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Abstract The recent discovery of memristor has aroused great interest in the
scientific community about this new fourth circuit element and its applications in
spintronic devices, ultra-dense information storage, neuromorphic circuits and
programmable electronics. Also, the intrinsic nonlinear characteristic of memristor
has been exploited in implementing novel chaotic oscillators with complex
dynamics, by replacing their nonlinear elements with memristors. However, the
increased systems’ complexity, due to the use of memristor, have been raised
significantly the interest for studying the cases of control of such systems as well as
the synchronization of coupled memristive systems. So, to this direction, this
chapter presents an adaptive controller, which is designed to stabilize a
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memristor-based chaotic system with unknown memristor’s parameters. Moreover,
an adaptive controller is designed to achieve global chaos synchronization of the
memristor-based chaotic systems with unknown memristor’s parameters. The
proposed chaotic system is a modified Shinriki nonlinear circuit, in which its
nonlinear positive conductance has been replaced with a first order memristive
diode bridge. All the main adaptive results in this chapter are proved using Lya-
punov stability theory. The simulation results confirm the effectiveness of the
proposed control and synchronization schemes.

Keywords Memristor ⋅ Shinriki system ⋅ Chaos ⋅ Control ⋅ Synchronization

1 Introduction

Three attractive inventions of Professor Leon Chua: the Chua’s circuit (Matsumoto
1984), the Cellular Neural/Nonlinear Networks (CNNs) (Chua and Yang 1988a, b),
and the memristor (Chua 1971; Chua and Kang 1976) are considered as the major
breakthroughs in the literature of the nonlinear science. While Chua’s circuit and
CNNs have been studied and applied in various areas, such as secure communi-
cations, random generators, signal processing, pattern formation of modelling of
complex systems (Arena 2005; Chua 1994, 1998), studies on memristor have only
received significant attention recently after the realization of a solid-state thin film
two-terminal memristor at Hewlett-Packard Laboratories (Strukov et al. 2008).

After this realization, a considerable number of potential memristor-based
applications have been reported because memristor can be applied in different
potential areas. The more important of them are related with spiking neural net-
work, high-speed computing, synapses of biological systems, flexible circuits,
nonvolatile memory, adaptive filter, pattern recognition systems, artificial intelli-
gence, modeling of complex systems or low power devices and sensing (Adhikari
et al. 2012; Ascoli et al. 2013; Ascoli and Corinto 2013; Corinto et al. 2012;
Driscoll et al. 2010; Joglekar and Wolf 2009; Shin et al. 2011; Tetzlaff 2014).
Interestingly, the intrinsic nonlinear characteristic of memristor has been exploited
in implementing novel chaotic oscillators with complex dynamics (Bo-Cheng et al.
2011; Buscarino et al. 2012a, b; Corinto et al. 2012; Corinto and Ascoli 2012;
Driscoll et al. 2011; Itoh and Chua 2008; Muthuswamy 2010).

Furthermore, the study of control of a chaotic system investigates methods for
designing feedback control laws that globally or locally asymptotically stabilize or
regulate the outputs of a chaotic system. Many methods have been developed for
the control and tracking of chaotic systems such as active control (Chen 1999;
Mahmoud et al. 2007; Nbendjo et al. 2003; Nbendjo and Woafo 2007), adaptive
control (Chen 2011; Zheng 2011; Lin 2008; Luo et al. 2010; Vaidyanathan and
Volos 2016a, b), backstepping control (Laoye et al. 2009; Lin 2010; Yassen 2006)
and sliding mode control (Bartoszewicz and Patton 2007; Edwards and Spurgeon
1998; Utkin 1993, 2004; Utkin et al. 2009; Young et al. 1999).
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Furthermore, chaos synchronization problem deals with the synchronization of a
couple of systems called the master or drive system and the slave or response
system. To solve this problem, control laws are designed so that the output of the
slave system tracks the output of the master system asymptotically with time. The
study of chaos in the last decades had a tremendous impact on the foundations of
science and engineering and one of the most recent exciting developments is the
discovery of chaos synchronization, which possibility was first reported by Fujisaka
and Yamada and later by Pecora and Carroll (Fujisaka and Yamada 1983; Pecora
and Carroll 1990). Because of the “butterfly” effect, the synchronization of chaotic
systems is a challenging problem in the chaos literature even when the initial
conditions of the master and slave systems are nearly identical because of the
exponential divergence of the outputs of the two systems in the absence of any
control. Different types of synchronization such as complete synchronization
(Landsman and Schwartz 2007; Lin and He 2005; Liu 2002; Mahmoud and
Mahmoud 2010; Pecora and Carroll 1990), antisynchronization (Kim et al. 2003; Li
and Zhou 2007; Wang 2009; Wedekind and Parlitz 2002; Zhang and Sun 2004),
hybrid synchronization (Barajas-Ramírez et al. 2003; Karthikeyan and Sundara-
pandian 2014; Xie 2002), lag synchronization (Li et al. 2005; Rosenblum et al.
1997; Shahverdiev et al. 2002; Taherion and Lai 1999), phase synchronization
(Pikovsky et al. 1997; Rosenblum et al. 1996, 2001), anti-phase synchronization
(Astakhov et al. 2000; Cao and Lai 1998; Liu et al. 2006), generalized synchro-
nization (Kocarev and Parlitz 1996; Rulkov et al. 1995; Wang and Guan 2006;
Yang and Duan 1998), projective synchronization (Li and Xu 2004; Mainieri and
Rehacek 1999), generalized projective synchronization (Li 2007; Sarasu and
Sundarapandian 2011; Yan and Li 2005), have been studied in the chaos literature.

Since the discovery of chaos synchronization, different approaches have been
proposed to achieve it, such as PC method (Pecora and Carroll 1990), active control
method (Agiza and Yassen 2001; Idowu et al. 2009; Vaidyanathan and Rajagopal
2011; Vincent 2008), adaptive control method (Chen and Lü 2002a, b; Vaidya-
nathan and Rajagopal 2012), backstepping control method (Huang 2005; Tan 2003;
Yassen 2007) and sliding mode control method (Tavazoei and Haeri 2008; Yau
2004; Zhang and Xu 2010).

In this chapter, adaptive control and synchronization schemes for a
memristor-based chaotic system have been developed. The proposed system is a
modified Shinriki nonlinear circuit, in which its nonlinear positive conductance has
been replaced with a first order memristive diode bridge. All the main adaptive
results in this chapter are proved using Lyapunov stability theory. Simulation results
prove the effectiveness of the proposed control and synchronization schemes.

The rest of this chapter is organized as follows. Related works are summarized in
Sect. 2. Section 3 provides the mathematical model of the memristor-based Shinriki
system, while the dynamics and properties of the system are presented in Sect. 4.
The adaptive control scheme of the memristor-based Shinriki system is introduced
in Sect. 5, while the adaptive synchronization scheme between two coupled
memristor-based Shinriki system is presented in Sect. 6. Finally, conclusions are
drawn in Sect. 7.
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2 Related Works

Based on the complex dynamical behavior that memristive systems present, in the
last five years many interesting control and synchronization schemes in those
systems have been proposed. These schemes are presented in details in this section.

Firstly, in 2012, Wu et al. proposed some sufficient conditions for guarantying
the exponential synchronization of the coupled memristor-based recurrent neural on
drive-response concept (Wu et al. 2012).

Two different types of anti-synchronization algorithms are presented by Wu and
Zeng in order to achieve the exponential anti-synchronization of coupled mem-
ristive recurrent neural networks (Wu and Zeng 2013). Huang and his co-workers
investigated the problem of intermittent control of a memristor-based Chua’s
oscillator and presented the oscillator as the T-S fuzzy model system (Huang et al.
2013). Also, in 2013, a novel kind of compound synchronization between four
memristor chaotic oscillator systems was investigated, where the drive systems
have been conceptually divided into two categories: scaling drive systems and base
drive systems (Sun et al. 2013).

In 2014, Zhang and Shen have investigated the exponential synchronization of
coupled memristor-based chaotic neural networks with both time-varying delays
and general activation functions (Zhang and Shen 2014). In the same year, the
problem of global exponential synchronization for a class of memristor-based
Cohen–Grossberg neural networks with time-varying discrete delays and unboun-
ded distributed delays was studied (Yang et al. 2014). The problem of exponential
lag synchronization control of memristive neural networks via the fuzzy method
and its application in pseudorandom number generators has been presented in Wen
et al. (2014a). In Wang et al. (2014) the synchronization control of memristor-based
recurrent neural networks with impulsive perturbations or boundary perturbations is
studied. Also, in 2014, the synchronization problem of memristive systems with
multiple networked input and output delays via observer-based control has been
investigated (Wen et al. 2014b).

Pham et al. 2015, studied the case of anti-synchronization between coupled
memristor-based hyperchaotic systems with hidden attractors (Pham et al. 2015).
The global robust synchronization of multiple memristive neural networks with
nonidentical uncertain parameters is presented in Yang et al. (2015). Wen and his
co-workers studied the problem of circuit design and global exponential stabiliza-
tion of memristive neural networks with time-varying delays and general activation
functions (Wen et al. 2015). By using the parallel-memristors connection corre-
sponding to the capacitors and memristors synaptic connection in usual recurrent
neural networks, general delayed memristive recurrent neural networks are pro-
posed in Zhang et al. (2013). The investigation of synchronization for
memristor-based neural networks with time-varying delay via an adaptive and
feedback controller is studied in Li and Cao (2015). Mathiyalagan and his
co-workers formulated and investigated the impulsive synchronization of memristor
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based bidirectional associative memory neural networks with time varying delays
(Mathiyalagan et al. 2015).

In Mathiyalagan et al. (2016) the mixed H∞ and passivity based synchronization
criteria for memristor-based recurrent neural networks with time-varying delays has
been investigated. The impulsive synchronization of stochastic memristor-based
recurrent neural networks with time delay is studied in Chandrasekar and
Rakkiyappan (2016). Li and Cao presented the lag synchronization problem of
memristor-based coupled neural networks with or without parameter mismatch using
two different algorithms (Li and Cao 2016). A memristor-based complex Lorenz
system and its modified projective synchronization have been introduced in Wang
et al. (2016). Wen and his co-workers presented the sliding-mode control scheme of
uncertain memristive Chua’s circuits via the aforementioned method (Wen et al.
2016). Finally, a new memristor-based hyperchaotic complex Lü system and its
adaptive complex generalized synchronization are presented in Wang et al. (2016).

3 Model of the Memristor-Based Shinriki’s System

In this section, the memristor-based chaotic oscillator obtained by replacing the
nonlinear positive conductance of the Shinriki’s et al. (1981) circuit with a first order
memristive diode bridge is considered, as it proposed by Kengne et al. (2015). The
original Shinriki’s oscillator, which is a modified van der Pol oscillator, has been
introduced by Shinriki and co-workers in 1981 (Fig. 1). It consists of a resonant
circuit and two nonlinear conductances, one negative, which is approximated by

ia(v1) = − a1v1 + a3v31, a1 > 0, a3 > 0 ð1Þ

and another positive, which is approximated by

id(v2 − v1) = b1(v2 − v1) + b3(v2 − v1)3, b1 > 0, b3 > 0 ð2Þ

These approximations are quite reasonable from the qualitative viewpoint.
The state equation of the Shinriki’s circuit is written as:

C0
dv1
dt

= −G1v1 + a1v1 − a3v31 + b1(v2 − v1) + b3(v2 − v1)3

C
dv2
dt

= − iL −G2v2 − b1(v2 − v1) − b3(v2 − v1)3

L
diL
dt

= v2

8>>>>>><
>>>>>>:

ð3Þ

with (v1, v2, iL)∈R3.
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Shinriki and his co-workers showed that the circuit of Fig. 1 can generate
oscillations with a random waveform or a periodic waveform depending on the
chosen parameters.

In 1984, the dynamical behavior of the circuit of Fig. 1 has been further
investigated in the work (Freire et al. 1984). The circuit is shown to develop a great
variety of dynamical behaviors (equilibrium points, periodic oscillations, chaotic
motions etc.) and the analysis proceeded to catalog all of them through a bifurcation
study (pitchfork and Hopf bifurcations, flip bifurcations etc.). This study pointed
out the interest devoted to the Shinriki’s system (3).

Furthermore, in 2015 a novel memristor-based oscillator, obtained from Shin-
riki’s circuit of Fig. 1, by substituting the nonlinear positive conductance with a
first order memristive diode bridge, with a first order parallel RC filter, has been
introduced (Kengne et al. 2015). The schematic diagram of the memristor-based
Shinriki’s circuit, which is an autonomous nonlinear circuit belonging to the
memristive Chua’s circuit family, is depicted in Fig. 2.

The mathematical model of the proposed memristor is given by the following
equations:

im = g(vCm, v)v=2ISexp(− kvCm)sinh(kvm) ð4Þ
dvCm
dt

= f (vCm, v) =
2ISexp(− kvCm)cosh(kvm)

Cm
−

vCm
RmCm

−
2IS
Cm

ð5Þ

where k = 1/2nVT, while IS, n, VT denote the reverse current, the emission coeffi-
cient and the thermal voltage of the diode, respectively. Also, vm, im represent the

Fig. 1 The schematic of the original Shinriki’s circuit
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Fig. 2 The schematic of the memristor-based Shinriki’s circuit

input voltage and current of the memristor, and vCm is the voltage of the capacitor
Cm. The proposed memristor has been proved in Bao et al. (2014) that exhibits the
three characteristic fingerprints for identifying a memristor (Adhikari et al. 2013).

By using the aforementioned memristor model, the Shinriki’s system (3) has
became a fourth order dynamical system described by the following set of differ-
ential equations:

C
dvC
dt

= − iL −
vC
R5

− 2ISe− kvCmsinh(kvC − kvCo)

C0
dvCo
dt

=
1
R3

−
1
R4

� �
vCo +2ISe− kvCmsinh(kvC − kvCo)

L
diL
dt

= vC

Cm
dvCm
dt

= −
vCm
Rm

+2ISe− kvCmcosh(kvC − kvCo)− 2IS

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

Normalizing the system (6), by using the following change of variable and
parameters:

x1 =
vC
Vref

, x2 =
vCo
Vref

, x3 =
ρiL
Vref

, x4 =
vCm
Vref

, τ=
tffiffiffiffiffiffi
LC

p ,

Vref =2ηVT , ρ=
ffiffiffiffiffiffiffiffi
L C̸

p
, η1 =

C
Co

, η2 =
C
Cm

,

α=
ρ

R4
, β=

ρ

R3
, γ =

2ρiL
Vref

, δ=
ρ

R5
, σ =

ρ

Rm

ð7Þ
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The dimensionless circuit’s system is defined as:

x1̇ = − x3 − δx1 − γe− x4 sinh(x1 − x2)
x2̇ = η1 (β− α)x2 + γe− x4 sinh(x1 − x2)½ �
x3̇ = x1
x4̇ = η2 − σx4 + γe− x4cosh(x1 − x2)− γ½ �

8>><
>>:

ð8Þ

where the over dots denotes differentiation with respect to the dimensionless time τ.
Finally, for simplifying the system (8) further, it can be written as:

x1̇ = − x3 − dx1 − ce− x4 sinh(x1 − x2)
x2̇ = (b− a)x2 + pe− x4 sinh(x1 − x2)
x3̇ = x1
x4̇ = − lx4 +me− x4cosh(x1 − x2)−m

8>><
>>:

ð9Þ

where, a = η1α, b = η1β, c = γ, d = δ, p = η1γ, l = η2σ and m = η2γ.

4 Dynamics of the Memristor-based Shinriki’s System

The detailed analysis of the memristor-based Shinriki’s system (8), regarding its
fixed point’s analysis, system’s symmetry and numerical study, can be found in
(Kengne et al. 2015). However, in this section the system’s chaotic behavior will be
explored, in order to study, in the next sections, its chaos control and synchro-
nization schemes.

For this reason the system (9) is solved numerically using the classical
fourth-order Runge-Kutta integration algorithm with time step Δt = 0.005 and the
calculations are performed using variables and constants parameters. Also, the
system is integrated for a sufficiently long time and the transient is cancelled. Two
indicators are substantially exploited to define the type of scenario giving rise to
chaos. The bifurcation diagram stands as the first indicator, while the second
indicator is the graph of the Lyapunov exponents.

Furthermore, the numerical analysis is performed with the following values of
circuit components: L = 225 mH, Co = 10 nF, C = 100 nF, Cm = 940 nF,
R1 = 5.6 kΩ, R2 = 5.6 kΩ, R3 = 10 kΩ, R4 = 50 kΩ, R5 = 20 kΩ, Rm—tuneable,
1N4148 diodes, with η = 1.9, VT = 26 mV and IS = 2.682 nA. With this set of
components values, the system’s dimensionless parameters values are fixed to:
a = 0.3, b = 1.5, c = 8.143724 × 10−5, d = 0.075, p = 8.143724 × 10−4, and
m = 8.6635298 × 10−4, while l is the control parameter. The choice of l as a
control parameter is done, because it is related with the memristor (via Rm). So, it is
preferable as a control parameter, in order to see how a memristor’s parameter
affects system’s behavior.

As it is known, the bifurcation diagram provides a useful tool in nonlinear
science because it shows the change of system’s dynamical behavior. So, the
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bifurcation diagram of Fig. 3a has been obtained by plotting the value of variable
x1, when the trajectory intersects the section plane x3 = 0, with x3̇ > 0, in terms of
the bifurcation parameter l that is increased with step Δl = 0.002 in the range of
0 ≤ l ≤ 2. From the observation of this diagram, the reader can see a period
doubling route to chaos as the bifurcation parameter l is increased. The extended
chaotic region is interrupted by tiny windows of periodic behavior sandwiched in
the chaotic bands.

Also, it is well known, that Lyapunov exponents measure the exponential rates
of the divergence and convergence of nearby trajectories in the phase space of the

Fig. 3 a Bifurcation diagram of x1 versus the parameter l and b the respective diagram of
Lyapunov exponents versus the parameter l
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chaotic system (Strogatz 1994). In order to have detailed view of the
memristor-based Shinriki system (9), the Lyapunov exponents (λi, with i = 1, 2, 3, 4)
have been calculated using the algorithm in Wolf et al. (1985) and are depicted in
Fig. 3b. In fact, Fig. 3b presents only the three largest Lyapunov exponents because
the fourth Lyapunov exponent (λ4) is very low. Briefly recall that for periodic
orbits, the system has λ1 = 0 and λ2, λ3, λ4 ≤ 0, for quasiperiodic orbits
λ1 = λ2 = 0 and λ3, λ4 ≤ 0, while for chaotic attractors λ1 ≥ 0, λ2 = 0, and λ3,
λ4 ≤ 0, and for hyperchaotic attractors λ1 ≥ λ2 ≥ 0, λ3 = 0 and λ4 ≤ 0. It can be
seen that the bifurcation diagram of Fig. 3a well coincide with the spectrum of the
Lyapunov exponents (Fig. 3b). Note that, the system is simply chaotic (and not
hyperchaotic), although it is a fourth order nonlinear system.

Finally, for the aforementioned set of parameters, various numerical phase
portraits in (x2 − x1) planes are depicted (Figs. 4, 5, 6 and 7).

Fig. 4 Phase portrait of x2
versus x1, for l = 0.2
(period-2 state)

Fig. 5 Phase portrait of x2
versus x1, for l = 1 (chaotic
state)
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5 Adaptive Control of the Memristor-Based Shinriki’s
System

From the results of the aforementioned simulation process, it is obvious that the
nature of the memristor add an extra complexity to system’s dynamical behavior.
So, it is useful to see if the proposed memristor-based Shinriki’s system can be
controlled by using the adaptive control method, in order to derive an adaptive
feedback control law for globally stabilizing the system with memristor’s unknown
parameters.

Fig. 6 Phase portrait of x2
versus x1 for l = 1.4 (period-6
state)

Fig. 7 Phase portrait of x2
versus x1 for l = 2 (chaotic
state)
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Thus, we consider the memristor-based Shinriki’s system given by

x1̇ = − x3 − dx1 − ce− x4 sinh(x1 − x2) + u1
x2̇ = (b− a)x2 + pe− x4 sinh(x1 − x2) + u2
x3̇ = x1 + u3
x4̇ = − lx4 +me− x4cosh(x1 − x2)−m+ u4

8>><
>>:

ð10Þ

In (10), xi, (i = 1, …, 4) are the states and ui, (i = 1, …, 4) are the adaptive
controls to be determined using estimates c ̂ðtÞ, p ̂ðtÞ, lð̂tÞ, m̂ðtÞ for the unknown
memristor’s parameters c, p, l, m, respectively.

We consider the adaptive feedback control laws

u1̇ = x3 + dx1 + c ̂e− x4 sinh(x1 − x2)− k1x1
u2̇ = − (b− a)x2 − p ̂e− x4 sinh(x1 − x2)− k2x2
u3̇ = − x1 − k3x3
u4̇ = lx̂4 − m̂e− x4cosh(x1 − x2) + m̂− k4x4

8>><
>>:

ð11Þ

where ki, (i = 1, …, 4) are positive gain constants.
Substituting (11) into (10), we get the closed-loop plant dynamics as:

x ̇1 = − (c− c ̂)e− x4 sinh(x1 − x2)− k1x1
x2̇ = (p− p ̂)e− x4 sinh(x1 − x2)− k2x2
x3̇ = − k3x3
x4̇ = − (l− l)̂x4 + (m− m̂)e− x4cosh(x1 − x2)− (m− m̂)− k4x4

8>><
>>:

ð12Þ

The parameter estimation errors are defined as:

ec(t) = c− c ̂ðtÞ
ep(t) = p− p ̂ðtÞ
el(t) = l− lð̂tÞ
em(t) =m− m̂ðtÞ

8>><
>>:

ð13Þ

In view of (13), we can simplify the plant dynamics (12) as:

x ̇1 = − ece− x4 sinh(x1 − x2)− k1x1
x2̇ = epe− x4 sinh(x1 − x2)− k2x2
x3̇ = − k3x3
x4̇ = − elx4 + eme− x4cosh(x1 − x2)− em − k4x4

8>><
>>:

ð14Þ

Differentiating (13) with respect to t, we obtain

e ̇c(t) = − c ̂̇ðtÞ
eṗ(t) = − p ̂̇ðtÞ
el̇(t) = − l ̂ð̇tÞ
eṁ(t) = − ṁ̂ðtÞ

8>><
>>:

ð15Þ
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We use adaptive control theory in order to find an update law for the parameter
estimates. We consider the quadratic candidate Lyapunov function defined by

V(x, ec, ep, el, emÞ= 1
2
ðx21 + x22 + x23 + x24Þ+

1
2
ðe2c + e2p + e2l + e2mÞ ð16Þ

Differentiating V along the trajectories of (14) and (15), we obtain

V ̇= x1x1̇ + x2x2̇ + x3x3̇ + x4x4̇ + eceċ + epeṗ + elel̇ + emeṁ

= − k1x21 − ecx1e− x4 sinh(x1 − x2)− k2x22 + epx2e− x4 sinh(x1 − x2)

− k3x23 − k4x24 − elx24 + emx4e− x4cosh(x1 − x2)− emx4

− ecc ̂̇− epp ̂̇− ell ̂−̇ emṁ̂

ð17Þ

or

V ̇= − k1x21 − k2x22 − k3x23 − k4x24 + ec − x1e− x4 sinh(x1 − x2)− c ̂̇½ �
+ ep x2e− x4 sinh(x1 − x2)− p ̂̇½ �+ el − x24 − l ̂̇

h i

− em x4e− x4cosh(x1 − x2)− x4 − ṁ̂½ �
ð18Þ

In view of (18), we take the parameter update law as

c ̂̇= − x1e− x4 sinh(x1 − x2)
p ̂̇= x2e− x4 sinh(x1 − x2)
l ̂=̇ − x24
ṁ̂= x4e− x4cosh(x1 − x2)− x4

8>><
>>:

ð19Þ

Next, we state and prove the main result of this section.

Theorem 1 The states xi, (i = 1, …, 4) of the memristor-based Shinriki’s system
(5) with unknown system parameters are globally and exponentially stabilized for
all initial conditions to the desired constant values c, p, l, m, respectively, by the
adaptive control law (11) and the parameter update law (19), where k1, k2, k3, k4
are positive gain constants.

Proof This result will be proved by applying Lyapunov stability theory (Khalil
2001).

The quadratic Lyapunov function defined by (16), which is clearly a positive
definite function on R8 is considered.

By substituting the parameter update law (19) into (18), the time derivative of
V is obtained as:
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V ̇= − k1x21 − k2x22 − k3x23 − k4x24 ð20Þ

From (20), it is clear that dV/dt is a negative semi-definite function on R8. Thus,
the state vector x(t) and the parameter estimation error can be concluded that are

globally bounded, i.e. x1 x2 x3 x4 ecðtÞepðtÞelðtÞemðtÞ
� �T ∈L∞.

If k = min{k1, k2, k3, k4}, then it follows from (20) that

V ̇≤ − k xðtÞk k2 ð21Þ

Thus

k xðtÞk k2 ≤ −V ̇ ð22Þ

Integrating the inequality (22) from 0 to t, as:

k
Z t

0

xðτÞk k2dτ≤V(0)−V(t) ð23Þ

From (23), it follows that x∈L2. Using (14), x ̇∈L∞ can be concluded.
Also, by using Barbalat’s lemma (Khalil 2001), the x(t) → 0 exponentially as

t → ∞ for all initial conditions xð0Þ∈R4 can be concluded. Hence, it follows that
the states xi, (i = 1, …, 4) of the memristor-based Shinriki’s system (5) with
unknown memristor’s parameters c, p, l, m are globally and exponentially stabilized
for all initial conditions, by the adaptive control laws (11) and the parameter update
law (19).

This completes the proof. ■

For the numerical simulations, the classical fourth-order Runge-Kutta method
with step size h = 10−8 is used to solve the systems (10) and (19), when the
adaptive control laws (11) are applied. The parameter values of the memristor-based
Shinriki’s system (9) are taken as in the chaotic case, viz. a = 0.3, b = 1.5,
c = 8.143724 × 10−5, d = 0.075, p = 8.143724 × 10−4, m = 8.6635298 × 10−4

and l = 2. Also, we take the positive gain constants as ki = 5 for i = 1, …, 4.
Furthermore, as initial conditions of the memristor-based Shinriki’s system (5), we
take x1(0) = −0.2, x2(0) = 0.3, x3(0) = −0.3 and x4(0) = 1. Furthermore, as
initial conditions of the parameter estimates c ̂ðtÞ, p ̂ðtÞ, lð̂tÞ, m̂ðtÞ, we take
c ̂ðtÞ=10− 5, p ̂ðtÞ=10− 4, lð̂tÞ=0.1, m̂ðtÞ=8.143724 ⋅ 10− 5. In Fig. 8, the expo-
nential convergence of the controlled states of the memristor-based Shinriki’s
system (10) is depicted.
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6 Adaptive Synchronization of Identical Coupled
Memristor-Based Shinriki’s Systems

In this section, we derive an adaptive control law for globally and exponentially
synchronizing the identical chaotic systems with unknown memristor’s parameters.
Thus, the master system is given by the chaotic memristor-based Shinriki’s system
(9), while the slave system is given by the following system dynamics.

y1̇ = − y3 − dy1 − ce− y4 sinh(y1 − y2) + u1
y2̇ = (b− a)y2 + pe− y4 sinh(y1 − y2) + u2
y3̇ = y1 + u3
y4̇ = − ly4 +me− y4cosh(y1 − y2)−m+ u4

8>><
>>:

ð24Þ

where yi, (i = 1, …, 4) are the states and ui, (i = 1, …, 4) are the adaptive controls
to be determined. In (9) and (24), the memristor’s parameters c, p, l, m, are
unknown and the design goal is to find adaptive feedback controls ui that uses
estimates c ̂ðtÞ, p ̂ðtÞ, lð̂tÞ, m̂ðtÞ for the parameters c, p, l, m respectively, so as to
render the states of the systems (9) and (24) fully synchronized asymptotically.

The synchronization error between the chaotic systems (9) and (24) is defined as:

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

8>><
>>:

ð25Þ

Fig. 8 Time-series of the
states xi, (i = 1,…, 4)
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Thus, the synchronization error dynamics is obtained as:

e ̇1 = − e3 − de1 − ce− y4 sinh(y1 − y2) + ce− x4 sinh(x1 − x2) + u1
e2̇ = (b− a)e2 + pe− y4 sinh(y1 − y2)− pe− x4 sinh(x1 − x2) + u2
e3̇ = e1 + u3
e4̇ = − le4 +me− y4cosh(y1 − y2)−me− x4cosh(x1 − x2) + u4

8>><
>>:

ð26Þ

We take the adaptive control laws defined by

u1 = e3 + de1 + c ̂e− y4 sinh(y1 − y2)− c ̂e− x4 sinh(x1 − x2)− k1e1
u2 = − (b− a)e2 + p ̂e− y4 sinh(y1 − y2) + p ̂e− x4 sinh(x1 − x2)− k2e2
u3 = − e1 − k3e3
u4 = lê4 − m̂e− y4cosh(y1 − y2) + m̂e− x4cosh(x1 − x2)− k4e4

8>><
>>:

ð27Þ

where ki, (i = 1, …, 4) are positive gain constants.
Substituting (27) into (26), we obtain the closed-loop error dynamics as:

e ̇1 = − (c− c ̂)e− y4 sinh(y1 − y2) + (c− c ̂)e− x4 sinh(x1 − x2)− k1e1
e2̇ = (p− p ̂)e− y4 sinh(y1 − y2)− (p− p ̂)e− x4 sinh(x1 − x2)− k2e2
e3̇ = − k3e3
e4̇ = − (l− l)̂e4 + (m− m̂)e− y4cosh(y1 − y2)− (m− m̂)e− x4cosh(x1 − x2)− k4e4

8>><
>>:

ð28Þ

The parameter estimation errors are defined as:

ec(t) = c− c ̂ðtÞ
ep(t) = p− p ̂ðtÞ
el(t) = l− lð̂tÞ
em(t) =m− m̂ðtÞ

8>><
>>:

ð29Þ

Differentiating (29) with respect to t, we obtain

e ̇c(t) = − c ̂̇ðtÞ
eṗ(t) = − p ̂̇ðtÞ
el̇(t) = − l ̂ð̇tÞ
eṁ(t) = − ṁ̂ðtÞ

8>><
>>:

ð30Þ

By using (29), we rewrite the closed-loop system (28) as:

e1̇ = − ece− y4 sinh(y1 − y2) + ece− x4 sinh(x1 − x2)− k1e1
e2̇ = epe− y4 sinh(y1 − y2)− epe− x4 sinh(x1 − x2)− k2e2
e3̇ = − k3e3
e4̇ = − ele4 + eme− y4cosh(y1 − y2)− eme− x4cosh(x1 − x2)− k4e4

8>><
>>:

ð31Þ
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We consider the quadratic Lyapunov function given by

Vðe, ec, ep, el, emÞ= 1
2
ðe21 + e22 + e23 + e24Þ+

1
2
ðe2c + e2p + e2l + e2mÞ ð32Þ

Differentiating V along the trajectories of the systems (31) and (30), we obtain
the following.

V ̇= − k1e21− k2e22− k3e23− k4e24 + ec − e1e− y4 sinh(y1−y2)+ e1e−x4 sinh(x1− x2)−c ̂̇½ �
+ep e2e− y4 sinh(y1− y2)− e2e− x4 sinh(x1− x2)−p ̂̇½ �+el −e24− l ̂̇

h i

+em e4e− y4cosh(y1− y2)− e4e− x4cosh(x1− x2)− ṁ̂½ �
ð33Þ

In view of (33), we take the parameter update law as follows.

c ̂̇= − e1e− y4 sinh(y1 − y2) + e1e− x4 sinh(x1 − x2)
p ̂̇= e2e− y4 sinh(y1 − y2)− e2e− x4 sinh(x1 − x2)
l ̂=̇ − e24
ṁ̂= e4e− y4cosh(y1 − y2)− e4e− x4cosh(x1 − x2)

8>><
>>:

ð34Þ

Next, we establish the main result of this section.

Theorem 2 The memristor-based Shinriki’s systems (9) and (24) with unknown
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive feedback control law (27) and the parameter update law (34), were ki,
(i = 1, …, 4) are positive constants.

Proof We prove this result via Lyapunov stability theory. We consider the quad-
ratic Lyapunov function V defined by (32), which is positive definite on R8. Next,
by substituting the parameter update law (34) into (33), we obtain the time
derivative of V as:

V ̇= − k1e21 − k2e22 − k3e23 − k4e24 ð35Þ

Thus, it is clear that V ̇ is a negative semi-definite function on R8.
From (35), it follows that the synchronization error vector e(t) = (e1(t), e2(t),

e3(t), e4(t)) and the parameter estimation error (ec(t), ep(t), el(t), em(t)) are globally
bounded. We define k = min(k1, k2, k3, k4).

Then it follows from (35) that

V ̇≤ − k eðtÞk k2 ð36Þ
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Thus

k eðtÞk k2 ≤ −V ̇ ð37Þ

Integrating the inequality (37) from 0 to t, as:

k
Z t

0

eðτÞk k2dτ≤Vð0Þ−VðtÞ ð36Þ

From (36), it follows that e∈L2, while from (28), it can be deduced that e ̇∈L∞.
Thus, using Barbalat’s lemma (Khalil 2001), we can conclude that e(t) → 0
exponentially as t → ∞ for all initial conditions.

This completes the proof. ■

For numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential Eqs. (9), (24) and (34),
when the adaptive control laws (27) are applied.

The parameter values of the memristor-based Shinriki’s systems (9) and (24) are
taken as in the chaotic case of the previous section. The gain constants are taken as
ki = 10, for i = 1, 2, 3, 4.

Furthermore, as initial conditions of the master system (9), we take x1(t) = −0.2,
x2(t) = 0.3, x3(t) = −0.3 and x4(t) = 1, while the initial conditions of the slave
system (24), are y1(0) = 0.5, y2(0) = −0.2, y3(0) = −0.1 and y4(0) = 0.7.

Also, as initial conditions of the parameter estimates, we take c ̂ðtÞ=10− 5,
p ̂ðtÞ=10− 4, lð̂tÞ=0.1, m̂ðtÞ=8.143724 ⋅ 10− 5. In Figs. 9, 10, 11 and 12, the
synchronization of the states of the master system (9) and slave system (24)
are depicted, when the adaptive control law (27) and parameter update law (34) are
implemented. In Fig. 13, the time-history of the synchronization errors e1(t), e2(t),
e3(t) and e4(t) is depicted.

Fig. 9 Synchronization of
the states x1(t) and y1(t)
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Fig. 10 Synchronization of
the states x2(t) and y2(t)

Fig. 11 Synchronization of
the states x3(t) and y3(t)

Fig. 12 Synchronization of
the states x4(t) and y4(t)
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7 Conclusion

In this chapter a memristor-based chaotic system as well as its control and syn-
chronization problems were mainly investigated. As a chaotic system, a modified
Shinriki’s nonlinear circuit, in which its nonlinear positive conductance has been
replaced with a first order memristive diode bridge, was used. The study of its
dynamics and especially of its chaotic behavior, was done by using well-known
tools from nonlinear theory, such as the bifurcation diagram, Lyapunov exponents
and phase portraits.

In addition, global control and global chaos synchronization of such
memristor-based Shinriki’s systems, with unknown memristor’s parameters were
achieved by using an adaptive controller. The main adaptive results were proved
using Lyapunov stability theory. Finally, the simulation results confirmed the
effectiveness of the proposed control and synchronization schemes.

So, this work is a step forward on the direction of studying the methods of
control and synchronization of this new class of memristive chaotic systems, which
have raised the interest of the research community due to memristor’s intrinsic
nonlinear characteristic.

References

Adhikari, S. P., Yang, C., Kim, H., & Chua, L. O. (2012). Memristor bridge synapse-based neural
network and its learning. IEEE Transactions on Neural Networks and Learning Systems, 23(9),
1426–1435.

Adhikari, P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE
Transactions on Circuits and Systems I, 60(11), 3008–3021.

Agiza, H. N., & Yassen, M. T. (2001). Synchronization of Rössler and Chen chaotic dynamical
systems using active control. Physics Letters A, 278, 191–197.

Fig. 13 Time-series of the
synchronization errors ei(t),
(i = 1, 2, 3, 4)

256 C. Volos et al.



Arena, P., Bucolo, M., Fazzino, S., Fortuna, L., & Frasca, M. (2005). The CNN paradigm: Shapes
and complexity. International Journal of Bifurcation and Chaos, 7, 2063–2090.

Ascoli, A., & Corinto, F. (2013). Memristor models in a chaotic neural circuit. International
Journal of Bifurcation and Chaos, 23(3), 1350052.

Ascoli, A., Corinto, F., Senger, V., & Tetzlaff, R. (2013). Memristor model comparison. IEEE
Circuits and Systems Magazine, 13(2), 89–105.

Astakhov, V., Shabunin, A., & Anishchenko, V. (2000). Antiphase synchronization in
symmetrically coupled self-oscillators. International Journal of Bifurcation and Chaos, 10
(04), 849–857.

Bao, B., Yu, J., Hu, F., & Liu, Z. (2014). Generalized memristor consisting of diode bridge with
first order parallel RC filter. International Journal of Bifurcation and Chaos, 24(11), 1450143.

Barajas-Ramírez, J. G., Chen, G., & Shieh, L. S. (2003). Hybrid chaos synchronization.
International Journal of Bifurcation and Chaos, 13(05), 1197–1216.

Bartoszewicz, A., & Patton, R. J. (2007). Sliding mode control. International Journal of Adaptive
Control and Signal Processing, 21(8–9), 635–637.

Bo-Cheng, B., Jian-Ping, X., Guo-Hua, Z., Zheng-Hua, M., & Ling, Z. (2011). Chaotic memristive
circuit: Equivalent circuit realization and dynamical analysis. Chinese Physics B, 20(12),
120502.

Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L. V., & Sciuto, G. (2012a). Memristive
chaotic circuits based on cellular nonlinear networks. International Journal of Bifurcation and
Chaos, 22(03), 1250070.

Buscarino, A., Fortuna, L., Frasca, M., & Gambuzza, L. V. (2012b). A chaotic circuit based on
Hewlett-Packard memristor. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(2),
023136.

Cao, L. Y., & Lai, Y. C. (1998). Antiphase synchronism in chaotic systems. Physical Review E, 58
(1), 382–386.

Chandrasekar, A., & Rakkiyappan, R. (2016). Impulsive controller design for exponential
synchronization of delayed stochastic memristor-based recurrent neural networks. Neurocom-
puting, 173, 1348–1355.

Chen, G. (1999). Controlling chaos and bifurcations in engineering systems. US: CRC Press.
Chen, G. (2011). A simple adaptive feedback control method for chaos and hyper-chaos control.

Applied Mathematics and Computation, 217(17), 7258–7264.
Chen, S., & Lü, J. (2002a). Parameters identification and synchronization of chaotic systems based

upon adaptive control. Physics Letters A, 299(4), 353–358.
Chen, S., & Lü, J. (2002b). Synchronization of an uncertain unified chaotic system via adaptive

control. Chaos, Solitons & Fractals, 14(4), 643–647.
Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit

Theory, 18(5), 507–519.
Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64,

209–223.
Chua, L. O., & Yang, L. (1988a). Cellular neural networks: Theory. IEEE Transactions on

Circuits and Systems, 35, 1257–1272.
Chua, L. O., & Yang, L. (1988b). Cellular neural networks: Applications. IEEE Transactions on

Circuits and Systems, 35, 273–1290.
Chua, L. O. (1994). Chua’s circuit: An overview ten years later. Journal of Circuits Systems and

Computers, 4, 117–159.
Chua, L. O. (1998). CNN: A paradigm for complexity. Singapore: World Scientific.
Corinto, F., & Ascoli, A. (2012). Memristor based elements for chaotic circuits. IEICE Nonlinear

Theory and Its Applications, 3(3), 336–356.
Driscoll, T., Quinn, J., & Klein, S. (2010). Memristive adaptive filters. Applied Physics Letters, 97

(9), 093502.
Driscoll, T., Pershin, Y. V., Basov, D. N., & Di Ventra, M. (2011). Chaotic memristor. Applied

Physics A, 102(4), 885–889.

Adaptive Control and Synchronization … 257



Edwards, C., & Spurgeon, S. (1998). Sliding mode control: Theory and applications. US: CRC
Press.

Freire, E., Franquelo, L. G., & Aracil, J. (1984). Periodicity and chaos in an autonomous electrical
system. IEEE Transactions on Circuits and Systems, 31(3), 237–247.

Fujisaka, H., & Yamada, T. (1983). Stability theory of synchronized motion in coupled-oscillator
systems. Progress of Theoretical Physics, 69(1), 32–47.

Huang, L., Wang, M., & Feng, R. (2005). Synchronization of generalized Henon map via
backstepping design. Chaos, Solitons & Fractals, 23(2), 617–620.

Huang, J., Li, C., & He, X. (2013). Stabilization of a memristor-based chaotic system by
intermittent control and fuzzy processing. International Journal of Control, Automation and
Systems, 11(3), 643–647.

Idowu, B. A., Vincent, U. E., & Njah, A. N. (2009). Synchronization of chaos in nonidentical
parametrically excited systems. Chaos, Solitons & Fractals, 39, 2322–2331.

Itoh, M., & Chua, L. O. (2008). Memristor oscillators. International Journal of Bifurcation and
Chaos, 18(11), 3183–3206.

Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: Properties of basic electrical circuits.
European Journal of Physics, 30, 661–675.

Karthikeyan, R., & Sundarapandian, V. (2014). Hybrid Chaos Synchronization of Four-Scroll
Systems via Active Control. Journal of Electrical Engineering, 65(2), 97–103.

Kengne, J., Njitacke Tabekoueng, Z., Kamdum Tamba, V., & Nguomkam Negou, A. (2015).
Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos, 25,
103126.

Khalil, H. K. (2001). Nonlinear systems. New Jersey, USA: Prentice Hall.
Kim, C. M., Rim, S., Kye, W. H., Ryu, J. W., & Park, Y. J. (2003). Anti-synchronization of

chaotic oscillators. Physics Letters A, 320(1), 39–46.
Kocarev, L., & Parlitz, U. (1996). Generalized synchronization, predictability, and equivalence of

unidirectionally coupled dynamical systems. Physical Review Letters, 76(11), 1816–1819.
Landsman, A. S., & Schwartz, I. B. (2007). Complete chaotic synchronization in mutually coupled

time-delay systems. Physical Review E, 75(2), 026201.
Laoye, J., Vincent, U., & Kareem, S. (2009). Chaos control of 4-D chaotic systems using recursive

backstepping nonlinear controller. Chaos, Solitons & Fractals, 39, 356–362.
Li, Z., & Xu, D. (2004). A secure communication scheme using projective chaos synchronization.

Chaos, Solitons & Fractals, 22(2), 477–481.
Li, C., Liao, X., & Wong, K. W. (2005). Lag synchronization of hyperchaos with application to

secure communications. Chaos, Solitons & Fractals, 23(1), 183–193.
Li, G. H. (2007). Generalized projective synchronization between Lorenz system and Chen’s

system. Chaos, Solitons & Fractals, 32(4), 1454–1458.
Li, G. H., & Zhou, S. P. (2007). Anti-synchronization in different chaotic systems. Chaos, Solitons

& Fractals, 32(2), 516–520.
Li, N., & Cao, J. (2015). New synchronization criteria for memristor-based networks: Adaptive

control and feedback control schemes. Neural Networks, 61, 1–9.
Li, N., & Cao, J. (2016). Lag synchronization of memristor-based coupled neural networks

via-measure. IEEE Transactions on Neural Networks and Learning Systems, 27(3), 686–697.
Lin, W., & He, Y. (2005). Complete synchronization of the noise-perturbed Chua’s circuits.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(2), 023705.
Lin, W. (2008). Adaptive chaos control and synchronization in only locally Lipschitz systems.

Physics Letters A, 372(18), 3195–3200.
Lin, D., Wang, X., Nian, F., & Zhang, Y. (2010). Dynamic fuzzy neural networks modeling and

adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing, 73(16),
2873–2881.

Liu, Y., Takiguchi, Y., Davis, P., Aida, T., Saito, S., & Liu, J. M. (2002). Experimental
observation of complete chaos synchronization in semiconductor lasers. Applied Physics
Letters, 80(23), 4306–4308.

258 C. Volos et al.



Liu, W., Xiao, J., Qian, X., & Yang, J. (2006). Antiphase synchronization in coupled chaotic
oscillators. Physical Review E, 73(5), 057203.

Luo, X. S., Zhang, B., & Qin, Y. H. (2010). Controlling chaos in space-clamped FitzHugh–
Nagumo neuron by adaptive passive method. Nonlinear Analysis: Real World Applications, 11
(3), 1752–1759.

Mainieri, R., & Rehacek, J. (1999). Projective synchronization in three-dimensional chaotic
systems. Physical Review Letters, 82(15), 3042–3045.

Mahmoud, G. M., Bountis, T., & Mahmoud, E. E. (2007). Active control and global
synchronization of the complex Chen and Lü systems. International Journal of Bifurcation
and Chaos, 17(12), 4295–4308.

Mahmoud, G. M., & Mahmoud, E. E. (2010). Complete synchronization of chaotic complex
nonlinear systems with uncertain parameters. Nonlinear Dynamics, 62(4), 875–882.

Mathiyalagan, K., Park, J. H., & Sakthivel, R. (2015). Synchronization for delayed memristive
BAM neural networks using impulsive control with random nonlinearities. Applied Mathe-
matics and Computation, 259, 967–979.

Mathiyalagan, K., Anbuvithya, R., Sakthivel, R., Park, J. H., & Prakash, P. (2016). Non-fragile
H∞ synchronization of memristor-based neural networks using passivity theory. Neural
Networks, 74, 85–100.

Matsumoto, T. (1984). A Chaotic attractor from Chua’s circuit. IEEE Transactions on Circuits and
Systems, 31, 1055–1058.

Muthuswamy, B. (2010). Implementing memristor based chaotic circuits. International Journal of
Bifurcation and Chaos, 20(05), 1335–1350.

Nbendjo, B. N., Tchoukuegno, R., & Woafo, P. (2003). Active control with delay of vibration and
chaos in a double-well Duffing oscillator. Chaos, Solitons & Fractals, 18(2), 345–353.

Nbendjo, B. N., & Woafo, P. (2007). Active control with delay of horseshoes chaos using
piezoelectric absorber on a buckled beam under parametric excitation. Chaos, Solitons &
Fractals, 32(1), 73–79.

Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review
Letters, 64(8), 821–825.

Pham, V. T., Volos, C. K., Vaidyanathan, S., Le, T. P., & Vu, V. Y. (2015). A memristor-based
hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating.
Journal of Engineering Science and Technology Review, 8(2), 205–214.

Pikovsky, A. S., Rosenblum, M. G., Osipov, G. V., & Kurths, J. (1997). Phase synchronization of
chaotic oscillators by external driving. Physica D: Nonlinear Phenomena, 104(3), 219–238.

Rosenblum, M. G., Pikovsky, A. S., & Kurths, J. (1996). Phase synchronization of chaotic
oscillators. Physical Review Letters, 76(11), 1804–1807.

Rosenblum, M. G., Pikovsky, A. S., & Kurths, J. (1997). From phase to lag synchronization in
coupled chaotic oscillators. Physical Review Letters, 78(22), 4193–4196.

Rosenblum, M., Pikovsky, A., Kurths, J., Schäfer, C., & Tass, P. A. (2001). Phase
synchronization: From theory to data analysis. Handbook of Biological Physics, 4, 279–321.

Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., & Abarbanel, H. D. (1995). Generalized
synchronization of chaos in directionally coupled chaotic systems. Physical Review E, 51(2),
980–994.

Sarasu, P., & Sundarapandian, V. (2011). The generalized projective synchronization of
hyperchaotic Lorenz and hyperchaotic Qi systems via active control. International Journal
of Software Computing, 6(5), 216–223.

Shahverdiev, E. M., Sivaprakasam, S., & Shore, K. A. (2002). Lag synchronization in
time-delayed systems. Physics Letters A, 292(6), 320–324.

Shin, S., Kim, K., & Kang, S. M. (2011). Memristor applications for programmable analog ICs.
IEEE Transactions on Nanotechnology, 10(2), 266–274.

Shinriki, M., Yamato, M., & Mori, S. (1981). Multimode oscillations in a modified van der Pol
oscillator containing a positive nonlinear conductance. Proceedings of the IEEE, 69, 394–395.

Strogatz, S. H. (1994). Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering. Massachusetts, USA: Perseus Books.

Adaptive Control and Synchronization … 259



Strukov, D., Snider, G., Stewart, G., & Williams, R. (2008). The missing memristor found. Nature,
453, 80–83.

Sun, J., Shen, Y., Yin, Q., & Xu, C. (2013). Compound synchronization of four memristor chaotic
oscillator systems and secure communication. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 23(1), 013140.

Taherion, S., & Lai, Y. C. (1999). Observability of lag synchronization of coupled chaotic
oscillators. Physical Review E, 59(6), R6247.

Tan, X., Zhang, J., & Yang, Y. (2003). Synchronizing chaotic systems using backstepping design.
Chaos, Solitons & Fractals, 16(1), 37–45.

Tavazoei, M. S., & Haeri, M. (2008). Synchronization of chaotic fractional-order systems via
active sliding mode controller. Physica A: Statistical Mechanics and its Applications, 387(1),
57–70.

Tetzlaff, R. (2014). Memristors and memristive systems. New York, USA: Springer.
Utkin, V. I. (1993). Sliding mode control design principles and applications to electric drives.

IEEE Transactions on Industrial Electronics, 40(1), 23–36.
Utkin, V. I. (2004). Sliding mode control. In Variable structure systems: from principles to

implementation, IET control engineering series (Vol. 66, pp. 3–17).
Utkin, V., Guldner, J., & Shi, J. (2009). Sliding mode control in electro-mechanical systems. US:

CRC Press.
Vaidyanathan, S., & Rajagopal, K. (2011). Hybrid synchronization of hyperchaotic Wang-Chen

and hyperchaotic Lorenz systems by active non-linear control. International Journal of Signal
System Control and Engineering Application, 4, 55–61.

Vaidyanathan, S., & Rajagopal, K. (2012). Global chaos synchronization of hyperchaotic Pang
and hyperchaotic Wang systems via adaptive control. International Journal of Software and
Computing, 7, 28–37.

Vaidyanathan, S., & Volos, C. K. (2016a). Advances and applications in nonlinear control
systems. Berlin, Germany: Springer.

Vaidyanathan, S., & Volos, C. K. (2016b). Advances and applications in chaotic systems. Berlin,
Germany: Springer.

Vincent, U. E. (2008). Synchronization of identical and non-identical 4-D chaotic systems using
active control. Chaos, Solitons & Fractals, 37, 1065–1075.

Wang, Y. W., & Guan, Z. H. (2006). Generalized synchronization of continuous chaotic system.
Chaos, Solitons & Fractals, 27(1), 97–101.

Wang, Z. (2009). Anti-synchronization in two non-identical hyperchaotic systems with known or
unknown parameters. Communications in Nonlinear Science and Numerical Simulation, 14(5),
2366–2372.

Wang, W., Li, L., Peng, H., Xiao, J., & Yang, Y. (2014). Synchronization control of
memristor-based recurrent neural networks with perturbations. Neural Networks, 53, 8–14.

Wang, S., Wang, X., & Zhou, Y. (2015). A memristor-based complex Lorenz system and its
modified projective synchronization. Entropy, 17(11), 7628–7644.

Wang, S., Wang, X., Zhou, Y., & Han, B. (2016). A memristor-based hyperchaotic complex Lü
system and its adaptive complex generalized synchronization. Entropy, 18(2), 58.

Wedekind, I., & Parlitz, U. (2002). Synchronization and antisynchronization of chaotic power
drop-outs and jump-ups of coupled semiconductor lasers. Physical Review E, 66(2), 026218.

Wen, S., Zeng, Z., & Huang, T. (2014a). Observer-based synchronization of memristive systems
with multiple networked input and output delays. Nonlinear Dynamics, 78(1), 541–554.

Wen, S., Zeng, Z., Huang, T., & Zhang, Y. (2014b). Exponential adaptive lag synchronization of
memristive neural networks via fuzzy method and applications in pseudorandom number
generators. IEEE Transactions on Fuzzy Systems, 22(6), 1704–1713.

Wen, S., Huang, T., Zeng, Z., Chen, Y., & Li, P. (2015). Circuit design and exponential
stabilization of memristive neural networks. Neural Networks, 63, 48–56.

Wen, S., Huang, T., Yu, X., Chen, M. Z., & Zeng, Z. (2016). Sliding-mode control of memristive
Chua’s systems via the event-based method. IEEE Transactions on Circuits and Systems II:
Express Briefs, 1–5

260 C. Volos et al.



Wolf, A., Swift, J. B., Swinney, H. L., & Wastano, J. A. (1985). Determining Lyapunov exponents
from time series. Physica D: Nonlinear Phenomena, 16, 285–317.

Wu, A., Wen, S., & Zeng, Z. (2012). Synchronization control of a class of memristor-based
recurrent neural networks. Information Sciences, 183(1), 106–116.

Wu, A., & Zeng, Z. (2013). Anti-synchronization control of a class of memristive recurrent neural
networks. Communications in Nonlinear Science and Numerical Simulation, 18(2), 373–385.

Xie, Q., Chen, G., & Bollt, E. M. (2002). Hybrid chaos synchronization and its application in
information processing. Mathematical and Computer Modelling, 35(1), 145–163.

Yan, J., & Li, C. (2005). Generalized projective synchronization of a unified chaotic system.
Chaos, Solitons & Fractals, 26(4), 1119–1124.

Yang, S., & Duan, C. (1998). Generalized synchronization in chaotic systems. Chaos, Solitons &
Fractals, 9(10), 1703–1707.

Yang, X., Cao, J., & Yu, W. (2014). Exponential synchronization of memristive Cohen-Grossberg
neural networks with mixed delays. Cognitive Neurodynamics, 8(3), 239–249.

Yang, S., Guo, Z., & Wang, J. (2015). Robust synchronization of multiple memristive neural
networks with uncertain parameters via nonlinear coupling. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 45(7), 1077–1086.

Yau, H. T. (2004). Design of adaptive sliding mode controller for chaos synchronization with
uncertainties. Chaos, Solitons & Fractals, 22(2), 341–347.

Yassen, M. T. (2006). Chaos control of chaotic dynamical systems using backstepping design.
Chaos, Solitons & Fractals, 27(2), 537–548.

Yassen, M. T. (2007). Controlling, synchronization and tracking chaotic Liu system using active
backstepping design. Physics Letters A, 360(4), 582–587.

Young, K. D., Utkin, V. I., & Ozguner, U. (1999). A control engineer’s guide to sliding mode
control. IEEE Transactions on Control Systems Technology, 7(3), 328–342.

Zhang, Y., & Sun, J. (2004). Chaotic synchronization and anti-synchronization based on suitable
separation. Physics Letters A, 330(6), 442–447.

Zhang, D., & Xu, J. (2010). Projective synchronization of different chaotic time-delayed neural
networks based on integral sliding mode controller. Applied Mathematics and Computation,
217(1), 164–174.

Zhang, G., Shen, Y., & Wang, L. (2013). Global anti-synchronization of a class of chaotic
memristive neural networks with time-varying delays. Neural Networks, 46, 1–8.

Zhang, G., & Shen, Y. (2014). Exponential synchronization of delayed memristor-based chaotic
neural networks via periodically intermittent control. Neural Networks, 55, 1–10.

Zheng, J. (2011). A simple universal adaptive feedback controller for chaos and hyperchaos
control. Computers & Mathematics with Applications, 61(8), 2000–2004.

Adaptive Control and Synchronization … 261


	10 Adaptive Control and Synchronization of a Memristor-Based Shinriki’s System
	Abstract
	1 Introduction
	2 Related Works
	3 Model of the Memristor-Based Shinriki’s System
	4 Dynamics of the Memristor-based Shinriki’s System
	5 Adaptive Control of the Memristor-Based Shinriki’s System
	6 Adaptive Synchronization of Identical Coupled Memristor-Based Shinriki’s Systems
	7 Conclusion
	References


