tie-breaking rule when the set of available colors contains more than one color.
However, in order to establish the improved bound of 3

2 on the strict competi-
tive ratio (or even for the competitive ratio) of the algorithm for two batches,
we need to use a different tie-breaking rule, the one defined by using a stack.

Algorithm FB processes the event points in the order given by T , using a
stack ordering for the colors. When a right endpoint is processed, we say that
the color of the associated interval is released and available until it is used again.
When processing a left endpoint, the associated interval is colored with the most
recently released available color (or a new color, if necessary).
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For ease of presentation, we insert 2ω dummy intervals into the first batch:
one clique of size ω before all input intervals and one clique of size ω after all input
intervals. Since these dummy cliques do not overlap with any other intervals,
each will be colored with the colors 1, 2, . . . , ω, and they will not influence the
behavior of Algorithm FB on the rest of the first-batch intervals.

In the following, Maximal cliques always refer only to first-batch intervals.
For each maximal clique, we choose a point, called a clique point, contained in all
intervals of the clique. If a clique point p appears to the right of another clique
point q, we say that the clique corresponding to p appears to the right of the
clique corresponding to q, and vice versa.

For each maximal clique, I, we order the intervals of the clique by left and
right endpoints, respectively, resulting in two orderings, LI(·) and RI(·). The
further an endpoint is from the clique point of I, the earlier the interval appears
in the ordering. More precisely, for each interval I ∈ I, LI(I) = i, if the left
endpoint of I appears as the ith in T among the endpoints associated with
intervals in I. Similarly, RI(I) = j, if the right endpoint of I appears as the jth
last in T among the endpoints associated with intervals in I. As an example,
consider the clique I consisting of the three intervals a = [1, 6], b = [2, 4], and
c = [3, 5]. For this clique, we have LI(a) = 1, LI(b) = 2, LI(c) = 3 and
RI(a) = 1, RI(b) = 3, RI(c) = 2.

Lemma 4. Consider a maximal clique, I�, of size m and an interval I� ∈ I�

such that RI�
(I�) = h. Let Ih

� = {I ∈ I� | RI�
(I) < h} be the h − 1 intervals in

I� with the rightmost right endpoints. Let Ir be the first maximal clique of size
at least h to the right of I� and let Ir ∈ Ir be such that LIr

(Ir) = h. Finally,
let p� be the right endpoint of I�, let pr be the left endpoint of Ir, and consider
the set I ′ of first-batch intervals containing a point p with p� < p < pr or an
endpoint p with p� <T p <T pr. Then, color(I ′) ⊆ color(Ih

� ) .

Second Batch. We now describe the algorithm, Algorithm SB, given in pseudo-
code below, for coloring the second batch intervals.

A chain is a set of nonoverlapping second batch intervals. The algorithm
starts with partitioning the second-batch intervals into ω chains (some of which
may be empty). This is clearly possible, since the graph is ω-colorable.

The second batch intervals are colored in iterations, two chains per iteration.
The algorithm keeps a counter, i, which is incremented once in each iteration,
and maintains the set Batch2-Colored of second batch intervals that the
algorithm has already colored. In each iteration, a set of nonoverlapping first-
batch intervals is processed. The algorithm maintains the invariant that, at the
beginning of each iteration, any maximal first-batch clique of size h contains
exactly min{h, ω − i} unprocessed intervals.

A first-batch maximal clique of size at least ω − i + 1 as well as its clique
point is said to be active. The part of the real line between two neighboring active
clique points is called a region. Throughout the execution of Algorithm SB, the
number of regions is nondecreasing, and whenever a region is split, the chains
of the region are also split by a simple projection onto each region and each
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resulting region will contain its boundary active clique points (in particular, this
means that active clique points may belong to two regions). In each iteration,
each region and its chains are treated separately.

The algorithm maintains the invariant that no uncolored second batch inter-
val overlaps with more than one region. This is the key property, allowing the
algorithm to consider one region at a time in a given iteration of the algorithm.
First-batch intervals overlapping with more than one region will be cut into
more intervals, with a cutting point at each active clique point contained in the
interval. Thus, by cutting the intervals of an active clique of size h, the clique
is replaced by two cliques of size h in neighboring regions. When a first-batch
interval is cut into parts, the different parts of the interval may be processed in
different iterations, but no new event points are introduced.

In the ith iteration, one chain in each region is colored with the color of a
first-batch interval in the region being processed in this iteration, and another
chain of the region will be colored with the color ω + i, which has not been
used in the region before. For any point p, let dp be the number of second batch
intervals containing p. We say that p is covered by a set S of intervals, if there
are min{dp, i} second batch intervals in S containing p.

Next, we define a set P of representative points, such that each interval
between two neighboring clique points is represented by one point; see the full
paper [5] for details. For a region R, we denote by PR the set of representative
points contained in region R (that is, PR = R ∩ P).

We use the following loop invariant for each region to establish that the
algorithm TwoBatches is correct and strictly 3/2-competitive. The proof of
the invariant I is based on induction on the value of i.

Invariant I:

(I1) All points p are covered by the set Batch2-Colored.
(I2) No color used for an unprocessed first-batch interval contained in a region

R has been used for a second batch interval intersecting region R so far.
(I3) Each active clique has exactly ω − i unprocessed intervals.
(I4) For each region R, ChainR has at most ω − 2i chains.

We use the invariant I to prove that for any input σ, TwoBatches pro-
duces a proper coloring using at most

⌊
3
2OPT(σ)

⌋
colors (see the full paper [5]).

Combining this result with Lemma3 shows that the optimal (strict) competitive
ratio for the problem is 3

2 :

Theorem 3. TwoBatches has a strict competitive ratio of 3
2 .

4 Sum Coloring of Graphs in Multiple Batches

We study two cases separately: the case where the number of batches is known
to the algorithm from the beginning, and the case where it is not. Once again,
our lower bounds are for the competitive ratio and our upper bounds are for the
strict competitive ratio.
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Algorithm. SB: Coloring the second batch intervals.
1: Mark all first-batch intervals as unprocessed
2: Create an optimal coloring of the second-batch intervals, using a set C of ω colors
3: R ← (−∞, ∞) // Initially, there is only one region
4: ChainsR ← ∅
5: PR ← the set of representative points in region R
6: for each color c ∈ C do
7: ChainsR ← ChainsR ∪ {{I | I is a second batch interval with color c}}
8: Batch2-Colored ← ∅ // Set of colored second batch intervals
9: i ← 0

10: while i < �ω/2	 do // Invariant I
11: // Color two chains:
12: i ← i + 1
13: Split all regions (incl. the assoc. chains and sets of repr. points) at all active

clique points
14: for each region R containing at least one nonempty chain do
15: (Chain1,Chain2) ← CreateChains(R) // See Algorithm CreateChains
16: // Color intervals in Chain1 and Chain2 using a first batch color and a new

color:
17: I� ← the unprocessed first-batch interval of the earliest event point in R
18: Ir ← the unprocessed first-batch interval of the latest event point in R
19: Mark I� and Ir as processed
20: Give all intervals in Chain1 the color of I�

21: Give all intervals in Chain2 the color ω + i
22: Batch2-Colored ← Batch2-Colored ∪ Chain1 ∪ Chain2

23: ChainR ← ChainR \ {Chain1,Chain2}
24: // If ω is odd, each region may have one chain left to color:
25: for each region R where ChainsR contains a nonempty chain Chain do
26: I ← the unprocessed first-batch interval with the earliest event point in R
27: Give the intervals of Chain the color of I

Number of Batches Known in Advance. We start our study of sum coloring
by examining the case where the algorithm knows the number of batches k in
advance. Recall that we do not require that algorithms used within one batch
be polynomial time.

Lemma 5. There is a strictly k-competitive algorithm for sum coloring in k
batches, if k is known in advance.

Proof. For each batch, the algorithm, k-BatchColor, applies an optimal pro-
cedure, Color, to compute an optimal sum coloring for the subgraph induced
by the set of vertices of batch i, separately from previous batches. In order to
construct the solution of the input graph, k-BatchColor applies the following
transformation: For every vertex v of batch i, if Color colors v with color c,
then k-BatchColor colors v using color f(i, c) = k · (c−1)+ i. This function f
satisfies f(i, c) ≡ i (mod k), so if f(i, c) = f(i′, c′), for some 1 ≤ i, i′ ≤ k, then
i = i′. Moreover, if f(i, c) = f(i, c′), then k(c − c′) = 0, and therefore c = c′.
Thus, vertices of different batches have different colors, and two vertices of the
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Algorithm. CreateChains(R)
1: Chain1 ← a chain in ChainsR containing the leftmost left endpoint
2: Chain2 ← any other chain from ChainsR

3: while some point in PR is not covered by Batch2-Colored ∪ Chain1 ∪ Chain2

do
4: p ← the leftmost point in PR not covered by Batch2-Colored∪Chain1∪Chain2

5: Chain3 ← a chain from ChainsR containing p
6: if for all points q < p in PR, q is contained in Chain3 or in both Chain1 and

Chain2 then
7: Chain2 ← Chain3 // Chain2 now refers to the chain in ChainsR that Chain3

refers to
8: else
9: q ← the rightmost point in PR left of p violating the condition

10: Chain ← one of Chain1 or Chain2 not containing q // Chain now refers to
a chain in ChainsR

11: // Do a crossover of Chain and Chain3 at the point q, modifying Chain and
Chain3 in ChainsR:

12: Tail ← {I ∈ Chain | I starts to the right of q}
13: Tail3 ← {I ∈ Chain3 | I starts to the right of q}
14: Chain ← (Chain \ Tail) ∪ Tail3
15: Chain3 ← (Chain3 \ Tail3) ∪ Tail
16: return (Chain1,Chain2)

same batch have the same color after the transformation if and only if they had
the same color in the solution returned by Color. As any proper coloring of the
graph provides proper colorings for the k induced subgraphs, the total cost of
the k outputs of Color does not exceed the cost of an optimal coloring of the
entire graph. For any color c and batch i, f(i, c) ≤ k · c. Thus, the cost of the
output is at most k times the total cost of the k solutions returned by Color
(for the k vertex disjoint induced subgraphs). 
�

We prove a matching lower bound for this case, which holds even for the
asymptotic competitive ratio (see the full paper [5]). Combining that result and
Lemma 5 gives the following result:

Theorem 4. For sum coloring in k batches, with k known in advance, the opti-
mal (strict) competitive ratio is k.

Theorem 5. For sum coloring of trees in k batches, First-Fit is strictly 2-
competitive, and this is the best possible competitive ratio, even if k is known
in advance.

Number of Batches Unknown in Advance. Next, we consider the case where
the number of batches k is not known in advance. Thus, to obtain a given
competitive ratio, this ratio must be obtained after each batch. Note that the
algorithm described in the proof of Lemma 5 cannot be used in this case. While
the algorithm is not well defined if k is unknown in advance to the algorithm, it
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may seem that modifying the value of k by doubling would result in a competitive
ratio of O(k), but no such algorithm exists. We prove that for any positive
nondecreasing sequence f(i), which is defined for integer values of i (where f(i) ≥
1 for i ≥ 1), no algorithm with competitive ratio O(f(k)) can be given if the
series Sf =

∑∞
i=1

1
f(i) is divergent. On the other hand, we show that if this series

is convergent, then such an algorithm can be given. This shows, in particular,
that the best possible competitive ratio is O(k log k(log log k)2) (since the series
for this function converges according to the Cauchy condensation test), and it
is Ω(k log k log log k) (since the series for this function diverges according to the
Cauchy condensation test). In fact it is O(k log k log log k · · · (log(x) k)2) and
Ω(k log k log log k · · · log(x) k), for any positive integer x.

Consider a sequence f(i) for which Sf is convergent, and let cf be its limit.
We present an algorithm, BatchColorf , for this variant of sum coloring. Ini-
tially, all colors are declared available. When coloring the ith batch, its induced
subgraph is first colored using an optimal procedure, Color. Let ti denote the
maximum color used by Color for batch i. For each j = 1, 2, . . . , ti in increasing
order, vertices that Color gives color j will be colored using the largest avail-
able color among the colors 1, 2, . . . , �j · cf · f(i)�. Then, this color is declared
taken. This color is now unavailable for vertices of future batches and for vertices
of the current batch that were assigned a color larger than j by Color. If this
process is successful (there always exists an available color), then we say that
batch i is feasible.

Assuming that all batches are feasible, using arguments similar to those
used for Lemma 5, we obtain an upper bound on the competitive ratio of
BatchColorf as follows. Since a color used by Color in a particular batch
is assigned to an available color by BatchColorf , if all batches are feasible,
each pair, (i, j), where i is a batch number and j is a color assigned by Color
in batch i, is given a different color. Since Color produces a proper coloring,
BatchColorf does too. The function f is nondecreasing, so the color assigned
to a given vertex by BatchColorf is at most cf · f(k) times the color assigned
by Color.

Lemma 6. Consider sum coloring in k batches, where the value of k is not
known in advance. If for all 1 ≤ i ≤ k, batch i is feasible, then the competitive
ratio of BatchColorf is at most cf · f(k).

Lemma 7. All batches for the algorithm BatchColorf are feasible.

By Lemmas 6 and 7, we obtain:

Theorem 6. Consider sum coloring in at most k batches and let f be any non-
decreasing function with f(i) ≥ 1 for all i ≥ 1, whose series Sf converges to cf .
Then, the algorithm BatchColorf is (cf · f(k))-competitive, even if the value
k is not known in advance.

Now, we provide the lower bound.
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Theorem 7. Consider sum coloring in k batches, where the value of k is not
known in advance. Let f(i) be a nondecreasing sequence with f(i) ≥ 1 for all
i ≥ 1, whose series Sf is divergent. Then, there is no constant c such that a
competitive ratio of at most c · f(k) can be obtained for all k ≥ 1.

Proof. Assume for the sake of contradiction that there exists a constant c > 1
and an algorithm A, such that A is (c · f(k))-competitive, for any number k ≥ 1
of batches. Let C = max{2c, 10}. Let k be such that

∑k
i=1 1/f(i) > 11C (where

k must exist as the series Sf is divergent). Fix a large integer M , such that
M > 130 · C2 · f(k)2. We say that a color a is small if a ≤ 10CM .

We now describe an adversarial input. Batch i of the input consists of M i−1

cliques of size 3�M/f(i)�. There are no edges between vertices in different cliques
of the same batch. A vertex that A colors with a small color is called a cheap
vertex. For each batch i, if there is at least one clique containing at least M/f(i)
cheap vertices, then one such clique is chosen, and the cheap vertices of this
clique are called special vertices. In each batch, all vertices are connected to all
special vertices of previous batches and to no other vertices in previous batches.
Thus, no colors used for special vertices can be used in later batches, and there
is at most one special vertex for each small color.

The input will contain at most k batches. If, after some batch i < k, the sum
of colors used by A is larger than c · f(i) times the optimal sum of colors, there
will be no more batches. Otherwise, all k batches are given. Thus, if there are
fewer than k batches, the theorem trivially follows. Below, we consider the case
where there are exactly k batches.

We first give an upper bound on the optimal sum of colors for the first i
batches, for 1 ≤ i ≤ k.

Claim 1. For every value of i (such that 1 ≤ i ≤ k), the optimal sum of colors
for the first i batches is at most 19M i+1/(f(i))2.

We now show that, by the assumption that A is (c · f(i))-competitive on
i batches, 1 ≤ i ≤ k, each batch i must have a clique with at least M/f(i)
cheap vertices. Assume for the sake of contradiction that some batch i does not
contain a clique with at least M/f(i) cheap vertices. Then, each clique in the
batch contains at most �M/f(i)� cheap vertices and hence at least 2�M/f(i)�
vertices with colors larger than 10CM . Thus, the sum of colors used for this batch
is more than M i−1 · 2�M/f(i)� · 10CM > 10CM i+1/f(i) ≥ 20cM i+1/f(i). By
Claim 1, this gives a ratio of more than

20cM i+1/f(i)
19M i+1/(f(i))2

> c · f(i) .

Thus, the total number of special vertices is at least
∑k

i=1 M/f(i) > 11CM ,
contradicting the fact that there is at most one special vertex for each of the
small colors. 
�
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Abstract. In the firefighter problem on trees, we are given a tree
G = (V, E) together with a vertex s ∈ V where the fire starts spread-
ing. At each time step, the firefighters can pick one vertex while the fire
spreads from burning vertices to all their neighbors that have not been
picked. The process stops when the fire can no longer spread. The objec-
tive is to find a strategy that maximizes the total number of vertices that
do not burn. This is a simple mathematical model, introduced in 1995,
that abstracts the spreading nature of, for instance, fire, viruses, and
ideas. The firefighter problem is NP-hard and admits a (1−1/e) approx-
imation via LP rounding. Recently, a PTAS was announced in [1].(The
(1 − 1/e) approximation remained the best until very recently when
Adjiashvili et al. [1] showed a PTAS. Their PTAS does not bound the
LP gap.)

The goal of this paper is to develop better understanding on the power
of LP relaxations for the firefighter problem. We first show a matching
lower bound of (1 − 1/e + ε) on the integrality gap of the canonical LP.
This result relies on a powerful combinatorial gadget that can be used to
derive integrality gap results in other related settings. Next, we consider
the canonical LP augmented with simple additional constraints (as sug-
gested by Hartke). We provide several evidences that these constraints
improve the integrality gap of the canonical LP: (i) Extreme points of
the new LP are integral for some known tractable instances and (ii) A
natural family of instances that are bad for the canonical LP admits
an improved approximation algorithm via the new LP. We conclude by
presenting a 5/6 integrality gap instance for the new LP.

1 Introduction

Consider the following graph-theoretic model that abstracts the fire spreading
process: We are given graph G = (V,E) together with the source vertex s where
the fire starts. At each time step, we are allowed to pick some vertices in the
graph to be saved, and the fire spreads from burning vertices to their neighbors
that have not been saved so far. The process terminates when the fire can-
not spread any further. This model was introduced in 1995 [13] and has been
c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 65–77, 2017.
DOI: 10.1007/978-3-319-51741-4 6



66 P. Chalermsook and D. Vaz

used extensively by researchers in several fields as an abstraction of epidemic
propagation.

There are two important variants of the firefighters problem. (i) In the max-
imization variant (Max-FF), we are given graph G and source s, and we are
allowed to pick one vertex per time step. The objective is to maximize the num-
ber of vertices that do not burn. And (ii) In the minimization variant (Min-FF),
we are given a graph G, a source s, and a terminal set X ⊆ V (G), and we are
allowed to pick b vertices per time step. The goal is to save all terminals in X ,
while minimizing the budget b.

In this paper, we focus on the Max-FF problem. The problem is n1−ε hard
to approximate in general graphs [2], so there is no hope to obtain any reasonable
approximation guarantee. Past research, however, has focused on sparse graphs
such as trees or grids. Much better approximation algorithms are known on trees:
The problem is NP-hard [15] even on trees of degree at most three, but it admits
a (1 − 1/e) approximation algorithm. For more than a decade [2,5,6,10,14,15],
there was no progress on this approximability status of this problem, until a
PTAS was recently discovered [1].

Besides the motivation of studying epidemic propagation, the firefighter prob-
lem and its variants are interesting due to their connections to other classical
optimization problems:

– (Set cover) The firefighter problem is a special case of the maximum coverage
problem with group budget constraint (MCG) [7]: Given a collection of sets
S = {S1, . . . , Sm} : Si ⊆ X, together with group constraints, i.e. a partition
of S into groups G1, . . . , G�, we are interested in choosing one set from each
group in a way that maximizes the total number of elements covered, i.e. a
feasible solution is a subset S ′ ⊆ S where |S ′ ∩ Gj | ≤ 1 for every j, and
|⋃Si∈S′ Si| is maximized. It is not hard to see that Max-FF is a special case
of MCG. We refer the readers to the discussion by Chekuri and Kumar [7] for
more applications of MCG.

– (Cut) In a standard minimum node-cut problem, we are given a graph G
together with a source-sink pair s, t ∈ V (G). Our goal is to find a collection
of nodes V ′ ⊆ V (G) such that G \ V ′ has s and t in distinct connected
components. Anshelevich et al. [2] discussed that the firefighters’ solution can
be seen as a “cut-over-time” in which the cut must be produced gradually
over many timesteps. That is, in each time step t, the algorithm is allowed to
choose vertex set V ′

t to remove from the graph G, and again the final goal is
to “disconnect” s from t.1 This cut-over-time problem is exactly equivalent to
the minimization variant of the firefighter problem. We refer to [2] for more
details about this equivalence.

1.1 Our Contributions

In this paper, we are interested in developing a better understanding of the
Max-FF problem from the perspective of LP relaxation. The canonical LP
1 The notion of disconnecting the vertices here is slightly non-standard.
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relaxation has been used to obtain the known (1−1/e) approximation algorithm
via straightforward independent LP rounding (each node is picked independently
with probability proportional to its LP-value). So far, it was not clear whether an
improvement was possible via this LP, for instance, via sophisticated dependent
rounding schemes.2 Indeed, for the corresponding minimization variant, Min-
FF, Chalermsook and Chuzhoy designed a dependent rounding scheme for the
canonical LP in order to obtain O(log∗ n) approximation algorithm, improving
upon an O(log n) approximation obtained via independent LP rounding. In this
paper, we are interested in studying this potential improvement for Max-FF.

Our first result refutes such possibility for Max-FF: we show that the inte-
grality gap of the standard LP relaxation can be arbitrarily close to (1 − 1/e).

Theorem 1. For any ε > 0, there is an instance (G, s) (whose size depends on
ε) such that the ratio between optimal integral solution and fractional one is at
most (1 − 1/e + ε).

Our techniques rely on a powerful combinatorial gadget that can be used to
prove integrality gap results in some other settings studied in the literature. In
particular, in the b-Max-FF problem, the firefighters can pick up to b vertices
per time step, and the goal is to maximize the number of saved vertices. We
provide an integrality gap of (1 − 1/e) for the b-Max-FF problem for every
constant b ∈ N, thus matching the algorithmic result of [9]. In the setting where
an input tree has degree at most d ∈ [4,∞), we show an integrality gap result
of (1 − 1/e + O(1/

√
d)). The best known algorithmic result in this setting was

previously a (1 − 1/e + Ω(1/d)) approximation due to [14].
Motivated by the aforementioned negative results, we search for a stronger LP

relaxation for the problem. We consider adding a set of valid linear inequalities,
as suggested by Hartke [12]. We show the following evidences that the new LP
is a stronger relaxation than the canonical LP.

– Any extreme point of the new LP is integral for the tractable instances studied
by Finbow and MacGillivray [11]. In contrast, we argue that the canonical LP
does not satisfy this integrality property of extreme points.

– A family of instances, capturing the integrality gap instances of Theorem1,
admits a better than (1 − 1/e) approximation algorithm via the new LP.

– When the LP solution is near-integral, e.g. for half-integral solutions, the new
LP is provably better than the old one.

Our results are the first rigorous evidences that Hartke’s constraints lead
to improvements upon the canonical LP. All the aforementioned algorithmic
results exploit the new LP constraints in dependent LP rounding procedures.
In particular, we propose a two-phase dependent rounding algorithm, which can
be used in deriving the second and third results. We believe the new LP has an
integrality gap strictly better than (1 − 1/e), but we are unable to analyze it.

2 Cai et al. [5] claimed an LP-respecting integrality gap of (1−1/e), but many natural
rounding algorithms in the context of this problem are not LP respecting, e.g. in [6].
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Finally, we show a limitation of the new LP by presenting a family of
instances, whose integrality gap can be arbitrarily close to 5/6. This improves the
known integrality gap ratio [12], and puts the integrality gap answer somewhere
between (1 − 1/e) and 5/6. Closing this gap is, in our opinion, an interesting
open question.

Organization: In Sect. 2, we formally define the problem and present the LP
relaxation. In Sect. 3, we present the bad integrality gap instances. We present
the LP augmented with Hartke’s constraints in Sect. 4 and discuss the relevant
evidences of its power in comparison to the canonical LP. Some proofs are omit-
ted for space constraint, and are presented in the full version.

Related Results: King and MacGillivray showed that the firefighter problem
on trees is solvable in polynomial time if the input tree has degree at most three,
with the fire starting at a degree-2 vertex. From exponential time algorithm’s
perspective, Cai et al. showed 2O(

√
n log n) time, exact algorithm. The discrete

mathematics community pays particularly high attention to the firefighter prob-
lem on grids [10,16], and there has also been some work on infinite graphs [13].

The problem also received a lot of attention from the parameterized com-
plexity perspectives [3,5,8] and on many special cases, e.g., when the tree has
bounded pathwidth [8] and on bounded degree graphs [4,8].

Recent Update: Very recently, Adjiashvili et al. [1] showed a polynomial time
approximation scheme (PTAS) for the Max-FF problem, therefore settling the
approximability status. Their results, however, do not bound the LP integrality
gap. We believe that the integrality gap questions are interesting despite the
known approximation guarantees.

2 Preliminaries

A formal definition of the problem is as follows. We are given a graph G and
a source vertex s where the fire starts spreading. A strategy is described by
a collection of vertices U = {ut}n

t=1 where ut ∈ V (G) is the vertex picked by
firefighters at time t. We say that a vertex u ∈ V (G) is saved by the strategy U if
for each path P = (s = v0, . . . , vz = u) from s to u, we have vi ∈ {u1, . . . , ui} for
some i = 1, . . . , z. A vertex v not saved by U is said to be a burning vertex. The
objective of the problem is to compute U so as to maximize the total number of
saved vertices. Denote by OPT(G, s) the number of vertices saved by an optimal
solution.

When G is a tree, we think of G as being partitioned into layers L1, . . . , Lλ

where λ is the height of the tree, and Li contains vertices whose distance is
exactly i from s. Every strategy has the following structure.

Proposition 1. Consider the firefighters problem’s instance (G, s) where G is
a tree. Let U = {u1, . . . , un} be any strategy. Then there is another strategy
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U ′ = {u′
t} where u′

t belongs to layer t in G, and U ′ saves at least as many
vertices as U does.

We remark that this structural result holds only when G is a tree.

LP Relaxation: This paper focuses on the linear programming aspect of the
problem. For any vertex v, let Pv denote the (unique) path from s to v, and
let Tv denote the subtree rooted at v. A natural LP relaxation is denoted by
(LP-1): We have variable xv indicating whether v is picked by the solution, and
yv indicating whether v is saved.

(LP-1) (LP-2)

max
∑

v∈V

yv max
∑

v∈X
yv

∑

v∈Lj

xv ≤ 1 for each layer j
∑

v∈Lj

xv ≤ 1 for each layer j

yv ≤
∑

u∈Pv

xu for each v ∈ V yv ≤
∑

u∈Pv

xu for each v ∈ X

xv, yv ∈ [0, 1] for each v xv, yv ∈ [0, 1] for each v

Let LP(T, s) denote the optimal fractional LP value for an instance (T, s).
The integrality gap gap(T, s) of the instance (T, s) is defined as gap(T, s) =
OPT(T, s)/LP(T, s). The integrality gap of the LP is defined as infT gap(T, s).

Firefighters with Terminals: We consider a more general variant of the prob-
lem, where we are only interested in saving a subset X of vertices, which we call
terminals. The goal is now to maximize the number of saved terminals. An LP
formulation of this problem, given an instance (T, v,X ), is denoted by (LP-2).
The following lemma argues that these two variants are “equivalent” from the
perspectives of LP relaxation.

Lemma 1. Let (T,X , s), with |X | > 0, be an input for the terminal firefighters
problem that gives an integrality gap of γ for (LP-2), and that the value of the
fractional optimal solution is at least 1. Then, for any ε > 0, there is an instance
(T ′, s′) that gives an integrality gap of γ + ε for (LP-1).

We will, from now on, focus on studying the integrality gap of (LP-2).

3 Integrality Gap of (LP-2)

We first discuss the integrality gap of (LP-2) for a general tree. We use the
following combinatorial gadget.
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Gadget: A (M,k, δ)-good gadget is a collection of trees T = {T1, . . . , TM},
with roots r1, . . . , rM where ri is a root of Ti, and a subset S ⊆ ⋃

V (Ti) that
satisfy the following properties:

– (Uniform depth) We think of these trees as having layers L0, L1, . . . , Lh, where
Lj is the union over all trees of all vertices at layer j and L0 = {r1, . . . , rm}.
All leaves are in the same layer Lh.

– (LP-friendly) For any layer Lj , j ≥ 1, we have |S ∩Lj | ≤ k (and |S ∩L0| = 0).
Moreover, for any tree Ti and a leaf v ∈ V (Ti), the unique path from ri to v
must contain exactly one vertex in S.

– (Integrally adversarial) Let B ⊆ {r1, . . . , rM} be any subset of roots. Consider
a subset of vertices U = {uj}h

j=1 such that uj ∈ Lj . For ri ∈ B and a leaf
v ∈ Lh ∩ V (Ti), we say that v is (U ,B)-risky if the unique path from ri to v

does not contain any vertex in U . There must be at least (1− 1/k − δ) |B|
M |Lh|

vertices in Lh that are (U ,B)-risky, for all choices of B and U .

We say that vertices in S are special and all other vertices are regular.

Lemma 2. For any integers k ≥ 2, M ≥ 1, and any real number δ > 0, a
(M,k, δ)-good gadget exists. Moreover, the gadget contains at most (k/δ)O(M)

vertices.

We first show how to use this lemma to derive our final construction. The
proof of the lemma follows later.

Construction: Our construction proceeds in k phases, and we will define it
inductively. The first phase of the construction is simply a (1, k, δ)-good gad-
get. Now, assume that we have constructed the instance up to phase q. Let
l1, . . . , lMq

∈ Lαp
be the leaves after the construction of phase q that all lie in

layer αq. In phase q +1, we take the (Mq, k, δ)-good gadget (Tq, {rq},Sq); recall
that such a gadget consists of Mq trees. For each i = 1, . . . , Mq, we unify each
root ri with the leaf li. This completes the description of the construction.

Denote by S̄q =
⋃

q′≤q Sq′ the set of all special vertices in the first q phases.
After phase q, we argue that our construction satisfies the following properties:

– All leaves are in the same layer αq.
– For every layer Lj , |Lj ∩ S̄q| ≤ k. For every path P from the root to v ∈ Lαi

,
|P ∩ S̄q| = q.

– For any integral solution U , at least |Lαq
| ((1 − 1/k)q − qδ) vertices of Lαq

burn.

It is clear from the construction that the leaves after phase q are all in the
same layer. As to the second property, the properties of the gadget ensure that
there are at most k special vertices per layer. Moreover, consider each path P
from the root to some vertex v ∈ Lαq+1 . We can split this path into two parts
P = P ′ ∪ P ′′ where P ′ starts from the root and ends at some v′ ∈ Lαq

, and P ′′

starts at v′ and ends at v. By the induction hypothesis, |P ′ ∩ S̄q| = q and the
second property of the gadget guarantees that |P ′′ ∩ Sq+1| = 1.
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To prove the final property, consider a solution U = {u1, . . . , uαq+1}, which
can be seen as U ′ ∪ U ′′ where U ′ = {u1, . . . , uαq

} and U ′′ = {uαq+1, . . . , uαq+1}.
By the induction hypothesis, we have that at least ((1 − 1/k)q − qδ) |Lαq

| ver-
tices in Lαq

burn; denote these burning vertices by B. The third property of the
gadget will ensure that at least (1 − 1/k − δ) |B|

Mq
|Lαq+1 | vertices in Lαq+1 must

be (U ′′,B)-risky. For each risky vertex v ∈ Lαq+1 , a unique path from the root
to v′ ∈ B does not contain any vertex in U ′, and also the path from v′ to v
does not contain a vertex in U ′′ (due to the fact that it is (U ′′,B)-risky.) This
implies that such vertex v must burn. Therefore, the fraction of burning vertices
in layer Lαq+1 is at least (1−1/k − δ)|B|/Mq ≥ (1−1/k − δ)((1−1/k)q − qδ), by
induction hypothesis. This number is at least (1−1/k)q+1−(q+1)δ, maintaining
the invariant.

After the construction of all k phases, the leaves are designated as the termi-
nals X . Also, Mq+1 ≤ (k/δ)2Mq , which means that, after k phases, Mk is at most
a tower function of (k/δ)2, that is, (k/δ)2(k/δ)···

with k−1 such exponentiations.
The total size of the construction is

∑
q(k/δ)2Mq ≤ (k/δ)2Mk = O(Mk+1).

For an example construction (k = 2), refer to the full version.

Theorem 2. A fractional solution, that assigns xv = 1/k to each special vertex
v, saves every terminal. On the other hand, any integral solution can save at
most a fraction of 1 − (1 − 1/k)k + ε.

3.1 Proof of Lemma 2

We now show that the (M,k, δ)-good gadget exists for any value of M ∈ N,
k ∈ N, k ≥ 2 and δ ∈ R>0. We first describe the construction and then show
that it has the desired properties.

Construction: Throughout the construction, we use a structure which we call
spider. A spider is a tree in which every node except the root has at most one
child. If a node has no children (i. e. a leaf), we call it a foot of the spider. We
call the paths from the root to each foot the legs of the spider.

Let D = 
4/δ�. For each i = 1, . . . , M , the tree Ti is constructed as follows.
We have a spider rooted at ri that contains kDi−1 legs. Its feet are in Di−1

consecutive layers, starting at layer αi = 1 +
∑

j<i Dj−1; each such layer has
k feet. Denote by S(i) the feet of these spiders. Next, for each vertex v ∈ S(i),
we have a spider rooted at v, having D2M−i+1 feet, all of which belong to layer
α = 1+

∑
j≤M Dj−1. The set S is defined as S =

⋃M
i=1 S(i). This concludes the

construction. We will use the following observation:

Observation 1. For each root ri, the number of leaves of Ti is kD2M .

Analysis: We now prove that the above gadget is (M,k, δ)-good. The construc-
tion ensures that all leaves are in the same layer Lα.

The second property also follows obviously from the construction: For i �= i′,
we have that S(i) ∩ S(i′) = ∅, and that each layer contains exactly k vertices
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from S(i). Moreover, any path from ri to the leaf of Ti must go through a vertex
in S(i).

The third and final property is established by the following two lemmas.

Lemma 3. For any ri ∈ B and any subset of vertices U = {uj}h
j=1 such that

uj ∈ Lj, a fraction of at least (1 − 1/k − 2/D) of S(i) are (U ,B)-risky.
Lemma 4. Let v ∈ S(i) that is (U ,B)-risky. Then at least (1− 2/D) fraction of
descendants of v in Lα must be (U ,B)-risky.

Combining the above two lemmas, for each ri ∈ B, the fraction of leaves of
Ti that are (U ,B)-risky are at least (1−1/k−2/D)(1−2/D) ≥ (1−1/k−4/D).
Therefore, the total number of such leaves, over all trees in T , are (1− 1/k − δ)
|B||Lα|/M .

We extend the construction to other settings in the full version.

4 Hartke’s Constraints

Due to the integrality gap result in the previous section, there is no hope to
improve the best known algorithms via the canonical LP relaxation. Hartke [12]
suggested adding the following constraints to narrow down the integrality gap
of the LP.

∑

u∈Pv∪(Tv∩Lj)

xu ≤ 1 for each vertex v ∈ V (T ) and layer Lj below the layer of v

We write the new LP with these constraints below:

(LP’)

max
∑

v∈V

yv

∑

u∈Pv∪(Tv∩Lj)

xu ≤ 1 for each layer j below vertex v

yv ≤
∑

u∈Pv

xu for each v ∈ V

xv, yv ∈ [0, 1] for each v

Proposition 2. Given the values {xv}v∈V (T ) that satisfy the first set of con-
straints, then the solution (x, y) defined by yv =

∑
u∈Pv

xv is feasible for (LP’)
and at least as good as any other feasible (x, y′).

In this section, we study the power of this LP and provide three evidences
that it may be stronger than (LP-1).
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4.1 New Properties of Extreme Points

In this section, we show that Finbow et al. tractable instances [11] admit a
polynomial time exact algorithm via (LP’) (in fact, any optimal extreme point
for (LP’) is integral.) In contrast, we show that (LP-1) contains an extreme point
that is not integral.

We first present the following structural lemma.

Lemma 5. Let (x,y) be an optimal extreme point for (LP’) on instance T rooted
at s. Suppose s has two children, denoted by a and b. Then xa, xb ∈ {0, 1}.

Finbow et al. Instances: In this instance, the tree has degree at most 3 and
the root has degree 2. Finbow et al. [11] showed that this is polynomial time
solvable.

Theorem 3. Let (T, s) be an input instance where T has degree at most 3 and
s has degree two. Let (x, y) be a feasible fractional solution for (LP’). Then there
is a polynomial time algorithm that saves at least

∑
v∈V (T ) yv vertices.

Bad Instance for (LP-1): We show in Fig. 1 a Finbow et al. instance as well
as a solution for (LP-1) that is optimal and an extreme point, but not integral.

ba

dc

Fig. 1. Instance with a non-integral extreme point for (LP-1). Gray vertices: xv = 1/2;
otherwise: xv = 0.

4.2 Rounding 1/2-Integral Solutions

We say that the LP solution (x, y) is (1/k)-integral if, for each v, we have xv =
rv/k for some integer rv ∈ {0, . . . , k}. By standard LP theory, one can assume
that the LP solution is (1/k)-integral for some polynomially large integer k.

In this section, we consider the case when k = 2 (1/2-integral LP solutions).
From Theorem2, (LP-1) is not strong enough to obtain a 3/4+ ε approximation
algorithm, for any ε > 0. Here, we show a 5/6 approximation algorithm based
on rounding (LP’).

Theorem 4. Given a solution (x, y) for (LP’) that is 1/2-integral, there is a
polynomial time algorithm that produces a solution of cost 5/6

∑
v∈V (T ) yv.

We believe that the extreme points in some interesting special cases will be
1/2-integral.
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Algorithm’s Description: Initially, U = ∅. Our algorithm considers the layers
L1, . . . , Ln in this order. When the algorithm looks at layer Lj , it picks a vertex
uj and adds it to U , as follows. Consider Aj ⊆ Lj , where Aj = {v ∈ Lj : xv > 0}.
Let A′

j ⊆ Aj contain vertices v such that there is no ancestor of v that belongs
to Aj′ for some j′ < j, and A′′

j = Aj \ A′
j , i.e. for each v ∈ A′′

j , there is another
vertex u ∈ Aj′ for some j′ < j such that u is an ancestor of v. We choose the
vertex uj based on the following rules:

– If there is only one v ∈ Aj , such that v is not saved by U so far, choose uj = v.
– Otherwise, if |A′

j | = 2, pick uj at random from A′
j with uniform probability.

Similarly, if |A′′
j | = 2, pick uj at random from A′′

j .
– Otherwise, we have the case |A′

j | = |A′′
j | = 1. In this case, we pick vertex uj

from A′
j with probability 1/3; otherwise, we take from A′′

j .

4.3 Ruling Out the Gap Instances in Sect. 3

In this section, we show that the integrality gap instances for (LP-1) presented
in the previous section admit a better than (1 − 1/e) approximation via (LP’).
To this end, we introduce the concept of well-separable LP solutions and show
an improved rounding algorithm for solutions in this class.

Let η ∈ (0, 1). Given an LP solution (x, y) for (LP-1) or (LP’), we say that a
vertex v is η-light if

∑
u∈Pv\{v} xu < η; if a vertex v is not η-light, we say that

it is η-heavy. A fractional solution is said to be η-separable if for each layer j,
either all vertices in Lj are η-light, or they are all η-heavy. For an η-separable LP
solution (x, y), each layer Lj is either an η-light layer that contains only η-light
vertices, or η-heavy layer that contains only η-heavy vertices.

Observation 2. The LP solution presented in Sect. 3 is η-separable for all val-
ues of η ∈ {1/k, 2/k, . . . , 1}.
Theorem 5. If the LP solution (x, y) is η-separable for some η, then there
is an efficient algorithm that produces an integral solution of cost (1 − 1/e +
f(η))

∑
v yv, where f(η) is some function depending only on η.

Algorithm: Let T be an input tree, and (x, y) be a solution for (LP’) on T
that is η-separable for some constant η ∈ (0, 1). Our algorithm proceeds in two
phases. In the first phase, it performs randomized rounding independently for
each η-light layer. Denote by V1 the (random) collection of vertices selected
in this phase. Then, in the second phase, our algorithm performs randomized
rounding conditioned on the solutions in the first phase. In particular, when
we process each η-heavy layer Lj , let L̃j be the collection of vertices that have
not yet been saved by V1. We sample one vertex v ∈ L̃j from the distribution{

xv

x(L̃j)

}

v∈L̃j

. Let V2 be the set of vertices chosen from the second phase. This

completes the description of our algorithm.
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4.4 Integrality Gap for (LP’)

In this section, we present an instance where (LP’) has an integrality gap of
5/6 + ε, for any ε > 0. Interestingly, this instance admits an optimal 1

2 -integral
LP solution.

Fig. 2. Gadget used to get 5/6 integrality gap. Special vertices are colored gray.

Gadget: The motivation of our construction is a simple gadget represented in
Fig. 2. In this instance, vertices are either special (colored gray) or regular. This
gadget has three properties of our interest:

– If we assign an LP-value of xv = 1/2 to every special vertex, then this is a
feasible LP solution that ensures yu = 1 for every leaf u.

– For any integral solution U that does not pick any vertex in the first layer of
this gadget, at most 2 out of 3 leaves of the gadget are saved.

– Any pair of special vertices in the same layer do not have a common ancestor
inside this gadget.

Our integrality gap instance is constructed by creating partially overlapping
copies of this gadget. We describe it formally below.

Construction: The first layer of this instance, L1, contains 4 nodes: two special
nodes, which we name a(1) and a(2), and two regular nodes, which we name b(1)
and b(2). We recall the definition of spider from Sect. 3.1.

Let α = 5 
1/ε�. The nodes b(1) and b(2) are the roots of two spiders. Specif-
ically, the spider Z1 rooted at b(1) has α feet, with one foot per layer, in con-
secutive layers L2, . . . , Lα+1. For each j ∈ [α], denote by b′(1, j), the jth foot of
spider Z1. The spider Z2, rooted at b(2), has α2 feet, with one foot per layer, in
layers Lα+2, . . . , Lα2+α+1. For each j ∈ [α2], denote by b′(2, j), the jth foot of
spider Z2. All the feet of spiders Z1 and Z2 are special vertices.

For each j ∈ [α], the node b′(1, j) is also the root of spider Z ′
1,j , with α2

feet, lying in the α2 consecutive layers L2+α+jα2 , . . . , L1+α+(j+1)α2 (one foot
per layer). For j′ ∈ [α2], let b′′(1, j, j′) denote the j′-th foot of spider Z ′

1,j that
lies in layer L1+α+jα2+j′ . Notice that we have α3 such feet of these spiders{
Z ′
1,j

}α

j=1
lying in layers L2+α+α2 , . . . , L1+α+α2+α3 . Similarly, for each j ∈ [α2],

the node b′(2, j) is the root of spider Z ′
2,j with α2 feet, lying in consecutive layers
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L2+α+α3+jα2 , . . . , L1+α+α3+(j+1)α2 . We denote by b′′(2, j, j′) the j′-th foot of this
spider.

The special node a(1) is also the root of spider W1 which has α+α3 feet: The
first α feet, denoted by a′(1, j) for j ∈ [α], are aligned with the nodes b′(1, j),
i.e. for each j ∈ [α], the foot a′(1, j) of spider W1 is in the same layer as the foot
b′(1, j) of Z1. For each j ∈ [α], j′ ∈ [α2], we also have a foot a′′(1, j, j′) which
is placed in the same layer as b′′(1, j, j′). Similarly, the special node a(2) is the
root of spider W2 having α2 +α4 feet. For j ∈ [α2], spider W2 has a foot a′(2, j)
placed in the same layer as b′(2, j). For j ∈ [α2], j′ ∈ [α2], W2 also has a foot
a′′(2, j, j′) in the layer of b′′(2, j, j′). All the feet of both W1 and W2 are special
vertices.

Finally, for i ∈ {1, 2}, and j ∈ [αi], each node a′(i, j) has α5−i children,
which are leaves of the instance. For j ∈ [α], j′ ∈ [α2], the nodes b′′(i, j, j′),
a′′(i, j, j′) have α3−i children each which are also leaves of the instance. The set
of terminals X is simply the set of leaves.

Proposition 3. We have |X | = 6α5. Moreover, (i) the number of terminals
in subtrees Ta(1) ∪ Tb(1) is 3α5, and (ii) the number of terminals in subtrees
Ta(2) ∪ Tb(2) is 3α5.

Fractional Solution: Our construction guarantees that any path from root
to leaf contains 2 special vertices: For a leaf child of a′(i, j), its path towards
the root must contain a′(i, j) and a(i). For a leaf child of a′′(i, j, j′), its path
towards the root contains a′′(i, j, j′) and a(i). For a leaf child of b′′(i, j, j′), the
path towards the root contains b′′(i, j, j′) and b′(i, j).

Lemma 6. For each special vertex v, for each layer Lj below v, the set Lj ∩ Tv

contains at most one special vertex.

Notice that, there are at most two special vertices per layer. We define the
LP solution x, with xv = 1/2 for every special vertex v and xv = 0 for all other
vertices. It is easy to verify that this is a feasible solution.

Integral Solution: We argue that any integral solution cannot save more than
(1 + 5/α)5α5 terminals. The following lemma is the key to our analysis.

Lemma 7. Any integral solution U : U ∩ {a(1), b(1)} = ∅ saves at most (1 +
5/α)5α5 terminals.

Lemma 8. Any integral solution U : U ∩ {a(2), b(2)} = ∅ saves at most (1 +
5/α)5α5 terminals.

Since nodes a(1), a(2), b(1), b(2) are in the first layer, it is only possible to
save one of them. Therefore, either Lemma 7 or Lemma 8 apply, which concludes
the analysis.
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5 Conclusion and Open Problems

In this paper, we settled the integrality gap question for the standard LP relax-
ation. Our results ruled out the hope to use the canonical LP to obtain better
approximation results. While a recent paper settled the approximability status
of the problem [1], the question whether an improvement over (1 − 1/e) can be
done via LP relaxation is of independent interest. We provide some evidences
that Hartke’s LP is a promising candidate for doing so. Another interesting ques-
tion is to find a more general graph class that admits a constant approximation
algorithm. We believe that this is possible for bounded treewidth graphs.
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Abstract. We consider the following semi-infinite linear programming
problems: max (resp., min) cT x s.t. yT Aix + (di)T x ≤ bi (resp.,
yT Aix + (di)T x ≥ bi), for all y ∈ Yi, for i = 1, . . . , N , where Yi ⊆ R

mi
+

are given compact convex sets and Ai ∈ R
mi×n
+ , b = (b1, . . . , bN ) ∈ R

N
+ ,

di ∈ R
n
+, and c ∈ R

n
+ are given non-negative matrices and vectors. This

general framework is useful in modeling many interesting problems. For
example, it can be used to represent a sub-class of Robust optimization
in which the coefficients of the constraints are drawn from convex uncer-
tainty sets Yi, and the goal is to optimize the objective function for the
worst-case choice in each Yi. When the uncertainty sets Yi are ellipsoids,
we obtain a sub-class of Second-Order Cone Programming. We show how
to extend the multiplicative weights update method to derive approxi-
mation schemes for the above packing and covering problems. When
the sets Yi are simple, such as ellipsoids or boxes, this yields substan-
tial improvements in the running time over general convex programming
solvers.

Keywords: Multiplicative weights update · Robust optimization ·
Second-order cone programming · Packing and covering

1 Introduction

1.1 Problem Definition and Related Work

We consider the following semi-infinite linear programming problems:

max
x∈Rn

+

cT x s.t. yT Aix + (di)T x ≤ bi,∀y ∈ Yi, i ∈ [N ], (Packing)

min
x∈Rn

+

cT x s.t. yT Aix + (di)T x ≥ bi,∀y ∈ Yi, i ∈ [N ], (Covering)

c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 78–91, 2017.
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where, for i = 1, . . . , N , Yi ⊆ R
mi
+ are compact convex sets, b := (b1, . . . , bN ) ∈

R
N
+ , di, c ∈ R

n
+, are non-negative vectors, and Ai ∈ R

mi×n
+ are non-negative

matrices. As we shall see, the above formulation is general enough to capture
many interesting problems. For example, it can be used to represent the class
of robust packing and covering linear programs in which the coefficients of the
constraints are drawn from convex uncertainty sets Yi. A particularly important
case is when the sets Yi are ellipsoids, in which case we obtain a sub-class of
Second-Order Cone Programming (SOCP). Robust optimization and SOCP are
important tools in many areas such as machine learning [28], portfolio optimiza-
tion [14], supply chain management [5], and many other applications [4].

While there is extensive literature on solving robust optimization problems
and SOCP, mainly based on interior point methods [1,16], most (if not all) of
the existing algorithms do not take advantage of the special structure of the con-
straints in (Packing) and (Covering), which is implied by the non-negativity
of these constraints. Recently, there has been growing interest in finding sim-
pler and faster approximation algorithms for convex optimization problems, sac-
rificing the dependence on the approximation accuracy ε from polylog(1ε ) to
poly(1ε ) in exchange of efficiency in terms of other input parameters; see, e.g.,
[2,12,13,17,18,21]. One of the simplest and most widely used methods is the
multiplicative weights update (MWU) method, which has its roots in game the-
ory [7,27], and was rediscovered more formally in the machine learning com-
munity [11,22], and in several other areas. It can be thought of as a learning
algorithm which, at a very high level, works by associating to each constraint a
non-negative weight that represents how violated the constraint is. Each itera-
tion of the method uses the current set of weights to decide which variables to
update, and increases/decreases the weights by multiplicative factors to reflect
the change. This method has been applied, for e.g., to linear, semidefinite and
convex programming (e.g., [2,13,18–21]), game theory (e.g. [11]), and geometry
(e.g. [6]). Recently, multiplicative weight update methods have been reframed
as a specific instance of a more general method known as mirror descent [8,25],
which is a first-order iterative method for minimizing a convex function over a
convex, compact set. This approach is inspired by traditional gradient descent
methods, and achieves poly(1ε ) oracle complexity. Mirror descent is motivated
by the need to maintain almost-dimension-free oracle complexities in situations
where bounds on the subgradients of the function being minimized are with
respect to arbitrary norms; this is in contrast to gradient descent, which achieves
this guarantee only with Euclidean norm bounds. For example, standard imple-
mentations of multiplicative weight updates on positive LPs can be derived from
mirror descent using l∞-norm bounds on the subgradients over the simplex.
Recently, an algorithm that involves a linear coupling of gradient and mirror
descent has been used to derive accelerated methods that perform similarly to
Nesterov’s accelerated gradient descent for smooth convex functions (i.e., whose
gradient is Lipschitz) [26]. A variant of this approach was used to design Õ(1/ε),
width-independent algorithms for packing and covering LPs [29,30].
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1.2 Our Contribution and Comparison with Previous Work

We show how to extend the MWU method to solve (Packing) and (Covering).
Our algorithm can be thought of as an extension of the work by Garg and
Könemann [13] to handle infinitely-many constraints. The novelty of our app-
roach applied to this problem compared to the finite-constraint case lies in two
key points: (a) In the finite-constraint case, it is straightforward to deduce that
if the potential function (a sum of non-negative components) is bounded, then
each component is bounded by the same amount. In the infinite-constraint case,
deducing a bound on the integrand given a bound on the potential function (an
integral) is more involved (Lemma 4). (b) Bounding the number of iterations of
the algorithm relies on arguments tracking what portion of a given constraint
set has satisfied the corresponding constraint in any given iteration (Lemma5).

Our approach has the following features: (I) Oracle-based: Let m :=
maxi mi, U := maxi,j aij , and assume that each set Yi contains a ball of
radius ri > 0 and is contained in a ball of radius Ri. In particular, the sets
Yi are full-dimensional in their respective spaces. In what follows, we will
denote R := max{Ri,

1
ri

: i ∈ [N ]}. For the packing (resp., covering) prob-
lem, the algorithm is guaranteed to terminate with an ε-approximate solution
in1 Õ(m2N

ε2 log(R+1)) (resp., Õ(m3N
ε2 ) log2(RUz∗ +1)) iterations, each requiring

calls to oracle MaxVec (resp., MinVec) that computes the argument of the
maximum (resp., minimum) over the sets Yi, the oracle Integral that computes
integrals over Yi with respect to a log-concave function, and an oracle MinCol
(resp., MaxCol) to compute the minimum (resp., maximum) component of the
vectors wT Ai for a given non negative vector w. Thus, the running time of our
algorithms are only linear in the dimension n, and hence become attractive when
m is much smaller than n. (II) Dimension-independent: We do not need the
matrices Ai to be explicitly given, as long as the oracle MaxVec (resp., Min-
Vec) can be implemented efficiently. In particular, our algorithms are superior
to known methods in the case when there is an exponential number of variables
(see Sect. 2.2 for an application). (III) Width-independent: Our algorithms
provide relative approximation guarantees, and the running time depends only
polylogarithmically on R, U , and z∗. (IV) Practical: For the cases of SOCP, and
robust packing and covering linear programs with simple uncertainty sets such as
balls, the maximization/minimization oracles MaxVec/MinVec as well as the
integration oracle Integral are very easy to compute and hence each iteration
can be implemented to run very fast. We observe furthermore experimentally
that our bounds on the number of iterations are very conservative, and typically
the number of iterations to reach the required accuracy can be much smaller.
This yields substantial improvements in running time over the state-of-the-art
SOCP solvers.

The only algorithms we are aware of for solving general SOCP with theo-
retical guarantees on the running time are via interior-point methods and take
O(n4.5 log ε−1) time to compute an ε-approximate solution [15,16]. Note that

1 Õ(·) suppresses polylogarithmic factors that depend on m, N , and 1
ε
.
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even though there are recent improvements via matrix MWU algorithms for
solving positive SDPs [2,19,30], those techniques cannot be (directly) applied to
SOCP since the reduction may lead to non-positive SDPs.

We also note here that recent techniques utilizing the coupling of gradient and
mirror descent for solving packing and covering LPs [30] do not seem to extend
in a straightforward manner to the case when there are (uncountably) infinitely
many constraints. In addition, those methods generally assume the availability
of a sampling oracle that can pick uniformly at random from the set of variables
(as opposed to an optimization oracle as described in (I) above), which can be a
restrictive assumption for some applications. Adapting those techniques to such
problems is a potential research direction.

For robust optimization, an oracle-based algorithm was given in [3] which
finds an ε-approximate solution after O(F (DG+F )/ε2) calls to an approximate
optimization oracle similar to MinCol/MaxCol, where F := ‖b‖2, G is an
upper bound on ‖Aix‖2 over all feasible x, and D is the maximum diameter of
the sets Yi. However, since this algorithm is designed to work for a more general
class than (Packing) and (Covering), it is not width-independent. It is also
worth noting that an extension of the MWU for special convex programs was
given in [20]. However, this extension essentially reduces the problem with many
convex constraints into one with a single convex constraint and hence is not
useful to solve (Packing) and (Covering) (except for reducing N to 1).

The rest of this paper is organized as follows. In the next section we briefly
explain the application of (Packing) and (Covering) to robust optimization
and SOCP. In Sect. 3 we describe the packing algorithm and analyze its perfor-
mance. In Sect. 4, we describe briefly the covering algorithm. Most proofs are
omitted due to lack of space.

2 Applications

2.1 Robust Optimization

Consider the following linear programming problem:

min cT x s.t. (ai)T x ≤ bi,∀i ∈ [N ] x ≥ 0, (1)

where c, ai, bi ≥ 0. Assume that the first mi components of the row vector ai are
drawn from an uncertainty set Yi ⊆ R

mi
+ . It is required to solve the LP for the

worst-case choice of row vectors. We can rewrite the above constraint in (1) as

yT
[
Imi

0
]
x +

[
0 (āi)T

]
x ≤ bi,∀y ∈ Yi, i ∈ [N ],

where Imi
is the mi × mi-identity matrix, and āi is the vector consisting of the

last n − mi components of ai. Similarly, we can consider the covering version
of (1).

Typical examples of uncertainty sets include:

– Ellipsoidal uncertainty: Yi = E(zi,Di) := {y ∈ R
mi : (y − zi)T D−2

i (y − zi) ≤
1}, for given positive definite matrices Di ∈ R

mi×mi and vectors zi ∈ R
mi .
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– Box uncertainty: Yi = B(zi, ρi) := {y ∈ R
mi : ‖y − zi‖1 ≤ ρi}, for given

vectors zi ∈ R
mi and real numbers ρi > 0.

– Polyhedral uncertainty: Yi := {y ∈ R
mi : Diy ≤ wi}, for some Di ∈ R

ri×mi

and wi ∈ R
ri .

When the mi’s are small compared to n and the uncertainty set is simple, e.g.,
a ball, the integral oracle can be implemented efficiently, yielding significantly
faster algorithms than general convex programming solvers.

2.2 Second-Order Cone Programming

Consider a second-order cone programming problem:

max
x

cT x s.t. ‖Aix‖ + (di)T x ≤ bi,∀i ∈ [N ] x ≥ 0, (SOCP)

where c, di ∈ R
n
+, and Ai ∈ R

mi×n
+ . The constraint can be rewritten as:

max
y∈Yi

yT Aix + dT
i x ≤ bi,∀i ∈ [N ], where Yi := {y ∈ R

mi
+ : ‖y‖ ≤ 1}, or

yT Aix + dT
i x ≤ bi,∀y ∈ Yi, i ∈ [N ]. This formulates (SOCP) as a special

case of (Packing), and implies that we can get much faster (approximation)
algorithms, compared to general SOCP solvers, when m is small compared to n.

3 The Packing Problem

We say that x ∈ R
n
+ is an ε-approximate solution for (Packing) if cT x ≥

(1 − ε)z∗. For simplicity of presentation, we assume without loss of generality
that b = 1 and c = 1, where 1 is the vector of all ones of appropriate dimension.

3.1 Required Oracles

We assume the availability of the following oracles:

– MinCol(w, ε): Given w ∈ R
n
+ and ε > 0, find j ∈ [n] such that wT1j ≤

(1 + ε)minj′∈[n] w
T1j′ .

– MaxVec(w, ε,Y): Given a closed, bounded and convex Y ⊆ R
m
+ , w ∈ R

m
+ and

ε > 0, find y ∈ Y such that wT y ≥ (1 − ε)maxy′∈Y wT y′.
– Integral(p, f, ε, σ,Y): Given a closed, bounded and convex Y ⊆ R

m
+ , a log-

concave2 function p : Y → R+, a function f : Y → R
k, and ε, σ ∈ [0, 1), find

f̄ ∈ R
k such that

Pr

[ ∣
∣
∣
∣ f̄ −

∫

Y

p(y)f(y)dy

∣
∣
∣
∣ ≤ ε ·

∫

Y

p(y)f(y)dy

]

≥ 1 − σ.

We will use Integral(· · · ) only with f(y) := 1 or f(y) := y which implies that
(each component of) f(y)p(y) is also log-concave whenever p(y) is.
2 That is, log p is concave.
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3.2 Algorithm for Packing

The algorithm is shown in Algorithm1. For i ∈ [N ] and y ∈ Yi, we define gi(y) :=
AT

i y+di. Recall m := maxi∈[N ]mi. At a high level, the algorithm maintains a set
of weights pi(y, t) := (1 + ε)gi(y)

T x(t), for i ∈ [N ] and y ∈ Yi. In each iteration t,
it computes (approximately) the integral w:=

∑
i

∫
Yi

pi(y, t)gi(y)dy and calls the
MinCol oracle to find a column j minimizing wT1j . Then the j ’th component
of x is increased by δ(t) ≈ 1/maximaxy∈Yi

gi(y)T1j . The algorithm iterates until
M(t) ≈ maximaxy∈Yi

gi(y)T x(t) becomes sufficiently large; more precisely, equal
to some parameter T which is fixed appropriately.

3.3 Analysis of Packing Algorithm

Towards showing that the algorithm terminates with an ε-approximate solution
for (Packing), we define the following potential function: Φ(t) :=

∑
iΦi(t) where

Φi(t) :=
∫

Yi
pi(y, t)dy.

Outline of the Analysis. We analyze the algorithm in three parts. In the first
part, we bound the potential increase from one iteration to the next (Lemma1),
and use this to relate the potential after t iterations to the initial potential and
the ratio of the value of the current solution to z∗ (Lemmas 2 and 3). However,
bounding Φ(t) does not directly imply that we arrive at an ε-approximate solu-
tion, due to the fact that a definite integral of a non-negative function over a
given convex region Yi being bounded by some γ does not imply that the func-
tion at any point in Yi is also bounded by γ. In the second part (Lemma 4),
we overcome this difficulty by showing that, due to the convexity of the sets
Yi, the value at a given point cannot be large unless there is a sufficiently large
fraction of the volume of the set Yi over which the integral is also large. (This
extends a lemma proved by some of the authors in previous work [10]). We use
this to show in Sect. 3.5 that the algorithm converges to an ε-approximate solu-
tion, assuming the existence of suitable parameters satisfying certain conditions,
which are shown to exist in Sect. 3.6. In the third part of the analysis, we bound
the number of iterations by showing that the algorithm makes sufficient progress
in each iteration, by satisfying constraints corresponding to a large fraction of
the volume of one of the sets Yi.

The following three lemmas are obtained by standard analysis of MWU meth-
ods (see, e.g., [13]) with “

∑
”′s replaced by “

∫
”′s.

Lemma 1. Φ(t + 1) ≤ Φ(t) exp
(
εδ(t)

∑
i

∫
Yi

pi(y,t)
Φ(t) gi(y)T1j(t)dy

)
.

Define ε̄ := (1+ε2)(1+ε1)
1−ε1

.

Lemma 2. Let κ(t) :=
t−1∑

t′=0

δ(t′)
∑

i

∫
Yi

pi(y,t′)
Φ(t′) gi(y)T1j(t′)dy. Then with proba-

bility at least 1 − 2Nσt, κ(t) ≤ (1+ε̄)1T x(t)
z∗ for all t.
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Data: Matrices Ai ∈ R
mi×n
+ , di ∈ R

n
+, sets Yi ⊆ R

mi , for i ∈ [N ], and an
approximation accuracy ε ∈ (0, 1), probability σ ∈ (0, 1).

Result: An O(ε)-approximate solution x̂ for (Packing).
1 ε1 = ε2 = ε3 ← ε

2 V ← maxi max{2πm/2Rm
i , 1

πm/2rm
i /(2m)m }

3 α ← 2
log(1+ε)

(
1 + log N + m log 9

ε2(1−ε3)2
+ log V

)

4 T ← 1
ε2

(α log(1 + ε) + log N + log V )
5 t ← 0; x(0) ← 0, ∀i ∈ [N ]; M(0) ← 0
6 while M(t) < T do
7 for i ∈ [N ] do

8 pi(y, t) ← (1 + ε)gi(y)
T x(t)

9 ȳi(t) ←Integral(pi(y, t), f(y) := y, ε1, σ, Yi)

10 φ̄i(t) ←Integral(pi(y, t), f(y) := 1, ε1, σ, Yi)

11 j(t) ←MinCol(
∑

i(A
T
i ȳi(t) + φ̄i(t)di), ε2)

12 for i ∈ [N ] do
13 ŷi(t) ← MaxVec(Ai1j(t), ε3, Yi)

14 δ(t) ← 1−ε3
maxi gi(ŷi(t))T 1j(t)

15 x(t + 1) ← x(t) + δ(t)1j(t)

16 for i ∈ [N ] do
17 ỹi(t + 1) ← MaxVec(Aix(t + 1), ε3, Yi)

18 M(t + 1) ← maxi gi(ỹ
i(t + 1))T x(t + 1)

19 t ← t + 1

20 x̂ = (1−ε3)x(t)
M(t)

Output: x̂

Algorithm 1: The packing algorithm

Lemma 3. For all t, with probability at least 1 − 2Nσt, it holds that

Φ(t) ≤ Φ(0) exp
(

ε(1 + ε̄)1T x(t)
z∗

)
. (2)

The next step is to bound each term under the integral in Φ(t), given that
this sum of integrals is bounded as in (2). For this we slightly modify a lemma
in [10].

Lemma 4. Suppose Φ(t) ≤ γ for some γ > 0 and some iteration t of the algo-
rithm. Also, suppose that for given T > 0 and ε3 > 0 there exists an α, such
that

0 < α < α0, (3)

(1 + ε)α/2 min
i

{(
α

α0

)mi

Φi(0)
}

> 1, (4)

where α0 := 2T+1−ε3
(1−ε3)2

. Then (1 + ε)gi(y)
T x(t) ≤ γ(1 + ε)α for all y ∈ Yi, for all

i ∈ [N ].
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3.4 Bounding the Number of Iterations

Lemma 5. With probability at least 1− 2Nσtf , Algorithm1 terminates in tf ≤
2NT

(1−ε3)2(1−λ) iterations, where σ is the probability parameter used in the oracle
Integral(· · · ).

∈ arg maxy∈Yi yTAi1j(t)

Ai1j(t)

O
yTAi1j(t) = (1 − λ) maxz∈Yi zTAi1j(t)

V i
A V i

B

V i
B

V i
C

V i
D

Yi

Fig. 1. Illustration of Lemma 5

Proof. Consider iteration t of the algorithm. Let Hi(t, λ) be the hyperplane
{y ∈ R

mi : yT Ai1j(t) = (1 − λ)maxz∈Yi
zT Ai1j(t)}. Define Ci(t) to be the cone

whose apex is (one of the points in) arg maxz∈Yi
zT Ai1j(t), and one of whose

cross-sections is Hi(t, λ) ∩ Yi; i.e., the portion of the hyperplane lying in Yi.
Finally, let Ĥi(t, λ) = {y ∈ Yi : yT Ai1j(t) ≥ (1 − λ)maxz∈Yi

zT Ai1j(t)}.
We notate the following volumes (illustrated in Fig. 1) as:

V i
A = vol(Ci(t) ∩ Ĥi(t, λ)); V i

B = vol(Yi \ Ci(t));

V i
C = vol(Yi \ Ĥi(t, λ)); V i

D = vol(Ci(t) ∩ Ĥi(t, 1) \ Yi).

By similarity, V i
A = λmi(V i

A + V i
C + V i

D). Thus,

V i
A =

λmi

1 − λmi
(V i

C + V i
D).

Now,

V i
A + V i

B ≥ V i
A =

λmi

1 − λmi
(V i

C + V i
D) ≥ λmi

1 − λmi
V i

C .
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Therefore (1 − λmi)(V i
A + V i

B) ≥ λmiV i
C . Adding λmi(V i

A + V i
B) to both sides,

we have:

V i
A + V i

B ≥ λmi(V i
A + V i

B + V i
C) =

(
1 − 1

e

) mi
2m

(V i
A + V i

B + V i
C).

For mi ≥ 1,
(
1 − 1

e

) mi
2m ≥ 1

2 . Thus, for all i and t,

vol(Ĥi(t, λ)) ≥ 1
2
vol(Yi). (5)

Fix i(t) ∈ arg maxi maxz∈Yi
gi(z)T1j(t) for each t = 0, 1, 2 . . . Note that for any i,

gi(y)T Δx(t) :=gi(y)T [x(t+1)−x(t)]=δ(t)gi(y)T1j(t)≥
(1 − ε3)gi(y)T1j(t)

maxz∈Yi(t) gi(t)(z)T1j(t)
.

If y ∈ Ĥi(t)(t, λ) then yT Ai(t)1j(t) ≥ (1 − λ)maxz∈Yi(t) zT Ai(t)1j(t), and hence,
gi(t)(y)T1j(t) ≥ (1 − λ)maxz∈Yi(t) gi(t)(z)T1j(t). Thus,

y ∈ Ĥi(t)(t, λ) =⇒ gi(t)(y)T Δx(t) ≥ (1 − ε3)(1 − λ). (6)

Suppose for the sake of contradiction that tf > t0 := 2NT
(1−ε3)2(1−λ) . Then M(t0) <

T , implying that gi(y)T x(t0) < T
1−ε3

for all i and y ∈ Yi. For t′ = 0, 1, . . . , t0,
and y ∈ ∪iYi, define an indicator variable I(t′, y) that takes value 1 if and
only if y ∈ Ĥi(t′)(t′, λ). By (6), if y ∈ Yi and r(y) :=

∑
t′ I(t′, y) = |{t′ ∈

{0, 1, . . . , t0} : y ∈ Ĥi(t′)(t′, λ)}|, then gi(y)T x(t0) > (1 − ε3)(1 − λ)r(y), and
hence, r(y) < T

(1−ε3)2(1−λ) . It follows that

T

(1 − ε3)2(1 − λ)
vol(Yi) =

∫

Yi

T

(1 − ε3)2(1 − λ)
dy >

∫

Yi

r(y)dy

=
∫

Yi

∑

t′
I(t′, y)dy =

∑

t′

∫

Yi

I(t′, y)dy

=
∑

t′: i(t′)=i

∫

Ĥi(t′,λ)
dy =

∑

t′: i(t′)=i

vol(Ĥi(t′)(t′, λ))

≥
∑

t′: i(t′)=i

vol(Yi)
2

=
ti
2

vol(Yi),

where ti := |{t′ : i(t′) = i}|. Thus, we obtain t0 =
∑

i ti < 2NT
(1−ε3)2(1−λ) , a

contradiction. Thus, the algorithm terminates in 2NT
(1−ε3)2(1−λ) iterations.



A Multiplicative Weights Update Algorithm 87

3.5 Convergence to an ε-Approximate Solution

Lemma 6. Suppose (2) holds and T and α satisfy the hypothesis of Lemma 4.
If furthermore ε ≤ 1 and 3

T ≥ log Φ(0) + α log(1 + ε)
ε2

(7)

then Algorithm1 terminates with a (1−ε3)(1−2ε)
(1+ε̄) -approximate solution x̂(t) for

(Packing).

Proof. We set γ in Lemma 4 to Φ(0) exp
(

ε(1+ε̄)1T x(t)
z∗

)
to conclude that, for all

y ∈ Yi, all i ∈ [N ], and all t,

(1 + ε)gi(y)
T x(t) ≤ Φ(0) exp

(
ε(1 + ε̄)1T x(t)

z∗

)
(1 + ε)α.

∴ gi(y)T x(t) log(1 + ε) ≤ log Φ(0) + α log(1 + ε) +
ε(1 + ε̄)1T x(t)

z∗ .

Dividing by ε(1 + ε̄)M(t) and rearranging,

1T x(t)
z∗M(t)

≥ log(1 + ε)gi(y)T x(t)
ε(1 + ε̄)M(t)

− log Φ(0) + α log(1 + ε)
ε(1 + ε̄)M(t)

. (8)

Define i(t) ∈ [N ] and y(t) ∈ Yi(t) such that M(t) is set to gi(t)(y(t))T x(t) in step
18 of the algorithm. Using these particular i and y in (8), we get

1T x(t)
z∗M(t)

≥ log(1 + ε)
ε(1 + ε̄)

− log Φ(0) + α log(1 + ε)
ε(1 + ε̄)M(t)

.

Suppose the algorithm terminates after tf iterations. Then M(tf ) ≥ T (for T
predefined in step 4 of the algorithm). Then

1T x(tf )
z∗M(tf )

≥ log(1 + ε)
ε(1 + ε̄)

− log Φ(0) + α log(1 + ε)
ε(1 + ε̄)M(tf )

≥ log(1 + ε)
ε(1 + ε̄)

− log Φ(0) + α log(1 + ε)
ε(1 + ε̄)T

.

Since T ≥ log Φ(0)+α log(1+ε)
ε2 , we have:

1T x(tf )
z∗M(tf )

≥ 1
1 + ε̄

(
log(1 + ε)

ε
− ε

)
≥ 1 − 2ε

1 + ε̄

for ε ≤ 1. Thus, at the termination of the algorithm, the output x̂(t) = (1−ε3)x(tf )
M(tf )

is feasible by the definition of M(tf ) and achieves the required result.

3 Throughout, “log” denotes the natural logarithm.
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3.6 Existence of Suitable Parameters

Lemma 7. For any ε ∈ (0, 1), there exist α and

T = O

(
log N + m log Rm

ε

ε2

)

satisfying (3), (4) and (7).

Finally note that, according to Lemma2, the bound of Lemma 5 on the run-
ning time tf holds with probability at least 1−2Nσtf . Selecting σ small enough,
e.g., σ = 1

2mNtf
, gives us the final result for (Packing).

Theorem 1. For any ε > 0, there is an algorithm that computes, with probabil-
ity 1− o(1), an ε-approximate solution for (Packing) using Õ(m2N

ε2 log(R +1))
calls to the oracles MinCol(· · · ), Integral(· · · ) and MaxVec(· · · ).

4 The Covering Problem

We say that x ∈ R
n
+ is an ε-approximate solution for (Covering) if cT x ≤

(1 + ε)z∗.
In addition to the oracles Integral(· · · ) and MaxVec(· · · ), we assume the

availability of the following oracles:

– MaxCol(w, ε): Given w ∈ R
n
+ and ε > 0, find j ∈ [n] such that wT1j ≥

(1 − ε)maxj′∈[n] w
T1j′ .

– MinVec(w, ε,Y): Given a closed, bounded and convex Y ⊆ R
m
+ , w ∈ R

m
+ and

ε > 0, find y ∈ Y such that wT y ≤ (1 + ε)miny′∈Y wT y′.

The algorithm for (Covering) proceeds largely analogously to the case of
packing; see Algorithm 2. However, the analysis is much more complicated due
to the fact that we have to truncate the sets Yi into their active subsets Yi(t)
in each iteration, defined as Yi(t) := {y ∈ Yi : gi(y)T x(t) ≤ T}. As the volumes
of these sets get smaller, the bounds in the lemma analogous to Lemma 4 will
not apply, and hence, we have also to maintain a list of active sets I(t) whose
volumes are sufficiently large. Bounding the running time is also more tricky,
and we manage to do it by tracking the centroids of the sets Yi(t). We state here
only the main theorem:

Theorem 2. For any ε > 0, there is an algorithm that computes,
with probability 1 − o(1), an ε-approximate solution for (Covering)
using Õ(m3N

ε2 log2(RUz∗ + 1) log(z∗)) calls to the oracles MinCol(· · · ),
Integral(· · · ), MinVec(· · · ) and MaxVec(· · · ), where U := maxi,j aij.
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Data: Matrices Ai ∈ R
mi×n
+ , di ∈ R

n
+, sets Yi ⊆ R

mi , for i ∈ [N ], and an
approximation accuracy ε ∈ (0, 1), probability σ ∈ (0, 1).

Result: An O(ε)-approximate solution x̂ for (Covering).

1 λ ← (1 − 1/e)
1

2m ; ε1 = ε2 = ε3 = ε4 ← ε; θ ← λm

2 z̄ ← 1

3 V ← maxi max{2πm/2Rm
i , 1

πm/2rm
i /(2m)m }

4 repeat
5 Ū := R(

√
m + 1)U z̄

(1−ε̄)

6 a ← max {1, m/ log(1/θ)}
7 b ← max

{
1, log 2ŪN

ε4(1−ε3)(1−λ)

}

8 
̄ = 5ab(log(a + e − 1) + 1)
9 α ← 2

log(1−ε)−1

(
1 + log N + m log 3

ε2
+ 
̄ log 1

θ
+ log V

)

10 T ← 1
ε2

(
1 + α log(1 − ε)−1 + log N + 
̄ log 1

θ
+ log V

)

11 t ← 0; x(0) ← 0, ∀i ∈ [N ]; I(0) ← [N ]
12 while I(t) 	= ∅ do
13 for i ∈ I(t) do

14 pi(y, t) ← (1 − ε)gi(y)
T x(t)

15 ȳi(t) ←Integral(pi(y, t), f(y) := y, ε1, σ, Yi(t))

16 φ̄i(t) ←Integral(pi(y, t), f(y) := 1, ε1, σ, Yi(t))

17 j(t) ←MaxCol(
∑

i∈I(t)(A
T
i ȳi + φ̄i(t)di), ε2)

18 for i ∈ I(t) do
19 ŷi(t) ← MaxVec(Ai1j(t), ε3, Yi(t))

20 δ(t) ← 1−ε3
maxi∈I(t) gi(ŷi(t))T 1j(t)

21 x(t + 1) ← x(t) + δ(t)1j(t)

22 I(t + 1) ← I(t)
23 for i ∈ I(t) do
24 ỹi(t + 1) ← MinVec(Aix(t + 1), ε3, Yi(t + 1))

25 if gi(ỹ
i(t + 1))T x(t + 1) ≥ (1 − ε4)T then

26 I(t + 1) ← I(t + 1)\{i}
27 t ← t + 1

28 x̂ = x(t−1)(
1−ε4
1+ε3

−ε2
)

T

29 z̄ ← 2z̄

30 until t <
(

T
(1−ε3)(1−λ)

+ 1
)

N
̄;

Output: x̂

Algorithm 2: The covering algorithm
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Abstract. An instance of a balanced optimization problem with vector
costs consists of a ground set X, a vector cost for every element of X, and
a system of feasible subsets over X. The goal is to find a feasible subset
that minimizes the spread (or imbalance) of values in every coordinate
of the underlying vector costs.

We investigate the complexity and approximability of balanced opti-
mization problems in a fairly general setting. We identify a large family
of problems that admit a 2-approximation in polynomial time, and we
show that for many problems in this family this approximation factor 2 is
best-possible (unless P = NP). Special attention is paid to the balanced
assignment problem with vector costs, which is shown to be NP-hard
even in the highly restricted case of sum costs.

Keywords: Balanced optimization · Assignment problem ·
Computational complexity · Approximation

1 Introduction

Balanced optimization with vector costs is a family of optimization problems,
which extends the work of Martello et al. [10]. The details for this framework
will be given later, for now we concentrate on one problem in this framework,
the balanced assignment problem.

In the balanced assignment problem (Martello et al. [10]), we are given an
n × n matrix C with real entries c(i, j) for 1 ≤ i, j ≤ n. An assignment A is a
set of n matrix entries that contains exactly one entry from every row and every
column. The imbalance of assignment A is given by

max
(i,j)∈A

c(i, j) − min
(i,j)∈A

c(i, j),

and the goal is to find an assignment that minimizes the imbalance. In a gener-
alization of this problem, the entries c(i, j) are not real scalars but real vectors
c(i, j) of length d; that is

c(i, j) = (c1(i, j), c2(i, j), . . . , cd(i, j)), for 1 ≤ i, j ≤ n.

c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 92–102, 2017.
DOI: 10.1007/978-3-319-51741-4 8
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The imbalance in the k-th coordinate of assignment A (with 1 ≤ k ≤ d) is

Δk(A) = max
(i,j)∈A

ck(i, j) − min
(i,j)∈A

ck(i, j),

and the imbalance of assignment A is finally given by

Δmax(A) = max
k

Δk(A).

The objective in the balanced assignment problem with vector costs is to find an
assignment A that minimizes the imbalance Δmax(A). Note that for d = 1 we
recover the traditional balanced assignment problem.

Apart from being a natural generalization of the traditional balanced assign-
ment problem, there are practical applications of balanced optimization prob-
lems with vector costs documented in the literature. For instance, Kamura and
Nakamori [6] sketch an industrial problem in the manufacturing of glass lenses
that gives rise to a (specially structured) balanced assignment problem with
vector costs; see Sect. 5 for more details on this.

1.1 Related Literature

Martello et al. [10] introduce a framework containing many balanced optimiza-
tion problems with scalar costs, and present a polynomial time algorithm to
solve these problems. We now discuss some of these problems in more detail.

In the balanced version of the shortest path problem, we are given a directed
graph G = (V,E), two nodes s and t, and scalar costs on the edges. The goal is
to find a path from s to t that minimizes the difference between the largest and
the smallest edge cost along the path. Turner [11] generalizes this problem to
finding a path that minimizes the difference between the k1-th largest and the
k2-th smallest edge cost, and shows that this problem is solvable in polynomial
time. Cappanera and Scutellá [3] discuss other balanced path problems. Their
goal is to identify p (arc-disjoint or node disjoint) paths from s to t, such that
the difference between the length of longest path and the length of the shortest
path is minimal. These problems are NP-hard, even for p = 2.

In the balanced version of the minimum cut problem, we are given an undi-
rected graph G = (V,E), two nodes s and t, and scalar costs on the edges.
The goal is to find a cut that minimizes the difference between the largest and
the smallest cost of edges in the cut. Katoh and Iwano [7] construct an algo-
rithm for this problem with running time O (MST (|V |, |E|) + |V | log |V |), where
MST (|V |, |E|) denotes the running time for computing the minimum and max-
imum spanning trees in a graph G = (V,E).

In the balanced version of the spanning tree problem, we are given a graph
G = (V,E) and scalar costs on the edges. The goal is to find a spanning tree that
minimizes the difference between the largest and the smallest edge cost in the
spanning tree. Camerini et al. [2] and Galil and Schieber [5] construct algorithms
for this problem, with running times O(|V | · |E|) and O(|E| log |V |) respectively.
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In the balanced version of the traveling salesman problem, we are given a
graph G = (V,E) and scalar costs on the edges. The goal is to find a Hamiltonion
cycle that minimizes the difference between the largest and the smallest edge cost
in cycle. This problem is obviously NP-hard, and Larusic and Punnen [9] discuss
several heuristics for it. Kinable et al. [8] discuss a related problem, called the
equitable traveling salesman problem. They observe that a Hamiltonian cycle is
the union of two uniquely defined matchings. Their goal is to find a Hamiltonian
cycle in which the difference between the total cost of its two matchings is
minimal.

Another interesting problem in this area is the balanced version of linear
programming. Here we are given a system of linear constraints (Ax = b and
x ≥ 0) and costs associated with each real variable xi. The goal is to minimize
the difference between the largest non-zero cost cixi and the smallest non-zero
cost cjxj . Ahuja [1] presents a polynomial time algorithm for this problem.

Finally, an example of an optimization problem featuring vector costs is
described by Dokka et al. [4]; we stress however that the objective in the underly-
ing multi-index assignment problem is quite different from minimizing imbalance.

1.2 Our Results

We derive a variety of results on the complexity and approximability of balanced
optimization problems with vector costs:

– First, we describe a framework for balanced optimization problems that takes
vector costs into account, thereby extending the work of Martello et al. [10];
see Sect. 2.

– Every problem in our framework (i) is solvable in polynomial time if the dimen-
sion d is fixed (see Sect. 3.1), and (ii) allows a polynomial time 2-approximation
algorithm (see Sect. 3.2).

– For several problems in the framework (among which assignment, spanning
tree, s,t-cut, connecting path and Horn-SAT), we prove that the existence of
an approximation algorithm with approximation ratio strictly better than 2
implies P = NP (see Sect. 4.1). Note that these results pinpoint the strongest
achievable approximation ratio for these problems (under P �= NP ).

– For one problem in our framework (2SAT) we prove that it is actually solvable
in polynomial time (see Sect. 4.2). Thus, not all problems in the framework
are NP -hard.

– For the balanced assignment problem with vector sum costs we prove that the
existence of a polynomial time approximation algorithm with approximation
ratio below 4

3 implies P = NP ; see Sect. 5.

2 The Framework

Throughout, we consider a family of optimization problems that are built around
a finite ground set X and a system F of feasible subsets over X. (The system F
is usually not listed explicitly, but given implicitly in terms of a combinatorial
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description or in terms of an oracle.) We will only consider problems in this
framework, for which the following feasibility oracle can be performed in time
polynomially bounded in the size of X: “Given a subset Y ⊆ X, does Y contain
a feasible subset from F? And if so return a feasible subset of Y from F .” Here
are some concrete examples of problems that fit this framework:

q-Uniform Set System. For a given ground set X, a subset Y ⊆ X is feasible
if it contains at least q elements of X.

Linear Assignment. The ground set X are the elements of an n × n square
matrix. A subset Y ⊆ X is feasible if it contains n elements that cover each
row and each column of the given matrix.

Spanning Tree. The ground set X consists of the edges of an undirected graph
G = (V,X). A subset Y ⊆ X is feasible if the subgraph (V, Y ) contains a
spanning tree of G.

s, t-Cut. The ground set X consists of the edges of an undirected graph G =
(V,X) with s, t ∈ V . A subset Y ⊆ X is feasible if it contains an s, t-cut; in
other words, the subgraph (V,E \ Y ) contains no path connecting s and t.

Connecting Path. The ground set X consists of the edges of an undirected
graph G = (V,X) with s, t ∈ V . A subset Y ⊆ X is feasible if the subgraph
(V, Y ) contains a path connecting s and t.

2SAT, Horn-SAT. The ground set X consists of all literals both posi-
tive and negated of an expression in conjunctive normal form, i.e. X =
{x1, x̄1, . . . , xn, x̄n}. A subset Y ⊆ X is feasible if there exists a feasible
assignment with the literals in Y . An assignment is feasible if each literal is
set to either TRUE or FALSE (either x or x̄ is in Y ), such that all clauses in
the expression are satisfied.

Here is an example of a problem that does NOT fall under this framework (unless
P = NP):

Hamiltonicity. The ground set X consists of the edges of an undirected graph
G = (V,X). A subset Y ⊆ X is feasible if the subgraph (V, Y ) contains a
Hamiltonian cycle.

We will study so-called balanced vector-cost versions of the problems in the
framework. For this, we generalize the terminology introduced in Sect. 1 in the
following way. Besides the ground set X and the system F of feasible subsets, we
introduce a cost function c : X → R

d that assigns to every element x ∈ X of the
ground set a corresponding d-dimensional real vector c(x); the d components of
vector c(x) will be denoted c1(x), . . . , cd(x). For a subset Y ⊆ X, its imbalance
in the k-th coordinate (1 ≤ k ≤ d) is defined as:

Δk(Y ) = max
y∈Y

ck(y) − min
y∈Y

ck(y).

In other words, this imbalance measures the difference in cost between the largest
and smallest value in the k-th coordinate. The imbalance of subset Y is finally
defined as

Δmax(Y ) = max
1≤k≤d

Δk(Y ).
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The goal in a balanced vector-cost optimization problem is to find a feasible set
Y that minimizes the imbalance Δmax(Y ). In the sequel, the term “the balanced
vector-cost problem” refers to an arbitrary problem in our framework.

3 Algorithms for Balanced Vector-Cost Problems

In this section we give two algorithms that are applicable to any problem in
our general framework. The first algorithm solves the problem in polynomial
time when the dimension d of the cost-vectors is fixed (Sect. 3.1). The second
algorithm yields a 2-approximation in polynomial time (Sect. 3.2). We remind
the reader that we only consider problems for which the feasibility oracle can be
performed in polynomial time. Throughout this section we use n := |X|.

3.1 Fixed Dimension

We first explain the general idea behind Algorithm1, which generalizes an algo-
rithm presented in Martello et al. [10].

Suppose we would know the largest and smallest value in each coordinate of
an optimal solution, without knowing the elements in the optimal solution. This
allows us to construct a subset Y ⊆ X consisting of elements whose cost-vectors,
in every coordinate, lies within these values. Next, applying the feasibility oracle
to Y gives us an optimum solution.

Of course, we are not given these values. However, one pair of elements of the
ground set allows us to ‘guess’ the largest and smallest value in one coordinate.
If the dimension d of the cost-vectors is fixed, it is sufficient to try all possible
combinations of these ‘guesses’, as is argued in Theorem 1.

Algorithm 1
1: Sol := ∞
2: for each x1, y1 ∈ X with guess1 = [c1(x1), c1(y1)] do
3: for each x2, y2 ∈ X with guess2 = [c2(x2), c2(y2)] do

4:
...

5: for each xd, yd ∈ X with guessd = [cd(xd), cd(yd)] do
6: Let v := maxk |guessk|
7: for x in X do
8: Remove x if ∃k ∈ {1, . . . , d} such that ck(x) /∈ guessk
9: Call the remaining set of elements Y

10: if Y contains a feasible solution then
11: Sol := min{Sol, v}
12: Output Sol.

Theorem 1. Algorithm1 solves the balanced vector-cost problem in polynomial
time, when the dimension d of the cost-vectors is fixed.
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Proof. Consider an optimal solution with value OPT , and let Δk(OPT ) be its
imbalance in the k-th coordinate (1 ≤ k ≤ d). By trying out all combinations of
guessk for each k, we will certainly find the imbalances Δk(OPT ). Hence we will
find a solution with value v = maxk Δk(OPT ) = OPT , the optimal objective
value.

In total there are O(n2d) ‘guesses’. For each of them we call the feasibility
oracle to check whether there exists a feasible solution. These feasibility oracles
run in polynomial time and hence the algorithm runs in polynomial time (for a
fixed d). �	

3.2 An Approximation Algorithm

When the dimension d of the cost-vectors is part of the input the problem
becomes more difficult. Simply trying all combinations of pairs for each coordi-
nate would now result in an exponential time algorithm. Instead, we consider
every pair of the ground set as a guess for all coordinates at the same time. Next,
we will only consider elements from the ground set that, in every coordinate, do
not differ ‘too much’ from this pair. Doing so gives us a 2-approximation, even
when the dimension d of the cost-vectors is part of the input.

Algorithm 2
1: for each pair x1, x2 in ground set X do
2: Δx1,x2 = maxk |ck(x1) − ck(x2)|
3: for x in X do
4: if maxk |ck(x1) − ck(x)| > Δx1,x2 or maxk |ck(x2) − ck(x)| > Δx1,x2 then
5: Remove x
6: Call the remaining set of elements Y
7: if Y contains a feasible solution then
8: Sol(x1, x2) := Δmax(Y )
9: Sol := minx1,x2 Sol(x1, x2)

Theorem 2. Algorithm2 is a 2-approximation algorithm for the balanced
vector-cost problem.

Proof. Let OPT denote the imbalance of an optimal solution. By trying out all
possible element pairs x1 and x2 from the ground set, we will certainly find the
two elements in the optimal solution that determine the objective value; in other
words, Δmax({x1, x2}) = OPT .

We remove all elements y from the ground set that satisfy Δmax({y, x1}) > Δ
or Δmax({y, x2}) > Δ; note that these removed elements can never show up in
an optimal solution that contains x1 and x2 and that has imbalance Δ. Clearly,
Δmax(Y ) is determined by two of its elements, say y1 and y2. In other words,
there exist y1, y2 ∈ Y such that

Δmax(Y ) = Δmax({y1, y2}) ≤ Δmax({y1, x1}) + Δmax({y2, x1}) ≤ 2Δ.
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Clearly, this procedure runs in polynomial time: checking whether an element
x ∈ X needs to be removed can be done in O(d) time, and we need to perform
the feasibility oracle O(n2) times. �	
Notice that this algorithm also applies to problems for which the feasibility
oracle is not solvable in polynomial time. More precisely, let f(n) denote the
running time of the feasibility oracle. The running time of Algorithm2 equals
O

(
n3 · (d + f(n))

)
.

4 The Complexity of Balanced Vector-Cost Problems

Many balanced optimization problems with scalar costs are known to be solvable
in polynomial time (see the discussion in Sect. 1.1): q-Uniform Set Systems, the
Linear Assignment problem, the Spanning Tree problem, the s, t-Cut problem,
the Connecting Path problem, Horn-SAT and 2SAT. In this section we discuss
the complexity of each of these problems when vector costs are given. We show
that each of these problems, except 2SAT, is NP-hard, and that the existence
of a polynomial-time (2 − ε)-approximation algorithm for each of the mentioned
problems, except 2SAT, implies P = NP (Sect. 4.1). We also show that 2SAT is
in fact polynomial solvable, which proves that not all problems in the framework
are NP-hard (Sect. 4.2).

There are three problems, well-known to be NP-complete, that we use in our
reductions.

Problem: INDEPENDENT SET (IS)

Instance: A graph G = (V,E) with vertex set V = {v1, . . . , vn} and edge
set E = {e1, . . . , em}; an integer z.

Question: Does there exist a subset I ⊆ V with |I| ≥ z, such that the
vertices in I do not span any edges in G?

Problem: 3-COLORING

Instance: A graph G = (V,E) with vertex set V = {v1, . . . , vn} and edge
set E = {e1, . . . , em}.

Question: Does there exist a 3-coloring f : V → {1, 2, 3}, such that all
edges (u, v) ∈ E satisfy f(u) �= f(v)?

Problem: 3SAT

Instance: Set U of variables, collection C of clauses over U such that each
clause in C contains 3 literals.

Question: Does there exist a satisfying truth assignment for C?
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4.1 NP-Hardness Results

Let us first consider the balanced q-Uniform Set System with vector costs. Given
a ground set X and an integer q, the balanced q-Uniform Set System with vector
costs asks for q elements from set X with minimal imbalance.

Theorem 3. The balanced q-Uniform Set System with vector costs is NP-hard.

Proof. Given an instance of INDEPENDENT SET represented by a given graph
G = (V,E) and an integer z, we construct an instance of the balanced q-Uniform
Set System with vector costs as follows. The ground set X coincides with the
vertex set V of the graph G. A subset Y ⊆ X is feasible if and only if it contains
at least q := z elements. For the definition of the vector costs of X, we turn G
into a directed graph by first choosing some ordering of the vertices in V , and
next orienting every edge from the incident vertex with smaller index (source)
to the incident vertex with larger index (target). The dimension of the vectors
is d := |E| = m, and every coordinate k corresponds to a unique edge ek in
E, 1 ≤ k ≤ m. Let us now define cost-vector c(vj) = (c1(vj), c2(vj), . . . , cd(vj))
corresponding to each vertex vj ∈ V . For each vj ∈ V and k ∈ {1, . . . , m}:

ck(vj) :=

⎧
⎨

⎩

1 if vertex vj is the source of the oriented edge ek;
−1 if vertex vj is the target of the oriented edge ek;
0 otherwise.

We claim that there exists a feasible subset Y ⊆ X with |Y | ≥ z and
Δmax(Y ) ≤ 1 if and only if the considered instance of INDEPENDENT SET
has answer YES.

Assume that there exists a feasible subset Y ⊆ X with |Y | ≥ z and
Δmax(Y ) ≤ 1. Suppose for the sake of contradiction that the vertex set cor-
responding to Y would span some edge ek ∈ E. Then, in the k-th coordinate,
the cost-vector of the source vertex of ek is −1, and the cost-vector of the target
vertex of ek is +1. Hence Δmax(Y ) ≥ 2. This contradiction shows that Y is a
z-element independent set in G.

Next assume that the INDEPENDENT SET instance has answer YES and let
I be the corresponding certificate. Thus |I| ≥ z and in none of the coordinates,
the vectors c(y) with y ∈ I take the value +1 and −1. This yields the desired
Δmax(I) ≤ 1. �	
Theorem 4. The balanced q-Uniform Set System with vector costs does not
allow a polynomial time approximation algorithm with worst case guarantee
strictly better than 2 (unless P=NP).

Proof. This is implied by the proof of Theorem3. Indeed, a polynomial time
approximation algorithm with a worst case guarantee strictly better than 2,
would allow us to distinguish the instances with imbalance at most 1 from the
instances with imbalance at least 2. �	

Consider the following 5 specific balanced optimization problems with vector
costs:
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Linear Assignment: given a square matrix M , where each entry is a d-
dimensional vector, the goal is to find an assignment in M with minimal
imbalance.

Spanning Tree: given a graph with a cost-vector for each edge, the goal is to
find a spanning tree with minimal imbalance.

s, t-Cut: given a graph with a cost-vector for each edge, and two nodes s and
t, the goal is to find a cut in this graph separating s and t with minimal
imbalance.

Connecting Path: given a graph with a cost-vector for each edge, and two
nodes s and t, the goal is to find a path connecting s and t with minimal
imbalance.

Horn-SAT: given a set of literals X with a cost-vector for each literal and a set
of clauses C ′, each clause with at most 1 positive literal, the goal is to find a
satisfying truth assignment with minimal imbalance.

We denote this set of problems by set Q. The theorem below is proven for
each problem separately and can be found in the corresponding research report.

Theorem 5. Each of these problems in Q is NP-hard and moreover, no poly-
nomial time approximation algorithm exists with worst case guarantee strictly
better than 2 (unless P=NP).

4.2 2SAT

Given a set of literals X = {x1, x̄1, . . . , xn, x̄n} with a cost-vector for each literal
and a set of clauses C = {c1, . . . , cm} each with at most 2 literals, the bal-
anced 2SAT problem with vector costs asks to find a satisfying truth assignment
which minimizes the imbalance. We show that this problem, unlike the previous
problems, is easy.

Theorem 6. The balanced 2SAT problem with vector costs is polynomial
solvable.

Proof. First, we prove that we can decide in polynomial time whether a solution
with imbalance Δ exists. Consider the cost-vectors of each pair of elements u,
v ∈ X. If there is a coordinate in which these two vectors differ more than Δ,
then these two elements cannot occur together in a solution with imbalance Δ.
Hence we add the clause (ū ∨ v̄) to the set of clauses of each such pair; where
the negation of a negated literal results in a positive literal, i.e. x̄ = x. Notice
that the 2SAT instance remains a 2SAT instance and that each feasible solution
to this new instance is a feasible solution to the original problem with balance
at most Δ.

We know that in any feasible solution its imbalance Δ is defined by two
elements of the ground set X. That gives us at most O(n2) distinct possible
values for Δ (one for each pair of elements). The lowest value of Δ for which
there exists a truth assignment is the value of the optimal solution. Next, a
binary search on Δ allows us to do a polynomial number of iterations. �	
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5 A Special Case of the Balanced Assignment Problem
with Vector-Costs: Sum Costs

Kamura and Nakamori [6] consider a highly structured special case of the bal-
anced assignment problem with vector costs: the cost-vector for every matrix
entry M [a, b] is the sum of two d-dimensional cost-vectors c(a) and c(b). We
call this setting the balanced assignment problem with vector sum costs. The
resulting problem remains NP-hard, as witnessed by the following result.

The two theorems below are proven via a reduction from Independent Set,
which is similar to the reduction of q-Uniform Set Systems. Both proofs can be
found in the corresponding research report.

Theorem 7. The balanced assignment problem with vector sum costs is NP-
hard.

Unfortunately this construction does not close the gap between the factor of 2
achieved by Algorithm 2, and what might be achieved by any polynomial time
algorithm. We can only state:

Theorem 8. The balanced assignment problem with sum vector costs does not
allow a polynomial time approximation algorithm with worst case guarantee
strictly better than 4

3 (unless P=NP).

Remark: Given the application described in Kamura and Nakamori [6], one
could be interested in the balanced 3-dimensional assignment problem with vec-
tor costs. In this problem, we are given three sets of vectors, say a set A, B and
C. Then, the ground set X consists of triples, each consisting of a vector from
A, a vector from B, and a vector from C, and the costs of an element from X is
nothing else but the sum of the three vectors. Although this problem does not
fall in our framework (the feasibility question is NP-hard), one might wonder
about the approximability of this balanced 3-dimensional assignment problem
with vector costs. We point out, however, that no constant-factor approximation
algorithm can exist (unless P = NP), even when d = 1.

Theorem 9. The balanced 3-dimensional assignment problem with sum vector
costs does not allow a polynomial time constant-factor approximation algorithm
(unless P=NP), even when d = 1.

Proof. There is a straightforward reduction from Numerical 3-Dimensional
Matching. Recall that in Numerical 3-Dimensional Matching we are given dis-
joint sets W , Y and Z, each containing n elements and a cost c(a) for each
a ∈ W ∪ Y ∪ Z and a bound b. The goal is to select n pairwise disjoint triples
from W × Y × Z, referred to as M , such that for each of the selected triples,
(w, y, z), it holds that c(w) + c(y) + c(z) = b.

By having an element in A (B, C), for each element in W (Y , Z) an equivalent
instance of the balanced 3-dimensional assignment problem with sum vector
costs arises. Notice that the imbalance in this instance is 0 if and only if there
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exists a set of triples M such that for each triple (w, y, z) in M it holds that
c(w)+ c(y)+ c(z) = b. Distinguishing in polynomial time whether the imbalance
is 0 or not would imply P = NP . �	

6 Conclusion

We introduce the notion of balanced vector-cost optimization problems, and
propose a framework that generalizes the one introduced by Martello et al. [10].
We provide a polynomial time algorithm when the dimension d is fixed, and
we describe an algorithm that is a 2-approximation for each problem in our
framework. Further, we give results for five problems in the framework: each of
them is NP-hard, and the existence of a polynomial time (2 − ε)-approximation
algorithm implies P = NP.
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3. Cappanera, P., Scutellà, M.G.: Balanced paths in acyclic networks: tractable cases
and related approaches. Networks 45(2), 104–111 (2005)

4. Dokka, T., Crama, Y., Spieksma, F.C.R.: Multi-dimensional vector assignment
problems. Discrete Optim. 14, 111–125 (2014)

5. Galil, Z., Schieber, B.: On finding most uniform spanning trees. Discrete Appl.
Math. 20(2), 173–175 (1988)

6. Kamura, Y., Nakamori, M.: Modified balanced assignment problem in vector case:
system construction problem. In: 2014 International Conference on Computational
Science and Computational Intelligence (CSCI), vol. 2, pp. 52–56. IEEE (2014)

7. Katoh, N., Iwano, K.: Efficient algorithms for minimum range cut problems. Net-
works 24(7), 395–407 (1994)

8. Kinable, J., Smeulders, B., Delcour, E., Spieksma, F.C.R.: Exact algorithms for
the Equitable Traveling Salesman Problem. Research report, KU Leuven (2016)

9. Larusic, J., Punnen, A.: The balanced traveling salesman problem. Comput. Oper.
Res. 38(5), 868–875 (2011)

10. Martello, S., Pulleyblank, W., Toth, P., De Werra, D.: Balanced optimization prob-
lems. Oper. Res. Lett. 3(5), 275–278 (1984)

11. Turner, L.: Variants of shortest path problems. Algorithmic Oper. Res. 6(2), 91–
104 (2012)



Vertex Sparsification in Trees

Gramoz Goranci1(B) and Harald Räcke2
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Abstract. Given an unweighted tree T = (V, E) with terminals K ⊂ V ,
we show how to obtain a 2-quality vertex flow and cut sparsifier H with
VH = K. We prove that our result is essentially tight by providing a 2−
o(1) lower-bound on the quality of any cut sparsifier for stars.

In addition we give improved results for quasi-bipartite graphs. First,
we show how to obtain a 2-quality flow sparsifier with VH = K for
such graphs. We then consider the other extreme and construct exact
sparsifiers of size O(2k), when the input graph is unweighted.

Keywords: Graph sparsification · Vertex flow sparsifiers · Trees

1 Introduction

Graph sparsification is a technique to deal with large input graphs by “com-
pressing” them into smaller graphs while preserving important characteristics,
like cut values, graph spectrum etc. Its algorithmic value is apparent, since these
smaller representations can be computed in a preprocessing step of an algorithm,
thereby greatly improving performance.

Cut sparsifiers [4] and spectral sparsifiers [19] aim at reducing the number of
edges of the graph while approximately preserving cut values and graph spectrum,
respectively. These techniques are used in a variety of fast approximation algo-
rithms, and are instrumental in the development of nearly linear time algorithms.

In vertex sparsification [6,9,10,12,14,16,18], apart from reducing the number
of edges, the goal is also to reduce the number of vertices of a graph. In such
setting, one is given a large graph G = (V,E, c), together with a relatively small
subset of terminals K ⊆ V . The goal is to shrink the graph while preserving
properties involving the terminals. For example, in Cut Sparsification one wants
to construct a graph H = (VH , EH , cH) (with K ⊆ VH) such that H preserves
mincuts between terminals up to some approximation factor q (the quality).

Hagerup et al. [9] introduced this concept under the term Mimicking Net-
works, and focused on constructing a (small) graph H that maintains mincuts
exactly. They showed that one can obtain H with O(22

k

) vertices, where k = |K|.
Krauthgamer and Rika [13] and Khan and Raghavendra [11] independently
proved that 2Ω(k) vertices are required for some graphs if we want to preserve
mincuts exactly.
c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 103–115, 2017.
DOI: 10.1007/978-3-319-51741-4 9
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Moitra [16] analyzed the setting where the graph H is as small as
possible, namely VH = K. Under this condition, he obtained a quality
O(log k/ log log k) cut sparsifier. A lower bound of Ω(

√
log k/ log log k) was pre-

sented by Makarychev and Makarychev [15]. A strictly stronger notion than a
cut sparsifier, is a flow sparsifier that aims at (approximately) preserving all
multicommodity flows between terminals. The upper bound of [16] also holds
for this version, but the lower bound is slightly stronger: Ω(

√
log k/ log log k).

Due to the lower bounds on the quality of sparsifiers with VH = K, the recent
focus has been on obtaining better guarantees with slightly larger sparsifiers.
Chuzhoy [7] obtained a constant quality flow sparsifier of size CO(log log C), where
C is the total weight of the edges incident to terminal nodes. Andoni et al. [3]
obtained quality of (1 + ε) and size O(poly(k/ε)) for quasi-bipartite graphs, i.e.,
graphs where the terminals form an independent set. This is interesting since
these graphs serve as a lower bound example for Mimicking Networks, i.e., in
order to obtain an exact sparsifier one needs size at least 2Ω(k).

In this paper we study flow and cut sparsifiers for trees. Since, for tree net-
works it is immediate to obtain a sparsifier of size O(k) and quality 1, we consider
the problem of designing flow and cut sparsifiers with VH = K as in the original
definition of Moitra. In Sect. 2 we show how to design such a flow sparsifier for
unweighted trees with quality 2. In Sect. 3 we prove that this result is essen-
tially tight by establishing a lower bound. Concretely, we prove that even for
unweighted stars it is not possible to obtain cut sparsifiers with quality 2− o(1).

As a further applicaton of our techniques, we apply them to quasi-bipartite
graphs. We first obtain a 2-quality flow sparsifier with VH = K for such graphs.
In addition we explore the other extreme and construct exact sparsifiers of size
O(2k), if the input graph is unweighted. This shows that even though quasi-
bipartite graphs serve as lower bound instances for Mimicking Networks they
are not able to close the currently large gap between the upper bound of O(22

k

)
and the lower bound of 2Ω(k) on the size of Mimicking Networks.

Finally we obtain hardness results for the problem of deciding whether a
graph H is a sparsifier for a given unweighted tree T . We prove that this problem
is co-NP-hard for cut sparsifiers, based on Chekuri et al. [5]. For flow sparsifiers
we show that for a single-source version, where the sparsifier has to preserve flows
in which all demands share a common source, the problem is co-NP-hard. Due
to space limitations the hardness results have been deferred to the full version.

1.1 Preliminaries

Let G = (V,E, c) be an undirected graph with terminal set K ⊂ V of cardinality
k, where c : E → R

+ assigns a non-negative capacity to each edge. We present
two different ways to sparsify the number of vertices in G.

Let U ⊂ V and S ⊂ K. We say that a cut (U, V \ U) is S-separating if it
separates the terminal subset S from its complement K \ S, i.e., U ∩ K is either
S or K \ S. The cutset δ(U) of a cut (U, V \ U) represents the edges that have
one endpoint in U and the other one in V \ U . The cost capG(δ(U)) of a cut
(U, V \ U) is the sum over all capacities of the edges belonging to the cutset.
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We let mincutG(S,K \S) denote the S-separating cut of the minimum cost in G.
A graph H = (VH , EH , cH), K ⊂ VH is a vertex cut sparsifier of G with quality
q ≥ 1 if: ∀S ⊂ K, mincutG(S,K\S) ≤ mincutH(S,K\S) ≤ q·mincutG(S,K\S).

We say that a (multi-commodity) flow f is a routing of the demand function
d, if for every terminal pair (x, x′) it sends d(x, x′) units of flow from x to x′. The
congestion of an edge e ∈ E incurred by the flow f is defined as the ratio of the
total flow sent along the edge to the capacity of that edge, i.e., f(e)/c(e). The
congestion of the flow f for routing demand d is the maximum congestion over
all edges in G. We let congG(d) denote the minimum congestion over all flows.
A graph H = (VH , EH , cH), K ⊂ VH is a vertex flow sparsifier of G with quality
q ≥ 1 if for every demand function d, congH(d) ≤ congG(d) ≤ q · congH(d).

We use the following tools about sparsifiers throughout the paper.

Lemma 1 [14]. If H = (VH , EH , cH), VH = K is a vertex flow sparsifier of
G, then the quality of H is q = congG(dH), where dH(x, x′) := cH(x, x′) for all
terminal pairs (x, x′).

Let G1 and G2 be graphs on disjoint set of vertices with terminals K1 =
{s1, . . . , sk} and K2 = {t1, . . . , tm}, respectively. In addition, let φ(si) = ti,
for all i = 1, . . . , �, be a one-to-one correspondence between some subset of K1

and K2. The φ-merge (or 2-sum) of G1 and G2 is the graph G with terminal
set K = K1 ∪{t�+1, . . . , tm} formed by identifying the terminals si and ti for all
i = 1, . . . , �. This operation is denoted by G := G1 ⊕φ G2.

Lemma 2 ([3], Merging). Let G = G1 ⊕φ G2. Suppose G′
1 and G′

2 are flow
sparsifiers of quality q1 and q2 for G1 and G2, respectively. Then G′ = G′

1 ⊕φ G′
2

is a flow sparsifier of quality max{q1, q2} for G.

Lemma 3 (Convex Combination of Sparsifiers). Let Hi = (V ∗, Ei, ci),
i = 1, . . . , m with K ⊂ V ∗ be vertex flow sparsifiers of G. In addition, let
α1, α2, ..., αm be convex multipliers corresponding to Hi’s such that

∑
i αi = 1.

Then the graph H ′ =
∑

i αi · Hi is a vertex flow sparsifier for G.

2 Improved Vertex Flow Sparsifiers for Trees

In this section we show that given an unweighted tree T = (V,E), K ⊂ V , we
can construct a flow sparsifier H only on the terminals, i.e., V (H) = K, with
quality at most 4. We then further improve the quality to 2. The graph H has
the nice property of being a convex combination of trees.

We obtain the quality of 4 by combining the notion of probabilistic map-
pings due to Andersen and Feige [2] and a duality argument due to Räcke [17].
Our result then immediately follows using as a black-box an implicit result of
Gupta [8]. We note that a direct application of the Transfer Theorem due to
Andersen and Feige [2] does not apply, since their interchangeability argument
relies on arbitrary capacities and lengths.

Let w : E → R≥0 be a function which assigns non-negative values to edges
which we refer to as lengths. Given a tree T = (V,E,w) we use dw : V ×V → R≥0
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to denote the shortest path distance induced by the edge length w. A 0-extension
of a tree T = (V,E), K ⊂ V is a retraction f : V → K with f(x) = x, for all
x ∈ K, along with another graph H = (K,EH) such that EH = {(f(u), f(v)) :
(u, v) ∈ E}. The graph H is referred to as a connected 0-extension if in addition
we require that f−1(x) induces a connected component in T .

Given a graph G = (V,E), we let P be a collection of multisets of E, which
will be usually referred to as paths. A mapping M : E → P maps every edge e to
a path P ∈ P. This mapping can be alternatively represented as a non-negative
square matrix M of dimension |E| × |E|, where M(e′, e) is the number of times
edge e lies on the path M(e′). Let M denote the collection of mappings M . If
we associate to each mapping M ∈ M a convex multiplier λM , the resulting
mapping is referred to as a probabilistic mapping.
Connected 0-Extension Embedding on Trees. Suppose we are given a tree
T = (V,E), K ⊂ V and a connected 0-extension (H, f), where H = (K,EH) and
f is a retraction. Given an edge (u, v) ∈ E from T , we can use the retraction f to
find the edge (f(u), f(v)) in H (if u and v belong to different components). Since
this edge is not an edge of the original tree T , we need a way to map it back to
T in order to be consistent with our definition of mappings. The natural thing
to do is to take the unique shortest path between f(u) and f(v) in T . Denote
by ST

u,v all the edges in the shortest path between u and v in T . Then, we let
MH,f ((u, v)) = ST

f(u),f(v) be the mapping MH,f : E → P induced by (H, f).
Let H be the family of all connected 0-extensions for T , which are also trees.

We then define the collection of mappings M for T by {MH,f : H ∈ H}.
Capacity Mappings. Given a tree T = (V,E, c), c : E → R

+ and a
connected 0-extension (H, f), the load of an edge e ∈ E under (H, f) is
loadf (e) =

∑
e′ MH,f (e′, e) · c(e′). The expected load of an edge e ∈ E under

a probabilistic mapping is
∑

i λi loadfi
(e).

Distance Mappings. Given a tree T = (V,E,w), w : E → R
+ and a connected

0-extension (H, f), the mapped length of an edge e′ = (u′, v′) ∈ E under (H, f)
is dw(f(u′), f(v′)) =

∑
e MH,f (e′, e) · w(e). The expected mapped length of an

edge e′ = (u′, v′) ∈ E under a probabilistic mapping is
∑

i λidw(fi(u′), fi(v′)).
With the above definitions in mind, for some given tree T = (V,E, c), we can

find a flow sparsifiers that is a convex combination of connected 0-extensions
using the following linear program, and its dual.

min α

s.t. ∀e
∑

i λi · loadfi
(e) ≤ α · c(e)

∑
i λi ≥ 1

∀i λi ≥ 0.

min β

s.t. ∀i
∑

e w(e) · loadfi
(e) ≥ β (∗)

∑
e w(e) · c(e) ≤ 1

∀e w(e) ≥ 0.

Next, we re-write the dual constraints of type (∗) as follows:
∑

ew(e) loadfi
(e) =

∑
e w(e)

∑
e′ MH,fi

(e′, e) · c(e′)
=

∑
e′ c(e′) (

∑
e MH,fi

(e′, e) · w(e)) =
∑

e′=(u′,v′) c(e′) · dw(fi(u′), fi(v′)).
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Using this re-formulation and a few observations, the dual is equivalent to:

max
w≥0

min
i

∑

e=(u,v)
c(e) · dw(fi(u), fi(v)) /

∑

e
w(e) · c(e). (1)

For the unweighted case c(e) = 1, we can make use of the following lemma:

Lemma 4 [8, Lemma 5.1]. Given a tree T = (V,E,w), K ⊂ V , we can find a
connected 0-extension f such that

∑
e=(u,v) dw(f(u), f(v)) ≤ 4 · ∑

e we.

The above lemma tells us that optimal value of (1) is bounded by 4. This implies
that the optimal value of the dual is bounded by 4, and by strong duality, the
optimal value of the primal is also bounded by 4. The latter implies that T
admits a 4-quality vertex sparsifier of size k.

2.1 Obtaining Quality 2

Next we show how to bring down the quality of flow sparsifiers on trees to 2.
We give a direct algorithm that constructs a flow sparsifiers and unlike in the
previous subsection, it does not rely on the interchangeability between distances
and capacities. We first consider trees where terminals are the only leaf nodes,
i.e., L(T ) = K. Later we show how to extend the result to arbitrary trees.

To convey some intuition, we start by presenting the deterministic version
of our algorithm. We maintain at any point of time a partial mapping f–setting
f(v) =⊥, when f(v) is still undefined, but producing a valid connected 0-
extension when the algorithm terminates. Note that f(x) = x, for all x ∈ K.
Without loss of generality, we may assume that the tree is rooted at some non-
terminal vertex and the child-parent relationships are defined. The algorithm
works as follows: it repeatedly picks a non-terminal v farthest from the root
and maps it to one of its children c, i.e., f(v) = f(c)1 (we refer to such proce-
dure as Algorithm 1. This process results in a flow sparsifier that is a connected
0-extension.

Unfortunately, the quality of the sparsifier produced by the above algorithm
can be very poor. To see this, consider an unweighted star graph S1,k, where
leaves are the terminal vertices and the center is the non-terminal vertex v. Any
connected 0-extension of S1,k is a new star graph S1,k−1 lying on the terminals,
where the center is the terminal x with f(v) = x. Now, consider a demand
function d that sends a unit flow among all edges in S1,k−1. Clearly, d can be
feasibly routed in S1,k−1. But routing d in S1,k gives a load of at least k − 1
along the edge (x, v), and thus the quality of S1,k−1 is at least k − 1 (Lemma 1).

One way to improve upon the quality is to map the non-terminal v uniformly
at random to one of the terminals. We can equivalently view this as taking con-
vex combination over all possible connected 0-extensions of S1,k. By Lemma 3
we know that such a convex combination gives us another flow sparsifier for S1,k,
and it can be checked that the quality of such a sparsifier improves to 2. Surpris-
ingly, we show that applying this trivial random-mapping of non-terminals in
1 Alternatively, one can view this step as contracting an arbitrary child-edge of v.
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trees with terminals as leaves leads to a flow sparsifier H which is a random con-
nected 0-extension and achieves similar guarantees. We refer to such procedure
as Algorithm 2.

To compute the quality of H as a flow sparsifier for T , we need to bound
the congestion of every edge of T incurred by the embedding of H into T . This
embedding routes the capacity of every terminal edge (x, x′) in H along the
(unique) shortest paths between leaves x and x′ in T . First, we crucially observe
that without loss of generality, it suffices to bound the load of the edges incident
to the terminals, i.e., edges incident to leaf vertices. To see this, let (u, v) be
an edge among non-terminals in T , with v being the parent of u. Now, when
embedding H into T , we know that the demands among all terminal pairs that
lie in the subtree T (u) rooted at u cannot incur any load on the edge (u, v), as
these terminal shortest paths do not use this edge. Thus, we can safely replace
the subtree T (u) with some dummy terminal and perform the analysis as before.

First, we study edge loads under deterministic connected 0-extensions. Let
e = (x, v) be the edge incident to x ∈ K, mx denote the level of x in T and
{x, vmx−1, . . . , v0} be the set of vertices belonging to the shortest path between
x and the root r = v0 in T . Given a connected 0-extension fi output by Algo-
rithm 1, we say that x is expanded up to the �-th level if fi(vj) = x, for all
j ∈ {mx, . . . , �}. This leads to the following lemma.

Lemma 5. Let e = (x, v) be the edge incident to x ∈ K, (Hi, fi) be a connected
0-extension and recall that empty sum is defined as 0. If x is expanded up to the
�-th level, then the load of e under (Hi, fi) is loadfi

(e) ≤ 1+
∑mx−1

j=� (cj −1), � ∈
{mx, . . . , 0}, where cj denotes the number of children of non-terminal vj in T .

Let Ix
� = {(Hi, fi)} be the set of connected 0-extensions output by Algorithm 1

where x is expanded up to the �-th level. We observe that the edge e has the same
load regardless of which element of Ix

� we choose. Thus, for any (Hi, fi) ∈ Ix
� ,

we can write load�(e) = loadfi
(e).

Now, we study the expected edge loads under the random connected 0-
extension output by Algorithm 2. Let N be the number of all different connected
0-extensions that can be output by Algorithm 1. If by Zx

� we denote the event
that x is expanded up to the �-th level, then it follows that the expected load
E[loadf (e)] of e = (x, v) under (H, f) is

N∑

i=1

loadfi
(e)/N =

mx∑

�=0

# of fi’s s.t. Zx
�

N
· load�(e) =

mx∑

�=0

P[Zx
� ] · load�(e). (2)

Since in Algorithm 2 all non-terminals are mapped independently of each other,
we obtain P[Zx

� ] = (1 − 1/c�−1)
∏mx−1

j=� 1/cj , � ∈ {mx, . . . , 1} (recall that the
empty product is defined as 1). Further, observe that P[Zx

0 ] = 1/
∏mx−1

j=0 cj .
Plugging the probabilities and Lemma5 in (2), we get that E[loadf (e)] is

1
∏mx−1

j=0 cj

(
1 +

mx−1∑

j=0

(cj − 1)
)

+
mx∑

�=1

(1 − 1/c�−1)
mx−1∏

j=�

1
cj

(
1 +

mx−1∑

j=�

(cj − 1)
)

.
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Next, we rewrite the above as A/B, where B =
∏mx−1

j=0 cj and A is given by

1+
mx−1∑

j=0

(cj −1)+
mx−1∑

�=1

(c�−1 −1)
�−2∏

j=0

cj

(
1+

mx−1∑

j=�

(cj −1)
)

+(cmx−1 −1)
mx−2∏

j=0

cj .

The following lemma simplifies the middle expression of A.

Lemma 6. For any positive integers {c0, . . . , cmx−1} and mx ≥ 3,

mx−1∑

�=1

(c�−1 −1)
�−2∏

j=0

cj

(
1+

mx−1∑

j=�

(cj −1)
)

= (cmx−1 +1)
mx−2∏

�=0

c� −
mx−1∑

�=0

(c� −1)−2.

Proof. Let P (mx − 1) be the left-hand side expression in the statement of the
lemma. We proceed by induction on mx. For the base case mx = 3, it is easy to
argue that the claim is valid. If we assume that the lemma holds true for mx −1,
then we get that:

P (mx) =
mx−1∑

�=1

(c�−1 − 1)
�−2∏

j=0

cj

(
1 +

mx−1∑

j=�

(cj − 1) + (cmx
− 1)

)

+ (cmx−1 − 1)
mx−2∏

j=0

cj

(
(cmx

− 1) + 1
)

=
mx−1∑

�=1

(c�−1 − 1)
�−2∏

j=0

cj

(
1 +

mx−1∑

j=�

(cj − 1)
)

+ (cmx
− 1)

mx∑

�=1

(c�−1 − 1)
�−2∏

j=0

cj + (cmx−1 − 1)
mx−2∏

j=0

cj .

(3)

Note that the following expression is a simple telescoping series:

mx∑

�=1

(c�−1 − 1)
�−2∏

j=0

cj =
mx−1∏

�=0

c� − 1. (4)

Plugging this into Eq. (3) and using induction hypothesis gives:

P (m) = (cmx−1 + 1)
mx−2∏

�=0

c� −
mx−1∑

�=0

(c� − 1) − 2 + (cmx
− 1)

( mx−1∏

�=0

c� − 1
)

+ (cmx−1 − 1)
mx−2∏

j=0

cj = (cmx
+ 1)

mx−1∏

�=0

c� −
mx∑

�=0

(c� − 1) − 2.

This completes the induction step, and hence the proof of the lemma. ��
Now, plugging the above lemma in A we get that A = 2B − 1. Thus,

E[loadf (e)] = (2B − 1)/B ≤ 2. Since we consider only unweighted trees, it
follows that the expected congestion of every edge is also bounded by 2. Taking
the maximum over all edge congestions yields the following:
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Lemma 7. Given a tree T = (V,E), K ⊂ V , L(T ) = K, there is a 2-quality
flow sparsifier H, which is a convex combination over connected 0-extensions.

Derandomization. Next we show that Algorithm 2 can be easily derandomized.
We obtain a deterministic algorithm that runs O(n+k2α(2k)) time and gives the
same guarantees as in Lemma 7, where α(·) is the inverse Ackermann function.

We first give an O(n) time preprocessing step. For a tree T = (V,E), K ⊂ V ,
L(T ) = K, we repeatedly contract edges incident to non-terminals of degree 2
in T . When all such non-terminals are deleted from T , our new tree can have at
most 2k vertices. Note that this tree exactly preserves all flows among terminals.

Now, we crucially observe that in the flow sparsifier H output by Algorithm 2,
the capacity between any two terminals x and x′ is exactly the probability that
x and x′ are connected under the random mapping f . We next show that this
probability can be computed efficiently.

Let (x, x′) be any terminal pair, lca(x, x′) denote their lowest common
ancestor in T and r denote the level of lca(x, x′) in T . Moreover, let V x

r =
{x, vmx−1, . . . , vr}, vr = lca(x, x′), be the set of vertices belonging to the shortest
path between x and the lca(x, x′). Similarly, define V x′

r = {x′, v′
mx′ −1, . . . , vr}.

Since in Algorithm 2 all non-terminals are mapped independently of each other,
we obtain

P[(f(x), f(x′)) ∈ EH ] = 2 · P[f(vr) = x] · P[f(v) = x, ∀v ∈ V x
r−1]

· P[f(v′) = x′, ∀v′ ∈ V x′
r−1] =

2
cr

· ∏mx−1
j=r

1
cj

∏mx′−1
j=r

1
c′
j
.

(5)

where cj , c′
j are the number of children of the non-terminal vj , v′

j , respectively.
The above expression suggest that one should build an efficient data-structure

for T that answers queries of the form “What is the product of the elements
associated with vertices along the path from x to x′ in T?”. This problem is
known as The Tree Product Query problem. For an arbitrary tree with n vertices,
Alon and Schieber [1] show that in order to answer each Tree Product query in
at most O(α(n)) steps, an O(n) preprocessing time is sufficient.

Now we are ready to give our deterministic procedure. We first apply our
initial preprocessing step in O(n) time. Since the resulting tree has at most 2k
vertices, it takes O(k) time to preprocess the tree such that every internal vertex
knows the number of its children. Next, using O(k) preprocessing, we build a
data-structure for the Tree Product Query problem. Now, for every terminal
pair (x, x′) we can compute in O(α(2k)) time the capacity of (x, x′) in H from
the Tree product query between x and x′ and Eq. (5). Since there are at most
O(k2) terminal pairs, we get a running time of O(n + k2α(2k)). The correctness
is immediate from the above observations.
Extension to Arbitrary Trees. The above algorithm can be extended to
arbitrary trees (deferred to the full version). This leads to the following theorem:

Theorem 1. Given an unweighted tree T = (V,E), K ⊂ V , there exists a 2-
quality flow sparsifier H. Moreover, H can be viewed as a convex combination
over connected 0-extensions of T .
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3 Lower Bound

In this section we present a 2 − o(1) lower bound on the quality of any cut spar-
sifier for a star graph. Since previous lower bounds relied on non-planar graph
instances, this is the first non-trivial lower bound for arbitrary cut sparsifiers on
planar graphs. The result extends to the stronger notion of flow sparsifiers.

The main idea behind our approach is to exploit the symmetries of the star
graph. We observe that these symmetries induce other symmetries on the cut
structure of the graph. This simplifies the structure of an optimal cut-sparsifier.

Let G = (K ∪ {v}, E), be an unweighted star with k terminals. Let π′ be
any permutation of K. We extend π′ to a permutation π of K ∪ {v} by setting
π(x) = π′(x),∀x ∈ K and π(v) = v. Now, for any U ⊂ K ∪ {v} and any such a
permutation π, we use the symmetry capG(δ(U)) = capG(δ(π(U))). The latter
implies that for any S ⊂ K, mincutG(S,K \ S) = mincutG(π(S),K \ π(S)).

For a cut sparsifier H of quality q for G, we show that π(H), i.e., the graph
obtained by renaming all vertices of H according to permutation π, is also
a cut sparsifier of quality q for G. Indeed, for any S ∈ K, capπ(H)(δ(S)) =
capH(δ(π−1(S))) ≥ mincutG(π−1(S),K \ π−1(S)) = mincutG(S,K \ S). Sym-
metrically, one can show that capπ(H)(δ(S)) ≤ q · mincutG(S,K \ S).

Lemma 8. A convex combination of any two cut sparsifiers with the same qual-
ity gives a new cut sparsifier with the same or better quality.

Lemma 9. For the star graph G defined as above, there exists an optimum cut
sparsifier H, which is a complete graph with uniform edges-weights.

Proof. First, we observe by Lemma 8 that if we have two cut sparsifiers with the
same quality, taking their convex combination gives a new cut sparsifier with the
same or better quality. Suppose we are given some optimum cut sparsifier H ′. We
can generate k! different cut sparsifiers by considering all possible permutations
π as defined above. By the above arguments, for each π, we know that π(H ′)
is also an optimum cut sparsifier. Taking the convex combination over k! such
sparsifiers, we obtain a complete graph H with uniform edge-weights. ��
Lemma 10. If H is uniform weighted complete graph that is an optimum cut
sparsifier for the star graph G and k even, the edge weight must be at least 2/k.

Proof. By definition, H must dominate the terminal cut that has k/2 vertices
on one side. The minimum value of such a cut in G is k/2. The number of edges
that cross such a cut in H is k2/4. Since H has uniform edge-weights, this gives
that the edge weight must be at least 2/k. ��
Theorem 2. Let G = (K ∪ {v}, E) be an unweighted star with k terminals.
Then, there is no cut sparsifier H that achieves quality better than 2 − o(1).

Proof. By the above lemmas, we can assume without loss of generality that H is
a complete graph with uniform edge-weights, where this edge weight is at least
2/k. Hence, a cut that has a singleton terminal vertex on one side has capacity
2(k − 1)/k = 2(1 − 1/k) in H but it has minimum cut value 1 in G. The latter
implies that the quality of H must be at least 2(1 − 1/k). ��



112 G. Goranci and H. Räcke

4 Improved Results for Quasi-Bipartite Graphs

In this section, we present two new tradeoffs for flow sparsifiers in quasi-bipartite
graphs. For this family of graphs, Andoni et al. [3] show how to obtain flow
sparsifier with very good quality and moderate size. Specifically, they obtain
an (1 + ε)-quality flow sparsifier of size Õ(k7/ε3). In the original definition of
flow sparsifiers, Leighton and Moitra [14] studied the version where sparsifiers
lie only on the terminals, i.e., VH = K. For this restricted setting, we obtain a
flow sparsifier of quality 2.

Exact Cut Sparsifier (a.k.a Mimicking Networks) were introduced by Hagerup
et al. [9]. In their work they show that general graphs admit exact cut sparsifiers
of size doubly exponential in k. As a second result, we show that unit weighted
quasi-bipartite graphs admit an exact flow sparsifier of size 2k.

A graph G with terminals K is quasi-bipartite if the non-terminals form an
independent set. Throughout this section we assume w.l.o.g. that we are given a
bipartite graph with terminals lying on one side and non-terminals in the other
(this can achieved by subdividing terminal-terminal edges).

A 2-Quality Flow Sparsifier of Size k. Assume we are given an unweighted
bipartite graph G with terminals K. The crucial observation is that we can view
G as taking union over stars, where each non-terminal is the center connected to
some subset of terminals. Lemma 2 allows us to study these stars independently.
Then, for every such star, we apply Lemma 7 to obtain a flow sparsifier only on
the terminals belonging to that star. Finally, we merge the resulting sparsifiers
and construct a sparsifier H with V (H) = K by another application of Lemma7.
Since the quality of every star in isolation is 2 or better, H is also a 2-quality
flow sparsifier.

We note that Lemma 7 only works for unweighted trees. There is an easy
extension that gives a similar lemma for weighted stars.

Lemma 11. Let G = (K ∪ {u}, E, c) be a weighted star with k terminals. Then
G admits a 2-quality flow sparsifier H of size k.

Applying the decomposition and merging lemma similarly to the unweighted
case leads to the following theorem:

Theorem 3. Let G = (V,E, c) with K ⊂ V be a weighted quasi-bipartite graph.
Then G admits a 2-quality flow sparsifier H of size k.

An Exact Flow Sparsifier of Size 2k . In what follows it will be convenient
to work with an equivalent definition for Flow Sparsifiers. Let λG(d) denote the
maximum fraction of concurrent flow when routing demand d among terminals
in graph G. Then H = (VH , EH , cH) with K ⊂ VH is a flow sparsifier of G with
quality q ≥ 1 if for all demand functions d, λG(d) ≤ λH(d) ≤ q · λG(d).

The high level idea of our approach is to create “types” for non-terminals
and then merge all non-terminals of the same type into a single non-terminal
(i.e., add infinity capacity among all non-terminals of the same type). The main
difficulty is to define the right types and show that the merging does not affect the
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multi-commodity flow structure among the terminals. A similar approach was
developed by Andoni et al. [3], but their guarantees applies only to approximate
flow sparsifier.

We start by defining types. We say that two non-terminals u, v are of the
same type if they are incident to the same subset of terminals. Non-terminals
of the same type form groups. Note that a non-terminal belongs to an unique
group. The size of the group is the number of non-terminals belonging to that
group. Since the set of non-terminals is an independent set, by Lemma 2, we can
construct sparsifiers for each group independently. Our final sparsifier is obtained
by merging the sparsifiers over all groups. By another application of Lemma2,
if the sparsifiers of the groups are exact flow sparsifiers, then the final sparsifier
is also an exact flow sparsifier for the original graph.

Next, if we replace each group by a single non-terminal, then the size guaran-
tee of the final sparsifier follows from the fact that there are at most 2k different
subsets of terminals. Below we formalize the merging operation within groups.

Let Gi = (K ′ ∪ {v1, . . . , vni
}, Ei, c) be a group of size ni ≥ 2, where Ei =

{{vj , x} : j ∈ {1, . . . , ni}, x ∈ K ′}, K ′ ⊆ K and c(e) = 1, e ∈ Ei. We get:

Lemma 12. Let Gi with K ′ ⊂ V (Gi) be a group of size ni ≥ 2 defined as above.
Then Gi can be replaced by a star Hi = (K ′ ∪ {v1}, EHi

, cHi
) with edge weights

cHi
(e) = ni, for all e ∈ EHi

, and which preserves exactly all multicommodity
flows between terminals from K ′.

Taking the union over all sparsifiers Hi leads to the following theorem:

Theorem 4. Let G = (V,E) with K ⊂ V be a unit weighted quasi-bipartite
graph. Then G admits an exact flow sparsifier H of size at most 2k.

Proof (Lemma 12). First, observe that we can think of Hi as adding infinity
capacity edges between non-terminals in Gi. Then merging into a single non-
terminal is done by simply adding edge weights incident to the same terminal.
More precisely, let EHi

= {(vr, vs) : r, s = 1, . . . , ni, r �= s}. Then, we can
assume that Hi = (K ′ ∪ {v1, . . . vni

}, Ei ∪ EHi
, cHi

) where cHi
(e) = c(e) if

e ∈ Ei and cHi
(e) = ∞ if e ∈ EHi

.
Since we can route every feasible demand from Gi in Hi even without using

the infinity-capacity edges, it is immediate that for any demand function d,
λHi

(d) ≥ λGi
(d). Thus, we only need to show that λHi

(d) ≤ λGi
(d). To achieve

this, we will use the dual to the maximum concurrent flow problem (i.e., the
Fractional Sparsest Cut Problem). The dual problem is the following2:

min
∑ni

j=1

∑
x∈K′ �vjx

s. t. �svj
+ �vjt ≥ δst ∀{s, t} ∈ (

K′

2

)
, ∀j ∈ {1, . . . , ni}

∑
{s,t}∈(K′

2 ) dstδst ≥ 1

�e ≥ 0, δst ≥ 0.

(6)

2 Note that the dual requires that δst is at most the length of the shortest s-t path.
In our scenario this is always a 2-hop path. Hence, the above formulation is correct.
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Let d be an arbitrary demand function. Moreover, let {�e, δst} be an optimal
solution of value λGi

(d) for the LP in Eq. (6), where δst is the shortest-path
distance induced by the length assignment �. We first modify this solution and
get a new feasible solution with the same cost and a certain structure that we
will later exploit.

The modification works as follows. For every terminal we create a set of edges
incident to that terminal. Then, within each set, we replace the length of each
edge by the total average length of the group. Specifically, for every x ∈ K ′, let
Ex = {(vj , x) : j = 1, . . . , ni} be the set of edges incident to x.

The new edge lengths are defined as follows: �̃vjx =
∑

e∈Ex
�e/ni,∀x ∈

K ′,∀j = 1, . . . , ni. Let δ̃st be the new shortest-path distance induced by the
length assignment �̃. In order for {�̃e, δ̃st} to be feasible, we need to show that
δ̃ dominates δ, i.e., δ̃st ≥ δst, for every pair s, t ∈ K ′. Indeed, since edge lengths
within groups are the same, we get that for every pair s, t ∈ K ′:

δ̃st = �̃sv1 + �̃v1t =
1
ni

∑
e∈Es

�e +
1
ni

∑
e∈Et

�e =
1
ni

∑ni

j=1

(
�svj

+ �vjt

)

≥ min
j∈{1,...,ni}

{�svj
+ �vjt} ≥ δst.

Additionally, observe that the new solution has the same optimal value, namely
λ∗

G′
i
(d) =

∑ni

j=1

∑
x∈K′�vjx =

∑ni

j=1

∑
x∈K′ �̃vjx. Hence, we can assume without

loss of generality that an optimal solution satsifies: �̃v1x = . . . = �̃vni
x, ∀x ∈ K ′.

Now, we add edges (vi, vj) to Gi and set �̃vivj
= 0, for all i, j = 1, . . . , ni. Note

that shortest-path distances δ̃st do not change by this modification. Therefore,
by adding these zero edge lengths between the non-terminals, we still get an
optimum solution {�̃e, δ̃st} for the LP in (6).

Finally, let us define the dual problem for the star Hi:

min
∑ni

j=1

∑
x∈K′ �vjx

s. t.
∑

e∈Pst
�e ≥ δst ∀{s, t} ∈ (

K′

2

)
, ∀s-t paths on E ∪ EHi

∑
{s,t}∈(K′

2 ) dstδst ≥ 1

�e ≥ 0, δst ≥ 0, ∀e ∈ EHi
�e = 0.

(7)

It follows from above that {�̃e, δ̃st} is a feasible solution for the LP in (7). Hence,
λHi

(d) ≤ λGi
(d), what we were after. ��
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Abstract. We introduce the Scenario Submodular Cover problem. In
this problem, the goal is to produce a cover with minimum expected
cost, with respect to an empirical joint probability distribution, given as
input by a weighted sample of realizations. The problem is a counterpart
to the Stochastic Submodular Cover problem studied by Golovin and
Krause [6], which assumes independent variables. We give two approxi-
mation algorithms for Scenario Submodular Cover. Assuming an integer-
valued utility function and integer weights, the first achieves an approx-
imation factor of O(logQm), where m is the sample size and Q is the
goal utility. The second, simpler algorithm achieves an approximation
factor of O(logQW ), where W is the sum of the weights. We achieve our
bounds by building on previous related work (in [4,6,15]) and by exploit-
ing a technique we call the Scenario-OR modification. We apply these
algorithms to a new problem, Scenario Boolean Function Evaluation.
Our results have applciations to other problems involving distributions
that are explicitly specified by their support.

1 Introduction

The Submodular Cover problem is a fundamental problem in submodular opti-
mization that generalizes the classical NP-complete Set Cover problem. Adaptive
versions of this problem have applications to a number of other problems, notably
machine learning problems where the goal is to build a decision tree or strategy
of minimum expected cost. Examples of such problems include entity identifica-
tion (exact learning with membership queries), classification (equivalence class
determination), and decision region identification (cf. [1,6,7,11]). Other applica-
tions include reducing expected prediction costs for learned Boolean classifiers,
given attribute costs [5].

Previous work on Stochastic Submodular Cover assumes independence of the
variables of the probability distribution. Optimization is performed with respect
to this distribution. We consider a new version of the problem that we call
c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 116–128, 2017.
DOI: 10.1007/978-3-319-51741-4 10
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Scenario Submodular Cover, that removes the independence assumption. In this
problem, optimization is with respect to an input distribution given explicitly
by its support (with associated probability weights). We give approximation
algorithms solving Scenario Submodular Cover over discrete distributions.

In generic terms, an adaptive submodular cover problem is a sequential
decision problem where we must choose items one by one from an item set
N = {1, . . . , n}. Each item has an initially unknown state, which is a member
of a finite state set Γ . The state of an item is revealed only after we have chosen
the item. We represent a subset S ⊆ N of items and their states by a vector
x ∈ (Γ ∪ {∗})n where xi = ∗ if i �∈ S, and xi is the state of item i otherwise.
We are given a monotone, submodular1 utility function g : (Γ ∪{∗})n → Z≥0. It
assigns a non-negative integer value to a subset of the items where the value can
depend on the states of the items. There is a non-negative goal utility value Q,
such that g(a) = Q for all a ∈ Γn. There is a cost associated with choosing each
item, which we are given. In distributional settings, we are also given the joint
distribution of the item states. We continue choosing items until their utility
value is equal to the goal utility, Q. The problem is to determine the adaptive
order in which to choose items so as to minimize expected cost (in distributional
settings) or worst-case cost (in adversarial settings).

Stochastic Submodular Cover is an adaptive submodular cover problem in
a distributional setting. In this problem, the state of each item is an indepen-
dent random variable. The distributions of the variables are given as input.
Golovin and Krause introduced a simple algorithm for this problem, called Adap-
tive Greedy, achieving an approximation factor of O(log Q). Another algorithm
for the problem, called Adaptive Dual Greedy, was presented by Deshpande
et al. [5]. These algorithms have been useful in solving other stochastic optimiza-
tion problems, which can be reduced to Stochastic Submodular Cover through
the construction of appropriate utility functions (e.g., [2,5,7,11]).

The problem we study, Scenario Submodular Cover (Scenario SC), is also a
distributional, adaptive submodular cover problem. The distribution is given by
a weighted sample. Each element of the sample is a vector in Γn, representing
an assignment of states to the items in N . Associated with each assignment is
a positive integer weight. The sample and its weights define a joint distribution
on Γn, where the probability of a vector γ in the sample is proportional to its
weight. (The probability of a vector in Γn that is not in the sample is 0.) As in
Stochastic Submodular Cover, the problem is to choose the items and achieve
utility Q, while minimizing expected cost. However, because proofs of results for
the Stochastic Submodular Cover problem typically rely on the independence
assumption, they do not apply to the Scenario SC problem.

Results. We present Mixed Greedy, an approximation algorithm for the Scenario
SC problem that uses two different greedy criteria. It is a generalization of the

1 The definitions “monotone” and “submodular,” for state-dependent utility functions,
has not been standardized. We define these terms in Sect. 2. In the terminology used
by Golovin and Krause [6], g is pointwise monotone and pointwise submodular.
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algorithm of Cicalese et al. [4] for Equivalence Class Determination (also called
Group Identification and Discrete Function Evaluation). Our analysis uses the
the same basic approach as that used by Cicalese et al., but the proof of their
main technical lemma does not apply to our problem. We replace it with a
histogram proof similar to that used in [15] for Min-Sum Submodular Cover.

The approximation factor achieved by Mixed Greedy for Scenario SC is
O( 1ρ log Q), where ρ is a technical quantity associated with utility function g.
The utility function constructed for the Equivalence Class Determination prob-
lem has constant ρ, but this is not the case in general.

To achieve a better bound for other problems, we present a modified version
of Mixed Greedy, which uses an existing construction in a novel way. The existing
construction produces the OR of two monotone submodular functions with goal
values (cf. [5,9]). We apply this construction to g and to another utility function
based on the sample, to get a new monotone, submodular function gS , for which ρ
is constant. We call the transformation of g and the sample into gS the Scenario-
OR modification.

Once gS is constructed, Mixed Greedy is run on gS with goal value Qm,
where m is the size of the sample. We show that the resulting algorithm, Scenario
Mixed Greedy, achieves an O(log Qm) approximation factor for any Scenario SC
problem.

In addition to Mixed Greedy, we also present a simpler, more efficient
algorithm for the Scenario SC problem, Scenario Adaptive Greedy, with a
worse approximation bound. It is based on the Adaptive Greedy algorithm of
Golovin and Krause. However, the approximation bound proved by Golovin and
Krause [6] for Adaptive Greedy depends on the assumption that g and the
distribution defined by the sample weights jointly satisfy adaptive submodular-
ity. This is not the case for general Scenario SC instances. Scenario Adaptive
Greedy is obtained by modifying Adaptive Greedy using a weighted version of
the Scenario-OR modification. Scenario Adaptive Greedy combines g and the
weighted sample to obtain a modified utility function gW , having goal utility
QW . Scenario Adaptive Greedy then applies Adaptive Greedy to gW . We prove
that gW and the distribution defined by the weights jointly satisfy adaptive sub-
modularity. Using the existing approximation bound for Adaptive Greedy then
implies a bound of O(log QW ) for Scenario Adaptive Greedy, where W is the
sum of the weights.

The constructions of gS and gW are similar to constructions in work on
Equivalence Class Determination and related problems (cf. [1–3,7]). Our proof
of adaptive submodularity uses the approach of showing that a certain function
is non-decreasing along a path between two points. This approach was used
before (cf. [2,3,7]) but our problem is more general and our proof differs.

Previously, applying ordinary Adaptive Greedy to solve sample-based prob-
lems required constructing a utility function g, and then proving adaptive sub-
modularity of g and the distribution on the weighted sample. The proof could
be non-trivial (see, e.g., [1,3,7,11]). With our approach, one can get an approxi-
mation bound with Adaptive Greedy by proving only submodularity of g, rather
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than adaptive submodularity of g and the distribution. Proofs of submodularity
are generally easier. Also, the OR construction used in Sect. 2 preserves submod-
ularity, but not Adaptive Submodularity [2].

Given monotone, submodular g with goal value Q, we can use our algorithms
to obtain three approximation results for the associated Scenario SC problem:
O( 1ρ log Q) with Mixed Greedy, O(log Qm) with Scenario Mixed Greedy, and
O(log QW ) with Scenario Adaptive Greedy.

Assuming the costs ci are integers, and letting C =
∑

i ci, we note that
applying the “Kosaraju trick” (first used by Kosaraju et al. in [13]) to Scenario
Adaptive Greedy yields a bound of O(log QmC) instead of O(log QW ). See [6]
for a similar use of the trick.

After the appearance of a preliminary version of this paper [8], Navidi
et al. [14] presented a new algorithm solving a generalization of the Scenario
SC problem. It achieves the O(log Qm) bound of Scenario Mixed Greedy using
a single greedy rule, different from the one used in Scenario Adaptive Greedy.
Their algorithm can be applied to problems where there is a distinct monotone
submodular function for each scenario.

Applications. The Scenario SC problem has many applications. As an example,
consider the query learning problem of identifying an unknown hypothesis h from
a hypothesis class {h1, . . . , hm} by asking queries from the set {q1, . . . , qn}. The
answer to each query is 0 or 1, and we are given an m × n table D where
D[i, j] is the answer to qi for hj . Each pair of hypotheses differs on at least
one query. Suppose there is a given cost ci for asking query qi, and each hj has
a given prior probability pj . The problem is to build a decision tree (querying
procedure) for identifying h, minimizing expected query cost, assuming h is
drawn with respect to the pj . View the qi as items i ∈ N , the hj as scenarios,
and the answer to qi as the state of item i. Represent answers to queries asked
so far as a partial assignment b ∈ {0, 1, ∗}n where bi = ∗ means qi has not been
asked. Define utility function g : {0, 1, ∗}n → Z≥0 whose value on b ∈ {0, 1, ∗}n

is min{m − 1, r(b)} where r(b) = |{hj | ∃i such that bi �= ∗ and D[i, j] �= bi}|.
Function g is monotone and submodular. Further, g(b) = m−1 iff the answers in
b uniquely identify h. Building a decision tree with minimum expected decision
cost is equivalent to solving Scenario SC for g with goal value Q = m − 1, for
costs ci and weights proportional to the pi. An algorithm with an approximation
bound of O(log m) for this problem was first presented by [10].

Equivalence Class Determination is a generalization of the query learning
problem where in addition to D, we are given a partition of the hj into equiva-
lence classes. The decision tree must just identify the class to which h belongs.
This problem can also be seen as a Scenario SC problem, using the “Pairs” util-
ity function of Cicalese et al., which has goal value Q = O(m2) [4]. Applying our
Scenario Mixed Greedy bound to this utility function yields an approximation
bound of O(log m), matching the bound of Cicalese et al.

Our bound on Scenario Mixed Greedy yields a new approximation bound for
the Decision Region Identification problem studied by Javdani et al. [11], which is
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an extension of Equivalence Class Determination. They define a utility function
whose value is a weighted sum of hyperedges cut in a certain hypergraph. We
define a utility function whose value is the number of hyperedges cut. Using
Mixed Greedy with this function yields an approximation bound of O(k log m),
where k is a parameter associated with the problem, and m is the sample size.
In contrast, the bound in [11] is O(k log( W

wmin
)), where wmin is the minimum

weight on a realization in the sample. (The recent paper of Navidi et al. [14]
gives a further bound.)

We can apply our algorithms to Scenario BFE (Boolean Function Evaluation)
problems, which we introduce here. These problems are a counterpart to the
Stochastic BFE problems2 studied in AI, operations research, and in learning
with attribute costs (see e.g., [5,12,16]). In a Scenario BFE problem, we are
given a representation of a Boolean function f : {0, 1}n → {0, 1}. For each i ∈
{1, . . . , n}, we are given ci > 0, the cost of obtaining the value of the ith bit of
an initially unknown a ∈ {0, 1}n. We are given a weighted sample S ⊆ {0, 1}n.
The problem is to compute a (possibly implicit) decision tree computing f ,
minimizing the expected cost of evaluating f on a ∈ {0, 1}n using the tree. The
expectation is with respect to the distribution defined by the sample weights.

Deshpande et al. [5] gave approximation algorithms for some Stochastic BFE
problems that work by constructing a monotone, submodular utility function g
and running Adaptive Greedy. By substituting the sample-based algorithms in
this paper in place of Adaptive Greedy, we obtain results for analogous Sce-
nario BFE problems. For example, using Mixed Greedy, we obtain an O(k log n)
approximation for the Scenario BFE problem for k-of-n functions, a bound that
is independent of sample size. Details are in the full version of the paper.

We note that the Scenario BFE problem differs from the function evaluation
problem considered by Cicalese et al. [4]. In that problem, the decision tree
must only compute f correctly on assignments a ∈ {0, 1}n in the sample, while
in Scenario BFE the tree must compute f correctly on all a ∈ {0, 1}n. Also, in
Scenario BFE we assume function f is given with the sample, and we consider
particular types of functions f .

2 Definitions

Let N = {1, . . . , n} be the set of items and Γ be a finite set of states. A sample
is a subset of Γn. A realization is an element a ∈ Γn, representing an assignment
of states to items, where for i ∈ N , ai represents the state of item i. We also
refer to an element of Γn as an assignment.

We call b ∈ (Γ ∪ {∗})n a partial realization. Partial realization b represents
the subset I = {i | bi �= ∗} where each item i ∈ I has state bi. For γ ∈ Γ , the
quantity bi←γ denotes the partial realization produced from b by setting bi = γ.
For b, b′ ∈ (Γ ∪ {∗})n, b′ is an extension of b, written b′ 	 b, if b′

i = bi for all
bi �= ∗. We use b′ 
 b to denote that b′ 	 b and b′ �= b.
2 In the Operations Research literature, Stochastic Function Evaluation is often called
Sequential Testing or Sequential Diagnosis.
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Let g : (Γ ∪ {∗})n → Z≥0 be a utility function. Function g : (Γ∪{∗})n → Z≥0

has goal value Q if g(a) = Q for all realizations a ∈ Γn. We define Δg(b, i, γ) :=
g(bi←γ) − g(b).

A standard utility function is a set function f : 2N → R≥0. It is monotone if
for all S ⊂ S′ ⊆ N , f(S) ≤ f(S′). It is submodular if in addition, for i ∈ N − S,
f(S∪{i})−f(S) ≥ f(S′∪{i})−f(S′). We extend definitions of monotonicity and
submodularity to (state-dependent) function g : (Γ ∪ {∗})n → Z≥0 as follows:

– g is monotone if for b ∈ (Γ ∪ {∗})n, i ∈ N such that bi = ∗, and γ ∈ Γ , we
have g(b) ≤ g(bi←γ)

– g is submodular if for all b, b′ ∈ (Γ ∪ {∗})n such that b′ 
 b, i ∈ N such that
bi = b′

i = ∗, and γ ∈ Γ , we have Δg(b, i, γ) ≥ Δg(b′i, γ).

Let D be a probability distribution on Γn. Let X be a random variable drawn
from D. For a ∈ Γn and b ∈ (Γ ∪ {∗})n, we define Pr[a | b] := Pr[X = a | a 	 b].
For i such that bi = ∗, we define E[Δg(b, i, γ)] :=

∑
a∈Γn:a�b Δg(b, i, ai) Pr[a | b].

– g is adaptive submodular with respect to D if for all b′, b such that b′ 
 b, i ∈ N
such that bi = b′

i = ∗, and γ ∈ Γ , we have E[Δg(b, i, γ)] ≥ E[Δg(b′, i, γ)].

Intuitively, we can view b as partial information about states of items i in a
random realization a ∈ Γn, with bi = ∗ meaning the state of item i is unknown.
Then g measures the utility of that information, and E[Δg(b, i, γ)] is the expected
increase in utility that would result from discovering the state of i.

For g : (Γ ∪ {∗})n → Z≥0 with goal value Q, and b ∈ (Γ ∪ {∗})n and i ∈ N ,
where bi = ∗, let γb,i be the state γ ∈ Γ such that Δg(b, i, γ) is minimized (if
more than one exists, choose one arbitrarily). Thus γb,i is the state of item i that
would produce the smallest increase in utility, and thus is “worst-case” in terms
of utility gain, if we start from b and then discover the state of i.

For fixed g : (Γ ∪ {∗})n → Z≥0 with goal value Q, we define an associated
quantity ρ, as follows:

ρ := min
Δg(b, i, γ)
Q − g(b)

(1)

where the minimization is over b, i, γ, where b ∈ (Γ ∪ {∗})n such that g(b) < Q,
i ∈ N such that bi = ∗, and γ ∈ Γ − {γb,i}.

Intuitively, when the state of item i is discovered, the distance between the
utility achieved and the goal utility is reduced by some fraction (possibly zero).
The fraction can vary depending on item state. Parameter ρ equals the small-
est possible value for the fraction associated with the next-to-worst case state,
starting from any partial realization, and considering any item i whose state is
about to be discovered.

An instance of the Scenario SC problem is a tuple (g,Q, S,w, c), where g : (Γ∪
{∗})n → Z≥0 is an integer-valued, monotone submodular utility function with
goal value Q > 0, S ⊆ Γn, w : S → Z

n
>0 assigns a weight to each realization

a ∈ S, and c ∈ R
n
>0 is a cost vector. We consider a setting where we select

items without repetition from the set of items N , and the states of the items
correspond to an initially unknown realization a ∈ Γn. Each time we select an
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item, the state ai of the item is revealed. The selection of items can be adaptive,
in that the next item chosen can depend on the states of the previous items.
We continue to choose items until g(b) = Q, where b is the partial realization
representing the states of the chosen items.

The Scenario SC problem asks for an adaptive order in which to choose the
items (i.e. a strategy), until goal value Q is achieved, such that the expected sum
of costs of the chosen items is minimized. The expectation is with respect to the
distribution on Γn that is proportional to the weights on the assignments in the
sample: Pr[a] = 0 if a �∈ S, and Pr[a] = w(a)

W otherwise, where W =
∑

a∈S w(a).
We call this the sample distribution defined by S and w and denote it by DS,w.

The strategy corresponds to a decision tree. The internal nodes of the tree
are labeled with items i ∈ N , and each such node has |Γ | children, one for each
state γ ∈ Γ . We refer to the child corresponding to state γ as the γ-child. Each
root-leaf path in the tree is associated with a partial realization b such that for
each consecutive pairs of nodes v and v′ on the path, if i is the label of v, and
v′ is the γ-child of v, then bi = γ. If i does not label any node in the path,
then bi = ∗. The tree may be output in an implicit form (for example, in terms
of a greedy rule), specifying how to determine the next item to choose, given
the previous items chosen and their states. Although realizations a �∈ S do not
contribute to the expected cost of the strategy, we require the strategy to achieve
goal value Q on all realizations a ∈ Γn.

We will use an existing “OR construction,” a method for taking the OR of two
utility functions [5,9]. It is a method for combining two monotone submodular
utility functions g1 and g2 defined on (Γ ∪ {∗})n, and values Q1 and Q2, into a
new monotone submodular utility function g. For b ∈ (Γ ∪ {∗})n,

g(b) = Q1Q2 − (Q1 − g1(b))(Q2 − g2(b)) (2)

If for all a ∈ Γn, g1(a) = Q1 or g2(a) = Q2, then g(a) = Q1Q2 for all a ∈ Γn.

3 Mixed Greedy

Mixed Greedy is a generalization of the approximation algorithm developed by
Cicalese et al. for the Equivalence Class Determination problem [4]. That algo-
rithm solves the Scenario Submodular Cover problem for a particular “Pairs”
utility function associated with Equivalence Class Determination. In contrast,
Mixed Greedy can be used on any monotone, submodular utility function g.
Following Cicalese et al., we present Mixed Greedy as outputting a tree. If the
strategy is only to be used on one realization, it is not necessary to build the
entire tree.

3.1 Algorithm

The Mixed Greedy algorithm builds a decision tree for a Scenario SC instance
(g,Q, S,w, c). The tree is built top-down, and is structured as described at the
end of Sect. 2.
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Algorithm 1
Procedure MixedGreedy(g, Q, S, w, c, b)

1: If g(b) = Q then return a single (unlabeled) leaf l
2: Let T be an empty tree
3: N ′ ← {i : bi = ∗}
4: For i ∈ N ′, σi ← argminγ∈Γ Δg(b, i, γ)

5: Define g′ : 2N′ → Z≥0 such that for all U ⊆ N ′, g′(U) = g(bU ) − g(b), where bU is
the extension of b produced by setting bi = σi for all i ∈ U .

6: B ← FindBudget(N ′, g′, c), spent ← 0, spent2 ← 0, k ← 1
7: I ← {i ∈ N ′|ci ≤ B}
8: For all R ⊆ I, define DR := {a ∈ S|a � b and ai 	= σi for some i ∈ R}
9: Define h : 2I → Z≥0 such that for all R ⊆ I, h(R) =

∑
a∈DR

w(a)
10: R ← ∅
11: repeat
12: Let i be an item which maximizes h(R∪{i})−h(R)

ci
among all items i ∈ I

13: Let tk be a new node labeled with item i
14: If k = 1 then make t1 the root of T
15: else make tk the σj-child of tk−1

16: j ← i
17: for every γ ∈ Γ such that γ 	= σi do
18: T γ ← MixedGreedy(g, Q, S, w, c, bi←γ)
19: Attach T γ to T by making the root of T γ the γ-child of tk

20: bi ← σi, R ← R ∪ {i}, I ← I − {i}, spent ← spent + ci, k ← k + 1
21: until spent ≥ B
22: repeat
23: Let i be an item which maximizes Δg(b,i,σi)

ci
among all items i ∈ I

24: Let tk be a node labeled with item i
25: Make tk the σj-child of tk−1

26: j ← i
27: for every γ ∈ Γ such that γ 	= σi do
28: T γ ← MixedGreedy(g, Q, S, w, c, bi←γ)
29: Attach T γ to T by making the root of T γ the γ-child of tk

30: bi ← σi, I ← I − {i}, spent2 ← spent2 + ci, k ← k + 1
31: until spent2 ≥ B or I = ∅
32: T ′ ← MixedGreedy(g, Q, S, w, c, b); Attach T ′ to T by making the root of T ′ the

σj-child of tk−1

33: Return T

Mixed Greedy works by calling recursive function MixedGreedy, which we
present in Algorithm 1. In the initial call, b = (∗, . . . , ∗). Only the value of
parameter b changes between recursive calls. Each call constructs a subtree of
the full tree for g, rooted at a node v of that tree. In the call building the subtree
rooted at v, b is the partial realization corresponding to the path from the root
to v in the full tree: bi = γ if the path includes a node labeled i and its γ-child,
and bi = ∗ otherwise.

The algorithm of Cicalese et al. [4] is essentially the same as Mixed Greedy in
the special case where g is equal to their “Pairs” function. Like their algorithm,
Mixed Greedy uses a subroutine, FindBudget, that relies on a greedy algorithm
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of Wolsey for Budgeted Submodular Cover [17]. FindBudget is presented in the
full version [8] of this paper and is omitted here due to space constraints.

If g(b) = Q, then MixedGreedy returns an (unlabeled) single node, which
will be a leaf of the full tree for g. Otherwise, MixedGreedy constructs a tree
T . It does so by computing a special realization called σ, and then iteratively
using σ to construct a path descending from the root of this subtree, which is
called the backbone. It uses recursive calls to build the subtrees “hanging” off the
backbone. The backbone has a special property: for each node v′ in the path,
the successor node in the path is the σi-child of v′, where i is the item labeling
node v′.

The backbone is constructed as follows. Using FindBudget, MixedGreedy
computes a lower bound B on the minimum cost required to achieve a fraction
of approximately 1

3 of the goal value Q, assuming we start with partial realization
b (Step 6).

After calculating B, MixedGreedy constructs the backbone in two stages,
using a different greedy criterion in each to determine which item i to place
in the current node. In the first stage, corresponding to the first repeat loop,
the goal is to remove weight (probability mass) from the backbone, as cheaply
as possible. That is, consider an a ∈ Γn to be removed from the backbone (or
“covered”) if i labels a node in the backbone and ai �= σi; removing a from the
backbone results in the loss of weight w(a) from the backbone. The greedy choice
used in the first stage in Step 12 follows the rule of maximizing bang-for-the-
buck : the algorithm chooses i such that the amount of weight removed from the
backbone, divided by ci, is maximized. In making this choice, it only considers
items that have cost at most B. The first stage ends as soon as the total cost
of the items in the chosen sequence is at least B. For each item i chosen during
the stage, bi is set to σi.

In the second stage, corresponding to the second repeat loop, the goal is to
increase utility as measured by g, under the assumption that we already have
b, and that the state of each remaining item i is σi. The algorithm again uses
a bang-for-the-buck rule, choosing the i that maximizes the increase in utility,
divided by ci (Step 23). In making this choice, it again considers only items with
cost at most B. The stage ends when the total cost of the items in the chosen
sequence is at least B. For each item i chosen during the stage, bi is set to σi.

In Sect. 2, we defined ρ. The way B is chosen guarantees that the updates to
b during the two greedy stages cause the value of Q − g(b) to shrink by at least
a fraction min{ρ, 1

9} before each recursive call. We use this fact to prove the
following theorem. The proof can be found in the full version of the paper [8].

Theorem 1. Mixed Greedy is an approximation algorithm for Scenario Sub-
modular Cover that achieves an approximation factor of O( 1ρ log Q).

4 Scenario Mixed Greedy

We now use the Scenario-OR modification to obtain a modified version of Mixed
Greedy, called Scenario Mixed Greedy, that eliminates the dependence on ρ in
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the approximation bound in favor of a dependence on m, the size of the sample.
Rather than running Mixed Greedy with g, it first combines g and the sample to
produce a new utility function gS , and then runs Mixed Greedy with gS , rather
than with g. Utility function gS is produced by combining g with another utility
function hS , using the OR construction described at the end of Sect. 2. Here
hS : (Γ ∪ {∗})n → Z≥0, where hS(b) = m − |{a ∈ S : a 	 b}| and m = |S|.
Thus hS(b) is the total number of assignments that have been eliminated from
S because they are incompatible with the partial state information in b. Utility
m for hS is achieved when all assignments in S have been eliminated. Clearly,
hS is monotone and submodular.

When the OR construction is applied to combine g and hS , the resulting
utility function gS reaches its goal value Qm when all possible realizations of
the sample have been eliminated or when goal utility is achieved for g.

In an on-line setting, Scenario Mixed Greedy uses the following procedure to
determine the sequence of items to choose on an initially unknown a. We note
that the third step in the procedure is present because goal utility Q must be
reached even for realizations a not in S.

Scenario Mixed Greedy:

1. Construct utility function gS by applying the OR construction to g and utility
function hS .

2. Adaptively choose a sequence of items by running Mixed Greedy for utility
function gS with goal value Qm, with respect to the sample distribution DS,w.

3. After goal value Qm is achieved, if the final partial realization b computed
by Mixed Greedy does not satisfy g(b) = Q, then choose the remaining items
in N in a fixed but arbitrary order until g(b) = Q.

Theorem 2. Scenario Mixed Greedy approximates Scenario Submodular Cover
with an approximation factor of O(log Qm), where m is the size of sample S.

Proof. Scenario Mixed Greedy achieves utility value Q for g when run on any
a ∈ Γn, because the b computed by Mixed Greedy satisfies a 	 b, and the
third step ensures Q is reached. Let c(g) and c(gS) denote the expected cost
of the optimal strategies for Scenario SC problems on g and gS respectively,
with respect to sample distribution DS,w. Let τ be an optimal strategy for g
achieving expected cost c(g). It is also a valid strategy for the problem on gS ,
since it achieves utility Q for g on all realizations, and hence achieves goal utility
Qm for gS on all realizations. Thus c(gS) ≤ c(g).

Functions g and hS are monotone and submodular. Since gS is produced
from them using the OR construction, gS is monotone and submodular. Let ρS

be the value of parameter ρ for the function gS . By the bound in Theorem 1,
running Mixed Greedy on gS , for the sample distribution DS,w, has expected
cost that is at most a O( 1

ρS
log Qm) factor more than c(gS). Its expected cost is

thus also within an O( 1
ρS

log Qm) factor of c(g). Making additional choices on
realizations not in S, as done in the last step of Scenario Mixed Greedy, does
not affect the expected cost, since these realizations have zero probability.
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Generalizing an argument from [4], we now prove that ρS is lower bounded by
a constant fraction. Consider any b ∈ (Γ ∪{∗})n and i ∈ N such that bi = ∗, and
any γ ∈ Γ where γ �= γb,i. Let Cb = |S| − hS(b) = |{a ∈ S | a 	 b}|. Since sets
{a ∈ S | a 	 b and ai = γ} and {a ∈ S | a 	 b and ai = γb,i} are disjoint, both
cannot have size greater than Cb

2 . Thus ΔhS(b, i, γ) ≥ Cb

2 or ΔhS(b, i, γb,i) ≥ Cb

2
or both. By the construction of gS (recall the definition of the OR construction
in (2)), we have that ΔgS(b, i, γ) ≥ (Q−g(b))Cb

2 or ΔgS(b, i, γb,i) ≥ (Q−g(b))Cb

2 or
both. Since γb,i is the “worst-case” setting for bi with respect to gS , it follows
that ΔgS(b, i, γ) ≥ ΔgS(b, i, γb,i), and so in all cases ΔgS(b, i, γ) ≥ (Q−g(b))Cb

2 .
Also, (Q − g(b))Cb = Qm − gS(b). Therefore, ρS ≥ 1

2 . The theorem follows from
the bound in Theorem 1. ��

5 Scenario Adaptive Greedy

Scenario Adaptive Greedy works by first constructing a utility function gW ,
produced by applying the OR construction to g and utility function hW . Here
hW : (Γ ∪ {∗})n → Z≥0, where hW (b) = W −∑

a∈S:a�b w(a). Intuitively, hW (b)
is the total weight of assignments eliminated from S because they are incompati-
ble with the information in b. Utility W is achieved for hW when all assignments
in S have been eliminated. Clearly hW is monotone and submodular. The func-
tion gW reaches its goal value QW when all possible realizations of the sample
have been eliminated or when goal utility is achieved for g. Once gW is con-
structed, Scenario Adaptive Greedy runs Adaptive Greedy on gW .

In an on-line setting, Scenario Adaptive Greedy uses the following procedure
to determine the sequence of items to choose on an initially unknown a.

Scenario Adaptive Greedy:

1. Construct modified utility function gW by applying the OR construction to
g and utility function hW .

2. Run Adaptive Greedy for utility function gW with goal value QW , with
respect to sample distribution DS,w, to determine the choices to make on a.

3. After goal value QW is achieved, if the partial realization b representing the
states of the chosen items of a does not satisfy g(b) = Q, then choose the
remaining items in N in arbitrary order until g(b) = Q.

The analysis of Scenario Adaptive Greedy is based on the following lemma.

Lemma 1. Utility function gW is adaptive submodular with respect to sample
distribution DS,w.

The proof of Lemma 1 can be found in the full version of the paper.

Theorem 3. Scenario Adaptive Greedy is an approximation algorithm for Sce-
nario Submodular Cover achieving an approximation factor of O(log QW ), where
W is the sum of the weights on the realizations in S.
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Proof. Since gW is produced by applying the OR construction to g and hW ,
which are both monotone, so is gW . By Lemma 1, gW is adaptive submodu-
lar with respect to the sample distribution. Thus by the bound of Golovin and
Krause on Adaptive Greedy, running that algorithm on gW yields an ordering
of choices with expected cost that is at most a O(log QW ) factor more than the
optimal expected cost for gW . By the analogous argument as in the proof of
Theorem 2, it follows that Scenario Adaptive Greedy solves the Scenario
Submodular Cover problem for g, and achieves an approximation factor of
O(log QW ). ��
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Abstract. This paper addresses the classical online Steiner tree prob-
lem on edge-weighted graphs. It is known that a greedy (nearest neigh-
bor) online algorithm has a tight competitive ratio for wide classes of
graphs, such as trees, rings, any class including series-parallel graphs,
and unweighted graphs with bounded diameter. However, we did not
know any greedy or non-greedy tight deterministic algorithm for other
classes of graphs. In this paper, we observe that a greedy algorithm
is Ω(logn)-competitive on outerplanar graphs, where n is the number
of vertices, and propose a 5.828-competitive deterministic algorithm on
outerplanar graphs. Our algorithm connects a requested vertex and the
tree constructed thus far using a path that is constant times longer than
the distance between them. The algorithm can be applied to a 21.752-
competitive file allocation algorithm against adaptive online adversaries
on outerplanar graphs. We also present a lower bound of 4 for arbitrary
deterministic online Steiner tree algorithms on outerplanar graphs.

1 Introduction

This paper addresses the classical online Steiner tree problem (STP) on edge-
weighted graphs. We are given a graph G = (VG, EG) with non-negative edge-
weights w : EG → R

+ and a subset R of vertices of G. The (offline) Steiner tree
problem is to find a Steiner tree, i.e., a subtree T = (VT , ET ) of G that contains
all the vertices in R and minimizes its cost c(T ) =

∑
e∈ET

w(e). In the online
version of this problem, vertices r1, . . . , r|R| ∈ R are revealed one by one, and for
each i ≥ 1, we must construct a tree containing ri by growing the constructed
tree for r1, . . . , ri−1 (null tree for i = 1) without information of ri+1, . . . , r|R|.

Imase and Waxman [12] proposed a greedy (nearest neighbor) online algo-
rithm that is O(log n)-competitive on arbitrary graphs with n vertices. They also
proved that no deterministic algorithm is o(log n)-competitive even on series-
parallel graphs [12]. Westbrook and Yan [15] refined these upper and lower
bounds to Θ(log(diam|R|/opt)) with improving analysis, where diam is the
diameter of the underlying graphs, and opt is the cost of a minimum Steiner
tree. The refined upper bound implies that the greedy algorithm is O(log diam)-
competitive for unweighted graphs. The greedy algorithm is trivially 1- and 2-
competitive on trees and rings, respectively. With these results, the greedy algo-
rithm has a tight competitive ratio for trees, rings, any class of graphs including
c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 129–141, 2017.
DOI: 10.1007/978-3-319-51741-4 11
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series-parallel graphs, and unweighted graphs with bounded diameter. However,
we did not know any greedy or non-greedy tight deterministic algorithm for
other classes of graphs. As for randomized algorithms, a probabilistic embed-
ding of outerplanar graphs into tree metrics with distortion 8, presented by
Gupta et al. [11], implies an 8-competitive online Steiner tree algorithm against
oblivious adversaries on outerplanar graphs. This embedding was generalized
to k-outerplanar graphs with distortion 200k by Chekuri et al. [9], implying a
200k-competitive online Steiner tree algorithm against oblivious adversaries on
k-outerplanar graphs.

Online Steiner trees on the Euclidean space are studied in [1,4]. Various gen-
eralizations of the online Steiner tree problem are also studied, such as general-
ized STP [5,8,15], asymmetric STP [3,4], priority STP [2,3], and vertex-weighted
STP [14].

In this paper, we observe that the greedy algorithm is Ω(log n)-competitive
on outerplanar graphs, and propose a 3+2

√
2 ≈ 5.828-competitive deterministic

algorithm on outerplanar graphs. Our algorithm connects a requested vertex and
the tree constructed thus far using a path of a maximal length within α > 1
times longer than the distance between them. We prove that our algorithm is
( α

α−1 + 2α)-competitive, implying a (3 + 2
√

2)-competitive algorithm at α =
1 + 1/

√
2 (Sect. 4). A technical overview will be discussed in the beginning of

Sect. 4 after we observe the Ω(log n) competitiveness of the greedy algorithm
in Sect. 3. Though we do not know if our analysis is tight for α = 1 + 1/

√
2,

we observe a lower bound for our algorithm that matches our analysis with any
α ≥ 2. We also present a lower bound of 4 for arbitrary deterministic online
Steiner tree algorithms on outerplanar graphs (Sect. 5). Previous and our results
are summarized in Table 1.

An application of the online Steiner tree problem is the file allocation problem,
which is to find dynamic allocations of multiple copies of a data object, called
file, of size D ≥ 1 on a network G, such that the total cost of servicing online
read/write requests and reallocating the copies is minimized [6,7,13]. Bartal,
Fiat, and Rabani [7] proposed a (2 +

√
3)c-competitive file allocation algorithm

Table 1. Summary of results of online STP on weighted graphs

Graphs Competitive ratio Adversary type

General graphs O(log n) Deterministic [12]

Series-parallel graphs Ω(logn) Deterministic [12]

General graphs Θ(log(diam|R|/opt)) Deterministic [15]

Outerplanar graphs 5.828 Deterministic This paper

Outerplanar graphs ≥4 Deterministic This paper

Rings 2 Deterministic [7]

Outerplanar graphs 8 Oblivious [11]

k-outerplanar graphs 200k Oblivious [9]
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against adaptive online adversaries based on any c-competitive online Steiner
tree algorithm against adaptive online adversaries. Combined with this result,
our algorithm implies a (2 +

√
3)(3 + 2

√
2) ≈ 21.752-competitive file allocation

algorithm against adaptive online adversaries on outerplanar graphs.

2 Preliminaries

Graphs considered here are undirected and have non-negative edge-weights,
w(e) ≥ 0 for any edge e. For a graph G, we denote its vertex set and edge
set by VG and EG, respectively. We use the notation of w also for graphs, i.e.,
w(G) :=

∑
e∈EG

w(e). For a subset R of vertices of G, a Steiner tree of G for
R is a subtree T of G such that R ⊆ VT . T is said to be minimum if T has the
minimum cost w(T ) overall Steiner trees of G for R.

Suppose that G is a planar graph. The weak dual of G is a graph H such
that VH is the set of bounded faces of G, and EH is the family of sets consisting
of two bounded faces that have a common edge. The graph G is outerplanar if
it can be drawn on the plane so that all the vertices belong to the unbounded
face, or equivalently, if H is a forest [10]. We say an edge of G to be outer if the
edge is contained in the unbounded face, inner otherwise.

In the rest of the paper, we assume that G is a biconnected outerplanar
graph, because finding a minimum Steiner tree of G can easily be reduced to
finding minimum Steiner trees of biconnected components of G. This assumption
implies that H is a tree. Let dG(u, v) be the distance of vertices u and v in G.
We use the notation of dG also for the distance between a graph and a vertex,
i.e., dG(G′, v) := min{dG(u, v) | u ∈ VG′} for a subgraph G′ of G and v ∈ VG.

3 Lower Bound for Greedy Algorithms

In this section, we prove that a greedy algorithm, which always takes a shortest
path between a requested vertex and the current tree, is Ω(log n)-competitive on
outerplanar graphs. The proof will be a hint of our algorithm and general lower
bound in the following sections. We note that the lower bound is also admitted
by another type of greedy algorithm that always takes a shortest path between
the current request and one of the previously requested vertices.

Theorem 1. For any integer k ≥ 0, there exists a (2k + 1)-vertex outerpla-
nar graph Gk such that if a greedy online Steiner tree algorithm on Gk is ρ-
competitive, then ρ ≥ 1 + k/2.

Proof. Gk is recursively defined: G0 consists of two vertices joined by an edge
of weight 1. These vertices and edge are said to be of level 0. For i ≥ 1, Gi is
obtained from Gi−1 by adding a new vertex u and edges su and ut of weight
2−i + ε for each edge st of level i− 1, where ε > 0. The added vertices and edges
are said to be of level i. We illustrate G4 in Fig. 1.
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Fig. 1. Outerplanar graph G4

If all the vertices of Gk are requested in an increasing order with regard
to their levels, then a greedy algorithm chooses the unique edge of level 0 first
and then 2i−1 edges in each level 1 ≤ i ≤ k. On the other hand, a minimum
Steiner tree has a cost at most that of the tree consisting only of edges of level
k. Therefore, the competitive ratio is at least 1+

∑k
i=1 2i−1(2−i+ε)

2k(2−k+ε)
, which tends to

1 + k/2 as ε → 0. 	


4 Algorithm α-Detour and Its Competitiveness

In this section, we define our algorithm, called α-Detour with α > 1, and prove
its competitiveness.

4.1 Overview

The basic idea of our algorithm is to suppress the cost of a greedy algorithm
against the adversary in the proof of Theorem1. Suppose that the greedy algo-
rithm takes an edge of level i of Gk in the proof of Theorem 1. Then, the vertices
incident to the edge can also be connected using edges with level higher than i.
For ε close to 0, the edge of level i and the detour have nearly the same length.
The greedy algorithm incurs an expensive cost of O(log n) since it takes edges
of each level even in such a case. But obviously, we can avoid such an expensive
cost by taking the detour with a single penalty of the detour. In our algorithm
α-Detour, we take a certain detour of maximal length within the factor of α using
edges of higher level. We formally define α-Detour and prove its correctness in
Sects. 4.2 and 4.3, respectively. We will introduce in the definition a rooted forest
structure of edges with regard to their levels. In Gk, for example, edges su and
ut of level i added to an edge st of level i − 1 are children of st.

In our analysis of the competitiveness, intuitively (not precisely), we charge
the weight of each edge uv chosen by α-Detour to the path connecting u and v in a
minimum Steiner tree. For an edge e of the minimum Steiner tree, edges charged
to e are of three types: (i) ancestor edges of e, (ii) descendant edges of e or e itself,
and (iii) otherwise. The amounts charged to e by edges of type (i) are essentially
fragments of weights exponentially decreasing by the factor α−1. Hence, the total
charged amount of this type is at most

∑
i≥1 α−(i−1)w(e) < α

α−1w(e). For each
of types (ii) and (iii), by the property of detours based on shortest paths, the
total charged amount is at most w(e) multiplied by α. Summing these amounts,
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we derive that α-Detour is ( α
α−1 +2α)-competitive as desired. We formally prove

this in Sect. 4.4. One non-intuitive part of the proof is that we charge an edge
uv chosen by α-Detour to not the whole but only a part of the path joining uv
in the minimum Steiner tree. Specifically, we do not charge uv to any part of
the tree that was constructed by α-Detour before uv is chosen. The charging
process is defined through dynamically modifying the graph and forest structure
of edges, in such a way that the forest precisely represents the relation between
shortest paths and their detours.

4.2 Definition

For the first requested vertex r1, we suppose that the weak dual H of G is a
tree rooted by a face containing r1. We introduce a forest F with VF = EG as
follows. If a face C is the root of H, then all the edges of C are the roots of the
connected components of F . If C is a face of G, and C ′ is a child of C in H,
then all the edges in EC′ \ EC are the children of the unique edge e ∈ EC ∩ EC′

in F . For any inner edge e of G, let Ge be the subgraph of G induced by the
descendant edges of e in F . We note that Ge does not contain e. To clarify our
discussion, we use the term links to denote elements of EF .

For the ith requested vertex ri, α-Detour constructs a tree Ti as follows:

α-Detour

1. If i = 1, then return the tree T1 consisting only of r1.
2. Suppose i ≥ 2. If ri ∈ VTi−1 , then return Ti := Ti−1.
3. Otherwise, find a shortest path Pi = (p1, p2, . . . , p|Pi|) between a vertex p1 in

Ti−1 and p|Pi| = ri.
4. For j = 1 to |Pi|−1, if pj+1 /∈ VTi−1 , then call DetourEdge(α, pj , pj+1) defined

below.
5. Return Ti := Ti−1.

DetourEdge(β, u, v) is a procedure to modify Ti−1 by adding a path between
Ti−1 and v of maximal length at most β · w(uv). The inputs are β ≥ 1 and an
edge uv such that u ∈ VTi−1 , v /∈ VTi−1 , and w(uv) ≤ dG(Ti−1, v). The procedure
is formally defined as follows:

DetourEdge(β, u, v)

1. If uv is outer, then add uv to Ti−1 and return.
2. If uv is inner, then find a shortest path Quv = (q1, . . . , q|Quv|) from a vertex

q1 in Ti−1 to q|Quv| = v in Guv.
3. If w(Quv)/w(uv) > β, then add uv to Ti−1.
4. Otherwise, call DetourEdge(β ·w(uv)/w(Quv), qj , qj+1) for j = 1 to |Quv|−1.
5. Return.
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4.3 Correctness

Since α-Detour and DetourEdge only add edges to Ti−1, Ti contains Ti−1 as a
subgraph. Therefore, it suffices to show that α-Detour connects ri to Ti−1 with
a path of length at most α · dG(Ti−1, ri).

Lemma 1. DetourEdge(β, u, v) adds a path of length at most β · w(uv) between
a vertex of Ti−1 and v.

Proof Sketch. Induction on the height of uv in F . 	

Since α-Detour calls DetourEdge(α, pj , pj+1) for each j unless pj+1 has

already been contained in Ti−1, by Lemma 1, we have the following lemma:

Lemma 2. For i ≥ 2, α-Detour connects ri to Ti−1 with a path of length at
most α · dG(Ti−1, ri).

4.4 Competitiveness

We first introduce dynamic modification of G and F in such a way that any
Quv found in DetourEdge(β, u, v) is a path connecting u and v. According to
the modified graph and forest, we then charge the weights of edges of Pi in Step
3 of α-Detour to their descendant edges that are potentially used by a minimum
Steiner Tree. We finally estimate the competitiveness by comparing the charged
amounts multiplied by α, including the case that edges of Pi are charged not to
their descendants, to the cost of the minimum Steiner Tree.

Modifying Graph. Every time DetourEdge(α, pj , pj+1) is called in Step 4 of
α-Detour, we mark pjpj+1 “greedy”. Before entering DetourEdge(α, pj , pj+1),
we perform the following:

ModifyGraph

1. For each “greedy” edge pp′ such that pjpj+1 is an ancestor of pp′, and that
there is no “greedy” edge that is a descendant of pjpj+1 and an ancestor of
pp′, we decompose the graph into the subgraph induced by pp′ and its all
descendants and the subgraph induced by other edges. We then contract the
latter subgraph by identifying p and p′. If there is a self-loop of the identified
vertex, then we remove it.

2. According to the modified graph, we modify the forest structure as well. I.e.,
we remove the link of the forest between pp′ and its parent. This yields a
subtree rooted by pp′. We then remove from the forest any self-loop of the
identified vertex.

We note that if we performed ModifyGraph before calling DetourEdge
(α, pj , pj+1) in Step 4 of α-Detour, then DetourEdge(α, pj , pj+1) would choose
the same edges of the path between the current Steiner tree and pj+1. More-
over, the path Pi chosen in Step 3 of α-Detour is not affected either. These
are because we decompose or contract the graph only at “greedy” edges whose



Non-greedy Online Steiner Trees on Outerplanar Graphs 135

end-vertices are already contained in the Steiner tree. Therefore, we may discuss
as if α-Detour and DetourEdge were performed with modifying the graph. We
observe some properties related to the modification of the graph as stated in the
following lemmas. To clarify our discussion, we use G and F to denote the initial
graph and forest before processing r1, respectively, and G∗ and F ∗ to denote the
final graph and forest after processing r1, . . . , r|R|, respectively. We also use G∗

e

just as defined for G.

Lemma 3. For any edge uv such that DetourEdge(β, u, v) is called, Quv

is a path connecting u and v in the modified graph at the point that
DetourEdge(β, u, v) is processed.

Proof Sketch. Previous ModifyGraph for some “greedy” edge makes the current
Steiner tree into a single vertex in the subgraph induced by descendant edges of
the “greedy” edge. After that, any DetourEdge for an edge e constructs a path
using only descendant edges of e. Since uv is not a descendant of such e, this
means that when DetourEdge(β, u, v) is processed, u is the unique vertex of the
current Steiner tree in the subgraph induced by the descendants of uv. 	

Lemma 4. For any edge uv such that DetourEdge(β, u, v) is called, uv and
edges of Quv are contained in the same connected component of G∗.

Proof Sketch. By Lemma 3, Quv connects u and v at the point that
DetourEdge(β, u, v) is processed. After that, therefore, any edge that is a descen-
dant of uv and an ancestor of an edge of Quv cannot be “greedy”. 	

Lemma 5. For any edge uv such that DetourEdge(β, u, v) is called, Quv is a
shortest path between u and v in G∗

uv.

Proof Sketch. By Lemma 4, uv and Quv are contained in the same connected
component of G∗. If there is a path Q′ between u and v in G∗

uv shorter than
Quv, then ModifyGraph for some “greedy” descendant pp′ of uv must shorten
Q′ so that w(Q′) < w(Quv). This means that before this ModifyGraph, Q′

contained a subpath between p and p′ with descendant edges of pp′, some of
which are removed by the ModifyGraph. However, since pp′ is “greedy”, the
resulting subpath cannot be shorter than pp′. This means that ModifyGraph
does not make Q′ shorter than Quv. 	


By Lemma 5, we immediately have the following:

Lemma 6. For any edge e′ in Qe for some edge e, w(e′) is at most the distance
between the end-vertices of e′ in G∗

e′ .

Charging Weights. For a “greedy” edge e, we define the amount charged to
any descendant e′ of e in F ∗ as w(e) multiplied by a factor fe→e′ . Essentially,
fe→e′ is defined as the ratio w(e′)/w(Qe) for e′ in Qe. Moreover, we define the
factor to be transitive, i.e., fe→e′ = fe→e′′ · fe′′→e′ if fe→e′′ and fe′′→e′ are
defined. To extend this definition to any e′, we extend the notion of Qe to any
edge e.
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We formally define the factor as follows: For any edge e in G∗, let Se be
a shortest path connecting the end-vertices of e in G∗

e if e is inner, e itself
otherwise. We note that if e has Qe, then w(Qe) = w(Se) by Lemma 5. Suppose
that e and e′ are an edge and its descendant in F ∗, respectively. If e′ is in Se,
then let fe→e′ := w(e′)/w(Se). If e′ is an ancestor of an edge of Se, then let
fe→e′ := w(Se′)/w(Se). We note that Se′ is a subpath of Se in this case. If e′ is a
descendant of an edge of Se, then there is a sequence of edges e1 = e, e2, . . . , eh =
e′ such that ei+1 is in Sei

for 1 ≤ i ≤ h − 2, and either eh is in Seh−1 or Seh
is

a subpath of Seh−1 . For such e′, we define fe→e′ :=
∏h−1

i=1 fei→ei+1 . In addition,
we define fe→e := 1.

Lemma 7. For any edge e and a path P connecting the end-vertices of e in G∗
e,

it follows that
∑

e′∈EP
fe→e′ = 1.

Proof Sketch. Induction on the height of e in F ∗. 	

Lemma 8. For any edge e and its descendant e′ in F ∗, fe→e′ ≤ w(e′)/w(Se).

Proof Sketch. By the definition of fe→e′ and Lemma 6. 	

Lemma 9. Suppose that uv is a “greedy” edge, and that Duv is the path between
the Steiner tree and v constructed by DetourEdge(α, u, v) in Step 4 of α-Detour.
If e is an edge in G∗

e′ for an edge e′ in Duv, then w(e) > αfuv→ew(uv).

Proof Sketch. We prove the lemma by induction on the number of recursive levels
for DetourEdge(α, u, v) to output e′. For the base case, i.e., uv = e′, by Lemmas 8
and 5 and w(Quv)/w(uv) > α, we can obtain w(e) > αfuv→ew(uv). For an
induction step, assuming DetourEdge(β, u′, v′) called with β = α·w(uv)/w(Quv)
for some edge u′v′ in Quv, we can obtain w(e) > αfuv→ew(uv) by Lemma 5. 	


Comparison to Minimum Steiner Tree. Suppose that Z is any Steiner tree
for R in G. Our aim is to decompose G into subgraphs according to Z, associate
“greedy” edges with the decomposed subgraphs, and to estimate the amount
charged to the edges of Z by “greedy” edges in each decomposed subgraph.

Specifically, for any edge e of Z, we decompose G into the subgraph induced
by e and its descendant in F and the subgraph induced by edges that are not
descendants of e in F . Decomposing G by all edges of Z, we obtain a set B of
outerplanar subgraphs of G, each of which has edges of Z only in its unbounded
face. For a subgraph B ∈ B, B has either at most one edge or the all edges of
the root face of G. If B has at most one edge of the root face, then B has a root
edge eB in B, i.e., an ancestor of all the other edges of B in F . We note that Z
has eB . If B has the entire root face, then for convenience, we suppose that Z
has a null edge eB = r1r1 with the weight of 0, and that eB is the parent of the
other edges in the root face. I.e., we suppose that eB is an ancestor of all the
other edges of B also in this case. Let ZB be the path induced by EB ∩ EZ .

We associate a “greedy” edge uv with B if EB \ EZ ∪ {eB} contains an
edge of Duv, where Duv is the path between the Steiner tree and v constructed
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by DetourEdge(α, u, v). A “greedy” edge is said to be open in B if the edge is
associated with B, and is an outer edge in EB \ EZ or an ancestor of an outer
edge in EB \ EZ in F ∗. A “greedy” edge associated with B and not open in
B is said to be closed in B. In other words, all the outer edges of B that are
descendants in F ∗ of a “greedy” edge closed in B are contained in Z.

Lemma 10. For any edge z in ZB\eB, the total amount charged to z by “greedy”
edges associated with B is less than w(z)/(α − 1).

Proof Sketch. Let e1, . . . , eh be the “greedy” edges associated with B such that
in F ∗, ei is an ancestor of ei+1 for 1 ≤ i < h, and eh is an ancestor of z. By
Lemma 9, we can prove that the amount charged to z by ei is less than w(z)

αh−i+1 .
Summing this overall i, we have the lemma. 	

Lemma 11. Let XB be the set of “greedy” edges open in B. If there is x ∈
XB \ EB, then w(XB \ x) + fx→eB

w(x) ≤ w(ZB). Otherwise, w(XB) ≤ w(ZB).

Proof. Let XB = {e1, . . . , e|XB |}, and suppose that for each i ≥ 1, ei is marked
“greedy” earlier than ei+1 is. We first assume that XB \ EB = ∅. When e1 is
marked “greedy”, e1 is contained in a shortest path P from the current Steiner
tree to a request vertex. Since e1 is the first open edge marked “greedy”, e1 is
incident to at least one vertex s1 of ZB . For otherwise, the current Steiner tree
has a vertex not incident to an edge of ZB , which implies that there must be an
edge open in B and marked “greedy” earlier than e1. Because P must reach the
request vertex, which is contained in ZB , we can find the vertex t1 ∈ VZB

∩VP \s1
nearest to s1 on P . We note that the subpath P 1 of P between s1 and t1 consists
only of open edges, say e1, . . . , ej . This is justified through observing that eh

(1 < h ≤ j) cannot be closed if eh−1 is open and the vertex incident to both eh

and eh−1 is not in ZB . We charge the weights of e1, . . . , ej to the subpath Z1
B of

ZB between s1 and t1. We note that since P is a shortest path, the total charged
amount is at most w(Z1

B).
We continue the similar process for the remaining edges of XB . I.e., we find

the vertex t2 in ZB nearest to ej+1 on a shortest path P ′ from the current Steiner
tree to a request vertex. One exception is that since ej+1 is not the first open
edge in XB , ej+1 may join two vertices in VB \ VZB

. In this case, we set s2 to
the vertex in {s1, t1} that is closer to t2. If ej+1 is incident to a vertex in ZB,
then we set s2 to the vertex as done for s1. We charge the weights of the open
edges in the subpath P 2 of P ′ from ej+1 to t2 to the subpath Z2

B of ZB between
s2 and t2. We note again that P 2 consists only of open edges, and that the total
charged amount is at most w(Z2

B). Moreover, Z1
B and Z2

B are edge-disjoint. For
otherwise, s2 or t2 is in VZ1

B
\ {s1, t1}. In either case, ej+1 joins two vertices of

the cycle formed by P 1 and Z1
B . By the definition of ModifyGraph, all the edges

of P 1 that are descendants of ej+1 in F are identified to a single vertex in the
subgraph of G∗ containing ej+1. These situations imply that ej+1 is neither an
outer edge in EB \EZ nor an ancestor of such an outer edge in F ∗, contradicting
that ej+1 is open in B. Repeating this process, we can charge all the edges in
XB to ZB in such a way that w(XB) ≤ w(ZB).
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We then assume that there is x ∈ XB \ EB . Such x is an ancestor of eB

and unique. We process e1, e2, . . . as describe above, except that we charge
fx→eB

w(x) to eB for x, i.e., eB is the subpath Zi
B for some i when processing x.

We observe that the subpaths Z1
B , . . . , Zi−1

B do not contain eB . For otherwise,
there is a subpath P i′

with i′ < i such that Zi′
B contains eB . When x is marked

“greedy”, P i′
is identified to a single vertex in the subgraph of G∗ containing x.

This implies that x is not open in B. We also observe that the subpaths Zi+1
B , . . .

do not contain eB . This is because the assumption that x is associated with B
implies that the end-vertices of eB are added to α-Detour’s Steiner tree when x
is detoured. Thus, we can charge all the edges in XB to ZB in such a way that
w(XB \ x) + fx→eB

w(x) ≤ w(ZB). 	

Lemma 12. It follows that w(T|R|) < (α/(α − 1) + 2α)w(Z).

Proof Sketch. We can observe that each “greedy” edge e is associated with at
least one subgraph B in B. Moreover, if e is open in B, then w(e) is directly
charged to ZB as described in Lemma 11. If e is closed in B, then w(e) is fully
charged to ZB by Lemma 7. Thus, if we denote the set of “greedy” edges closed
in B by YB , then it follows from Lemma2 that

w(T|R|) ≤ α
∑

B∈B

[ ∑

e∈YB

w(e)

+

{∑
e∈XB\x w(e) + fx→eB

w(x) if ∃x ∈ XB \ EB∑
e∈XB

w(e) otherwise

]
.

Applying Lemmas 10 and 11,

w(T|R|) ≤ α
∑

B∈B

⎡

⎣
∑

z∈EZB
\eB

w(z)
α − 1

+ w(ZB)

⎤

⎦

= α
∑

B∈B

[
w(ZB \ eB)

α − 1
+ w(ZB \ eB) + w(eB)

]

= α
∑

B∈B

[(
1

α − 1
+ 1

)
w(ZB \ eB) + w(eB)

]

=
(

α

α − 1
+ 2α

)
w(Z).

	

Setting α = 1 + 1/

√
2, we have the following theorem.

Theorem 2. Algorithm (1 + 1/
√

2)-Detour is 3 + 2
√

2 ≈ 5.828-competitive.

We do not know if the upper bound of 5.828 is tight. However, our analysis
of Lemma 12 is tight for α ≥ 2.

Theorem 3. For any α > 1, there exists an outerplanar graph Gα such that if
α-Detour is ρ-competitive on Gα, then ρ ≥ min{3α, α/(α − 1) + 2α}.
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5 Lower Bound for Arbitrarily Algorithms

In this section, we prove a lower bound of 4 for any deterministic Steiner tree
algorithm on outerplanar graphs.

Overview. Our idea is based on Theorem 1. We recursively define a class of
outerplanar graphs just as done in the proof of the theorem, except that arbi-
trarily many vertices and edges of level i are added to an edge of level i − 1.
Our adversary generates requests in phases; in the ith phase, vertices along the
children of the online algorithm’s tree up to the (i − 1)st phase are requested.
An online algorithm possibly chooses detours with (variable) factor α. The key
of our proof is to define a sequence of upper bounds γi of α to be ρ-competitive
at the ith phase. In fact, we can prove that for any ρ < 4, there is i such that
γi = 1. This means that if there is a ρ-competitive algorithm with ρ < 4, then
it tends to a greedy algorithm; however, this is impossible.

Definition of Graph. Let m be a positive integer and ε be a positive real
number. Let G0 be a path consisting of a single edge of weight 1. The unique
edge of G0 is said to be of level 0. For i ≥ 1, let Gi be the graph obtained from
Gi−1 by adding mi edges of weight (1 + ε)i/

∏i
j=1 mj to each edge of level i − 1

in such a way that the added mi edges form a path connecting the end-vertices
of the edge of level i−1. All the added edges are said to be of level i. We suppose
G := Gi with sufficiently large i. We define F as the rooted tree with VF = EG

such that for an edge e of level i − 1, mi edges added to e are children of e in F .
We note that such children has the total weight of (1 + ε)w(e).

Adversary. We use a sequence Ki for i ≥ 0 defined as follows: Let K0 := 1
and K1 be less than but sufficiently close to 3. For i ≥ 1, we define Ki+1 :=
(K0 + K1)(Ki − Ki−1) if Ki < (K0 + K1)(Ki − Ki−1), and Ki+1 := Ki if
Ki ≥ (K0 + K1)(Ki − Ki−1).

Our adversary adv generates a request sequence against a deterministic
Steiner tree algorithm alg on G. In the initial phase, called the 0th phase,
adv defines Z0 := G0 and requests vertices of Z0. Let T0 be the Steiner tree
computed by alg for these requests, and P0 be the path in T0 connecting the
requests. For the ith phase with i ≥ 1, adv defines the path Zi consisting of chil-
dren of edges of Pi−1, and requests vertices of Zi that have not been requested.
Let Ti be the Steiner tree computed by alg for all the requested vertices thus
far. For an edge e in Pi−1, vertices incident to a child of e must be contained in
the subgraph S of Ti induced by the descendants of e. If S is connected, then
there is a path Qe in S connecting the end-vertices of e. Otherwise, since Ti is
connected, there is a unique child me such that S ∪me has a path Qe connecting
the end-vertices of e. Let Pi be the path obtained by concatenating Qe for all
edges e in Pi−1. We can inductively observe that Pi and Zi are Steiner trees
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for the requests up to the ith phase. If w(Pi) > γiw(Pi−1), then adv quits gen-
erating requests, where γi := Ki/Ki−1 ≥ 1. Otherwise, alg performs the next
phase.

Analysis. The following lemma is used to guarantee that adv quits in finite
phases.

Lemma 13. There exists 	 ≥ 1 such that K�+1 = K�.

Proof Sketch. Observing that a sequence (ai)i≥0 with the recurrence ai+1 =
b(ai − ai−1) oscillates for 0 < b < 4, we have the lemma. 	


Lemma 13 implies γ�+1 = K�+1/K� = 1. On the other hand,

w(Pi) ≥ w(Zi) = (1 + ε)w(Pi−1) (1)

by the definitions of Pi and Zi. Therefore, adv performs at most 	 + 1 phases.
The following lemma is used to estimate the ratio of the cost of alg to the

cost of adv.

Lemma 14.
∑j

i=0 Ki/Kj−1 ≥ K0 + K1 for any j ≥ 1.

Proof Sketch. Induction on j. 	

Lemma 15. If adv quits at the qth phase, then w(Tq)/w(Zq) tends to 4 as
m → ∞, ε → 0, and K1 → 3.

Proof. By definition, Pi consists of descendants of edges in Pi−1. This means that
Pi and Pi−1 are edge-disjoint. Therefore, it follows that w(Tj) ≥ ∑q

i=0 w(Pi)−δ,
where δ is the sum of w(me) overall edges e in P0, . . . , Pq−1 having me. We can
upper bound δ by summing weight of one child of all edges; therefore,

δ ≤
∑

i≥1

(∏i−1

j=1
mj

)
(1 + ε)i

∏i
j=1 mj

=
∑

i≥1

(
1 + ε

m

)i

<
1+ε
m

1 − 1+ε
m

→ 0 [m → ∞].

Since adv quits at the qth phase, it follows that w(Pi) ≤ γiw(Pi−1) for
1 ≤ i < q and w(Pq) > γqw(Pq−1). Therefore, it follows from Lemma 14 that

lim
m→∞

w(Tq)
w(Zq)

=
∑q

i=0 w(Pi)
w(Zq)

≥
∑q−1

i=0 w(Pi) + w(Pq)
(1 + ε)w(Pq−1)

[by (1)]

>

∑q−1
i=0

∏q−2
j=i γ−1

j+1w(Pq−1)
(1 + ε)w(Pq−1)

+
γq−1

1 + ε
=

1
1 + ε

(∑q−1
i=0 Ki

Kq−1
+

Kq

Kq−1

)

≥ K0 + K1

1 + ε
→ 4. [ε → 0,K1 → 3,K0 = 1]

	

Thus, we have the following theorem.

Theorem 4. If a deterministic online Steiner tree algorithm is ρ-competitive
on outerplanar graphs, then ρ ≥ 4.
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Abstract. Our results are on the online version of path coloring in trees
where each request is a path to be colored online, and two paths that
share an edge must get different colors. For each T , we come up with a
hierarchical partitioning of its edges with a minimum number of parts,
denoted by h(T ), and design an O(h(T ))-competitive online algorithm.
We then use the lower bound technique of Bartal and Leonardi [1] along
with a structural property of the hierarchical partitioning, to show a
lower bound of Ω(h(T )/ log(4h(T ))) for each tree T on the competitive
ratio of any deterministic online algorithm for the problem. This gives
us an insight into online coloring of paths on each tree T , whereas the
current tight lower bound results are known only for special trees like
paths and complete binary trees.

1 Introduction

The problem of path coloring in graphs has been motivated by the problem of
wavelength allocation in communication networks that make use of Wavelength
Division Multiplexing (WDM). In WDM, multiple optical signals are transmit-
ted simultaneously through the same fibre link but at different wavelengths of
light. Any two nodes in such a network communicate by establishing a path
between them and assigning a wavelength to the path. Paths which use the
same fibre link are assigned different wavelengths. A natural goal is to mini-
mize the number of wavelengths used in such a network. This crucial problem in
communication networks is known as the wavelength allocation problem: Given
a network and a set of requests on the network, the problem is to assign distinct
wavelengths to all requests that share a communication link. This problem may
be viewed as the problem of coloring paths on a network graph such that two
paths that share a link receive different colors (representing wavelengths in com-
munication network). One of the most well-studied network topologies in this
framework is the tree topology. Now, we formally define the path coloring problem
on trees:
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Path Coloring on Trees
Instance: A tree T and a set P of paths of T
Output: A coloring function c : P �→ {1, · · · , r} for some integer r ≥ 1
such that for every pair of distinct paths Pi and Pj in P with Pi ∩ Pj �= ∅,
c(Pi) �= c(Pj)
Goal: To obtain a function c which minimizes r.

Several researchers have extensively studied both offline and online versions of
this problem on different network topologies. In the offline setting, the topology,
and the entire request sequence are known in advance. However, in online wave-
length allocation problems, though the topology is known in advance, requests
arrive one at a time and a request has to be assigned a wavelength as soon as it is
presented (this assignment cannot be changed later). In an online algorithm, the
inputs arrive in a sequence and each input has to be processed depending only
on already received requests and served as soon as it arrives with no knowledge
of future requests. The performance of an online algorithm A is analyzed using
the competitive ratio. It is the worst-case ratio between the cost of the solution
found by the algorithm A to the cost of an optimal solution.

The path coloring problem for trees may be viewed as the vertex coloring
problem for edge intersection graph of paths on a tree, called EPT graphs, such
that no two adjacent vertices in the intersection graph get the same color. In the
edge intersection graph of the given paths, two vertices are adjacent if and only if
the corresponding paths have a common edge. The vertex intersection graphs of
paths of a tree is the class of path graphs [5], which is a subclass of chordal graphs.
Chordal graphs are the vertex intersection graphs of subtrees of a tree [4] and
can be optimally colored in polynomial time [3]. Thus, in the offline setting, path
graphs can be optimally colored in polynomial time. However, coloring of edge
intersection graph of paths in an undirected tree (EPT graph) has been shown to
be NP-complete [7]. Tarjan [16] gave a 3

2 -approximation algorithm for coloring
EPT graphs. Erlebach and Jansen [2] showed that in the case of undirected trees
of bounded degree, the path coloring problem can be solved in polynomial time.
However, for undirected trees of arbitrary degree, the problem is NP-hard and
approximation algorithm with absolute approximation ratio 4

3 and asymptotic
approximation ratio 11

10 are known [2]. Path coloring is also proved to be NP-
hard on undirected and bi-directed ring networks [2], bi-directed binary trees [2]
and bi-directed binary caterpillars [15]. Several interesting approaches have been
proposed in the literature([2,8,10,11,14,15]) for network topologies like rings,
caterpillars, trees and trees of rings. If the tree itself is a path, then the edge
intersection graph of subpaths of this path is an interval graph [6]. Therefore,
in this case, coloring algorithms for the vertex intersection graphs can be used
for optimally coloring the edge intersection graphs. The coloring of the vertex
intersection graphs on the line topology (special case of tree topology, i.e., a tree
in which no vertex has degree 3 or more) is very well studied. It is known to be
optimally polynomial time solvable in the offline setting.

The path coloring problem is also extensively studied in the online framework.
Bartal and Leonardi [1] proposed an O(log(n)) competitive online algorithm
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(described in Sect. 2 and subsequently called as the BL algorithm) for coloring
edge intersection graphs of paths on a tree. They also [1] gave a lower bound
of Ω( log n

log log n ) for the online path coloring problem on complete binary trees.
The path coloring problem on the line topology has been studied in the context
of interval graph coloring. The edge intersection graph and vertex intersection
graph of paths on line topology are both known to be interval graphs [6]. Thus,
the problem of online coloring paths on the line topology is equivalent to the
problem of online coloring vertices of interval graph which is a subclass of chordal
graphs. One of the simplest strategies adopted for the online coloring of vertices
in an interval graph is the First Fit strategy: allocate the color of least index
permissible. Several researchers have analyzed this method and have come up
with improved bounds over the years and 8 is the best known competitive ratio
[12]. However, a 3-competitive recursive algorithm by Kierstead and Trotter [9]
(subsequently called as the KT algorithm) for the online coloring of interval
graphs, was known much earlier (a detailed presentation of the algorithm can
be found in [13]). They showed a matching lower bound as well; that is, no
deterministic online algorithm can achieve a competitive ratio better than 3.

1.1 Our Motivation and Results

We address the problem of online path coloring in trees and design algorithm
that uses the Kierstead-Trotter approach [9] to color paths in the line topology.
Throughout the paper, we consider the coloring problem on edge intersection
graphs. For the online path coloring in the line topology, we use the optimal KT
algorithm on the edge intersection graph, which is an interval graph. The starting
point of our work is the BL Algorithm [1], which achieves a competitive ratio of
log n for online path coloring in trees. We show that this algorithm can be forced
to achieve Ω(log(n)) competitive ratio when applied to coloring paths in the line
topology. However, this is far from the performance of the optimal 3-competitive
algorithm by Kierstead and Trotter [9]. Our motivation is to understand this gap
between performance of KT-algorithm and BL-algorithm for line topology. We
present a simple online algorithm to solve the problem of online path coloring
on caterpillars using at most (5ω − 3) < h(T )(5ω − 3) colors, whereas the BL
algorithm can be forced to use ω log n colors by an adversary, details of which
are given in Sect. 2.

For an arbitrary tree T , we define a hierarchical partition of the vertex set
which we refer as the Hierarchical Path Partition (HPP). We associate a cater-
pillar with each part in the HPP, which results in a partition of the edge set of
tree T. We call this edge partition a Hierarchical Caterpillar Partition (HCP)
and we use an HCP in an online algorithm to color the path requests. In this
online algorithm, we follow the template of Bartal and Leonardi [1]: each level
in the HCP uses a distinct set of colors, and each coloring request is colored as
a path coloring request at the highest level in which it intersects (has an edge in
common) with a caterpillar. We denote by h(T ) the number of parts in an HPP
with the minimum number of parts, and our algorithm uses at most h(T )(5ω−3)
colors, where ω is the size of the maximum clique in the edge intersection graph
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of the given set of path coloring requests. Since ω is a lower bound on the number
of colors to be used, our algorithm is an O(h(T )) competitive algorithm. It also
gives us a refined understanding of the performance of the algorithm based on
structure of tree T . To the best of our knowledge, the concept of hierarchical
path partitioning is new and we believe it could be of significant interest in
designing online algorithms for different problems on trees.

We also present an algorithm that computes an HPP with h(T ) parts in
polynomial time. This algorithm also serves as a characterization of the opti-
mum HPP. We then show that the optimum HPP has a subtree that looks like
a complete binary tree of depth h(T ) − 1. We refer to this as a complete pseudo
binary tree. We use this subtree in conjunction with the lower bound argument
due to Bartal and Leonardi [1] to show a competitive ratio lower bound of
Ω( h(T )

log(4h(T )) ) for any deterministic online algorithm. In particular, our results
nicely generalize the results of Bartal and Leonardi [1]- we design a h(T ) com-
petitive online algorithm for path coloring in T , and also show a lower bound of
Ω( h(T )

log(4h(T )) ) on the competitive ratio of any deterministic algorithm.

Definitions and Notation: We use standard graph theoretic concepts like
graph G, vertex set V (G), edge set E(G), degree degG(v) of a vertex v, neigh-
borhood NG(v) of a vertex v, diameter Δ, path P = [v1, v2, · · · , vk] and tree T
from the textbook by Douglas B. West [17]. The size of the largest clique in G is
called its clique number and is denoted by ω(G). We use ω to denote the clique
number of the edge intersection graph of input path requests of the underlying
tree T . A caterpillar is a tree that has a dominating path. This dominating path
is called the spine and an edge for which exactly one vertex is on the spine is
called a hair. By definition all leaves other than the two on the spine are adjacent
to a vertex on the spine. A balanced tree separator is a vertex whose removal
splits the tree into multiple disjoint trees to form a forest such that each tree in
that forest consists of at most 2

3n vertices. We denote path coloring requests by
P and paths which are not path coloring requests by p.

Online Interval Coloring: Online path coloring in a tree T which is a path is
the well-studied Online Interval Coloring problem. Kierstead and Trotter [9] gave
a 3-competitive algorithm for the online interval coloring, which uses atmost 3ω−
2 colors where ω is the maximum number of pairwise intersecting intervals. They
also showed a matching lower bound; that is, no deterministic online algorithm
can achieve a competitive ratio better than 3. We refer to this online algorithm
as the KT Algorithm.

2 Caterpillar Based Online Coloring of Paths in Trees

The main result in this section is our online algorithm for coloring paths in a
tree T by partitioning the edges of T into parts, each of which is a set of vertex
disjoint caterpillars. We show that this algorithm has a competitive ratio of h(T ),
where h(T ) is a combinatorial parameter associated with T . The algorithm is
based on our observation that the online path coloring algorithm (referred to
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as the BL Algorithm) due to Bartal and Leonardi [1] essentially maintains a
partition of the edges of T , such that each part in the partition is a set of vertex
disjoint stars - a special type of caterpillar.

A Worst Case Instance for the BL Algorithm: The first observation we
make is based on the construction of a sequence of coloring requests in an n-
vertex path to show that the BL algorithm has an Ω(log n) competitive ratio. The
BL algorithm has two phases: a preprocessing phase and a coloring phase. The
preprocessing phase partitions the edges of T into log n levels. We refer to this
partition as the BL partition. The preprocessing phase and the coloring phase
are standard throughout all the algorithms we present, and the preprocessing
phase depends only on the tree T and not on the path coloring requests.

Algorithm 1. BL
1: Preprocessing Phase: The first level L0 consists of a single vertex s which is a

balanced separator of T . Iteratively, for i ≥ 1, the ith level Li consists of balanced

separators of all the subtrees in T \
⋃

0≤j≤i−1

Lj . In this way, vertices of T are

partitioned into Θ(log n) levels. The edge partition is obtained by associating with
each vertex the set of incident edges whose other end point is at a higher level.
Indeed, it is clear that each level is one set in a partition of the edges, and that the
edges associated with a vertex at any level forms a star.

2: Coloring Phase: When a coloring request for a path P arrives, the algorithm first
assigns a level identifier to it. This identifier is the minimum level number of a level
that contains a vertex of P . Then, P is assigned the minimum color which is not
assigned to any other previously colored path that has a common edge with P and
has the same level identifier.

Theorem 1 (Bartal and Leonardi [1]). The BL algorithm for online path
coloring on a tree of n vertices uses at most (2ω − 1) log n colors. Thus, the
algorithm achieves a competitive ratio of O(log n).

We now observe that BL algorithm has a competitive ratio of Ω(log n) even
if T is a path. On the other hand, the KT algorithm uses only 3ω − 2 colors to
color paths from T if it is a path. We present an input instance generated by an
adversary that forces the BL Algorithm to use (log n)OPT colors, where OPT is
the number of colors in the optimal coloring. For an integer k > 1, consider the
path T having n = 2k − 1 vertices v1 to v2k−1. Since there are 2k − 1 vertices, in
the preprocessing phase, the vertices are partitioned into L ≥ k levels in any BL
partition. Now, for each level 0 ≤ l < L − 1 in the BL partition, the adversary
selects one edge of T with one end point at level l and the other end point at
a level at least l + 1. Let these edges be e0, . . . , eL−2. Further v be a vertex in
level L (note that it has index L − 1) in the BL partition. In the path coloring
sequence, there are k(L − 1) paths consisting of exactly one edge and k paths
consisting of exactly one vertex as follows: k paths consisting of e0, followed by
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k paths consisting e1, and so on, ending with k paths consisting of eL−2 and, k
single vertex paths consisting of v. Since the BL algorithm uses a distinct set of
colors for each of the L levels, it uses at least kL ≥ (log n)k = (log n)OPT .

Online Path Coloring in Caterpillars: The BL algorithm partitions the
edges of T into O(log n) levels of stars. We explore if we can get a better com-
petitive ratio by maintaining a set of caterpillars in each level. To achieve this,
we first observe that paths in caterpillars can be colored by an online algorithm
of competitive ratio 5. We refer to the algorithm below as Algorithm OPCC.

Algorithm 2. OPCC- Online Path Coloring in Caterpillars
1: Preprocessing Phase: In the preprocessing phase, we partition the edges of T into

two sets: Es is the set of all the edges on the spine and Eh is the set of all hairs.
2: Coloring Phase: We use two disjoint set of colors, Cs to color paths which have an

edge in Es and Ch to color paths whose edges are in Eh. When a coloring request
for a path P arrives, it is colored as follows:
Case 1: P contains an edge in Es- In this case, we consider the subpath P ′ of P
formed by the edges in Es as an online path coloring request on the spine. P ′ is
colored using the KT algorithm [9] (see Sect. 1.1)and the color of P ′ is the color
given to P .
Case 2: P does not contain any edge in Es- In this case P must belong to some
star in E \ Es = Eh. P is greedily colored such that it gets a color different from
paths colored earlier with which it shares an edge.

Lemma 1. Let T be a caterpillar. Algorithm OPCC requires at most 5ω − 3
colors to color path coloring requests on T .

Proof. The paths which fall into the first case are colored by the KT Algorithm
[9] which uses at most 3ω−2 colors. Secondly, the greedy algorithm on the paths
colored in case 2 will use at most 2ω−1 colors. The reason is that each such path
has at most two edges, and if a path coloring request P cannot be colored by any
of the already used 2ω − 1 colors, then one of the two edges in P is already in at
least ω paths that have already been colored. This edge would then be common
to ω + 1 paths, contradicting the definition of ω. Hence, at most 5ω − 3 colors
are required to color all input paths. 	


2.1 A New Online Path Coloring Algorithm for Trees

While the best competitive ratio for online path coloring in caterpillars is at
most 5, we have shown that the BL algorithm has an Ω(log n) competitive ratio
when T is a caterpillar (because a simple path is a special caterpillar). We have
also observed that for each tree T , the BL algorithm maintains a partition of
the edge set into levels such that in each level, the edges form a set of vertex
disjoint stars. We now present our algorithm where in the preprocessing phase,
we maintain a partition of the edge set of T into levels such that in each level,
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the edges form a set of vertex disjoint caterpillars. In a way, this can be seen as a
strengthening of the BL Algorithm. Then, by using the online coloring algorithm
on caterpillars, we show that our online algorithm achieves a competitive ratio
of h(T ), where h(T ) is defined as the number of levels in an optimal partitioning
of the vertices that we call the Hierarchical Path Partition.

Hierarchical Path Partitioning: For a tree T , we call a partition
{H1,H2 . . . , Hh} of V (T ) a hierarchical path partitioning (HPP) of T if the
following properties hold:

P.1 Each set Hi induces a set of vertex disjoint paths in T . The paths in Hi

are denoted by {pi,1, pi,2, · · · , pi,li}.
P.2 The sets are arranged hierarchically with one root set Hh. Note that at this

place we have an important notational difference from Bartal and Leonardi
[1] who use the level index 0 for the root.

P.3 Root set Hh contains a single path.
P.4 For each i < h, if p is a path in set Hi, then there is exactly one edge from

exactly one of the vertices of path p to one vertex of a path p′ ∈ Hj where
j > i. Further, this edge is incident on one of the end vertices of p. We refer
to p′ as the parent path of p.

P.5 For each i > 1, if p is a path in set Hi, then there are at least two edges
from one endpoint of p to endpoints of paths p′ and p′′ in Hj where j < i.
We refer to p′, p′′ as the children of p.

Hi in the partition is referred to as level i in the hierarchy. We use the HPP
output by the following algorithm and the number of parts h output by this
algorithm is referred to as h(T ).

Algorithm 3. OHPP: Optimum Hierarchical Path Partitioning
We define a sequence of non-empty subtrees {Ti} of tree T where T1 = T . The
vertex set of Ti is V (Ti−1)\Hi−1. For some h ≥ 1, if Th is a path, then Hh consists
of the single path, and the algorithm stops and outputs {H1, H2 . . . , Hh}. For each
i ≥ 1, Hi = {pi,1, pi,2 · · · , pi,li} is a set of vertex disjoint paths, such that for each
pi,j ∈ Hi, one endpoint is a leaf in Ti, the other endpoint of pi,j has a neighbor in
Ti whose degree in Ti is at least 3, and all other vertices in pi,j have degree 2 in
Ti. Clearly, Ti+1 = Ti \ Hi induces a subtree of Ti. The algorithm is illustrated in
Fig. 1.

From an HPP we naturally obtain a unique hierarchical partition of the edge set
of T into vertex disjoint sets of caterpillars as follows: For each path pi,j ∈ Hi,
1 ≤ i ≤ h, we associate a caterpillar ci,j by taking pi,j to be the spine and every
other edge e incident on vertices of pi,j such that other vertex of e is on a path
in Hk for some k < i. This produces a hierarchical partitioning of the edge set
of T into caterpillars called Hierarchical Caterpillar Partitioning (HCP) of T .
Let C1, . . . , Ch denote this family of sets of caterpillars corresponding to HPP
H1, . . . , Hh.
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Online Path Coloring Using a HCP: We now describe our Algorithm OPCT
to color path requests in a given tree T . As in the BL Algorithm 1, we have a
preprocessing phase and a coloring phase.

Algorithm 4. OPCT- Online Path Coloring in Trees
1: Preprocessing phase: Compute the natural (as described above) HCP {C1, . . . , Ch}

of the given tree T from an Optimum HPP computed using Algorithm OHPP
described in Sect. 3. Here h = h(T ).

2: Coloring Phase: For each level in the HCP, a distinct set of colors is used. When
a coloring request for a path P arrives, it is assigned a level number q which is
the maximum among all levels with which path P intersects at some edge in the
level. Let q be the largest level such that there is a caterpillar cq,j ∈ Cq with which
P intersects at an edge in cq,j (In the proof below, we use q to denote this level
associated with a coloring request P . For example, for a path P1, q1 is used to
denote this level). Then, the subpath P ′ of P consisting of edges of E(P )∩ E(cp,j)
is considered as a path coloring request in cp,j (In the proof below, we use P ′ to
denote the coloring request in cq,j associated with P . For example, for a path P1,
P ′
1 is used to denote the coloring request in cq1,j). It is colored using Algorithm

OPCC, and the color given to P ′ is taken to be the color of P .

Theorem 2. Let T be a tree, then online Algorithm OPCT requires at most
h(5ω − 3) colors to compute a valid coloring on an online request sequence of
paths from tree T such that any edge is present in at most ω paths.

Proof. To prove that the coloring is valid, we first need to observe that any
path P intersects at an edge with exactly one caterpillar in Cq. We know from
Lemma 1 that the path coloring request sequence in each caterpillar in each level
of the HCP uses at most 5ω−3 colors. Since the HCP is an induced set of vertex
disjoint caterpillars (therefore, edge disjoint), it follows that the path coloring
request sequence to each level of the HCP uses at most 5ω −3 colors. Since each
level uses a distinct set of colors, it follows that Algorithm OPCT uses at most
h(5ω − 3) colors. Let P1 and P2 be two path coloring requests that share an
edge in T . We show that the color given to P1 and P2 are distinct. If q1 and q2
are different, then P ′

1 and P ′
2 get different colors and therefore P1 and P2 get

different colors. In the case when q1 = q2, since P1 and P2 intersect at an edge,
it follows that they intersect with the same caterpillar cq1,j ∈ Cq1 . Further, it
is easy to see that they also share a common edge in cq1,j . Thus it follows that
P ′
1 and P ′

2 get different colors, and consequently P1 and P2 get different colors.
Hence the theorem. 	


3 A Lower Bound for Deterministic Online Algorithms
Using h(T )

In this section we prove a lower bound on the competitive ratio of deterministic
online algorithms as a function of h(T ). We start by illustrating in Fig. 1 a HPP
computed by Algorithm 3 and observing some bounds on h(T ).
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(a) Tree T= T1 with set H1 = {[8], [9], [5], [10], [11], [12], [13]}
1

2 3

4 6 7

(b) Tree T2 with set H2 = {[4, 2, 1), [6], [7]}

3

(c) Tree T3 with set H3=[3]

Fig. 1. Tree T with partition {H1, H2, H3}. (a) T1 with H1, (b) T2 with H2, (c) T3

with H3

Some Bounds on h(T ): We observe that, for a tree T having L leaves,
h(T ) ≤ log2 L, as the number of leaves at each level reduce by a factor of at
least 2. Formally, let li be the number of leaves in Ti. Then, li+1 ≤ li

2 . Similarly,
the diameter of Ti+1 is at most diameter of Ti minus 2. Therefore, h(T ) ≤ Δ(T )

2 ,
where Δ is the diameter.
We next show that the HPP computed by Algorithm OHPP can be used by an
adversary to ensure that any deterministic online algorithm has a bad competi-
tive ratio.

3.1 A Lower Bound Based on h(T )

To prove our lower bound on deterministic online algorithms, we use the lower
bound technique of Bartal and Leonardi [1] on path coloring requests on a com-
plete binary tree of n nodes. To use this, we show that we can perform their
adversarial lower bound argument on a complete pseudo binary tree which we
show is present in the output of Algorithm OHPP . Intuitively, the subtree of
T that we take will turn out to be a tree that looks like a complete binary tree
whose vertices correspond to paths in which each internal vertex has degree 2.
We now describe this Complete Pseudo Binary Tree. Consider the partitioning
obtained after applying the algorithm OHPP to T . We know that the out-
put of Algorithm OHPP is an optimum HPP H1, · · · ,Hh. We call a family
{S1, S2 . . . , Sh} of sets of paths a Complete Pseudo Binary Tree if the following
properties hold.

– For each 1 ≤ i ≤ h, Si ⊆ Hi, Si consists of 2h−i paths, and Sh = Hh.
– Let v be one end point on the path p ∈ Hh. Then, Sh−1 consists of exactly 2

paths, say p′ and p′′ such that v is adjacent to one end point each of p′ and p′′.
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– For each 1 ≤ i ≤ h − 1, in every path p in Si+1, there are two edges from one
end point of p to the end points of two paths in Si.

– For each 1 ≤ i ≤ h − 1, in every path p in Si there is an edge from one end
point of p to the end point of a path in Si+1.

Lemma 2. Let T be a tree, h = h(T ), and let H1, . . . , Hh be the optimal HPP
obtained from Algorithm OHPP . T has a subtree which is a complete pseudo
binary tree of height h.

Proof. We prove our claim by induction on the number of levels h(T ) in the par-
tition of T produced by our algorithm. Let h = h(T ). Let L(h) be the statement
that there exists a complete pseudo binary tree in the hierarchical path partition-
ing of at most h levels. The base case is the statement L(1). Then, L(1) is true
because there does exist a complete pseudo binary tree having 1 pseudo-node.
Suppose the statement L(h) is true. We now prove the statement L(h + 1). Let
{H1, . . . , Hh+1} be the hierarchical path partitioning having h + 1 levels out-
put by Algorithm OHPP. Now, consider the tree T2 = T \ V (H1) with HPP
{H2, . . . , Hh+1} obtained after removing all the paths in H1. By the induction
hypothesis, there exists a complete pseudo binary tree for T2 in H2, . . . , Hh+1.
Let this complete pseudo binary tree be S2, . . . , Sh+1. Now, consider the paths
in S2. For each p ∈ H2, let lp be the leaf endpoint of p in T2. By the definition
of an HPP, lp is incident on at least two edges, for each of which the second
vertex (the one different from lp) is an endpoint of a path in H1. We construct
S1 ⊆ H1 by taking any two such paths for lp for each p ∈ S2. Now, S1, . . . , Sh+1

is a complete pseudo binary tree for T . Thus, there exists a complete pseudo
binary tree of T in the output of Algorithm OHPP with at most h + 1 levels.
Hence the lemma. 	


We now use this complete pseudo binary tree to get our lower bound on
deterministic online algorithms for path coloring on a tree T . As mentioned
before, we essentially plug this complete pseudo binary tree into the lower bound
argument of Bartal and Leonardi [1].

Theorem 3. Let T be a tree. Then any deterministic online path coloring algo-
rithm has a competitive ratio of Ω( h(T )

log 4h(T ) ).

Description of the Adversarial Path Coloring Request Sequence: Before
we present a proof of this theorem, we describe the sequence of requests presented
by an adversary to a deterministic online path coloring algorithm. The lower
bound is against a deterministic online algorithm and is established by an adver-
sary by using the complete pseudo binary tree S = {S1, S2 . . . , Sh} contained in
the optimal HPP {H1,H2 . . . , Hh} output by Algorithm OHPP. This complete
pseudo binary tree has h(T ) levels, with Sh containing the root pseudo-node, and
S1 containing all the leaf pseudo-nodes. Each pseudo-node here corresponds to a
path in S. We consider a complete binary tree T ′ of depth h(T ) − 1 where there
is a bijective correspondence between the pseudo-nodes and the vertices of T ′,
that respects the parent-child relationships between the paths in the family S.
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For example, the root of T ′ corresponds to the path in Sh, and the leaves of T ′

corresponds to the paths in S1. A path coloring request in T ′ is converted to a
path coloring request in T by expanding the pseudo-nodes into the corresponding
paths in the family S. In the following let ρ denote the best competitive ratio
possible by any deterministic online algorithm.
We now present the request sequence generated by Bartal and Leonardi [1] on
T ′. The description is identical to the description in [1] except in the Lemma 3
where we reason about the path coloring requests in T obtained from the requests
in T ′ as described below. The sequence of requests for coloring paths is generated
in stages. Maintain the following invariant at the end of any stage i ≥ 0: There
exists a set Ci of i colors, a level li, li ≤ li ≤ h(T ) − 1 − i, such that there are
at least ri = 2h(T )−1

(8ρh(T ))i pairs of paths with the following properties:

1. Each pair is formed by the two paths from two leaves in T ′ to their least
common ancestor (LCA) at level li.

2. Each vertex of level li in T ′, is the LCA of at most one pair of paths.
3. For any path in the ri pairs of paths and for any color c ∈ Ci, there is one

edge in the path included in a path coloring request with color c.
4. In T ′, any edge of a path is included in at most one request.

At stage 0, li = l0 = h(T )−1 and C0 = φ. We associate a set of r0 = 2h(T )−1

pairs of empty paths, two with each leaf, with both endpoints equal to leaf itself.
No path coloring requests are presented. Hence all 4 properties trivially hold.
At stage i + 1, ri new path coloring requests are presented, one for each pair
of paths. Let u1, u2 be the two leaves that are endpoints of the two paths of a
pair, and let LCA(u1, u2) be the LCA at level li of these two leaves. Let v be
the direct ancestor of LCA(u1, u2). For each pair of paths we present a path
coloring request having as endpoints one of the two leaves, say u1, and v. The
online algorithm must color the set of path coloring requests presented at stage
i + 1. Clearly, due to the 4 invariants being respected at the beginning of stage
i+1, any color in Ci cannot be used for these path coloring requests. These path
coloring requests on T ′ are converted to path coloring requests in the complete
pseudo binary tree. We will show in Lemma 3 that optimal number of colors
at any stage of the sequence is at most 2 in the complete pseudo binary tree.
Hence, in order for the online algorithm to be ρ competitive, it must use less
than 2ρ colors for this set of path coloring requests. Therefore, by the pigeon-
hole principle there must be a set of path coloring requests Ri of cardinality
at least ri

2ρ assigned with the same color. Let us call this color ci+1 and let
Ci+1 = Ci ∪ {ci+1}. In the following, we concentrate on this set of path coloring
requests. As shown in Bartal and Leonardi [1] we first identify a set of paths
in Ri that satisfy condition 3 and 4. Recall that each path coloring request in
Ri is from a leaf u1 to a node v, is constructed from some level i pair of paths
from the leaves u1 and u2 to LCA(u1, u2), which is a child of v. Moreover, for
any pair only one path coloring request in Ri is constructed. Therefore, for any
path coloring request in Ri, conditions 3 and 4 are satisfied at stage i + 1 for
the path connecting the leaf u2 to v or any ancestor of v. In fact, at most one
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path coloring request includes any edge from u2 to LCA(u1, u2) and any color
c ∈ Ci is associated with a path coloring request that crosses only one edge in
the path, using the invariant for level i. Moreover, the edge from LCA(u1, u2)
to v is associated with only one path coloring request with color ci+1. We thus
have a set of ri

2ρ paths satisfying conditions 3 and 4 of the invariant. We call this
set of paths Pi+1.

The level li+1 is now selected such that 2li+1+1 ≤ ri

2ρ . We derive from Pi+1 a
new set P ′

i+1 as follows: we consider each path in Pi+1 according to its ancestor
in level li+1. If a vertex in level li+1 is an ancestor of an odd number of paths we
exclude one of these paths. Since the number of vertices of level li+1 is at most
1
2

ri

2ρ , the cardinality of P ′
i+1 is at least 1

2
ri

2ρ .
We now scan paths in P ′

i+1 from left to right, following the order of the
leaves that are endpoints of those paths. We associate each pair of successive
leaves with their LCA, that is a vertex of level between li+1 and h(T ) − i − 1.
Again, as shown in [1] we know that each vertex in a binary tree is the LCA of
at most one pair of successive leaves.

Finally, let li+1 be a level between h(T ) − i − 1 and li+1, achieving the
maximum cardinality set of pairs of successive paths that have LCA at that
level. We define the set of pairs of paths for the stage i + 1 to be the set of
pairs of successive paths that have LCA at level li+1. Since the number of levels
is h(T ), it follows that the number of pairs at stage i + 1 is atleast 1

4
ri

2ρh(T )=
2h(T )−1

(8ρh(T ))i+1 = ri+1. From the above construction, it follows that both conditions
1 and 2 hold for this set of pairs. Therefore, the four invariants are satisfied at
the beginning of stage i + 1.

We now come to the crucial and only modification to the argument of Bartal
and Leonardi [1].

Lemma 3. The optimal solution in the complete pseudo binary tree for the path
coloring sequence described above uses at most 2 colors.

Proof. The proof is obtained by the fact that in T ′ each edge is included in
at most 2 path coloring requests, and that all such path coloring requests are
directed from a leaf to an ancestor. Further, at each vertex in the tree, at most
one edge to a child is present in the path coloring requests. Therefore, when
these requests are considered as requests in the complete pseudo binary tree,
each edge is present in at most two path coloring requests. Therefore, the paths
can be colored offline with 2 colors. 	

Proof of Theorem 3: Let ρ be the competitive ratio of the best deterministic
online algorithm for coloring paths in tree T . Clearly, ρ ≤ h(T )(3ω−2)

ω . Therefore,
ρ ≤ 2h(T ). The online algorithm uses at least i colors after i stages of the
construction above. Hence by Lemma 3, the competitive ratio ρ ≥ i

2 . The lower
bound on ρ is thus obtained by computing the maximum number of stages
in the sequence. To carry out the sequence, we require that li = h(T ) − 1 −
i log(8ρh(T )) ≥ 1. Since ρ ≥ i

2 , we get ρ ≥ h(T )−2
2 log(8ρh(T )) . Since we know that

ρ ≤ 2h(T ), it follows that ρ ≥ h(T )−2
2 log(16h(T )2) . Therefore, ρ is Ω( h(T )

log 4h(T ) ). Hence
the theorem. 	
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Abstract. We define and study a resource-allocation game, arising
in Media on Demand (MoD) systems where users correspond to self-
interested players who choose a MoD server. A server provides both
storage and broadcasting needs. Accordingly, the user’s cost function
encompasses both positive and negative congestion effects.

A system in our model consists of m identical servers and n users.
Each user is associated with a type (class) and should be serviced by
a single server. Each user generates one unit of load on the server it is
assigned to. The load on the server constitutes one component of the
user’s cost. In addition, the service requires an access to an additional
resource whose activation-cost is equally shared by all the users of the
same class that are assigned to the same server. In MoD systems, the
bandwidth required for transmitting a certain media-file corresponds to
one unit of load. The storage cost of a media-file on a server is shared
by the users requiring its transmission that are serviced by the server.

We provide results with respect to equilibrium existence, computation,
convergence and quality. We show that a pure Nash Equilibrium (NE)
always exists and best-response dynamics converge in polynomial time.
The equilibrium inefficiency is analyzed with respect to the objective
of minimizing the maximal cost. We prove that the Price of Anarchy
is bounded by m and by the size of the smallest class and that these
bounds are tight and almost tight, respectively. For the Price of Stabil-
ity we show an upper bound of 2, and a lower bound of 2− 1

m
. The upper

bound is proved by introducing an efficient 2-approximation algorithm
for calculating a NE. For two servers we show a tight bound of 3

2
.

1 Introduction

Resource allocation problems consider scenarios in which tasks or clients have
to be assigned to resources under a set of constraints. Resource allocation appli-
cations exist in a variety of fields ranging from production planning to operat-
ing systems. Game theoretic considerations have been studied in many resource
allocation problems. The game theoretic view assumes that users have strategic
considerations acting to maximize their own utility, rather than optimizing a

A brief-announcement introducing this work was presented in the 8th International
Symposium on Algorithmic Game Theory (SAGT), 2015.
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global objective. In resource allocation problems, this means that users choose
which resources to use rather than being assigned to resources by a centralized
designer. Media streaming is among the most popular services provided over the
Internet. The lack of a central authority that controls the users, motivates the
analysis of Media on Demand (MoD) services using game theoretic concepts.

Two main approaches exist with respect to the cost function associated with
the usage of a resource. One approach considers congestion games in which user’s
cost increases with the load on the resource. The other approach considers cost
sharing games in which users share the activation-cost of a resource, and thus,
user’s cost decreases with the load on the resource. Feldman and Tamir intro-
duced and studied a model in which both considerations apply [4]. In this work we
generalize this model further and study games corresponding to systems in which
resources have both positive and negative congestion effects, and different users
may require different resources. Our work is motivated by Media-on-Demand
systems, in which the above cost scheme applies.

A system in our model consists of a set of identical servers. Each user of the
system is associated with a type (class) and should be serviced by a single server.
Every user generates one unit of load on the server it is assigned to. In addition,
the service requires an access to an additional resource whose activation-cost is
equally shared by all the users of the same type that are assigned to the server.

A configuration of the system is characterized by an allocation of users to
servers. The cost of a user in a given allocation is the sum of two components:
the load-cost determined by the total load on his server, and his share in the
class activation-cost.

A pure Nash equilibrium (NE) is a configuration in which no individual player
can migrate and reduce his cost. We study the multi-class resource model with
respect to NE existence, calculation and efficiency. When considering equilibrium
inefficiency we use the standard measures of price of anarchy (PoA) [7] and
price of stability (PoS) [2]. For the PoA and PoS measures we use an egalitarian
objective function, i.e., we measure the maximal cost among users compared with
the maximal cost in an optimal allocation. In addition to the theoretical analysis
of this model, we present efficient algorithms for finding good stable solutions.
The algorithms combine load-balancing ideas used in packing algorithms, such
as element-grouping and handling the elements in decreasing-size order, together
with ideas used in algorithmic game theory, such as performing a sequence of
improving steps in a specific, supervised, order.

Applications: There are several real-world systems that fit the above multi-
class resource allocation scenario. In particular, our study is motivated by media-
on-demand (MoD) systems. A MoD system (see, e.g., [13,17]) consists of a large
database of media files and a set of servers. The servers provide both storage and
broadcasting needs. Each client specifies a media stream request and receives the
stream via one of the servers. The server’s bandwidth corresponds to the load
resource – each client generates one unit of load on the server. The media-file
specifies the client’s class. Each media-file (class) has an activation-cost reflecting
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the cost of copying the media file from the central database, and storing it in
the server’s local memory. The server’s bandwidth (load) is distributed among
all its clients, while the class activation-cost is shared among all clients requiring
the same media file stream.

Another example is infrastructure-as-a-service (IAAS) in cloud computing.
IAAS (see e.g. [10]) is a cloud computing service model which offers comput-
ers, either physical or virtual machines. Each client has a task that has to be
performed on a machine. In IAAS system, each machine acts as a server. The
machine’s network bandwidth corresponds to the load resource and the required
software installation for the client’s task specifies the class. The load on the vir-
tual machine affects all the machine’s clients, while the software installation cost
is shared among all clients requiring it.

Production planning is another example of a multi-class resource allocation
application, arising in computer systems and in many other areas. Consider a
set of machines, each having a limited capacity of some physical resource (e.g.
quantity of production materials). In addition, hardware specifications allow
each machine to produce items of different types, each associated with some
configuration set-up or training. The quality of service reduces with the total
congestion on the resource. The configuration set-up cost is required for every
class on every machine.

1.1 Model and Preliminaries

An instance of the multi-class resource allocation game is defined by a tuple
G = 〈I,M,A,U〉, where I is a set of players, M is a set of servers and A is a set
of classes. Let n = |I| and m = |M |. Each player belongs to a single class from A,
thus, I = I1 ∪ I2 · · · ∪ I|A|, where all players from Ik belong to class k. For i ∈ I,
let ai ∈ A denote the class to which player i belongs. The parameter U ∈ IR+ is
the class activation-cost, which is assumed to be uniform for all classes.

An allocation of players to servers is a function f : I → M . Given an alloca-
tion, the load on server j, denoted by Lj(f), is the number of players assigned
to j. We denote by Lj,k(f) the number of players from Ik assigned to j. When
clear in the context we omit f and use Lj and Lj,k, respectively.

The cost of a player i in an allocation f consists of two components: the
load on the server the player is assigned to, and the player’s share in the class
activation-cost. The class activation-cost is shared evenly among the players from
this class serviced by the server. Formally, cf (i) = Lf(i) + U

Lf(i),ai

.
A step by a player i with respect to an allocation f is a unilateral deviation

of i, i.e., a change of f to f ′ such that ∀� �=if
′(�) = f(�) and f ′(i) �= f(i). An

improving step of player i with respect to an allocation f is a step which reduces
the player’s cost, that is, cf ′(i) < cf (i). An allocation f is said to be a Pure
Nash Equilibrium (NE) if no player has an improving step, i.e., for each player
i and for every allocation f ′ such that ∀� �=if

′(�) = f(�) it holds cf (i) ≤ cf ′(i).
Best-Response Dynamics (BRD) is a local search method where in each step

some player is chosen and plays its best improving step, given the strategies of
the other players.
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It is well known that decentralized decision-making may lead to sub-optimal
solutions from the point of view of society as a whole. We quantify the ineffi-
ciency incurred due to self-interested behavior according to the PoA and PoS
measures. The PoA is the worst-case inefficiency of a NE, while the PoS measures
the best-case inefficiency of a NE. Formally, let G be a family of games, and let
G ∈ G be some game in this family. Let NE(G) be the set of Nash equilibria of
the game G, let val(f) be the social cost of a NE f with respect to some objective
function, and let OPT (G) be the value of an optimal solution. If NE(G) �= ∅,
then PoA(G) = maxf∈NE(G)

val(f)
OPT (G) , and PoA(G) = SupG∈GPoA(G). Simi-

larly, PoS(G) = minf∈NE(G)
val(f)

OPT (G) , and PoS(G) = SupG∈GPoS(G).
In this paper, we evaluate the performance of a solution with respect to the

objective of minimizing the maximal cost among the players; that is, given an
allocation f , the social cost of f is given by cmax(f) = maxi∈I cf (i).

1.2 Related Work

The study of resource allocation games with multiple resource classes combines
challenges arising in the two classical problems of multi-dimensional packing and
resource-sharing games. Class-constrained multiple knapsack (CCMK) [13,14] is
the variant of a centralized packing problem closest to our model. In CCMK each
item has a type, a size and a value. Each knapsack has in addition to its size, a
number of compartments which define the number of different item types it can
contain. The optimization goal in CCMK is to maximize the total value of items
packed into the knapsacks. The problem is NP-hard even with unit size and unit
profit items. In our game, as in [13], all items have unit size. The main difference
between the models is that servers in our game have no limited capacity, thus
a placement that packs all the items always exists. The load-component in our
cost-function provides the incentive to avoid highly loaded servers and to balance
the load among the servers.

In cost-sharing games, a possibly unlimited amount of resources is available.
The activation of a resource is associated with a cost which is shared among
the players using it. A well-studied cost sharing game is network design. Nash
equilibrium always exists in network design games and the price of stability with
respect to the total-cost objective function is H(k), where k is the number of
players and H is the harmonic function [1]. In cost sharing games, congestion
has a positive effect, and players have an incentive to use resources that are used
by others. Other related work deal with congestion games, in which congestion
has a negative effect, and players wish to avoid loaded resources. In congestion
games, the cost of using a resource increases with the load on it. Congestion
games were first introduced in [11], and arise naturally in network routing (see
e.g. [12]), and job-scheduling [16].

In [4], Feldman and Tamir studied a model incorporating both positive and
negative congestion effects. In their model, a job-scheduling setting with unlim-
ited set of identical machines is studied. Each job j has a length pj and each
machine has a fixed activation cost U . The set of players corresponds to the set
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of individual jobs and the action space of each player j is the set of machines.
The cost function of job j in a given schedule is composed of the load on the job’s
machine and the job’s share in the machine’s activation cost. For the uniform
sharing rule in which the machine’s activation cost is uniformly shared between
the jobs allocated to it, a NE may not exists. For the proportional sharing rule
in which the share of a job in the machine’s activation cost is proportional to
its length, the price of anarchy with respect to the makespan can be arbitrarily
high. The price of stability is tightly bounded by 5/4. This model of conflict-
ing congestion effects was studied further in [3], where equilibrium inefficiency
was studied with respect to the total-cost objective, and in [5,8], where closer
analysis of the PoA and PoS is provided. In this work, we generalize the model
of conflicting congestion effects, by allowing several resources on a single server.
This generalization provides one additional step in modeling real-world systems
using game theoretical tools.

1.3 Our Results

We provide answers to the basic questions regarding resource allocation games
with multiple resource classes. Namely, equilibrium existence, convergence, cal-
culation and efficiency. We present polynomial-time algorithms for calculating a
stable solution whose cost almost matches the bound for the PoS.

We prove that a NE exists for any instance of the game by presenting an
exact potential function for the game. By analyzing this function we conclude
that any application of better-response dynamics converges to a NE within time
O(n4). The equilibrium inefficiency is analyzed with respect to the objective of
minimizing the maximal cost among the players. We first provide several lower-
bounds on the optimal solution, and then combine them to present a tight bound
of m for the PoA. An additional almost tight bound depends on the size of a
least popular class. Let θ = min1≤k≤|A| |Ik|. We show that PoA ≤ θ + 1, and a
game for which PoA ≥ θ − ε exists.

We show that for any number of servers, there exists a game for which the
PoS is 2 − 1

m . This lower bound is almost matched - we present a polynomial
time algorithm that constructs a NE with max-cost at most twice the optimum.
For two servers, we present a matching upper bound: that is - a polynomial time
algorithm that constructs a NE with max-cost at most 3/2 times the optimum.

Our algorithms for finding a good stable assignment are based on two new
methods:

1. While all the players create the same unit-load on the servers, our algorithms
group the players into sets, based on their classes. An initial assignment is
found by considering these sets as an instance of a multiple-knapsack packing
problem with arbitrary-size elements. This method enables analysis of the
assignment using known packing techniques and their properties.

2. The stabilization phase that follows the initial assignment consists of itera-
tions in which the algorithm may reassign complete sets of players, or per-
form a supervised sequence of improving steps. The sequence is initiated by
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one player i, and is then limited to players of i’s class who may benefit from
following i by performing exactly the same migration. Analyzing the configu-
ration after each improving step is complex; however, it is possible to analyze
the effect of each supervised sequence of improving steps on the potential
function and to bound the cost of an assignment derived by this method.

It is interesting to compare our results with the model studied in [4], in which
all users belong to a single class, and the number of servers is unlimited. In our
model, it is not relevant to study instances with unlimited number of servers,
since players from different classes have only negative effect on the cost of each
other, thus, different classes will never share a server, and the problem reduces
to a single-class problem. The PoA is not bounded by a constant in both models,
however, in our model it is bounded by m – the number of servers and θ + 1
- where θ is the size of the smallest class, while in [4] it is bounded by 1+U

2
√

U
–

which is a function of the class (machine) activation-cost.
A tight bound of 5

4 for the PoS is shown in [4]. Our bound on the PoS
implies that increasing the number of classes from 1 to arbitrary |A| only slightly
increases the PoS - from 5

4 to 2. Thus, in both models the PoS is a relatively
small constant.

Due to space constraints, some proofs as well as the 3
2 -approximation algo-

rithm for two servers are omitted from this extended abstract.

2 Equilibrium Existence and BRD Convergence

We show that the multi-class resource allocation game is a potential game [9].
This implies that a series of improving steps always converges to a NE. Given
an allocation f , consider the following potential function,

Φ(f) =
∑

1≤j≤m

U · (HLj,1(f) + HLj,2(f) + . . . + HLj,|A|(f)) +
Lj(f)2

2
, (1)

where Hk is the kth harmonic number, that is, H0 = 0, and Hk = 1+ 1
2 + . . .+ 1

k .

Theorem 1. Φ(f) is an exact potential function.

Thus, BRD converges and a NE exists. Next, we show that BRD converges
to a NE in polynomial time. Specifically,

Theorem 2. For every instance G, BRD converges to a NE within O(n4) steps.

Proof. Consider the potential function defined in (1), since Hk ≤ k, and for all
1 ≤ j ≤ m and 1 ≤ i ≤ |A|, Lj,i ≤ Lj , the left addend of the sum can be
bounded as follows,

∑

1≤j≤m

U · (HLj,1(f) + HLj,2(f) + . . . + HLj,|A|(f)) ≤
∑

1≤j≤m

U · Lj = U · n.
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The right addend of the potential function is trivially bounded by n2

2 and we
conclude that for all f , Φ(f) ≤ U · n + n2

2 . Consider an improving step by
some player i. Since the potential function is an exact potential function, the
difference in the potential is exactly the improvement in i’s cost. That is ΔΦ =
cf (i) − cf ′(i) = Δc�(i) + Δcs(i). The difference in the load is an integer while
the difference in the activation-cost is U

Lf(i),a(f)+1 − U
Lf(i),a(f)

where a is the class
of i. Since Lj,a is an integer and Lj,a ≤ n for all a, j, the denominator of the
activation-cost diff is at most n(n − 1). Thus, an improving step reduces the
potential by at least 1

n(n−1) , that is, ΔΦ ≥ 1
n(n−1) . Since the potential is always

positive, BRD converges in at most maxf Φ(f)
minΔΦ = O(n2)

Ω( 1
n2 )

= O(n4) steps. �


3 Equilibrium Inefficiency - Price of Anarchy

In this section we study the inefficiency caused due to strategic behavior, as
quantified by the Price of Anarchy (PoA). We evaluate the performance of a
solution with respect to the objective of minimizing the highest cost among
all the players; that is, given an allocation f , the social cost of f is given by
cmax(f) = maxi∈I cf (i). For a server j, define the cost of j as the maximal cost
among players allocated to j. That is, cf (j) = maxf(i)=j cf (i). Let OPT denote
the maximal cost of a player in an optimal assignment minimizing the maximal
cost. Some of our bounds are a function of θ = min1≤k≤|A| |Ik|, the size of a
least popular class. For simplicity, we use θ to denote both the class and its size.
We prove a tight bound of m for the PoA, and an almost tight bound of θ + 1,
implying that the existence of a single small class guarantees low PoA. We start
with the lower bound based on the number of servers. Specifically, we show that
the PoA may be m − ε for any ε > 0.

Theorem 3. For any m ≥ 2 servers and any ε > 0, there exists an instance G
for which PoA(G) > m − ε.

Proof. Let k be an integer such that 1
mk ≤ ε. Consider an instance G with

n = mk+3 players, U = n and a single class. Let f be the allocation in which
all the players are allocated to a single server. The cost of each player in f is
c1 = n + 1 = mk+3 + 1. A player migrating to an empty server would have a
cost of 1 + U = n + 1 = c1. Thus, f is stable. On the other hand, consider an
allocation f ′ in which the players are equally distributed between the servers.
Each server is allocated with mk+2 players, each having cost c′

1 = mk+2 + m.
Therefore,

PoA(G) ≥ c1
c′
1

=
mk+3 + 1
mk+2 + m

> m − 1
mk

≥ m − ε.

�

In order to prove the upper bound, we first provide several lower bounds on

OPT . Let d = max( n
m ,

√
U).
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Claim 4. OPT ≥ max(n+U
θ

m ,
⌈

n
m

⌉
, U

θ , 2
√

U, d + U
d ).

When θ ≤ n
m , we can bound OPT further as a function of θ and U .

Claim 5. If θ ≤ n
m , then OPT ≥ θ + U

θ .

Theorem 6. For any resource allocation game G with multiple resource classes,
PoA(G) ≤ m.

Proof. Let f be a stable allocation, and let j1 be a server such that cf (j1) =
cmax(f). Let i be a class with minimal group-size on j1. Thus, c1 = L1 + U

Lj1,i
is

the maximal cost of a player in f . We show that c1 ≤ n + U
θ . By Claim 4, this

implies that the PoA is at most m.
If j1 is the only server that services players from class i then Lj1,i ≥ θ. Thus,

c1 ≤ n + U
θ .

If players from class i are assigned in f to more than a single server, let j2 �= j1
be a least loaded server that services class-i players in f . Denote �1 = Lj1,i and
�2 = Lj2,i. The cost of a class-i player on j2 is c2 = L2 + U

�2
. Since f is stable, a

migration of an i-player from j1 to j2 is not beneficial. Combining the fact that
c2 ≤ c1, we get

L2 +
U

�2
≤ L1 +

U

�1
≤ L2 + 1 +

U

�2 + 1
. (2)

Equation (2) implies that U ≤ �2(�2 + 1).
On the other hand, a migration of an i-player from j2 to j1 is also not

beneficial. Thus, L2 + U
�2

≤ L1 + 1 + U
�1+1 and we get

L2 + 1 +
U

�2 + 1
≤ L2 + 1 +

U

�2
≤ L1 + 2 +

U

�1 + 1
. (3)

Combining Eqs. (2) and (3), we conclude that

U ≤ min(2�1(�1 + 1), �2(�2 + 1)). (4)

If class-i players are allocated to exactly two servers, the analysis is techni-
cally involved and is omitted due to space constraints.

If class-i players are allocated to more than two servers then since j2 is the
least loaded server with class-i players, except possibly j1, we have �2 ≤ L2 < n

2

and c1 ≤ L2 + 1 + U
�2+1 ≤ L2 + 1 + �2 < n. Thus, for every possible allocation of

class-i players, we showed that c1 ≤ n + U
θ ≤ m · OPT . �


Our next bound depends on the size of the smallest class. We start with the
upper bound.

Theorem 7. For any resource allocation game G with multiple resource classes,
and any ε > 0, PoA(G) ≤ θ + 1.
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Proof. Let f be a stable allocation, and let j be a server such that cf (j) =
cmax(f). Let L1 be the load on j and let L0 be the load on the least loaded
server in f . If L1 ≤ ⌈

n
m

⌉
then cmax(f) ≤ ⌈

n
m

⌉
+U . Otherwise, by the pigeonhole

principle, L0 <
⌈

n
m

⌉
. Since f is stable, cf (j) ≤ L0 +U +1 ≤ ⌈

n
m

⌉
+U . By Claim

4, OPT ≥ max(
⌈

n
m

⌉
, U

θ ). Thus, PoA ≤ � n
m�+U

OPT ≤ θ + 1. �

This bound is almost matched.

Theorem 8. For any θ ≥ 1 and ε > 0, there exists an instance G for which
PoA(G) > θ − ε.

Proof. Given ε and θ, let U be a constant such that ε ≥ θ3

U+θ2 . Consider an
instance with n = U(1 − 1

θ ) players from two classes, where |I1| = θ and |I2| =
n−θ. Let m = n/θ. Note that U can be selected such that n and m are integers.

Let f be the allocation in which all the players are allocated to a single server.
Players of I1 have the max-cost in f , which is c1 = n + U

θ . A player migrating
to an empty server would have a cost of U + 1. Since U = n + U

θ = c1, such
a migration is not beneficial. Thus, f is stable. On the other hand, consider an
allocation f ′ in which the players are equally distributed between the servers,
each server accommodating θ players from the same class. All the players have
cost c′ = θ + U

θ . Therefore,

PoA(G) ≥ c1
c′ =

n + U
θ

θ + U
θ

=
U

θ + U
θ

≥ θ − ε.

�


4 Equilibrium Inefficiency - Price of Stability

In this section we analyze the Price of Stability with respect to the max-cost
objective. For systems with arbitrary number of servers, m, we show that 2− 1

m ≤
PoS ≤ 2. For two servers, the lower bound is tight. Specifically, we present an
O(|A| log |A| + n)-time algorithm for calculating a NE assignment that achieves
max-cost at most 3

2OPT . The algorithm is omitted from this extended abstract.
Our main result is an algorithm for arbitrary number of servers. The algo-

rithm combines load-balancing ideas used in packing algorithms, such as element-
grouping and handling of elements in decreasing-size order, together with ideas
used in algorithmic game theory, such as performing BRD in a specific order.

We begin with a lower bound of 2 − 1
m .

Theorem 9. For every ε > 0 and a system with m ≥ 2 servers, there exists an
instance G such that PoS(G) > 2 − 1

m − ε.

Proof. Given ε > 0, let n = max(
⌈
4(m−1)

ε

⌉
, 4m). Consider an instance G with

m ≥ 2 servers, and A = {a1, a2}, where a single player belongs to class a1 and all
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other players belong to class a2. Let U = n−1
m−1 − 2. A possible allocation for this

instance is illustrated in Fig. 1(a). The players who belong to a2 are split evenly
among m − 1 servers and the player of a1 is solely allocated to the remaining
server. The maximal cost for this allocation is for players who belong to a2 and is
c1 = n−1

m−1 +1− 2(m−1)
n−1 . The only NE (up to server renaming) for this instance is

illustrated in Fig. 1(b). The player of a1 has the maximal cost for this allocation
c2 = n

m + n−1
m−1 − 2. A player of a2 has cost at most c3 = n

m + U
n
m −1 , a player of

a2 migrating to a different server would have cost at least c4 = n
m + 1 + U

n
m+1 .

Since n ≥ 4m and m ≥ 2, n−1
m−1 − 1 < n

m and U < n
m − 1. Thus, c3 < c4 and the

allocation is stable. We conclude that the PoS is at least

c2
c1

=
n
m + n−1

m−1 − 2
n−1
m−1 + 1 − 2(m−1)

n−1

≥
n
m + n−1

m−1 − 2
n−1
m−1 + 1

≥ 2 − 1
m

− 4(m − 1)
n

≥ 2 − 1
m

− ε.

�


... ... ...

...

...

... ...

...

...

......

Fig. 1. (a) An optimal non-stable allocation, (b) A best NE.

4.1 An Algorithm for Multiple Servers

For a system with an arbitrary number of servers, we present a polynomial
time algorithm that constructs a NE with max-cost at most 2OPT . We use the
term big classes when referring to classes with at least n

m players. Similar to
the case m = 2, Algorithm 1, given below, assigns complete classes to servers
while only splitting big classes. This initial assignment is similar to Longest
Processing Time (LPT) algorithm for job scheduling [6], that is, it assigns the
sets greedily, in non-increasing order, on a least loaded server. If the resulting
assignment is not stable, a stabilization phase is performed. This phase consists
of migrations of complete classes or sequences of supervised improving steps. The
improvement steps are in ‘Follow-a-leader’ phases. That is, once one member of
a class performs a beneficial migration, an identical migration is considered for
other members of his class. While it is complex to analyze the change in the
social cost of arbitrary sequence of improving steps, we are able to analyze it for
this structured stabilization phase. Recall that d = max( n

m ,
√

U).
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Algorithm 1. An algorithm for finding a NE achieving max-cost at most 2OPT .

Let d = max(
√
U, n

m
).

1. Consider the players according to their classes.

2. Partition any class Ik such that Ik ≥ d to
⌊

Ik
d

⌋
sets of equal sizes (up to a rounding

difference of 1).
3. Sort the resulting sets by their size in decreasing order.
4. Consider the sets according to the sorted order, assign all the players of the next

set to a least loaded server.
5. If the schedule is not stable, perform a Stabilization Phase (Algorithm 2).

Let f denote the allocation produced in step 4. We start by characterizing f
and show that cmax(f) < 2OPT . We then consider the case that f is not stable
and the stabilization phase is applied. We show that this phase is guaranteed to
converge to a NE allocation f ′ for which cmax(f ′) < 2OPT . We first characterize
some cases in which any NE f0 fulfills cmax(f0) < 2OPT , and then analyze the
stabilization phase for the remaining cases.

Claim 10. The maximal load on a server in the allocation f is at most 2d− 1.

Proof. Assume by contradiction that there is a server s with load at least 2d.
Step 2 guarantees that the maximal set-size is at most 2d−1. Thus, there are at
least two different sets allocated to s. Let Γ be the first set allocated to s that
increases the load beyond 2d−1. Let � be the load on s before Γ is added. Since
the sets are ordered by decreasing order of their sizes, Γ ≤ �. If � ≥ n

m then by
the pigeonhole principle there is a server s0 such that Ls0 < n

m , contradicting
the assignment of Γ to s. If � < n

m then |Γ | + � ≤ 2� < 2n
m ≤ 2d, contradicting

the assumption that s gets load at least 2d. �

Lemma 11. cmax(f) < 2OPT .

Proof. Consider a server s such that cmax(f) = cf (s). By Claim 10 the maximal
load on s is at most 2d − 1. If all the players in s belong to the same class,
cf (s) ≤ 2d−1+ U

d < 2d+ U
d . By Claim 4, OPT ≥ d+ U

d . Thus, cmax(f) < 2OPT .
Let θ0 be the last set assigned to s, if s is assigned with players of different
classes, then θ0 < n

m since the sets are assigned by LPT order. By the pigeonhole
principal, the load on s is at most n

m + θ0. Thus, cf (s) ≤ n
m + θ0 + U

θ0
. Since

θ ≤ θ0 ≤ n
m and x + U

x is a convex function, using Claims 4 and 5, we conclude
θ0 + U

θ0
≤ max(θ + U

θ , n
m + Um

n ) ≤ OPT and cf (s) < 2OPT . �

Next, we show the stabilization phase converges to a stable assignment. The

proof of the following claim is based on analyzing the change in the potential
function Φ(f) defined in (1). We show that every iteration of Step 1 of Algorithm
2 reduces the potential. By Theorem 1, this is valid also for Step 2.
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Algorithm 2. Stabilization Phase
Repeat until convergence:

1. While there exists a server s1 and a class Ik such that all players from Ik are on
s1 and L1 ≥ |Ik| + n

m
, move Ik from s1 to some server s2 for which L2 < n

m
.

2. Perform a ‘follow a leader’ sequence of improving steps:
2.1. Let i1 be some player that has a beneficial move. Assume i1 ∈ Ik and denote

by s1 the server to which i1 is assigned.
2.2. Let i1 perform a beneficial step from s1 to some server s2.
2.3. As long as there exists another unsatisfied player i ∈ Ik assigned to s1, for

which migrating to s2 is beneficial, let i migrate to s2.

Claim 12. The stabilization phase converges to a NE.

We turn to analyze the cost of the stable assignment f ′ produced by the stabi-
lization phase. For some cases, a 2-ratio can be shown for any stable assignment.

Lemma 13. If U ≤ n
m or n

m < U < 4 or θ = 1, then for any NE f ′ it holds
that cmax(f ′) ≤ 2OPT .

For the remaining cases, we analyze the outcome of the stabilization phase.
We use below known properties of assignment produced by LPT algorithm.

Claim 14. If f is not stable then U < 2d.

Proof. By Claim 10, the maximal load on a server in f is at most 2d−1. Let i be
a player in server s1 with a beneficial move to s2. The load difference between s1
and s2 is at most 2d−1. The big classes are equally distributed in Step 2 to sets
of size at least d. Since d ≥ n

m and the sets are allocated in non-increasing order
of size, servers with a set of a big class are only assigned players of that class.
Thus, since d ≥ √

U , players of big classes can only have a beneficial move to
servers not servicing the same class. Players of small classes are all in the same
set generated in Step 1 and are all allocated to the same server. Obviously, such
players can only have a beneficial move to a server not assigned with their class.
Let Γ be the last set assigned to s1 in Step 4. Since the sets are assigned in non-
increasing order of size, L1 − L2 < |Γ | and the cost of i prior to the improving
step is at most c1 = L1 + U

|Γ | . The cost after the step is c2 = L2 + 1 + U . Since

c2 < c1 we have L2 + 1 + U < L1 + U
|Γ | . Thus, U( |Γ |−1

|Γ | ) < L1 − L2 − 1 ≤ |Γ | − 1
and U ≤ |Γ | ≤ 2d − 1. �

Lemma 15. If U ≥ 4 and θ > 1, then Step 2 of the stabilization phase results
in an allocation with at least two players in any class allocated to a server.

Lemma 16. The maximal load on a server in the allocation f ′ is at most 2d−1.

We summarize with the following Theorem.
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Theorem 17. Algorithm 1 produces a NE assignment with max-cost at most
2OPT .

Proof. If the allocation f generated in Step 3 is stable then by Lemma 11 its
max-cost is at most 2OPT . If f is not stable, and θ = 1 or U ≤ n

m or n
m < U < 4,

then by Lemma 13, any NE has max-cost at most 2OPT . If f is not stable, θ > 1,
U > n

m and U ≥ 4 then by Claim 12 and Lemma 15, the stabilization phase
converges to a stable allocation f ′ in which the smallest set on each server is of
size at least 2. Assume by contradiction that cmax(f ′) > 2OPT . Let s be a server
such that cf ′(s) > 2OPT . The cost of s is at most Lf ′(s) + U

2 . Using Claim 14
we have U < 2d thus cf ′(s) < Lf ′(s) + d and Lf ′(s) > d. If there is a single
class allocated to s then cf ′(s) ≤ Lf ′(s) + 2d

Lf′ (s) . By Lemma 16, Lf ′(s) < 2d

and cf ′(s) < 2d. If there are multiple classes allocated to s then by Lemma 15
the smallest set of a players Γ who belong to the same class on s is at least
2. Since Γ was not moved by Step (1) of the stabilization phase, we conclude
cf ′(s) ≤ n

m − 1 + |Γ | + U
|Γ | ≤ d − 1 + |Γ | + U

|Γ | . Since 2 ≤ |Γ | ≤ n
m we have

|Γ |+ U
Γ ≤ max(2+ U

2 , n
m + Um

n ≤ d+ U
d ). Claim 4 implies that 2OPT ≥ 2d+ 2U

d

and also 2d + U
2d ≥ d − 1 + |Γ | + U

|Γ | . Finally, since 2d + 2U
d ≥ 2d + U

2d , we get
cmaxf ′(s) ≤ 2OPT . �


5 Conclusions and Open Problems

We studied a resource-allocation game with multiple resource classes in which
user’s cost function encompasses both negative and positive, class-dependent,
congestion effects. Our study of the game reveals that even for the basic model
of unit-load players and identical servers, the equilibrium inefficiency may by
very high. On the other hand, an assignment whose cost is at most twice the
optimum exists and can be calculated in poly-time. We list below some open
problems and possible directions for future work.

1. Heterogeneous systems: our work considers systems with identical servers and
unit-load requirements. One possible generalization is to study systems with
unrelated servers and/or non-identical load requirements. In the classic load
balancing game, there is a significant difference between the results regarding
related and unrelated systems. It would be interesting to study the corre-
sponding differences in the multi-class model.

2. Players with class preferences or with multiple classes: In our work players
belong to a single class. In a possible generalization of this game (studied in
[15] for the centralized model), a player may belong to several classes and has
preferences regarding his class. This scenario fits for example MoD systems
in which a client is ready to see one of several movies, and provides his
preferences for broadcast. In the corresponding game, the utility of a player
depends also on the class to which it is assigned. Another direction is to
study systems in which a player requires more than a single resource for his
processing. Thus, a player may belong to multiple classes and needs to pay
his share in the activation cost of all the resources he needs.
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3. We calculated inefficiency with respect to the max-cost objective function.
Future work could also consider other objective functions such as sum-cost.

4. BRD convergence time: We have shown that BRD converges within an upper
bound of O(n4) steps. A lower bound of Ω(n log n) steps follows from the
analysis in [4] for a single class. Closing the gap and providing a tight bound
for BRD convergence time remains open.

5. Strong Equilibrium: In a work in progress we have shown that a SE may not
exist for U > 2, while for U = 0 a SE always exist. The existence of SE for
0 < U ≤ 2 is an open question. Characterizing conditions in which an SE
exists and analyzing SE inefficiency are additional open directions.

6. Capacitated Model: We assumed that servers have unlimited capacity. Study-
ing the capacitated game, in which servers have limited storage and/or limited
load capacities arise new challenges.
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Abstract. The seminar assignment problem is a variant of the general-
ized assignment problem in which items have unit size and the amount of
space allowed in each bin is restricted to an arbitrary set of values. The
problem has been shown to be NP-complete and to not admit a PTAS.
However, the only constant factor approximation algorithm known to
date is randomized and it is not guaranteed to always produce a feasible
solution.

In this paper we show that a natural greedy algorithm outputs a solu-
tion with value within a factor of (1 − e−1) of the optimal, and that
unless NP ⊆ DTIME(nlog logn), this is the best approximation guaran-
tee achievable by any polynomial time algorithm.

Keywords: General assignment · Budgeted maximum coverage · Sem-
inar assignment problem

1 Introduction

In the Seminar Assignment problem (SAP) introduced in [8] one is given a
set of seminars (or bins) B, a set of students (or items) I, and for each seminar
b a set of integers Kb specifying the allowable number of students that can be
assigned to the seminar. Unless otherwise specified, we assume that 0 ∈ Kb for
any b ∈ B. For each student i and seminar b ∈ B let p(i, b) ∈ R represent the
profit generated from assigning student i to seminar b. A seminar assignment is
a function A : J → B where J ⊆ I and we say that the assignment is feasible
if |A−1(b)| ∈ Kb for all b ∈ B, where A−1 is the pre-image of A. The goal is to
find a feasible seminar assignment A that maximizes the total profit:

p(A) =
∑

i∈J

p(i,A(i)).

The problem has been introduced in [8] in a slightly less general version. In
the original version, for each b ∈ B the set Kb equals to {0}∪{lb, ..., ub} for some
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lower and upper bounds lb, ub ∈ N. The more general setting considered in this
paper can be useful for example when a seminar doesn’t just require a minimum
number of students and has a fixed capacity, but in addition requires students
to work in pairs and therefore would allow only an even number of students to
be registered. In addition, this generalization also simplifies notation.

SAP is a variant of the classic General Assignment problem (GAP) in
which one is given m bins with capacity B1, ..., Bm and n items. Each item i has
size s(i, b) in bin b and yields profit p(i, b). The goal is to find a packing of the
items into the bins that maximizes total profit, subject to the constraint that no
bin is overfilled. A GAP instance with a single bin is equivalent to the knapsack
problem, and a GAP instance with unit profit can be interpreted as a decision
version of the bin packing problem: can all items be packed in the m bins?

SAP is also related to the Maximum Coverage problem (MC). In the classic
version of the MC problem one is given a collection of sets S = {S1, ..., Sm} and
a budget B. The goal is to select a subcollection S ′ ⊆ S with cardinality less
than or equal to B such that | ∪S∈S′ S| is maximized.

The algorithms with the best approximation ratio for both MC and GAP
are greedy algorithms and the approximation bounds have been proved with
similar techniques. In this paper we show how to extend these analysis techniques
to SAP.

Related Work. In [8] the authors show that SAP is NP-complete even when
Kb = {0, 3} for all b ∈ B and p(i, b) ∈ {0, 1} for any i ∈ I. Moreover, they show
that SAP does not admit a PTAS by providing a gap-preserving reduction from
the 3-bounded 3-dimensional matching problem. In [1] the authors investigate
the approximability of the problem and provide a randomized algorithm which
they claim outputs a solution that in expectation has value at least 1/3.93 of
the optimal. In [2] this result is revised and the authors show that for any c ≥ 2,
their randomized algorithm outputs a feasible solution with probability at least
1 − min{ 1

c ,
ec−1

cc } and has an approximation ratio of e−1
(2c−1)·e .

The GAP is well studied in the literature, with [3,9] surveying the existing
algorithms and heuristics for multiple variations of the problem. In [11] the
authors provide a 2-approximation algorithm for the problem and in [4] it is
shown that any α-approximation algorithm to the knapsack problem can be
transformed into a (1+α)-approximation algorithm for GAP. In [6] tight bounds
for the GAP are given showing that no polynomial time algorithm can guarantee
a solution within a factor better than (1 − e−1), unless P = NP , and providing
an LP-based approximation which for any ε > 0 outputs a solution with profit
within a (1 − e−1 − ε) factor of the optimal solution value.

The GAP with minimum quantities, in which a bin cannot be used if it is not
packed at least above a certain threshold, is introduced in [8]. Because items have
arbitrary size, it is easy to see that when a single bin is given and the lower bound
threshold equals the bin capacity, finding a feasible solution with profit greater
than zero is equivalent to solving Subset Sum. Therefore, in its most general case
the problem cannot be approximated in polynomial time, unless P = NP .
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In [5,10] the authors study the problem of maximizing a non-decreasing sub-
modular function f satisfying f(∅) = 0 under a cardinality constraint. They show
that a simple greedy algorithm achieves an approximation factor of (1−e−1) which
is the best possible under standard assumptions. Vohra and Hall note that the
classic version of the maximum coverage problem belongs to this class of prob-
lems [13]. When each set Si in the MC problem is associated with a cost c(Si)
the BudgetedMaximum Coverage problem asks to find a collection of sets S ′

covering the maximum number of elements under the (knapsack) constraint that∑
Si∈S′ c(Si) ≤ B for some budget B ∈ R. In [7] the authors show that the greedy

algorithm combined with a partial enumeration of all solutions with small cardi-
nality also achieves a (1 − e−1) approximation guarantee, and provide matching
lower bounds which hold even in the setting of the classic MC problem (when all
sets have unit cost). In [12] Sviridenko generalizes the algorithm and proof tech-
nique to show that maximizing any monotone submodular function under a knap-
sack constraint can be approximated within (1 − e−1) as well.

Contributions. In Sect. 2, by a reduction from the Maximum Coverage prob-
lem, we show that there exists no polynomial time algorithm that guarantees an
approximation factor larger than (1 − e−1), unless NP ⊆ DTIME(nlog log n).
In Sect. 4 we present a greedy algorithm that outputs a solution that has profit
at least 1

2 · (1 − e−1) of the optimal solution. The algorithm is based on the
observation that when the required number of students in each seminar is fixed,
the problem is solvable in polynomial time. Finally, in Sect. 5 we show how this
algorithm can be improved to guarantee an approximation bound of (1 − e−1).

2 Hardness of Approximation

In this section we show that the problem is hard to approximate within a factor
of (1 − e−1 + ε), ∀ε > 0, even for the case when for each b ∈ B the set Kb equals
{0, n} for some integer n, and the profit for assigning any student to any seminar
is either 0 or 1. We prove this result by showing that such restricted instances of
SAP are as hard to approximate as the Maximum Coverage problem defined
below.

Definition 1. Given a collection of sets S = {S1, ..., Sm} and an integer k, the
Maximum Coverage (MC) problem is to find a collection of sets S ′ ⊆ S such
that |S ′| ≤ k and the union of the sets in S ′ is maximized.

In [7] it is shown that the MC problem is hard to approximate within a factor
of (1 − e−1 + ε), unless NP ⊆ DTIME(nlog log n). We use this result to prove
the following:

Theorem 1. For any ε > 0 the SAP is hard to approximate within a factor of
(1 − e−1 + ε) unless NP ⊆ DTIME(nlog log n).
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Proof. To prove the theorem we create a SAP instance for any given MC instance
and show that from any solution of the SAP instance we can create a solution
for the MC instance with at least equal value, and that the optimal solution of
the SAP instance has value at least equal to the optimal solution of the MC
instance. Therefore, an α-approximation algorithm for SAP can be transformed
into an α-approximation algorithm for MC.

Given a MC instance, let U = ∪S∈SS and n = |U |. For each set S ∈ S let bS
be a seminar with the allowable number of students Kb = {0, n}, and for each
element e ∈ U let ie be a student in I. The profit of a student ie assigned to a
seminar bS is 1 if the element e belongs to the set S and 0 otherwise. In addition,
let d1, ..., dn∗(k−1) be dummy students that have profit 0 for any seminar.

We first show that any feasible assignment A corresponds to a valid solution
to the given MC instance. Since every seminar requires exactly n students and
there are exactly k · n students available, clearly at most k seminars can be
assigned students in any feasible assignment. Let S ′ = {S ∈ S : A(bS) > 0}.
It is easy to see that the number of elements in ∪S∈S′S is at least equal to the
profit p(A) since a student ie has profit 1 for a seminar bS only if the set S covers
element e.

It remains to show that for any solution to the MC instance there exists a
solution to the corresponding SAP instance with the same value. Fix a collection
of sets S ′ ⊆ S with |S ′| ≤ k. For every e ∈ ∪S∈S′S let Se be a set in S ′ that
contains e and let A(ie) = bSe

. Then, assign additional dummy students to any
seminar with at least one student to reach the required n students per seminar.
Clearly, the profit of the assignment A is equal to the number of elements covered
by the collection S ′, which proves the theorem. 
�

3 Seminars of Fixed Size

In this section we show that when the allowable number of students that can be
assigned to any seminar b is a set K = {0, kb} for some integer kb, SAP can be
approximated within a factor of (1 − e−1) in polynomial time. This introduces
some of the techniques used in the general case in a simpler setting.

For an instance of the SAP, a seminar selection is a function S : B → N

with the property that S(b) ∈ Kb for any b ∈ B. We say that S is feasible if∑
b∈B S(b) ≤ |I|. In other words, a seminar selection is a function that maps

each seminar to the number of students to be assigned to it. A seminar selection
S corresponds to an assignment A if for any seminar b the number of students
assigned by A to b is S(b). We slightly abuse notations and denote by p(S)
the maximum profit over all seminar assignments corresponding to the seminar
selection S; we call p(S) the profit of S. In the remainder of this paper for a
graph G = (V,E) we denote the subgraph induced by the vertices of X ⊆ V by
G[X].

Definition 2. Given a SAP instance let Vb = {vb,1, ..., vb,kb
} for every b ∈ B

and let V = ∪b∈BVb. The bipartite representation of the instance is the complete
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bipartite graph G = (V ∪ I, E) with edge weights ω(vb, i) = p(i, b) for every
vb ∈ Vb. The bipartite representation of a seminar selection S is the graph
G[VS ∪ I] where VS = ∪b∈BVS,b and VS,b = {vb,1, ..., vb,S(b)} for every b ∈ B.

Lemma 1. For any SAP instance and any feasible seminar selection S, p(S) is
equal to the value of the maximum weight matching in the bipartite representation
of S.

Proof. Let GS = (VS ∪ I, E) be the bipartite representation of S. First observe
that any matching M of GS that matches all the vertices of VS can be interpreted
as an assignment AM of equal value by setting AM (i) = b whenever vertex i ∈ I
is matched by M to a vertex in VS,b. Since GS is complete and has non-negative
edge weights, there exists a maximum weight matching that matches all the
vertices of VS .

Similarly, any feasible assignment for the SAP instance can be interpreted as
a matching MA of equal value, which proves the lemma. 
�
Definition 3. For a given finite set A, a set function f : 2A → R is submodular
if for any X,Y ⊆ A it holds that:

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

Sviridenko shows that certain submodular functions can be maximized under
knapsack constraints, which will be useful in proving Theorem 3:

Theorem 2 ([12]). Given a finite set A, a submodular, non-decreasing, non-
negative, polynomially computable function f : 2A → R, a budget L ≥ 0, and
costs ca ≥ 0, ∀a ∈ A, the following optimization problem is approximable within
a factor of (1 − e−1) in polynomial time:

max
X⊆A

{

f(X) :
∑

x∈X

cx ≤ L

}

We relate now the value of a maximum weight matching in a bipartite graph
to the notion of submodularity.

Definition 4. For an edge weighted bipartite graph G = (A ∪ B,E), the partial
maximum weight matching function f : 2A → R maps any set S ⊆ A to the
value of the maximum weight matching in G[S ∪ B].

Lemma 2. Let f be the partial maximum weight matching function for a bipar-
tite graph G = (A∪B,E) with non negative edge weights. Then f is submodular.

Proof. Fix two sets X,Y ⊆ A and let M∩ and M∪ be two matchings for the
graphs G[(X ∩ Y ) ∪ B] and G[(X ∪ Y ) ∪ B] respectively. To prove the lemma
it is enough to show that it is possible to partition the edges in M∩ and M∪
into two disjoint matchings MX and MY for the graphs G[X ∪ B] and G[Y ∪ B]
respectively.
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The edges of M∩ and M∪ form a collection of alternating paths and cycles.
Let C denote this collection and observe that no cycle of C contains vertices from
X \ Y or Y \ X. This holds because M∩ does not match those vertices.

Let PX be the set of paths in C with at least one vertex in X \ Y and let PY

be the set of paths in C with at least one vertex in Y \ X. Two such paths are
depicted in Fig. 1.

Claim 1. PX ∩ PY = ∅.

Proof of claim: Assume by contradiction that there exists a path P ∈ PX ∩ PY .
Let x be a vertex in X \Y on path P and similarly let y be a vertex in Y \X on
path P . Observe that since neither x nor y belong to X ∩ Y they do not belong
to the matching M∩ by definition, and therefore they are the endpoints of the
path P . Moreover, since both x and y are in A, the path P has even length
and since it is an alternating path, either the first or last edge belongs to M∩.
Therefore M∩ matches either x or y contradicting its definition. 
�

X Y

PYPX

Fig. 1. MX∪Y matches each vertex in X ∪ Y to the vertex directly above it. MX∩Y

is depicted with contiguous segments, MX with dotted segments and MY with dashed
segments. Two alternating paths of P are shown in light gray.

For a set of paths P we let E(P) = {e ∈ P : P ∈ P}. Moreover, let

MX = (E(PX) ∩ M∪) ∪ (E(C \ PX) ∩ M∩)

and
MY = (E(PX) ∩ M∩) ∪ (E(C \ PX) ∩ M∪).

It is clear that MX ∪ MY = M∩ ∪ M∪ and MX ∩ MY = M∩ ∩ M∪. To prove the
theorem it remains to show that MX and MY are valid matchings for G[X ∪ B]
and G[Y ∪ B] respectively. To see that MX is a valid matchings for G[X ∪ B]
observe first that no vertex of Y \ X is matched by MX since PX does not
intersect Y \ X by Claim 1, and M∩ does not intersect Y \ X by definition.
Therefore, MX only uses vertices of X ∪ B. Second observe that every vertex
x ∈ X is matched by at most one edge of MX since otherwise x belongs to either
two edges of M∪ or two edges of M∩, contradicting the definition. This proves
that MX is a valid matching for G[X ∪B]; showing that MY is a valid matchings
for G[Y ∪ B] is similar. 
�
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Theorem 3. Any instance of SAP in which |Kb| ≤ 2 for all b ∈ B can be
approximated in polynomial time to a factor of (1 − e−1).

Proof. Fix a SAP instance and for any X ⊆ B let SX be the seminar selection
which allocates kb students to any seminar in S and 0 students to any seminar
in B \ S. Moreover, let G be the bipartite representation of the SAP instance
and f be the partial maximum weight matching function for graph G. Denote
by G[VX ∪I] the bipartite representation of SX and let g(X) = f(VX). Since f is
submodular by Lemma 2, it is easy to see that g is submodular as well. Assume
by contradiction that there exist sets X,Y ⊆ B such that the submodularity
condition for g doesn’t hold:

g(X) + g(Y ) < g(X ∪ Y ) + g(X ∩ Y ). (1)

Therefore, by definition of g we have

f(VX) + f(VY ) < f(VX ∪ VY ) + g(VX ∩ VY ),

contradicting the submodularity of f proven in Lemma 2.
Clearly g is also monotone, non-negative and polynomially computable. Let

cb = kb, ∀b ∈ B, let L = |I|, and observe that SX is feasible if and only if∑
x∈X cx ≤ L. Moreover, by Lemma 1 and the definition of g, g(X) = p(SX)

whenever the seminar selection SX is feasible and therefore the proof follows
from Theorem 2. 
�

4 A Constant Factor Greedy Algorithm

The algorithm presented in this section sequentially increments the number of
students allocated to each seminar in a greedy fashion. It is similar in nature to
the greedy algorithm of [7,12] but the details of the approximation guarantee
proof are different. In the rest of this section we denote by AS an optimal
assignment for the seminar selection S. Remember that Lemma 1 shows that
given feasible seminar selection S, an optimal seminar assignment AS can be
found in polynomial time.

We say that a seminar selection T is greater than a selection S (denoted by
T 
 S) if T (b) ≥ S(b), ∀b ∈ B, and there exists b ∈ B s.t. T (b) > S(b). The cost
of a seminar selection S is denoted by c(S) and equals

∑
b∈B S(b). When T 
 S

we define the marginal cost of T relative to S as the difference between the cost
of T and the cost of S:

cS(T ) = c(T ) − c(S)

Similarly, we define pS(T ) = p(T )− p(S), the marginal profit of T relative to
S. We say that T is an incrementing selection for a seminar selection S if T 
 S
and there exists a single seminar for which the selection T allocates more students
than selection S; more precisely, the cardinality of the set {b ∈ B : T (b) > S(b)}
is 1. For a selection S we denote the set of incrementing seminar selections that
are feasible by inc(S).

We are now ready to present our algorithm:
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Greedy

1. S0 = initial seminar selection;
2. i = 0;
3. While inc(Si) �= ∅:

(a) Si+1 ← arg maxS′∈inc(Si)(p(S′) − p(Si))/(c(S′) − c(Si));
(b) i ← i + 1

4. A1 ← ASi
;

5. A2 ← maximum assignment to any single seminar b for which
S0(b) = 0;

6. Return maxA1,A2;

In this section we analyze the algorithm starting from an empty initial sem-
inar selection. In the following section we show that by running the algorithm
repeatedly with different initial seminar selections, the approximation guarantee
can be improved.

Observe that the cardinality of inc(S) is never greater than |B| · |I| and is
therefore polynomial in the size of the input. Thus, using the maximum weight
matching reduction from the proof of Lemma 1, step 3(a) of the algorithm can
be performed efficiently.

Definition 5. For a seminar selection S and a tuple (b, kb) with b ∈ B and
kb ∈ N, let S⊕(b, kb) denote the seminar selection S′ with S′(b) = max{kb, S(b)}
and S′(b′) = S(b′) for any b′ ∈ B, b′ �= b.

Lemma 3. For any feasible seminar selections S and T , if for every seminar
b ∈ B the seminar selection S ⊕ (b, T (b)) is feasible, then it holds that:

∑

b∈B

[p(S ⊕ (b, T (b))) − p(S)] ≥ p(T ) − p(S).

Proof. For a fixed SAP instance let G be its bipartite representation and let
G[VS ∪ I] and G[VT ∪ I] be the bipartite representations of S and T respectively.
Moreover, let MS and MT be two maximum weight matchings in G[VS ∪ I]
and G[VT ∪ I] respectively. Remember that according to Lemma 1 it holds that
p(S) = ω(MS) and p(T ) = ω(MT ). To prove the lemma we create matchings
M = {Mb}b∈B for the bipartite representations of assignments p(S ⊕ (b, T (b)),
such that each edge of MT is used in exactly one of the matchings in M and
each edge of MS is used in exactly |B| − 1 of the matchings in M.

Let C be the collection of isolated components formed by the union of the
edges of MS and MT . Since both MS and MT are matchings in G, each element
of C is a path or cycle in G. For every b ∈ B let Pb = {P ∈ C : V (P ) ∩
Vb ∩ (V (MT ) \ V (MS)) �= ∅}, where V (P ) denotes the vertices of component P
(Fig. 2).

Claim 2. For any a �= b ∈ B, Pa ∩ Pb = ∅.
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Proof of claim: To prove the claim, assume that there exist P ∈ Pa ∩ Pb for
some a �= b ∈ B. Then by definition there exist va ∈ Va and vb ∈ Vb such that
va, vb ∈ V (P ) and va, vb /∈ V (MS) and therefore va and vb are the endpoints
of the alternating path P . Since neither of the endpoints of the path belong to
MS , P must have an odd number of edges. However, because both endpoints of
P belong to the same partition of the bipartite graph G, the path P must have
an even number of edges, hence the claim holds by contradiction. 
�

b1

b2

b3

P1

P2

P3

(a)

b1

(b)

b2

(c)

b3

(d)

Fig. 2. An example with 3 seminars, b1, b2, b3. (a) Two assignments MS (dashed edges)
and MT (dotted edges); the three alternating paths formed by MS ∪ MT (light gray).
q(P1) = b1 because it only intersects vertices from Vb1 ; q(P2) = b1 because P2 con-
tains a vertex V (MT ) \ V (MS) that is in Vb1 ; r(P3) = b2. (b), (c) and (d) assign-
ments for seminar selections S ⊕ (b1, 3), S ⊕ (b2, 2) and S ⊕ (b3, 2) combining edges of
MS and MT .

Let q : C → B be a map of the isolated components to the seminars with the
following properties:

1. q(P ) ∈ {b ∈ B : V (P ) ∩ Vb �= ∅};
2. if P ∈ Pb for any b ∈ B, q(P ) = b.

Since Pb are disjoint by the previous claim and since for any seminar b it holds by
definition that V (P ) ∩ Vb �= ∅ whenever P ∈ Pb, it is clear that such a mapping
q exists.

For every b ∈ B let Mb be the matching of G that uses all the edges of MT

from the alternating paths P ∈ C mapped by q to the seminar b, and all the
edges of MS from the paths P ∈ C mapped by q to some other seminar:

Mb = [MT ∩ E(q−1(b))] ∪ [MS ∩ (E(C) \ E(q−1(b)))].

Observe that any edge of MT belongs to at least one matching Mb for some
b ∈ B and that any edge of MS belongs to all but one of the matchings Mb.
Therefore,
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∑

b∈B

ω(Mb) ≥ ω(MT ) + (|B| − 1) · ω(MS).

Moreover, observe that for each b ∈ B, Mb is a matching in the bipartite
representation of the seminar selection S⊕(b, T (b)). Therefore p(S⊕(b, T (b))) =
ω(Mb) and the lemma follows. 
�
Lemma 4. Let S and T be two seminar selections such that S ⊕ (b, T (b)) is
feasible for every b ∈ B. Let S∗ = arg maxS′∈inc(S)(p(S′)−p(S))/(c(S′)− c(S)).
Then it holds that:

p(S∗) − p(S)
c(S∗) − c(S)

≥ p(T ) − p(S)
c(T )

.

Proof. By Lemma 3 we have that
∑

b∈B

[p(S ⊕ (b, T (b))) − p(S)] ≥ p(T ) − p(S). (2)

Since
∑

b∈B [c(S ⊕ (b, T (b))) − c(S)] ≤ ∑
b∈B T (b) = c(T ), inequality (2)

implies that
∑

b∈B [p(S ⊕ (b, T (b))) − p(S)]
∑

b∈B [c(S ⊕ (b, T (b))) − c(S)]
≥ p(T ) − p(S)

c(T )
. (3)

Then, there exists at least one seminar b∗ ∈ B such that

p(S ⊕ (b∗, T (b∗))) − p(S)
c(S ⊕ (b∗, T (b∗))) − c(S)

≥ p(T ) − p(S)
c(T )

. (4)

Since S ⊕ (b∗, T (b∗))) is clearly in inc(S) the lemma follows directly from
Eq. (4) and the definition of S∗. 
�
Lemma 5. Let T be a feasible seminar selection and let r ∈ N be such that
Si ⊕ (b, T (b)) is feasible for every i < r and b ∈ B. Then for each i ≤ r the
following holds:

p(Si) − p(S0) ≥
[

1 −
i−1∏

k=0

(
1 − c(Sk+1) − c(Sk)

c(T )

)]

·
(
p(T ) − p(S0)

)
.

Proof. We prove the lemma by induction on the iterations i. By the definition
of the algorithm, S1 is the seminar selection with maximum marginal density in
inc(S0), and thus Lemma 4 shows that the inequality holds for i = 1. Suppose
that the lemma holds for iterations 1, ..., i. We show that it also holds for iteration
i+1. For ease of exposition, for the remainder of this proof let αi = c(Si+1)−c(Si)

c(T ) .
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p(Si+1) − p(S0) = p(Si) − p(S0) + p(Si+1) − p(Si)
≥ p(Si) − p(S0) + αi · (p(T ) − p(Si))
= (1 − αi)p(Si) + αi · p(T ) − p(S0)

≥ (1 − αi) ·
(

1 −
i−1∏

k=0

(1 − αk)

)

(p(T ) − p(S0))

+ (1 − αi) · p(S0) + αi · p(T ) − p(S0)

=

(

1 − αi −
i∏

k=0

(1 − αk)

)

(p(T ) − p(S0))

+ αi · (p(T ) − p(S0))

=

(

1 −
i∏

k=0

(1 − αk)

)

(p(T ) − p(S0)).

Where the first inequality follows from Lemma 4 and the second inequality fol-
lows from the induction hypothesis. 
�
Theorem 4. When S0 is the empty assignment the Greedy algorithm is a
1
2 · (

1 − e−1
)
approximation for SAP.

Proof. Let OPT be the seminar selection of a fixed optimal assignment solution
for the given SAP instance. Let b∗ ∈ B be the seminar that is allocated the most
students in OPT and let OPT ′ be the seminar selection for which OPT ′(b∗) = 0
and OPT ′(b) = OPT (b) for any b �= b∗ ∈ B. Let r be the first iteration of the
algorithm for which c(Sr) > c(OPT ′). Clearly, Si ⊕ (b,OPT (b)) is feasible for
every i < r and b ∈ B. Since p(S0) = 0, by applying Lemma 5 to iteration r we
obtain:

p(Sr) ≥
[

1 −
r−1∏

k=0

(
1 − c(Sk+1) − c(Sk)

c(OPT ′)

)]

· p(OPT ′)

≥
[

1 −
r−1∏

k=0

(
1 − c(Sk+1) − c(Sk)

c(Sr)

)]

· p(OPT ′). (5)

Observe that c(Sr) =
∑r−1

k=0 c(Sk+1) − c(Sk) and that for any real numbers
a0, ..., ar−1 with

∑r−1
k=0 ak = A it holds that:

r−1∏

k=0

(
1 − ak

A

)
≤

(
1 − 1

r

)r

< e−1. (6)

Therefore Eq. (5) implies p(Sr) > (1− e−1) · p(OPT ′). Since the profit of A2

is at least p(b∗, OPT (b∗)) it holds that

A1 + A2 > (1 − e−1) · p(OPT ′) + p(b∗, OPT (b∗))

≥ (1 − e−1) · p(OPT )

and therefore either A1 or A2 has profit at least 1
2 · (1 − e−1)p(OPT ). 
�
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5 Improving the Approximation

In this section we show that the algorithm can be improved by starting the greedy
algorithm not from an empty seminar selection, but from a seminar selection
that is part of the optimal solution. The improved algorithm is less efficient but
achieves the optimal approximation ratio of (1 − e−1). Let Aopt be an optimal
seminar assignment and for any b ∈ B let popt(b) be the profit obtained in this
assignment from seminar b:

popt(b) =
∑

i∈A−1
opt(b)

p(i, b).

Clearly, the profit of the optimal solution is
∑

b∈B popt(b). W.l.o.g, let b1, b2, b3
be the three seminars of the optimal solution with highest profit and let S∗ be
a seminar selection such that S∗(b) = OPT (b) if b ∈ {b1, b2, b3}, and S∗(b) = 0
otherwise.

Theorem 5. When S0 = S∗ the Greedy algorithm is a
(
1 − e−1

)
-

approximation for SAP.

Proof. Let OPT be the seminar selection corresponding to Aopt. Let b∗ be the
seminar that is allocated the most students in OPT and is not allocated students
in S∗. Moreover, let OPT ′ be the seminar selection for which OPT ′(b∗) = 0
and OPT ′(b) = OPT (b) for any b �= b∗ ∈ B. Let r be the first iteration of
the algorithm for which c(Sr) > c(OPT ′). Clearly, the seminar selection Si ⊕
(b,OPT (b)) is feasible for every i < r and b ∈ B. By applying Lemma 5 to
iteration r we obtain:

p(Sr) − p(S∗) ≥
[

1 −
r−1∏

k=0

(
1 − c(Sk+1) − c(Sk)

c(OPT ′)

)]

·
(
p(OPT ′) − p(S∗)

)

≥
[

1 −
r−1∏

k=0

(
1 − c(Sk+1) − c(Sk)

c(Sr)

)]

·
(
p(OPT ′) − p(S∗)

)
.

By applying Eq. (6) we obtain that

p(Sr) − p(S∗) ≥ (1 − 1/e) ·
(
p(OPT ′) − p(S∗)

)
,

and therefore

p(Sr) ≥ (1 − 1/e) · p(OPT ′) + p(S∗)/e

≥ (1 − 1/e) · p(OPT ) − popt(b∗) + p(S∗)/e. (7)

By hypothesis S∗ selects the three seminars with maximum profit in the
optimal assignment and allocates exactly as many students to each as OPT does.
Then, since popt(b∗) ≤ popt(bi) for i = 1, ..., 3 it holds that p(S∗) ≥ 3 · popt(b∗) >
e · popt(b∗) and the theorem follows. 
�
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Observe that the number of feasible seminar selections assigning students
to at most three seminars is polynomial in the size of the input. Therefore, by
repeatedly calling the greedy algorithm with all possible such selections our main
result follows:

Corollary 1. There exists a polynomial time (1−e−1)-approximation algorithm
for SAP.
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1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{m.van.ee,r.a.sitters}@vu.nl

2 Delft University of Technology, Delft, The Netherlands
{l.j.j.vaniersel,t.m.l.janssen}@tudelft.nl

3 Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands
r.a.sitters@cwi.nl

Abstract. In this paper, we consider the a priori traveling salesman
problem (TSP) in the scenario model. In this problem, we are given a
list of subsets of the vertices, called scenarios, along with a probability
for each scenario. Given a tour on all vertices, the resulting tour for a
given scenario is obtained by restricting the solution to the vertices of
the scenario. The goal is to find a tour on all vertices that minimizes the
expected length of the resulting restricted tour. We show that this prob-
lem is already NP-hard and APX-hard when all scenarios have size four.
On the positive side, we show that there exists a constant-factor approx-
imation algorithm in three restricted cases: if the number of scenarios
is fixed, if the number of missing vertices per scenario is bounded by a
constant, and if the scenarios are nested. Finally, we discuss an elegant
relation with an a priori minimum spanning tree problem.

Keywords: Traveling salesman problem · A priori optimization ·
Master tour · Optimization under scenarios

1 Introduction

In universal and a priori routing, we extend our classical routing problems to the
case that the set of clients is uncertain or changes regularly. Because reoptimizing
over and over again might be inconvenient or impossible, we want to find a single
tour. Given a tour and a set of clients, the active set, we shortcut the tour to
the active set. In universal routing, the goal is to minimize the worst-case ratio
of the value of the obtained solution and the deterministic optimal value. In a
priori routing, we want to be good on average. The problem we consider in this
paper is formally defined as follows.

In the a priori traveling salesman problem in the scenario model, we are
given a complete weighted graph G = (V,E) and a set of scenarios S with
S1, . . . , Sm ⊆ V . Scenario Sj has probability pj of being the active set, where∑

j pj = 1. We begin by finding an ordering on V , called the first-stage tour.
When an active set is released, the second-stage tour is obtained by shortcutting
the first-stage tour on the vertices of the active set. The goal is to find a first-
stage tour that minimizes the expected length of the second-stage tour.
c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 183–196, 2017.
DOI: 10.1007/978-3-319-51741-4 15
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This problem has, for example, a direct application to the photo-lithography
processes used in semi-conductor manufacturing to transfer the geometric pat-
tern of a chip onto a wafer [1]. This is done by putting UV light through a
photomask on a photoresistant layer on top of the wafer. The entire wafer is
not exposed at once, but one square at a time. If certain parts of the square do
not need to be exposed, blades are moved in to block the UV light. Moving the
blades is a time-consuming, and hence costly, process. Since it often influences
the total processing time of a wafer in the lithography machine, minimizing the
distance reduces the processing time. The blading positions are defined in a
file. The blading positions are obtained from this file by reading it from top to
bottom and the positions are used by the machine in order of appearance. A
product will visit the photolithography machine multiple times during its fab-
rication. Every time it will use the same file that defines its blading positions,
but it will not use all blading positions defined in the file in every visit. For each
visit, there is a given subset of the blading positions that has to be used. Hence
minimizing the movement of the blades comes down to finding an ordering of the
blading positions such that the sum over all visits of the total distance between
the blading-positions is minimized.

A priori TSP has already been considered in the independent decision and
black-box model. In the independent decision model, vertex i is active with prob-
ability pi, independent of the other vertices. Shmoys and Talwar [2] showed that
a sample-and-augment approach gives a randomized 4-approximation, which can
be derandomized to an 8-approximation algorithm. This factor was improved by
van Zuylen [3] to 6.5. In the black-box model, we have no knowledge on the
probability distribution over the vertices, but we are able to sample from it, i.e.
to query the probability of any subset of the vertices. Schalekamp and Shmoys [4]
showed that one can obtain a randomized O(log n)-approximation even without
sampling. A deterministic O(log2 n)-approximation can be obtained by using the
result for universal TSP [5]. It was shown by [6] that there is an Ω(log n) lower
bound for deterministic algorithms on general metrics. By using the result of [5]
and Theorem 3 in [6], we also know that there is no deterministic algorithm with
guarantee o

(
6
√

log n/ log log n
)

for planar metrics. For randomized algorithms,
no lower bound is known for the black-box model.

The scenario model may be relevant for applications where the vertices are
not active independently, but we do have some knowledge on the distribution.
The former results give us the first results for a priori TSP in the scenario model.
First of all, we inherit the randomized O(log n)-approximation. Secondly, we
know that a deterministic algorithm that does not use the information given in
the scenarios will not achieve an approximation guarantee better than O(log n).
The main question is whether we can use the scenarios to improve upon the
O(log n) upper bound and which restrictions we can put on the scenarios in
order to obtain constant-factor approximability.

The scenario model has not been studied extensively for other optimization
problems. Immorlica et al. [7] investigated stochastic versions of Vertex Cover
and Shortest Path. Ravi and Sinha [8] also looked at these problems and also
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defined stochastic scenario versions of Bin Packing, Facility Location and Set
Cover. The problems in [8] differ from our setting in the sense that the weights
used in the instance differ between scenarios. On the other hand, the work of
[9] investigates a two-stage stochastic scheduling problem, where the set of jobs
to be processed is uncertain. Finally, in [10], the classical scheduling problem of
minimizing the makespan on two machines is considered in the a priori model
with scenarios. It would be interesting to consider other stochastic combinatorial
optimization problems in this framework.

In this paper, we will first examine the most natural lower bound, called the
master tour lower bound. We use this lower bound to show that there exists
a constant factor approximation algorithm for the problem if the number of
scenarios is fixed. However, we also show that this lower bound cannot be used
to improve upon the O(log n)-approximation. We then look at several natural
restrictions on the scenarios, namely small, big and nested. For small scenarios,
we give strong inapproximability results. After that, we analyze the performance
of the optimal tour on V for big scenarios. For nested scenarios, we show that
there exists a 9-approximation algorithm. Finally, we show that there exists an
elegant connection to an a priori minimum spanning tree problem. We end with
a discussion on some open problems.

2 Master Tour Lower Bound

In this section, we explore the master tour lower bound. Here, we use that the
contribution of scenario Sj to the objective value of an optimal solution, denoted
by Opt, is at least pjT

∗
j , where T ∗

j is the length of the optimal tour on Sj , so
Opt ≥ ∑

j pjT
∗
j . Two natural algorithms for a priori TSP in the scenario model

are as follows. For each scenario, find an α-approximate tour, where α is the best
approximation ratio available for TSP, and sort the scenarios on their resulting
tour lengths Tj . Rename the scenarios such that T1 ≤ T2 ≤ . . . ≤ Tm. Now
traverse the tours 1, 2, . . . ,m, skipping already visited vertices, resulting in tour
τ1. Alternatively, rename the scenarios such that p1 ≥ p2 ≥ . . . ≥ pm and
traverse the tours 1, 2, . . . ,m, skipping already visited vertices, resulting in tour
τ2. We get the following result.

Theorem 1. Tours τ1 and τ2 are (2m − 1)-approximations for a priori TSP in
the scenario model, where m ≥ 2 is the number of scenarios.

Proof. Let us analyze tour τ1. Consider an arbitrary scenario Sj . If Dj is the
diameter of G restricted to Sj , we have T ∗

j ≥ 2Dj . Note that when analyzing
the contribution of scenario Sj , it might happen that two tours, say Tx and Ty,
with x, y < j, Sx ∩ Sj �= ∅ and Sy ∩ Sj �= ∅, belong to disjoint scenarios. In this
case, we have to go from Tx to Ty. If d(A,B) denotes the maximum distance
between a vertex in A and a vertex in B, then this move costs us at most an
extra d(Sx ∩ Sj , Sy ∩ Sj). In the worst case, all scenarios before Sj have a non-
empty intersection with Sj . For j = 1, the contribution is just p1T1 ≤ αp1T

∗
1 .

For j ≥ 2, the contribution of Sj to the objective value of our solution is at most
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pj(T1 + d(S1 ∩ Sj , S2 ∩ Sj) + T2 + . . . + d(Sj−2 ∩ Sj , Sj−1 ∩ Sj) + Tj−1 + Tj)

≤pj(jTj + (j − 2)Dj) ≤ pj(αjT ∗
j + (j − 2)

1
2
T ∗

j ) = ((α +
1
2
)j − 1)pjT

∗
j .

Note that you do not have to incur an extra distance from Sj−1 to Sj , since they
have a non-empty intersection. In general, this holds for the last scenario that
intersects with Sj . The objective value is at most

αp1T
∗
1 +

m∑

j=2

((α +
1
2
)j − 1)pjT

∗
j ≤

((
α +

1
2

)
m − 1

)
Opt.

Since α = 1.5 [11], we get a 2m − 1-approximation algorithm. The analysis for
τ2 is similar. �	

It turns out that the master tour lower bound will not give a constant approx-
imation for general metrics. This can be deduced from Theorem 2 in [6], which
roughly states the following. Suppose you are given a d-regular Ramanujan graph
G on n vertices with girth g ≥ 2

3 logd−1 n. Take a random walk of length 70g
in G and let S be the vertices visited in this walk. Now, fix a first-stage tour.
Theorem 2 in [6] states that for each of the first g/2 steps of the tour restricted
to S, the probability that the edge has length Ω(log n) is bounded from below
by a constant.

Theorem 2. There is an instance such that Opt = Ω(log n)
∑

j pjT
∗
j and

Opt = Ω(log m)
∑

j pjT
∗
j .

Proof. As before, suppose you are given a d-regular Ramanujan graph G on n
vertices with girth g ≥ 2

3 logd−1 n. The scenarios correspond to vertex sets induced
by random walks of length 70g in G. For a fixed first-stage tour, Theorem 2 in [6]
states that in each of the first g/2 steps of the second-stage tour, there is a constant
fraction of the scenarios that use an edge of length Ω(log n). This implies that the
expected length of the first g/2 steps of the tour have expected length Ω(log n).
Since this is true for a constant number of steps, the lower bound also holds for the
entire tour. Hence, we have an instance such that Opt = Ω(log n)

∑
j pjT

∗
j . The

number of scenarios is equal to the number of possible walks of length 70g. This
is equal to n · d70g = O(ndlog n) = O(nlog d). Since d is a constant, this number is
polynomially bounded. Hence, we have Θ(log m) = Θ(log n), which gives us the
second lower bound. �	

A similar question one can ask is whether a given instance has an optimal
value that is equal to the master tour lower bound. Stated differently, is there
a tour such that if we shortcut on the vertices of a scenario, we get the optimal
solution for that scenario? This problem is known as the Master Tour problem.
In the original problem, every subset of vertices was a scenario. Deineko et al.
[12] showed that this problem is polynomially solvable. We can reformulate the
problem to the case where we are given a set of scenarios and we only have to be
optimal for these scenarios. It turns out that this problem is Δp

2-complete [13].
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3 Small Scenarios

We start with showing that a priori TSP is still NP-complete when all scenarios
are very small. We reduce from the Max Cut problem [14]. Here, we are given
a graph G = (V,E) and our goal is to find a set S ⊆ V such that |δ(S, S̄)| is
maximized, where δ(A,B) is the set of edges in the cut separating A from B.

Theorem 3. A priori TSP is NP-complete when |Sj | ≤ 4 for all j.

Proof. We are given an instance of Max Cut. Create an instance of a priori
TSP by making a complete graph G′ on V ∪ {s, t}. All edges with s or t as
endpoint, except edge (s, t), have length 1 and all other edges have length 2 (see
Fig. 1). For every edge (a, b) in E, we create a scenario {a, b, s, t}. All scenarios
have equal probability. Note that a scenario can only have a contribution to the
objective value of 4 or 6. We say that a scenario is satisfied if its resulting tour
has length 4. Hence, minimizing the expected length is equivalent to maximizing
the number of satisfied scenarios.

Suppose there is a cut of size at least k in G, say (Q1, Q2). First, visit the
vertices of Q1 in arbitrary order. After that, we visit s. Finally, we visit the
vertices of Q2 in arbitrary order followed by t. It is easy to see that every scenario
corresponding to an edge in the cut has length 4, whereas other scenarios have
length 6. Hence, there is a tour satisfying at least k scenarios.

On the other hand, suppose that we have a tour in G′ satisfying at least k
scenarios. Without loss of generality, the tour can be written as sR1tR2, where
R1 and R2 are sequences of vertices. The only way to satisfy a scenario is by
putting one vertex in R1 and one vertex in R2. Hence, the k satisfied scenarios
correspond to edges in the cut (R1, R2) which has size at least k. �	

s t...
...

a b
2

Kn

11

11

11

2

Fig. 1. Graph G′ as in the proof of Theorem 3.

By adjusting the proof of Theorem 3, we can prove that the master tour
problem with scenarios is NP-complete when |Sj | ≤ 5. This is done by reducing
from Set Splitting instead of Max Cut. The fact above follows because 3-Set
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Splitting is NP-complete [15]. The master tour problem with scenarios is still
open for |Sj | ≤ 4.

Note that the graph we used in the proof above can be obtained by taking the
metric completion of K2,n. This graph is planar, bipartite and it has treewidth
and pathwidth equal to 2. Deterministic TSP would be polynomially solvable
on such a graph with bounded treewidth. Furthermore, there is a PTAS for
deterministic TSP in planar graphs [16]. The next theorem shows that this is not
the case for a priori TSP (since the proof uses the same graph as before, a metric
completion of K2,n). This theorem relies on the fact that Max Cut cannot be
approximated within the Goemans-Williamson [17] constant, i.e. approximately
0.878567, unless the Unique Games Conjecture (UGC) fails [18], and it cannot
be approximated within a factor 16

17 , unless P = NP [19].

Theorem 4. There is no 1.0117-approximation for a priori TSP with |Sj | ≤ 4,
unless P=NP, and no 1.0242-approximation under UGC.

Proof. Consider the reduction from the proof of Theorem 3. Let OptTSP and
OptCUT be the optimal values of a priori TSP in the created instance and
of Max Cut in the original instance respectively. We have OptTSP = 6|E| −
2OptCUT. If we have an (1 + α)-approximation algorithm, we get a tour with
total length at most (1 + α)(6|E| − 2OptCUT). This implies that there are at
least (1 + α)OptCUT − 3α|E| satisfied scenarios. These correspond to edges in
the cut, hence we have

Size of cut ≥ (1 + α)OptCUT − 3α|E|
≥ (1 + α)OptCUT − 6αOptCUT

= (1 − 5α)OptCUT,

where the second inequality follows from OptCUT ≥ |E|/2. Assuming P �= NP or
the Unique Games Conjecture, this means that there is no (1+α)-approximation
for our problem for α’s with 1−5α ≥ 16

17 or 1−5α ≥ 0.878567 respectively. These
inequalities are tight for α ≈ 0.0117 and α ≈ 0.0242 respectively. �	

One could also consider the path-version of a priori TSP. In fact, the appli-
cation on photolithography is modeled as the path-version. It is easy to see that
this problem is trivial when |Sj | ≤ 2 for all j. If we delete t from the graph
created in the reduction of Theorem 3, we can use this graph and the same
reduction to show that the path-version of a priori TSP is NP-complete when
|Sj | ≤ 3. It is easy to see that this graph can be obtained by taking the metric
completion of the star graph. Since the star has pathwidth 2, the problem is
NP-complete on graphs with this property. On the other hand, the problem is
trivially solvable on path graphs. Note that we can also adjust Theorem 4 to
the path-version which will give the same inapproximability result, i.e. there is
no 1.0117-approximation, unless P= NP, and there is no 1.0242-approximation
under UGC.

We can strengthen the inapproximability of a priori TSP by using strong
results on Permutation CSP’s [20]. The problem that we need will be called 4-
Undirected Cyclic Ordering (4-UCO). In this problem, we are given a ground
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set T and a set of 4-tuples Δ using elements from T . Our goal is to construct an
ordering on T that maximizes the number of satisfied 4-tuples. We say that
4-tuple (a, b, c, d) is satisfied if one of the following sequences is a subse-
quence of the total ordering: (a, b, c, d), (b, c, d, a), (c, d, a, b), (d, a, b, c), (d, c, b, a),
(c, b, a, d), (b, a, d, c), (a, d, c, b). In other words, we get a collection of cycles and
we want to find an ordering maximizing the number of cycles that can be embed-
ded in it. To the best of our knowledge, the problem has never been considered.
For completeness, we first show that the problem is NP-complete by using a
reduction from Cyclic Ordering. In this problem, we are given a set of ordered
triples Δ of ground set T . The question is whether there exists a cyclic order-
ing on all elements such that each triple is ordered in the right direction. This
problem is NP-complete [21].

Theorem 5. 4-Undirected Cyclic Ordering is NP-complete.

In [20], it is shown that every Permutation CSP of constant arity is approx-
imation resistant. This means that, under the Unique Games Conjecture, the
best we can do is constructing a random ordering. Classical problems like Cyclic
Ordering and Betweenness are in this class of problems. It is easy to see that
4-UCO is also in this class. A corollary of the work of Guruswami et al. is that
there is no approximation algorithm with guarantee greater than 1

3 , assuming
the Unique Games Conjecture is true. The natural generalization of 4-UCO is
5-UCO. For this problem, there is no algorithm having a guarantee greater than
1
12 . This gives the following results.

Theorem 6. Under UGC, there is no α-approximation for a priori TSP with

(a) α < 10
9 when |Sj | ≤ 6,

(b) α < 7
6 when |Sj | ≤ 8,

(c) α < 71
60 when |Sj | ≤ 10.

For the path-version, we can strengthen previous results by using the maxi-
mization version of Betweenness. In this problem, we are given a set of triples Δ
from elements of T . The triple (a, b, c) is satisfied if (a, b, c) or (c, b, a) is a sub-
sequence of the total ordering. The goal is to find an ordering on T maximizing
the number of satisfied triples. By [20], the best approximation ratio is 1

3 , unless
the Unique Games Conjecture fails. Under the assumption that P �= NP, there
is no approximation for Max Betweenness with a factor better than 1

2 [22].

Theorem 7. There is no 9
8 -approximation for a priori path-TSP with |Sj | ≤ 5,

unless P=NP, and no 7
6 -approximation under UGC.

Finally, we note that by using twice the diameter of a scenario as a lower
bound, we can show that an arbitrary tour is a c/2-approximation when |Sj | ≤ c.
A random tour gives a value of at most (c2 − 3c + 4/2c − 2) times the optimal
value in expectation. This factor approaches c/2 for c large. Similar results hold
for the path-version.
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4 Big Scenarios

In this section, we investigate the special case of big scenarios, i.e. the case when
each scenario has size at least n − c, for small c. One would expect that the
optimal tour on the entire instance would perform well on these instances. Here,
we analyze this option. Let us denote Opt(S) for the optimal value of a tour on
S. Further, let Opt(S)|T denote the value of the optimal tour on S shortcutted
to T . As before, let DS denote the diameter of the graph restricted to S.

Lemma 1. For S ⊂ V and 1 ≤ c ≤ 
n/2� such that |S| = n − c, we have

Opt(V )|S ≤ Opt(S) + cDS .

Proof. Suppose S = V \ {a1, . . . , ac}. Let Δai

S = minu∈S d(u, ai) for i = 1, . . . , c.
Since we can extend our tour on S to V by going back and forth to each ai,
we have Opt(V ) ≤ Opt(S) + 2

∑c
i=1 Δai

S . We want to show that Opt(V )|S ≤
Opt(S) + cDS . Suppose this is not the case, i.e. Opt(V )|S > Opt(S) + cDS .
Furthermore, suppose w.l.o.g. that bi and di are the two nodes in S that are
visited before and after ai in the optimal tour of V . If two consecutive vertices
on the tour are not in S, then one can reconstruct the tour accordingly without
increasing the length of the tour restricted to S. Then

Opt(V ) = Opt(V )|S +
c∑

i=1

(d(bi, ai) + d(ai, di) − d(bi, di))

≥ Opt(V )|S +
c∑

i=1

(2Δai

S − d(bi, di))

≥ Opt(V )|S − cDS + 2
c∑

i=1

Δai

S

> Opt(S) + 2
c∑

i=1

Δai

S

But this is a contradiction to our previous observation. Hence Opt(V )|S ≤
Opt(S) + cDS . �	
Theorem 8. The optimal solution on V is a (1+ c

2 )-approximation for a priori
TSP with |Si| ≥ n − c, where 1 ≤ c ≤ 
n

2 �.

5 Nested Scenarios

Let us now consider the case of nested scenarios, i.e. S1 ⊆ S2 ⊆ . . . ⊆ Sm. Here,
the following algorithm gives a constant factor approximation. First, compute
an 1.5-approximate tour Tj for scenario Sj for all j. Let α1 = 1. Next, for
h = 2, 3, . . . let αh be the largest number k > αh−1 for which Tk ≤ 2Tαh−1 . If no
such k exists then let αh = αh−1 +1. The first-stage tour is obtained by visiting
vertices in the order Tα1 , Tα2 , . . . .
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Theorem 9. The algorithm above is a 9-approximation for nested scenarios.

Proof. Consider scenario Sj . The last vertices of this scenario will be visited on
the tour Tαh

, where h is the smallest index such that αh ≥ j. Note that for any
h ≥ 2, we have Tαh

> 2Tαh−2 . Hence, we can decompose the concatenated tour
up to Tαh

into two parts which correspond to even and odd h respectively, such
that both parts have geometrically increasing tour lengths. The length of the
concatenated tour up to Tαh

is therefore at most

2Tαh−1 + 2Tαh
.

If αh = j then the length of the tour is at most 2Tαh−1 + 2Tαh
≤ 4Tαh

= 4Tj ≤
6T ∗

j .
If αh > j then we must have Tαh

≤ 2Tαh−1 so the length of the tour is at
most 2Tαh−1 + 2Tαh

≤ 6Tαh−1 ≤ 6Tj ≤ 9T ∗
j . �	

The problem is still open for laminar scenarios, i.e. when for each i, j, either
Si ∩Sj = ∅ or Si ⊆ Sj or Sj ⊆ Si. It is even open in the case when the scenarios
have the following structure.

Si ∩ Sj = ∅ for i �= j, i, j = 1, . . . , m − 1, and Sm =
m−1⋃

j=1

Sj .

It would be interesting if one could get a constant factor approximation for these
“starlike” (the inclusion graph is a star) instances.

6 Relation with Minimum Spanning Tree Problems

It would be nice to have a similar relation between a priori TSP and a priori
MST as in the deterministic setting. We consider two versions of a priori MST.
The first one is defined by Bertsimas [23], who called it a priori MST, while it
seems more natural to call it a priori Steiner Tree. The second problem is defined
by Boria et al. [24], who called it Probabilistic MST under Closest Ancestor. In
both problems, we have a graph G = (V,E) and a probability distribution over
subsets of vertices. The second problem also has a root r that is always active.
This is optional in the first problem. The goal is to construct a tree on the entire
vertex set in the first stage. A subset S of the vertices, drawn according to the
probability distribution, is revealed in the second stage. In the a priori MST, the
second-stage tree will be obtained by deleting inactive vertices, provided that
the remaining tree stays connected. In the Probabilistic MST under Closest
Ancestor, the second-stage tree only contains active vertices. This is done by
taking an edge between an active vertex and its closest active ancestor in the
rooted first-stage tree. In both problems, the goal is to construct a first-stage
tour that minimizes the expected length of the second-stage tree.

Unfortunately, it turns out that the expected length of the optimal a priori
MST defined by Bertsimas is not smaller than the optimal a priori TSP in
general. The gap between the optimal values of a priori MST and a priori TSP
can be arbitrarily large.
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Theorem 10. The optimal value of the a priori MST can be arbitrarily greater
than the optimal value of the a priori TSP.

However, the Probabilistic MST under Closest Ancestor can be used as a
lower bound for a priori TSP. In fact, we only lose a factor 2. Note that this
only works for the rooted case, since Probabilistic MST under Closest Ancestor
is defined with a root vertex.

Theorem 11. If there is an α-approximation for the Probabilistic MST under
Closest Ancestor, then there is a 2α-approximation for the a priori TSP, and
vice versa.

Proof. We show that the following inequalities are valid, where OptMST and
OptTSP denote the optimal values of Closest Ancestor and a priori TSP
respectively.

OptMST ≤ OptTSP ≤ 2OptMST ≤ 2OptTSP.

The first inequality can be proven by taking the optimal a priori TSP-tour and
deleting one edge. This gives a spanning tree on V , called T . If we look at a
specific active set S, then the optimal a priori TSP-tour restricted to S will
have exactly on edge less than before. Namely, if we delete edge (a, b) from tour
(1, . . . , a, b, . . . , n), only edge (max{k ∈ S : k ≤ a},min{k ∈ S : k ≥ b}) will
disappear from the restricted tour on S. Note that for active set S, the tour
without this edge is the same as T shortcutted to S. Hence, this is a feasible
solution for Probabilistic MST under Closest Ancestor with cost no larger than
the optimal value of a priori TSP, and the first inequality has been proven.

The second inequality is proven by doubling the optimal tree and shortcutting
the obtained Eulerian tour. In each scenario, the cost of the edges is at most twice
the cost of the edges in the tree restricted to the scenario. The third inequality
follows from the first inequality. �	
Corollary 1. There is a randomized 8-approximation and a deterministic 13-
approximation for Probabilistic MST under Closest Ancestor in the independent
decision model. There is also a O(log n)-approximation in the black-box model.

Unfortunately, this does not imply a 2-approximation for a priori TSP, since we
can prove that Probabilistic MST under Closest Ancestor is NP-complete in the
scenario model. For this, we need the following lemma.

Lemma 2. If Probabilistic MST under Closest Ancestor is NP-complete in the
non-metric case, then it is NP-complete in the metric case.

Boria et al. [24] showed that Probabilistic MST under Closest Ancestor is NP-
complete in the independent decision model, but only for the non-metric case.
Using Lemma 2, we obtain the following corollary.

Corollary 2. Probabilistic MST under Closest Ancestor is NP-complete in the
independent decision model, even if the triangle inequality is satisfied.
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Theorem 12. Probabilistic MST under Closest Ancestor in the scenario model
is NP-complete.

Proof. We reduce the problem from the NP-complete problem Exact Cover by
3-Sets [14]. In this problem, we are given 3q elements, x1, . . . , x3q, and m sets,
y1, . . . , ym, containing three elements. The problem asks whether there are q
sets that together cover all elements. Create the graph as in Fig. 2. Non-present
edges have weight equal to M , where M is a large number. There are m scenarios
with probability 1/m. In each scenario, all xj ’s, r and s are active as is one of
the yi’s.

x1 x2 x3q

y1 y2 ym

r s

Edge (yi, xj) if xj ∈ yi

· · ·

· · ·

Fig. 2. Graph used in proof of Theorem 12. Edges (r, s) and (r, yi) have length 0. Edges
(s, yi) and (yi, xj) have length 1. Edges (s, xj) have length 2. Non-drawn edges have
length M .

If there is an exact cover, then construct the following solution. If set yi is
chosen in the cover, then use edge (s, yi) and the edges from vertex yi to the
corresponding elements of yi. If set yi is not in the cover, then use edge (r, yi).
Finally, use edge (r, s). This solution has expected value equal to q(1/m · 4 +
(m − 1)/m · 6) = q(6 − 2/m).

Note that an optimal tree will never use edges with weight M or a combina-
tion of edges that enforce using an edge of weight M in the shortcut solution.
This leaves five ways of connecting a specific set vertex yi and element vertex
xj , where j is in set i, to r and s. The five subtrees are depicted in Fig. 3.

Tree T3 is dominated by T1, since T1 only has cost 2 for connecting xj when
yi is inactive while T3 always has cost 2. Similarly, T4 is dominated by T2 and T5

is dominated by T1. So, an optimal tree is a combination of T1 and T2. Suppose
that the tree connects k set vertices to s which connect � elements vertices.
The other set vertices are connected to r whereas the other element vertices are
connected to s. Number the k set vertices connected to s as 1, . . . , k and say
that set vertex i connects �i element vertices. This tree has an expected value of

1
m

k∑

i=1

((�i + 1) − 2(3q − �i)) +
m − k

m
6q = 6q +

1
m

(k − �),
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xj

yi

s

r

xj

yi

s

r

xj

yi

s

r

xj

yi

s

r

xj

yi

s

r

Fig. 3. Subtrees T1 up to T5.

which is equal to q(6 − 2/m) if and only if k = q and � = 3q. Hence, there is
a tree with expected value at most q(6 − 2/m) if and only if there is an exact
cover. Using Lemma 2 completes the proof. �	

7 Conclusion

In this paper, we showed how to get constant factor approximation for some
well-structured problem instances. An interesting question that remains unan-
swered is whether there exists a constant factor approximation for laminar sce-
narios. More specifically, it is still open whether we can do this on “starlike”
scenarios. One could also consider instances with restricted metrics. In Sect. 3
we showed that there is no PTAS for planar graphs. We do not have such results
in the Euclidean plane. It would be interesting to settle the approximability of
the problem in this metric. It is easy to construct examples where the optimal
solution crosses itself and hence the non-crossing property does not hold. This
property was a crucial ingredient of the PTAS by Arora [25] for the deterministic
problem. So far, we have not been able to show any lower bound or improve the
upper bound for this special case.

We did not succeed in improving the O(log n)-approximation for the gen-
eral problem. Next to the master tour lower bound, we investigated minimum
spanning tree and linear programming approaches. However, preliminary results
suggest that these approaches might not help us to break the barrier. In fact, we
conjecture that there is no o(log n)-approximation algorithm for a priori TSP
in the scenario model in the general case.
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Abstract. We present a nested local search algorithm to approximate
several variants of metric two-stage stochastic facility location problems.
These problems are generalizations of the well-studied metric uncapac-
itated facility location problem, taking uncertainties in demand values
and costs into account. The proposed nested local search procedure uses
three facility operations: adding, dropping, and swapping. To the best of
our knowledge, this is the first constant-factor local search approxima-
tion for two-stage stochastic facility location problems.

Besides traditional direct assignments from clients to facilities, we
also investigate shared connections via capacitated trees and tours. We
obtain the first constant-factor approximation algorithms for both con-
nection types in the setting of two-stage stochastic optimization. Our algo-
rithms admit order-preserving metrics and thus significantly generalize
and improve the allowed mutability of the metric in comparison to pre-
vious algorithms, which only allow scenario-dependent inflation factors.

1 Introduction

In this paper we study stochastic generalizations of the metric uncapacitated
facility location (UFL) problem. The UFL problem was introduced in the early
1960’s and is one of the most studied problems in the discrete optimization
literature. The first constant-factor approximation algorithm for the metric case,
where the assignment costs satisfy the triangle inequality, was presented in the
late 1990’s by Shmoys et al. [12]. From that time onward, many other constant-
factor approximations have been developed, decreasing the approximation factor
rapidly to 1.488, the currently best known proposed by Li [9]. Ye and Zhang [16]
observed that so far each algorithm for approximating the metric UFL problem
uses at least one of the following three paradigms: LP rounding, primal-dual,
or local search techniques. LP rounding and primal-dual techniques were also
applied to the two-stage stochastic version of the problem, but, to the best of
our knowledge, no pure local search approaches have been used. One purpose
of this paper is to close this gap, especially because local search turned out to
be a powerful tool for approximating capacitated location problems. Moreover,
the proposed local search approach allows more mutability of the metrics than
previous approaches and it is very easy to implement in practice.
c© Springer International Publishing AG 2017
K. Jansen and M. Mastrolilli (Eds.): WAOA 2016, LNCS 10138, pp. 197–209, 2017.
DOI: 10.1007/978-3-319-51741-4 16
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The metric two-stage stochastic uncapacitated facility location (tsUFL) prob-
lem was introduced in 2004 by Ravi and Sinha [10]. It models the task of locating
facilities to serve demands of clients as a two-stage stochastic optimization prob-
lem with recourse, where a set of scenarios depict the possible outcomes of the
future. The decision making process, essentially deciding which facilities to open,
is divided into two stages. In a first stage, decisions are made with incomplete
knowledge about the future, i.e., only the probability distribution of the scenar-
ios with their parameters is known. In a second (recourse) stage, information is
revealed about which scenario is realized and additional recourse decisions are
made. The goal is to minimize the fixed first-stage and the expected second-
stage cost. There are two main concepts to express the probability distribution
of the scenarios in the literature. In the scenario model each scenario with its
parameters and its associated probability is explicitly given as part of the input.
An assumption commonly made in this model is that the number of scenarios
is polynomial bounded by the other input parameters (e.g., number of facilities
and clients). In the black-box model, the probability distribution is only given
implicitly by an algorithm that draws independent samples of the distribution.
Although the black-box model is more general than the scenario model, Charikar
et al. [3] were able to show that, under reasonable assumptions on the distrib-
ution and losing only a factor (1 + O(ε)) in the objective, the black-box model
reduces to the scenario model with only a polynomial number of samples. For
this reason, we only consider the scenario model.

In the tsUFL problem we assume that the facilities opened in the first stage
are present in each scenario, whereas facilities opened in the second stage exist
only for their specific scenario. For each scenario, the clients have to be served
by either an open facility of the first stage or by a facility opened in the second
stage for this specific scenario. The service costs form a metric. Clearly, the
approximability depends on how much the metric varies over the scenarios. We
will extend the (rather restrictive) concept of scenario-dependent inflation factors
used in previous works to a more general scenario-dependentmutable metric. The
currently best known approximation algorithm for tsUFL with inflation factors
is given by Ye and Zhang [16] with a factor of 1.86.

Formally, an instance of the tsUFL problem with mutable metric is given
by a complete graph G = (V,E) on the node set V = C ∪ F of clients C and
facilities F , first-stage facility opening costs fi ∈ Q≥0, i ∈ F , and a set of m
possible scenarios. For the sake of simplicity, we index the scenarios by k ∈
[m] := {1, . . . , m} and say scenario k instead of scenario indexed by k. Scenario
k occurs with probability pk and is defined by second-stage facility opening costs
fk

i ∈ Q≥0, i ∈ F , a metric service cost function ck : E → Q≥0, and client
demands dk

j ∈ Q≥0, j ∈ C. The goal is to find a set of first-stage facilities
F ⊆ F , which is independent of the realization of the scenario, and, for each
scenario k ∈ [m], a set of second-stage facilities F k ⊆ F and an assignment
σk : C → F ∪ F k, which minimize first-stage and expected second-stage costs
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∑

i∈F

fi +
m∑

k=1

pk ·
( ∑

i∈F k

fk
i +

∑

j∈C
dk

j · ck(σk(j), j)
)
.

In order to appropriately model problem variants where multiple clients may
share parts of a network that connect them to the facilities, we introduce the
two-stage stochastic facility location problem with tree-connections (tsUFL-T).
Formally, this problem is defined as follows. The graph, the first-stage facility
opening costs, and the set of m possible scenarios with their parameters are
given as in the tsUFL problem. Additionally, let Ck

+ := {j ∈ C | dk
j > 0} denote

the set of clients with positive demand in scenario k. The goal is to find a set
of first-stage facilities F ⊆ F and, for each scenario k, a set of second-stage
facilities F k ⊆ F and a set T k of trees in G[F ∪ F k ∪ Ck

+] such that each tree
contains exactly one facility, i.e., |V (T ) ∩ (

F ∪ F k
) | = 1 for all T ∈ T k, and all

clients with positive demand are served, i.e., Ck
+ ⊆ ⋃

T∈T k V (T ), which minimize

∑

i∈F

fi +
m∑

k=1

pk ·
( ∑

i∈F k

fk
i +

∑

T∈T k

∑

e∈E(T )

ck(e)
)
.

As an intermediate step towards approximation algorithms for problems with
capacitated trees and tours later in the paper, we first combine the connection
types of tsUFL and tsUFL-T and study the two-stage stochastic uncapacitated
facility location problem with direct and tree-connections (tsUFL-DT), where
each client is served twice, directly and via a shared tree. This problem also may
be of independent interest for some applications.

Since in many applications the connection network cannot handle unlimited
amounts of flow, we examine capacitated network connection types like the met-
ric two-stage stochastic capacitated-cable facility location (tsCCFL) problem.
In this problem, we additionally need to select edge capacities that permit to
route the clients’ demands simultaneously to the open facilities. Formally, an
instance of the tsCCFL problem is given by a complete graph G = (V,E) with
F ∪ C ⊆ V . The first-stage facility opening costs and the set of scenarios with
their parameters are defined as in the tsUFL problem. Additionally, there is a
cable capacity u ∈ Z>0 limiting the demand flow. The task is to choose a set
of first-stage facilities F ⊆ F and, for each scenario k, a set of second-stage
facilities F k ⊆ F , a set T k of trees in G such that each tree is rooted at an open
facility and each client with positive demand is served, and a number of cables
zk

e ∈ Z≥0 for each edge e ∈ ⋃
T∈T k E(T ) such that the flow given by routing all

demands simultaneously via the tree edges to the open facilities does not exceed
the edge capacities zk

e · u. As before, we wish to minimize the expected costs

∑

i∈F

fi +
m∑

k=1

pk ·
( ∑

i∈F k

fk
i +

∑

T∈T k

∑

e∈E(T )

zk
e · ck(e)

)
.

As the second problem with a capacitated connection we consider the two-
stage stochastic capacitated location routing (tsCLR) problem. It combines the
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tsUFL problem with the well-studied capacitated vehicle routing problem. For-
mally, an instance of tsCLR is given by a complete graph, first-stage facility
opening costs, and a set of scenarios with parameters as in the tsUFL problem.
Additionally, there is a vehicle capacity u ∈ Z>0. The task is to find a set of
first-stage facilities F ⊆ F and, for each scenario k, a set of second-stage facil-
ities F k ⊆ F , a set of tours T k with demand assignment xk : C × T k → Q≥0

such that each tour is routed at a facility, i.e., |V (T ) ∩ (F ∪ F k)| = 1, each
client is served, i.e.,

∑
T∈T k:j∈V (T ) xk(j, T ) = dk

j for all j ∈ C, and the capacity
constraints

∑
j∈C xk(j, T ) ≤ u are satisfied for all T ∈ T k. The objective is to

minimize the sum of fixed first-stage and expected second-stage costs

∑

i∈F

fi +
m∑

k=1

pk ·
( ∑

i∈F k

fk
i +

∑

T∈T k

∑

e∈E(T )

ck(e)
)
.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
the complexity of the presented problems and introduce the type of service cost
mutability that our local search approach can handle. Afterwards, in Sect. 3, we
present our Nested Local Search algorithm for tsUFL, tsUFL-T, and tsUFL-DT
and prove its constant approximation guarantees. In Sects. 4 and 5 we construct
constant-factor approximations for tsCCFL and tsCLR by applying our local
search to instances of the tsUFL-DT problem. Concluding remarks are given in
Sect. 6. All omitted proofs can be found in a full version [15].

2 Hardness of Approximation

The tsUFL, tsCCFL, and tsCLR problem generalize the metric UFL problem
with uniform demands. So, all hardness results are preserved and these problems
are strongly NP-hard. In particular, the inapproximability results of Guha and
Khuller [7] and Sviridenko [13] carry over. Hence, there is no 1.463-approximation
algorithm for the problems, even when restricted to instances with a fixed metric
and service cost 1 and 3, unless P = NP. The tsCLR problem also generalizes
the capacitated vehicle routing problem, which is not approximable within a
factor less than 1.5, unless P = NP [6]. By a reduction from UFL we obtain the
following inapproximability result for tsUFL-T and tsUFL-DT.

Theorem 1. There is no 1.463-factor approximation algorithm for the tsUFL-T
and the tsUFL-DT problem, unless P = NP.

The approximability of the stochastic problems depends on the mutability of
the metric, since the hardness result for minimum set cover [5] carries over.

Theorem 2. For ε > 0, there is no (1 − ε) ln(m)-approximation algorithm for
tsUFL(-T, -DT), tsCCFL, and tsCLR with a general mutable metric, if P �= NP.
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We show in Sect. 3 that the following class of metrics allows constant-factor
approximations for the tsUFL, tsUFL-T, and tsUFL-DT problem.

Definition 3. A family of metrics (ck : (C ∪ F)2 → Q≥0)k∈[m] is called order-
preserving, if for each facility i ∈ F there exists an ordered list of F \ {i} that
is (simultaneously) non-decreasingly sorted w.r.t. ck(i, ·) for each scenario k.

Note that order-preserving metrics restrict only the distances among the facil-
ities to form scenario-independent orders. Distances between clients and facilities
may vary heavily from one scenario to another. In particular, the closest (open)
facility from any client may change from one scenario to another. This generalizes
the concept of inflation factors.

3 Nested Local Search Algorithm

In this section we present our Nested Local Search for the tsUFL, tsUFL-T, and
tsUFL-DT problem. Given a feasible solution for one of these problems, we say
a feasible move is an operation that adds an unchosen, deletes a chosen, swaps
a chosen with an unchosen facility, or maintains the given facilities, and results
in a feasible solution. Speaking of a first-stage or second-stage feasible move, we
refer to these operations on first-stage or second-stage facilities, respectively.

Without any bounds on the cost reduction, local search algorithms may have
exponential running time. To avoid this, we use the concept of δ-locally optimal
solutions. If we guarantee a cost reduction by a factor of 0 < (1− δ) < 1 in each
iteration and choose δ appropriately, we prove a polynomial running time.

Definition 4. A solution is denoted as δ-locally optimal, if no feasible first-
stage move linked with any feasible second-stage move in each scenario decreases
the total cost by more than a factor 0 < (1 − δ) < 1.

3.1 Algorithm

As the scenarios are linked only to the first stage, we can consider them sequen-
tially, exploring only polynomial many moves in total. Combining all described
ideas, we get Nested Local Search illustrated below. The (re-)assignment of the
clients to the chosen facilities is done optimally in all solution update steps. We
may also assume that the sets of chosen first-stage and second-stage facilities are
disjoint. Let solution be a feasible solution for one of the problems and denote
the total cost by C(solution). We call a feasible first-stage move unexplored if
this move was not even attempted to apply to solution. A feasible second-stage
move is called cost-reducing, if applying the move does not increase the cost.
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Input: Constant 0 < δ < 1 and a feasible solution solution.
Output: δ-locally optimal solution solution.
while unexplored first-stage move of solution exists do

Select unexplored first-stage move, create solution current.
Select most cost-reducing move for each scenario, update current.
while C(current) ≤ (1 − δ) · C(solution) do

solution := current
Select most cost-reducing move for each scenario, update current.

return solution
Nested Local Search

Testing each unexplored move without changing the solution stops the algo-
rithm. Therefore, the algorithm terminates with solution. Also, every feasible
first-stage move has been evaluated in combination with a most cost-reducing
second-stage move for each scenario, but the cost reduction was less than a factor
of (1 − δ). By definition, solution thus is δ-locally optimal.

3.2 Analysis

Applying any feasible move to a δ-locally optimal solution does not decrease the
cost by more than a factor of (1− δ), even if all clients are reassigned optimally
afterwards. We use this observation to create new solutions. By comparison of
costs we get bounds on the service and the facility cost.

Lemma 5. Let CS, C∗
S denote the service costs and CF , C∗

F the facility costs
of a δ-locally optimal and an arbitrary feasible solution, respectively. Then

CS − δm · |F| · (CF + CS) ≤ C∗
F + C∗

S .

Lemma 6. Let CS, C∗
S denote the service costs and CF , C∗

F the facility costs
of a δ-locally optimal and an arbitrary feasible solution, respectively. Then

CF − δm · |F| · (CF + CS) ≤ C∗
F + 2 · C∗

S .

Theorem 7. Let 0 < ε ≤ 1. Then, Nested Local Search is a polynomial-time
(3 + ε)-approximation for tsUFL(-T, -DT) with order-preserving metrics.

Proof. The number of feasible first-stage and second-stage moves in each scenario
is bounded by |F|2 + |F| each. Updating a solution and finding a most cost-
reducing move runs in polynomial time. Choosing δ := ε/(8m·|F|) and 0 < ε ≤ 1
results in a polynomial running time. With Lemmas 5 and 6 we obtain the bound
CF + CS ≤ 3/(1 − ε/4) · (C∗

F + C∗
S) and the claim follows.

This result is tight, since Arya et al. [1] showed it for the UFL problem.
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3.3 Improvements via Cost-Scaling and Greedy Augmentation

The cost-scaling technique introduced by Charikar and Guha [4] can be applied
to the problems in a straightforward way (cf. [15]). Applying this technique, we
obtain the following strengthened version of Theorem7.

Theorem 8. Let 0 < ε ≤ 1. Then, Nested Local Search with cost-scaling is
a (1+

√
2+ε)-approximation for tsUFL(-T, -DT) with order-preserving metrics.

Also, the well-known greedy augmentation technique for facility location
problems can be applied in a straightforward way in combination with our Nested
Local Search (cf. [15]). Combining all three techniques local search, cost-scaling,
and greedy augmentation, we obtain the following stronger result.

Theorem 9. Let 0 < ε ≤ 1. Then, Nested Local Search with cost-scaling
and greedy augmentation is a (2.375+ε)-approximation algorithm for the tsUFL,
tsUFL-T, and tsUFL-DT problem with order-preserving metrics.

4 Two-Stage Capacitated-Cable Facility Location

In this section we introduce an approximation algorithm for tsCCFL. Initially,
we transform an instance of tsCCFL to an instance of tsUFL-DT and show that
the costs of a tsUFL-DT solution can be bounded by the costs of a tsCCFL
solution. We then transform a solution to tsUFL-DT to one for tsCCFL.

Lemma 10. Consider an instance I of tsCCFL and the instance J of
tsUFL-DT obtained by scaling the demand values with 1/u, omitting the
capacity, and restricting the problem to G[F ∪ C]. Then, for each solution
of I with costs C∗

F + C∗
S there is a solution of J with costs C ′

F + C ′
S

that C ′
F ≤ C∗

F and C ′
S ≤ 3 · C∗

S.

4.1 Algorithm tsCCFL

We introduce at first an approximation algorithm for the tsCCFL problem with
unit demands which we extend to general demand values later. We transform
an instance of tsCCFL to an instance of tsUFL-DT as stated in Lemma10.
Then, we apply Nested Local Search with cost-scaling (β = 6.67) and greedy
augmentation, open all obtained facilities and install one unit of capacity on each
edge of the obtained trees. If a tree’s demand exceeds the capacity we have to
relieve this tree. Therefore, we adapt a procedure to relieve overloaded trees used
by Ravi and Sinha [11] to approximate a deterministic version of the problem.

In detail, consider each node x where the subtrees of its children have demand
at most u and the total demand of the (sub-)tree Tx is greater than u. To
relieve overloaded trees, we choose the clients in the subtree of the children of
x which are closest to an open facility F ∪ F k and install unit capacity on each
edge of the 
|Dx|/u� closest (w.r.t. ck) client-facility pairs, but at most one
per subtree. Considering one of those client-facility pairs (j�, i�) we reroute the
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Input: Instance I of tsCCFL with unit demands and order-preserving metrics.
Output: Approximated solution of the tsCCFL instance I.
Obtain tsUFL-DT instance J from I by scaling demand values with 1/u.
Apply scaling (β = 6.67), Nested Local Search, and greedy augmentation to J .
Obtain solution

(
F, F 1, . . . , F m, σ, T ) and open all facilities

(
F, F 1, . . . , F m

)
.

for all scenarios k do

Let Tx be the subtree of T ∈ T k rooted at x ∈ V (T ) and Dx := V (Tx) ∩ C.
for all facilities i ∈ F ∪ F k do

Install one copy of the cable on each edge in E(Ti).
while |Di| > u do

Let V ′ := {x ∈ V (Ti) | |Dx| > u and |D�| ≤ u for each child � of x}.
for all x ∈ V ′ do

Let (j�, i�) := argminj′∈D�,i′∈F∪F k ck(j′, i′) if � is child of x.

Install one cable on each edge (j�, i�) for the �|Dx|/u� cheapest
pairs (at most one for each child subtree of x).

Route the whole demand in T� to i� via j�.
Route remaining demand (in other subtrees T� of children of x)

to a chosen pair or to x such that all new cables are saturated.
Remove demands in Di which are satisfied through a new cable.

Remove all cables with flow value zero and all facilities which serve no demand.

Algorithm tsCCFL

demand |D�| ≤ u of the subtree T� to the facility i�. If a newly installed cable is
not saturated, this means the demand flow on the arc is less than u, we reroute
not satisfied demand of sibling subtrees via x to this facility. We repeat the
relieve procedure, until the remaining demand assigned to any x is at most u. In
the end, we clean up our solution by removing all unused cables and facilities.

4.2 Analysis

Theorem 11. Let ε > 0. Then,AlgorithmtsCCFL is a (3.9+ε)-approximation
algorithm for tsCCFL with unit demands and order-preserving metrics.

Proof. First, we show that the solution produced by Algorithm tsCCFL is feasi-
ble. Consider a subtree Ti with |Di| > u in scenario k and let x ∈ V ′. We add as
many additional cables and reroute demand in subtrees as long as the remaining
demand assigned to x is at most u. Hence, V ′ decreases and therefore |Di| does.
In the end, all edges of the subtrees fulfill the capacity constraint. However, we
maybe reroute some demand via a client j� to a facility i�. And so we have to
ensure that on these paths no capacity constraint is violated. It is maybe the
case that after routing demand (via j�) to i� and using an arc (j, x), in a further
step demand is routed using the arc (x, j). We use flow cancellation to reassign
demand flow properly. In particular, flow cancellation only reduces flow in the
direction toward the root of a considered tree. If any cable in a scenario k has
flow toward the root, its value is, like mentioned before, at most u. Flow away
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from the root on a cable is only routed once and all the clients in the involved
subtree are removed afterwards. The flow value is also at most u, ensuring sat-
isfied cable capacities. The demand routed to a newly installed cable is exactly
u. Each client whose demand is assigned to one new cable has a distance to any
open facility of at least the length of the new cable. The cost of these cables can
be bounded by the cost of the direct connections by aggregating demand. Hence,
the total cable cost is bounded by the service costs of the tsUFL-DT solution.

Let C∗
F denote the facility costs and C∗

S the service costs of an optimal
solution to an instance of tsCCFL. We know from Lemma10 that there is a
solution to the transformed tsUFL-DT instance with cost C ′

F + C ′
S such that

C ′
F ≤ C∗

F and C ′
S ≤ 3 · C∗

S . Since our analysis for Nested Local Search permits
us to bound the costs by an arbitrary solution, we obtain with Lemmas 5 and 6,
rescaling (β = 6.67), and greedy augmentation a solution with costs

CF + CS ≤ (2 + ln(6.67) + ε′) · C ′
F +

(
1 +

2
6.67

+ ε′
)

· C ′
S

≤ (3.9 + ε) · (C∗
F + C∗

S).

The best known guarantee for the deterministic version of the problem is
(ρUFL+ρST ) ≤ 2.88 [11], with the currently best approximation ratios of Steiner
tree [2] and UFL [9]. If we consider the problem spanning only clients with posi-
tive demand values, our algorithm (β = 3.33) yields a (3.203+ε)-approximation.

4.3 General Demands

Theorem 12. Let ε > 0. There is a (6.236 + ε)-approximation algorithm for
the tsCCFL problem with general demands and order-preserving metrics.

Proof. The modification of Algorithm tsCCFL to deal with general demand
values can be adapted from [11]. In the following we outline briefly the main
changes in order to analyze the modifications. Again, we transform the tsCCFL
instance as in Lemma10 and apply rescaling (β = 25.43), Nested Local Search,
and greedy augmentation. For each client which exceeds the capacity (dk

j > u)
we install �dk

j /u
 cables on the edge {j, σk(j)} and route its complete demand
directly to the facility σk(j). The service cost for each of these clients can be
bounded by twice the costs of their direct connections. The remaining demands
are processed as before except that we now accumulate demand to lie in between
u and 2u. Instead of installing one cable, we now install two copies of a cable and
route the demand to the corresponding facility. Hence, we now can bound these
costs by twice the direct connection costs. Since after greedy augmentation we
have CS ≤ C ′

S +C ′
F , we obtain a solution for the tsCCFL problem with general

demand values and order-preserving metrics with costs

CF + 2 · CS ≤ (3 + ln(25.43) + ε′) · C ′
F +

(
2 +

2
25.43

+ ε′
)

· C ′
S

≤ (6.236 + ε) · (C∗
F + C∗

S).



206 F.J.L. Willamowski and A. Bley

The best guarantee in the deterministic case is (2ρUFL+ρST ) ≤ 4.37 [2,9,11].
If we consider the problem spanning only clients with positive demand values,
our algorithm (β = 5.572) yields a (4.718 + ε)-approximation.

5 Two-Stage Capacitated Location Routing

In this section we introduce an approximation algorithm for the tsCLR problem.
Initially, we transform a tsCLR instance to one of tsUFL-DT and show that the
costs of a tsUFL-DT solution can be bounded by the costs of a tsCLR solution.
We then use a solution to tsUFL-DT to build one for tsCLR.

Lemma 13. Consider an instance I of tsCLR and the instance J of tsUFL-DT
obtained by scaling the demand values with 2/u and omitting the vehicle capacity.
Then, for each solution of I with costs C∗

F +C∗
S there exists a solution of J with

costs C ′
F + C ′

S such that C ′
F ≤ C∗

F and C ′
S ≤ 2 · C∗

S.

5.1 Algorithm

We introduce an approximation algorithm for tsCLR by using our Nested Local
Search with scaling (β = 5.572) and greedy augmentation on the tsUFL-DT
instance obtained by the transformation described in Lemma13. Consider a tree
Ti with demand value Di routed at facility i ∈ F ∪F k. If the total demand of the
tree satisfies the capacity constraint we obtain a feasible tour by doubling the
edges and short-cutting. Otherwise, we relieve the tree by adapting a procedure
by Harks et al. [8] for approximating a deterministic version of the problem.

In more detail, we open all obtained facilities. For each client j with demand
value at least u we create �dk

j /u
 times the tour (σk(j), j, σk(j)). Consider a node
v where each children’s subtree has demand at most u and the total demand of
the tree Tv is greater than u. Find a partition I = I0∪̇ . . . ∪̇Iq of the children’s
subtrees such that the trees of each part obey the capacity constraint and all
parts except I0 have total demand greater than u/2. Note that the (sub-)tree
structures remain unchanged while generating the partition. Such a partition
can be found by a greedy algorithm. Consider a part Ip (p ≥ 1) and let j be
the client in Ip with the smallest distance to an open facility. We construct a
tour by doubling the edge {σk(j), j} and all edges contained in Ip and short-
cutting. In the end there is only part I0 with total demand at most u. Again,
we create a tour by doubling the edges and short-cutting. Finally, we remove
unused facilities to save costs.

5.2 Analysis

Theorem 14. Let ε > 0. Then, Algorithm tsCLR is a (4.718+ε)-approxima-
tion algorithm for the tsCLR problem with order-preserving metrics.
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Input: Instance I of the tsCLR problem.
Output: Approximated solution of the tsCLR instance I.
Obtain tsUFL-DT instance J from I by scaling demand values with 2/u.
Apply scaling (β = 5.572), Nested Local Search, and greedy augmentation to J .
Obtain solution

(
F, F 1, . . . , F m, σ, T ) and open all facilities

(
F, F 1, . . . , F m

)
.

for all scenarios k do

for all j ∈ C with dk
j ≥ u do

Add 	dk
j /u
 copies of the tour (σk(j), j, σk(j)) and remove dk

j .

Let Tx be the subtree of T ∈ T k rooted at x, and Dx :=
∑

j∈C∩V (Tx) dk
j .

for all facilities i ∈ F ∪ F k do
while Di > u do

Let v ∈ {x ∈ V (Ti) | Dx > u, D� ≤ u for all children � of x}.
Let I = {V (T�) | � is child of v} ∪ {{v}}.
Find a partition of the trees I = I0∪̇ . . . ∪̇Iq such that
∑

x∈Ip
dk

x ≤ u for all p ∈ {0, . . . , q} and
∑

x∈Ip
dk

x > u/2 for all p ∈ {1, . . . , q}.
for all p ∈ {1, . . . , q} do

Let (i�, x�) := argmini′∈F∪F k,x′∈V (Ip) ck(i′, x′).
Construct a tour containing all clients in Ip and facility i� by

doubling (i�, x�) and edges of all trees in Ip and short-cutting.
Add the tour to the solution and remove corresponding subtrees.

Construct a tour from Ti by doubling all edges and short-cutting.
Add the tour to the solution.

Remove all facilities that are not contained in any tour.

Algorithm tsCLR

Proof. For all clients j with demand value dk
j ≥ u in some scenario k we add

�dk
j /u
 copies of the tour (σk(j), j, σk(j)). Such a tour containing client j in

scenario k has costs of at most pk · ⌈
dk

j /u
⌉ · 2 · ck(σk(j), j). Since

⌈
dk

j /u
⌉
is

bounded by 2 · dk
j /u for dk

j ≥ u, the costs for these clients are bounded by twice
the direct connection costs of of these clients.

Consider a tour T ∈ T k in scenario k containing facility i� and clients in
Ip. The costs for T are at most 2 · ck(i�, x�) plus twice the costs of the cor-
responding subtrees. Since the choice of (i�, x�) was minimal w.r.t. ck and the
whole demand in T is at least u/2 we obtain

∑
x∈V (T ) 2 · dk

x/u · ck(σk(x), x) ≥
ck(i�, x�)·

∑
x∈V (T ) 2 · dk

x/u ≥ ck(i�, x�). Hence, the clients, carried by such tours,
contribute to the costs with at most twice their direct connection costs and twice
the costs of the corresponding subtrees. All other tours are built by doubling the
edges of corresponding subtrees and short-cutting. These tours contribute to the
costs with at most twice the costs of the corresponding subtrees. Summation
over all scenarios and clients shows that the tour costs are bounded by twice the
direct and twice the tree-connection costs in the constructed solution.
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Let C∗
F denote the facility costs and C∗

S the service costs of an optimal
solution to an instance of tsCLR.We know with Lemma13 that there is a solution
to the transformed tsUFL-DT instance with costs C ′

F +C ′
S such that C ′

F ≤ C∗
F

and C ′
S ≤ 2 · C∗

S . Since our analysis for Nested Local Search permits us to
bound the costs by an arbitrary solution and CS ≤ C ′

S + C ′
F holds after greedy

augmentation, we obtain with cost-scaling (β = 5.572), Lemmas 5 and 6, and
greedy augmentation a solution with costs

CF + 2 · CS ≤ (3 + ln(5.572) + ε′) · C ′
F +

(
2 +

2
5.572

+ ε′
)

· C ′
S

≤ (4.718 + ε) · (C∗
F + C∗

S).

The best known approximation algorithm for the deterministic problem has
a guarantee of 4.38 and is due to Harks et al. [8]. So our algorithm produces
only a slightly worse approximation factor in the two-stage stochastic case.

6 Conclusion

In this paper we introduced Nested Local Search, showing that pure local search
applies to metric two-stage stochastic facility location problems. Our analysis
lead to a tight (3 + ε)-approximation for the pure local search and to a (2.375 +
ε)-factor approximation algorithm for local search combined with rescaling and
greedy augmentation techniques. Moreover Nested Local Search allows us to
generalize the mutability of the metric in contrast to previous algorithms, which
only permit scenario-dependent inflation factors, to order-preserving metrics.
Furthermore, we obtained the first constant-factor approximation algorithms for
tsCCFL and tsCLR with guarantees (6.236 + ε) and (4.718 + ε), respectively.

It would be interesting to know if our new approach combining direct and
tree-connections in one facility location problem could lead to improved approx-
imation ratios also for the deterministic problems. Moreover, it would be inter-
esting to study local search techniques for variants of two-stage stochastic capac-
itated facility location problems, as they proved to be very useful in the deter-
ministic case.
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