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Abstract In the production of biofuels and chemicals from biomass-derived sugars,
the yeast Saccharomyces cerevisiae has emerged as a key microbial host. Producing
these biochemicals in yields and productivities satisfactory to be useful for estab-
lishing a cost-effective production process requires the engineering of the yeast’s
metabolism. This is a challenging mission since metabolic pathways are intriguingly
connected with genetic regulatory circuits, and we are just deciphering these net-
works. However, global technologies of systems biology in combination with the
adequate design capabilities of synthetic biology, and random or rational mutagenesis
through adaptive laboratory evolution have emerged to improve our understanding of
basic aspects of yeast cellular processes and come up with proper metabolic engi-
neering strategies (the systems metabolic engineering approach). In this chapter, we
will review recent advances in systems metabolic engineering of S. cerevisiae for
production of biofuels and commodity chemicals from lignocellulosic biomass.

Keywords Systems metabolic engineering � Saccharomyces cerevisiae �
Biochemicals � Biomass

1 Introduction

Matters of pollution and the environment, as well as of petroleum economy play a
key role in the increasing interest for the production of fuels and commodity
chemicals from lignocellulosic biomass. Another stimulus is the fact that this type
of biomass can be renewed at a rate close to 55 Petagrams (Pg) of carbon per year
(Field 1998; Barber 2009), which is around twelve times higher than the *4.5 Pg
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of petroleum carbon currently in use. Of the different methods for biomass con-
version, the microbial fermentation of biomass-derived sugars will offer a huge
diversity of molecules that can be used as biofuels and commodity chemicals
(Rabinovitch-Deere et al. 2013; Straathof 2014). Nevertheless, microbes were not
naturally shaped to satisfy practical requirements of commercial industrial appli-
cations. In particular, they cannot produce a single molecule with high yield (grams
of product produced per gram of biomass) and productivity (grams of product
produced per hour and fermentor volume). However, the scientific and techno-
logical advances in biosciences and bioengineering, as well as the progress in
methods to delete and transfer genes, modulate gene expression and to study bio-
logical systems in a holistic manner, have been motivating metabolic engineers to
take microbial production to its full capacity (Stephanopoulos 2007; Nielsen and
Jewett 2008; Lee et al. 2011; Rabinovitch-Deere et al. 2013).

Of the different microorganisms utilized for the biosynthesis of biofuels and
chemicals (Lee et al. 2011; Rabinovitch-Deere et al. 2013), this review focuses on
Saccharomyces cerevisiae since this one is a repository of many scientific and
technological advances allowing for systems metabolic engineering. This yeast has
an unprecedented recognition in industrial fermentations, holds the generally rec-
ognized as safe (GRAS) designation, and is the repository of a large repertory of
recombinant DNA technologies. Furthermore, the scientific community possesses a
thorough knowledge of its biochemistry and genetics, and genomic revolution has
provided with a new array of methods for studying the yeast system in a holistic
manner. The combination of these factors with the advances in metabolic engi-
neering (Bailey 1991; Stephanopoulos 1999; Nielsen et al. 2001) have been used
for developing yeast strains for cost-efficient production of diverse biochemicals
from biomass.

The basic operations of a biomass-to-biochemicals conversion process are
shown in Fig. 1. Once harvested, lignocellulosic biomass is chopped and pretreated
to disrupt the tangled structure of cellulose, hemicellulose and lignin. Pretreatment
methods include diluted acid, ammonia fiber expansion, and steam explosion
(Hahn-Hägerdal et al. 2006). After pretreatment, cellulose and hemicellulose are
digested to release six- and five-carbon sugars, primarily glucose and xylose
(Caspeta et al. 2014a). Naturally, S. cerevisiae cannot metabolize xylose which
comprises up to *30% of total lignocellulosic biomass. Byproducts such as acetic
acid, furfural, hydroxyl-methyl-furfural (HMF), and phenolics can also be released
during pretreatment. These chemicals impair yeast metabolism, resulting in a
reduction of yields and productivities of targeted biochemicals (Palmqvist and
Hahn-Hägerdal 2000; Caspeta et al. 2015). Fermentation of biomass-derived sugars
to the desired product is the last step before downstream processing. High product
titers (grams of product per fermentor volume) are required to reduce efforts in the
last step of the process. Ethanol fermentation at high yields, titers and productivities
is relatively simple since yeast naturally synthesizes this in response to the presence
of glucose or low oxygen concentrations. However, restructuration of yeast meta-
bolic and regulatory networks to overproduce other biochemicals besides ethanol is
a key challenge.
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Metabolic engineering is useful for overcoming yeast obstacles in
biomass-to-biochemicals conversion processes. This integrates detailed biological
information into graphic and mathematical representations of metabolic and regu-
latory networks and then used these to seek for cellular functions which constrain
either, the overproduction of a biochemical, or the development of the desired
performance. A standard metabolic engineering strategy is cyclic (Fig. 2), initiating
with the analysis of biological information obtained from previous experiments,
published data and/or in silico simulation (Park et al. 2008). Mathematical mod-
eling of metabolic networks can be used for calculating the conversion yield of a
biochemical, as well as for targeting network elements constraining its overpro-
duction. The detected constrains are then released by modifying genetic networks
via recombinant DNA technologies—including the chance to insert heterologous
genes and regulatory elements (Bailey 1991; Nielsen 1998; Stephanopoulos 1999).
Cycles of these activities are performed while the targeted yield or productivity is
not reached. Commonly, constrains releasing tasks in cells are based on the over-
expression of genes encoding the rate-limiting enzymes in the biosynthesis path-
way; knockout or down-regulation of genes encoding the enzymes of competing
metabolic pathways; heterologous expression of genes completing non-natural
pathways in the host strain; and engineering of enzyme functions (Bailey 1991;
Yang et al. 1998; Nielsen 1998; Stephanopoulos 1999).

Genome sequencing and associated technologies for functional annotation of
genes certainly bring the study of S. cerevisiae to a systems level. After sequencing
its genome (Goffeau et al. 1996), the first generation of DNA microarrays and
associated computational algorithms for transcriptomic analysis appeared (DeRisi
et al. 1997; Eisen et al. 1998). These allowed for the analysis of genes functions
through global gene expression analyses of mutants and wild-type yeast strains
under various internal and external changes (Gasch et al. 2000; Boer et al. 2003).

Fig. 1 Representation of the general unit operations for the conversion process of lignocellulosic
biomass to biofuels and chemicals
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Also, an extensive analysis of genes functions through gene deletions and proteins
localization become available (Winzeler et al. 1999; Giaever et al. 2002; Huh et al.
2003). The abundance of basic biological information accumulated in the pre- and
post-genomic era required integrative platforms, thus leading the reconstruction of
the first genome-scale metabolic model (GEM) (Förster et al. 2003a). Development
of GEMs was accompanied by an expansion of computational algorithms and
methods which allow GEMs to perform multiple tasks (Park et al. 2009; Thiele and
Palsson 2010; Osterlund et al. 2012), such as: integrating ‘omics’ data, performing
metabolic flux analysis, analysis of signaling and regulatory networks, predicting
cell growth and gene essentiality, comparing gene functions among different spe-
cies, and seeking for target gene functions for metabolic engineering.

Fig. 2 General procedure of the use of systems metabolic engineering for yeast strains
improvement
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Frequently, the complexity of metabolic and molecular interactions in a cellular
system cannot be captured in a model. When that happen, the rational application of
metabolic engineering through modeling of metabolism and recombinant DNA
technologies is not likely. In this case, the application of evolutionary engineering
approaches, which follow nature’s engineering principles of variation and selection,
is used as a complementary strategy for strain development (Sauer 2001; Dragosits
and Mattanovich 2013). This method exploits in vivo recombination through
evolution of populations aiming that the generated phenotype is coupled with the
genotype. One can further know, through ‘omics’-based characterization, the
genetic changes leading the desired phenotypic response, and transfer them to the
desired microbial host (Dettman et al. 2012; Caspeta et al. 2014b). This approach is
called inverse metabolic engineering.

In this chapter, we provide a short description of concepts end methods used in
the systems metabolic engineering, and what this platform is useful for realizing the
full potential of S. cerevisiae as a cell factory for converting biomass-derived sugars
into biofuels and chemicals. We also give information about the applications of
systems metabolic engineering to overproduce natural and non-natural chemicals
and biofuels from biomass with this yeast.

2 Systems Metabolic Engineering Tools and Methods

Classical physiological studies and quantitative analyses of metabolism have been
supporting traditional methods for targeting gene manipulations, such as: metabolic
flux analysis (MFA), metabolic control analysis (MCA), thermodynamic analysis of
pathways, and kinetic modeling (Nielsen 1998; Stephanopoulos 1999). The MFA
approach is the simplest but very powerful method. This is based on a stoichio-
metric model constructed with metabolic coefficients of participating reactions.
Extracellular metabolic fluxes are used for the calculation of Internal fluxes by
applying mass balances in intracellular metabolites. However, the integration of
measured internal fluxes with 13C-enriched carbon sources improves MFA pre-
dictions (Stephanopoulos 1999). The advent of new concepts and methods molded
by the genomic age upgraded traditional MFA to a systems analysis of metabolic
fluxes through GEMs.

2.1 Genome-Scale Metabolic Models (GEMs)
of S. cerevisiae

As any global reconstruction of cellular metabolism, the GEMs of S. cerevisiae
were reconstructed with the annotation of its genome sequence, and copious
experimental evidence on metabolic reactions, pathways and associated genes
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(Osterlund et al. 2012). A protocol for generating high-quality GEMs has been
published (Thiele and Palsson 2010). The first model draft is structured with sto-
ichiometric reactions compiled from gene annotation data (e.g. E.C. numbers of
enzyme-coding genes). Extensive information published in literature is then used to
ensure the validity of the information contained in the model. The curated GEM is
then examined on its ability to connect metabolic reactions through the synthesis of
biomass and relevant byproducts from typical elements of the culture media.
Further introduction of non-native reactions is required to represent heterologous
pathways. After checking the connectivity, the GEM is converted into a compu-
tational format represented by a matrix S of stoichiometric coefficients arranged in
rows and columns, representing N reactions and M metabolites. This representation
enables innumerable computational biological studies, such as the valuation of
network content and capabilities, testing and generation of hypotheses, phenotypes
analyses, and metabolic engineering (Thiele and Palsson 2010).

Today, there are not less than ten GEMs of S. cerevisiae (Osterlund et al. 2012;
Aung et al. 2013). The very first one, called iFF708 (Förster et al. 2003b), contains
1175 reactions, 584 metabolites, 3 compartments, and 708 genes (comprising
*16% of total yeast genome). Simulations with this model proved its value for
predicting experimental values of the specific rates of glucose and oxygen con-
sumption, and biomass, CO2 and ethanol production, as well as the impact of single
gene deletions on cell growth and metabolic shift in anaerobic/aerobic
glucose-limited continuous culture; in addition to the correlation between meta-
bolic shift and gene expression (Famili et al. 2003). The iFF708 model was fully
compartmentalized (Duarte et al. 2004) and used as a scaffold to generate the
iIN800 model, which covers a larger extension of lipid metabolism, thus containing
1446 reactions, 1013 metabolites, and 800 genes (Nookaew et al. 2008). The first
model containing regulatory information based on genes interactions with 55
transcription factors (TFs) was the iMH805/775 GEM. This was useful to predict
growth and gene expression profiles upon deletions of TFs in different S. cerevisiae
in silico and experimental strains (Herrgård et al. 2006b). The reconstruction of
additional models brought the necessity to make a consensus yeast GEM called
Yeast 4.0 (Dobson et al. 2010), which contains 16 compartments and 924 genes.
GEM-based analyses and their utility in metabolic engineering projects are
described below and in Table 1.

2.2 GEM-Based Analysis of Targets for Genetic
Manipulations

Building a comprehensive GEM of a whole organism and using this in simulations
has several limitations because we do not know all the biological information
(Palsson 2000)—including for S. cerevisiae. However, if internal and external
environmental constraints limiting particular cell behaviors are known (e.g. systems
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Table 1 Examples of systems metabolism engineering tools for developing yeast strains

Metabolic engineering tools Approach Reference

iFF708/FBA Reduce NADH accumulation to decrease glycerol
synthesis and increase ethanol and biomass
production

Bro et al.
(2005)

iTO977/FBA/ALE/genome sequence Metabolic engineering for the production of
3-Hydroxypropionic acid production based on
ALE experiments and genome sequence

Kildegaard
et al. (2014)

iMM904/Dynamic FBA Improve xylose and arabinose metabolism by
metabolic engineering of redox potentials

Ghosh et al.
(2011)

iND750/MADE Integration of gene expression data into the GEM
to generate models that can predict gene
expression through metabolic adjustments.
This GEM accurately predicted gene expression
upon transition from fermentation to respiration

Jensen and
Papin (2011)

iMM904/MOMA Metabolic engineering for the production of
terpenoids through the knockout of genes
encoding enzymes of competitive pathways

Sun et al.
(2014)

iFF708/MOMA/OptGene Metabolic engineering for the production of
sesquiterpenes via the mevalonate pathway

Asadollahi
et al. (2009)

iFF707/MOMA/OptGene/OptKnock The GEM was implemented with the
heterologous reactions for vanillin biosynthesis
and used to generate targets for gene manipulation
leading vanillin overproduction

Brochado
et al. (2010)

iFF708/OptGene/ALE/transcriptomic
data

Rounds of GEM simulations and ALE were used
in combination with global expression analyses to
engineer succinate metabolism (yield increased by
40 times)

Otero et al.
(2013)

iFF708/OptKnock/GDLS Metabolic engineering of L-tyrosine production
from chorismate. Prediction of multiple gene
manipulations

Cautha et al.
(2013)

iND750/iND850/TIGER/transcriptomic
data

Evaluation of GEM/transcriptomic
inconsistencies within previous models

Jensen and
Papin (2011)

iND750/FBA/transcriptomic data Improving external metabolic fluxes prediction
during ethanol production from glucose.
Targeting of gene modifications

Guo and
Feng (2016)

ALE Metabolic engineering of xylose metabolism to
improve 1-hexadecanol production over 1.2 g/L

Guo et al.
(2016)

ALE/iIN800/FAB Inverse metabolic engineering of yeast
thermo-tolerance. Thermotolerance increase until
50 °C

Caspeta et al.
(2014b)

ALE Metabolic engineering of xylose transport through
evolutionary engineering of glucose transporters

Farwick
et al. (2014)

ALE/genome sequence Inverse metabolic engineering of yeast tolerance
to high concentrations of 3HP and acidic
conditions

Kildegaard
et al. (2014)

ALE/genome sequencing Inverse metabolic engineering to generate strains
with increased consumption of xylose under
anaerobic conditions

Sonderegger
et al. (2004)

Proteomic and transcriptomic data Define molecular changes leading yeast resistance
to furfural for targeting gene manipulations

Lin et al.
(2009)
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stoichiometry, maximum/minimum metabolic fluxes, enzyme kinetics, gene
knockouts and knockins, regulation, and molecular diffusion), then it is possible to
examine, understand and predict the genotype-phenotype relationships. In silico
algorithms to evaluate cells behavior through GEM simulations were generated
based on optimization techniques using constraints to improve simulations per-
formance. Some useful methods are described, for a complete reference see
Machado and Herrgård (2015).

2.2.1 GEM Analysis Metabolically Constrained

FBA

Flux balance analysis (FBA) is applied to the estimation of optimal states of
metabolic fluxes attained for maximizing growth, ATP, and ethanol production
using S. cerevisiae GEMs (Förster et al. 2003a; Famili et al. 2003). FBA calcula-
tions around metabolites in the S matrix is formalized as follow.

dx
dt

¼
XN
j¼1

Sijvj ¼ 0; i 2 M; j 2 N

where any v that satisfies this equation is a null space of S, and is part of the flux
space of solutions ðUÞ. FBA requires that the objective of GEM simulations is to
maximize or minimize a desired linear function ðmax=min vjÞ, such as maximize
biomass production (μ, or vbiomass) or minimize glucose consumption (vglucose-intake).
Hence, FBA uses linear programming (LP) to calculate internal and external
metabolic fluxes to max/min the objective function, according to Z ¼ cTv (Orth
et al. 2010). Where c is a vector of weights, usually with zeros and a one in the
targeted reaction. Some fluxes can be constrained by limiting their upper and lower
boundaries, e.g. aj � vj � bj. aj and bj are intake or uptake fluxes measured
experimentally, or forced to zero for irreversible and disabled reactions (e.g. during
catabolic repression or after gene knockout). Hence, an important application of
FBA is the study of phenotypic effects of gene deletions which allow a specific
Umutant, which can be compared with an Uwild-type calculated for a wildtype cell
strain. Notice that Sij, vj, N, M, dx=dt ¼ 0 and vmin � vj � vmax is the set of con-
strains required for the calculation of U. FBA-based calculations are routinely
performed to catch optimum cellular states. For example, these are valuable to
predict gene essentially in S. cerevisiae (Famili et al. 2003; Duarte et al. 2004); also
serve as the initiating point for many calculations using different algorithms.
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MOMA

Maximization of growth may not apply to lab mutants, where knockouts may not
impose comparable constraints. For this case, the method of minimization of
metabolic adjustment (MOMA) establishes that knockout strains undergo minimal
changes in metabolic fluxes ðxiÞ compared to the wild type ðwiÞ (Segrè et al. 2002).
Hence, this method has the following minimization problem.

min wi � xik k ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðwi � xiÞ2
vuut

MOMA seeks the minimal distance between two points in U of the wild-type
and knockout strains subjected to the same set of FBA constraints, but using
quadratic (QP) solver instead. Also, MOMA defines another set of constraints,
vd ¼ 0; 8 d 2 A—where d and A are the index and set of deleted reactions. The aim
is to find a x in Uknockout for which the Euclidean distance from Uwild-type is mini-
mized by f ðxÞ ¼ 1

2 x
TQxþ cTx. This contains linear and quadratic parts of the

objective function (Q and cT).

ROOM

The regulatory on/off minimization algorithm (ROOM) is used for predicting
metabolic fluxes at the steady-state after gene knockouts (Shlomi et al. 2005)—
similar to FBA. ROOM establishes that cells do not evolve to cope with non-natural
knockouts but regulatory mechanisms seem to minimize flux changes of knockout
strain.

min
XN
j¼1

yj

where, for each flux j, yj ¼ 1 ð1� j�NÞ for a significant flux change in vj, and
yj ¼ 0 otherwise. As yj 2 f0; 1g is an integer constrain, ROOM solves this as a
mixed-integer LP (MILP) problem. Flux distributions satisfy the same set of con-
strains as FBA and MOMA, in addition to the following constrains.

vi � yi vmax;i � wu
i

� ��wu
i ; and vi � yi vmin;i � wl

i

� ��wl
i; yj 2 f0; 1g

wu
i ¼ wi þ d wij j þ e; and wl

i ¼ wi þ d wij j � e

where wu and wl are thresholds determining the significance of flux changes. d and e
are relative and absolute ranges of tolerance with values 0.03 and 0.001 for flux
predictions, and 0.1 and 0.01 for lethal predictions.
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FBA, MOMA and ROOM were applied to the calculation of external metabolic
fluxes in two petite mutants of S. cerevisiae under respiratory deficient conditions.
The iFF708 GEM was constrained with external fluxes from chemostat cultivations
of these mutants (Cakir et al. 2007). Ethanol production was simulated using
various objective functions, such as maximizing/minimizing oxygen consumption.
GEM predictions resulted more accurate when using FBA, ROOM and MOMA, in
this successive order. However, internal metabolic fluxes in central metabolism
calculated over a pyruvate-carboxylase mutant were more accurately predicted with
MOMA compared to FBA (Segrè et al. 2002).

OptKnock

This is the first, on purpose, framework for targeting gene knockouts which con-
strain the overproduction of a biochemical (Burgard et al. 2003). Using a bi-level
optimization problem, OptKnock establishes one particular cellular objective (e.g.
max vbiomass), and another consisting on maximizing the metabolic engineering
objective (e.g. max vbiofuel or chemical). Hence, this method is based on the idea that
metabolite overproduction is obligatory coupled with a cellular objective, and a
combination of gene knockouts which maximize both is found to solve Sv = 0.
OptKnock is similarly constrained as FBA, with the following distinctive
constrains.

vbiomass � vminbiomass; v
min
j � yj � vj � vmaxj � yj; 8j 2 M;

X
j2M

1� yið Þ�K; yi 2 f1; 0g

where yj assumes 0 or 1 if a reaction j is non-active (knockout) or active, respec-
tively. K is the number of allowable knockouts. The bi-level formulation of
OptKnock is solved through MILP.

Agreement of gene knockouts predicted by OptKnock and results with mutant
strains overproducing succinate, lactate, and 1,3-propanediol, confirmed the value
of this algorithm for analysis of targets for gene manipulations (Burgard et al.
2003). In S. cerevisiae, this framework was used to confirm the value of targeted
genes suggested by OptGene (Patil et al. 2005) and MOMA for metabolic engi-
neering of yeast to produce vainillin (Brochado et al. 2010).

OptStrain

Through OptStrain, pathway modifications can be achieved by gene knockouts and
knockins (Pharkya et al. 2004). This utilizes a comprehensive database of cellular
reactions (the universal database). A combinatorial optimization is used for
searching a set of non-native functions, obtained from the universal database, which
is added to the GEM host to enable the synthesis of the targeted biochemical.
Biochemical reactions can be also removed when they constrain the
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overproduction. OptStrain consists of two steps of optimization, one consisting in
maximizing the biochemical yield.

max vj;maxMWi �
XM
j¼1

Sijvj; i ¼ P

Constrained by
XM
j¼1

Sijvj � 0; 8 i 2 N; i 62 <; and
X
i2<

MWi �
XM
j¼1

Sijvj

 !
¼ �1

where < is the set of substrates, MWi is the molecular weight of metabolite i. In the
second optimization problem, OptStrain computes the minimum number of
non-native reactions required to reach the maximum yield calculated in the first
step. To do that, the following objective function is stablished.

min vjyj;
X

j2Mnon�native

yj

Constrained by
XM
j¼1

Sijvj � 0; 8 i 2 N; i 62 <; 8j 2 M;
X
i2<

MWi �
XM
j¼1

Sijvj

 !

¼ �1;

MWi �
XM
j¼1

Sijvj � Yieldtarget; i ¼ P; vj � vmaxj � yj; 8j 2 Mnon�native;

vj � vminj � yj; 8j 2 Mnon�native; and yi 2 f0; 1g; 8i 2 Mnon�native

The elimination of reactions from the augmented network is performed with the
OptKnock framework in the last step (Burgard et al. 2003).

This approach uses a set of non-natural reactions that, otherwise, can be added to
the GEM manually. That is, whereas OptStrain can be used for targeting gene
modifications in E. coli for production of vanillin (Pharkya et al. 2004), in S.
cerevisiae, the heterologous reactions were incorporated in the iFF708 GEM and
used OptGene, OptKnock and MOMA to seek for gene deletions (Brochado et al.
2010). The intensive computational time required by OptStrain is probably the main
disadvantage of this method.

OMNI

Experimental metabolic fluxes are used in the optimal metabolic flux identification
(OMNI) framework to recognize a reaction set which leads the consistency between
prediction and experimental (Herrgård et al. 2006a). In order to find the optimal
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solution of a metabolic reaction set which match model predictions and experi-
mental data, the problem can be formulated as a bi-level optimization problem. An
outer optimization problem that searches for a set of reactions to incorporate in the
model, and an inner optimization problem which computes a flux distribution to
solve the FBA problem with the following objective function.

min
X
i2M

wi v
opt
i � vexpi

�� ��

Constrained by vopt ¼ max vbiomass;
XM
j¼1

Sijvj ¼ 0; 0� vj � vmaxj j

2 F; 0� vk � vmax
k ykk 2 D;

vl ¼ vexpl l 2 E; voptbiomass � vmin
biomass;

X
k2D

1� ykð Þ ¼ K; yk 2 f0; 1g; 8k 2 D

It can be seen that the bi-level optimization formulation problem (1, 0) in the
OMNI is similar to that used in OptKnock. Here, E represent the exchanged,
measured fluxes, F is the set of reactions that cannot be removed from the model,
and D the set of reactions which can be removed from the model. The linear
programming nature of the inner problem allows for the overall problem to be
solved by MILP. The OMNI method can be potentially used for deciphering
unnecessary reactions in a GEM which, upon deletion, increases the accuracy of
model predictions and experimental fluxes. Therefore, OMNI is also reliable for
analyzing evolved strains through the evolution of fluxes.

OptReg

Besides finding gene knockouts and knockins, OptReg also seeks for modulation of
gene functions (Pharkya and Maranas 2006). This algorithm requires optimal
metabolic fluxes of the wild-type strain calculated with FBA—it is desirable to
constrain the GEM with few experimental fluxes. A min/max problem is then
solved to maximize vbiochemical, constrained as following.

X
j

Sijvj ¼ 0; 8 i 2 N; 8 j 2 M; vj ¼ vexpj ; 8 j 2 Mexp; vj � 0; 8 j 2 M

Mexp is the set of reactions which fluxes are fixed with experimental values.
Minimum and maximum values for each flux through reaction j are denoted v0j;L and

v0j;U . Then, modeling of genetic manipulations based on three sets of binary vari-
ables (0, 1) for each reaction j are included to all possible combinations in the
model: gene downregulation ðydj Þ, upregulation ðyUj Þ and knockout ðykj Þ. The fluxes
are calculated based on the following constrains.
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Downregulation: vmin
j � vj � v0j;L

� �
� ð1� CÞþ vminj

� �
� C

h i
� 1� vdj
� �

þ vmaxj � ydj

Upregulation: v0j;U
� �

� ð1� CÞþ vmaxj

� �
� C

h i
� 1� ydj
� �

þ vminj � yUj � vj � vmaxj

Knockout: vminj � ykj � vj � vmaxj � ykj

where vminj and vmaxj are minimized and maximized fluxes according to some
specific considerations. The strength parameter C contains values between 0 and 1.
A unique optimum solution value to the inner primal and the dual problem can be
solved by MILP—see details at Pharkya and Maranas (2006).

Results from simulations with other algorithms have revealed the existence of
synergism between reaction deletions and modulations, implying that the simulta-
neous application of both types of genetic manipulations produces more promising
results. For example, the regulation of phosphoglucomutase activity in conjunction
with the deletion of the oxygen uptake rate function and pyruvate formate lyase,
yields 99.8% of maximum theoretical ethanol yield in E. coli. This yield was higher
that when all the enzymes were deleted (Pharkya and Maranas 2006).

As the number of gene modifications increased due to the more objectives to
cover in metabolic engineering projects, the necessity of algorithms with the ability
to recognize more than three to four gene targets is clear. For example, the arte-
misinic acid-producing strain of S. cerevisiae required around seven gene modifi-
cations, including knockins and modulations (Ro et al. 2006).

EMILiO

The enhancing metabolism with iterative linear optimization (EMILiO) algorithm
aims to meet increasing demands of the number and variety of genetic manipula-
tions involved in metabolic engineering (Yang et al. 2011). Derived from
OptKnock and OptReg, EMILiO uses a successive LP solution to individually
optimize reaction fluxes, thus incrementing the scope of strain design. EMILiO
identifies the optimal set of modified reactions and their optimal fluxes for over-
production of a target biochemical subjected to two objective functions, a cellular
one max vj ¼ vbio � e� vchemical=biofuel and a biochemical-production one
max vchemical=biofuel, which are constrained as following.

vmin � v� vmax;w
L
i l

L
i þwL

i l
L
i ¼ 0; 8 i 2 N; Tv f þ lU ¼ vU ; Tv f � lL ¼ vL;

wUT � wLT ¼ cT � T � e� cTp � T; vbio � vminbio ;w
L;wU ; lL; lU � 0

where the product e� vchemical=biofuel is a small weighted minimization—e ¼ 0:001.
This algorithm also couples biochemical production with growth, where vminbio rep-
resents the minimum growth required for product formation and cp the objective
vector of the exchange fluxes of the targeted metabolites. Therefore, EMILiO is
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formulated as a bi-level optimization problem with additional constrains:
wL and wU are slack variables for the lower and upper bounds, and lL and lU dual
variables for the lower and upper flux bounds. Compared with OptReg, EMILiO is
faster and obtains similar results.

GDLS

The genetic design through local search (GDLS) method also aims to meet
increasing demands of the number and variety of genetic manipulations involved in
metabolic engineering (Lun et al. 2009). GDLS starts with a user-defined strategy
which then uses for searching better ones, limited to a maximum size (M). Best M
strategies are used for another round, resulting in k additional manipulations. This
approach continues until no better manipulations can be found—see Lun et al.
(2009). GDLS initiates with a reduction of an FBA model. Dead-end reactions that
do not carry any flux are deleted and reactions with linked metabolites are included
in one reaction as following, Sij1vj1 þ Sij2vj2 ¼ 0; thus vj1 ¼ �Sij2=Sij1vj2 . Then, vj is
maximized or minimized subject to Sijvj ¼ 0, for vmin � v� vmax. If vLj and vUj are

the minimizing and maximizing individual fluxes, for any reaction with vUj � vLj ,
this is removed from model. Then GDLS looks for genetic manipulation strategies
as a bi-level optimization problem and converting them to an optimization MILP
problem, having max gjvj as the objective function, and the following constrains.

XL
l¼1

yl �C; yl 2 f0; 1g; l 2 1; . . .; Lf g;

Sijvj ¼ 0; ð1� yÞ0Gjaj � vj �ð1� yÞ0Gjbj; 8 j 2 N;

f 0v ¼
XN
j¼1

vjbj � ljaj; fi �
XM
i¼1

kiSij � vj þ lj � nj ¼ 0;

8 j 2 N;�DylGj � nj �DylGj; 8 j 2 N; l; v� 0;

X
l:yl¼0

yl þ
X
l:yl¼1

1� ylð Þ� k;
X
l:yl¼0

yl þ
X
l:yl¼1

1� ylð Þ� 1

where G is the L × N matrix, with L genetic manipulations. g is the synthetic
vector, y is the knockout vector, and C is the maximum number of knockouts.
Converting the bi-level problem to a MILP problem using dual variables, results in
the following constrains: k is used for equality constrains, t and l for the lower and
upper bounds, and n for vj ¼ 0 if yj ¼ 1, and D a scalar for ensuring that nj is
effectively unconstrained. The summaries represent interactions for each knockout
strategy until the best set of manipulations is found (Lun et al. 2009). Compared
with OptKnock, GDLS is ten times faster when targeting the same number of genes.
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SIMUP

This is a bi-level based framework that searches for gene knockouts to allow the
utilization of two carbon sources simultaneously (Gawand et al. 2013)—e.g. glu-
cose and xylose from biomass hydrolysates. This algorithm is based on the idea that
lethality of a gene knockout depend on the external nutrient conditions, without
considering regulatory networks. The framework was formulated as a bi-level
optimization problem to maximize the following objective functions.

max yj
l1

l1WT
� l2

2l2WT
� l3

2l3WT
and max vrev; virr

X3
k¼1

XNrev

i¼1

crevvkrev;j þ
XNirr

j¼1

cirrvkirr;j

 !

where l is the specific growth rate of the mutant strain, and lWT for the wild type
strain. Superscripts define the growth condition—e.g. 1 for glucose and xylose, 2
for glucose and 3 for xylose. Calculations with the GEM are performed using the
following constrains.

XNrev

j¼1

Skrev;jv
k
rev;j þ

XNrev

j¼1

Skrev;i;jv
k
rev;j ¼ bkj ; 8i 2 M; k 2 f1; 2; 3g;

XNrevþNirr

j¼1

1� yj
� ��Kmax;v

min
j � yj � vj � vmaxj � yj; j 2 Nrev;Nirr; ; yj ¼ f0; 1g

Superscripts L and U define lower and upper bounds and subscrips rev and irr
are for reversible and irreversible. C is the coefficient vector of the objective
function. Kmax is the limit of reactions that can be deleted. Decision variables yj
have a value of 0 or 1. This is converted to a MILP problem.

2.2.2 GEM Analysis Constrained by Metabolism and Gene Expression

Besides invariant constraints that limits possible cellular behavior, such as stoi-
chiometry, capacity, and thermodynamic limits, there are also variant constraints
that limit allowable behavior, such as enzyme kinetics and regulation of gene
expression which are adjustable through evolutionary processes (Palsson 2000).
Both groups of constraints can be applied to narrow the possible space of solutions
for the attainable distribution of metabolic fluxes.

Incorporation of gene expression data from microarrays and RNAseq tech-
nologies into GEMs can be achieved by Boolean logic equations representing the
transcriptional regulatory structure—e.g. 1 for transcriptionally active gene and 0
for the opposite (Covert et al. 2001). This structure was established on the base that
mRNA accumulation depends on both, a time interval and a defined environmental
condition. In a metabolic reaction, X can be converted in Y, and Y may interact with
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the binding site of gene A which catalyzes the conversion of X. Hence, the tran-
scription of A can be expressed as transformation ¼ IFðAÞANDNOTðYÞ. In
reactions conditioned by the presence of both the metabolite and the enzyme, this
can be represented as rxn ¼ IFðXÞANDðAÞ. If the presence of all the regulated
enzymes in the metabolic network is determined for a time interval, then one can
stablish a set of constrains when the absence of a given enzyme transcript is found
during this interval.

vjðtÞ ¼ 0; when t1 � t� t2

where vj is the flux through the reaction at a given time point. After, the GEM can
be converted in a problem that can be solved by FBA. This strategy is useful for
calculating the effects of gene mutations and knockouts as well as for simulating
gene expression profiles which can rise with new components and interactions in
biological networks (Covert et al. 2001, 2004).

GIMME

The gene inactivity moderated by metabolism and expression (GIMME) algorithm
uses quantitative gene expression and various metabolic objectives to calculate
metabolic fluxes (Becker and Palsson 2008). This algorithm works in two steps.
First, the algorithm finds maximum fluxes through a metabolic network with
required metabolic functionalities (RMF), using FBA and typical constraints. The
second step involves the calculation of a set of minimum available reactions that
best fit the quantitative data min

P
ci � vij jð Þ. Those reactions should operate above

some minimum level—a percent of those found in the first step. This can be solved
as a linear programing problem subjected to the following constrains.

Sijvj ¼ 0; vmin\vi\vmax
where Ci ¼ Xcutoff � Xi where Xcutoff [Xi; 0 otherwise; for all i

� 	
where Xi is the normalized gene expression data, and Xcutoff is the cutoff value set
by the user. Since the algorithm provides an inconsistency score indicating the
consistency of gene expression data with a particular metabolic objective, this can
be used to check biological experiments and as an intuitive approach in adaptive
evolution and rational design of metabolic networks. Thus, this algorithm was used
for targeting gene modifications to increase lactate production in E. coli strains with
knockouts in the Phosphate acetyltransferase (Pta) and the aldehyde-alcohol
dehydrogenase E (AdhE) and exposed to an evolution process (Becker and Palsson
2008).

46 L. Caspeta and T. Castillo



E-Flux

E-Flux (flux-expression method) uses FBA to calculate maximum metabolic fluxes
constrained by measured gene expression (Colijn et al. 2009). This approach
modifies the typical FAB to the following optimization problem.

max vj; subject to Sijvj ¼ 0; aj � vj � bj;

Maximum flux ðvjÞ is constrained by gene expression according to maxFlux ¼
f ðG1Þ, bj ¼ f ðexpression level of genes associated to reaction jÞ. Expression data is
represented by yijkg, which is the log transformation of the signal measured in the ith
channel, jth chip, kth experimental condition, and gth gene, subjected to an error
εijkg, thus: yijkg ¼ lij þGg þðAGÞjg þðDGÞig þ ŷkg þ eijkg. Where lij is the average
for channel j of chip i, Gg the effect of gene g, ðDGÞjg the effect of chip j and gene g,
ðDGÞig the effect of channel i and gene g, and ŷkg the effect of variety k and gene
g. With E-Flux, it is generated the constraint vectors a and b from control and
experimental conditions. Thereby, b is a vector weighing the magnitude of meta-
bolic fluxes and introduce additional constrains for a given FBA-based objective
function.

This method was utilized for predicting the metabolic state constrained by gene
expression data, and was useful for targeting the impact of different drugs in
Mycobacterium tuberculosis. This approach can be also used to calculate a con-
sistency correlation among gene transcription and translation. In S. cerevisiae, for
example, this correlation is 0.61% (Ideker et al. 2001). Therefore, additional care
should be put in model predictions when using gene transcription levels.

Random sampling

Transcriptional regulation of key metabolic enzymes can be evaluated by the
Random Sampling method (Bordel et al. 2010). This algorithm requires the cal-
culation of the space of feasible solutions ðUÞ among a set of different strains or
environmental conditions. Random Sampling then defines a set of possible flux
distributions by randomly sampling the U—particularly in the corners. These values
are used for the calculation of an average and standard deviation for every GEM
reaction and then used them for the estimation of a significant change in flux.

Zflux
j ¼ E2ðvjÞ � E1ðvjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var2ðvjÞþVar1ðvjÞ
p

A significant change in gene expression between conditions can be also calcu-

lated based on pi values from transcriptomics analysis Zex
j ¼ �inver f 1� pi=2ð Þ

� �
.
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Comparison between both values allows the identification of enzymes showing a

significant correlation between expression and metabolic flux P ¼ / Zflux
j

� ��
/ Zexp

j

� �
Þ. The classification of enzymes according to their regulation can be as

follow: enzymes showing transcriptional regulation, posttranscriptional regulation
and metabolic regulation.

Transcriptomic data from different experiments consisting in gene knockouts
and diauxic growth in S. cerevisiae were used along with the iFF708 GEM to
analyze gene expression programs under these conditions. This kind of analysis
allowed for the identification of a group of genes regulated by certain transcription
factors (Bordel et al. 2010; Österlund et al. 2013; Caspeta et al. 2014b).

MADE

The metabolic adjustment by differential expression (MADE) is a method to map
expression data onto a metabolic network, using non-arbitrary expression thresh-
olds (Jensen and Papin 2011). Base on the statistical significance of an increase (I;
1), decrease (D; −1) or constancy (C; 0) of gene expression, MADE calculates a
vector of binary expression states ðx1. . .xnÞ, xi 2 f0; 1g, for n conditions. This
vector is partitioned into three sets I, D and C, and the optimization objective is the
weighted sum:

fi!iþ 1ðxÞ ¼
X
x2I

w pxi!iþ 1

� �
xiþ 1 � xið Þþ

X
x2D

w pxi!iþ 1

� �
xi � xiþ 1ð Þ

�
X
x2C

w pxi!iþ 1

� �
Dxi;xiþ 1

MADE then maximize the sum of the objective function: max
Pn�1

i¼1 fi!iþ 1ðxÞ

Constrained by Sijvj ¼ 0; vmin � vj � vmax; vobj � vmin; N
v
x


 �
¼ b;

vmin ¼ 0:1� 0:3 for bacteria;

Dxi;xiþ 1 2 f0; 1g; wðpÞ ¼ � log p; xi 2 f0; 1g

This results in a mixed inter problem solved by MILP. MADE was used to
construct a set of models that better reflect adjustments in the metabolism when the
S. cerevisiae transits from fermentative to glycerol-respiration, attaining 98.7% of
possible changes in expression (Jensen and Papin 2011).
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PROM

The probabilistic regulation of metabolism (PROM) requires a GEM, a regulatory
network structure based on gene-TFs interactions, abundant gene expression data,
and information about enzymatic regulation by metabolites (Chandrasekaran and
Price 2010). This establishes the possibility to represent gene states and gene-TF
interactions—e.g. gene A is active when the regulating TF B is off or
PðA ¼ 1jB ¼ 0Þ. This is evaluated with abundant microarray data—e.g. the P of
gene A to be ON is 0.8, if this appears 80% of the time in microarray experiments
when TF B is knocked out. These gene state values are used to constrain metabolic
fluxes in a GEM using FBA method—e.g. vmax trough gene A is
0:8xvmax; uperbound ¼ Pxvmax. When the constrains have been set in the GEM, the
optimal solution space for the desired objective function is solved as a LP problem
using FBA. Predictions of E. coli growth rate upon different knockout strains were
accurately predicted with PROM—correlation coefficient of 0.96.

TIGER

The toolbox for integrating genome-scale metabolism, expression, and regulation
(TIGER) uses Boolean or multilevel rules to stated arrangements of the relation
between gene-TF-metabolite in the form: TF B and (not metabolite M) then gene D,
then the constrain set A ¼ ð1; 0; 1Þ is stablished for this state (Jensen et al. 2011).
A is converted to an inequality ð�1� 2xþ 2y� 4I1 � 3Þ. The structure of simu-
lations then gets stablished as following.

min obj0x
subject toAx � ¼j j�ð Þb; lb� x� ub

The inequality constrain A is converted to an indicator of reaction participation
ðRiÞ. Thus, vminj Ri � vj � vmaxj Rj. Boolean rules are converted to a MILP problem.

Variations on GIMME and MADE algorithms can be made for contextualizing
specific models with global expression data using TIGER. The flexibility of TIGER
for using Boolean or multilevel rules formats allows more accurate descriptions of
cellular functions, such as reactions with isozymes and protein quaternary struc-
tures, and hence flux control and transcriptional regulation. The authors used these
features to identify and solve inconsistencies within existing transcriptional regu-
latory networks in the GEM iND750 of S. cerevisiae.
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2.3 Inverse Metabolic Engineering Through
Adaptive Evolution

Adaptive laboratory evolution (ALE) combined with whole-genome sequencing
and global analysis has become a compelling strategy to study the biological basis
of evolution (Dettman et al. 2012). Combined with ‘Omics’ technologies, the
evolutionary engineering can lead to a comprehensive understanding of the basis of
microbial evolution (Dragosits and Mattanovich 2013). These can serve for a
rational application of recombinant DNA to generate the desired phenotype in an
anticipated cell host. This approach is called inverse metabolic engineering.

Compared with procedures to generate temporal tolerance, ALE experiments
generate heritable tolerance phenotypes. Spontaneous mutations in microbial pop-
ulations occur at a rate close to 0.0033 per genome (Drake 1991). Thus, microbial
evolution can be applied to populations exceeding 1011 cells per liter and contin-
uous evolution can be more effective than step-wise approaches (Sauer 2001).
Mutations can be appearing because of single-nucleotide polymorphisms, DNA
rearrangements and horizontal DNA transfer (Arber 2000). The number of muta-
tions can change with cell type and hardness of environmental condition, for
instance, metabolic stress, stationary phase or high temperature (Sauer 2001;
Caspeta et al. 2014b). During adaptive laboratory evolution, the fitness can be
measured by competition (Sauer 2001).

ln xiðtÞ=xjðtÞ
�  ¼ ln xið0Þ=xjð0Þ

� þ Sijt

where xi and xj are cell densities of two populations, competitive fitness of one
strain can be quantified by the selection coefficient Sij.

3 Systens Metabolic Engineering
for Biomass-to-Biochemicals Conversion
with S. cerevisiae

The application of methods described above for metabolic engineering of
S. cerevisiae for the production of biofuels and chemicals from biomass-based
sugars is discussed below.

3.1 Ethanol Overproduction

Thus far, one of the most important applications of the systems metabolic engi-
neering is to generate gene modifications to reduce glycerol formation during
ethanol production. Glycerol works as the yeast’s predominant sink of the NADH
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accumulated during aerobic growth, and its formation restores the redox balance in
the cytosol under anaerobic conditions, and when the electron transport chain
(ETC) is damaged (Van Hoek et al. 1998). Since NADH is used in ETC as a proton
donor to move electrons and produces ATP, an important factor in the GEM is to
accurately reproduce the amount of ATP produced from the movement of two
electrons in the ETC—the P/O ratio. Using the iFF708 GEM, the formation of ATP
in the glycolysis pathway and ETC can be distinguished for calculating the amount
of ATP produced per NADH during glucose consumption. Using the exometabo-
lome of cultivations in chemostats, it is possible to fix the NADH oxidized during
glycerol synthesis and ATP production through ETC. The P/O value was calculated
in 1.04 (Famili et al. 2003), which is similar to 0.95 previously reported (Verduyn
et al. 1991) *12.5 mol of ATP per mole of glucose. Ethanol and glycerol pro-
ductivities in chemostats were accurately calculated with the constrained iFF708
(Famili et al. 2003). The same model was only able to reproduce ethanol and
glycerol yields in batch cultivations when gene expression data constrained GEM
calculations (Akesson et al. 2004). Incorporation of transcriptomic data also
improved the prediction of internal fluxes and the metabolic adjustments during the
transition from glucose to glycerol (Akesson et al. 2004; Jensen and Papin 2011)—
e.g. from fermentation to respiration. In the latter case, MADE based analysis of
metabolic fluxes matched 83.5% of gene expression transitions during the diauxic
growth.

Since the accumulation of NADH stimulates glycerol synthesis, one criterion
used for reducing its formation was to use this cofactor in the synthesis of ethanol or
biomass (Bro et al. 2006). To evaluate strategies, the iFF708 GEM was constrained
with gene knockouts/knockins for activating or inactivating metabolic fluxes of
glycerol synthesis or the accumulation of NADH. In silico evaluation of strategies
resulted in the elimination of glycerol formation and an increase of 10% in ethanol
yield. The best strategy consisted in the insertion of the non-phosphorylating,
NADP-dependent glyceraldehyde-3-phosphate dehydrogenase gene (GapN).
Implementation of this strategy resulted in a decrease of 40% in glycerol accu-
mulation, but ethanol yields just increased by 3%, whereas growth remained
unaffected. Reducing the expression of the NAD-dependent glycerol-3-phosphate
dehydrogenase (Gpd1), a key enzyme of glycerol synthesis, showed a 44–61%
reduction of glycerol yield, 2–7% increase of ethanol yield, and 20% reduction of
biomass during anaerobic fermentation (Pagliardini et al. 2013). However, Gpd1
mutants were most susceptible to stress probably because of a reduction in the ATP
yield or an inefficient response to cell-wall damage stress.

Experimental data for oxygen and glucose uptake kinetics from fed-batch cul-
tivations, as well as frontiers parameters (e.g. initial and final volume, biomass
concentration) were used to constrain the iND750 GEM (Hjersted et al. 2007). The
limited model was used for calculating the dynamic of ethanol productivity under
various cultivation strategies: switching dissolved oxygen concentrations from
50-to-0% DO at air saturation, cultivation media with glucose, xylose and 50%/
50% glucose/xylose, and changing the ethanol inhibition constant. These simula-
tions served for a dynamical screening of gene modifications to increase ethanol
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productivity. Interestingly, this strategy predicts the 4% increment in ethanol pro-
duction with gene modifications used by Bro et al. (2006). Furthermore, new gene
insertions were proposed to increase ethanol yield by 8%. In both studies, authors
concluded that conversion of NADH to NADPH and its further utilization for
ethanol and biomass synthesis can lead to decrease glycerol formation. For instance,
cytosolic NADPH consumption for biomass synthesis is *4.8 mmol/gDW. In
another study, the overexpression of the NADPH-dependent, modified Bdh1 which
enzyme product catalyzes the oxidation of (R,R)-2,3-butanediol to (3R)-acetoin
decreased glycerol production (Celton et al. 2012). The insertion of an alternative
oxidase (AOX) or the overexpression of a NADH oxidase also reduces the accu-
mulation of glycerol, but also the production of ethanol (Vemuri et al. 2007). Higher
negative effects were observed with AOX which insertion affected mitochondrial
functions including downregulation of the mitochondrial inner membrane ADP/ATP
translocator (AAC1).

In silico knockout of Gdh1 (NADP-dependent glutamate dehydrogenase) and
overexpression of Gdh2 (NAD-dependent glutamate dehydrogenases) in the
iMM904 GEM was used to calculate external metabolic fluxes. This in silico strain
reduced NADPH consumption during ammonium assimilation for xylose fermen-
tation in recombinant yeast strains carrying Xyl1 and Xyl2 (Mo et al. 2009). These
results showed that ethanol production from glucose and xylose need opposite
metabolic engineering strategies when xylose is metabolized via the two-step
reduction-oxidation pathway.

Exometabolome of the wild-type and Gdh1/Gdh2 mutant strains was incorpo-
rated as constraints in this model and calculations of internal fluxes were performed.
Results were consistent with intracellular metabolite levels and fluxes previously
reported. In this study, predictions with FBA, MOMA and linear MOMA perform
similarly (Mo et al. 2009). However, under similar simulations using exometabo-
lome of nuclear petit yeast mutants, the iFF708 GEM predicted better results with
FBA and ROOM than with MOMA (Cakir et al. 2007). The compartmentalization
of both GEMs is the only difference in calculations.

3.2 Xylose Utilization

Xylose comprises *30% of total biomass-based fermentable sugars but is not
naturally metabolized by S. cerevisiae. There are two distinct approaches to
introduce this metabolic function in the yeast. One consisting in the heterologous
expression of Xyl1 and Xyl2 coding for the NADH-preferring xylose reductase and
the NADPH-preferred xylose dehydrogenase from Pichia stipitis; and another
consisting in the expression of the xylose isomerase (XylA) from bacteria (Jeffries
1985). The XYL1/XYL2 strategy is disadvantageous since the yeast cannot easily
deal with the redox balance. To find the constraints that limit xylose utilization,
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FBA was used to calculate metabolic fluxes with a model of xylose metabolism
including central metabolism and a P/O ratio of one (Jin and Jeffries 2004). This
study ended with the incorporation of the xylulokinase activity (Xyl3) in the Xyl1/
Xyl2 background. FBA based calculations predicted that maximum ethanol pro-
duction in this strain could be reached under oxygen-limited conditions, a fact that
was proved experimentally.

An inverse metabolic engineering strategy was also used to seek for constraints
limiting xylose utilization in a XYL1/XYL2 mutant strain. DNA fragments of a
genomic library of P. stipitis were used to complement this strain (Jin et al. 2005).
Serial dilutions of strain populations carrying the complementary gene were used to
enrich the population with individuals having the useful gene function. 16 colonies
were selected, and their plasmids sequenced. 10 out of the 16 strains harbored
plasmids with the Xyl3 gene, and one with high homology to S. cerevisiae Tal1
encoding the transaldolase, an enzyme of the non-oxidative pentose phosphate
pathway. Yeast strains with Xyl1, Xyl2, Xyl3 and PsTal1 insertions increase xylose
consumption and ethanol production by 100% and 70% compared with the parental
strain. Similarly, the overexpression of a native xylulokinase (Xks1) in a recom-
binant yeast carrying Xyl1/Xyl2 increased xylose consumption which was then
improved by chemical mutagenesis and adaptive evolution over 60 days (Liu and
Hu 2010).

Anaerobic fermentation of xylose to ethanol via the two steps strategy was
possible with the insertion of the Xks1 gene (Eliasson et al. 2000). However, the
resulting strain was unable to grow in the absence of oxygen. Adaptive laboratory
evolution of this strain over 460 generations on, consecutively, aerobic,
microaerobic and anaerobic serial cultivations allowed for the generation of strains
able to utilize xylose under anaerobic conditions (Sonderegger and Sauer 2003).
Transcriptomics and metabolic flux analyses of these strains cultivated in chemo-
stats with xylose and xylose-glucose under aerobic conditions and xylose-glucose
under anaerobic conditions, suggested that cytosolic NADPH formation and NADH
consumption enabled a high flux through the two-step oxidoreductase reactions
(Sonderegger et al. 2004). Anaerobic fermentations were not improved probably
because the absence of a NADH sink or by an increased production of ATP—
similar results were found in (Wasylenko and Stephanopoulos 2015).
Complementation of the pathway can be achieved by reducing acetate to ethanol
through the activity of the acetylating acetaldehyde dehydrogenase (AadH) into S.
cerevisiae, which served as a sink for NADH excess. This strategy also increased
ethanol production (Wei et al. 2013).

Adaptive laboratory evolution of a respiratory deficient, Xyl1/Xyl2 yeast strain,
lacking the cytochrome C oxidase subunit IV was used as a strategy to increase
growth rate and ethanol production under anaerobic conditions. The specific growth
rate, ethanol yield, and xylitol yield of the evolved strain on xylose were 0.06 1/h,
0.39 g/g, and 0.13 g/g, respectively (Peng et al. 2012). An S. cerevisiae strain
over-expressing genes of the non-reductive pathway of xylose utilization and the
non-oxidative PPP, was evolved through a three steps evolution strategy (aerobic,
anaerobic and xylose-limited chemostat). This approach allowed for the generation
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of a strain with a high xylose consumption (1.86 g/gDCW/h) and ethanol con-
version yield (0.41 g/g) (Zhou et al. 2012). Combining different media composi-
tions with mixtures of glucose, xylose and arabinose, the use of adaptive evolution
can be also used to generate yeast strains capable of producing ethanol at a yield of
0.43 g/g of total sugars under anaerobic fermentation (Wisselink et al. 2009). The
parental yeast strains overexpressed XylA from Piromyces sp., endogenous genes of
the PPP and Xks1, and Lactobacillus plantarum AraA, AraB, and AraD genes.

Insertion of XylA in S. cerevisiae avoids the utilization of pyridine nucleotide
cofactors during xylose consumption. According to a 13C-FBA performed in a
central metabolism model, yeast strain carrying XylA had a low distribution of
metabolic fluxes in the non-oxidative PPP and did not show a full carbon catabolic
repression typical of glucose fermentation (Wasylenko and Stephanopoulos 2015)
—mutation of Hxt7 and Gal2 in a XylA mutant strains also generated
glucose-insensitive phenotypes (Farwick et al. 2014). Higher concentrations of
NADH were observed in xylose consumer strains growing under anaerobic con-
ditions, whereas energy charge remained similar (Wasylenko and Stephanopoulos
2015). Lower metabolic fluxes in the last tree reactions of glycolysis seemed to
limit the production of ethanol with xylose under anaerobic conditions. Therefore,
the productivity and yield of anaerobic conversion of xylose to ethanol were 6%
lower compared with 12% increase observed with glucose under anaerobic and
aerobic conditions. Compared with aerobic conditions, glycerol accumulation
increased in cultivations with glucose and xylose under anaerobic conditions.

3.3 Tolerance to Toxic Byproducts and Temperature

Adaptive laboratory evolution has been successfully used for generating yeast
strains tolerant to furfural, HMF and acetate (Liu et al. 2005; Heer and Sauer 2008).
Increased tolerance to 30 and 60 mM of furfural and HMF were observed in yeast
strains isolated from ALE experiments (Liu et al. 2005). These strains also
increased glucose consumption. Two isolated strains efficiently transform HMF to
2,5-bis-hydroxymethylfuran and one transformed furfural into furfuryl alcohol (Liu
et al. 2005). Evolved strains reduced the lag phase of growth suggesting that
furfural conversion into its alcohol is the mechanism for yeast adaptation to this
byproduct (Liu et al. 2005; Heer and Sauer 2008). Evolution of the industrial strain
ethanol-red of S. cerevisiae in spruce hydrolysate and high temperature resulted in
the selection of strains capable of converting spruce hydrolysates into ethanol with
high efficiency (Wallace-Salinas and Gorwa-Grauslund 2013). Compared with
evolved strains selected with furfural and HMF alone, which increased the con-
version of these into their alcohols, these strains tolerance did not rely on higher
reductase activities, but rather on a higher thermotolerance.

Microarray analysis of strains with different abilities to tolerate HMF permitted
the identification of 15 reductase/dehydrogenase genes, whose overexpression in
poor resistance yeast strains generated tolerance to HMF (Petersson et al. 2006).
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Among them, the overexpression of NADH/NADPH dependent Adh6, which
converts HMF into 5-hydroxymethylfurfuryl alcohol, resulted in the highest
increment in HMF transformation, and tolerance. Proteomic and transcriptomic
analyses of S. cerevisiae cultivated with furfural showed the downregulation of
genes involved in glycerol synthesis, changed the expression of alcohol dehydro-
genases, and reduced the levels of cytosolic NADH (Lin et al. 2009), suggesting an
increased demand in redox potential for transformation of furfural into its alcohol.
This demand seems to cause the long lag phase of ethanol production in cultivations
with furfural (Liu et al. 2005). Besides the changes in redox metabolism, yeast
subjected to furfural also change expression levels of genes involved in oxidative
and salt stress as well as the TFs, Msn2/Msn4, Yap1, and Hsf1 which regulate
different stress responses (Lin et al. 2009). Overexpression of Yap1 and Msn2
highly correlated with the increase in yeast tolerance to furfural and HMF (Lin et al.
2009; Sasano et al. 2012). The former results were generated in cultivations with
glucose as a carbon source but were also reproduced in cultivations with xylose as a
carbon source (Ask et al. 2013).

The iFF708 GEM was complemented with metabolic equations for oxidative
and reductive conversion of furfural into furfuryl alcohol, and constrained with
experimental data from fed-batch fermentations in glucose-xylose media containing
furfural. Dynamic FBA was carried out with the model and the results from sim-
ulations showed increasing fluxes though PPP, TCA cycle and serine-proline
synthesis to replenish the extra consumption of NADPH (Pornkamol and Franzen
2015).

Many of the thermo-tolerant phenotypes produced trough metabolic engineering
methods, have been generated by inverse metabolic engineering through adaptive
evolution and multi ‘omics’ analyses. Yeast strains with improved high-temperature
tolerance can be isolated after several hundreds of generations in serial cultivations
at high temperatures (Cakar et al. 2012; Yona et al. 2012; Caspeta et al. 2014b).
Genome sequencing and multi-‘omics’ analyses drove the identification of gene
rearrangements responsible for the improved performance (Yona et al. 2012;
Caspeta et al. 2014b). Remarkably, deleterious mutations in just one gene (Erg3)
allowed for the parental strain to obtain 85% of the tolerant phenotype observed in
seven evolved strains (Caspeta et al. 2014b). Complete and segmental duplications
of chromosome III were also detected in the genome sequence and transcriptomics
analyses of evolved strains (Yona et al. 2012; Caspeta et al. 2014b). From genes
comprising the chromosome III, Hcm1 and Rrt12 encoding a TF involved in
chromosome segregation and a probable subtilisin-family protease, partially
recovered thermo-tolerance in the parental strain (Yona et al. 2012).

A possible disadvantage of thermotolerance based on Erg3 mutations is that the
related yeast strains are deficient in the electron transport chain and ATP synthesis.
Therefore, they displayed their thermal niche to higher temperatures and are inef-
ficient to synthesize biomass under aerobic conditions. In fact, thermotolerant yeast
strains (TTs) showed similar behavior to the parental yeast growing under anaerobic
conditions (Caspeta and Nielsen 2015). Molecular responses in evolved strains
cultivated under optimal (30 °C) and high temperatures (40–50 °C) were analyzed
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using the iIN800 GEM constrained by exofluxome and with a thermodynamic
model coupling protein folding-unfolding thermodynamics and growth kinetics
(Caspeta and Nielsen 2015). TTs displaced their thermal niche while keeping high
tolerance to higher temperatures than the wild type strain. Also, TTs showed a
preemptive response to high temperature when cultivated at 30 °C (Caspeta et al.
2016). These responses limited the growth of evolved yeasts in cultivations at
optimal temperature.

3.4 Production of Biochemicals

Genome-scale metabolic modeling with the iFF708 GEM and FBA method were
used to set up metabolic engineering strategies to increase the production of suc-
cinic acid (Agren et al. 2013). Objective functions included: growth maximization
with limiting glucose uptake, oxygen uptake was unconstrained for aerobic and
microaerobic processes, and under anaerobic conditions, this was constrained to the
minimum (0.016 mmol/gDCW/h). Glucose uptake rate was constrained with
experimental data, and maintenance ATP was set to 1 mmol/gDCW/h. According
with model predictions, the top three single gene deletions include Mdh1, Oac1 and
Dic1 coding the mitochondrial malate dehydrogenase, a mitochondrial inner
membrane transporter, and a mitochondrial dicarboxylate carrier, respectively.
Model simulations also detected that succinate production is sensitive to the oxygen
uptake rate, and it is more sensitive for Mdh1 mutant than the Mdh1/Rip1 (Rip1
coding the ubiquinol-cytochrome-c reductase) double mutant. Transcriptional
analysis of Dic1 mutant suggested that electron transport chain, ATP synthesis,
sterol transport and metabolic processes for energy formation are coupled with
succinate formation. Targeting gene modifications for succinate overproduction
was also carried out with the OptGene algorithm and iFF708 GEM (Patil et al.
2005). The results guided the modification of a yeast strain with gene knockouts
including Sdh3 (cytochrome b subunit of succinate dehydrogenase complex),
Ser3p/Ser33 (3-phosphoglycerate dehydrogenase isoenzymes) (Otero et al. 2013).
A maximum yield of 0.14 g/g biomass was obtained. Further evolution in media
containing glycine leads the generation a strain which accumulates 0.69 g/g bio-
mass. Transcriptomics analysis of the evolved strain lead the identification of Icl1
(isocitrate lyase) as a target to increase succinate production in the evolved strain.
Incorporation of this mutations increased succinate production to 0.9 g/g biomass
(Otero et al. 2013).

The production of the non-natural compound vanillin was evaluated in
S. cerevisiae. Reactions for vanillin production from protocatechuate and
formaldehyde were introduced in the iFF708 GEM. The set of gene knockouts for
overproduction of vanillin were predicted with OptGene (Patil et al. 2005)—an
algorithm that derives from OptKnock. GEM simulations predicted that deletion of
pyruvate decarboxylase and glutamate dehydrogenase activities could improve
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vanillin production to 90% of maximum theoretical value. In a complementary
study, the iFF708 GEM combined with OptGene, FAB and MOMA served to find
five reactions to convert 3-dehydroshikimate, a natural intermediate in aromatic
amino acids biosynthesis, into vanillin β-D-glucoside (VG) (Brochado et al. 2010).
OptGene was used for predicting metabolic engineering targets. MOMA was used
as the biological objective function with wild type flux distributions spanning three
modes of yeast physiological responses. The optimality of the targeted genes was
verified with OptKnock. Based on this and their previous analysis, two gene can-
didates, Pdc1 (Pyruvate decarboxylase) and Gdh1 (Glutamate dehydrogenase),
were selected for strain construction. Compared with the reference strain,
Pdc1/Gdh1 mutant strains produced 40% more vanillin, whereas ethanol yield was
similar and protocatechuic acid yield increased.

The production of terpenoids with recombinant S. cerevisiae has been also tar-
geted. The iMM904 GEM was used with FBA/MOMA analyses to find metabolic
engineering targets for increasing terpenoids production (Sun et al. 2014). A set of
single mutations predicted in simulations were tested, showing that mutation of Alt2,
Hxk2 and Sor1 resulted in the highest titer of amorphadiene (55 mg/L)—the arte-
misinic acid precursor. Amorphadiene production at concentrations >40 g/L was
reached with recombinant yeast strains overexpressing every enzyme of mevalonate
pathway, using fed-batch cultivations (Westfall et al. 2012). Incorporation of
additional three heterologous enzymes was needed to convert amorphadiene into the
antimalarial drug artemisinin. Since terpenoids derivatives have applications as
biofuels, its overproduction in yeast also became strategic. Terpenoids can serve as
drop-in fuels and can substitute gasoline, diesel, and kerosene (Rabinovitch-Deere
et al. 2013). Deletion of Hfd1 together with the expression of an alkane biosynthesis
pathway resulted in the production of the alkanes tridecane, pentadecane, and
heptadecane (Buijs et al. 2015). Metabolic flux analysis of a reduced model with 69
reactions of central metabolism was used to calculate yields for terpenoids pro-
duction using the pyruvate-glyceraldehyde-3-phosphate (DXP) pathway and
mevalonate pathway (MVA). Although carbon balances favor terpenoids production
via DXP, further reduction occurs when redox and energy is considered (Gruchattka
and Kayser 2015).

GEM simulations combined with industrial process analysis can be used for the
selection of biosynthetic routes which allow the economical synthesis of the desired
target molecule. For instance, this approach was useful to identify advanced bio-
fuels as more efficient fuels in terms positive energy balances and production costs
(Caspeta and Nielsen 2013). With this approach, it was also identified that the most
promising route for 3-Hydropropionic acid (3HP) synthesis is the β-alanine
biosynthetic route (Borodina et al. 2015). With this in mind, a yeast strain
expressing the heterologous pathway for β-alanine synthesis from Bacillus cereus
and its subsequent conversion into 3HP was engineered. This strain produced 3HP
at a titer of 13.7 ± 0.3 g/L, and 0.14 C-mol/C-mol yield. Adaptive laboratory
evolution and genome sequence of 3HP production strains at pH 3.5 revealed that
mutations in Sfa1 gene encoding S-(hydroxymethyl)-glutathione dehydrogenase
increased tolerance to 50 g/L of 3HP, suggesting that detoxification of
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3-hydroxypropionic aldehyde via glutathione is the main factor (Kildegaard et al.
2014).

Esterification of fatty acids (FA) is another source of biofuels with properties
similar to diesel. A strategy to increase the accumulation of FA involves the
deactivation of beta-oxidation pathway and the increase of steryl-esters degradation
(Valle-Rodríguez et al. 2014). A broader approach also involved the overexpression
of TCA enzymes to replenish acetyl-CoA pull and deletion of Pox1 (encoding the
fatty-acyl coenzyme A oxidase). This strategy led the accumulation of FA at
concentrations up to 10.4 g/L (Zhou et al. 2016). Lipid metabolism in S. cerevisiae
plays a key role in many cellular functions. To get insight on lipid metabolism, the
measurement of 5636 mRNAs, 50 metabolites, 97 lipids, and 57 13C-reaction fluxes
were performed (Jewett et al. 2013). The results were mapped into the iIN800
GEM, which was used to map network topologies of lipid metabolism and regu-
lation. Results suggested that sterols are mainly regulated at the transcriptional
level, whereas FA synthesis at the metabolic level. Using a GEM of Yarrowia
lipolytica and multi-‘omics’ analysis, including RNAseq, metabolic profiling and
lipidomics, it was found that lipid accumulation does not involve transcriptional
regulation, and is associated with regulation of amino acids synthesis (Kerkhoven
et al. 2016). Finally, the manipulation of structural and regulatory genes of lipid
metabolism, including the overexpression of Acc1, the deletion of Ino1, and the
overexpression of Rpd3 induced the production of 1-hexadecanol from xylose in a
yeast strain carrying Xyl1, Xyl2 and Xyl3 (Feng et al. 2015). Adaptive evolution of
these strains on xylose as a sole carbon source improved 1-hexadecanol production
to a final concentration of 1.2 g/L (Guo et al. 2016).

4 Concluding Remarks

The yeast S. cerevisiae is a very tractable microorganism with a long record of
useful applications in classical and modern industrial fermentations. This is hitherto
the workhorse in winemaking, brewing and baking, as well as in the production of
different pharmaceuticals and fuel ethanol from sugarcane and starch. The capa-
bilities that highly positioned this yeast in these applications were however not fully
appropriate under practical situations of the cost-efficient, biomass-based processes.
Most importantly, the yeast did not metabolize pentoses and had an undesired
limited tolerance. Also, a key challenge was to find metabolic and genetic regu-
latory conditions leading to the synthesis of other molecules besides ethanol in the
presence of glucose, including non-natural chemicals.

Through metabolic engineering, yeast capabilities have been improved to fit
practical applications of the biomass-to-biochemicals conversion processes. The
current progress in the procedures for deciphering genomes, transcriptomes, pro-
teomes, fluxomes and metabolomes, along with mathematical and computational
tools, synthetic biology and evolutionary engineering, have led to a new set of
technology platforms for metabolic engineering of S. cerevisiae in a holistic
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manner. These platforms have been providing concepts and methods to partially
resolve the obstacles for cost-efficient production of chemicals and biofuels from
biomass.

Many more examples of how the holistic understanding of S. cerevisiae’s
biology has impacted metabolic engineering have been seen up today compared
with a few years ago (Nielsen and Jewett 2008). During this period, there has been
an explosion of new in silico systems biology methods for mapping detailed
phenotypes and for targeting gene modifications for metabolic engineering pur-
poses (Machado and Herrgård 2015). Combined with the advances in sequencing
and synthesis of whole genomes and high-throughput technologies, these in silico
methods have provided a valuable platform for increasing the production of desired
chemicals and improving yeast behavior under commercial-process environments.
A key challenge is to find or generate ideal metabolic and regulatory networks for
supporting both, cell growth and product formation. As systems metabolic engi-
neering becomes more robust regarding better predictions with genome-scale
simulations, we will see that this challenge will be overcome in the near future.
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