
Springer Series in Advanced Microelectronics 58

Rino Micheloni Editor

Solid-State-
Drives (SSDs)
Modeling
Simulation Tools & Strategies

Springer Series in Advanced Microelectronics

Volume 58

Series editors

Kukjin Chun, Seoul, Korea, Republic of (South Korea)
Kiyoo Itoh, Tokyo, Japan
Thomas H. Lee, Stanford, CA, USA
Rino Micheloni, Vimercate (MB), Italy
Takayasu Sakurai, Tokyo, Japan
Willy M.C. Sansen, Leuven, Belgium
Doris Schmitt-Landsiedel, München, Germany

The Springer Series in Advanced Microelectronics provides systematic information
on all the topics relevant for the design, processing, and manufacturing of
microelectronic devices. The books, each prepared by leading researchers or
engineers in their fields, cover the basic and advanced aspects of topics such as
wafer processing, materials, device design, device technologies, circuit design,
VLSI implementation, and subsystem technology. The series forms a bridge
between physics and engineering and the volumes will appeal to practicing
engineers as well as research scientists.

More information about this series at http://www.springer.com/series/4076

Rino Micheloni
Editor

Solid-State-Drives (SSDs)
Modeling
Simulation Tools & Strategies

123

Editor
Rino Micheloni
Performance Storage Business Unit
Microsemi Corporation
Vimercate
Italy

ISSN 1437-0387 ISSN 2197-6643 (electronic)
Springer Series in Advanced Microelectronics
ISBN 978-3-319-51734-6 ISBN 978-3-319-51735-3 (eBook)
DOI 10.1007/978-3-319-51735-3

Library of Congress Control Number: 2017932535

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Solid-State-Drives (SSDs) gained a lot of popularity in the recent few years;
compared to traditional HDDs, SSDs exhibit higher speed and reduced power, thus
satisfying the tough needs of mobile applications (like smartphones, tablets, and
ultrabooks).

A Solid-State-Drive (Chap. 1) is made of a Flash controller plus a bunch of
NAND Flash memories (Chap. 2), which are organized in groups called “Flash
channels”; each group can have 8, 16 or even more die. Four or eight Flash
channels are common in consumer applications but, especially in the enterprise
field, the most recent developments span to 32, because of the very high bandwidth
requirements. In total, we are easily talking about managing 128, 256 or 512
NAND Flash die. A schematic block diagram of a Solid-State-Drive is sketched in
Fig. 1.

Fig. 1 Solid-State-Drive block diagram

v

In all SSDs, a Flash controller sits between one or multiple Hosts (i.e. CPUs) and
NAND Flash memories, and on each side there are a lot of challenges that designers
need to overcome. Moreover, a single controller can have multiple cores, with all
the complexity associate with developing a multi-threaded firmware. This book is
about how to make simulations of such a complex system, by providing insights on
available tools and simulation strategies. As usual, speed and precision don’t go
hand in hand and it is important to understand when to simulate what, and with
which tool. Of course, being able to simulate SSD’s performances is mandatory to
meet time-to-market, together with product cost and quality.

In order to understand where the challenges are, let’s have a closer look at SSD’s
architectures, by starting from the Host interface. The storage industry has been
dominated by Hard-Disk-Drives (HDDs) for many decades. HDDs are a rotational
media and their data throughput is constrained by the electro-mechanical limitations
of the spinning plate and of the servo controllers: this is why HDD’s interface speed
has remained constant for many years, mainly at 3Gb/s (SATA-II). On the contrary,
SSDs don’t have mechanical moving parts and they can operate many Flash devices
in parallel, thus allowing much higher data transfer rate. As a result, new interfaces
have gained momentum in the market: SATA-III and SAS run at 6Gb/s, while PCIe
Gen3 is already at 8Gb/s/lane, and PCIe Gen4 is on its way. Of course, there is a
practical limit due to area and power, but designers can use parallelism and high
speed interfaces to increase performances, and this is why SSD’s architectures with
16 or 32 Flash channels are not an exception anymore. When dealing with systems
made of hundreds of memory die, queuing effect are not trivial and they strongly
depend on the workload and on the scheduling of the data transfers coming from the
Host. Transactions could be either sequential or random, and there could be a
mixture of read and write operations (typical use cases are 25% read and 75% write,
or vice versa). Especially with random traffic, when more requests hit the same
NAND die at the same time, a request collision might occur; in other words, the
second request in the queue needs to wait until the first one is serviced. This
collision effect usually ends up being the root cause for an increased read latency.

Read latencies are part of the Quality Of Service (QoS) and they need to be
carefully evaluated during the design phase. Not only the worst case matters, but
also the shape of the read latency distribution. If the QoS figure doesn’t match the
requirements, the application running on the Operating System will stall or even
hang up. Problem with collisions is that queues are non-linear in nature, and
simulations with high statistics are the only practical way to estimate QoS before
SSDs prototyping. Is one queue per channel good enough? Do we need to
implement high and low priority queues? Can we handle priority at the firmware
level? Do we need a queue priority management at the hardware level? Without a
prototype, only an SSD simulator can answer these questions.

Let’s now have a look at what the Flash controller needs to handle on the Flash
side. As a matter of fact, NAND Flash memories have outpaced DRAMs in the
technology race. Today we are talking about 256 Gb NAND in a monolithic silicon
die, i.e. in less than 150 mm2. This unbelievable density is not coming for free. In
fact, NAND memories are a storage media characterized by a large number errors

vi Preface

even at early life and they do require a lot of management algorithms. Besides the
well-known Wear Leveling and Garbage Collection algorithms, NANDs in
ultra-scaled geometries (below 20 nm) require a plethora of signal processing
techniques, from Data Randomization to Read Retry, from VTH-shift to Soft
Decoding.

Most of these signal processing techniques translate into read oversampling:
more reads means higher probability of collisions, bringing us back into the above
mentioned QoS problem. Again, because of the non-linearity, simulations are the
only way to predict the impact of these management algorithms on performances
(QoS, bandwidth, IOPS).

Error Correction Code (ECC) implementation is another task that SSD’s con-
trollers need to perform. BCH codes have been used for many years but the higher
and higher NAND BER (Bit Error Rate) has driven towards the adoption of LDPC:
these codes are known to be the codes that can get closer to the Shannon limit in
real implementations. One drawback of LDPC codes is their need of Soft
Information, which has to be extracted from the NAND and then fed into the LDPC
decoder by the Flash controller (Chap. 4).

Another important topic is power (Chap. 7). In order to avoid changing existing
infrastructures, SSDs need to fit in the same physical space of HDDs and, therefore,
in their power envelope. Unfortunately, NAND power consumption is strongly
dependent upon the Flash operation (i.e. read, write, erase). For many generations,
SSD’s power has been over- or under-estimated by adopting the worst case power
consumption scenario (i.e. assuming write operations all the time); this approach is
running out of steam because it always leads to exceeding power specs with the
most recent NAND technologies. In order to correctly evaluate power, it is nec-
essary to estimate the number of operations per time interval and their specific type
(read, write, erase). Simulations are again the only practical way to address this
problem: when the prototype is ready (especially if the controller is a multi-million
dollar ASIC) there are no chances to significantly reduce power, it’s too late!

Last but not least, NAND Flash memories wear out, i.e. their performances
change over time and they have a limited lifetime. This is even more challenging.
Think about the following situation. Let’s assume that we have built a prototype of
a particular SSD and that performances are within the spec limits. How can we
make sure that specs are met when NANDs reach their end of life? Without the
proper simulator, the only viable solution is to age a bunch of drives: every time we
want to change/test the configuration of a single parameter, we need to consume a
number of SSDs, and this is an extremely expensive and time-consuming validation
flow.

What’s the fastest way to assess QoS? What’s the most precise? What’s the
fastest way to simulate Flash wear-out? … these are just some of the questions that
designers need to answer during the development of a modern SSD.

The authors have taken a careful look at both literature and available simulation
tools, including popular solutions like VSSIM, NANDFlashSim, and DiskSim. All
these solutions are benchmarked against performances of real SSDs, an
OCZ VERTEX 120GB and a large enterprise storage platform, that have been

Preface vii

measured under different traffic workloads. PROs and CONs of each simulator are
analyzed and it is clearly indicated which kind of answers each of them can give
and at a what price (Chap. 3).

Over the last few years the authors of this book developed an advanced simulator
named “SSDExplorer” (Chap. 3) which has been used for evaluating multiple
phenomena, from QoS to Read Retry, from LDPC Soft Information to power, from
Flash aging to FTL (Chap. 4). Basically, SSDExplorer is a fine-grained SSD virtual
platform that was developed with the following goals in mind:

• offer a RAD tool (Rapid Application Development) for SSD design space
exploration;

• accurately predict performance figures of the target architecture;
• offer a wear-out aware framework for complex correction algorithm exploration;
• avoid the overdesign of the resources of the SSD for a target performance.

In Chap. 6, SSDExplorer is used to evaluate the possible impact of emerging
non-volatile memories, such as Resistive RAM (RRAM, Chap. 5), on future SSD
architectures. Does it make sense to fully replace NANDs with one of the emerging
memories? What’s the benefit? Is it better to develop a hybrid drive, where a
RRAM is used as cache? Most of the new memories are still in the development
phase, well before a real mass production; as a matter of fact, simulations are the
only way to figure out where a new non-volatile technology can really help, in
terms of both performances and cost saving.

In the last chapter of this book, SSD simulators are addressed in a much broader
context, i.e. the analysis of what happens when SSDs are connected to the OS
(Operating System) and to the user application (for example a database search).
QoS is again a good example: if a read request is not serviced within a specific time
window, the application hangs up, with a very clear impact on the user experience,
as the reader can easily imagine. In order to allow this high level simulation, with
the required level of precision, SSD simulators need to be directly connected to the
end application; if requirements are not met, SSD’s firmware can be changed and its
impact immediately evaluated. In Chap. 8 authors walk the reader through the full
simulation flow of a real system-level by combining SSDExplorer with the QEMU
virtual platform. The reader will be impressed by the level of know-how and the
combination of models that such simulations are asking for.

In this short introduction we have shown several reasons and examples of why
developing a Solid-State-Drive requires a solid simulation strategy and a set of
reliable simulation tools. SSDs are very complex, they have to manage several
NAND Flash memories in parallel, without forgetting the more and more stringent
requirements of end user applications. This book provides an overview of the
state-of-the-art simulation techniques, together with an outlook of the challenges
that designers will have to address in the coming few years.

Vimercate, Italy Rino Micheloni

viii Preface

Contents

1 Solid State Drives (SSDs) . 1
Rino Micheloni and Luca Crippa
1.1 Introduction . 1
1.2 SSD’s Architecture . 2
1.3 Flash Controller . 4
1.4 Wear Leveling . 4
1.5 Garbage Collection . 6
1.6 Bad Block Management . 7
1.7 Error Correction Code (ECC) . 8
1.8 SSD’s Interfaces . 8
1.9 SAS and SATA . 8
1.10 PCI-Express . 10
1.11 The Need for High Speed Interfaces. 12
References. 16

2 NAND Flash Memories . 19
Rino Micheloni and Luca Crippa
2.1 Introduction . 19
2.2 NAND Flash Array . 20
2.3 Flash Basic Operations . 22

2.3.1 Read . 22
2.3.2 Program . 24
2.3.3 Erase . 26

2.4 NAND Flash Memory Map . 27
2.5 NAND Commands . 28

2.5.1 Read Operation . 29
2.5.2 Program Operation . 33
2.5.3 Erase Operation. 35

2.6 Synchronous Operations . 37
References. 39

ix

3 SSDExplorer: A Virtual Platform for SSD Simulations 41
Lorenzo Zuolo, Cristian Zambelli, Rino Micheloni and Piero Olivo
3.1 SSD Simulators . 43
3.2 SSDExplorer at a Glance . 45

3.2.1 Modeling Strategy. 45
3.2.2 Available Models in SSDExplorer 45

3.3 FTL Simulations . 52
3.3.1 FTL. 52
3.3.2 WAF Model . 53
3.3.3 FTL Versus WAF Model . 54

3.4 Performance Comparison with Real SSD Platforms 57
3.4.1 Consumer SSD . 57
3.4.2 NVRAM Card. 59

3.5 Simulation Speed . 60
3.6 User Interface and WEB-Based Architecture 61
References. 64

4 Design Trade-Offs for NAND Flash-Based SSDs 67
Lorenzo Zuolo, Cristian Zambelli, Alessia Marelli, Rino Micheloni
and Piero Olivo
4.1 Design for Maximum Performance . 68
4.2 Design for Minimum Latency. 70
4.3 Performance/Reliability Trade-Off . 73

4.3.1 Read Retry . 74
4.3.2 LDPC Soft Decision . 83

References. 95

5 Resistive RAM Technology for SSDs . 99
Cristian Zambelli and Piero Olivo
5.1 Introduction . 99
5.2 Basic Principles and Operations of RRAM Cells 100

5.2.1 Forming Operation . 101
5.2.2 Set and Reset Operation . 103

5.3 Reliability and Performance of RRAM Cells 104
5.3.1 Intra-cell Variability . 105
5.3.2 Inter-cell Variability . 105
5.3.3 Endurance . 106
5.3.4 Data Retention . 109
5.3.5 Random Telegraph Noise and Current Instabilities 111

5.4 RRAM Integration: Architectural Solutions 112
5.4.1 True Cross-Point Arrays . 113
5.4.2 1T-1R, 1D-1R, and 1S-1R Arrays. 115
5.4.3 3D RRAM Array Options: 1T-nR and VRRAM. 116

x Contents

5.5 Typical Disturbs in RRAM Technology . 118
References. 120

6 Simulations of RRAM-Based SSDs . 123
Lorenzo Zuolo, Cristian Zambelli, Rino Micheloni and Piero Olivo
6.1 All-RRAM SSD Architecture . 124

6.1.1 Page Size Versus Queue Depth. 126
6.1.2 Design Space Exploration of All-RRAM SSDs. 131

References. 137

7 Simulation of SSD’s Power Consumption . 139
Lorenzo Zuolo, Cristian Zambelli, Luca Crippa, Rino Micheloni
and Piero Olivo
7.1 Accurate Estimate of the Actual SSD Power Consumption 140
7.2 Optimization of SSD’s Power Consumption 145
References. 150

8 Simulations of the Software-Defined Flash . 153
Lorenzo Zuolo, Cristian Zambelli, Rino Micheloni and Piero Olivo
8.1 The Open-Channel Architecture . 155
8.2 Simulation Model . 155
8.3 FTL Versus HB-FTL . 159
8.4 MPPA and HB-FTL . 160
References. 164

Index . 167

Contents xi

Editor and Contributors

About the Editor
Dr. Rino Micheloni is Fellow at Microsemi Corporation where he currently runs the
Non-Volatile Memory Lab in Milan, with special focus on NAND Flash. Prior to joining
Microsemi, he was Fellow at PMC-Sierra, working on NAND Flash characterization, LDPC, and
NAND Signal Processing as part of the team developing Flash controllers for PCIe SSDs. Before
that, he was with IDT (Integrated Device Technology) as Lead Flash Technologist, driving the
architecture and design of the BCH engine in the world’s 1st PCIe NVMe SSD controller. Early in
his career, he led Flash design teams at ST Microelectronics, Hynix, and Infineon; during this time,
he developed the industry’s first MLC NOR device with embedded ECC technology and the
industry’s first MLC NAND with embedded BCH.

Rino is IEEE Senior Member, he has co-authored more than 50 publications, and he holds 278
patents worldwide (including 124 US patents). He received the STMicroelectronics Exceptional
Patent Award in 2003 and 2004, and the Qimonda IP Award in 2007.

Rino has published the following books with Springer: 3D Flash Memories (2016), Inside
Solid State Drives (2013), Inside NAND Flash Memories (2010), Error Correction Codes for
Non-Volatile Memories (2008), Memories in Wireless Systems (2008), and VLSI-Design of
Non-Volatile Memories (2005).

Contributors

Luca Crippa Microsemi Corporation, Vimercate, Italy

Alessia Marelli Microsemi Corporation, Vimercate, Italy

Rino Micheloni Performance Storage Business Unit, Microsemi Corporation,
Vimercate, Italy

PieroOlivo Dipartimento di Ingegneria, Università degli Studi di Ferrara, Ferrara, Italy

Cristian Zambelli Dipartimento di Ingegneria, Università degli Studi di Ferrara,
Ferrara, Italy

Lorenzo Zuolo Dipartimento di Ingegneria, Università degli Studi di Ferrara,
Ferrara, Italy

xiii

Chapter 1
Solid State Drives (SSDs)

Rino Micheloni and Luca Crippa

Abstract Solid-state drives (SSDs) are unanimously considered the enabling factor
for bringing enterprise storage performances to the next level. Indeed, the rotating-
storage technology of Hard Disk Drives (HDDs) can’t achieve the access-time
required by applications where response time is the critical factor. On the contrary,
SSDs are based on solid statememories, namelyNANDFlashmemories: in this case,
there aren’t anymechanical parts and randomaccess to stored data can bemuch faster,
thus addressing the above mentioned needs. In many applications though, the inter-
face between host processors and drives remains the performance bottleneck. This
is why SSD’s interface has evolved from legacy storage interfaces, such as SAS and
SATA, to PCIe, which enables a direct connection of the SSD to the host processor.
In this chapter we give an overview of the SSD’s architecture by describing the basic
building blocks, such as the Flash controller, the Flash File System (FFS), and the
most popular I/O interfaces (SAS, SATA and PCIe).

1.1 Introduction

Solid StateDrives (SSDs) promise to greatly enhance enterprise storage performance.
While electromechanical Hard Disk Drives (HDDs) have continuously ramped in
capacity, the rotating-storage technology doesn’t provide the access-time or transfer-
rate performance required in demanding enterprise applications, including on-line
transaction processing, data mining, and cloud computing. Client applications are
also in need of an alternative to electromechanical disk drives that can deliver faster
response times, use less power, and fit into smaller mobile form factors.

Flash-memory-based SSDs can offer much faster random access to data and
faster transfer rates. Moreover, SSD’s capacity is now at the point where solid state

R. Micheloni (B) · L. Crippa
Performance Storage Business Unit, Microsemi Corporation, Vimercate, Italy
e-mail: rino.micheloni@ieee.org

L. Crippa
e-mail: luca.crippa@ieee.org

© Springer International Publishing AG 2017
R. Micheloni (ed.), Solid-State-Drives (SSDs) Modeling,
Springer Series in Advanced Microelectronics 58,
DOI 10.1007/978-3-319-51735-3_1

1

2 R. Micheloni and L. Crippa

drives can serve as rotating-disk replacements. But inmany applications the interface
between host and drives remains the performance bottleneck. SSDs with legacy stor-
age interfaces, such as SAS and SATA, are proving useful, and PCI-Express (PCIe)
SSDs will further increase performance and improve responsiveness, being directly
connected to the host processor.

1.2 SSD’s Architecture

A basic block diagram of a solid state drive is shown in Fig. 1.1. In addition to
memories and a Flash controller, there are usually other components. For instance,
an external DC-DC converter can be added in order to drive the internal power
supply, or a quartz can be used for a better clock precision. Of course, reasonable
filter capacitors are inserted for stabilizing the power supply. It is also very common
to have an array of temperature sensors for power management reasons. For data
caching, a fast DDR memory is frequently used: during a write access, the cache

Fig. 1.1 Block diagram of an SSD

1 Solid State Drives (SSDs) 3

is used for storing data before their transfer to the Flash. The benefit is that data
updating, e.g. of routing tables, is faster and does not wear out the Flash.

A typical memory system is composed of several NANDmemories [1]. Typically,
an 8-bit bus [2, 3], usually called “channel”, is used to connect different memories to
the controller (Fig. 1.1). It is important to underline that multiple Flash memories in a
system are both a means for increasing storage density and read/write performances
[4].

Operations on a channel can be interleaved, which means that a second chip can
be addressed while the first one is still busy. For instance, a sequence of multiple
write operations can be directed to a channel, addressing different NANDs, as shown
in Fig. 1.2: in this way, the channel utilization is maximized by pipelining the data
load phase. In fact, while the program operation takes place inside a memory chip,
the corresponding Flash channel is free. The total number of Flash channels is a
function of the target application, but tens of channels are becoming quite common.
Thanks to interleaving, given the same Flash programming time, SSD’s throughput
greatly improves.

The memory controller is responsible for scheduling the accesses to the memory
channels. The controller uses dedicated engines for the low level communication
protocol with the Flash.

Moreover, it is clear that the data load phase is not negligible compared to the
program operation (the same comment is valid for data output): therefore, increasing
I/O interface speed is another smart way to improve performances: DDR-like inter-
faces are discussed in more details in Chap.2. As the speed increases, more NAND
can be operated in parallel before saturating the channel. For instance, assuming a
target of 30 MB/s, 2 NANDs are needed with a minimum DDR frequency of about
50 MHz. Given a page program time of 200 µs, at 50MHz four NANDs can operate
in interleaved mode, doubling the write throughput. Of course, power consumption
is another metric to be carefully considered.

After this high level overview of the SSD’s architecture, let’s move to the heart
of the architecture: the memory (Flash) controller.

Fig. 1.2 Interleaved operations on one Flash channel

http://dx.doi.org/10.1007/978-3-319-51735-3_2

4 R. Micheloni and L. Crippa

1.3 Flash Controller

A memory controller has two fundamental tasks:

1. provide the most suitable interface and protocol towards both the host and the
Flash memories;

2. efficiently handle data, maximizing transfer speed, data integrity and retention of
the stored information.

In order to carry out such tasks, an application specific device is designed, embed-
ding a standard processor—usually 8–16 bits—together with dedicated hardware to
handle time-critical tasks.

Generally speaking, the memory controller can be divided into four parts, which
are implemented either in hardware or in firmware (Fig. 1.3).

Moving from the host to the Flash, the first part is the host interface, which
implements the required industry-standard protocol (PCIe, SAS, SATA, etc.), thus
ensuring both logical and electrical interoperability between SSDs and hosts. This
block is a mix of hardware (buffers, drivers, etc.) and firmware, which decodes the
command sequence invoked by the host and handles the data flow to/from the Flash
memories.

The second part is the Flash File System (FFS) [5]: that is, the file system which
enables the use of SSDs like magnetic disks. For instance, sequential memory access
on a multitude of sub-sectors which constitute a file is organized by linked lists
(stored on the SSD itself), which are used by the host to build the File Allocation
Table (FAT). The FFS is usually implemented in form of firmware inside the con-
troller, each sub-layer performing a specific function. The main functions are:Wear
levelingManagement,Garbage Collection andBad BlockManagement. For all these
functions, tables are widely used in order to map sectors and pages from the logical
domain to the physical domain (Flash Translation Layer or FTL) [6, 7], as shown
in Fig. 1.4. The top row is the logical view of the memory, while the bottom row
is the physical one. From the host perspective, data are transparently written and
overwritten inside a given logical sector: due to Flash limitations, overwrite on the
same page is not possible; therefore, a new page (sector) must be allocated in the
physical block, and the previous one is marked as invalid. It is clear that, at some
point in time, the current physical block becomes full and a second one (coming
from the pool of “buffer” blocks) has to take over that logic address.

The required translation tables are stored on the SSD itself, thus reducing the
overall storage capacity.

1.4 Wear Leveling

Usually, not all the data stored within the same memory location change with the
same frequency: some data are often updated while others don’t change for a very

1 Solid State Drives (SSDs) 5

Fig. 1.3 High level view of a Flash controller

6 R. Micheloni and L. Crippa

Fig. 1.4 Logical to physical block management

long time—in the extreme case, for the whole life of the device. It’s clear that the
blocks containing frequently-updated information are stressed with a larger number
of write/erase cycles, while the blocks containing information updated very rarely
are much less stressed.

In order to mitigate disturbs, it is important to keep the aging of each page/block
as minimum and as uniform as possible: that is, the number of both read and program
cycles applied to each page must be monitored. Furthermore, the maximum number
of allowed program/erase cycles for a block (i.e. its endurance) should be considered:
in case SLCNANDmemories are used, this number is in the order of 20–30 k cycles,
which is reduced to 10–15 k and 1–5 k for MLC and TLC NAND, respectively.

Wear Leveling techniques exploit the concept of logical to physical translation:
each time the host application needs to update the same (logical) sector, the memory
controller dynamically maps that sector to a different (physical) sector, of course
keeping track of the mapping. The out-of-date copy of the sector is tagged as invalid
and eligible for erase. In thisway, all the physical blocks are evenly used, thus keeping
the aging under a reasonable value.

Two kinds of approaches are possible: Dynamic Wear Leveling is normally used
to follow up a user’s request of update, writing to the first available erased block
with the lowest erase count; with Static Wear Leveling every block, even the least
modified, is eligible for re-mapping as soon as its aging deviates from the average
value.

1.5 Garbage Collection

Both wear leveling techniques rely on the availability of free sectors that can be
filled up with the updates: as soon as the number of free sectors falls below a given
threshold, sectors are “compacted” and multiple, obsolete copies are deleted. This
operation is performed by the Garbage Collection module, which selects the blocks
containing the invalid sectors, it copies the latest valid content into free sectors, and
then erases such blocks (Fig. 1.5).

In order to minimize the impact on performances, garbage collection can be per-
formed in background. The aging uniformity driven bywear leveling distributes wear
out stress over the whole array rather than on single hot spots. Hence, given a specific

1 Solid State Drives (SSDs) 7

Fig. 1.5 Garbage collection

workload and usage time, the bigger the memory density, the lower the wear out per
cell.

1.6 Bad Block Management

Nomatter how smart theWear Leveling algorithm is, an intrinsic limitation ofNAND
Flash memories is represented by the presence of the so-called Bad Blocks (BB), i.e.
blocks which contain one or more locations whose reliability is not guaranteed.
The Bad Block Management (BBM) module creates and maintains a map of bad
blocks, as shown in Fig. 1.6: this map is created in the factory and then updated
during SSD’s lifetime, whenever a block becomes bad.

8 R. Micheloni and L. Crippa

Fig. 1.6 Bad Block Management (BBM)

1.7 Error Correction Code (ECC)

This task is typically executed by a hardware accelerator inside the memory con-
troller. Examples of memories with embedded ECC were also reported [8–10]. Most
popular ECC codes, correcting more than one error, are Reed-Solomon and BCH
[11].

NAND raw BER gets worse generation after generation approaching, as a matter
of fact, the Shannon limit. As a consequence, correction techniques based on soft
information processing are becoming more and more popular: LDPC (Low Density
Parity Check) codes are an example of this soft information approach. Chapter 4
provides details about how these codes can be handled by SSD simulators.

1.8 SSD’s Interfaces

There are 3 main interface protocols used to connect SSDs into server and/or storage
infrastructure: Serial Attached SCSI (SAS), Serial ATA (SATA) and PCI-Express.
PCI-Express based SSDs deliver the highest performances and are mainly used in
server based deployments as a plug-in card inside the server itself. SAS SSDs deliver
pretty good level of performances and are used in both high-end servers and mid-
range and high-end storage enclosures. SATA based SSDs are used mainly in client
applications and in entry-level and mid-range server and storage enclosures.

1.9 SAS and SATA

Serial Attached SCSI (SAS) is a communication protocol traditionally used to move
data between storage devices and host. SAS is based on a serial point-to-point physi-
cal connection. It uses a standard SCSI command set to drive device communications.
Today, SAS based devices most commonly run at 6 Gbps, but 12 Gbps SAS are avail-
able too. On the other side, SAS interface can also be run at slower speeds—1.5 Gbps
and/or 3 Gbps to support legacy systems.

http://dx.doi.org/10.1007/978-3-319-51735-3_4

1 Solid State Drives (SSDs) 9

SAS offers backwards-compatibility with second-generation SATA drives. The
T10 technical committee of the International Committee for Information Technol-
ogy Standards (INCITS) develops and maintains the SAS protocol; the SCSI Trade
Association (SCSITA) promotes the technology.

Serial ATA (SATAor Serial AdvancedTechnologyAttachment) is another interface
protocol used for connecting host bus adapters to mass storage devices, such as hard
disk drives and solid state drives. Serial ATA was designed to replace the older
parallel ATA/IDE protocol. SATA is also based on a point-to-point connection. It
uses ATA and ATAPI command sets to drive device communications. Today, SATA
based devices run either at 3 or 6 Gbps.

Serial ATA industry compatibility specifications originate from the Serial ATA
International Organization [12] (aka. SATA-IO).

A typical SAS eco-system consists of SAS SSDs plugged into a SAS backplane
or a host bus adapter via a point to point connection, which, in turn, is connected to
the host microprocessor either via either an expander or directly, as shown in Fig. 1.7.

Each expander can support up to 255 connections to enable a total of 65535
(64k) SAS connections. Indeed, SAS based deployments enable the usage of a large
number of SAS SSDs in a shared storage environment.

SASSSDsare builtwith twoports. This dual port functionality allowshost systems
to have redundant connections to SAS SSDs. In case one of the connections to the
SSD is either broken or not properly working, host systems still have the second
port that can be used to maintain continuous access to the SAS SSD. In enterprise
applications where high availability is an absolute requirement, this feature is key.

SASSSDs also support hot-plug: this feature enables SASSSDs to be dynamically
removed or inserted while the system is running; it also allows automatic detection of

Fig. 1.7 SAS connectivity

10 R. Micheloni and L. Crippa

newly inserted SAS SSDs. In fact, while a server or storage system is running, newly
inserted SAS SSDs can be dynamically configured and put in use. Additionally, if
SAS SSDs are pulled out of a running system, all the in-flight data that were already
committed to the host system are stored inside the SAS drive, and can be accessed
at a later point, when the SSD is powered back on.

Differently from SAS, a typical SATA infrastructure consists of SATA SSDs
point-to-point connected to a host bus adapter driven by the host microprocessor. In
addition, SATA drives are built with a single port, unlike SAS SSDs. These two main
differences make SATA based SSDs a good fit for entry or mid-range deployments
and consumer applications.

The SATA protocol supports hot-plug; however, not all SATA drives are designed
for it. In fact, hot-plug requires specific hardware (i.e. additional cost) to guarantee
that committed data, which are actually still in-flight, are safely stored during a power
drop.

It is worth highlighting that SATA drives may be connected to SAS backplanes,
but SAS drives can’t be connected to SATA backplanes. Of course, this another
reason for the broad SATA penetration in the market.

Similarities between SAS and SATA are:

• Both types plug into the SAS backplane;
• The drives are interchangeable within a SAS drive bay module;
• Both are long proven technologies, with worldwide acceptance;
• Both employ point-to-point architecture;
• Both are hot pluggable.

Differences between SAS and SATA are:

• SATA devices are cheaper;
• SATA devices use the ATA command set, SAS the SCSI command set;
• SAS drives have dual port capability and lower latencies;
• While both types plug into the SAS backplane, a SATA backplane cannot accom-
modate SAS drives;

• SAS drives are tested against much more rigid specifications;
• SAS drives are faster and offer additional features, like variable sector size, LED
indicators, dual port, and data integrity;

• SAS supports link aggregation (wide port).

1.10 PCI-Express

PCI-Express (Peripheral Component Interconnect Express) or PCIe is a bus standard
that replaced PCI and PCI-X. PCI-SIG (PCI Special Interest Group) creates and
maintains the PCIe specification [13].

PCIe is used in all computer applications including enterprise servers, con-
sumer personal computers (PC), communication systems, and industrial applications.

1 Solid State Drives (SSDs) 11

Fig. 1.8 PCI Express lane and link. In Gen2, 1 lane runs at 5Gbps/direction; a 2-lane link runs at
10Gbps/direction

Unlike the older PCI bus topology, which uses shared parallel bus architecture, PCIe
is based on point-to-point topology,with separate serial links connecting every device
to the root complex (host). Additionally, a PCIe link supports full-duplex communi-
cation between two endpoints. Data can flow upstream (UP) and downstream (DP)
simultaneously. Each pair of these dedicated unidirectional serial point-to-point con-
nections is called a lane, as depicted in Fig. 1.8. The PCIe standard is constantly under
improvement, with PCIe 3.0 being the latest version of the standard available in the
market (Table1.1). The standardization body is currently working on defining Gen4.

Other important features of PCIe include power management, hot-swappable
devices, and the ability to handle peer-to-peer data transfers (sending data between
two end points without routing through the host) [14]. Additionally, PCIe simpli-

Table 1.1 Throughput of different PCIe generations

PCIe version Year introduced Throughput per lane

PCIe 1.0 (Gen1) 2003 250 MB/s

PCIe 2.0 (Gen2) 2007 500 MB/s

PCIe 3.0 (Gen3) 2010 1 GB/s

12 R. Micheloni and L. Crippa

fies board design by utilizing a serial technology, which drastically reduces the wire
count when compared to parallel bus architectures.

The PCIe link between two devices can consist of 1–32 lanes. The packet data
is striped across lanes, and the lane count is automatically negotiated during device
initialization.

The PCIe standard defines slots and connectors for multiple widths:×1,×4,×8,
×16, ×32. This allows PCIe to serve lower throughput, cost-sensitive applications
as well as performance-critical applications.

PCIe uses a packet-based layered protocol, consisting of a transaction layer, a
data link layer, and a physical layer, as shown in Fig. 1.9.

The transaction layer handles packetizing and de-packetizing of data and status-
message traffic. The data link layer sequences these Transaction Layer Packets
(TLPs) and ensures that they are reliably delivered between two endpoints. If a trans-
mitter device sends a TLP to a remote receiver device and a CRC error is detected,
the transmitter device gets a notification back. The transmitter device automatically
replays the TLP. With error checking and automatic replay of failed packets, PCIe
ensures very low Bit Error Rate (BER).

The Physical Layer is split in two parts: the Logical Physical Layer and the Elec-
trical Physical Layer. The Logical Physical Layer contains logic gates for processing
packets before transmission on the Link, and processing packets from the Link to
the Data Link Layer. The Electrical Physical Layer is the analog interface of the
Physical Layer: it consists of differential drivers and receivers for each lane.

TLP assembly is shown in Fig. 1.10. Header and Data Payload are TLP’s core
information: Transaction Layer assembles this section based on the data received
from the application software layer. An optional End-to-End CRC (ECRC) field can
be appended to the packet. ECRC is used by the ultimate targeted device of this packet
to check for CRC errors inside Header and Data Payload. At this point, the Data Link
Layer appends a sequence ID and local CRC (LCRC) field in order to protect the ID.
The resultant TLP is forwarded to the Physical Layer which concatenates a Start and
End framing characters of 1 byte each to the packet. Finally, the packet is encoded
and differentially transmitted on the Link by using the available Lanes.

Today, PCIe is a high volume commodity interconnect used in virtually all com-
puters, from consumer laptops to enterprise servers, as the primary motherboard
technology that interconnects the host CPU with on-board ICs and add-on periph-
eral expansion cards.

1.11 The Need for High Speed Interfaces

Processor vendors have continued to ramp the performance of individual processor
cores, to combine multiple cores in one chip, and to develop technologies that can
closely couple multiple chips in multi-processor systems. Ultimately, all of the cores
in such a scenario need access to the same storage subsystem.

1 Solid State Drives (SSDs) 13

Fig. 1.9 PCIe Layered architecture

Fig. 1.10 Transaction Layer Packet (TLP) assembly

Enterprise IT managers are eager to utilize the multiprocessor systems because
they have the potential of boosting the number of I/O operations per second (IOPS)
that a system can process and also the number of IOPS per Watt. This multi-
processing computing capability offers better IOPS relative to cost and power con-
sumption—assuming the processing elements can get access to the data in a timely
fashion. Active processors waiting on data waste time and money.

There are, of course, multiple levels of storage technology in a system that ulti-
mately feed code and data to each processor core. Generally, each core includes local
cache memory that operates at core speed. Multiple cores in a chip share a second-

14 R. Micheloni and L. Crippa

level and, sometimes, a third-level cache. And DRAM feeds the caches. DRAM and
caches access-times, together with data-transfer speed have scaled to match proces-
sor’s performance.

The issue is the performance gapbetweenDRAMandHDDin termsof access time
and data rate. Disk/drive vendors have done a great job at designing and manufac-
turing higher-capacity, lower-cost-per-Gbyte disks/drives; but the drives inherently
have limitations in terms of how fast they can access data, and then how fast they
can transfer these data to DRAM.

Access time depends on how quickly a hard drive can move the read head over
the required data track on a disk, and the rotational latency of the addressed sector to
move underneath the head. The maximum transfer rate is dictated by the rotational
speed of the disk and the data encoding scheme: together they determine the number
of bytes per second that can be read from the disk.

Hard drives perform relatively well in reading and transferring sequential data.
But random seek operations add latency. And even sequential read operations can’t
match the data appetite of the latest processors.

Meanwhile, enterprise systems that perform on-line transaction processing, such
as financial transactions and data mining (e.g. applications for customer relationship
management) require highly random access to data. Also cloud computing has strong
random requirements, especially when looking at virtualization, which expands the
scope of different applications that a single system has active at any one time. Every
microsecond of latency directly relates tomoney, utilization of processors and system
power.

Fortunately, Flash memories can help reducing the performance gap between
DRAM and HDD. Flash is slower than DRAM but offers a lower cost per Gbyte of
storage. That cost is more expensive than disk storage, but enterprises will gladly pay
the premium because Flash also offers much better throughput in terms of Mbyte/s
and faster access to random data, resulting in better cost-per-IOPS compared to
rotating storage.

Neither the legacy disk-drive form factor nor the interface is ideal for Flash-based
storage. SSD manufacturers can pack enough Flash devices in a 2.5-in form factor
to easily exceed the power profile developed for disk drives. And Flash can support
higher data transfer rates than even the latest generation of disk interfaces.

Let’s examine the disk interfaces more closely (Fig. 1.11). The third-generation
SATA and SAS support 600Mbyte/s throughput, and drives based on those interfaces
have already found usage in enterprise systems. While those data rates support the

1 Solid State Drives (SSDs) 15

Fig. 1.11 Interface performance. PCIe improves overall system performance by reducing latency
and increasing throughput

fastest electromechanical drives, new NAND Flash architectures and multi-die Flash
packaging deliver aggregate Flash bandwidth that exceeds the throughput capabilities
of SATAandSAS interconnects. In short, the SSDperformance bottleneck has shifted
from the storage media to the host interface. Therefore, many applications need a
faster host interconnect to take full advantage of Flash storage.

The PCIe host interface can overcome this storage performance bottleneck and
deliver unparalleled performance by attaching the SSD directly to the PCIe host bus.
For example, a 4-lane (x4) PCIe Generation 3 (Gen3) link can deliver 4 GByte/s data
rates. Simply put, PCIe meets the desired storage bandwidth. Moreover, the direct
PCIe connection can reduce system power and slash the latency that’s attributable to
the legacy storage infrastructure.

Clearly, an interface such as PCIe can handle the bandwidth of a multi-channel
Flash storage subsystem and can offer additional performance advantages. SSDs
that use a disk interface also suffer latency added by a storage-controller IC that
handles disk I/O. PCIe devices connect directly to the host bus, thus eliminating the
architectural layer associated with the legacy storage infrastructure. The compelling
performance of PCIe SSDs has resulted in systemmanufacturers placing PCIe drives
in servers as well as in storage arrays to build tiered storage systems that accelerate
applications while improving cost-per-IOPS.

The benefits of using PCIe as a storage interconnect are clear. You can achieve over
6x the data throughput compared to SATA or SAS. You can eliminate components
such as host bus adapters and SerDes ICs on the SATA and SAS interfaces—saving
money and power at the system level. And PCIe moves the storage closer to the host
CPU reducing latency, as shown in Fig. 1.12.

Latency, IOPS, bandwidth, power, interface speed, number of channels, NAND-
type (SLC, MLC, TLC, QLC) are all parameters that SSD designers need to take
into account to meet their target specifications at minimum cost. Looking forward,

16 R. Micheloni and L. Crippa

Fig. 1.12 PCIe SSD versus SAS/SATA SSD

emerging memories will be part of the game too. It is clear that, given this number
of variables, a simple approach based on hardware prototyping is hard to pursue,
especially when looking at the time-to-market. Therefore, SSD simulators become
a must have and they will be covered in great details in the following chapters.

References

1. G. Campardo, R.Micheloni, D. Novosel, “VLSI-Design of Non-VolatileMemories”, Springer-
Verlag, 2005.

2. www.onfi.org
3. www.jedec.org
4. C. Park et al., “A High Performance Controller for NAND Flash-based Solid State Disk

(NSSD)”, IEEE Non-Volatile Semiconductor Memory Workshop NVSMW, pp. 17–20, Feb.
2006.

5. A. Kawaguchi, S. Nishioka, and H. Motoda. “A flash-memory based file system”, Proceedings
of the USENIX Winter Technical Conference, pp. 155–164, 1995.

6. J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. A space-efficient flash translation layer
for compactflash systems. IEEE Transactions on Consumer Electronics, 48(2):366–375, May
2002.

7. S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S.-W. Park, and H.-J. Songe. “FAST: A log-
buffer based ftl scheme with fully associative sector translation”, 2005 US-Korea Conference
on Science, Technology, & Entrepreneurship, August 2005.

8. T. Tanzawa, T. Tanaka, K. Takekuchi, R. Shirota, S. Aritome, H. Watanabe, G. Hemink, K.
Shimizu, S. Sato, Y. Takekuchi, and K. Ohuchi, “A compact on-chip ECC for low cost Flash
memories,” IEEE J.Solid-State Circuits, vol. 32, pp. 662–669, May 1997.

www.onfi.org
www.jedec.org

1 Solid State Drives (SSDs) 17

9. G. Campardo, R.Micheloni et al.,“40-mm2 3-V-only 50-MHz 64-Mb 2-b/cell CHENORFlash
memory” – IEEE Journal of Solid-State Circuits, Vol. 35, No. 11, Nov. 2000, pp. 1655–1667.

10. R. Micheloni et al., “A 4Gb 2b/cell NAND Flash Memory with Embedded 5b BCH ECC for
36MB/s System Read Throughput”, IEEE International Solid-State Circuits Conference Dig.
Tech. Papers, pp. 142–143, Feb. 2006.

11. R. Micheloni, A. Marelli, R. Ravasio, “Error Correction Codes for Non-Volatile Memories”,
Springer-Verlag, 2008.

12. http://www.sataio.org
13. www.pcisig.com
14. R. Budruk, D. Anderson, T. Shanley, “PCI Express System Architecture”, Mindshare 2003.

http://www.sataio.org
www.pcisig.com

Chapter 2
NAND Flash Memories

Rino Micheloni and Luca Crippa

Abstract NAND Flash memories are the storage media used inside Solid State
Drives (SSDs). Indeed, a single drive for enterprise applications can contain up to
hundreds of Flash chips. Flash memories are non-volatile in the sense that they can
retain the information even when powered off, but they wear out, i.e. their perfor-
mances change over time and they have a limited lifetime. Therefore, taking time to
learn the basics of the Flash technology is a necessary step for people who have to
deal with SSDs. After an introduction about the matrix array, this chapter walks the
reader through the NAND basic functionalities, i.e. program, erase, and read oper-
ations. The second part of the chapter is devoted to the digital interface of NAND
memories, with a detailed description of the communication protocol, for both syn-
chronous (DDR) and asynchronous (legacy) modes.

2.1 Introduction

Semiconductor memories can be divided into two major categories: RAM, acronym
for Random Access Memories, and ROM, acronym for Read Only Memories: RAM
loses its content when power supply is switched off, while ROM virtually holds it
forever. A third category is NVM, which stands for Non-Volatile Memories, whose
content can be electrically altered but it is also preserved when power supply is
removed. These memories are more flexible than the original ROM, whose content
is defined during manufacturing and cannot be changed by the user in the field.

The history of non-volatile memories began in the Seventies, with EPROMs
(Erasable Programmable Read Only Memories). In the early 90s, with the intro-
duction of non-volatile Flash memories into portable products like mobile phones,

R. Micheloni (B)
Performance Storage Business Unit, Microsemi Corporation, Vimercate, Italy
e-mail: rino.micheloni@ieee.org

L. Crippa
Microsemi Corporation, Vimercate, Italy
e-mail: luca.crippa@ieee.org

© Springer International Publishing AG 2017
R. Micheloni (ed.), Solid-State-Drives (SSDs) Modeling,
Springer Series in Advanced Microelectronics 58,
DOI 10.1007/978-3-319-51735-3_2

19

20 R. Micheloni and L. Crippa

Fig. 2.1 (right) Floating gate memory cell and (left) its schematic symbol

USB keys, digital cameras and so on, the NVM market has experienced a stunning
increase.

The most popular planar Flash memory cell is based on the Floating Gate (FG)
technology [1], whose cross section is shown in Fig. 2.1. A MOS transistor is built
with two overlapping gates: the first one is completely surrounded by oxide and
it is known as “floating gate”, while the second one is the actual gate terminal.
The isolated gate constitutes an excellent “trap” for electrons, thus enabling long
data retention. The operations performed to inject and remove electrons from the
floating gate are called program and erase, respectively. These operations modify
the threshold voltage VTH of the memory cell, which, in most of the cases, is a n-
type MOS transistor. By applying fixed voltages to cell’s terminals, it is possible to
discriminate two storage levels: when the gate voltage is higher than cell’s VTH, the
cell is ON (“1”), otherwise it is OFF (“0”).

It is worth mentioning that, due to issues in scaling floating gate technologies,
another kind of NAND is gaining traction, especially with 3D architectures: charge
trap. Details about this technology, together with a deep dive of the various 3D
options, can be found in [2]. The good news is that all the following considerations
about basic operations hold true for both floating gate and charge trap.

2.2 NAND Flash Array

Memory cells are packed together to form a matrix, in order to optimize silicon area
occupation. Depending on how the cells are organized inside the matrix, it is possible
to distinguish between NAND and NOR [3] Flash memories. When looking at Solid
State Drives (SSDs), NAND is definitely a synonym for Flash.

2 NAND Flash Memories 21

Fig. 2.2 NAND string (left) and NAND array (right)

In the NAND string, cells are connected in series, in groups of 64, 128 or even
more [4], as shown in Fig. 2.2. Two select transistors, MSL and MDL, sit at the edges
of the string, to ensure the connections to source line and bitline (BL). Each NAND
string shares the bitline contact with another string. Control gates are connected
through wordlines (WLs).

Logical pages are made of cells belonging to the same wordline. The number of
pages perwordline is related to the storage capabilities of thememory cell.Depending
on the number of storage levels, Flashmemories are referred to in differentways: SLC
memories store 1 bit per cell, MLC memories store 2 bits per cell, TLC memories
store 3 bits per cell, and QLC memories store 4 bits per cell.

All the NAND strings sharing the same group of wordlines are erased together,
thus forming a so-called Flash Block. In Fig. 2.2 there are 3 blocks: by using a bus
representation, one block is made of WLX <63:0>.

A NAND Flash device is not just the memory array, as sketched in Fig. 2.3. The
Row Decoder is located between the planes (i.e. sub-arrays): this circuit has the
task of properly biasing all the wordlines belonging to the selected NAND string.
All the bitlines are connected to sense amplifiers (Sense Amp), sometimes called

22 R. Micheloni and L. Crippa

Fig. 2.3 Block diagram of a NAND Flash memory

Page Buffers. The purpose of sense amplifiers is to convert the analog value of the
current sunk by the memory cell into a digital bit. In the peripheral area there are
charge pumps and voltage regulators for producing voltages higher than the external
power supply VDD, logic circuits, and redundancy structures. PADs are used to
communicate with the external world.

2.3 Flash Basic Operations

This section briefly describes the basic NAND functionalities: read, program, and
erase.

2.3.1 Read

During a read operation (Fig. 2.4), cell’s gate is driven at VREAD (0V), while the other
cells are biased at VPASS,R (usually 4÷5 V), so that they can act as pass-transistors,
regardless the value of their threshold voltages. In fact, an erased Flash cell has a

2 NAND Flash Memories 23

Fig. 2.4 NAND string biasing during read and SLC VTH distributions

VTH smaller than 0 V; vice versa, a written cell has a positive VTH but, however,
smaller than 4 V. In practice, by biasing the gate of the selected cell with a voltage
equal to 0 V, the series of all the cells will conduct current only if the addressed cell
is erased.

The read technique is based on charge integration, exploiting the bitline parasitic
capacitor. This capacitor is precharged at a fixed value (usually 1÷1.2 V): only if
the cell is erased and sinks current, then the capacitor is discharged. Several circuits
exist to detect the bitline parasitic capacitor state: the structure depicted in the inset
of Fig. 2.4 is one of the most common. The bitline parasitic capacitor is indicated
with CBL while the NAND string is modeled with a current generator.

During the charge of the bitline, the gate of the PMOS transistor MP is kept
grounded, while the gate of the NMOS transistor MN is forced at a fixed value V1.
Typical value for V1 is around 2 V. At the end of the transient the bitline has a voltage

24 R. Micheloni and L. Crippa

VBL = V1 − VT HN , where VT HN indicates the threshold voltage value ofMN. At this
point, transistors MN and MP are switched off and CBL is free to discharge. After a
time tV AL , the gate of MN is biased at V2 < V1, usually 1.6÷1.4 V.

If tV AL is long enough to discharge the bitline voltage VBL under the value (V2 −
VT HN), then MN turns on and the voltage of node OUT (VOUT) becomes equal to the
one of the bitline. Finally, the analog voltage VOUT is converted into a digital format
by using simple latches.

There are alternatives [3] to the above mentioned technique but they are all still
based on a charge integration. Themain difference is the fact that they use a dedicated
capacitor instead of the bitline parasitic capacitor.

2.3.2 Program

Programming of NANDmemories exploits the quantum-effect of electron tunneling
in the presence of a strong electric field (Fowler-Nordheim tunneling [5]).

During programming, the number of electrons crossing the oxide is a function of
the electric field: in fact, the stronger the field, the higher the injection probability.
Thus, in order to improve program performances, it is essential to have high electric
fields and, therefore, high voltages. This requirement is one of the main drawbacks
of this programmethod, since the oxide degradation is accelerated by these voltages.

The main advantage is the extremely low current consumption, in the range of
few nA per cell. This is what makes the Fowler-Nordheim mechanism suitable for a
parallel programming of many cells as required by the long NAND page size (e.g.
16 kB).

In order to precisely change the cell’s threshold voltage, a Program & Verify
algorithm [3] is adopted: verify is used to check whether the cell has reached the
target distribution or not.

To trigger the injection of electrons into the floating gate, the following voltages
are applied, as shown in Fig. 2.5:

• VDD on the gate of the drain selector;
• VPASS,P (8÷ 10 V) on the unselected gates;
• VPGM (20÷ 25 V) on the selected gate (to be programmed);
• GND on the gate of the source selector;
• GND on the bitlines to be programmed;
• VDD on other bitlines.

The so-called self-boosting mechanism [3] prevents the cells sitting on the same
wordline from undergoing an undesired programming. The basic idea is to exploit the
high voltages generated during the programming operation to increase the potential
of the region underneath the tunnel oxide (inset of Fig. 2.5). This is accomplished by
leveraging the parasitic capacitor of the memory cell itself.

When bitlines are biased at VDD, drain selectors are diode-connected and the cor-
responding bitlines are left floating. By applying VPASS,P to the unselected wordlines,

2 NAND Flash Memories 25

Fig. 2.5 NAND string biasing during programming. The self-boostingmechanism is used to inhibit
programming of unselected cells

26 R. Micheloni and L. Crippa

cells parasitic capacitors boost the potential of the channel, thus reducing the voltage
drop across the tunnel oxide and, hence, inhibiting tunneling phenomena.

2.3.3 Erase

The NAND array is placed in a triple-well structure, as shown in Fig. 2.6a. Usually,
each plane has its own triple-well. The source terminal is shared by all the blocks;
in this way the matrix is more compact.

The electrical erase takes place by biasing the iP-well at high voltage and keeping
the wordlines of the NAND block to be erased grounded (Fig. 2.6c). Therefore,
NAND technologies don’t need negative voltages. The physical mechanism is again
the Fowler-Nordheim tunneling. As the iP-well is common to all the blocks, erase
of unselected blocks is prevented by leaving their wordlines floating. In this way,
when the iP-well is charged, the potential of the floating wordlines raises as well,
thanks to the capacitive coupling between the control gates and the iP-well (i.e.
Fowler-Nordheim tunneling is inhibited).

Figure2.6b sketches the erase algorithm phases. NAND specifications are quite
aggressive in terms of erase time. Therefore, Flash vendors try to erase the block

Fig. 2.6 a NAND matrix in triple-well; b erase algorithm; c erase biasing on the selected block

2 NAND Flash Memories 27

content in few erase steps. As a consequence, a very high electric field is applied to
the matrix during the Electrical Erase phase. As a matter of fact, erased distribution
is deeply shifted towards negative VTH values. In order to minimize floating gate
coupling, a Program After Erase (PAE) phase is introduced, with the goal of plac-
ing the distribution near the 0V limit (of course, guaranteeing the appropriate read
margin).

Technology shrink asks for even more sophisticated erase algorithms, especially
for 3–4 bit/cell devices. In fact, reliability margins shrink with the technology node:
a more precise, and therefore time consuming, PAE has to be adopted, to contain
the erased distribution width. In summary, erase time is becoming longer and longer,
generation after generation, reaching values in the range of 10÷ 20 ms (especially
with 3D memories).

2.4 NAND Flash Memory Map

NAND Flash memories are divided in pages and blocks, as sketched in Fig. 2.7. A
block is the smallest erasable unit. Generally speaking, there are a power of two
blocks within any device, plus few extra blocks to compensate for Bad Blocks. Each
block contains multiple pages. A page is the smallest addressable unit for reading
and writing. Each page is composed of main area and spare area (Fig. 2.7). Main area
can be either 8 or 16 kB. Spare area is used for ECC [6, 7] and system (firmware)
logical pointers and it is in the order of a couple of hundreds bytes per 4 kB of main
area.

Fig. 2.7 32 Gbit NAND memory logic organization

28 R. Micheloni and L. Crippa

Fig. 2.8 NAND addressing

Every time we want to execute an operation on a NAND device, we must specify
the memory address. The address is split in row and column (Fig. 2.8). Row address
identifies the addressed page, while column address is used to identify a byte inside
the page.When both row and column addresses are required, column address is given
first, 8 bits per address cycle. The first cycle contains the least significant bits. Row
and column addresses cannot share the same address cycle.

The row address identifies the block and the page involved in the operation. Page
address occupies the least significant bits.

2.5 NAND Commands

NAND devices communicate with the external world by means of pins. These pins
aremonitored by theCommand Interface (CI) embedded in the NANDdevice, which
has the task to understand what the host wants to execute.

For many years, the asynchronous interface (Fig. 2.9) has been the only available
option for NAND devices, and it is described here below.

• CE# : it is the Chip Enable signal. This input signal is “1” when the device is in
stand-by mode, otherwise it is always “0”.

• R/B# : it is the Ready/Busy signal. This output signal is used to indicate the target
status. When low, the target has an operation in progress.

• RE# : it is the Read Enable signal. This input signal is used to enable serial data
output.

• CLE : it is the Command Latch Enable. This input is used by the host to indicate
that the bus cycle is used to input the command.

• ALE : it is the Address Latch Enable. This input is used by the host to indicate
that the bus cycle is used to input the addresses.

• WE# : it is the Write Enable. This input signal controls the latching of input data.
Data, command and address are latched on the rising edge of WE#.

• WP# : it is the Write Protect. This input signal is used to disable Flash array
program and erase operations.

• DQ<7:0> : these input/output signals represent the data bus.

2 NAND Flash Memories 29

Fig. 2.9 TSOP and BGA packages and related pinout (right)

2.5.1 Read Operation

The read function retrieves the data stored at a specified address. In order to accom-
plish this goal, NAND must recognize when a read request comes in, together with
the related addresses. After the “busy time”, necessary to perform the internal read
algorithm, NAND memories are ready to output data. Based on the device pin sig-
nals, theNANDCommand Interface is able to understandwhen a command is issued,
when an address is issued, and when it must output data.

Figure2.10 shows a command cycle (“Cmd”). CI recognizes a “Cmd” cycle if
CLE is high. In this case, the 8-bit value on DQs represents the command code.

Figure2.11 shows address cycles. Generally, all the operations need the addresses
where they have to act. The address length depends on the operation and on the

Fig. 2.10 Command cycle
(“Cmd”): CLE is high, all
other input signals are low

30 R. Micheloni and L. Crippa

Fig. 2.11 Address cycle: ALE is high, all other inputs signals are low

capacity of the NAND; N cycles are used to input column addresses and M cycles
are for row addresses. CI recognized an address cycle if ALE is high. Meanwhile,
all other input signals are low and the DQs value is the address.

The last command phase used by the read operation is the data out, shown in
Fig. 2.12. Data out is performed by toggling signal RE#: at every cycle a new byte
of data is available on DQs.

These basic cycles are used by the NAND to decode and perform every operation.
Figure2.13 shows the full command sequence for a read operation. The first cycle is
used to issue the read command “RD” (e.g. 00h). After the command cycle a number
of cycles is used to provide the addresses. Column addresses are given first, followed
by row addresses. All the pins (ALE, CLE, RE#) not present in the figure must be
driven as described above. Code “RDC” (Read Command Confirm, e.g. 30h) is used

Fig. 2.12 “Dout” cycle: RE# is low, all other inputs signals are low

Fig. 2.13 Read command sequence

2 NAND Flash Memories 31

Fig. 2.14 Change read column sequence

to confirm the read command. Finally, the device goes busy and the read operation
starts. When NAND returns ready, the data output cycles start.

The above described read command outputs the entire Flash page, regardless the
number of bytes we want to read. In some cases, a small data move is required or
we may want to read randomly inside a page. Command Change Read Column, also
known as Random Data Output, is designed to change the column address during
data out.

Figure2.14 shows the Change Read Column sequence. After the usual read com-
mand is executed, it is possible to change the column address during data out. A
command cycle “CRC” (Change Read Column, e.g. 05h) is issued, followed by the
addresses of the locations we want to output from. Only fewer cycles are required
with respect to the usual read command, since only the column addresses are needed.
A confirm command cycle “CRCC” (Change Read Column Confirm, e.g. E0h) is
used to enable the data out. It is worth noting that no additional busy time is necessary,
because data are already stored in the page buffers.

Generally, the busy time in a read operation lasts for several tens of microsecond.
One way to improve read throughput is the Read Cache Command (when available).
With this command it is possible to download data from the Flash memory, while
page buffers are reading another page from the Flash array.

Sequential Read Cache Command sequence is shown in Fig. 2.15. A Read Com-
mand must be issued before Read Cache Command. After the device returns ready,
the command code “RC” (Read Cache, e.g. 31h) is used to initiate data download
from the matrix to page buffers. RB# goes low for a little while and then N Dout
cycles are used to output the first page. Since no other addresses are input, the next

Fig. 2.15 Sequential cache read command

32 R. Micheloni and L. Crippa

Fig. 2.16 Random cache read command

sequential page is automatically read inside the NAND. When we don’t need to read
other pages, the last page is copied into the page buffers by using command “RCE”
(Read Cache End, e.g. 3Fh).

Random Cache Read sequence is shown in Fig. 2.16: with this command it is
possible to select the address of the page we want to cache.

Withmulti-plane devices, it is possible to issue a read command onmultiple planes
simultaneously. Figure2.17 shows the command sequence for Multi-plane Read.

After the standard Read Command cycle “RD”, the addresses of the page we
want to read on plane 0 are issued. The command code “MR” (Multi-plane read,
e.g. 32h) is used in the next command cycle so that the device is ready to receive
the addresses belonging to plane 1. Once the new addresses and the Read Command
Confirm Code “RDC” are given, the device goes busy to perform the read algorithm
on both planes simultaneously. When the device returns ready, the command cycle
CC (Choose Column, e.g. 06h) is used to select the address of the page we want to
output, followed by a number of address cycles. The command code “CCC” (Choose
Column Confirm, e.g. E0h) is a command confirm. Finally the Dout cycles are used
to output the read data.

Since both the Read Cache command and the Multi-plane read have been intro-
duced to increase performances, it is interesting to compare them. Figure2.18 shows
a comparison among Read, Cache Read and Multi-plane Read.

If we define tALGO as the time to read from the NAND array, and tOUT the time to
download the page, the total time to perform the read of 2 pages with a standard read
is t = 2 tALGO + 2 tOUT. If a multi-plane command is used, tALGO runs simultaneously
on both planes and t = tALGO + 2 tOUT. Evaluating t in the Cache Read case is more

2 NAND Flash Memories 33

Fig. 2.17 Multi-plane read command

Fig. 2.18 Performance comparison among read, double-plane read and cache read

difficult, because we have to consider the ratio between tALGO and tOUT. If tOUT is
longer than tALGO, then t = tALGO + 2 tOUT. It follows that the performances of Cache
Read and Double Plane Read are the same. On the contrary, if tALGO is longer than
tOUT, it won’t be possible to mask tALGO with a single page data out (Fig. 2.19). In
this case, Double-plane Read performs better than Cache Read.

2.5.2 Program Operation

Purpose of program operation is to write data at a specified address. The basic cycles
are those already described for read operation, such as Command cycle and Address
cycle. The only added cycle is the Data in (“Din”) cycle, as sketched in Fig. 2.20.

34 R. Micheloni and L. Crippa

Fig. 2.19 Performance comparison among read, double-plane read and cache read with a NAND
array read time longer than page data output

Fig. 2.20 “Din” cycle: WE# is low, all other inputs signals are low

Fig. 2.21 Program command

Data in is performed by toggling signal WE#: at every cycle a new byte shall be
made available on DQs.

Program sequence is shown in Fig. 2.21. A command cycle to input “PM” code
(Program, e.g. 80h) is followed by a number of address cycles to input the addresses
where we want to write. Once the location is set, N “Din” cycles are used to input
data into the page buffers. Finally a “PMC” (Program Confirm, e.g. 10h) command
is issued to start the algorithm.

2 NAND Flash Memories 35

Fig. 2.22 Cache program and double-plane program commands

As already described for read operation, also in the program case there could be
the need to move a small amount of data. Change Write Column (“CWC”) is used
to change the column address where we want to load the data.

Program busy time can be as long as few millisecond. Program cache command
or double-plane program are used to increase write throughput. Figure2.22 shows
the sequence for Cache Program and Double Plane Program.

The first cycles (“PM” cycle, address cycles and “Din” cycles) are the same
as in the standard program. Instead of “PMC” a “C/M” command cycle is issued.
“C/M” can be the Cache Program Code (e.g. 15h) or a Double Plane Command (e.g.
11h). Once another “PM” command is given, followed by the new addresses and
the “PMC” command, the device goes busy and the program algorithm is performed
simultaneously on both pages. It is worth noting that the above described Double
plane program is generally known as Concurrent double-plane Program, because the
program algorithm works simultaneously on both planes.

Overlapped Double-Plane Program might also be available; in this case, pro-
gramming of the first plane starts as soon as data are loaded in the page buffers. Of
course, this functionality requires a NAND architecture capable of performing the
programming algorithm independently on both planes.

The comparison between the above mentioned program commands is shown in
Fig. 2.23.

2.5.3 Erase Operation

The Erase Operation is used to delete data from the Flash array. Figure2.24 shows
the Erase Command sequence.

36 R. Micheloni and L. Crippa

Fig. 2.23 Performance comparison among cache program, overlapped double plane program and
concurrent double plane program

Fig. 2.24 Erase command

Fig. 2.25 Double-plane erase command

The Erase command is very simple: “ER” code (Erase Command, e.g. 60h),
followed by the block address and the “ERC” code (Erase Command Confirm, e.g.
D0h). After that, the device goes busy to perform the algorithm.

Since erase is the longest operation, the Double-Plane Erase command has been
introduced to erase two blocks at the same time. Figure2.25 shows the command
sequence for the Double-Plane Erase.

2 NAND Flash Memories 37

The standard erase cycles (“ER” command and row address cycles) are followed
by a “MER” command (Multi-plane erase, e.g. D1h). Once both the plane 1 addresses
and the “ERC” code are given, the device goes busy, erasing both blocks simultane-
ously.

2.6 Synchronous Operations

NAND read throughput is determined by array access time and data transfer rate over
the DQ bus. Typically, the data transfer is limited to 50 MB/s by the asynchronous
interface. As technology shrinks, page size increases and data transfer takes longer;
as a consequence, NAND read throughput decreases, totally unbalancing the ratio
between array access time and data transfer on the DQ bus. DDR interface has been
introduced to balance this ratio [8].

Nowadays two possible solutions are available in the market. The first one, Source
Synchronous Interface (SSI), is driven by the ONFI (Open NAND Flash Interface)
organization established in 2006 with the purpose of standardizing the NAND inter-
face [9]. Other NAND vendors use the so-called Toggle-Mode interface. In 2012
JEDEC defined a NAND flash device interface interoperability standard (JESD230)
that supports Asynchronous, SSI and Toggle DDR [10].

Figure2.26 shows the NAND pinout for SSI. Compared to the Asynchronous
Interface (ASI), there are 3 main differences:

• RE# becomes W/R# which is the Write/Read direction pin;
• WE# becomes CLK which is the clock signal;
• DQS is an additional pin acting as the data strobe, i.e. it indicates the data valid
window.

Hence, the clock is used to indicate where command and addresses should be
latched, while a data strobe signal is used to indicate where data should be latched.
DQS is a bi-directional pin and it runs at the same frequency of the clock.

Obviously, the basic command cycles described in the previous sections must be
modified to comply with the synchronous interface.

For example, Fig. 2.27 shows a “Cmd” sequence, followed by Data out (“Dout”)
cycles for SSI.

Fig. 2.26 Pinout of a
NAND Flash supporting
source synchronous interface

38 R. Micheloni and L. Crippa

Fig. 2.27 Source synchronous interface DDR sequence

Fig. 2.28 Pinout of a NAND Flash supporting toggle-mode interface

Fig. 2.29 Toggle-mode DDR sequence

Toggle-Mode DDR interface uses the pinout shown in Fig. 2.28.
It can be noted that only the DQS pin has been added to the standard ASI. In this

case, higher speeds are achieved by increasing the toggling frequency of RE#.
Figure2.29 shows a “Cmd” sequence, followedby “Dout” cycles forToggle-Mode

interface.
The reader can refer to NAND Flash datasheets for a detailed description of all

available commands with Source Synchronous and Toggle-Mode interfaces.
Simulations of Solid StateDrives involve several synchronousNANDFlashmem-

ories, some of them doing reads, some others doing either write or erase; moreover,
operations can be cached, interleaved, multi-plane, etc., in all possible combinations,
depending on the drive workload. This is clearly a non-linear problem and this book
is about how to make simulations of such a complex system, by providing insights

2 NAND Flash Memories 39

on available tools and simulation strategies. As usual, speed and precision don’t go
hand in hand and it is important to understand when to simulate what, and with which
tool.

References

1. G. Campardo, R.Micheloni, D. Novosel, “VLSI-Design of Non-VolatileMemories”, Springer-
Verlag, 2005.

2. R. Micheloni, “3D Flash Memories”, Springer, 2016.
3. R. Micheloni, L. Crippa, A. marelli,“Inside NAND Flash Memories”, Springer, 2010.
4. S. Lee et al., “A 128Gb 2b/cell NAND Flash Memory in 14nm Technology with tprog=640µs

and 800Mb/s I/O Rate”, 2016 IEEE International Solid-State Circuits Conference (ISSCC),
Dig. Tech. Papers, pp. 138–139, San Francisco, USA, Feb. 2016.

5. R. H. Fowler and L. Nordheim, “Electron Emission in Intense electric Fields,” Proceedings of
the Royal Society of London, vol. 119, no. 781, pp. 173–181, May 1928.

6. R. Micheloni et al., “A 4Gb 2b/cell NAND Flash Memory with Embedded 5b BCH ECC for
36MB/s System Read Throughput”, IEEE International Solid-State Circuits Conference Dig.
Tech. Papers, pp. 142–143, Feb. 2006.

7. R. Micheloni, A. Marelli, R. Ravasio, “Error Correction Codes for Non-Volatile Memories”,
Springer-Verlag, 2008.

8. D. Nobunaga et al., “A 50nm 8Gb NAND Flash Memory with 100MB/s Program Throughput
and 200MB/s DDR Interface”, IEEE International Solid-State Circuits Conference Dig. Tech.
Papers, pp. 426–427, Feb. 2008.

9. www.onfi.org
10. www.jedec.org

www.onfi.org
www.jedec.org

Chapter 3
SSDExplorer: A Virtual Platform
for SSD Simulations

Lorenzo Zuolo, Cristian Zambelli, Rino Micheloni and Piero Olivo

Abstract Solid State Drives (SSDs) are becoming more and more popular, driven
by the restless growth of high performance computing and cloud applications. The
development of an SSD architecture implies the analysis of a bunch of trade-offs
that, if properly understood, can tighten the SSD design space, thus reducing the
prototyping effort. Although SSD hardware prototyping platforms are the best way
to capture realistic system behaviors, they inherently suffer from a lack of flexibility.
To tackle this challenge and to identify the optimum design, under a given set of
constraints, the SSD research community is increasingly relying on sophisticated
software tools for modeling and simulating SSD platforms. In the first part of this
chapter the authors take a careful look at both literature and available simulation
tools, including VSSIM , NANDFlashSim, and DiskSim. All these solutions are
benchmarked against performances of real SSDs, including an OCZ VERTEX 120
GB and a NVRAM card used in large enterprise storage platform, that have been
measured under different traffic workloads. PROs and CONs of each simulator are
analyzed, pointing out which kind of answers each of them can give and at what
price. The second part of the chapter is devoted to an advanced simulator named
“SSDExplorer”, which is a fine-grained SSD virtual platform that was developed
with the following goals in mind:

• offer a RAD tool (Rapid Application Development) for SSD design space explo-
ration;

• accurately predict performance figures of the target architecture;
• offer a wear-out aware framework for complex correction algorithm exploration;
• avoid the overdesign of the resources of the SSD for a target performance.

Thanks to these features, different drive architectures can be compared and modified
until the optimum SSD architecture is identified, without the need for any hardware
prototyping.

L. Zuolo (B) · C. Zambelli · P. Olivo
Dipartimento di Ingegneria, Università degli Studi di Ferrara, via G. Saragat, 1,
44122 Ferrara, Italy
e-mail: lorenzo.zuolo@unife.it

R. Micheloni
Performance Storage Business Unit, Microsemi Corporation, Vimercate, Italy

© Springer International Publishing AG 2017
R. Micheloni (ed.), Solid-State-Drives (SSDs) Modeling,
Springer Series in Advanced Microelectronics 58,
DOI 10.1007/978-3-319-51735-3_3

41

42 L. Zuolo et al.

Solid State Drives (SSDs) are becoming more and more popular, driven by the
restless growth of high performance computing and cloud applications [1]. The devel-
opment of an SSD architecture implies the analysis of a bunch of trade-offs that, if
properly understood, can tighten the SSD design space, thus reducing the prototyping
effort. Although SSD hardware prototyping platforms are the best way to capture
realistic system behaviors, they inherently suffer from a lack of flexibility [2].

To tackle this challenge and to identify the optimum design, under a given set
of constraints, the SSD research community is increasingly relying on sophisticated
software tools for modeling and simulating SSD platforms. There are basically two
categories of tools: drive emulation tools [3] in virtual environments [4] and pure
software simulation tools [5]. The former category uses functional simulations to
quickly evaluate SSD performances from the host perspective. This comes at the
cost of reduced design space exploration capability, mainly because of the higher
level of abstraction. The latter category is built on top of trace driven simulators,
thus focusing on the analysis of performances when the drive is in a steady-state.
Both tools often overlook the macroscopic performance/reliability implications of
microarchitecture-level effects, which are typically abstracted.

In both categories of tools the common underlying assumption is that the SSD
microarchitectural details that determine the drive behavior are already defined. In
practice, the modeling framework does not target a Fine-Grained Design Space
Exploration (FGDSE) of the microarchitecture; primary goals are performance esti-
mation of known architectures, full system simulation, and Flash Translation Layer
(FTL) validation. These approaches are in general not very useful for an SSD
designer, whose primary need is not the capability of performing functional sim-
ulations, but rather the possibility of quantifying the efficiency of microarchitectural
design choices to copewith long term concerns, such as drive reliability andwearout-
induced performance drops.

SSDExplorerwas born tofill the gap in the landscape of simulation frameworks for
SSD devices, specifically targeting FGDSE. Bridging this gap is mandatory to avoid
the over-design of an SSD architecture when trying to meet target I/O performances
and reliability.

Based on a software framework, SSDExplorer complements modeling and sim-
ulation capabilities of the state-of-the-art tools. Here is a list of the main features.

• All components of the SSD architecture are modeled, thus broadening the design
space exploration capabilities. Moreover, a different level of abstraction can be
associated to each SSD component.

• Impact of the FTL does not necessarily require a detailed FTL description. This
is achieved by supporting the Write Amplification Factor (WAF) abstraction [6].
As a consequence, one of the goals of SSDExplorer is to deliver a fast path for
accurate I/O performance estimation.

• Accurate performance breakdown and identification of microarchitectural bottle-
necks. Analysis of the interaction efficiency between subcomponents of an SSD
is an essential requirement for the microarchitecture design.

3 SSDExplorer: A Virtual Platform for SSD Simulations 43

• Accuracy of the simulation results were validated with a mature commercial plat-
form (i.e., Ocz Vertex 120 GB [7]) and a state-of-the-art enterprise platform [8].

Thanks to these features, different drive architectures can be compared and mod-
ified until the optimum SSD architecture is identified, without the need for any
hardware prototyping.

3.1 SSD Simulators

As mentioned above, disk emulation [3] and disk trace-driven simulation software
tools [5, 9, 11–15] have been used for many years.

Yoo et al. [3] proposed a disk emulation strategy based on a reconfigurable frame-
work able to deal with a real SSD. One of the key contributions of this work is the
ability to track the real performance of a host system through a dynamic manager
built around a QEMU virtual platform [4]. However, to achieve fast performance
estimations, several components (i.e. processor, NAND Flash memories, etc.) are
modeled with a high level of abstraction. Therefore, performance fluctuations expe-
rienced by these blocks are lost, thus strongly reducing the performance estimation
accuracy.

In the context of SSD trace-driven simulation tools, the open-source frameworks
proposed in [5, 9] allow SSD performance and power consumption evaluation.
Attempts to improve them in order to achieve real performance matching were also
proposed in [14, 15]. However, these tools are still highly abstracted, thus providing
an insufficient level of simulation accuracy and realistic components description to
perform real FGDSE. Moreover, since the aforementioned classes of frameworks do
not model all the internal blocks of an SSD, they are able to accurately track the
behavior of a disk only starting from a set of predefined and statically assigned tim-
ings (i.e. channel switch delay, I/O bus latencies, command scheduler delay, etc.). An
additional attempt tomodify one of these tools in order to incorporate detailedNAND
and ECC timings was done in [16]. Although the accuracy of the obtained results
in that particular case study is high, this kind of tools still lack the ability of evalu-
ating micro-architectural effects on SSD performances, like commands pipelining,
command suspensions, and uncommon queuing mechanisms, which become visible
only with cycle-accuracy.

To overcome this weakness, several cycle-accurate SSD simulators were devel-
oped. For example, Lee et al. [11] adopted a precise clock simulation for hardware
components description. However, this approach does not allow a full modeling of all
SSD components, thus hiding some of the architecture bottlenecks. Other methods
for fast simulation were presented in [12, 13], but they also suffer from accuracy loss
due to the lack of a complete architectural modeling.

Hardware platform prototypes were described in [2] and [10]. They enable a
precise SSD behavior investigation, although their fixed architecture severely limits

44 L. Zuolo et al.

Table 3.1 Comparison of the most used SSD simulation frameworks

Reconfigurable
parameters

SSDExplorer
platform

Emulation
platforms
(VSSIM [3])

Trace-driven
platforms
(DiskSim,
FlashSim [5, 9])

Hardware
platforms
(OpenSSD,
BlueSSD [2, 10])

Real FTL
√ √ √ √

WAF FTL
√

No No No

Host interface
performance

√ √
No

√

Real workload
√ √

No
√

Different host
interfaces

√
No

√
No

Accurate DDR
timings

√
No No No

Multi DRAM
buffer

√
No No No

Configurable
channel No

√ √ √
No

Configurable
target No

√ √ √
No

NAND
architecture

√ √ √
No

Accurate NAND
timings

√
No No

√

NAND reliability
√

No No
√

ECC model
√

No No
√

Interconnect
model

√
No No

√

Core model
√

No No
√

Real firmware
execution

√
No No

√

Multi core
√

No No No

Model refinement
√

No No No

Simulation speed Variable High High Fixed

the exploration of different design solutions. In practice, only the internal firmware
can be modified.

What is really missing in these approaches is a clear exploration of the per-
formance correlation between the host interface capabilities and the non-volatile
memory subsystem, including all the architectural blocks in between.

Table. 3.1 compares the relevant features of the most used SSD simulation frame-
works. The main highlight is that SSDExplorer introduces detailed timings and
behavioral models of the critical architectural blocks (i.e. DRAMs, NAND memo-
ries, ECCsub-system, etc.) that aremandatory for an accurate performance/reliability
evaluation.

3 SSDExplorer: A Virtual Platform for SSD Simulations 45

3.2 SSDExplorer at a Glance

3.2.1 Modeling Strategy

One of the main reasons that drove the development of SSDExplorer was the desire
to have a unified, reconfigurable and multi-abstraction simulation environment. To
achieve this goal, each block of SSDExplorer is written and integrated by using
the SystemC modeling and simulation environment [17]. SystemC allows designers
to cover, by using a single description language, several level of abstraction, from
the Timed Functional Level up to the Register Transfer Level (RTL). Thanks to this
approach, if a specific block needs to be thoroughly investigated, designers can easily
plug a more accurate model into the simulation environment, without any impact on
other components. However, it is worth highlighting that, since the simulation speed
offered by SystemC is inversely proportional to the abstraction level, each block has
to be wisely modeled; simulation efficiency must always be tailored to the simulator
goals. Although a similar strategy was successfully adopted in other applications
[18], this is the first application in a FGDSE-dedicated SSD simulation tool.

In essence, SSDExplorer is designed to: (i) select the most suitable modeling style
for each SSD component in order to accurately quantify performances; (ii) tolerate
lack of precise implementations of specific HW/SW components by providing mod-
eling abstraction. In fact, a detailed implementation of all SSD components might
not be available during the early architectural analyses. Based on the above consid-
erations, all HW/SW components that logically belong to the SSD control path (i.e.
all the blocks involved in the command interpretation) are modeled with high accu-
racy; on the contrary, components on the datapath (i.e. used during the data transfer
phase) can be reduced to a simple delay. This approach improves the simulation speed
while capturing all those micro-architectural details affecting SSD performances; at
the same time, this approach provides a backbone for FTL functional simulations.
Communication between model domains is guaranteed through “wrappers”, which
translate logical signals into state variables.

3.2.2 Available Models in SSDExplorer

Figure3.1 shows the reference SSD architecture simulated by SSDExplorer. There
are three levels of abstraction [19]: Pin-Accurate Cycle-Accurate (PA-CA),
Transaction-Level Cycle-Accurate (TL-CA), and Parametric Time Delay (PTD).

Pin-Accurate Cycle-Accurate (PA-CA) models
CPU, system interconnect, and channel/target controller are the key components in
the data flow. All these blocks must be included when the target is to simulate FTL,
either real (if available) or abstracted. FTL is usually implemented at the firmware
(FW) level and its overhead might have a significant impact on the overall SSD

46 L. Zuolo et al.

Fig. 3.1 Reference SSD architecture simulated by SSDExplorer

performances. As such, to accurately capture commands and their timings, a cycle-
accurate description is required.

Cycle-accurate models can effectively describe the complete functionality, struc-
ture, communication, and timing of a micro-architectural block. The communication
between components is modeled in a PA-CA manner: the hardware signals connect-
ing a component to a bus are explicitly modeled, and all the timing and protocol-
induced delays are captured accurately for the bus architecture. The components are
modeled in a cycle-accurate manner as well: data processing inside a component is
scheduled on a cycle by cycle basis. The structure of cycle-accurate models is very
close to RTL, but it allows faster simulations thanks to a higher-level modeling and
to the simulation language.

In SSDExplorer, pin- and cycle-accuracy are mandatory for modeling the control
path, since subtle effects in command handling and/or component interactions may
cause performance deviations that should be caught by a FGDSE tool. Any end user
may plug its SystemC models here, reflecting in-house IP cores. In the early design
phases, however, more relaxed bus functional models can be used, limiting cycle
accuracy to the bus interfaces and to the bus architecture itself. This option reduces
the simulator capability in capturing FTL execution overhead, but it does not limit
the drive performance estimation, by using either coarse or abstracted FTL models.

1. CPU: SSDExplorer can implement any CPUs, including custom IP cores and
advanced multicore, starting from its PA-CA model, its proper Instruction Set
Simulator, or the actual processor command back-trace. Thanks to the built-in
CPU-wrapper, users can even design and optimize custom CPUs for FTL execu-
tion by using other tools; once the set of operations is defined, it can be easily
integrated into SSDExplorer. Of course, with such a flexibility, it becomes easy
to support the inter-operability with state-of-the-art processors simulators such
as Gem5 [20] and Open Virtual Platforms [21].

3 SSDExplorer: A Virtual Platform for SSD Simulations 47

2. System Interconnect: SSDExplorer can include the most relevant communication
interfaces used in SSD platforms such as: AMBA AHB, Multi-Layer AMBA
AHB, AMBA AXI (single address lane, multiple data lanes) and OCP. Custom
system interconnects can also be plugged into the simulator if their PA-CAmodels
are available.

3. Channel/Target Controller: to perform read/write operations from/to the NAND
Flash memory arrays, it is mandatory to have a specific controller for translating
the commands issued by the CPU into a low-level NAND commands. The Open
NAND Flash Interface (ONFI) [22] and Toggle are the most widely used NAND
Flash Interface standards as we speak [23]. From an architectural point of view,
the channel/target controller is made of five macro blocks: a slave program port
on the system interconnect, a Push-Pull DMA controller, a SRAM cache buffer,
an ONFI-Toggle port and a command translator. The microarchitecture described
in [24] was chosen to mimic realistic functionalities of a channel/target controller
in industry-relevant designs, and it is shown in Fig. 3.2. SSDExplorer can be
configured with a flexible number of channels and targets.

Transaction-Level Cycle-Accurate (TL-CA) models
Host interface, DRAM buffers and NAND Flash memory arrays are described by
selectively abstracting the modeling style. The main idea is to avoid modeling all
pins of the communication interface between the data path components, as well
as the signals that constitute the bus and the external system interface. Basically,
communications go through channels, on top of which read and write transactions
are carried out. At the same time, computation primitives are scheduled at each
clock cycle. This is to allow the execution of sudden command requests in parallel
with other transactions (e.g. erase suspend in NAND Flash memories during garbage

Fig. 3.2 Architecture of the channel/target controller

48 L. Zuolo et al.

collection), and to preserve timing accuracy in the wrappers bridging these models
with the pin- and cycle-accurate ones. Nevertheless, the burden to preserve this cycle
accuracy is not heavy. In fact, there are memory dominated-components on the data
path, whose performancemainly depends on properly capturing timing parameters of
the memories rather than on the modeling of complex computation tasks. Moreover,
since NAND Flash memory components could be inactive for long times, (e.g. for
random workloads which do not spread across all the SSD channels), the processes
used for memory simulations are triggered only on demand, such that the overall
simulation efficiency is maximized. Basically, when the command scheduler detects
that an operation must be issued to one or more NAND Flash targets belonging to a
single channel, it spawns the corresponding process responsible for the management
of the targets of that channel. If the channel is idle, no process is created.Upon process
spawning, only the finite state machines of the addressed targets are updated, while
the other ones remain idle. By combining the dynamic process management with
the selective process spawning, it is possible to mitigate the impact of the memory
subsystem on the simulation speed.

1. Host Interface: this component manages the communication protocol with the
host, providing commands and data to the SSD. Two types of interfaces are
implemented in SSDExplorer: Serial Advanced Technology Attachment (SATA)
and PCI-Express. Both interfaces include a command/data trace player, which
parses a file containing the operations to be performed and triggers operations for
the other SSD components accordingly. The features of the available interfaces
are summarized below.

• SATA: all SATA protocol layers [25] and operation timings are accurately
modeled according to the SATA protocol timing directives provided in [26].
Native Command Queuing support is implemented featuring arbitrary queue
length up to 32 commands.

• PCI-Express: this interface allows boosting sequential and random operations
throughput, and it is widely adopted in enterprise SSDs [1]. Fast operations are
achieved through the NVM-Express (Non Volatile Memory Express [27]) pro-
tocol that significantly reduces packetization latencies with respect to standard
SATA interfaces [28]. All PCI-Express configurations (i.e. from generation 1
up to generation 3 with variable lane numbers) can be modeled, thus ensuring
accurate latency matching.

To easily switch fromone host interface to another, a common control architecture
is adopted: it is based on a fabric interconnect slave port and an external DMA
controller [29] able to transfer data from the host interface to the data buffers and
vice versa.

2. DRAM Buffer: this component is used either as a temporary storage buffer for
read/write data or as a buffer [31] for the address mapping operations, depend-
ing on the firmware running on SSDExplorer. A cycle accurate DRAM model
is required to capture realistic behaviors (i.e. column pre-charging, refresh oper-
ations, detailed command timings, etc.). The data buffers of SSDExplorer are

3 SSDExplorer: A Virtual Platform for SSD Simulations 49

modeled with a SystemC customized version of the simulator proposed in [32].
The number of available buffers in a SSD architecture is upper bounded by the
number of channels served by the drive controller. In SSDExplorer the user can
freely change this number, as well as the bandwidth of the memory interface,
the DRAM functionality, etc., through a simple text configuration file, which
abstracts internal modeling details. DDR, DDR2, DDR3 and DDR4 protocols are
supported as DRAM interface. Figure3.3 shows an example of the file used to
configure the timings of the DDR Buffer.

3. NAND flash memory array: the fundamental component of an SSD is the non-
volatile storage memory array. NAND Flash devices are hierarchically organized
in dies, planes, blocks, and pages. Program and read operations work on a page
basis, whereas the erase operation is performed per block, thus inhibiting the
in-place data update. Due to the internal architecture of NAND Flash devices,
memory timings strongly depend upon the selected operation; therefore, there is
a significant performance variability [33]. To accurately take all these effects into
account, a cycle accurate NANDFlash simulator is used. Furthermore, to emulate
the realistic behavior of the memory array, an error injection engine (i.e. a RBER
simulator) is included; in this way, it is possible to evaluate the impact of different
error patterns on the other components of the NAND Flash/ECC subsystems.
Of course, it is possible to embody different NAND Flash technologies (i.e.,
single-, multi- and triple-level cell). Figure3.4 shows an example of the file used
to configure the timings of a NAND flash die.

Parametric Time Delay (PTD) model
Themicroarchitectural blocks related toErrorCorrectionCodes (ECCs) aremodeled
by using a parametric time delay abstraction level. These blocks strictly depend upon
the design choices of SSDvendors, but their behavior and impact on I/Operformances
can be easily abstracted bymeans ofwell-defined qualitymetrics [34]. In otherwords,
the behavior inside PTD models does not need to be cycle accurate. As a result,
computation primitives inside a component can be grouped together and described
by a single timing. For example, the correction time of 5 errors in a NAND Flash
page could take an effective wait time of 10µs that cannot be interrupted by any other
commands. The above consideration allows a simpler block description, shortening
modeling time and increasing simulation speed. At the same time, communication
events can still be scheduled in a cycle accurate manner. However, even if this choice
enables accurate I/O performance characterization, it is not well suited for functional
simulations. This is actually not a big problem in the initial design stage, when the
internal SSD architecture is still under definition: priority number one is to find the
right architecture for the target I/O performances. Of course, later on, PTD models
can be replaced by more accurate models.

SSDExplorer embodies two configurable PTD ECCmodels: BCH (Bose, Chaud-
huri, Hocquenghem) and LDPC (LowDensity Parity Check). As sketched in Fig. 3.5,
these blocks are made of a fixed high-speed encoder for each SSD channel and a
reconfigurable parallel decoder (i.e. a multi-engine decoder) whose HW engines are
shared among the channels. The delays of both the encoder and the decoder can be

50 L. Zuolo et al.

Fig. 3.3 Example of DRAM
buffer configuration file [30]

NUM BANKS=8
NUM ROWS=32768
NUM COLS=512
DEVICE WIDTH=8
REFRESH PERIOD=70200

tCK=1.25
CL=11
AL=0
BL=8
tRAS=28
tRCD=11
tRRD=5
tRC=39
tRP=11
tCCD=4
tRTP=4
tWTR=4
tWR=15
tRFC=88
tFAW=24
tCKE=5
tXP=6

IDD0=42
IDD1=52
IDD2P=12
IDD2Q=22
IDD2N=23
IDD3N=35
IDD4W=99
IDD4R=96
IDD5=182
IDD6=12
IDD7=163

Vdd=1.5

configured to mimic either a single- or a multi-threaded architecture, as shown in
[34]. To explore different ECC architectures, the internal parallelism of eachmachine
can be selected by the user.

3 SSDExplorer: A Virtual Platform for SSD Simulations 51

Fig. 3.4 Example of NAND
flash die configuration file

[TIME]
tADL=70
tCS=20
tDH=1
tDS=1
tWC=25
tWP=11
tR=61200
tRC=10
tREA=3
tRR=20
tRST=5000
tWB=100
tWHR=80
tBERS=6000000
tDBSY=500
tPROG=66200
tFEAT=1000

[TYPMAXTIME]
tPROGU=2162000
tRU=76200
tDBSY=1000
tBERS=25000000

[SYS]
NUMS PLANE=2
NUMS DIE=1
NUMS BLOCKS=2096
NUMS PAGES=512
NUMS PGSIZE=16384
NUMS SPARESIZE=1216
NUMS IOPINS=8

Finally, it is worth pointing out that, in other state-of-the-art SSD simulators, ECC
is usually neglected.However, an accurate evaluation of SSDperformancesmust take
the latency introduced by ECC encoding and decoding into account, especially when
looking at performance-reliability trade-offs related to NAND [35].

52 L. Zuolo et al.

Fig. 3.5 ECC template architecture simulated by SSDExplorer

3.3 FTL Simulations

3.3.1 FTL

During the initial phase of FW development, being able to simulate FTL is critical.
Indeed, this is the only way for understanding how Flash management algorithms
such as Garbage Collection (GC) and Wear Leveling (WL) have to be designed, in
order tomaximize both the performance and the reliability of NANDflashmemories.
However, since many different implementations are usually available, it is manda-
tory to offer a flexible framework for both processor simulation/design and FTL
execution. In SSDExplorer these problems were addressed by means of two well
established open-source simulators: Gem5 [20] and Open-Virtual-Platform (OVP)
[21]. These tools allow users to define a custom system-on-chip architecture, which
can range from single to multi core platforms. Moreover, thanks to the standard pro-
gramming model offered by these simulators, specific FTL implementations can be
easily developed, tested and simulated; in other words, designers can see the actual
SSD behavior when the FW runs on top of a specific processor architecture.

All the aforementioned features, however, do not come for free. In fact, about the
simulation speed of Gem5 and OVP, it is necessary to highlight that simulations of
complex architectures, such as state-of-the-art SSD’s processors, can take a long of
time. As a consequence, embodying these platforms inside SSDExplorer does not
represent the best solution when a quick performance assessment is required. To
overcome this problem, there is a dedicated wrapper (sketched in Fig. 3.6) inside the

3 SSDExplorer: A Virtual Platform for SSD Simulations 53

Fig. 3.6 “Online-Offline” FTL simulations

CPU model of SSDExplorer, which can be dynamically attached/detached to/from
the processor simulator: this is referred to as “Online-Offline” simulation mode.
Basically, the processor simulator runs outside SSDExplorer and it outputs a trace of
the commands during the FTL execution (“Offline” simulation). This command trace
is composed of two parts: (i) the list of read, write, and erase operations that have
to be executed on flash memories; (ii) the processing time taken by the processor
to produce each I/O. All the collected data are then fed into the SSDExplorer CPU
wrapper (“Online” simulation), which introduces the right amount of delay and sends
the I/Os to the I/O processor connected to the Channel/Target controller and the
underlying memory arrays. This approach enables simulations of a huge amount of
FTL algorithms; in fact, in this case, SSDExplorer plays the role of a simple delay
generator, completely agnostic with respect to the actual FTL state or configuration.
Moreover, thanks to the “Online-Offline” simulation approach, designers can assess
SSD performances only when a specific FTL state has to be studied.

3.3.2 WAF Model

The FGDSE of a wide range of SSD architectures has the drawback of requiring
a custom FTL tailored for each configuration (some examples of custom FTLs are
provided in [36, 36, 37, 37, 38]). Moreover, during the early stages of the SSD
design, a complete FTL implementation is not available since many architectural
details, such as the processor’s architecture, are still under definition. In this context,
there is a need for estimating the impact of softwaremanagement algorithms (e.g.GC,
WL, etc.) without requiring their actual implementation. This problemwas tackled in
[6] by introducing a lightweight algorithm able to evaluate the impact on the SSD’s

54 L. Zuolo et al.

Fig. 3.7 “Online-Offline” FTL simulations with WAF model

performance produced by the GC in terms of the so-calledWAF (Write Amplification
Factor). The algorithmworks under the assumption that other FTL functionalities are
handled by theCPUwithout causing a significant performance drop.A standardWAF
model [6] computes the number of additional writes caused by the GC operation with
respect to the number of writes issued by the host system. Few inputs are required:
the total number of blocks in the drive, the over-provisioning factor, and the GC
activation threshold which is defined as the percentage of remaining free blocks in
the SSD before GC triggers. By using the computed WAF value, it is possible to
quickly explore the SSD FTL behavior and assess its efficiency. Generally speaking,
the higher the WAF, the longer the GC blocking time, with an heavy impact on the
overall drive performances. Thanks to the CPU wrapper and the “Online-Offline”
simulation mode, the command trace produced by a WAF model can be input to
SSDExplorer, as sketched in Fig. 3.7. Since the target is not a processor simulator,
the command trace includes only NAND read, write and erase operations, whereas
the actual processing time of each command is neglected.

3.3.3 FTL Versus WAF Model

In order to understand when the WAF model can be reliably adopted, a comparison
with a real page-level FTL is required. The architecture sketched in Fig. 3.8 can be
used for this exercise. Details of this system are reported in Table3.2. In this case
SSDExplorer is configured with:

3 SSDExplorer: A Virtual Platform for SSD Simulations 55

Fig. 3.8 Reference SSD architecture used for comparing FTL and WAF model

Table 3.2 SSDExplorer
configuration for WAF
accuracy assessment

Parameter Architecture

Host interface SATA II

DRAM-buffer 1

Mock-up DRAM-size 64 kBytes

Channels 4

Targets 2

NAND flash dies 4

NAND flash planes 2

NAND flash blocks 16

NAND flash pages 4

NAND flash page size 4096 Bytes

Caching No

FTL-LOG2PHY mapping Page-associative

FTL-GC algorithm Greedy

FTL-GC threshold 70%

FTL-GC reserved blocks 1

FTL-WL policy Opportunistic

Over-provisioning 20%

56 L. Zuolo et al.

• a SATA II host interface;
• a single DRAM buffer without any data caching algorithm;
• a page-associative FTL mapping scheme (FTL-LOG2PHY);
• a greedy GC algorithm (FTL-GC) activated when more than 70% of the SSD
capacity is used;

• an opportunistic Wear Leveling approach (i.e. all SSD blocks are programmed/
erased in a uniform way);

• over-provisioning of 20%.

The two main actors are the SSD controller (hereafter intended to include host
interface, CPU, system interconnects, and channel/target controller), whose key para-
meter is the CPU frequency, and the NAND memory subsystem. Since each NAND
die is made of multiple pages and blocks, it is possible to reduce the actual memory
size by simply removing pages and blocks. With this approach, long processes like
writing the entire drive can be simulated in a reasonable time, without impacting
the framework accuracy. The only caveat to this mock-up approach is to preserve
the memory architecture in terms of number of dies and planes because they heavily
impact performances. Finally, because of its nature, also the DRAM buffer simula-
tion can take advantages of this approach since the DRAM architecture is constituted
by a repetition of banks and channels. In this exercise the buffer size was shrunk to
64 kByte and it is defined by the mock-up DRAM size parameter shown in Table3.2.

Both FTL and its corresponding WAF model were tested at different SSD con-
troller frequencies, with different workloads. Figure3.9 shows the performance
achievedwith a readworkload: since read transactions do not require softwaremanip-
ulations, the FTL execution time becomes marginal, thus not affecting the overall
bandwidth. When a write workload is considered, Fig. 3.10 shows a discrepancy
between the WAF model and the real FTL implementation, which vanishes as the
SSD controller frequency goes up. The mismatch at low frequency is mainly due to:

Fig. 3.9 SSDEXplorer
simulations of the sequential
read bandwidth with FTL
and WAF

3 SSDExplorer: A Virtual Platform for SSD Simulations 57

Fig. 3.10 SSDEXplorer
simulations of the sequential
write bandwidth with FTL
and WAF

• the WAF value computed by the model is 1.20, while FTL gives 1.16;
• the additional execution time spent by the FW to identify the GC victim-blocks.

By increasing the SSD controller frequency, execution of the GC management
becomes faster; therefore, the FW processing time becomes marginal, and the max-
imum achievable performances are mainly by the NAND flash timings.

Looking at the above results, it is fair to state that the WAF model can be adopted
with a marginal performance misalignment; the only constraint is to stay at a rela-
tively high SSD controller frequency. However, since state-of-the-art SSD controller
frequencies are in the 300–600 MHz range [39], the WAF abstraction represents a
good speed/accuracy trade-off for FTL simulations.

3.4 Performance Comparison with Real SSD Platforms

3.4.1 Consumer SSD

In order to test the accuracy of SSDExplorer, a direct comparison with OCZ Vertex
120 GB [7], a widely adopted SSD, was carried out. This device was chosen to
speed up the validation phase, since it is based on a well-known and documented
controller [40], running at 166 MHz, which can be easily simulated. The validation
methodology followed in this section makes use of standard synthetic workloads to
quantify the I/O performance of SSDS [41]: sequential and random 100% write and
100% read workloads with a block size of 4 kB are injected into the simulated drive.
The choice of using synthetic workloads rather than realistic ones [42] is justified
by the fact that the latter approach could mask the SSD behavior since the chosen
workload may put the SSD in a favorable working point, thus neglecting worst case

58 L. Zuolo et al.

Fig. 3.11 Simulation
accuracy of SSDExplorer
(mock-up and full drive)
versus the S.O.A emulator
tool [3] in terms of
throughput for Sequential
Write (SW), Sequential Read
(SR), Random Write (RW)
and Random Read (RR).
Device under test: OCZ
Vertex 120 GB (SSD)

conditions. All the following simulations are based on the WAF abstraction model
and they include a full drive of 120 GB and a mock-up version of 16 MB.

As shown in Fig. 3.11, with a sequential workload, SSDExplorer matches the
OCZ device performances with an error of about 8% during write and 0.1% during
read. With a random workload, the performance deviation from the OCZ drive is 6%
for write and 2% for read. These deviations are due to the fact that the WAF model
doesn’t include any write caching algorithms because details were not published [6].
According to the OCZ Vertex reference manual [7], caching is massively adopted
to reduce the amount of write operations redirected to the non-volatile memory
subsystem; therefore, simulated write operations (both sequential and random) show
offsets higher than read operations. In light of this consideration, results of Fig. 3.11
confirm the accuracy of SSDExplorer. It is worth reiterating the message that this
accuracy is achieved without knowing the details of the actual FTL.

To put these results into perspective, we repeated all the experiments with another
state-of-the-art emulator called S.O.A [3]. For a fair comparison, since this tool
embodies a fully reconfigurable FTL, its parameters were adjusted to provide the
sameWAF value used by SSDExplorer. This time the performance mismatch is 30%
for sequential write and 70% for sequential read.When looking at randomworkloads,
the S.O.A. emulator results are completely off. The roots of these discrepancies
reside in the inability of the S.O.A emulator to accurately model the host interface
command queuing, themulti-channel interleaving, and the ECC behavior. Therefore,
S.O.A. emulators are not very well suited for FGDSE, which requires an accurate
description of all the SSD components. It is interesting to point out that the mock-up
SSD simulation results equal the results of a full drive simulation.

3 SSDExplorer: A Virtual Platform for SSD Simulations 59

3.4.2 NVRAM Card

SSDExplorer was also tested on a 512 GB PCI-Express-NVRAM card for cloud
applications [8]. These devices are used as a cache layer for file-systems’ meta-data
or for data intensive applications. In fact, as shown in Fig. 3.12, NVRAM cards
incorporate a large DRAM buffer (usually between 8 and 16 GByte) which can be
directly accessed by the user through the PCI-Express interface. Thanks to this fea-
ture, NVRAM cards can be used as a storage block device with a a sub-microsecond
data access latency. Clearly, due to the volatile nature of DRAMmemories, the card
includes a super-capacitor for data protection during power-loss events. When the
power drops, all data stored in the DRAM are flushed into the NAND flash memory
array mounted on the same board. During this operation the NVRAM card behaves
like a traditional multi-channel SSD: in this case, data stored in the DRAM play the
role of the data usually coming from the host.

The simulated NVRAM card is configured with a single 8 GB DDR3 (1333
MT/s) DRAM buffer and a PCI-Express Gen2 x8 lanes host interface. The controller
responsible for the data transfer from the on-board DRAM buffer to the persistent
NAND flash array handles 8 channels, 4 targets each. NAND Flash memories are
2x-nmMLC devices with a page program time t_PROG = 1.8 ms, a page read time
t_RE AD = 115 µs and a block erase time t_BERS = 6 ms. Results for sequential
write, sequential read, and random read workloads are shown in Fig. 3.13. Even with
this very high performance architecture, SSDExplorer shows very low mismatch
errors: about 0.01% for both read and write operations.

Fig. 3.12 NVRAM card architecture

60 L. Zuolo et al.

Fig. 3.13 Simulation
accuracy of SSDExplorer
(full disk simulation) in
terms of throughput for
Sequential Write (SW),
Sequential Read (SR) and
Random Read (RR). Device
under test: 512 GB NVRAM
card

3.5 Simulation Speed

SSDExplorer is completely written in SystemC and, therefore, its capability to
be accurate pushes against simulation time. Since SSDExplorer includes PA-CA
and TL-CA models, the number of kilo-Cycles per Second (kCPS) represents the
only available metric for simulation speed, whereas the performance of emula-
tion/simulation tools mainly based on behavioral models is measured in elapsed
CPU time, thus making impossible any direct comparison. Figure3.14 shows the
kCPS achieved by SSDExplorer for 9 different SSD architectures (see Table. 3.3 for
details) on an Intel Xeon CPU E5520 clocked at 2.27GHz with 12 GByte of RAM
and Linux Redhat. The workload is a sequential 4 kByte write distributed among

Fig. 3.14 SSDExplorer
simulation speed with
different SSD configurations
using the WAF abstraction
model

3 SSDExplorer: A Virtual Platform for SSD Simulations 61

Table 3.3 SSD
configurations used to
evaluate SSDExplorer
simulation speed

Configuration SSD architecture

C1 1-CHN;1-TARGET

C2 2-CHN;1-TARGET

C3 4-CHN;1-TARGET

C4 8-CHN;1-TARGET

C5 16-CHN;1-TARGET

C6 32-CHN;1-TARGET

C7 1-CHN;2-TARGET

C8 1-CHN;4-TARGET

C9 1-CHN;8-TARGET

all the simulated NAND Flash targets, and the FTL is abstracted through the WAF
model.

In Fig. 3.14 the first set of results (configuration C1–C6) shows the simulation
speed dependency from the number of instantiated channels, while the second set of
results (C1, C7–C9) shows the dependency from the number of NAND Flash targets.
When the WAF model is replaced by a full FTL, simulation speed drops by a factor
of three on average.

It is worth reporting that, even for resource-hungry configurations, the simulation
speed is in the order of 100 kCPS which is definitely a great result for PC-CA EDA
tools [43].

3.6 User Interface and WEB-Based Architecture

SSDExplorer is a complex simulator which requires a lot of inputs to enable a com-
prehensive FGDSE of the SSD design space. This situation is common to other
simulation frameworks like DiskSim [5] and FlashSim [9], and it is a burden that
users need to overcome if they want to have a fast and portable prototyping platform
for SSD performance evaluation. To deal with these problems, SSDExplorer is pro-
vided with a complete Graphical User Interface (GUI) (sketched in Fig. 3.15) which
guides the end user through all the parameters and the possible configurations of the
tool.

The design of a specific SSD architecture is completely managed by the designers
who can customize every single part of the SSD, from the memory architecture up
to the host workload characteristics.

Scheduling a new simulation in SSDExplorer can be extremely simplified by
using the available step-by-step configuration wizard. In essence, the user can build
the desired SSD architecture by simply selecting among the blocks defined in the
built-in database. In this way it is possible to either build a huge amount of different

62 L. Zuolo et al.

F
ig
.3
.1
5

SS
D
E
xp

lo
re
r
gr
ap
hi
ca
lu

se
r
in
te
rf
ac
e

3 SSDExplorer: A Virtual Platform for SSD Simulations 63

Fig. 3.16 SSDExplorer execution model

architectures or to modify a specific block without having to redefine the whole SSD
architecture.

To further ease the usage of SSDExplorer, simulation results are available either
in a text or in a graph format. In this way, if a deep data analysis or a further step of
post-processing is required, it is possible to download the data in a portable Comma-
Separated-Values (CSV) format.

Finally, to solve the common software portability and compatibility issues (i.e. the
possibility of executing the software on all possible PC configurations), SSDExplorer
adopts a cloud-based approach. It is worth mentioning that it is the first time that a
distributed cloud-based execution model is adopted for simulating and optimizing
an SSD. As sketched in Fig. 3.16, the whole source code is executed on an array of
remote secure servers which exposes only a minimal set of APIs. These APIs are
called by aWEB server which collects all the configuration parameters and the user’s
data on an encrypted database. Thanks to this approach, SSDExplorer can be easily
used and ported on either a PC, a Tablet, or even a Smartphone. The only requirement
is to have a WEB browser. Moreover, the cloud based approach gives the possibility
of dynamically changing the number of SSDExplorer HW instances when needed,
thus enabling a high level of scalability, which is a key requirement for every CAD
tool.

The SSDExplorer simulation framework is available online at: https://ssdexplorer.
azurewebsites.net.

https://ssdexplorer.azurewebsites.net
https://ssdexplorer.azurewebsites.net

64 L. Zuolo et al.

References

1. R. Micheloni, A. Marelli, and K. Eshghi. Inside Solid State Drives (SSDs). Springer, 2012.
2. The OpenSSD Project. http://www.openssd-project.org/wiki/The_OpenSSD_Project.
3. Jinsoo Yoo, Youjip Won, Joongwoo Hwang, Sooyong Kang, Jongmoo Choi, Sungroh Yoon,

and Jaehyuk Cha. Vssim: Virtual machine based ssd simulator. In IEEE Symposium on Mass
Storage Systems and Technologies (MSST), pages 1–14, 2013.

4. QEMU: open source processor emulator. http://wiki.qemu.org/Main_Page.
5. The DiskSim simulation environment version 4.0, 2008. http://www.pdl.cmu.edu/PDL-FTP/

DriveChar/CMU-PDL-08-101.pdf.
6. Xiao-YuHu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.Write ampli-

fication analysis in flash-based solid state drives. In Proceedings of SYSTOR, pages 10:1–10:9,
2009.

7. Ocz vertex series 120GB SSD. http://ocz.com/consumer.
8. FLASHTEC NVRAM Drives. http://pmcs.com/products/storage/flashtec_nvram_drives/.
9. Youngjae Kim, B. Tauras, A. Gupta, and B. Urgaonkar. Flashsim: A simulator for nand

flash-based solid-state drives. In International Conference on Advances in System Simulation
(SIMUL), pages 125–131, 2009.

10. SungjinLee,KerminFleming, JihoonPark,KeonsooHa,AdrianM.Caulfield, StevenSwanson,
Arvind, and JihongKim. Bluessd: An open platform for cross-layer experiments for nand flash-
based ssds. In The 5th Workshop on Architectural Research Prototyping, 2010.

11. Jongmin Lee, Eujoon Byun, Hanmook Park, Jongmoo Choi, Donghee Lee, and Sam H. Noh.
Cps-sim: configurable and accurate clock precision solid state drive simulator. In Proceedings
of the ACM symposium on Applied Computing, pages 318–325, 2009.

12. Hoeseung Jung, Sanghyuk Jung, and Yong Ho Song. Architecture exploration of flash mem-
ory storage controller through a cycle accurate profiling. IEEE Transactions on Consumer
Electronics, 57(4):1756–1764, 2011.

13. E.-Y. Chung. A Solid-State Disk Simulator for Quantitative Performance Analysis and Opti-
mization. In NVRAMOS, 2009.

14. Cagdas Dirik and Bruce Jacob. The performance of pc solid-state disks (ssds) as a function of
bandwidth, concurrency, device architecture, and system organization. In International Sym-
posium on Computer Architecture (ISCA), pages 279–289, 2009.

15. S. Zertal and W. Dron. Quantitative study of solid state disks for mass storage. In Interna-
tional Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS), pages 149–155, 2010.

16. Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong Zhang, Nanning Zheng, and Tong Zhang.
Ldpc-in-ssd: Making advanced error correction codes work effectively in solid state drives. In
Presented as part of the 11th USENIX Conference on File and Storage Technologies (FAST
13), pages 243–256, 2013.

17. Systemc 2.0.1 language reference manual, 2002. http://www.systemc.org.
18. Sungpack Hong, Sungjoo Yoo, Sheayun Lee, Sangwoo Lee, Hye Jeong Nam, Bum-Seok Yoo,

JaehyungHwang,DonghyunSong, JanghwanKim, JeongeunKim,HoonSang Jin,Kyu-Myung
Choi, Jeong-Taek Kong, and SooKwan Eo. Creation and utilization of a virtual platform for
embedded software optimization:: an industrial case study. In Proceedings of the International
Conference Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 235–
240, Oct 2006.

19. S. Pasrich and N. Dutt. On-Chip Communication Architectures: System on Chip Interconnect.
Morgan Kaufmann, 2008.

20. NathanBinkert, Bradford Beckmann, Gabriel Black, StevenK. Reinhardt, Ali Saidi, Arkaprava
Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey
Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simu-
lator. SIGARCH Comput. Archit. News, 39(2):1–7, 2011.

21. Open Virtual Platforms - the source of Fast Processor Models and PlatformsOpen Virtual
Platforms. http://www.ovpworld.org.

http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://wiki.qemu.org/Main_Page
http://www.pdl.cmu.edu/PDL-FTP/DriveChar/CMU-PDL-08-101.pdf
http://www.pdl.cmu.edu/PDL-FTP/DriveChar/CMU-PDL-08-101.pdf
http://ocz.com/consumer
http://pmcs.com/products/storage/flashtec_nvram_drives/
http://www.systemc.org
http://www.ovpworld.org

3 SSDExplorer: A Virtual Platform for SSD Simulations 65

22. Open Nand Flash Interface (ONFI). http://www.onfi.org.
23. Nand flash interface interoperability, 2014. www.onfi.org/~/media/onfi/specs/jesd230b.pdf?

la=en.
24. Evatronix NAND Flash controller ip-core. http://www.evatronix-ip.com/ip-cores/memory-

controllers/nand-flash.html.
25. Serial ATA International Organization. SATA revision 3.0 specifications. www.sata-io.org.
26. SATA-IP host reference design on SP605 manual, Apr 2013. Accessed.
27. NVM Express, 2013. http://www.nvmexpress.org/.
28. Nvm express 1.1 specification, 2013. http://nvmexpress.org/wp-content/uploads/2013/05/

NVM_Express_1_1.pdf.
29. Open-Silicon. SATA device controller - product brief, 2013. http://www.open-silicon.com/ip-

technology/open-silicon-ip/io-controllers/sata-device-controller/.
30. Mt41j256m8 datasheet - micron technology, 2006. chrome-extension://encfpfilk

nmenlmjemepncnlbbjlabkc/https://www.micron.com/ /media/documents/products/data-
sheet/dram/ddr3/2gb_ddr3_sdram.pdf.

31. Intel X18-M X25-M SATA Solid State Drive. Enterprise Server/Storage Applications. http://
cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf.

32. P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate memory system
simulator. IEEE Computer Architecture Letters, 10(1):16–19, 2011.

33. Myoungsoo Jung,E.H.Wilson,D.Donofrio, J. Shalf, andM.T.Kandemir.Nandflashsim: Intrin-
sic latency variation aware nand flash memory system modeling and simulation at microarchi-
tecture level. In IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST),
pages 1–12, 2012.

34. YoungjooLee,HoyoungYoo, InjaeYoo, and In-Cheol Park. 6.4gb/smulti-threaded bch encoder
and decoder for multi-channel ssd controllers. In IEEE International Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), pages 426–428, Feb 2012.

35. L. Zuolo, C. Zambelli, R. Micheloni, D. Bertozzi, and P. Olivo. Analysis of reliabil-
ity/performance trade-off in solid state drives. In IEEE International Reliability Physics Sym-
posium, pages 4B.3.1–4B.3.5, June 2014.

36. Duo Liu, Yi Wang, Zhiwei Qin, Zili Shao, and Yong Guan. A space reuse strategy for flash
translation layers in slc nand flash memory storage systems. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 20(6):1094–1107, June 2012.

37. Tianzheng Wang, Duo Liu, Yi Wang, and Zili Shao. Ftl2: A hybrid flash translation layer with
logging for write reduction in flash memory. SIGPLAN Not., 48(5):91–100, June 2013.

38. Yuan-Hao Chang, Po-Chun Huang, Pei-Han Hsu, L.-J. Lee, Tei-Wei Kuo, and D.H.-C. Du.
Reliability enhancement of flash-memory storage systems: An efficient version-based design.
Computers, IEEE Transactions on, 62(12):2503–2515, Dec 2013.

39. Intel Shows PAX Attendees SSD Overclocking. http://www.legitreviews.com/intel-shows-
pax-attendees-ssd-overclocking_122557.

40. Indilix barefoot controller. http://www.indilinx.com/solutions/barefoot.html.
41. IOzone Filesystem Benchmark. http://www.iozone.org/.
42. UMassTraceRepository. http://traces.cs.umass.edu/index.php/Storage/Storage.
43. L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M.Olivieri. Mparm: Exploring the

multi-processor soc design space with systemc. Journal of VLSI SIgnal Processing, 41:169–
182, 2005.

http://www.onfi.org
www.onfi.org/~/media/onfi/specs/jesd230b.pdf?la=en
www.onfi.org/~/media/onfi/specs/jesd230b.pdf?la=en
http://www.evatronix-ip.com/ip-cores/memory-controllers/nand-flash.html
http://www.evatronix-ip.com/ip-cores/memory-controllers/nand-flash.html
www.sata-io.org
http://www.nvmexpress.org/
http://nvmexpress.org/wp-content/uploads/2013/05/NVM_Express_1_1.pdf
http://nvmexpress.org/wp-content/uploads/2013/05/NVM_Express_1_1.pdf
http://www.open-silicon.com/ip-technology/open-silicon-ip/io-controllers/sata-device-controller/
http://www.open-silicon.com/ip-technology/open-silicon-ip/io-controllers/sata-device-controller/
http://cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf
http://cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf
http://www.legitreviews.com/intel-shows-pax-attendees-ssd-overclocking_122557
http://www.legitreviews.com/intel-shows-pax-attendees-ssd-overclocking_122557
http://www.indilinx.com/solutions/barefoot.html
http://www.iozone.org/
http://traces.cs.umass.edu/index.php/Storage/Storage

Chapter 4
Design Trade-Offs for NAND Flash-Based
SSDs

Lorenzo Zuolo, Cristian Zambelli, Alessia Marelli,
Rino Micheloni and Piero Olivo

Abstract During the design phase of an SSD, the target application must be always
taken into account. In fact, depending on the most important requirements, such as
bandwidth, latency or reliability, architecture and cost of the drive might be totally
different. Therefore, at the beginning of the development process, a thorough design
space exploration is strongly recommended. In this chapter we describe the main
actors of the drive architecture and we show how a dedicated CAD tool such as
SSDExplorer can be used to optimize the SSD design, given a set of constraints. In
particular, we consider 3 different cases: design for maximum bandwidth, design for
minimum latency, and performance/reliability trade-off. Of course, in all cases SSD
simulations are used to identify the right architecture to achieve the design target,
while minimizing the resource request (e.g. number of Flash channels, number of
NANDFlashmemories, number of processor cores, etc...). For each case, this chapter
includes design examples and corresponding simulation results.

During the design phase of an SSD, the target application must be always taken into
account. In fact, depending on the most important requirements, such as bandwidth,
latency or reliability, architecture and cost of the drive might be totally different.
Therefore, at the beginning of the development process, a thorough design space
exploration is strongly recommended. In this chapter we describe the main actors of
the drive architecture, when looking at bandwidth and latency.

L. Zuolo (B) · C. Zambelli · P. Olivo
Dipartimento di Ingegneria, Università degli Studi di Ferrara, via G. Saragat, 1,
44122 Ferrara, Italy
e-mail: lorenzo.zuolo@unife.it

A. Marelli
Microsemi, Via Torri Bianche 1, 20871 Vimercate, Italy

R. Micheloni
Performance Storage Business Unit, Microsemi Corporation, Vimercate, Italy

© Springer International Publishing AG 2017
R. Micheloni (ed.), Solid-State-Drives (SSDs) Modeling,
Springer Series in Advanced Microelectronics 58,
DOI 10.1007/978-3-319-51735-3_4

67

68 L. Zuolo et al.

4.1 Design for Maximum Performance

In this Section we show how a dedicated CAD tool such as SSDExplorer can be used
to optimize the SSD design, given a target performance. The goal is to minimize
resources while achieving the target host interface bandwidth. Table4.1 shows a set
of representative design pointswhichwere used for this investigation.All simulations
have been performed with a synthetic workload made of 4 kB sequential writes. All
datawere collected by using twowell knownDRAMbuffermanagement policies [1]:
write back and write through caching and no caching [2]. With the former approach,
the SSD controller acknowledges the end of each transaction to the host, i.e. when
data are moved from the host interface to the DRAM buffers. In the latter case,
the acknowledgment happens only when all data have been actually written in the
NAND flash memory. All experimental results are based on a 4x-nm MLC NAND,
whose main characteristics are t_PROG from 900 µs to 3 ms, t_RE AD = 60 µs
and t_BERS from 1 ms to 10 ms [3].

Figure4.1 shows how the different architectures perform with a SATA II host
interface. The SATA ideal curve represents the limit of the interface itself. The
SATA+DDR curve is more realistic since it incorporates the time spent by its internal
DMA engines to transfer the data from the host system to the DRAM buffers (i.e. the
time required to process the transactions from the host). The best design option is
the one that gets closer to the SATA+DDR bandwidth by maximizing the bandwidth
of the DDR+FLASH curve (i.e. the time spent by the flash memory to flush the
DRAM buffer and write the data). The SSD cache/ SSD no cache curves represent
the bandwidth of the entire drive.

When caching is used, C6, C8 and C10 are the best solutions since they reach the
target performance and saturate the host interface bandwidth. However, if we take
into account the hardware costs, C6 represents the right choice since it requires the
lowest amount of resources. On the other hand, when no caching is used, the overall

Table 4.1 SSD configurations for design exploration. DDR-buf = DDR Buffer, CHN = Flash
Channel

Configuration SSD architecture

C1 4-DDR-buf;4-CHN;4-TARGET;2-DIE

C2 8-DDR-buf;8-CHN;4-TARGET;2-DIE

C3 8-DDR-buf;8-CHN;8-TARGET;2-DIE

C4 8-DDR-buf;8-CHN;8-TARGET;4-DIE

C5 8-DDR-buf;8-CHN;8-TARGET;8-DIE

C6 16-DDR-buf;16-CHN;8-TARGET;4-DIE

C7 16-DDR-buf;16-CHN;4-TARGET;2-DIE

C8 32-DDR-buf;32-CHN;4-TARGET;2-DIE

C9 32-DDR-buf;32-CHN;1-TARGET;1-DIE

C10 32-DDR-buf;32-CHN;8-TARGET;4-DIE

4 Design Trade-Offs for NAND Flash-Based SSDs 69

Fig. 4.1 Comparison of the configurations proposed in Table 4.1. Sequential write with SATA II
host interface

drive performance (SSD no cache) is strongly limited, and none of the configurations
can meet the target.

The reason behind the performance flattening with no caching lies on the SATA
interface and, in particular, into its limited command queue depth. In fact, the SATA
protocol is able to manage up to a maximum of 32 commands at once. Therefore,
with a no caching policy, the host interface cannot accept new commands until the
queue is cleared (i.e. commands are committed to the NANDmemories). As a result,
the internal parallelism can’t be leveraged. Indeed, the DDR+FLASH bar clearly
indicates that the bandwidth could be much higher.

Figure4.2 shows the simulation results with a PCI-Express Gen2 interface featur-
ing 8 lanes and theNVM-Express protocol. Due to the higher speed, the host interface
does no longer represent the performance bottleneck. In fact, even the configuration
with the highest parallelism (C10) is not able to saturate the interface. The major
result of Fig. 4.2 becomes clear when looking at the SSD no caching bars. In this
case, since the NVM-Express protocol can handle up to 64k-commands, the SSD
internal parallelism can be fully exploited. A performance gap between the different
configurations still exists. Indeed, the time spent to flush the incoming data to the
NAND flash memories can be hidden with cached architectures. If maximum perfor-
mance is the main driver,C10 is the best solution; otherwise, if the performance-cost
trade-off matters the most, solutions ranging from C3 to C8 are all eligible.

70 L. Zuolo et al.

Fig. 4.2 Sequential write with PCIe host interface. Comparison of the configurations proposed in
Table 4.1

4.2 Design for Minimum Latency

As described in Sect. 4.1, the main parameters impacting the bandwidth are the
internal controller parallelism and the host interface Queue Depth (QD). This latter,
however, has a severe impact on another important SSDmetric: theQuality of Service
(QoS) [4]. In an SSD, the QoS is calculated at a percentile (e.g. 99.99) of the SSD’s
latency distribution and it is used to quantify how the SSD behaves in the worst-case
conditions. By using this metric we can understand if the target drive architecture
is suitable for a specific application, such as real-time and safety-critical systems.
Figure4.3 shows how bandwidth and QoS scale when the host QD ranges from 1
to 256 commands. Simulations are based on 8 channels with 8 mid-1x nm TLC
NAND flash targets. Average read time is 86 µs and workload is 100% 4 kB random
read. Takeaway from Fig. 4.3 is: the bigger the host interface queue depth is, the
higher the SSD QoS is. This behavior, however, is in contrast with the requirements
of high performance SSDs, which ask for achieving the target bandwidth with the
shortest QoS. In fact, nowadays user applications such as financial transactions or
e-commerce platforms [5] are designed to work with storage devices which have to
serve an I/O operation within a specific time-frame which is usually upper-bounded
by the QoS requirement.

In order to deal with this performance/latency trade-off, usually the host interface
is set to work with a specific QD. In such a way the design space is reduced and the
optimization becomes easier. For instance, if a 300 kIOPS bandwidth and a 2msQoS
are required (solid lines inFig. 4.3), the configurations shown inFig. 4.3 indicate that a
QD of 64 commands is the preferred choice. One of themain limitations of the design
methodology presented so far is the lack of QD flexibility, which is usually required

4 Design Trade-Offs for NAND Flash-Based SSDs 71

Fig. 4.3 SSD bandwidth and QoS as a function of the host Queue Depth

by the host system. In fact, during the design phase of an SSD, it is common to define
only the target bandwidth, because it is not known a priori on which application the
drive will be used. For example, SSDs used in flexible I/O environments, where
users can instantiate complete virtual platforms in a “plug-and-play” fashion [6],
have to guarantee the target performance and QoS for a general purpose traffic.
As a consequence, since in these systems the actual host QD is strictly dependent
upon the number of parallel threads on which the target application is running, the
number of commands that will be issued by the user and the corresponding QD
cannot be predicted. Therefore, it is clear that, to meet the general purpose workload
specifications of these environments, the SSD has to be designed to provide the target
performance and QoS independently from the host QD.

Todealwith this requirement it is possible to use theHead-of-Line (HoL) blocking,
whose effect is to limit the number of outstanding commands inside the SSD. To
clarify this point, it is useful to study how host commands are managed and queued
by the SSD controller.

Figure4.4 shows the queuing hierarchy usually implemented in traditional SSD
controllers. Besides the external host QD, it is common to have a dedicated small
command queue for each NAND flash memory die: the Target Command Queue
(TCQ). Basically, thanks to the TCQ, the host can continue to issue commands even
when it tries to read or program a chip which is already in the busy state. In fact, when
this condition is verified, the operation is simply queued in the TCQ and the SSD
controller can continue to fetch other commands from the host QD. This approach,
on one hand allows maximizing the bandwidth since TCQs keep always busy all
the NAND flash memories; on the other hand, however, it increases the number
of outstanding commands inside the SSD, because several operations have to wait
inside the TCQs before being served. At this point it is clear that, when there are a lot
of commands inside the drive (i.e. when a large host QD is used), the SSD controller
and all the related TCQs fall in a deep saturation state which leads to an increased
QoS.

72 L. Zuolo et al.

Fig. 4.4 Queueing hierarchy implemented inside the SSD controller

When the HoL blocking is used, the aforementioned latency problem can be
partially solved. When the number of commands queued in single TCQ exceeds a
predefined threshold, it is possible to trigger a blocking state inside the SSDcontroller
which stops the submission of a new command from the host QD. In such a way,
depending on the HoL threshold value, it is possible to avoid long command queues
inside the TCQs and, hence, the disk’s QoS can be limited within a specific window.

Figure4.5 shows the effectiveness of the HoL blocking. Simulations are based
on the same SSD configurations and workload of the previous section. Unlike the
case presented in Fig. 4.3, as soon as the target performance of 300 kIOPS is reached
(QD64 configuration), the HoL blocking effect starts keeping the QoS below the
target requirements evenwhen longQDs, such asQD128 andQD256, are considered.

The fine-grained QoS calibration made available by the HoL blocking, however,
does not come for free. With reference to Fig. 4.6, if, besides the bandwidth and
QoS, the average SSD latency is taken into account, it is clear that the HoL Blocking
effect has to be wisely used. As a matter of fact, when the HoL blocking is triggered,
it trades the QoS reduction with an increase of the average latency. Moreover, this
behavior becomes more pronounced when high QDs are used (QD64, QD128, and
QD256), i.e. when a higher QoS reduction is required.

4 Design Trade-Offs for NAND Flash-Based SSDs 73

Fig. 4.5 SSD bandwidth and QoS as a function of the host queue depth (QD) when HoL blocking
is used

Fig. 4.6 Average SSD latency evaluated with and without the HoL blocking

4.3 Performance/Reliability Trade-Off

Achieving high performances (i.e. high bandwidth and low latency) with the low-
est possible resource allocation is one of the main goals of the most modern SSD
architectures. However, even if high read/write bandwidth can be easily achieved,
one of the main problem of SSDs is the data reliability, which is dependent on the
non-volatile NAND flash memories used as the storage medium. These components
are subject to a progressive wear-out whose physical roots reside in the tunnel oxide
degradation related to theFowler-Nordheim tunneling adopted during program/erase.
Such mechanism leads to a variation of the Floating Gate charge which translates
into a threshold voltage shift [7]. A direct indication of this phenomenon is a pro-
gressive increase of the Raw Bit Error Rate (RBER) of the memory. The RBER is
the percentage of bits in error after a single read operation [8]. Such an increase

74 L. Zuolo et al.

translates into the inability of retrieving the correct data either after a number of
Program/Erase operations (i.e., P/E cycles) or after a long retention time.

Error Correction Codes (ECC) such as BCH and LDPC are required to improve
the reliability of stored data, while sophisticated write algorithms control the thresh-
old voltage distributions inside the NAND chip [9, 10]. The relentless demand for
storage capacity has forced themigration from Single-Level Cell (SLC) tomore com-
plexMulti-Level Cells (MLC) memories, in which more than one bit is stored within
a single physical cell. This aggressive technology evolution, while enabling the usage
of SSDs in big-data cloud servers, it also results in an exponential RBER increase
[11]. To deal with increasing RBERs, NAND and SSD controller vendors have intro-
duced new read techniques, such as Read Retry (RR) and LDPC Soft Decoding reads
(SD) [12]. Basically, these approaches are based on repeating the read operation of
the page in error to either reduce the RBER or to exploit the strong soft decoding
capabilities of the ECC (ECCth) [13].

These procedures, however, inevitably imply an overall performance degradation
since a single page is available only after several read operations [14]. Moreover,
although these algorithms can enhance the NAND reliability, the memory controller
has to be modified to carefully handle them. The straightforward conclusion is that
the performance/reliability trade-off introduced by the emerging algorithms for reli-
ability enhancement must be mapped to the performance/reliability trade-off of the
entire SSD.

In the next Sections a thorough evaluation of the performance/reliability trade-off
in SSDs will be performed showing that:

• RR and SD algorithmswere developed to significantly improve the SSD reliability,
without considering the impact on the performances of the drive;

• RR and SD introduce a read bandwidth degradation which is difficult to mask.
In fact, while several disk operations such as wear leveling, garbage collection
and bad block management can be masked at the firmware level (for instance
by background execution) [9, 10], both the SD and the RR algorithms cannot be
masked by the firmware, since they have to directly access the storage medium.
Therefore, only architectural countermeasures, such as high performance host
system interface and a stronger ECC (to reduce RR and SD trigger rate), seem to
be viable solutions.

4.3.1 Read Retry

RR are specific algorithms embedded inside the NAND flash die, which can signif-
icantly reduce the RBER of the memory during both endurance (i.e. program/erase
cycles) and retention. These approaches leverage a fine tuning of the internal NAND
read voltage, which is adjusted depending on the actual wear-out state of the device
[15, 16]. Thanks to this shift of the read reference voltages, it is possible to limit the

4 Design Trade-Offs for NAND Flash-Based SSDs 75

Fig. 4.7 Example of RBER
in a commercial 2x-nm node
MLC NAND flash as a
function of the number
program/erase (P/E) cycles.
Average values for upper
pages and lower pages, and
for the entire memory are
shown

Fig. 4.8 Example of RBER
in a commercial 2x-nm node
MLC NAND flash as a
function of retention time
after a pre-defined number of
P/E cycle. Average values for
upper pages and lower pages,
and for the entire memory
are shown

number of read errors and, hence, to reduce the ECC correction efforts in terms of
both power consumption and time.

Figures4.7 and4.8 show theRBER for aMLCNANDflashmemorymanufactured
in a 2x-nm node as a function of the number of P/E cycles and of the retention time
at a specific temperature after a pre-defined number of P/E cycles, respectively. Data
have been collected up to twice the rated endurance of the memory. These figures
show the different average raw BER values for upper and lower pages, and for the
entire memory, respectively.

A higher RBER translates into a higher probability of erroneously decoding the
bits read from the NAND (i.e. uncorrectable pages). As a consequence, when the
number of erroneous bits in a page exceeds the error correction capability of the code
ECCth , the page content can’t be retrieved anymore. Figures4.9 and 4.10 show the
percentage of read failures for endurance and retention, respectively, when no RBER

76 L. Zuolo et al.

Fig. 4.9 Percentage of
uncorrectable pages as a
function of the number of
program/erase (P/E) cycles.
Average value for lower
pages is shown. No
uncorrectable upper pages
were detected with the tested
NAND technology

Fig. 4.10 Percentage of
uncorrectable pages as a
function of the retention
time, after a pre-defined
number of P/E cycles.
Average values for upper
pages and lower pages, and
for the entire memory are
shown

reduction techniques are applied. In this case the ECC is able to correct up to 100
bits in error in a 4320 Bytes codeword (ECCth). The different behavior of endurance
and retention is due to the different drifts of the threshold voltage distributions.

Figures4.11 and 4.12 show the effectiveness of RR in reducing the NANDRBER.
Both endurance and retention benefit from Read Retry.

However, even if the RR algorithm is able to reduce the RBER of a NAND flash
memory, when it is used inside an SSD it has to be wisely called. Indeed, whenever
the ECC detects that a page cannot be corrected, it can request for a RR intervention.
In this case, in order to reduce the RBER, the page is read again from the memory
with a set of modified reference voltages, which delay the access to the memory.
Moreover, this process could be required several times, i.e. until the ECC can correct
the addressed page. Since the occurrence of an uncorrectable page event strongly
depends upon the Flash technology characteristics and its actual usage model, the

4 Design Trade-Offs for NAND Flash-Based SSDs 77

Fig. 4.11 NAND RBER
after RR intervention as a
function of the number of
program/erase (P/E) cycles.
Average values for upper
pages and lower pages, and
for the entire memory are
shown

Fig. 4.12 NAND RBER
after RR intervention as a
function of the retention time
after a pre-defined number of
P/E cycles. The average
values for the upper and
lower pages and that of the
entire memory are shown

RR intervention cannot be easily predicted; as such, a longer read latency might
reduce the SSD bandwidth below acceptable values, unless RR is properly taken
into account at the architectural level.

To test how RR techniques impact SSD’s performances, 4 different drive archi-
tectures have been simulated, as summarized in Table4.2. It is worth pointing out
that, even if the SSD’s architecture was modified from one simulation to another, the
drive capacity was kept constant, to avoid any possible inconsistency in analyzing
the results. As stated in Sect. 4.3.1, the two main components that contribute to the
RR-induced drawbacks are the NANDflash itself and the ECC. In order to accurately
reproduce their behavior, the ECC engine has been modeled assuming a BCH code
able to correct up to 100 errors in a 4320 bytes codeword. For the latencymodeling of
the BCH decoder, which is the ECC block active during a read operation, the internal

78 L. Zuolo et al.

Table 4.2 SSD’s architectures for read retry analysis

Parameter Architecture

Host interface SATA III

DDR-buffer 1

ECC 1x Channel

Disk capacity 1 TB

Configurations C1 C2 C3 C4

Channels 1 2 4 8

NAND flash
targets per
channel

16 8 4 2

syndrome andBerlekamp-Masseymodules follow the state of the art implementation
provided in [17], whereas the Chien search machine is modeled as follows:

• a faster (i.e. higher parallelism) hardware to recover a relative small number of
errors;

• a slower hardware to correct up to the maximum number of allowed errors.

The NAND flash adopted for these simulations is a 2x-nmMLC technology with
a page size of 16 kbyte (plus Spare bytes) and a block size of 8Mbyte. RBER values,
access times and the uncorrectable page event frequency have been characterized
through lab measurements and back-annotated into the SSD simulator. Starting from
the RBERvalue, the corresponding number of errors is extracted from the probability
density function [18], and then fed into the modeled ECC engine in order to extract
the decoding delay.

Section4.3.1 (A) Impact of Retry impact on SSD’a performances. Figure4.13
shows the simulated architecture which includes a single BCH engine connected to
a single channel serving 16 memory targets, each made of two dies.

For the sake of clarity and to avoid any artifact in the performance analysis due to
the host interface model (e.g. SATAIII [19] or PCI-Express NVM-Express [20, 21]),
this last was neglected. This approach allows focusing on the actual bandwidth impli-
cations of Flash memories and ECC.

The main outcome of this analysis is that the read bandwidth tracks the memory
wear-out, as displayed inFig. 4.14. Since the real SSDbehavior depends onP/E cycles
and retention time, the adoption of RBER as a reference metric allows neglecting
the actual degradation mechanism. Two points are highlighted in the figure: a 2%
drop (point A) and a 10% drop (point B) with respect to the SSD read bandwidth
at Beginning of Life (BoL), respectively. The former point will be used to show in
details the behaviors of the ECC engine and of the NAND memories in a “normal”
read condition whereas the latter point, which represents the maximum acceptable
degradation level, will be used to illustrate architectural limitations when the number
of uncorrectable pages becomes the dominant factor.

4 Design Trade-Offs for NAND Flash-Based SSDs 79

Fig. 4.13 SSD’s reference
architecture used in this
section

Fig. 4.14 SSD read
bandwidth versus RBER for
the reference architecture of
Fig. 4.13. Points A and B
represent a 2% and a 10%
performance degradation
compared to the BoL,
respectively

10−4 10−3100

150

200

250

300

350

400

450

RBER

R
ea

d
B

an
dw

id
th

 [M
B

/s
]

A
B

Let’s start from point A. Figure4.15 shows the distribution of the correction times
spent by the ECC engine, which, of course, depends on the number of errors to
be corrected. Latency distribution is shown in Fig. 4.16, where the read schedul-
ing mechanism is highlighted. The ECC correction time is one order of magnitude
shorter than the memory read latencies and, therefore, it has a marginal impact on
the performance of the drive.

Figures4.17 and 4.18 showwhat happens at point B. In particular, a broadening in
the ECC correction time distribution can be observed. Themaximum correction time,

80 L. Zuolo et al.

Fig. 4.15 Distribution of the
ECC correction times at
point A of Fig. 4.14

0 50 100 150
10−6

10−4

10−2

100

102

Delay (µs)

O
cc

ur
re

nc
es

 [%
]

0 2 4 6 8 10
10−2

10−1

100

Delay (µs)

O
cc

ur
re

nc
es

 [%
]

Fig. 4.16 Distribution of the
NAND memory latencies at
point A of Fig. 4.14

0 100 200 300 400 500
10−1

100

101

102

O
cc

ur
re

nc
es

 [%
]

Delay (µs)

Lower Page
Upper Page

Scheduler Effects

identified in Fig. 4.17, is related to the case of an uncorrectable page. Figure4.18,
on the other hand, shows that, when there is a significant number of uncorrectable
pages, the consequent RR activation adds two components to the NAND flash read
latency: the first one is related to the commands used to activate RR, while the second
one is dictated by the actual execution time of the RR algorithm.

Finally, it is worth pointing out that the percentage of uncorrectable page reads
that produces a 10% drop in the SSD read bandwidth is in the order of 0.6–0.8%.

Section4.3.1 (B) Impact of Retry impact on SSD’s architectures. As shown in
Sect. 4.3.1 (A), the performance degradation caused by uncorrectable pages is linked
to the memory access time and to the ECC correction time, which turned out to
be negligible in normal read conditions. This implies that the ECC engine is the
module to address if we want to reduce the read bandwidth degradation at End of
Life (EoL). Because of this, we repeated the analysis by modifying the number of

4 Design Trade-Offs for NAND Flash-Based SSDs 81

Fig. 4.17 Distribution of the
ECC correction times at
point B of Fig. 4.14

0 50 100 150
10−6

10−4

10−2

100

102

Delay (µs)

O
cc

ur
re

nc
es

 [%
] Uncorrectable Page Events

Fig. 4.18 Distribution of the
NAND memory latencies at
point B of Fig. 4.14

0 100 200 300 400 500
10−1

100

101

102

O
cc

ur
re

nc
es

 [%
]

Delay (µs)

RR Command

RR Algorithm

channels and, therefore, the number of ECC engines. Figure4.19 shows the read
bandwidth as a function of RBER, up to a 10% degradation with respect to BoL, for
the four channels/NAND flash targets configurations described in Table4.2.

As expected, by increasing the number of channels (in particular architectures C3
and C4) it is possible to achieve higher bandwidths. The RBER corresponding to
a 10% degradation, however, is in the same order of magnitude for the four cases.
Therefore, merely increasing the architectural resources, without considering the
host interface requirements, does not seem to solve the problem of the RR impact on
SSD performances.

When considering the SSD system as a whole, it is clear that the overall perfor-
mance is driven by the slower between the ECC/memory sub-system and the host
interface. As such, if the host interface bandwidth is over designed with respect to
that of the ECC/memory sub-system, the performance drop caused by both memory

82 L. Zuolo et al.

Fig. 4.19 SSD read
bandwidth versus RBER for
the four architectures
described in Table4.2.
Curves are shown up to a
10% performance
degradation with respect to
BoL

10−4 10−3300

350

400

450

500

550

600

650

700

RBER

R
ea

d
B

an
dw

id
th

 [M
B

/s
]

C1
C2
C3
C4

Fig. 4.20 SSD read
bandwidth versus RBER for
C3 and C4 architectures
against the SATAIII
theoretical bandwidth.
Configuration C4 allows
sustaining a larger wear-out
prior exposing the
performance degradation
induced by RR to the user

10−4 10−3300

350

400

450

500

550

600

650

700

RBER

R
ea

d
B

an
dw

id
th

 [M
B

/s
]

C3
C4
SATA III

wear-out and RR techniques can’t be hidden to the user. If, on the contrary, the
host interface bandwidth represents the system bottleneck, the ECC/memory system
must be designed so that, without any waste of silicon (i.e. increase of Flash channels
and/or targets) the performance drop caused bymemory wear-out and RR techniques
does not bring the ECC/memory bandwidth below the one of the host interface. For
example, by considering a SATA III host interface, in Fig. 4.20 it is shown that the
configuration C3 barely masks the RR-induced performance drop, whereas SSD
configuration C4 allows sustaining a higher wear-out level of the NAND, before
exposing a “visible” read bandwidth drop to the SSD user.

4 Design Trade-Offs for NAND Flash-Based SSDs 83

4.3.2 LDPC Soft Decision

The RBER of Flash memories is exponentially growing because of the aggressive
technology scaling needed to increase the memory capacity. Such an increase trans-
lates into the inability of readingback the correct data after a number of P/Eoperations
or after long retention times. Figure4.21 shows the measured average RBER as a
function of endurance for three MLC and one • Three-Level Cells (TLC) NAND
flash memories manufactured in 2x nm, 1x nm, and mid-1x nm technology nodes as
described in Table. 4.3. As the number of P/E cycles increases, the error rate quickly
grows up. In addition, either by scaling from a 2x nm to a mid-1X nm node or by
switching from MLC to TLC, the RBER increases significantly.

To extend the Flash reliability beyond the rated endurance and, consequently, the
lifetime of the drive, the simple combination of RR algorithms and BCH is running
out of steam. As a matter of fact, Read Retry can’t be used in a massive way: in
Sect. 4.3.1 we showed that a percentage of uncorrectable pages in the range of 0.1%

Fig. 4.21 Measured average RBER for 2x nm, 1x nm and mid-1x nm MLC and TLC NAND flash
memories as a function of the number P/E cycles

Table 4.3 Main characteristics of the tested NAND flash memories

Sample Memory type Rated
endurance

Measured
average read
time (µs)

Measured
average
program time
(µs)

Technology
node

A-MLC Consumer 9 k P/E 68 1400 2X

B-MLC Enterprise 12 k P/E 40 2000 1X

C-MLC Enterprisea 4 k P/E 70 2500 Mid-1X

D-TLC Enterprisea 0.9 k P/E 86 2300 Mid-1X
aEarly samples

84 L. Zuolo et al.

is already enough to degrade SSD’s performances. Figure4.22 plots the percentage
of uncorrectable pages of the curves of Fig. 4.21: the reader can notice how quickly
this percentage grows up. Table4.4 shows the maximum number of Program/Erase
cycles that the tested memories can handle before exhibiting uncorrectable pages.
Therefore, it is clear that, for extending the endurance capacity of flash, a more
sophisticated and much performing ECC is the only practical way to go.

Due to their superior error correction capabilities and decoding performance, Low
Density Parity Check (LDPC) codes represent a common choice in modern SSDs
[22, 23]. Conventional LDPC decoders, if properly designed, can sustain a NAND
Flash RBER up to 10−2 [23–26]. The LDPC correction is usually performed in two
sequential steps:Hard Decoding (HD) and Soft Decoding (SD), which is called only
if HD fails. HD attempts to correct errors starting from a single read operation of the
addressed memory page. On the contrary, SD asks for multiple reads.

As summarized in Fig. 4.23, each soft-level requires two page read operationswith
two different read reference voltages and two data transfers to the ECC engine. The
algorithm continues this process until either the page is read correctly or the maxi-

Fig. 4.22 Measured percentage of uncorrectable pages as a function of the number of P/E cycles
up to twice the rated endurance. Correction is based on 100 bit/4320 Bytes BCH code

Table 4.4 Maximum number of program/erase cycles without uncorrectable pages for the flash
memories of Table 4.3. Correction is based on 100 bit/4320 Bytes BCH code and read retry is OFF

Sample Measured endurance

A-MLC 6 k P/E

B-MLC 19 k P/E

C-MLC 5 k P/E

D-TLC 1 k P/E

4 Design Trade-Offs for NAND Flash-Based SSDs 85

Fig. 4.23 Standard LDPC decoding (HD + 2-level-SD). Each soft-level requires two extra read
operations and two data transfer operations

Fig. 4.24 NASD LDPC decoding (HD + 2-level-NASD). Each soft-level requires two extra read
operations and only one data transfer, since the 2 read results are combined together inside the
NAND chip itself before the data transfer

mum number n of soft-levels is reached. When SD fails, then the page is marked as
uncorrectable (unless a RAID correction is available). The overall n-level SD algo-
rithm requires 2n page reads and 2n data transfers operations. HD has to recover
most of the pages without degrading the Code Rate [27]. Hence, HD has a RBER
coverage very similar to BCH [26]. Therefore as soon as this strategy fails to correct
data, it is requested the intervention of the SD, with a higher correction range. How-
ever, in [26] it has been shown that, as soon as the HD approach starts to fail, there
is an overhead both in terms of increased SSD power consumption and overall SSD
latency, because additional read operations are required (per the SD definition).

An alternative LDPC correction approach that limits the above mentioned draw-
backs of SD was described in [28]. The basic idea of this methodology, named
NAND-Assisted Soft Decision (NASD), is that data for soft decoding are directly
produced by the NAND flash memory itself, which internally reads the target page
twice for each soft-level. Then, read data are combined together and only one data
transfer per soft-level happens, as shown in Fig. 4.24.

86 L. Zuolo et al.

Soft Decision Versus NAND-Assisted Soft Decision

Flash memories are read on a page-basis by using a pre-defined read reference volt-
age, hereafter denoted as HD0. Cells are read as 1 or 0 by comparing their threshold
voltage VT against HD0 (see Fig. 4.25a). If, during the ECC decoding phase, the page
is uncorrectable, then the Soft LDPC decoding algorithm is called. To accomplish
this second step, additional information about the actual value of the NAND flash
threshold voltage distributions must be collected. Basically, the algorithm sequen-
tially moves the internal read reference voltages to SD10 and SD11 (Fig. 4.25b), thus
reading the page twice: the 2 page data are stored within the NAND. At this point,
these 2 pages are combined in a single page, which is then transferred, byte by
byte, to the LDPC decoder, already fed with the page read at HD0. If the decoding
process fails again, a second iteration at SD20 and SD21 takes place, as shown in
Fig. 4.25c. The algorithm continues until either the page is read correctly or the max-
imum number of soft-levels is reached. In case of overall fail, the page is marked as
uncorrectable.

Table 4.5 compares SD and NASD in terms of required operations. NASD can
halve the number of page transfers from the NAND flash memory to the ECC.
As a consequence, the overall soft decision process is shortened and, hence, SSD
performances are improved. To understand the actual NASD efficiency, it must be
taken into account that, while the drive is running, not always the page data transfer
can stay close to its corresponding NAND read operation. Figure4.26 sketches the
commands queue for NAND dies sharing the same I/O bus, the corresponding data
bus allocation, and the ECC engine activity. After a HD0 read, the SSD controller
can send other read or write commands to the same NAND flash die or to other dies.
When the ECC engine communicates the read failure to the controller, additional
SD10 and SD11 reads are scheduled. In the SD approach the two Flash pages are
transferred separately, as soon as the I/O bus is available; of course, there is a risk

(a) (b) (c)

Fig. 4.25 Two levels LDPC sensing scheme. A memory page is read by setting the read voltage at
HD0 and determining, for each bit, whether VT < HD0 or VT > HD0 (a). If the ECC engine is not
able to correct all errors, then the soft decision algorithm kicks in and the page is read by moving
the read reference voltages around HD0, at SD10 and SD11 (b). If the page stays uncorrectable, then
other reads at SD20 and SD21 take place (c)

4 Design Trade-Offs for NAND Flash-Based SSDs 87

Table 4.5 Read and data transfer operations for SD and NASD approaches

LDPC One soft-level Two soft-levels #n soft-levels

SD 2 page read 4 page read #2n page read

2 data transfer 4 data transfer #2n page transfer

NASD 2 page read 4 page read #2n page read

1 data transfer 2 data transfer #n page transfer

Other R/W
commands

Other data
bus allocation

5)

4)1)

4)1)

Command
execution

Bus
allocation

HD0

ECC
activity

Other encoding/decoding opserations

Time

2) 3)

5)

6)

Command
execution

Bus
allocation

ECC
activity

Time

2) 3)

HD0 SD10-11

HD0
Other

encoding/decoding ops.
SD10-11

SD10 SD11

Other data
bus allocationHD0

Other R/W
commands

Other R/W
commandsHD0 SD10-11

Other data
bus allocation SD10-11HD0

SD10 SD11

(a)

(b)

Fig. 4.26 Command queue, data bus allocation, and ECC engine activity for a cluster of NAND
flash dies sharing the same data bus. A single soft-level decision operation is sketched. Cases a and
b refer to SD and NASD, respectively

that, between SD10 and SD11 transfers, the bus is locked by other data transactions
to/from other NAND flash dies (see Fig. 4.26a). In the NASD approach, on the
contrary, since the outputs of SD10 and SD11 are combined in a single data transfer,
the subsequent soft decision operation can start sooner than in the SD case (see
Fig. 4.26b). This advantage becomes evenmore importantwhen additional soft-levels
are required. Furthermore, since the number of data transfers between memory and
ECC is reduced, a considerable power reduction of the I/O buses is achieved.

In order to make NASD work, NAND needs to be capable of storing the results
of 2 read operations per soft-level. Modern NAND flash devices contain multiple
registers because of advanced operations like cache read, read retry, and multi-level
storage [29–32]. The NASD implementation can re-use the existing registers inside
the NAND: XOR or XNOR gates can then merge the 2 soft reads into a single output

88 L. Zuolo et al.

Fig. 4.27 NASD circuitry: 8
XOR gates (or XNOR) have
to be added before the 8-bit
I/O interface

Fig. 4.28 SSD’s
architecture used to compare
NASD versus SD

stream. Since the I/O interface is limited to 8-bits, the logic combination between
the pages stored inside the two sets of registers can be performed on-the-fly, byte by
byte, during the data transfer phase (see Fig. 4.27). Considering that we are talking
about simple logic gates, the NASD implementation inside a NAND flash memory
does not impact area and power consumption.

In order to test the effectiveness of NASD with respect to the standard SD, a
512 GB SSD made of 8 channels with 8 NAND flash dies per channel has been sim-
ulated. The simulations have been performed considering the 4 different memories
described in Table4.3. Figure4.28 sketches themain building blocks of the simulated
SSD. Besides the standard I/O Processor used for the host-interface address fetch
phase, and the many-core Processor busy with the Flash Translation Layer, there
is also an I/O Sequencer acting as a read/write scheduler. In order to fully exploit
the internal parallelism of an SSD, host random addresses, which could cause die
collisions (i.e. requests going to the same die) are parsed and sequentially issued to
NAND flash chips.

4 Design Trade-Offs for NAND Flash-Based SSDs 89

Table 4.6 Tested host system configurations

Consumer Enterprise [33]

Host processor Intel-Core i5-4570 Intel-Xeon e5-2630

Processor clock 3.2 GHz 2.3 GHz

#N cores 4 24

DRAM size 12 GByte 16 GByte

Workload generator [34] fio 2.1.10 fio 2.1.10

Avg. I/O submission time 3.5 µs 0.5 µs

Host queue depth [20] 64 256

Host kIOPS (requested) ≈ 200 ≈ 600

SSD kIOPS (sustained) ≈ 450 ≈ 450

All data havebeen collectedby simulating twodifferent host platforms (Table 4.6).
The first one is a consumer system which does not exploit the full SSD architecture
(able to sustain 450 kIOPS) since I/O requests settle around 200 kIOPS. As a con-
sequence, all internal error recovery techniques which require additional read oper-
ations can be partially hidden. The second one is an enterprise workstation designed
to serve hundreds of parallel processes: IOPS demand can go as high as 600,000.
In this case the drive cannot meet the target number of IOPS and any additional
activity triggered by the error recovery flow hits performances. Thanks to these two
different test-cases it has been possible to test the NASD effectiveness when drive
resources, such as NAND-flash I/O buses, are partially or completely allocated for
user operations.

Results presented in Sect. 4.3.2 (A) refer to an enterprise host and a 100% 4 kB
random read workload, which represents the most challenging situation for SSD’s
performance characterization. In fact, when mixed read/write workloads are con-
sidered, since the DRAM chip inside the SSD caches all the write operations, the
measured average latency and bandwidth figures of the drive do not reflect the actual
SSD behavior. Section4.3.2 (B) will extend the discussion to realistic workloads for
both hosts.

Section4.3.2 (A) 100% random read workload—Enterprise host. Figure4.29
shows the SSD’s read bandwidth gain achieved by NASD versus SD, as a function
of the memory endurance. The number of IOPS has been calculated as the average
number of read commands completed in a second. For all the considered memo-
ries, the NASD technique provides a significant gain. NASD advantages are more
pronounced when a large number of uncorrectable pages, triggering a massive soft
decoding, is detected.

Figure4.30 shows the average read latency gains achieved by NASD with respect
to SD as a function ofmemory endurance. Latency has been calculated as the average
time elapsed between a read command submission and its completion. All results
concerning average latency reflect those obtained for bandwidth (Fig. 4.29).

90 L. Zuolo et al.

Fig. 4.29 SSD read bandwidth gain achieved by NASD with respect to SD as a function of the
memory endurance for the 4 considered memory types and the enterprise host

Fig. 4.30 SSDaverage read latency gain achieved byNASDversus SD, as a function of thememory
endurance for the 4 considered memory types and the Enterprise host

Figure4.31 shows the SSD’s cumulative latency distributions calculated at twice
the rated endurance for D-TLC, with both SD and NASD approaches. From these
data it is possible to extract the SSD’s QoS defined as the 99.99 percentile of the
cumulative latency distribution [4]. QoS represents the predictability of low latency
and consistency of high bandwidth while servicing a defined workload and it can
be considered as the key metric to assess the SSD’s performance in a worst-case

4 Design Trade-Offs for NAND Flash-Based SSDs 91

Fig. 4.31 Normal
probability paper of the
SSD’s latency calculated at
twice the rated endurance of
D-TLC, with both SD and
NASD. The QoS threshold is
calculated as the 99.99
percentile of the cumulative
distribution [4]

Fig. 4.32 Calculated QoS at
twice the rated endurance for
the 4 considered memory
types and the enterprise host

Table 4.7 Workloads characteristics

Workload Write ratio (%) Write amplification factor

MSN 96 1

Financial 81 1.32

Exchange 46 1.94

scenario. Figure4.32 shows the calculated QoS at twice the rated endurance for all
the considered memories, with both SD and NASD approaches.

Section4.3.2 (B) Realistic workloads—Enterprise and Consumer hosts. Since
the NASD advantages are tightly coupled to the command pattern, in addition to
the 100% random read workload, simulations have also been performed considering
three realistic workloads [35], as detailed in Table4.7; write ratio represents the per-
centage of write commands in the command sequence, whereas write amplification
factor denotes the number of additional writes produced by the SSD firmware for
each single host write [36].

92 L. Zuolo et al.

Ta
bl

e
4.

8
B
an
dw

id
th

(i
n
kI
O
PS

fo
r
SD

an
d
in

%
of

ga
in

fo
r
N
A
SD

vs
.S

D
)
@

tw
ic
e
th
e
ra
te
d
en
du
ra
nc
e
fo
r
bo
th

th
e
co
ns
um

er
an
d
th
e
en
te
rp
ri
se

ho
st

W
or
kl
oa
d

C
on
su
m
er

ho
st

E
nt
er
pr
is
e
ho
st

A
-M

L
C

B
-M

L
C

C
-M

L
C

D
-T
L
C

A
-M

L
C

B
-M

L
C

C
-M

L
C

D
-T
L
C

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

M
SN

14
3

4.
78

14
7

4.
17

14
2

5.
26

14
1

5.
23

14
2

4.
14

14
8

4.
79

14
2

5.
94

14
2

5.
72

Fi
na
nc
ia
l

13
5

1.
45

14
2

0.
54

10
1

3.
68

10
4

4.
36

14
3

1.
88

14
8

0.
45

11
9

3.
67

11
8

4.
19

E
xc
ha
ng
e

14
3

2.
25

15
1

0.
60

94
4.
95

97
5.
40

17
1

2.
47

18
7

0.
44

12
6

5.
28

12
7

6.
0

10
0%

re
ad

20
4

0.
03

20
4

0.
03

14
0

24
.4
1

12
7

24
.8
5

29
9

18
.2
4

40
2

6.
24

15
2

42
.7
7

15
6

36
.8
0

4 Design Trade-Offs for NAND Flash-Based SSDs 93

Ta
bl

e
4.

9
A
ve
ra
ge

la
te
nc
y
(i
n
µ
s
fo
r
SD

an
d
in

%
of

ga
in

fo
r
N
A
SD

vs
.S

D
)
@

tw
ic
e
th
e
ra
te
d
en
du
ra
nc
e
fo
r
bo
th

th
e
co
ns
um

er
an
d
th
e
en
te
rp
ri
se

ho
st

W
or
kl
oa
d

C
on
su
m
er

ho
st

E
nt
er
pr
is
e
ho
st

A
-M

L
C

B
-M

L
C

C
-M

L
C

D
-T
L
C

A
-M

L
C

B
-M

L
C

C
-M

L
C

D
-T
L
C

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

M
SN

37
3

2.
24

34
3

0.
11

39
3

5.
46

39
6

3.
57

14
85

0.
57

14
68

0.
16

15
53

1.
78

15
54

1.
92

Fi
na
nc
ia
l

46
7

1.
50

44
2

0.
53

62
4

3.
60

61
0

4.
29

17
24

1.
61

16
51

0.
19

20
88

3.
99

20
93

4.
41

E
xc
ha
ng
e

44
2

2.
21

41
7

0.
60

67
3

4.
84

64
6

5.
21

14
65

2.
28

13
43

0.
47

19
79

5.
28

19
73

5.
89

10
0%

re
ad

31
2

0.
01

31
1

0.
01

45
4

19
.7
1

50
2

19
.9
0

83
4

15
.6

62
3

5.
58

16
54

30
.1
4

16
20

27
.1
5

94 L. Zuolo et al.

Ta
bl

e
4.

10
Q
ua
lit
y
of

Se
rv
ic
e
(i
n
m
s
fo
r
SD

an
d
in

%
of

ga
in

fo
r
N
A
SD

vs
.S

D
)
@

tw
ic
e
th
e
ra
te
d
en
du
ra
nc
e
fo
r
bo
th

th
e
co
ns
um

er
an
d
th
e
en
te
rp
ri
se

ho
st

W
or
kl
oa
d

C
on
su
m
er

ho
st

E
nt
er
pr
is
e
ho
st

A
-M

L
C

B
-M

L
C

C
-M

L
C

D
-T
L
C

A
-M

L
C

B
-M

L
C

C
-M

L
C

D
-T
L
C

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

SD
N
A
SD

M
SN

47
.0
7

33
.9
5

32
.0
6

36
.3
2

25
.1
7

22
.2
4

34
.5
8

20
.4
6

53
.8
8

28
.3
2

35
.4
8

34
.1
1

31
.6
2

22
.7
3

45
.2
4

22
.3
4

Fi
na
nc
ia
l

14
.2
6

17
.8
5

11
.4
3

22
.5
6

12
.3
6

14
.5
9

13
.5
9

13
.0
0

92
.6
0

37
.5
8

80
.6
5

32
.6
1

71
.8
3

5.
25

80
.7
5

26
.1
6

E
xc
ha
ng
e

7.
50

21
.3
5

5.
93

14
.0
4

9.
37

15
.1
1

8.
76

14
.0
0

44
.2
0

22
.4
5

37
.8
3

29
.5
3

39
.8
9

16
.4
6

44
.2
1

23
.6
9

10
0%

re
ad

1.
50

23
.0
8

0.
77

20
.8
5

2.
67

21
.4
7

1.
59

29
.4
2

16
.2
0

38
.1
0

15
.3
4

50
.8
0

20
.0
8

43
.5
6

14
.4
0

40
.8
4

4 Design Trade-Offs for NAND Flash-Based SSDs 95

Tables4.8, 4.9 and 4.10 show the bandwidth, the average latency, and the QoS,
at twice the rated endurance, for the 4 tested NAND Flash memories and for the two
host architectures. Simulation results indicate thatNASDoutperformsSDwhen other
commands are scheduled between the two data transfers required by the SD tech-
nique.When realistic workloads are considered, NASD advantages are evident, espe-
cially with the MSN workload, which is characterized by a high number of program
operations whose duration is significantly longer than read. The QoS improvements
for the MSN workload are in a 20% ÷ 40% range. To sum up, NASD advantages
can be clearly identified when QoS is important; in fact, QoS takes into account the
worst-case latency conditions rather than the average behavior (i.e. bandwidth and
average latency).

References

1. An Overview of SSD Write Caching. http://community.spiceworks.com/attachments/post/
0013/5918/ssd_write_caching_tech_brief_lo.pdf.

2. Intel X18-M X25-M SATA Solid State Drive. Enterprise Server/Storage Applications. http://
cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf.

3. SamsungNANDFlashmemoryK9XXG08UXMseries. http://www.arm9board.net/download/
fl6410/datasheet/k9g8g08.pdf.

4. Intel solid-state drive dc s3700 series - quality of service., 2013. http://www.intel.com/content/
www/us/en/solid-state-drives/ssd-dc-s3700-quality-service-tech-brief.html.

5. The cost of latency, 2015. http://www.telx.com/blog/the-cost-of-latency/.
6. Platform as a service (paas), 2015. http://searchcloudcomputing.techtarget.com/definition/

Platform-as-a-Service-PaaS.
7. R. Micheloni, A. Marelli, and K. Eshghi. Inside Solid State Drives (SSDs). Springer, 2012.
8. N.Mielke,T.Marquart,NingWu, J.Kessenich,H.Belgal, Eric Schares, F.Trivedi, E.Goodness,

and L.R. Nevill. Bit error rate in NAND Flash memories. In IEEE International Reliability
Physics Symposium (IRPS), pages 9–19, 2008.

9. Sungjin Lee, Taejin Kim, Kyungho Kim, and Jihong Kim. Lifetime Management of Flash-
based SSDs Using Recovery-aware Dynamic Throttling. In USENIX Conference on File and
Storage Technologies, (FAST’12), 2012.

10. Ren-Shuo Liu, Chia-Lin Yang, and Wei Wu. Optimizing NAND Flash-Based SSDs via Reten-
tion Relaxation. In USENIX Conference on File and Storage Technologies, (FAST’12), 2012.

11. Laura M. Grupp, John D. Davis, and Steven Swanson. The Bleak Future of NAND Flash
Memory. In USENIX Conference on File and Storage Technologies, (FAST’12), 2012.

12. Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. Threshold voltage distribution in MLC
NAND flash memory: Characterization, analysis, and modeling. In Design, Automation Test
in Europe Conference (DATE), 2013, pages 1285–1290.

13. Xueqiang Wang, Guiqiang Dong, Liyang Pan, and Runde Zhou. Error Correction Codes and
Signal Processing in Flash Memory, Flash Memories. Igor Stievano (Ed.), 2011.

14. Intel-Corporation Robert Frickey. Data Integrity on 20nm SSDs. In Flash Memory Summit,
2012.

15. A.G. Cometti, L.B. Huang, and A. Melik-Martirosian. Apparatus and method for determining
a read level of a flash memory after an inactive period of time, February 4 2014. US Patent
8,644,099.

16. Silicon Motion Jeff Yang. High-Efficiency SSD for Reliable Data Storage Systems. In Flash
Memory Summit, 2012.

http://community.spiceworks.com/attachments/post/0013/5918/ssd_write_caching_tech_brief_lo.pdf
http://community.spiceworks.com/attachments/post/0013/5918/ssd_write_caching_tech_brief_lo.pdf
http://cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf
http://cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf
http://www.arm9board.net/download/fl6410/datasheet/k9g8g08.pdf
http://www.arm9board.net/download/fl6410/datasheet/k9g8g08.pdf
http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3700-quality-service-tech-brief.html
http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3700-quality-service-tech-brief.html
http://www.telx.com/blog/the-cost-of-latency/
http://searchcloudcomputing.techtarget.com/definition/Platform-as-a-Service-PaaS
http://searchcloudcomputing.techtarget.com/definition/Platform-as-a-Service-PaaS

96 L. Zuolo et al.

17. YoungjooLee,HoyoungYoo, InjaeYoo, and In-Cheol Park. 6.4gb/smulti-threaded bch encoder
and decoder for multi-channel ssd controllers. In IEEE International Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), pages 426–428, Feb 2012.

18. Intel-Corporation Ravi Motwani. Exploitation of RBERDiversity across Dies to Improve ECC
Performance in NAND Flash Drive. In Flash Memory Summit, 2012.

19. Serial ATA International Organization. SATA revision 3.0 specifications. www.sata-io.org.
20. Nvm express 1.1 specification, 2013. http://nvmexpress.org/wp-content/uploads/2013/05/

NVM_Express_1_1.pdf.
21. Pci express base 3.0 specification, 2013. http://www.pcisig.com/specifications/pciexpress/

base3/.
22. E. Yeo. An LDPC-enabled flash controller in 40nm CMOS. In Proc. of Flash Memory Summit,

Aug. 2012.
23. X. Hu. LDPC codes for flash channel. In Proc. of Flash Memory Summit, Aug. 2012.
24. Erich F. Haratsch. LDPC Code Concepts and Performance on High-Density Flash Memory. In

Proc. of Flash Memory Summit, Aug. 2014.
25. Tong Zhang. Using LDPC Codes in SSD — Challenges and Solutions. In Proc. of Flash

Memory Summit, Aug. 2012.
26. Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong Zhang, Nanning Zheng, and Tong Zhang.

Ldpc-in-ssd: Making advanced error correction codes work effectively in solid state drives. In
Presented as part of the 11th USENIX Conference on File and Storage Technologies (FAST
13), pages 243–256, 2013.

27. R. Micheloni, A. Marelli and R. Ravasio. Basic coding theory. In Error Correction Codes for
Non-Volatile Memories, pages 1–33. Springer-Verlag, 2008.

28. L. Zuolo, C. Zambelli, P. Olivo, R. Micheloni, and A. Marelli. LDPC Soft Decoding with
Reduced Power and Latency in 1X-2X NAND Flash-Based Solid State Drives. In IEEE Inter-
national Memory Workshop (IMW), pages 1–4, May 2015.

29. D.H. Nguyen and F.F. Roohparvar. Increased nand flash memory read throughput, March 8
2011. US Patent 7,903,463.

30. S.H. Lee, S. Bae, J.N. Baek, H.S. Kim, and S.B. Kim. Method of reading data from a non-
volatile memory and devices and systems to implement same, March 28 2013. US Patent App.
13/429,326.

31. N. Shibata, K. Kanda, T. Hisada, K. Isobe, M. Sato, Y. Shimizu, T. Shimizu, T. Sugimoto,
T. Kobayashi, K. Inuzuka, N. Kanagawa, Y. Kajitani, T. Ogawa, J. Nakai, K. Iwasa, M. Kojima,
T. Suzuki, Y. Suzuki, S. Sakai, T. Fujimura, Y. Utsunomiya, T. Hashimoto, M. Miakashi,
N. Kobayashi, M. Inagaki, Y. Matsumoto, S. Inoue, Y. Suzuki, D. He, Y. Honda, J. Musha,
M. Nakagawa, M. Honma, N. Abiko, M. Koyanagi, M. Yoshihara, K. Ino, M. Noguchi,
T. Kamei, Y. Kato, S. Zaitsu, H. Nasu, T. Ariki, H. Chibvongodze, M. Watanabe, H. Ding,
N. Ookuma, R. Yamashita, G. Liang, G. Hemink, F.Moogat, C. Trinh,M.Higashitani, T. Pham,
and K. Kanazawa. A 19nm 112.8mm2 64Gb multi-level flash memory with 400Mb/s/pin 1.8V
Toggle Mode interface. In IEEE International Solid-State Circuits Conference (ISSCC), pages
422–424, Feb. 2012.

32. DaeyealLee, Ik JoonChang, Sang-YongYoon, Joonsuc Jang,Dong-Su Jang,Wook-GheeHahn,
Jong-Yeol Park, Doo-Gon Kim, Chiweon Yoon, Bong-Soon Lim, Byung-Jun Min, Sung-Won
Yun, Ji-SangLee, Il-HanPark,Kyung-RyunKim, Jeong-YunYun,YouseKim,Yong-SungCho,
Kyung-Min Kang, Sang-Hyun Joo, Jin-Young Chun, Jung-No Im, Seunghyuk Kwon, Seokjun
Ham, Ansoo Park, Jae-Duk Yu, Nam-Hee Lee, Tae-Sung Lee, Moosung Kim, Hoosung Kim,
Ki-Whan Song, Byung-Gil Jeon, Kihwan Choi, Jin-Man Han, Kye Hyun Kyung, Young-Ho
Lim, and Young-Hyun Jun. A 64Gb 533Mb/s DDR interface MLC NAND Flash in sub-20nm
technology. In IEEE International Solid-State Circuits Conference (ISSCC), pages 430–432,
Feb. 2012.

33. Hp z640 workstation, 2015. http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=
c04434085.

34. Flexible I/O tester, 2015. http://freecode.com/projects/fio.

www.sata-io.org
http://nvmexpress.org/wp-content/uploads/2013/05/NVM_Express_1_1.pdf
http://nvmexpress.org/wp-content/uploads/2013/05/NVM_Express_1_1.pdf
http://www.pcisig.com/specifications/pciexpress/base3/
http://www.pcisig.com/specifications/pciexpress/base3/
http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=c04434085
http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=c04434085
http://freecode.com/projects/fio

4 Design Trade-Offs for NAND Flash-Based SSDs 97

35. J. Kim, E. Lee, J. Choi, D. Lee, and S. Noh. Chip-level raid with flexible stripe size and parity
placement for enhanced ssd reliability. IEEE Transactions on Computers, 2014. to appear on.

36. Xiao-YuHu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.Write ampli-
fication analysis in flash-based solid state drives. In Proceedings of SYSTOR, pages 10:1–10:9,
2009.

Chapter 5
Resistive RAM Technology for SSDs

Cristian Zambelli and Piero Olivo

Abstract Resistive RAM (RRAM) technology gathered a significant interest in
the last decade for system-on-chip applications in silicon-based CMOS technologies
likemicrocontrollers for wireless sensor nodes in the Internet of Things environment,
and automotive electronics. Enterprise storage platforms like high performance Solid
State Drives (SSD) are considering to adopt this technology as a possible storage
mediumdue to its forecastedhigh reliability, fast access time, and anumber of benefits
like the native multi-level capability and bit-alterability. In this chapter, we address
the basic principles of the RRAM technology starting from the typical cell structure
and the physical mechanisms involved in the storage of the information. Thorough
analyses of the operations, as well as of the yield and reliability are presented. Then, a
review of themost common integration concepts from the 1T-1R to the forecasted 3D
cross-point arrays are presented.A brief investigation of theRRAMarchitectureswill
help the reader in understanding the density limitations of this technology compared
to decananometer scale multi-bit per cell planar and 3D NAND Flash architectures.

5.1 Introduction

Resistive RAM (RRAM) technology gathered a significant interest in the last decade
for system-on-chip applications in silicon-based CMOS technologies like micro-
controllers for wireless sensor nodes in the Internet of Things environment, and
automotive electronics [1–3].

Being hyped from the media as one of the most promising non-volatile mem-
ory technologies to compete and replace traditional NAND Flash, after an era of
research and development the RRAMs are now facing the slope of enlightenment
phase. Enterprise storage platforms like high performance Solid State Drives (SSD)

C. Zambelli (B) · P. Olivo
Dip. Ing., Università degli Studi di Ferrara, Ferrara, Italy
e-mail: cristian.zambelli@unife.it

P. Olivo
e-mail: piero.olivo@unife.it

© Springer International Publishing AG 2017
R. Micheloni (ed.), Solid-State-Drives (SSDs) Modeling,
Springer Series in Advanced Microelectronics 58,
DOI 10.1007/978-3-319-51735-3_5

99

100 C. Zambelli and P. Olivo

are considering to adopt this technology as a possible storage medium due to its
forecasted high reliability, fast access time, and a number of benefits like the native
multi-level capability and bit-alterability.

However, the broad expectations on RRAM call for outstanding solutions able
to counter the drawbacks of such a memory. To name a few: the extremely high
variability in the cells performance integrated in large array structures, the poor
control of the read margins through the programming algorithms, and the reduced
parallelization of the read/write operations.

In this chapter, we will address the basic principles of the RRAM technology
starting from the typical cell structure and the physical mechanisms involved in the
storage of the information. Thorough analyses of the operations, aswell as of the yield
and reliability are presented. Several algorithmic techniques will be demonstrated to
prove their effectiveness in addressing those metrics. A reliability threat assessment
in terms of endurance and data retention will be provided with a focus on the physical
roots behind the memory lifetime degradation. Then, a review of the most common
integration concepts from the 1T-1R to the forecasted 3D cross-point arrays are
presented. A brief investigation of the RRAM architectures will help the reader in
understanding the density limitations of this technology compared to decananometer
scale multi-bit per cell planar and 3D NAND Flash architectures. Finally, a section
of this chapter will study the typical disturbs evaluated in RRAM array architectures
to observe the operation margins in the typical memory working window and some
possible countermeasures to keep them on an acceptable level.

5.2 Basic Principles and Operations of RRAM Cells

The basic principle of the RRAM technology (sometimes quoted as memristive
technology [4]) is the so-called resistive switching, namely the peculiar property of
a material to change its resistivity as a function of an applied voltage or current bias.
The switch is theoretically from an insulator state (i.e., high resistivity) to a metallic-
like conduction state (i.e., low resistivity). The change of the conduction regime in
the cell is reversible and the two different resistivity states define two well-separated
logical states.

As stated in [5], there are a number of resistive switching devices that differ only
from the physics mechanisms: nanochemical memories, phase change memories,
valence change memories, thermochemical memories, magnetoresistive memories,
etc. Among them, the valence change memories are the most attractive concept for
RRAM cells integration because of the materials compatibility with the state-of-the-
artBack-End-Of-Line (BEOL) process scheme.Various suitablematerials forRRAM
including chalcogenides, perovskite-type oxides, and binary transition metal oxides
(e.g. Ta2O5, TiO2, and HfO2) are promising candidate materials showing excellent
switching capabilities [6, 7].

In these memories, the RRAM behavior is based on the possibility of electrically
modifying the conductance of a Metal–Insulator–Metal (MIM) stack. The MIM is

5 Resistive RAM Technology for SSDs 101

Fig. 5.1 RRAM cell
structure (left) and STEM
image (right) considering
TiN-based electrodes, Ti
oxygen exchange layer, and
HfO2 as switching oxide

HfO₂
Ti

TiN

TiN
Oxygen
Ions

TiN

Ti

HfO2

TiN

composed by two electrodes (i.e., bottom and top electrode), a switching oxide layer,
and an oxygen exchange layer, as shown in Fig. 5.1.

A Set operation moves the cell in a Low Resistive State (LRS), whereas Reset
brings the cell back to a High Resistive State (HRS). A read operation, consisting
in a small bias voltage applied to the cell to get its resistance value according to the
flowing current, is used to discriminate between the two states. The physical basis of
this process is ascribed to the formation and rupture of a filamentary conduction path
formed in the insulation layer by oxygen ions and vacancies (VO

+). To initiate such
a switching behavior, some technologies require a preliminary forming operation
[8–10]. Figure5.2 depicts a state transitions schematics. The Forming, Set, and Reset
parameters like the voltage and the timings required for the operation vary depending
on the materials and on the cell structure.

5.2.1 Forming Operation

The Forming process in RRAM cells is performed just once, but this initial state
plays a fundamental role in determining the subsequent cells performance [12].
The effectiveness of the forming process depends on its ability in creating a stable
conductive filament, thus easing successive Set/Reset operations. The Forming is
similar to the soft breakdown process in dielectrics. It is possible to modulate the
size of the conductive filament depending on the magnitude of the current flowing in
the dielectric, usually controlled by a select device in series to the MIM stack (e.g.,
a MOS transistor or a diode). Standard Forming in array architectures is performed
by applying either a voltage ramp or a voltage/current pulse to each memory cell
individually [9]. This technique is indicated as Incremental Forming (IF). The former
method has a major drawback due to the filament conductance control being not tight
enough. This results in larger cell-to-cell variability and larger disturb sensitivity
[9, 13]. As an alternative, Forming process can be performed through a sequence of

102 C. Zambelli and P. Olivo

Fig. 5.2 State transitions
schematics from the forming
operation to cycled set and
reset operations [11]

Fig. 5.3 Cumulative read
current distributions after
Forming (i.e., variability
measure) of correctly formed
cells (i.e., yield) using the
following schemes: Pulse
(54%), IF (77%), IFV with
�VBL = 0.1 V (87%), and
IFV with �VBL = 0.01 V
(99%) [15]

pulses featuring the same voltage. While the Forming time can be minimized using
a single pulse with high compliance and voltage parameters, the Forming yield is
limited since the applied energy is not sufficient to complete the Forming process
in all cells [14]. Several pulse-based forming alternatives have been proposed to
increase the applied energy and therefore the yield by using long pulses or sequences
of short pulses at constant voltage, and even Form and Verify schemes (IFV) [9, 15].
Figure5.3 shows a comparison of different Forming schemes in terms of yield (i.e.,
percentage of cells correctly formed) and in terms of variability control applied to
RRAM test arrays.

It is worth to point out that the Forming operation depends upon several techno-
logical factors like the area of the MIM cell, the thickness of the switching oxide

5 Resistive RAM Technology for SSDs 103

Fig. 5.4 Measured I-V curves showing the variability of the set and reset switching voltages for
different compliance currents [18]

layer, and the phase of the insulating material that can be deposited in theMIM stack,
either in amorphous or poly-crystalline flavor [16, 17].

5.2.2 Set and Reset Operation

The Set and Reset operations in RRAM cells are those deputed to switch between
different memory logical states. After the creation of the conductive filament with the
Forming operation there is a modulation of its shape due to the transport of oxygen
vacancies and defects in the switching oxide. Such behavior depends on the bias
voltage polarity applied to the top and bottom electrode of the MIM stack. Usually
the Set operation requires a positive bias applied on the top electrode, whereas the
Reset operation requires a negative one.

From the physics point of view, the transition from Set to Reset operation cor-
responds to the switching of the conduction regime of a quantum conduct wire. In
the Set state (LRS) the conduction mechanism is metallic-like, whereas in the Reset
state (HRS) the conduction is usually associated to a direct tunneling charge transport
through a finite potential barrier, whose height and thickness depend on the shape of
the conductive filament constriction created during the Reset operation [18].

By applying a voltage sweep to a RRAM cell to measure its I-V characteristics
we observe that the Set transition takes place at a positive voltage VSet, whereas the
onset of the Reset transition can be seen at a negative voltage VReset and current IReset,
as indicated in Fig. 5.4 [19]. The negative sweep is generally completed at a negative
voltage VStop, which is necessary to achieve the high resistance of the Reset state.
The current compliance IC, forced by a select device like a MOS transistor, controls
the overall MIM resistance in the Set state and the IReset, thus playing an essential
role in limiting the power consumption in the memory cell.

By analyzing the characterizations performed either on a single RRAM cell [19]
or on a large number of RRAM cells integrated with the samemanufacturing process
in an array structure [20] it is noticed a significant variability of the switching voltages

104 C. Zambelli and P. Olivo

Fig. 5.5 Cumulative set and reset switching voltage distribution retrieved from the characterization
of a 4 kbits RRAM array [20]

responsible for Set and Reset operations (see Fig. 5.5). This calls for an optimization
of the Set and Reset schemes in order to improve the memory reliability and first of
all the switching yield.

Cycling operation performed with non-optimal Set/Reset pulses may lead to early
failure, in either LRSorHRS, as shown later in this chapter. The failuremode depends
on the “strength” of the Set/Reset pulses [21], relative to each other. Careful tuning
of the cycling conditions leads to balanced Set and Reset operations and allows for
improved endurance of over 1010 cycles for single cell structures, which is compa-
rably higher than what exposed by state-of-the-art NAND Flash technology [22].

5.3 Reliability and Performance of RRAM Cells

Considerable progress has been made in RRAM device integration as well as in
understanding the physical/chemical properties of the resistance change behavior.
Although several RRAM demonstrators showed excellent performance parameters
[23–25], there are some reliability concerns that require a deeper understanding
before claiming that RRAM technology will outperform NAND Flash. Among them
it is mandatory to study the endurance properties and the data retention capabili-
ties. Moreover, it is important to understand what the limitations of the algorithmic
techniques are for Set and Reset operations caused by phenomenon like the Random
Telegraph Noise (RTN) in order to improve those metrics. Moreover, endurance and
retention are severely impacted by the inter-cell variability (i.e., variations between
cells) and the intra-cell variability (i.e., cycle-to-cycle variations of any given cell)

5 Resistive RAM Technology for SSDs 105

that still prevents RRAM mass production and fast commercialization [26]. In this
section we will analyze all the single aspects of the performance and the reliability
of RRAM cells starting from the basis of the variability reaching up to the most
common issues for this technology.

5.3.1 Intra-cell Variability

While in the well-established Flash NAND technology variability mainly shows-up
as device-to-device (D2D) fluctuation as a consequence of device scaling, RRAM,
due to their fundamentally different operating mechanism, additionally display sig-
nificant intra-device, cycle-to-cycle (C2C) dispersion [27].

Figure5.6 shows the I-V characteristics of a single cell measured for different Set
and Reset operations. As can be seen, the same cell exhibits a large distribution of
the switching voltages, making difficult the usage of single voltage pulse Set and
Reset approaches to switch the logical state of a cell. A too high voltage will result in
unwanted stresses applied to the cell that switches early, whereas a too low voltage
will turn into an incomplete switching transition between the states of slow-switching
cells. The origin of the intra-cell variability seems to be ascribed both to the stochastic
nature of the switching process during Set and Reset transition and to the Forming
operation, therefore being related to the shape of the conductive filament [26].

5.3.2 Inter-cell Variability

The inter-cell variability is captured by monitoring multiple cells in test element
groups or array structures to evidence their difference in terms of performance and
reliability for a given operation. As for the intra-cell variability, it is believed that
this variability source is due to the nature of charge transport in RRAM technology.
However, when speaking of inter-cell variability, we must consider two different

Fig. 5.6 Single RRAM cell DC I-V cycling over 50 cycles at 25 µA current compliance range:
gray all cycles, black median values [27]

106 C. Zambelli and P. Olivo

concepts: the intrinsic variability, due the manufacturing process of the memory
cell and to the switching nature, and the extrinsic variability, mainly ascribed to the
integration concept used for the cells [28].

Concerning the intrinsic inter-cell variability, the research community looks at the
variability introduced in the process steps of the MIM element, which is the core of
the RRAM cell. The thickness inhomogeneity of the top and bottom electrodes is not
believed to play a central role in the inter-cell variability.However, the combination of
the bottom electrode deposition process with the switching oxide deposition process
seems to affect the variability especially in the Forming operation (see Fig. 5.7), thus
reflecting on the consecutive Set and Reset operations. This has been proven in HfO2

[26] and in AlOx RRAM cells [29], where the roughness of the switching oxide films
due to the material structure of the electrodes becomes significant.

The inter-cell variability is additionally evaluated for HRS and LRS resistances.
In RRAM technology the HRS inter-cell variability is considerably higher than the
LRS one, as shown in Fig. 5.8. However, we have to consider that HRS and LRS
inter-cell variabilities are strictly related since they are linked to the shape of the
conductive filament created with the Forming operation and successively modulated
by the cycling Set and Reset operations.

5.3.3 Endurance

The endurance degradation is a critical reliability issue in every non-volatile memory
technology, and RRAMmakes no exception. Thinking about multi-level cell NAND
Flash, the presence of dedicated algorithms to counter the wear-out of the tunnel
oxide is mandatory to achieve reliable storage of the information. Same thoughts are
applied to RRAM. Indeed, without an accurate study of the wear-out mechanisms in
the cells, of the optimization of Set and Reset algorithms, and of the quantification

Fig. 5.7 200 AlOx-based
RRAM cells tested after the
manufacturing (initial
resistance) and after forming
operation [29]

5 Resistive RAM Technology for SSDs 107

Fig. 5.8 Distribution of read current in LRS and HRS of Cu2O-based resistive switching devices
(left) [30] and inter-cell variability analysis in HfO2 RRAM cells (right) [31]

of the cells variability, it is quite impossible to extend the RRAM lifetime up to
104−105 cycles in array structures.

Figure5.9 illustrates two kinds of typicallymeasured endurance degradation char-
acteristics considered as “over-Set” and “over-Reset”. In the “over-Set”/“over-Reset”
endurance degradation, the resistance of the high/low resistance state (RHRS/RLRS)

gradual decreases/increases firstly, then sharply decreases/increases, being succes-
sively unable to move from LRS/HRS, which causes the loss of the margin between
the two logical states. Their corresponding physical mechanisms are also shown
in Fig. 5.9 [22, 32, 33]. The “over-Set” endurance degradation is attributed to the
extra oxygen vacancies (VO) generation during Set process, which causes the extra
growth of the conductive filament size, togetherwith the reducedRHRS andRLRS [32].
This increased filament size may cause Reset failures [34]. The “over-Reset” orig-
inates from extra recombination between VO and oxygen ion (O2−), which causes
the widening of the electron tunneling gap. This may cause Set failure due to the
weakening of electric field in gap region, resulting in the reduced VO generation [34].

In [22] it was proven a methodology to increase the endurance of single RRAM
cells by modifying the Set/Reset pulse amplitudes or pulse widths. Compared to
varying the Set/Reset pulse amplitude, tuning the Set/Reset pulse width do not sig-
nificantly change the failure mode of the endurance. Generally, short Reset pulse
demonstrates larger influence on the endurance stability, as compared to the Set pulse.
By optimally choosing the Set/Reset parameters it was possible to achieve up to 1010

endurance cycles in single cell structures. Unfortunately, this tuning approach is not
applicable in large scaled RRAM arrays, where the high number of cells increases
the impact of the inter-cell variability during cycling. Moreover, a poor tuning of
the Set/Reset algorithms will have a dramatic impact on the intra-cell variability and
therefore on the overall reliability of the array.

To counter the inter-cell variability, and to ensure a significant margin between
HRS and LRS, several Set and Reset verification algorithms have been proposed in
literature (see Fig. 5.10 to appreciate the outcomeof one of them) to prevent unwanted

108 C. Zambelli and P. Olivo

Fig. 5.9 a Typical endurance degradations observed in the experiments. b Schematic of endurance
degradation mechanisms [34]

Fig. 5.10 By balancing the
set pulse and the reset pulse,
1010 pulse endurance was
achieved for a single 40-nm
Hf/HfO2 RRAM cell [22]

stress on the memory cells and to maximize the switching yield in array structures
[22, 35].

5 Resistive RAM Technology for SSDs 109

5.3.4 Data Retention

The data retention capabilities of the RRAM technology must be evaluated as for
NAND Flash memories by considering different temperature ranges: the Low Tem-
perature Data Retention (LTDR) and theHigh Temperature Data Retention (HTDR).
Both ranges evidence that Forming, Set, and Reset operations have an influence on
the retention properties of the memory.

The LTDR has been evaluated in 50nm AlxOy MIM cells, although the results
generally apply to other switching oxides as well [36]. The HRS before Forming and
LRS after Forming show the best retention compared with after Set/Reset cycling
operation. However, this long retention time without forming is limited to one-time-
program (OTP) applications. When the memory endurance is stressed by cycling,
the LRS retention becomes better, whereas HRS retention gets worse, because of
the larger size of the conductive filament in the switching oxide. Consequently, the
retention time of RRAM is degraded as the device is worn out and the error rate of
HRS becomes the dominant one.

For the HTDR analysis, several studies have been performed in literature to help
understanding the physical nature of the retention loss in RRAM cells [22, 37–39].
Two possible mechanisms responsible for the retention loss (illustrated in Fig. 5.11)
have been proposed:

1. mobile oxygen (scavenged by the oxygen exchange layer during the cell stack
deposition, post-processing and Forming operation) diffuses back into the switch-
ing oxide and recombines with VO in the filament;

2. VO out diffusion and dissolution of the filament [38].

The degradation mechanism 1 is area dependent as the source of mobile oxygen
participating in degrading the retention is determined by the area of the top electrode.
In contrary, themechanism 2 is related to the changes of the filament shape and hence
area independent.

Fig. 5.11 Two possible retention degradation mechanisms in HfO2 / Hf RRAM cells: 1. a oxygen
scavenged by Hf cap layer diffuses back into HfO2 and recombine with VO in the filament; 2. bVO
out diffusion and dissolution of the filament. Mechanism 1 is area dependent in degrading retention
while mechanism 2 is area independent [37]

110 C. Zambelli and P. Olivo

The read-out current of both LRS andHRSbaked at 150, 200 and 250 ◦Cdecreases
with longer bake time, indicating filament continuous “dissolution”, and leading
to the increase in resistance. Clear temperature dependence of retention degrada-
tion is observed: the median LRS and HRS read-out current decreases much less at
lower temperature (Fig. 5.12), indicating the temperature activated nature of reten-
tion degradation of oxygen vacancy (VO) filamentary switching. The resistive states
degrade much faster in smaller cells. After 120 h, 250 ◦C baking, the LRS read-out
current in 40nm MIM cells reduces one order of magnitude more than the 320nm
MIM cells. Lowering the operation current down to low compliance values fur-
ther degrades data retention. Due to the reduced amount of VO in the filament, its
stability is also greatly decreased [37]. By limiting the oxygen diffusionwith an addi-
tional annealing applied after RRAM cell formation, the retention could be greatly
improved.

Fig. 5.12 Median HRS/LRS values as a function of the bake time performing retention tests at
different temperatures (top left), different current compliance (top right), and different cell size
(bottom) [37]

5 Resistive RAM Technology for SSDs 111

TheHTDRconsidering the inter-cell variability impact has been studied in [22] on
array structures by performing 125 ◦C bake experiments after one Set/Reset cycles
and 10 k cycles. The results confirm what observed previously: the temperature
impacts the retention capabilities of the memory cells depending on the number of
cycles performed, the larger impact is retrieved for HRS, and the inter-cell variability
of the Set/Reset operations is maintained after the retention tests.

5.3.5 Random Telegraph Noise and Current Instabilities

The stochastic characteristics of the RRAM can be evidenced not only during the
Forming, Set and Reset operations, but also during the Read procedure. This repre-
sents a limitation of the operation and verify algorithms since phenomenon like the
Random Telegraph Noise (RTN) or post-Forming/Set/Reset instabilities lose control
of the HRS and LRS distributions.

The RTN is ascribed to the charge-transport through the dielectric barrier in
HRS dominated by the Trap-Assisted Tunneling (TAT) process, which is sup-
ported by activated defects, like oxygen vacancies in a positively charged state:
VO

2+ + e− → VO
+. When the vacancy loses an electron (VO

+ → VO
2+), its ion-

ization and relaxation energies change, disabling the electron transport via this
defect. RTN in HfO2-based RRAM devices was attributed to such activation and
de-activation of the TAT-supporting defects [40]. Furthermore, TAT transport can
be also affected by charging and discharging of defects not directly contributing to
the electron transfer: capture/emission of an electron by one of such defects may
lead to a Coulomb blockade of the nearby TAT-supporting trap, thus changing the
capture/emission times of the electrons transit (can either reduce or enhance the TAT
conductivity). Figure5.13 shows a schematic of these processes. In both above men-
tioned physicalmechanisms, the event triggeringRTN is the charge capture/emission,
which allows proposing a “universal” simplified description of the RTN process [40].

The effect of the RTN (see Fig. 5.14) on the RRAM reliability is to change the
efficiency of the verify operation in the incremental pulse algorithms for endurance
improvement and inter-cell variability control [15, 35, 41].

Another issue in the incremental pulse algorithms is represented by the post-
operation instabilities [42]. Especially at low operating current, the width of the
HRS and LRS distributions becomes unacceptably large, resulting in a LRS/HRS
distribution overlap at low percentiles with read errors as a consequence. Incremental
StepPulse (ISP) algorithms have been proposed to resolve this issue [35], but recently
[42] it was demonstrated that, for RRAM devices, post-Set and post-Reset instability
of the filament make these algorithms highly ineffective. This is because after the
verify step, both the LRS and HRS distributions always evolve towards a wider
distribution.

112 C. Zambelli and P. Olivo

Fig. 5.13 Schematics of a possible RTN-generating mechanism for a RRAM device in HRS. The
dark gray cylinder represents the dielectric barrier, the thickness of which is 5. a The TAT electron
transport via an activated defect. b The non TAT-supporting defect captures an electron resulting in
a c Coulomb blockade of the TAT-supporting defect blocking the charge transport through it. d The
non TAT-supporting defect emits the captured electron restoring the charge transport properties of
the TAT-supporting defect properties of the TAT-supporting defect [40]

Fig. 5.14 Experimental
multi-level RTN in HRS at
VREAD = 0.1V (HfO2/Ti
4.2nm/5nm) [40]

5.4 RRAM Integration: Architectural Solutions

The characteristics of the RRAM cells in terms of performance and reliability have
been largely evaluated on single cell MIM structure that provided a good vehicle to
understand the physical limitation of such a technology, yet being unable to assess
specific issues like read and write disturbs, typical of integrated array solutions. In
this section we review the most common array solutions for RRAM by comparing
their pros and cons in terms of offered integration density, performance, and disturbs
immunity.

5 Resistive RAM Technology for SSDs 113

5.4.1 True Cross-Point Arrays

To enable continued scaling, the RRAM true cross-point memory architecture
appears as one of the most attractive successors to the current Flash technology,
due to its inherent 4F2 cell size and simplicity in fabrication [43]. The cross-point
memory architecture is composed of aMIMmemory element sandwiched by two sets
of parallel conductive interconnects crossing perpendicularly, as shown in Fig. 5.15.
Wrong Set/Reset and misreading can readily happen in the cross-point architecture
due to the substantial sneak path leakage in the half-selected and unselected cells.
Indeed, to guarantee a successful write operation to both states, the switching thresh-
old of the selected cell (VSelect) must be larger than the maximum values of VSet

and VReset under the worst-case scenario. On the other hand, the voltage drop on
the unselected cells should be smaller than the minimum values of VSet and VReset

(VUnselect) to eliminate write disturbs. To program a cell, it is used the Vdd/2 writing
scheme [44] in which the selected word line is biased at Vdd, the selected bit line
is grounded, and all the unselected word lines and bit lines are biased at Vdd/2 (see
Fig. 5.16). During the write operation, an extra voltage drop along the interconnects
caused by the leakage current can lead to an insufficient voltage at the selected cell
required for a successful write.

There are several ways of reading a cross-point memory cell. The most common
one is the bias scheme in which the selected word line is biased at VRead, and all
the other word lines and bit lines are grounded. This method maximizes the readout
throughput by reading multiple cells at the same time, although the power consump-
tion increases correspondingly. To ensure a nondestructive read, VRead is set to be
smaller thanVUnselect. The current difference (�I) when readingHRS andLRS is then
sensed by connecting all the bit lines to sense amplifiers. During the read operation,
without a select device in series, parasitic conducting paths in unselected cells can
degrade the output signal and make it hard to discriminate the two states of a mem-
ory cell; therefore, read disturb is a concern for true cross-point RRAM architectures
[43, 44].

Concerning the scalability of this integration approach wemust note that the max-
imum array size is only dependent on LRS under the worst-case scenario. Figure5.17
shows the minimum requirement of LRS as the array size increases. It is clear that

Fig. 5.15 Layout of a true crosspoint RRAM array [44]

114 C. Zambelli and P. Olivo

Fig. 5.16 Schematic view of the cross-point memory structure. (Arrows) Flow of current paths
through the selected and half-selected cells during the write operation. (Black) Selected cell. (Light
gray) Half-selected cells. (Dark gray) Those with equal potential at the corresponding word lines
and bit lines [43]

Fig. 5.17 Minimum requirements (left) for LRS (Ron) and power dissipation (right) as a function
of the integrated number of RRAM cells [43]

the minimum requirement of LRS increases linearly with the number of memory
elements. Increasing LRS from 1 k� to 3 M� scales up the number of cells in the
array to 106. In this case, it eliminates the need for a memory cell selection device
for cutting off leakage paths and increases array size. High resistance values also
reduce the power dissipation in the array, which is one of the most critical issues for
memory application. Figure5.17 shows the increase in power dissipation as the size
of the memory array grows. Power consumption of as high as 0.1W is expected as
the number of cells in the array increases up to 106, with LRS = 5 k�. To reduce
the power consumption, the resistance values of the memory cells must be scaled
up to make the large memory array feasible. However, it must be noted that high
LRS values can degrade the write and read speeds of the memory [43].

5 Resistive RAM Technology for SSDs 115

5.4.2 1T-1R, 1D-1R, and 1S-1R Arrays

The ideal solution to reduce the disturbs and the scalability issues of the true cross-
point architecture is to use a select device like a transistor in series to the RRAM cell.
This approach is known as the 1T-1R array (see Fig. 5.18). The transistor element is
an ideal selecting element since it provides isolation for the unselected cells in the
array and limits the current (through a compliance setting) of the selected cells in
Forming, Set, and Reset operations. Since the 1T-1R element is basically a three-
terminal device, large cell structures (i.e., up to 20F2) are integrated, therefore limiting
the array size. This is why the 1T-1R RRAM arrays are best suited for embedded
applications where the latencies dominate the trade-off between speed and storage
density. Several arrays realizations have been proposed in literature using different
transistor technologies (i.e., full-CMOS or BiCMOS) and materials (HfO2, CuxO,
etc.) starting from few kbits structures up to a recently demonstrated 16 Gbits array
[23, 46, 47].

To achieve higher densities, the transistor element can be replaced either by a
diode (i.e., 1D-1R) or by any other kind of non-linear switching elements (i.e.,
1S-1R) [10]. The diode selector allows achieving, on top of RRAM cells, a two
terminal selector (smaller cell size are possible compared to 1T-1R), but it’s valid
only for RRAM cells that display a unipolar switching characteristics that is typical
for non-valence chemical memories [10]. To adapt this concept to traditional RRAM
cells (i.e., bipolar switching) several selectors can be adopted: symmetric diodes

Fig. 5.18 Block diagram of a 4 kbits 1T-1R RRAM array [46]

116 C. Zambelli and P. Olivo

or volatile switching selectors. The parameters of these selectors can be compared
in [49].

5.4.3 3D RRAM Array Options: 1T-nR and VRRAM

To further increase the density of RRAM arrays several researchers started to con-
sider the frontier of the third integration dimension, giving rise to the 3D RRAM
array concepts. Two main process options exist for 3D RRAM: the pseudo 3D also
indicated as 1T-nR or stackable 2D, and the vertical RRAM (VRRAM).

Concerning the 1T-nR approach, this is obtained by stacking multiple 2D RRAM
planes, each one selected by a proper decoding structure [10, 49]. The 1T-nR arrays
often utilize cross-point core architectures for higher density and one transistor that
drives nRRAMdevices. Unfortunately,multiple leakage current paths exist as shown
in Fig. 5.19 even if a good transistor is fabricated, therefore requesting the use of the
selectors presented in the previous sections.

A solution for leakage path suppression is to use a selector with a very high non-
linearity in order to have a high selectivity ratio (HSR) of the cells, maintaining the
scalability of the memory cells. The selectivity is the feature of the device that will
activate the cell based on the potential across the two terminal RRAM. An example
is the Field Assisted Superlinear Threshold (FAST) device presented in [49] (see
Fig. 5.20). In any case, the selector must ensure a number of parameters that are
compatible with 3D integration like: the speed of operation (i.e., a selector must
switch in the same RRAM switching time range that sometimes could approach tens
of nanoseconds), low power consumption (i.e., low leakage), and high compatibility
with the CMOS BEOL process (i.e., temperature budget).

Fig. 5.19 Signal and leakage path in 1T-nR RRAM architecture [49]

5 Resistive RAM Technology for SSDs 117

Fig. 5.20 RRAM integration with the FAST selector for pseudo-3D arrays [49]

Fig. 5.21 Structure of a VRRAM integrating an HfOx switching oxide [50]

A real paradigm shift could come from the VRRAM structures presented in [50].
Unfortunately, even if the promise of large density memories is kept, there are still
a number of issues that limit the memory endurance up to 600 Set/Reset cycles.
The switching speed of those memories is in the range of tens of nanoseconds.
Figure5.21 shows and example of a VRRAM that exploits vertical transistors for the
cell selection stage in the array and the integration of the MIM switching element in
a pillar that passes through a metal electrode plate.

The schemes applied for Set/Reset and Read operation in VRRAM are the same
of 1T-nR RRAM, where the select transistor acts both as current limiter and as cell
enabler in the array.

Summarizing, the challenges for 1T-nR and VRRAM widespread manufacturing
and adoption are the following [50]:

• Sneak path leakage: the current sneak paths causing disturbances must be removed
also to reduce unwanted power consumption;

• Selection device: the selector (i.e., transistor or any other selecting element) must
ensure a sufficient HRS/LRS ratio to discriminate between logical states, feature

118 C. Zambelli and P. Olivo

a high current density to support high compliance currents, be scalable for 3D
applications, exhibit a high endurance compatible with that offered by the RRAM
cell;

• Line resistance, Plane resistance, and Parasitic capacitance: to minimize the RC
delays and to allow high operation speed those parameters need to be minimized;

• Interconnections: since 3D integration could result in complicated wire routing,
there is an increased circuit overhead that must be reduced;

• Fabrication technologies: the pillar structures require etching capabilities for
CMOS-friendly material.

5.5 Typical Disturbs in RRAM Technology

The choice of a particular integration scheme for RRAM cells in large array archi-
tectures poses a challenge in terms of disturb analysis and evaluation. As for any
other generation of non-volatile memory technology, the term “disturb” indicates
either an unwanted state change of an unaddressed cell due to a continuous access
on neighbors addressed cells or a state change of a selected cell due to its repeated
access like a continuous Read or data re-write. In RRAM technology the most fre-
quent disturb sources are in selected and unselected cells in an array during Read
operations. In the most popular RRAM cells, Set and Reset occur at different voltage
polarities. A positive Read voltage less than the Set voltage is frequently chosen to
prevent the Set (LRS)-state disturb, whereas the Reset (HRS)-state disturb must be
carefully engineered [51].

On crossbar-based arrays,which is one of the potential array integration topologies
offered by RRAM technology, unselected wordlines and bitlines can be grounded
or biased with a Vdd/3 or Vdd/2 scheme, as presented in the earlier sections. In
order to evaluate the impact on unselected cells during Set/Reset operations in the
worst-case condition, the Vdd/2 biasing effect on Reset and Set wordlines has been
evaluated on different sized 1T-1R RRAM arrays mimicking the access modes of a
cross-point array (this is possible because in 1T-1R arrays all the cells can be accessed
individually). 106VReset/2 pulses have been applied on wordlines in Set state (LRS),
while 106VSet/2 pulses have been applied on wordlines in Reset state (HRS), where
VReset and VSet are the average Reset and Set switching voltages of the RRAM cells
in the array, respectively. The disturb effect has been evaluated on both fresh and
cycled devices, after 10 k Set/Reset cycling operations [46]. Figure5.22 shows the
average Set/Reset state read currents and their standard deviation measured during
106 stress pulses on 0.6µm2 (Fig. 5.22a) and 1µm2 (Fig. 5.22b) devices, for both
fresh and cycled arrays. The dielectric material degradation in the MIM stack makes
Reset and Set switching less effective, reducing the stress sensibility as well. The
average current variation observed during stress is depicted in Fig. 5.23. The Vdd/2
stress caused a higher read current shift on fresh devices, for both 0.6µm2 and 1µm2

1T-1R RRAM devices.

5 Resistive RAM Technology for SSDs 119

Fig. 5.22 Vdd/2 pulse stress effect measured on 0.6µm2 (a) and 1µm2 1T-1R RRAM arrays (b),
in both set (LRS) and reset (HRS) condition [46]

Fig. 5.23 Average read current variationmeasured during Vdd/2 pulse stress measured on 0.6µm2

(a) and 1µm2 1T-1R RRAM devices (b) [46]

Ideally, considering device and circuit design margins, read resistance variation
should be less than 10%. Error Correction Codes can also assist in recovery from less
frequent, larger resistance fluctuations, but the occurrence of the resistance variation
should be less than 1% for effective data integrity. The Read Error Rate, calculated
as the fraction of cells showing a resistance variation higher than 10% during Vdd/2
stress is depicted in Fig. 5.24. Fresh devices show a higher error rate than cycled
devices (after 10 k Set/Reset cycles). Although the average read current variation
is higher for large RRAM cell area, the error rate is lower with respect to that of
smaller devices because of a higher average Set and Reset currents that render the

120 C. Zambelli and P. Olivo

Fig. 5.24 Read Error Rate calculated on 0.6µm2 (a) and 1µm2 1T-1R RRAM devices (b). Full
and dotted lines refers to fresh and cycled devices, respectively [46]

fluctuations less effective.ReaddisturbwithSet polarity (LRS) stress on fresh devices
in Reset state (HRS) is the operation that shows the highest read error rate due to the
conformation of the conductive filament in the cells [46, 51].

The present chapter introduced the RRAM technology from several standpoints
by exposing the typical operation principles, the architectural solutions for their
integration, and the limitations caused by intrinsic and extrinsic aspects. To evaluate
the exploitation of the RRAM for storage application like Solid State Drives we
would redirect the reader to Chap.6, where simulation aspects will be devoted to
devise the RRAM features for high bandwidth and low latency storage.

References

1. J. Suhonen et al., “Low-Power Wireless Sensor Networks: Protocols, Services and Applica-
tions,” Springer, 2012.

2. B. de Salvo, “Silicon Non-Volatile Memories: Paths of Innovation,” Hoboken, Wiley-ISTE,
2009.

3. Y. Zhang, “Future Wireless Networks and Information Systems,” Springer, 2012.
4. L. O. Chua, “Resistance switching memories are memristors,” Applied Physics A, vol. 102,

no. 4, pp. 765–783, 2011.
5. R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Mater., vol.

6, pp. 833–840, 2007.
6. J. Lee et al., “Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in

nonvolatile memory applications,” Appl. Phys. Lett., vol. 97, no. 17, p. 172–105, Oct. 2010.
7. Ch. Walczyk et al., “Impact of Temperature on the Resistive Switching Behavior of Embedded

HfO2-Based RRAM Devices,” IEEE Trans. Electron Devices, vol. 58, no. 9, pp. 3124–3131,
2011.

http://dx.doi.org/10.1007/978-3-319-51735-3_6

5 Resistive RAM Technology for SSDs 121

8. D. Walczyk et al., “Resistive switching behavior in TiN/HfO2/Ti/TiN devices,” International
semiconductor conference dresden-grenoble (ISCDG), 2012, pp. 143–146.

9. P. Lorenzi et al., “Forming kinetics in HfO2-based RRAM cells,” IEEE Trans. Electron.
Devices, vol. 60, no. 1, pp. 438–443, 2013.

10. N. Raghavan et al., “Statistical insight into controlled forming and forming free stacks for
HfOx RRAM”, Microelectron. Eng., vol. 109, pp. 177–181, 2013.

11. D. Wouters, “Resistive switching materials and devices for future memory applications,” Tuto-
rial IEEE-SISC, Dec. 2012.

12. T. Ninomiya et al., “Conductive filament scaling of TaOx bipolar ReRAM for improving data
retention under low operation current,” IEEE Trans. Electron Devices, vol. 60, no. 4, pp. 1384–
1389, 2013.

13. H-T. Liu et al., “Effect of pulse and dc formation on the performance of one-transistor and
one-resistor resistance random access memory devices,” Chin. Phys. Lett., vol. 32, no. 2, pp.
1–3, 2015.

14. C. Zambelli et al., “Statistical analysis of resistive switching characteristics in ReRAM test
arrays,” IEEE International Conference on Microelectronics Test Structures (ICMTS), pp. 27–
31, 2014.

15. A. Grossi et al., “Electrical characterization and modeling of pulse-based forming techniques
in RRAM arrays,” Solid-State Electronics, vol. 115, Part A, pp. 17–25, 2016.

16. B. Govoreanu et al., “10×10nm2Hf/HfOx crossbar resistive RAMwith excellent performance,
reliability and low-energy operation,” IEEE International Electron Devices Meeting (IEDM),
2011, pp. 31.6.1–31.6.4.

17. A. Grossi et al., “Performance and reliability comparison of 1T-1R RRAM arrays with amor-
phous and polycrystalline HfO2,” Joint International EUROSOI Workshop and International
Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), 2016, pp. 80–83.

18. E.A. Miranda et al., “Model for the Resistive Switching Effect in HfO2MIM Structures Based
on the Transmission Properties of Narrow Constrictions,” IEEE Electron Device Letters, vol.
31, no. 6, pp. 609–611, 2010.

19. S. Ambrogio et al., “Statistical Fluctuations in HfOx Resistive-Switching Memory: Part I -
Set/Reset Variability,” IEEE Trans. on Electron Devices, vol. 61, no. 8, pp. 2912–2919, 2014.

20. C. Zambelli et al., “Electrical characterization of read window in reram arrays under different
SET/RESET cycling conditions,” IEEE International Memory Workshop (IMW), 2014, pp.
1–4.

21. G. Wang et al., “Impact of stress time of program operation on the endurance performance,”
IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT),
2014, pp. 1–3.

22. Y.Y. Chen et al., “Balancing SET/RESET Pulse for 1010 Endurance in HfO2/Hf 1T1R Bipolar
RRAM,” in IEEE Trans. on Electron Devices, vol. 59, no. 12, pp. 3243–3249, 2012.

23. S.-S. Sheu et al., “A 4Mb embedded SLC resistive-RAMmacro with 7.2 ns read-write random-
access time and 160 ns MLC-access capability,” Proc. ISSCC, 2011, pp. 200–202.

24. Y.S. Chen et al., “Highly Scalable Hafnium Oxide Memory with Improvements of Resis-
tive Distribution and Read Disturb Immunity,” IEEE International Electron Devices Meeting
(IEDM), 2009, pp. 105–108.

25. T.-Y. Liu et al., “A 130.7 mm2 2-Layer 32 Gb ReRAMMemory Device in 24 nm Technology,”
Proc. ISSCC, 2013, pp. 210–212.

26. A. Grossi et al., “Impact of Intercell and Intracell Variability on Forming and Switching Para-
meters in RRAM Arrays,” in IEEE Trans. on Electron Devices, vol. 62, no. 8, pp. 2502–2509,
2015.

27. A. Fantini et al., “Intrinsic switching variability in HfO2 RRAM,” IEEE International Memory
Workshop (IMW), 2013, pp. 30–33.

28. D. Ielmini and R. Waser, “Resistive Switching: From Fundamentals of Nanoionic Redox
Processes to Memristive Device Applications”, Wiley, 2016.

29. B. Jiao et al., “Resistive switching variability study on 1T1R AlOx/WOx-based RRAM array,”
IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), 2013,
pp. 1–2.

122 C. Zambelli and P. Olivo

30. A. Chen and M. Lin, “Variability of resistive switching memories and its impact on crossbar
array performance,” in IEEE International Reliability Physics Symposium (IRPS), 2011, pp.
MY.7.1–MY.7.4.

31. G. Piccolboni et al., “Investigation of HfO2/Ti based vertical RRAM - Performances and
variability,” Non-Volatile Memory Technology Symposium (NVMTS), 2014, pp. 1–5.

32. Y.Y. Chen et al., “Understanding of the Endurance Failure in Scaled HfO2-based 1T1R RRAM
through Vacancy Mobility Degradation”, IEDM Tech. Dig., 2012, pp.482–485.

33. B. Chen et al., “Physical Mechanisms of Endurance Degradation in TMO-RRAM”, IEDM
Tech. Dig., 2011, pp.283–286.

34. P. Huang et al., “Analytic model of endurance degradation and its practical applications for
operation scheme optimization in metal oxide based RRAM,” IEEE International Electron
Devices Meeting (IEDM), 2013, pp. 22.5.1–22.5.4.

35. K. Higuchi et al., “Investigation of Verify-ProgrammingMethods to Achieve 10Million Cycles
for 50nm HfO2 ReRAM,” IEEE International Memory Workshop (IMW), 2012, pp. 1–4.

36. H. Yamazawa et al., “50 nm AlxOy ReRAM array retention characteristics before and after
endurance,” Silicon Nanoelectronics Workshop (SNW), 2014, pp. 1–2.

37. Y.Y. Chen et al., “Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low
operating current,” IEEE International Electron Devices Meeting (IEDM), 2013, pp. 10.1.1–
10.1.4.

38. S. Yu et al., “A Monte Carlo study of the low resistance state retention of HfOx based resistive
switching memory,” Applied Physics Letters, vol. 100, 043507, 2012.

39. D. Ielmini et al., “Size-Dependent Retention Time in NiO-Based Resistive-Switching Memo-
ries,” in IEEE Electron Device Letters, vol. 31, no. 4, pp. 353–355, 2010.

40. F.M. Puglisi et al., “Instability of HfO2 RRAM devices: Comparing RTN and cycling variabil-
ity,” IEEE International Reliability Physics Symposium (IRPS), 2014, pp. MY.5.1–MY.5.5.

41. A. Grossi et al., “Relationship among Current Fluctuations during Forming, Cell-To-Cell Vari-
ability and Reliability in RRAMArrays,” IEEE InternationalMemoryWorkshop (IMW), 2015,
pp. 1–4.

42. R. Degraeve et al., “Quantitative model for post-program instabilities in filamentary RRAM,”
presented at IEEE International Reliability Physics Symposium (IRPS), 2016.

43. J. Liang and H.S.P. Wong, “Cross-Point Memory ArrayWithout Cell Selectors—Device Char-
acteristics and Data Storage Pattern Dependencies,” in IEEE Trans. on Electron Devices, vol.
57, no. 10, pp. 2531–2538, 2010.

44. A. Sawa, “Resistive switching in transition metal oxides,” in Materials Today, vol. 11, no. 6,
pp. 28–36, 2008.

45. X. Xue et al., “A 0.13 µm 8Mb Logic-Based CuxSiyO ReRAMWith Self-Adaptive Operation
for Yield Enhancement and Power Reduction,” in IEEE Journal of Solid-State Circuits, vol.
48, no. 5, pp. 1315–1322, 2013.

46. C. Zambelli et al., “RRAM Reliability/Performance Characterization through Array Architec-
tures Investigations,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2015,
pp. 327–332.

47. R. Fackenthal et al., “A 16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm technol-
ogy,” IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2014, pp. 338–339.

48. H. Nazarian, “Breakthrough 3D RRAM Technology for super-dense, low latency, low power
data storage system”, Flash Memory Summit, 2014.

49. S.H. Jo, “Recent Progress in RRAM Materials and Devices”, SEMICON Korea, 2015.
50. H.H.-Y. Chen et al., “3D Vertical RRAM,” Flash Memory Summit, 2013.
51. W.-C.Luo et al., “RapidPrediction ofRRAMRESET-StateDisturb byRampedVoltageStress”,

in IEEE Electron Device Letters, vol. 33, no. 4, 2012.

Chapter 6
Simulations of RRAM-Based SSDs

Lorenzo Zuolo, Cristian Zambelli, Rino Micheloni and Piero Olivo

Abstract In this chapter SSDExplorer, a fine-grained SSD simulator, is used to
evaluate the possible impact of emerging non-volatile memories, such as Resistive
RAM (RRAM), on future SSD architectures. Does it make sense to fully replace
NANDs with one of the emerging memories? What’s the benefit? Is it better to
develop a hybrid drive, where a RRAM is used as cache? Most of the new memories
are still in the development phase, well before a real mass production; as a matter
of fact, simulations are the only way to answer the above mentioned questions and
figure out where a new non-volatile technology can really help, in terms of both
performances and cost saving.

SSDs are the most effective solution for both consumer applications and large enter-
prise environments when high performance storage devices are required [1]. To cope
with the increasing request of data storage, especially for large computing facili-
ties, there is a call for a continuous expansion of the bit density in the SSD storage
medium, namely the NAND Flash. This is generally achieved through either a tech-
nology shrink or amulti-bit per cell storage or both; in all cases, it implies a significant
degradation ofmemory speed and reliability, thus impacting themain figures ofmerit
of an SSD (i.e., latency and bandwidth) [2].

Resistive RAM (RRAM) is perceived by the storage community as a reliable
alternative to NAND Flash in SSDs for low latency applications [3]. These emerging
memories are non-volatile as NAND flash, but with a lower read/write latency and a
higher reliability. However, the relatively small storage capacity of RRAMmemories
integrated so far [4, 5] has limited their usage to specific applications such as saving
critical data during power loss events or as a cachememory for fast datamanipulation,
like in the hybrid system described in [6]. In this case, RRAMs are combined with

L. Zuolo (B) · C. Zambelli · P. Olivo
Dipartimento di Ingegneria, Università degli Studi di Ferrara, via G. Saragat, 1,
44122 Ferrara, Italy
e-mail: lorenzo.zuolo@unife.it

R. Micheloni
Performance Storage Business Unit, Microsemi Corporation, Vimercate, Italy

© Springer International Publishing AG 2017
R. Micheloni (ed.), Solid-State-Drives (SSDs) Modeling,
Springer Series in Advanced Microelectronics 58,
DOI 10.1007/978-3-319-51735-3_6

123

124 L. Zuolo et al.

NAND flash memories to minimize latency and to improve both the bandwidth and
the reliability of the drive.

To increase the density of RRAM memory arrays, several researchers started
to consider advanced 3D architectures. Among them, the 1T-nR approach seems
the easiest to integrate by stacking multiple RRAM planes, each one selected by
a proper decoding structure [7]. The 1T-nR arrays often utilize cross-point core
architectures for higher density and one transistor that drives n RRAMdevices. Those
arrays are forecasted to be fully compatible with the state-of-the-art NAND Flash
interface [8, 9], paving the way to innovative “All-RRAM” SSD’s architectures. In
these systems, NAND flash memories are completely replaced by RRAM devices
offering a highly reliable and extremely faster storage medium.

In this chapter, a thorough design space exploration of a 512 GB All-RRAM
SSD architecture is performed, with particular attention to architectural bottlenecks
and inefficiencies, by using the SSDExplorer co-simulator [10]. We assumed a full
compatibility of RRAM chips with typical NAND flash interfaces [11, 12], and
hence a state-of-the-art SSD controller is embodied in the simulation environment.
In light of these considerations, we leverage both the internal page architecture of
a 1T-nR RRAM chip [8] and the SSD’s firmware to find the optimal configura-
tion, thus enabling the adoption of the RRAM technology in high performance SSD
applications. Collected results show that, in standard working condition (i.e., when
4 kB transactions are issued by the host system), All-RRAM SSDs are able to show
extremely low latency only if a proper management of the operations is adopted.

6.1 All-RRAM SSD Architecture

The RRAM chip considered in the simulated SSD architecture is a configurable
16 planes 32 Gbits memory module with a 8 bit ONFI 2.0/Toggle Mode interface,
capable of 200MB/s [11, 12] (see Fig. 6.1). Each plane is a 2 Gbit RRAM array with
a page size of 256 B [8]. The RRAM chip features an internal memory controller
that can work either with a native addressing mode (i.e. 256 byte-wide page) or in a
multi-plane emulated addressing mode, which allows accessing from 512 B up to 4
kB within a single operation. A read operation takes 1 µs per page. The main array
characteristics of this technology are summarized in Table6.1.

The simulated SSD configuration (sketched in Fig. 6.2) is a 512 GB drive made of
16 channels; each channel is populated with 8 RRAM targets. SSD controller, Error
Correction Code modules and DRAM buffers are included to keep the compatibility
with state-of-the-art NAND-Flash based SSDs [10]. The drive host interface is a
PCI-Express Gen2 with 8 lanes adopting the NVM-Express protocols [13], which is
typical in enterprise-class SSDs. Different 100% random read workloads were used
to test the 2 addressing modes described above, by aligning the logical block address
of the drive with the effective RRAM page size. Write workloads are not described

6 Simulations of RRAM-Based SSDs 125

Fig. 6.1 32 Gbit RRAM memory module architecture

Table 6.1 Main characteristics of the simulated RRAM devices

Chip parameter Configuration

IO-bus interface ONFI 2.0/Toggle mode

IO-bus speed 200 MB/s

Native page size 256 B

Emulated page size 512–1024–4096 B

tRE AD per page 1 µs

Fig. 6.2 Block diagram of
the simulated All-RRAM
512 GB SSD architecture

in this chapter since the target drive architecture makes use of DRAM buffers where
write operations are cached; therefore they do not represent a significant threat for
the latency and bandwidth figures.

126 L. Zuolo et al.

6.1.1 Page Size Versus Queue Depth

A statistical assessment of the All-RRAM SSD read latency and bandwidth figures
was performed by simulating 500,000 random read operations, with different RRAM
page sizes and queue depths. As shown in Figs. 6.3 and 6.4, by setting a fixed queue
depth of 16 read commands, the read bandwidth of the SSD increases proportionally
with the memory page size, while the latency remains almost constant. A different
behavior is observed when the RRAM page size is fixed and the read commands
queue depth is varied from 1 to 32. The bandwidth increases proportionally with the
queue depth up to a saturation level, which depends on the RRAM page size (see
Fig. 6.5). For latency, trend is the same but the saturation happens for lower queue
depth values (see Fig. 6.6).

Fig. 6.3 Simulated SSD’s
average read bandwidth as a
function of the RRAM page
size, with a queue depth of
16 commands

Fig. 6.4 Simulated SSD’s
average read latency as a
function of the RRAM page
size, with a queue depth of
16 commands

6 Simulations of RRAM-Based SSDs 127

Fig. 6.5 Simulated SSD’s
average read bandwidth as a
function of the host interface
queue depth. Native 256 B
and 4 kB multi-plane RRAM
addressing modes are
considered

Fig. 6.6 Simulated SSD’s
average read latency as a
function of the host interface
queue depth. Native 256 B
and 4 kB multi-plane RRAM
addressing modes are
considered

In SSD architectures, especially those for enterprise environments, it is extremely
important to analyze the Quality of Service (QoS), with special focus on read. A
slower QoS of the read operation corresponds to a longer response time of the drive
when the host wants to read data for subsequent manipulation [14]. The Cumulative
Distribution Function (CDF) and the Probability Density Function (PDF) of the
latency are very useful tools for this kind of analyses. Figure6.7 shows CDF and
PDF for the All-RRAM SSD. When user transactions match the RRAM chip page
size (i.e. 256 B), and only one operation is served at a time, latency gets extremely
low, in the range of tens of microseconds. The longest read response time (i.e., 99.99
percentile of the CDF) is around 16 µs, which is well below the few hundreds of
microseconds offered by NAND Flash-based SSDs. However, such queue depth and
RRAM page size do not reflect the workload conditions of the state-of-the-art host
platforms and file-systems, which are designed to issuemultiple read operations with

128 L. Zuolo et al.

Fig. 6.7 CDF (a) and PDF
(b) of the simulated SSD’s
read latency with a queue
depth of 1 command and a
native 256 B RRAM page
size

a fixed payload of 4 kB. Looking at Fig. 6.8, when the host interface queue depth is
fixed to 32 commands and user operations match the native 256 B RRAM addressing
mode, the median latency rapidly increases up to 66µs. Eventually, with a 4 kB page
All-RRAM SSD, read response times become very similar to those of a simulated
1x-nm MLC NAND Flash-based SSD (Fig. 6.9).

In order to explain the above mentioned results, we observed the RRAM I/O bus
interface utilization and the percentage of active RRAM dies, as a function of the
RRAMpage size and drive’s commands queue depth.When the payload of read trans-
actions increases and the queue depth is large enough to serve multiple commands,
more data have to be transferred from the memories to the SSD controller. This
condition yields to a massive overhead in terms of data transfers, thus impacting the
percentage of the I/Omemory bus usage. Thismetric rapidly grows up, reaching 48%

6 Simulations of RRAM-Based SSDs 129

Fig. 6.8 CDF (a) and PDF
(b) of the simulated SSD’s
read latency with a queue
depth of 32 commands and a
native 256 B RRAM page
size

when 4 kB transactions are served with a queue depth of 16, as shown in Figs. 6.10
and 6.11. As a consequence, the overall SSD latency is impacted and the perfor-
mance advantages of RRAMs partially vanish. Another important consideration can
be made by observing the average percentage of active RRAM memories under a
100% random read workload. With reference to Figs. 6.12 and 6.13, even consider-
ing 4 kB transactions, this percentage remains far below 10%. These results clearly
denote a high under-utilization of SSD resources. In fact, as previously described,
the analyzed All-RRAM SSD is based on a controller designed for NAND flash
memories. This basic approach is cost-effective but, on the other hand, it does not
permit to properly use the underlying storage medium, which is completely different
from NAND.

130 L. Zuolo et al.

Fig. 6.9 CDF (a) and PDF
(b) of the simulated SSD’s
read latency with a queue
depth of 32 commands and
the emulated 4 kB RRAM
page size. A comparison
with a state-of-the-art NAND
Flash SSD is provided

Fig. 6.10 Average RRAM
I/O bus interface usage as a
function of the host interface
queue depth. Native 256 B
and 4 kB multi-plane RRAM
addressing modes are
considered

6 Simulations of RRAM-Based SSDs 131

Fig. 6.11 Average RRAM
I/O bus interface usage as a
function of the RRAM page
size when a queue depth of
16 commands is fixed

Fig. 6.12 Percentage of
active RRAM dies as a
function of the host interface
queue depth. Native 256 B
and 4 kB multi-plane RRAM
addressing modes are
considered

6.1.2 Design Space Exploration of All-RRAM SSDs

Figures6.14 and 6.15 show a breakdown of the latency, considering a 200 MB/s
DDR I/O bus frequency. It is clear that, compared to NAND flash memories, the I/O
bus transfer time is the dominant factor when RRAMs are used.

Thanks to the advent of extremely fast storage media such as RRAMs, memory
vendors are now investing to push the I/O frequency to 400MHz and beyond [15].

In order to understand how next generation SSD controllers could improve perfor-
mances of an All-RRAM SSD, a complete design space exploration was performed,
considering a 800 MB/s I/O bus transfer rate and 5 different RRAM page sizes:
256 B, 512 B, 1 kB, 2 kB, and 4 kB. For these simulations, the RRAM character-
istics summarized in Table 6.1 were kept unaltered, and only the IO-Bus speed was

132 L. Zuolo et al.

Fig. 6.13 Percentage of active RRAM dies as a function of the RRAM page size when a queue
depth of 16 commands is fixed

Fig. 6.14 Breakdown of the storage latency when a RRAM and a 200 MB/s I/O bus are used

increased to exploit the capabilities of the latest standard [15]. Drive bandwidth, aver-
age latency and Quality of Service (QoS) [14] were simulated for several page size
configurations. The bandwidth is the average number of read commands completed
in a second; the average latency is the average time elapsed between a read com-
mand submission and its completion; the QoS is computed as the 99.99 percentile
of the SSD’s latency distribution. To provide a complete performance exploration of
the SSD’s architecture, data were collected for different host Queue Depths (QD),
ranging from 1 to 32 commands [13].

6 Simulations of RRAM-Based SSDs 133

Fig. 6.15 Breakdown of the storage latency when a 1X-MLC NAND flash memory and a 200
MB/s I/O bus are used

6.1.2.1 NAND-like Mode: RRAM with 4 kB Page Size

This case study corresponds to the simple replacement of a NAND Flash memory
with a RRAM chip in a user-transparent mode, and it will be used as a baseline
for comparison. Therefore, as already presented in Sect. 6.1.1, in order to provide
a full compatibility with NAND, the RRAM die must operate in 16-plane mode.
Figures6.16 and 6.17 (dashed lines) show average latency, QoS, and bandwidth

Fig. 6.16 Average latency and QoS of the simulated All-RRAM SSD with page sizes of 4 kB and
256 B

134 L. Zuolo et al.

Fig. 6.17 Average bandwidth of the simulated All-RRAM SSD with page sizes of 4 kB and 256 B

increase with respect to QD. In particular, the bandwidth saturates for a QD equal to
8 commands, showing that the SSDcontroller has reached itsmaximumperformance.
As sketched in Fig. 6.14, the average read latency of the SSD’s storage layer depends
on two factors: memory tRE AD and data transfer time from the memory to the SSD
controller. As displayed in Fig. 6.16, at QD = 1 (i.e. one command issued at a time),
average latency is 9.4 µs, which is almost 4 times shorter than the one observed in
Fig. 6.6. This improvement is mainly due to the faster I/O bus transfer time (i.e., the
800 MB/s memory interface). In fact, in this case the transfer of a 4 kB page takes
only 6 µs instead of the 21 µs taken by the legacy 200 MB/s interface. To be fair, it
must be highlighted that, compared to the memory tRE AD time, the I/O bus transfer
contribution still dominates the overall SSD’s latency.

Although the achieved latency is far below the typical values of NAND-based
SSDs [8], RRAMs can be further optimized to reach even higher performances. For
example, one area of improvement is the partitioning of the 4 kB transactions coming
from the host into smaller chunks. The goal of this approach is to reduce both the data
transfer time by selecting the right number of planes to be simultaneously accessed
(i.e. optimal memory page size), and the number of internal read commands to be
handled by the SSD firmware.

6.1.2.2 Single-Plane RRAM

The minimum read granularity allowed by RRAMs is a single plane 256 B page
read operation, which could potentially reduce both the transfer time and the SSD
latency. However, as shown in Fig. 6.18, since the host works with 4 kB transactions,
it is necessary to split the host operations in 16 chunks of 256 B each. The firmware

6 Simulations of RRAM-Based SSDs 135

Fig. 6.18 A single 4 kB host transaction is split across multiple memory channels

running inside the SSD performs this operation: by using a 16 channels architecture
and DRAM buffers, firmware reads in parallel all the addressed 256 B chunks, and
rebuilds the 4 kB transaction before sending the data back to the host. Figures6.16
and 6.17 (solid lines) show bandwidth, average latency and QoS achieved by the
aforementioned approach. Looking at the results of the simulations performed with
QD=1, the straightforward conclusionwould be that the 256Bpage size reducesSSD
latency, increases the bandwidth, and improves the QoS. However, for QD> 1 these
considerations do not hold true anymore, since the number of operations internally
handled by the SSD controller increases by a factor 16, leading to a saturation of
its processing capabilities. This turns into a dramatic performance degradation, also
considering that all data chunks must be temporarily stored inside the DRAM buffer,
whose access is contended by all the SSD channels, thus causing resources starvation.

6.1.2.3 Multi-plane RRAM

To reduce both the amount of commands processed by the SSD controller and the
number of accesses to the internal DRAM, different RRAM page sizes were con-
sidered: 512 B, 1 kB, and 2 kB. To keep the payload of the 4 kB host transactions
constant, SSD’s firmware and RRAMmemories were co-designed to work in multi-
plane mode. In other words, when a n * 256 B RRAM page size is used, being
n = [2, 4, 8], the SSD’s firmware is configured to read 16/n chunks of n * 256 B
each from 16/n parallel channels. Figure6.19 shows the cumulative latency distrib-
utions and the QoS of the simulated All-RRAM SSD as a function of the page size,
when a host QD = 1 is selected. The optimal drive latency is achieved neither with
the standard 256 B page size nor with the 4 kB NAND-like mode, but rather with a
1 kB multi-plane page configuration. Same considerations apply to other host QD
values, as shown in Fig. 6.20a–d, there are two hot spots for the page size: when QD
< 8 the value is 1 kB, whereas it becomes 2 kB for QD > 8. Figure6.21 shows the

136 L. Zuolo et al.

Fig. 6.19 Normal probability paper of the latency of the simulated All-RRAM SSD for QD = 1
and different page sizes

(a) (b)

(c) (d)

Fig. 6.20 SSD average latency and QoS for host QD = 1 (a), QD = 8 (b), QD = 16 (c), and QD =
32 (d)

bandwidth achieved by the All-RRAM SSD as a function of both the RRAM page
size and the host QD. When QD = 1, the maximum bandwidth is with a page size of
1 kB; for QD > 16 the maximum bandwidth is with 4 kB.

These results proved that emerging memories such RRAMs have to be wisely
designed when they are used as the main storage media in SSDs. In this regard,

6 Simulations of RRAM-Based SSDs 137

Fig. 6.21 SSD’s bandwidth
as a function of the RRAM
page size and the host QD

replacing NAND flash memories with RRAMs in a “plug and play” fashion is not
the best way to reach high performances and low-latency. Moreover, even in the best
working conditions (i.e., co-designing the memories characteristics together with
the whole SSD architecture), it has been shown that the optimum design point of
the All-RRAM SSD is still affected by the host configuration and its requirements.
This is in agreement with today’s trend of developing specific SSD architectures
for specific host applications [16]; the downside of this approach is that it leads
to extremely complex SSD designs with hundreds of parameters to explore. SSD-
Explorer can definitely help to address the above mentioned problems, allowing a
better understanding of where, in All-RRAM SSDs, the co-design activity is more
effective.

References

1. R. Micheloni, A. Marelli, and K. Eshghi. Inside Solid State Drives (SSDs). Springer, 2012.
2. L. Zuolo, C. Zambelli, R. Micheloni, D. Bertozzi, and P. Olivo. Analysis of reliabil-

ity/performance trade-off in solid state drives. In IEEE International Reliability Physics Sym-
posium, pages 4B.3.1–4B.3.5, June 2014.

3. E.I. Vatajelu, H. Aziza, and C. Zambelli. Nonvolatile memories: Present and future challenges.
In International Design Test Symposium (IDT), pages 61–66, Dec. 2014.

4. C. Zambelli, A. Grossi, D. Walczyk, T. Bertaud, B. Tillack, T. Schroeder, V. Stikanov, P. Olivo,
and C.Walczyk. Statistical analysis of resistive switching characteristics in ReRAM test arrays.
In IEEE Int. Conf. on Microelectronics Test Structures (ICMTS), pages 27–31, Mar. 2014.

5. X. Y. Xue, W. X. Jian, J. G. Yang, F. J. Xiao, G. Chen, X. L. Xu, Y. F. Xie, Y. Y. Lin, R. Huang,
Q. T. Zhou, and J. G. Wu. A 0.13 µm 8mb logic based cuxsiyo resistive memory with self-
adaptive yield enhancement and operation power reduction. In Symposium on VLSI Circuits
(VLSIC), pages 42–43, June 2012.

6. K. Takeuchi. Hybrid solid-state storage system with storage class memory and nand flash
memory for big-data application. In IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1046–1049, Jun. 2014.

7. S.H. Jo. Recent progress in rram materials and devices. In SEMICON Korea, 2015.

138 L. Zuolo et al.

8. S. Dubois. Crossbar Resistive RAM (RRAM): The Future Technology for Data Storage. In
SNIA Data Storage Innovation Conference, Apr. 2014.

9. S Bates, M Asnaashari, and L. Zuolo. Modelling a High-Performance NVMe SSD constructed
from ReRAM. In Proc. of Flash Memory Summit, Aug. 2015.

10. L. Zuolo, C. Zambelli, R. Micheloni, M. Indaco, S. Di Carlo, P. Prinetto, D. Bertozzi, and
P. Olivo. Ssdexplorer: A virtual platform for performance/reliability-oriented fine-grained
design space exploration of solid state drives. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 34(10):1627–1638, 2015.

11. Open Nand Flash Interface (ONFI). http://www.onfi.org.
12. Ha Ryong (Harry) Yoon. Toggle-Mode NAND to Fill Growing Need for Higher Performance.

In Proc. of Flash Memory Summit, Aug. 2009.
13. Nvm express 1.1 specification, 2013. http://nvmexpress.org/wp-content/uploads/2013/05/

NVM_Express_1_1.pdf.
14. Intel solid-state drive dc s3700 series – quality of service., 2013. http://www.intel.com/content/

www/us/en/solid-state-drives/ssd-dc-s3700-quality-service-tech-brief.html.
15. Open Nand Flash Interface (ONFI) revision 4.0. www.onfi.org/~/media/onfi/specs/onfi_4_0-

gold.pdf?la=en.
16. Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and Yuanzheng Wang. Sdf:

Software-defined flash for web-scale internet storage systems. In Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS, pages 471–484, 2014.

http://www.onfi.org
http://nvmexpress.org/wp-content/uploads/2013/05/NVM_Express_1_1.pdf
http://nvmexpress.org/wp-content/uploads/2013/05/NVM_Express_1_1.pdf
http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3700-quality-service-tech-brief.html
http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3700-quality-service-tech-brief.html
www.onfi.org/~/media/onfi/specs/onfi_4_0-gold.pdf?la=en
www.onfi.org/~/media/onfi/specs/onfi_4_0-gold.pdf?la=en

Chapter 7
Simulation of SSD’s Power Consumption

Lorenzo Zuolo, Cristian Zambelli, Luca Crippa, Rino Micheloni
and Piero Olivo

Abstract In order to avoid changing existing infrastructures, SSDs need to fit in the
same physical space of HDDs and, therefore, in their power envelope. Unfortunately,
NAND power consumption is strongly dependent upon the Flash operation (i.e.
read, write, erase). For many generations, SSD’s power has been over- or under-
estimated by adopting the worst case power consumption scenario (i.e. assuming
write operations all the time); this approach is running out of steam because it always
leads to exceeding power specs with the most recent NAND technologies. In order
to correctly evaluate power, it is necessary to estimate the number of operations per
time interval and their specific type (read, write, erase). Simulations are the only
practical way to address this problem: when the prototype is ready (especially if the
controller is a multi-million dollar ASIC) there are no chances to significantly reduce
power, it’s simply too late! This chapter shows how a SSD fine-grained simulator
like SSDExplorer can be used as a design tool for developing power management
algorithms that canminimize the power consumption of the entire SSDand, therefore,
open the door to an even bigger adoption of SSDs (e.g. in data centers).

The adoption of SSDs in hyper-scaled environments such as cloud computing and
big-data servers is opening a new era for storage, thanks to non-volatile memories.
In this context, a major constraint that must be considered during the design phase
of an SSD is its power consumption, which, as a matter of fact, limits the storage
capacity of these devices. ExaBytes-dense (1018 Bytes) storage platforms completely
relying on NAND flash memories (generally called “All-Flash” arrays) aim at com-
pletely replacing traditional HDDs [1–6]. However, to pursue this goal, besides the

L. Zuolo (B) · C. Zambelli · P. Olivo
Dipartimento di Ingegneria, Università degli Studi di Ferrara,
via G. Saragat, 1, 44122 Ferrara, Italy
e-mail: lorenzo.zuolo@unife.it

L. Crippa
Microsemi, Via Torri Bianche 1, 20871 Vimercate, Italy

R. Micheloni
Performance Storage Business Unit, Microsemi Corporation, Vimercate, Italy

© Springer International Publishing AG 2017
R. Micheloni (ed.), Solid-State-Drives (SSDs) Modeling,
Springer Series in Advanced Microelectronics 58,
DOI 10.1007/978-3-319-51735-3_7

139

140 L. Zuolo et al.

standard chip power optimization of the SSD controller, it is mandatory to consider
the entire storage infrastructure. When looking at SSDs, high capacity and power
efficiency definitely don’t go hand in hand, especially for general purpose workloads.
For example, TLC NAND flash memories offer a large storage capacity but they
cannot be used forwrite-intensiveworkloads because of their reduced endurance rate;
moreover, they exhibit slower access time and higher power consumption compared
to MLC and SLC. As a consequence, it is clear that applications have to be care-
fully co-designed together with the underlying storage system, by considering both
the target performance and the power consumption simultaneously. This approach is
leading to a new design methodology of SSD architectures called “software-defined
Flash” [7]. This methodology tries to connect the application development with the
SSDdesign phase, and to build a custompower-efficient and high-performing storage
environment for a specific workload.

In this chapter a simulation methodology to assess the power consumption of a
specific SSD architecture is presented. Themain goal is to describe the different parts
of the SSD design, and to highlight the increasing need to contextualize the design
phase of the SSD inside its application scenario.

7.1 Accurate Estimate of the Actual SSD Power
Consumption

As described in Chap.1, NAND-Flash based SSDs feature an embedded controller
and a parallel array of NAND Flash chips; if properly designed, this system allows
achieving high throughput, low read/write latency and high reliability. However, to
deal with the increasing performance requirements of hyperscale systems such as
cloud computing and big data servers, SSD designers started to leverage the memory
I/O parallelism, by adding hundreds of NAND memories to the same system. This
approach leads to extremely fast yet complex solutions, which on one hand allow
achieving the target performance/capacity of the drive but, on the other hand, heavily
impact the overall SSD power consumption. This last point is of a particular concern
in cloud environments due to the restricted power budget and to the severe green
policies ruling their deployment [8].

To better understand where the power consumption issue comes from, several
approaches have been proposed. Among them, it is worth pointing out 2 techniques.
First of all, there is a top-down approach, which leverages the real hardware to mea-
sure the SSD’s power consumption during its run time [9, 10]; on the opposite side,
we have a simple bottom-up approach, which assesses the drive power consumption
starting from that of NAND flash memories [11]. However, a closer analysis of these
methodologies reveals that both present several drawbacks. From a designer perspec-
tive, measuring the power consumption of the drive after fabrication does not provide
any significant value. Similarly, simulating the NAND flash power figures turns out
to be inaccurate, especially considering that NAND program and read algorithms are
not known and, hence, any power estimation could heavily differ from real silicon.

http://dx.doi.org/10.1007/978-3-319-51735-3_1

7 Simulation of SSD’s Power Consumption 141

Fig. 7.1 Superposition
principle of NAND currents.
C1 and C2 are the currents
measured on single chips,
while C3 is the current
measured on the main power
supply

Assessing the power consumption during the design phase would be a desirable
feature, which could help designers to efficiently define the drive architecture, thus
avoiding any over-engineering. A possible alternative is a bottom-up approach that,
starting from measured NAND flash currents during write and read operations, cal-
culates the total SSD power consumption by using a cycle-accurate SSD simulator.

In this way, for any possible workload, the actual SSD power consumption can
be estimated at any cycle. Furthermore, it is possible to estimate the percentage of
power consumption related to flash memories and to other components (ECC, Flash
controller, DRAM,...), aswell as to foresee any possible overcoming of themaximum
allowed power. The exact knowledge of the actual current sunk by a flash die at any
single cycle allows taking actions to optimize the SSD power profile, such as, for
instance, the program suspend.

The underlying assumption is that the Kirchhoff’s current law holds true for the
NAND flash sub-system. Since NAND flash chips are connected to the same power
supply, their total current is, in first order approximation, equal to the sum of each
NANDflash chip contribution. Figure7.1 shows a currentmeasurement done in a real
SSD product which proves that this assumption is true. In this experiment, the SSD
controller issued 2 read commands with a 20 µs skew to 2 TLC NAND flash chips,
whose parameters are reported in Table7.1, connected to the same power supply;
C1 and C2 are the currents of the two chips, while C3 is the current of the main
power supply. As anticipated, C3 is the sum of currents C1 and C2, and this proves
the possibility of exploiting the superposition effect for estimating the NAND flash
power consumption. To sum up, in order to simulate the power consumption of the
whole NAND flash sub-system, these are the steps to follow:

• measure the current sunk by a single chip during standard read, program and erase
operations;

• monitor the memories’ ready/busy switching activity;
• combine the experimental current waveforms with the memory switching activity.

142 L. Zuolo et al.

Table 7.1 Main characteristics of the measured NAND flash memories

VCC 3.3 V

Technology node mid-1x-nm

Storage paradigm TLC-128 Gb

Interface Toggle

Bus speed 400 MT/s

Average tPROG (lower page) 800 µs

Average tPROG (middle page) 1900 µs

Average tPROG (upper page) 4300 µs

Average tREAD (lower page) 80 µs

Average tREAD (middle page) 100 µs

Average tREAD (upper page) 80 µs

Fig. 7.2 Experimental setup for the characterization of power consumption of NAND flash mem-
ories

Figure7.2 shows the experimental setup for the characterization of NAND cur-
rents. A V/I converter [12] is connected in parallel to a 300 m� resistor (RSENSE) to
sense the voltage drop produced by the current ILOAD . The resistor is connected in
series to the VCC power supply of the NAND-DIMM test board, where 4 different
NAND flash chips are soldered (see Fig. 7.3). Both the sensing resistance and the
current-Sense amplifier gain have been wisely selected to produce enough response
bandwidth to capture all the current fluctuations during NAND Flash operations.
Finally, the output current of the V/I converter is measured by an oscilloscope. The
NAND-DIMM test board is connected to the custom developed Automated Test
Equipment (ATE) shown in Fig. 7.4 through the interfacing socket. The ATE is com-
posed by a programmable FPGA, a DRAM-buffer for data manipulation, twoDIMM
card sockets and two SAS ports for the connection to a computer and a power sup-
ply. The FPGA is programmed to behave as a simple NAND flash controller that

7 Simulation of SSD’s Power Consumption 143

Fig. 7.3 NAND-DIMM test board

Fig. 7.4 ATE used for the
experimental
characterization of NAND
flash memories

takes user commands as inputs and issues standard NAND flash read and program
operations to all the chips.

Figure7.5 shows the results of the power characterization of a mid-1x-nm TLC
NAND flash. By looking at at the waveforms, it is possible to measure the timing of
each operation and to identify all the current peaks. Especially for programming, the
measurements allow capturing the current sunk during the Incremental Step Pulse
Programalgorithm (Chap.2),which represents an extremely useful informationwhen
SSD power optimization algorithms have to be studied.

The NAND flash power measurement setup has been designed only for RBER
characterization and power consumption assessment. In fact, the test equipment can
only send raw IO/s to the memories under test and it is neither capable to execute a
complete SSD firmware nor to handle the host interface protocol. Moreover, since it
does not have any notion about the SSD architecture, it lacks of an intrinsic flexibility
and, hence, it is not possible to explore any specific configuration without a new
hardware implementation.

http://dx.doi.org/10.1007/978-3-319-51735-3_2

144 L. Zuolo et al.

Fig. 7.5 Currents of a mid-1x-nmNAND flash chip measured during program and read operations.
a lower page program; b lower page read; c middle page program; d middle page read; e upper
page program; f upper page read

This problem has been addressed by exploiting a cycle-accurate SSD simulator,
such as SSDExplorer. This tool, in fact, is able to monitor all the operations sent
by the controller to the NAND flash memory array and to dynamically compute its
ready/busy switching activity, as a function of the selected architecture andworkload.

Figure7.6 summarizes the main steps performed to estimate the SSD power con-
sumption. Basically, the power traces are translated into a numeric format and sent
to the power calculator engine. Given a specific drive architecture and host work-
load, the SSD simulator is in charge of estimating the switching activity of the Flash

7 Simulation of SSD’s Power Consumption 145

Fig. 7.6 Estimation of SSD’s power based on real NAND flash current measurements and an SSD
simulator

ready/busy. These contributions are then combined together by the power calcula-
tor engine which computes the final power profile, exploiting the superimposition
principle. Indeed, it is possible to connect, in a single automated test flow, the design-
space-exploration of latency and performance of a specific SSD architecture with the
power consumption of its NAND flash memory sub-system. The described approach
was applied to calculate the power consumption of the NAND flash sub-system;
however, it can be applied to all the blocks of the SSD (Error Correction Code, core
processors, DRAM, etc.), once the corresponding power traces are available.

One of the main advantages of this approach is that it can be used in a feedback
loop with the SSD simulator to assess the power consumption of a target architecture
and to dynamically modify the internal command sequence processed by the SSD.
This iterative process can be used for optimizing the SSD power profile. For instance,
uncontrolledmultiple programoperations issued on parallel chipsmay introduce out-
of-spec current consumption, which represents one of the main problems that limits
the internal parallelism and, therefore, the performance of an SSD architecture [13].

7.2 Optimization of SSD’s Power Consumption

In order to prove this approach, we simulated the power consumption of an SSD
with 16 channels, 8 NAND targets each [14], in the test configurations of Table
7.2. Figure7.7 shows the power consumed by the NAND flash sub-system when
test T1 is considered. In this case, average and peak power consumptions are 1.87
and 3.52 W, respectively, and the time required to process the workload is 660 ms.

146 L. Zuolo et al.

Table 7.2 Tests performed to validate the simulation results

Workload (Random) Test Power optimization

25% Program 75% Read 512 Mbyte 4 kByte aligned T1 None

T2 Single program
suspend

T3 Double program
suspend

Fig. 7.7 Total power of the
NAND flash sub-system
during test T1 (used as
baseline power consumption)

As it can be seen, even if random operations are issued by the host system, the
power profile is somewhat repetitive. This is an expected behavior because random
program operations are serialized by the SSD controller to follow the standard in-
order programming sequence of NAND flash memories. After this test, which rep-
resents the reference configuration, the tool has been used to study a dedicated peak
power management algorithm able to optimize the power profile of multiple program
operations issued on multiple chips in parallel. The power consumption problem has
been addressed through a power throttling algorithm, based on the program suspend
operation [15].

In fact, modern Flash memories allow suspending a programming operation to
perform a read. Once ready, the Flash controller can resume programming, with-
out having to re-transfer the data to be programmed anymore (Chap.2). Basically,
depending on the power profile, the SSD controller can suspend any program opera-
tions to disoverlap current peaks fromdifferent chips.Moreover, to reduce the average
power consumption of the drive, during program suspensions no other operations are
issued to idle chips. Finally, considering that an upper page programming is the most
power hungry operation (according to Fig. 7.5e), the peak power management algo-
rithm has been applied to upper page programming only. During test T2 a single

http://dx.doi.org/10.1007/978-3-319-51735-3_2

7 Simulation of SSD’s Power Consumption 147

Fig. 7.8 Current profile
during upper page
programming when the
timing of a single suspend
window is optimized to
reduce either a the average
or b the peak current of the
entire flash sub-system

suspend window of 200 µs is issued by the ATE during upper page programming.
The resulting current profile is a function of when the Suspend command is issued.

In particular, we can “shape” the current profile of a single upper page program-
ming operation to optimize either the average current or the peak current of the
entire flash sub-system, as shown in Fig. 7.8a, b, respectively. A long series of exper-
iments helped identifying the best conditions. Figure7.9 shows the total power of
the flash sub-system when either (a) the average current or (b) the peak current is
optimized. With respect to test T1, the average and the peak power of the NAND
flash sub-system were reduced of about 3.5 and 11.5%, respectively. As expected,
however, the proposed approach negatively impacted the total processing time of
commands, which increased of about 5%. This phenomenon is a direct consequence
of the suspension window applied to upper pages, resulting in a longer latency of
about 16%. During test T3 two suspend windows of 200 µs are issued by the ATE

148 L. Zuolo et al.

Fig. 7.9 Total power of the
NAND flash sub-system
during test T2 when either a
the average current or b the
peak current is optimized

during upper page programming. Also in this case, multiple experiments helped to
find the best spot. The current profiles of a single programming operation that can
optimize either the average current or the peak current of the whole flash sub-system
are shown in Fig. 7.10a, b, respectively. Figure7.11 shows the total power of the
NAND sub-system in both cases. With respect to the baseline test T1, the average
and the peak power of the NANDflash sub-systemwere reduced of about 5 and 13%,
respectively. As expected, however, the proposed approach negatively impacted the
total processing time of the drive which increased of about 10%; in fact, the latency
of upper pages went up of about 27%.

7 Simulation of SSD’s Power Consumption 149

Fig. 7.10 Current profile
during upper page
programming when the
timings of 2 suspend
windows are optimized to
reduce either a the average
or b the peak current of the
entire flash sub-system

The comparison between tests T1, T2 and T3 clearly highlights that power man-
agement algorithms trade a reduction of either the average or the peak power of the
NAND flash memory sub-system with the total processing time of SSD commands.

SSDExplorer proved to be capable of managing power simulations thanks to its
capability ofmonitoring howmanymemories are busy, and exactlywhen.As amatter
fact, SSDexplorer can be used as a design tool for developing power management
algorithms that canminimize the power consumption of the entire SSDand, therefore,
it can open the door to an even bigger adoption of SSDs in data centers.

150 L. Zuolo et al.

Fig. 7.11 Total power of the
NAND flash sub-system
during test T3 when either a
the average current or b the
peak current is optimized

References

1. Sean Barry. All Flash Array Data Protection Schemes. In Proc. of Flash Memory Summit, Aug.
2015.

2. Doug Rollins. Simplification: Get All Flash Performance Easily, Gradually, As Your Needs
Grow. In Proc. of Flash Memory Summit, Aug. 2015.

3. Erik Ottem. All Flash Arrays in Healthcare. In Proc. of Flash Memory Summit, Aug. 2015.
4. Walter Amsler. All Flash Array Customer Case Study. In Proc. of Flash Memory Summit, Aug.

2015.
5. Avraham Meir. File on Flash: Delivering on the Promise of Webscale, All Flash, Distributed

File Systems. In Proc. of Flash Memory Summit, Aug. 2015.
6. Somnath Roy. Ceph Optimization on All Flash Storage. In Proc. of Flash Memory Summit,

Aug. 2015.
7. Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and Yuanzheng Wang. Sdf:

Software-defined flash for web-scale internet storage systems. In Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS, pages 471–484, 2014.

7 Simulation of SSD’s Power Consumption 151

8. U.s. epa. report to congress on server and data energy efficiency. tech. rep., u.s. environmental
protection agency, 2007.

9. Matias Bjørling, Philippe Bonnet, Luc Bouganim, and Bjorn Jonsson. uflip: Understanding the
energy consumption of flash devices. IEEE Data(base) Engineering Bulletin, 33(4), 2010.

10. Balgeun Yoo, Youjip Won, Jongmoo Choi, Sungroh Yoon, Seokhei Cho, and Sooyong Kang.
Ssd characterization: From energy consumption’s perspective. In Proceedings of the 3rd
USENIX Conference on Hot Topics in Storage and File Systems, pages 3–3, 2011.

11. V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi, M. R. Stan, and S. Swanson. Modeling power
consumption of nand flashmemories using flashpower. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 32(7):1031–1044, July 2013.

12. Maxim max 9938, 2011. http://www.maximintegrated.com/en/products/analog/amplifiers/
MAX9938.html.

13. M. Sako, Y. Watanabe, T. Nakajima, J. Sato, K. Muraoka, M. Fujiu, F. Kouno, M. Nakagawa,
M. Masuda, K. Kato, Y. Terada, Y. Shimizu, M. Honma, A. Imamoto, T. Araya, H. Konno,
T. Okanaga, T. Fujimura, X. Wang, M. Muramoto, M. Kamoshida, M. Kohno, Y. Suzuki,
T. Hashiguchi, T. Kobayashi, M. Yamaoka, and R. Yamashita. 7.1 a low-power 64gb mlc nand-
flashmemory in 15nm cmos technology. In IEEE International Solid-State Circuits Conference
- (ISSCC), pages 1–3, Feb 2015.

14. FLASHTEC NVRAM Drives. http://pmcs.com/products/storage/flashtec_nvram_drives/.
15. Jie Zhang, Mustafa Shihab, and Myoungsoo Jung. Power, energy and thermal considerations

in ssd-based i/o acceleration. In Proceedings of the 6th USENIX Conference on Hot Topics in
Storage and File Systems, HotStorage’14, pages 15–15, 2014.

http://www.maximintegrated.com/en/products/analog/amplifiers/MAX9938.html
http://www.maximintegrated.com/en/products/analog/amplifiers/MAX9938.html
http://pmcs.com/products/storage/flashtec_nvram_drives/

Chapter 8
Simulations of the Software-Defined Flash

Lorenzo Zuolo, Cristian Zambelli, Rino Micheloni and Piero Olivo

Abstract In the last 30years all software applications andOperating Systems (OSes)
which make use of persistent storage architectures have been designed to work with
HDDs. However, SSDs are physically and architecturally different from HDDs; in
particular, SSDs need to execute a specific algorithm for translating host commands:
the Flash Translation Layer (FTL). Basically, the main role of FTL it to mimic the
behavior of a traditional HDD and to enable the usage of SSDs in any electronic
systems without acting on the software stack. The main drawback of FTL is the
Write Amplification Factor (WAF) which reduces both drive bandwidth and NAND
flash reliability. Especially in the enterprise market and hyperscale data centers,
performance and reliability losses induced byWAF are not tolerable. To deal with the
above mentioned challenges, in the past few years software developers of hyperscale
data centers have shown a growing interest for Software-Defined Flash (SDF), which
leverages a new SSD design approach called Host-based FTL (HB-FTL). Thanks
to SDF and HB-FTL it is possible to establish a native communication between
the host system and the SSD. Basically, NAND flash memories can be directly
addressed by the host without any further translation or manipulation layer. As a
result, the write amplification phenomenon is removed and both performance and
reliability are improved. However, according to the Open-Channel specifications,
to enable the use of HB-FTL in SDF, the design of the SSD controller has to be
slightly modified and its internal architecture has to be exposed to the host system.
In this regard, the Open-Power initiative helps to provide a clear path to the HB-
FTL execution, whereas the Open-Channel approach tries to define a standard for
future SSD controllers, custom designed for SDF. This chapter describes a simulation

L. Zuolo (B) · C. Zambelli · P. Olivo
Dipartimento di Ingegneria, Università degli Studi di Ferrara, via G. Saragat, 1,
44122 Ferrara, Italy
e-mail: lorenzo.zuolo@unife.it

R. Micheloni
Performance Storage Business Unit, Microsemi Corporation, Vimercate, Italy

© Springer International Publishing AG 2017
R. Micheloni (ed.), Solid-State-Drives (SSDs) Modeling,
Springer Series in Advanced Microelectronics 58,
DOI 10.1007/978-3-319-51735-3_8

153

154 L. Zuolo et al.

model that can be used to simulate SDF architectures exploiting the Open-Channel
standard proposed by the Open-Power initiative.

In the last 30years all software applications andOperating Systems (OSes) which
make use of persistent storage architectures have been designed to work with HDDs
[1]. However, SSDs are physically and architecturally different from HDDs; in par-
ticular, SSDs need to execute a specific algorithm for translating host commands:
the Flash Translation Layer (FTL). Basically, the main role of FTL it to mimic the
behavior of a traditional HDD and to enable the usage of SSDs in any electronic sys-
tems without acting on the software stack. Besides this translation operation, SSD
controllers have to run garbage collection, command scheduling algorithms, data
placement schemes, wear-leveling, and errors correction. All these routines, how-
ever, even if on the first hand allow a “plug and play” connection of the SSD with
legacy hardware and software, on the other hand they do limit actual SSD perfor-
mances. The main drawback of FTL is theWrite Amplification Factor (WAF) which
reduces both drive bandwidth and NAND flash reliability [2]. Of course, FTL and
data manipulation are co-designed to reduce the WAF as much as possible; anyhow,
a portion of the drive bandwidth has to be spent for FTL execution. Especially in
the enterprise market and hyperscale data centers, performance and reliability losses
induced by WAF are not tolerable.

To deal with the above mentioned challenges, in the past few years software
developers of hyperscale data centers [3] have shown a growing interest for Software-
Defined Flash (SDF). Indeed, in this kind of environments, the driving forces in the
design of computational nodes are reliability and high performances: therefore, even
the I/O management has to be re-architected. SDF leverages a new SSD design
approach called Host-based FTL (HB-FTL) which allows the host system to:

• execute the FTL directly on top of its computational node;
• relieve the SSD from any host command translation or manipulation;
• reduce the WAF related to FTL execution.

Thanks to SDF and HB-FTL it is possible to establish a native communication
between the host system and the SSD [4]. Basically, NAND flash memories can
be directly addressed by the host without any further translation or manipulation
layer. As a result, the write amplification phenomenon is removed and both per-
formance and reliability are improved. However, according to the Open-Channel
specifications [5], to enable the use of HB-FTL in SDF, the design of the SSD con-
troller has to be slightly modified and its internal architecture has to be exposed to
the host system. In this regard, the Open-Power initiative [6] helps to provide a clear
path to the HB-FTL execution, whereas the Open-Channel approach tries to define
a standard for future SSD controllers, custom designed for SDF.

This chapter describes a simulation model that can be used to simulate SDF
architectures exploiting the Open-Channel standard proposed by the Open-Power
initiative.

8 Simulations of the Software-Defined Flash 155

8.1 The Open-Channel Architecture

The Open-Channel architecture [7] aims at solving the WAF problem by introduc-
ing a lightweight system for SDF, where both user’s applications and storage layer
are NAND-flash aware [5]. Long story short, this new storage architecture enables
HB-FTL by leveraging a more powerful processor located outside the SSD. This
processing unit can be either the host processor itself or a dedicated accelerator in
the form of aMulti-Purpose Processing Array (MPPA) [8, 9].

Figures8.1 and 8.2 sketch the architectures that can bemodeled byOpen-Channel.
Basically, thanks to the PCI-Express interconnection and the NVM-Express proto-
col [10], a bunch of NAND flash cards can establish a pear-to-pear communication
with either the host processor or the MPPA, without requesting any specific man-
agement to the SSD controller [11]. In these architectures, “NAND flash cards” are
not standard SSDs because, besides a simple I/O processor, a channel controller for
NAND addressing and an ECC engine, they do not embody any complex processor,
DRAM or even FTL (see Fig. 8.3). As a consequence, data read/write from/to these
cards have to be considered as the raw output/input of NANDmemories without any
further manipulation.

One of the main advantages of this approach is that the host processor can view
theMPPA either as a block device or as a programmable accelerator. In fact, using the
I/O-pmem library [12] through the NVM-Express protocol, it is possible to address
the DRAMmodules hosted on top of the accelerator like a standard I/O block device.
TheMPPA, on the other hand, canmanipulate and process the incoming data from the
host, by exploiting specific applications hosted on top of its processors, thus enabling
the “In-Storage Processing” approach [13]. As a matter of fact, the accelerator can
execute these programs by means of a custom Real Time Operating System (RT-OS),
designed to manage I/O operations more efficiently than the host OS. Moreover,
along with the custom RT-OS, different FTLs can be executed by the MPPA, thus
offloading either the non-volatile storage layer or the host processor from executing
complex and latency/performance critical algorithms.

8.2 Simulation Model

A possible way to simulate the SDF based on the Open-Channel architecture is to
use a programmable virtual manager able to virtualize all the peripherals required
by the host system. In this regard, Qemu represents the preferable choice since it
is open-source and it is ready to emulate complete OSes with several peripherals
such as DRAM controller, Advanced Host Controller Interface (AHCI), Network
Interface controller (NIC), and NVM-Express controller [14].

156 L. Zuolo et al.

F
ig
.8
.1

R
ef
er
en
ce

ar
ch
ite
ct
ur
e
m
od
el
ed

by
th
e
op
en
-c
ha
nn
el
st
or
ag
e
la
ye
r
w
he
n
a
M
PP

A
is
us
ed

fo
r
H
B
-F
T
L
ex
ec
ut
io
n

8 Simulations of the Software-Defined Flash 157

Fig. 8.2 Reference architecturemodeled by the open-channel storage layerwhen the host processor
is used for HB-FTL execution

As displayed in Fig. 8.4, the Qemu platform allows developing virtual peripherals
which, once connected to the virtual device emulator layer, can be recognized as
standard block devices. In this case, 2 general purpose block devices have been
attached to the NVM-Express controller:

• the SSD block device: it acts as a storage I/O trace collector and can be used, for
example, with the “Online-Offline” simulation mode presented in Chap. 3;

• the MPPA block device: it is a programmable, transactional-based functional sim-
ulator of the routines executed by the accelerator. Basically, the aim of this block
is to provide a framework for “In-Storage Processing” and to introduce the proper
delays for all the possible operations performed by the user.

http://dx.doi.org/10.1007/978-3-319-51735-3_3

158 L. Zuolo et al.

Fig. 8.3 NAND flash card used in the open-channel storage system

Fig. 8.4 Reference architecturemodeled byQemu. A custom I/O device for the SSD and theMPPA
simulators are attached to the NVM-Express controller like traditional block devices

In other words, with a single integrated framework we can estimate how SDFs
based on HB-FTL and Open-Channel impact the host system and user applications
in terms of both performances and latency. Moreover, the use of Qemu for OS
virtualization gives the possibility of developing and testing specific applications
before real hardware prototyping, possibly suggesting new specs to both the Open-
Channel architecture and the Open-Power initiative.

8 Simulations of the Software-Defined Flash 159

8.3 FTL Versus HB-FTL

In this section we provide a performance comparison between the Open-Channel
architecture based on HB-FTL and a standard SSD design with embedded FTL.
This comparison represents a crucial part in the validation process of the Open-
Channel architecture: therefore, it is mandatory to collect data in the most realistic
way. For this exercise, we decided to take a well known SSD architecture as a
reference: the HGST SN150 Ultrastar [15]. Simulations have been performed by
using SSDExplorer; following the specifications reported in Table8.1, the whole
drive architecture was simulated. Moreover, real workloads and storage I/O stack
tracing have been provided by Qemu, which is connected to the SSD simulator itself.

Simulations cover 10 different mixed workloads, from a 100% 4 kByte random
read—0% 4 kByte random write to a 0% 4 kByte random read—100% 4 kByte
random write. In addition, to highlight possible subtle effects related to the steady
state performance fluctuations introduced by amixed read andwrite scenario, in each
condition a 512MByte workload has been simulated. These configurations represent
the baseline for the following discussion; the FTL is executed by the SSD controller
and neither the flash memories nor the SSD’s architectural parameters are exposed
to the host.

Figure8.5 summarizes simulation results: in all the tested conditions the per-
formance calculated by SSDExplorer is perfectly aligned with the one of the real
device [16]. This result represents a good starting point for a fair evaluation of the
Open-Channel and of the HB-FTL since no errors are introduced by the simulation
framework.

As sketched in Fig. 8.6, to properly test SDF, which makes use of both the HB-
FTL and the Open-Channel architecture, we used Qemu and added a software block
miming both the FTL behavior and the SSD geometry (channels and targets) down
to the low-level routines of a standard Linux OS image. In such a way, the OS can
continue to use standard or custom file-systems, while address translation and data
management required by the SSD are performed in background. Like for the FTL,
the main purpose of the HB-FTL block is to translate the I/O performed by the host
application in an SSD-compliant fashion. However, since this piece of software is
no longer running within the SSD controller, but it is directly executed in the host
system, additional tasks can be added. For example, in this case we introduced a data-

Table 8.1 HGST SN150 ultrastar configuration

Parameter Configuration

Channels 16

Targets per channel 16

SSD capacity 3.2 TByte

NAND flash target 128 Gb Toshiba A19 eMLC

Host interface PCI-Express Gen3 x4

160 L. Zuolo et al.

Fig. 8.5 HGST SN150
Ultrastar SSD: simulation
accuracy of SSDExplorer for
a read intensive and b write
intensive workloads. A
queue depth of 32 commands
is used

merge algorithm which is responsible for keeping the host transactions aligned with
the NAND flash block sizes of the SSD. Thanks to this block-write scheme, garbage
collection caused by random write operations is completely removed (WAF = 1).

Figure8.7 shows the simulation results of theHGSTSN150Ultrastar architecture.
Compared to the conventional FTL, HB-FTL achieves highest bandwidth, especially
with write intensive workloads. This is due to the fact that the Open-Channel archi-
tecture provides a straight path to flash memories; therefore, the OS can directly
address the internal resources of the drive, removing, de-facto, the write amplifica-
tion phenomenon of the garbage collection.

8.4 MPPA and HB-FTL

This section deals with the execution of the FTL on a dedicated MPPA card. This
approach, hereafter denoted as HB-FTL-MPPA, makes use of an external hardware
accelerator, connected to the PCI-Express bus, able to issue NVM-Express com-

8 Simulations of the Software-Defined Flash 161

Fig. 8.6 Difference between legacy FTL and HB-FTL approaches

mands straight to the NAND flash cards. When the FTL runs on theMPPA (Fig. 8.1),
all the considerations made in Sect. 8.3 about the HB-FTL implementation hold true;
therefore, the write amplification phenomena induced by the garbage collection are
completely absent. This time the main goal of the MPPA is the reduction of the I/O
command submission/completion timings. These delays, which are strictly related
to the host’s processing capabilities, represent the time spent by the host to exe-
cute the NVM-Express driver and the OS file system for each submitted/completed
I/O. Indeed, it has been demonstrated that the performance of NVM-Express SSDs
are heavily affected by the I/O submission/completions timings [17]. Moreover, in
most recent architectures like the one based on the 3D Xpoint technology [18], these
delays can even represent the actual bottleneck of the whole storage layer, whose
IOPS are limited by the host system itself. As a consequence, reducing these timings
is key for designing ultra-high performance storage systems. A possible solution to
this problem is to switch the NVM-Express protocol from an interrupt-driven I/O
completion mechanism to a polling-driven approach. Basically, in standard NVM-
Express-based SSDs, when an I/O is completed, the Flash controller sends an inter-
rupt to the host notifying that the transaction is ready to be transferred/processed.
After that, the host can submit another command to the drive because the submission
of an I/O is driven by a completion event. In theory this approach requires the host
take actions only when I/Os are submitted/completed, but in practice it introduces
long processing timings because of the OS interrupt service routines [17]. Polling
the I/O completion events can minimize the above mentioned processing timings:

162 L. Zuolo et al.

Fig. 8.7 Simulated
throughput (kIOPS) of
HGST SN150 Ultrastar SSD
architecture when HB-FTL
is used with a read intensive
and b write intensive
workloads. A queue depth of
32 commands is used

however, it requires that the host system continuously monitors the I/Os, thus wast-
ing part of its processing capabilities. In light of all these considerations, moving
the whole submission/completion process to a dedicated MPPA represents a good
solution which can offload the host system and, at the same time, exploit the full
performance of the NAND flash cards.

Figure8.8 shows simulation results of the HGST SN150 Ultrastar for 3 different
cases: off-the-shelf drive, drive with HB-FTL (Sect. 8.3), and drive with HB-FTL-
MPPA. Results obtained with HGST SN150 Ultrastar in the off-the-shelf configura-
tion are used as a basis for comparison.

To better understand the I/O acceleration capabilities of MPPA when used with
Software Defined Flash, five different cases have been simulated, ranging from 95%
speed-up of the host I/O submission/completion timings to 0% acceleration, i.e. no
improvement. We decided to consider a maximum I/O acceleration of about 95%
because of the hardware limitations introduced by the PCI-Express bus. The HB-
FTL-MPPA is able to heavily improve performances in all the tested conditions,

8 Simulations of the Software-Defined Flash 163

F
ig
.8

.8
Si
m
ul
at
ed

th
ro
ug
hp
ut

(k
IO

PS
)
of

H
G
ST

SN
15
0
U
ltr
as
ta
r
SS

D
ar
ch
ite
ct
ur
e
w
he
n
ei
th
er

H
B
-F
T
L
or

H
B
-F
T
L
-M

PP
A

ar
e
us
ed

fo
r
re
ad

in
te
ns
iv
e
an
d

w
ri
te
in
te
ns
iv
e
w
or
kl
oa
ds
.C

om
m
an
d
qu
eu
e
de
pt
h
is
32

164 L. Zuolo et al.

but it is extremely effective when write intensive workloads are considered. This
phenomenon is related to the fact that program operations on NAND flash cards
still follow a Write-Through (WT) caching policy; therefore, once the data payload
is transferred to the target card, a completion packet goes immediately back to the
MPPA. At this point it is clear that, since the access time ofWT buffers is in the order
of a few microseconds, reducing the I/O submission/completion timings impacts
the overall transfer time of the payload. This is also true for read operations, but
because of the pipelining and queuing effects of the NAND flash cards, the overall
improvement is not as big.

Simulation results clearly demonstrate that SDF, either as HB-FTL or as HB-
FTL-MPPA, can improve the bandwidth and reduce the write amplification effects
compared to a conventional SSD design. It is worth highlighting that these achieve-
ments represent just the first step towards a newSSDdesignmethodology: a complete
virtualization of the storage backbone might become real pretty soon. In fact, both
HB-FTL and Open-Channel allow to virtually separate the internal resources of the
SSD (like channels and targets), providing a clear and straight path to OS data par-
titioning.

Based on the abovementioned results, SSDExplorer proved to be a great candidate
for fueling the design of future SDF. Indeed, thanks its easy customization, both SSD
designers and software developers can efficiently co-design the internal resources of
the drive, tailoring them to the actual application requirements. Last but not least,
SSDExplorer can link the user applications to the actual power consumption of the
NAND flash cards, allowing to optimize not only the performances of the system by
also its power efficiency.

References

1. R. Micheloni, A. Marelli, and K. Eshghi. Inside Solid State Drives (SSDs). Springer, 2012.
2. Xiao-YuHu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.Write ampli-

fication analysis in flash-based solid state drives. In Proceedings of SYSTOR, pages 10:1–10:9,
2009.

3. Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and Yuanzheng Wang. Sdf:
Software-defined flash for web-scale internet storage systems. In Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS, pages 471–484, 2014.

4. Ashish Batwara. Leveraging host based Flash Translation Layer for Application Acceleration.
In Flash Memory Summit, 2012.

5. Javier González, Matias Bjørling, Seongno Lee, Charlie Dong, and Yiren Ronnie Huang.
Application-driven flash translation layers on open-channel ssds. In Proceedings of the 7th
Non Volatile Memory Workshop (NVMW), pages 1–2, 2016.

6. Open Power Ready Definition and Criteria. http://openpowerfoundation.org/wp-content/
uploads/resources/openpower-ready/content/ch_preface.html.

7. Open-channel solid state drives, 2016. http://openchannelssd.readthedocs.org/en/latest/.
8. The kalray multi-purpose-processing-array (mppa), 2016. http://www.kalrayinc.com.
9. Patrice Couvert. High Speed IO processor for NVMe over Fabric (NVMeoF). InFlashMemory

Summit, 2016.
10. NVM Express, 2013. http://www.nvmexpress.org/.

http://openpowerfoundation.org/wp-content/uploads/resources/openpower-ready/content/ch_preface.html
http://openpowerfoundation.org/wp-content/uploads/resources/openpower-ready/content/ch_preface.html
http://openchannelssd.readthedocs.org/en/latest/
http://www.kalrayinc.com
http://www.nvmexpress.org/

8 Simulations of the Software-Defined Flash 165

11. S Bates. Accelerating Data Centers Using NVMe and CUDA. In Proc. of Flash Memory
Summit, Aug. 2014.

12. Persistent memory programming, 2016. http://pmem.io.
13. Yang SeokKi. In-Storage Compute: anUltimate Solution for Accelerating I/O-intensiveAppli-

cations. In Flash Memory Summit, 2015.
14. QEMU: open source processor emulator. http://wiki.qemu.org/Main_Page.
15. Ultrastar SN150 Series NVMe PCIe x4 Lane Half-Height Half-Length CardSolid-

State Drive Product Manual. https://www.hgst.com/sites/default/files/resources/US_SN150_
ProdManual.pdf.

16. HGST Ultrastar NVMe SN150 Enterprise SSD Review. http://www.tomsitpro.com/articles/
hgst-ultrastar-nvme-sn150-enterprise-ssd,2-996.html.

17. Yang Jisoo, B.MinturnDave, andHadyFrank.When polling is better than interrupt. InUSENIX
Conference on File and Storage Technologies, (FAST’12), 2012.

18. Frank Hady. Wicked Fast Storage and Beyond. In Proceedings of the 7th Non Volatile Memory
Workshop (NVMW), 2016.

http://pmem.io
http://wiki.qemu.org/Main_Page
https://www.hgst.com/sites/default/files/resources/US_SN150_ProdManual.pdf
https://www.hgst.com/sites/default/files/resources/US_SN150_ProdManual.pdf
http://www.tomsitpro.com/articles/hgst-ultrastar-nvme-sn150-enterprise-ssd,2-996.html
http://www.tomsitpro.com/articles/hgst-ultrastar-nvme-sn150-enterprise-ssd,2-996.html

Index

A
Accuracy, 43, 45, 46, 48, 56–58, 60, 160
ALE, 30
All-RRAM, 124–129, 131, 133–137
Architecture, 3, 11, 12, 15, 35, 42, 43, 45, 46,

48–50, 52–56, 59–61, 63, 67–70, 73,
77–79, 81, 82, 88, 89, 95, 100, 101,
113, 116, 118, 124, 125, 127, 132,
135, 137, 140, 141, 143–145, 153–
155, 158–162

Asynchronous Interface (ASI), 37
AutomatedTest Equipment (ATE), 142, 143,

147
Average current, 118, 147, 148, 150

B
Back-End-Of-Line (BEOL), 100
Bad Block, 4, 7, 27, 74
Bandwidth, 15, 49, 56, 67–74, 77, 78, 80–82,

89, 90, 95, 120, 123–126, 132, 133,
135, 136, 142, 160, 164

Beginning of Life (BoL), 78
Bitline (BL), 21, 23, 24, 118
Blocks, 4, 6, 21, 26, 27, 43–45, 47, 49, 56,

61, 145
BlueSSD, 43
Bose, Chaudhuri, Hocquenghem (BCH), 8,

49, 74, 77, 78, 84, 85
Busy time, 29, 31, 35

C
Cache, 2, 13, 14, 31, 32, 35, 38, 47, 59, 68,

87, 123
Cache memory, 13

CAD, 63, 68, 124
CE#, 28
Change Read Column (CRC), 12, 31
Change Read Column Confirm (CRCC), 31
Change Write Column (CWC), 35
Channel, 3, 15, 26, 43, 45, 47–49, 53, 56,

58, 59, 61, 68, 70, 78, 81, 82, 88, 124,
135, 145, 154, 155, 158, 159, 164

Choose Column (CC), 32
Choose Column Confirm (CCC), 32
CLE, 29, 30
Cloud-based, 63
Command Change Read Column, 31
Command cycle (Cmd), 29–35, 37
Command Interface (CI), 28–30
Cross-point, 100, 113, 116, 124
Cumulative Distribution Function (CDF),

127
Cycle-accurate, 43, 46, 48, 141, 144
Cycle-to-cycle (C2C), 104, 105

D
3D architectures, 20, 124
Data in (Din), 13, 33, 63, 159
Data link layer, 12
Data out (Dout), 30, 31, 33, 37
Data retention, 20, 100, 104, 109, 110
DDR, 49, 68, 131
Decoder, 21, 49, 77, 84, 86
Design space exploration, 42, 67, 124, 131
DIMM, 142
DiskSim, 42, 43, 61
Double-Plane Erase, 36
Double-Plane Program, 35

© Springer International Publishing AG 2017
R. Micheloni (ed.), Solid-State-Drives (SSDs) Modeling,
Springer Series in Advanced Microelectronics 58,
DOI 10.1007/978-3-319-51735-3

167

168 Index

DQ<7:0>, 28
1D-1R, 115
DRAM, 14, 44, 47, 56, 59, 68, 125, 135, 141,

145, 155
3D RRAM, 116
3D Xpoint, 161

E
Electrical Physical Layer, 12
Emulation, 42, 43, 60
Encoder, 49
End of Life (EoL), 80
Endurance, 74–76, 83, 84, 89, 91–93, 95, 140
Erase, 6, 20, 22, 26, 35, 36, 38, 47, 53, 54,

59, 73, 74, 84
Erase Command (ER), 35, 36
Erase Command Confirm (ERC), 36, 37
Error Correction Code (ECC), 8, 16, 27, 49,

74, 124, 145

F
Field Assisted Superlinear Threshold

(FAST), 116
File Allocation Table (FAT), 4
Fine-grained, 72
Fine-Grained Design Space Exploration

(FGDSE), 42
Firmware, 4, 27, 44, 45, 48, 74, 91, 124, 134,

135, 143
Flash controller, 2, 141, 142, 146, 161
Flash File System (FFS), 4
Flash memories, 3, 4, 7, 14, 19–21, 27, 38,

43, 47, 52, 53, 59, 69, 71, 73, 78, 83,
84, 86, 109, 124, 129, 137, 139–143,
146, 154, 159, 160

FlashSim, 43, 61
FlashTranslationLayer (FTL), 4, 42, 88, 154
Floating Gate (FG), 20, 24, 27, 73
Form and Verify schemes (IFV), 102
Forming, 21, 101, 102, 105, 106, 109, 111,

115
Fowler-Nordheim tunneling, 24, 26, 73
FPGA, 142
Framework, 42–44, 52, 56, 61, 157–159

G
Garbage Collection (GC), 4, 6, 48, 52, 74,

154, 160, 161
Gem5, 46, 52
Graphical User Interface (GUI), 61

H
Hard Decoding (HD), 84, 85
HDD, 14, 154
Head-of-Line (HoL), 71
HGST SN150 Ultrastar, 159, 160, 162
High Resistive State (HRS), 101, 103, 106,

107, 109–111, 113, 118, 120
High Selectivity Ratio (HSR), 116
High Temperature Data Retention (HTDR),

109, 111
Host-based FTL (HB-FTL), 154, 158–162,

164
Host interface, 4, 15, 44, 47, 56, 58, 59, 68–

70, 78, 81, 82, 124, 143
Hot-plug, 9, 10
Hybrid system, 123

I
Incremental Forming (IF), 101
Incremental Step Pulse (ISP), 111, 143
Incremental Step Pulse Program algorithm,

143
In-order programming, 146
In-storage processing, 155
Interleaved, 3, 38
I/O bus, 43, 86, 89, 128, 131, 134
I/O-pmem, 155
IOPS, 13–15, 89, 161
I-V characteristics, 103, 105

K
Kilo-Cycles per Second (kCPS), 60

L
Lane, 11, 12, 15, 47, 48
Latency, 14, 15, 48, 51, 59, 67, 70, 72, 73,

77, 79, 80, 85, 89, 90, 95, 120, 123–
129, 131, 132, 134, 135, 137, 140,
147, 148, 158

Latency distribution, 90, 132
Leakage current, 113, 116
LowDensity Parity Check (LDPC), 8, 49, 84
Low Resistive State (LRS), 101, 103, 104,

106, 107, 109–111, 113, 118, 120
Low Temperature Data Retention (LTDR),

109

M
Metal-Insulator-Metal (MIM), 100, 101,

103, 109, 110, 113, 117
Micro-architectural, 42, 43, 45, 46, 49

Index 169

Mock-up, 56, 58
Modeling, 42, 43, 45–49, 77
Multi-Level Cells (MLC), 6, 15, 21, 59, 68,

74, 75, 78, 83, 128, 140
Multi-plane, 32, 37, 38, 124, 135
Multi-plane erase (MER), 37
Multi-plane Read (MR), 32
Multi-Purpose Processing Array (MPPA),

155, 160, 162, 164

N
NAND, 1, 3, 6–8, 15, 19–24, 26, 28–32, 34,

35, 37, 38, 43, 44, 47–49, 51, 52, 54,
56, 57, 59, 61, 67–71, 73–78, 80–89,
95, 99, 100, 104–106, 109, 123, 124,
127–129, 131, 133–135, 137, 139–
150, 153–155, 160–162, 164

NAND-Assisted SoftDecision (NASD), 85–
89, 91, 95

NAND Flash, 7, 15, 21, 27, 37, 38, 43, 47–
49, 52, 57, 59, 61, 68–71, 73, 75–77,
80, 83, 84, 86–88, 95, 99, 100, 104,
106, 109, 123, 124, 129, 133, 137,
139–143, 145–149, 154, 155, 160,
162, 164

NVM-Express, 48, 69, 78, 124, 155, 157,
160, 161

O
OCZ Vertex 120GB, 43, 57
One-time-program (OTP), 109
Online-Offline, 53, 54, 157
Open-Channel, 154, 155, 157–160, 164
Open NAND Flash Interface (ONFI), 37, 47
Open-Power, 154, 158
OpenSSD, 43, 44
Open Virtual Platforms, 46
Operating systems, 153, 154
Operation margins, 100
Optimize, 20, 46, 68, 141, 146–148, 164
Over-Reset, 107
Over-Set, 107

P
Page Buffers, 22, 31, 34, 35
Pages, 4, 21, 27, 32, 35, 49, 56, 75–78, 80,

83–86, 88, 89, 147, 148
Parallelism, 50, 69, 70, 88, 140, 145
Parametric Time Delay (PTD), 45, 49
PCI-Express, 2, 8, 10, 48, 59, 69, 78, 124,

155, 160, 162

Peak current, 147–150
P/E cycles, 74–78, 83, 84
Performance, 1–3, 8, 12, 14, 15, 24, 32, 33,

99–101, 104, 105, 112
latency trade-off, 70
reliability trade-off, 51, 73, 74

Persistent storage, 153, 154
Physical layer, 12
Pin-Accurate Cycle-Accurate (PA-CA), 45–

47, 60
Planes, 21, 32, 35, 49, 56, 116, 124, 134
Point-to-point, 8–11
Power consumption, 3, 13, 43, 75, 85, 88,

103, 113, 114, 139–146, 149, 164
Power-efficient, 140
Power loss, 123
Probability Density Function (PDF), 78,

127, 130
Program, 3, 6, 22, 24, 27, 33–35, 113
Program After Erase (PAE), 27
Program command (PM), 34, 35
Program Confirm (PMC), 34, 35
Program suspend, 141, 146
Program & Verify, 24

Q
Qemu, 43, 155, 157–159
QLC, 15, 21
Quality of Service (QoS), 70–72, 90, 91, 94,

95, 127, 132, 133, 135
Queue depth (QD), 69–71, 73, 126–132,

135, 160, 162

R
Random Cache Read, 32
Random Data Output, 31
Random Telegraph Noise (RTN), 104, 111
Rated endurance, 75, 83, 84, 90–95
Raw Bit Error Rate (RBER), 73–78, 81, 83–

85, 143
R/B#, 28
RE#, 28
Read, 6, 14, 22, 27, 29–32, 35, 47, 54, 56–59,

70, 71, 73, 74, 76–80, 82–86, 89, 91,
100, 110–113, 117–120, 124, 126–
128, 130, 134, 140, 141, 143, 144,
146, 159, 162, 164

Read Cache (RC), 31, 32
Read Cache Command, 31
Read Cache End (RCE), 32
Read command (RD), 31, 32, 89, 132
Read Command Confirm (RCD), 30

170 Index

Read reference, 84, 86
Read Retry (RR), 74, 76, 78, 84, 87
Ready/busy, 141, 144, 145
Realistic workloads, 89, 91, 95
Real Time Operating System (RT-OS), 155
Reliability, 7, 27, 42, 44, 52, 67, 73, 74, 83,

100, 104, 105, 107, 111, 112, 123,
124, 140, 154

Reset, 101, 103–107, 109, 111, 117–119
Reset (HRS)-state disturb, 118
Resistive RAM (RRAM), 99, 123, 124, 126–

131, 133, 135
Retention, 74–76, 78, 83, 104, 109, 110

S
SAS, 2, 4, 8–10, 15, 142
Self-boosting, 24
Sense amplifiers (Sense Amp), 21, 113
Sequential Read Cache Command, 31
Serial Advanced Technology Attachment

(SATA), 2, 4, 8–10, 14, 15, 48, 68,
69

Set, 8, 10, 34, 42, 43, 46, 63, 68, 70, 76, 101,
103, 104, 106, 107, 109, 111, 113,
118, 119

Set (LRS)-state disturb, 118
Simulation, 38, 42, 43, 45, 46, 48, 53, 56–58,

60, 61, 68, 72, 77, 88, 95, 120, 124,
140, 149, 159, 160, 164

Simulation speed, 45, 48, 49, 52, 60, 61
Single-Level Cell (SLC), 15, 21, 74, 140
Single-plane, 134
Soft Decoding (SD), 74, 84, 85, 87, 89, 93,

94
Soft-level, 84, 85, 87
Software-Defined Flash (SDF), 140, 153–

155, 159, 164
Solid State Drives (SSDs), 1, 2, 4, 8–10, 20,

42, 48, 70, 71, 73, 74, 84, 123, 124,
127, 136, 137, 139, 140, 149, 154,
161

Source Synchronous Interface (SSI), 37, 38
Spare area, 27
1S-1R, 115
SSDExplorer, 42, 44–49, 52–54, 57–61, 63,

68, 124, 137, 144, 149, 159, 164
SSD power profile, 141, 145
Stackable 2D, 116
Superposition effect, 141

Synthetic workload, 57, 68
SystemC, 45, 46, 49, 60

T
Target, 3, 15, 24, 28
Target Command Queue (TCQ), 71, 72
Three-Level Cells (TLC), 15, 21, 83
Threshold voltage, 20, 22, 24, 73, 74, 76, 86
TLC NAND, 6, 140, 141, 143
1T-nR, 116, 117
Toggle, 37, 47
Toggle Mode, 37, 38, 124, 125
1T-1R, 100, 115, 118
Transaction layer, 12
Transaction-Level Cycle-Accurate (TL-

CA), 45, 47, 60
Trap-Assisted Tunneling (TAT), 111

U
Uncorrectable, 75, 76, 78, 80, 83–86

V
Validation, 42, 57, 159
Variability, 49, 100–107, 111
Vertical RRAM (VRRAM), 116, 117
Virtualization, 14, 158, 164
VSSIM, 41–44, 58

W
WE#, 28
Wear Leveling (WL), 4, 6, 52, 53, 56, 74
Wear-out, 73, 74, 78, 82, 106
Wordlines (WLs), 21, 24, 26, 118
Workload, 7, 38, 48, 56–58, 60, 61, 68, 70–

72, 89–92, 95, 124, 127, 129, 140,
141, 144, 145, 159, 164

Worst-case conditions, 70, 118
WP#, 28
Wrapper, 45, 48, 52–54
Write Amplification Factor (WAF), 42, 54–

58, 61, 91, 154, 155
Write back, 68
Write-Through (WT), 68, 164

Y
Yield, 128

	Preface
	Contents
	Editor and Contributors
	1 Solid State Drives (SSDs)
	1.1 Introduction
	1.2 SSD's Architecture
	1.3 Flash Controller
	1.4 Wear Leveling
	1.5 Garbage Collection
	1.6 Bad Block Management
	1.7 Error Correction Code (ECC)
	1.8 SSD's Interfaces
	1.9 SAS and SATA
	1.10 PCI-Express
	1.11 The Need for High Speed Interfaces
	References

	2 NAND Flash Memories
	2.1 Introduction
	2.2 NAND Flash Array
	2.3 Flash Basic Operations
	2.3.1 Read
	2.3.2 Program
	2.3.3 Erase

	2.4 NAND Flash Memory Map
	2.5 NAND Commands
	2.5.1 Read Operation
	2.5.2 Program Operation
	2.5.3 Erase Operation

	2.6 Synchronous Operations
	References

	3 SSDExplorer: A Virtual Platform for SSD Simulations
	3.1 SSD Simulators
	3.2 SSDExplorer at a Glance
	3.2.1 Modeling Strategy
	3.2.2 Available Models in SSDExplorer

	3.3 FTL Simulations
	3.3.1 FTL
	3.3.2 WAF Model
	3.3.3 FTL Versus WAF Model

	3.4 Performance Comparison with Real SSD Platforms
	3.4.1 Consumer SSD
	3.4.2 NVRAM Card

	3.5 Simulation Speed
	3.6 User Interface and WEB-Based Architecture
	References

	4 Design Trade-Offs for NAND Flash-Based SSDs
	4.1 Design for Maximum Performance
	4.2 Design for Minimum Latency
	4.3 Performance/Reliability Trade-Off
	4.3.1 Read Retry
	4.3.2 LDPC Soft Decision

	References

	5 Resistive RAM Technology for SSDs
	5.1 Introduction
	5.2 Basic Principles and Operations of RRAM Cells
	5.2.1 Forming Operation
	5.2.2 Set and Reset Operation

	5.3 Reliability and Performance of RRAM Cells
	5.3.1 Intra-cell Variability
	5.3.2 Inter-cell Variability
	5.3.3 Endurance
	5.3.4 Data Retention
	5.3.5 Random Telegraph Noise and Current Instabilities

	5.4 RRAM Integration: Architectural Solutions
	5.4.1 True Cross-Point Arrays
	5.4.2 1T-1R, 1D-1R, and 1S-1R Arrays
	5.4.3 3D RRAM Array Options: 1T-nR and VRRAM

	5.5 Typical Disturbs in RRAM Technology
	References

	6 Simulations of RRAM-Based SSDs
	6.1 All-RRAM SSD Architecture
	6.1.1 Page Size Versus Queue Depth
	6.1.2 Design Space Exploration of All-RRAM SSDs

	References

	7 Simulation of SSD's Power Consumption
	7.1 Accurate Estimate of the Actual SSD Power Consumption
	7.2 Optimization of SSD's Power Consumption
	References

	8 Simulations of the Software-Defined Flash
	8.1 The Open-Channel Architecture
	8.2 Simulation Model
	8.3 FTL Versus HB-FTL
	8.4 MPPA and HB-FTL
	References

	Index

