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Preface

Welcome to the proceedings of CyPhy 2016: the 6th International Workshop on
Design, Modeling and Evaluation of Cyber Physical Systems, which was held on
October 5, 2016, in Pittsburgh. This edition of CyPhy was held in conjunction with the
Embedded Systems Week, which was organized during October 2–7, 2016, in
Pittsburgh, USA.

For this edition, we received 14 submissions. All submission underwent a rigorous
review process and each submission was reviewed by at least three, and on average
more than four, Program Committee members. The committee decided to accept nine
papers, which were presented in the workshop, and of which the revised versions
appear in this proceedings volume.

In addition to the contributed papers and presentations, the program featured a
keynote presentation by Dr. Jyotirmoy Deshmukh from Toyota. The keynote presen-
tation, of which an abstract is included in this volume, skillfully integrated the scientific
rigor of formal methods with the industrial complexity of cyber-physical systems in the
automotive domain.

This was the sixth edition of CyPhy and we are glad to see that it has an established
tradition and has found a stable place in the landscape of cyber-physical systems
research venues.

We would like to gratefully acknowledge the effort of our distinguished Program
Committee members for their extensive effort in reviewing papers and for helping us
compose a high-quality program. We thank the additional reviewers for their review
reports. We would like to thank the Steering Committee of CyPhy and its general chair,
Walid Taha, for their help, support, and confidence.

We express our best thanks to Ferenc Bartha and Scott Hissam for having chaired
the CyPhy 2016 sessions. We appreciate the valuable contribution of EasyChair and
Springer in the seemless organization of the submission, review, and publication
processes.

November 2016 Christian Berger
Mohammad Reza Mousavi

Rafael Wisniewski
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Formal Methods for Cyber-Physical Systems
in the Automotive Domain

(Extended Abstract)

Jyotirmoy Deshmukh

Toyota Technical Center, Gardena, CA, USA
jyotirmoy.deshmukh@toyota.com

Introduction

Systems where the behavior of a physical aspect of the system, such as that of a
mechanical component is controlled using embedded software (i.e., the “cyber” com-
ponent) are called cyber-physical systems. A modern vehicle is an example of a
complex cyber-physical system with burgeoning software size and complexity [2].
There are many exciting things on the horizon for the automotive domain, including
advanced driver assist systems, self-driving cars, intelligent transportation systems, and
alternative fuel sources. These advances can only further increase the complexity of
embedded automotive software. Thus, it is imperative for the embedded software
design process to recognize the challenges posed by increasing software complexity.

The problem of checking if all behaviors of a general cyber-physical system satisfy
a behavioral property, for even a simple class of such properties is a very hard problem
[3]. The de facto standard in industrial design, especially when faced with models such
as those in [8], is to rely on rigorous testing, either at the level of system models or on
the physical implementation of the system. However, a key challenge in such testing is
that test scenarios and expected outcomes are often described (formally or informally)
in natural language. Thus, engineers often rely on insight and experience to visually
inspect test results to judge the performance of their designs. In what follows, we
introduce a formal testing methodology that seeks to replace manual knowledge with
machine-checkable requirements.

Requirement-Based Testing

Engineers often specify a scenario or setting for performing a test. These “conditions”
are often specifications of allowable ranges for environmental factors (e.g., ambient
temperature, pressure, etc.), or patterns of driving behavior (e.g., how often and how
long a driver applies the brake). Then the engineers stimulate the system using an input
signal satisfying the scenario specification and make a “judgement” about the output
signal observed in relation to the applied input. This is analogous to the practice of
specifying pre- and post-conditions on program behavior in the traditional literature on



program verification. The key difference is that the pre- and post-conditions here can
specify temporal behaviors of entire time-varying signals. Finding input signals sat-
isfying arbitrary pre-conditions is generally challenging, but this problem can be
mitigated by defining a parameterized input signal generator that produces a set of
distinct input signals, all satisfying the given pre-condition. One approach to generate
such signals is used by tools such as S-TaLiRo [1] and Breach [6], that use control
points and a user-specified interpolation scheme to generate time-varying signals.

Post-conditions can often be reduced to designers looking for certain patterns in the
output signals. Control engineers typically look for properties such as rise times, set-
tling times, overshoots, undershoots, spikes/glitches, oscillatory behavior, and timed
causal relations between signals. Several of these patterns can be elegantly expressed
using Signal Temporal Logic (STL). Recently, we proposed a library called ST-Lib
(Signal Template Library) that represents a subset of STL (and mild extensions) that
can capture some of these signal patterns. Using STL or a similar real-time temporal
logic has the advantage that it is often possible to define quantitative semantics for such
logics. Such semantics map a given post-condition requirement and a trace to a real
number. Without loss of generality, the semantics can be defined such that a positive
number indicates that the trace satisfies the requirement, while a negative number
indicates that the trace violates the requirement, and the spectrum of numbers from
positive to negative indicate the degree of satisfaction or violation. This enables the use
of global optimization-based techniques or other heuristic search techniques to be
employed for automatic test generation and falsification of given system models [1, 3,
6, 7], as well as techniques to mine requirements from models [9, 10].

Conformance Testing

In the model-based development (MBD) paradigm, designers can have a variety of
models differing in the level of detail, but representing the same underlying system. In
such a setting, it is useful to have a technique to compare different models; model
conformance is such a technique that seeks to provide quantitative notions of model
similarity. Given a bound d and a distance metric d on the space of signals, we say that
two models are d-conformant under the distance metric d, if for each input signal,
stimulating the two models with this signal results in output signals less than d distance
apart (using the distance metric d to define distance). While several distance metrics
have been defined in the literature, we consider the Skorokhod metric. This metric
allows comparing signals both in time and value space [4], has efficient computational
algorithms, and preserves the order of events in signals when comparing them. Recently,
we presented a falsification-based algorithm that seeks to maximize the Skorokhod
distance between two model outputs, and thus test models for conformance [4, 5].

Research Challenges

Below we enumerate some of the grand challenges for formal methods for
cyber-physical systems in general, and for automotive systems in particular:

VIII J. Deshmukh



1. Modeling physical phenomena using high-fidelity models that can be efficiently
simulated is a challenge. Physics-based parametric models have the disadvantage
that they need careful tuning to match actual data. An alternative is to use
data-driven models, but accuracy and interpretability continues to remain a concern.

2. Though specifying formal requirements with temporal logic has allowed us to make
some strides in requirement elicitation, the general problem of specifying require-
ments continues to be a challenge. A key issue is that control designers often are not
trained in temporal logic and prefer formalisms such as frequency-domain prop-
erties or statistical metrics. An ongoing challenge is to design a suitable language
that allows designers to express all their desired requirements in an intuitive
fashion, while being expressive enough.

3. Cyber-physical system designers are faced with a data deluge problem due to
copious amounts of monitoring information available. A challenge is to provide tools
that can expose intrinsic structure in massive amounts of time-series data, perform
supervised learning and clustering, and algorithms for anomaly detection. A bigger
challenge is to learn artifacts that are logically interpretable by designers, rather than
black-box classifiers (that are typical in standard machine learning algorithms).

Conclusion. In this extended abstract, we present a few in-roads that techniques based
on formal methods have been able to make in the domain of automotive cyber-physical
systems. We suggest that a testing framework based on formalizing requirements using
temporal logic has a higher degree of automation compared to traditional testing
practices. We introduce the problem of conformance testing and conclude with some
grand challenges.

Acknowledgements. The author would like to acknowledge his colleagues at Toyota
including James Kapinski, Xiaoqing Jin, Hisahiro Ito, Jared Farnsworth, and Ken
Butts, and co-authors on the papers cited in this paper.
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A Model-Driven Framework
for Hardware-Software Co-design

of Dataflow Applications

Waheed Ahmad, Bugra M. Yildiz(B), Arend Rensink, and Mariëlle Stoelinga

University of Twente, Enschede, The Netherlands
{w.ahmad,b.m.yildiz,arend.rensink,m.i.a.stoelinga}@utwente.nl

Abstract. Hardware-software (HW-SW) co-design allows to meet
system-level objectives by exploiting the synergy of hardware and soft-
ware. Current tools and approaches for HW-SW co-design face difficulties
coping with the increasing complexity of modern-day application due
to, e.g., concurrency and energy constraints. Therefore, an automated
modeling approach is needed which satisfies modularity, extensibility
and interoperability requirements. Model-Driven Engineering (MDE) is a
prominent paradigm that, by treating models as first-class citizens, helps
to fulfill these requirements. This paper presents a state-of-the-art MDE-
based framework for HW-SW co-design of dataflow applications, based
on synchronous dataflow (SDF) graph formalism. In the framework, we
introduce a reusable set of three coherent metamodels for creating HW-
SW co-design models concerning SDF graphs, hardware platforms and
allocation of SDF tasks to hardware. The framework also contains model
transformations that cast these models into priced timed-automata mod-
els, the input language of the well-known model checker uppaal cora.
We demonstrate how our framework satisfies the requirements of modu-
larity, extensibility and interoperability in an industrial case study.

1 Introduction

Hardware-software (HW-SW) co-design is an engineering practice that allows
to meet system-level objectives by exploiting the synergy of hardware and
software through their simultaneous design. For instance, HW-SW co-design
allows exploring design alternatives, and helps to improve the development cost
and time-to-market. However, current tools and approaches for HW-SW co-
design have difficulties coping with the concurrency and increasing complexity
of modern-day systems. As a result, the time and effort needed for modeling
and validating such designs are negatively affected. In fact, it has been widely
recognized that a HW-SW co-design approach must have the following features
[4,10,12,15] all of which are not satisfied by the current HW-SW co-designing
approaches:

– Modularity [4,10]: The modeling approach should separate different aspects
— such as hardware, software and their mappings — to keep their various

c© Springer International Publishing AG 2017
C. Berger et al. (Eds.): CyPhy 2016, LNCS 10107, pp. 1–16, 2017.
DOI: 10.1007/978-3-319-51738-4 1



2 W. Ahmad et al.

concerns modular. This allows convenient exploration of design alternatives
concerning hardware and software. Modules targeting different concerns are
better maintainable and reusable.

– Extensibility [10]: The HW-SW co-designing approach should have conve-
nient extension mechanisms allowing rapid implementation of possible future
requirements. This reduces not only the development cost of new products,
but also their time-to-market.

– Interoperability [4,15]: HW-SW co-designing often involves tools serving differ-
ent purposes, such as model designing, simulating, integrating etc. The HW-
SW modeling approach should support interoperability between these tools,
enabling system designers to explore design alternatives rapidly.

Model-Driven Engineering (MDE) is an approach that helps to fulfill the
aforementioned requirements [24]. In MDE, the important concepts of the target
domain are formally captured in a so-called, metamodel. Separate metamodels
for the domains of interest help to keep the design modular. All models are
instances of a metamodel, or possibly an integrated set of metamodels. Moreover,
models can be transformed to the other via model transformations, defined at
the metamodel level.

In this paper, we model software applications as Synchronous Dataflow
(SDF) graphs [16] which are partitioned into tasks, with inter-task dependen-
cies. SDF graphs are well-known computational models for real-time stream-
ing and dataflow applications. This paper presents a novel HW-SW co-design
framework based on the principles of MDE. Our framework allows model-driven
HW-SW co-designing of SDF applications mapped on multiprocessor hardware
platforms, and generate energy-optimal schedules for these SDF applications. To
generate energy-optimal schedules, our framework transforms the co-designed
SDF and hardware models to priced timed-automata models. The problem of
finding energy-optimal schedules (while satisfying minimal throughput require-
ments) is encoded as an optimization problem, defined as a reachability property
over priced timed-automata models. The property is then checked by the model
checker uppaal cora [5] that generates an energy-optimal schedule.

Our framework consists of three metamodels: (1) a metamodel for SDF
graphs; (2) a metamodel for Platform Application Models (PAMs), which
describe the processor types and their power levels, and the cost of switching
between the power levels; and (3) a metamodel for expressing potential allo-
cations of the tasks in an SDF graph to the processor types in a PAM. As
mentioned earlier, our framework considers the model checker uppaal cora for
generating energy-optimal schedules. Therefore, for supporting the generation
of uppaal cora models, we also use an existing uppaal metamodel developed
at the University of Paderborn [1]. The models conforming to three metamod-
els explained earlier, are transformed to uppaal cora models automatically via
model transformations in the framework. We have already described our method
of using priced timed-automata for the purpose of energy optimization in [2], and
therefore out of scope of this paper. Rather the novelty of this paper is the design
prospects of using MDE. Later in Sect. 5, we demonstrate our framework as an
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evidence to show the benefits of MDE namely, modularity, extensibility, and
interoperability. The main contributions of this paper are as follows:

– We introduce the insights of state-of-the-art model-driven engineering app-
roach into the embedded systems community, in particular for the domain of
HW-SW co-design.

– We propose a reusable set of three coherent, extensible metamodels for HW-
SW co-design.1

– We define and apply model transformations from the dataflow domain to
the model-checking domain, obtaining an automated tool to compute energy-
optimal schedules for dataflow applications.

– We demonstrate that our fully automated framework provides modularity,
extensibility and interoperability between tools, via an industrial case study.

The rest of the paper is structured as follows: Sect. 2 provides the related
work. Section 3 gives an overview of our framework and Sect. 4 describes the
framework components in detail. Section 5 evaluates our framework using an
industrial case study, and Sect. 6 concludes the paper.

The extended version of this paper can be found in the technical report [3].

2 Related Work

There exists a plethora of commercial and academic tools for HW-SW co-
designing [4,6,9,10,12,15]. Here, we only present the closest studies.

The state-of-the-art toolsets in the realm of HW-SW co-design of dataflow
applications, are Octopus [4] and Ptolemy [15]. The Octopus toolset [4], in com-
parison to our approach, does not consider any metamodels. Furthermore, this
toolset uses Java libraries for model transformation. Rather than Java, which is
a general-purpose language, we use etl that is specifically designed as a domain-
specific language for model transformations. The lack of metamodels and model
transformation language cause challenges in extensibility and maintainability,
which are in fact stated as a future directions of the work in [4]. Ptolemy [15] is
another well-known toolset for supporting HW-SW co-design of dataflow appli-
cations. However, similar to Octopus, it is not based on MDE which poses chal-
lenges in reusability and maintainability.

The closest works to ours are presented in [6,9]. Both of these papers utilize
MDE techniques for HW-SW co-designing of embedded systems. In contrast to
our work, these papers consider generic software applications and hardware mod-
els. We, on the other hand, analyze real-life software applications and hardware
models enabled with power management.

To the best of our knowledge, this paper presents the first model-driven HW-
SW co-design framework for dataflow applications that provides modularity,
interoperability, and extensibility.
1 All metamodels, model transformations, and case studies discussed in this paper can

be found at https://github.com/utwente-fmt/COMET. An instruction manual for
replicating the experiments is also given in this repository.

https://github.com/utwente-fmt/COMET
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3 The Model-Driven Framework

3.1 Model-Driven Engineering

Models are powerful tools to express behavior, structure and other properties
in many domains such as mathematics, engineering, and other natural sciences.
Model-Driven Engineering (MDE) is a software engineering approach that con-
siders models not only as documentation, but also adopts them as the basic
abstraction to be used throughout all engineering disciplines and in any applica-
tion domain [7]. The models in MDE are closer to some particular domain con-
cepts rather than the computing concepts. These models are considered equal
to the code since they are formally defined and have execution semantics.

To define models, we need to specify their language as a model of these
models at a more abstract level that is so-called metamodels. In their common
use, metamodels capture the concepts of some domain or application; and define
the permitted structure and behaviour, to which models must adhere. Therefore,
metamodels describe the syntax of models [18].

MDE allows interoperability between different domains (and tools in these
domains) via model transformations. Models transformations satisfy interoper-
ability and furthermore save effort and reduce errors by automating the model
derivation and modification process.

3.2 Overview of Model-Driven Framework

Figure 1 shows the detailed overview of our framework. The HW-SW co-design
of the application consists of the first four steps:

– In step 1, an SDF model of the software application is created using the sdf3

tool [21] in an XML format specific to the tool.
– In step 2, the SDF model is transformed to an SDF model that conforms to

the metamodel we defined for SDF graphs.
– In step 3, the hardware platform model is created using PAM Visual Editor

that is a graphical editor for specifying Platform Application Models (PAMs).
This model conforms to the PAM metamodel we defined for PAMs.

– In step 4, an allocation model is created for specifying the mapping of the
tasks in the SDF model to the processor types in the PAM.

The analysis of the co-design for energy-optimal schedules is conducted using
the uppaal cora model checker. This is achieved in the last three steps:

– In step 5, the co-design is transformed to a priced timed-automata model that
conforms to the uppaal metamodel.

– In step 6, the priced-timed-automata model is transformed to the format
accepted by the model checker.

– In step 7, we analyze the resulting model to compute the energy-optimal
schedule using the uppaal cora model checker.
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Fig. 1. Detailed overview of our framework. The elements with dark background color
represent the new contributions.

Although the steps in Fig. 1 show a general guideline for a HW-SW co-design
of a system from scratch, a different strategy can be adopted according to the
requirements of the system design. For example, if a system designer needs to
analyze how a software application runs on various hardware platforms, s/he can
create an SDF model by follow steps 1 and 2 only once and then create several
PAM models by conducting step 3 multiple times.

Detailed explanation of the framework are given in Sect. 4.

3.3 Tooling Choices

To realize the model-driven approach, we have created metamodels using ECore
in Eclipse Modeling Framework (EMF) [19]. EMF provides a plethora of plugins
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to support various functionalities, such as querying, validation, and transfor-
mation of EMF models. For instance, using the EuGENia plugin [14], we have
created PAM Visual Editor based on Graphical Editing Framework (GMF).

The model transformations have been implemented using Epsilon Trans-
formation Language (etl) [13], which is one of the domain-specific languages
provided by the Epsilon framework. etl supports many input-to-many output
model transformations; it also allows the users to inherit, import and reuse other
Epsilon modules in the transformations.

4 Details of the Model-Driven Framework

This section presents our concrete instantiation of the model-driven framework
by describing our modeling choices in some detail. We recall the formal (mathe-
matical) definitions of the domain concepts and discuss how we have chosen to
translate them to metamodel elements.

4.1 SDF Graphs

Typically, real-time streaming applications execute a set of periodic tasks, which
consume and produce a fixed amount of data. Such applications are naturally
modeled as SDF graphs.

Definition and Metamodel. An SDF graph is a directed, connected graph
in which tasks are represented by actors. Actors communicate with each other
via streams of data elements, represented by channels (the streams) that carry
tokens (an abstraction of the data elements). Each channel (a, b, p, q) connects a
producer actor a to a consumer actor b, and specifies production and consumption
rates p and q, respectively, both given by integer values. The execution of an actor
a is known as the firing of a; as a result, q tokens are removed from any channel
(b, a, p, q) of which a is the consumer, and q tokens are added to any channel
(a, b, p, q) of which a is the producer. Formally:

Definition 1. An SDF graph is a tuple G = (A,D,Tok0) where A is a finite
set of actors, D ⊆ A2 ×N

2 is a finite set of channels, and Tok0 : D → N denotes
the initial number of tokens on each channel.

Some notation: given an SDF graph G as above, the sets of input and output
channels of an actor a ∈ A are defined respectively as In(a) = {(b, a, p, q) ∈ D |
b ∈ A, p, q ∈ N} and Out(a) = {(a, b, p, q) ∈ D | b ∈ A, p, q ∈ N}.

Example 1. Figure 2 shows the SDF graph of the Viola-Jones face detector [23],
kindly provided by the company Recore Systems, that is used in their face recog-
nition system. The SDF graph contains seven actors (im read , dupl im, integral ,
haar det , haar scal , col obj and grp rect) representing the tasks performed in
face detection. For example, im read captures the scene containing one or more
faces, haar det detects the regularities in the human face called Haar features,
and grp rect groups the rectangles having similar Haar features.
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Fig. 2. SDF graph of Viola-Jones face detector

Fig. 3. SDF Metamodel

The SDF Metamodel capturing the concepts of Definition 1 is shown in Fig. 3.
Recall that an SDF graph is a tuple G = (A,D,Tok0).

– SynchronousDataFlowRoot is the root of a model, in which everything else is
contained; it corresponds to G.

– Actor corresponds to the set A; the associations incomingChannels and out-
goingChannels represent the derived functions In and Out from A to sets of
channels.

– Channel corresponds to the set D. The 4-tuples (a, b, p, q) ∈ D are represented
in the metamodel by the source and target associations (for a and b), respec-
tively the sourceRate and targetRate attributes (for p and q). initialTokens
represents the function Tok0; thus, it has been modeled as an attribute of
Channel , rather than as a separate function.

With respect to the mathematical definition, there are two differences:
(i) whereas a channel (a, b, p, q) is completely determined by its constituent val-
ues, due to the nature of metamodels a Channel has its own identity (and so
conceivably there could be two Channels with the same 4-tuple of values), which
can not occur in the mathematical set up in Definition 1; (ii) the function Tok0
has been combined with Channel . This removes some of the modularity of the
mathematical model, at the benefit of simplicity.
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Model Creation. In our framework, SDF models are created in steps 1 and 2
of Fig. 1. The starting point is an SDF graph created using the well-known open-
source sdf3 tool [21] (step 1). This tool produces output in the form of an XML
document, adhering to its own schema (fixed in an XSD). To bring such doc-
uments into our framework, we have defined an sdf3-to-SDF Transformation
which produces models conforming to the SDF metamodel of Fig. 3. The trans-
formation definition involves a systematic mapping of the sdf3 concepts to our
SDF metamodel concepts.

4.2 Platform Application Models

A Platform Application Model (PAM) models the multi-processor platform to
which the application, modeled as an SDF graph, is mapped. Our PAMs support
several features, including (1) heterogeneity, i.e., there can be multiple processors
with different types, (2) a partitioning of the processors in voltage/frequency
islands, (3) frequency levels each processor can run on, (4) power consumed by a
processor at a certain frequency, both when in use and when idle, and (5) power
overhead required to switch between frequency levels.

Definition and Metamodel

Definition 2. Given an SDF graph G = (A,D,Tok0) with a set of actors A, a
platform application model (PAM) is a tuple P = (Π, ζ, F,Pidle,Pocc,Ptr, τact)
consisting of

– a finite set of processors Π = {π1, . . . , πn}. We assume that Π is partitioned
into disjoint blocks of voltage/frequency islands (VFIs) such that

⋃
Πi = Π,

and Πi ∩ Πj = ∅ for i �= j,
– a function ζ : Π → 2A indicating which processors can handle which actors,
– a finite set F = {f1, . . . , fm} of discrete frequencies available to all processors,
– a function Pocc : Π × F → N denoting the power consumption (static plus

dynamic) of a processor operating at a certain frequency f ∈ F in the operating
state,

– a function Pidle : Π × F → N denoting the power consumption (static) of a
processor operating at a certain frequency f ∈ F in the idle state,

– a partial function Ptr : Π × F 2
� N denoting the transition overhead between

frequencies for each processor π ∈ Π, and
– a function τact : A × F → N≥1 denoting the actual execution time of each

actor (in A) mapped to a processor at a certain frequency level (in F ).

Example 2. Exynos 4210 is a state-of-the-art processor used in high-end plat-
forms such as Samsung Galaxy Note, SII, etc. Table 1 shows three frequencies
(MHz) {f1, f2, f3} ∈ F [17] and corresponding experimental power consump-
tion. We assume that our PAM contains four Exynos 4210 processors, i.e., Π =
{π1, π2, π3, π4}. The processors are partitioned into 2 VFIs, i.e., Π1 = {π1, π2}
and Π2 = {π3, π4}. We assume that the power overhead (W) of all π ∈ Π is,
Ptr(π, f1, f2) = Ptr(π, f2, f3) = 0.2 and Ptr(π, f3, f2) = Ptr(π, f2, f1) = 0.1.
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Table 1. Example platform description

No. Frequency (MHz) Pidle (W) Pocc (W)

1 1400 0.4 4.6

2 1222 0.3 3.2

3 1033 0.1 1.8

Fig. 4. PAM metamodel

The PAM Metamodel capturing most of the concepts of Definition 2 is shown
in Fig. 4. A brief explanation can be given as follows:

– PlatformApplicationModelRoot stands for the PAM as a whole.
– ProcessorType collects the characteristics of a set of processors. In the meta-

model, the power and frequency characteristics of a processor are associated
with its type, creating a reusable layer of indirection with respect to the math-
ematical model.

– Processor stands for the elements of Π. Each Processor has a type association
to the corresponding ProcessorType.

– VoltageFrequencyIsland stands for the clusters Πi in the VFI partitioning of
Π. The element-of relationship between a processor and its VFI is captured
by the (opposite) island and processors associations.

– ProcessorState associates the working/idle state of a processor (type) (the
boolean isWorking attribute), combined with a frequency level, to a power-
Consumption value. This encodes the Pocc and Pidle functions of the mathe-
matical definition.

– ProcessorStateChange encodes the Ptr function of the definition: each instance
associates a powerCost with a certain pair of source and target Processor-
States.

In a major change with respect to the mathematical definition, we have cho-
sen not to include the ζ and τact functions in the PAM, but to isolate them
in a separate allocation model. This enhances the modularity of the modeling
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Fig. 5. Allocation metamodel. Capability refers to Actor in the SDF metamodel and
ProcessorState in the PAM metamodel.

framework. Apart from this change, all elements of Definition 2 are clearly recog-
nizable in the metamodel, though sometimes encoded in a different manner. In
particular, we have introduced the processor types as an intermediate level to
enhance modularity; Pocc and Pidle are combined in ProcessorState; and Ptr is
encoded as ProcessorStateChange.

Model Creation. The creation of PAMs corresponds to step 3 in Fig. 1.
Although EMF provides a default tree-based model editor, we have built PAM
Visual Editor, a domain-specific visual editor for PAMs, by benefiting from state-
of-the-art MDE techniques. To build PAM Visual Editor, we have used EuGE-
Nia, which can automatically generate a visual editor from an annotated ECore
metamodel. We show an example PAM created using this visual editor in Sect. 5.

4.3 Allocation Models

In a heterogeneous system, the freedom of assigning actors a ∈ A to processors
π ∈ Π is constrained by which processors can be utilized to execute a particu-
lar actor. Thus, in order to run an SDF model on a PAM, we need to know (1)
which SDF actors can be run on which processors of the PAM and (2) what their
execution times are at given frequencies. This information is encoded in an allo-
cation model, which relates both the SDF and PAM models. Allocation models
conform to Allocation Metamodel that we define to represent this concern.

The information related to allocation concern is a part of Definition 2, but
we have chosen to define it as a separate Allocation Metamodel for the sake of
modularity to make the PAM metamodel independent of the SDF metamodel.

Definition and Metamodel. The information to be represented in the Alloca-
tion metamodel consists of the ζ and τact functions of Definition 2. The Allocation
Metamodel is shown in Fig. 5. It contains:

– AllocationRoot , which stands for the combined allocation functions ζ and τact
of Definition 2.

– Capability , following τact : A×F → N≥1 in Definition 2, refers to Actor in the
SDF metamodel, and ProcessorState (defining the frequency of the processor)
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in the PAM metamodel, and yields the time needed to execute the actor at the
processor state. At the same time, ProcessorState also encodes which processor
type an actor can be executed on.

The metamodel is in fact more expressive than the mathematical definition: for
instance, the execution time of an actor is not constrained to be always the same
for a given frequency level; instead, it may also depend on the processor type.

Model Creation. The creation of Allocation models corresponds to step 4
in Fig. 1. It is supported out-of-the-box via the default tree-based model editor
provided by EMF.

4.4 Common Metamodel

In addition to those discussed above, Fig. 1 also shows an element called Common
Metamodel. This demonstrates an MDE technique for reuse: this metamodel
defines the general concept of Identifiable, which has a string-valued identifier
attribute; Actors and ProcessorTypes are subtypes of Identifiable and thereby
inherit this feature. Whenever (during extension of the framework) additional
reusable concepts are introduced, these can be added to the common metamodel.

4.5 Priced Timed-Automata Models

As mentioned earlier, we use priced timed-automata for energy optimization.
Once the SDF, PAM and allocation models are available, one can generate the
priced timed-automata model using the Co-Design-to-uppaal Transformation
and successive model-to-text transformation. These correspond to steps 5 and
6 in Fig. 1. In Step 7 in Fig. 1, the energy-optimal schedule of an SDF graph
can be generated. The ideas in [2] related to how the entities in SDF, PAM and
allocation models can be mapped to priced timed-automata models and how the
energy-optimal schedule can be calculated are reused in steps 5 and 7.

5 Case Study and Evaluation

In this section, we show the effectiveness of our framework for HW-SW co-design
by applying it on a case study. We also demonstrate how our framework satisfies
the features stated in Sect. 1, namely: (1) modularity, (2) extensibility, and (3)
interoperability. We also evaluate the timing performance of our framework with
the help of some other case studies.

5.1 Case Study

As a case study, we consider the dataflow application of the Viola-Jones face
detector in Example 1 mapped to a platform with 4 processors of the type
Exynos 4210 in Example 2.
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Fig. 6. Energy-optimal schedule on four Exynos 4210 processors. The white, red, and
green blocks denote the frequencies f1, f2, and f3 respectively. (Color figure online)

Following step 1 in Fig. 1, we have created the SDF graph of the Viola-Jones
face detection using sdf3. This SDF graph was already given in Fig. 2. In step 2,
we apply sdf3-to-SDF transformation to generate the SDF model conforming
to our metamodel for the SDF graph.

In step 3, we create the PAM using the visual editor, as described in Sect. 4.2.
The details of this PAM can be found in our technical report [3].

After we have the PAM and SDF models, we create the allocation model that
assigns the actors to the processor states with their execution times in step 4.

Once we have the SDF, PAM, and allocation models, we apply the Co-Design-
to-uppaal transformation in step 5 and the model-to-text transformation in
step 6 to generate the priced-timed-automata model that is compatible with
uppaal cora. In step 7, we follow the approach presented in [2] to compute
the energy-optimal schedule for some given throughput requirements. Figure 6
shows the energy-optimal schedule, for the time per graph iteration constraint
of 650 ms for our example. The schedule shows the execution order of the actors
at the specific frequency and processors.

5.2 Evaluation

Table 2. Platform description

No. Freq. Pidle Pocc

1 3006 0.4 55
2 2338 0.3 34
3 1776 0.1 22

(a) Modularity: To show the modularity of
our framework with a concrete example, let us
consider the following scenario: We want to
analyze the energy consumption of the face
detection application on a different hardware
platform, viz., Intel Core2 Duo E6850.

Table 2 shows the frequencies and corre-
sponding power consumption of this new proces-
sor [17]. For this scenario, we only change the processor type while keeping the
number of processors and VFI distributions the same. Now, all we have to do
is to develop a new PAM corresponding to this new platform specification and
generate the corresponding priced timed-automata model. We reuse the exist-
ing SDF model of the application without making any modifications. Using the
framework, we derive the energy-optimal schedule shown in Fig. 7 on the new
hardware platform, for time per graph iteration constraint of 650 ms.
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Fig. 7. Energy-optimal schedule on four Intel Core 2 Duo E6850 processors

Fig. 8. Battery
metamodel

(b) Extensibility: One can extend the framework using the
following mechanisms: introducing new models with related
metamodels and new transformations; extending existing
transformations or metamodels.

As an example, suppose we want to extend our platform
models with the concept of “battery”. The current version
of the platform assumes energy source to be ideal such that
the system never runs out of energy. However, we want
to include batteries in our HW-SW co-design as resources.
This extension can be achieved through the following steps:

1. Adding a metamodel for batteries: An example bat-
tery metamodel is shown in Fig. 8. This metamodel defines the number of bat-
teries in the system with their initial capacities (Coulomb).

2. Extending the Co-Design-to-uppaal model transformation: In order to
include the battery model in the scheduling analysis, we have to transform the
concepts in the battery metamodel to the concepts in the priced timed-automata
domain. This is achieved through extending the Co-Design-to-uppaal model
transformation in step 5. The extension to the transformation will create the
dependency of the processors on the batteries, in such a way that the processors
consume charge from these batteries. The extension will further generate sepa-
rate templates for battery and battery scheduler. The template of the battery
keeps track of the current charge. When the battery gets empty, it informs the
battery scheduler via synchronization. In that case, the battery scheduler tem-
plate activates the next available battery. When all batteries are out-of-charge,
the processors cannot run anymore. We can extend the Co-Design-to-uppaal
model transformation without modifying it since etl allows to extend and reuse
transformation modules. Please note that the model-to-text transformation in
step 6 stay unaffected by this extension.

(c) Interoperability: In our framework, we utilize sdf3 for creating SDF graphs
and uppaal cora for deriving energy-optimal schedule. To automatically gen-
erate uppaal cora models from sdf3 models, we have implemented model
transformations in our framework, thus providing interoperability.
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5.3 Timing Performance

To determine the timing performance of our framework, we consider five real-life
case studies namely, a Viola-Jones face detector in Fig. 2, a MPEG-4 Decoder
[22], an Audio Echo Canceller [11], an MP3 Decoder [20], and an MP3 playback
application [25]. We also used an artificial bipartite SDF graph [8] with 4 actors.
We assume that these case studies are mapped on Exynos 4210 processors having
two frequencies.

We examine the timing performance of our framework in two parts: the first
part is the timing performance of our framework, i.e., cumulative computation
time of steps 2 (sdf3-to-SDF transformation), 5 and 6 (Co-Design-to-uppaal
and model-to-text transformations). The second part is the timing performance
of obtaining the optimal schedule via uppaal cora model checker, i.e., step 7.

The case studies show that the time step 2, 5 and 6 take in total increase
insignificantly as the number of available processor increases. This is due to the
slight increase in the model size with the addition of processors. For step 7, the
time required to complete increases exponentially as the number of processor
increases, which is because of the fact that the size of the state-space created by
the model checker increases exponentially with the size of the model itself.

The details of these case studies can be found in our technical report [3].

6 Conclusions and Future Work

In this paper, we have presented a model-driven framework for HW-SW co-
design of dataflow applications. In our framework, we have proposed a reusable
set of three coherent metamodels for HW-SW co-design domain. To provide
interoperability among domains, we have defined a reusable set of extensible
model transformations. We have demonstrated that our framework satisfies the
modularity, extensibility and interoperability requirements with a case study.

As future direction of our work, we plan to extend our framework with other
analysis techniques such as simulation and automated HW-SW partitioning. We
also plan to add code generation functionality to our framework.
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Abstract. Hybrid systems are dynamical systems that include both
continuous and discrete changes. Some hybrid systems involve a large or
infinite number of discrete changes within an infinitesimal-width region
of phase space. Systems with sliding mode are typical examples of such
hybrid systems. It is difficult to analyze such hybrid systems through
ordinary numerical simulation, since the time required for simulation
increases in proportion to the number of discrete changes. In this paper,
we propose a method to symbolically analyze such models involving
numerous discrete changes by detecting loops and checking loop invari-
ants of the model’s behavior. The method handles parameterized hybrid
systems and checks inclusion of parameterized states focusing on the val-
ues of a switching function that dominate the dynamics of sliding mode.
We implemented the main part of the method in our symbolic hybrid
system simulator HyLaGI, and conducted analysis of example models.

Keywords: Hybrid systems · Sliding mode · Loop invariants · Verifi-
cation · Symbolic analysis

1 Introduction

Hybrid systems [6] are dynamical systems which include both continuous and
discrete changes. This feature enables a number of problems in a variety of
fields to be modeled as hybrid systems, e.g., physics, control engineering, and
biology. Examples of hybrid systems include physical systems with impact and
electronic circuits with switching. In these systems, impact and switching are
expressed as discrete changes. Many of cyber-physical systems are also regarded
as hybrid systems, which include discrete decisions by computational parts and
hybrid behavior of physical parts. Some hybrid systems include numerous dis-
crete changes such as infinitely frequent switching. Such systems are difficult to
simulate due to the explosion in the number of discrete changes, as the processing
of discrete changes is the most costly part of simulation except for systems with

This paper is an extended version of our earlier article [2].
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Fig. 1. Gradient vectors in the sliding mode

complex continuous dynamics. In this paper, we propose a method to analyze
such models involving numerous discrete changes by detecting looping behavior
of the models.

1.1 Sliding Mode

Sliding mode control is one of the control methods which switches the continuous
dynamics of the systems when the system comes across a predefined surface,
which is called a switching surface. In the sliding mode, the directions of the
gradient vectors of the system (Fig. 1) are towards the switching surface S(X)
= 0 on the both sides of the surface. As a result, the behavior of the system
is bound to the surface as if it is sliding on the surface, which is the reason
why it is called a sliding mode. Systems with sliding modes can be regarded as
hybrid systems involving infinitely frequent discrete changes of its control input.
Such control cannot be performed in real systems as the switching of control
inputs cannot be done within zero time. To reflect this, we regard the switching
surface not as a simple boundary but as an infinitesimal band. This band is
called a sliding region, in which the trajectory of the sliding mode is confined.
Each switching function is defined as S1(X) = S(X) and S2(X) = S(X)+ ε,
where S(X) is the ideal switching function and ε > 0 is infinitesimal (see Fig. 2).
In this paper, we define a sliding mode as a behavior along a sliding region, a
region enclosed by S1(X) and S2(X).

Example: Brake Control with Sliding Mode Control. In this paper, we
use a brake control problem as a running example, whose objective is to stop
a vehicle at a target position. In this model, two control inputs are available:
applying the brake or not. The position of the vehicle is denoted by variable x.
The switching function is S(x, x′) = x + x′ − 100, where x′ denotes the time
derivative dx/dt. Introducing a switching function S(x, x′), the function of the
current position x and the velocity x′, these two control inputs are switched
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Fig. 2. Behavior in the sliding mode considering the switching time

according to whether the value of the switching function is positive or negative.
The example model is given in the form of a HydLa [10] program. HydLa is a
constraint-based language for modeling hybrid systems, and its detailed syntax
and semantics are found in [10].

Figure 3 shows the example model. The top nine lines are definitions of
constraints. In HydLa, all values of variables are functions of time, and each
constraint is enabled at the initial time of the model. The constraint INIT
describes the initial state of the model. The value of x’ is given by the inequal-
ity 0 < x’ < 80, which means the initial velocity is uncertain but has a fixed
range. The variable sw dominates the continuous behavior of the vehicle (see
ACC). EPS describes the width of the sliding region denoted by eps. The tempo-
ral operator [] means that the constraint always holds from the time point at
which the constraint is enabled. S defines the switching surfaces denoted by s1
and s2 that enclose the sliding region. In this paper, we use variables s1 and s2
to represent the values of S1(X) and S2(X) at each time point, which are called
switching variables. SW CONST, SW ON and SW OFF describe the behavior of sw,
which is constant by default and switches only when the vehicle comes across
the switching surface. The postfix minus sign in sw- denotes the left-hand limit
limtl↑t sw(tl). ACC describes the acceleration of the vehicle and depends on the
value of sw. STOP stops the vehicle if the speed equals zero and prevents the
vehicle from moving back. The bottom line describes the priorities between the
constraints using << in the form of a partial order. SW ON and SW OFF are stronger
than SW CONST, and STOP is stronger than ACC, both because they describe an
exceptional behavior of the vehicle.

Figure 4 shows one of the trajectories of the model assuming that the value of
eps is sufficiently small so that S1(X), S2(X) and S(X) can be regarded as the
same. The description of the states indicated as (1)–(7) in Fig. 4 are as follows:

1. The system is in its initial state.
2. The vehicle doesn’t apply the brake and moves at a constant speed because

S < 0.
3. The system reaches the switching surface and switches the control input; the

vehicle begins to apply the brake.
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INIT <=> x = 0 /\ 0 < x’ < 80 /\ sw = 0.

EPS <=> 0 < eps < 0.1 /\ [](eps’ = 0).

S <=> [](s1 = x’ + x - 100 - eps /\

s2 = x’ + x - 100).

SW_CONST <=> [](sw’ = 0).

SW_ON <=> [](s1- = 0 /\ s1’- >= 0 => sw = 1 - sw-).

SW_OFF <=> [](s2- = 0 /\ s2’- <= 0 => sw = 1 - sw-).

ACC <=> [](x’’ = -50 * sw).

STOP <=> [](x’ = 0 => x’’ = 0).

INIT, SW_CONST << (SW_ON, SW_OFF), ACC << STOP, S, EPS.

Fig. 3. HydLa program of the vehicle with sliding mode control

Fig. 4. Trajectory of the vehicle with sliding mode control

4. The vehicle moves at a constant acceleration because of the brake.
5. The system reaches the switching ssurface again and switches the control

input.
6. The system enters the sliding mode, that is, moves along the sliding surface.
7. The vehicle stops at the destination x = 10ss0.

2 Proposed Method

The goal of our method is rigorous simulation and reasoning of hybrid systems
which include sliding modes and other chattering behaviors. In this paper, we
focus on the central part of our method, namely how to establish conditions that
should hold upon exit of sliding mode, which will then enable us to continue
simulation beyond the sliding mode if desired. This involves the recognition and
analysis of a looping behavior with an arbitrary large number of iterations. Since
fully automatic analysis of loops is hard in general, we allows some auxiliary
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information to be provided for the analysis. Specifically, the input and output
of our method, up until (but not beyond) loop analysis, are as follows:

Input:

1. Model description given as a HydLa program that expresses a target system,
2. Model specification given as a proposition that should be satisfied by the

system upon exit of a loop,
3. Termination condition under which the system definitely exits from the loop,
4. Switching function which the switching of the dynamics depends on.

Output: Whether the system will satisfy the model specification or not upon
exit of the loop.

The key idea of the method is to regard the sliding mode as a loop, and
the occurrence of the sliding mode will be detected through loop detection. The
overall flow of the method is shown in Fig. 5. The proposed method consists of
the following four steps:

1. loop detection: detecting a loop which may be sliding mode
2. establishing loop invariant: verifying that the system stays in the sliding

region during the loop
3. termination check: verifying that the system will exit from the loop
4. deducing model specification: confirming that the system satisfies the

goal conditions if it was within the sliding region and satisfies the loop ter-
mination condition.

2.1 Loop Detection

In this step, we judge whether newly computed continuous behaviours have
already been computed in the past. A set of continuous behaviors is expressed
by parameterized functions of time that are computed by symbolic simulation.
Continuous behaviors contain information about initial values of state variables
and constraints imposed on state variables. If the new behaviors are found to be
already computed, it means that the behaviors of the system enter a loop and all
the values of variables stay in an already computed range. In our previous work
[12], we proposed a method to detect such loops focusing on inclusion relation
between continuous behaviors. However, the method required the behaviors of all
variables in the system to be included, which is not the case with many practical
systems including sliding mode control. To solve this problem, we propose a new
inclusion relation focusing only on switching variables as follows:

Definition 1. Continuous behavior β1 includes continuous behavior β2 about
switching functions if
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Fig. 5. Flowchart of the proposed method with a symbolic simulator

1. The constraints imposed on the state variables are the same.
2. The parameterized values of S1(X) and S2(X) at the beginning of β2 are

included in those of β1.
3. The parameterized values of the n-th derivatives of S1(X) and S2(X) at the

beginning of β2 are included in those of β1, where n is any positive integer.

The inclusion relation between two parameterized values means that a domain of
one parameterized value includes that of the other. For example, provided that
a parameter p satisfies p ∈ [0, 1] where [a, b] denotes a closed interval, p×0.8 ⊆ p
holds. If the above conditions are satisfied, we can conclude that the system
enters a loop about switching variables and that the value of each switching
variable stays in a computed range.

We chose HydLa as a modeling language that does not come with an explicit
notion of loops, while hybrid automata [4] represent explicit state transition.
However, even if we choose hybrid automata, loop detection described here is
still necessary because loops expressed by hybrid automata just represent those
of control flow, while we are concerned with loops defined as state inclusion.
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2.2 Establishing Loop Invariant

In this step, we verify that the loop detected in the previous step satisfies the
loop invariant, which means that the systems stay in the sliding region. To verify
that, we must confirm that the condition S1(X) ≤ 0 ≤ S2(X) holds throughout
the first iteration of the loop. If it does, we can conclude that the condition
holds until the loop terminates, because the values of switching variables S1(X)
and S2(X) stay within the range of the first iteration as described in Sect. 2.1.
Assuming that we can obtain information about the trajectories of switching
variables from the symbolic simulator, this step is conducted by checking those
trajectories for one iteration.

2.3 Termination Check

In this step, we verify that the termination condition eventually holds. We can
verify it by finding some F (X) and a target value g that satisfies the conditions
below:

– The value of F (X) increases at least by some k ∈ R+ in each iteration.
– F (X) ≥ g ∧ LoopInvariant(X) ⇒ LoopTerminationCondition(X) is valid.

Note that similar conditions are found in the proof of loop termination in pro-
gramming languages, and F (X) acts as a loop variant. In the second condition,
we can also adopt an equality F (X) = g instead of F (X) ≥ g if F (X) is known
to be continuous. The choice about which one should be used depends on the
form of LoopTerminationCondition(X).

Example 1. In the brake control example, we define F (X) := −x′ and g := 0. It
should be verified that ∃k ∈ R+(∀i ∈ N (Fi+1 −Fi ≥ k)). In the loop, the vehicle
repeats braking and moving at a constant speed. Provided that the system is
in the first quadrant of the phase space, braking causes the system to move in
the positive direction of the x axis and the negative direction of the x′ axis
(see Fig. 1). Thus, x′ decreases at least by ε(eps) in each braking, which means
∀i ∈ N(Fi+1 − Fi ≥ ε).

2.4 Deducing Model Specification

In this step, it is confirmed that the system meets the target specification if it
stays inside of the sliding region and satisfies the loop termination condition.
Thus, the validity of the following formula should be verified:

LoopInvariant(X) ∧ LoopTerminationCondition(X) ⇒
TargetSpecification(X)

(1)

Note that the concrete form of LoopInvariant(X) here is the inequality S1(X) ≤
0 ≤ S2(X). The verification of Formula (1) can be performed statically, and this
is why it is performed at the beginning rather than the end of the analysis in
Fig. 5.
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Table 1. Case branching in the brake control model with SMC

Initial speed x′ Existence of a loop

(0, 50 − 35
√

2) No

50 − 35
√

2 No

(50 − 35
√

2, 80) Yes

Example 2. In the brake control example, LoopInvariant(X) is x+x′ −100−ε ≤
0 ≤ x + x′ − 100, LoopTerminationCondition(X) is x′ = 0, and TargetSpecifica-
tion(X) is 100 − ε ≤ x ≤ 100 ∧ x′ = 0. We can transform LoopInvariant(X) into
100 − ε ≤ x ≤ 100 by letting x′ = 0. Here, 100 − ε ≤ x ≤ 100 ∧ x′ = 0 is exactly
the same as TargetSpecification(X), therefore Formula (1) is verified.

3 Experiment

We have implemented the loop detection step in HyLaGI [7], which is a simulator
of HydLa programs that we have developed. HyLaGI has several key features
below:

– HyLaGI performs all computations symbolically and the result is free from
computation errors caused by floating-point arithmetic.

– Uncertain values in systems are expressed by symbolic parameters. This
enables parameter analysis of models.

– Case analysis is conducted on demand if the uncertainty of the systems leads
to qualitative branching of behavior, e.g., whether two balls collide or not.

With this implementation, we conducted experiments of loop detection for sev-
eral models. In this section, we also discuss how the remaining properties can be
derived from the output of HyLaGI.

Brake Control Model with Sliding Mode Control. The first example is
the brake control model with sliding mode control, which is described in Sect. 1.1.
In order to detect a loop of the model, the initial speed of the vehicle should
be a parameterized value such as p ∈ (0, 80). As for eps, we use a small fixed
value 0.5. If we use an uncertain value for eps, the current symbolic computation
engine fails to judge an inclusion relation of continuous behaviors, while it can
still simulate up to the second braking. Even if we adopt a fixed value as eps,
the proposed method has an advantage in reducing computational costs of sim-
ulation. With this initial condition, the computation with our implementation
branched into three different cases depending on the initial speed, as shown in
Table 1.

When 0 < x′ ≤ 50 − 35
√

2, the vehicle stops on the first braking and the
system doesn’t enter a loop. Otherwise, the implementation detected a loop
because the state of the first braking includes the state of the second braking. The
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Fig. 6. State transition of the brake control model

parameterized values of s1 and its derivatives at the first and second brakings
are shown in Table 2, where ps1 ∈ ((−70

√
2 − 101)/2,−41/2). Figure 6 shows a

state transition diagram computed by HyLaGI.

Table 2. The parameterized values of s1 and s1’ at the first and second brakings

Variable First braking Second braking

s1 0 0

s1′ ps1 + 201/2 50 −√10401 + 4ps1(101 + ps1)/2

In Fig. 6, Phase 1 corresponds to the initial state of the model. After that,
the vehicle moves at a constant speed (Phase 2) and applies the brake when
s1 = 0 (Phase 3). The speed decreases by the brake (Phase 4) and the braking
is stopped when s2 = 0 (Phase 5). The vehicle moves in uniform motion again
(Phase 12) and the state transits back to Phase 3 because the next state of Phase
12 is included by Phase 3. Note that this inclusion can be detected by focusing
on switching variables, which is an important difference from the previous work.

In this model, the initial speed is abstracted to an interval value (0, 80). If we
adopted some fixed value as the initial speed, the first derivatives of the switching
variables would decrease at each braking and no inclusion between states could
have been detected. For example, Table 3 shows the values of variables at each
time point of braking where the initial speed equals 80. In Table 3, s1 and s2 and
their derivatives are fixed values, and the values of the derivatives at the first
braking do not include those at the second braking, which means that the loop
detection fails. This is why we need to abstract the initial speed in this model.

For the steps after loop detection, the readers are referred to Sect. 2 for this
example.

If we conducted symbolic simulation without loop detection, the size and
complexity of the symbolic formulas of state variables would increase quickly,
which would make the simulation finally come to a halt.

Optical Fiber Model. The next model is an optical fiber model; a (slow) ray
proceeds inside an optical fiber. When the ray hits a boundary, total internal
reflection occurs and the ray is confined in the core. In this model, we suppose
that the fiber forms a circle and the attenuation of the light can be ignored
(Fig. 7). The HydLa program is shown in Fig. 8. The variables x and y denote
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Table 3. The values of variables at each braking with x′(0) = 80

Variable First braking Second braking

s1 0 0

s2 1/2 1/2

s1′ 80 50 − 5
√

38

s2′ 80 50 − 5
√

38

x 41/2 (101 + 10
√

38)/2

x′ 80 50 − 5
√

38

Fig. 7. Trajectory of an optical fiber model

INIT <=> x = 0 /\ y = r + eps / 2 /\ x’ = 1 /\ y’ = -1.

CONSTANTS <=> [](r = 5) /\ eps = 0.1 /\ [](eps’ = 0).

S <=> [](s1 = x^2 + y^2 - (r+eps)^2 /\ s2 = x^2 + y^2 - r^2).

XCONST <=> [](x’’ = 0).

YCONST <=> [](y’’ = 0).

REFLECT_1 <=> [](s1- = 0 =>

x’ = x’- - 2*(x’- * x- + y’- * y-) / (r+eps)^2 * x- /\

y’ = y’- - 2*(x’- * x- + y’- * y-) / (r+eps)^2 * y-).

REFLECT_2 <=> [](s2- = 0 =>

x’ = x’- - 2*(x’- * x- + y’- * y-) / r^2 * x- /\

y’ = y’- - 2*(x’- * x- + y’- * y-) / r^2 * y-).

INIT, (XCONST, YCONST) << (REFLECT_1, REFLECT_2) << S, CONSTANTS.

Fig. 8. HydLa program of the optical fiber model

the position of the ray, while r denotes the radius of the circle and equals five.
The width of the fiber is denoted by eps and is set to 0.1.

In the loop detection of this model, HyLaGI detected a loop between the
first reflection on the inner edge and the second one. Table 4 shows the values
of state variables at each inner reflection. Here, the symbolic expressions about
x, y and their derivatives at the second inner reflection are different from those
at the first inner reflection and are more complex. However, s1, s2 and their
derivatives are the same and that is the reason why we can conclude that the
behavior of the system forms a loop. It follows from this result that the time of
each cycle of the loop is constant because the trajectories of s1 and s2 are both
constant in the loop.
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Table 4. Result of the loop detection experiment of the optical fiber model

Variable First inner reflection Second inner reflection

s1 −101/100 −101/100

s2 0 0

s1′ −97991/2 × 1/10 −97991/2 × 1/10

s2′ −97991/2 × 1/10 −97991/2 × 1/10

x (101 − 97991/2) × 1/40 (1039379931/2 × 525301 + 1055803 × 97991/2

+ 98393897 − 106071/2 × 48954599)
× 1/2080800000

x′ (201 + 101 × 97991/2)
× 1/10000

(10141798597 + 1039379931/2 × 2050401
+ 106071/2 × 5045919499
− 97991/2 × 4121103) × 1/520200000000

y (101 + 97991/2) × 1/40 (106071/2×48954599+1039379931/2×525301
+ 98393897 − 97991/2 × 1055803)
× 1/2080800000

y′ (101 × 97991/2 − 201)
× 1/10000

(106071/2 × 5045919499 − 10141798597
− 1039379931/2 × 2050401 − 97991/2

× 4121103) × 1/520200000000

Pushing Two Balls. We cite this model from [5]. In the initial state of the
model, two balls are touching each other and are not moving. After one second,
we push one of the balls toward the other until 3.5 s elapse. While pushing,
infinitely frequent collisions between the two balls occur; therefore direct sim-
ulation is impossible. To handle such infiniteness, we use our loop detection
method. Figure 9 shows a HydLa program of this model. We use an infinitesimal
parameter eps as the initial distance between the two balls. The variables x1
and x2 denote the positions of the balls. A timer variable tt is used to trigger
events about pushing. The diameter of each ball and the coefficient of restitution
are set to one.

The implemented system detected a loop between the first and the second
collisions. Table 5 shows the values of variables at each collision. As in the optical
fiber model, the values of s1, s2 and their derivatives are the same between two
collisions, while x1 and x2 are different.

If we want to confirm that the loop invariant is satisfied, we need to check
the validity of the following proposition derived from the symbolic simulation:

∀t ∈ [0,
√

2eps] (∀eps ∈ [0, 0.01] (−0.5t(t −
√

2eps) − eps ≤ 0

∧ 0 ≤ −0.5t(t −
√

2eps)))
(2)

We can confirm the validity of Formula 2 by the Reduce function of Mathematica
currently used as the symbolic engine of HyLaGI.

Next, let us consider how to prove loop termination caused by the inequality
tt- ≥ 3.5. As shown in Table 5, the values of s1, s2 and their derivatives are



28 K. Betsuno et al.

INIT <=> x1 = 0 /\ x2 = 1 + eps /\ x1’ = 0 /\ x2’ = 0.

TIMER <=> tt = 0 /\ [](tt’ = 1).

S <=> [](s1 = x2 - x1 - 1 - eps /\ s2 = x2 - x1 - 1).

FORCE(x) <=> [](tt- < 1 => x’’ = 0)

/\ [](1 <= tt- < 3.5 => x’’ = 1)

/\ [](tt- >= 3.5 => x’’ = 0).

CONSTV(x) <=> [](x’’ = 0).

COLLISION <=> [](s2- = 0 => x1’ = x2’- /\ x2’ = x1’-).

EPS <=> 0 < eps < 0.01 /\ [](eps’ = 0).

INIT, S, EPS, TIMER,

(FORCE(x1), CONSTV(x2)) << COLLISION.

Fig. 9. HydLa program of the pushing of two balls

Table 5. The values of variables at each collision

Variable First collision Second collision

s1 −eps −eps

s2 0 0

s1′ −√
2eps −√

2eps

s2′ −√
2eps −√

2eps

x1 eps 5eps

x2 1+eps 1 + 5eps

x1′ 0
√

2eps

x2′ √
2eps 2

√
2eps

tt 1 +
√

2eps 1 + 3
√

2eps

the same after each collision. In addition, their second derivatives are s2’’ =
s1’’ = x2’’−x1’’ = 1 throughout the loop. Therefore, the time interval of each
iteration is also constant, and from Table 5 we can derive that tt increases by
2
√

2eps at each iteration. Adopting F (X) := tt and g := 3.5, it is obvious that
F (X) eventually exceeds g, and the proposition F (X) ≥ g∧LoopInvariant(X) ⇒
tt- ≥ 3.5 also holds obviously.

Finally, consider x2 − x1 − 1 ≤ eps as a target specification, which means
that the relative position of the second ball from the first one is less than eps
when we stop pushing. This specification is implied from the invariant about s1,
that is, s1 = x2 − x1 − 1 − eps ≤ 0. Thus, the specification is verified.

4 Related Work

In previous work, the sliding mode dynamics involving chattering was approxi-
mated by non-chattering dynamics on a sliding surface [1,3,8,11]. Most of these
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approaches adopt numerical simulation methods and aim at simulating such
models with approximation. Our approach is based on symbolic simulation and
focuses on validated simulation of parameterized hybrid systems rather than
simulation with approximations. Compared to those numerical methods, our
approach can deal with hybrid models with parameters and need not approxi-
mate the behavior of the models. Owing to its symbolic approach, the proposed
method is currently applicable only to linear and simple nonlinear models. Chal-
lenges for the future include extending this approach to nonlinear models with-
out analytic solutions, which involves integration of symbolic computation and
rigorous numerical computation.

A hybrid theorem prover KeYmaera [9] supports verification of parametric
hybrid systems. However, KeYmaera aims at verification, while our goal is to
perform validated simulation of parametric hybrid systems.

5 Conclusion

In this paper, we proposed a method for the symbolic simulation of hybrid sys-
tems with a large or an infinite number of discrete changes, most typically due
to sliding mode. We also implemented the algorithm for detecting loops caused
by sliding mode by extending HyLaGI, a symbolic simulator of parameterized
hybrid systems. Although the automatic discovery of loop invariants and loop
variants is our future work, we found that once a loop is detected, the output
of HyLaGI provides us with useful information for the rest of the four steps dis-
cussed in Sect. 2. Extending our algorithm and implementation with differential
invariants and differential variants and continuing symbolic simulation until and
beyond the exit of a loop is our future work. This part of verification is strongly
dependent on the hardness of each model, since it is necessary to verify that the
system will eventually satisfy exit conditions of a loop rather than simulating
the system step by step. Automatic discovery of loop invariants and loop vari-
ants may be possible for some systems, but in general, interacting with users for
auxiliary information as in proof assistant systems seems to be a key idea for
the verification of complex models.

We have found that some models need to be abstracted with respect to
the initial states. At present, such abstraction is given manually, but it is of
course desirable to automate this step using a kind of abstraction refinement
procedure that performs both refinement and generalization. Handling models
with multiple switching surfaces is another direction of our future work.
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Abstract. This paper proposes a transformation of SysML models into
the NuSMV input language. The transformation is performed automati-
cally using SysMV-Ja and relies on a notion of intermediate model struc-
turing the relevant SysML components in an object-oriented fashion.

1 Introduction

The complexity and size of safety-critical systems is steadily growing as tech-
nology advances. Hence, (semi-) formal approaches to the design, modelling and
reasoning on the correctness of such systems plays a very important rôle. Never-
theless, introducing “friendly” formal frameworks into industrial settings is not
at all a trivial task.

The OMG System Modelling Language (SysML) [14,17,25] is a graphical
modelling language fairly intuitive and easy to learn by software engineers.
SysML has been successfully used in practice. Nevertheless, the application of
rigorous verification techniques such as model-checking on SysML-based inputs
is usually not something that engineers are keen or trained to do.

In this paper, we propose a model transformation from SysML block defin-
ition diagrams and state machines to the input language of the NuSMV model-
checker [8], implemented in the automated tool SysMV-Ja. Our approach exploits
a SysML intermediate model. The intermediate model provides an object-oriented
view of the SysML modelling concepts relevant for the work in this paper. This
object-oriented approach could be exploited, in the future, to transform SysML
into the languages of other model-checkers, in a structured way.

The intermediate representation is then exploited to guide a 2-step trans-
formation from SysML to NuSMV input, in a structured way. Advantages of
considering such an intermediate model include: the familiarity of developers
with the Object-Oriented Programming-paradigm, the modularity of the app-
roach, and the possibility of tracing back into the model potential sources of
unwanted behaviour, as reported by the model-checker.
c© Springer International Publishing AG 2017
C. Berger et al. (Eds.): CyPhy 2016, LNCS 10107, pp. 31–45, 2017.
DOI: 10.1007/978-3-319-51738-4 3
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Related work. There is a considerable amount of literature on providing (formal)
semantics of SysML/UML, or on automatically translating associated models
into inputs for different analysis tools.

The work in [9], for instance, presents a systematic, but direct translation of
statecharts to SMV. As the approach is strictly tailored for the input language of
SMV, it cannot be easily adapted for other model checkers or verification tools.

Hugo/RT [1] is a tool that translates UML into corresponding input for the
Spin [18] model checker, via the so-called UTE intermediate format. UTE is
a textual format that most of the engineers and programmers have to become
acquainted with, in contrast to the more familiar Object-Oriented Programming-
paradigm exploited in our paper. Another approach for verifying UML models
using Spin is given in [23]. Even though the translation from UML to Promela–
the input language of Spin–is straightforward and thus, little reusable, the auto-
mated tool vUML provides intuitive feedback to the user in case an error was
found during verification.

In [21], SysML specifications are automatically translated into equivalent
behavioural UML models. The latter are further used to derive test cases and
executable test scripts, in the context of a model-based testing tool. The main
difference with the work in [21] is that we use the Object-Oriented Programming-
paradigm in order to model both the static and the dynamic structure of systems.
The approach in [21] uses UML Class Diagrams to represent the static structure
of systems and UML State Machines to represent their dynamics. Moreover, the
unifying framework of object orientation enables us to define stereotypes and
facilitates extensions of the standard SysML/UML semantics, if so desired. Nev-
ertheless, our work does not tackle the issue of combining multiple profiles and
avoiding specification conflicts. For a contribution along this research direction
we refer, for instance, to [13] where some of the challenges of combining SysML
and the OMG MARTE profile [15] are addressed.

More theoretical approaches, usually less appealing for engineers and software
developers, propose formalisations of SysML/UML as Process Algebras [4,16]
and Petri Nets [10,12]. Model checking of hierarchical state machines has been
addressed in [3], for instance, where Kripke structures were employed as their
formalisation.

A formal intermediate model of UML behavioural diagrams was also pro-
posed in [11], in terms of the so-called Configuration Transition Systems (CTS’s).
Similarly to our approach, the results in [11] provide a systematic way of generat-
ing inputs for the NuSMV model checker based on intermediate models. In [11],
the authors also emphasise on the importance of exploiting intermediate models
in order to provide useful feedback to the designer. In accordance, the CTS’s
can be graphically visualised.

Labelled Transition Systems and Structural Operational Semantics [26] were
exploited in [27] in order to provide a modular semantics of UML-RT –a dialect
of UML that supports the development of hierarchical systems following a
component-oriented approach. As for the case of UML-RT, rigorous formali-
sations are easier to define over textual terms. Such representations, however,
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are difficult to use and follow in practice. For an attempt to overcome this type
of issues, we refer to the results in [19] where the authors present a graphical user
interface-based tool that supports a visual language called v-Promela. This lan-
guage is the graphical extension of Promela, and the v-Promela notation inherits
largely from the aforementioned UML-RT notation. Additionally, a semantics of
UML-RT in AsmL–an object-oriented software specification language based on
the theory of Abstract State Machines–was proposed in [22]. In connection with
our current work, the idea of employing a meta-model defining the syntactic
structure of the UML-RT modelling concepts was exploited as well. One the
one hand, in our context, following the AsmL approach is not necessary as the
syntactic structure of SysML/UML models can be expressed by means of Block
Definition Diagrams. On the other hand, AsmL is a language that most of the
engineers and developers would have to acquire.

The work in [24] is a classical reference on how to implement statecharts in
Promela/SPIN using hierarchical automata defined based on operational seman-
tics as intermediate format. A denotational meta-modelling of the semantics of
a part of UML suitable for describing and constraining object structures was
proposed in [20]. The results in [7] pave the way to a formalisation of UML in
terms of the so-called System Models consisting of elements that describe the
structure, behaviour and interaction of systems.

These more formal approaches are orthogonal works that go beyond the
scope of providing a recipe for translating SysML/UML in terms of intuitive
(intermediate) models, for the practical-minded. For a more detailed survey on
model checking statecharts we refer to [6].

Structure of paper. In Sect. 2 we provide a brief overview of SysML modelling and
NuSMV, by emphasising on the corresponding concepts relevant for our work. In
Sect. 3 we introduce the intermediate model used for the transformation of SysML
models into NuSMV-compatible inputs. In Sect. 4 we illustrate how the interme-
diate model can be exploited for the aforementioned transformation into NuSMV.
Section 5 introduces SysMV-Ja, a Java-based tool for the automated model trans-
formation. Two case studies, a railway and an airbag system are also discussed. In
Sect. 6 we draw the conclusions and provide pointers to future work.

2 Preliminaries

In this section we proceed by first introducing a railway example, used throughout
the paper in order to explain our approach.

Example 1 (Running example). The scenario considers a railroad track that is
crossed by a street. On the crossing there is a gate, that can close when a train
approaches, thus blocking cars from entering the crossing. A car or a train can be
in one of four states: approaching, entering, being in the crossing or leaving the
crossing. The gate can be in one of the two states: opened or closed. The situation
that one does not want in this example is a train and a car in the crossing at the
same time, as this would determine a crash.
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In what follows, we provide a brief overview of SysML, the modelling language
used by practitioners for designing systems such as the one in Example 1. After-
wards, we succinctly introduce the NuSMV model checker–a tool that can auto-
matically detect hazardous situations such as a car-train crash.

The OMG System Modelling Language (SysML). SysML [14,17] is an industry
standard for specifying and designing a broad range of systems. SysML was created
as a general purpose modelling language for systems that may include anything
from hardware and software to staff and facilities.

On the one hand, SysML can be used for the intuitive modelling of systems. We
refer to Fig. 1 for a representation of the components of the railway in Example 1,
and to Fig. 2 for a modelling of their behaviours. On the other hand, SysML can be
employed similarly to a meta-modelling language defining the syntactic composi-
tion of the SysML modelling concepts considered by our approach. For instance,
iBDD and iStateMachine in Fig. 3 define the parts (that are relevant for our
approach) that constitute SysML Block Definition Diagrams and State Machine
Diagrams, respectively.

Intuitively, SysML Block Definition Diagrams (BDD’s) and State Machine
Diagrams (STM’s) are used in order to define the static aspects of systems, and
to capture the dynamics of systems, respectively. BDD’s are built on top of the
so-called SysML blocks, and enable the modelling of systems in a modular fash-
ion. Blocks correspond to units of a system description. See, for instance the block
Gate in Fig. 1, that corresponds to the UML representation of the gate system in
Example 1. A block can include properties of certain types and references to other
blocks. For instance, the gate being open/closed corresponds to the boolean prop-
erty “open” in Fig. 1 being set to true/false. Moreover, BDD’s can capture rela-
tionships between blocks such as associations, and dependencies. For an example,
we refer to Fig. 3. An aggregation stating that one iModel (intuitively, the railway
system) consists of one or more iBDD’s (intuitively, the car, train and gate in the
railway example) is illustrated via the connector �1––––1..

∗
with multiplicities one:

1 and one or more: 1..∗.

Fig. 1. The BDD’s for the railway in Example 1.
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Behaviours can be associated to BDD’s via properties of type StateChart. In
Fig. 1, for instance, the train is associated a behaviour via the “operation” prop-
erty. At this point it is important to mention that, in our approach, concurrent
behaviour is modelled by synchronising multiple BDD’s via events. Events occur
in the context of triggers that specify points in the definition of a behaviour at
which some effect can be observed.

STM’s, or statecharts, are a form of finite state automata used in order to model
the behaviour of systems. States in an STM can express different statuses in a
behaviour of a system. For instance, the gate being either open or closed is captured
by two simple sates “gate open” and “gate closed”, respectively, in Fig. 2(b).

States can enclose so-called regions denoting behaviour fragments that may
execute concurrently. Each region contains the nested disjoint states and corre-
sponding transitions. Consequently, there exist the following kinds of compos-
ite states: simple composite–whenever the state contains exactly one region, and
orthogonal–whenever it contains multiple regions. In this paper we only consider
simple composite states. A submachine state refers to an entire STM nested within
the state.

Either simple, composite or submachines, states can specify “entry”, “exit” or
“doActivity” behaviours. In short, entry (respectively, exit) behaviours are exe-
cuted when the state is entered (respectively, exited) via an external transition.
“doActivity” executes concurrently with any other behaviour associated with the
state, as soon as the state entry behaviour has completed. An instance of a “doAc-
tivity” is the operation “close gate” in Fig. 2(c).

Another special kind of states are the so-called pseudostates. Pseudostates are
states with special behaviour. For instance, the initial pseudostate is the state
in which an STM is initialised (see, for an example, the three bullet-like initial
states in Fig. 2), or exit pseudostates. Additionally, the system cannot be in a

(a) Car behaviour. (b) Gate behaviour.

(c) Train behaviour.

Fig. 2. The STM’s for the railway in Example 1.
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pseudostate. As soon as a pseudostate is entered, it is left again in a single atomic
step. In this paper we only handle initial pseudo states.

Transitions can be seen as valid fragments of behaviour illustrating how the
system evolves from one “source” state to a “target” state. A “guard” enables a
transition whenever it is evaluated to true. We refer, for an example, to the guard
“[Gate.open = true]” in Fig. 2(a) that enables the car to enter the crossing when-
ever the gate is open. The “effect” behaviour is enabled when the transition is exe-
cuted. The effect “open = false” in Fig. 2(b) sets the value of the gate property
“open” in Fig. 1 to false. A “trigger” specifies an event whose occurrence deter-
mines the execution of a transition. For instance, the event “close gate” in Fig. 2(b)
determines the gate to close. Recall that “close gate” is also a “doActivity” in the
state corresponding to train approaching in Fig. 2(c). Hence, its purpose is to sim-
ulate the synchronised communication between the train and the gate.

NuSMV. NuSMV [8] is a symbolic model checker successfully used for the veri-
fication of synchronous and asynchronous finite state systems. In short, NuSMV
analyses specifications expressed in Computation Tree Logic (CTL) and Linear
Temporal Logic (LTL) [5], using BDD-based and SAT-based model checking
techniques.

In this section, we focus on the parts of the NuSMV input language relevant
for our work. For a thorough description of NuSMV inputs, we refer the inter-
ested reader to the user manual in the distribution package1 of the NUSMV model
checker.

Intuitively, a NuSMV program consists of a list of modules further instan-
tiated to so-called processes that model interleaving. A “process” has a special
boolean variable associated with it, called “running”, whose value is true if and
only if the corresponding process instance is currently selected for execution. Each
module is associated an identifier and a series of parameters. The body of a mod-
ule consists of elements that can denote variable declarations, variable initialisa-
tions/assignments, LTL specifications or, for instance, behaviours defined based
on transitions. Transitions are introduced by the “TRANS” keyword, followed by
a boolean expression expressing whether or not two states belong to the transi-
tion relation. Therefore, the aforementioned boolean expression can include the
“next” operator in order to relate the current and the next state variables, and
express transitions in the state-machine corresponding to the behaviour of the
module.

3 The IntermediateModel

In this section we provide an object-oriented representation of the relevant SysML
components we consider for modelling the static and dynamic aspects of concur-
rent safety-critical systems. This representation serves as an intermediate step in
the model transformation from SysML to NuSMV.

1 http://nusmv.fbk.eu.

http://nusmv.fbk.eu
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The advantages of using the object-orientation paradigm include software
developers’ familiarity with the concept and enables a structured, modular model
transformation flexible to further extensions, and appropriate for automation.

The translation of the SysML relevant components into the intermediate model
follows naturally. The iModel comprises all the elements of the system. All infor-
mation that is obtained during the transformation from SysML to this interme-
diate model is either directly, as an attribute, or indirectly, as an attribute of one
of its attributes, contained in the iModel. Directly contained as attributes in the
iModel are all components, events, global variables which do not belong to any
component, and the properties of the model captured by iStateConfigurations.

Each instance of iStateConfiguration stands for a safety or reachability
property. These properties are expressed by the configuration states that shall
“never be reached” or “eventually be reached”, connected via “AND”/“OR” con-
figuration operations.

Another element is the iAttribute, representing variables of the system. It can
have a default value, saved as a string. If the attribute is an integer then it has a
lower and upper bound and a type given by strings such as “integer” or “boolean”,
for instance. An iAttribute can be either a global variable, in which case it is saved
in the iModel, or part of a system component, saved as an attribute in the corre-
sponding iBDD.

An iBDD corresponds to a BDD and is characterised by the associated
attributes. The connection with the STM’s defining its normal and failure behav-
iours is established via class attributes of type iStateMachine.

The iStateMachine contains all the important information from an STM:
all its states, including the initial one, and all its transitions. A type is associ-
ated in order to mark the behaviour of the iStateMachine as being normal or
a failure one. As expected, an iState, corresponds to the concept of SysML state.
An iState, encapsulates the entry, exit and during (“doActivity”) behaviours a
SysML state can display. iStates also include a list of incoming and outgoing
transitions. If the state has submachines, then they are given by the submachines
attribute. Note that only the initial pseudostate has a translation into the inter-
mediate model as the “intialState” attribute of the iStateMachine class. SysML
transitions are represented in this model via iTransition. The source and target
states are the states from which the transition originates and to which it leads.
The guard is a boolean formula that enables the transition whenever is evaluated
to true. Intuitively, action collects all changes to attributes that happen when the
transition is executed and it encodes the triggers and the behaviour of the transi-
tion. Finally, a transition can have a corresponding event. If that is the case, then
the transition is only enabled if the event was triggered. SysML events are captured
by the iEvent class which contains the transitions that are triggered by the event.

Moreover, note that all the blocks in Fig. 3 have a “name” and an “ID”, as they
inherit from iElement. We omit explicitly depicting the inheritance relationships,
for readability reasons.
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Fig. 3. The SysML intermediate model.

4 Transformations to NuSMV Input

In this section we provide an overview of the translation from SysML constructs
into NuSMV input. We emphasise on the usefulness of the intermediate model in
Fig. 3, as it enables a top-down, structured approach.

First, the main NuSMV module, corresponding to the iModel in Fig. 3 is
implemented to contain the declaration of a series ofmodules, as given by its iBDD
components. Each module in NuSMV is created as a “process”. This enables the
use of the “running” variable. NuSMV always chooses exactly one “process” for
which “running” has the value true, and for all others the value false. This is use-
ful to guarantee that only one module changes its state at a certain time. Then,
all variables (attributes) are declared within the main module. The attributes are
further initialised with the initial value from the associated element in the interme-
diate model, or if they do not have one, with the default values. The assignments
are performed in the corresponding module of each variable. Relevant fragments
of the NuSMV modules and variables declarations corresponding to the railway
scenario in Example 1 are as follows:
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Module main

[...]

VAR gate: process Gate(self);

VAR car: process Car(self);

VAR train: process Train(self);

VAR Gate_open: boolean;

VAR open_gate_active: boolean;

Module Gate(g)

[...]

ASSIGN init(g.Gate_open) := TRUE

Module Car(g) [...]

Module Train(g) [...]

Translations of STM’s, or iStateMachines, is less straightforward as states
and transitions are strongly interrelated. In the NuSMV code, the state, or the
iState itself is integrated into the transition system. As illustrated later, state
behaviours are translated into variable changes handled in the context of tran-
sition executions. Note that we combine the during behaviour of a state (“doAc-
tion”) with its “exit” behaviour, as changes can not be modelled as happening over
time.

Moreover, in order to be identified within the NuSMV code, states are num-
bered in an ascending order. For the case of the gate, for instance, we can declare
VAR Gate states: 0..10 in the main module. Additionally, recall that states in
an STM can have a hierarchical structure. In our context, they can be simple com-
posite. Assume an STM with three states, out of which one is an STM with four
states, as in Fig. 4(a). By recursively apply the numbering procedure we assign, for
example, values 1, 2 and 7 to the states of the STM as in Fig. 4(b).

Regarding the modelling of transitions out of submachines: in short, initial
pseudostates and normal states in a submachine can exit the submachine behav-
iour at any time. Hence, we translate a transition (with target s) out of a subma-
chine, to one transition (with target s) enabled in each state of the submachine.The
original transition out of the submachine is then removed. This transition distribu-
tion procedure is represented via the dashed transitions inFig. 4(b). The soundness
of this approach is guaranteed by the fact that each newly added dashed transition
inherits the “exit” behaviour and the “doAction” of the enclosing state (numbered
2 in our example). Moreover, each dashed transition has to execute the action cor-
responding to the transition out of submachine.

Recall that the transition structure in NuSMV is introduced via the “TRANS”
keyword, followed by a boolean statement. This statement can be divided into
three parts: (a) the transitions which can be executed when the module is run-
ning, together with statements regarding changed/unchanged variables, (b) the
statement about what happens when the module is not running and (c) a state-
ment to define when the module cannot perform any transitions and therefore has
to stop running. In the context of (b), we assert that the variables do not change
while the module is not running. Nevertheless, there is one exception to this: if
there is a trigger to an event where a variable can change if the event is consumed
by another module. Because of the way NuSMV parses a model, all variables that
are not changed must be specified as such. This has to be done only for the variables
of that module. A sketch-example of a transition system is as follows:
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(a) 3-state STM with transition out of submachine.

(b) STM with numbered states and distributed transitions.

Fig. 4. Handling simple composite STM’s.

TRANS

-- (a) When the module is running

(running &

(next(g.event) = iTransitionID1 &

(g.BlockName_states = currentState) &

(g.BlockName_AttributeName = TRUE) & -- guard for the transition

-- changed variables

next(g.BlockName_states) = nextState &

next(g.BlockName_AttributeName) = FALSE

-- unchanged variables

next(g.BlockName_AttributeName2) = g.BlockName_AttributeName2)

-- (b) When the module is not running

| !running &

next(g.BlockName_states) = g.BlockName_states &

next(g.BlockName_AttributeName) = g.BlockName_AttributeName

next(g.BlockName_AttributeName2) = g.BlockName_AttributeName2)

-- (c) When the module has to stop running

& !(next(g.event) = iTransitionID1 & g.BlockName_states = currentState)

-> !running)

In the listing above g stands for the constructor of the current module
BlockName. In the railway example these can be represented, for instance, by
self and Gate, respectively. Block Name states and Block AttributeName/
Block AttributeName2 stand for the states and some attributes of the current
module. These can be Gate states and Gate open, for instance. currentState
is the number associated to the current state. iTransitionID1 is the “ID” of a
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transition. Recall from Sect. 3 that iTransition has an “ID” field, as it inherits
from iElement. As expected, g.event denotes an event.

In NuSMV, events are translated as boolean variables. See, for instance, the
variable declaration VAR open gate active: boolean; in the main module. Its
value is set to true when a state or transition includes a trigger for the event in its
behaviour, or to false after the execution of a transition that requires the event to
be enabled.

An important aspect is that, in order to ensure module synchronisation via
triggers, we have to enrich the NuSMV model. In case the module associated with
the trigger is not running, the trigger variable has to be handled differently from
normal variables because it has to be synchronised with the other modules that
consume the trigger. This is done by specifying that the value of the trigger variable
stays the same except when the next transition is the event transition:

TRANS [...]

& ( ! (next(g.event) = triggeredEventName)

-> next(g.triggeredEventName_active) = g. triggeredEventName_active )

Regarding the properties of the model captured by iStateConfigurations in
Fig. 3: note that we are currently handling only safety, or reachability, specifica-
tions. Intuitively, these are of form “never the case to be in all of these states at
once” or “never the case to be in at least one of these states”. As expected, the
former case is modelled via the logical “AND” operator, whereas the latter case is
modelled using “OR”. Consider, for a generic example, the following:

-- if the operator is AND

LTLSPEC G! ((Comp1_states = a) & (Comp2_states = b) & (Comp3_states = c))

-- if the operator is OR

LTLSPEC G! ((Comp1_states = a) | (Comp2_states = b) | (Comp3_states = c))

Above, Comp1 states can be, for instance, Train states, whereas a, b and c
denote state numbers.

5 SysMV-Ja atWork

Given a SysML model, the transformation to the corresponding NuSMV input
via the intermediate model as described in Sects. 3 and 4, can be performed auto-
matically using the SysMV-Ja tool. SysMV-Ja is a Java application with a sim-
ple graphical user interface that enables specifying the path to the XMI file of the
SysML model, and the path of the output folder where the NuSMV-compatible
input will be generated. The repository2 containing the tool, instructions on how
to use it, and the SysML models for the two case studies discussed in this paper
can be accessed with the username “anon”.

2 https://svn.uni-konstanz.de/soft/SysMV-Ja/release.

https://svn.uni-konstanz.de/soft/SysMV-Ja/release
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5.1 Case Study: A Railway System

The first case study we consider is the railway system in Example 1, introduced
for illustrative purposes. After generating the corresponding NuSMV code, we
used the model checker to find a counterexample for the safety property “never
car and train in the crossing at the same time”. NuSMV successfully identified a
counterexample. Even though the generated state space consists of approximately
700 000 states (including those associated to some extra bounded integers from
BlockName states definitions), the reachable states are approximately 300–in the
order of what we expected:

NuSMV > print_reachable_states

######################################################################

system diameter: 17

reachable states: 314 (2^8.29462) out of 684288 (2^19.3842)

######################################################################

5.2 Case Study: An Airbag System

We further consider the transformation of an industrial size model of an airbag sys-
tem taken from [2]. The architecture of this system was provided by TRW Auto-
motive GmbH, and is schematically shown in Fig. 5. The airbag system can be
divided into three major parts: sensors, crash evaluation and actuators. The sys-
tem consists of two acceleration sensors (main and safety) for detecting front or
rear crashes, one microcontroller to perform the crash evaluation, and an actu-
ator that controls the deployment of the airbag. The deployment of the airbag is
also secured by two redundant protection mechanisms. The Field Effect Transistor
(FET) controls the power supply for the airbag squibs that ignite the airbag. If the
Field Effect Transistor is not armed, which means that the FET-pin is not high,
the airbag squib does not have enough electrical power to ignite the airbag. The
second protection mechanism is the Firing Application Specific Integrated Circuit
(FASIC) which controls the airbag squib. Only if it receives first an “arm” com-
mand and then a “fire” command from the microcontroller it will ignite the airbag
squib which leads to the pyrotechnical detonation inflating the airbag.

Fig. 5. Architecture of the airbag system.
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Although airbags are meant to save lives in crash situations, they may cause
fatal accidents if they are inadvertently deployed. This is because the driver may
lose control of the car when an inadvertent deployment of the airbag occurs. It is
a pivotal safety requirement that an airbag is never deployed if there is no crash
situation. Intuitively, the corresponding safety property can be stated as “never
no-crash and airbag deployed”.

In short, the SysML model (also included in the repository of SysMV-Ja) con-
sists of five BDD’s and five STM’s, each one associated to one component of the
airbag system. The largest STM consists of twelve states, out of which two states
with submachines. The remaining STM’s enclose at most five states. When run-
ning the NuSMV model checker on the input generated via SysMV-Ja from the
corresponding SysML modelling, we obtain a state space of size approximately 210,
with about 1 000 reachable states that can be analysed for inadvertent deployment
almost instantaneously.

6 Conclusions

In this paper we provide a model transformation from SysML block definition dia-
grams and state machines to NuSMV input, implemented in the automated tool
SysMV-Ja. The procedure takes a file in XMI format, encoding the SysML model,
and returns the corresponding NuSMV model provided in an .smv file. The pro-
posed translation relies on an object-oriented intermediate model of SysML, thus
making the whole approach more structured and easy to follow, possibly serving
as a recipe for other model-transformations. The semantics of SysML exploited in
this paper corresponds to the OMG specification [25]. We also discussed the results
of model-checking models corresponding to a railway and an airbag system, gen-
erated with SysMV-Ja. The reachable state space did not suffer from exponential
blowups.

Ideas for future work include the integration of an LTL property editor within
SysMV-JA. At the moment, LTL specifications are added by hand at the end of
the NuSMV input file. Apart from safety, we would also like to handle liveness
properties as well.

We plan to investigate to what extent the translation procedure can be adapted
to include other types of SysML diagrams such as activity charts, for instance.

Another interesting extension would be the integration of orthogonal subma-
chines. For the time being, we only consider simple composite ones. Neverthe-
less, this kind of limitation can be overcome by providing an equivalent modelling
of orthogonal submachines via multiple simple composite ones, synchronised via
events.

Furthermore, the transformation of pseudostates can be enhanced in some
ways. For optimisation purposes, the initial state can be replaced by its descen-
dant, as initial states have at most one outgoing edge and can not have a behaviour.
It is a minor enhancement, though, since it only decreases the state space min-
imally. Nevertheless, such an approach might make the generated NuSMV code
smaller and therefore, easier to read and maintain. We would also like to allow
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“exit” pseudo states. However, we foresee that this would change the handling of
transitions out of submachines, as in Fig. 4.

We consider integrating a backward translation allowing to replay counterex-
amples found by NuSMV in a SysML tool. The formal correctness of the model
would be another thing that is interesting to look into. For this, a formal seman-
tics of the intermediate model might have to be created and the transformation
rewritten as a set of functions/rules.

Last, but not least, we want to analyse the proposed approach for more case
studies, and we want to perform efficiency studies as well. Moreover, we want to
perform comparisons with other similar model transformation tools, regarding
modularity, adaptability to different model-checkers, and portability.
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their useful comments and observations.
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Abstract. Designing complex systems using graphical models in
sophisticated development environments is becoming de-facto engineer-
ing practice in the cyber-physical system (CPS) domain. Development
environments thrive to eliminate bugs or undefined behaviors in them-
selves. Formal techniques, while promising, do not yet scale to verifying
entire industrial CPS tool chains. A practical alternative, automated ran-
dom testing, has recently found bugs in CPS tool chain components. In
this work we identify problematic components in the Simulink modeling
environment, by studying publicly available bug reports. Our main con-
tribution is CyFuzz, the first differential testing framework to find bugs
in arbitrary CPS development environments. Our automated model gen-
erator does not require a formal specification of the modeling language.
We present prototype implementation for testing Simulink, which found
interesting issues and reproduced one bug which MathWorks fixed in sub-
sequent product releases. We are working on implementing a full-fledged
generator with sophisticated model-creation capabilities.

Keywords: Differential testing · Cyber-physical systems · Model-based
design · Simulink

1 Introduction

Widely used cyber-physical system (CPS) development tool chains are complex
software systems that typically consist of millions of lines of code [1]. For exam-
ple, the popular MathWorks Simulink tool chain contains model-based design
tools (in which models in various expressive modeling languages are used to
describe the overall system under control [2]), simulators, compilers, and auto-
mated code generators. Like any complex piece of code, CPS tool chains may
contain bugs and such bugs may lead to severe CPS defects.

The vast majority of resources in the CPS design and development phases are
devoted to ensure that systems meet their specifications [3,4]. In spite of hav-
ing sophisticated design validation and verification approaches (model checking,
automated test case generation, hardware-in-the-loop and software-in-the-loop
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C. Berger et al. (Eds.): CyPhy 2016, LNCS 10107, pp. 46–60, 2017.
DOI: 10.1007/978-3-319-51738-4 4



A Differential Testing Framework for CPS Development Environments 47

testing etc.), we see frequent safety recalls of products and systems among indus-
tries, due to CPS bugs [5–7].

Since many CPSs operate in safety-critical environments and have strict cor-
rectness and reliability requirements [8], it would be ideal for CPS development
tools to not have bugs or unintended behaviors. However, this is not generally
true as demonstrated by recent random testing projects finding bugs in a static
analysis tool (Frama-C) [9] and in popular C compilers (GCC and LLVM) [10],
which are widely used in CPS model-based design.

It would be extremely expensive or possibly even practically infeasible to
formally verify entire CPS tool chains. In addition to their sheer size in terms
of lines of code, a maybe more significant hurdle is the lack of a complete and
up to date formal specification of the CPS tool chain semantics, which may be
due to their complexity and rapid release cycles [1,11].

Instead of formally verifying the absence of bugs in all CPS tool chain exe-
cution paths, we revert to showing the presence of bugs on individual paths (aka
testing), which can still be a major contributor to software quality [12]. Differen-
tial testing or fuzzing, a form of random testing, mechanically generates random
test inputs and presents them to comparable variations of a software [12]. The
results are then compared and any variation from the majority (if one exists)
likely indicates a bug [13]. This scheme has been effective at finding bugs in
compilers and interpreters of traditional programming languages. As an exam-
ple, various fuzzing schemes have collectively found over 1,000 bugs in widely
used compilation tools such as GCC [10,11,14].

While compiler testing is promising, when testing CPS tool chains we face
additional challenges beyond what is covered by testing compilers of traditional
programming languages (such as Csmith creating C programs), since CPS mod-
eling languages differ significantly from traditional programming languages. A
key difference is that the complete semantics of widely used commercial mod-
eling languages (e.g., MathWorks Simulink and Stateflow [15]) are not pub-
licly available [1,16,17]. Moreover, modeling language semantics often depend
on subtle details, such as two-dimensional layout information, internal model
component settings, and the particular interpretation algorithm of simulators
[1]. Finally, random generation of test cases for CPS development environments
has to address a combination of programming paradigms (e.g., both graphical,
data-flow language and textual imperative programming language in the same
model), which is rare in traditional compiler testing.

Since existing testing and verification techniques are not sufficient for ensur-
ing the reliability of CPS tool chains, we propose CyFuzz: a novel conceptual
differential testing framework for testing arbitrary CPS development environ-
ments. We use the term system under test (SUT) to refer to the CPS tool chain
being tested. CyFuzz has a random model generator which automatically gener-
ates random CPS models the SUT may simulate or compile to embedded native
code. CyFuzz’s comparison framework component then detects dissimilarity (if
it exists) in the results obtained by executing (or, simulating) the generated
model, by varying components of the SUT.
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We also present an implementation for testing the Simulink environment,
which is widely used in CPS industries for model-based design of dynamic and
embedded systems [18,19]. Although our current prototype implementation tar-
gets Simulink, the described conceptual framework is not tool specific and should
thus be applicable to related CPS tool chains, such as NI’s LabVIEW [20].

To the best of our knowledge, CyFuzz is the first differential testing frame-
work for fuzzing CPS tool chains. To address the problem of missing formal
semantics during model generation, we follow a simple, feedback-driven model
generation approach that iteratively fixes generated models according to the
SUT’s error descriptions. To summarize, this paper makes the following contri-
butions:

– To understand the types of Simulink bugs that affect users, we first analyze a
subset of the publicly available Simulink bug reports (Sect. 3).

– We present CyFuzz, a conceptual framework for (1) generating random but
valid models for a CPS modeling language, (2) simulating the generated mod-
els on alternative CPS tool chain configurations, and (3) comparing the sim-
ulation results (Sect. 4). We then describe interesting implementation details
and challenges of our prototype implementation for Simulink (Sect. 5).

– We report on our experience of running our prototype tool on various Simulink
configurations (Sect. 6), identifying comparison errors and semi-independently
reproducing a confirmed bug in Simulink’s Rapid Accelerator mode.

2 Background: Model-Based CPS Design and Simulink

This section provides necessary background information on model-based devel-
opment. We define the terms used for explaining a conceptual differential testing
framework and subsequently relate them with Simulink.

2.1 CPS Model Elements

The following concepts and terms are applicable to many CPS modeling lan-
guages (including Simulink). A model, also known as a block-diagram, is a math-
ematical representation of some CPS [18]. Designing a diagram starts with choos-
ing elementary elements called blocks. Each block represents a component of the
CPS and may have input and output ports. An input port accepts data on which
the block performs some operation. An output port passes data to other input
ports using connections. An output port can be connected to more than one
input port while the opposite is not true in general. A Block may have parame-
ters, which are configurable values that influence the block’s behavior. Somewhat
similar to a programming language’s standard libraries, a CPS tool chain typi-
cally provides block libraries, where each library consists of a set of predefined
blocks.

Since hierarchical models are commonly found in industry, CyFuzz supports
generating such models as well. This can be achieved by grouping some blocks
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of a model together and replacing them by a new block which We call a child,
whereas the original model is called parent.

When simulating, the SUT numerically solves the mathematical formulas
represented by the model [18]. Simulation is usually time bound and at each
step of the simulation, a solver calculates the blocks’ outputs. We use the term
signal to mean output of a block’s port at a particular simulation step.

The very first phase of the simulation process is compiling the model. This
stage also looks for incorrectly generated models and raises failures for syntactical
model errors, such as data type mismatches between connected output and input
ports. If an error is found in the compilation phase, the SUT does not attempt
simulating the model. After successful simulation, code generators can generate
native code, which may be deployed in target hardware [1].

2.2 Example CPS Development Environment: Simulink

While our conceptual framework uses the above terms, they also apply directly
in the context of Simulink [21]. Besides having a wide selection of built-in blocks,
Simulink allows integrating native code (e.g., Matlab or C code) in a model via
Simulink’s S-function interface, which lets users create custom blocks for use
in their models. Simulink’s Subsystem and Model referencing features enable
hierarchical models.

Simulink has three simulation modes. In Normal mode, Simulink does not
generate code for blocks, whereas it generates native code for certain blocks in
the Accelerator mode. Unlike in these two modes, the Rapid Accelerator
mode further creates for the model a standalone executable. To capture sim-
ulation results we use Simulink’s Signal Logging functionality as we found
implementing it quite feasible. However, for cases where the approach is not
applicable (see [21]), we use Simulink’s sim api to record simulation data.

3 Study of Existing Bugs: Incorrect Code Generation

To understand the types of bugs Simulink users have found and care about, we
performed a study on the publicly available bug reports from the MathWorks
website1. We identified commonalities in bug reports, which we call classifica-
tion factors. We limited our study to bug reports found via the search query
incorrect code generation, as earlier studies have identified code generation as
vulnerable [1,22].

We investigated bug reports affecting Matlab/Simulink version 2015a as we
were using it in our experiments. As of February 17, 2016, there were 50 such
bug reports, among which 47 have been fixed in subsequent releases of the prod-
ucts. Table 1 summarizes the findings. Our complete study data are available at:
http://bit.ly/simstudy.

Table 1 shows only those classification factors that affect at least 20% of
all the bug reports that we have studied. We use insights obtained from the
1 Available: http://www.mathworks.com/support/bugreports/

http://bit.ly/simstudy
http://www.mathworks.com/support/bugreports/
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Table 1. Study of publicly available Simulink bug reports. The right column denotes
the percentage of bug reports affected by a the given classification factor. Each bug
report may be classified under multiple factors.

Classification factor Bugs [%]

Reproducing the bug requires a code generator to generate code 60

Reproducing the bug requires specific block parameter values and/or port
or function argument values and data-types

56

Reproducing the bug requires comparing simulation-result and generated
code’s output

54

Reproducing the bug requires connecting the blocks in a particular way 36

Reproducing the bug requires specific model configuration settings 32

Reproducing the bug requires hierarchical models 24

Reproducing the bug requires built-in Matlab functions 20

study in our CyFuzz prototype implementation. For example, many of the bug
reports (54%) are related to simulation result and generated code execution
output mismatch. Thus, differential testing (e.g., by comparing simulation and
code execution) seems like a good fit for finding bugs in CPS tool chains. Further
insight that is reflected in our tool is that it is worth exploring the large space
of possible block connections (36% of bug reports) e.g., via random block and
connection generation. Other insights we want to use in the future are to incor-
porate random block parameter values and port data-types (56%) and model
configurations (32%).

4 Differential Testing of CPS Development Tool Chains

At a high level we can break our objective into two sub goals: creating a random
model generator and defining a comparison framework. We first present a theory
applicable to a conceptual CPS framework in this section. Figure 1 provides a
schematic overview of CyFuzz’s processing phases. The first three phases belong

Fig. 1. Overview of the differential testing framework. The first three phases cor-
respond to the random model generator, while the rest belongs to the comparison
framework.
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to the random model generator, and the remaining two constitute the comparison
framework. The first two phases create a random model (which may violate
Simulink’s model construction rules). The third phase fixes many of these errors,
such that the model passes the SUT’s type checkers and the SUT can simulate
it. If it succeeds it passes the model to the fourth phase to simulate the model
in various SUT configurations and to record results. The final phase detects any
dissimilarities in the collected data, which we call comparison error bugs.

4.1 Conceptual Random Model Generator

Following are details on the generator’s three phases.

Listing 1.1. Select Blocks phase of the conceptual random model generator.

method select_blocks (n, block libraries):
/* Choose n blocks from the given block libraries, place the blocks

in a new model, configure the blocks, and return the model. */

m = create_empty_model() // New, empty model

blocks = choose_blocks(n, block libraries) // N from block libraries
for each block b in blocks:

place_block_in_model(m, b)
configure_block(b, n, block libraries)

return m

Select Blocks. Listing 1.1 summarizes this phase, which selects, places, and
configures the model’s blocks. The generator has a list of block libraries and
for each library a predetermined weight. Using the weights, the choose blocks
method selects n random blocks. The value n can be fixed or randomly selected
from a range. On a newly created model the generator next places each of
these blocks using the place block in model method. For creating inputs, CyFuzz
selects various kinds of blocks, to, for example, provide random inputs to the
model.

The configure block method selects block parameter values and satisfies
some block constraints (e.g., by choosing blocks required for placing a certain
block). For creating hierarchical models, a child model is considered as a regular
block in the parent model and is passed as a parameter to configure block,
which calls select blocks to create a new child model. Here n is equal to the
parent model, but block libraries may not be the same (e.g., certain blocks are
not allowed in some Simulink child models).

Connect Ports. The second phase follows a simple approach to maximize the
number of ports connected. CyFuzz arbitrarily chooses an output and an input
port from the model’s blocks, prioritizing unconnected ports. It then connects
them and continues the process until all input ports are connected. Consequently,
some output ports may be left unconnected.
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Listing 1.2. fix errors tries to fix the model errors that the simulate method raises;
p is a SUT configuration; t denotes a timeout value.

method fix_errors (m, p, attempt limit, t):
for i = 1 to attempt limit:

< rpstatus, r
p
data, errors > = simulate(m, p, t)

if rpstatus is error:
if fix_model(m, errors) is false:

return < rpstatus, r
p
data, errors >

else:
return < rpstatus, r

p
data, errors >

return simulate(m, p, t)

Fix Errors. Because of their simplicity, CyFuzz’s first two phases may generate
invalid models that cannot be simulated successfully. The third phase tries to
fix these errors. Listing 1.2 outlines the approach. It uses method simulate to
simulate model m up to time t ∈ IR+ (in milliseconds) using SUT configuration p.

The simulate output is a 3-tuple, where rpstatus is one of success, error,
or timed − out. Note that first step of simulation is compiling the model (see
Sect. 2). If m has errors, simulate will abort compilation, storing error-related
diagnostic information in errors. rpdata contains simulation results (time series
data of the model’s blocks’ outputs) if rpstatus = success.

At this point we assume that the error messages are informative enough
to drive the generator. For example, Simulink satisfies this assumption. Using
errors, fix model tries to fix the errors by changing the model. As it changes
the model this phase may introduce new errors. We try to address such sec-
ondary errors in subsequent loop iterations in Listing 1.2, up to a configurable
number attempt limit. While this approach is clearly an imperfect heuristic, it
has worked relatively well in our preliminary experience (as, e.g., is indicated by
the low error rate in Table 2).

4.2 Conceptual Comparison Framework

Here we explore simulating a randomly generated model varying SUT-specific
configuration options of a CPS tool chain, and thus testing it in two phases.

Log Signals. If simulation was successful in the Fix Errors phase, CyFuzz
simulates the model varying configurations of the SUT in this phase; let P be
such a set of configurations. Using the simulate method introduced in Sect. 4.1,
for each p ∈ P we calculate <rpstatus, r

p
data, errors> = simulate(m, p, t) for a

model m and add rpdata to a set d only if rpstatus = success. We pass d to next
phase of the framework. rpdata should contain time series data of the output
ports of the model’s blocks at all available simulation steps. In the next phase,
however, we use only the values recorded at the last simulation step; we leave
comparing signal values at other simulation steps as future task.



A Differential Testing Framework for CPS Development Environments 53

Compare. In its last phase, CyFuzz compares the recorded simulation results
d obtained in the previous phase using method compare (Listing 1.4). It uses
method retrieve, which returns the signal value of a particular block’s particular
port at a given time instance. If the value is not available (e.g., blocks that do
not have output ports do not participate in signal logging), it returns the special
value Nil . compare also uses method latest time which returns the time of the
last simulation step for a given block’s particular port. If no data is available, it
returns Nil .

Listing 1.3. Determining equivalence via tolerance limit ε.

method equiv (p, q):
if p and q are Nil: // Missing both data points

return true
if p or q is Nil: // Missing one data point

return false
return |p − q| < ε

Listing 1.4. This method compares two execution results (of model m) taken as first
two arguments and throws errors if it finds a dissimilarity.

method compare (rpdata, r
q
data, m):

for each block b of the model m:

for each output port y of the block b:
tp = latest_time(rpdata, b, y)
tq = latest_time(rqdata, b, y)
if equiv(tp, tq) is false:

throw ‘‘Time Mismatch’’ error

else if tp �= Nil:
if equiv(retrieve(rpdata, b, y, tp), retrieve(r

q
data, b, y, tq)) is false:

throw ‘‘Data Mismatch’’ error

Now, taking two elements from d at a time we form all possible pairs (rpdata, r
q
data)

where p �= q and apply method compare on them. As comparing floating-point
numbers using straight equality checking is problematic [1,23], eqiv (Listing 1.3)
method uses a tolerance limit to determine floating-point equivalence. If compare
reports an error, we mark m as a comparison error for p, q and submit it to
manual inspection.

5 CyFuzz Prototype Implementation for Simulink

We have developed a prototype implementation of CyFuzz mostly in Matlab. The
tool continuously generates one Simulink model at a time and then passes it to
the comparison framework. Source code, implementation and usage details, sam-
ple generated models, and detailed experiment results are available at: https://
github.com/verivital/slsf randgen.

https://github.com/verivital/slsf_randgen
https://github.com/verivital/slsf_randgen
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Selecting and Configuring Blocks. Simulink itself has over 15 built-in libraries.
MathWorks also offers toolboxes, which add to Simulink additional libraries.
To date we have included in our experiments blocks from only four of these
libraries, Sources, Sinks, Discrete, and Concrete. We use default parameter
values for configuring most blocks. However, some Simulink blocks do not allow
placing multiple instances of the same block with the same default value in a
model. For these blocks we randomly choose parameter values.

Generating Hierarchical Models. Since hierarchical models are very popular
among Simulink users, our prototype can generate them. Currently, the generator
uses Model referencing and For each subsystems blocks to create hierarchi-
cal models. CyFuzz generates model hierarchies up to a configurable depth. In
doing so it places and configures related blocks. For example, CyFuzz automati-
cally puts input (output) related blocks in a new child model which are used to
accept (return) data from (to) the parent model. The number of blocks for the
top-level and child models are chosen randomly from user-provided ranges.

Fix Errors Phase. We utilize Matlab’s exception handling mechanism to learn
what prevented successful compilation of the model. Some information (e.g.,
the error type) can be directly collected from the exception. Collecting other
important information, such as the actual problematic block, can be nontrivial.
For example, for algebraic loop errors sometimes CyFuzz has to identify other
blocks (e.g., a parent block) to fix the problem. As another example, the current
CyFuzz version does not attempt to know the data types of the ports in the
Connect Ports phase. Rather, it collects such information when compiling the
model using diagnostic information returned by the SUT.

Models with Random Native Code. To facilitate blocks with custom behavior,
Simulink allows placing native code (C, Matlab etc.) directly in models. To gen-
erate such blocks we leverage Csmith, which generates random C programs [10].
We designed simple Simulink blocks using Matlab’s S-function interface that
use random code generated by a customized version of Csmith. Our customized
version is capable of generating many different C functions that can be called
from various simulation steps. We looked for both crash errors and “wrong code
errors” (similar to our comparison error). However, this is not fully integrated
with CyFuzz yet.

The Comparison Framework. CyFuzz starts with varying simulation modes
(see Sect. 2.2). And compiler optimization levels. For instance, “Normal mode”,
“Accelerator mode; optimization on”, and “Rapid Accelerator; optimization
off” are options to vary. Varying compilers, code generators, solver-specific set-
tings, and other possible SUT configuration options are future work.

6 Experience with CyFuzz

Here we analyze our prototype implementation based on experimental results.
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6.1 Research Questions (RQ), Experimental Setup, and Results

Throughout this work we explore the following research questions.

RQ1 Is the random model generator effective? Which portion of the generated
models can the SUT compile and simulate within a given time bound?

RQ2 Using the generated models, can the comparison framework effectively
find bugs (comparison errors or crashes) in the SUT ?

RQ3 What is the runtime of each of CyFuzz’s stages? Does the generator scale
with the generated model’s number of blocks?

To answer these questions we conducted experiments using Matlab 2015a on
Ubuntu 14.10 and varied simulation mode (Normal vs. Accelerator) and opti-
mizer (on vs. off) for the later mode. For the fix errors method (Listing 1.2)
we chose attempt limit 10 and timeout 12. For choosing blocks we used a tra-
ditional O(n) implementation of the fitness proportion selection algorithm [24].
We have not included in these experiments hierarchical models or custom blocks.

Effectively Creating Random Models (RQ 1). As the experimental results in
Table 2 suggest, our tool can generate many models that Simulink can success-
fully simulate. For each row in the table we have a low error and timed-out
rate. This high success rate is crucial for the framework as it only uses such
valid models in the tool’s later comparison framework phases. We also observed
that the number of errors and timed-out models varied with the selected block
libraries, but we have not yet analyzed the reasons of these variations.

Table 2. Each row represents a separate experiment. Columns 3–6 is the percentage
of blocks selected per library (e.g., experiment A chose 80% of the blocks from the
Discrete library). Error denotes the number of models that failed to simulate. Timed-
out denotes the models that did not complete simulation within the time bound.

Exp.
label

Total
models

Discrete

[%]
Concrete

[%]
Source

[%]
Sink

[%]
Error
[%]

Timed-
out [%]

Confirmed
bugs [%]

A 1172 80 0 10 10 9.73 0.60 0

B 1095 43 37 10 10 1.74 7.03 0

C 1449 0 80 10 10 12.01 8.63 0

Table 3. More information on experiments from Table 2. Columns 3–7 denotes the
time taken by the five phases of CyFuzz. Runtime denotes the average time CyFuzz
spent for a model.

Exp.
label

Blocks/
model

Select
blocks [%]

Connect
ports [%]

Fix errors
[%]

Log signals
[%]

Compare
[%]

Runtime
[sec]

A 35.00 7.85 0.64 16.00 74.55 0.96 40.37

B 34.96 6.06 0.39 16.06 76.86 0.63 51.87

C 35.05 8.09 0.51 11.02 79.58 0.80 42.51
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Effectiveness of Comparison Framework (RQ 2). We have not found new bugs
yet, however, our framework reproduced an existing bug and found interesting
cases (see Sect. 6.2).

Runtime Analysis (RQ 3). The Select Blocks algorithm of Listing 1.1 has run-
time O(n), n being the number of blocks in the model and using an O(1) block
selection algorithm. The random model generator scales linearly with the number
of blocks. But as the number of blocks grows, the number of timed-out models
and errors also grow. A preliminary analysis suggests that there are relatively
few distinct error causes. We group errors by their causes and fixing one cause
dramatically increased the overall number of successfully executed models.

Table 3 indicates that the Log Signals phase uses most of the runtime. This
result is not surprising, as in this phase the SUT simulates the model, generates
and executes code, and logs the data, all of which are time consuming tasks.

Using Native Code/Custom Blocks. In separate experiments we used a
fixed Simulink model with a custom block created using S-Function. We repeat-
edly generated random C code using a customized version of Csmith and plugged
this code in the S-function, which effectively ran the code once we simulated
the model. We used different optimizer settings for GCC when compiling and
were able to reproduce crash and “wrong code” bugs of GCC 4.4.3. This shows
that incorporating Csmith in our framework is promising. However, more work
is needed to fully utilize Csmith-generated programs and create sophisticated
Simulink blocks using them. One limitation is that floating-point support in
Csmith is currently still basic and can only be used for detecting crash-bugs.

6.2 Interesting Comparison Framework Findings

Following are two interesting findings of our experiments, including one inde-
pendently rediscovered confirmed Simulink bug.

Comparison Error for Models with Algebraic Loops. In our experiments
we noticed comparison errors for some models where Simulink solved algebraic
loops. Investigating further we noticed that when Simulink solves an algebraic
loop it is not confident of its correctness [21]. For this, we did not classify this case
as a bug. CyFuzz now eliminates algebraic loops altogether rather than relying
on Simulink to solve them. We note that one can use our tool to opportunistically
discover such inaccuracies for models with algebraic loops and decide whether
to accept Simulink’s solution for solving the loops.

Bug in Simulink’s Rapid Accelerator Mode. In separate experiments with
hierarchical models, we noticed that for a model (see Fig. 2) values of a Simulink
Outport block are significantly different in Normal and Rapid Accelerator
mode. This was detected automatically by our comparison framework. After
submitting a bug report MathWorks confirmed that the case was already iden-
tified as a bug and they fixed it for later versions.
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Fig. 2. Screen-shot of generated top-level Simulink model which reproduced a bug

7 Future Work and Discussion

Our ultimate goal is to provide a full-fledged fuzz-testing framework for Simulink.
Our work on CyFuzz and our prototype implementation for Simulink are thus
both ongoing. Following is a sample of the opportunities for improvement.

The current prototype implementation has several limitations. Currently, the
tool chooses blocks from only four built-in libraries. Incorporating additional
libraries will increase the expressiveness of generated models and thus its poten-
tial for finding bugs. Also, we plan on integrating custom blocks developed using
native code and perform experiments we were not able to conduct yet.

The comparison framework implementation is also not free from shortcom-
ings. So far, we have only used various simulation modes and compiler opti-
mization levels. However, we are interested in adding more variations (e.g. those
listed in Sect. 5). Finally, CyFuzz should compare signals in multiple simulation
steps, since it was also found effective in previous work [25].

8 Related Work

The following focuses on the most closely related work not covered by the intro-
duction section. Existing approaches for CPS testing mostly aim at generating
test cases for existing models (e.g., [18,26]) and do not target testing of CPS tool
chains. Code generator testing [1,27] only target a relatively small component of
the CPS tool chain but not an entire CPS tool chain.

Most of the compiler fuzzers perform random walks over a context-free gram-
mar, thus mainly focusing on generating syntactically valid [14] and well typed
programs in imperative languages [10,11,28,29]. None of the works target data-
flow languages like Simulink. We find Csmith most related to our work, which is
state-of-the-art C compiler fuzzer. Csmith leverages the well-published C99 stan-
dard and can be used to test only a component of entire CPS tool chain [10]. Our
test generation and comparison techniques differ fundamentally from Csmith.
Conceptually, CPS tool chain fuzzing is a super-set of the schemes presented in
Csmith. CPS tool chains typically contain a C compiler; thus CyFuzz leverages
Csmith as a component.

Earlier work includes a differential testing based runtime verification frame-
work, leveraging a random hybrid automata generator [25,30]. Other works
attack code generators used in CPS tool chain. Stürmer et al. generate model tak-
ing specification of a code generator’s optimization rules in graph grammar [1].
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But such specifications for code generators might not be available and white-
box testing in parts is undesirable [31]. Sampath et al. propose testing model-
processing tools taking semantic meta-model of Stateflow (a Simulink compo-
nent) [31]. But the approach does not scale and the complete specifications it
needs are not available. In contrast, we propose the first fuzz-testing framework
to test arbitrary CPS tool chains based on feasible model generation.

Many CPS model verification and safety checking approaches have been pro-
posed [8,32]. Recent work verifies existing SL/Stateflow (SL/SF) models by gen-
erating test inputs for these models [18,19]. Alur et al. analyze generated sym-
bolic traces of a SL/SF model, and combine simulation and symbolic analysis
for improving coverage of given SL/SF models [33]. The Simulink Code Inspector
compares generated code for a given model based on structural equivalence and
traceability [21]. However none of these approaches describe random generation
of Simulink models for fuzzing the CPS tool chain.

9 Conclusions

This work addresses the CPS tool chain quality problem using a differential test-
ing scheme. Existing work either does not test CPS development tool chains or
only tests small subsets. As CPS tool chains are actively developed and released,
formal specification based test generation schemes are not suitable for fuzzing
CPS tool chains. Rather, our approach follows a simple model generation strat-
egy applicable to arbitrary CPS modeling languages. Starting with a random
and possibly erroneous model, our generator fixes various errors in the model
using diagnostic information returned by the system under test. In our experi-
ments a high portion of the generated models could thus be executed without
errors.

We also define techniques to find bugs in CPS tool chains based on simulation
result comparison. The approach is effective as our prototype implementation
for Simulink found interesting cases and one bug. Although our model generator
is scalable and fully automatic, more work is needed to systematically search
the huge space of possible data-flow models and generate those models that are
likely to find bugs in modern CPS development environments.
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Abstract. In this paper we present Ardán, a novel simulation platform
using a 3D game engine to stand-in for the real world, providing realistic
physics and realistic crowds that can interact in real-time with a cyber-
physical simulation. Ardán features 3D device (sensor and actuator)
placement, flexible time-control, phenomena-on-demand as well visuali-
sation, virtual devices and native application code. The flexibility, control
and scalability of Ardán is demonstrated with a corridor case-study that
supports upto 200 nodes running at real-time or faster.

1 Introduction

Despite the growth in interest in the fields of sensor networks, cyber-physical
computing and the Internet of Things, developing and testing distributed net-
works of devices remains a difficult task. Testing and understanding how the
environment interacts with a cyber-physical system (CPS) and vice-versa relies
upon deploying devices in the target environment and waiting for or creating
the desired phenomena to interact with the CPS. Phenomena can include events
such as movement of devices or objects in the environment, passive or active
interaction with people (pressing buttons, triggering motion sensors), or other
sensor events. Thus, performing test deployments can be time-consuming, diffi-
cult and expensive to run repeatedly.

To address this issue various tools and techniques have been developed, such
as test-beds [5,6,8] and simulators [9,10,12,13,15]. However, existing tools and
techniques aren’t adequate for reliably and comprehensively testing these devices
in the context of their target environment and the phenomena which may occur
within it. Current approaches for testing sensor networks and CPS have focused
heavily on accurately simulating devices, the network and power consumption,
with great success [10,12]. However, support for interacting with the environment
is limited, typically performed using recorded or designed sensor trace data. This
approach can be inaccurate, unrealistic and is restricted to what was recorded.

In this paper we present a novel approach to this problem, integrating a
freely available high-performance 3D video game engine (Unreal Engine 4) with
an existing sensor network simulation platform (Cooja), creating an end-to-end
simulation solution for realistic testing of sensor networks in their target environ-
ments. By integrating a 3D game engine, we are introducing sensor network sim-
ulations into virtual reality with a real-time and dynamic virtual world, utilising
c© Springer International Publishing AG 2017
C. Berger et al. (Eds.): CyPhy 2016, LNCS 10107, pp. 61–70, 2017.
DOI: 10.1007/978-3-319-51738-4 5
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the game engine’s realistic physics and realistic crowds to influence and test the
deployed sensor network.

Our contributions consist of:

– A novel 3D simulator for testing cyber-physical systems in a virtual world
using realistic physics and crowds to simulate interactions with the environ-
ment and people.

– An example case study, the corridor, demonstrating some of the capabilities
of Ardán and providing a benchmark for future work.

2 Ardán

In this section we give an overview of the main features of Ardán1 followed by
an overview of its design.

2.1 Features

3D design and placement. A key part of many CPS projects is understanding
how many and where to place devices within the environment to achieve some
desired objective, such as device failure tolerance or sensing accuracy. With
Ardán developers are able to easily and quickly augment 3D environments with
devices, scale up or down the size and topology of the device network as well as
move devices around 3D environments to test different configurations.

Time Control. Unlike in real-world deployments, Ardán developers are able to
control time in the simulated world. Developers can: stop-the-clock, freezing both
the simulation and world in time, whilst giving them full control over what they
see, allowing more time to observe the environment and move between points
of interest; slow down time, giving developers more time to observe or control
the simulation; or even speed up time, providing desired results in considerably
less time.

Phenomena-on-demand. In order to better test and understand sensor net-
work applications in the real-world, developers often need to wait for or even force
desired phenomena to occur and then observe how their system reacts. However,
exercising control over the real-world can be a difficult and time-consuming chal-
lenge, and sometimes not possible (e.g., fire), due to health and safety concerns.

Using Ardán, developers can take direct control of a virtual person or script
realistic virtual crowds to carry out tasks, such as walking between points, avoid-
ance, following or interacting with objects. Figures 1 and 2 show people walking
up and down a corridor, avoiding each other’s path. Unlike using trace data, gen-
uine or created, developers can easily tweak scenarios, such as moving devices,
people or adjusting behaviour, to test subtle or significant variations.

Pattern-matching Eventbus. Logging events in a CPS is vital for post-
experiment analysis. Our design utilises the Homework Cache [14], an event
1 Ardán, pronounced “awrd-awn”, is the Gaelic word for platform.
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(a) Over-the-shoulder view (b) Camera view

Fig. 1. 15 people walking up and down the virtual corridor, triggering motion sensors

Fig. 2. Birds-eye view

publish-subscribe engine as the core communication mechanism, into which
events for both the CPS and virtual world are injected. The Homework Cache
provides the ability to perform real-time complex event pattern-matching over
the event stream to detect phenomena of interest, such as misbehaving nodes or
network partitions.

Visualisation. Ardán provides tools to overlay visualisations of network and
device meta-information on top of the virtual world to help understand how the
network is running, allowing developers to see information such as how network
paths form as packets are sent, as well as transmissions, receptions, interruptions.
In Fig. 2, sending devices are highlighted with a circle and receiving devices are
connected by an arrow to the sender, each device is represented with its own
colour, to help differentiate simultaneous transmissions.

Virtual Sensors and Actuators. Within Ardán we have modeled several basic
sensors and actuators, including motion detectors, buttons, lights and location.
These act as virtual hardware for the simulated sensors, allowing the simulation
to interact with the virtual world. Virtual sensors can be designed to model a
real sensor’s behaviour, or be virtually improved to provide higher accuracy or
more features, not possible (yet) with existing hardware, opening the door to
experimental virtual hardware prototyping.
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2.2 Design

Ardán itself is not a single component, but a collection of plugins for facilitating
the communication and arbitration between different tools, shown in Fig. 3. The
individual tools act as peers, sharing information with each other to inform their
individual simulations/operations, e.g., location updates sent from the 3D game
engine to the simulator, affecting radio transmission.

Fig. 3. Ardán architecture

While the goal of work is to build an improved simulation experience for
testing sensor network applications by integrating a 3D game engine into the
pipeline, we also want to create an architecture that can support future integra-
tion of tools to improve the field of sensor network application testing.

Thus, rather than integrate the systems directly, our approach uses an event
bus and common schema to describe information passed between the different
sub-systems. This approach reduces the tight coupling between components,
allowing individual components to be swapped out or new ones added. We envi-
sion the use of tools such as model checking, statistical analysis, unit-testing and
advanced simulation for radio and environmental properties.

The wireless sensor network (WSN) simulator, Cooja [12], performs all appli-
cation and network simulation for the co-simulation and is configured with a set
of nodes with their 3D location and native application code written in Contiki
to run. As the application code is run in real-time, any sensor- or actuator-based
hardware requests, such as sensor reads and actuator commands, are forwarded
to the 3D game engine to be performed in the virtual environment.

Within the Unreal Engine we modeled a 3D environment and created a
several components to support deploying virtual sensor networks, including
device and sensor 3D models, hardware abstractions for the virtual sensors and
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actuators to sense the virtual world and report back to the simulator over the
network bus. Similarly within the Cooja simulator we have modified the simu-
lated hardware to communicate to our virtual hardware in the Unreal Engine.

Key features of games engines, aside from the 3D modelling and graphics
tools, are their support for advanced physics and lighting simulations. Typically
performed by middleware, physics engines, such as PhysX [3] and Havok [1],
provide real-time realistic physics including collision detection, rigid- and soft-
body physics, forces and motion, fluid and particle simulation, and destruction.
Using these tools, game worlds and the objects within react to the player as we
would expect, such as objects falling due to gravity or rebounding after a colli-
sion. Similarly, games engines also provide advanced lighting, enabling the use
of both static and mobile lighting, with dynamic shadows, occlusion, reflection
and refraction. Lighting is key to bringing virtual scenes to life, by illuminating
spaces, guiding viewers attention and creating natural divisions between areas.

3 The Corridor: A Case Study

To demonstrate what development of a non-trivial CPS application using Ardán,
we devised the following case study, based on an office corridor; we show how it
helps developers to test and visualise different scenarios using its novel features,
and demonstrate its scalability with up to 200 devices.

The case study focuses on controlling the lighting within a modern day office
corridor, with the goal of striking a balance between energy efficiency, effective
lighting and user comfort. The ideal corridor lighting scheme should provide
a pleasant lighting scheme for users of the corridor, able to adjust based on
ambient light levels, gradually illuminating as they progress through it, whilst
also ensuring energy is minimised by turning off or reducing the brightness of
unused or infrequently used parts of the corridor.

Thus, this provides an interesting and non-trivial task, due to the many ways
in which the corridor can be entered/exited or moved around within in; people
can enter from the beginning, end or from a room; people can move down the
length of the corridor or directly from room to room; people often also stop
in the corridor, spending time talking or waiting. Similarly, understanding the
ideal number and placement for devices and sensors, and how it affects applica-
tions, such as power, reliability, robustness etc. Hence, providing effective lighting
schemes can prove difficult to analyse and reason without rigorous testing.

The rest of this section will demonstrate and discuss the use of Ardán to
design, analyse and test for our target environment, the corridor, highlighting
the features and benefits that the tool provides.

3.1 Corridor Setup

We created a virtual corridor within Unreal based on a real corridor within our
building, measuring 20×1.5 m, with 5 doors spaced evenly on either side. Along
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Fig. 4. Corridor layout with nodes and conical motion detection zones

the corridor we placed 15 nodes with lights and conical motion sensors attached
to the ceiling facing the floor directly below, shown in Fig. 4.

To construct the corridor, we used pre-existing models for walls, doorways
and lights, making it quick to build the required environment. In addition to
these, we created several new 3D models for nodes and a variety of sensors,
which can be composed together to create different sensing devices. A drag-and-
drop interface is used to place nodes within the newly built 3D environment. The
node 3D model is based on a small box with 3 coloured lights, representing the
typical LED outputs available on devices, such as the TelosB mote. Each node
has a directional light and conical motion sensor attached, giving it the ability to
detect when a person moves into range. Nodes also contain parameterised logic
to model their functional behaviour within the virtual world, enabling developers
to tweak a node’s sensing and actuating capabilities to match desired attributes,
such as detection accuracy or responsiveness.

The next step was to create the nodes in the Cooja simulator, compiling and
loading node application code. Using the IDs Cooja assigns to these nodes, the
virtual representations were assigned matching IDs. This is especially important
when certain applications are loaded on particular nodes, or when node IDs are
used programmatically e.g., for location, routing or ordering.

3.2 Lighting Algorithm

For our case study we developed a basic lighting algorithm which waits for a
motion detection event before illuminating its light for 5 s and notifying its clos-
est neighbours. If it receives a message from a neighbour, it checks that it’s
adjacent, before illuminating its light for 3 s. Using the tool we iteratively devel-
oped the algorithm, with the goal of implementing directional path illumination
and loitering detection.

3.3 Testing with “What if?” Scenarios

When testing CPS deployments, “what if” questions about how the system
will perform will naturally arise, in this case we can ask: “what if we move or
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increase/decrease the number of nodes?”, “what if there are crowds of people?”,
or “what if we place sensors differently or use more/less sensitive ones?”. Being
able to quickly test and understand what happens to a system in these different
scenarios is key to improving its reliability and efficiency.

In order to test our lighting application we devised several test scenarios
based on these questions to test both basic and complex situations for which
we expect the system to perform correctly with; the complexity of a scenario
increases as the number of agents in the scene increases and the pattern of
movement changes from simple start to end directions, thus becoming more
difficult to visualise and debug conceptually.

We tested two node configurations, with 5 and 15 nodes placed along the
corridor. Using Ardán we experimented with node placement, attempting to
find ideal placement strategies to improve the responsiveness and efficiency of
the lighting. We found that placing nodes outside of office doors key to ensuring
adequate lighting for when people enter and leave the corridor.

(a) Over-the-shoulder view (b) Corridor view

Fig. 5. Viewing the corridor lighting algorithm from different viewpoints.

We also found by using a greater number of nodes and placing them so
that motion detection zones crossed, allowed for the design of a more efficient
and pleasant lighting experience. Rather than turning on and off large zones
of multiple lights, with fine grained detection we’re able to gradually turn on
and off light zones, resulting in less lights on at full brightness and a smoother
transition from darkness to light. Using Ardán we can also experience this first
hand by observing the corridor from the viewpoiont of virtual people as they
traverse the space, shown in Fig. 5a, or view it from a CCTV perspective, shown
in Fig. 5b.

3.4 Crowd Control

When simulating a scenario with a single person, we’re able to take control
and guide them along the corridor using the mouse cursor. However, simulating
multiple people it becomes more challenging, choosing their destinations and
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ensuring they avoid one another. Using the game engine, we’re able to take
advantage of its path-finding and collision avoidance tools, to better control
and direct crowds of people in a simulation. In this case, within our corridor
we placed several target locations which the simulated people systematically
attempt to walk to, navigating around obstacles and avoiding one another.

3.5 Performance

To prove useful Ardán needs to be able to scale to support large CPS consisting
of tens if not hundreds of devices whilst ensuring synchronised behaviour at real-
time or faster. To demonstrate the scalability of Ardán, we used the case study
described in Sect. 3, and scaled the number of nodes and running speed of the
simulation. Within the corridor we placed the sensor nodes and motion sensors
and implemented the algorithm discussed in Sect. 3.2.

The tests were run on the following spec machine: Xeon E5 1650 6 Core with
HT, 16 GB RAM, 256 GB SSD and a sufficiently powerful (MSI GeForce GTX
970) graphics card to support the game engine, otherwise, slow response times
between the simulator and 3D game engine would cause the simulation to stall
and drop below real-time performance.

Fig. 6. Plot (a) and (c) show game engine FPS and simulator speed with increasingly
large network sizes. Plot (b) shows the percentage of time the game engine stays above
115 FPS. Plot (d) shows the percentage of the total run time which the simulation
maintains above 99% and 95% of its target speed.

To understand how well Ardán performs, we measured the performance of the
individual components, the Cooja simulator and Unreal Engine, measuring the
real-time performance and the frames per second (FPS), for the respective tools.
The results in Fig. 6(c) and (d) illustrate the percentage of time Cooja is able to
maintain real-time speed; significant drops, below 95%, indicate the simulation
is lagging behind real-time, which could cause temporal bugs or artifacts which
would not exist in a real deployment. Similarly, for the Unreal Engine, perfor-
mance is measured in FPS. Regardless of the FPS the engine always maintains
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real-time peformance; the FPS represents the overall responsiveness of the engine
in terms of physics, input, output and networking, thus, a higher FPS provides
more responsiveness when communicating with the Cooja simulator.

The results show that Ardán can support up to 200 sensor nodes running
at real-time with the simulator staying reliably synchronised with real-time and
thus the game engine. Beyond this, the simulator performance degrades quickly
and struggles to keep up with real-time. The results in Fig. 6(a) and (b) also
show that the game engine maintains a consistent FPS above 115, resulting in
a smooth simulation and minimal overhead on the Cooja simulator. We also
performed tests on running Ardán at faster than real-time, at 200% speed. In
this mode, the game engine and its physics engine match the speed of the sim-
ulator, resulting in all activity increasing in speed. The results in Fig. 6 show
that roughly half the number of nodes can be simulated in time with the game
engine, with minimal fluctuation.

4 Related Work

Previous work on sensor network simulators [2,9,10,12], has focused on creat-
ing efficient, accurate and scalable solutions, at a variety of simulation levels.
However, they provide little support for controlling or simulating external input
into the network, relying on the use of hard-coded input, trace-fed data, scripts
or manual interaction with the simulated devices. Whilst useful in some cases,
these techniques limit the scope of testing, slow to create/update and inflexible.

Recent work by Mueller et al. [11] demonstrates the use of a 3D game engine
for prototyping a closed-loop control system for an electric two wheel vehicle.
The work utilises a 3D game engine to provide input/output for simulating the
interaction with forces in the virtual world. Similarly, 3D simulation has also
been used for design and testing of visual algorithms for robotic traversal and
navigation of virtual environments [4,7].

5 Conclusion

We demonstrated a novel approach for testing a cyber-physical, through the use
of a 3D game engine to simulate physics and crowds. Through the corridor case
study, we have shown how this approach can assist development of applications
and is scalable. In future, we envision integrating additional tools to Ardán,
such as test and monitoring frameworks, and model checking. Recent innova-
tions in virtual reality (VR) headsets, such as the HTC Vive, also offer exciting
possibilities into VR cyber-physical application design, placement and testing.
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Abstract. Hybrid models are highly relevant for the development of
embedded systems because they cover both their continuous and dis-
crete aspects. To master the increasing complexity of embedded sys-
tems design, transformation techniques such as automated refactoring
play an important role, as they allow for simplifying (sub)models. In
safety-critical environments, it is crucial to formally verify the behav-
ioural equivalence of source and transformed target model. For data-
flow models that contain control flow entities, this is a major challenge
because small deviations of trigger values at control flow elements can
yield diverging behaviour of the systems. In this paper, we present our
approach that enables the semi-automated verification of the behavioural
equivalence of hybrid MATLAB/Simulink models. To this end, we define
a static analysis that derives proof obligations to estimate the worst
case deviation between model and refactored model. Our approach can
be applied to many practical applications such as in the automotive or
aerospace industry where MATLAB/Simulink is a de-facto standard.

1 Introduction

Embedded systems are ubiquitous and continuously become more and more
important in the near future. Highly advanced manufacturing techniques allow
for the production of miniaturised, energy-efficient, highly inter-connected com-
ponents with huge computing power. This offers the chance to model systems
with a large functional range, but also means that the complexity is hard to man-
age. Especially in safety-critical environments, e.g. in the automotive, aerospace
or train industries, it is crucial to fully understand what the system does in
every possible scenario. This implies that designers for embedded systems must
follow established software engineering techniques. Among these, model-driven
engineering (MDE), refactorings and formal verification play an important role
because they allow for analysing abstract systems that are safely refined later
on. A correct refactoring is a model transformation that guarantees that the
behaviour of the source model compared to the transformed model is equiva-
lent. MATLAB/Simulink is a tool and the de facto standard for MDE in the
above mentioned industries. One of Simulink’s important features is the mod-
elling support for hybrid models. These are models containing both discrete and
c© Springer International Publishing AG 2017
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continuous parts together. Hybrid models allow for the design of the (contin-
uous) environment and the (discrete) control or, in mixed systems, of analo-
gous and digital parts of systems together. Consequently, they are of substantial
help for the designer to understand the desired behaviour of the whole system
comprehensively, especially in early design phases. However, establishing a for-
mal proof for the behavioural equivalence between hybrid Simulink model and
refactored counterpart is a major challenge. The main difficulty is that for the
continuous parts, the simulation is only able to calculate approximations rather
than performing exact operations. Consequently, equivalent behaviour cannot be
guaranteed in the traditional sense in general. We therefore adapted the weaker
notion of approximate bisimulation for Simulink and provided an approach to
verify transformation correctness of discrete or continuous Simulink models in
[22,23]. This means that we did not yet consider systems with both discrete and
continuous modelling elements within the same model.

In this paper, we present a methodology to enable the verification of behav-
ioural equivalence of hybrid Simulink models with control flow. This means in
Simulink perspective, the models contain switch blocks with three input ports
(two data ports and one control port) and a condition, which is connected with
an incoming control signal. If the control input fulfills the condition, the first data
signal is fed through, otherwise the second data signal. This case is comparable
with the discrete jumps at guards of hybrid automata [17].

As a starting point to achieve our goal, we use the approach presented in
[22,23], which enables the verification of refactorings of either solely discrete or
solely continuous models using the concept of approximate bisimulation. This
approach guarantees under certain conditions (i.e., proof obligations that the
designer needs to verify) that the values of source and target model vary within
an ε environment. The main challenge we need to deal with emerges if (1) the
input signal at a switch is continuous and (2) a refactoring takes place in the sub-
system impacting the input signal. In this case, small variations coming from the
approximately equivalent behaviour in the control input may result in diverging
behaviour at the outport of the switch and consequently at the observation.

Figure 1 shows an example. The control input signal is a sinusoid signal in
source and target model that mathematically speaking (i.e., if the simulation
step sizes would tend to 0) crosses the x-axis two times. The refactored control
signal is the mathematical solution of the ODE in the source model. The data
signals are just the constants 0 and 1 to illustrate the principle. The observation
at the output of the switch differs as shown in the output graphs below the model.
This observation depends on the sample step sizes and the precision ε from the
approach [23] as we show in this paper. This means, if certain additional proof
obligations can be verified, the diverging behaviour can be avoided, otherwise
the designer has to accept a larger ε.

With our approach, we provide an important first step to extend the app-
roach [23] for purely time-discrete or time-continuous models to cope with the
problem of verifying refactorings of hybrid Simulink models. In our approach,
we deal with hybrid models that patch purely time-discrete and time-continuous
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Fig. 1. Simulink example for diverging behaviour: Output

models together via a Switch block. Note that with our approach many indus-
trial applications, are already manageable, since (1) models with time-discrete
control part do not pose a problem (as we also show), (2) models with time-
continuous control part, but no refactoring in this part are supported and (3)
time-continuous and time-discrete data input (refactored or not) are supported.
However, we are confident to even extend our approach to be able to deal with
mixed time-discrete and time-continuous models (e.g. Unit Delay and Integrator
block in one system) in future work.

The rest of this paper is structured as follows. In Sect. 2 we provide some
background information that helps to understand the remainder of the paper.
Particularly, we give a brief introduction to Simulink and to the approach for
proving behavioural equivalence of solely discrete or solely continuous Simulink
models presented in [22,23], which we extend in this paper. Section 3 provides
an overview of our approach in this paper. In Sect. 4, we extend the Abstract
Representation from [23], which is a set of equations that describes how the
blocks modify their incoming signals, and provide a denotation. This denotation
associates the signal lines with the function that expresses how the respective
signal evolves over time - if this is possible (e.g. only if the underlying ODE
is analytically solvable). This also enables us to observe signals from inside a
Simulink model. This is covered in Sect. 5. In Sect. 6, we provide sufficient con-
ditions to check if the behaviour of a source and a target model does not diverge
from each other - or in which time period this can happen - and provide a brief
description of the resulting static analysis. In Sect. 7, we discuss related work.
We conclude with a summary and an outline for future work in Sect. 8.
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2 Background

In this section, we provide a short introduction to Simulink and briefly sum-
marize our approach for the verification of Simulink refactorings presented in
[22,23].

2.1 Simulink

Simulink is a widely used modelling language for dynamic systems. It is based
on MATLAB, and both products are developed by The MathWorks [25]. In
Simulink, dynamic systems are modelled as block diagrams. They can be sim-
ulated, and, with further software packages, it is also possible to automatically
generate code.

In this paper, we consider six kinds of Simulink block types: unsampled or
direct feed-through blocks (e.g. arithmetic blocks), discrete blocks (e.g. Unit
Delay, Discrete Integrator), continuous blocks (e.g. Integrator), sink blocks (e.g.
Scope), source blocks (e.g. Constant, Sine Wave, Ramp) and control flow blocks
(e.g. switch). Each block can have inports and outports. These are the interfaces
via which the blocks are connected.

In [6], Bouissou and Chapoutot defined an operational, synchronous seman-
tics for Simulink. It deterministically calculates the values for the next time
step for each signal line and each internal variable (for discrete and continuous
blocks). There exist two modes for a simulation: fixed step and variable step size
simulation. We provide a brief explanation for how the simulation is executed.

Initially, all outputs are calculated: direct feed-through blocks (e.g. arithmetic
blocks) are evaluated, the values of internal variables are written on the outgoing
signal line. Then, the discrete, internal variables are evaluated. Afterwards, the
internal variables for the continuous blocks are evaluated by applying a chosen
approximation method, e.g. Euler technique or one of the Runge-Kutta techniques
[7]. After this, a zero crossing detection takes place to check if the output signal
of discrete control elements, e.g. switches, needs to be changed. Finally, the next
simulation step size is calculated (only if variable step size simulation is activated)
and the simulation process starts again for the next sample step.

2.2 Proving Transformation Correctness for Discrete and
Continuous Simulink Models

In [22,23], an approach to semi-automatically show transformation correctness
of refactorings for Simulink systems that are solely discrete or continuous was
presented. Figure 2 provides an overview over this approach. The idea is that
the user extracts equations that describe the effect of all the blocks in a given
model. This equation set is called the Abstract Representation (AR) of the given
Simulink model. The respective interpretation of this AR is an output function
(or several if there are multiple output blocks) that satisfies all equations of the
AR. This is denoted by f |= [[M ]]. In [23], it is described that if the user is able
to show that the interpretations of both models yield the same values in a given
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Fig. 2. Approach for correctness of refactorings of discrete or continuous Simulink
models

simulation interval I, i.e., ∀t ∈ I : f(t) = g(t) with f |= [[M ]], g |= [[Mtrans]],
then the simulations of both models defined by the operational semantics for
Simulink [6] are approximately bisimilar with a certain precision ε, denoted
as M ∼ε Mtrans. The concept of approximate bisimulation is introduced, e.g.
in [11,13]. In principle, it compares states from two labelled transition systems
(LTS). The observations of the LTS must be in the same metric space. Two states
are approximately bisimilar with precision ε if the distance of their observations
is at most ε - and this also holds after one step in both LTS.

3 Proving Correctness of Refactorings for Hybrid Models
with Control Flow

To achieve the extension of the approach [23] for solely discrete or continuous
models to cover hybrid models with control flow, we proceed in three stages.

1. We extend the Abstract Representation (AR) to cover control flow elements.
In this context, we provide a more concise version of the AR, which moves
towards a denotational semantics.

2. Our approach is applicable whenever a given refactoring is located in the sys-
tem that influences the control input of a control flow element (e.g. a switch).
If the refactoring takes place at one of the data inputs, the approach [23] is
already sufficient. We therefore need a notion that expresses what it exactly
means that only the control input is influenced. Furthermore, we define a
notion that allows us to observe the inner behaviour of a given Simulink
model. In this course, we describe precisely the relations between Simulink
models, expressions and interpreting functions.

3. We provide additional conditions and proof obligations that allow the user
to verify the correctness of a given refactoring, i.e. approximate bisimulation
with precision ε. The sufficient conditions for the approximately equivalent
behaviour depend on several parameters that are either determined by para-
meters of a differential equation such as the Lipschitz constant or can be
modified by the user, e.g. the step size.
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Limitations and Assumptions

As representatives for discrete and continuous blocks, we currently support Unit
Delay and Integrator blocks respectively. All Unit Delays must have the same
sample times. Currently, we support fixed sample step sizes only. Feedback loops,
i.e., cycles in the Simulink graph, are only permitted with at least one Unit
Delay or Integrator in the cycle. This means that we do not support algebraic
loops, which is a minor restriction because they are practically irrelevant. As
control flow elements, we currently only support switch blocks directly. However,
the approach is transferable to other control flow elements such as If Action
subsystems. Our approach is also only applicable to systems that do not contain
time-discrete and time-continuous parts together in one submodel (e.g. Unit
Delay and Integrator in the same subsystem).

4 Denotational Abstract Representation of Hybrid
Simulink Models with Control Flow

In this section, we extend our Abstract Representation (AR) presented in [23]
with a denotation that enables the precise, formal description of the behaviour of
hybrid Simulink models with control flow. To this end, we introduce a denotation
for each signal line, which also defines the behaviour at control flow elements
(exemplified using a switch block). To achieve this, we firstly extend some of the
notions we already introduced in [23] to obtain a more handy notation.

Definition 1 (Simulink Model Syntax). A Simulink model is a tuple M =
(B,E, I,O, S, c, s, t) with B a finite set of blocks, E a finite set of signal lines,
I,O, S ⊆ B, respectively are sets of input, output blocks and blocks carrying a
state variable (Integrator and Unit Delay), I,O, S pairwise disjoint. c : B ×N →
E (for connection) provides the signal line at the n−th port of a block (the order
of the incoming signal line matters), s : E → B assigns a source block to a signal
line, t : E → B assigns a target block to a signal line. The subtuple (B,E, s, t)
is a graph.

Next, we enhance the AR and define a denotation for each signal line, which
expresses how the signal at this line evolves over time. Note that due to spacing
constraints, we move some definitions of the cases in the case distinction to the
bottom of the respective definition. Also note that in the following definition,
we use terms (set Term) in a straightforward way: in(t) to denote functions for
incoming signals, l(t) for state variables etc.

Definition 2 (Denotation for Simulink Models). Let M be a Simulink
model. We assign each signal line l ∈ E an expression exprM : E → Term, l �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ini(t) if s(l) ∈ I

l(t) if s(l) ∈ S

f(exprM (c(s(l), 1), ..., c(s(l), n)))
case(exprM (c(s(l), 2)) � ξ, exprM (c(s(l), 1)), exprM (c(s(l), 3)))
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Note that in the first case (l ∈ I), also specific functions are allowed, e.g.
sin(t) or even just 1 (constant). The third case applies for function blocks, f
stands for the function associated with the respective block s(l). The latter case is
applicable if the block s(l) is a switch. The condition in the latter case is extracted
as parameter from the Simulink model (the part �ξ, � can be <,≤, >,≥). The
denotation of a Simulink model M , [[.]] : E → R

I ∪ {⊥} (I being the simulation
interval) is defined as

[[l]] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ

ini if s(l) ∈ I

case([[c(s(l), 2)]] � ξ, [[c(s(l), 1)]], [[c(s(l), 3))]])
f([[c(s(l), 1)]], . . . , [[c(s(l), n)]])
⊥ otherwise

The first case is applicable if ϕ is the unique solution of the ODE d
dt l(t) =

exprM (c(s(l), 1)), l(t0) = init if s(l) is an Integrator or the solution of the dif-
ference equation l(t + h) = exprM (c(s(l), 1)), l(t0) = init if s(l) is a Unit Delay.
The third case is applicable if s(l) is a switch. The fourth case is applicable for
function blocks.

The function case : Pred×R
I ×R

I is defined as (b, f, g) �→ f if b is fulfilled,
g otherwise.

To keep the notation simple, we associate variables li with the respective sig-
nal lines connected at the output of discrete or continuous blocks in this paper.
Definition 2 is sound with the AR from [23]. We omit the proof, which is straight-
forward, due to space constraints.

Lemma 1 (Soundness with AR). For a given Simulink model M =
(B,E, I,O, S, c, s, t) with finite simulation interval I, [[.]] : E → R

I is well-
defined and if the model does not contain any switch blocks, the following holds:
∀l ∈ E∃b ∈ O : c(b, 1) = l ⇒ [[l]] |= [[M ]].

Note that our denotation is not a denotational semantics, since not in every
case the ODE or difference equation can analytically be solved, i.e., the unique
solution exists and can be represented as expression, and therefore it is possible
that some expressions at several signal lines remain unresolved. In this case, [[l]] =
⊥. In addition, the denotation does not take the approximations into account,
i.e., it may map a Simulink model to the exact solution of an ODE. However,
as we know from [23], the actual simulation differs from this exact function. As
an example, consider the source model depicted in Fig. 1. There, we have at the
line l connecting the output (Scope1) [[l]] = case(sin(t) + 0.999 > 0, 0, 1), since
sin(t) solves the ODE d

dt l1(t) = l2(t), d
dt l2(t) = −l1(t), l1(0) = 0, l2(0) = 1. So,

in this case we have a fully denotational representation of the Simulink model.
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5 Observing the Inner Behaviour of Regular Hybrid
Control Flow Simulink Models

Our notion of a denotation for signals in a Simulink model is applicable for both
discrete and continuous Simulink models. To achieve a verification methodol-
ogy for proving the transformation correctness of hybrid Simulink models with
control flow, we define a subset of hybrid Simulink models with control flow,
namely Regular Hybrid Control Flow Simulink Models. This definition enables
us to observe the inner behaviour of hybrid Simulink models, which forms the
basis for our verification methodology presented in the next section.

Definition 3 (Regular Simulink Models). We call an expression f(in1(t),
..., inn(t), l1(t), ..., lm(t)) continuous if ∀1 ≤ i ≤ m : li is associated with the
signal line at the output of a continuous block in a Simulink model M and
exprM (li) is also continuous. Analogously, the expression is called discrete if
the same holds for the output of a discrete block and exprM (li) is also discrete.
We call an expression mixed if it is neither continuous nor discrete.

We call a Simulink model M a regular hybrid control flow model if it contains
only one discrete control block with outgoing signal l and none of the expressions
exprM (li) in exprM (l) = case(exprM (l2) � ξ, exprM (l1), exprM (l3)) is mixed.

Note that with this definition, we ensure that each of the incoming signals
is purely discrete or continuous. It is not possible that one of the paths contains
both discrete and continuous blocks. Such mixed systems are part of future work.
However, a discrete control element, feedback loops, also taking signals after the
control element and feeding back in one or multiple of the inputs of the control
element are allowed - as long as the requirement that either only discrete or only
continuous blocks occur on each path is fulfilled.

In Lemma 1, we linked the interpretation of the AR from [23] with the deno-
tation [[l]] where l is a signal line at an outport (where the observation takes
place). This can straightforwardly be extended to allow observation ‘inside’ a
Simulink model.

Lemma 2. Let M , Mtrans be two Simulink models, l ∈ E ∩ Etrans a signal line
appearing in both models, the expressions exprM (l) and exprMtrans

(l) both not
mixed and without case in it and ∀t ∈ I : [[l]]M (t) = [[l]]Mtrans

(t). Let further-
more Ml and Mtransl

be models that evolve from M and Mtrans respectively by
transferring only edges and blocks from M and Mtrans that affect l. Then there
exists an ε given by the approach [23] such that Ml ∼ε Mtransl

. We briefly write
[[l]]M ∼ε [[l]]Mtrans

.

The lemma can be presented more formally by defining more precisely what
‘transferring only edges and blocks that affect l’ means. However, we omit this
here together with a proof due to space constraints.

Lemma 2 can equivalently be interpreted as follows. Consider we take a look
at a signal line l and observe the function ϕ : I → R evolving over time at this
signal line (after evaluation by Simulink). If the simulation step sizes go to 0,
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we would observe [[l]]M = f : I → R. Consider furthermore another Simulink
model with a signal line, simulated behaviour ψ(t) and if simulation step sizes
go to 0, we had [[l]]Mtrans

= g : I → R. If ∀t ∈ I : f(t) = g(t), i.e., the
observations are mathematically (if simulation step sizes go to 0) equal, then for
the simulated observations ϕ,ψ the relation ||ϕ(t) − ψ(t)|| ≤ ε or equivalently
ψ(t) ∈ [ϕ(t) − ε, ϕ(t) + ε] holds.

We now have the prerequisites to derive the sufficient conditions for approx-
imately equivalent behaviour in the next section.

6 Proof Obligations for Behavioural Equivalence of
Regular Hybrid Simulink Models with Control Flow

We have now prepared all prerequisites to investigate the conditions under which
approximately equivalent behaviour can be guaranteed.

As we already mentioned in the introduction in Sect. 1, the behaviour com-
pared between source and target model cannot be guaranteed to remain approx-
imately equivalent with the same precision for the whole simulation interval in
every case for Simulink models with control flow. In some cases, time delays in
the switch are unavoidable, which increases the precision ε then. To be able to
express the time-dependent changes of approximate behaviour as precisely as
possible, we write M ∼[t1,t2]

ε Mtrans. That means that M ∼ε Mtrans in the sim-
ulation interval [t1, t2] ⊆ I. It is clear that if we have a sequence of n intervals
that cover I and ε1, . . . , εn, then this sums up to M ∼max(ε1,...,εn) Mtrans.

We now present conditions under which approximately equivalent behaviour
for regular hybrid Simulink models with control flow can be guaranteed. The
first theorem deals with refactorings where the control input is discrete.

Theorem 1. Let M and Mtrans regular hybrid control flow Simulink models,
the switch block consisting of the control input l2 and the data inputs l1, l3 and
the output l in both systems. Let furthermore [[li]]M ∼εi

[[l]]Mtrans
for 1 ≤ i ≤ 3

due to performed refactorings in both systems. If ε2 = 0, which means either
no refactoring that reduces an Integrator (i.e., resolves an ODE) took place
at the control input or the control input expression expr(l2) is discrete, then
M ∼max(ε1,ε3) Mtrans.

Proof. Since the control input is not perturbed, the switching happens in both
systems simultaneously and the approximately equivalent behaviour results
directly from the application of the approach [23] and Lemma 2.

All subsequent theorems deal with refactorings of continuous control input,
i.e., where the control input is perturbed by an ε > 0. The next theorem is about
the case where the observation at the input is too far away from the threshold
to cause a switch.

Theorem 2. Let M and Mtrans be regular hybrid control flow Simulink models,
l, l1, l2, l3 as in the above theorem. Let without loss of generality the condition
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at the switch be ≥ ξ. Let furthermore [[li]]M ∼εi
[[l]]Mtrans

for 1 ≤ i ≤ 3 due
to performed refactorings in both systems, ε2 > 0 (implying that expr(l2) is
continuous), [[li]]M , [[l]]Mtrans

�= ⊥ (implying, the solution can be represented by
a closed expression). Let the simulations of M and Mtrans both be performed
with the same fixed sample step size h. We also define Σ = {λh|λ ∈ N} the
set of sample steps. Note that we know that the values of the observations at
l2 for M and Mtrans vary by at most ε2 around the mathematical observation
[[l2]]M (as pointed out in the previous section). We furthermore define a function
Zero : R

I → P(R), Zero(f) = f−1(0) = {x ∈ I|f(x) = 0} the set of zero
crossings of the function f .

1. If ∀t ∈ [t1, t2] ⊆ I : ||[[l2]]M (t) − ξ|| > ε2, then M ∼[t1,t2]
ε1 Mtrans.

2. Consider an interval L = [t1, t2] ⊆ I where Zero([[l2]]M − ε − ξ) ∩ L =:
{ζ1, . . . , ζn} is finite, i.e., the zero crossings are all isolated (meaning around
each ζi is an environment that contains no other ζj) and increasingly ordered.
If ∀1 ≤ i < n : ∀t ∈ Σ : t /∈ [ζi, ζi+1] and d

dt [[l2]](ζj) < 0 with j only the odd
indices, then M ∼L

ε1
Mtrans.

Fig. 3. Illustration for the proof of Theorem 2

Proof. Figure 3 illustrates the proof idea for the lemma. The first case is repre-
sented by the picture on the left. The values of the simulations that are within the
ε environment around [[l2]] as described in [23] are too far from ξ to cause a zero
crossing in both systems. The second case (depicted on the right hand side) eases
this strict condition. In this case, it is possible for the values [[l2]](t) − ε to cross
the threshold ξ. However, this must not be recognised by the system. Hence,
it may only happen between two sample steps. The condition d

dt [[l2]](ζj) < 0
ensures that the crossing takes place starting with an observation from above ξ
(note that [[l2]] is indeed differentiable).

We now describe the cases where the control input signal crosses the threshold
ξ completely. If this happens fast enough, we don’t have a phase of increased
ε, otherwise we have a time delay in the switching and therefore must accept a
temporary increase of the error in the resulting behaviour.

Theorem 3. Let M and Mtrans be regular hybrid control flow Simulink models,
l, l1, l2, l3, ξ, εi, Σ, Zero as in the above theorems, ε2 > 0. Let without loss of
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generality the condition at the switch ≥ ξ. Consider we have an isolated element
ζ− ∈ Zero([[l2]]M − ε2 − ξ) =: Zero−. Consider furthermore there exists an
element ζ+ ∈ Zero([[l2]]M + ε2 − ξ) =: Zero+ that follows directly after ζ− (and
no other element from Zero− between). Consider furthermore that we have a
t0, tn such that M ∼[t0,tn]

ε1 Mtrans and tn ∈ Σ is directly before ζ− (meaning no
other t ∈ Σ between).

1. If ∀1 ≤ i ≤ n : ∀t ∈ Σ : t /∈ [ζ−
i , ζ+i ] and d

dt [[l2]](ζ
−
i ) < 0 then M ∼[t0,tn]

ε1

Mtrans and M ∼[tn+1,tn+m]
ε3 Mtrans for an m > 1. This means, the switch

happens immediately in both models. Just the precisions of the relevant input
lines must be updated.

2. If there are t ∈ Σ ∩ [ζ−
i , ζ+i ] (let us say tn+1, . . . , tn+ν) and ∃τ as in the

previous item, then M ∼[t0,tn]
ε1 Mtrans, M ∼[tn+ν+1,tn+m]

ε3 Mtrans for an m >
ν. However, in the interval [tn+1, tn+ν ] =: L, we only have M ∼L

εL
Mtrans

with εL := ||[[l1]]M − [[l3]]M || + ε1 + ε3. This means, the switching may be
time-delayed.

Fig. 4. Illustration for the proof of Theorem 3

Proof. Figure 4 illustrates the proof.
The left image shows the first case in the theorem. The idea is that due to

the fact that the values for the simulations at the control input l2 may vary
in the area of ±ε2 around [[l2]], the crossing of the threshold ξ must take place
for both curves [[l2]] − ε2 and [[l2]] + ε2 before another sample step is reached.
If this cannot be guaranteed (right hand side picture), the switch may happen
time-delayed and therefore an approximation εL, which consists of the sum of
all differences, can only be guaranteed.

The complexity of the proof obligation can be reduced to make it easier for
verification.

Corollary 1. The first condition of Theorem 3 is fulfilled if [[l2]](tn) − ε2 − ξ >
0∧∀t ∈ [tn, tn+1] : d

dt [[l2]](t) < − 2ε2
h . The second condition is fulfilled if the same

term is < − 2ε2
νh .

Proof. For the first condition it is sufficient to check if at sample step tn just
before the crossing, we are still above the threshold and if the distance to the
threshold, namely [[l2]](tn) − ε2 − ξ > [[l2]](tn+1) + ε2 − ξ, since the second term
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(after > needs to be below the threshold 0). This inequality can be transformed
to − 2ε2

h > [[l2]](tn+1)−[[l2]](tn)
h , which is fulfilled if the derivative d

dt [[l2]](t) < −2ε2
h

in the whole interval between tn and tn+1. The second condition follows analo-
gously.

This corollary is especially helpful if Mtrans expresses the analytic solution of
M because in this case, we can calculate d

dt [[l2]] easily.
Finally, we provide a criterion if we have non-isolated zero crossings.

Theorem 4. Let M and Mtrans be regular hybrid control flow Simulink models,
l, l1, l2, l3, ξ, εi, Σ, Zero as in the above theorems, ε2 > 0. Let without loss of
generality the condition at the switch ≥ ξ. If Zero([[l2]] − ε2 − ξ) consists of an
interval [t1, t2] (i.e., non-isolated zero crossings) and ∀t ∈ Σ : t /∈ [t1, t2], then
M ∼ε1 ML

trans for an interval [t1, t2] ⊆ L ⊆ I.

Proof. The proof is analogous to the proof of Theorem2. If the zero crossing does
not coincide with a sample step, it is just not being recognised and therefore the
switch does not happen and the precision remains.

Note that if the interval of non-isolated zero-crossings contains sample steps,
we cannot guarantee that the precisions of approximately equivalent behaviour
remains at ε1 or ε3 in general. In this case, only the precision that sums up all
distances could be guaranteed.

The statements in the theorems can be used to perform a static analysis to
obtain the global precision ε for the approximately equivalent behaviour of the
hybrid systems straightforwardly. The conditions can be verified with the help
of a Computer Algebra System (CAS), e.g. the Reduce and Resolve commands
in Mathematica. Note that since the precision measures ε are actually functions
of the form ε(t, L, h), the user has the option to decrease the simulation step
size in order to obtain a better result and consequently yield approximately
equivalent behaviour of a desired precision or at least reduce the interval for the
time-delayed diverging behaviour to an acceptable period.

As an example, consider the simple Simulink model from Fig. 1 without the
part +0.999 for simplicity, the threshold at the switch being 0. The ODE associ-
ated with the control input is d

dt l2(t) = l1(t), d
dt l1(t) = −l2(t), l1(0) = 1, l2(0) =

0. The solution is l2(t) = sin(t). This is expressed in the transformed model.
The perturbation ε2 depends on the selected approximation method chosen in
Simulink. The set Zero := Zero([[l2]]) = Zero(sin(t)) = {kπ|k ∈ Z}. The set
Zero(sin(t) − ε2) shifts these zero crossings a bit to the left (depending on the
actual value of ε2, which depends on the chosen approximation method). The
user must then verify that the sample step sizes nh /∈ Zero or potentially weaken
this and find out how many sample step sizes are in Zero ∩ Σ to apply one of
the cases of Theorem 3 with the help of a Computer Algebra System.

7 Related Work

For the design and application of refactorings in Simulink, several approaches
exist. In [18], a taxonomy of model mutations is defined. In [3], a normalisation of
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Simulink models is presented, which is used for clone detection in [9]. In [27], the
authors present Simulink refactorings that allow subsystem and signal shifting
in arbitrary layers. None of these approaches consider behavioural equivalence
or correctness of the transformation.

There exists a broad variety of verification approaches for hybrid models, for a
detailed introduction see for example [11–13,19,28]. In these papers, the notion of
approximate bisimulation is introduced and utilised. Furthermore, in [4] abstrac-
tions of hybrid systems are introduced. There, hybrid systems are abstracted to
purely discrete systems. [26] provides an overview over abstractions on hybrid
systems. However, these works consider hybrid systems in general, with no ref-
erence to the semantics of Simulink and its characteristics. Another interesting
approach for conformance in hybrid models is [1]. There, the authors introduce
a new notion of approximately equivalent behaviour, which takes time step dis-
tances besides the distances of values into account. Furthermore, the authors
calculate the conformance, i.e., approximately equivalent behaviour, based on
running tests, e.g. between simulated model and generated code. However, they
do not aim at refactorings at model level and do not consider behavioural equiv-
alence on symbolic expressions on model level.

To reason about correctness for Simulink refactorings, a clear understanding
of the Simulink semantics is required. However, the Mathworks documentation
[25] defines the Simulink semantics only informally. Existing approaches for the
formal verification of Simulink models typically overcome this problem by using
transformations into some well-established formal language. For example, in [15],
Simulink models are mapped to UCLID and the SMT (satisfiability modulo the-
ories) solver UCLID is used for verification. In [8], this is done with the syn-
chronous data flow language LUSTRE. In [5], an approach for contract based
verification is presented. In this approach, the semantics is described via syn-
chronous data flow graphs. In [21], the authors use Boogie, a verification frame-
work developed at Microsoft Research, for verification. In [2], Simulink models
are translated to hybrid automata. This enables further investigation of hybrid
automata semantics, e.g., in [10] or [17]. However, none of these approaches pro-
vides a comprehensive semantics of Simulink. To the best of our knowledge, only
[6] provides a direct and comprehensive formalisation of the Simulink semantics.
In [22,23], a first methodology to show correctness of refactorings of Simulink
models that are solely discrete or continuous was provided. It is based on the
formal operational semantics from [6]. There, a set of syntactical equations as
an abstract representation from the Simulink models is derived, which describes
the changes of signals over time on an abstract level. To deal with the challenge
that traditional equivalence notions such as bisimulation are not suitable, the
authors adapted the concept of approximate bisimulation.

Since there are no methodologies showing the correctness of Simulink refac-
torings, also to the best of our knowledge no approach dealing with Simulink
models with control flow exists. There are some theories that are related with
this topic, e.g. [14,16,20]. They all deal with stability and robustness, i.e.,
under which conditions hybrid systems do not show diverging behaviour under
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perturbation. The basis of these works is the Lyapunov stability theory [24].
However, they neither aim at Simulink nor deal with the behavioural equiva-
lence of the models.

8 Conclusion and Future Work

In this paper, we have presented a methodology for proving the correctness of
refactorings for hybrid Simulink models with control flow. We have achieved
this by extending the approach from [22,23]. In particular, we have sharpened
the notion of the abstract representation and have defined a denotation, which
expresses the result of the simulation as a function at each signal. This denotation
also allows us to observe inner behaviour in the Simulink model. We also have
defined which kind of models we support. Finally, we have provided sufficient
conditions for approximate equivalent behaviour for regular Simulink models
with control flow. Our approach is able to cover a large variety of industrially
relevant models.

In future work, we aim at automating the approach. We were already success-
ful in verifying correctness of transformations for purely discrete and continuous
systems with the approach [23]. We plan to extend this to cover the approach
in this paper as well. Furthermore, we plan to extend the presented approach
by taking variable step size simulations into account. Our approach is already
applicable for a broad variety of systems. However, for the continuous parts, it
relies mainly on systems where the ODEs may be solved. We plan to strengthen
our approach by providing assistance for systems with continuous parts that are
not necessarily analytically solvable.
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Abstract. Verification of switched systems has to include the continu-
ous trajectories as well as the discrete states of the system. For strongly
interconnected systems with mutual dependencies it is not sufficient to
verify the two system parts individually. It is necessary to examine the
combined behaviour in such a setting. The approach presented in this
paper is based on the well known concept of using system identifica-
tion methods for verification which is extended to switched systems. The
authors introduce the idea to tackle the verification of complex mecha-
tronical systems as hybrid identification problem. Therefore the specifi-
cation is given by the user in terms of the parameters of linear dynamic
systems and a superimposed state machine. The implemented sys-
tem under test can be transformed into the same representation using
input/output measurement data and a recently developed hybrid identi-
fication procedure. Finally it is possible to compare the two representa-
tions automatically and calculate a formal statement about the consis-
tency between specification and implementation.

Keywords: Test automation · Hybrid identification · Switched systems

1 Introduction

Testing is still a time and resources consuming activity based on the expert
knowledge of the responsible engineer [22,32]. While this was a feasible solution
in the past, the growing complexity of current and future systems renders the
manual approach impossible. Especially the combination of discrete and con-
tinuous system parts to systems showing hybrid behaviour leads to verification
questions that are not solved today [28,32]. Even though there is no satisfying
solution available, the problem is present in the everyday engineering practice.

The unsolved verification1 question is given as follows: Is the behaviour of a
given System under Test (SUT) - composed of a time continuous plant and its
controller - consistent with the given specification? Does this consistency hold
1 The term “verification” is used in the control engineering sense throughout this

paper which is denoted as “conformance testing” in computer science.
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for all possible excitation signals and during all discrete states of the resulting
hybrid system?

One possible solution is to tackle the controller and the plant individually.
Focusing on the discrete verification problem of the embedded controller, there
are several automatic verification methods available [10,30]. Those methods are
concerned with properties of the controller code (e.g. semantic correctness or
determination of loops) [7,12,13] or runtime errors (e.g. overflow, divide by zero,
out of bounds array access and others) [18,27]. Some of these properties can be
determined automatically using theorem prover or model checker [32].

As the behaviour of the overall system is given by the controller and the plant,
focusing on the discrete part is not enough. There are systematic approaches for
the verification of hybrid systems based on the so called “state space exploration”
principle or “reachability analysis” [3,4,9,12,13]. A sound review of current state
of the art reachability analysis tools is given in [28]. The basic idea is to discretize
the regarded space and run simulations using different combinations of the val-
ues until a given coverage criterion is fulfilled [12]. To constrain the number of
necessary simulations, equivalence classes can be formed [2,8,12,31]. Equivalence
classes combine input values that lead to the same result. Thereby is the correct
behaviour of one representative used to reason about the correct behaviour of the
whole equivalence class. Another possibility is to use additional knowledge about
the system or the user of the system to extract excitation signals that are very
likely to occur during operation (statistical testing, scenario testing) [13,19].

When regarding continuous subsystems the discretization has to be very fine
over the whole signal range thus prohibiting the use of equivalence classes and
increasing the necessary computation time [6,12]. This is due to the fact that
it is not sufficient to check one specific, time constant value of an equivalence
class any more. The whole continuous dynamic trajectory has to be taken into
account to allow a profound verification [6]. Signal based features like maximum
values or static tolerances can be verified using temporal logics as shown in [22].

Other hybrid verification approaches use Simulink models to verify the com-
bined behaviour of controllers and their respective plants [23–25]. The excita-
tion signals are thereby derived using meta-heuristic search algorithms based on
random search, adaptive random search, hill climbing or simulated annealing.
The resulting output signals are then analysed with respect to specified signal
properties.

A wide range of different methods and theories for hybrid verification was
developed in [1]. This paper’s approach to solve the problem is based on the well
known concept of using system identification methods for verification as given
in [21] which is extended to hybrid systems using the idea presented in [14].

In the engineering society diagnosis methods are used to monitor the cor-
rectness of running applications [11,17]. This is often done using “analytical
redundancy” meaning that the real values of a process are compared to the
expected values of the process [29]. The needed expected values are calculated
using a model of the process and the measured input data.
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The concept of analytical redundancy is transferred from monitoring to ver-
ification in this paper. The redundancy is thereby achieved by the identification
of the dynamical system parameters from input/output data. This is possible
because the generating system parameters describe the system behaviour exhaus-
tively. The idea presented in this paper is to use the control engineering notation
of hybrid systems and a recently developed hybrid identification procedure to
verify complex hybrid systems. The continuous part of the hybrid system is
thereby used to describe the system dynamics of the controlled plant. Note that
the dynamics of the controlled plant are different from the genuine dynamics of
the plant. This is due to the fact that the goal of the controller is to influence
- and thus change - the genuine plant dynamics in a desired way. Furthermore
note that it is hence not necessary to know or model the genuine dynamics of the
plant. The discrete part of the hybrid system is predominantly used to describe
the behaviour of the controller. Nevertheless the plant might contain switches in
its continuous dynamics that are also modelled in the discrete part.

The necessary specification parameters have to be given directly by the user.
The resulting parametrized system description can be used to reason about the
consistency between specification and implementation. One advantage of this
identification based method is the independence from specific input signals. This
is due to the fact that different input/output pairs lead to the same parameters
if they were generated using the same system dynamics.

The proposed method is introduced as follows: In Sect. 2 a formal specifi-
cation consisting of a state machine and respective dynamical systems for each
state is defined. Afterwards a method for the identification of data - measured
using the SUT - is presented in Sect. 3. The identification can be interpreted as
transformation of the SUT in a formal description. After the identification, the
specification and the SUT are given in the same form. The automatic comparison
is outlined in Sect. 4.

2 Formal Specification

Industrial specifications are often given in natural language or as a table con-
taining a collection of more or less formal requirements [20]. Such a form is not
suitable as basis for an automated verification algorithm. To allow the usage of
automated methods a formal and strict notation has to be used for the speci-
fication. We focus on embedded systems consisting of a time, value and event
discrete controller and a time and value continuous plant. We propose to model
the resulting system as a hybrid system H according to Fig. 1. Thereby the
embedded controller as well as the switching part of the physical plant are mod-
elled using the state machine Z. The controlled dynamics of the continuous plant
are represented by a set of linear dynamic systems S. The input u is applied to
the state machine. Based on the resulting state, a switch signal is determined
that activates the respective subsystem s(i) ∈ S. The continuous input is also
applied to this continuous subsystem. The output of the active subsystem is
fed to the output of the hybrid system and also used as feedback signal for the
generating subsystem.
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Fig. 1. Structure of the hybrid system model H

Please note that this model assumption is different from the real system com-
position consisting of controller, actuator, plant and measurement device. This
is due to the fact that the behaviour of the physical components is split into
discrete and continuous dynamics and then combined in the respective model
parts. Therefore it is not possible to use this detailed specification for any kind of
automatic software generation. In other words, the hybrid system H represents
what the system should do and not how it can be done. There is no information
available whether a specific continuous dynamic s(i) is a genuine dynamic of
the physical plant or if it is synthesised using a specific control strategy. This
abstraction allows to describe the SUT by parameters calculated using iden-
tification methods, as the identified parameters uniquely describe the observed
behaviour. Note that there are several possible combinations of (unknown) phys-
ical plant parameters and (unknown) controller parameters that will all show the
same observable behaviour described by a unique set of parameters Θ(i).

The state machine Z is assumed to be given by the 3-Tupel

Z = (Q,T, q0) , (1)

with a finite set of states Q, a finite set of transitions T, and an initial state q0.
The state machine Z is used to describe the switching behaviour between dis-

tinctive states representing operation modes of the specification. Possible oper-
ation modes that are available in nearly all systems are for example “start up
mode”, “normal mode”, “exception mode” or “shut down mode”. Specific exam-
ples will provide even more, task specific operation modes.

The structure of the transitions T between the states Q of state machine Z
is given by the adjacency matrix A. With ai,j = 1 if there exists a transition
from state i to state j and ai,j = 0 otherwise.

The linear dynamic subsystems s(i) for each state are defined as Auto-
Regressive Systems with eXogenous input (ARX system). All subsystems s(i)
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use the same fixed sample time ΔT . Each state q(i) ∈ Q is linked to one specific
dynamic ARX subsystem s(i) ∈ S given by

s(i) : yk =
n(i)
a∑

j=1

(yk−j) a
(i)
j +

n(i)
c∑

j=1

(uk−j) c
(i)
j , (2)

were uk and yk are the values of the time discretized continuous system input
and output at time k, c

(i)
j and a

(i)
j are the input and output coefficients and n

(i)
c

and n
(i)
a are the input and output order, all specific for each subsystem.

Note that the specification parameters in S are parameters of the overall
system (controller and plant) that describe the combined dynamics. Those para-
meters are different from the needed controller parameters and can thus not be
used to parametrize the controller directly. The used controller structure as well
as the controller parameters are an important part of the system design which
is assumed to be done manually here. Please note that there are several con-
troller structures and respective parametrizations that are suitable to meet the
specification [26].

During the measurement time of T = ΔTK seconds the hybrid system shows
the behaviour of the different active subsystems. Switches between the subsys-
tems and thus the states of Z are often tightly coupled with conditions on the
process. These conditions can be used to refine the state machine by the intro-
duction of switching thresholds. The switching thresholds need to be fulfilled
to allow the change of the active subsystem. Without switching thresholds, the
state machine can switch between states at arbitrary values or after infinitely
short dwell times, thus leading to undesired behaviour.

The switching thresholds are user-defined restrictions on a threshold signal
Ω = [ωk]Kk=0 that can also be chosen by the user. The specified switching thresh-
olds are given as interval entries of a matrix B with bi,j = [l l̄] if ai,j �= 0 and
bi,j = [−∞ ∞] otherwise. Thereby are l and l̄ lower and upper limits of the value
of ωk. As long as ωk ∈ [l l̄] the state machine is allowed to change the state,
i.e. to perform a switch, but not necessarily has to.

When setting up the formal specification the physical signals that are inter-
preted as input and output of the linear dynamic subsystem have to be chosen.
The choice of the signals depends on the objective of the test and the investi-
gated hierarchical level. It is possible to define specifications on different levels
and thus map a variety of different goals. Nevertheless, the choice of the input
signal U = [uk]Kk=0 and the output signal Y = [yk]Kk=0 of all subsystems and lev-
els have to fulfil controllability constraints. The choice of the input and output
signal has to be the same for all systems of S.

To allow precise notation for the remainder of the paper, all variables of the
formalized specification H∗ = [Z∗,S∗] are marked with an asterisk. All vari-
ables belonging to the identified SUT H′ = [Z ′,S′] are marked with a dash.
The complete setting is shown in Fig. 2. The specification H∗, consisting of
the state machine Z∗ and the linear dynamic behaviour S

∗ has to be given
by the user. Based on this information an SUT that fulfils the specification is
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Fig. 2. Structure of the proposed method

developed. Nevertheless, it is likely that failures are made during the implemen-
tation process.

To verify the consistency, the SUT has to be transformed in its hybrid repre-
sentation. A hybrid identification procedure is used to extract the implemented
state machine Z ′ and the implemented system dynamics S

′ from the SUT. The
final step is given by the comparison of the different system components as
given in the previous section. If the correct subsystems are identified and the
state machine is consistent with the specified state machine, the SUT is regarded
as consistent with the given specification.

2.1 Example

To set up a formalized specification, the user has to define all elements of the
3-Tupel Z∗ and all necessary parameters of the ARX systems included in S

∗.
An exemplary specification H∗ = [Z∗,S∗] is given by the system parameters in
Table 1 and the state machine in Fig. 3. The state machine in the given example
consists of three states and no switching thresholds for the sake of simplicity.
The given system parameters describe three subsystems with n

(i)
a = n

(i)
c = 1 ∀ i

leading to

s(i) : yk = yk−ja
(i)
j + uk−jc

(i)
j . (3)

The implementation of the System under Test H′ is done based on the given
formal specification H∗. As the implementation is done by one or more human
developers, it is likely that there exist inconsistencies in the resulting system H′.
Note that the implemented system H′ consists of real hard- and software and
includes a given plant that can not be changed. Therefore the implemented state
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1start 2 3

Fig. 3. Exemplary definition of the state machine Z∗

Table 1. Exemplary parameters for the system S
∗ consisting of 3 subsystems with

n
(i)
a = n

(i)
c = 1∀i

Subsystem a∗
1 c∗

1

1 1, 000 0, 003

2 0, 975 0, 040

3 1, 020 −0, 040

machine Z ′ and its dynamical subsystems S′ are not directly known. Nevertheless
it is possible to excite the system and measure its output signal.

3 Identification of the SUT

Now assume the output signal of the system Y′ = [y′
k]Kk=0 was measured using

a known, suitable and persistent excitation signal U′ = [u′
k]Kk=0 lasting for T =

ΔTK seconds. It is now possible to calculate the actual generating subsystems
S

′ based on the measured data [U′,Y′] using the identification and segmentation
algorithm from [14,15] which is given as follows:

The algorithm uses an alternating iterative procedure to identify the system
parameters as well as the unknown switching times. Thereby the system para-
meters are calculated using the first max(n(i)

a , n
(i)
c ) + n

(i)
a + n

(i)
c measurement

values as estimation interval kest and a Least-Squares-Estimator.
The estimated parameters

Θ′
kest

= {a(i) ′
, c(i)

′} (4)

with a(i) ′
= {a(i) ′}n(i)

a
j=0 and c(i)

′
= {c(i)

′}n(i)
c

j=0 are then used to determine the
multi-step replica trajectory ỹk(Θ′

kest
). As long as the calculated mean absolute

error

ε(kest,Θ′
kest

) =
1

kest + 1

kest∑

k=0

∣
∣y′

k − ỹk(Θ′
kest

)
∣
∣ (5)

is below a user defined border, the estimation interval kest is increased. If
ε(kest,Θ′

kest
) is bigger than the given border, a switch is recognized and the

calculated parameters are stored as well as the current value ωkest
of the thresh-

old signal.
It is well known that only in a noiseless setting with known system orders, the

estimation of the parameters yields a direct match with the specified parameters,
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even for short measurement times. Thus the switching time intervals shrink to
a single point. This behaviour can be seen in Fig. 4 where the identification
algorithm was applied to the output signal Y′ generated by the system given in
the example and a constant input signal uk = 100 ∀ k.

0 50 100 150 200 250
0

50

100

k

y
′

identified switches

Fig. 4. Measured trajectory and identified subsystem switches

The resulting parameters of the subsystems are given in Table 2.

Table 2. Parameters identified from the signal given in Fig. 4

No Subsystem a′
1 c′

1

1 1 1, 000 0, 003

2 2 0, 975 0, 040

3 3 1, 020 −0, 040

4 2 0, 975 0, 040

5 1 1, 000 0, 003

4 Comparison of SUT and Specification

The results can now be compared with the given specification H∗. Matching
parameters mean that the dynamic behaviour of S′ is consistent with the spec-
ified behaviour S

∗. Manual inspection shows that the identified parameters in
Table 2 match the specified parameters in Table 1. The identified state sequence
of the signal in Fig. 4 is 1→2→3→2→1 which is consistent with the state machine
in Fig. 3. Therefore it can be concluded that the system that produced the signal
in Fig. 4 is consistent with the given specification H∗.
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4.1 Automatic Comparison

The comparison of the specification H∗ and the SUT H′ can also be done auto-
matically. Therefore it is necessary to check the consistency of the parameters,
the consistency of the transitions and the consistency of the switching thresh-
olds. There are three possible results: full consistency, partial consistency and
inconsistency for each part.

The consistency of the parameters is determined by setting up the identified
set of states Q

′. This is done by comparing the identified parameters to the
specified parameters. An identified subsystem s(i)

′
can be assigned to a specified

state qj ∈ Q
∗ if the parameters of s(i)

′
and s(j)

∗
are the same. The matching

state qj is added to the identified set of states Q
′. An identified subsystem

s(i)
′

without a matching specification is considered to represent an additional
dynamic belonging to a state qm /∈ Q

∗. Nevertheless qm is added to Q
′.

The consistency can be determined by comparing Q
∗ and Q

′. The set of
states is only fully consistent if Q′ = Q

∗. If there are states missing and hence
Q

′ ⊂ Q
∗ the states are partially consistent. Otherwise they are inconsistent as

Q
′ �⊂ Q

∗ indicates that there are unspecified dynamics present in the SUT.
The consistency of the transitions is determined by comparing the adjacency

matrices of the specification A∗ ∈ R
e×e and the SUT A′ ∈ R

f×f . Therefore it is
necessary to reorder the identified states such that they match the order of the
specified states. Each specified system dynamic without an identified match leads
to zero entries in A′, each unspecified system dynamic leads to an additional
row and an additional column in A′.

For full consistency between A∗ and A′ has to hold:

A∗ = A′. (6)

Meaning that exactly all specified states and all transitions were identified, no
state or transition is missing and no additional state or transition was present.

For partial consistency between A∗ and A′ has to hold:

e = f (7)
0 � A∗ − A′ (8)

with A � 0 meaning aij ≥ 0 ∀ i, j. Partial consistency means that all identified
states and transitions were specified but not all specified states and transitions
were identified. This is due to the fact that any specified system dynamic without
an identified match leads to zero entries in A′. Nevertheless the system might
possess full consistency but did not show it due to insufficient excitation.

There is inconsistency between A∗ and A′ if:

e = f (9)
0 �� A∗ − A′ (10)

or
e �= f. (11)
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The adjacency matrices A∗ and A′ are of different dimension if there are addi-
tional states that are not specified. Unspecified behaviour leads to additional
states and thus an additional row and an additional column in A′. If there are
no unspecified states but unspecified transitions present (9) and (10) hold. As
soon as there are unspecified states or transitions present, the transitions are
inconsistent with the specification.

For the switching thresholds given in B∗ the consistency has to be checked
for all identified transitions T

′. Therefore the relevant signals have to fulfil

ωτi,j ∈ bi,j ∀ T
′ (12)

with τi,j denoting the time when the active state of the state machine changes
from state i to state j. The switching thresholds are inconsistent if (12) does not
hold. Otherwise they are partially consistent for T

′ ⊂ T
∗ and fully consistent

for T
′ = T

∗.
The final consistency of H′ is determined by the combination of the result

for all three parts as given in Table 3.

Table 3. Consistency of H′

Consistency of

Q
′ A′

T
′ H′

fully fully fully fully

partially fully/partially fully/partially partially

fully/partially partially fully/partially

fully/partially fully/partially partially

inconsistent any any inconsistent

any inconsistent any

any any inconsistent

Thereby H′ is only fully consistent if all results were fully consistent. If
there are fully and partially consistent results, H′ is partially consistent. Finally
H′ becomes inconsistent with H∗ if there is at least one part evaluated as
inconsistent.

4.2 Example

The states in the example are given by

Q
′ = {1, 2, 3} = Q

∗ (13)

and are thus fully consistent. The adjacency matrices are given by
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A′ =

⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦ = A∗ (14)

and are thus also fully consistent. As there are no switching thresholds defined,
this part can be omitted. This leads to Z ′ being fully consistent with Z∗ and
in addition S

′ being fully consistent with S
∗ leading to H′ being fully consistent

with H∗. Which means that the superimposed state machine as well as the linear
dynamic subsystems of the system that produced the measurement in Fig. 4 are
fully consistent with the specification of H∗ in Fig. 3 and Table 1.

5 Conclusions and Future Work

5.1 Conclusions

This paper presented the idea of interpreting an automated verification of com-
plex systems task as an identification of hybrid systems setting. Therefore the
idea of using a formal hybrid model as specification for the complex system was
presented. Each operation mode of the specification is interpreted as state of a
state machine. The continuous linear system dynamics that govern the behaviour
in every state are modelled as ARX systems and assigned to the respective state.
Representing system behaviour as dynamic parameters leads to the advantage
of being independent from specific input/output signals.

Knowledge about the implemented SUT is generated by exciting the SUT
with a suitable input signal and measuring the resulting output signal. This sig-
nal can be generated by the responsible engineer and thus provides the possibility
to include expert knowledge in the verification process. The measurement data
is analysed by a hybrid identification algorithm that segments and identifies a
hybrid system from its input/output behaviour. The resulting system parame-
ters are then compared with the specified parameters. Based on the result, the
state machine of the SUT can be set up. If the identified parameters and the
identified state machine are consistent with the specification it can be concluded
that the SUT itself is consistent with its specification.

5.2 Future Work

The requirement that the user has to define all elements of the 3-Tupel and all
necessary parameters of the ARX-System when setting up the formalized speci-
fication is rather restricting. This should be improved in future work by provid-
ing a more intuitive way of setting up the specification. Therefore a graphical
user interface (GUI) can be implemented, providing the user with the ability to
define feasible input regions that are linked to their respective feasible output
region. The specification parameters could hence be determined by the improved
algorithm, based on this user specified input/output trajectories leading to a
“specification by example” setting.



98 S. Schwab et al.

The restrictions on the choice of the input and output signal given in Sect. 2
are rather rigorous. Future work will focus on softening these restrictions to allow
a wider scope of application.

Furthermore the impact of noise has to be investigated. It is clear that the
identified parameters will not perfectly match the specified parameters any more
if there is noise present. The general procedure is assumed to be still applicable as
[14] already provides the handling of noisy signals. Nevertheless it is not enough
to simply introduce tolerances for the parameters, as even minor changes in the
parameters might lead to tremendous changes of the system behaviour in some
scenarios. On the other hand system identification can provide two distinct sets
of parameters even though the input/output behaviour is very similar. Both
cases have to be tackled by the introduction of a similarity measure based on
the parameters.
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7793, pp. 179–193. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37057-1 13

21. Liu, D., Guo, X., Tang, G., Huang, Z.: Model Validation via System Identification
and Hypothesis Test. Springer, Heidelberg (2012)

22. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT-2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3 12

23. Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T., Poull, C.: Proceedings of
the 5th International Symposium on Search based software engineering, SSBSE
2013, St. Petersburg, Russia, 24–26 August 2013, pp. 141–157 (2013)

24. Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T., Poull, C.: Search-based
automated testing of continuous controllers: framework, tool support, and case
studies. Inf. Softw. Technol. 57, 705–722 (2015)

25. Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Automated test suite
generation for time-continuous simulink models, pp. 595–606 (2016)

26. Pajic, M., Park, J., Lee, I., Pappas, G.J., Sokolsky, O.: Automatic verification of
linear controller software. In: Proceedings of the 12th International Conference on
Embedded Software, EMSOFT 2015, pp. 217–226. IEEE Press, Piscataway (2015)

27. Schneider, J.: Tracking down root causes of defects in simulink models. In: Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE 2014, pp. 599–604. ACM, New York (2014)
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Abstract. Because of the combination of computational, networking
and physical artifacts, different engineering disciplines are involved in the
design of a Cyber-Physical System (CPS). This multidisciplinary app-
roach leads to different, often contradicting, views on the system under
design which in the end might lead to inconsistencies between domain
specific properties. Contract-Based Design (CBD) aims to prevent these
contradictions by defining possible conflicting properties in a contract.
These contracts consist of a set of pre- and postconditions.

Although the current state-of-the-art describes the abstraction/
refinement, composition and multi-view analysis and verification prin-
ciples of CBD, it lacks methods and techniques to identify the shared
properties in concurrent design processes. By combining the theory of
CBD with the principles of ontological reasoning, this paper intents to
provide a framework which enables Contract-Based Co-Design (CBCD).
The feasibility of this framework will be explained by means of a running
CPS example.

Keywords: Co-design · Contract-based design · Cyber-physical sys-
tems · Ontological reasoning · Ontologies

1 Introduction

Increasingly more, Cyber-Physical Systems (CPS) [1,2] take a prominent role in
a wide range of application areas such as transportation, manufacturing, health
care, etc. They extend traditional mechanical systems with computational and
networking capabilities making (daily life) products smarter, faster, more accu-
rate, remotely controllable, and so forth. Therefore, CPS are considered as one
of the key enablers of the fourth industrial revolution.

Despite the extended capabilities of CPS, its development process is charac-
terized by costly, iterative, design cycles partly due to the involvement of various
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engineering disciplines, each with a different view and set of concerns of the sys-
tem under design [3]. The involvement of these different stakeholders can lead to
inconsistencies between shared properties, causing unexpected behaviors during
the integration of the different design artifacts. To preserve consistency between
those different views, Contract-Based Design (CBD) [4–6] is increasingly being
used by system engineers to formalize an agreement between two or more engi-
neering domains. Originating from contracts used in software engineering, such
an agreement consists out of a set of assumptions and guarantees. These assump-
tions and guarantees describe the conditions under which a system promises to
operate while satisfying desired properties.

Given the increasing complexity of Cyber-Physical Systems, aggravated by
the need for cost-efficient products and shorter development time, the need for
concurrent design (co-design) processes arises. Concurrent design makes engi-
neers reason about common design properties to allow the independent devel-
opment of parts of the system. In that sense, Contract-Based Design seems to
be a useful methodology. Different contributions have been made elaborating on
abstraction/refinement, verification and validation of contracts (see Sect. 2).

However, the current state-of-the-art does not allow the engineers to reason
about the content of such a contract. It thus lacks in its applicability to the
co-design of Cyber-Physical Systems. This paper intents to provide a framework
which enables Contract-Based Co-Design (CBCD) by combining the current
state-of-the-art of CBD with the principles of ontological reasoning [7]. The
latter enables one to make the implicit knowledge of each engineer explicit by
using ontological properties and certain influence relationships between them.

The rest of this paper is structured as follows. Section 2 gives an overview
of the related work. The running CPS example is introduced in Sect. 3, while
an overview of the currently used contract operators is given in Sect. 4. Similar
to the proposed methodology in the current state-of-the-art, Sect. 5 investigates
the applicability of the current theory in a co-design engineering process. How-
ever, some shortcomings will emerge which are resolved by our proposed CBCD
methodology in Sect. 6. Finally, Sect. 7 concludes our contribution and gives an
overview of our future work.

2 Related Work

Contract-Based Design finds its origin in the late 80’s when Bertrand Meyer
introduced the Eiffel programming language to enable contract-based software
development [8,9]. Eiffel introduces Require and Ensure clauses that correspond
to respectively a set of pre- and post-conditions under which a software routine
ensures to operates.

More than a decade later, the use of contracts during the design of CPS came
to the attention of some researchers, including Damm [10,11]. He introduced the
concept of ‘rich components’ to deal with uncertainty when designing Cyber-
Physical Systems. Rich components extend model components such that: (a)
they cover all the specifications of the involved viewpoints, (b) they contain a
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set of assumptions and guarantees with respect to the context of the component,
and (c) they provide classifiers to the assumptions.

In the framework of the European project SPEEDS1, the work of Damm was
extended by Josko et al. [12] and Benvenuti et al. [13] by means of ‘Heteroge-
neous Rich Component’ (HRC) which supports the integration of heterogeneous
viewpoints on a system with different semantics originating from multiple design
layers and tools. Therefore, a common meta-model was developed in [14]. Sim-
ilar but less comprehensive approaches, however, were already introduced by
the MARTE UML profile [15] and as a modelling framework called Metropo-
lis [16]. The scope of the SPEEDS project resulted in the (first) use of contracts
in a component based engineering context. In [17], Benveniste et al. present the
mathematical foundations of CBD to enable the combination of contracts for
different model components and the combination of contracts for different view-
points on the same model component. According to the authors, a contract as
such consists out of a pair of Assumptions and Guarantees formulated as C =
(A,G). Note that this relates to the Require and Ensure clauses introduced by
Meyer [9].

In the scope of the European project CESAR2, Benveniste et al. extended
their theory and showed how contracts might be used through multiple applica-
tion cases [4,18]. They show that there exist three fundamental contract opera-
tors to combine contracts: refinement, composition and conjunction [4,19].

Based on the work of Benveniste et al., Graf et al. describe how circular
and non-circular assume-guarantee reasoning can be used in order to check for
contract dominance [20]. They make use of two frameworks, L0 and L1, which
are focused on component refinement and component interactions respectively.

Sangiovanni-Vincentelli et al. address the emergent need of CBD in the con-
text of system level design [6]. They present a design methodology that com-
bines the concepts of CBD with Platform-Based Design (PBD) as a meet-in-the-
middle approach. Related to the work of Graf et al. [20], Sangiovanni-Vincentelli
et al. demonstrate how contracts may be dominated when combining subsystems
(individually bounded by a contract). Furthermore, a clear distinction is made
between horizontal and vertical contracts when combining the concepts of CBD
with PBD. Similarly, Nuzzo et al. elaborate on the usefulness of CBD, and their
formal analysis and verification methods, in a PBD methodology for Cyber-
Physical Systems [21,22]. Besides going into detail on the different methods and
tools that are used to enable their methodology, an aircraft electric power dis-
tribution system is used as a demonstrator.

In [5], a more general framework of design contracts in the context of CPS
design is given. Derler et al. focus on timing properties to facilitate the communi-
cation between control and embedded engineers. A non-exhaustive enumeration
of contract types is given each with a specific set of parameters having a com-
mon interest to both engineering domains. Depending on the type of contract

1 www.speeds.eu.com.
2 http://www.cesarproject.eu.

www.speeds.eu.com
http://www.cesarproject.eu
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(and therefore the formalized set of parameters), an actual implementation of
the contract is feasible for one or both of the engineering domains.

Törngren et al. describe the different viewpoints involved in the design of
a mechatronic system [3]. Furthermore, they show how these viewpoints are
interrelated by means of supporting models at different design levels, namely:
(a) people level, (b) models level and (c) tools level. At each design level, some
challenges and solutions (supporting models) are described. For the contributions
of our work, the first two levels are particularly interesting. At people level, the
authors point out that each stakeholder, involved in the design of a CPS, should
be aware of the effect of his/her work on others. To enable this, the use of design
contracts, as suggested by Derler et al. [5], is proposed. Moreover, they hint
towards the use of assumptions and guarantees as discussed by [6]. Additionally,
at models level, Törngren et al. describe the existence of dependencies between
models implementing certain parts of the overall system requirements.

We conclude this section with the work of Persson et al. where the authors char-
acterizemodel-basedapproachesused in thedesignofCyber-Physical Systems [23].
To do so, a clear distinction is made between views and viewpoints. The former
relates to the multitude of abstractions that can be made of a system while the
latter refers to a set of all possible view instances. The authors show that there
exist relations between views, and as such viewpoints, with respect to their con-
tent, process and operations which are not entirely exclusive to each other. This is
illustrated by an academic case study of a wind-shield wiper system.

3 The Power Window as a Running Example

To clarify the current state-of-the-art in Sect. 5 and to detail our contribution in
Sect. 6, we use the power window as a running example.

As every system, the power window is specified by a set of requirements.
These requirements describe the expected behavior of the system given a certain
context. Given that the power window system operates in a vehicle, we describe
the most elementary behavior of the power window as follows [24]:

1. The power window should start moving within 200 ms after a command is
issued.

2. The power window shall be fully opened or closed within 4.5 s.
3. When closing the power window, a force of no more than 100 N may be

present.
4. Detection of a clamped object when closing the window should lower the

window by 10 cm.

Power window 
system

button_up

button_down

pinch_F

cmd_up

cmd_down

Fig. 1. Representation of the power
window system

Given these requirements, the power win-
dow system can be seen as a black box con-
troller with three inputs and two outputs as
illustrated in Fig. 1.

Using the definition of contracts for sys-
tem design from [4,19], the set of require-
ments are formalized as a system contract,
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as shown in Table 1. The contract specifies certain assumptions on the con-
text/environment the power window operates in, namely: (a) the input force is
lower than 1000 N and (b) the minimum interval of button operations is 100 ms.
Under these conditions, a safe operation of the system is guaranteed. It might be
clear that the requirements of the system are the guarantees of the system. How-
ever, as one may notice in Table 1, certain functional requirements are refined
given domain-specific knowledge. For example, requirement 3 and 4 are further
refined in the spatial and temporal dimension to detail the safety requirement:

1. Spatial dimension: if a clamped object is detected, the power window may
continue to close for a maximum of 0.2 mm before life threatening injuries
occur.

2. Temporal dimension: given the spatial dimensions, safety can be guaranteed
if the window lowers within 1 ms.

This refinement, that is made after discussions with experts and looking into
regulations, results in the fifth guarantee of Table 1.

Table 1. Power window system contract Csys

Assumptions pinch F will be lower than 1000N

button up occurs sporadic with a minimum period of 100 ms

button down occurs sporadic with a minimum period of 100 ms

Guarantees Delay between button up and cmd up within [0 ms, 200 ms]

Delay between button down and cmd down within [0 ms, 200ms]

Maximum activation time cmd up within [0 ms, 4.5 s]

Maximum activation time cmd down within [0 ms, 4.5 s]

If pinch F exceeds 100 N, delay between pinch F and cmd down within
[0 ms, 1 ms ]

If pinch F exceeds 100N, activation time cmd down within [0 s, 0.43 s]

4 Overview of the State-of-the-Art Contract Operators

In Sect. 2 it is shown that a lot of contributions in the field of Contract-Based
Design for Cyber-Physical Systems have been done in the context of the SPEEDS
and CESAR projects. Therefore, this section gives a short overview of the cur-
rently used contract operators. Section 5 uses these operators to check their
feasibility in a co-design engineering process.
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Decomposition of a System

Concurrent engineering (co-design) can be realized by decomposing the system
into components that are designed (semi-)independently of each other. From the
perspective of a CPS, one can distinguish three independent components: (a) a
hardware component, i.e. one or more embedded platforms which are connected
to each other, (b) a control component and (c) a mechanical component. Each
component is typed by a set of in- and outputs, a set of behaviors and a set of
extra-functional properties like performance, timing, energy, safety, etc. Figure 2
shows the decomposition of the power window system (Fig. 1) into its control
and hardware component. Note that we neglected the mechanical component
for the sake of clarity. As can be seen, components can be further refined and
hierarchically structured to represent different levels of abstraction. They can be
connected to each other by sharing certain ports and variables.

Control 1

button_up

button_down

up_out

down_out
Control 2

pinch_F

cmd_up

cmd_down

up_in

down_in

CAN

button_up

button_down

up_out

down_out
ECU 1 ECU 2

pinch_F

cmd_up

cmd_down

up_in

down_in

button_up

button_down

pinch_F

Power window system

Control component

Hardware component

cmd_up

cmd_down

Fig. 2. Refinement of the power window system

The decomposition of the system results in a decomposition of the system
contract as well. Indeed, each (sub-)component is typed by an individual con-
tract that is derived from the system contract. By using different operators, the
component contracts are merged and should satisfy or refine the system contract.

Contract Operators. Because a contract is a set of assumptions and guar-
antees, set theory is used to merge component contracts. Three basic operators
are defined in literature [19]: abstraction/refinement �, conjunction ∧ and com-
position ⊗. Before applying the current CBD theory to our example, we briefly
discuss these basic operators.

Abstraction/Refinement. As already stated, components might be hierarchi-
cal structured and as such, a component its contract might be further refined.
Let C

′
= (A

′
, G

′
) and C = (A,G) be two contracts consisting out of a set of

assumptions and guarantees. The refinement C
′ � C holds if and only if:

A
′ ⊇ A

G
′ ⊆ G

(1)
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Given this constraint, it is clear that a refined contract should weaken the
assumptions and strengthen the guarantees. Therefore, we say that any imple-
mentation M of contract C

′
is an implementation of C as well, or more formally:

If M |= C
′
and C

′ � C then M |= C (2)

A similar reasoning can be obtained for the environment E of both contracts:

If E |= C and C
′ � C then E |= C

′
(3)

Conjunction. The conjunction operators enables one the merge different view-
point contracts associated to one single component. In the example of Fig. 2, the
component ‘Control 1’ might be typed by a behavioral and a safety viewpoint
contract. Let C1 = (A1, G1) and C2 = (A2, G2) be two viewpoint contracts con-
sisting out of a set of assumptions and guarantees. The conjunction C1 ∧C2 can
then be obtained as follows:

A = (A1 ∪ A2)
G = (G1 ∩ G2)

(4)

Similar to the abstraction/refinement operator, the conjunction operator weak-
ens the assumptions and strengthens the guarantees.

Composition. The composition operator enables one to merge the contracts
associated to different components. In the example of Fig. 2, the contracts related
to the sub-components ‘Control 1’ and ‘Control 2’ can be composed to compute
the ‘Control’ contract. Let C1 = (A1, G1) and C2 = (A2, G2) be two components
contracts consisting out of a set of assumptions and guarantees. The composition
C1 ⊗ C2 can then be obtained as follows:

A = (A1 ∩ A2) ∪ ¬(G1 ∩ G2)
G = (G1 ∩ G2)

(5)

In the case of composition, both assumptions and guarantees are strengthened.

5 Applicability of the Current Methodologies on a
Co-Design Engineering Problem

To the best of our knowledge, the current CBD theory has never been applied in a
co-design engineering process. On the contrary, the examples shown in [4,21,22]
are sequential engineering processes. Therefore, this section analyzes the feasi-
bility of the current state-of-the-art/state-of-the-practice and identifies possible
shortcomings using the power window example of Sect. 3.
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Control Component

As can be seen in Fig. 2, the control component is decomposed into two control
components. One component takes care of the user operations (button up and
button down) and as such implements guarantee 1 and 2 of the system contract
of Table 1. The other control component implements the main control loop which
takes care of the remaining guarantees.

The composition of the two refined control components refines (the control
view of) the system contract of Table 1 and will, using Eq. 1, strengthen (some)
guarantees and weaken (some) assumptions. As an example, Table 2 shows a
fragment of the contract of component ‘Control 1’ which is obtained by the
conjunction of its functional and timing contract and the composition with the
signal contract. The later one specifies a contract on the signals between ‘Con-
trol 1’ and ‘Control 2’. The refined contract strengthens the guarantees of the
system contract. In ’control 1’ the delay between the component its input and
its output (in fact, the input of the other component) is lowered from 200 ms to
52 ms. Together with the contract of ’Control 2’, the total time is less than 200
ms. Furthermore, Eq. 3 holds because the environment of the composed refined
components will be one for the system as well. Note that the actual refinement
of the system contract is the conjunction of the composition of the hardware
components and the composition of the control components.

Table 2. Fragment of contract Cc1 for ‘Control 1’

Assumptions button up occurs sporadic with a minimum period of 50ms
up out occurs sporadic with a minimum period of 2 ms

Guarantees Delay between button up and up in within [0 ms, 52 ms]

If we take a closer look at the content of the contract in Table 2, we may
wonder to what extent a control engineer is able to guarantee these timing delays.
Although a control engineer has several degrees of freedom (e.g. the order of the
control algorithm) to influence the computational expensiveness of a algorithm,
these timings highly depend on the hardware platform and thus on the hardware
component. From our experience with industry, we know that control engineers
have limited aids in estimating hardware properties and as such are not able to
guarantee these delays once the control algorithm is deployed.

Hardware Component

A similar conclusion can be made when looking to the contract for the hard-
ware component, and in particular for the contract of ‘ECU 1’ (see fragment in
Table 3) which implements the algorithm of ‘Control 1’. Note that the composi-
tion of this contract with the ’ECU 2’ and ’CAN’ contract is again a refinement of
the (hardware view of the) system contract, which one can verify using Eqs. 1–3.

At a first glance, the contract contains everything an embedded engineer is
able to reason about: timing period of a runnable, Worst Case Execution Time
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Table 3. Fragment of contract Ce1 for ‘ECU 1’

Assumptions button up occurs sporadic with a minimum period of 40ms
Runnable#actuation occurs each 40ms
Delay between Runnable#actuation and up out within [0 ms, 10 ms]

Guarantees Timer occurs each 10 ms
Delay between button up and up out within [200 us, 10ms + 1.3 ms]

(WCET) and Worst Case Response Time (WRT). However, their position in the
table is questionable. To be more specific, both parts of the table reason about
these properties, while they should be clear guarantees of the platform.

Shortcomings

From this example, we conclude that the current state-of-the-art does not sup-
port a co-design process because the individual contracts: (a) contain properties
on which the domain engineer lacks the ability to reason about and/or (b) make
no clear separation between what is assumed from the other domain and what
should be guaranteed under these conditions.

6 A Contract-Based Co-design Methodology

To overcome the aforementioned shortcomings, a clear negotiation phase is
included in the proposed engineering process. This results in a so called mapping
contract. Based on this overall contract, the different domain-specific contracts
are derived and further refined. This process for deriving domain-specific con-
tracts from a negotiated contract was already suggested by Derler et al. in [5].
However, a clear methodology was not proposed. Therefore, we suggest to use
domain ontologies to support this Contract-Based Design process.

In its essence, an ontology is typed by a set of ontological properties and
certain influence relationships which exists between those properties. Each onto-
logical property classifies a certain part of the real world.

Real World (RW)

Ontological World

Linguistic World

Conforms toTransforms
Checks satisfactionHolds Linguistically conforms to

Represents

Prop=f(PV)

LTM SD
[[.]]

model Performance Value (PV)
[[.]]

1
3

2
4

Properties

Fig. 3. Ontological reasoning

In the context of Cyber-Physical
Systems, ontologies are ideal to make
the implicit knowledge of each domain
engineer explicit. Based on our earlier
work [7], Fig. 3 shows a formal rep-
resentation of ontological reasoning in
a CPS design context. Given a set of
requirements, which describes the real-
world system for a certain context, the
engineer reasons about certain domain
properties (which might be related to
each other). The solid oval in the Onto-
logical World denotes the set of onto-
logical properties covered by the requirements.
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As a first step in the design process, the engineer abstracts the real-world
system by means of a model. This model is typed by a meta-model, called a Lin-
guistic Type Model (LTM ). A linguistic conformance relationship exists between
the model and the LTM. By transforming the model to a Semantic Domain (SD),
using a semantic mapping function ([[.]]), a meaning is given to the model. This
allows for analysis of linguistic properties which are called Performance Val-
ues (PV ). The engineer evaluates these performance values to his own implicit
knowledge of the system. This allows the engineer to conclude whether the sys-
tem is conforming to the requirements or not.

By making this knowledge explicit using an ontology, a function returning
a logical value can be used to evaluate these performance values against a cer-
tain ontological property. As discussed in [7], ontological reasoning enables us to
reason about consistency between performance values related to different onto-
logical properties. These properties in turn are connected by means of influence
relationships.

We argue that ontological reasoning enables contract-based co-design of a
CPS. Given the requirements of the system, an ontology of the overall system is
created. The overall ontology is complemented with domain-specific ontologies
for each engineering domain. The system ontology is linked to the domain-specific
ontologies by means of influence relationships enabling us to reason about rela-
tionships between system and domain-specific properties and thus also about
contracts. For example, Fig. 4 shows the ontology (right side) and the different
contracts (left side) of the power window system. We can clearly distinguish
three areas: (a) a control area in the upper part, (b) a mapping area in the
middle and (c) a hardware area in the lower part. The following subsections
discuss these areas in more detail and how there are related to each other in a
Contract-Based Design process consisting out of three phases: (a) negotiation,
(b) deriving the domain contracts and (c) refinement of the domain contracts.

Phase 1 - Negotiation

A co-design engineering process, supported by Contract-Based Design, starts
with a negotiation phase where the involved engineering domains discuss the
system properties which need to hold. Therefore, each engineer represents the
architecture of its domain given the system requirements. For example, the con-
trol engineer reasons about: (a) the amount of software components, (b) their
in- and outputs, (c) connections between components, etc. On the other hand,
the hardware engineer responsible for the hardware part of the system reasons
about: (a) the number of Electronic Control Units (ECUs), (b) their processor,
(c) communication between the ECUs, etc. These architectural parameters can
also be ranged values. An example of such an architecture is shown in Fig. 2
which, indeed, is a refinement of the system.

Given the architecture of the involved domains and the system requirements
(e.g. Table 1), the engineers decide how these architectures are related to each
other. For example, when focusing on control and hardware components, they
decide how the control algorithm is mapped to the hardware. In the case of the
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Fig. 4. Fragment of the mapping contract and the derived engineering contracts for
the power window example

power window, they decide on a one-to-one mapping between a control and ECU
component. Based on this mapping, a mapping contract, as shown on the left
side of Fig. 4, is defined that consists out of a set of assumptions and guaran-
tees. Properties related to the architectures are best guesses. Therefore, they are
assumptions of the mapping contract. Examples of such estimated properties
are: clock speed, number of instructions, periodicity, minimum interval times of
the inputs, maximum communication time between ECUs, etc.

Keeping in mind the defined architectures, the given system requirements
are translated to system properties as well. For example, one requirement of the
power window example states that ‘the power window should start moving within
200ms after a command is issued ’. This maximum latency is refined into two
guarantees of the mapping contract: (a) a maximum latency of 199 ms for map-
ping component 1 and (b) a maximum latency of 1 ms for mapping component
2. A mapping component refers to the one-to-one mapping of a control to an
ECU component. It might be clear that the system requirements, such as these
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latencies, are considered as guarantees of the mapping contract. As we notice,
the mapping contract as shown in Fig. 4 is a refinement of the system contract
shown in Table 1. As a result, Eqs. 1–3 are valid.

Phase 2 - Deriving the Domain Contracts

In the second phase of the process, the elements of the mapping contract are
subdivided into three categories using the ontology shown on the right of Fig. 4:
(a) Control architecture, (b) Hardware architecture and (c) System. Based on
this categorization it is decided if a contract element should be an assumption
or a guarantee of the domain contract. Moreover, due to relations there exist
between the ontological properties, it is decided whether a certain element is
relevant for the domain contract and how it should be translated. The decision
whether a contract element is translated to the domain contract is relevant when
one wants to focus on one particular (extra-)functional requirement (e.g. timing,
safety, etc.).

Contract elements which are related to a certain architecture become part
of the guarantees of the domain contract related to that architecture. Given the
mapping contract in Fig. 4, for example, the element Processor Clock and Peri-
odicity of Component 1 are translated as guaranteed elements of the hardware
contract as these are design decisions the hardware engineer should take care
of. Likewise, the element Number of instructions for Component 1 is translated
as a guaranteed element of the control contract. Indeed, the control engineer
is responsible for maintaining this limited amount of instructions which can be
influenced by the order of the control algorithm.

Contract elements which are related to the system requirement, i.e. which are
part of the system contract or which are a refinement of them, are translated as
assumed elements of all the involved domain contracts. Based on these assump-
tions, domain engineers are able to make domain specific decisions in phase 3
of the design process. Those decisions are again the guarantees of their domain
contracts.

Note that every element of the mapping contract is translated to at least
one domain contract over the ontological relations such that completeness is
guaranteed.

Phase 3 - Refinement of the Domain Contracts

As a final phase of the co-design engineering process, the domain engineers
extend and refine their own contracts, keeping in mind Eqs. 1–3, as shown in
Fig. 5. For example, the hardware engineer might decide to strengthen the peri-
odicity of component 1, i.e. increase the periodicity from 100 ms to 50 ms. He is
allowed to refine this contract element since it is a design parameter he has to
guarantee. However, the refinement has to be taken under the given assumptions
which might be relaxed (e.g. decreasing the maximum end-to-end latency).
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Fig. 5. Fragment of the refined engineering contracts for the power window example

Once a contract element is refined in one domain, the changes must be pushed
to related contract elements which are part of the other domain contracts. This is
made possible because every contract element is linked to an ontological property
which in turn are related to each other by means of influence relationships. For
example, the refinement of the periodicity in the hardware contract results in
an update of the assumed periodicity in the control contract via the ontological
properties: Load → HW Architecture → Mapping → Performance → Reaction.

7 Conclusions and Future Work

The application of contract-based design in a concurrent engineering setting with
multi-disciplinary teams is not well supported. Contracts contain elements that
might be irrelevant for the engineer. Furthermore, there is no clear distinction
between what is assumed from other domains and what is guaranteed under
these conditions.
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By combining the theory of CBD with the principles of ontological reasoning,
we propose a three phased process that starts with a negotiation phase. A nego-
tiation allows engineers to discuss a common mapping contract. Using an ontol-
ogy, elements of the mapping contract are translated to domain-specific contract
elements and, depending on the engineering, are defined in the assumption or
guarantee part of the domain contract. By definition, our methodology ensures
that what is assumed in one domain will be guaranteed by another domain.
Furthermore, using ontological reasoning our methodology ensures consistency
between contracts and as such keeps them synchronized at all times.

It might be clear that the applicability in an industrial context is only feasible
when our methodology is supported by a user-friendly tool. Given an ontology,
build by a system engineer, and the negotiated mapping contract we believe the
supported tool should hide phase 2 and 3 of our proposed methodology allowing
engineers to focus on their core business (i.e. designing the system). Providing
this tool support is considered as future work. Once available, it will allow us
to increase the complexity of the use case and investigate the feasibility of our
methodology on models used in industry. Besides providing tool support, we are
planning to verify the compatibility of our proposed design methodology with
the current state-of-the-art contract operators. We believe an extension of the
current contract operators is needed to support our vision of a mapping operator
which assures that all the information is put forward to the (derived) domain
contracts.
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Abstract. CPS Specifier is a specification tool for Cyber-Physical Sys-
tems. Founded on established theory and realized using general design
and integration technologies and principles, e.g. Linked Data, CPS Spec-
ifier provides guidance- and feedback-driven support when authoring
structured specifications in general, and for specifying and structuring
requirements, in particular. The provided support is crucial in order to
comply with functional safety standards such as IEC 61508 and ISO
26262 that require particularly stringent requirements engineering.

1 Introduction

Requirements Engineering (RE) [8] is a well-established and recommended prac-
tice within the field of systems engineering. RE is particularly emphasized in
functional safety, where the general standard IEC 61508 [9] advocates that safety
requirements are to form the backbone of a structured argumentation for that
a system is (functionally) safe. Functional safety is a key property of Cyber-
Physical Systems [12], e.g. a modern automotive vehicle.

In IEC 61508 and its derivative standards such as ISO 26262 [10] for the auto-
motive domain, the argumentation over safety requirements is to be structured
in an hierarchical manner in accordance with the system architecture [11]; at
each level, safety requirements are to be allocated to architecture elements with
well-defined interfaces. The intended property characterized by the requirement
levels is to achieve completeness, i.e. that “the safety requirements at one level
fully implement all safety requirements of the previous level” [10]. This is a prop-
erty that also must be verified, thus, a high degree of stringency is required when
formulating requirements and linking them together to structure a hierarchy.

Despite the highly stringent RE advocated in functional safety standards,
requirements in industry is typically of poor quality [1]. Considering a typical
RE tool such as IBM Rational DOORS, other than basic impact analyzes, the
tool neither gives feedback nor guides a user when specifying and structuring
requirements; thus, a property such as completeness must be established with-
out any concrete support from the tool. The view in [14], which is shared in
the present paper, is that RE is a complex and error-prone process that can
benefit from more intelligent tool support in general. In fact, in order to com-
ply with functional safety standards that require a particularly stringent RE,
c© Springer International Publishing AG 2017
C. Berger et al. (Eds.): CyPhy 2016, LNCS 10107, pp. 116–125, 2017.
DOI: 10.1007/978-3-319-51738-4 9
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tool support, which gives feedback to and guides the user when specifying and
structuring requirements, is crucial.

Therefore, the present paper describes a tool called CPS specifier, providing
such support not only when specifying and structuring requirements, but rather
when authoring structured specifications for CPS in general. As the main con-
tribution, the present paper describes how CPS Specifier provides feedback and
guides the user, when:

(i) allocating specifications and requirements to architecture elements;
(ii) specifying interfaces of architecture elements;
(iii) specifying requirements semi-formally or formally; and
(iv) structuring requirements (specified informally, semi-formally, or formally).

This user feedback and guidance are well-founded on a general and formal
requirements- and architecture-specification theory, namely established CPS
contracts theory [2,16]; hence, the provided support is guaranteed to be sound.

The well-founded support provided by CPS Specifier for use cases (i)–(iv) is
not provided by other RE tools, see e.g. [1,4,6,7] similar to CPS Specifier or [5]
for a survey. For example, while CPS Specifier provides feedback and guidance
for specifying requirements semi-formally and formally, tool [6] instead provides
feedback on requirements specified informally, considering e.g. text length and
consistent use of terms. Thus, CPS Specifier and [6] focus on different use cases
and complement each other. This also holds true for [4] and [7] that do not focus
on use cases (i)–(iv), but rather on transformation between requirements spec-
ified in different formalisms. In contrast to formal requirements analysis tools,
e.g. Rodin [1], CPS Specifier offers guidance and feedback even when require-
ments are not specified formally, which is required in such tools. CPS Specifier
does not provide full analysis support for requirements specified formally; for full
support, CPS Specifier should be used in parallel with a tool such as Rodin [1].

2 Working Example and CPS Contracts Theory

This section describes Fuel Level Display (FLD), a safety-critical system installed
on all trucks manufactured by Scania, with a functionality to provide an estimate
of the fuel volume in the fuel tank to the driver. FLD will be described in terms
of the concepts architecture and contract structure, which are formally defined in
CPS contracts theory [2,16]. Formal definitions will not be given in the present
paper; however, Sect. 4 will describe how CPS Specifier relies on these definitions
to realize some of its novel features.

Architecture. This section presents an architecture of the FLD system as shown
in Fig. 1a, i.e. in accordance with [16], a decomposition of FLD into parts, each rep-
resented as an element E = (X,B) with an interface X consisting of port variables
and a behavior B, i.e. a set of traces [3] over the port variables in X.

In Fig. 1a, the rectangles filled with gray and the boxes on their edges repre-
sent the elements in the architecture and their port variables, respectively, and
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EFLD

ECOO EECU EfuelSW

EPLAT

EfuelSensor

EEMS ETank EICL

estFuelRateIn sensFuelLevelIn estFuelV olumeOut

estFuelV olumeestFuelRate

v fuel

sensFuelLevel

actualFuelV olume indicatedFuelV olume

(a)

RFLD

RICLRCOORTank
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RPLAT,1 RPLAT,2 RPLAT,4RPLAT,3 RPLAT,5

(b)

Fig. 1. (a) and (b) shows an architecture of FLD and its safety requirements organized
as contract structure, respectively.

where a shared port variable is represented either by connecting boxes with a line
or by the same box being present on several edges of rectangles. The fact that
a rectangle representing an element E

′ is within another rectangle representing
an element E, represents that E

′ is a sub-element of E.
As shown in Fig. 1a, FLD EFLD consists of a fuel tank ETank and three ECU

(Electric Control Unit)-systems, i.e. an ECU with sensors and actuators: Engine
Management System (EMS) EEMS ; Instrument CLuster (ICL) EICL; and COOr-
dinator (COO) ECOO. In turn, ECOO is composed of a fuel sensor EfuelSensor

and an ECU EECU , which consists of an application software (SW) component
EFuelSW and a platform EPLAT , i.e. ECU hardware (HW) and infrastructure
SW, which EFuelSW executes on. Due to space restrictions, only a breakdown
of one ECU-system is considered and this breakdown is also limited; see [16] for
a more complete architecture.

The element ECOO estimates the fuel volume actualFuelV olume[%] in the
tank ETank by a Kalman filter that is implemented by EfuelSW . The platform
EPLAT is to ensure that the inputs estFuelRateIn[l/h] and sensFuelLevelIn[%]
and output estFuelV olumeOut[%] to EFuelSW correspond to the inputs est-
FuelRate[l/h] and sensFuelLevel[%] and output estFuelV olume[%] of ECOO,
respectively. The port variable sensFuelLevel[%] represents the position of a
floater in the fuel tank EFuelTank, as sensed by the fuel sensor EfuelSensor and
estFuelRate[l/h] is an estimate of the current rate of fuel injected into the engine
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and is a Controller Area Network (CAN) signal, transmitted in CAN message
FuelEconomy from EEMS . The estimated fuel volume is transmitted as the
CAN signal estFuelV olume[%] in CAN message DashDisplay. This CAN mes-
sage is received by EICL where a fuel gauge indicatedFuelV olume[%] in the
display presents the information to the driver.

Contract Structure. In CPS contracts theory [2,16], a requirement R is for-
malized in the same way as element behavior, i.e. as a set of traces over port
variables; thus, a requirement can be specified formally as e.g. a relation on
time-dependent port variables. A requirement specified semi-formally will in
the following be considered to be free text with formal references to port vari-
ables. As an example of a requirement specified semi-formally, the overall safety
requirement RFLD on FLD can be specified as:

‘indicatedFuelV olume[%], shown by the fuel gauge, is less than or equal to
actualFuelV olume[%]’.

Figure 1b shows a graph where the nodes represent requirements structured
in accordance with the architecture shown in Fig. 1a. Each requirement is a safety
requirement, i.e. a requirement that has been assigned with a Safety Integrity
Level (SIL) [9,10]. The subscript of each safety requirement denotes which ele-
ment the requirement is allocated to, e.g. RFLD is allocated to EFLD. The graph
is a contract structure, introduced in [16] and extended with SILs in [15].

In CPS contracts theory, an allocation of a requirement R to an element is
characterized by a contract ({R1, . . . ,RN},R) where R is called the guarantee
and where each Ri is a requirement called an assumption of R. The contract
expresses that the behavior of the element is to ensure that the requirement R
is fulfilled given that each assumption Ri of R is fulfilled.

The fact that a requirement R′ is an assumption of another requirement R is
in Fig. 1b represented by an arc, called an assume link, from R′ to R where the arc
has a circle filled with black at the end. For example, RICL is an assumption of
RfuelSW . The safety requirement RICL is allocated to EICL and can be specified
semi-formally as ‘indicatedFuelV olume[%] corresponds to estFuelV olume[%]’.

The arcs that are not assume links in Fig. 1b, i.e. those with an arrow at
the end, are called fulfill links and represent the intent to establish completeness
between requirement levels. More specifically, the intent is that each requirement
R, which is allocated to a non-leaf architecture element E, is fulfilled by the
requirements that have fulfill links to R and are allocated to sub elements of E.
For example, the fulfill link from RfuelSW to RCOO represent the intent that
RfuelSW fulfills RCOO.

3 CPS Specifier Design and Integration

This section presents the principles and technologies used in the overall design of
CPS Specifier and its integration into the industrial tool chain at Scania. These
principles and technologies enable the main contribution that will be presented
in Sect. 4, i.e. the feedback- and guidance-driven support for use cases (i)–(iv).
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Fig. 2. Snapshot of the main window of the UI of CPS Specifier.

Design. The main window of the User Interface (UI) of CPS Specifier is shown
in Fig. 2 and appears as a specification authored in a typical text editor, e.g.
MS Word, with sections, free text, images, and tables; only the requirements,
enclosed in rectangles filled with gray, appear differently. However, in contrast
to a typical text editor, the specification content that is shown to the user is
structured as machine-readable data. This machine-readable data takes the form
of two different kinds, namely implementation and specification data.

Implementation data describes a CPS in terms of its constituent elements
and interface port variables in accordance with the concept of architecture as
presented in Sect. 2. Specification data specifies the CPS in terms of its intended
architecture, free text descriptions, and the requirements on the CPS and their
organization as a contract structure as also described in Sect. 2.

While the user can input specification data directly, implementation data
cannot be entered directly. Instead, the user is to input a reference to the imple-
mentation data, whereas CPS Specifier then automatically consumes this data
and presents it in the specification; input of specification data references is done
in the same manner. Implementation data references are in CPS Specifier high-
lighted in green, e.g. in the table shown in Fig. 2, actualFuelV olume is an imple-
mentation reference.

Integration. The integration of CPS Specifier into the tool chain at Scania
is shown in Fig. 3 where arrows represent flow of data and where tools/aspects
preexisting the integration and new tools/aspects of the tool chain are color-
coded with gray and white, respectively. Despite being presented in a specific
context, the considered principles and technologies are applicable in a general
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Fig. 3. Integration of CPS Specifier into the industrial tool chain at Scania.

CPS development setting, thus, allowing an arbitrary CPS developer to design
and integrate a tool like CPS Specifier into its own tool chain.

CPS Specifier saves and loads specifications as XML-files in accordance with
Darwin Information Typing Architecture (DITA) – an open standard for author-
ing specifications and publishing them as e.g. PDF-documents. Specification files
are stored in the preexisting version control system (VCS) along with SW imple-
mentation files, i.e. source code files (e.g. .c-files) and files (e.g. Simulink .mdl
files) that generate source code. Relying on preexisting VCS allows versions of
specifications and SW to automatically coevolve since new versions of specifica-
tions are automatically created whenever SW development is branched/merged.

The specification files only stores data that is entered directly into a spec-
ification, referenced specification and implementation data is instead stored as
references. Referenced data is consumed by CPS Specifier whenever a specifica-
tion file, containing data references, is loaded; this ensures that the referenced
data, presented in CPS Specifier, is updated and consistent.

A key concept for enabling this type of referencing and data interchange is
Linked Data [13], which requires a standardized model for data interchange. As
shown in Fig. 3, CPS Specifier uses Resource Description Framework (RDF) [13]
as a standardized model for publishing and consuming data according to Linked
Data. While tools such as test management systems consume data published by
CPS Specifier, the tool itself consumes implementation data from architecture
data publishers, i.e. tools that publish SW/HW/physical architecture data.

Regarding publishers of SW architecture data, the publishers automatically
analyze and extract data directly from SW implementation files in the version
control system using architecture recovery [17]. For example, SW variables and
the functions that read and write to them are extracted from parsing .c-code files.
Relying on architecture recovery ensures that the published data is consistent
with the implementation.

In a similar manner, HW/physical architecture publishers automatically ana-
lyze and extract data from: the Product Data Management (PDM) system,
which lists the components present in a particular vehicle; databases, e.g. CAN-
DB, which lists CAN messages and signals; and other sources, e.g. Simulink
models, Excel-files that describes properties of sensors and actuators, and CAD
(Computer Aided Design)-systems.
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4 Using CPS Specifier

This section describes how to use CPS Specifier with a focus on the main contri-
bution of the present paper, i.e., the feedback and guidance given for the use cases
presented in Sect. 1: (i) allocating specifications and requirements to architec-
ture elements; (ii) specifying interfaces of architecture elements; (iii) specifying
requirements semi-formally or formally; and (iv) structuring requirements.

A main concept used for enabling such support, is a concept called a context
of a specification, which defines the architecture and specification data that can
be referenced from different parts of the specification. In accordance with the
restrictions imposed by the specification context, CPS Specifier supports input
of data references using auto-complete functionality. Figure 4 shows an example
where a list of port variables appear as possible references when specifying the
safety requirement RfuelSW .

(i) Allocating Specifications and Requirements to Architecture Ele-
ments. Creating a specification in CPS Specifier is created from a template
with predefined sections and/or tables. Similar to a typical text editor, sections
and tables, and also images and equations (in the input form of latex) can be
removed or embedded in free text simply by inserting them from the menu.

Before doing any authoring, the user is first prompted with the option to
select, from a list of architecture elements found in the architecture data, the
architecture element that the specification is allocated to, which also determines
where the requirements in the specification are to be allocated. For example, the
specification in Fig. 2 is allocated to EFLD, which means that the two require-
ments RFLD and RFLD,2 in Fig. 2 are both allocated to EFLD. Notably, the user
is free to not initially selecting an element for allocation; this can be done at any
other time by selecting this option in the menu.

Creating a specification from a template enables CPS Specifier to guide
the user when allocating a specification by restricting the list of architecture
elements that the specification can be allocated to. For example, in the FLD
case, after selecting a template for Application SW components, the list would

Fig. 4. Snapshot of requirement in CPS Specifier.
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include EFuelSW , but exclude elements such as ECOO and EFuelTank. As will be
explained further in this section, CPS Specifier will also give feedback on specified
interfaces and requirements, and also established requirement links, immediately
after allocating a specification.

(ii) Specifying Interfaces of Architecture Elements. In the specification
shown in Fig. 2, there is a table listing interface port variables and their proper-
ties; this is a special table, called an interface table, which can be inserted from
the menu.

In general, a specification can have several interface tables, typically one
for each port variable type, e.g. CAN-signals, sensor inputs, etc. Content can
be manually entered into these tables; however, given that the specification is
allocated to an element E, CPS Specifier will give feedback to the user if the
listed port variables and their properties are not consistent with the architecture
data consumed by CPS Specifier. An example is shown in Fig. 2 where the user
is warned that the port variable estFuelRate is not a port variable of EFLD

according to the architecture data.
To support the user in achieving consistency, instead of entering content in

an interface table manually, the user can input references to port variables in
the architecture data using the auto-complete functionality; CPS Specifier will
then automatically also consume and present properties of the referenced port
variables. To also guide the user in doing this, the context of the specification will
restrict the auto-complete functionality to the port variables listed as interface
port variables of E in the architecture data. Additionally, there is an option
to automatically populate interface tables with references to the interface port
variables in the architecture data, thus ensuring consistency and saving much
manual and error-prone work.

(iii) Specifying Requirements Semi-Formally or Formally. Requirements
can be specified by inserting them from the menu; upon insertion, a unique ID is
generated. Other than the ID, a SIL can be optionally entered. The user is free to
specify a requirement as seen fit, even images and equations can be embedded,
however, as previously mentioned and as shown in Fig. 4, explicit support is
given for specifying requirements semi-formally, i.e. as free text with references
to interface port variables, using the auto-complete functionality restricted by
the specification context.

Considering such restrictions on specifying a requirement, the port variables
that can be referenced in the requirement are in accordance with conditions,
called scoping conditions, in CPS contract theory [2,16]. Specifically, given that
the requirement is allocated to an element E in an architecture, these conditions
express that the referenced port variables must be in the union of the interfaces
of the sub-elements of each proper ancestor of E. For example, these conditions
are violated if e.g. the SW variable estFuelV olumeOut is referenced in the safety
requirement RFLD, allocated to EFLD. Notably, these scoping restrictions do not
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only apply to requirements specified semi-formally, but also when requirements
are specified formally as e.g. mathematical relations on port variables.

The scoping restrictions imposed by the specification context can both guide
and give feedback to the user. The former since the auto-complete functionality
considers the restrictions imposed the context. The latter since the user will,
directly after a specification is allocated, get notified if requirements, specified
prior to the allocation, now violates the scoping restrictions.

(iv) Structuring Requirements. As exemplified in Fig. 4, for a requirement
R in a specification, there is a fold-down menu for creating assume and fulfill
links between R and other requirements in accordance with a contract structure,
as described in Sect. 2. Specifically, sources for assume links and targets for fulfill
link of R can be selected from a list; hovering over a requirement in this list and
the requirement is displayed, as exemplified in Fig. 4 for the requirement RICL.
As shown in Fig. 4, there is also a button “contract structure” that opens up a
window where R is shown in the context of a graph such as the one in Fig. 1b.

Given that the specification has been allocated to an architecture element
E, CPS Specifier will guide the user in establishing links between R and other
requirements by restricting the set of requirements, shown as possible assume
link sources and fulfill link targets, in these lists. This restriction is imposed by
the specification context that enforces the definition of a contract structure. For
example, none of the requirements RPLAT,1, . . . ,RPLAT,5 will appear as possible
fulfill link targets of RfuelSW since each RPLAT,i is allocated to EPLAT , to which
EfuelSW is not a sub element of.

Furthermore, similar to when specifying requirements, directly after a spec-
ification is allocated, the user will get immediate feedback on whether or not
requirements links, established prior to allocating the specification, are in accor-
dance with the restrictions of the specification context after the allocation.

5 Conclusion

This paper has presented CPS Specifier – a tool for authoring structured spec-
ifications for CPS. By relying on established CPS contracts theory and general
design and integration technologies and principles, e.g. Linked Data, this paper
has shown that CPS Specifier provides guidance and feedback for use cases
(i)–(iv), which are relevant for industry in general, and for complying with func-
tional safety standards, in particular.

In contrast to the provided support for structuring requirements, it is required
that requirements are specified semi-formally or formally in order to get support
when specifying requirements. However, with the use of the guided auto-complete
functionality for input of implementation references, moving from specifying
requirements informally to semi-formally is straightforward. Notably, moving
to specifying requirements semi-formally from informally also allows powerful
analyzes over specification and implementation data to answer queries such as
‘what requirements are enforced on my CAN-signal or SW-variable?’.
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Furthermore, it has been shown that input of implementation data references,
not just in requirements, but also in e.g. interface tables, allows CPS Specifier to
enforce specifications to be updated and consistent with implementation data.
Thus, not only does CPS Specifier provide crucial support for specifying and
structuring requirements in order to comply with functional safety standards,
but it also provides support for increasing the quality of specifications in general.
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