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Abstract After the successful fabrication of memristor at Hewlett–Packard Labora-

tories, memristor—based systems and their potential applications have been getting

a great deal of attention in different areas from associative memory, neural networks,

programmable analog ICs to low–power computing and so on. It is well known that

the presence of memristor in a dynamical system may yield novel features because

it is both a nonlinear element and a memory element. In this chapter, we present a

memristive system with an infinite number of equilibrium points. From the comput-

ing view of point, such system belongs to a class of systems with hidden attractors

according to a new classification of nonlinear dynamics. This classification has pro-

posed by Leonov and Kuznetsov and played a significant role in engineering appli-

cations. In this work, we study the complex dynamics of the introduced memristive

system. It is worth noting that the proposed system can generate hyperchaotic behav-

ior which will be used for image encryption to illustrate its engineering application.

The chaos–based image encryption has many applications in digital image storing,

medical image databases, video conferencing or military transmit systems.
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1 Introduction

In the past few decades, various chaotic systems have been investigated, for exam-

ple: Lorenz system (Lorenz 1963), Rössler system (Rössler 1976), Arneodo sys-

tem (Arneodo et al. 1981), Chen system (Chen and Ueta 1999), Lü system (Lü

and Chen 2002), Vaidyanathan system (Vaidyanathan 2013), time–delay systems

(Barnerjee et al. 2012), Tacha system (Tacha et al. 2016), jerk systems (Vaidyanathan

et al. 2014). In addition, hyperchaotic systems have been discovered (Rössler 1979).

Hyperchaotic system is characterized by more than one positive Lyapunov exponent.

Therefore hyperchaotic system can exhibit a higher level of complexity with respect

to chaotic system (Vaidyanathan and Azar 2015). Hyperchaos is better than conven-

tional chaos in a variety of areas, for example, hyperchaos increases the security of

chaotic–based communication systems significantly (Udaltsov et al. 2003; Sadoudi

et al. 2013) or encryption algorithm based on hyperchaos is safer than one based

on chaos (Gao and Chen 2008). Moreover hyperchaos has been applied in different

areas such as cryptosystems (Grassi and Mascolo 1999), neural networks (Huang

and Yang 2006), secure communications (Udaltsov et al. 2003; Sadoudi et al. 2013),

or laser design (Vicente et al. 2005).

The realization of memristor at Hewlett–Packard Labs promotes potential

memristor—based applications (Strukov et al. 2008). Some attractive memristor—

based applications are high–speed low–power processors (Yang et al. 2013), adap-

tive filter (Driscoll et al. 2010), pattern recognition systems (Corinto et al 2012),

associative memory (Pershin and Ventra 2010), neural networks (Adhikari et al.

2012; Ascoli and Corinto 2013), and programmable analog integrated circuits (Shin

et al. 2011). Especially, the intrinsic nonlinear characteristic of memristor has been

exploited in designing hyperchaotic oscillators (Buscarino et al. 2012a; Fitch et al.

2012). Hyperchaos was generated by combining a memristor with cubic nonlin-

ear characteristics and a modified canonical Chua’s circuit (Fitch et al. 2012). This

memristor—based modified canonical Chua’s circuit is a five–dimensional hyper-

chaotic oscillator. By extending the HP memristor—based canonical Chua’s oscilla-

tor, a six–dimensional hyperchaotic oscillator was designed (Buscarino et al. 2012b).

Authors used a configuration based on two HP memristors in antiparallel (Bus-

carino et al. 2012a). Four–dimensional hyperchaotic memristive systems were dis-

covered by Li et al. (2014, 2015). A 4D memristive system with a line of equilib-

rium points was presented in Li et al. (2014) while another memristive system with

an uncountable infinite number of stable and unstable equilibria was reported in Li

et al. (2015). Interestingly, memristor—based hyperchaotic systems without equi-

librium were introduced in Pham et al. (2014b; 2015). These memristive systems

belong to a new category of chaotic systems with hidden attractors (Leonov et al.

2011; Leonov and Kuznetsov 2013). Hidden attractor cannot be found by using a
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numerical method in which a trajectory started from a point on the unstable mani-

fold in the neighbourhood of an unstable equilibrium (Jafari and Sprott 2013). Thus

hidden attractors play an important role in many fields such as in mechanics, secure

communication and electronics (Kuznetsov et al. 2011; Leonov et al. 2011; Pham

et al. 2014a, c; Sharma et al. 2015).

In this chapter, we study a system based on a memristive device and its applica-

tion. It is interesting that the memristive system has an infinite number of equilibrium

points and can generate hyperchaos. This chapter is organized as follows. Section 2

presents the description of the memristive system. Dynamics and properties of such

memristive system are investigated in Sect. 3. We implement an image encryption

scheme based on the memeristive system in Sect. 4 and discuss its security in Sect. 5.

Finally, conclusions are drawn in Sect. 6.

2 Description of the Proposed System

According to studies of (Chua 1971; Chua and Kang 1976), a memristive system is

defined by {
ẇ = f (w, y, t)
h (w, y) = g (w, y, t) y, (1)

where y, h(w, y), w are the input, output, and internal state of the memristive device.

The functions f and g are a continuous n–dimensional vector function and a contin-

uous scalar function.

Based on the definition of memristive system, recently authors have introduced a

novel memrisitve system (Pham et al. 2014b) in the following form:

⎧⎪⎨⎪⎩

ẋ = −10x − ay − yz
ẏ = −6x + 1.2xz + 0.1h (w, y) + b
ż = −z − 1.2xy
ẇ = y,

(2)

where a and b are two positive real parameters. Here h(w, y) is the output of the

memristive device described by

{
ẇ = y
h (w, y) =

(
1 + 0.24w2 − 0.0016w4) y. (3)

As have been known system (2) can display hyperchaotic attractors without equi-

librium for b ≠ 0 (Pham et al. 2014b). In addition, dynamics of the memristive sys-

tem without equilibrium have been investigated by using numerical simulations and

circuital implementation (Pham et al. 2014b).
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When b = 0, the system (2) can be rewritten by

⎧⎪⎨⎪⎩

ẋ = −10x − ay − yz
ẏ = −6x + 1.2xz + 0.1

(
1 + 0.24w2 − 0.0016w4) y

ż = −z − 1.2xy
ẇ = y.

(4)

It is easy to get the equilibrium points of system (4) by solving ẋ = 0, ẏ = 0, ż = 0,

and ẇ = 0, that is

− 10x − ay − yz = 0, (5)

− 6x + 1.2xz + 0.1
(
1 + 0.24w2 − 0.0016w4) y = 0, (6)

− z − 1.2xy = 0, (7)

y = 0, (8)

From Eq. (8), we have y = 0. By substituting y = 0 in Eq. (5), it leads to x = 0. As

result, we get z = 0 from Eq. (7). In addition, Eq. (6) insists and does not depend on

w. In other words, system (4) has an infinite number of equilibrium points

E (0, 0, 0,w) . (9)

Moreover, the equilibrium points are located on a line.

System (4) belongs to a new class of systems with hidden attractor from a compu-

tational point of view (Jafari and Sprott 2013). The basin of the system may intersect

the line equilibrium in some sections. But there are uncountable points on the line

that are outside the basin of attraction. Thus the knowledge about equilibrium points

does not help in their localization (Jafari and Sprott 2013).

In the next section, we present complex dynamics of the memristive system with

infinite equilibria (4).

3 Dynamics of the Memristive System

When choosing the parameter a = 5 and the initial condition

(x (0) , y (0) , z (0) ,w (0)) = (0, 0.01, 0.01, 0) , (10)

the calculated Lyapunov exponents of system (4) are

L1 = 0.1364, L2 = 0.0071, L3 = 0, L4 = −10.8584. (11)
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Fig. 1 2–D projection of

the hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, y)–plane
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Fig. 2 2–D projection of

the hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, z)–plane
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Therefore, system (4) is a four–dimensional hyperchaotic system because there are

two positive Lyapunov exponents, one zero and one negative Lyapunov exponent.

Figures 1, 2, 3 and 4 display 2–D projections of the hyperchaotic attractors with an

infinite number of equilibrium points.

It has been known that the Kaplan–Yorke fractional dimension presenting the

complexity of attractor is given by

DKY = j + 1|||Lj+1|||
j∑

i=1
Li, (12)



86 V.-T. Pham et al.

Fig. 3 2–D projection of

the hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (y, z)–plane
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Fig. 4 2–D projection of

the hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x,w)–plane
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where j is the largest integer satisfying
∑j

i=1 Li ≥ 0 and
∑j+1

i=1 Li < 0. The calculated

Kaplan–Yorke fractional dimension of system (4) for a = 5 is

DKY = 3 +
L1 + L2 + L3||L4|| = 3.0132, (13)

which indicated a strange attractor. Poincaré maps of system (4) are also illustrated

in Figs. 5, 6 and 7. As can be seen from the Poincaré maps, the memristive system

(4) has complex dynamics.
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Fig. 5 Poincaré map of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, y)–plane
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Fig. 6 Poincaré map of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, z)–plane
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We discover detail dynamics of system (4) by using bifurcation diagram and Lya-

punov exponents. The bifurcation diagram of the variable z and the corresponding

Lyapunov exponents are reported in Figs. 8, 9 and 10. The system (4) performs peri-

odic state, chaos, and hyperchaos when varying the parameter a from 1 to 6. The

system displays limit cycle for a ∈ [1, 1.46], [1.5, 1.96], [2.48, 2.88]. For example,

periodical states of system (4) for a = 2.6 are presented in Figs. 11, 12, 13 and 14.

Chaotic behavior can be observed for a ∈ [3.06, 3.34], (4.66, 4.78). The system can

exhibits hyperchaotic behavior for a ∈ [4.08, 4.66], [4.78, 6].
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Fig. 7 Poincaré map of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (y, z)–plane
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Fig. 8 Bifurcation diagram

of the hyperchaotic

memristive system with an

infinite number of

equilibrium points (4) when

changing the parameter a
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4 Application of the Proposed System

Nowadays, digital image information has become popular in the world because of the

rapid development of Internet. In many applications such as military images, online

personal photographs, or fingerprint images of authentication systems, it has to meet

the requirements of safety and security (Volos et al. 2013). Therefore, numerous

encryption techniques, especially chaos–based encryption, have been proposed and

implemented (Liao et al. 2010; Matthews 1989; Seyedzadeh et al. 2012; Tong and

Cui 2009; Wang et al. 2012; Yeung and Pankanti 2000; Zhang et al. 2005).

In this section, we use the encryption scheme suggested by Gao and Chen (Gao

and Chen 2008) to illustrate a possible application of the proposed memristive sys-
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Fig. 9 Two largest

Lyanpunov exponents of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) when varying the

parameter a
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Fig. 10 Three largest

Lyanpunov exponents of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) when varying the

parameter a
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Fig. 11 Limit cycle of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, y)–plane for

a = 2.6
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Fig. 12 Limit cycle of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, z)–plane for

a = 2.6
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Fig. 13 Limit cycle of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x,w)–plane for

a = 2.6
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tem. We consider a plain–image with the dimension N ×M. The position matrix of

pixels, which presents the grey value of the image is denoted as Pi,j (I).
The encryption includes two steps as illustrated in Fig. 15.

Step 1: The main purpose of the step 1 is to shuffle the position of the plain image.

This step is based on a chaotic map (Gao and Chen 2008).

Firstly, we do some iterations based on the Logistic map

xn+1 = 4xn
(
1 − xn

)
, (14)

to get a new value x0. Then we calculate a value of h:

h = mod
(
x0 × 1014,M

)
, (15)

in which the function mod(.) returns the remainder after division.
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Fig. 14 Limit cycle of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (y, z)–plane for

a = 2.6
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Fig. 15 Block diagram of

the encryption scheme

including two steps. The first

step is based on a chaotic

map while the second step is

based on a hyperchaotic

system

Secondly, we obtain M different data by repeating (15). These obtained data are

reordered in
{
hi, i = 1, 2,… ,M

}
where hi ≠ hj if i ≠ j. Then the rows of position

matrix Pi,j are rearranged by using
{
hi, i = 1, 2,… ,M

}
. In other words, we create

a new image position matrix Ph
i,j based on row transformation. After that we shuffle

the column position of the image for every row of the new position matrix Ph
i,j with

the same approach.

Thirdly, we do the iteration of Logistic map to calculate the value of l by using:

l = mod
(
x0 × 1014,N

)
. (16)

Fourthly, we repeat the iteration of Logistic map and (16) to get N different data.

These data are reordered in
{
li, i = 1, 2,… ,N

}
where li ≠ lj if i ≠ j. Next the data

of every column of position matrix Ph
i,j are rearranged by using

{
li, i = 1, 2,… ,N

}
.

In other words, we create a new column transformation of the first row of image

position matrix Phl
i,j.

Finally, by completing the column transformation for all rows, an image total

shuffling matrix Phl
i,j is derived.
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Step 2: The main purpose of the step 2 is to encrypt the shuffled image. This step

is based on a hyperchaotic system (Gao and Chen 2008).

Firstly, we iterate the hyperchaotic memristive system (4) forN0 times by applying

the Runge–Kutta algorithm to eliminate the effect of transient procedure.

Secondly, we iterate the hyperchaotic memristive system (4) to get four state vari-

ables x, y, z, and w at the N0 time. Four corresponding decimal fractions x, y, z, w
are generated as

x = mod
(
(abs (x) − f loor (abs (x))) × 1014, 256

)
, (17)

y = mod
(
(abs (y) − f loor (abs (y))) × 1014, 256

)
, (18)

z = mod
(
(abs (z) − f loor (abs (z))) × 1014, 256

)
, (19)

w = mod
(
(abs (w) − f loor (abs (w))) × 1014, 256

)
, (20)

where abs(.) is the absolute function while the function floor(.) calculates the nearest

integer.

Thirdly, the new serial numbers X, Y , Z, W are given by

X = mod (x, 4) , (21)

Y = mod (y, 4) , (22)

Z = mod (z, 4) , (23)

W = mod (w, 4) . (24)

Depending on the values of these new serial numbers, there are corresponding groups

of states (B1,B2,B3) to perform encryption. For instance, the combination of states

(B1,B2,B3) are (x, y, z), (x, y,w), (x, z,w), and (y, z,w) for the serial numbers 0, 1, 2,

and 3, respectively. Then we apply the XOR operation between three bytes of the

image total shuffling matrix Phl
i,j and three bytes of the selected group of three states

as follows ⎧⎪⎨⎪⎩
C3×(i−1)+1 = P3×(i−1)+1 ⊕ B1
C3×(i−1)+2 = P3×(i−1)+2 ⊕ B2
C3×(i−1)+3 = P3×(i−1)+3 ⊕ B3,

(25)
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Fig. 16 Presentation of the

plain image

Fig. 17 Presentation of the

encrypted image

in which Pj and Cj, j = 1, 2,… ,N ×M indicate the pixels of the plain shuffled image

and the ciphered image.

Finally, we continue doing the encryption until the whole image is encrypted.

We have applied the image encryption scheme to the plain–image with the size

256 × 256 (Fig. 16). We assume that the secret key is

(
x (0) , y (0) , z (0) ,w (0) ,N0

)
= (0, 0.01, 0.01, 0, 3000) . (26)

The encrypted image is obtained as illustrated in Fig. 17 while the decrypted image

is shown in Fig. 18.
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Fig. 18 Presentation of the

decrypted image

5 Security Analysis

In this section, we consider the security of the image encryption scheme.

5.1 Key Space Analysis

Secret keys in the encryption scheme are the initial values of chaotic map and the

hyperchaotic memristive system, as well as the systems’ parameter values. In addi-

tion, secret keys can include the iteration number N0. Thus, the key space is enough

large to resist brute–force attacks.

5.2 Key Sensitivity

An intruder, who does not know the secret key, cannot recover the original plain

image. In order to show the sensitivity of the encryption scheme to the secret key,

we take an example where the intruder decrypts the encrypted image in Fig. 17 with

the following secret key:

(
x (0) , y (0) , z (0) ,w (0) ,N0

)
=
(
0, 0.01, 0.01, 10−6, 3000

)
. (27)

The failure of recovering the plain image by the intruder is illustrated in Fig. 19.
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Fig. 19 The recovered

image by an intruder

Fig. 20 Histogram of the

plain image
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5.3 Histogram Analysis

As have been known, two methods preventing the statistical attacks are the diffusion

and confusion Shannon (1949). The histograms of the plain–image and the encrypted

image are presented in Figs. 20, 21. It is easy to see that the histogram of the ciphered

image is different from one of the plain–image. The histogram of the ciphered image

has a uniform distribution which indicates the security of the encryption scheme

from a statistical attack.
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Fig. 21 Histogram of the

encrypted image
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5.4 Information Entropy

The entropy of a source is defined by

E (S) = −
N−1∑
i=0

p
(
si
)
log2

(
p
(
si
))

, (28)

with p
(
si
)

is the possibility of appearance of the symbol si. Therefore, the infor-

mation entropy of an image indicates the distribution of the gray scale values. The

information entropy is much bigger when the distribution is much uniform. The cal-

culated information entropy of the encrypted image is 7.9965. It is higher than the

information entropy of the plain image (7.4888). The higher information entropy of

the encrypted image presents the safety of the encryption scheme from an entropy

attack (Volos et al. 2013).

6 Conclusion

In this chapter, a dynamical system with a memristive device has been studied. The

system has many special features such as hyperchaos, a infinite number of equilib-

rium points, and hidden attractors due to the presence of the memristive device.

Fundamental dynamical behaviors of the memristive system are discovered through

calculating equilibrium points, phase portraits of hyperchaotic attractors, Poincaré

maps, bifurcation diagram, Lyapunov exponents and Kaplan–Yorke dimension. The

memristive system can be used in potential applications in secure communications

and cryptography because of its complex behavior. In particular, we have imple-

mented an image encryption scheme based on the hyperchaotic memristive system.

In addition, security analysis of image encryption scheme are discussed. Further

studies related to applications of this system will be presented in our future works.
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