
Chapter 1
Solid State Drives (SSDs)

Rino Micheloni and Luca Crippa

Abstract Solid-state drives (SSDs) are unanimously considered the enabling factor
for bringing enterprise storage performances to the next level. Indeed, the rotating-
storage technology of Hard Disk Drives (HDDs) can’t achieve the access-time
required by applications where response time is the critical factor. On the contrary,
SSDs are based on solid statememories, namelyNANDFlashmemories: in this case,
there aren’t anymechanical parts and randomaccess to stored data can bemuch faster,
thus addressing the above mentioned needs. In many applications though, the inter-
face between host processors and drives remains the performance bottleneck. This
is why SSD’s interface has evolved from legacy storage interfaces, such as SAS and
SATA, to PCIe, which enables a direct connection of the SSD to the host processor.
In this chapter we give an overview of the SSD’s architecture by describing the basic
building blocks, such as the Flash controller, the Flash File System (FFS), and the
most popular I/O interfaces (SAS, SATA and PCIe).

1.1 Introduction

Solid StateDrives (SSDs) promise to greatly enhance enterprise storage performance.
While electromechanical Hard Disk Drives (HDDs) have continuously ramped in
capacity, the rotating-storage technology doesn’t provide the access-time or transfer-
rate performance required in demanding enterprise applications, including on-line
transaction processing, data mining, and cloud computing. Client applications are
also in need of an alternative to electromechanical disk drives that can deliver faster
response times, use less power, and fit into smaller mobile form factors.

Flash-memory-based SSDs can offer much faster random access to data and
faster transfer rates. Moreover, SSD’s capacity is now at the point where solid state

R. Micheloni (B) · L. Crippa
Performance Storage Business Unit, Microsemi Corporation, Vimercate, Italy
e-mail: rino.micheloni@ieee.org

L. Crippa
e-mail: luca.crippa@ieee.org

© Springer International Publishing AG 2017
R. Micheloni (ed.), Solid-State-Drives (SSDs) Modeling,
Springer Series in Advanced Microelectronics 58,
DOI 10.1007/978-3-319-51735-3_1

1



2 R. Micheloni and L. Crippa

drives can serve as rotating-disk replacements. But inmany applications the interface
between host and drives remains the performance bottleneck. SSDs with legacy stor-
age interfaces, such as SAS and SATA, are proving useful, and PCI-Express (PCIe)
SSDs will further increase performance and improve responsiveness, being directly
connected to the host processor.

1.2 SSD’s Architecture

A basic block diagram of a solid state drive is shown in Fig. 1.1. In addition to
memories and a Flash controller, there are usually other components. For instance,
an external DC-DC converter can be added in order to drive the internal power
supply, or a quartz can be used for a better clock precision. Of course, reasonable
filter capacitors are inserted for stabilizing the power supply. It is also very common
to have an array of temperature sensors for power management reasons. For data
caching, a fast DDR memory is frequently used: during a write access, the cache

Fig. 1.1 Block diagram of an SSD



1 Solid State Drives (SSDs) 3

is used for storing data before their transfer to the Flash. The benefit is that data
updating, e.g. of routing tables, is faster and does not wear out the Flash.

A typical memory system is composed of several NANDmemories [1]. Typically,
an 8-bit bus [2, 3], usually called “channel”, is used to connect different memories to
the controller (Fig. 1.1). It is important to underline that multiple Flash memories in a
system are both a means for increasing storage density and read/write performances
[4].

Operations on a channel can be interleaved, which means that a second chip can
be addressed while the first one is still busy. For instance, a sequence of multiple
write operations can be directed to a channel, addressing different NANDs, as shown
in Fig. 1.2: in this way, the channel utilization is maximized by pipelining the data
load phase. In fact, while the program operation takes place inside a memory chip,
the corresponding Flash channel is free. The total number of Flash channels is a
function of the target application, but tens of channels are becoming quite common.
Thanks to interleaving, given the same Flash programming time, SSD’s throughput
greatly improves.

The memory controller is responsible for scheduling the accesses to the memory
channels. The controller uses dedicated engines for the low level communication
protocol with the Flash.

Moreover, it is clear that the data load phase is not negligible compared to the
program operation (the same comment is valid for data output): therefore, increasing
I/O interface speed is another smart way to improve performances: DDR-like inter-
faces are discussed in more details in Chap.2. As the speed increases, more NAND
can be operated in parallel before saturating the channel. For instance, assuming a
target of 30 MB/s, 2 NANDs are needed with a minimum DDR frequency of about
50 MHz. Given a page program time of 200 µs, at 50MHz four NANDs can operate
in interleaved mode, doubling the write throughput. Of course, power consumption
is another metric to be carefully considered.

After this high level overview of the SSD’s architecture, let’s move to the heart
of the architecture: the memory (Flash) controller.

Fig. 1.2 Interleaved operations on one Flash channel

http://dx.doi.org/10.1007/978-3-319-51735-3_2


4 R. Micheloni and L. Crippa

1.3 Flash Controller

A memory controller has two fundamental tasks:

1. provide the most suitable interface and protocol towards both the host and the
Flash memories;

2. efficiently handle data, maximizing transfer speed, data integrity and retention of
the stored information.

In order to carry out such tasks, an application specific device is designed, embed-
ding a standard processor—usually 8–16 bits—together with dedicated hardware to
handle time-critical tasks.

Generally speaking, the memory controller can be divided into four parts, which
are implemented either in hardware or in firmware (Fig. 1.3).

Moving from the host to the Flash, the first part is the host interface, which
implements the required industry-standard protocol (PCIe, SAS, SATA, etc.), thus
ensuring both logical and electrical interoperability between SSDs and hosts. This
block is a mix of hardware (buffers, drivers, etc.) and firmware, which decodes the
command sequence invoked by the host and handles the data flow to/from the Flash
memories.

The second part is the Flash File System (FFS) [5]: that is, the file system which
enables the use of SSDs like magnetic disks. For instance, sequential memory access
on a multitude of sub-sectors which constitute a file is organized by linked lists
(stored on the SSD itself), which are used by the host to build the File Allocation
Table (FAT). The FFS is usually implemented in form of firmware inside the con-
troller, each sub-layer performing a specific function. The main functions are:Wear
levelingManagement,Garbage Collection andBad BlockManagement. For all these
functions, tables are widely used in order to map sectors and pages from the logical
domain to the physical domain (Flash Translation Layer or FTL) [6, 7], as shown
in Fig. 1.4. The top row is the logical view of the memory, while the bottom row
is the physical one. From the host perspective, data are transparently written and
overwritten inside a given logical sector: due to Flash limitations, overwrite on the
same page is not possible; therefore, a new page (sector) must be allocated in the
physical block, and the previous one is marked as invalid. It is clear that, at some
point in time, the current physical block becomes full and a second one (coming
from the pool of “buffer” blocks) has to take over that logic address.

The required translation tables are stored on the SSD itself, thus reducing the
overall storage capacity.

1.4 Wear Leveling

Usually, not all the data stored within the same memory location change with the
same frequency: some data are often updated while others don’t change for a very



1 Solid State Drives (SSDs) 5

Fig. 1.3 High level view of a Flash controller



6 R. Micheloni and L. Crippa

Fig. 1.4 Logical to physical block management

long time—in the extreme case, for the whole life of the device. It’s clear that the
blocks containing frequently-updated information are stressed with a larger number
of write/erase cycles, while the blocks containing information updated very rarely
are much less stressed.

In order to mitigate disturbs, it is important to keep the aging of each page/block
as minimum and as uniform as possible: that is, the number of both read and program
cycles applied to each page must be monitored. Furthermore, the maximum number
of allowed program/erase cycles for a block (i.e. its endurance) should be considered:
in case SLCNANDmemories are used, this number is in the order of 20–30 k cycles,
which is reduced to 10–15 k and 1–5 k for MLC and TLC NAND, respectively.

Wear Leveling techniques exploit the concept of logical to physical translation:
each time the host application needs to update the same (logical) sector, the memory
controller dynamically maps that sector to a different (physical) sector, of course
keeping track of the mapping. The out-of-date copy of the sector is tagged as invalid
and eligible for erase. In thisway, all the physical blocks are evenly used, thus keeping
the aging under a reasonable value.

Two kinds of approaches are possible: Dynamic Wear Leveling is normally used
to follow up a user’s request of update, writing to the first available erased block
with the lowest erase count; with Static Wear Leveling every block, even the least
modified, is eligible for re-mapping as soon as its aging deviates from the average
value.

1.5 Garbage Collection

Both wear leveling techniques rely on the availability of free sectors that can be
filled up with the updates: as soon as the number of free sectors falls below a given
threshold, sectors are “compacted” and multiple, obsolete copies are deleted. This
operation is performed by the Garbage Collection module, which selects the blocks
containing the invalid sectors, it copies the latest valid content into free sectors, and
then erases such blocks (Fig. 1.5).

In order to minimize the impact on performances, garbage collection can be per-
formed in background. The aging uniformity driven bywear leveling distributes wear
out stress over the whole array rather than on single hot spots. Hence, given a specific



1 Solid State Drives (SSDs) 7

Fig. 1.5 Garbage collection

workload and usage time, the bigger the memory density, the lower the wear out per
cell.

1.6 Bad Block Management

Nomatter how smart theWear Leveling algorithm is, an intrinsic limitation ofNAND
Flash memories is represented by the presence of the so-called Bad Blocks (BB), i.e.
blocks which contain one or more locations whose reliability is not guaranteed.
The Bad Block Management (BBM) module creates and maintains a map of bad
blocks, as shown in Fig. 1.6: this map is created in the factory and then updated
during SSD’s lifetime, whenever a block becomes bad.



8 R. Micheloni and L. Crippa

Fig. 1.6 Bad Block Management (BBM)

1.7 Error Correction Code (ECC)

This task is typically executed by a hardware accelerator inside the memory con-
troller. Examples of memories with embedded ECC were also reported [8–10]. Most
popular ECC codes, correcting more than one error, are Reed-Solomon and BCH
[11].

NAND raw BER gets worse generation after generation approaching, as a matter
of fact, the Shannon limit. As a consequence, correction techniques based on soft
information processing are becoming more and more popular: LDPC (Low Density
Parity Check) codes are an example of this soft information approach. Chapter 4
provides details about how these codes can be handled by SSD simulators.

1.8 SSD’s Interfaces

There are 3 main interface protocols used to connect SSDs into server and/or storage
infrastructure: Serial Attached SCSI (SAS), Serial ATA (SATA) and PCI-Express.
PCI-Express based SSDs deliver the highest performances and are mainly used in
server based deployments as a plug-in card inside the server itself. SAS SSDs deliver
pretty good level of performances and are used in both high-end servers and mid-
range and high-end storage enclosures. SATA based SSDs are used mainly in client
applications and in entry-level and mid-range server and storage enclosures.

1.9 SAS and SATA

Serial Attached SCSI (SAS) is a communication protocol traditionally used to move
data between storage devices and host. SAS is based on a serial point-to-point physi-
cal connection. It uses a standard SCSI command set to drive device communications.
Today, SAS based devices most commonly run at 6 Gbps, but 12 Gbps SAS are avail-
able too. On the other side, SAS interface can also be run at slower speeds—1.5 Gbps
and/or 3 Gbps to support legacy systems.

http://dx.doi.org/10.1007/978-3-319-51735-3_4


1 Solid State Drives (SSDs) 9

SAS offers backwards-compatibility with second-generation SATA drives. The
T10 technical committee of the International Committee for Information Technol-
ogy Standards (INCITS) develops and maintains the SAS protocol; the SCSI Trade
Association (SCSITA) promotes the technology.

Serial ATA (SATAor Serial AdvancedTechnologyAttachment) is another interface
protocol used for connecting host bus adapters to mass storage devices, such as hard
disk drives and solid state drives. Serial ATA was designed to replace the older
parallel ATA/IDE protocol. SATA is also based on a point-to-point connection. It
uses ATA and ATAPI command sets to drive device communications. Today, SATA
based devices run either at 3 or 6 Gbps.

Serial ATA industry compatibility specifications originate from the Serial ATA
International Organization [12] (aka. SATA-IO).

A typical SAS eco-system consists of SAS SSDs plugged into a SAS backplane
or a host bus adapter via a point to point connection, which, in turn, is connected to
the host microprocessor either via either an expander or directly, as shown in Fig. 1.7.

Each expander can support up to 255 connections to enable a total of 65535
(64k) SAS connections. Indeed, SAS based deployments enable the usage of a large
number of SAS SSDs in a shared storage environment.

SASSSDsare builtwith twoports. This dual port functionality allowshost systems
to have redundant connections to SAS SSDs. In case one of the connections to the
SSD is either broken or not properly working, host systems still have the second
port that can be used to maintain continuous access to the SAS SSD. In enterprise
applications where high availability is an absolute requirement, this feature is key.

SASSSDs also support hot-plug: this feature enables SASSSDs to be dynamically
removed or inserted while the system is running; it also allows automatic detection of

Fig. 1.7 SAS connectivity



10 R. Micheloni and L. Crippa

newly inserted SAS SSDs. In fact, while a server or storage system is running, newly
inserted SAS SSDs can be dynamically configured and put in use. Additionally, if
SAS SSDs are pulled out of a running system, all the in-flight data that were already
committed to the host system are stored inside the SAS drive, and can be accessed
at a later point, when the SSD is powered back on.

Differently from SAS, a typical SATA infrastructure consists of SATA SSDs
point-to-point connected to a host bus adapter driven by the host microprocessor. In
addition, SATA drives are built with a single port, unlike SAS SSDs. These two main
differences make SATA based SSDs a good fit for entry or mid-range deployments
and consumer applications.

The SATA protocol supports hot-plug; however, not all SATA drives are designed
for it. In fact, hot-plug requires specific hardware (i.e. additional cost) to guarantee
that committed data, which are actually still in-flight, are safely stored during a power
drop.

It is worth highlighting that SATA drives may be connected to SAS backplanes,
but SAS drives can’t be connected to SATA backplanes. Of course, this another
reason for the broad SATA penetration in the market.

Similarities between SAS and SATA are:

• Both types plug into the SAS backplane;
• The drives are interchangeable within a SAS drive bay module;
• Both are long proven technologies, with worldwide acceptance;
• Both employ point-to-point architecture;
• Both are hot pluggable.

Differences between SAS and SATA are:

• SATA devices are cheaper;
• SATA devices use the ATA command set, SAS the SCSI command set;
• SAS drives have dual port capability and lower latencies;
• While both types plug into the SAS backplane, a SATA backplane cannot accom-
modate SAS drives;

• SAS drives are tested against much more rigid specifications;
• SAS drives are faster and offer additional features, like variable sector size, LED
indicators, dual port, and data integrity;

• SAS supports link aggregation (wide port).

1.10 PCI-Express

PCI-Express (Peripheral Component Interconnect Express) or PCIe is a bus standard
that replaced PCI and PCI-X. PCI-SIG (PCI Special Interest Group) creates and
maintains the PCIe specification [13].

PCIe is used in all computer applications including enterprise servers, con-
sumer personal computers (PC), communication systems, and industrial applications.



1 Solid State Drives (SSDs) 11

Fig. 1.8 PCI Express lane and link. In Gen2, 1 lane runs at 5Gbps/direction; a 2-lane link runs at
10Gbps/direction

Unlike the older PCI bus topology, which uses shared parallel bus architecture, PCIe
is based on point-to-point topology,with separate serial links connecting every device
to the root complex (host). Additionally, a PCIe link supports full-duplex communi-
cation between two endpoints. Data can flow upstream (UP) and downstream (DP)
simultaneously. Each pair of these dedicated unidirectional serial point-to-point con-
nections is called a lane, as depicted in Fig. 1.8. The PCIe standard is constantly under
improvement, with PCIe 3.0 being the latest version of the standard available in the
market (Table1.1). The standardization body is currently working on defining Gen4.

Other important features of PCIe include power management, hot-swappable
devices, and the ability to handle peer-to-peer data transfers (sending data between
two end points without routing through the host) [14]. Additionally, PCIe simpli-

Table 1.1 Throughput of different PCIe generations

PCIe version Year introduced Throughput per lane

PCIe 1.0 (Gen1) 2003 250 MB/s

PCIe 2.0 (Gen2) 2007 500 MB/s

PCIe 3.0 (Gen3) 2010 1 GB/s



12 R. Micheloni and L. Crippa

fies board design by utilizing a serial technology, which drastically reduces the wire
count when compared to parallel bus architectures.

The PCIe link between two devices can consist of 1–32 lanes. The packet data
is striped across lanes, and the lane count is automatically negotiated during device
initialization.

The PCIe standard defines slots and connectors for multiple widths:×1,×4,×8,
×16, ×32. This allows PCIe to serve lower throughput, cost-sensitive applications
as well as performance-critical applications.

PCIe uses a packet-based layered protocol, consisting of a transaction layer, a
data link layer, and a physical layer, as shown in Fig. 1.9.

The transaction layer handles packetizing and de-packetizing of data and status-
message traffic. The data link layer sequences these Transaction Layer Packets
(TLPs) and ensures that they are reliably delivered between two endpoints. If a trans-
mitter device sends a TLP to a remote receiver device and a CRC error is detected,
the transmitter device gets a notification back. The transmitter device automatically
replays the TLP. With error checking and automatic replay of failed packets, PCIe
ensures very low Bit Error Rate (BER).

The Physical Layer is split in two parts: the Logical Physical Layer and the Elec-
trical Physical Layer. The Logical Physical Layer contains logic gates for processing
packets before transmission on the Link, and processing packets from the Link to
the Data Link Layer. The Electrical Physical Layer is the analog interface of the
Physical Layer: it consists of differential drivers and receivers for each lane.

TLP assembly is shown in Fig. 1.10. Header and Data Payload are TLP’s core
information: Transaction Layer assembles this section based on the data received
from the application software layer. An optional End-to-End CRC (ECRC) field can
be appended to the packet. ECRC is used by the ultimate targeted device of this packet
to check for CRC errors inside Header and Data Payload. At this point, the Data Link
Layer appends a sequence ID and local CRC (LCRC) field in order to protect the ID.
The resultant TLP is forwarded to the Physical Layer which concatenates a Start and
End framing characters of 1 byte each to the packet. Finally, the packet is encoded
and differentially transmitted on the Link by using the available Lanes.

Today, PCIe is a high volume commodity interconnect used in virtually all com-
puters, from consumer laptops to enterprise servers, as the primary motherboard
technology that interconnects the host CPU with on-board ICs and add-on periph-
eral expansion cards.

1.11 The Need for High Speed Interfaces

Processor vendors have continued to ramp the performance of individual processor
cores, to combine multiple cores in one chip, and to develop technologies that can
closely couple multiple chips in multi-processor systems. Ultimately, all of the cores
in such a scenario need access to the same storage subsystem.



1 Solid State Drives (SSDs) 13

Fig. 1.9 PCIe Layered architecture

Fig. 1.10 Transaction Layer Packet (TLP) assembly

Enterprise IT managers are eager to utilize the multiprocessor systems because
they have the potential of boosting the number of I/O operations per second (IOPS)
that a system can process and also the number of IOPS per Watt. This multi-
processing computing capability offers better IOPS relative to cost and power con-
sumption—assuming the processing elements can get access to the data in a timely
fashion. Active processors waiting on data waste time and money.

There are, of course, multiple levels of storage technology in a system that ulti-
mately feed code and data to each processor core. Generally, each core includes local
cache memory that operates at core speed. Multiple cores in a chip share a second-



14 R. Micheloni and L. Crippa

level and, sometimes, a third-level cache. And DRAM feeds the caches. DRAM and
caches access-times, together with data-transfer speed have scaled to match proces-
sor’s performance.

The issue is the performance gapbetweenDRAMandHDDin termsof access time
and data rate. Disk/drive vendors have done a great job at designing and manufac-
turing higher-capacity, lower-cost-per-Gbyte disks/drives; but the drives inherently
have limitations in terms of how fast they can access data, and then how fast they
can transfer these data to DRAM.

Access time depends on how quickly a hard drive can move the read head over
the required data track on a disk, and the rotational latency of the addressed sector to
move underneath the head. The maximum transfer rate is dictated by the rotational
speed of the disk and the data encoding scheme: together they determine the number
of bytes per second that can be read from the disk.

Hard drives perform relatively well in reading and transferring sequential data.
But random seek operations add latency. And even sequential read operations can’t
match the data appetite of the latest processors.

Meanwhile, enterprise systems that perform on-line transaction processing, such
as financial transactions and data mining (e.g. applications for customer relationship
management) require highly random access to data. Also cloud computing has strong
random requirements, especially when looking at virtualization, which expands the
scope of different applications that a single system has active at any one time. Every
microsecond of latency directly relates tomoney, utilization of processors and system
power.

Fortunately, Flash memories can help reducing the performance gap between
DRAM and HDD. Flash is slower than DRAM but offers a lower cost per Gbyte of
storage. That cost is more expensive than disk storage, but enterprises will gladly pay
the premium because Flash also offers much better throughput in terms of Mbyte/s
and faster access to random data, resulting in better cost-per-IOPS compared to
rotating storage.

Neither the legacy disk-drive form factor nor the interface is ideal for Flash-based
storage. SSD manufacturers can pack enough Flash devices in a 2.5-in form factor
to easily exceed the power profile developed for disk drives. And Flash can support
higher data transfer rates than even the latest generation of disk interfaces.

Let’s examine the disk interfaces more closely (Fig. 1.11). The third-generation
SATA and SAS support 600Mbyte/s throughput, and drives based on those interfaces
have already found usage in enterprise systems. While those data rates support the



1 Solid State Drives (SSDs) 15

Fig. 1.11 Interface performance. PCIe improves overall system performance by reducing latency
and increasing throughput

fastest electromechanical drives, new NAND Flash architectures and multi-die Flash
packaging deliver aggregate Flash bandwidth that exceeds the throughput capabilities
of SATAandSAS interconnects. In short, the SSDperformance bottleneck has shifted
from the storage media to the host interface. Therefore, many applications need a
faster host interconnect to take full advantage of Flash storage.

The PCIe host interface can overcome this storage performance bottleneck and
deliver unparalleled performance by attaching the SSD directly to the PCIe host bus.
For example, a 4-lane (x4) PCIe Generation 3 (Gen3) link can deliver 4 GByte/s data
rates. Simply put, PCIe meets the desired storage bandwidth. Moreover, the direct
PCIe connection can reduce system power and slash the latency that’s attributable to
the legacy storage infrastructure.

Clearly, an interface such as PCIe can handle the bandwidth of a multi-channel
Flash storage subsystem and can offer additional performance advantages. SSDs
that use a disk interface also suffer latency added by a storage-controller IC that
handles disk I/O. PCIe devices connect directly to the host bus, thus eliminating the
architectural layer associated with the legacy storage infrastructure. The compelling
performance of PCIe SSDs has resulted in systemmanufacturers placing PCIe drives
in servers as well as in storage arrays to build tiered storage systems that accelerate
applications while improving cost-per-IOPS.

The benefits of using PCIe as a storage interconnect are clear. You can achieve over
6x the data throughput compared to SATA or SAS. You can eliminate components
such as host bus adapters and SerDes ICs on the SATA and SAS interfaces—saving
money and power at the system level. And PCIe moves the storage closer to the host
CPU reducing latency, as shown in Fig. 1.12.

Latency, IOPS, bandwidth, power, interface speed, number of channels, NAND-
type (SLC, MLC, TLC, QLC) are all parameters that SSD designers need to take
into account to meet their target specifications at minimum cost. Looking forward,



16 R. Micheloni and L. Crippa

Fig. 1.12 PCIe SSD versus SAS/SATA SSD

emerging memories will be part of the game too. It is clear that, given this number
of variables, a simple approach based on hardware prototyping is hard to pursue,
especially when looking at the time-to-market. Therefore, SSD simulators become
a must have and they will be covered in great details in the following chapters.

References

1. G. Campardo, R.Micheloni, D. Novosel, “VLSI-Design of Non-VolatileMemories”, Springer-
Verlag, 2005.

2. www.onfi.org
3. www.jedec.org
4. C. Park et al., “A High Performance Controller for NAND Flash-based Solid State Disk

(NSSD)”, IEEE Non-Volatile Semiconductor Memory Workshop NVSMW, pp. 17–20, Feb.
2006.

5. A. Kawaguchi, S. Nishioka, and H. Motoda. “A flash-memory based file system”, Proceedings
of the USENIX Winter Technical Conference, pp. 155–164, 1995.

6. J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. A space-efficient flash translation layer
for compactflash systems. IEEE Transactions on Consumer Electronics, 48(2):366–375, May
2002.

7. S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S.-W. Park, and H.-J. Songe. “FAST: A log-
buffer based ftl scheme with fully associative sector translation”, 2005 US-Korea Conference
on Science, Technology, & Entrepreneurship, August 2005.

8. T. Tanzawa, T. Tanaka, K. Takekuchi, R. Shirota, S. Aritome, H. Watanabe, G. Hemink, K.
Shimizu, S. Sato, Y. Takekuchi, and K. Ohuchi, “A compact on-chip ECC for low cost Flash
memories,” IEEE J.Solid-State Circuits, vol. 32, pp. 662–669, May 1997.

www.onfi.org
www.jedec.org


1 Solid State Drives (SSDs) 17

9. G. Campardo, R.Micheloni et al.,“40-mm2 3-V-only 50-MHz 64-Mb 2-b/cell CHENORFlash
memory” – IEEE Journal of Solid-State Circuits, Vol. 35, No. 11, Nov. 2000, pp. 1655–1667.

10. R. Micheloni et al., “A 4Gb 2b/cell NAND Flash Memory with Embedded 5b BCH ECC for
36MB/s System Read Throughput”, IEEE International Solid-State Circuits Conference Dig.
Tech. Papers, pp. 142–143, Feb. 2006.

11. R. Micheloni, A. Marelli, R. Ravasio, “Error Correction Codes for Non-Volatile Memories”,
Springer-Verlag, 2008.

12. http://www.sataio.org
13. www.pcisig.com
14. R. Budruk, D. Anderson, T. Shanley, “PCI Express System Architecture”, Mindshare 2003.

http://www.sataio.org
www.pcisig.com

	1 Solid State Drives (SSDs)
	1.1 Introduction
	1.2 SSD's Architecture
	1.3 Flash Controller
	1.4 Wear Leveling
	1.5 Garbage Collection
	1.6 Bad Block Management
	1.7 Error Correction Code (ECC)
	1.8 SSD's Interfaces
	1.9 SAS and SATA
	1.10 PCI-Express
	1.11 The Need for High Speed Interfaces
	References


