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Abstract Pinched hysteresis is considered to be a signature of the existence of mem-

ristive behavior. However, this is not completely accurate. In this chapter, we are

discussing a general equation taking into consideration all possible cases to model

all known elements including memristor. Based on this equation, it is found that an

opposite behavior to the memristor can exist in a nonlinear inductor or a nonlin-

ear capacitor (both with quadratic nonlinearity) or a derivative-controlled nonlin-

ear resistor/transconductor which we refer to as the inverse memristor. We discuss

the behavior of this new element and introduce an emulation circuit to mimic its

behavior. Connecting the conventional elements with the memristor and/or with

inverse memeristor either in series or parallel affects the pinched hysteresis lobes

where the pinch point moves from the origin and lobes’ area shrinks or widens. Dif-

ferent cases of connecting different elements are discussed clearly especially con-

necting the memristor and the inverse memristor together either in series or in par-

allel. New observations and conditions on the memristive behavior are introduced

and discussed in detail with different illustrative examples based on numerical, and

circuit simulations.
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1 Introduction

Since postulating the existence of the memristor in 1971 by Leon Chua, a huge

number of publications have been published. These publications address modeling

(Radwan et al. 2010a, b), and analysis. Chua (1971); Kozma et al. (2012); Radwan

and Fouda (2015); Adamatzky and Chua (2013); Fouda and Radwan (2015a, b). In

addition, memristors have been used in many applications such as sinusoidal oscilla-

tors (Talukdar et al. 2011a, b, 2012), relaxation oscillators (Fouda et al. 2013; Khatib

et al. 2012; Fouda and Radwan 2015c; Zidan et al. 2011, 2014), nonlinear con-

trol systems (Vaidyanathan and Volos 2016b), chaotic systems (Vaidyanathan and

Volos 2016a; Gambuzza et al. 2015; Radwan et al. 2011), digital and analog circuits

(Radwan and Fouda 2015; ElSlehdar et al. 2015). Memristors have a unique behavior

which distinguish them from voltage–current other nonlinear devices. They exhibit

pinched hysteresis in the plane. The hysteresis lobe area of memristor decreases

monotonically as the excitation frequency increases. Also, the pinched hysteresis

loop should shrink to a single-value when the frequency tends to infinity. This means

that the lobe area declines with increased frequency. These characteristics should

exist in a device to be referred to as a memristor (Biolek et al. 2011; Adhikari et al.

2013).

There are two categories of memristor models, current- and voltage-controlled

models. The current-controlled memristor has a state variable that is function

of the current passing through the memristor such as the HP model (Joglekar and

Wolf 2009), and Picket model (Pickett et al. 2009). On the other hand, the state

variable of the voltage-controlled memristor is a function of the voltage across the

memristor (Kozma et al. 2012; Radwan and Fouda 2015). Some of these models are

simple and some of them are complex but all of them capture the main memristor

characteristics which should exist regardless of the memristor type.

There is another way to distinguish between memristor types which is based on the

ideality of the device. According to this, we have two main types of the memristor;

ideal and nonideal memristors. The memristor is called ideal if the self cross point

is the origin. Otherwise, it is called nonideal memristor (Biolek et al. 2015). The

non-ideality may appear in the devices due to the existence of reactive elements as

will be discussed in detail in this chapter.

The inverse memristor is a system that exhibits self crossing pinched hystere-

sis. Contrarily with memristors, the memristor hysteresis widens with increasing the

applied frequency (Fouda et al. 2015). The inverse memristor can be modeled as a

nonlinear inductor or a nonlinear capacitor (with quadratic nonlinearity) in series

with a resistor. As a conclusion, pinched hysteresis is a necessary but not a sufficient

condition to prove the memristivity. Other conditions should be satisfied as well.

Considering memristor and inverse memristor in circuit theory is essential. That’s

why, many publications have been published to discuss the memristor inside conven-

tional circuits. The memory existence inside memristive devices gives new character-

istics. By adding the memristor to well known circuits, new responses and behaviors

are obtained due to the unique behavior of the memristor (Radwan and Fouda 2015).
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This chapter is organized as follows: section I introduces a generalized mathemat-

ical model for all the possible cases for circuit elements. Memristor is the special case

of this modeling equation as deduced in section II. In section III, based on the gener-

alized equation, we find a new element which has the opposite characteristics of the

memristor. This element is discussed in details with some circuit emulators to proof

the concept. In section IV, different circuit configurations are discussed and its effect

on the hysteresis. Finally, conclusions are given.

2 Generalized Equation Model

A general equation can be defined as follows:

y = ax + (b + ex)dx
dt

+ (d + cx)
t

∫
0

x(𝜏)d𝜏 (1)

where y is a normalized output, x is a normalized input signal, and (a, b, c, d, e) are

scaling constants. Equation (1) describes the different cases of applying an input

signal and/or effect of integrating and differentiating the input signal.

This equation contains the definitions of all known circuit elements as we will

discuss later. But firstly, let’s study the behavior of this modeling equation under a

sinusoidal excitation assuming x(t) = ksin(𝜔t + 𝜙). Therefore,

dx
dt

= k𝜔cos(𝜔t + 𝜙) = ±𝜔
√

k2 − x2 (2)

and
t

∫
0

x(𝜏)d𝜏 = 1
𝜔

(
kcos(𝜙) ∓

√
k2 − x2

)
(3)

Substituting into (1) and using trigonometric identities, one obtains

y =ax + k(d + cx)cos(𝜙)
𝜔

±
((

e𝜔− c
𝜔

)
x +

(
b𝜔− d

𝜔

))√
k2 − x2 (4)

This equation has the following properties:

1. There exists a line of odd-symmetry given by the first order relation between y
and x

y = ax + k(d + cx)cos(𝜙)
𝜔

(5)

2. A pinched-double loop hysteresis behavior is observed in the x-y plane. The

double-loop intersects itself at a point known as the pinch-point (xp, yp) obtained
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by equating

√
k2 − x2 to zero; yielding

xp = b𝜔2 − d
c − e𝜔2 , yp = axp + k(d + cxp)

cos(𝜙)
𝜔

(6)

At high frequency, this pinched point reduces to

(
−b
e
,
−ab

e

)
while at low frequency

it reduces to

(
−d
c
, 0
)

. It is obvious that some scaling coefficient are amplified

with increasing the frequency; namely b and e while other coefficients vanish

with increasing the applied frequency like c and d. Changing the frequency does

not affect the coefficient a.

3. Generally, (4) will pass by the four boundary points:

(
0, dkcos(𝜙)

𝜔

±
(

b𝜔 − d
𝜔

)
k
)

and
(
±k, k

(
∓a + cos(𝜙)(d ∓ ck)

𝜔

))
. (7)

The basic circuit elements can be obtain easily from this equation as follows:

∙ Resistor: Resistance can be obtained by putting all the coefficients equal to zero

except a. Either x or y represents the current or the voltage. Then we have a linear

relation between current and voltage representing the resistor.

∙ Capacitor: Capacitance is the linear relation between voltage and charge. So, by

putting x(t) = i(t) and y(t) = v(t), the capacitance is 1∕d where the other coeffi-

cients are zero.

∙ Inductor: Inductance can be given by putting x(t) = i(t) and y(t) = v(t), then induc-

tance is b when the other coefficients are zero.

Based on (1), we can generate other elements such as memristor with symmet-

ric and asymmetric behavior. Also we can anticipate new behaviors such as inverse

memristor.

3 Deduced Memristive Equation

The self-crossing (pinched) hysteresis loop was shown to be a necessary charac-

teristic of all memristive devices. However, (Adhikari et al. 2013) added two more

conditions on memristive devices which are (i) starting from some critical frequency,

the hysteresis lobe area should decrease monotonically as the excitation frequency

increases and (ii) the pinched hysteresis loop should shrink to a single-valued func-

tion when the frequency tends to infinity. This means that the lobe area declines with

increased frequency. So, any memristor should have these characteristics.

As a special case of (1), a simple equation for the symmetrical and asymmetric

double-loop hysteresis behavior can be developed which was introduced in (Elwakil

et al. 2013; Radwan and Fouda 2015). This equation has the basic memristor char-

acteristics and is given as follows:
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y(t) = x(t)
⎛
⎜
⎜
⎝
a + c

t

∫
0

x(𝜏)d𝜏
⎞
⎟
⎟
⎠
+ bdx(t)

dt
, (8)

where a represents the initial state of the memristor.

This equation represents a symmetric behavior when b = 0, so let’s discuss the

symmetric case first.

3.1 Symmetrical Memristive Model

One of the test bench marks of the memristor it that the pinched hystersis decreases

with increasing the applied input frequency. Figure 1 shows the observed double-

loop behavior for a = c = 1 when x(t) = cos(𝜔t) and 𝜔 = 1. Note that two cases

are plotted in Fig. 1; namely the positive/ negative a and c cases of (8) with b = 0
resulting in either a positively inclined loop or a negatively inclined loop, respec-

tively. Two more cases; (a, c) are(+,−) and (−,+) are also possible and lead, respec-

tively, to similar positively inclined and negatively inclined loops. It is clear that for

x(t) = cos(𝜔t), y(t)
x(t)

= a + 1
T𝜔

sin(𝜔t) ∈ [a − 1
T𝜔

, a + 1
T𝜔

]. Therefore, y = ax is a sym-

metry line and the polarity of a determines the quadrant in which the hysteresis loop

appears.

The implementation of the double-loop hysteresis could be done using current or

voltage signals; when x(t) is represented by a current and y(t) is represented by a volt-

age the implementation is current-controlled. Alternatively when y(t) is represented

by a current and x(t) is represented by a voltage; a voltage-controlled memristive

device is obtained. It is worth noting that the authors of (Biolek et al. 2011) have

Fig. 1 Double-loop

hysteresis for a = c = 1 and

x(t) = cos(t) in (8)
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recently proposed conditions for symmetric pinched hysteresis. The model above

satisfies these conditions and is simpler than the one in (Biolek et al. 2011).

3.1.1 Current-Controlled Memristor

Setting x(t) = i(t)
Iref

, y(t) = v(t)
Iref Rs

, where Iref is an arbitrary reference current and Rs is

an arbitrary resistance, and substituting into (8), the current-controlled memristor

equation is given by

v(t) = ±i(t)Rs ±
i(t)Rs

TIref

t

∫
0

i(𝜏)d𝜏 = ±i(t)Rs ±
i(t)Rs

TIref
q(t), (9)

and hence the memristance Rm = v(t)∕i(t) is given by

Rm = ±Rs ±
Rs

TIref
q(t). (10)

It is seen here that Rm is a function of the accumulated current which is essen-

tially the charge q(t); similar to HP modeling equation (Elwakil et al. 2013). In

terms of the four different possibilities for Rm, which (a, c) are (+,+), (+,−), (−,+)
and (−,−) they respectively represent incremental/decremental Rm and incremen-

tal/decremental negative Rm; as demonstrated below.

3.1.2 Voltage-Controlled Memristor

Setting x(t) = v(t)
Vref

, y(t) = i(t)
Vref Gs

, where Vref is an arbitrary reference voltage and Gs is

an arbitrary transconductance, and substituting into (8), the voltage-controlled mem-

ristor equation is given by

i(t) = ±v(t)Gs ± Gs
v(t)

TVref

t

∫
0

v(𝜏)d𝜏 = ±v(t)Gs ± Gs
v(t)

TVref
𝜑(t), (11)

and hence the trans-memristance Gm is

Gm = ±Gs ±
Gs

TVref
𝜑(t), (12)

where 𝜑(t) is the accumulated flux. Similarly, there are four different possibili-

ties representing incremental/decremental Gm and incremental/decremental negative

Gm, respectively.
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Fig. 2 I-V characteristics of

an incremental Rm at

different frequencies with

Iref = 1µA and Rs = 10 kΩ
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Fig. 3 Maximum and minimum incremental Rm when Rs = 10 kΩ

Figure 2 shows the I-V characteristics for an incremental Rm for four different

frequencies of the sinusoidal input current i(t) with Iref = 1µA and Rs = 10 kΩ. The

maximum and minimum values of Rm are shown respectively in Fig. 3; plotted once

for the range of Iref spanning from 1µA to 0.1mA and another for the frequency range

1−100Hz of the input signal. In Fig. 4, the I-V characteristics for an incremental

but negative Rm is also shown for four different frequencies of the sinusoidal input

current i(t) with Iref = 1µA and Rs = 10 kΩ.

As a proof of concept, different circuit emulators have been introduced based on

this model and discussed in detail (Radwan and Fouda 2015).
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Fig. 4 I-V characteristics of

an incremental negative Rm
at different frequencies with

Iref = 1µA and Rs = 10 kΩ

3.2 Continuous Non-symmetrical Model

Adding the derivative term to the symmetric equation makes the pinched hysteresis

asymmetric. If x(t) = cos(𝜔t) then (8), with nonzero elements, yields

y(t) = ax(t) ∓ (b𝜔 − c
𝜔

x(t))
√
1 − x2(t). (13)

It can be shown that the pinch-off point, which corresponds to the vanishing of

the second term of (13), is given by

[xp, yp] =
[b

c
𝜔
2
, (ab

c
𝜔
2)
]
, (14)

where xp ≤ 1. Moreover, the generated loop always passes by the three points:

(x, y) = (1, a), (−1,−a) and (x, y) = (0,±b𝜔). Figure 5a shows the observed non-

symmetrical loops for different values of a when b = c = 1 at f = 0.1Hz. A 3D view

of these non-symmetrical loops for different values of c when a = 0, b = 1 is shown

in Fig.5b while Fig. 5c shows the case when a = b = 1; both figures at f = 0.5Hz.

Note that if xp = b
c
𝜔
2
> 1 then there is no pinched point and a single loop is observed.

4 Deduced Inverse Memristive Equation

A simple inverse memristive equation can be deduce from (1) by putting b = c = 0
as follows:

y = ax + (b + ex)dx
dt

(15)
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Fig. 5 Non-symmetrical loops when a (b, c) = (1, 1), b (a, b) = (0, 1), and c (a, b) = (1, 1)

Under a general sinusoidal excitation where x(t) = k.sin(𝜔t + 𝜑), and by using

trigonometric identities, we obtain

y = ax ± (b + ex)
√

k2 − x2 (16)

4.1 Inverse Memristor Properties

This equation has the following properties:

1. There exists a line of symmetry given by the first order equation y = ax. Evidently,

for a = 0, the y-axis is the line of symmetry.

2. A pinched double-loop hysteresis behavior is observed in the xy plane. The

double-loop intersects itself at a point known as the pinch-point (xp, yp) given

by

(xp, yp) =
−b
e
(1, a) = (0, 0)|b=0 (17)
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Fig. 6 Pinched hysteresis

from (15) when b = 0

-1 0 1

-5

0

5

x

y

a=3, e=2

which is independent of 𝜔. Figure 6 is a plot of the pinched loop for (a, b, e) =
(3, 0, 2).

3. The double-loop will always pass by the boundary points: 𝜔(0,±bk) and

k(±1,∓a). For b = 0, the first two points coincide with the pinch point (xp, yp) =
(0, 0).

4. The area inside the two lobes of the pinched hysteresis is given by

A = 4∫
k

0

(
𝜔(b + ex)

√
k2 − x2

)
dx = 2k2

(
𝜋b + 2

3
ek
)

(18)

Hence, it is clear that A is directly proportional to 𝜔 ; i.e. maximizing the hys-

teresis loop area requires increasing 𝜔. This represents inverse-memristor fre-

quency characteristics since the condition in (Adhikari et al. 2013) implies that

for a memristor the lobe area should decrease monotonically as the excitation fre-

quency increases; shrinking to a single valued function when the frequency tends

to infinity.

A non-symmetrical-loop may be obtained using (15) and also by adding an inte-

gral term in the form. For example, if b = 0, then

y = ax + exdx
dt

+ d ∫
t

0
x(𝜏)d𝜏 (19)

for which the line of symmetry and pinch-point are, respectively, given by

y = ax + kd
cos(𝜑)
𝜔

and (xp, yp) =
( d

e𝜔2 ,
( ad

e𝜔2 + kd
𝜑

𝜔

))
(20)

both of which are frequency dependent. Since |xp| < k, then |d∕e𝜔2| < k and there-

fore the frequency

𝜔c =
√

|d∕e|
k

(21)
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Fig. 7 Pinched hysteresis of

an inverse memristor widens

as frequency is increased
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is the critical frequency at which the non-symmetrical double loop is born. The area

of the this double-loop increases for 𝜔 > 𝜔c. This will be demonstrated further in

the experimental results section.

From an electrical circuit point of view, Eq. (15) can represent different types

of circuits based on the nature of x and y. Restricting ourselves to the v(t) − i(t)
plane, the possible choices of x(t) and y(t) are either a voltage v(t) or a current i(t).
When x(t) = i(t) and y(t) = v(t) then (15) can be translated into series connected

components. Alternatively, if x(t) = v(t) and y(t) = i(t) then (15) can be translated

into parallel connected components as mentioned previously.

It is important to note that in case of x(t) = i(t) and y(t) = v(t), a nonlinear induc-

tor with quadratic current dependence can be obtained where ∫ v(i)dt = e∕2i2(t)
where e has the units of Henry/Ampere and can be termed pseudo-inductance. Note

that if b = 0, then (15) can be considered to collectively represent single derivative-

controlled nonlinear resistor Rd(i(t)) where

v(t) =
(

a + edi(t)
dt

)
.i(t) = Rd.i(t) (22)

Figure 7 shows the observed pinched hysteresis loop in this special case for three

different frequencies with a = 1kΩ, e = 100H∕mA, b = 0 and k = 1mA. The values

of a, e and k were chosen to obtain a current in mA and a voltage in Volts. Note the

widening of the loop as 𝜔 is increased since according to (18), Ab=0 =
4
3
ek3�̇� ≈

𝜔∕562.5. In a conventional memristor, the loop area declines as 𝜔 is increased.

Recall that

(
4
3
ek3

)
represents the energy stored in the device and has the units of

(𝜇H × A2). If we compare this to the expression of the energy stored in an effective

inductor (EL = 0.5Leff i2), we can calculate the effective inductance Leff = 267µH.

In case of x(t) = v(t) and y(t) = i(t), a nonlinear capacitor with quadratic voltage

dependence is obtained, where ∫ i(t)dt = e∕2v2(t) and e has the units of Farad/Volt
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and can be termed pseudo-capacitance. Also, if b = 0, then (15) can be considered

to represent a single derivative-controlled nonlinear transconductor Gd(v(t)) where

i(t) =
(

a + edv(t)
dt

)
.v(t) = Gd.v(t) (23)

The energy stored in this device is also

(
4
3
ek3

)
with the units of (F × V2). As

expected, this device mimics a capacitor with a stored energy of (0.5Ceff v2) resulting

in Ceff = (8e∕3)F. This device will be emulated and experimentally validated in the

next subsection.

4.2 Inverse Memristor Circuit Emulator

Due to the lack of solid-state samples, researchers are developing emulation cir-

cuits to mimic the behavior of either current-controlled memristors or voltage-

controllled memristor (Hussein and Fouda 2013; Radwan and Fouda 2014; Alharbi

et al. 2015a, b, c). In (Fouda et al. 2015), a simple emulator circuit for inverse mem-

ristor is developed based on (23) where an applied voltage V is differentiated using a

floating differentiator circuit and then used to control a voltage-controlled transcon-

ductance Gm through its control voltage Vc. Transconductance is implemented using

an LM13700 chip where Gm is proportional to a bias voltage Vc given by

Gm =
(
0.64Vc + 8.6885

) RA

RB
(m𝛺

−1) (24)

and RA,RB are external biasing resistors. If the control voltage Vc is forced to be

equal to the derivative of the applied voltage V then Gm in (24) can realize Gd in

(23). This is achieved using the circuit shown in Fig. 8 with three op amps (TL084)

controlling the bias voltage Vc of the LM13700. Consequently, (23) is realized with

a = 8.6885RA∕RB(m𝛺
−1) and e = 064RA∕(RBRC)(m𝛺

−1V−1s).
This circuit was experimentally constructed as shown in Fig. 8 after selecting

(C,R,RB,RA) equal to (1mF, 10 kΩ, 100 kΩ, 10 kΩ). A 0.25V input voltage was

applied at different frequencies. A current-to-voltage converter with equivalent resis-

tance 56 kΩ was used to observe the current flowing into the two-terminal device.

The observed loop is confirmed to widen as the frequency is increased in the

sequence 300, 500, 700 and 900Hz as shown in Fig. 9a, b. Further, we verified

(19), which indicates that by adding a capacitor in series with Gd, non-symmetrical

pinched loops can be obtained. This is shown in Fig. 10 using a 0.047µF capacitor

at 500Hz and at 700Hz, respectively. Note the widening of lobe area as frequency

is increased and using (21), the pinched loop is born at approximately 410Hz.

Figure 11a shows the effect of connecting a 10H inductor in parallel with the

inverse memristor. It is clear that the pinch point lies in the first quadrant. By
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Fig. 8 Emulation circuit of voltage-controlled inverse memristor (Fouda et al. 2015)

increasing the value of the inductance, the pinched point moves up until the loop

becomes elliptic without any intersection which means that the inductance domi-

nates the behavior of the circuit. Unlike Fig. 11b where the pinched point lies in

the third quadrant, by increasing the capacitance value, the pinch point moves down

until it gets out of the boundaries and the loop becomes inclined elliptic where the

capacitance behavior dominates the inverse memristor behavior.

5 Circuit Identification

Briefly, from a circuit point of view, (1) can represent two different types of cir-

cuits; based on the nature of x and y. When x(t) = i(t) and y(t) = v(t) then (1) can

be translated into five series connected impedances, as shown in Fig. 12a. Alterna-

tively, if x(t) = v(t) and y(t) = i(t) then (1) can be translated into five parallel con-

nected admittances, as also shown in Fig. 12b. In Fig. 12a, the five impedances are

identified respectively as

∙ a linear resistance R corresponding to the linear proportional coefficient a in (1)

(R = a).
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Fig. 9 Experimental verification of the circuit in Fig. 8 at 300, 500, 700 and 900Hz. X-axis is v(t)
and Y-axis is i(t) × 56 kΩ

∙ a linear inductance L corresponding to the linear derivative coefficient b in (1)

(L = b).
∙ a linear capacitance C corresponding to the linear integration coefficient d in (1)

(C = 1∕d).
∙ a memristor M corresponding to the nonlinear integral term with coefficient c in

(1). From (1), M(q) = c ∫ i(𝜏)d𝜏. Under sinusoidally exciting i(t), the charge q(t)
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Fig. 10 Experimental results showing non-symmetrical loops at 500 and 700Hz
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Fig. 11 SPICE simulation of parallel inverse memristor with a 10H inductor and b 50 nF capacitor

is inversely proportional to the frequency 𝜔 and hence the memristance decays

with increasing frequency (Adhikari et al. 2013).

∙ a new element, which we term the inverse memristance M, corresponding to the

nonlinear derivative term with coefficient e in (1). From (1), M(q) = edi(t)∕dt.
Under sinusoidal i(t), M increases proportional to 𝜔.

All series-connected cases are summarized in Table 1. Similarly, the same five

impedances can be transformed into their admittance equivalents in Fig. 12b.
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Fig. 12 Series and parallel connections of the five impedances (R,L,C,M,M)

Table 1 A summary of some special cases of the proposed Eq. (1)

Case (xp, yp) Boundary points Double-loop

b = d = e = 0 (0, 0) (0, 0)
(±k,±k(a + ck cos(𝜙)

𝜔

))
𝛥( y

x
)max =

ck
𝜔

b = c = d = 0 (0, 0) (0, 0)
(±k,±ak)

𝛥( y
x
)max = ek𝜔

b = d = 0 (0, 0) (0, 0)
(±k,±k(a + ck cos(𝜙)

𝜔

))
𝛥( y

x
)max = k(e𝜔 − c

𝜔

)

d = e = 0 xp = b𝜔2

c
yp = axp +

kdcos(𝜙)
𝜔

(0,±kb𝜔)
(±k,±k(a + ck cos(𝜙)

𝜔

))
Non-symmetrical

y ≈ (a + ckcos(𝜙)
𝜔

)x

b = c = 0 xp = d
e𝜔2

yp = axp +
kdcos(𝜙)

𝜔

(0, kd
𝜔

(cos(𝜙) ± 1))
(±k,±k(a + ck cos(𝜙)

𝜔

))
Non-symmetrical

y ≈ ax + kdcos(𝜙)
𝜔

5.1 Impedance Analysis

Referring to the first row in Table 1 where a ≠ 0 and c ≠ 0, while b = d = e = 0, (1)

then represents a current-controlled memristor M with initial memristance equals

cq(0) in series with a resistor a. This connection represents a memristor with mem-

ristance Rm = Ri + cq(t) and Ri representing the initial memristance and equals

a − cq(0). The pinched hysteresis of this memristor shrinks with increasing fre-

quency and eventually disappears since it can be shown that △(y∕x)max = ck∕𝜔.

Therefore, maximizing the hysteresis behavior requires minimizing 𝜔.

The second row in Table 1, where a ≠ 0, e ≠ 0 and b = c = d = 0 corresponds

to the inverse memristor M. A symmetric pinched hysteresis loop is also observed

and is stimulated with increasing the frequency and vanishes as 𝜔 → 0 since it can

be shown that △(y∕x)max = ek𝜔. Hence, maximizing the hysteresis loop requires

increasing 𝜔.

Row 3 in Table 1 shows the case of a memristor and inverse memristor connected

in series; in which case only b = d = 0 and △(y∕x)max = k(e𝜔 − c
𝜔

). Note the exis-

tence of a critical frequency 𝜔o =
√

c∕e at which the hysteresis loop disappears

and reduces to a straight line. Higher or lower than this critical frequency, the area

of the hysteresis loop increases. This is illustrated in Figs. 13a, b respectively for
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Fig. 13 Behaviour of an M − M series connection a increasing𝜔 above𝜔o and b reducing𝜔 below

𝜔o

Fig. 14 Maximum and

minimum resistances for a

series M − M connection
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a = 103, c = e = 105, k = 10−3 and 𝜙 = 𝜋∕2; which yields 𝜔o = 1. The maximum

and minimum resistance (Rmax,Rmin) with this series M − M connection is shown in

Fig. 14.

Adding a reactive element (capacitor or inductor) in series with M or M makes the

hysteresis loops asymmetric. Figure 5 shows the effect of varying a when b = c = 1
and 𝜔 = 0.2𝜋 on the case represented in row 4 of Table 1. This case corresponds to

an inductor in series with a memristor (series L − M). Note that all loops in Fig. 15

are asymmetric but with the same pinch point. Finally, the case in row 5 of Table 1

is that of a capacitor in series with a memristor (series C − M). Table 2 represents a

summary of the complex impedances that can be obtained from (1) along with their

circuit representations.
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Fig. 15 Asymmetric

double-loop hysteresis

corresponding to row 4 of

Table 1 (an inductor in series

with a memristor) for

variable a
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x
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ω=0.5
b=c=1

Table 2 Impedances from (1)

Non-zero Element(s) Circuit Model

a R

b L

d C

a, b RL

a, d RC

a, b d RLC

a, c M

a, e M

a, b, c ML

a, c, d MC

a, b, c, d MLC

a, b, e ML

a, b, d, e MLC

a, b, , c, d, e MMLC
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Fig. 16 SPICE simulation of parallel inverse memristor with parallel LC

5.2 Admittance Analysis

By setting y = i(t) and x = v(t), (1) reads as

i(t) = [a + c

t

∫
0

v(𝜏)d𝜏 + edv
dt
]v(t) + bdv

dt
+ d

t

∫
0

v(𝜏)d𝜏 (25)

where the coefficient a has transconductance unit (℧), b has capacitance unit (F),

d has inverse inductance unit (H−1), c has unit (sec ⋅ V ⋅𝛺)−1, and e has the unit

of (sec∕V ⋅𝛺). Similar to the impedance formation, different complex admittance

can be obtained. For example, when a ≠ 0, c ≠ 0 and b = d = e = 0, the previous

equation represents a voltage-controlled memristor with initial memductance equal

to a − c𝜙(0). While when a ≠ 0, e ≠ 0 and b = c = d = 0, it represents a voltage-

controlled inverse memristor. It is straightforward to build a table similar to Table 2

for all cases.
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In case of connecting parallel MLC circuit, the hysteresis loop can be either

pinched or not depending on the values of b and d. The hysteresis would be pinched

with double loops if |xp| < A where A is the input voltage amplitude and single loop

for |xp| > A. The pinch point can be in the first or the third quadrant depending on

the values of b and d where for 𝜔 <

√
d
b
, the pinch point lies in the first quadrant

and vice versa. Figure 16 is plotted by applying v(t) = sin(400𝜋t) where Fig. 16a, b

showing the effect of changing the parallel capacitance 50 nF and 100 nF at L = 10H.

However, Fig. 16c, d show the effect of changing the parallel inductance from 10 H

and 5 H at C = 50 nF. At the parallel resonance 𝜔o =
√

1
LC

, the coordinates of the

pinch point is (0, 1
L𝜔
) at 𝜔 = 400𝜋,L = 10 H and C = 63.357 nF.

6 Conclusion

In this chapter, A mathematical model to represent all the linear elements has been

discussed. Different special cases have been introduced and verified using numerical,

and circuit simulations. As we discussed, the statement “if it is pinched, it is memris-

tor” is not valid anymore since we proved that inverse memristor has pinched hystere-

sis but it has the opposite behavior. Also the inverse memristor can be obtained by a

nonlinear capacitor or nonlinear inductor. Connecting any reactive element to ideal

symmetric pinched device gives asymmetric behavior. Thus, the asymmetric pinched

devices can be modeled as symmetric devices with a reactive element. Moreover,

according to the discussion, the series and parallel connection of the conventional

elements in addition to the memristor and inverse memristor especially memristor-

inverse memristor connection give new properties. These properties are new to the

circuit theory.
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