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Preface

About the Subject

Memristor (concatenation of MEMory ResISTOR), is the fourth fundamental
circuit element ( joining the resistor, the capacitor and the inductor), predicted by
Leon Chua in 1971. This element represents one of today’s latest technological
achievements with a great number of applications. Memristor is a passive
two-terminal electronic device which behavior is described by a nonlinear consti-
tutive relation between the voltage drop at its terminal and the current flowing
through the device. But the reason why the memristor is substantially different from
the other fundamental circuit elements is that, when the applied voltage is turned
off, it still remembers how much voltage was applied before and for how long; thus
presenting memory of its past. However, this innovative device attracted most of
attention worldwide only after 2008 when its practical implementation was
announced by Hewlett-Packard, originating intense research activity ever since.

Memristors have brought a revolution in various scientific fields, as many
phenomena in systems, such as in thermistors, spintronic devices and molecules
could be explained now with the use of the memristor. Also, electronic circuits with
memory elements could simulate processes typical of biological systems, such as
learning and associative memory and the adaptive behavior of unicellular organ-
isms. Furthermore, neuromorphic computing circuits with memristors can poten-
tially solve problems that are cumbersome or outright intractable by digital
computation.

Memristors have been used in cellular neural networks, for performing a number
of applications, such as logical operations, image processing operations, complex
behavior and higher brain functions, or in designing Boolean logic gates for the
AND, OR and NOT operations. In many well-known nonlinear circuits, the non-
linear element has been replaced by memristors and various interesting dynamical
phenomena like chaos and hidden attractors have been observed. Therefore, with
these wide range of applications, engineering aspects of memristor devices,
memristive-based circuits and systems design become significant important.

v



About the Book

The new Springer book, Advances in Memristors, Memristive Devices and Systems,
consists of 20 contributed chapters by subject experts who are specialized in the
various topics addressed in this book. The special chapters have been brought out in
this book after a rigorous review process in the broad areas of modeling and
applications of memristors, memristive devices and systems. Special importance
was given to chapters offering practical solutions and novel methods for the recent
research problems in the modeling and applications of memristors, memristive
devices and systems.

This book discusses trends and applications of memristors and memristive
devices in engineering.

Objectives of the Book

This volume presents a selected collection of contributions on a focused treatment
of recent advances and applications in memristors, memristive devices and systems.
The book also discusses multidisciplinary applications in electrical engineering,
control engineering, computer science and information technology. These are
among those multidisciplinary applications where computational intelligence has
excellent potentials for use. Both novice and expert readers should find this book a
useful reference in the field of memristors and memristive devices.

Organization of the Book

This well-structured book consists of 20 full chapters.

Book Features

• The book chapters deal with the recent research problems in the areas of
memristors and memristive devices.

• The book includes chapters by eminent experts and pioneers of memristors—
Leon Chua and R.S. Williams.

• The book chapters contain a good literature survey with a long list of references.
• The book chapters are well-written with a good exposition of the research

problem, methodology, block diagrams and circuits.
• The book chapters are lucidly illustrated with numerical examples and

simulations.
• The book chapters discuss details of engineering applications and future

research areas.
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Audience

The book is primarily meant for researchers from academia and industry, who are
working on memristors and memristive devices in the research areas—electrical
engineering, control engineering, computer science, and information technology.
The book can also be used at the graduate or advanced undergraduate level as a
textbook or major reference for courses such as power systems, control systems,
electrical devices, scientific modeling, computational science and many others.
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Memristor Emulators: A Note on Modeling

A. Ascoli, R. Tetzlaff, L.O. Chua, W. Yi and R.S. Williams

Abstract In a recent publication (Yi et al. 2011) elucidating a possible scheme to

write information reliably onto a memory crossbar, Hewlett Packard Labs researchers

employed a thyristor-based circuit to emulate the off-to-on switching behaviour of a

titanium oxide memristor. The use of a thyristor device allowed them to test inex-

pensively and reliably the functionalities of the closed-loop crossbar write circuitry

by using conventional CMOS components. From a device modeling point of view,

however, it is worthy to point out that the aforementioned emulator is not a genuine

memristor. The aim of this paper is to demonstrate with an in-depth mathematical

analysis that the model of the thyristor does not fall into the class of memristors.

The modelling approach adopted in this work may be a source of inspiration for

researchers willing to check whether other devices or circuits may be classified as

memristors.
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2 A. Ascoli et al.

1 Introduction

A substantial amount of work on memristors (Chua 1971) and memristive systems

(Chua and Kang 1976) focus on their manufacturing process (Pan et al. 2014), which

is engineered so as to shape the electrical characteristics of the devices (Strukov

et al. 2008) to enhance their performance as non-volatile memory elements (Waser

et al. 2009; Jo et al. 2009; Wylezich et al. 2014) or as biological synapse emula-

tors (Zamarreño-Ramos et al. 2011). Only a few number of studies is focused on

the establishment of solid foundations on the theory of memristor devices, circuits,

and systems (Chua 2011, 2014, 2015). However, in our opinion, these theoretical

works (Ascoli et al. 2014; Corinto et al. 2011, 2015, 2016; Larentis et al. 2012) are as

important as the experimental investigation (Nardi et al. 2012), representing a crucial

prerequisite in the ongoing research efforts to explore the full potential of memris-

tors in future electronics (Ascoli et al. 2015c). In fact, gaining a deeper insight into

the key mechanisms at the origin of memristive behaviour (Ascoli et al. 2016c) is

instrumental to identify advantages and limitations of the adoption of memristors for

memory or neuromorphic applications, as well as to understand under which extent

may the nonlinear dynamics of these devices (Ascoli et al. 2016a, b) be exploited

to develop unconventional forms of sensing (Carrara et al. 2012; Tzouvadaki et al.

2016a) and signal processing (Corino et al. 2012; Yang et al. 2013), as well as novel

computing architectures (Talati et al. 2016; Ben-Hur and Kvatinsky 2016). Typi-

cally, in our studies, the application of nonlinear circuit theoretic techniques (Chua

et al. 1985) to the device models allows the identification of the key factors under-

lying the emergence of memristive dynamics. On the basis of this knowledge, it is

then possible to draw a comprehensive picture of the plethora of nonlinear behav-

iours a memristor may exhibit under any initial condition/input combination (Ascoli

and Corinto 2013). Clearly, the availability of accurate mathematical descriptions is

a fundamental preliminary requirement to conduct these theoretical investigations.

The derivation of accurate memristor models is in fact one of the most challeng-

ing activities in this field of research (Ascoli et al. 2013). The aim of the work pre-

sented in this chapter is to clarify an important modeling issue which risks to mislead

researchers in the field. In a seminal paper presenting a closed-loop scheme to write

data reliably onto a memory crossbar, Hewlett Packard Labs researchers adopted a

thyristor-based circuit to emulate the high-to-low resistance switching dynamics of

a bipolar titanium dioxide memristor (Yi et al. 2011). This allowed to apply an inex-

pensive and robust testing and debugging procedure on the proposed data writing

scheme. However, from a device modeling point of view, the aforementioned emu-

lator may not be regarded as a memristor. In order to shed light into this important

aspect, we derive an accurate model of the thyristor adopted for testing purposes at

Hewlett Packard Labs (Yi et al. 2011), proving that it does not fit into the class of

memristors (Chua 2015), because it lacks an Ohm-based law (i.e. an algebraic rela-

tion expressing the output in terms of the product between the input and a function

of the state, and, possibly, the input) (Chua 2015), which necessarily constrains the

time evolution of the memristor state, which, otherwise, would be governed solely
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by the state evolution function. The mathematical analysis presented in this work

may be beneficial in those investigations intended to check whether other devices

or circuits may be regarded as memristors. The manuscript is structured as follows.

Section 2 introduces the thyristor under modeling. Section 3 derives its mathemat-

ical model. Section 4 provides the numerical validation for the theoretical results

derived in Sect. 3. Finally conclusions and future research developments are drafted

in Sect. 5.

2 Emulator

The particular component adopted at Hewlett Packard Labs to emulate the off-to-

on switching behaviour of a bipolar titanium oxide memristor (Pickett et al. 2009;

Abdalla and Pickett 2011) in the debugging and testing phase of a closed-loop or

feedback data writing scheme for memory crossbars is the silicon bilateral switch

BS08D (Powerex Inc. 2015) manufactured by Powerex Inc., USA. The main build-

ing block of the emulator is shown in Fig. 1a, while its circuit symbol is depicted in

Fig. 1b. It is a bilateral thyristor consisting of four bipolar junction transistors with

substrate node connected to ground—one pair, (Q1,Q2), of pnp type, and the other,

(Q3,Q4), of npn type—as well as of two zener diodes (D1, D2) and of a couple of

resistors (G1, G2). The device has three terminals, i.e. T1, T2, and G. Each of the two

devices within a box in Fig. 1a represents a unilateral thyristor. It has three terminals,

known as anode, cathode, and gate. The base of the pnp transistor is chosen as gate

terminal. With such a choice, the unilateral thyristor is also known as programmable
unipolar junction transistor (PUT) (On Semiconductor 2005). There exists another

type of unilateral thyristor, known as silicon controlled rectifier (SCR), in which the

gate terminal coincides with the base of the npn transistor. With reference to Fig. 1a,

coupling the identical left and right PUT devices—let us denote them as cell  and


′
, enclosed within a rectangle with red and black dashed perimeter and featuring

terminal triplets (A,G,K) and (A′
,G′

,K′
), respectively—through their gates G and

G′
, and connecting the anode A (A′

) of the first (latter) to the cathode C′ (C) of the

latter (first), results into the circuit topology of a BS08D device. On the other hand,

applying the same coupling strategy to two identical SCR components yields the

circuit schematics of a TRIAC (On Semiconductor 2005). The BS08D is a current-

controlled
1

component designed to switch as the flow of the input current results into

a device voltage exceeding a threshold value around 8 V. With reference to plot (b)

in Fig. 1, in order to match the typical off-to-on switching behaviour of a bipolar tita-

nium oxide memristor, Hewlett Packard Labs’ engineers added an additional zener

diode with a breakdown voltage around 2.3 V to the bilateral thyristor between its

terminals T2 and G (Yi et al. 2011). As compared to the design in (Yi et al. 2011),

here we add yet another zener diode with a breakdown voltage around 2.3 V between

1
Under quasi-static excitation, the voltage across the device is a single-valued function of the current

through it.
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.Q1

Q3

G1

D2

D1

T1 ≡ A ≡ K ′

T2 ≡ K ≡ A′

G ≡ G′

Q2

.Q4

G2 T1

T2

G

(a) (b)

cell C cell C′

Fig. 1 a Circuit schematics of the BS08D device, a silicon bilateral thyristor from Powerex, Inc.,

USA. The anode, cathode, and gate terminals of cell  (
′
) are identified with symbols A, K, and

G (A′
, K′

, and G′
). b Circuit symbol of the three-terminal element

Fig. 2 One-port with

off-to-on switching

dynamics reminiscent of

memristive behaviour under

each polarity of the current

input. In Yi et al. (2011) the

BS08D device was coupled

to zener diode D4 only, and

the resulting two-terminal

element was used to mimic

the high-to-low resistance

switching of the titanium

dioxide memristor under

positive stimuli

G ≡ G′

i+

v

−

D3

D4

T1

T2

the terminals T1 and G of the component in Fig. 1b so as to obtain an odd-symmetric

off-to-on switching. The resulting circuit is a one-port with terminals T1 and T2, as

shown in Fig. 2 within a box with blue dashed perimeter. Let us denote the current

through this bipole and the voltage across it as i and v, respectively.
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In order to clarify the nature of the two-terminal element in Fig. 2, and avoid

an improper device classification, as well as to gain a better understanding of the

dynamical phenomena emerging in the current-controlled electronic component, in

the next section we shall derive its mathematical model.

3 Model

With reference to the circuit schematics in Fig. 1 and to the emulator topology in

Fig. 2, the cell  (
′
) consists of a complementary transistor pair, namely (Q1,Q3)

A ≡ K ′

G ≡ G′

K ≡ A′

C1(v1)

fD(v1) fA(v1, v2)+

−

v1

C3(v3) +

−

v3

+

−

v2

ia

ik

ig

C2(v2)

fB(v1, v2, v3)

G1

fC(v2, v3)

cell C cell C′

emulator

C6(v6)

G2

fC(v5, v6)−

+

v6

C4(v4) −

+

v4

−

+

v5

i′k

i′a

i′g

C5(v5)

fB(v4, v5, v6)

fD(v4)

fA(v4, v5)

i

T1

T2

v

−

+

Fig. 3 Equivalent circuit model of the emulator of Fig. 2. The two-terminal device under modeling

is encircled within a rectangle with blue dashed perimeter
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((Q2,Q4)), a resistor of conductance G1 (G2), as well as a pair of zener diodes,
2

i.e.

(D2,D3)(D1,D4)). The circuit model for the two-terminal emulator of Fig. 2, inspired

to the theory presented in (Chua 1980), is shown in Fig. 3 within a box with blue

dashed perimeter, in line with the colour coding convention adopted in Fig. 2.

3.1 Cell Model

In the characterization of each of the three-terminal cells  and 
′
—respectively

enclosed within a rectangle with red and black dashed perimeter, in analogy to the

colour coding scheme adopted in Fig. 1—the bipolar junction transistors are replaced

by their Ebers-Moll circuit equivalents. With regards to the cell couplings, as antici-

pated in Sect. 2 the following terminal pairs are coupled together: (A,K′), (K,A′), and

(G,G′). Within each round bracket pair the first (latter) symbol refers to a terminal

of cell  (
′
).

The nonlinear voltage-controlled capacitors are defined as (Chua and Sing 1979)

Cj(vj) = C0i
(
𝛹0i − vj

)− 1
mi +

IS1i
VT

exp
( vj
VT

)
, (1)

where j ∈ {1, 2, 3} for the cell , and j ∈ {, 4, 5, 6} for the cell 
′
, while, in the corre-

sponding order, i assumes values in the same set, i.e. {1, 2, 3}, for both cells. In equa-

tion (1) C0i defines the junction capacitance coefficient, 𝛹0i is the junction contact

potential, and VT = kT
q

the thermal voltage, k = 1.28 × 10−23 JK
−1

, q = 1.60 × 10−19

C, and T denoting Boltzmann constant, elementary electronic charge, and junction

absolute temperature, respectively. Further, mi represents the junction grading coef-

ficient, while 𝜏i stands for the minority carrier lifetime, and IS1i symbolizes the ideal

saturation current component. More details on the physics behind the operation of

bipolar junction transistors may be found in Chua (1980). The formulas for the non-

linear functions fA(⋅, ⋅), fB(⋅, ⋅, ⋅), and fC(⋅, ⋅) have the following closed forms:

fA(vk, vm) =
(
(1 + 𝛾1)IS11 + IS15

)
(
exp

(
vk
VT

)
− 1

)

+ IS21

(
exp

(
vk
2VT

)
− 1

)
− IS12

(
exp

(
vm
VT

)
− 1

)
, (2)

where (k,m) = (1, 2) for the cell , and (k,m) = (4, 5) for the cell 
′
,

2
The zener diode in each cell is equivalent to the parallel of two zener diodes, one employed within

the circuit of the BS08D device, refer to Fig. 1, and one adopted to tune the voltage at which the

emulator undergoes switching, as it may be evinced by inspection of Fig. 2.
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fB(vk, vm, vn) = IS11

(
exp

(
vk
VT

)
− 1

)
− IS22

(
exp

(
vm
2VT

)
− 1

)

+ IS13

(
exp

(
vn
VT

)
− 1

)

−
(
(1 + 𝛾1)IS12 + (1 + 𝛾2)IS14

)(
exp

(
vm
VT

)
− 1

)
, (3)

where (k,m, n) = (1, 2, 3) for the cell , and (k,m, n) = (4, 5, 6) for the cell 
′
, and

fC(vm, vn) = −IS14

(
exp

(
vm
VT

)
− 1

)
+ IS23

(
exp

(
vn
2VT

)
− 1

)

+
(
(1 + 𝛾2)IS13 + IS16

)
(
exp

(
vn
VT

)
− 1

)
, (4)

where (m, n) = (2, 3) for the cell , and (m, n) = (5, 6) for the cell 
′
. In Eqs. (2)–(4)

IS1j (j ∈ {1, 2, 3, 4, 5, 6}) and IS2j (j ∈ {1, 2, 3}) respectively denote ideal and nonlin-

ear saturation current components, while 𝛾j (j ∈ {1, 2}) are recombination factors for

the current components. Finally, the nonlinear function fD(⋅) is expressed as

fD(vj) = ISa

(
exp

( vj
naVT

)
− 1

)
− Iza exp

(

−
vj + Vza

nzaVT

)

+ ISb

(
exp

( vj
nbVT

)
− 1

)
− Izb exp

(

−
vj + Vzb

nzbVT

)

, (5)

where j = 1 for the cell , and j = 4 for the cell 
′
. As anticipated earlier, fD(⋅)

takes into account the currents of zener diode pair (D2,D3)((D1,D4)) for the cell

 (
′
). Particularly, for each cell, on the right hand side of Eq. 5, the first and last

two addends respectively constitute the current of the first and second diode in the

aforementioned pair. Applying basic circuit principles, the equations governing the

evolution of the voltages across the nonlinear capacitors of the cell  are expressed as

dv1
dt

= 1
C1(v1)

(
ia − fA(v1, v2) − fD(v1)

)

= f1(v1, v2, v3, ia, ig), (6)

dv2
dt

= 1
C2(v2)

(
−ia + fB(v1, v2, v3) − ig

)

= f2(v1, v2, v3, ia, ig), (7)

dv3
dt

= 1
C3(v3)

(
ia + ig − G1v3 − fC(v2, v3)

)

= f3(v1, v2, v3, ia, ig), (8)
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while the cell 
′

model is given by

dv4
dt

= 1
C4(v4)

(
i′a − fA(v4, v5) − fD(v4)

)

= f4(v4, v5, v6, i′a, i
′
g), (9)

dv5
dt

= 1
C5(v5)

(
−i′a + fB(v4, v5, v6) − i′g

)

= f5(v4, v5, v6, i′a, i
′
g), (10)

dv6
dt

= 1
C6(v6)

(
i′a + i′g − G2v6 − fC(v5, v6)

)

= f6(v4, v5, v6, i′a, i
′
g). (11)

3.2 Interconnection Model

Next, the model of the interconnections between the two cells need to be derived.

The application of Kirchhoff’s current and voltage laws (Chua et al. 1985) to the

coupled cells in Fig. 2 yields:

i′g = −ig, (12)

v1 = v5 − v6, (13)

v4 = v2 − v3. (14)

Due to voltage constraints (13)–(14), the order of the dynamical system expressed

by Eqs. (6)–(11) is 4. As for the non-redundant state variables, we choose v2, v3, v5,

and v6. Using (13)–(14) into the coupled ordinary differential equations governing

the dynamics of the non-redundant state variables, i.e. into Eqs. (7), (8), (10) and

(11), the resulting equations become:

dv2
dt

= 1
C2(v2)

(
−ia + fB(v5 − v6, v2, v3) − ig

)

= f2(v2, v3, v5, v6, ia, i′a, ig), (15)

dv3
dt

= 1
C3(v3)

(
ia + ig − G1v3 − fC(v2, v3)

)

= f3(v2, v3, v5, v6, ia, i′a, ig), (16)

dv5
dt

= 1
C5(v5)

(
−i′a + fB(v2 − v3, v5, v6) + ig

)
,

= f5(v2, v3, v5, v6, ia, i′a, ig), (17)
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dv6
dt

= 1
C6(v6)

(
i′a − ig − G2v6 − fC(v5, v6)

)
,

= f6(v2, v3, v5, v6, ia, i′a, ig), (18)

where we made use of Eq. (12) as well. Next, the variables ia, i′a, and ig need to be

expressed in terms of v2, v3, v5, and v6 as well as of the input current i. Differentiating

(13) with respect to the time, inserting the right hand sides of Eqs. (6), (10) and (11)

into the resulting expression, and casting the two redundant state variables v1 and

v4 in terms of the four non-redundant ones, after some algebraic manipulation, the

current ig is found to be given by

ig =
(

1
C5(v5)

+ 1
C6(v6)

)−1 ( ia
C1(v5 − v6)

−
fA(v5 − v6, v2)
C1(v5 − v6)

−
fD(v5 − v6)
C1(v5 − v6)

−
fB(v2 − v3, v5, v6)

C5(v5)
−

G2v6
C6(v6)

−
fC(v5, v6)
C6(v6)

)
+ i′a

= ig(v2, v3, v5, v6, ia, i′a). (19)

Let us now compute the time derivative of Eq. (14), and then use the right hand

sides of Eqs. (9), (7) and (8) as well as Eq. (19) into the resulting expression. Lengthy

calculations provide the following formula for the current i′a in terms of the current

ia and of the four state variables v2, v3, v5, and v6:

i′a =
(

1
C4(v2 − v3)

+
C2(v2) + C3(v3)
C2(v2)C3(v3)

)−1 ( fA(v2 − v3, v5)
C4(v2 − v3)

+
(

1
C2(v2)

+ 1
C3(v3)

)(
1

C5(v5)
+ 1

C6(v6)

)−1 fA(v5 − v6, v2)
C1(v5 − v6)

+
fB(v5 − v6, v2, v3)

C2(v2)

+
(

1
C2(v2)

+ 1
C3(v3)

)
C5(v5)C6(v6)

C5(v5) + C6(v6)
fB(v2 − v3, v5, v6)

C5(v5)
+

fC(v2, v3)
C3(v3)

+
(

1
C2(v2)

+ 1
C3(v3)

)(
1

C5(v5)
+ 1

C6(v6)

)−1 fC(v5, v6)
C6(v6)

+
fD(v2 − v3)
C4(v2 − v3)

+
(

1
C2(v2)

+ 1
C3(v3)

)
C5(v5)C6(v6)

C5(v5) + C6(v6)
fD(v5 − v6)
C1(v5 − v6)

+
G1v3
C3(v3)

+
G2v6
C6(v6)

⋅
(

1
C2(v2)

+ 1
C3(v3)

)(
1

C5(v5)
+ 1

C6(v6)

)−1

−
(

1
C2(v2)

+ 1
C3(v3)

)
ia

⋅

(

1 + 1
C1(v5 − v6)

+
(

1
C5(v5)

+ 1
C6(v6)

)−1
))

= i′a(v2, v3, v5, v6, ia). (20)
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At this point, inserting this expression for i′a into Eq. (19), the current ig is also a

function of v2, v3, v5, v6, and ia only:

ig =
(

1
C4(v2 − v3)

+
C2(v2) + C3(v3)
C2(v2)C3(v3)

)−1 fA(v2 − v3, v5)
C4(v2 − v3)

+
((

1
C4(v2 − v3)

+
C2(v2) + C3(v3)
C2(v2)C3(v3)

)−1 C2(v2) + C3(v3)
C2(v2)C3(v3)

− 1

)
fA(v5 − v6, v2)
C1(v5 − v6)

+
(

1
C2(v2)

+ 1
C3(v3)

+ 1
C4(v2 − v3)

)−1 fB(v5 − v6, v2, v3)
C2(v2)

+
((

1
C2(v2)

+ 1
C3(v3)

+ 1
C4(v2 − v3)

)−1 C2(v2) + C3(v3)
C2(v2)C3(v3)

− 1

)
fB(v2 − v3, v5, v6)

C5(v5)
+
(

1
C2(v2)

+ 1
C3(v3)

+ 1
C4(v2 − v3)

)−1 fC(v2, v3)
C3(v3)

+
fC(v5, v6)
C6(v6)

((
1

C2(v2)
+ 1

C3(v3)

+ 1
C4(v2 − v3)

)−1 ( 1
C2(v2)

+ 1
C3(v3)

)
− 1

)

+
(

1
C4(v2 − v3)

+ 1
C2(v2)

+ 1
C3(v3)

)−1 fD(v2 − v3)
C4(v2 − v3)

+
(
−1 +

C2(v2) + C3(v3)
C2(v2)C3(v3)

(
1

C2(v2)
+ 1

C3(v3)

+ 1
C4(v2 − v3)

)−1
)

fD(v5 − v6)
C1(v5 − v6)

+
(

1
C4(v2 − v3)

+
C2(v2) + C3(v3)
C2(v2)C3(v3)

)−1

⋅
G1v3
C3(v3)

+

((
1

C4(v2 − v3)
+ 1

C2(v2)
+ 1

C3(v3)

)−1 ( 1
C2(v2)

+ 1
C3(v3)

)

−1
) G2v6
C6(v6)

−
(

1
C4(v2 − v3)

+ 1
C2(v2)

+ 1
C3(v3)

)−1

ia −
ia

C1(v5 − v6)

⋅

((
1

C4(v2 − v3)
+ 1

C2(v2)
+ 1

C3(v3)

)−1 ( 1
C2(v2)

+ 1
C3(v3)

)
− 1

)

= ig(v2, v3, v5, v6, ia). (21)

It remains to express the current ia in terms of the non-redundant state variables

as well as of the input current i controlling the emulator operation. Applying the

Kirchhoff’s Current Law at node T1 in Fig. 3, the expression for the current i through

the bilateral device is found to be given by

i = ia − i′a(v2, v3, v5, v6, ia) + ig(v2, v3, v5, v6, ia). (22)

Inserting the expressions for i′a and ig, respectively given in Eqs. (20) and (21),

into Eq. (22), the current ia is found to be described by the following mathematical

expression:
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ia =

(

1 + 1
C1(v5 − v6)

(
C5(v5) + C6(v6)
C5(v5)C6(v6)

)−1
)−1 (

i +
(
C5(v5) + C6(v6)
C5(v5)C6(v6)

)−1

⋅
(
fA(v5 − v6, v2)
C1(v5 − v6)

+
fB(v2 − v3, v5, v6)

C5(v5)
+

fC(v5, v6)
C6(v6)

+
fD(v5 − v6)
C1(v5 − v6)

+
G2v6
C6(v6)

))

= ia(v2, v3, v5, v6, i) (23)

3.3 Network Model

Equation (23) gives the dependence of the current ia upon the device current i and

the non-redundant state variables v2, v3, v5, and v6. Inserting this equation into

Eq. (20–21) provides the expression for the current i′a (ig) in terms of v2, v3, v5,

v6, and i. It follows that the state evolution functions in the state equations (15), (16),

(17) and (18) may be expressed only in terms of v2,v3,v5,v6 and i. The state equations

of the emulator fall thus into the following class:

dv2
dt

= f2(v2, v3, v5, v6, i), (24)

dv3
dt

= f3(v2, v3, v5, v6, i), (25)

dv5
dt

= f5(v2, v3, v5, v6, i), (26)

dv6
dt

= f6(v2, v3, v5, v6, i). (27)

The analytical expressions of the functions fk(v2, v3, v5, v6, i) for k ∈ {2, 3, 5, 6}
are quite long, and are thus omitted to improve readability. This set of coupled

ordinary differential equations has the same form as the state equations of current-

controlled generic or extended memristors. However, this is not sufficient to classify

the emulator as a memristor. In fact, the model of a memristor necessarily includes

also an algebraic relation, known as Ohm’s law, defining how the output depends

on input and states, and, most importantly, imposing the coincident zero-crossing
signature (Chua 2015), i.e. the constraint for the output to exhibit zeros at the same

time instants as the input. With reference to Fig. 3, the input (output) signal of the

emulator is the voltage v (current i) across (through) it. Using Eq. (13) the voltage v
between terminals T1 and T2 may be cast as follows:

v = −v2 + v3 + v5 − v6
= g(v2, v3, v5, v6). (28)
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The input current i has impact on the output voltage v, since it is part of the

state evolution function defined by the right hand sides of Eqs. (24)–(27), and thus

influences the temporal dynamics of the states. However since the right hand side of

equation (28) is independent of i, it may not express the Ohm-based law of a current-

controlled memristor. In fact the lack of an algebraic relation expressing the device

voltage in terms of the product between its current and a function of its states, and,

possibly, its current, is at the basis of the violation of the coincident zero-crossing
signature3

in the thyristor device under modeling.

4 Numerical Validation

In order to provide some numerical evidence for the similarity between the dynamics

of the one-port in Fig. 2 and the typical on-to-off switching behaviour of a memris-

tor, we recur to a numerical simulation carried out in LTSpice. Here a current source

is applied directly across the two-terminal device of Fig. 2. Let the source inject a

periodic triangular current i of amplitude i0 = 10 ⋅ 10−3A and frequency f = 1Hz

through the bipole (see the red curve in plot (a) of Fig. 4). The device voltage in

response to the periodic stimulus is shown in blue on the same plot. Figure 4b illus-

trates the loci emerging on the i-v plane. This is the quasi-static characteristic of the

BS08D device (Powerex Inc. 2015) (see also the inset in Fig. 8 in (Yi et al. 2011)).

Numbered arrows in plots (a) and (b) of Fig. 4 clearly show the evolution of the volt-

age across the device as the triangular input current ramps up and down during the

positive half-cycle. During the phases 1 and 2 (3 and 4), spanning a quarter of the

input cycle, the device undergoes an off-to-on (on-to-off) transition. As anticipated

earlier, the device dynamics under the positive input half-cycle have been exploited

to emulate the off-to-on threshold switching behaviour of a bipolar titanium dioxide

memristor in the course of the testing and debugging phase of a closed-loop data

writing strategy for memory crossbars (Yi et al. 2011). However, it is instructive to

point out that the device of Fig. 2 is not a genuine memristor, as theoretically demon-

strated in Sect. 3.1. This is pretty clear from Fig. 4c, showing an enlarged view of the

i-v loci of Fig. 4b in the region around the origin: the loci is not pinched in the point

(i, v) = (0, 0) (Chua 2014).

Next we shall validate the accuracy of the mathematical model of the silicon bilat-

eral thyristor derived in Sect. 3. The parameters of the model was set as reported in

Table 1. Setting the thermal voltage VT to 26mV, using a periodic zero-mean trian-

gular input current i of amplitude i0 = 10 mA and frequency f = 1Hz, and setting

the initial values for the non-redundant state variables to zero, i.e. vj(0) = 0 V for

3
Let us assume that the two terminals of a one-port made up of arbitrary linear and nonlinear circuit

elements, as well as voltage and current sources, are closed onto a current-controlled memristor

device. The waveform of the voltage v(t) associated with the current i(t) of any admissible signal

pair (i(t), v(t)) measured from this circuit set-up must cross the time axis whenever i = 0. This

property of a current-controlled memristor is known as coincident zero-crossing signature (Chua

2015).
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Table 1 Values of the parameters in the model Eqs. (24)–(27) of the silicon bilateral thyristor

G1 = G2∕ S C0i/(FV
1∕mi ) i ∈ {1, 3} C02 / (FV

1∕m2 )

0.9 × 10−3 0.02 × 10−8 0.01 × 10−8

𝛹0/ V m1 = m2 = m3 𝜏1 = 𝜏3∕ s
1 0.5 1 × 10−9

𝜏2∕ s 𝛾1 = 𝛾2 IS1k∕A, k ∈ {1, 2, 3, 4, 6}
1 × 10−8 0.17 1 × 10−14

IS15 ∕ A IS21 ∕ A IS22 = IS23 / A

0.25 × 10−14 5 × 10−12 5 × 10−11

ISa = ISb∕A na = nb Vza∕V
467.04 × 10−18 2 8
Vzb∕V nza = nzb Iza = Izb∕A
2.3 0.3 5 × 10−3

j ∈ {2, 3, 5, 6}, the numerical integration of the state equations (24)–(27) resulted in

simulation results capturing quantitatively the dynamics observed in the LTSpice-

based investigation of Fig. 4. Figure 5a depicts in red the time waveform of the cur-

rent inserted into the two-terminal device of Fig. 3, and in blue the resulting voltage

drop between terminals T1 and T2. Referring to the latter signal, note the off-to-on-

to-off transition the thyristor undergoes over each input half-cycle. Plot (b) in Fig. 5

shows the current-voltage loci of the thyristor device. A zoom on the region of the

i-v plane defined by v ∈ [−3, 3]V and i ∈ [−30, 30]µA clearly shows the violation

of the coincident zero-crossing signature (Chua 2015) (see Fig. 5c).

As a final remark, note that a similar analysis could be carried out to show that

the particular component adopted at Hewlett Packard Labs to emulate the on-to-

off switching behaviour of a bipolar titanium oxide memristor (Pickett et al. 2009;

Abdalla and Pickett 2011) in the debugging and testing phase of the aforementioned

closed-loop data writing scheme for memory crossbars, consisting of two back-to-

back lambda diodes (Kano et al. 1975), is not a genuine memristor. Since the analysis

is similar to the study conducted earlier for the thyristor, we omit it from this manu-

script.

5 Conclusions

The close synergy between experimental (Tzouvadaki et al. 2016a, b) and theoretical

(Ascoli et al. 2015a, b) studies is a crucial requirement to foster progress in memristor

research (Vallero et al. 2016; Ascoli et al. 2015a, b; Slesazeck et al. 2015; Levy et al.

2014), particularly since the theory may explain (Ascoli et al. 2015c) and/or predict

(Ascoli et al. 2016c) the mechanisms behind the experimental observation of com-

plex dynamical phenomena (Vaidyanathan and Volos 2016a) in nonlinear systems
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(Vaidyanathan and Voles 2016a, b). This chapter clarifies an important modelling

issue regarding a silicon bilateral thyristor-based circuit used to emulate the off-to-on

switching dynamics of a bipolar titanium dioxide memristor in the testing and debug-

ging phase of a feedback data writing scheme for memory crossbars. Despite the

thyristor exhibits off-to-on dynamics reminiscent of the switching process a mem-

ristor undergoes under positive stimuli, thus representing a valid tool for testing and

debugging memristive circuits, from a device modeling point of view it may not be

regarded as a genuine memory resistor (Chua 2015). The present manuscript first

derives the mathematical model of the thyristor-based emulator, adopted in the sem-

inal paper from Hewlett Packard Labs (Yi et al. 2011) to verify the mechanisms

underlying a closed-loop crossbar data writing process, and then proves that it does

not strictly fall into the most general class of memristors (Chua 2015). Numerical

simulation results are then provided to support the conclusions from the theoretical

analysis. All in all, this work is meant to warn the uninitiated against an improper

circuit theoretic classification of the thyristor. The mathematical analysis presented

in the chapter may inspire other studies intended to check whether or not a device or

circuit may be classified as memristor, and fits well in the framework of our activities

aimed at establishing robust foundations on memristor theory.
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memristor without the energy storage elements inductor and capacitor. The oscil-
lating mechanism of the proposed circuit has been explained via Hopf bifurcation
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1 Introduction

An electronic oscillator circuit is generally designed by using one linear capacitor
and one linear inductor, or two linear capacitors, or two linear inductors, along with
a locally-active nonlinear 2-terminal resistor having a negative slope region in the
DC V-I curve (e.g., a tunnel diode), or a locally-passive nonlinear 2-terminal
resistor (e.g., p-n junction diode, zener diode, varistor, etc.), and a locally-active
3-terminal resistor, such as a transistor, in addition to the ubiquitous battery,
required to satisfy the first law of thermodynamics. Examples of tunnel diode
oscillator (Mehta and Mehta 2005) and the well-known Wien-bridge oscillator1 are
shown in Fig. 1a and b respectively.

Figure 1c represents the world’s simplest electronic oscillator containing only
one memristor connected in parallel with a battery.

The memristor in this circuit is a generic (Chua 2014, 2015; Mannan et al. 2016;
Rajamani et al. 2016) 2nd-order locally-active memristor described by the
following state-dependent Ohm’s law and state equations:

1The circuit diagram of the Wien-bridge oscillator can be found from the following link http://
www.circuitstoday.com/wien-bridge-oscillator.
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The parameters chosen in this paper are summarized in Table 1. The 3D cross
section of the surface f1(x1, x2, v) and f2(x1, x2, v) are shown in Fig. 2a and b
respectively at V = 6.4 V. Although (1) can be implemented in hardware by several
methods, all results in this paper are obtained by computer simulations to avoid
ambiguities in modeling the physical devices.

2 Pinched Hysteresis Loop and DC V-I Curve
of the Second-Order-Generic Memristor from Fig. 1c

2.1 Pinched Hysteresis Loops Under Bipolar Periodic
Signal

The memristor exhibits a unique fingerprint called a pinched hysteresis loop under
excitation of any bipolar periodic signal with zero average. To illustrate the
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Fig. 1 a Simplest oscillator using a tunnel diode and an LC tank circuit (Mehta 2005).
b Wien-bridge oscillator using resistors, capacitors and transistors (see footnote 1). c World’s
simplest oscillator using only one memristor. The blue near-sinusoidal waveform is obtained by
computer simulation of (1) with the parameters listed in Table 1, and initial states x1(0) = 300.002
and x2 (0) = 300.004

Table 1 Parameter values of
the second-order generic
memristor

K1 = 103 K2 = 105

β1 = 104 β2 = 107

γ1 = 300 γ2 = 300
α1 = 0.8 α2 = 0.2
δ1 = 0.8 δ2 = 0.1
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Fig. 2 The cross section of the surfaces a f1(x1, x2, V) and b f2(x1, x2, V) at V = 6.4 V
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memristor in (1) exhibits this fingerprints, we apply a sinusoidal voltage signal v
(t) = A sin(2πft) with amplitude A = 12 V, and frequency f = 0.1 Hz across this
memristor. Figure 3a shows the output current i(t), the state variables x1(t), x2(t) and
the memductance G(t) with respect to time t, respectively. Observe from Fig. 3a
that i(t) always passes through the origin whenever v(t) is zero at point 1, and 3.
Observe also the memductance G(t) ≥ 0. The upper figure in Fig. 3b is a
double-valued Lissajous figure plotted on the i versus v plane. Such a multi-valued
Lissajous figure of v(t), i(t), which passes through the origin is called a pinched
hysteresis loop (Chua 2003). This unique feature is the characteristic property of a
memristor that distinguishes it from non-memristive devices. The lower figure in
Fig. 3b shows the variation of memductance with respect to applied voltage v(t).

Fig. 3 a Waveforms of the applied sinusoidal voltage v(t) = A sin(2πft), output current i(t), state
variables x1(t), x2(t), and memductance G(t) of the second-order generic memristor. b Pinched
hysteresis loop plotted on the i versus v plane and memductance hysteresis loop plotted on the
G versus v plane, respectively. The simulations were performed at A = 12 V, f = 0.1 Hz,
x1(0) = 300.002 and x2 (0) = 300.004
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Another characteristic property of the memristor is the dependence of the pin-
ched hysteresis loop on the frequency of the excitation signal. This property asserts
that the pinched hysteresis loops characterized by a memristor shrinks to a
single-value function through origin as the frequency tends to infinity. We illustrate
this property by applying the sinusoidal signal v(t) = A sin(2πft) with A = 12 V
and f = 0.1, 0.5, and 5 Hz to our memristor. Observe from Fig. 4 that the pinched
hysteresis loops shrink as the frequencies increase and tend to a straight line at 5 Hz
(Adhikari et al. 2013; Mannan et al. 2016; Rajamani et al. 2016). All of these
pinched hysteresis loops exhibit the fingerprints of a memristor.

2.2 DC V-I Curve

The DC V-I curve of a generic memristor is equivalent to a nonlinear resistor at the
DC steady state regime (Chua 2014). The DC V-I curve of the second-order generic
memristor defined in (1a)–(1d) is obtained by equating (1c) and (1d) to zero and
solving for the equilibrium point as a function of applied DC voltage v = V, i.e.

x1 = x1̂ðVÞ ð2aÞ

x2 = x2̂ðVÞ ð2bÞ

Substituting (2a) and (2b) in (1b), and solving for the DC current i = I from (1a),
we obtain

12− 6− 0 6 12

350−

175−

175

350

i(μA)

v(V)

f=0.1 Hz

f=0.5 Hz

f=5 Hz

Fig. 4 Pinched hysteresis
loops of the second-order
generic memristor at
frequencies f = 0.1, 0.5 and
5 Hz. The input is a
sinusoidal signal v(t) = A sin
(2πft), with A = 12 V, and
the initial states are
x1(0) = 300.002 and
x2(0) = 300.004
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I =Gðx1, x2ÞV ð3Þ

Applying (2a), (2b) and (3), for −20 V ≤ V ≤ 20 V, we obtain the red DC
V-I curve of our second-order generic memristor shown in Fig. 5c whereas the state
variables x1 and x2 are shown in Fig. 5a and b, respectively. Note that at steady
state the V-I curve in Fig. 5c is equivalent to the V-I curve of a nonlinear resistor
(Chua 1969). Figure 5d shows the portions of the DC V-I curve which give rise to
two distinct super-critical Hopf bifurcations.

Fig. 5 The DC equilibrium of a state x1, b state x2, and c DC V-I curve in steady state regime, for
−20 V ≤ V ≤ 20 V, d portions of the DC V-I curve which give rise to two distinct super-critical
Hopf bifurcations
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3 Small-Signal Equivalent Circuit

Small-signal equivalent circuit is the linearized circuit used to predict the response
of a memristor to a small-signal input applied at an equilibrium point. Just like
standard electronic circuit theory, the small-signal equivalent circuit is derived
about an equilibrium point (V, I) by using the Taylor series and the Laplace
transform. Let V be the DC voltage at an equilibrium point Q, then the equilibrium
state x1 = X1 and x2 = X2 can be found by solving (1c) and (1d) numerically at the
DC voltage V as follow:

dx1
dt

=
1
α1

δ1 γ1 − x1ð Þ+ K1eβ1 x1 − γ1ð Þ

K1eβ1 x1 − γ1ð Þð Þ+ K2e
β2

1
x2
− 1

γ2

� � ! !2 V
2

2
666664

3
777775=0 ð4aÞ

dx2
dt

=
1
α2

δ2 γ2 − x2ð Þ+ K2e
β2

1
x2
− 1

γ2

� �

K1eβ1 x1 − γ1ð Þð Þ+ K2e
β2

1
x2
− 1

γ2

� � ! !2 V
2

2
666664

3
777775=0 ð4bÞ

The memristanceMðx1, x2Þ≜ 1
Gðx1, x2Þ of the 2nd-order memristor defined in (1b) is

composed of the following two decoupled terms involving only x1 and x2,
respectively:

Mðx1, x2Þ= K1eβ1 x1 − γ1ð Þ
� �

+ K2e
β2

1
x2
− 1

γ2

� � !
ð5Þ

We can synthesize the M(x1, x2) by two first-order memristors connected in
series, as shown in Fig. 6. The memristance of the upper and lower memristors in
Fig. 6 are defined by the first and second terms of Eq. (5) respectively, where the
memductance G1(x1) = 1/R1(x1) and G2(x2) = 1/R2(x2) are defined in (6a) and (6b),
respectively:

G1ðx1Þ= 1
K1eβ1 x1 − γ1ð Þð Þ ð6aÞ

G2ðx2Þ= 1

K2e
β2

1
x2
− 1

γ2

� � ð6bÞ
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Note that i = i1 = i2 and v = v1 + v2 in Fig. 6. Using (6a) and (6b), we have
following relationships:

G1ðx1Þv1 =G2ðx2Þv2 ð7aÞ

v1 + v2 = v ð7bÞ

It follows from (7a) and (7b) that

v=
G1ðx1Þ+G2ðx2Þ

G2ðx2Þ v1 ð7cÞ

=
K1eβ1 x1 − γ1ð Þ +K2e

β2
1
x2
− 1

γ2

� �
K1eβ1 x1 − γ1ð Þ

0
B@

1
CAv1 ð8Þ

From (8) and (1c), we obtain the following state equation of the upper
memristor:

dx1
dt

=
1
α1

δ1 γ1 − x1ð Þ+ 1
K1eβ1 x1 − γ1ð Þ v

2
1

� �
≜ f ðx1, v1Þ ð9Þ

Fig. 6 The second-order
memristor defined in (1) can
be realized by connecting two
“uncoupled” first-order
voltage-controlled memristors
in series. The memductance
G1(x1) of the first memristor is
defined by (6a), and the
memductance G2(x2) of the
second memristor is defined
by (6b). The corresponding
state equation is given by (9)
and (10), respectively
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A similar derivation with respect to v2 gives the following state equation for the
lower memristor:

dx2
dt

=
1
α2

δ2 γ2 − x2ð Þ+ 1

K2e
β2

1
x2
− 1

γ2

� � v22
2
64

3
75≜ f ðx2, v2Þ ð10Þ

Let us derive small-signal equivalent circuit of the upper and lower memristor in
Fig. 6 at their DC equilibrium point v1 = V1 and v2 = V2 where
V1 + V2 = V. Define,

x1 =X1 + δ x1 ð11aÞ

v1 =V1 + δ v1 ð11bÞ

i1 = I1 + δ i1 ð11cÞ

where X1 denotes the equilibrium state x1(Q) of the upper memristor at v1 = V1.
We can expand the current i1 due to the memductance G1(x1) in a Taylor series

about the equilibrium point x1 = X1 as follows:

i1 = I1 + δ i1
= a′00ðQÞ+ a′11ðQÞδ x1 + a′12ðQÞδ v1 + h.o.t

ð12aÞ

where,

I1 = a′00ðQÞ=G1ðX1ÞV1 ð12bÞ

a′11ðQÞ= Ġ1ðx1Þv1
��
Q = − β1 K1eβ1 X1 − γ1ð Þ

� �− 1
V1 ð12cÞ

a′12ðQÞ=G1ðx1ÞjQ = K1eβ1 X1 − γ1ð Þ
� �− 1

ð12dÞ

and h.o.t denotes the higher-order terms in δ x1 and δ v1 . Assuming δ x1j j≪ 1 and
δ v1j j ≪ 1, we can neglect the h.o.t term in (12a) to obtain the following linear
equation,

δ i1 = a′11ðQÞδ x1 + a′12ðQÞδ v1 ð13Þ

Let us expand state equation f ðx1, v1Þ of (9) in Taylor series about the equilib-
rium point (x1(Q), V1 (Q)):
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f ðX1 + δ x1,V1 + δ v1Þ= f ðX1,V1Þ+ b11ðQÞδ x1 + b12ðQÞδ v1 + h.o.t ð14aÞ

where,

b′11ðQÞ=
∂f ðx1, v1Þ

∂x1

����
Q
= −

δ1
α1

+
β1V2

1

α1
K1eβ1ðX1 − γ1Þ
� �− 1

� �
ð14bÞ

b′12ðQÞ=
∂f ðx1, v1Þ

∂v1

����
Q
=

2 K1eβ1ðX1 − γ1Þ
� �− 1

α1
V1 ð14cÞ

Note that f ðX1,V1Þ=0 since ðX1,V1Þ is a point on the DC V1 − I1 curve. Let us
linearize the non-linear state equation x1̇ = f ðx1, v1Þ by neglecting the h.o.t from
(14a) as follows:

dðδ x1Þ
dt

= b′11ðQÞδ x1 + b′12ðQÞδ v1 ð15Þ

Taking the Laplace transform of (13) and (15) (Chua and Kang 1976) we obtain,

ı1̂ðsÞ= a′11ðQÞ x1̂ðsÞ+ a′12ðQÞv1̂ðsÞ ð16Þ

sx ̂1ðsÞ= b′11ðQÞx1̂ðsÞ+ b′12ðQÞv1̂ðsÞ ð17Þ

where the Laplace transform of δ x1ðtÞ, δ i1ðtÞ and δ v1ðtÞ are denoted by x ̂1ðsÞ, ı1̂ðsÞ
and v1̂ðsÞ respectively. From (17), we obtain

x1̂ðsÞ= b′12ðQÞv1̂ðsÞ
s− b′11ðQÞ

ð18Þ

From (16) and (18), the admittance function Y1ðs,QÞ of the upper memristor is

Y1ðs,QÞ≜ ı1̂ðsÞ
v1̂ðsÞ =

a′11ðQÞb′12ðQÞ
s− b′11ðQÞ

+ a′12ðQÞ ð19Þ

Rearranging (19), we obtain

Y1ðs,QÞ= 1

s 1
a′11ðQÞb′12ðQÞ

+ ð− b′11ðQÞÞ
a′11ðQÞb′12ðQÞ

+ a′12ðQÞ ð20Þ

Let us recast (20) into the form
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Y1ðs,QÞ= 1
sL1 +R1

+
1
Ra

ð21Þ

where Y1ðs,QÞ denotes the small-signal admittance of the upper memristor at Q,
whose circuit as shown in Fig. 7a, where the parameters L1, R1 and Ra are defined
by:

L1 =
1

a′11ðQÞb′12ðQÞ
ð22aÞ

R1 =
− b′11ðQÞ

a′11ðQÞb′12ðQÞ
ð22bÞ

Ra =
1

a′12ðQÞ
ð22cÞ

and state variable x1 at Q can be computed numerically by solving the following
equation:

Fig. 7 a Small-signal equivalent circuit of the second-order memristor. b Inductances and
resistances in the small-signal equivalent circuit of the second-order memristor calculated at the
DC voltage V
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dx1
dt

=
1
α1

δ1 γ1 − x1ð Þ+G1ðx1ÞV2
1

	 

=0 ð22dÞ

Similarly, the small-signal admittance of the lower memristor is given by

Y2ðs,QÞ≜ ı2̂ðsÞ
v2̂ðsÞ =

c′11ðQÞd′12ðQÞ
s− d′11ðQÞ

+ c′12ðQÞ ð23Þ

Rearranging (23), we have

Y2ðs,QÞ= 1

s 1
c′11ðQÞd′12ðQÞ

+ ð− d′11ðQÞÞ
c′11ðQÞd′12ðQÞ

+ c′12ðQÞ=
1

sL2 +R2
+

1
Rb

ð24Þ

where Y2ðs,QÞ denotes the small-signal admittance of the lower memristor of the
circuit of Fig. 7a where the parameters L2, R2 and Rb are given by:

L2 =
1

c′11ðQÞd′12ðQÞ
ð25aÞ

R2 =
− d′11ðQÞ

c′11 ðQÞ d′12ðQÞ
ð25bÞ

Rb =
1

c′12ðQÞ
ð25cÞ

The state variable x2 at the equilibrium point Q can be computed numerically by
solving the following equation:

dx2
dt

=
1
α2

δ2 γ2 − x2ð Þ+G2ðx2ÞV2
2

	 

=0 ð25dÞ

For the convenience of readers, the explicit formulas for computing L1, R1, Ra

and L2, R2, Rb as a function of V1 and V2 are given in Table 2 along with the state
equations f ðx1, v1Þ and f ðx2, v2Þ, respectively. The corresponding small-signal
equivalent circuit due to L1, R1, Ra and L2, R2, Rb and plots of inductances and
resistances are shown in Fig. 7a and b, respectively, for the memristor. Observe that
the inductance L1 and resistance R1 are always negative for any DC equilibrium
voltage V. The small-signal equivalent circuit of the second-order generic mem-
ristor with its inductances and resistances calculated at V = 6.4 V is shown in
Fig. 8.
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Table 2 Formulas for calculating L1, R1, Ra and L2, R2, Rb of the second-order memristor
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3.1 Admittance and Pole-Zero Diagram of Second-Order
Memristor

Let Q(VQ, IQ) be any point on the DC V-I curve of a second-order generic memristor
and let ðX1Q ,X2QÞ be the corresponding equilibrium state.

Define,

x1 =X1Q +Δ x1 ð26aÞ

x2 =X2Q +Δ x2 ð26bÞ

v=VQ +Δv ð26cÞ

i= IQ +Δi ð26dÞ

Let us expand the current i = G(x1, x2) v in (1a) using Taylor series at the
equilibrium point ðX1Q ,X2Q ,VQÞ

i= a00 + a11Δx1 + a12Δx2 + a13Δv+ h.o.t. ð27Þ

where,

Fig. 8 Small-signal
equivalent circuit of the
second-order generic
memristor calculated at
V = 6.4 V
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a00 =GðX1Q ,X2QÞVQ = IQ ð28aÞ

a11 =VQ
∂Gðx1, x2Þ

∂x1

����
Q

ð28bÞ

a12 =VQ
∂Gðx1, x2Þ

∂x2

����
Q

ð28cÞ

a13 =Gðx1, x2ÞjQ =GðX1Q ,X2QÞ ð28dÞ

The h.o.t. in (27) denotes the higher-order terms of Δx1, Δx2, and Δv1. Assuming
Δx1 << 1, Δx2 << 1 and Δv1 << 1 then the h.o.t. term can be neglected and (27)
reduces to the following linear equation

Δi= a11Δx1 + a12Δx2 + a13Δv ð29Þ

Let us expand f1(x1, x2, v) in (1c) using Taylor series at the equilibrium point
ðX1Q ,X2Q ,VQÞ

f1ðX1Q +Δx1,X2Q +Δx2,VQ +ΔvÞ= f1ðX1Q ,X2Q ,VQÞ+ b11Δx1 + b12Δx2 + b13Δv+ h.o.t.

ð30Þ

where,

b11 =
∂f1ðx1, x2, vÞ

∂x1

����
Q

ð31aÞ

b12 =
∂f1ðx1, x2, vÞ

∂x2

����
Q

ð31bÞ

b13 =
∂f1ðx1, x2, vÞ

∂v

����
Q

ð31cÞ

Since ðX1Q ,X2Q ,VQÞ specifies a point on the DC V-I curve, the term
f1ðX1Q ,X2Q ,VQÞ=0. Neglecting the h.o.t. term in (30), we obtain the following
linear equation:

dðΔx1Þ
dt = b11Δx1 + b12Δx2 + b13Δv ð32Þ

Similarly, let us expand f2(x1, x2, v) in (1d) using Taylor series at the equilibrium
point ðX1Q ,X2Q ,VQÞ
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f2ðX1Q +Δx1,X2Q +Δx2,VQ +ΔvÞ= f2ðX1Q ,X2Q ,VQÞ+ c11Δx1 + c12Δx2 + c13Δv+ h.o.t.

ð33Þ

where,

c11 =
∂f2ðx1, x2, vÞ

∂x1

����
Q

ð34aÞ

c12 =
∂f2ðx1, x2, vÞ

∂x2

����
Q

ð34bÞ

c13 =
∂f2ðx1, x2, vÞ

∂v

����
Q

ð34cÞ

Since ðX1Q ,X2Q ,VQÞ specifies a point on the DC V-I curve, the term
f2ðX1Q ,X2Q ,VQÞ=0. Neglecting the h.o.t. term in (33), we obtain the following
linear equation:

dðΔx2Þ
dt = c11Δx1 + c12Δx2 + c13Δv ð35Þ

Taking Laplace transform of (29), (32) and (35), we obtain

ıð̂sÞ= a11 x1̂ðsÞ+ a12x2̂ðsÞ+ a13v ̂ðsÞ ð36Þ

sx1̂ðsÞ= b11x1̂ðsÞ+ b12x2̂ðsÞ+ b13v ̂ðsÞ ð37Þ

sx2̂ðsÞ= c11x1̂ðsÞ+ c12x2̂ðsÞ+ c13v ̂ðsÞ ð38Þ

where ıð̂sÞ, x1̂ðsÞ, x2̂ðsÞ and v ̂ðsÞ denote the Laplace transform of Δi, Δx1, Δx2, and
Δv, respectively. Solving (37) and (38) for x1̂ðsÞ and x2̂ðsÞ, we obtain

x1̂ðsÞ= b12c13 + b13 s− c12ð Þ½ �
s− b11ð Þ s− c12ð Þ− b12c11½ � v ̂ðsÞ ð39aÞ

x2̂ðsÞ= b13c11 + c13 s− b11ð Þ½ �
s− b11ð Þ s− c12ð Þ− b12c11½ � v ̂ðsÞ ð39bÞ

The explicit formula for computing the parameters in (39a) and (39b) are given
in Table 3. By substituting x1̂ðsÞ and x2̂ðsÞ from (39a, 39b) into (36), we obtain

Yðs; QÞ≜ ıð̂sÞ
v ̂ðsÞ ð40Þ
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Yðs;QÞ= b2s2 + b1s+ b0
a2s2 + a1s+ a0

ð41Þ

Table 3 Explicit formula for computing the parameters in (40)
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The expression Y(s; Q) in (41) is called the small-signal admittance of the
second-order memristor about the equilibrium point Q, where a2, a1, a0, b2, b1 and
b0 are given by

a2 = 1
a1 = − b11 + c12ð Þ
a0 = b11c12 − b12c11

9=
; ð42aÞ

b2 = a13
b1 = a11b13 + a12c13 − a13 b11 + c12ð Þ
b0 = a11 b12c13 − b13c12ð Þ+ a12 b13c11 − b11c13ð Þ+ a13 b11c12 − b12c11ð Þ

9=
; ð42bÞ

The pole-zero diagram of the small-signal admittance Y(s; V) is computed by
factorizing the denominator and numerator of (41):

Yðs;VÞ= kðs− z1Þðs− z2Þ
ðs− p1Þðs− p2Þ ð43Þ

where pi and zi denote the poles and zeros of admittance function Y(s; V)
respectively.

The loci of the zeros and poles are shown in the Fig. 9a and b respectively, over
the applied DC voltage −20 V ≤ V ≤ 20 V. In Fig. 9b, the arrowheads indicate
the direction of pole movements in the interval of −20 V ≤ V ≤ 0 V whereas the
direction of pole movements for 0 V ≤ V ≤ 20 V is in reverse direction. Note
that the reverse arrowheads for 0 V ≤ V ≤ 20 V are omitted to avoid the clutter.

Observe from Fig. 9a that Im z1, Im z2 are always zero, and Re z2 is always
negative. The poles diagram in Fig. 9b shows the real part of the poles p1 and p2 are
zero at V = 6.38820157073 V and V = 7.66131678261 V, respectively which are
also called as Hopf-bifurcation points in bifurcation theory. Observe that the real
parts Rep1 and Rep2 of the poles are always positive between the bifurcation points
6.38820157073 V < V < 7.66131678261 V. In the horizontal segment where the
Im p1 and Im p2 are zero, at that point several poles of Rep1 and Rep2 exist due to
different input voltages as shown in Fig. 9b and at V = 0 V, the value of Rep1 and
Rep2 is −0.5 and −1, respectively. As the value of the voltage V increases the value
of the poles of p1 and p2 increases. For V ≤ 6.03481 V and V ≥ 11.1305 V the
Im p1 and Im p2 become zero.

3.2 Frequency Response of Second-Order Generic
Memristor

The frequency response of the second-order generic memristor at an equilibrium
point Q is computed by substituting s = iɷ, for the complex frequency s in (41) at
the equilibrium point Q, where the angular frequency ɷ = 2πf. The corresponding
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Fig. 9 Poles and zeros diagram of the admittance function Yðs;VÞ= kðs− z1Þðs− z2Þ
ðs− p1Þðs− p2Þ for −20 V ≤

V ≤ 20 V. a Zeros Diagram. b Poles Diagram. Arrowheads indicate the direction of pole
movements in the interval of −20 V ≤ V ≤ 0 V. The movements of poles in the interval of
0 V ≤ V ≤ 20 V, which are the reverse direction of −20 V ≤ V ≤ 0 V interval, are omitted to
avoid the clutter. When voltage V is infinitive, the locations of poles p1 and p2 are −0.5 and
−77.4759895, respectively
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Fig. 9 (continued)
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real part ReYðiω;VQÞ and imaginary part ImYðiω;VQÞ obtained from the admittance
function Yðiω;VQÞ are called the small-signal admittance frequency response of the
memristor in basic circuit theory. When the function ReYðiω;VQÞ and ImYðiω;VQÞ
are plotted on the horizontal and vertical axes of the Cartesian co-ordinate system
with the frequency ω as a parameter, the resulting plot is generally known as Nyquist
plot of the admittance functions at the equilibrium point Q.

Substituting s = iɷ in (41), we obtain

Yðiω;VQÞ= ða0 − a2ω2Þðb0 − b2ω2Þ+ a1b1ω2

ða0 − a2ω2Þ2 + a21ω2

" #
+ i

½ða0 − a2ω2Þb1 − a1ðb0 − b2ω2Þ�ω
ða0 − a2ω2Þ2 + a21ω2

" #

ð44Þ

The real and imaginary parts of the small-signal admittance Yðiω;VQÞ at the
equilibrium point VQ ðX1Q ,X2QÞ of a second-order generic memristor are given by:

ReYðiω;VQÞ= ða0 − a2ω2Þðb0 − b2ω2Þ+ a1b1ω2

ða0 − a2ω2Þ2 + a21ω
2

ImYðiω;VQÞ= ½ða0 − a2ω2Þb1 − a1ðb0 − b2ω2Þ�ω
ða0 − a2ω2Þ2 + a21ω

2

ð45Þ

By extensive numerical analysis of DC V-I curve shown in Fig. 5d, we found the
current I = 171.553 µA is the maximum value at V = 6.209 V2 and our calculation
shows that the slope of DC V-I curve is negative when V > 6.209 V. Figure 10a–c
shows the admittance frequency response ReYðiω;VQÞ versus ɷ, ImYðiω;VQÞ
versus ɷ and the Nyquist plot of the second-order memristor at V = 6.209 V,
V = 6.3 V, and V = 7 V, respectively. Observe that the function ReYðiω;VQÞ is
tangent to the ω axis at ω=0 at V = 6.209 V. However, the function ReYðiω;VQÞ
at V = 6.3 V and V = 7 V are negative for − 0.42≤ω≤ 0.42, and
− 0.6908≤ω≤ 0.6908, memristor defined in (1) is locally active when the DC
input voltage V > 6.209 V.

4 Mapping the Poles of the Admittance Function Y(S; V)
with Eigen values of the Jacobian Matrix JðX1,X2;VÞ

Let us represent (1c) and (1d) with DC input voltage V in the following standard
form:

dx1
dt

= f1ðx1, x2,VÞ ð46aÞ

2The DC V-I curve in Fig. 5d for negative voltage ðV ≤ 0Þ is just the reflected (odd-symmetric)
mirror image about the origin V = 0 over the positive input voltage ðV ≥ 0Þ region.
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Fig. 10 Small-signal admittance frequency response Re Y(iω; VQ), Im Y(iω; VQ) and Nyquist plot
of our second-order memristor at a V = 6.209 V, b V = 6.3 V, and c V = 7 V
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Fig. 10 (continued)
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Fig. 10 (continued)
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dx2
dt

= f2ðx1, x2,VÞ ð46bÞ

The Eigen values of the second-order memristor are computed from the Jacobian
matrix at the DC equilibrium voltage V obtained by setting the differential
Eqs. (46a) and (46b) to zero. Setting dx1

dt =0 and dx2
dt =0, and solving for

x1 =X1ðVÞ, x2 =X2ðVÞ at V, we obtain the following Jacobian matrix at (X1(V),
X2(V)):

JðX1,X2;VÞ=
∂f1ðx1, x2;VÞ

∂x1

∂f1ðx1, x2;VÞ
∂x2

∂f2ðx1, x2;VÞ
∂x1

∂f2ðx1, x2;VÞ
∂x2

2
664

3
775
ðx1 =X1ðVÞ, x2 =X2ðVÞÞ

ð47Þ

According to the theory developed by Chua et al. (1987, 2012a, b) the Eigen
values of the Jacobian matrix are identical to the poles3 of the admittance functions
Y(s; V). Table 4 illustrates the Eigen values computed from Jacobian matrix (47)
and the poles computed from the denominator of the admittance function Y(s; V) in
(43). Observe from the Table 4 that the locations of the poles obtained from the
admittance function of the second order memristor in Fig. 1c are identical to the
Eigen values computed from the Jacobian matrix evaluated at V. Similarly, Fig. 11a
and b show plots of the loci of poles of the admittance function Y(s; V), and the loci
of Eigen values of the Jacobian matrix as a function of DC equilibrium voltage V in
the interval of −20 V ≤ V ≤ 20 V whereas to avoid clutter, the arrowheads
indicate the movements of poles and the Eigen values only in the interval of
−20 V ≤ V ≤ 0 V. Our numerical simulations show identical results from these
two independent methods, as expected. In both the plots of Fig. 11a and b, as the
voltage increases the poles of admittance function and the Eigen values also
increases. For V = 0 V, the value of p1 and p2 is −0.5 and −1, respectively, in the
pole diagram of admittance function as well as in the Eigen values of the Jacobian
matrix whereas V ≤ 6.03481 V and V ≥ 11.1305 V the Im p1 and Im p2 become
zero.

3We would like to caution the readers that the DC current Iext is the input in Chua et al. (2012a, b),
and the two small-signal equivalent circuits of the potassium ion-channel memristor and the
sodium ion-channel memristor in the HH model are connected parallel. Hence, the Eigen values of

the Jacobian matrix are identical to the poles of the small-signal impedance Zðs, IÞ≜ VðsÞ
IðsÞ = 1

YðsÞ, or
equivalently, the zeros of the admittance Y(s). In the 2nd-order memristor case, the input is a DC
voltage V and the two small-signal circuit components shown in Fig. 8 are connected in series. It
follows that the poles of the admittance function Yðs,VÞ≜ IðsÞ

VðsÞ of the second-order memristor in
Fig. 1c are equivalent to the Eigen values of the Jacobian matrix (47).

44 M.Pd. Sah et al.



5 Local Activity and Edge of Chaos

The local activity theorem provides the fundamental concept for predicting whether
the nonlinear system can exhibit complexity or not, whereas a small neighborhood
of the edge of chaos in the parameter space of a dynamical system is where complex
phenomena and information processing will most likely emerge (Chua et al. 1987;
Chua 1998; Dogaru and Chua 1998; Vaidyanathan and Volos 2016a, b). Applying

Table 4 Comparison of the poles of the admittance function Y(s; V) and the Eigen values of the
Jacobian matrix JðX1,X2;VÞ
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the above theorem in this paper for the second-order memristor, we found from
Figs. 10a and 5d that the memristor is locally active only when V > 6.209 V, i.e.

ReYðiω;VQÞ<0, for V >6.209V ð48Þ

Observe from Figs. 9b and 11a that the real part of the poles of Yðs;VQÞ van-
ishes at V = 6.38820157073 V, i.e. the poles of the admittance functions Yðs;VÞ
has a pair of complex poles p1 = i0.50372249 and p2 = −i0.50372249 located on
the imaginary axis (Re Pi = 0) at the above applied DC voltage. It follows that the
corresponding equilibrium ðX1ðVÞ,X2ðVÞÞ point is no longer asymptotically stable

Fig. 11 a Loci of the Poles from the admittance function Y(s; V). b Loci of the Eigen values from
the Jacobian matrix JðX1,X2;VÞ. Arrowheads indicate the movements of poles and the Eigen
values in the interval of −20 V ≤ V ≤ 0 V
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at the above parameter value of V, and becomes unstable thereafter. In other words,
the edge of chaos regime which started at V = 6.209 V (resp. I = 171.553 µA)
exists only over the following the tiny interval (see Fig. 5d):

Edge of chaos domain 1:
6.209V<V <6.38820157073V
171.553 μA> I >167.5 μA

ð49Þ

Fig. 11 (continued)
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Fig. 12 a Illustration of the principle of local activity in the second-order memristor at DC input
voltage V = 6.15 V, V = 6.209 V and V = 6.3 V. b The corresponding Nyquist plot for the input
DC voltage V = 6.15 V, V = 6.209 V and V = 6.3 V. c Edge of chaos domain 1 and edge of
chaos domain 2 on the zoom DC V-I curve of our second-order memristor
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The loci of the two complex poles p1 and p2 of Y(s; V) in Fig. 11a reveals the
pole p1 migrated along the red curve in the right-half plane to the left-half plane as
V increases beyond V = 6.38820157073 V and crosses the imaginary axis at
V = 7.66131678261 V (resp. I = 112.582 µA) where the real part of the pole of Y
(s; VQ) vanishes at p1 = −i0.82930627. Any further increase in the voltage
V moves the pole p1 back into the left-half plane. This confirms the existence of a
second edge of chaos regime starting from V = 7.66131678261 V (resp.
112.582 µA), and which extend, over all V > 7.6613 V (see Fig. 5d); namely,

Fig. 12 (continued)
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Fig. 13 Numerical Simulations to confirm super-critical Hopf-bifurcation theorem at the first
Hopf-bifurcation V = 6.38820157073 V and at the second Hopf-bifurcation V = 7.66131678261
V. a Transient waveform converging to DC equilibrium point when the DC voltage V = 6.3 V was
chosen near but just to the left of the first Hopf-bifurcation (b). Transient waveform converging to
stable oscillation, when V = 6.4 V was chosen within the Hopf super-critical region. c Transient
waveform converging to DC equilibrium point when the DC voltage V = 7.7 V was chosen near
but just to the left of the second Hopf-bifurcation (see Fig. 11b)
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Fig. 13 (continued)
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Edge of chaos domain 2:
7.66131678261V<V <∞
112.582 μA> I >0

ð50Þ

To illustrate that local activity in the second-order generic memristor starts from
V = 6.209 V, Fig. 12a and b show the plot of ReYðiω;VQÞ and the corresponding
Nyquist plot for the DC input voltage V = 6.15 V, V = 6.209 V and V = 6.3 V,

Fig. 13 (continued)
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respectively. Observe, the Nyquist plot of the admittance function Yðiω;VQÞ is
tangent to the ω axis at ω=0 for V = 6.209 V. Also, observe that for V = 6.15 V,
the real part of the Nyquist plot of the admittance function is positive, i.e.,
ReYðiω;VQÞ>0, confirming the memristor is not locally active. However, for
V = 6.3 V, the real part of the Nyquist plot of the admittance function Yðiω;VQÞ is
negative confirming that the memristor is locally active. The corresponding Nyquist
plots in ImYðiω ;VQÞ versus ReYðiω ;VQÞ plane is shown in Fig. 12b. Figure 12c
shows the edge of chaos domain 1 and edge of chaos domain 2 on the zoom DC
V-I curve of our second-order memristor. Observe that in both edge of chaos
domain 1 (49), and domain 2 (50), we have ReYðiω ;VQÞ<0, Rep1 < 0, and
Rep2 < 0 (see Figs. 5d and 11a).

6 Hopf Bifurcation

Hopf bifurcation is a local bifurcation generated by non-linear dynamical systems in
which an equilibrium point changes stability at some critical parameter value μ ,
under certain conditions. The bifurcation can be super-critical or sub-critical
resulting in a stable or unstable limit cycle respectively, and is confirmed by the
computation of a Hopf coefficient “a” at the equilibrium point when a pair of eigen
values of the associated Jacobian matrix are purely imaginary. The standard Hopf
coefficient “a” for a second-order ODE is given by:

a=
1
16

fxxx + fxyy + gxxy + gyyy
	 


+
1

16ω0
fxy fxx + fyy
� �

− gxy gxx + gyy
� �

− fxxgxx + fyygyy
	 
 ð51Þ

The plot of Im(λ) versus Re(λ) shown in Fig. 11b shows, the two
Hopf-bifurcation points occur at V = 6.38820157073 V and V =
7.66131678261 V, respectively where the real parts of the Eigen values of Jacobian
matrix at these two points are zero (pure imaginary Eigen values). The eigen values
within these two bifurcation points lie on the right-half plane (Re(λ) > 0), con-
firming the second-order memristor could generate oscillation. To confirm that
these two Hopf-bifurcation points are super-critical, let us compute the Hopf
coefficient “a” at V = 6.38820157073 V, where the functions f1 and f2 in (46a) and
(46b) are denoted by f and g, respectively, in (51).
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a= 1.826 × 103 > 0 for V =6.38820157073V and ω0 = 0.50372249
a= 1.59 × 103 > 0 for V =6.38820157073V and ω0 = − 0.50372249

ð52Þ

The coefficient a > 0 at the first Hopf-bifurcation point (V = 6.38820157073 V)
implies the bifurcation is super-critical because the parameter µ = V enters the
unstable region (Re (λ) > 0) by crossing the imaginary axis from left to right in
Fig. 11a. Similarly, the Hopf coefficient “a” at the second Hopf-bifurcation point at
V = 7.66131678261 V is found to be

a= − 1.155 × 103 < 0 for V =7.66131678261 and ω0 = 0.82930627
a= − 1.239 × 103 < 0 for V =7.66131678261 and ω0 = − 0.82930627

ð53Þ

The coefficient a < 0 at the second Hopf-Bifurcation point
(V = 7.66131678261 V) actually implies the bifurcation is super-critical because
the parameter µ = V returns to the stable region (Re (λ) < 0) by crossing the
imaginary axis from right to left, as the parameter µ = V increases beyond the
bifurcation value V = 7.66131678261 V. The formula given in all standard

Fig. 14 An example illustrating the frequency of oscillation ω is very close to the predicted Hopf
frequency ωHopf at V = 6.39 V
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textbooks (Meiss 2007) for the Hopf coefficient “a” was derived by assuming the
system becomes unstable (Re (λ) > 0) as the parameter µ crosses the imaginary axis
from left to right, as µ increases beyond the Hopf-bifurcation point. It follows from
the super-critical Hopf-bifurcation theorem that there exists a small sinusoidal
oscillation for any value of the DC voltage V chosen sufficiently near but greater
than the right boundary at V = 6.38820157073 V, and the right boundary at
V = 7.66131678261 V where the equilibrium point is unstable. However, any
initial state beyond super-critical region converges to another stable equilibrium
point. We verified this phenomenon in our second-order memristor by choosing
voltage V = 6.3 V, which is near but slightly to the left of the first Hopf-bifurcation
point at V = 6.38820157073 V. Observe from Fig. 13a that the transient waveform
converges to an asymptotically stable equilibrium point. An identical phenomenon
was observed as shown in Fig. 13c, where the DC input voltage V = 7.7 V was
chosen near but to the left of the second Hopf bifurcation point at
V = 7.66131678261 V. However, the transient waveform converges to a stable
limit cycle as shown in Fig. 13b, when V = 6.4 V was chosen within the Hopf
super-critical region.

Numerical simulations are performed within the super-critical Hopf region near
the two bifurcation points to confirm that the frequency of the oscillation is close to

Fig. 15 An example illustrating the frequency of oscillation ω is very close to the predicted Hopf
frequency ωHopf at V = 7.6 V
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the predicted Hopf frequency. Figures 14 and 15 show examples of the waveforms
obtained at V = 6.39 V (near but to the right of the first Hopf-bifurcation point
V = 6.38820157073 V, see Fig. 11b) and at V = 7.6 V (near and to the right of the
second Hopf bifurcation point V = 7.66131678261 V, see Fig. 11b). Observe that
the waveforms corresponding to V = 6.39 V and V = 7.6 V converged to a stable
limit cycle with frequency ω= 0.5024 rad/s, and ω=0.8203 rad/s, respectively,
which are very close to the predicted Hopf frequency ω=0.50372249 rad/s, and
ω=0.82930627 rad/s, respectively.

7 Concluding Remarks

This paper presented a simple electronic oscillator using a second-order memristor
(Chua 2014), and a battery. According to Chua (1969), the simplest mathematical
oscillator circuit must contain a second-order autonomous nonlinear differential
equation. The simulation results of the two differential equations x1(t) and x2(t)
showed almost sinusoidal oscillations and the stability of the oscillation is verified
via phase analysis. Our simulation results showed the edge of chaos regime domain
1 and domain 2 lie between the intervals 6.209 V < V < 6.38820157073 V, and
7.66131678261V<V <∞, respectively in DC V-I curve, whereas the Hopf
super-critical regime lie between the interval 6.38820157073 V < V <
7.66131678261 V. Beyond both ends of the super-critical interval, the circuit
tends to a DC equilibrium point on the DC V-I curve. A small-signal equivalent
circuit was derived by choosing a DC equilibrium point Q and are found to consist
of two identical linear resistor-inductor (RL) sub-circuits (with different resistance
and inductance values) connected in series. The poles of the admittance function Y
(s; V) are shown to be identical to the Eigen values of the Jacobian matrix of this
small-signal equivalent circuit describing the memristor-battery circuit. At
V = 6.38820157073 V and at V = 7.66131678261 V, the loci of the Eigen value
as a function of the DC voltage V crosses the imaginary axis. We found, all the
initial conditions decay to a DC operating point, if we increase the battery voltage
V from V = 0 V to the left boundary of the edge of chaos at V = 6.209 V.
A further increase in V causes the pair of complex-conjugate Eigen values to cross
the imaginary axis, while spawning a small sinusoidal oscillation whose ampli-
tude increases rapidly (like the square root of 2) with increasing battery voltage.
This phenomenon of a super-critical Hopf bifurcation (Meiss 2007) serves as a
textbook example, which we had confirmed analytically by showing the Hopf
bifurcation coefficient “a” is positive. On the other hand, the amplitude of the
oscillation begins to decrease, with further increase in battery voltage V, illustrating
the prediction of the Hopf bifurcation theorem no longer exists.

Similarly, when the battery voltage is decreased from far beyond the right
boundary of the edge of chaos domain 2 at V = 7.66131678261 V, we found once
again all initial conditions converge to a DC operating point at the corresponding
battery voltage. Furthermore, when the battery voltage reaches the left boundary of
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the edge of chaos domain 2 at V = 7.66131678261 V then the pair of
complex-conjugate Eigen values crosses the imaginary axis from right to left while
spawning another small sinusoidal oscillation, whose amplitude increases rapidly
like before, as we continue to decrease the battery voltage. Soon the sinusoidal
waveform merges seamlessly with the earlier sinusoidal waveform spawned from
the right boundary of the edge of chaos domain1!

Indeed, we have also proved that the second-order memristor oscillator could
generate sinusoidal oscillation via a super-critical Hopf bifurcation. In this paper,
the computation of Hopf bifurcation coefficient “a” gives a < 0 in contrast to the
standard Hopf bifurcation condition which satisfies that a > 0. The reason for the
above difference in the sign of “a” is due to the fact that the calculation of Hopf
bifurcation coefficient “a” described in nonlinear dynamics textbooks (Meiss 2007)
is based on the assumption that the pair of complex-conjugate Eigen values crosses
the imaginary axis from left to right as the bifurcation parameter increases.

Finally, we conclude that the memristor-battery oscillator gives rise to two
sinusoidal oscillations originating from either boundary of the edge of chaos
regime of the memristor via super-critical Hopf bifurcation and it also provides
the textbook example for detail understanding of super-critical Hopf bifurcation
phenomenon.4 In this paper, the second order memristor represents the model of a
physical device called Positive Temperature Coefficient (PTC) and Negative Tem-
perature Coefficient (NTC) thermistor connected in series. So, as a future work, it is
possible to generate oscillations in a real circuit by connecting PTC and NTC
thermistors in series across the battery via super-critical Hopf bifurcation
phenomenon.
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A Hyperjerk Memristive System
with Hidden Attractors
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Abstract After the introduction by Leonov and Kuznetsov of a new classification

of nonlinear dynamics with kinds of attractors (self-excited attractors and hidden

attractors), this subject has received a significant interest. From an engineering point

of view, hidden attractors are important and can lead to unexpected behavior. Various

chaotic systems with the presence of hidden attractors have been discovered recently.

Especially, memristor, the fourth basic circuit element, can be used to construct such

chaotic systems. This chapter presents a new memristive system which can display

hidden chaotic attractor. Interestingly, this memristive system is a hyperjerk system

because it involves time derivatives of a jerk function. The fundamental dynamics

properties of such memristive system are discovered by calculating the number of

equilibrium points, using phase portraits, Poincaré map, bifurcation diagram, maxi-

mum Lyapunov exponents, and Kaplan–Yorke fractional dimension. Also, we have

investigated the multi–stability in the memristive system by varying the value of its

initial condition. In addition, adaptive synchronization for the hyperjerk memristive

system is also studied. The proposed memristive system can be applied into chaos–

based engineering applications because of its chaotic behavior.
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1 Introduction

In the last decades, there was a growing interest in studying chaotic systems and

their applications (Lorenz 1963; Strogatz 1994; Chen and Ueta 1999; Chen and Yu

2003; Sprott 2003; Yalcin et al. 2005; Azar and Vaidyanathan 2015a, b). Beside con-

ventional chaotic systems such as Lorenz’s system (Lorenz 1963), Rössler’s sys-

tem (Rössler 1976), Arneodo’s system (Arneodo et al. 1981), Chen’s system (Chen

and Ueta 1999), and Lü’s system (Lü and Chen 2002), numerous studies concern-

ing new chaotic systems have been carried out in last years (Wang and Chen 2012;

Vaidyanathan 2013; Jafari et al. 2013; Molaei et al. 2013; Kingni et al. 2014; Pehli-

van et al. 2014; Pham et al. 2014b).

Recently, a new classification of attractors has been proposed by Leonov and

Kuznetsov, who consider two kinds of attractors: self–excited attractor and hidden

attractor (Leonov et al. 2011a, b, 2012, 2014). We can localize self–excited attrac-

tors by the standard computational procedure. For example, we select a point from

the unstable manifold in a neighborhood of an unstable equilibrium and follow up

the state of the attractor. Therefore most of classical chaotic systems display self–

excited attractors. Hidden attractor, in contrast to self–excited attractor, cannot be

computed by the standard procedure because its basin of attraction does not contain

neighborhoods of any equilibria. There has been increasing interest in chaotic sys-

tems with the presence of hidden attractors (Jafari and Sprott 2013). It is worth noting

that memristors have been applied in the investigation of chaotic systems with hid-

den attractors (Driscoll et al. 2011; Muthuswamy and Kokate 2009; Muthuswamy

2010). Itoh and Chua derived memristor oscillators by replacing Chua’s diodes in

Chua’s oscillator by memristors (Itoh and Chua 2008). Buscarino et al. introduced

memristive chaotic circuits based on cellular nonlinear networks (Buscarino et al.

2012). Simplest chaotic memristor–based circuits were discovered in Muthuswamy

and Chua (2010). Moreover, Iu et al. controlled chaos in a memristor based circuit

using a twin–T notch filter (Iu et al. 2011).

In this chapter, we introduce a hyperjerk system based on a memristive device.

Owing the presence of a memristive device, this particular hyperjerk system has

an infinite number of equilibrium points. The rest of chapter is organized as follows.

Related works are summarized in Sect. 2. Section 3 provides the mathematical model

of the memristive hyperjerk system, while dynamics and properties of the memristive

system are presented in Sect. 4. We propose the adaptive synchronization for achiev-

ing global chaos synchronization of the identical novel hyperjerk systems with two

unknown parameters in Sect. 5. Finally, conclusions are drawn in Sect. 6.
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2 Related Works

It is shown that tremendous research efforts have been devoted to jerk chaotic systems

(Sprott 2010). On one hand, from the mathematical point of view a jerk system is

based on a jerk equation that involves a third–time derivative of a single variable, for

example x. Therefore, a jerk system is described by the following form:

d3x
dt3

= f
(
d2x
dt2

,

dx
dt
, x
)

(1)

On the other hand, from the mechanical point of view, the nonlinear f (.) in system

(1) is called the “jerk” due to the fact that it describes the third–time derivative of

the scalar x. Thus, it represents the first–time derivative of acceleration in a mechan-

ical system (Schot 1978). Especially, well–known chaotic systems, i.e. Lorenz and

Rössler systems can be described by using a mathematical model of a jerk system

(Linz 1997; Lainscsek et al. 2003).

Various chaotic jerk systems were introduced in the literature. Eichhorn et al. pro-

posed simple polynomial classes of chaotic jerky dynamics (Eichhorn et al. 2002).

Sun and Sprott investigated a piecewise exponential jerk system (Sun and Sprott

2009). Malasoma indicated the simplest dissipative chaotic jerk equation which was

parity invariant (Malasoma 2000). Another simple chaotic jerk system with expo-

nential nonlinearity was presented in Munmuangsaen et al. (2011), while its ele-

gant electronic circuital implementation, including six resistors, three capacitors,

four operational amplifiers and a silicon diode only, was introduced in Sprott (2011).

Louodop and collaborators presented a linear transformation of Model MO5 and its

practical finite–time synchronization (Louodop et al. 2014). A six–term 3–D novel

jerk chaotic system with two hyperbolic sinusoidal nonlinearities was proposed by

Vaidyanathan et al. (2014). The finding of a window in the parameter space in which

the jerk system displayed the unusual and striking feature of multiple attractors (e.g.

coexistence of four disconnected periodic and chaotic attractors) was reported in

Kengne et al. (2016). Multi–scroll chaotic attractors could be generated in the jerk

mode (Liu et al. 2012) or jerk circuits (Yu et al. 2005; Ma et al. 2014), while multi–

scroll and hypercube attractors were also achieved from a general jerk circuit using

Josephson junctions (Yalcin and Ozoguz 2007). Moreover, dynamics and delayed

feedback control for a 3–D jerk system with only one stable equilibria was discussed

by Wang et al. (2015).

By generalizing the definition of a jerk system Sprott (1997), a hyperjerk system

is given as

d(n)x
dtn

= f
(
d(n−1)x
dtn−1

,… ,

dx
dt
, x
)
, (2)

with n ≥ 4 (Sprott 2010). It is noting that Elhadj and Sprott indicated that hyper-

jerk form can describe all periodically forced oscillators and many of the coupled

oscillators (Elhadj and Sprott 2013). Chaotic hyperjerk system including fourth and
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fifth derivatives was introduced by Chlouverakis and Sprott Chlouverakis and Sprott

(2006). In addition, a 4–D novel hyperchaotic hyperjerk system was proposed by

Sundarapandian (Vaidyanathan et al. 2015).

Interestingly, there are chaotic jerk/hyperjerk systems without equilibria or with

an infinite number of equilibrium points. Wang and Chen proposed a special

autonomous jerk system with no equilibrium point when constructing a chaotic sys-

tem with any number of equilibria (Wang and Chen 2013). Some simple jerk sys-

tems without equilibrium were found by using a systematic searching procedure

(Jafari et al. 2013). A chaotic memory system with infinitely many equilibria was

designed by using the concept of memory element (Bao et al. 2013). Studying such

jerk/hyperjerk systems with special features is still an open research direction.

3 Model of the Memristive System

Memristor was invented by L.O. Chua and was considered as the fourth basic cir-

cuit element beside the three conventional circuit elements (the resistor, the inductor

and the capacitor) (Chua 1971). Recently, numerous applications of memristor and

memristive systems have been proposed (Tetzlaff 2014). Memristor–based systems

have been used in different areas such as memristive adaptive filters (Driscoll et al.

2010), memristive model of amoeba learning (Pershin et al. 2009), resistance switch-

ing memories (Chua 2011), memristor cellular automata (Itoh and Chua 2009), or

programmable analog integrated circuits (Shin et al. 2011) etc.

It has been known that memristor presents the relationship between two funda-

mental circuit variables, the charge (q) and the flux (𝜑) (Tetzlaff 2014). Therefore

there are two kinds of memristor: charge–controlled memristor and flux–controlled

memristor (Chua 1971; Tetzlaff 2014). A charge–controlled memristor is described

by

vM = M (q) iM , (3)

where vM is the voltage across the memristor and iM is the current through the mem-

ristor. Here the memristance (M) is defined by

M (q) =
d𝜑 (q)
dq

, (4)

while the flux–controlled memristor is given by

iM = W (𝜑) vM , (5)

where W (𝜑) is the memductance, which is defined by

W (𝜑) =
dq (𝜑)
d𝜑

. (6)
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Moreover, by generalizing the original definition of a memristor (Chua and Kang

1976; Tetzlaff 2014), a memristive system is given as:

{
ẋ = F (x, u, t)
y = G (x, u, t) u, (7)

where u, y, and x denote the input, output and state of the memristive system, respec-

tively. The functionF is a continuously differentiable, n–dimensional vector field and

G is a continuous scalar function.

Based on the definition of memristive system (Chua and Kang 1976; Pershin

et al. 2009; Tetzlaff 2014; Bao et al. 2013), a memristive device is introduced in this

section and used in other sections of our chapter. The memristive device is described

in the following form: {
ẋ1 = x2
y =

(
1 − x1

)
x2.

(8)

Here x2, y, and x1 are the input, output and state of the memristive device, respec-

tively.

In this work, a novel 4–D memristive system is constructed by applying the mem-

ristive device (8) and using the approach in Bao et al. (2013). The novel memristive

system is described in the following form:

⎧
⎪
⎨
⎪
⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x3 − ax4 − b sin

(
x3
)
x4 − y,

(9)

where a, b are two positive parameters and y =
(
1 − x1

)
x2 is the output of memris-

tive device (8).

The novel memristive system (9) can be rewritten by

d4x1
dt4

= f
(
d3x1
dt3

,

d2x1
dt2

,

dx1
dt

, x1

)
, (10)

where

f = −
d2x1
dt2

− a
d3x1
dt3

− b sin
(
d2x1
dt2

)
d3x1
dt3

−
(
1 − x1

) dx1
dt

. (11)

Therefore, the memristive system (9) is called a hyperjerk system because it involves

time derivatives of a jerk function (Sprott 1997, 2010). In this chapter, the memris-

tive system (9) is chaotic when the parameters a, and b take the values

a = 0.55, b = 0.2. (12)
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Fig. 1 2–D projection of the

chaotic hyperjerk memristive

system (9) in (x4, x1)–plane
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Fig. 2 2–D projection of the

chaotic hyperjerk memristive

system (9) in (x4, x2)–plane
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For the selected parameter values in (12), the Lyapunov exponents of the novel mem-

ristive system (9) are obtained as

L1 = 0.0578, L2 = 0.0010, L3 = 0, L4 = −0.6069. (13)

For numerical simulations, we take the initial conditions of the novel memristive

system (9) as

x1(0) = 0, x2(0) = 0.01, x3(0) = 0, x4(0) = 0. (14)

Figures 1, 2 and 3 illustrate the 2–D projections of the new hyperjerk memristive

system (9). In addition, the Poincaré map in Fig. 4 shows the folding properties of

chaos.
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Fig. 3 2–D projection of the

chaotic hyperjerk memristive

system (9) in (x4, x3)–plane
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Fig. 4 Poincaré map the

chaotic hyperjerk memristive

system (9) in (x4, x1)–plane

for x3 = 0
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4 Dynamics and Properties of the Memristive System

4.1 Equilibrium Points

The equilibrium points of the 4–D novel memristive hyperjerk system (9) are

obtained by solving the equations

⎧
⎪
⎨
⎪
⎩

f1(x1, x2, x3, x4) = x2 = 0
f2(x1, x2, x3, x4) = x3 = 0
f3(x1, x2, x3, x4) = x4 = 0
f4(x1, x2, x3, x4) = −x3 − ax4 − bsin

(
x3
)
x4 − y = 0

. (15)

Thus, the equilibrium points of the system (9) are characterized by the equations

y = (1 − x1)x2 = 0, x2 = 0, x3 = 0, x4 = 0 (16)
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Solving the system (16), we get the equilibrium points of the hyperjerk system (9)

as

Ec =
⎡
⎢
⎢
⎢
⎣

c
0
0
0

⎤
⎥
⎥
⎥
⎦

, (17)

where c is a real constant. Obviously, the novel hyperjerk system (9) has an infinite

number of equilibrium points due to the presence of a memristive device (8). Accord-

ing to a new classification of chaotic dynamics (Leonov et al. 2011a, b, 2012, 2014),

there are two kinds of attractors: self–excited attractors and hidden attractors. As a

result, hyperjerk system (9) can be considered as a chaotic memristive system with

hidden attractor (Leonov and Kuznetsov 2011, 2013; Jafari and Sprott 2013).

In order to discover the stability type of the equilibrium points Ec the Jacobian

matrix of the novel memristive hyperjerk system (9) is calculated at any point x as

J (x) =
⎡
⎢
⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
x2 x1 − 1 −1 − b cos

(
x3
)
x4 −a − b sin

(
x3
)

⎤
⎥
⎥
⎥
⎦

. (18)

It is noting that

J0
Δ
= J(Ec) =

⎡
⎢
⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 c − 1 −1 −0.55

⎤
⎥
⎥
⎥
⎦

, (19)

which has the characteristic equation

𝜆

(
𝜆

3 + 0.55𝜆2 + 𝜆 + 1 − c
)
= 0. (20)

When c = 0 the characteristic equation (20) has a zero eigenvalue and three nonzero

eigenvalues

𝜆1 = 0, 𝜆2 = −0.8193, 𝜆3,4 = 0.1346 ± 1.0966i (21)

This shows that the equilibrium point Ec is an unstable saddle–focus point.

4.2 Lyapunov Exponents and Kaplan–Yorke Dimension

For the parameter values a = 0.55, b = 0.2 and c = 0, the calculated Lyapunov expo-

nents of the novel memristive hyperjerk system (9) are

L1 = 0.0578, L2 = 0.0010, L3 = 0 and L4 = −0.6069 (22)
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There is one positive Lyapunov exponents in the LE spectrum (22), thus the novel

memristive hyperjerk system (9) exhibits chaotic behavior.

In addition, since L1 + L2 + L3 + L4 = −0.5481 < 0, it indicates that the novel

memristive system (9) is dissipative.

The Kaplan–Yorke fractional dimension, that presents the complexity of attractor

(Strogatz 1994; Sprott 2003), is defined by

DKY = j + 1
|||Lj+1

|||

j∑

i=1
Li (23)

where j is the largest integer satisfying

j∑

i=1
Li ≥ 0 and

j+1∑

i=1
Li < 0. Therefore, the

Kaplan–Yorke dimension of the novel memristive hyperjerk system (9) is calculated

as

DKY = 3 +
L1 + L2 + L3

|L4|
= 3.0969, (24)

which is fractional.

4.3 Bifurcation Diagram and Maximum Lyapunov
Exponents

We use bifurcation diagram and Maximum Lyapunov exponents (MLE) to discover

further the dynamics of the memristive hyperjerk system (9). Bifurcation diagram

and Maximum Lyapunov exponents of memristive hyperjerk system (9) are reported

in Figs. 5 and 6. As shown in Figs. 5 and 6, memristive hyperjerk system (9) exhibits

chaotic behavior and periodical states. Also, the system exhibits the well–known

route to chaos through the mechanism of period doubling when the parameter a is

decreased.

Fig. 5 Bifurcation diagram

of the hyperjerk memristive

system (9) when changing

the value of parameter a for

b = 0.2, and the initial

conditions

(x1(0), x2(0), x3(0), x4(0)) =
(0, 0.01, 0, 0)
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Fig. 6 Maximum Lyapunov

exponents of the hyperjerk

memristive system (9) when

varying the value of

parameter a for b = 0.2, and

the initial conditions

(x1(0), x2(0), x3(0), x4(0)) =
(0, 0.01, 0, 0)
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Fig. 7 Chaotic behavior of

the hyperjerk memristive

system (9) in (x4, x1)–plane

for a = 0.55, b = 0.2, and

the initial conditions

(x1(0), x2(0), x3(0), x4(0)) =
(−0.01, 0.01, 0, 0)
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4.4 Multistability

As seen in Eq. (17), there is an infinite number of equilibrium points in hyperjerk

memristive system (9). Moreover, these equilibrium points depend on the internal

state of the memristive device (x1). By changing the initial condition of the inter-

nal state x1, we observed multi–stability of system (9). Chaos coexists with various

periodical states, for example period–4 state, period–2 state, or period–1 state (see

Figs. 7, 8, 9, 10 and 11).

5 Adaptive Synchronization for the Hyperjerk
Memristive System

The possibility of synchronization is one of the most important characteristics

when studying new chaotic systems (Pecora and Carroll 1990; Kapitaniak 1994;

Boccaletti et al. 2002; Fortuna and Frasca 2007). There are numerous research

activities relating to synchronization of nonlinear systems in the literature (Bus-
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Fig. 8 Chaotic behavior of

the hyperjerk memristive

system (9) in (x4, x1)–plane

for a = 0.55, b = 0.2, and

the initial conditions

(x1(0), x2(0), x3(0), x4(0)) =
(0.005, 0.01, 0, 0)
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Fig. 9 Period–4 state of the

hyperjerk memristive system

(9) in (x4, x1)–plane for

a = 0.55, b = 0.2, and the

initial conditions

(x1(0), x2(0), x3(0), x4(0)) =
(0.03, 0.01, 0, 0)
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Fig. 10 Period–2 state of

the hyperjerk memristive

system (9) in (x4, x1)–plane

for a = 0.55, b = 0.2, and

the initial conditions

(x1(0), x2(0), x3(0), x4(0)) =
(0.05, 0.01, 0, 0)
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Fig. 11 Period–1 state of

the hyperjerk memristive

system (9) in (x4, x1)–plane

for a = 0.55, b = 0.2, and

the initial conditions

(x1(0), x2(0), x3(0), x4(0)) =
(0.2, 0.01, 0, 0)
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carino et al. 2009; Gamez-Guzman et al. 2009; Srinivasan et al. 2011; Pham et al.

2014a; Karthikeyan and Vaidyanathan 2014; Vaidyanathan 2014). Volos et al. intro-

duced various synchronization phenomena in bidirectionally coupled double scroll

circuits (Volos et al. 2011). Huang et al. implemented shape synchronization con-

trol for three–dimensional chaotic systems (Huang et al. 2016). Image encryp-

tion process based on chaotic synchronization phenomena was proposed in Volos

et al. (2013). Vaidyanathan reported various synchronization schemes such as anti–

synchronization (Vaidyanathan 2012), adaptive synchronization (Vaidyanathan et al.

2014), or hybrid chaos synchronization (Karthikeyan and Vaidyanathan 2014). Fast

synchronization of non–identical chaotic modulation–based secure systems using

a modified sliding mode controller was investigated in Kajbaf et al. (2016). Ras-

appan and Vaidyanathan studied global chaos synchronization of WINDMI and

Coullet chaotic systems using adaptive backstepping control design (Rasappan and

Vaidyanathan 2014). As have been known that the backstepping control method is a

recursive approach that connects the choice of a Lyapunov function with the design

of a controller and guarantees global asymptotic stability of strict feedback systems

(Rasappan and Vaidyanathan 2014).

In this section, we study an adaptive backstepping controller to achieve com-

plete chaos synchronization of identical 4–D memristive hyperjerk systems with two

unknown parameters.

The master system is considered as the 4–D novel memristive hyperjerk system

given by

⎧
⎪
⎨
⎪
⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x3 − ax4 − b sin

(
x3
)
x4 − x2 + x1x2

(25)

where x1, x2, x3, x4 are the states of the system, and a, b are unknown constant para-

meters.
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The slave system is considered as the 4–D novel memristive hyperjerk system

given by

⎧
⎪
⎨
⎪
⎩

ẏ1 = y2
ẏ2 = y3
ẏ3 = y4
ẏ4 = −y3 − ay4 − b sin

(
y3
)
y4 − y2 + y1y2 + u

(26)

where y1, y2, y3, y4 are the states of the system, and u is a backstepping control to be

determined using estimates â(t) and ̂b(t) for a and b, respectively.

The synchronization errors between the states of the master system (25) and the

slave system (26) are defined as

⎧
⎪
⎨
⎪
⎩

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

(27)

Thus, the error dynamics is easily obtained as follows

⎧
⎪
⎨
⎪
⎩

ė1 = e2
ė2 = e3
ė3 = e4
ė4 = −e3 − ae4 − e2 − b(sin

(
y3
)
y4 − sin

(
x3
)
x4) + y1y2 − x1x2 + u

(28)

The parameter estimation errors are defined as:

{
ea(t) = a − â(t)
eb(t) = b − ̂b(t) (29)

Differentiating (29) with respect to t, we obtain the following equations:

{
ėa(t) = − ̇â(t)
ėb(t) = − ̇

̂b(t)
(30)

Next, the main result of this section will be presented and proved.

Theorem 1 The identical 4-D novel memristive hyperjerk systems (25) and (26)
with unknown parameters a and b are globally and exponentially synchronized by
the adaptive control law
{

u(t) = −5e1 − 9e2 − 8e3 − (4 − â(t))e4 + ̂b(t)
(
sin

(
y3
)
y4 − sin

(
x3
)
x4
)

−
(
y1y2 − x1x2

)
− kz4

(31)

where k > 0 is a gain constant,
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z4 = 3e1 + 5e2 + 3e3 + e4, (32)

and the update law for the parameter estimates â(t), ̂b(t), ĉ(t) is given by

{
̇â(t) = −e4z4
̇
̂b(t) = −

(
sin

(
y3
)
y4 − sin

(
x3
)
x4
)
z4

(33)

Proof We prove this result via backstepping control method and Lyapunov stability

theory.

First, we define a quadratic Lyapunov function

V1(z1) =
1
2
z21 (34)

where

z1 = e1 (35)

Differentiating V1 along the error dynamics (28), we get

̇V1 = z1ż1 = e1e2 = −z21 + z1(e1 + e2) (36)

Here, we define

z2 = e1 + e2 (37)

Using (37), we can simplify the Eq. (36) as

̇V1 = −z21 + z1z2 (38)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) +
1
2
z22 =

1
2
(
z21 + z22

)
(39)

Differentiating V2 along the error dynamics (28), we get

̇V2 = −z21 − z22 + z2(2e1 + 2e2 + e3) (40)

Now, we define

z3 = 2e1 + 2e2 + e3 (41)

Using (41), we can simplify the Eq. (40) as

̇V2 = −z21 − z22 + z2z3 (42)
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Thirdly, we define a quadratic Lyapunov function

V3(z1, z2, x3) = V2(z1, z2) +
1
2
z23 =

1
2
(
z21 + z22 + z23

)
(43)

Differentiating V3 along the error dynamics (28), we get

̇V3 = −z21 − z22 − z23 + z3(3e1 + 5e2 + 3e3 + e4) (44)

Now, we define

z4 = 3e1 + 5e2 + 3e3 + e4 (45)

Using (45), we can simplify the equation (44) as

̇V3 = −z21 − z22 − z23 + z3z4 (46)

Finally, we define a quadratic Lyapunov function

V(z1, z2, z3, z4, ea, eb) = V3(z1, z2, z3) +
1
2
z24 +

1
2
e2a +

1
2
e2b (47)

which is a positive definite function on R6
.

Differentiating V along the error dynamics (28), we get

̇V = −z21 − z22 − z23 − z24 + z4(z4 + z3 + ż4) − ea ̇â − eb
̇
̂b (48)

Equation (48) can be written compactly as

̇V = −z21 − z22 − z23 − z24 + z4S − ea ̇â − eb
̇
̂b (49)

where

S = z4 + z3 + ż4 = z4 + z3 + 3ė1 + 5ė2 + 3ė3 + ė4 (50)

A simple calculation gives

S = 5e1 + 9e2 + 8e3 + (4 − a)e4 − b
(
sin

(
y3
)
y4 − sin

(
x3
)
x4
)
+
(
y1y2 − x1x2

)
+ u

(51)

Substituting the adaptive control law (31) into (51), we obtain

S = − [a − â(t)] e4 −
[
b − ̂b(t)

] (
sin

(
y3
)
y4 − sin

(
x3
)
x4
)
− kz4 (52)

Using the definitions (30), we can simplify (52) as

S = −eae4 − eb
(
sin

(
y3
)
y4 − sin

(
x3
)
x4
)
− kz4 (53)
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Substituting the value of S from (53) into (49), we obtain

{
̇V = −z21 − z22 − z23 − (1 + k)z24 + ea(−e4z4 − ̇â)

+eb
[
−
(
sin

(
y3
)
y4 − sin

(
x3
)
x4
)
z4 −

̇
̂b
]

(54)

Substituting the update law (33) into (54), we get

̇V = −z21 − z22 − z23 − (1 + k)z24, (55)

which is a negative semi–definite function on R6
. Therefore, according to the Lya-

punov stability theory (Sastry 1999; Khalil 2002) we obtain e1 (t) → 0, e2 (t) → 0,

e3 (t) → 0, e4 (t) → 0 exponentially when t → 0 that is, synchronization between

master and slave system.

In order to confirm and demonstrate the effectiveness of the proposed synchro-

nization scheme, we consider a numerical example. In the numerical simulations,

the fourth–order Runge–Kutta method is used to solve the systems. The parame-

ters of the memristive hyperjerk systems are selected as a = 0.55, b = 0.2 and the

positive gain constant as k = 4. The initial conditions of the master system (25)

and the slave system (26) have been chosen as x1 (0) = 0, x2 (0) = 0.01, x3 (0) = 0,

x4 (0) = 0 and y1 (0) = 0.005, y2 (0) = 0.001, y3 (0) = 0.02, y4 (0) = 0.01, respec-

tively. We assumed that the initial values of the parameter estimates are â(0) = 0.02
and ̂b(0) = 0.01.

When adaptive control law (31) and the update law for the parameter estimates

(33) are applied, the master (25) and slave system (26) are synchronized completely

as shown in Figs. 12, 13, 14 and 15. In such figures, time series of master states are

denoted as blue solid lines while corresponding slave states are plotted as red dash–

dot lines. In addition, the time–history of the complete synchronization errors e1, e2,

e3, and e4 are reported in Fig. 16. The obtained results illustrate the correctness of

the used approach.

Fig. 12 Synchronization of

the states x1(t) and y1(t)
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Fig. 13 Synchronization of

the states x2(t) and y2(t)
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Fig. 14 Synchronization of

the states x3(t) and y3(t)
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Fig. 15 Synchronization of

the states x4(t) and y4(t)
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Fig. 16 Time series of the

synchronization errors e1, e2,

e3, and e4
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6 Conclusion

A novel 4–D hyperjerk system is proposed in this work. The hyperjerk system has

an infinite number of equilibrium, therefore it belongs to a newly introduced class

of nonlinear systems with hidden attractors. The presence of memristive device cre-

ates complex behavior in such hyperjerk system such as chaos and multi–stability.

The coexistence of chaotic attractor with periodical attractors of different states is

observed by changing the value of initial conditions, which is related to the internal

state of memristive device. Synchronization scheme for identical 4–D memristive

hyperjerk systems with two unknown parameters has been presented via backstep-

ping control method and Lyapunov stability theory. The simulation results confirm

the effectiveness of the synchronization scheme. The hyperjerk system can used in

chaos–based engineering applications due to its complex dynamics.
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Abstract After the successful fabrication of memristor at Hewlett–Packard Labora-

tories, memristor—based systems and their potential applications have been getting

a great deal of attention in different areas from associative memory, neural networks,

programmable analog ICs to low–power computing and so on. It is well known that

the presence of memristor in a dynamical system may yield novel features because

it is both a nonlinear element and a memory element. In this chapter, we present a

memristive system with an infinite number of equilibrium points. From the comput-

ing view of point, such system belongs to a class of systems with hidden attractors

according to a new classification of nonlinear dynamics. This classification has pro-

posed by Leonov and Kuznetsov and played a significant role in engineering appli-

cations. In this work, we study the complex dynamics of the introduced memristive

system. It is worth noting that the proposed system can generate hyperchaotic behav-

ior which will be used for image encryption to illustrate its engineering application.

The chaos–based image encryption has many applications in digital image storing,

medical image databases, video conferencing or military transmit systems.
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1 Introduction

In the past few decades, various chaotic systems have been investigated, for exam-

ple: Lorenz system (Lorenz 1963), Rössler system (Rössler 1976), Arneodo sys-

tem (Arneodo et al. 1981), Chen system (Chen and Ueta 1999), Lü system (Lü

and Chen 2002), Vaidyanathan system (Vaidyanathan 2013), time–delay systems

(Barnerjee et al. 2012), Tacha system (Tacha et al. 2016), jerk systems (Vaidyanathan

et al. 2014). In addition, hyperchaotic systems have been discovered (Rössler 1979).

Hyperchaotic system is characterized by more than one positive Lyapunov exponent.

Therefore hyperchaotic system can exhibit a higher level of complexity with respect

to chaotic system (Vaidyanathan and Azar 2015). Hyperchaos is better than conven-

tional chaos in a variety of areas, for example, hyperchaos increases the security of

chaotic–based communication systems significantly (Udaltsov et al. 2003; Sadoudi

et al. 2013) or encryption algorithm based on hyperchaos is safer than one based

on chaos (Gao and Chen 2008). Moreover hyperchaos has been applied in different

areas such as cryptosystems (Grassi and Mascolo 1999), neural networks (Huang

and Yang 2006), secure communications (Udaltsov et al. 2003; Sadoudi et al. 2013),

or laser design (Vicente et al. 2005).

The realization of memristor at Hewlett–Packard Labs promotes potential

memristor—based applications (Strukov et al. 2008). Some attractive memristor—

based applications are high–speed low–power processors (Yang et al. 2013), adap-

tive filter (Driscoll et al. 2010), pattern recognition systems (Corinto et al 2012),

associative memory (Pershin and Ventra 2010), neural networks (Adhikari et al.

2012; Ascoli and Corinto 2013), and programmable analog integrated circuits (Shin

et al. 2011). Especially, the intrinsic nonlinear characteristic of memristor has been

exploited in designing hyperchaotic oscillators (Buscarino et al. 2012a; Fitch et al.

2012). Hyperchaos was generated by combining a memristor with cubic nonlin-

ear characteristics and a modified canonical Chua’s circuit (Fitch et al. 2012). This

memristor—based modified canonical Chua’s circuit is a five–dimensional hyper-

chaotic oscillator. By extending the HP memristor—based canonical Chua’s oscilla-

tor, a six–dimensional hyperchaotic oscillator was designed (Buscarino et al. 2012b).

Authors used a configuration based on two HP memristors in antiparallel (Bus-

carino et al. 2012a). Four–dimensional hyperchaotic memristive systems were dis-

covered by Li et al. (2014, 2015). A 4D memristive system with a line of equilib-

rium points was presented in Li et al. (2014) while another memristive system with

an uncountable infinite number of stable and unstable equilibria was reported in Li

et al. (2015). Interestingly, memristor—based hyperchaotic systems without equi-

librium were introduced in Pham et al. (2014b; 2015). These memristive systems

belong to a new category of chaotic systems with hidden attractors (Leonov et al.

2011; Leonov and Kuznetsov 2013). Hidden attractor cannot be found by using a
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numerical method in which a trajectory started from a point on the unstable mani-

fold in the neighbourhood of an unstable equilibrium (Jafari and Sprott 2013). Thus

hidden attractors play an important role in many fields such as in mechanics, secure

communication and electronics (Kuznetsov et al. 2011; Leonov et al. 2011; Pham

et al. 2014a, c; Sharma et al. 2015).

In this chapter, we study a system based on a memristive device and its applica-

tion. It is interesting that the memristive system has an infinite number of equilibrium

points and can generate hyperchaos. This chapter is organized as follows. Section 2

presents the description of the memristive system. Dynamics and properties of such

memristive system are investigated in Sect. 3. We implement an image encryption

scheme based on the memeristive system in Sect. 4 and discuss its security in Sect. 5.

Finally, conclusions are drawn in Sect. 6.

2 Description of the Proposed System

According to studies of (Chua 1971; Chua and Kang 1976), a memristive system is

defined by {
ẇ = f (w, y, t)
h (w, y) = g (w, y, t) y, (1)

where y, h(w, y), w are the input, output, and internal state of the memristive device.

The functions f and g are a continuous n–dimensional vector function and a contin-

uous scalar function.

Based on the definition of memristive system, recently authors have introduced a

novel memrisitve system (Pham et al. 2014b) in the following form:

⎧
⎪
⎨
⎪
⎩

ẋ = −10x − ay − yz
ẏ = −6x + 1.2xz + 0.1h (w, y) + b
ż = −z − 1.2xy
ẇ = y,

(2)

where a and b are two positive real parameters. Here h(w, y) is the output of the

memristive device described by

{
ẇ = y
h (w, y) =

(
1 + 0.24w2 − 0.0016w4) y. (3)

As have been known system (2) can display hyperchaotic attractors without equi-

librium for b ≠ 0 (Pham et al. 2014b). In addition, dynamics of the memristive sys-

tem without equilibrium have been investigated by using numerical simulations and

circuital implementation (Pham et al. 2014b).
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When b = 0, the system (2) can be rewritten by

⎧
⎪
⎨
⎪
⎩

ẋ = −10x − ay − yz
ẏ = −6x + 1.2xz + 0.1

(
1 + 0.24w2 − 0.0016w4) y

ż = −z − 1.2xy
ẇ = y.

(4)

It is easy to get the equilibrium points of system (4) by solving ẋ = 0, ẏ = 0, ż = 0,

and ẇ = 0, that is

− 10x − ay − yz = 0, (5)

− 6x + 1.2xz + 0.1
(
1 + 0.24w2 − 0.0016w4) y = 0, (6)

− z − 1.2xy = 0, (7)

y = 0, (8)

From Eq. (8), we have y = 0. By substituting y = 0 in Eq. (5), it leads to x = 0. As

result, we get z = 0 from Eq. (7). In addition, Eq. (6) insists and does not depend on

w. In other words, system (4) has an infinite number of equilibrium points

E (0, 0, 0,w) . (9)

Moreover, the equilibrium points are located on a line.

System (4) belongs to a new class of systems with hidden attractor from a compu-

tational point of view (Jafari and Sprott 2013). The basin of the system may intersect

the line equilibrium in some sections. But there are uncountable points on the line

that are outside the basin of attraction. Thus the knowledge about equilibrium points

does not help in their localization (Jafari and Sprott 2013).

In the next section, we present complex dynamics of the memristive system with

infinite equilibria (4).

3 Dynamics of the Memristive System

When choosing the parameter a = 5 and the initial condition

(x (0) , y (0) , z (0) ,w (0)) = (0, 0.01, 0.01, 0) , (10)

the calculated Lyapunov exponents of system (4) are

L1 = 0.1364, L2 = 0.0071, L3 = 0, L4 = −10.8584. (11)
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Fig. 1 2–D projection of

the hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, y)–plane
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Fig. 2 2–D projection of

the hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, z)–plane
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Therefore, system (4) is a four–dimensional hyperchaotic system because there are

two positive Lyapunov exponents, one zero and one negative Lyapunov exponent.

Figures 1, 2, 3 and 4 display 2–D projections of the hyperchaotic attractors with an

infinite number of equilibrium points.

It has been known that the Kaplan–Yorke fractional dimension presenting the

complexity of attractor is given by

DKY = j + 1
|||Lj+1

|||

j∑

i=1
Li, (12)
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Fig. 3 2–D projection of

the hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (y, z)–plane
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Fig. 4 2–D projection of

the hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x,w)–plane
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where j is the largest integer satisfying
∑j

i=1 Li ≥ 0 and
∑j+1

i=1 Li < 0. The calculated

Kaplan–Yorke fractional dimension of system (4) for a = 5 is

DKY = 3 +
L1 + L2 + L3

||L4||
= 3.0132, (13)

which indicated a strange attractor. Poincaré maps of system (4) are also illustrated

in Figs. 5, 6 and 7. As can be seen from the Poincaré maps, the memristive system

(4) has complex dynamics.
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Fig. 5 Poincaré map of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, y)–plane
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Fig. 6 Poincaré map of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, z)–plane

−4 −2 0 2 4 6
0

2

4

6

8

x

z

We discover detail dynamics of system (4) by using bifurcation diagram and Lya-

punov exponents. The bifurcation diagram of the variable z and the corresponding

Lyapunov exponents are reported in Figs. 8, 9 and 10. The system (4) performs peri-

odic state, chaos, and hyperchaos when varying the parameter a from 1 to 6. The

system displays limit cycle for a ∈ [1, 1.46], [1.5, 1.96], [2.48, 2.88]. For example,

periodical states of system (4) for a = 2.6 are presented in Figs. 11, 12, 13 and 14.

Chaotic behavior can be observed for a ∈ [3.06, 3.34], (4.66, 4.78). The system can

exhibits hyperchaotic behavior for a ∈ [4.08, 4.66], [4.78, 6].
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Fig. 7 Poincaré map of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (y, z)–plane
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Fig. 8 Bifurcation diagram

of the hyperchaotic

memristive system with an

infinite number of

equilibrium points (4) when

changing the parameter a
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4 Application of the Proposed System

Nowadays, digital image information has become popular in the world because of the

rapid development of Internet. In many applications such as military images, online

personal photographs, or fingerprint images of authentication systems, it has to meet

the requirements of safety and security (Volos et al. 2013). Therefore, numerous

encryption techniques, especially chaos–based encryption, have been proposed and

implemented (Liao et al. 2010; Matthews 1989; Seyedzadeh et al. 2012; Tong and

Cui 2009; Wang et al. 2012; Yeung and Pankanti 2000; Zhang et al. 2005).

In this section, we use the encryption scheme suggested by Gao and Chen (Gao

and Chen 2008) to illustrate a possible application of the proposed memristive sys-
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Fig. 9 Two largest

Lyanpunov exponents of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) when varying the

parameter a
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Fig. 10 Three largest

Lyanpunov exponents of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) when varying the

parameter a
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Fig. 11 Limit cycle of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, y)–plane for

a = 2.6
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Fig. 12 Limit cycle of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x, z)–plane for

a = 2.6
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Fig. 13 Limit cycle of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (x,w)–plane for

a = 2.6

−6 −4 −2 0 2 4 6
−11

−10

−9

−8

−7

−6

−5

x

w

tem. We consider a plain–image with the dimension N ×M. The position matrix of

pixels, which presents the grey value of the image is denoted as Pi,j (I).
The encryption includes two steps as illustrated in Fig. 15.

Step 1: The main purpose of the step 1 is to shuffle the position of the plain image.

This step is based on a chaotic map (Gao and Chen 2008).

Firstly, we do some iterations based on the Logistic map

xn+1 = 4xn
(
1 − xn

)
, (14)

to get a new value x0. Then we calculate a value of h:

h = mod
(
x0 × 1014,M

)
, (15)

in which the function mod(.) returns the remainder after division.
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Fig. 14 Limit cycle of the

hyperchaotic memristive

system with an infinite

number of equilibrium points

(4) in the (y, z)–plane for

a = 2.6
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Fig. 15 Block diagram of

the encryption scheme

including two steps. The first

step is based on a chaotic

map while the second step is

based on a hyperchaotic

system

Secondly, we obtain M different data by repeating (15). These obtained data are

reordered in
{
hi, i = 1, 2,… ,M

}
where hi ≠ hj if i ≠ j. Then the rows of position

matrix Pi,j are rearranged by using
{
hi, i = 1, 2,… ,M

}
. In other words, we create

a new image position matrix Ph
i,j based on row transformation. After that we shuffle

the column position of the image for every row of the new position matrix Ph
i,j with

the same approach.

Thirdly, we do the iteration of Logistic map to calculate the value of l by using:

l = mod
(
x0 × 1014,N

)
. (16)

Fourthly, we repeat the iteration of Logistic map and (16) to get N different data.

These data are reordered in
{
li, i = 1, 2,… ,N

}
where li ≠ lj if i ≠ j. Next the data

of every column of position matrix Ph
i,j are rearranged by using

{
li, i = 1, 2,… ,N

}
.

In other words, we create a new column transformation of the first row of image

position matrix Phl
i,j.

Finally, by completing the column transformation for all rows, an image total

shuffling matrix Phl
i,j is derived.
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Step 2: The main purpose of the step 2 is to encrypt the shuffled image. This step

is based on a hyperchaotic system (Gao and Chen 2008).

Firstly, we iterate the hyperchaotic memristive system (4) forN0 times by applying

the Runge–Kutta algorithm to eliminate the effect of transient procedure.

Secondly, we iterate the hyperchaotic memristive system (4) to get four state vari-

ables x, y, z, and w at the N0 time. Four corresponding decimal fractions x, y, z, w
are generated as

x = mod
(
(abs (x) − f loor (abs (x))) × 1014, 256

)
, (17)

y = mod
(
(abs (y) − f loor (abs (y))) × 1014, 256

)
, (18)

z = mod
(
(abs (z) − f loor (abs (z))) × 1014, 256

)
, (19)

w = mod
(
(abs (w) − f loor (abs (w))) × 1014, 256

)
, (20)

where abs(.) is the absolute function while the function floor(.) calculates the nearest

integer.

Thirdly, the new serial numbers X, Y , Z, W are given by

X = mod (x, 4) , (21)

Y = mod (y, 4) , (22)

Z = mod (z, 4) , (23)

W = mod (w, 4) . (24)

Depending on the values of these new serial numbers, there are corresponding groups

of states (B1,B2,B3) to perform encryption. For instance, the combination of states

(B1,B2,B3) are (x, y, z), (x, y,w), (x, z,w), and (y, z,w) for the serial numbers 0, 1, 2,

and 3, respectively. Then we apply the XOR operation between three bytes of the

image total shuffling matrix Phl
i,j and three bytes of the selected group of three states

as follows

⎧
⎪
⎨
⎪
⎩

C3×(i−1)+1 = P3×(i−1)+1 ⊕ B1
C3×(i−1)+2 = P3×(i−1)+2 ⊕ B2
C3×(i−1)+3 = P3×(i−1)+3 ⊕ B3,

(25)
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Fig. 16 Presentation of the

plain image

Fig. 17 Presentation of the

encrypted image

in which Pj and Cj, j = 1, 2,… ,N ×M indicate the pixels of the plain shuffled image

and the ciphered image.

Finally, we continue doing the encryption until the whole image is encrypted.

We have applied the image encryption scheme to the plain–image with the size

256 × 256 (Fig. 16). We assume that the secret key is

(
x (0) , y (0) , z (0) ,w (0) ,N0

)
= (0, 0.01, 0.01, 0, 3000) . (26)

The encrypted image is obtained as illustrated in Fig. 17 while the decrypted image

is shown in Fig. 18.
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Fig. 18 Presentation of the

decrypted image

5 Security Analysis

In this section, we consider the security of the image encryption scheme.

5.1 Key Space Analysis

Secret keys in the encryption scheme are the initial values of chaotic map and the

hyperchaotic memristive system, as well as the systems’ parameter values. In addi-

tion, secret keys can include the iteration number N0. Thus, the key space is enough

large to resist brute–force attacks.

5.2 Key Sensitivity

An intruder, who does not know the secret key, cannot recover the original plain

image. In order to show the sensitivity of the encryption scheme to the secret key,

we take an example where the intruder decrypts the encrypted image in Fig. 17 with

the following secret key:

(
x (0) , y (0) , z (0) ,w (0) ,N0

)
=
(
0, 0.01, 0.01, 10−6, 3000

)
. (27)

The failure of recovering the plain image by the intruder is illustrated in Fig. 19.
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Fig. 19 The recovered

image by an intruder

Fig. 20 Histogram of the

plain image
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5.3 Histogram Analysis

As have been known, two methods preventing the statistical attacks are the diffusion

and confusion Shannon (1949). The histograms of the plain–image and the encrypted

image are presented in Figs. 20, 21. It is easy to see that the histogram of the ciphered

image is different from one of the plain–image. The histogram of the ciphered image

has a uniform distribution which indicates the security of the encryption scheme

from a statistical attack.
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Fig. 21 Histogram of the

encrypted image
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5.4 Information Entropy

The entropy of a source is defined by

E (S) = −
N−1∑

i=0
p
(
si
)
log2

(
p
(
si
))

, (28)

with p
(
si
)

is the possibility of appearance of the symbol si. Therefore, the infor-

mation entropy of an image indicates the distribution of the gray scale values. The

information entropy is much bigger when the distribution is much uniform. The cal-

culated information entropy of the encrypted image is 7.9965. It is higher than the

information entropy of the plain image (7.4888). The higher information entropy of

the encrypted image presents the safety of the encryption scheme from an entropy

attack (Volos et al. 2013).

6 Conclusion

In this chapter, a dynamical system with a memristive device has been studied. The

system has many special features such as hyperchaos, a infinite number of equilib-

rium points, and hidden attractors due to the presence of the memristive device.

Fundamental dynamical behaviors of the memristive system are discovered through

calculating equilibrium points, phase portraits of hyperchaotic attractors, Poincaré

maps, bifurcation diagram, Lyapunov exponents and Kaplan–Yorke dimension. The

memristive system can be used in potential applications in secure communications

and cryptography because of its complex behavior. In particular, we have imple-

mented an image encryption scheme based on the hyperchaotic memristive system.

In addition, security analysis of image encryption scheme are discussed. Further

studies related to applications of this system will be presented in our future works.
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Adaptive Control, Synchronization
and Circuit Simulation of a Memristor-Based
Hyperchaotic System With Hidden
Attractors

Sundarapandian Vaidyanathan, Viet-Thanh Pham and Christos Volos

Abstract Memristor-based systems and their potential applications, in which

memristor is both a nonlinear element and a memory element, have been received

significant attention in the control literature. In this work, we study a memristor-

based hyperchaotic system with hidden attractors. First, we study the dynamic prop-

erties of the memristor-based hyperchaotic system such as equilibria, Lyapunov

exponents, Poincaré map, etc. We obtain the Lyapunov exponents of the memristor-

based system as L1 = 0.1244, L2 = 0.0136, L3 = 0 and L4 = −10.8161. Since there

are two positive Lyapunov exponents, the memristor-based system is hyperchaotic.

Also, the Kaplan-Yorke fractional dimension of the memristor-based hyperchaotic

system is obtained as DKY = 3.0128. Next, we design adaptive control and synchro-

nization schemes for the memristor-based hyperchaotic system. The main adaptive

control and synchronization results are established using Lyapunov stability the-

ory. MATLAB simulations are shown to illustrate all the main results of this work.

Finally, an electronic circuit emulating the memristor-based hyperchaotic system has

been designed using off-the-shelf components.
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1 Introduction

Chua’s circuit (Matsumoto 1984), the Cellular Neural Networks (CNNs) (Chua and

Yang 1988a, b) and the memristor (Chua 1971) are three attractive inventions of Prof.

Leon O. Chua and these inventions are widely regarded as the major breakthroughs

in the literature of the nonlinear control systems. Chua’s circuit has been applied

in various areas in engineering (Liu et al. 2004; Fortuna et al. 2009; Chua 1994;

Albuquerque et al. 2008; Tang and Wang 2005). Cellular Neural Networks have been

applied in various areas such as chaos (Vaidyanathan 2016), secure communications

(Wang et al. 2012b), cryptosystem (Cheng and Cheng 2013), etc. The studies on

memristor (Joglekar and Wolf 2009; Shin et al. 2011; Wang et al. 2012a; Shang

et al. 2012; Adhikari et al. 2012, 2013; Yang et al. 2013) have received significant

attention only recently after the realization of a solid-state thin film two-terminal

memristor at Hewlett-Packard Laboratories (Strukov et al. 2008).

Memristor was proposed by L.O. Chua as the fourth basic circuit element besides

the three conventional ones (resistor, inductor and capacitor) (Tetzlaff 2014).

Memristor depicts the relationship between two fundamental circuit variables,

viz. the charge (q) and the flux (𝜑). Hence, there are two kinds of memristors: (1)

charge-controlled memristor, and (2) flux-controlled memristor.

A charge-controlled memristor is described by

vM = M(q)iM (1)

where vM is the voltage across the memristor and iM is the current through the mem-

ristor. Here, the memristance (M) is defined by

M(q) =
d𝜑(q)

dq
(2)

A flux-controlled memristor is given by

iM = W(𝜑)vM (3)

where W(𝜑) is the memductance, which is defined by

W(q) =
dq(𝜑)

d𝜑
(4)

By generalizing the original definition of a memristor (Chua 1971; Tetzlaff 2014),

a memristive system is defined as

{
ẋ = f (x, u, t)
y = g(x, u, t)u (5)
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where x is the state, u is the input and y is the output of the system (5). We assume

that the function f is a continuously differentiable, n-dimensional vector field and g
is a continuous scalar function.

The intrinsic nonlinear characteristic of memristor has applications in implement-

ing chaotic systems with complex dynamics as well as special features (Itoh and

Chua 2008; Muthuswamy and Kokate 2009). For example, a simple memristor-based

chaotic system including only three elements (an inductor, a capacitor and a memris-

tor) was introduced in Muthuswamy and Chua (2010). Also, a system containing an

HP memristor model and triangular wave sequence can generate multi-scroll chaotic

attractors (Li et al. 2014). Moreover, a four-dimensional hyperchaotic memristive

system with a line equilibrium was presented by Li et al. (2013).

Chaos theory deals with the qualitative study of chaotic dynamical systems and

their applications in science and engineering. A dynamical system is called chaotic if

it satisfies the three properties: boundedness, infinite recurrence and sensitive depen-

dence on initial conditions (Azar and Vaidyanathan 2015).

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz sys-

tem (Lorenz 1963), Rössler system (Rössler 1976), ACT system (Arneodo et al.

1981), Sprott systems (Sprott 1994), Chen system (Chen and Ueta 1999), Lü system

(Lü and Chen 2002), Cai system (Cai and Tan 2007), Tigan system (Tigan and Opris

2008), etc.

Many new chaotic systems have been discovered in the recent years such as

Zhou system (Zhou et al. 2008), Zhu system (Zhu et al. 2010), Li system (Li 2008),

Wei-Yang system (Wei and Yang 2010), Sundarapandian systems (Sundarapandian

2013; Sundarapandian and Pehlivan 2012), Vaidyanathan systems (Vaidyanathan

2013a, b, 2014a, b, c, d, 2015b, n; Vaidyanathan and Azar 2015b; Vaidyanathan and

Madhavan 2013; Vaidyanathan and Pakiriswamy 2015; Vaidyanathan et al. 2014c,

2015b, d, f, g; Vaidyanathan and Volos 2015; Vaidyanathan 2015m), Pehlivan sys-

tem (Pehlivan et al. 2014), Sampath system (Sampath et al. 2015), etc.

Chaos theory has many applications in science and engineering such as chemi-

cal systems (Vaidyanathan 2015i, g, s, o, t, c, k, u), biological systems (Vaidyanathan

2015d, e, a, j, p, f, x, q, y, r, z, h, v, l, w), memristors (Pham et al. 2015; Volos et al.

2015; Abdurrahman et al. 2015), etc.

The study of control of a chaotic system investigates feedback control methods

that globally or locally asymptotically stabilize or regulate the outputs of a chaotic

system. Many methods have been designed for control and regulation of chaotic sys-

tems such as active control (Sundarapandian 2010, 2011; Vaidyanathan 2011b),

adaptive control (Vaidyanathan et al. 2014a, 2015e, h), backstepping control (Li

et al. 2007; Wang and Ge 2008), sliding mode control (Vaidyanathan 2012c, e), etc.

Synchronization of chaotic systems is a phenomenon that occurs when two or

more chaotic systems are coupled or when a chaotic system drives another chaotic

system. Because of the butterfly effect which causes exponential divergence of the

trajectories of two identical chaotic systems started with nearly the same initial

conditions, the synchronization of chaotic systems is a challenging research prob-

lem in the chaos literature (Azar and Vaidyanathan 2015, 2016; Azar et al. 2017;

Vaidyanathan and Volos 2016a, b).
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Pecora and Carroll pioneered the research on synchronization of chaotic systems

with their seminal papers (Carroll and Pecora 1991; Pecora and Carroll 1990). The

active control method (Karthikeyan and Sundarapandian 2014; Sarasu and Sundara-

pandian 2011a, b; Sundarapandian and Karthikeyan 2012b; Vaidyanathan 2011a,

2012d; Vaidyanathan and Rajagopal 2011a, b; Vaidyanathan and Rasappan 2011)

is typically used when the system parameters are available for measurement. Adap-

tive control method (Sarasu and Sundarapandian 2012a, b, c; Sundarapandian and

Karthikeyan 2011a, b, 2012a; Vaidyanathan 2013c, 2012b; Vaidyanathan and Azar

2015a; Vaidyanathan and Pakiriswamy 2013; Vaidyanathan and Rajagopal 2011c;

Vaidyanathan et al. 2014b, 2015c) is typically used when some or all the system

parameters are not available for measurement and estimates for the uncertain para-

meters of the systems.

Sampled-data feedback control method (Gan and Liang 2012; Xiao et al. 2014)

and time-delay feedback control method (Chen et al. 2014; Jiang et al. 2004) are also

used for synchronization of chaotic systems. Backstepping control method (Rasap-

pan and Vaidyanathan 2012a, b, c, 2013, 2014; Suresh and Sundarapandian 2013;

Vaidyanathan and Rasappan 2014; Vaidyanathan et al. 2015a, i) is also applied for

the synchronization of chaotic systems. Backstepping control is a recursive method

for stabilizing the origin of a control system in strict-feedback form (Khalil 2001).

In this research work, we apply backstepping control method for the adaptive control

and synchronization of the novel hyperjerk system.

Sliding mode control method (Sundarapandian and Sivaperumal 2011;

Vaidyanathan 2012a, 2014e; Vaidyanathan and Azar 2015c, d; Vaidyanathan and

Sampath 2011, 2012) is also a popular method for the synchronization of chaotic

systems.

According to a new classification of chaotic dynamics (Kuznetsov and Leonov

2014; Leonov et al. 2011; Dudkowski et al. 2016), there are two kinds of chaotic

attractors: (1) self-cited attractors, and (2) hidden attractors. The classical attrac-

tors of Lorenz, Rössler, Chua, Chen, and other widely-known attractors are those

excited from unstable equilibria (Azar and Vaidyanathan 2015, 2016; Azar et al.

2017; Vaidyanathan and Volos 2016a, b). From the computational point of view,

this allows one to use numerical method, in which after transient process a trajec-

tory, started from a point of unstable manifold in the neighborhood of equilibrium,

reaches an attractor and identifies it. However there are attractors of another type:

hidden attractors, a basin of attraction of which does not contain neighborhoods of

equilibria. Hidden attractors cannot be reached by trajectory from neighborhoods of

equilibria.

In this work, we discuss the dynamics and properties of our recent memristor-

based hyperchaotic system (Pham et al. 2015). We also derive new results for the

adaptive control and synchronization of this memristor-based hyperchaotic system

with unknown system parameters. The main adaptive control results are derived

using Lyapunov stability theory (Khalil 2001).

This work is organized as follows. Section 2 describes the model of memristor-

based system. Section 3 describes the qualitative properties of the memristor-based

hyperchaotic system. Section 4 derives new results for the adaptive control of the
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memristor-based hyperchaotic system. Section 5 discusses new results for the global

hyperchaos synchronization of the memristor-based hyperchaotic systems via adap-

tive control. In Sect. 6, a circuit implementation of the memristor-based hyperchaotic

system is studied in detail. Finally, Sect. 7 concludes this work with a summary of

the main results.

2 Model of Memristor-Based System

This work describes a flux-controlled memristor. For this construction, we use the

following memductance function (Bao et al. 2010; Fitch et al. 2012; Muthuswamy

2010)

W(𝜑) = 1 + 6𝜑2
(6)

Based on this memristor, a four-dimensional system is introduced as follows:

⎧
⎪
⎨
⎪
⎩

ẋ = −10x − 5y − 5yz
ẏ = −6x + 6xz + ayW(𝜑) + b
ż = −z − 6xy
�̇� = y

(7)

where a, b are real parameters and W(𝜑) is the memductance as defined in (6).

When b = 0, the memristor-based system (7) has the line equilibrium

E(0, 0, 0, 𝜑).
Also, when b = 0, the system (7) is hyperchaotic for different values of the para-

meter a (Li et al. 2013). For example, when a = 0.1, b = 0, and initial conditions are

selected as (x(0), y(0), z(0), 𝜑(0)) = (0, 0.01, 0.01, 0), the system (7) exhibits hyper-

chaotic behavior. In this case, the memristor-based system (7) is similar to the system

reported in (Li et al. 2013). Hence, we will not discuss the case b = 0 for the rest of

this work.

3 Dynamics of the Memristor-Based System

We consider the memristor-based system (7) when b ≠ 0.

We find the equilibrium points of the system (7) by solving the following system

of equations

− 10x − 5y − 5yz = 0 (8a)

−6x + 6xz + ay(1 + 6𝜑2) + b = 0 (8b)

−z − 6xy = 0 (8c)

y = 0 (8d)
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Solving (8a), (8c) and (8d), we get

x = 0, y = 0, z = 0 (9)

Thus, Eq. (8b) reduces to b = 0, which is a contradiction.

Hence, there is no equilibrium for the memristor-based system (7).

Next, we take the parameters of the memristor-based system (7) as

a = 0.1, b = −0.001 (10)

We choose the initial conditions of the system (7) as

x(0) = 0, y(0) = 0.01, z(0) = 0.01, 𝜑(0) = 0 (11)

For the parameter values (10) and the initial values (11), the Lyapunov exponents

of the memristor-based system (7) are obtained as

L1 = 0.1244, L2 = 0.0136, L3 = 0, L4 = −10.8161 (12)

Thus, the memristor-based system (7) is a hyperchaotic system because it has

more than one positive Lyapunov exponent (Azar and Vaidyanathan 2016; Azar et al.

2017; Vaidyanathan and Volos 2016a, b).

Since the system (7) has no equilibrium point, it can be classified as a hyperchaotic

system with hidden strange attractor.

We also note that the system (7) has been proposed briefly in Pham et al. (2014),

but the behavior of such a system has not been fully investigated. In this work, we

detail the properties of (7) in detail.

The Kaplan-Yorke fractional dimension describes the complexity of a chaotic

attractor (Frederickson et al. 1983). Suppose that a chaotic system of order n has

n Lyapunov exponents L1,L2,… ,Ln, which are arranged in decreasing order, i.e.

L1 ≥ L2 ≥ ⋯ ≥ Ln (13)

Then the Kaplan-Yorke dimension of the chaotic system of order n is defined by

DKY = j + 1
|Lj+1|

j∑

i=1
Lj (14)

where j is the largest integer satisfying

j∑

i=1
Li ≥ 0 and

j+1∑

i=1
Li < 0.

The Kaplan-Yorke dimension of the memristor-based hyperchaotic system (7) is

calculated as

DKY = 3 +
L1 + L2 + L3

|L4|
= 3.0128 (15)
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Fig. 1 Poincaré map in the (x, z, 𝜑) space when y = 0 for a = 0.1 and b = −0.001
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Fig. 2 3-D phase portrait of the memristor-based system in (x, y, z) space

which is fractional. Moreover, it can be seen from the Poincaré map Fig. 1 that the

memristor-based hyperchaotic system (7) exhibits a rich dynamical behavior.

Figures 2, 3, 4 and 5 show the 3-D projections of the memristor-based hyper-

chaotic system in (x, y, z), (x, y, 𝜑), (x, z, 𝜑) and (y, z, 𝜑) spaces, respectively.
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Fig. 6 Bifurcation diagram

of zmax with b = −0.001 and

a as varying parameter
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In our work, the parameter b is fixed as b = −0.001, while the parameter a indi-

cating the strength of the memristor is varied. The bifurcation diagram is presented

in Fig. 6 by plotting the local maxima of the state variable z(t) when changing the

value of the parameter a. The spectrum of the corresponding Lyapunov exponents is

depicted in Fig. 7.
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Fig. 7 Three largest

Lyapunov exponents of

memristor-based system

versus a for b = −0.001
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4 Adaptive Control of Memristor-Based Hyperchaotic
System

In this section, we derive an adaptive controller for globally stabilizing all the tra-

jectories of the memristor-based hyperchaotic system discussed in Sect. 2.

Thus, we consider the controlled memristor-based hyperchaotic system given by

⎧
⎪
⎨
⎪
⎩

ẋ = −10x − 5y − 5yz + ux
ẏ = −6x + 6xz + ayW(𝜑) + b + uy
ż = −z − 6xy + uz
�̇� = y + u

𝜑

(16)

where x, y, z, 𝜑 are state variables and W(𝜑) is the memductance as defined in (6). In

(16), a, b are unknown system parameters, and ux, uy, uz, u𝜑 are adaptive controls to

be determined.

As adaptive controller for the memristor-based system (16), we take

⎧
⎪
⎨
⎪
⎩

ux = 10x + 5y + 5yz − kxx
uy = 6x − 6xz − â(t)yW(𝜑) − ̂b(t) − kyy
uz = z + 6xy − kzz
u
𝜑

= −y − k
𝜑

𝜑

(17)

where kx, ky, kz, k𝜑 are positive constants and â(t), ̂b(t) are estimates of unknown para-

meters a, b, respectively.

Substituting (17) into (16), we get the closed-loop system

⎧
⎪
⎨
⎪
⎩

ẋ = −kxx
ẏ = [a − â(t)]yW(𝜑) + b − ̂b(t) − kyy
ż = −kzz
�̇� = −k

𝜑

𝜑

(18)
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We define parameter estimation errors as

{
ea(t) = a − â(t)
eb(t) = b − ̂b(t) (19)

Differentiating the parameter estimation errors, we get

{
ėa(t) = − ̇â(t)
ėb(t) = − ̇

̂b(t)
(20)

Using (19), we can simplify the dynamics (18) as

⎧
⎪
⎨
⎪
⎩

ẋ = −kxx
ẏ = eayW(𝜑) + eb − kyy
ż = −kzz
�̇� = −k

𝜑

𝜑

(21)

Next, we define the quadratic Lyapunov function

V(x, y, z, 𝜑, ea, eb) =
1
2
(
x2 + y2 + z2 + 𝜑

2 + e2a + e2b
)
, (22)

which is positive definite on 𝐑6
.

Differentiating V along the trajectories of (21) and (20), we get

̇V = −kxx2 − kyy2 − kzz2 − k
𝜑

𝜑

2 + ea
[
y2W(𝜑) − ̇â

]
+ eb

[
y − ̇

̂b
]

(23)

In view of (23), we take the parameter update law as follows:

{
̇â = y2W(𝜑)
̇
̂b = y

(24)

Next, we state the main result of this section.

Theorem 1 The memristor-based hyperchaotic system (16) with unknown system
parameters is globally and exponentially stabilized for all initial values by the adap-
tive control law (17) and the parameter update law (24), where kx, ky, kz, k𝜑 are pos-
itive gain constants.
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Proof This result is proved via Lyapunov stability theory (Khalil 2001).

For this purpose, we consider the quadratic Lyapunov function V defined by (22),

which is positive definite on 𝐑6
.

Substituting the parameter update law (24) into (23), we obtain

̇V = −kxx2 − kyy2 − kzz2 − k
𝜑

𝜑

2
, (25)

Clearly, ̇V is a negative semi-definite function on 𝐑6
.

Thus, we conclude that the state X(t) = [x(t), y(t), z(t), 𝜑(t)]T and the parameter

estimation error [ea(t), eb(t)]T are globally bounded.

We define k = min{kx, ky, kz, k𝜑}.

Then it is clear from (25) that

̇V ≤ −k ⇑ X(t) ⇑2
(26)

or

k ⇑ X(t) ⇑2
≤ − ̇V (27)

Integrating the inequality (27) from 0 to t, we get

k

t

∫

0

⇑ X(𝜏) ⇑2 d𝜏 ≤ −
t

∫

0

V(𝜏)d𝜏 = V(0) − V(t) (28)

From (28), we conclude that X(t) ∈ L2.

Using (21), we conclude that ̇X(t) ∈ L2.

Using Barbalat’s lemma (Khalil 2001), it follows that X(t) → 0 exponentially as

t → ∞ for all initial conditions X(0) ∈ 𝐑4
. This completes the proof. ■

For numerical simulations, we take the parameter values of the memristor-based

system (16) as in the hyperchaotic case, i.e. a = 0.1 and b = −0.001.

We take the gain constants as kx = 5, ky = 5, kz = 5 and k
𝜑

= 5. Also, we take the

initial conditions of the estimates of the parameters as

â(0) = 7.4 ̂b(0) = −4.3 (29)

We take the initial conditions of the memristor-based system (16) as

x(0) = 2.4, y(0) = 5.2, z(0) = 3.9, 𝜑(0) = 1.6 (30)

Figure 8 shows the exponential stabilization of the states of the system (16).
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Fig. 8 Exponential stabilization of the states of the memristor-based hyperchaotic system

5 Adaptive Synchronization of Memristor-Based
Hyperchaotic Systems

In this section, we derive an adaptive controller for globally synchronizing the

respective trajectories of the identical memristor-based hyperchaotic systems dis-

cussed in Sect. 2.

As the master system, we consider the memristor-based hyperchaotic system

given by

⎧
⎪
⎨
⎪
⎩

ẋ1 = −10x1 − 5y1 − 5y1z1
ẏ1 = −6x1 + 6x1z1 + ay1W(𝜑1) + b
ż1 = −z1 − 6x1y1
�̇�1 = y1

(31)

where x1, y1, z1, 𝜑1 are state variables and W(𝜑) is the memductance as defined in

(6). In (31), a and b are unknown system parameters.

As the slave system, we consider the controlled memristor-based hyperchaotic

system given by
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⎧
⎪
⎨
⎪
⎩

ẋ2 = −10x2 − 5y2 − 5y2z2 + ux
ẏ2 = −6x2 + 6x2z2 + ay2W(𝜑2) + b + uy
ż2 = −z2 − 6x2y2 + uz
�̇�2 = y2 + u

𝜑

(32)

where x2, y2, z2, 𝜑2 are state variables and ux, uy, uz, u𝜑 are adaptive controls to be

determined for synchronizing the states of (31) and (32).

The synchronization error is defined as follows:

⎧
⎪
⎨
⎪
⎩

ex = x2 − x1
ey = y2 − y1
ez = z2 − z1
e
𝜑

= 𝜑2 − 𝜑1

(33)

The synchronization error dynamics is obtained as follows:

⎧
⎪
⎨
⎪
⎩

ėx = −10ex − 5ey − 5(y2z2 − y1z1) + ux
ėy = −6ex + 6(x2z2 − x1z1) + a[y2W(𝜑2) − y1W(𝜑1)] + uy
ėz = −ez − 6(x2y2 − x1y1) + uz
ė
𝜑

= ey + u
𝜑

(34)

Next, we define the adaptive controller

⎧
⎪
⎨
⎪
⎩

ux = 10ex + 5ey + 5(y2z2 − y1z1) − kxex
uy = 6ex − 6(x2z2 − x1z1) − â(t)[y2W(𝜑2) − y1W(𝜑1)] − kyey
uz = ez + 6(x2y2 − x1y1) − kzez
u
𝜑

= −ey − k
𝜑

e
𝜑

(35)

where kx, ky, kz, k𝜑 are positive constants and â(t) is an estimate of the unknown para-

meter a.

Substituting (35) into (34), we get the closed-loop error dynamics

⎧
⎪
⎨
⎪
⎩

ėx = −kxex
ėy = [a − â(t)][y2W(𝜑2) − y1W(𝜑1)] − kyey
ėz = −kzez
ė
𝜑

= −k
𝜑

e
𝜑

(36)

We define the parameter estimation error as

ea(t) = a − â(t) (37)

Differentiating the parameter estimation error, we get

ėa(t) = − ̇â(t) (38)
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Using (37), we can simplify the dynamics (36) as

⎧
⎪
⎨
⎪
⎩

ėx = −kxex
ėy = ea[y2W(𝜑2) − y1W(𝜑1)] − kyey
ėz = −kzez
ė
𝜑

= −k
𝜑

e
𝜑

(39)

Next, we define the quadratic Lyapunov function

V(ex, ey, ez, e𝜑, ea) =
1
2

(
e2x + e2y + e2z + e2

𝜑

+ e2a
)
, (40)

which is positive definite on 𝐑5
.

Differentiating V along the trajectories of (39) and (38), we get

̇V = −kxe2x − kye2y − kze2z − k
𝜑

e2
𝜑

+ ea
[
ey[y2W(𝜑2) − y1W(𝜑1)] − ̇â

]
(41)

In view of (41), we take the parameter update law as follows:

̇â = ey[y2W(𝜑2) − y1W(𝜑1)] (42)

Next, we state the main result of this section.

Theorem 2 The memristor-based hyperchaotic systems (31) and (32) with unknown
system parameters are globally and exponentially synchronized for all initial val-
ues by the adaptive control law (35) and the parameter update law (42), where
kx, ky, kz, k𝜑 are positive gain constants.

Proof This result is proved via Lyapunov stability theory (Khalil 2001).

For this purpose, we consider the quadratic Lyapunov function V defined by (40),

which is positive definite on 𝐑5
.

Substituting the parameter update law (42) into (41), we obtain

̇V = −kxe2x − kye2y − kze2z − k
𝜑

e2
𝜑

, (43)

Clearly, ̇V is a negative semi-definite function on 𝐑5
.

Thus, we conclude that the error 𝐞(t) = [ex(t), ey(t), ez(t), e𝜑(t)]T and the parame-

ter estimation error ea(t) are globally bounded. We define k = min{kx, ky, kz, k𝜑}.

Then it is clear from (43) that

̇V ≤ −k ⇑ 𝐞(t) ⇑2
(44)
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or

k ⇑ 𝐞(t) ⇑2
≤ − ̇V (45)

Integrating the inequality (45) from 0 to t, we get

k

t

∫

0

⇑ 𝐞(𝜏) ⇑2 d𝜏 ≤ −
t

∫

0

V(𝜏)d𝜏 = V(0) − V(t) (46)

From (46), we conclude that 𝐞(t) ∈ L2. Using (39), we conclude that �̇�(t) ∈ L2.

Using Barbalat’s lemma (Khalil 2001), it follows that 𝐞(t) → 0 exponentially as

t → ∞ for all initial conditions 𝐞(0) ∈ 𝐑4
. This completes the proof. ■

For numerical simulations, we take the parameter values of the memristor-based

systems (31) and (32) as in the hyperchaotic case, i.e. a = 0.1 and b = −0.001.

We take the gain constants as kx = 5, ky = 5, kz = 5 and k
𝜑

= 5. Also, we take the

initial conditions of the parameter estimate as â(0) = 5.4.

We take the initial conditions of the master system (31) as

x1(0) = 9.1, y1(0) = −8.5, z1(0) = 4.7, 𝜑1(0) = −2.9 (47)

We take the initial conditions of the slave system (32) as

x2(0) = 7.8, y2(0) = 6.3, z2(0) = 2.8, 𝜑2(0) = 1.4 (48)

Figures 9, 10, 11 and 12 show the complete synchronization of the states of the

memristor-based hyperchaotic systems (31) and (32). Figure 13 shows the exponen-

tial convergence of the synchronization errors ex, ey, ez, e𝜑.

6 Circuit Design of the Memristor-Based Hyperchaotic
System

Using electronic circuits emulating chaotic and hyperchaotic systems is an effective

tool for investigating the dynamics of such systems (Fortuna et al. 2009; Sprott 2011).

From the point of view of practical applications, the realization of chaotic electronic

circuits based on theoretical models is an important topic. Such circuits are main

parts in diverse chaos-based applications such as image encryption scheme, path

planning generator for autonomous mobile robots, random bit generator, etc. (Chen

and Ueda 2002; Volos et al. 2012, 2013; Yalcin et al. 2004).
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Fig. 13 Time-history of the synchronization errors ex, ey, ez, e𝜑

In this section, an electronic circuit is designed to implement the memristor-based

hyperchaotic system (7). The circuit in Fig. 14 has been designed following a general

approach based on operational amplifiers (Fortuna et al. 2009).

The variables x, y, z, 𝜑 of the system (7) are the voltages across the capacitor

C1,C2,C3 and C4, respectively. As shown in Fig. 14, the memristor is realized by

common electronic components. Indeed, the sub-circuit of memristor in Fig. 14 only

emulates the memristor because there are not any commercial off-the-shelf memris-

tors in the market yet.

By applying Kirchhoff’s circuit laws, the corresponding circuital equations of the

circuit can be written as follows:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

v̇C1
= − 1

R1C1
vC1

− 1
R2C1

vC2
− 1

10R3C1
vC2

vC3

v̇C2
= − 1

R4C2
vC1

+ 1
10R5C2

vC1
vC3

− 1
R7C2

Vb +
1

R6C2
vC2

(
R11
R12

+ R11
100R13

v2C4

)

v̇C3
= − 1

R8C3
vC3

− 1
10R9C3

vC1
vC2

v̇C4
= 1

R10C4
vC2

(49)
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Fig. 14 Schematic of the circuit design for the memristor-based system

where

a = 1
R6C2

and b = 1
R7C2

Vb (50)

The operational amplifiers in the electronic circuit are TL084 ones. The power

supplies are ±15V.

We set the values of the circuit components as follows:

R1 = R3 = 1.8 kΩ, R2 = 3.6 kΩ, R4 = 3 kΩ, R5 = R9 = 1.5 kΩ (51)

R6 = 180 kΩ, R7 = 90 kΩ, R8 = R10 = R11 = R12 = R = 18 kΩ (52)

R13 = 0.75 kΩ, C1 = C2 = C3 = C4 = 10 nF, and Vb = 1m VDC (53)
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Fig. 15 Multisim plot of the hyperchaotic attractor in the vC1
− vC2

plane

The circuit design of Fig. 14 is implemented in the electronic simulation package

Multisim. Figures 15, 16 and 17 show the 2-D plots of the hyperchaotic attractor of

the designed circuit obtained from Multisim package.

7 Conclusions

In this work, a memristor-based hyperchaotic system has been studied. This system

displays rich dynamical behavior as confirmed by qualitative properties, numerical

simulations and circuit implementation. Moreover, the possibility of adaptive control

and synchronization schemes of memristor-based hyperchaotic systems have been
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Fig. 16 Multisim plot of the hyperchaotic attractor in the vC1
− vC3

plane

designed via adaptive control method and Lyapunov stability theory. MATLAB sim-

ulations are shown to illustrate the phase portraits, adaptive control and synchroniza-

tion results for the memristor-based hyperchaotic system. It is worth noting that the

presence of the memristor creates some special and unusual features. For example,

such memristor-based systems can exhibit hyperchaos although it has no equilib-

rium points. Also, it is well-known that hyperchaotic system, which is characterized

by more than one positive Lyapunov exponent, exhibits a higher level of complex-

ity than a conventional chaotic system. Hence, we can apply this memristor-based

hyperchaotic system in practical applications like encryption, cryptosystems, neural

networks and secure communications.
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Fig. 17 Multisim plot of the hyperchaotic attractor in the vC1
− vC4

plane

References

Abdurrahman, A., Jiang, H., & Teng, Z. (2015). Finite-time synchronization for memristor-based

neural networks with time-varying delays. Neural Networks, 69, 20–28.

Adhikari, S. P., Yang, C., Kim, H., & Chua, L. O. (2012). Memristor bridge synapse-based neural

network and its learning. IEEE Transactions on Neural Networks and Learning Systems, 23,

1426–1435.

Adhikari, S. P., Sad, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE
Transactions on Circuits and Systems I: Regular Papers, 60(11), 3008–3021.

Albuquerque, H. A., Rubinger, R. M., & Rech, P. C. (2008). Self-similar structures in a 2D

parameter-space of an inductorless Chua’s circuit. Physics Letters A, 372, 4793–4798.

Arneodo, A., Coullet, P., & Tresser, C. (1981). Possible new strange attractors with spiral structure.

Commonications in Mathematical Physics, 79(4), 573–576.

Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design (Vol. 581).

Germany: Springer.

Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Berlin,

Germany: Springer.



124 S. Vaidyanathan et al.

Azar, A. T., Vaidyanathan, S., & Ouannas, A. (2017). Fractional order control and synchronization
of chaotic systems. Berlin, Germany: Springer.

Bao, B. C., Liu, Z., & Xu, B. P. (2010). Dynamical analysis of memristor chaotic oscillator. Acta
Physica Sinica, 59(6), 3785–3793.

Cai, G., & Tan, Z. (2007). Chaos synchronization of a new chaotic system via nonlinear control.

Journal of Uncertain Systems, 1(3), 235–240.

Carroll, T. L., & Pecora, L. M. (1991). Synchronizing chaotic circuits. IEEE Transactions on Cir-
cuits and Systems, 38(4), 453–456.

Chen, G., & Ueda, T. (2002). Chaos in circuits and systems. Singapore: World Scientific.

Chen, G., & Ueta, T. (1999). Yet another chaotic attractor. International Journal of Bifurcation and
Chaos, 9(7), 1465–1466.

Chen, W. H., Wei, D., & Lu, X. (2014). Global exponential synchronization of nonlinear time-

delay Lure systems via delayed impulsive control. Communications in Nonlinear Science and
Numerical Simulation, 19(9), 3298–3312.

Cheng, C. J., & Cheng, C. B. (2013). An asymmetric image cryptosystem based on the adaptive

synchronization of an uncertain unified chaotic system and a cellular neural network. Commu-
nications in Nonlinear Science and Numerical Simulation, 18(10), 2825–2837.

Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory,

18(5), 507–519.

Chua, L. O. (1994). Chua’s circuit: An overview ten years later. Journal of Circuits, Systems and
Computers, 04, 117–159.

Chua, L. O., & Yang, L. (1988a). Cellular neural networks: Applications. IEEE Transactions on
Circuits and Systems, 35, 1273–1290.

Chua, L. O., & Yang, L. (1988b). Cellular neural networks: Theory. IEEE Transactions on Circuits
and Systems, 35, 1257–1272.

Dudkowski, D., Jafari, S., Kapitaniaka, T., Kuznetsov, N. V., Leonov, G. A., & Prasad, A. (2016).

Hidden attractors in dynamical systems. Physics Reports, 637, 1–50.

Fitch, A. L., Yu, D. S., Iu, H. H. C., & Sreeram, V. (2012). Hyperchaos in a memristor-based mod-

ified canonical Chua’s circuit. International Journal of Bifurcation and Chaos, 22(6), 1250133

Fortuna, L., Frasca, M., & Xibilia, M. G. (2009). Chua’s circuit Implementations: Yesterday, today
and tomorrow. Singapore: World Scientific.

Frederickson, P., Kaplan, J. L., Yorke, E. D., & York, J. A. (1983). The Lyapunov dimension of

strange attractors. Journal of Differential Equations, 49, 185–207.

Gan, Q., & Liang, Y. (2012). Synchronization of chaotic neural networks with time delay in the leak-

age term and parametric uncertainties based on sampled-data control. Journal of the Franklin
Institute, 349(6), 1955–1971.

Itoh, M., & Chua, L. O. (2008). Memristor oscillators. International Journal of Bifurcation and
Chaos, 18(11), 3183–3206.

Jiang, G. P., Zheng, W. X., & Chen, G. (2004). Global chaos synchronization with channel time-

delay. Chaos, Solitons & Fractals, 20(2), 267–275.

Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: Properties of basic electrical circuits.

European Journal of Physics, 30(4), 661–675.

Karthikeyan, R., & Sundarapandian, V. (2014). Hybrid chaos synchronization of four-scroll systems

via active control. Journal of Electrical Engineering, 65(2), 97–103.

Khalil, H. K. (2001). Nonlinear systems (3rd ed.). New Jersey, USA: Prentice Hall.

Kuznetsov, N. V., & Leonov, G. A. (2014). Hidden attractors in dynamical systems: systems with

no equilibria, multistability and coexisting attractors. IFAC Proceedings Volumes, 47(3), 5445–

5454.

Leonov, G. A., Kuznetsov, N. V., & Vagaitsev, V. I. (2011). Localization of hidden Chua’s attractors.

Physics Letters A, 375(23), 2230–2233.

Li, D. (2008). A three-scroll chaotic attractor. Physics Letters A, 372(4), 387–393.

Li, G. H., Zhou, S. P., & Yang, K. (2007). Controlling chaos in Colpitts oscillator. Chaos, Solitons
and Fractals, 33, 582–587.



Adaptive Control, Synchronization and Circuit Simulation . . . 125

Li, H., Wang, L., & Duan, S. (2014). A memristor-mased scroll chaotic system—Design, analysis

and circuit implementation. International Journal of Bifurcation and Chaos, 24(07), 1450099

Li, Q., Hu, S., Tang, S., & Zeng, G. (2013). Hyperchaos and horseshoe in a 4D memristive system

with a line of equilibria and its implementation. International Journal of Circuit Theory and
Applications, 42(11), 1172–1188.

Liu, L., Wu, X., & Hu, H. (2004). Estimating system parameters of Chua’s circuit from synchro-

nizing signal. Physics Letters A, 324(1), 36–41.

Lorenz, E. N. (1963). Deterministic periodic flow. Journal of the Atmospheric Sciences, 20(2),

130–141.

Lü, J., & Chen, G. (2002). A new chaotic attractor coined. International Journal of Bifurcation and
Chaos, 12(3), 659–661.

Matsumoto, T. (1984). A chaotic attractor from Chua’s circuit. IEEE Transactions on Circuits and
Systems, 31, 1055–1058.

Muthuswamy, B. (2010). Implementing memristor based chaotic circuits. International Journal of
Bifurcation and Chaos, 20(5), 1335–1350.

Muthuswamy, B., & Chua, L. O. (2010). Simplest chaotic circuit. International Journal of Bifur-
cation and Chaos, 20(5), 1567–1580.

Muthuswamy, B., & Kokate, P. (2009). Memristor based chaotic circuits. IETE Technical Review,

26(6), 417–429.

Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters,

64(8), 821–824.

Pehlivan, I., Moroz, I. M., & Vaidyanathan, S. (2014). Analysis, synchronization and circuit design

of a novel butterfly attractor. Journal of Sound and Vibration, 333(20), 5077–5096.

Pham, V. T., Volos, C., Jafari, S., & Wang, X. (2014). Generating a novel hyperchaotic system out

of equilibrium. Optoelectronics and Advanced Materials-Rapid Communications, 8, 535–539.

Pham, V. T., Volos, C. K., Vaidyanathan, S., Le, T. P., & Vu, V. Y. (2015). A memristor-based

hyperchaotic system with hidden attractors: Dynamics, synchronization and circuital emulating.

Journal of Engineering Science and Technology Review, 8(2), 205–214.

Rasappan, S., & Vaidyanathan, S. (2012a). Global chaos synchronization of WINDMI and Coullet

chaotic systems by backstepping control. Far East Journal of Mathematical Sciences, 67(2),

265–287.

Rasappan, S., & Vaidyanathan, S. (2012b). Hybrid synchronization of n-scroll Chua and Lur’e

chaotic systems via backstepping control with novel feedback. Archives of Control Sciences,

22(3), 343–365.

Rasappan, S., & Vaidyanathan, S. (2012c). Synchronization of hyperchaotic Liu system via back-

stepping control with recursive feedback. Communications in Computer and Information Sci-
ence, 305, 212–221.

Rasappan, S., & Vaidyanathan, S. (2013). Hybrid synchronization of n-scroll chaotic Chua cir-

cuits using adaptive backstepping control design with recursive feedback. Malaysian Journal of
Mathematical Sciences, 7(2), 219–246.

Rasappan, S., & Vaidyanathan, S. (2014). Global chaos synchronization of WINDMI and Coullet

chaotic systems using adaptive backstepping control design. Kyungpook Mathematical Journal,
54(1), 293–320.

Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57(5), 397–398.

Sampath, S., Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015). An eight-term novel four-scroll

chaotic system with cubic nonlinearity and its circuit simulation. Journal of Engineering Science
and Technology Review, 8(2), 1–6.

Sarasu, P., & Sundarapandian, V. (2011a). Active controller design for the generalized projective

synchronization of four-scroll chaotic systems. International Journal of Systems Signal Control
and Engineering Application, 4(2), 26–33.

Sarasu, P., & Sundarapandian, V. (2011b). The generalized projective synchronization of hyper-

chaotic Lorenz and hyperchaotic Qi systems via active control. International Journal of Soft
Computing, 6(5), 216–223.



126 S. Vaidyanathan et al.

Sarasu, P., & Sundarapandian, V. (2012). Adaptive controller design for the generalized projec-

tive synchronization of 4-scroll systems. International Journal of Systems Signal Control and
Engineering Application, 5(2), 21–30.

Sarasu, P., & Sundarapandian, V. (2012b). Generalized projective synchronization of three-scroll

chaotic systems via adaptive control. European Journal of Scientific Research, 72(4), 504–522.

Sarasu, P., & Sundarapandian, V. (2012c). Generalized projective synchronization of two-scroll

systems via adaptive control. International Journal of Soft Computing, 7(4), 146–156.

Shang, Y., Fei, W., & Yu, H. (2012). Analysis and modeling of internal state variables for dynamic

effects of nonvolatile memory devices. IEEE Transactions on Circuits and Systems I: Regular
Papers, 59, 1906–1918.

Shin, S., Kim, K., & Kang, S. M. (2011). Memristor applications for programmable analog ICs.

IEEE Transactions on Nanotechnology, 410, 266–274.

Sprott, J. C. (1994). Some simple chaotic flows. Physical Review E, 50(2), 647–650.

Sprott, J. C. (2011). A proposed standard for the publication of new chaotic systems. International
Journal of Bifurcation and Chaos, 21(9), 2391–2394.

Strukov, D., Snider, G., Stewart, G., & Williams, R. (2008). The missing memristor found. Nature,

453, 80–83.

Sundarapandian, V. (2010). Output regulation of the Lorenz attractor. Far East Journal of Mathe-
matical Sciences, 42(2), 289–299.

Sundarapandian, V. (2011). Output regulation of the Arneodo-Coullet chaotic system. Communi-
cations in Computer and Information Science, 133, 98–107.

Sundarapandian, V. (2013). Analysis and anti-synchronization of a novel chaotic system via active

and adaptive controllers. Journal of Engineering Science and Technology Review, 6(4), 45–52.

Sundarapandian, V., & Karthikeyan, R. (2011a). Anti-synchronization of hyperchaotic Lorenz and

hyperchaotic Chen systems by adaptive control. International Journal of Systmes Signal Control
and Engineering Application, 4(2), 18–25.

Sundarapandian, V., & Karthikeyan, R. (2011b). Anti-synchronization of Lü and Pan chaotic sys-

tems by adaptive nonlinear control. European Journal of Scientific Research, 64(1), 94–106.

Sundarapandian, V., & Karthikeyan, R. (2012a). Adaptive anti-synchronization of uncertain Tigan

and Li systems. Journal of Engineering and Applied Sciences, 7(1), 45–52.

Sundarapandian, V., & Karthikeyan, R. (2012b). Hybrid synchronization of hyperchaotic Lorenz

and hyperchaotic Chen systems via active control. Journal of Engineering and Applied Sciences,

7(3), 254–264.

Sundarapandian, V., & Pehlivan, I. (2012). Analysis, control, synchronization, and circuit design

of a novel chaotic system. Mathematical and Computer Modelling, 55(7–8), 1904–1915.

Sundarapandian, V., & Sivaperumal, S. (2011). Sliding controller design of hybrid synchronization

of four-wing chaotic systems. International Journal of Soft Computing, 6(5), 224–231.

Suresh, R., & Sundarapandian, V. (2013). Global chaos synchronization of a family of n-scroll

hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East Journal
of Mathematical Sciences, 73(1), 73–95.

Tang, F., & Wang, L. (2005). An adaptive active control for the modified Chua’s circuit. Physics
Letters A, 346, 342–346.

Tetzlaff, R. (2014). Memristors and memristive systems. Berlin, Germany: Springer.

Tigan, G., & Opris, D. (2008). Analysis of a 3D chaotic system. Chaos, Solitons and Fractals, 36,

1315–1319.

Vaidyanathan, S. (2011a). Hybrid chaos synchronization of Liu and Lü systems by active nonlinear

control. Communications in Computer and Information Science, 204, 1–10.

Vaidyanathan, S. (2011b). Output regulation of the unified chaotic system. Communications in
Computer and Information Science, 204, 84–93.

Vaidyanathan, S. (2012a). Analysis and synchronization of the hyperchaotic Yujun systems via

sliding mode control. Advances in Intelligent Systems and Computing, 176, 329–337.

Vaidyanathan, S. (2012b). Anti-synchronization of Sprott-L and Sprott-M chaotic systems via adap-

tive control. International Journal of Control Theory and Applications, 5(1), 41–59.



Adaptive Control, Synchronization and Circuit Simulation . . . 127

Vaidyanathan, S. (2012c). Global chaos control of hyperchaotic Liu system via sliding control

method. International Journal of Control Theory and Applications, 5(2), 117–123.

Vaidyanathan, S. (2012d). Output regulation of the Liu chaotic system. Applied Mechanics and
Materials, 110–116, 3982–3989.

Vaidyanathan, S. (2012e). Sliding mode control based global chaos control of Liu-Liu-Liu-Su

chaotic system. International Journal of Control Theory and Applications, 5(1), 15–20.

Vaidyanathan, S. (2013a). A new six-term 3-D chaotic system with an exponential nonlinearity.

Far East Journal of Mathematical Sciences, 79(1), 135–143.

Vaidyanathan, S. (2013b). Analysis and adaptive synchronization of two novel chaotic systems

with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. Journal of
Engineering Science and Technology Review, 6(4), 53–65.

Vaidyanathan, S. (2013c). Analysis, control and synchronization of hyperchaotic Zhou system via

adaptive control. Advances in Intelligent Systems and Computing, 177, 1–10.

Vaidyanathan, S. (2014a). A new eight-term 3-D polynomial chaotic system with three quadratic

nonlinearities. Far East Journal of Mathematical Sciences, 84(2), 219–226.

Vaidyanathan, S. (2014b). Analysis and adaptive synchronization of eight-term 3-D polynomial

chaotic systems with three quadratic nonlinearities. European Physical Journal: Special Topics,

223(8), 1519–1529.

Vaidyanathan, S. (2014c). Analysis, control and synchronisation of a six-term novel chaotic sys-

tem with three quadratic nonlinearities. International Journal of Modelling, Identification and
Control, 22(1), 41–53.

Vaidyanathan, S. (2014d). Generalized projective synchronisation of novel 3-D chaotic systems

with an exponential non-linearity via active and adaptive control. International Journal of Mod-
elling, Identification and Control, 22(3), 207–217.

Vaidyanathan, S. (2014e). Global chaos synchronization of identical Li-Wu chaotic systems via slid-

ing mode control. International Journal of Modelling, Identification and Control, 22(2), 170–

177.

Vaidyanathan, S. (2015a). 3-cells Cellular Neural Network (CNN) attractor and its adaptive biolog-

ical control. International Journal of PharmTech Research, 8(4), 632–640.

Vaidyanathan, S. (2015b). A 3-D novel highly chaotic system with four quadratic nonlinearities,

its adaptive control and anti-synchronization with unknown parameters. Journal of Engineering
Science and Technology Review, 8(2), 106–115.

Vaidyanathan, S. (2015c). A novel chemical chaotic reactor system and its adaptive control. Inter-
national Journal of ChemTech Research, 8(7), 146–158.

Vaidyanathan, S. (2015d). Adaptive backstepping control of enzymes-substrates system with ferro-

electric behaviour in brain waves. International Journal of PharmTech Research, 8(2), 256–261.

Vaidyanathan, S. (2015e). Adaptive biological control of generalized Lotka-Volterra three-species

biological system. International Journal of PharmTech Research, 8(4), 622–631.

Vaidyanathan, S. (2015f). Adaptive chaotic synchronization of enzymes-substrates system with fer-

roelectric behaviour in brain waves. International Journal of PharmTech Research, 8(5), 964–

973.

Vaidyanathan, S. (2015g). Adaptive control of a chemical chaotic reactor. International Journal of
PharmTech Research, 8(3), 377–382.

Vaidyanathan, S. (2015h). Adaptive control of the FitzHugh-Nagumo chaotic neuron model. Inter-
national Journal of PharmTech Research, 8(6), 117–127.

Vaidyanathan, S. (2015i). Adaptive synchronization of chemical chaotic reactors. International
Journal of ChemTech Research, 8(2), 612–621.

Vaidyanathan, S. (2015j). Adaptive synchronization of generalized Lotka-Volterra three-species

biological systems. International Journal of PharmTech Research, 8(5), 928–937.

Vaidyanathan, S. (2015k). Adaptive synchronization of novel 3-D chemical chaotic reactor systems.

International Journal of ChemTech Research, 8(7), 159–171.

Vaidyanathan, S. (2015l). Adaptive synchronization of the identical FitzHugh-Nagumo chaotic neu-

ron models. International Journal of PharmTech Research, 8(6), 167–177.



128 S. Vaidyanathan et al.

Vaidyanathan, S. (2015m). Analysis, control and synchronization of a 3-D novel jerk chaotic system

with two quadratic nonlinearities. Kyungpook Mathematical Journal, 55, 563–586.

Vaidyanathan, S. (2015n). Analysis, properties and control of an eight-term 3-D chaotic system

with an exponential nonlinearity. International Journal of Modelling, Identification and Control,
23(2), 164–172.

Vaidyanathan, S. (2015o). Anti-synchronization of brusselator chemical reaction systems via adap-

tive control. International Journal of ChemTech Research, 8(6), 759–768.

Vaidyanathan, S. (2015p). Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic

attractor. International Journal of PharmTech Research, 8(5), 956–963.

Vaidyanathan, S. (2015q). Chaos in neurons and synchronization of Birkhoff-Shaw strange chaotic

attractors via adaptive control. International Journal of PharmTech Research, 8(6), 1–11.

Vaidyanathan, S. (2015r). Coleman-Gomatam logarithmic competitive biology models and their

ecological monitoring. International Journal of PharmTech Research, 8(6), 94–105.

Vaidyanathan, S. (2015s). Dynamics and control of brusselator chemical reaction. International
Journal of ChemTech Research, 8(6), 740–749.

Vaidyanathan, S. (2015t). Dynamics and control of tokamak system with symmetric and magneti-

cally confined plasma. International Journal of ChemTech Research, 8(6), 795–803.

Vaidyanathan, S. (2015u). Global chaos synchronization of chemical chaotic reactors via novel

sliding mode control method. International Journal of ChemTech Research, 8(7), 209–221.

Vaidyanathan, S. (2015v). Global chaos synchronization of the forced Van der Pol chaotic oscilla-

tors via adaptive control method. International Journal of PharmTech Research, 8(6), 156–166.

Vaidyanathan, S. (2015w). Global chaos synchronization of the Lotka-Volterra biological systems

with four competitive species via active control. International Journal of PharmTech Research,

8(6), 206–217.

Vaidyanathan, S. (2015x). Lotka-Volterra population biology models with negative feedback and

their ecological monitoring. International Journal of PharmTech Research, 8(5), 974–981.

Vaidyanathan, S. (2015y). Lotka-Volterra two species competitive biology models and their eco-

logical monitoring. International Journal of PharmTech Research, 8(6), 32–44.

Vaidyanathan, S. (2015z). Output regulation of the forced Van der Pol chaotic oscillator via adaptive

control method. International Journal of PharmTech Research, 8(6), 106–116.

Vaidyanathan, S. (2016). Anti-synchronization of 3-cells Cellular Neural Network attractors via

integral sliding mode control. International Journal of PharmTech Research, 9(1), 193–205.

Vaidyanathan, S., & Azar, A. T. (2015a). Analysis and control of a 4-D novel hyperchaotic system.

In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in

computational intelligence (Vol. 581, pp. 19–38). Germany: Springer.

Vaidyanathan, S., & Azar, A. T. (2015b). Analysis, control and synchronization of a nine-term 3-

D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modelling and control
systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Germany: Springer.

Vaidyanathan, S., & Azar, A. T. (2015c). Anti-synchronization of identical chaotic systems using

sliding mode control and an application to Vaidhyanathan-Madhavan chaotic systems. Studies
in Computational Intelligence, 576, 527–547.

Vaidyanathan, S., & Azar, A. T. (2015d). Hybrid synchronization of identical chaotic systems using

sliding mode control and an application to Vaidhyanathan chaotic systems. Studies in Computa-
tional Intelligence, 576, 549–569.

Vaidyanathan, S., & Madhavan, K. (2013). Analysis, adaptive control and synchronization of a

seven-term novel 3-D chaotic system. International Journal of Control Theory and Applications,

6(2), 121–137.

Vaidyanathan, S., & Pakiriswamy, S. (2013). Generalized projective synchronization of six-term

Sundarapandian chaotic systems by adaptive control. International Journal of Control Theory
and Applications, 6(2), 153–163.

Vaidyanathan, S., & Pakiriswamy, S. (2015). A 3-D novel conservative chaotic system and its gen-

eralized projective synchronization via adaptive control. Journal of Engineering Science and
Technology Review, 8(2), 52–60.



Adaptive Control, Synchronization and Circuit Simulation . . . 129

Vaidyanathan, S., & Rajagopal, K. (2011a). Anti-synchronization of Li and T chaotic systems by

active nonlinear control. Communications in Computer and Information Science, 198, 175–184.

Vaidyanathan, S., & Rajagopal, K. (2011b). Global chaos synchronization of hyperchaotic Pang

and Wang systems by active nonlinear control. Communications in Computer and Information
Science, 204, 84–93.

Vaidyanathan, S., & Rajagopal, K. (2011c). Global chaos synchronization of Lü and Pan systems by

adaptive nonlinear control. Communications in Computer and Information Science, 205, 193–

202.

Vaidyanathan, S., & Rasappan, S. (2011). Global chaos synchronization of hyperchaotic Bao and

Xu systems by active nonlinear control. Communications in Computer and Information Science,

198, 10–17.

Vaidyanathan, S., & Pakiriswamy, S. (2015). A 3-D novel conservative chaotic system and its gen-

eralized projective synchronization via adaptive control. Journal of Engineering Science and
Technology Review, 8(2), 52–60.

Vaidyanathan, S., & Sampath, S. (2011). Global chaos synchronization of hyperchaotic Lorenz

systems by sliding mode control. Communications in Computer and Information Science, 205,

156–164.

Vaidyanathan, S., & Sampath, S. (2012). Anti-synchronization of four-wing chaotic systems via

sliding mode control. International Journal of Automation and Computing, 9(3), 274–279.

Vaidyanathan, S., & Volos, C. (2015). Analysis and adaptive control of a novel 3-D conservative

no-equilibrium chaotic system. Archives of Control Sciences, 25(3), 333–353.

Vaidyanathan, S., & Volos, C. (2016a). Advances and Applications in Chaotic Systems. Berlin,

Germany: Springer.

Vaidyanathan, S., & Volos, C. (2016b). Advances and applications in nonlinear control systems.

Berlin, Germany: Springer.

Vaidyanathan, S., Volos, C., & Pham, V. T. (2014a). Hyperchaos, adaptive control and synchroniza-

tion of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE

implementation. Archies of Control Sciences, 24(4), 409–446.

Vaidyanathan, S., Volos, C., & Pham, V. T. (2014b). Hyperchaos, adaptive control and synchroniza-

tion of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE

implementation. Archives of Control Sciences, 24(4), 409–446.

Vaidyanathan, S., Volos, C., Pham, V. T., Madhavan, K., & Idowu, B. A. (2014c). Adaptive back-

stepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with

two hyperbolic sinusoidal nonlinearities. Archives of Control Sciences, 24(3), 375–403.

Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015a). Backstepping controller design for the

global chaos synchronization of Sprott’s jerk systems. Studies in Computational Intelligence,

581, 39–58.

Vaidyanathan, S., Rajagopal, K., Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2015b).

Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with

three quadratic nonlinearities and its digital implementation in LabVIEW. Journal of Engineer-
ing Science and Technology Review, 8(2), 130–141.

Vaidyanathan, S., Volos, C., Pham, V. T., & Madhavan, K. (2015c). Analysis, adaptive control and

synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation.

Archives of Control Sciences, 25(1), 5–28.

Vaidyanathan, S., Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., & Pham, V. T. (2015d). Analy-

sis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two

exponential nonlinearities and its circuit simulation. Journal of Engineering Science and Tech-
nology Review, 8(2), 24–36.

Vaidyanathan, S., Volos, C. K., & Madhavan, K. (2015e). Analysis, control, synchronization and

SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo System without equilib-

rium. Journal of Engineering Science and Technology Review, 8(2), 232–244.



130 S. Vaidyanathan et al.

Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015f). Analysis, adaptive control and adaptive

synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and

its circuit simulation. Journal of Engineering Science and Technology Review, 8(2), 181–191.

Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015g). Global chaos control of a novel nine-

term chaotic system via sliding mode control. In A. T. Azar & Q. Zhu (Eds.), Advances and
applications in sliding mode control systems. Studies in computational intelligence (Vol. 576,

pp. 571–590). Germany: Springer.

Vaidyanathan, S., Volos, C. K., Pham, V. T., & Madhavan, K. (2015h). Analysis, adaptive control

and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementa-

tion. Archives of Control Sciences, 25(1), 135–158.

Vaidyanathan, S., Volos, C. K., Rajagopal, K., Kyprianidis, I. M., & Stouboulos, I. N. (2015i). Adap-

tive backstepping controller design for the anti-synchronization of identical WINDMI chaotic

systems with unknown parameters and its SPICE implementation. Journal of Engineering Sci-
ence and Technology Review, 8(2), 74–82.

Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2012). A chaotic path planning generator for

autonomous mobile robots. Robotics and Autonomous Systems, 60(4), 651–656.

Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Image encryption process based on

chaotic synchronization phenomena. Signal Processing, 93(5), 1328–1340.

Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., Tlelo-Cuautle, E., & Vaidyanathan, S. (2015).

Memristor: A new concept in synchronization of coupled neuromorphic circuits. Journal of
Engineering Science and Technology Review, 8(2), 157–173.

Wang, L., Zhang, C., Chen, L., Lai, J., & Tong, J. (2012a). A novel memristor-based rSRAM struc-

ture for multiple-bit upsets immunity. IEICE Electronics Express, 9, 861–867.

Wang, X., & Ge, C. (2008). Controlling and tracking of Newton-Leipnik system via backstepping

design. International Journal of Nonlinear Science, 5(2), 133–139.

Wang, X., Xu, B., & Luo, C. (2012b). An asynchronous communication system based on the hyper-

chaotic system of 6th-order cellular neural network. Optics Communications, 285(24), 5401–

5405.

Wei, Z., & Yang, Q. (2010). Anti-control of Hopf bifurcation in the new chaotic system with two

stable node-foci. Applied Mathematics and Computation, 217(1), 422–429.

Xiao, X., Zhou, L., & Zhang, Z. (2014). Synchronization of chaotic Lure systems with quan-

tized sampled-data controller. Communications in Nonlinear Science and Numerical Simulation,

19(6), 2039–2047.

Yalcin, M. E., Suykens, J. A. K., & Vandewalle, J. (2004). True random bit generator from a double-

scroll attractor. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(7), 1395–1404.

Yang, J. J., Strukov, D. B., & Stewart, D. R. (2013). Memristive devices for computing. Nature
Nanotechnology, 8, 13–24.

Zhou, W., Xu, Y., Lu, H., & Pan, L. (2008). On dynamics analysis of a new chaotic attractor. Physics
Letters A, 372(36), 5773–5777.

Zhu, C., Liu, Y., & Guo, Y. (2010). Theoretic and numerical study of a new chaotic system. Intel-
ligent Information Management, 2, 104–109.



Modern System Design Using Memristors

Lauren Guckert and Earl Swartzlander Jr.

Abstract Since memristors have recently come to the forefront of the computer
architecture field, the majority of the research is still in its infancy. The most
popular application for memristors is memories, namely crossbars, but preliminary
work has shown their use in logic circuits too. This work explores two approaches
to memristor logic, IMPLY operations and MAD gates. While IMPLY has been
successfully demonstrated and popularized in previous works, it suffers from long
latencies and destructive operations. MAD gates have been shown to overcome
these issues, offering a lower area and lower latency alternative. These two
approaches are described, implemented, and analyzed against each other and other
proposed approaches to memristor logic. Both methodologies are then presented in
the context of a crossbar, showing how IMPLY and MAD operations can be
performed on memory cells. It is shown that they offer improved logic-in-memory
implementations over alternative proposed works. Lastly, general considerations
when designing memristor-based circuits are discussed and future directions of
research are motivated.

Keywords Memristors ⋅ IMPLY ⋅ MAD gates ⋅ Crossbar ⋅
Logic-in-memory

1 Introduction

Memristors were first introduced in 1971 (Chua 1971; Strukov 2008). Since
memristors are a relatively new concept in the field of computer architecture, there
is not yet a standardized approach to incorporating them into modern system
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design. Current research focuses on exploring various ways to harness the char-
acteristics and strengths of memristors to improve future designs in terms of per-
formance, area, and energy. This research falls into 3 broad categories: memristor
design, logic applications for memristors, and memory applications for memristors.
This chapter will focus on the latter two, exploring ways to apply current memristor
models to redesign traditional CMOS circuits for the nanoscale domain.

Even within the bounds of memristor applications, there is a multitude of parallel
and orthogonal research approaches to implement and optimize designs. Much of
the research focuses on memory applications because memristor characteristics lend
themselves particularly well to this domain. Thus, research into logic applications
for memristors is still in its infancy and has great potential to improve. Although
there have been many approaches proposed, it is not clear that a realistic, optimal,
fabricate-able implementation of logic gates with memristors has been discovered.

There is another area of research at the intersection of memory and logic designs
—logic-in-memory memory designs. Logic-in-memory is the idea of moving away
from traditional Von Neumann designs where the data is brought from memory to
the computational circuit and instead the computation is brought from the CPU to
the memory. This avoids the overhead of reading and writing the data to and from
memory, improving performance and power consumption. This prospect has
spurred a subset of memristor research that focuses on how to bridge the gap
between memory applications and logic applications such that a single standardized
approach can be applied to both. The research attempts to find logic designs using
memristors that can also be applied to a crossbar memory context. In this way, both
traditional Von-Neumann and progressive logic-in-memory system designs can be
pursued with memristors.
This chapter covers the current state-of-the-art in memristor-based logic-in-memory
circuit design. First, the most common approach to memristor logic, the IMPLY
operation, is presented. Many works have shown that the IMPLY operation can be
used to implement common logic circuits (Mahajan 2014; Teimoory 2014, 2015;
Rose 2012). Although this approach offers an effective, popular way to perform
Boolean operations, it has shortcomings in terms of high latency, serialized oper-
ations (Corinto 2012; Deng 2013; Devolder 2008), and a high number of drivers.
Second, MAD gates, or Memristors-As-Drivers gates, are introduced as a way to
overcome some of the issues with the IMPLY approach (Guckert 2016). Both of the
approaches stray from traditional Von-Neumann paradigm by bringing the drivers
(computation) to the memristors (data). The implementations are analyzed and
compared against other approaches to logic in terms of latency, area, and power.
Then, applications of the IMPLY and MAD gates are shown, both in the realm of
logic and memory. A multiplexer and a 4 × 4 crossbar memory are used as
motivating examples. Descriptions for optimizations, limitations, as well as general
considerations when designing with memristors are also discussed.
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2 IMPLY Memristor Logic

IMPLY based Boolean operations are built from the basic IMPLY circuitry shown
in Fig. 1 (Bickerstaff 2010).

The circuitry requires two memristors (one for each operand), a pull-down
resistor, and driver circuitry to apply the appropriate voltages. The operation is
performed by applying a voltage Vcond to memristor P and a voltage Vset to
memristor Q concurrently where Vcond < Vset. It is assumed that the value of P and
Q have been set in the memristors before execution. The corresponding truth table
for the IMPLY operation is given in Table 1.

The value of the pull-down resistor Rg, Vcond, and Vset are determined by the
internal parameters of the memristors themselves. For example, depending on the
threshold voltages or currents and the doping width of the memristors, the correct
value of Rg must be set to ensure that the correct current flows through memristors
P and Q when Vcond and Vset are applied.

Recall that memristors can be written if a high-magnitude current is driven
through the memristor, else it can be read. In the context of an IMPLY operation, the
Q memristor is written with the result while the P memristor remains unchanged.
Thus, the current in the circuit during the IMPLY operation must be controlled such
that the voltage drop across P is not enough to change its value, but the voltage drop
across Q is enough to change its value. This is ensured through the selection of
Vcond, Vset, and Rg. Throughout this chapter Vcond = 1.6 V, Vset = 2.5 V, and

Fig. 1 Circuitry for the
IMPLY operation p → q

Table 1 Truth table for the
IMPLY operation

Case p q p → q

1 0 0 1
2 0 1 1
3 1 0 0
4 1 1 1
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Rg = 2 K are used. Also, high resistance and low resistance are selected to be
Rhigh = 100 K and Rlow = 1 K respectively (Kvatinsky 2014b). The VTeam model
(Kvatinsky 2015) is used to represent these values in simulation.

From Table 1, it can be seen that the NOT operation can be computed by setting
the value in memristor P and the value 0 in memristor Q and performing an IMPLY.
Thus, by adding the ability to perform a FALSE operation, essentially a memristor
reset, the IMPLY operation becomes functionally complete. The reset operation can
be performed by applying a Vreset voltage to the memristor where |Vreset| > |Vset|.
For this chapter, assume Vreset = −5 V. In order to implement more complex
operations, the IMPLY circuitry can be extended by introducing more memristors
in parallel and performing consecutive serialized IMPLY operations on pairs at a
time. The resultant Boolean operations and their costs are given in Table 2.

A ‘0’ represents a reset memristor with a high-resistance, or a logical ‘0’ value.
An example circuit of extending the IMPLY circuitry to implement a NAND
operation is shown in Fig. 2.

Table 2 IMPLY implementations of Boolean operations (Bickerstaff 2010)

Operation Implementations #Steps #Memristors

P NAND Q P IMP (Q IMP 0) 2 3
P AND Q (P IMP (Q IMP 0)) IMP 0 3 4
P NOR Q ((P IMP 0) IMP Q) IMP 0 5 6
P OR Q (P IMP 0) IMP Q 4 5
P XOR Q (P IMP Q) IMP ((Q IMP P) IMP 0) 8 7
NOT P P IMP 0 1 2

Fig. 2 Circuitry for the IMPLY NAND operation
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A third memristor, s, is added which is cleared, or initialized to 0, or high
resistance. In the first step, q IMP 0 is performed by applying the read voltage Vcond

to the q memristor and the write voltage Vset to the s memristor. No voltage is
applied to the p memristor. At the end of this step, the result of q IMP 0 lies in the s
memristor. In the second step, the IMPLY operation is performed on the p mem-
ristor and the result from step 1. p IMP (q IMP 0) is performed by applying Vcond to
the p memristor and Vset to the s memristor (where the result from step 1 is). Again,
the result of Step 2 lies in the s memristor. p NAND q has been completed.
A similar explanation exists for the remaining Boolean operations.

In addition to performing the IMPLY operations themselves, it is necessary to
perform a copy operation on the operands which are overwritten for some opera-
tions. For example, in the XOR operation, after performing p IMP q, the result of
this operation lies in the q memristor rather than the original value of q. Thus, the
operation q IMP p required for the XOR operation is no longer possible. A copy of
q must be created before performing p IMP q. This is done by performing two
consecutive NOT operations, p IMP 0, and (p IMP 0) IMP 0, incurring 2 steps and
2 memristors. For the same reason, a copy of p must also be created. Thus the total
cost is 8 steps and 7 memristors.

2.1 IMPLY Implementation of a Multiplexer

Once it is understood how to perform basic Boolean logic with the IMPLY oper-
ation, the concept can be extended to implement more complex building blocks to
expand the portfolio of memristor structures. As an example, consider a 1-bit
multiplexer. The execution steps for an implementation of this IMPLY-based
multiplexer are shown in Table 3.

S represents the select line memristor and S represents the memristor holding the
inverse of the select line. Note that this series of steps assumes that the memristors
have been initialized ahead of time with a single write operation (as described in the
previous section). First, the operations from Table 2 are used to compute
A NAND S. Next, B AND S is computed in the same manner. Finally, the two

Table 3 Steps for a 1-bit multiplexer (A AND S) OR (B AND S) = Out

Step Mux functionality Mux goal

1 S IMP 0 NOT S
2 A IMP (S IMP 0) A NAND S
3 S IMP 0 NOT (S)
4 B IMP (S IMP 0) B NAND S
5 (A IMP (S IMP 0)) IMP 0 A AND S
6 ((A IMP (S IMP 0)) IMP 0) IMP

(B IMP (S IMP 0))
(A AND S) OR (B AND S) == Out
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outputs are OR’ed together to produce the output. In total, the multiplexer requires
6 IMPLY steps to produce the result. There are four input memristors for the A, B,
S, and S inputs and a single memristor for the output Out. In addition to these 5
memristors, there are two more memristors required in steps 1 and 5 as initialized,
reset memristors to hold the IMPLY results. The initialized reset memristor used in
Step 3 does not contribute an additional memristor because it is used as the Out
memristor as the execution continues. Thus this implementation requires 6 IMPLY
steps and 7 memristors.

However, in the context of the IMPLY operation, it is often possible to optimize
out many of the steps and thus reduce the number of memristors by rearranging the
Boolean logic. The equation for a multiplexer is optimized for the context of
traditional CMOS Boolean gates and their transistor complexity. However, the
same tradeoffs do not exist in the memristor domain and IMPLY Boolean opera-
tions. Thus, the multiplexer equation is rewritten to an equivalent form.

ðAANDSÞORðBANDSÞ= = ðBNANDSÞOR(ANANDSÞ=Out

By interpreting the equation for the multiplexer as such, the number of steps is
reduced. The execution steps for the optimized multiplexer are given in Table 4.

No internal working memristors are necessary, only the input and output
memristors. Thus, the design is maximally optimized in terms of area.

Note that if the multiplexer were extended to wider than a single bit, the select
line will need to be replicated for each bit since the results of the IMPLY operations
overwrite the S and S memristors.

The number of memristors is now just 5 memristors. The equivalent schematic is
shown in Fig. 3. Thus this implementation requires 4 IMPLY steps and 5
memristors.

Optimizations can be performed on this multiplexer once it has contextual
information. For example, consider a circuit where the multiplexer uses outputs
from a separate circuit as its inputs A and B. Rather than having dedicated input
memristors for the A and B inputs, the output memristors from the prior circuit can
be sensed instead. In this way, the A and B memristors can be removed entirely,
reducing the complexity of the multiplexer to just 3 memristors. The delay remains
the same, however now instead of applying the Vcond signal to the A and B
memristors in their respective steps, the Vcond signal is applied to the output
memristors in the other circuit which contain A and B. Note that the memristors in

Table 4 Steps for an optimized 1-bit multiplexer ðBNANDSÞOR ðANANDSÞ=Out

Step Mux functionality Mux goal

1 A IMP S A NAND S

2 B IMP S B NAND S
3 (A IMP S) IMP Out A AND S

4 (B IMP S) IMP Out (A AND S) OR (B AND S) = Out
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the first circuit and the second circuit must be connected in the IMPLY circuit form
in order to properly execute the IMPLY operation.

Similarly, the output memristor can be reused as the input to the circuit which
the multiplexer feeds into. This further reduces the overhead of the design by 1
memristor and maintains the same delay.

Optimizations such as these are common in the context of memristor based
design. Since IMPLY is based on drivers applying voltage signals, it doesn’t matter
where the data lies, only where the drivers are asserted. Thus, many copy or move
operations and duplicate memristors can be removed in favor of memristor reuse
without incurring any delay penalty. This is a key characteristic that enables
IMPLY to be used for logic-in-memory applications. The core of logic-in-memory
is the idea of bringing the computation to the data, just as the IMPLY operation
brings the voltage signals and drivers (computation) to the memristors (data).

2.2 Considerations

Although the IMPLY operation has come to the forefront of memristor logic, it has
limitations in terms of latency optimizations. Strategic Boolean simplification and
expression adjustment can be performed to reduce the number of operations, but
there is still a fundamental limitation in the serialization of IMPLY steps. For
example, to perform an AND operation, 3 IMPLY steps are required as compared to
a single gate delay in traditional CMOS. Other operations, such as the XOR
operation, are more costly, requiring 8 serialized steps as compared to 1. In most if

Fig. 3 Optimized multiplexer implemented with memristors using IMPLY logic
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not all designs, this causes the IMPLY implementation to have a higher step latency
than the equivalent CMOS design.

However, it is important to consider what a “step” is in each of these domains.
The delay of a single IMPLY pulse is not necessarily equivalent to a gate delay in
CMOS. In fact, research has suggested that the delay of an IMPLY pulse can be
shorter than a gate propagation time. Thus, although the number of steps for the
IMPLY implementation of a circuit may be higher than its CMOS counterpart, the
real-time delay may still be less. The step count is used here to facilitate the analysis
and comparison of designs.

3 MAD Gates

This section introduces MAD gates, or Memristors-As-Drivers gates, to achieve
lower power, area, and step count than alternative memristor-based gate designs.
MAD gates were previously presented (Guckert 2016) as an approach to overcome
some of the limitations of the IMPLY operation, but they have been shown to trump
all other memristor logic approaches too (Kvatinsky 2012, 2014a; Zhang 2015a, b;
Goto 1960; Zhu 2013).

MAD gates combine the driver methodology of the IMPLY circuits with
threshold logic to achieve the benefits of the IMPLY operation without the high
latency of serialized operations. The driver signals, Vcond, Vset, and Vreset are
selected as read, write, and reset signals using the same design principles as the
IMPLY operation to be Vcond = 1.6 V, Vset = 2.5 V and Vreset = −5 V.

Let’s start with an example circuit for the AND operation in Fig. 4.

Fig. 4 MAD AND gate

138 L. Guckert and E. Swartzlander Jr.



Similar to the IMPLY circuit, this implementation requires two memristors for
the inputs, P and Q. However, in the MAD gate, these memristors are now con-
nected in series and a third memristor, labeled S, is introduced for the result. For
consistency, this example also assumes that the values of P and Q are preloaded into
the input memristors as described in the IMPLY description. The pull down resistor
Rg is selected as was done for the IMPLY operation. However, now two additional
resistors are required in series with the input memristors and one in series with the
output memristor.

To perform the AND operation, the read voltage Vcond is applied to the input
memristors in series. This is similar to the application of the Vcond voltage in
standard IMPLY operations. The application of the Vset voltage is slightly altered;
the Vset voltage on the output memristor is now gated by the voltage of the input
circuit at node V. In other words, depending on the voltage sensed at node V, the
Vset voltage will or will not be applied to the output memristor. Specifically, if the
voltage at node V is greater than the threshold of the switch on the output mem-
ristor, the switch will close and the Vset signal will be applied to the output
memristor. This effectively sets the memristor to a logical ‘1’. If the voltage at node
V is not greater than the threshold of the switch, the gate will remain open and the
output memristor will remain unchanged.

The remaining design parameter is the correct threshold for the switch. Call this
Vapply. To understand how Vapply is computed, consider the example of Fig. 4
where Rg has been assigned 10 K ohms and Vcond remains 1.6 V. Note this is an
exception to the rule that Rg = 2 K ohms throughout this work and is done purely
for example purposes. In this circuit, when both input memristors are logical ‘1’, the
voltage at node V is 16/22 V according to voltage division. If memristors P and Q
are both logical ‘0’, the voltage is 16/220 V and if one of the memristors is ‘1’ and
the other is ‘0’, the voltage of node V is 16/121 V.

For the AND operation, the output memristor should only be set to ‘1’ if both the
inputs P and Q are ‘1’. This only happens if the voltage at node V is greater than the
threshold of the switch, Vapply. Since the voltage at node V is 16/22 V when both
inputs are ‘1’, Vapply must be less than 16/22 V. This will ensure that the Vset signal
is properly applied to the output memristor when both inputs are ‘1’. Similarly,
node V must be less than Vapply for the remaining cases. Since the other possible
values of node V are 16/220 and 16/121 V, Vapply must be greater than 16/121 V.
Thus, Vapply should be selected in the range 16/121 V < Vapply < 16/22 V.

The same circuit can be reused to implement the remaining Boolean operations
by varying the value of Vapply. For example, for the OR operation, Vset is to be
applied to the output memristor when either or both of the input memristors are a
‘1’. Thus, if node V is equal to 16/121 or 16/22 V, the switch should close. If node
V is equal to 16/220 V, the gate should remain open. Thus, for the OR operations,
Vapply should satisfy 16/220 V < Vapply < 16/121 V.

The circuit can also be used to accomplish a COPY operation. The NOT and
COPY operations only require a single input memristor, but take the same form
otherwise. The respective circuits for the OR, XOR, NOT, and COPY operations
are shown in Fig. 5.
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In this manner, only a single step (one application of the Vcond and Vset signals)
is required for all Boolean operations and the COPY operation. This improves over
not only the latency of IMPLY operations (Kvatinsky 2014b), but all other previous
proposals to memristor logic too—hybrid-CMOS (Kvatinsky 2012), MAGIC gates
(Kvatinsky 2014a), Zhang et al. (2015a, b), threshold gate (Goto 1960; Huisman
1995) implementations and others (Zhu 2013). A full comparison of the step counts
for the various gates is given in Table 5.

The number of steps to complete the operations is not necessarily equivalent to
the delay across the various approaches. For example, a hybrid-CMOS step is a gate
delay whereas an IMPLY, MAGIC, or MAD step is the application of a drive
signal. However, MAD gates offer fast switching times of about 0.4 ns which is 3
times faster than the transition times of 1.25 ns in other works on logic-in-memory.
Taking these considerations into account, MAD gates require fewer steps than all
previous approaches to memristor logic. They also offer a more complete set of

Fig. 5 MAD OR, XOR, NOT, and COPY gates
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operations. Although MAGIC gates also offer a single step, operations on the same
inputs cannot be performed in parallel and the XOR operation is not implemented.

MAD gates also reduce the necessary area for memristor logic as compared to
previous proposals. A complete breakdown of the area comparisons for the various
Boolean operations is given in Table 6.

In general, the MAD gates offer improved area for all of the Boolean operations,
especially in comparison to the IMPLY operation (Kvatinsky 2014b). This is
partially due to the fact that no intermediate memristors are required for the MAD
operation. Only memristors for the inputs and outputs are necessary. Also, there is
no need for signal restoration in circuits built from the proposed gate structure as
required in some alternative approaches like hybrid-CMOS. This is because signals
do not propagate through the circuits, but rather serve as sense voltages. For the
gates which MAGIC (Kvatinsky 2014a) and Zhang et al. (2015a, b) have imple-
mented, the proposed MAD gates have slightly higher area. However, the area
measurements for these approaches do not take into consideration the additional
circuitry required for resetting, writing, and reading the memristors such as switches
or comparators. They also do not report on the logic required for concatenating the
gates. Thus, it is likely that MAD gates require the least area.

Table 5 Step count comparison for memristor-based gates

Op IMPLY Hybrid-CMOS MAGIC Zhang et al. Threshold MAD

NAND 2 2 1 3 2 1
AND 3 1 1 1 1 1
NOR 5 2 1 3 2 1
OR 4 1 1 1 1 1
XOR 8 3 N/A N/A 3 1
NOT 1 1 1 2 1 1

Table 6 Area comparisons for memristor-based Boolean gates

Op IMPLY Hybrid-CMOS MAGIC Zhang et al. Threshold MAD

NAND 3 memristors
3 drivers

2 memristors
2 MOSFETs

3 memristors 2 memristors 2 memristors
1 GOTO pair
2 MOSFETs

3 memristors
2 drivers

AND 4 memristors
4 drivers

2 memristors 3 memristors 2 memristors 2 memristors
1 GOTO pair

3 memristors
2 drivers

NOR 6 memristors
6 drivers

2 memristors
2 MOSFETs

3 memristors 2 memristors 2 memristors
1 GOTO pair
2 MOSFETs

3 memristors
2 drivers

OR 6 memristors
6 drivers

2 memristors 3 memristors 2 memristors 2 memristors
1 GOTO pair

3 memristors
2 drivers

XOR 7 memristors
7 drivers

6 memristors
2 MOSFETs

N/A N/A 5 memristors
3 GOTO pairs
2 MOSFETs

3 memristors
2 drivers

NOT 2 memristors
2 drivers

2 MOSFETs 2 memristors 2 memristors 2 MOSFETs 2 memristors
2 drivers
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MAD designs offer further area savings when the same inputs are used for
multiple gates by reusing the input circuitry. For example, performing P AND Q
and P OR Q in parallel would require the input memristors P and Q and two output
memristors. Thus, for N gates using the same inputs P and Q, the design only
requires N + 2 memristors rather than 3 N. Additionally, since MAD gate inputs
are not overwritten during operation, the gates can be used repeatedly without
having to reread the inputs or save/copy them.

In terms of power, MAD gates also improve in energy consumption over most
prior work as shown in Table 7.

Energy is reported for all prior works where it was given. For the MAD gates,
the energy was calculated by integrating V * I characteristics across the execution
of the operation. The MAD gates improve energy by an order of magnitude over the
IMPLY approach, mostly because of the large number of steps required for IMPLY
operations. Although the measurements suggest that Zhang et al. requires consumes
less energy than MAD gates, these calculations represent the mean power per bit,
and it is unclear exactly how this value is calculated.

A final benefit of MAD gates over all alternative approaches to memristor logic is
that all MAD gates are constructed from the same uniform standardized cell that can
be configured with a threshold that depends on the gate and application. Additionally,
these designs do not suffer from the concatenation, parallelizability, and fanout
challenges that hybrid-CMOS, logic-in-memory, and MAGIC gates approaches
have. Lastly, the MAD gates are currently able to be fabricated and modeled, ren-
dering them a more practical option than some progressive implementations.

3.1 MAD Implementation of a Multiplexer

To show how MAD memristor concepts can be used beyond individual gates, again
consider the multiplexer example. An optimized implementation for a 1-bit wide
MAD multiplexer is shown in Fig. 6.

The MAD multiplexer is essentially a combination of two singular MAD AND
gates. For the multiplexer equation (A AND S) OR (B AND S) = Out, an AND
gate is needed to compute A AND S and an AND gate is needed to compute B

Table 7 Energy comparisons (J) for memristor-based Boolean gates

Operation IMPLY Hybrid-CMOS Zhang et al. MAD

NAND 7.1e-13 N/A 2.5e-19 3e-14
AND 1.044e-12 1.75e-13 2.5e-19 3e-14
NOR 1.044e-12 N/A 2.5e-19 3.3e-14
OR 7.1e-13 1.75e-13 2.5e-19 3.3e-14
XOR 3.03e-12 N/A 2.5e-19 3.3e-14
NOT 3.4e-13 1.75e-13 2.5e-19 3.3e-14
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AND S. S and S represent the select line of the multiplexer and it’s inverse. Also an
output memristor Out is used to hold the result. As was done for the basic AND
gate, the Vset signal is gated to the output memristor. However, now there are two
switches gating the signal, one for each AND gate. The thresholds of the two
switches are both selected to correspond to an AND gate as described in the
previous section.

The multiplexer executes by applying Vcond to both of the AND gates in parallel,
while applying Vset to the output memristor Out. If either Va or Vb is above the
threshold voltage of a MAD AND operation, its corresponding switch will close
and allow Vset to drive the output memristor, setting it to ‘1’. If neither of the AND
operations corresponds to a ‘1’, both switches will remain open and the output
memristor will remain at ‘0’. In other words if (A AND S) OR (B AND S) is a 1,
the output will be 1. Thus, the multiplexer exhibits correct functionality.

The multiplexer requires one memristor per input and output for a total of 5
memristors. This is equivalent to the fully optimized IMPLY multiplexer. However,
the latency is reduced to just a single step for the entire multiplexer operation as
compared to 4. This directly corresponds to lower energy consumption as well.

4 IMPLY and MAD Implementations in a Crossbar

Since the discovery and exhibition of memristors, their most prevalent application
has been crossbar memories. The low area, high density, and 2-terminal properties
of memristors make them a prime candidate for memory applications. Memristors
can be used to construct a crossbar memory with area 4F2 per bit, where F is the
feature size. This replaces DRAM cells which require 6 transistors (3-terminal

Fig. 6 MAD multiplexer implementation
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devices) and exhibit poor density. Also, memristors have the capability to be
stacked to create 3-D memory structures. These characteristics have spurred much
research focusing on leveraging crossbars for efficient memory and logic designs.

Within the context of a crossbar, there have been various proposals for how to
perform reads, writes, and logic on the memristor cells. Each approach has different
tradeoffs in terms of latency, area, and voltage characteristics. Both the IMPLY and
MAD gates are strong candidates for crossbar logic and are discussed in the fol-
lowing sections.

4.1 IMPLY Implementation in a Crossbar

The IMPLY operation introduced at the beginning of this chapter can be directly
implemented in a crossbar (Strukov 2008) as shown in Fig. 7.

Pull down resistors are placed on all rows to allow operations to perform on any
row in the crossbar in a given cycle. The p and q memristors lie on a single row of
the crossbar while the pull down resistor Rg serves as a resistor for the entire row. It
is not necessary for the memristors p and q to lie on consecutive bit cells, but it is

Fig. 7 IMPLY operation in a crossbar
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necessary they lie on the same row so that their terminals are connected properly as
per the IMPLY circuit. To perform the IMPLY operation, Vselect drives both bit
lines and the row line of the input memristors high. Vcond is applied to the p
memristor (highlighted in red) while Vset is applied to the q memristor (highlighted
in purple) and the row is connected to GND (highlighted in blue). This directly
matches the traditional IMPLY circuitry. After this step, the result of p IMP q lies in
the q memristor.

4.2 MAD Implementation in a Crossbar

MAD gates can also be transposed into a crossbar structure to allow for
logic-in-memory. However, the traditional MAD gate circuitry must be slightly
altered. First, in the standard MAD Boolean gate, the input memristors are con-
nected in series by connecting their opposite-polarity terminals, i.e. one input
memristor’s p-terminal is connected to the second input memristor’s n-terminal.
This is required in order to be able to maintain the values of the input memristors
when Vcond is applied. Because of memristor fundamentals, if their common-
polarity terminals are connected in series, the values of the input memristors can
change when Vcond is applied. However, in a crossbar structure, the p-terminals of
both input memristors necessarily share a common row line, connecting their
common-polarity. Because of this, the way the MAD input memristors are con-
nected must be slightly altered when translated into a crossbar. This can be seen in
Fig. 8.

The red highlighted path follows the Vcond signal, the purple highlighted path
follows the Vset signal, and the blue highlighted path follows the voltage division
threshold signal. The only change is performed on the input memristors and the
application of Vcond. The other signals remain unchanged. The input memristors are

Fig. 8 Translation of a a MAD AND gate into b a crossbar form
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still used in conjunction with the pull down resistors to function as a voltage divider
circuit; however it takes a different form. Instead of connecting the input memristors
in series and applying Vcond and GND to the terminals, Vcond is applied to the
n-terminal of both input memristors and their shared row line is connected to GND
via the pull down memristor. The voltage at V is still sensed, but this node is now
shared by both input resistors. The resistor Rg values are selected to coincide with
the values commonly used in other works in crossbars and to provide simplicity for
calculations. However, Rg can be selected for the given application, staying within
the design parameters specified in this chapter.

Now that the MAD structure has been transformed, it can be inserted into a
crossbar. Figure 9 shows the execution of a MAD AND gate in a crossbar structure
using the new circuitry.

The gate from Fig. 8 has been directly mapped in a one-to-one fashion to the
crossbar. The inputs p and q are two memristors on the same row in the crossbar. To
sense the values of p and q, the row and bit lines of p and q are selected and Vcond is
driven on both bit lines while the row is grounded. The row line now represents the
sensed node voltage, V.

Fig. 9 MAD AND gate in a crossbar structure
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In the second step, the sensed value at V is used to drive the select lines on the
result memristor’s row and bit lines. If the value of V is greater than the threshold of
the select line gates, then Vset and GND will be driven to the result memristor Res
and it will be set to 1. Otherwise, the row and bit lines will not be selected and Res
will remain at 0. Vapply is calculated using the same methodology as the standard
MAD gates.

For the XOR and XNOR operation, the same crossbar circuit is used but now Va

and Vb are sensed rather than V. Figure 10 shows this for the XNOR operation.
For example purposes, Let Rg = 2 K ohms, low resistance = 1 K, and high

resistance = 100 K. When both input memristors are 0, the voltages at Va and Vb

are 0.975 V. When input memristor p is a 1 and q is a 0, the voltage at Va is 0.6 V
and the voltage at Vb is 0.982 V. If the values of the inputs are swapped the
voltages at Va and Vb swap accordingly. If both inputs are a 1, the voltages at Va

and Vb are 5/7 V. Thus, together, Va and Vb can be used to differentiate the four
input scenarios.

In the original XNOR MAD gate, two separate conditions on two switches must
both be true to gate the Vset signal to the result memristor. This was implemented by
placing two switches in parallel between the Vset signal and the result memristor,

Fig. 10 MAD XNOR gate in a crossbar structure
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one gated by Va (with threshold VapplyA) and one gated by Vb (with threshold
VapplyB). To correctly perform an XNOR, VapplyA > 0.6 V and VapplyB > 0.6 V.
The result memristor will only be set to 1 when both of these conditions are true,
which only occurs when both inputs are 0 or both inputs are 1. Thus, a XNOR
operation occurs.

However, this structure is not conducive to the context of a crossbar. In a
crossbar, the same functionality can be achieved by placing one switch on the bit
line gating Vset and one switch on the row line gating GND. One switch will still be
gated by the voltage Va and the other by the voltage Vb. This effectively achieves
the same operation as the original XNOR gate.

For XOR, two switches will be placed in parallel gating Vset such that Vap-

plyA > 0.975 V and V applyB > 0.975 V. If either of these conditions is true, the result
memristor will be set to 1. This corresponds to the cases when one of the inputs is 0
and the other is 1.

Recall that the NOT and COPY operations only require a single input memristor
in the MAD gate design. Since these two gates do not use input memristors in
series, there are no issues with the way the terminals of the memristors are con-
nected in the gate design. Thus, their gate designs do not need to be altered at all to
translate into the crossbar context. This can be seen in Fig. 11.

Fig. 11 MAD NOT gate in a crossbar structure
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Vselect is driven high for the row and bit line of the input memristor to create a
circuit from Vcond, through the input memristor and pull down resistor, to GND. In
the next step, the voltage sensed at V is used to determine if Vset should be gated to
the result memristor Res. This is identical to the original MAD NOT gate execution.

4.3 Crossbar Analysis and Comparison

The IMPLY operation is the most commonly used approach to logic-in-memory. It
has been shown to function correctly on physical memristors and also has the
benefit of implementing a logically complete set of Boolean operations. Thirdly,
since it can easily be mapped to the crossbar, it is a natural first step in memristor
memory. However, the IMPLY operation suffers from long-latency, serialized
operations and overwrites inputs during operation. Many other approaches have
been proposed to improve over these limitations. Other approaches include MAGIC
gates (Kvatinsky 2014a), CRS cells (Yang 2016), and more (Zhang et al. 2015a, b),
but none are as established as the IMPLY operation.

None of these proposals for memristor crossbar logic, including IMPLY, can
perform multiple operations in parallel and each has their own tradeoffs and
shortcomings. MAD gates overcome all the issues associated with the other pro-
posals and offer a complete set of logic-in-memory operations with lower area and
step counts. They also offer a logically complete set of operations that handles high
fanout, does not overwrite operands, and can perform the COPY operation.

MAD gates require only 1 memristor per operand and 2 steps for every Boolean
operation. Although it only takes a single step to perform an IMPLY, it takes
multiple IMPLY steps to achieve most Boolean operations. For example, the XOR
operation requires as many as 6 steps and 5 memristors in a crossbar. MAGIC gates
have the same complexity and latency as MAD gates but only the NOR gate has
been successfully mapped into a crossbar. Since every other Boolean operation
must be performed via a series of NOR operations, their delays are much higher
than their MAD counterparts. Zhang, et al. propose a novel OR gate that can exist
in a crossbar and pair it with another AND gate design and the IMPLY NOT
operation to create a logically complete set for logic-in-memory operations.
However, these gates destroy one of the operands during operation. MAD gates use
an additional memristor to store the result, leaving the inputs intact for subsequent
use. Zhang et al. also takes more steps for the NOR and NAND operations and does
not offer implementations for the XOR or XNOR operations.

CRS cells have been proposed as an alternative to the commonly used memristor
cells in a crossbar to achieve lower delay and area. However, each CRS cell uses
two memristors rather than one and requires initialization on all operands before
Boolean computation. This incurs an extra delay for each operation. This design
also overwrites one of the input operands to store the result. CRS cells are only
capable of performing NAND-AND and NOR-OR operations, each of which
requires 3 steps as compared to 2 in MAD. All other Boolean operations must be
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constructed from a series of these operations, requiring a total of N + 2 steps where
N is the number of NAND and NOR operations required for the Boolean operation.

A full breakdown of the comparison between the proposed MAD crossbar
(Guckert 2016) operations with prior work is given in Tables 8 and 9.

One consequence of the MAD approach is the use of multiple voltages. The
Vcond, Vset, and Vreset are all necessary for execution. Although this is equivalent to
the number of voltage sources used by the IMPLY operation, other proposed
approaches such as MAGIC gates only require a single voltage source. However,
this is likely because this approach is only capable of implementing a single
operation, namely the NOR, in a crossbar. If additional Boolean operations were
tackled, especially the XOR operation, it is likely that the number of voltages
required would increase to match or exceed those required by MAD. The CRS and
Zhang, et al. approaches both require 4 voltage sources, more than MAD and
IMPLY. In Zhang, et al., the first three voltages are similar to those in the IMPLY
and MAD approaches, and the fourth voltage has the same magnitude as Vcond but
opposite polarity.

In addition to low latency and low area, MAD gates also offer increased flexi-
bility over previous approaches. In the IMPLY circuitry, the result memristor
inherently must lie on the same row as the input memristors since one of the inputs
is used for the output. In a MAD operation in a crossbar, the result can lie on any
row line and bit line. This is important for full system designs if logic-in-memory is
going to be harnessed for performance gains. If data is frequently being moved
around in the memory in order to read, write, and execute logic, the advantages of
performing the logic in the memory rather than the CPU is diminished or even
eliminated. Operations in the other proposed approaches suffer from this risk, but
MAD operations in memory do not.

Table 8 Latency
comparisons for the MAD
crossbar and prior crossbar
approaches

Op IMPLY MAGIC CRS Zhang et al. MAD

p NAND q 2 N/A 3 3 2
p AND q 3 N/A 6 2 2
p NOR q 5 1 3 3 2
p OR q 4 N/A 6 2 2
p XOR q 8 N/A 6 N/A 2
NOT p 1 N/A 3 2 2

Table 9 Area comparisons
for the MAD crossbar and
prior crossbar approaches

Op IMPLY MAGIC CRS Zhang et al. MAD

p NAND q 3 N/A 6 2 3
p AND q 4 N/A 8 2 3
p NOR q 6 3 6 2 3
p OR q 6 N/A 8 2 3
p XOR q 7 N/A 8 N/A 3
NOT p 2 N/A 6 2 2
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Also, because the voltages associated with the inputs are sensed in a single step
and used as drivers in a latter step, these voltages can be used multiple times for
operations, which use the same inputs. This can result in increased latency and
energy savings by removing the sense step on the input memristors for all additional
operations using the same inputs. For example, if it is desired to execute A AND B
followed by A OR B, the first step will send the voltage division circuitry on the
input memristors A and B, the second step will drive the write operation for the A
AND B result memristor, and the third step will drive the write operation for the A
OR B result memristor. In a naïve approach, the sense operation would occur again
before writing the A OR B result memristor. Using this knowledge,
logic-in-memory operations that use the same inputs should be prioritized to exe-
cute consecutively.

Another benefit of MAD gates, and perhaps the most critical, is the fact that the
input memristors are not overwritten at any time during execution. This allows for
reuse of the operands for later operations if needed. It also retains this data in
memory to be read or written later by the system. Since all of the other proposed
approaches to crossbar logic overwrite one or more of the input operands during
execution, the original data is lost. Thus, if the system were to need this data for
another operation or a simple write, it would need to execute additional instructions
to reproduce this value. This would involve reading the data out of memory and
storing it in auxiliary space, then performing logic-in-memory operations, moving
the result of the operations to another location, and finally writing back the original
value from auxiliary space to the memory.

Lastly, MAD gates do not require any memristors or steps for holding inter-
mediate values in the calculation of a Boolean operation. All memristors in a MAD
gate, whether in a logic or memory context, are either inputs or outputs of the
Boolean operation. In other approaches, such as CRS and IMPLY, numerous
memristors are required during intermediate steps. This leads to extra memory cells
that do not hold any “real” valuable data. This has long-reaching effects that
degrade performance, area, and power in full system designs. MAD gates overcome
all of these deficiencies.

5 Memristor Design Considerations

There are a few design principles that should be discussed and analyzed in order to
design successful memristor designs. This section will discuss properties and
advantages of memristors as well as issues and considerations that arise specific to
the IMPLY and MAD contexts.
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5.1 Pipelining Logic

One of the most important benefits of the presented approaches to memristor logic
is the ability to parallelize and pipeline operations to improve bandwidth and reduce
latency and area. Recall that both the IMPLY and MAD methodologies harness the
idea of bringing the computation to the data through the use of voltage drivers.
Because of this, the data is not “flowing” through the system as it is in traditional
Von Neumann systems. Thus, it is possible to reuse the memristor computational
elements as soon as they finish their operation.

Recall the multiplexer example. Let’s assume this multiplexer lies in a larger
system and is used to produce an input to another logic block which is also con-
structed from memristors. As soon as the latter logic block applies Vcond to the
output of the mux and senses its value into its memristor circuitry, the multiplexer
has effectively completed its operation. Now, the multiplexer can accept new inputs
and begin a second multiplexer operation while the latter logic block continues to
process the previous input. This can be done in parallel because the data is con-
tained in disjoint memristors in separate circuits and only the computations, or the
driver signals, are moving. In this way, the effective latency of the entire circuit is
reduced to the largest latency of the individual blocks. As a result, IMPLY and
MAD approaches to logic offer vastly improved bandwidth and latency as com-
pared to traditional CMOS logic circuits.

5.2 General Considerations

First, it is always good practice to revisit the parameterized values assigned to
components each time a new application, variation, or optimization is introduced.
For example, the doping width and low resistance and high resistance values could
be changed for the memristors. Similarly, the values of the pull down resistors may
need to change. Depending on the functionality, sensitivity, and context of the
circuit and the processing technology, different values should be selected. Also, it is
important to note that many of these principles work in simulation, but extra care
must be in taken on fabricated memristors. One of the major drawbacks of current
state-of-the-art memristors is their subpar endurance and their high variability.
Thus, memristors should be studied thoroughly before being used for critical,
highly-sensitive, or frequently executed circuit designs.

5.3 Interference and Sneak Paths

One issue with memristor crossbars is sneak paths (Snider 2004; David 1968;
Lynch 1969; Shin 2012; Cassuto 2013). This refers to the ability for current to
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traverse through other memristor cells when the Vcond and Vset signals are applied.
This can cause two issues. First, if the current is high enough, the value of unin-
tended memristors can be affected. Second, it can weaken the currents through the
intended cells, causing the operation to function incorrectly. There are multiple
ways to reconcile this issue; however each comes with a different cost tradeoff. For
example, one approach to eliminate this issue is to apply a voltage Vp to every
inactive line in the crossbar (Zhu 2013).

The MAD implementations in the crossbar have another possibility for inter-
ference between the input memristors and the result memristor. Activating multiple
row lines will lead to interference and false currents in the crossbar. Because of this,
the sense and write stages must occur in successive cycles rather than in the same
cycle. The voltage sensed in the first stage can be buffered or stored in a standard
latch for use in the subsequent set cycle. This is not an issue for the IMPLY
operation since one of the input memristors is also used as the result memristor.

5.4 Boolean Operation and Threshold Gate Selection

Depending on the Boolean operation being performed on a MAD gate or MAD
crossbar, the threshold voltage, or Vapply, of the gated drivers will vary. However,
the hardware cannot be reconfigured dynamically to alter this value. This is not an
issue for logic circuits since their operations are determined by their functionality,
but the crossbar must adapt to this complexity.

In a real implementation, a single switch cannot be used to drive a given line in
the crossbar. Instead, every row and bit line in the crossbar must have the ability to
be driven by multiple inputs, each corresponding to a different Boolean operation.
The encoding for the Boolean operation will be used to select which one of the
input lines is used to drive the given row and column of the result memristor.
A visualization of this can be seen in Fig. 12.

Now, the Vset signal has multiple paths to the crossbar, one for each Boolean
operation. Let the first path correspond to the AND operation. Thus, a single switch,
Sand will lie on this path and have a Vapply corresponding to the voltage calculated
in prior sections. Let the second path correspond to the OR operation. A single
switch, Sor, will lie on this path with its calculated Vapply value. Both will be driven
by the Vs signal. The third path will have two parallel switches for the XOR
operation, Sxora and Sxorb, driven by the voltages Va and Vb. The process will
continue for each of the remaining operations. The path corresponding to the
encoded Boolean operation will be selected and gated to the relevant bit line in the
crossbar. Similar logic exists for the row lines.
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5.5 Threshold Sensitivity

The final concern of this design is the sensitivity of the circuitry in correctly
differentiating the voltages at the sense nodes to determine the threshold satisfaction
on the row and bit lines. For example, for the XOR operation, the switches must be
sensitive enough to differentiate 0.975 versus 0.982 V in the example.

There are two solutions to this issue. The first solution is to reselect the
parameterized values of the system, namely the values of low-resistance,
high-resistance, and the pull down resistor Rg. For example, by changing the value
of the resistors on the row and bit lines, the value of Vcond, and the low and high
resistances of the memristors, the threshold voltages can be changed. The values
selected in this paper were done for simplicity and serve as motivation and do not
necessarily represent ideal values. Note that care must be taken when these
parameters are chosen to abide by the rules of IMPLY design as specified in prior
work (Kvatinsky 2014b).

The second solution is to add additional circuitry to the logic for the XOR
operation. For example, an additional switch driven by Vs can be placed in series on
the path to the result memristor. Let this switch have threshold voltage VapplyS such
that VapplyS > 0.25 V. This switch will be used to protect against the case that the
XOR logic does not correctly differentiate 0.975 and 0.982 V when both input
memristors are 0. Since the value of Vs is about 50 mV in this scenario, the
threshold condition for this switch will not be satisfied and the result memristor will

Fig. 12 Driver logic for selecting Boolean operations
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not be set. Thus, even if the initial two switches cannot correctly resolve 0.975
versus 0.982 V, the result will be correct. The consequence of this approach is
additional complexity.

6 Conclusion

This chapter introduced the concept of memristor logic and its applications to
standard logic circuits, crossbars, and non-traditional logic-in-memory. Two
approaches to memristor logic were presented: IMPLY and MAD gates. A multi-
plexer is used as an example to introduce how logic is performed in each
methodology and compare the costs and benefits of each.

The IMPLY operation is the most popularized approach due to its ability to
implement a logically complete set of Boolean operations and its conformity to a
crossbar structure. However, IMPLY operations suffer from high latencies and a
large number of memristors. Overall, this can lead to poor efficiency.

MAD gates have been shown to offer a low latency, low area alternative to prior
approaches to memristor-based logic. MAD gates require a single cycle regardless
of the Boolean operation, including the XOR, XNOR, and COPY operations. They
also do not overwrite input memristors and only require 1 memristor per operand.
This improves over all previously proposed approaches to memristor logic in terms
of both area and step count. MAD gates can also be transformed into the context of
a crossbar, but the latency of each operation increases to two steps. This is in part to
allow flexibility on the crossbar structure, allowing the result to lie in any row and
allowing the input memristors to be reused. Overall, MAD gates provide an opti-
mally low-area and low-latency implementation for memristor circuit designs in
both the logic and memory settings.

There are many design parameters and practices that should be considered when
designing memristor-based circuits. Depending on the context of the circuit, these
considerations can change. For example, appropriate values of driver voltages,
threshold voltages, and pull down resistors all depend heavily on the approach to
memristor logic, where it’s being used, and the memristor properties themselves. In
addition to these design decisions, memristors can exhibit some complications that
traditional CMOS circuits do not. For example, issues such as sneak paths and
interference can arise and should be handled or addressed to ensure correct func-
tionality. Finally, benefits of memristors can be harnessed, such as their ability to
pipeline execution, improving their latency and resource utilization over CMOS
designs.

Future research in this area can follow many different avenues. There is still a
multitude of exploration to be done in exploring the implementation of more
complex circuits using proposed approaches to memristor logic. Secondly, both
memristor logic circuits and crossbar memories capable of performing
logic-in-memory can be further optimized and demonstrated in real, fabricated
systems. Specifically, exploring how non-Von Neumann systems and pipelined
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logic designs can be constructed from memristors to create modern, low area, low
delay systems will prove very interesting. Lastly, research should explore better
models and simulation tools for the memristor realm are key to enabling this field to
progress.
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RF/Microwave Applications of Memristors

Milka Potrebić, Dejan Tošić and Dalibor Biolek

Abstract Memristor-based technology could be utilized, potentially, to enhance
performance of many RF/microwave subsystems. Application of memristors in
RF/microwave circuits, and in a broader context in electromagnetic systems, is
another challenging field for researchers and engineers. In this application frontier,
the research efforts might be divided, for example, into the following important
classes of applications: (1) frequency selective surface, reconfigurable planar
absorber, (2) reconfigurable antenna, direct antenna modulation, (3) RF/microwave
filter, split-ring resonator filter, hairpin-line filter, capacitively coupled resonator
filter, quasi-Gaussian lossy filter, (4) Wilkinson power divider. Memristors could be
exploited as linear resistors with programmable resistance, which can be accurately
adjusted to a desired or specified value. Precise controllability of the memristance
value might be important for tuning microwave circuits and optimizing their per-
formance. In several applications, such as filters, the high-frequency range of the
operation enforces the memristor into the role of a linear resistor whose resistance
can be adjusted electronically. On the other hand, some applications, such as
reconfigurable electromagnetic absorbers, benefit from memristors as electromag-
netic switches. Due to the unavailability of commercial memristors, it is necessary to
use accurate circuit-level simulations for experimenting with the memristor-based
RF/microwave circuits and for studying their performance. RF/microwave circuit
simulators, which use the HSPICE engine for the time-domain transient simulation,
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such as NI AWR Microwave Office, can be used to verify the expected functionality
of the considered memristor-based circuits.

Keywords Memristor ⋅ Reconfigurable planar absorber ⋅ Reconfigurable
antenna ⋅ RF/microwave filter ⋅ Wilkinson power divider

1 Introduction

The memristor is a two-terminal one-port electric circuit element, envisioned,
postulated and conceptualized by Chua, characterized by a constitutive relation
between the time integral of the element’s current and the time integral of the
element’s voltage (Chua 1971). The element is detailed by the inventor in many
recent papers, e.g. (Chua 2011, 2012, 2015). Several scientific books and mono-
graphs were dedicated to memristors, e.g. (Adamatzky and Chua 2014; Tetzlaff
2014; Radwan and Fouda 2015; Vaidyanathan and Volos 2016a, b).

Memristor symbol and the constitutive relation are shown in Fig. 1.
Conventionally, q is called the charge and φ is called the flux of the memristor

but these quantities need not have any physical interpretations.
The memristor is said to be charge-controlled if its constitutive relation can be

expressed by

φ=ΦðqÞ ð1Þ

where Φ(q) is a continuous and piecewise-differentiable function with bounded
slopes. Differentiating (1) with respect to time t, the memristor port equation is
obtained

v=
dφ
dt

=
dΦðqÞ
dq

dq
dt

=MðqÞ i ð2Þ

where

MðqÞ= dΦðqÞ
dq

ð3Þ

Fig. 1 Memristor symbol
and constitutive relation
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is called the memristance at q. Just as memristor is an acronym for memory resistor,
memristance is an acronym for memory resistance. It should be noted that the
memristance at any time depends on the entire past history of the element’s current.
Equations (2) and (3) define an ideal memristor.

The memristor exhibits a distinctive “fingerprint” characterized by a pinched
hysteresis loop, a double-valued Lissajous figure passing through the origin, con-
fined to the first and the third quadrants of the v-i plane. Consequently, Chua
establishes the following identification of memristors (Chua 2011): “Any
two-terminal device which exhibits a pinched hysteresis loop in the v-i plane when
driven by any bipolar periodic voltage or current waveform, for any initial condi-
tions, is a memristor. The loop shrinks to a straight line whose slope depends on the
excitation waveform, as the excitation frequency tends to infinity”.

An important and salient feature of the memristor is that it exhibits non-volatile
memory (Chua 2012): when a memristor is opened or short-circuited, or when the
excitation is switched off, the memristor holds its charge and the flux and “mem-
orizes” its memristance—it is a resistor with memory.

In addition to the three traditional fundamental passive circuit elements, the
resistor, the capacitor and the inductor, the memristor is the fourth basic ideal (pure)
element of electric circuits characterized by a state-dependent Ohm’s law. In a
broader sense, the memristor begins a subclass of memristive systems introduced by
Chua and Kang (1976).

Extensive analysis of the memristor salient properties and the detailed memristor
fingerprints summary, from the simulation and modeling viewpoint, are presented
in Tetzlaff (2014) along with the generalization to memristive systems and non-
electrical applications.

The successful implementation of memristor is a titanium-dioxide nano device
fabricated at Hewlett-Packard Laboratories (Strukov 2008). The memristive
behavior was observed by the Hewlett Packard researchers during their experimental
work with nanoscale crossbar memory arrays. This pure solid-state implementation
of memristor, without an internal power supply, is sometimes referred to as the HP
memristor. Nanoscale RF memristive switch was reported by Pi et al. (2015).

Recently, some companies (Bio Inspired Technologies 2016, Knowm) have
announced memristor implementations, for example as 44-pin PLCC and 16-pin
DIP packages. Commercial memristors for RF/microwave applications are still not
available as off-the-shelf components, so reliable circuit models are needed to
explore and simulate application circuits which exploit memristor’s potential
(Pickett et al. 2009; Biolek et al. 2013, 2015; Biolek and Biolek 2014; Ascoli et al.
2013a, b, c; Bayat et al. 2015).

The direct physical realization of memristor as the fourth basic circuit element
opens new vistas and research interests in many application fields ranging from
digital memories to analog devices. Moreover, special issues of the eminent IEEE
publications have been dedicated to this emerging technology (IEEE 2012, 2013).

Despite an immense interest among researchers and engineers on the memristor,
commercial memristors are still not available, so various memristor models have
been reported to help simulate application circuits. SPICE (Simulation Program
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with Integrated Circuit Emphasis) is a general-purpose simulation program which
allows the testing of complex circuits before they are actually implemented
experimentally, so it can be useful for simulating memristor-based circuits (Abdalla
and Pickett 2011; Batas and Fiedler 2011; Prodromakis et al. 2011; Corinto and
Ascoli 2012; Eshraghian et al. 2012; Kolka et al. 2012; Ascoli et al. 2013a, b, c;
Kvatinsky et al. 2013a, b; Pershin and Di Ventra 2013; Yakopcic et al. 2013).

Memristors hold promise for use in diverse applications ranging from digital
memories and logic to analog circuits and systems. In analog circuits, the resistance
may require a continuous value, so memristors might be used as configurable
components and the desired resistance could be initialized by a specific procedure,
different from the expected circuit operation (Pershin and Di Ventra 2010;
Kvatinsky et al. 2013a, b; Ascoli et al. 2013a, b, c).

Memristor-based technology could be utilized, potentially, to enhance perfor-
mance of many RF/microwave subsystems, as well. Application of memristors in
RF/microwave circuits, and in a broader context in electromagnetic systems, is
another challenging field for researchers and engineers. In this application frontier,
the research efforts might be divided into several important classes of applications,
such as frequency selective surfaces, antennas, filters, and other RF/microwave
circuits (Xu et al. 2014a, b; Potrebić and Tošić 2015; Gregory and Werner 2015).

Bray and Werner utilize memristors as electromagnetic switches to implement a
frequency selective surface (Bray and Werner 2009, 2010). Werner and Gregory
analyze a memristor-based electromagnetic absorber (Werner and Gregory 2012).
Wang et al. report the broadband radiation properties of a microstrip patch L-band
antenna directly modulated by dual high-frequency resistive memristors (Wang
et al. 2011). Gregory details on finite-difference time-domain (FDTD) modeling of
memristive devices and some configurable memristor-based electromagnetic devi-
ces (Gregory 2013). Sombrin et al. use the ideal memristor as a behavioral model
for passive non-linearity in filters, antennas and connections (Sombrin et al. 2014).
Gregory and Werner analyze a polarization-switchable patch antenna with mem-
ristors as microwave switches (Gregory and Werner 2014). Xu et al. analyze a
planar ultra-wideband (UWB) monopole antenna with memristor-based reconfig-
urable notched band (Xu et al. 2014a, b). Wu et al. explore the feasibility of
fabrication transient photonic memristor at microwave frequencies with metama-
terials (Wu et al. 2014). Xu et al. incorporate a memristor in a microstrip trans-
mission line as a load, analyze single memristor-loaded split-ring resonator filter,
and utilize a memristor as a carrier-wave modulator connecting a microstrip patch
antenna to the ground (Xu et al. 2014a, b). Potrebić and Tošić utilize memristors as
configurable linear resistors in a power divider, coupled-resonator bandpass filters,
and a low-reflection quasi-Gaussian lowpass filter with lossy elements, and propose
memristor-based bandpass filters that feature suppression of parasitic frequency
pass bands and widening of the desired rejection band (Potrebić and Tošić 2015).

For RF/microwave applications memristors could be exploited as linear resistors
with programmable resistance, which can be accurately adjusted to a desired or
specified value. Precise controllability of the memristance value might be important
for tuning microwave circuits and optimizing their performance. In several
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applications, such as filters, the high-frequency range of the operation enforces the
memristor into the role of a linear resistor whose resistance can be adjusted elec-
tronically. On the other hand, some applications, such as reconfigurable electro-
magnetic absorbers, benefit from memristors as electromagnetic switches.

Due to the unavailability of commercial memristors, it is necessary to use
accurate circuit-level simulations for experimenting with the memristor-based
RF/microwave circuits and for studying their performance. RF/microwave circuit
simulators, which use the HSPICE engine (HSPICE 2016) for the time-domain
transient simulation, such as NI AWR Microwave Office (NI 2016), can be used to
verify the expected functionality of the considered memristor-based circuits.

The rest of the chapter is organized as follows. The next Section provides a brief
description of transient simulations of RF/microwave circuits with memristors.
Section 3 presents memristor-based reconfigurable frequency selective surfaces and
planar absorbers. Antennas with memristors are presented in Sect. 4.
Memristor-based RF/microwave passive circuits are dealt with in Sect. 5. Finally,
Sect. 6 outlines the conclusions of this study and some thoughts for future work.

2 Simulation of RF/Microwave Circuits with Memristors

SPICE (Simulation Program with Integrated Circuit Emphasis) can be used for the
simulation of RF/microwave circuits from DC to microwave frequencies higher
than 100 GHz. Transmission lines are often encountered in these circuits, so a
versatile transmission line model is needed for simulations from a simple lossless
line to complex frequency-dependent lossy coupled lines. In general, transmission
line simulation is challenging and time-consuming since extracting the transmission
line parameters from physical geometry takes a significant effort.

Transient simulation is also important for predicting the time-domain behavior
of RF/microwave circuits, especially when they include memristors. An advanced
SPICE-based simulator is needed to achieve accurate transient simulations of high
frequency circuits containing substrate-specific distributed components, coupled
transmission lines, discontinuities, and components characterized by
frequency-dependent multiport parameters obtained from numerical electromag-
netic (EM) analysis. In addition, the skin effect, proximity effect, edge effect,
dielectric and conductor losses, and surface roughness should be taken into account
for realistic models of distributed RF/microwave devices. Furthermore, all models
should preserve the interdependencies of frequency-domain data, the correct
asymptotic behavior of the data at high frequencies, and ensure causality in the
time-domain simulation (Wedge et al. 2005). It should be emphasized that all
models intended for use in transient simulations must be causal (having a response
that does not appear before the stimulus).

NI AWR Microwave Office (MWO) is an example of an environment in which
the model generation is performed automatically for various RF/microwave com-
ponents. Moreover, the native HSPICE netlist can be incorporated as a model of a
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multiport device, e.g. the memristor. As a result, microwave circuits with memristors
can be simulated in the time domain with HSPICE, which is included in the envi-
ronment (Wasserman et al. 2005). The W-element and the S-element are the crucial
HSPICE elements for the transient simulation of RF/microwave circuits. Generally,
multiconductor transmission line structures are represented by the W-element and
the frequency dependant N-port parameters are represented by the S-element.

Idealized simple RF/microwave circuits with memristors can be simulated by
LTspice, a free SPICE implementation (Engelhardt 2015), as well (Potrebić and
Tošić 2015). The LTspice model of the ideal memristor, Fig. 2, is based on the
memristorR1 model and subcircuit proposed by Biolek et al. (2013) and Tetzlaff
(2014). The corresponding fingerprint, a pinched hysteresis loop passing through
the origin, is shown in Fig. 3.

Roff
{Roff}

BEres

V = (Ron-Roff)/(1+a*exp(-4*k*V(q)))*I(BEres)

BGq

I = I(BEres)
Rpar=100MEG
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1
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SINE(0 1 1)
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q
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+ plotwinsize=0
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model of memristive port
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Fig. 2 LTspice model of the ideal memristor based on the memristor R1 model and subcircuit
proposed by Biolek et al.
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Fig. 3 Fingerprint of the ideal memristor of Fig. 2: Pinched hysteresis loop, a double-valued
Lissajous figure passing through the origin, confined to the first and the third quadrants of the v-i
plane
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Transient simulation of an RF/microwave circuit with frequency dependant
parameters is exemplified by the circuit of Fig. 4, in NI AWR Microwave Office
(MWO), and the corresponding response is shown in Fig. 5. The circuit consists of
a microstrip transmission line section terminated by a memristor and driven by a
sinusoidal voltage source: amplitude 2 V, frequency 1 GHz.

The microstrip line is implemented on the standard Rogers RO4003 substrate
(Rogers 2015) characterized by the following physical parameters: relative permit-
tivity 3.55, loss tangent 0.0021, thickness 0.508 mm, copper cladding 17 μm, width
1.124 mm, length 44.86 mm. The characteristic impedance of the line is 50 Ω.
Conductor losses are set via the Rho parameter (the bulk resistivity of conductor
metal normalized to gold) and the empirical value of 3 takes into account the surface
roughness and the skin effect.

Memristor is represented by the two-terminal element SUBCKT NET =
“memristorR1” specified as a native HSPICE netlist containing the ideal memristor
model R1 proposed by Biolek et al. The initial resistance of the memristor is set to 50
Ω. The netlist is an HSPICE subcircuit as follows (Biolek et al. 2013):

ACVS
ID=V1
Mag=2 V
Ang=0 Deg
Offset=0 V
DCVal=0 V

I_METER
ID=AMP1

V_METER
ID=VM1

MLIN
ID=TL1
W=1.124 mm
L=44.86 mm

MSUB
Er=3.55
H=0.508 mm
T=0.017 mm
Rho=3
Tand=0.0021
ErNom=3.55
Name=RO4003

RES
ID=R1
R=50 Ohm

1

2

SUBCKT
ID=S1
NET="memristorR1"
RON=10
ROFF=1e4
RINI=50

Fig. 4 RF/microwave circuit with memristor in NI AWR Microwave Office
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The HSPICE time-domain simulation is performed from 0 to 8 ns with the time
step of 0.005 ns. NI AWR Microwave Office computes the frequency-dependant
parameters of the dispersive lossy microstrip transmission line and generates the
corresponding causal model of the circuit for HSPICE. Next, HSPICE is
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Memristor Voltage and Current
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SchematicMemristor.HS
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SchematicMemristor.HS

p1: Freq = 1 GHz

p2: Freq = 1 GHz

Fig. 5 Time-domain response of the circuit shown in Fig. 4
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automatically invoked to carry out the time-domain simulation. The simulation
results are available for presentation, e.g., via the V_METER and I_METER
elements.

Initial RF/microwave circuit design often starts with idealized components.
Therefore, a memristor-based microwave circuit composed of ideal elements is
expected to give a good insight into the circuit operation and performance. This
work considers only circuits with ideal memristors and is meant to be a
proof-of-concept on the potential application of memristors for RF/microwave
circuits. Our model of the memristor is a simplified version of a real operating
threshold-type memristive device.

We can use the ideal memristor as a linear resistor with a programmable
resistance, which can be adjusted with accuracy and reproducibility by auxiliary
programming circuitry. It is assumed that the signal to be processed, e.g. filtered,
should under no circumstance affect the value of the (programmed) memristance.
The resistance value is equal to Rini, shown in Fig. 2, in our modeling.

It is expected that at frequencies higher than 100 MHz, which are typical for
RF/microwave circuit operation, the memristor has behavior similar to that of a
linear resistor. Consequently, it can be assumed that the distortions of the signals
processed by memristor-based microwave circuits should be negligible. We
increase the excitation frequency of Fig. 2 to analyze the memristor dynamics with
regard to the required frequency behavior. For frequencies over 100 kHz the pin-
ched hysteresis loop of Fig. 3 degenerates to straight line implying a limiting
frequency for a linear operation and the FFT analysis shows that the higher har-
monics are more that 80 dB below the fundamental.

Precision variable resistors are important for RF/microwave circuits, e.g. in
impedance matching and for tuning the frequency characteristics. Therefore,
memristors might be promising elements for this application field.

3 Reconfigurable Frequency Selective Surfaces

Investigation of potential applications of RF memristive switches to electromag-
netic devices is initiated by Bray and Werner (2009). These researchers present a
passive reconfigurable frequency selective surface (FSS) with memristors (Bray and
Werner 2010). FSS can be switched at long standoff distances by changing its
reflectivity via a low frequency control pulse sent through incident electromagnetic
radiation. Since the resistance of the memristor is practically unchanged at high
frequencies, it can function as a variable high frequency resistor which is controlled
by a low frequency charge delivery. Consequently, a memristor can be used as a
passive electromagnetic switch.

The FSS is implemented as a periodic array of square metallic patches located in
the center of a wire grid, Fig. 6. A memristor is placed at the center of each wire on
the grid. The metallic pattern and memristors are placed on top of a dielectric
substrate.
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When the memristor resistance is very high, say greater than 5000 Ω, the FSS is
reflective at some frequency band. When the memristor resistance is very low, say
less than 100 Ω, the FSS is transmissive. Memristors are electromagnetically
switched by a low frequency control signal, e.g. a positive or negative Gaussian
pulse that is superimposed over the RF signal. The control signal should be able to
deliver enough positive or negative charge to change the resistance of memristors.
No auxiliary electronic circuitry is required on the FSS to control the memristance
of memristors—it is accomplished by electromagnetic waves incident on the FSS. It
should be noted that the reconfigurable FSS is polarization sensitive.

Memristor-based radio frequency devices are further investigated by Werner and
Gregory who present a reconfigurable planar absorber with memristors, Fig. 7
(Werner and Gregory 2012).

Unlike the bandpass frequency selective surface of Fig. 6, this planar absorber
has an electrically conducting backplane (PEC, perfect electric conductor).
Reconfigurability can be achieved by applying a voltage source at the edges of the
structure. No power or signal wires need be routed throughout the structure, as the
memristors form a voltage divider for reconfiguration. The absorber exhibits peak
absorption at some frequency of the incident electromagnetic wave.

The above work is elaborated in the doctoral dissertation (Gregory 2013) and
revisited in the recent paper (Gregory and Werner 2015).

Fig. 6 Memristor-based reconfigurable bandpass frequency selective surface
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4 Antennas with Memristors

Antennas and antenna systems might be another field for potential application of
memristive devices. Wang et al. report the first broadband radiation properties of a
microstrip patch antenna modulated by dual high-frequency resistive memristors
(Wang et al. 2011). The authors investigate an L-band microstrip square patch
antenna which is directly modulated by two memristors, Fig. 8. Memristors are
connected between the patch and the ground plane. The antenna resonates at some
RF/microwave frequency and is narrowband in the absence of memristors. When
the memristor resistance is high, say about 15 kΩ, the antenna produces the elec-
tromagnetic (EM) radiation. The radiation changes the memristance, say to about
50 Ω, which in turn corresponds to the “OFF” state of the antenna, generating a tiny
radiation: the antenna is periodically switched “OFF” and “ON”. The effect of
embedding memristors in the antenna is the broadband electromagnetic radiation.
The authors develop an EM-field-circuit model of the dual memristor structure first.

Fig. 7 Memristor-based reconfigurable planar absorber

RF/Microwave Applications of Memristors 169



Next, the model is numerically solved by a hybrid analyzing technique, which
incorporates a finite-difference time-domain (FDTD) and SPICE3 solver.

A polarization-reconfigurable microstrip square patch antenna with the mem-
ristor as the switching element is proposed by Gregory and Werner, Fig. 9 (Gregory
and Werner 2014). Four memristors are used as switching elements to connect one
of two transmission lines which feed orthogonal edges of the patch antenna. Two
memristors, M1 and M3, lie flat on the dielectric substrate, and two memristors, M2
and M4, are connected from the top metal layer to the ground plane underneath.
The antenna is designed to operate at some prescribed RF/microwave frequency
with a narrow bandwidth of several percents.

The non-volatility of the memristor as a switch is an attractive property, elim-
inating any need for a constant voltage or current bias as with PIN diodes and other
RF/microwave switching devices.

The antenna is reconfigured by applying low-frequency signals to the same
transmission line that feeds the antenna. Applying a positive voltage turns on two

Substrate (dielectric)

Ground plane

Patch

Feeding

Fig. 8 Memristors-modulated L-band microstrip square patch antenna

Ground plane

Substrate (dielectric)
Patch

Probe feed

M1
M2

M3

M4

Fig. 9 Memristor-based
polarization-reconfigurable
patch antenna (top view)
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horizontal memristors M1 and M3 and turns off two vertical memristors M2 and
M4; applying a negative voltage has the opposite effect. The antenna can switch
between two orthogonal linear polarizations.

The authors use a finite difference time-domain (FDTD) simulation tool to
accurately model the devices under switching conditions, including all of the effects
of the accompanying electromagnetic structure, while radio frequency (RF) signals
are applied.

The above work is elaborated in the doctoral dissertation (Gregory 2013) and
revisited in the recent paper (Gregory and Werner 2015).

A band-switching microstrip patch antenna with the memristor as the switching
element is proposed by Gregory and Werner, Fig. 10 (Gregory and Werner 2015).
The central rectangular metallic patch is connected to two metallic rectangular
extensions with six memristors acting as resistive switches. Two additional
inductors are placed between the patch extensions and the ground plane to form a
DC path for controlling the memristors.

Memristors connect patch extensions to the central patch and change (lower) the
resonant frequency of the antenna when the memristances are low. Consequently,
the proposed reconfigurable design achieves switching between two bands of
operation.

A finite difference time-domain (FDTD) software tool is used to simulate the
structure and to obtain the performance of the dual-band patch antenna.

The above work is elaborated in the doctoral dissertation (Gregory 2013).
Direct antenna modulation (DAM) technique using a memristor as a

carrier-wave modulator when connected across the microstrip patch antenna to the
ground is presented by Xu et al. Fig. 11 (Xu et al. 2014a, b). An RF carrier wave
signal is directly modulated by the memristor with bias controlled by a
low-frequency baseband information signal.

A square half-wavelength microstrip patch antenna is designed to have a pre-
scribed resonant frequency. The probe feed point is set along the diagonal of the

Ground plane

Substrate (dielectric)

Probe feed

PatchPatch
extension

Patch
extension

Fig. 10 Memristor-based
band-switching patch antenna
(top view)
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patch plane, where the feed point impedance has a prescribed value, say 50 Ω. The
memristor is placed at the corner of the square patch.

The authors propose two SPICE circuit models of the memristor and utilize a
hybrid circuit-field analysis technique in the finite difference time-domain (FDTD)
simulator (Xu et al. 2014a, b).

5 RF/Microwave Passive Circuits with Memristors

RF/microwave passive circuits might benefit from the memristor specific features.
Some examples according to the recent paper (Potrebić and Tošić 2015) are pre-
sented in this section.

The Wilkinson power divider (Pozar 2012) is a passive three-port linear
time-invariant microwave network, matched at all ports, which is used for power
division or power combining. In power division, an input signal is divided into two
output signals of lesser power. The divider is usually implemented in planar
technologies, such as microstrip and stripline. It can be designed with an arbitrary
power division ratio, but we shall consider the equal-split (3 dB) case only.

The Wilkinson power divider 3 dB, Fig. 12, consists of a resistor and two
quarter-wave lossless transmission-line sections. We can replace the resistor with a
memristor, excite the divider with a 2 V amplitude 1 GHz sinusoidal signal, and
observe the response at the two output ports terminated by matched loads. The
reference (nominal) impedances of all ports are 50 Ω.

The scattering parameters of the ideal Wilkinson power divider, at the operating
frequency, are given by

S=
− j
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The instantaneous voltages at the divider ports are shown in Figs. 13, 14, and 15.
The amplitude at the input port is 1 V and the amplitude at the output ports is about
0.7 V that verifies the equal-split power division. It should be noted that the output
port amplitude is slightly smaller than expected due to the losses in the transmission
line sections.

From the practical viewpoint it is important to assume/provide the following:

(1) signal to be processed by the divider should under no circumstance affect the
value of the programmed memristance,

(2) distortions of the signals processed by memristor-based divider circuits should
be negligible,

(3) input signal power should under no circumstance exceed the memristor power
rating and power-handling capability,

(4) memristor chip packaging should be suitable for the microstrip technology
implementation.
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divider 3 dB with memristor
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We hope that memristors might be useful in the design of the Wilkinson power
divider because the memristance can be adjusted—programmed—precisely to a
desired value which is not the case with ordinary microwave resistors.

Low-reflection transmission-line quasi-Gaussian lowpass filter with lossy ele-
ments is a microwave circuit that might be suitable for the memristor-based design.
Gaussian-like frequency-domain transfer functions are often desirable in digital
signal transmission because they do not yield overshoots and ringing in the time
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Fig. 13 Instantaneous voltage at the input port of the Wilkinson power divider 3 dB shown in
Fig. 12
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Fig. 14 Instantaneous voltage at the first output port of the Wilkinson power divider 3 dB shown
in Fig. 12

174 M. Potrebić et al.



domain, so a special class of low-reflection filters is required. Lossy elements are
introduced in the filter realization in order to achieve a good matching.

NI AWR Microwave Office (MWO) circuit model of the lossy quasi-Gaussian
lowpass filter proposed by Djordjević et al. (2003) is shown in Fig. 16. The voltage
source amplitude is set to 2 V in order to generate the transmission scattering
parameter. The corresponding frequency response is shown in Fig. 17. The phase
characteristic is linear in a wide frequency range. The amplitude characteristic is not
very selective.

Potrebić and Tošić propose a modified lossy filter, Fig. 18, in which the resistors
are replaced by memristors (Potrebić and Tošić 2015). The filter is excited by a sum
of three sinusoidal signals of amplitudes 2.5 V, 0.8 V and 0.5 V, at frequencies
1 GHz, 3 GHz and 5 GHz, respectively. This excitation approximates a bipolar
rectangular pulse train with the period of 1 ns and the amplitude of 2 V. The
nominal impedances of the ports are 50 Ω, i.e. the source and load impedances are
50 Ω, so the signals at the input and output ports swing from –1 to +1 V.

The expected benefit of this approach is easier and precise tunability of the
required resistances due to the inherent tunability feature of the memristor by
programming its memristance. The corresponding response is shown in Fig. 19.

The hairpin-line bandpass filter (Hong 2011) is a coupled-resonator filter real-
ized with a cascade of pairs of parallel-coupled open-circuited transmission lines. It
is suitable for planar implementations, such as the microstrip or stripline technol-
ogy, as it is easy to fabricate due to the absence of short circuits. Practically, this
filter is obtained by folding the planar half-wavelength resonators into a “U” shape.
For an accurate design of the hairpin-line bandpass filter full-wave electromagnetic
simulations are required.
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Fig. 15 Instantaneous voltage at the second output port of the Wilkinson power divider 3 dB
shown in Fig. 12
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The magnitude of the transmission scattering parameter of a typical hairpin-line
filter is presented in Fig. 20. The filter is designed as a bandpass filter with the center
frequency at 1 GHz and only one pass band is desired. Evidently, undesired pass
bands exist, which is a known side effect of all-transmission-line filter realizations.
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The hairpin-line filter is an electrically symmetrical network. Symmetrical pas-
sive two-port networks can be conveniently analyzed by using Bartlett’s bisection
theorem, Bartlett and Brune’s theorem, and the even- and odd-mode analysis
(Wanhammar 2009).
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Potrebić and Tošić propose insertion of a grounded memristor connected to the
symmetry point of the bandpass hairpin-line filter, as shown in Fig. 21, in order to
suppress some undesired pass bands and to widen the rejection band of the filter
(Potrebić and Tošić 2015). It can be shown that this approach suppresses parasitic
pass bands at the frequencies which are even multiples of the desired pass-band
center frequency.

NI AWR Microwave Office (MWO) circuit model of the stripline bandpass
hairpin-line filter with memristor is shown in Fig. 22. It suppresses some unde-
sirable pass bands and widens the rejection band. The filter is excited by two
sinusoidal RF signals with amplitudes of 2 V. The frequency of the first signal is at
1 GHz, which is the center frequency of the pass band, so the signal passes through
the filter. The second signal at 2 GHz, which is the frequency within the first
undesired pass band of the filter, is suppressed by insertion of the memristor.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Frequency (GHz)

Output Port 2

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

DB(|Vcomp(V_PROBE.VP2,1)|) (dB)
SchematicHairpin

Fig. 20 Magnitude of the transmission scattering parameter of a typical hairpin-line filter. The
frequency response has undesired pass bands. The parasitic pass bands occur at the frequencies
which are even multiples of the desired pass-band center frequency

Fig. 21 Physical three-dimensional (3D) model of the bandpass hairpin-line filter with memristor.
The filter can be implemented in a planar microstrip, or stripline technology
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The time-domain response of the memristor-based stripline bandpass
hairpin-line filter is shown in Fig. 23. The output signal is sinusoidal at 1 GHz. It is
slightly attenuated due to the dielectric and conductor losses. The second compo-
nent of the excitation, the RF signal at 2 GHz, is suppressed.

The above concept can be also applied to the capacitively coupled resonator
filter, which is useful for narrowband applications, usually with bandwidths of less
than 10% of center frequency (Hong 2011). This filter can be implemented in planar
technologies, e.g. as the end-coupled microstrip half-wavelength resonator band-
pass filter. The resonators are open-end microstrip resonators that are approximately
a half guided wavelength long at the center frequency of the bandpass filter. The
resonators are capacitively coupled through the gap between the two adjacent open
ends.

Potrebić and Tošić propose insertion of a grounded memristor connected to the
middle of the central resonator of the capacitively coupled resonator filter in order
to suppress some undesired pass bands (at even multiples of the desired pass-band
center frequency) and to widen the rejection band of the filter (Potrebić and Tošić
2015).

The filter is excited by two sinusoidal RF signals. The frequency of the first
signal is at 1 GHz, which is the center frequency of the pass band, so the signal
passes through the filter. The second signal at 2 GHz, which is the frequency within
the first undesired pass band of the filter, is suppressed by insertion of the
memristor.

Memristors might be potentially utilized for the design of reconfigurable
RF/microwave planar filters, as well. Xu et al. design a reconfigurable microstrip
bandpass filter based on a memristor-loaded resonator (Xu et al. 2014a, b).
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Fig. 23 Time-domain response of the hairpin-line filter with memristors. The output signal is
sinusoidal at 1 GHz
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The structure of the conventional single-mode open-loop bandpass filter with
memristor is shown in Fig. 24. The second resonant frequency can be generated or
suppressed depending on the memristance while the fundamental resonant fre-
quency is not affected. When the memristance is high, the second passband is
generated and the filter could become a dual-band bandpass filter, which is the same
as the conventional single-mode open-loop filter without a memristor. As the
memristance decreases, the second passband disappears.

In contrast to the conventional RF/microwave switches, the memristor-based
reconfigurable bandpass filter does not require a continuous power supply and
consumes little energy (Xu et al. 2014a, b).

6 Conclusion

Memory circuit elements are gaining significant attention owing to their ubiquity
and potential use in miscellaneous areas of engineering. In this work we have
presented prospective utilization of memristors in microwave passive circuits.
Memristors are exploited as linear resistors with programmable resistance, which
can be accurately adjusted to a desired or specified value. Precise controllability of
the memristance value might be important for tuning microwave circuits and
optimizing their performance.

The signals processed by microwave circuits are typically sinusoidal with very
high frequencies with respect to the memristor characteristics. Consequently, we
expect that the memristor should keep its memristance at the initial value, which has
been setup by some other control circuitry. Therefore, we may possibly replace
resistors by memristors in the traditional designs of microwave circuits. It should be
noted that the way of modeling the nonlinear behavior of the memristor in this case
is not so much important because at such frequency range the memristor behaves as
a pure linear resistor.
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Fig. 24 Reconfigurable
microstrip bandpass filter
based on a memristor-loaded
resonator (top view)
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The Wilkinson power divider has been presented in this work as an example of a
microwave device that inherently comprises a resistor in its realization. The
resistance value is critical for the expected operation, so the memristor might be a
promising solution.

Coupled-resonator half-wavelength bandpass filters, the hairpin-line filter and
the capacitively coupled filter, have been modified in this work by inserting a
memristor at the symmetry plane of the filters. The memristor-based filters have
shown a wider rejection band and suppression of the unwanted pass bands at the
frequencies that are even multiples of the center frequency of the desired pass band.
By fine tuning the memristance value, a compromise between attenuation in the
pass band and the amount of suppression could be achieved.

Lowpass transmission-line quasi-Gaussian filter has been presented in this work
as an example of a microwave filter that inherently comprises lossy resistive ele-
ments. The filter design requires optimization of the resistances to achieve the target
performance—linear phase characteristic. Accordingly, the memristor might be
beneficial as a replacement for resistors and the memristance electronic adjustment
might be a solution to the problem.

Due to the unavailability of memristors, it has been necessary to use models that
would allow (1) experimenting with the memristor-based RF/microwave circuits
via simulation programs, LTspice and MWO-HSPICE in this work, and (2) study-
ing the performance of the circuits.

RF/microwave applications of memristors might also include implementations
of switching components for various types of reconfigurable electromagnetic
devices, such as frequency selective surfaces, planar absorbers, band-switching
patch antennas, polarization-switching patch antennas, reconfigurable planar
bandpass filters with memristor-loaded resonators, and directly modulated patch
antennas. A specialized finite-difference time-domain (FDTD) simulation code has
been employed to design reconfigurable electromagnetic devices with embedded
memristors. Hybrid circuit-field analysis techniques in the FDTD simulator soft-
ware have been found suitable for exploring these devices.

Simulation of the considered memristor-based microwave circuits and devices
have verified the expected functionality and encouraged us to further explore the
memristor deployment in the field of the RF/microwave engineering.

Acknowledgements This work was supported in part by the Ministry of Education, Science and
Technological Development of the Republic of Serbia under Grant TR 32005. The authors would
like to acknowledge the contribution of the EU COST Action IC1401.

References

Abdalla, H., & Pickett, M.D. (2011). SPICE modeling of memristors. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), Rio de Janeiro (Brasil), pp. 1832–
1835.

Adamatzky, A., & Chua, L. O. (2014). Memristor networks. New York: Springer.

182 M. Potrebić et al.



Ascoli, A., Tetzlaff, R., Corinto, F., Mirchev, M., & Gilli, M. (2013a). Memristor-based filtering
applications. In Proceedings of the 14th Latin American Test Workshop (LATW), Cordoba
(Argentina), 1–6.

Ascoli, A., Corinto, F., Senger, V., & Tetzlaff, R. (2013b). Memristor model comparison. IEEE
Circuits and Systems Magazine, 13(2), 89–105.

Ascoli, A., Tetzlaff, R., Corinto, F., & Gilli, M. (2013c). PSpice switch-based versatile memristor
model. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),
Beijing (China), pp. 205–208.

Batas, D., & Fiedler, H. (2011). A memristor SPICE implementation and a new approach for
magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology, 10(2),
250–255.

Bayat, F. M., Hoskins, B., & Strukov, D. B. (2015). Phenomenological modeling of memristive
devices. Applied Physics A, 118, 779–786.

Biolek, D., Di Ventra, M., & Pershin, Y. V. (2013). Reliable SPICE simulations of memristors,
memcapacitors and meminductors. Radioengineering, 22(4), 945–968.

Biolek, D., & Biolek, Z. (2014). Fourth fundamental circuit element: SPICE modeling and
simulation. Chapter 4 in R. Tetzlaff (Ed.), Memristors and Memristive Systems. New York:
Springer.

Biolek, D., Biolek, Z., Biolková, V., & Kolka, Z. (2015). Reliable modeling of ideal generic
memristors via state-space transformation. Radioengineering, 24(2), 393–407.

Bio Inspired Technologies, LLC, Boise, Idaho, USA. Retrieved June 2016, from http://www.
bioinspired.net/.

Bray, M.G., & Werner, D.H. (2009). Passive electromagnetic switching with memristors. In
Proceedings of the 2009 IEEE International Symposium on Antennas and Propagation,
Charleston, SC, USA, June 1–5.

Bray, M.G., & Werner, D.H. (2010). Passive switching of electromagnetic devices with
memristors. Applied Physics Letters, 96(7), 073504 1–3.

Chua, L.O. (1971). Memristor—The missing circuit element. IEEE Transactions on Circuit
Theory, CT-18(5), 507–519.

Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE,
64(2), 209–223.

Chua, L. O. (2011). Resistance switching memories are memristors. Applied Physics A, 102,
765–783.

Chua, L. O. (2012). The fourth element. Proceedings of the IEEE, 100(6), 1920–1927.
Chua, L. O. (2015). Everything You wish to know about memristors but are afraid to ask.

Radioengineering, 24(2), 319–368.
Corinto, F., & Ascoli, A. (2012). A boundary condition-based approach to the modeling of

memristor nanostructures. IEEE Transactions on Circuits and Systems I, 59(11), 2713–2726.
Djordjević, A. R., Zajić, A. G., Steković, A. S., Nikolić, M. M., Marićević, Z. A., & Schemmann,

M. F. C. (2003). On a class of low-reflection transmission-line quasi-Gaussian low-pass filters
and their lumped-element approximations. IEEE Transactions on Microwave Theory and
Techniques, 51(7), 1871–1877.

Engelhardt, M. (2015). SPICE differentiation. LT Journal of Analog Innovation, January 10–16.
Eshraghian, K., Kavehei, O., Cho, K.-R., Chappell, J. M., Iqbal, A., Al-Sarawi, S. F., et al. (2012).

Memristive device fundamentals and modeling: Applications to circuits and systems
simulation. Proceedings of the IEEE, 100(6), 1991–2007.

Gregory, M.D. (2013). New methods in ultra-wideband array design and finite-difference
time-domain modeling of memristive devices. Doctoral dissertation, Pennsylvania State
University.

Gregory, M.D., & Werner, D.H. (2014). Reconfigurable electromagnetics devices enabled by a
non-linear dopant drift memristor. In Proceedings of the IEEE Antennas and Propagation
Society International Symposium (APSURSI), Memphis (USA), pp. 563–564.

Gregory, M. D., & Werner, D. H. (2015). Application of the memristor in reconfigurable
electromagnetic devices. IEEE Antennas and Propagation Magazine, 57(1), 239–248.

RF/Microwave Applications of Memristors 183

http://www.bioinspired.net/
http://www.bioinspired.net/


HSPICE, Synopsys, Inc., Mountain View, CA 94043, USA. Retrieved June, 2016, from http://
www.synopsys.com/.

Hong, J.-S. (2011). Microstrip filters for RF/microwave applications (2nd ed.). Hoboken: Wiley.
IEEE. (2012). Memristors: Devices, models and applications. Proceedings of the IEEE, 100(6).
IEEE. (2013). Special issue on memristors: theory and applications. IEEE Circuits and Systems

Magazine, 13(2).
Knowm, Inc., PO Box 4698, Santa Fe, NM, 87502-4698, USA. Retrieved June, 2016, from http://

knowm.org/.
Kolka, Z., Biolek, D., & Biolková, V. (2012). Hybrid modelling and emulation of mem-systems.

International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 25(3),
216–225.

Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013a). TEAM: ThrEshold
adaptive memristor model. IEEE Transactions on Circuits and Systems I, 60(1), 211–221.

Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013b). The desired memristor for
circuit designers. IEEE Circuits and Systems Magazine, 13(2), 17–22.

NI AWR Design Environment, National Instruments, Inc., El Segundo, CA 90245, USA.
Retrieved June, 2016, from http://ni.com/awr.

Pershin, Y. V., & Di Ventra, M. (2010). Practical approach to programmable analog circuits with
memristors. IEEE Transaction on Circuits and Systems I, 57(8), 1857–1864.

Pershin, Y. V., & Di Ventra, M. (2013). Spice model of memristive devices with threshold.
Radioengineering, 22(2), 485–489.

Pi, S., Ghadiri-Sadrabadi, M., Bardin, J. C., & Xia, Q. (2015). Nanoscale memristive
radiofrequency switches. Nature Communications, 7519(6), 1–9. doi:10.1038/ncomms8519.

Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R., et al.
(2009). Switching dynamics in titanium dioxide memristive devices. Journal of Applied
Physics, 106(074508), 1–6.

Potrebić, M., & Tošić, D. (2015). Application of memristors in microwave passive circuits.
Radioengineering, 24(2), 408–419.

Pozar, D. M. (2012). Microwave engineering (4th ed.). Hoboken: Wiley.
Prodromakis, T., Peh, B. P., Papavassiliou, C., & Toumazou, C. (2011). A versatile memristor

model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 58(9),
3099–3105.

Radwan, A. G., & Fouda, M. E. (2015). On the mathematical modeling of memristor,
memcapacitor, and meminductor. New York: Springer.

Rogers Corporation, USA. (2015). RO4000 series high frequency circuit materials. Retrieved
June, 2016, from http://www.rogerscorp.com/acs/products/54/ro4003c-laminates.aspx.

Sombrin, J., Michel, P., Soubercaze-Pun, G., & Albert, I. (2014). Memristors as non-linear
behavioral models for passive inter-modulation simulation. In Proceedings of the 9th European
Microwave Integrated Circuit Conference (EuMIC), Rome (Italy), pp. 385–388.

Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor
found. Nature, 453(7191), 80–83.

Tetzlaff, R. (2014). Memristors and memristive systems. New York: Springer.
Vaidyanathan, S., & Volos, C. (2016a). Advances and applications in nonlinear control systems.

Berlin: Springer.
Vaidyanathan, S., & Volos, C. (2016b). Advances and applications in chaotic systems. Berlin:

Springer.
Wang, L., Yuan, M., Xiao, T., Joines, W. T., & Liu, Q. H. (2011). Broadband electromagnetic

radiation modulated by dual memristors. IEEE Antennas and Wireless Propagation Letters, 10,
623–626.

Wanhammar, L. (2009). Analog filters using MATLAB. New York: Springer.
Wasserman, E., Neilson, D., & Mido, T. (2005). Applied wave research’s analog office extends

HSPICE transient simulations to RF frequencies. [online] NI AWR Design Environment,
National Instruments, Inc., El Segundo, CA 90245, USA. Retrieved June, 2016, from http://ni.
com/awr.

184 M. Potrebić et al.

http://www.synopsys.com/
http://www.synopsys.com/
http://knowm.org/
http://knowm.org/
http://ni.com/awr
http://dx.doi.org/10.1038/ncomms8519
http://www.rogerscorp.com/acs/products/54/ro4003c-laminates.aspx
http://ni.com/awr
http://ni.com/awr


Werner, D.H., & Gregory, M.D. (2012). The memristor in reconfigurable radio frequency devices.
In Proceedings of the IEEE Antennas and Propagation Society International Symposium
(APSURSI), Chicago (USA), pp. 1–2.

Wedge, S., Wasserman, E., & Neilson, D. (2005). Transient simulations at RF frequencies.
Microwave Journal 1–4.

Wu, H., Zhou, J., Lan, C., Guo, Y., & Bi, K. (2014). Microwave memristive-like nonlinearity in a
dielectric metamaterial. Scientific Reports, 4(5499), 1–6.

Xu, K., Zhang, Y., Spiegel, R.J., Joines, W.T., & Liu, Q.H. (2014a). Memristor-based UWB
antenna with reconfigurable notched band. In Proceedings of Abstracts of the Progress in
Electromagnetics Research Symposium, Guangzhou (China), p. 1656.

Xu, K. D., Zhang, Y. H., Wang, L., Yuan, M. Q., Fan, Y., Joines, W. T., et al. (2014b). Two
memristor SPICE models and their applications in microwave devices. IEEE Transactions on
Nanotechnology, 13(3), 607–616.

Yakopcic, C., Taha, T. M., Subramanyam, G., & Pino, R. E. (2013). Generalized memristive
device SPICE model and its application in circuit design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32(8), 1201–1214.

RF/Microwave Applications of Memristors 185



Theory, Modeling and Design
of Memristor-Based Min-Max Circuits

S.H. Amer, A.H. Madian, Hany ElSayed, A.S. Emara and H.H. Amer

Abstract Neuromorphic systems have recently emerged as promising candidates
for future computing paradigms. Min-Max circuits are indispensable building
blocks in Artificial Neural Networks and Fuzzy systems. For instance, the inference
engine in Fuzzy controllers that constitutes the decision-making unit in such sys-
tems is a Min-Max circuit. Conventionally, transistor-based architectures were
adopted in the design of Min-Max circuits. Several designs have been reported that
primarily focus on reducing the area consumption (some were voltage mode and
others were current mode). However, the miniaturized features of the memristor and
the peculiar characteristics it exhibits have driven researchers to use it in
state-of-the-art Min-Max circuits. This work addresses the theory, design and
modeling of memristor-based Min-Max circuits. Basics of memristor-based
Min-Max circuits are addressed through an elaborate explanation of 2-input
Min-Max circuits. First, the working principle is explained based on Ohm’s and
Kirchhoff’s Laws. Then, the theory is generalized to an arbitrary number ‘N’ of
inputs (N-ary memristor-based Min-Max circuits) via a formal mathematical proof.
An important feature of the memristor is the existence of a threshold below which
no change in the state variable (no switching in the case of Min-Max circuits)
occurs. Although some existing models overlook the threshold behavior of mem-
ristors, most experimental data does confirm the existence of a threshold and,
accordingly, it is essential to incorporate its effect in Min-Max circuits. Further-
more, failure to abide by the threshold restrictions results in a circuit malfunction
not just a parametric failure (i.e. increased power consumption, increased delay….
etc.) which further necessitates a careful and thorough modeling of the effect of the
threshold on the circuit’s behavior. Modeling of the threshold will be approached in
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two ways. First, an analytical approach is adopted to derive a closed form
expression for the effect of the threshold on the circuit. Then, an algorithm is
developed (implemented in MATLAB) that emulates the circuit operation. The
algorithm runs exhaustive simulations on memristor states and input voltage vectors
for different circuit sizes (number of inputs) to verify the derived model. The
implications of the derived model are twofold: (1) it provides a closed formula for
designers who wish to design memristor-based Min-Max circuits (2) it demon-
strates a clear trade-off between the size and the resolution of the circuit.

Keywords Memristor ⋅ Fuzzy logic ⋅ Min-Max circuits ⋅ Beyond von
neumann ⋅ Computational intelligence

1 Introduction

Complementary Metal Oxide Semiconductor (CMOS) technology has for so long
stood as the cornerstone of all Very Large Scale Integration (VLSI) systems.
However, other technologies such as the memristor (Chua 1971) have been recently
proposed that promise to push the semiconductor industry into new paradigms. The
perpetual down scaling of CMOS technology has provided an ever-enhanced
performance of electronic circuits over the past decades. With each technology
node (a technology node is defined as the channel length of the transistor), average
power consumption has decreased, device speed has been boosted and more inte-
gration has become achievable. This enhancement was predicted in 1965 by
Gordon Moore and has ever since been known as “Moore’s Law”.

The sustainability of Moore’s Law, however, cannot last much longer due to two
major challenges which are (1) the CMOS science has reached the fundamental
physical limits (Thompson and Parathasarathy 2006) which prohibits further
miniaturization and (2) process variations have skyrocketed in such Nano-scale
regime.

These issues have instigated significant research trying to provide novel and
innovative solutions to assuage the aforementioned challenges. Several endeavors
have been proposed on both circuit and device levels. On the circuit level, new
structures and circuit architectures have been proposed such as multilayered Inte-
grated Circuits where an extra spatial dimension is exploited to provide a higher
functionality per chip area ratio (i.e. 3D ICs) (Thompson and Parathasarathy 2006).
Also, on the device level, researchers have sought out new devices such as carbon
nanotubes, spintronics and FinFETs. Amongst the new devices tackled by the
research community, a novel device known as “memristor” stands as a powerful
candidate that has the potential to push the microelectronics industry into new
paradigms.

Memristors are newly characterized devices that were first theoretically predicted
by Leon Chua in 1971 but had not been physically realized until 2008 when HP
announced the first manufactured memristor based on the Titanium dioxide TiO2
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process (Sturkov et al. 2008). Ever since that date, a significant research has been
undertaken in the area of memristors and memristor-based systems. Leon Chua
postulated that the memristor constitutes the missing link between the electric
charge and the magnetic flux. He published a paper in 1971 (Chua 1971) in which
he provided a merely theoretical treatment for the memristor element. Later in 1976
(Chua and Kang 1976), he published another paper generalizing the concept of the
memristor from an electrical element to a whole system theory. Recently, in 2015,
Chua published an article summarizing his work on memristors (Chua 2015).

In order for the memristor element to be integrated into commercial CAD tools,
several mathematical models were developed. The published models vary from
simple linear models (Sturkov et al. 2008) to complex nonlinear models (Pickett
et al. 2009). Linear models are simple both analytically and computationally. Yet,
experimental data showed a noticeable deviation from those models. On the other
hand, nonlinear models are accurate but complex (Kvatinsky et al. 2013).

Despite the immaturity of the memristor science that calls for the need for more
theoretical work regarding the memristor element and, accordingly, the continuous
refinement of the models, the peculiar behavior of memristors and their miniatur-
ized size have instigated a surge in memristor-based applications in which those
features are leveraged to deliver new functions such as resistive RAMs (ReRAMs)
and Neuromorphic and Fuzzy circuits, or improve the performance of transistor-
based architectures such as in the case of digital and analog circuits.

Memristors have been primarily used in four applications: analog circuits, digital
circuits, memories and Neuromorphic (sometimes referred to as biologically-
inspired systems or beyond Von Neumann architectures) and Fuzzy systems. Also,
several researchers have leveraged memristors and memristive systems in uncon-
ventional computing applications such as in chaotic systems (Vaidyanathan and
Volos 2016a, b) and nonlinear control systems (Vaidyanathan and Volos 2016a, b).

The analog programmability of the memristor has inspired many researchers to
utilize it in several applications other than memories and digital design. One
potential application is programmable analog circuits. In Pershin and Di Ventra
(2010), the authors reinvented a number of currently existing and extensively used
analog blocks by employing memristors in the design. Their idea is hinged upon the
threshold behavior of the memristor. The authors utilized this fact by building a
memristor-based analog circuit that operates in two phases. In phase ‘1’, the pro-
gramming phase, high voltages (voltages higher than the threshold of the mem-
ristors), are used to program the memristor to the desired resistive value. In phase
‘2’, the analog operation, low voltages (lower than the threshold of the memristor)
are applied to perform the analog functionality of the circuit. For further details, the
reader is referred to Pershin and Di Ventra (2010).

The non-volatility of memristors and their miniaturized features have instigated
their use in state of the art memories known as Resistive RAMs. Unlike in regular
CMOS designs where the logic is stored as a voltage, logic in Resistive RAMs is
stored as resistive value whereby the information stored is not lost when the power
supply is switched off owing to the peculiar nature of the memristive behavior
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(hence, non-volatile). Also, their miniaturized size has enabled building denser
memory arrays. Three major challenges have been encountered by researchers in
designing resistive RAMs which are: (1) non-destructive reading operation
in which the reading circuitry and the applied read voltages should be designed in
such a way as not to corrupt the data stored in the memory cell as in Elshamy et al.
(2014) (2) process variations and their effect on read/write operations as in Niu et al.
(2010) (3) sneak paths testing in memory arrays as in Kannan et al. (2015).

Another interesting application, in which the compact size of the memrsitor is
leveraged, is digital applications. In essence, there are two types of digital appli-
cations: logic in memory and conventional logic. In Kvatinsky et al. (2014),
material implication logic family was presented in which memristors are used as
memory elements as well as perform logic operations. On the other hand, other
logic families such as Memristor Ratioed Logic (MRL) described in Kvatinsky
et al. (2012) uses memristors as computational elements such as in the case of
standard CMOS architectures.

Amongst the very promising emerging computer architectures is the concept of
Neuromorphic computing and Fuzzy systems. While such architectures can be
implemented using transistors, memristors exhibit peculiar characteristics that are
well suited to such systems, which enable the implementation of high density and
power efficient systems (Rose et al. 2012).

Memristors were employed in the design of two major building blocks in Fuzzy
systems, which are: the Fuzzifier and the Defuzzifier. In Merrikh-Bayat et al.
(2011), a memristor-based Fuzzifier was proposed. Memristors were implemented
in the crossbar structure. The values of the fuzzy sets were stored in the memris-
tances and OPAMPs were used to convert the membership degrees of the system
variable(s) in the fuzzy sets into voltage values. The same structure was later
employed in the design of Neuro-Fuzzy systems (Merrikh-Bayat et al. 2013). In
Amer et al. (2015a, b), a memristor-based Center-Of-Gravity Defuzzifier was
proposed. Four approaches were historically adopted for the hardware implemen-
tation of COG defuzzifier circuits. First, the fully digital technique was proposed in
Watanabe et al. (1990) in which multiplication/division were performed via itera-
tive addition/subtraction. However, this brings about significant speed limitations
and occupies a relatively large chip area. Second, the voltage follower aggregator
structure was utilized (Hoseini et al. 2010). This structure does not contain divider
circuits, which makes it advantageous. However, it uses several operational
amplifiers which makes it area consuming. Third, a current mode approach was
proposed. It has the advantage of simple addition/subtraction of signals (Farshidi
2008). Yet, the voltage mode approach is often preferred since most sensors and
auxiliary devices communicate with fuzzy systems in voltage mode (Hoseini et al.
2010).

Amongst the major building blocks found in Neuromorphic and Fuzzy systems
are Min-Max circuits. For instance, in Fuzzy controllers, Min-Max circuits are used
in the Fuzzy inference engine. While transistor-based architectures were commonly
adopted in the design of Min-Max circuits, memristor-based Min-Max circuits have
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been proven to outperform their transistor-based counterparts, primarily, in area
occupancy.

To this end, this chapter will focus on developing the theory of memristor-based
Min-Max circuits. First, 2-input memristor-based Min-Max circuits are thoroughly
investigated. The working principle is discussed and design equations are devel-
oped based on Kirchhoff’s and Ohm’s Laws. Furthermore, the effect of the mem-
ristor threshold is analyzed and a closed form design constrain is developed.
Second, the theory is generalized to arbitrary number ‘N’ of inputs whereby the
working principle of the generalized N-input circuits is demonstrated via a formal
proof. Also, the effect of the memristor threshold on N-input circuits is developed.
Finally, in order to put things into perspective, memristor-based min-max circuit are
compared to commonly used transistor-based architectures in order to show the
advantages gained from incorporating memristors in the design of Min-Max
circuits.

2 2-Input Memristor-Based Min-Max Circuits

In general, the governing equation for the Min-Max operation is presented as
follows:

Xmin =Min ðX1, . . . , XnÞ ð1Þ

Xmax =Max ðX1, . . . , XnÞ ð2Þ

If both v1 and v2 are equal, no current flows through the circuit and v0 =
v1 = v2. If v1 > v2, where v1 = vmax and v2 = vmin, a current flows from the upper
memristor to the lower one whereby it flows outside the thick line in the upper
memristor and inside the thick line in the lower one. According to the definition of
the memristor, the upper memristor will switch to ‘OFF’ acquiring the maximum
resistance Roff while the lower one will switch to ‘ON’ acquiring the minimum
resistance Ron. Since, by definition, Ron ≪ Roff or, equivalently, Goff ≪ Gon

(0G0 is the memductance and defined as the reciprocal of the memristance such that
G= 1

R) and from Kirchhoff’s law, it can be shown that the output voltage is
computed as follows (Amer et al. 2015a, b):

V0 =
VmaxGoff +VminGon

Goff +Gon
≈Vmin ð3Þ

It can be readily shown that reversing the polarity of the memristors in Fig. 1
implements a maximum operation. Therefore, the forthcoming analysis will be only
concerned with the minimum circuit.

An important characteristic of the memristor is the existence of a threshold
below which no change in the memristance occurs. Hence, it is important to model
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the effect of the threshold on the operation of Min-Max circuits. Assuming a current
controlled memristor (Kvatinsky et al. 2013), there are two thresholds Ion and Ioff
that correspond to the memristor switching from ‘ON’ to ‘OFF’ or from ‘OFF’ to
‘ON’, respectively. Ion has a negative value corresponding to current flowing to the
left while Ioff is positive corresponding to current flowing to the right in Fig. 1.
Also, in general, Ion and Ioff do not have to be equal. However, for the purpose of
this work, in order to simplify the analysis, Ion and Ioff are assumed equal which is
known as symmetric switching. This can be formalized as follows:

Ionj j= Ioffj j= Itj j ð4Þ

From now on, the absolute sign will be dropped and |It| will be expressed as It.
In order to ensure the proper operation for the circuit, both memristors in Fig. 1

must be able to switch under all states. By inspection, since the circuit is a simple
one, it can be shown that the lowest current occurs when both memristors are ‘OFF’
and the voltage difference between both inputs is minimal.

∂V
2Roff

> It ð5Þ

∂V is the minimum allowable difference between both inputs which reflects the
resolution of the circuit, Roff is the maximum resistance of the memristor and It is
the threshold current of the memristor.

3 N-Ary Memristor-Based Min-Max Circuit

This section will generalize the theory of memristor-based Min-Max circuits to
N-input circuits. The first subsection will provide a proof that, similar to 2-input
structure presented in Fig. 1, an N-input structure does implement Min-Max
operation. The next subsection will derive a closed form expression for the effect of
the threshold on the circuit.

Fig. 1 2-input minimum
circuits
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3.1 Proof of N-Input Memristor-Based Min-Max Circuit

Definitions and Assumptions:

(a) G=1 ̸R
(b) If Ii is negative (left), then Gi = Gon

(c) If Ii is positive (right), then Gi = Goff

(d) Switching time of the memristors is ignored (i.e., only steady state conditions
are considered)

(e) Gon ≫ Goff irrespective of the number of memristors ‘n’
(f) vi − v0j jð Þ.Gi > It.

(a), (b), and (c) are inherent properties in the memristor device which were
explained in previous sections. In essence, memristors possess a certain switching
time (i.e. time taken to switch from Gon to Goff or vice versa) depending on the
material characteristics. However, only steady state conditions are considered since
the aim is to prove the viability of the structure not its switching dynamics. (e) is
considered valid throughout the development of the proof. However, it will be clear
later in this section that (e) imposes design restrictions on N-ary Min-Max circuits.
Finally, (f) is of a prime importance since it places restrictions on the applied
voltages as a function of the memristor Current threshold. The effect of the
threshold will be ignored in the proof. Yet, its impact will be studied in detail in the
next section.

Suppose vmin ≤ vi ≤ vmax∀vi and Gi ∈ fGon, Goffg, then from Kirchhoff’s Current
Law (KCL) and Ohm’s Law applied at v0:

v0 =
∑n

i = 1 vi.Gi

∑n
i = 1 Gi

ð6Þ

Suppose, without loss of generality, that v1 ≤ v2 ≤⋯≤ vn, where v1 = vmin and
vn = vmax, then:

v1 ≤ v0 ≤ vn ð7Þ

Suppose initially at the start of the operation that v0 assumes an arbitrary value
between v1 and vn such that:

v1 . . . vk < vo ð8Þ

vk+1 . . . vn > vo ð9Þ

Then:
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G1 =⋯=Gk =Gon ð10Þ

Gk+1 =⋯=Gn =Goff ð11Þ

Substituting back in (6):

v0N =
Gon ∑k

i = 1 vi +Goff ∑n
i = k+ 1 vi

kGon + ðn− kÞGoff
ð12Þ

where v0N is the new output voltage. From (e), Gon ≫Goff and (12) is reduced to:

v0N =
∑k

i = 1 vi
k

ð13Þ

Hence, v1 < voN < vk and from (8), vk < vo. Therefore:

v0N < vo ð14Þ

Therefore, it is concluded that the process is recursive since for any arbitrary
output voltage vo, the new output voltage is v0N and is less than vo.

Also, note that when the output voltage changes from a value vo to a new value
v0N, since voN < vk, some memristors (Δ) switch from ON (Gi =Gon) to OFF
(Gi =Goff ). Therefore the change in the output voltage can be modeled as:

Δv=
Gon ∑k

i = 1 vi +Goff ∑n
i = k+ 1 vi

kGon + ðn− kÞGoff
−

Gon ∑k−Δ
i = 1 vi +Goff ∑n

i = k−Δ+1 vi
ðk−ΔÞGon + ðn− k+ΔÞGoff

ð15Þ

Such that Δv= vo − voN. After some mathematical manipulation, (15) reduces to:

Δv=
ðk−ΔÞ∑k

i = k−Δ+1 vi −Δ∑k−Δ
i = 1 vi

kðk−ΔÞ ð16Þ

It was shown in (14) that v0N is always less than v0. However, it must be shown
that the decrease in the output voltage Δv has a minimal finite value throughout the
operation to ensure that the output voltage will eventually gravitate to vmin in a
finite time. Since finding the minimal Δv might be mathematically tedious, espe-
cially, that the variables k and Δ in (16) can only assume integers, it is enough to
show that Δv is always finite for all k and Δ and is always positive since we define
Δv= vo − voN where voN < vo. Since, by definition, v1 ≤ v2 ≤⋯≤ vn, each vi in
∑n

i = k−Δ+1 vi is, individually, larger than each vi in ∑k−Δ
i = 1 vi. Hence, assuming

vMIN =minimum vk−Δ+1 . . . .vnð Þ∀vi and vMAX =maximum v1 . . . .vk−Δð Þ∀vi, then
from (16):
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Δv≥
ΔðvMIN − vMAXÞ

k
ð17Þ

where vMIN > vMAX. Since, by definition, k and Δ are finite integers between ‘1’ and
‘n’ and k > Δ, then Δv is a finite positive number. Note that vMIN v̸MAX should not
be confused with vmin v̸max which are the global minimum/maximum voltages in
the system. Therefore, it can be shown that since:

• The N-ary minimum circuit has a minimum voltage (boundary) “Vmin”

• The new output voltage is always smaller than the old output voltage “V0N <
Vo” and the process is recursive

• Δv is a finite positive number

It can be concluded that v0 = vmin.
(f) is crucially important for the proper functioning of the circuit. In essence, this

assumption is what allows the cancellation of the Goff term throughout the proof.
However, this cancellation is not always valid but constrained by the values of
applied voltages 0v0i and the number of memristors ‘n’. These constraints can be
derived from (12) yielding:

n− k
k

≪
Gon

Goff
ð18Þ

∑n
i = k+ 1 vi
∑k

j = 1 vj
≪

Gon

Goff
ð19Þ

To ensure the proper functioning of the system, (18) and (19) have to hold true
under worst case state which is when k = 1, vj = vmin and vi = vmax (largest
possible left hand side in (18) and (19)). Substituting back in (18) and (19):

n− 1≪
Gon

Goff
ð20Þ

ðn− 1Þðvmax

vmin
Þ≪ Gon

Goff
. ð21Þ

3.2 Effect of the Memristor Threshold

As mentioned earlier in the introduction and the previous section, the threshold
behavior of the memristor poses a crucial challenge in the design of
memristor-based Min-Max circuits. Given a specific Current controlled memrsitor
with threshold current 0I0t, ON resistance 0R0

on, OFF resistance 0R0
off and arbitrary size
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‘n’, design constraints on the values of the input voltages are derived. This problem
will be approached, first, analytically. Then, a MATLAB code is developed to
validate the results computationally.

It is important to provide first an intuitive explanation to the problem at hand.
While most memrsitors applications are mainly constrained with the type of
memristor that can be programmed in an incremental fashion, another type of
memrsitors exists which can only assume two values: Low Resistive State
(LRS) and High Resistive State (HRS). In essence, memristors can be classified into
two types: analog memrsitors and binary memristors (Truang et al. 2014). In order
to simplify the analysis and make it feasible to arrive at a closed form constraint, the
forth coming discussion will be restricted to binary memristors that can only
assume two values: 0R0

on representing (LRS) and 0R0
off representing (HRS).

The idea behind the analysis is to ensure that any memristor is able to switch at
any state out of the 2N states that the system might take (a total of ‘N’ memristors
each can take two values Gon G̸off ). Although it was proven earlier that the system
can only assume ‘N’ states (only one memristor out of the ‘N’ is ON), this only
holds for steady state response of the system. Stated differently, the voltages have
already settled at the memristors and the switching is going to take place in order to
output the minimum voltage at the output. However, in the transient state (i.e. while
the voltages are transitioning from one set of input voltage to another set), the
system can assume any state out of the 2 N possible states. Having said that, the
following analysis will derive generic analytical formulae that present the restriction
on the input voltages as a function of the memristance and the threshold current 0I0t.

3.2.1 Analysis of the Effect of the Memristor Threshold

In order to ensure the proper functioning for the circuit, two conditions have to be
met: (i) at least one memristor Gi = Gon where vi = vmin and (ii) Gj =Goff ∀j where
vj ≠ vmin. Intuitively, if a group of memrsitors have the minimum voltage applied to
them, from Kirchhoff’s law, they become parallel and if only one memristor is ON,
the effective resistance of the whole group is Gon. However, if only one memristor
that has a voltage higher than the minimum applied to it is ON, it will contribute to
the output voltage by pulling up the output node and, subsequently, the output
voltage deviates from the minimum and the circuit malfunctions.

In general, based on Ohm’s law and writing v0 as a weighted average of all
inputs, any current, for instance I1, can be presented as:

I1 =G1.ðv1 −
∑n

j = 1 vj.Gj

∑n
j = 1 Gj

Þ ð22Þ
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Rearranging the terms in (22):

I1 =
G1

G1 +⋯+Gn
½G2 v1 − v2ð Þ+⋯+Gn v1 − vnð Þ� ð23Þ

Let vi = vmin +mi.∂V=vmax − xi.∂V where mi and xi are integers and
0≤mi, xi ≤ vmax −vmin

∂V such that for a given memrsitor Gi, mi = 0 corresponds to

vi = vmin and mi = vmax −vmin

∂V corresponds to vi = vmax while xi = 0 corresponds to

vi = vmax and xi = vmax −vmin

∂V corresponds to vi = vmin. For example, assume a three
input circuit with input vector V = (0.1, 0.2, 0.3 V). Then, vmin=0.1, ∂V=0.1,
m2 = 1 and m3 = 2. By the same token, vmax and xi can be deduced accordingly. It
is important to note that vmin/vmax, in this particular analysis, are not necessarily the
global minimum/maximum for the circuit. However, vmin/vmax represent the
minimum/maximum values of the input vector applied to the circuit at a particular
instant in time. For instance, while the global minimum/maximum voltages for the
circuit might be 0/1 V, in this example, vmin/vmax = 0.1/0.3 V.

Assume, without loss of generality, that v1 = vmin and vn = vmax

I1 =
−G1∂V

G1 +⋯+Gn
½G2m2 +⋯+Gnmn� ð24Þ

In =
Gn∂V

G1 +⋯+Gn
½G1x1 +⋯+Gn− 1xn− 1� ð25Þ

Note that the negative sign in (24) indicates, for example, that the current is
flowing to the left in the upper most memrsitor in Fig. 1, since, by definition,
v1 = vmin. Therefore, henceforth, the negative sign will be dropped since it indi-
cates no more than the direction of the current. Also, note that m1 = 0 since
v1 = vmin. (25) can be inferred accordingly for the case of vn = vmax based on the
earlier discussion.

Condition (i):
Let an arbitrary number of memristor ‘k’ be ‘ON’ Such that (24) can be rewritten

as:

I1 =
Goff∂V

kGon + ðn− kÞGoff
½Gon ∑

k
mi +Goff ∑

n− k− 1
mj� ð26Þ

Notice that the goal is to minimize (26) in order to find the worst case current
(lowest current that results in circuit malfunctioning) and ensure that it is higher
than the ‘It’. This will ensure that condition (i) is satisfied. There are two ways to
achieve this which are (1) vary ‘k’ and ‘n’ such that the number of ‘ON’ and ‘OFF’
memrsitors change (2) vary the values of mi and mj which, essentially, change the
values of the input voltages. Also, notice that both ways are independent and can be
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treated separately since the combination of ‘ON’ and ‘OFF’ memristors during the
transition state is independent from the steady state voltage values at the inputs.

Case (1): 1≤ k≤ n− 1:

I1≈
Goff∂V
kGon

½Gon ∑
k
mi +Goff ∑

n− k− 1
mj� ð27Þ

Notice that, from (i), only one memristor is required to be ON. Hence, if for any
of the ‘k’ memristors that are ‘ON’, mi = 0, (i) will be automatically satisfied and
there would be no need to worry about switching of the memristors. Conversely, the
analysis is concerned with the case were none of the memrsitors for which vi = vmin

is ‘ON’ which means that minimum (∑k mi) = k (i.e. mi ≥ 1 ∀i∈ k). Hence, (27)
can be written as:

I1≈
Goff∂V
kGon

½kGon�≈Goff∂V ð28Þ

Case (2): k = 0:
Equation (26) is reduced to:

I1 =
∂V
n

½Goff ∑
n− 1

mj� ð29Þ

If minimum ∑n− 1 mj
� �

=0, this would mean that all voltages are equal to each
other and equal to vmin, in which case no current flows and the voltage is trans-
mitted normally to the output. Hence, minimum ∑n− 1 mj

� �

=1 and (29) can be
written as

I1 =
Goff∂V

n
ð30Þ

Condition (ii):
Using the same argument in (26), (25) can be described as:

In =
Gon∂V

kGon + ðn− kÞGoff
½Gon ∑

k− 1
xi +Goff ∑

n− k
xj� ð31Þ

Case (1): k = 1:

In≈∂V½Goff ∑
n− 1

xj� ð32Þ

Following the same reasoning as before, minimum(∑n− 1 xj) = 1 and,
accordingly,
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In ≈Goff∂V ð33Þ

Case (2): 1< k≤ n− 1:

In =
∂V
k

½Gon ∑
k− 1

xi +Goff ∑
n− k

xj� ð34Þ

n order to minimize (34), as mentioned earlier, only one of the two summations can
be zero, not both. Hence, since Gon >Goff , minimum(∑k− 1 xi) = 0 and minimum
(∑n− k xj) = 1.

In≈
Goff∂V

k
ð35Þ

As mentioned earlier in condition (ii), Gj =Goff∀j where vj ≠ vmin. While (34)
was only concerned with the memristor with the maximum voltage applied to it,
once this memristor switches to OFF, the memristor with lower voltage than the
maximum becomes the new maximum voltage (i.e. k→ k− 1). Since the minimum
value for the current ‘In’ is what is sought in this analysis, (34) can be further

minimized to (largest possible denominator). Formally, Goff∂V
n− 1 ≤ Ivj ≠ vmin ≤

Goff∂V
2 .

Hence, minimum (Ivj ≠ vmin ) =
Goff∂V
n− 1 .

In≈
Goff∂V
n− 1

ð36Þ

Case (3): k = n:

In≈
Gon∂V

n
ð37Þ

Hence, the worst case current can be computed as minimum

(Goff∂V, Goff∂V
n , ∂VGoff

n− 1 , ∂VGon
n Þ which is obviously Goff∂V

n and therefore:

∂V
nRoff

> It ð38Þ

Therefore, given a memristor with OFF resistance ‘Roff’ and threshold current
‘It’, there exists a trade-off between the minimum allowed voltage difference ‘∂V’
and the size of the circuit ‘n’. Also, note that substituting n = 2, we arrive at (5)
which is the case for two input circuits.
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3.2.2 Simulative Analysis of the Memristor Threshold

In order to validate the model in (38), an algorithm is developed that emulates the
circuit operation (Amer et al. 2016). The algorithm initializes a current threshold ‘It’
and runs an exhaustive simulation over all circuit pictures where a picture is defined
as a combination of memristor states and applied input voltages. For every picture,
the memristors are allowed to switch until the output voltage stabilizes at its final
value (i.e. no more switching of the memristors is taking place). If the final output
voltage is the minimum voltage, this particular picture is said to have succeeded.
A picture succeeds when the output voltage gravitates to vmin. In contrast, a picture
fails when the system is stuck at an output voltage that is not vmin. For example, for
input voltages V1 = 0.1, V2 = 0.2 and V3 = 0.3, the memristances should switch
to M1 = Ron, M2 = Roff and M3 = Roff. If for instance the system stabilizes at
M1 = M2 = M3 = Roff and the system cannot switch any further, the output
voltage is not the minimum voltage and the picture is said to have failed. This
failure occurs because a memristor or more are not able to switch because their
currents are below the threshold current ‘It’. Algorithm 1 presents a pseudo code for
this procedure.

Algorithm 1 generates the output failing picture(s) for every choice of It. Hence,
It is decreased until no failing pictures occur as mentioned above. The choice of ‘ε’
is critical since it is the failing criterion (i.e. the criterion that decides whether
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failing pictures exist or not). Moreover, its value is a function in the applied
voltages and the size of the circuit. Therefore, the next section is devoted to finding
the proper ε. Note that although, theoretically speaking, v0 = vmin, this is never
precisely true since the ‘ON’ resistance of the memristor Ron has some finite value.
Yet, the difference is extremely small such that v0 ≈ vmin.

In order to develop a model for the effect of the threshold on the system, two
curves are plotted. Figure 2 plots It against 1/Roff for some specific size of the
min-max circuit (n = 3) and a constant voltage step (∂V=0.1 V), where the voltage
step is the minimum voltage difference between any two allowed voltage levels.
Figure 3 plots It against ∂V at constant Roff = 200KΩ (Kvatinsky et al. 2013) and
different sizes for the Min-Max circuit namely: n = 2, 3, 4, 5, 6, 10.

Note that Figs. 2 and 3 depict a strictly linear relation with almost perfect
correlation (R2 = 1 in Fig. 2 and R2 > 0.99 in Fig. 3 due to minor numerical
errors) which is in agreement with (38). It is no surprise, however, that the relation
is perfectly linear. In essence, there is a specific combination of memristor states
and applied voltages that results in the worst case state for all sizes of the circuit.
This combination is when vmin is applied to ‘n−1‘memristors, vmin + ∂V is applied
to the nth memristor and all memristors have the maximum resistance Roff. Intu-
itively, the worst case picture occurs when the circuit has the maximum resistive
state, all memristors are ‘OFF’, minimum potential difference applied to the circuit,
only one memristor has higher voltage than the rest of the memristors and the
difference is minimal (∂V).

Note that Epsilon ‘ε’ is crucial for it is not only the failing criterion, as men-
tioned earlier, but also its value changes based on the size of the circuit and the
applied input voltages. Hence, in order to properly model it, another algorithm is
developed that, similar to Algorithm 1, emulates the circuit operation but does not
account for the effect of the threshold. Ignoring the effect of the threshold ensures
the proper switching for all memristors and, accordingly, avoids any circuit

Fig. 2 Threshold current versus memductance
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malfunction. Exhaustive simulations are run as before and all deviations of the
output voltage from the minimum voltage are recorded. Then, ‘ε’ is assigned
the maximum deviation. Thus, ‘ε’ can be interpreted as the maximum deviation of
the output voltage under which the circuit functions properly. Therefore, if the
deviation is more than ‘ε’, the circuit is considered to have malfunctioned as in step
13 in Algorithm 1.

Algorithm 2 was validated against Spice simulations to validate the results as
shown in Table 1:

It is important to comment on two important assumptions in the derivation of the
threshold constraints. First, both the analytical and the computational approaches
assumed that the memrsitor is of the binary type that can only assume two resistive
values. Without this assumption, it wouldn’t be possible to arrive at a closed form
expression and, hence, the derived constraint is only valid for binary memristors.
Thus, it is recommended to use binary memristors for memristor-based Min-Max
circuits. The other important assumption is the discrete nature of the inputs. While
some works considered continuous input signals such as sinusoids in Biolek et al.
(2014), this work, inspired by early work in mermristor-based Fuzzy systems
(Merrikh-Bayat et al. 2011), considered discrete signals again in order to make the
derivation possible. Applying continuous signals makes it rather hard to abide by
the threshold condition and, accordingly, will result in a circuit malfunction. It is,
therefore, recommended to adopt discrete signals in memristor-based Min-Max
circuits.
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4 Comparison with Conventional Transistor-Based
Architectures

In order to demonstrate the advantages rendered by the memristor-based imple-
mentation of Min-Max circuits over their transistor based counterparts, the pro-
posed circuit is compared against the most commonly and widely used transistor
based architecture known as WTA-LTA (Padash et al. 2011) structure where WTA
stands for Winner-Takes-All and LTA stand for Looser-Takes-All. The base of
comparison is the area occupancy since, according to Yosefi et al. (2009), it is the
primary metric for hardware-based Fuzzy systems. Table 2 provides the compar-
ison in terms of transistor/memristor count per input (note that memristors are
smaller than transistors). Also, note that the memristor/transistor count rises linearly
with the size of the circuit (number of inputs). For example, in the case of 2 inputs,
the transistor count is 30/20 for Min/Max functions, respectively, while the

Table 1 Validation of ε # of memristors Algorithm 2. Spice

2 0.0005 0.00049
3 0.0099 0.00099
4 0.0015 0.00149
5 0.002 0.00199
6 0.0025 0.00249
10 0.0045 0.00447

Fig. 3 Threshold current versus memductance. I2 is the curve associated with n = 2
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memristor count is 2. This demonstrates that area savings become even more
pronounced for multi-input circuits (as the number of inputs increase).

5 Conclusions and Recommendations

This chapter discussed the theory of memristor-based Min-Max circuits. While
conventional transistor technologies can be used in such systems, memristors have
exhibited peculiar characteristics that make them particularly well suited for such
structures. First, the working principle was introduced through investigating simple
2-input circuits. Also, the effect of the memristor threshold was carefully modeled.
Later, the theory of memristor-based Min-Max circuits was extended to N-inputs. It
was demonstrated through a formal proof that the same structure proposed for
2-input circuits can be extrapolated to N-input circuits while abiding by the proper
design constraints. Unlike in the case of the 2-input circuits, deriving a closed form
expression for N-input circuits is highly complex. Thus, two assumptions where
employed, namely: Binary memristors and discrete input signals in order to make
the derivation of closed form expression feasible. Finally, it was shown that given a
specific memristor with OFF resistance Roff and threshold current It, there exists a
trade-off between the minimum allowed voltage difference and the size of the
circuit.
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Analysis of a 4-D Hyperchaotic
Fractional-Order Memristive System
with Hidden Attractors

Christos Volos, V.-T. Pham, E. Zambrano-Serrano,
J.M. Munoz-Pacheco, Sundarapandian Vaidyanathan
and E. Tlelo-Cuautle

Abstract In 1695, G. Leibniz laid the foundations of fractional calculus, but
mathematicians revived it only 300 years later. In 1971, L.O. Chua postulated the
existence of a fourth circuit element, called memristor, but Williams’s group of HP
Labs realized it only 37 years later. In recent years, few unusual dynamical systems,
such as those with a line of equilibriums, with stable equilibria or without equi-
librium, which belong to chaotic systems with hidden attractors, have been
reported. By looking at these interdisciplinary and promising research areas, in this
chapter, a fractional-order 4-D memristive system with a line of equilibria is
introduced. In particular, a hyperchaotic behavior in a simple fractional-order
memristor-based system is presented. Systematic studies of the hyperchaotic
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behavior in the integer and fractional-order form of the system are performed using
phase portraits, Poincaré maps, bifurcation diagrams and Lyapunov exponents.
Simulation results show that both integer-order and fractional-order system exhibit
hyperchaotic behavior over a wide range of control parameter. Finally, the elec-
tronic circuits for the evaluation of the theoretical model of the proposed integer and
fractional-order systems are presented.

Keywords Memristive system ⋅ Hyperchaos ⋅ Fractional order ⋅ Hidden
attractors ⋅ Nonlinear circuit

1 Introduction

The announcement of the realization of a solid-state thin film two terminal mem-
ristor at Hewlett-Packard Labs in 2008 (Strukov et al. 2008), brought a revolution in
various scientific fields. Many phenomena in systems, such as in thermistors, which
internal state depends on the temperature (Sapoff and Oppenheim 1963), spintronic
devices which resistance varies according to their spin polarization (Pershin and Di
Ventra 2008) and molecules which resistance changes according to their atomic
configuration (Chen et al. 2003), could be explained now with the use of the
memristor. Also, electronic circuits with memory circuit elements could simulate
processes typical of biological systems, such as the adaptive behavior of unicellular
organisms (Pershin et al. 2009) and the learning and associative memory (Pershin
and Di Ventra 2010).

Also, a considerable number of potential memristor-based applications have
been reported like adaptive filter (Driscoll et al. 2010), high-speed low-power
processors (Yang et al. 2013), pattern recognition systems (Corinto et al. 2012),
neural networks (Adhikari et al. 2012; Ascoli and Corinto 2013), programmable
analog integrated circuits (Shin et al. 2011), and so on (Ascoli et al. 2013; Tetzlaff
2014). Interestingly, the intrinsic nonlinear characteristic of memristor has been
exploited in implementing novel chaotic oscillators with complex dynamics (Itoh
and Chua 2008; Muthuswamy 2010; Bo-Cheng et al. 2011; Driscoll et al. 2011;
Buscarino et al. 2012a, b; Corinto and Ascoli 2012).

It is very interesting to ask naturally whether there exists a memristor-based
system that is hyperchaotic. Some authors have recently answered this question by
introducing some memristor-based hyperchaotic systems, motivated by the com-
plex dynamical behaviors of hyperchaotic systems and the special features of
memristor. Hyperchaos was generated by combining a memristor with cubic non-
linear characteristics and a modified canonical Chua’s circuit (Fitch et al. 2012).
However, this memristor-based modified canonical Chua’s circuit is a
five-dimensional hyperchaotic system. Also, by extending the HP memristor-based
canonical Chua’s oscillator, a six-dimensional hyperchaotic oscillator was designed
(Buscarino et al. 2012c). The authors of this work used a configuration based on
two HP memristors in antiparallel. In other interesting works, four-dimensional
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hyperchaotic memristive systems were discovered by Li et al. (Li et al. 2014; Li
et al. 2015). The last examples belong to a new category of chaotic systems with
hidden attractors.

According to a new classification of chaotic dynamics (Leonov et al. 2011a;
Leonov et al. 2011b; Jafari and Sprott 2013; Leonov and Kuznetsov 2013), there
are two types of attractors: self-excited attractors and hidden attractors.
A self-excited attractor has a basin of attraction that is excited from unstable
equilibria. In contrast, hidden attractor cannot be found by using a numerical
method in which a trajectory started from a point on the unstable manifold in the
neighborhood of an unstable equilibrium. Furthermore, in contrary to self-excited
attractors, hidden attractors cannot be computed by the standard procedure because
its basin of attraction does not contain neighborhoods of any equilibria.

So, the discovery of dynamical systems with hidden attractors is a great chal-
lenge due to their appearance in many research fields such as in mechanics, secure
communication and electronics (Leonov and Kuznetsov 2011c; Kuznetsov et al.
2011; Pham et al. 2014e; Sharma et al. 2015). For example, hidden attractor in
smooth Chua’s system was reported in Leonov et al. (2012). Hidden oscillations in
mathematical model of drilling system (Leonov et al. 2014) and hidden oscillations
in nonlinear control systems (Leonov and Kuznetsov 2011a, b; Vaidyanathan and
Volos 2016a, b) were witnessed. Various examples of hidden attractors were also
summarized in Brezetskyi et al. (2015; Jafari et al. 2015; Shahzad et al. 2015; Sprott
2015). Hidden attractors were observed in a 4-D Rikitake dynamo system (Vai-
dyanathan et al. 2015a) or 5-D hyperchaotic Rikitake dynamo system (Vaidya-
nathan et al. 2015b). Hidden attractors in a chaotic system with an exponential
nonlinear term were introduced in Pham et al. (2015a). In addition, algorithms for
searching for hidden oscillations were presented in Leonov and Kuznetsov (2011b),
Leonov et al. (2011c).

In the last five years there has been an increasing interest in chaotic and espe-
cially in hyperchaotic systems with the presence of hidden attractors (Jafari and
Sprott 2013; Pham et al. 2014a; Pham et al. 2014b; Wei et al. 2014; Vaidyanathan
et al. 2015b). Also, it is worth noting that memristors have been applied in the
investigation of chaotic and hyperchaotic systems with hidden attractors. Pham
et al. introduced a simple neural network having a memristive synaptic weight,
which can exhibit hyperchaos although it possesses no equilibrium points (Pham
et al. 2014c). A new memristive system, which does not display any equilibria but
exhibits periodic, chaotic, and also hyperchaotic dynamics in a particular range of
the parameters space, was presented in Pham et al. (2014d). Also, a novel 4-D
memristor-based hyperchaotic system with hidden attractor was studied in Pham
et al. (2015b). However, motivated by complex dynamical behaviors, especially of
hyperchaotic systems, noticeable characteristics of memristor, and unknown fea-
tures of hidden attractors, the study of memristive hyperchaotic systems with
hidden attractors is still an open research subject.

In this chapter, a 4-D hyperchaotic fractional order memristive system with
hidden attractors is introduced. Owing the presence of a memristive device, this
particular hyperchaotic system has no equilibrium points. The rest of the chapter is
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organized as follows. Related works are summarized in Sect. 2. Section 3 provides
the mathematical model of the memristive hyperchaotic system while the dynamics
and properties of the system are presented in Sect. 4. The electronic circuit for the
evaluation of the theoretical model of the proposed memristive hyperchaotic system
is introduced in Sect. 5. The fractional order form of the proposed system and its
analysis are provided in Sect. 6, while Sect. 7 presents its electronic circuit real-
ization. Finally, conclusions are drawn in Sect. 8.

2 Related Work

Fractional calculus is a very old branch of mathematics, which mainly deals with
derivatives and integrals of arbitrary non-integer order. It was firstly introduced
300 years ago, but it only developed as a pure mathematical branch (Oldhamm and
Spanier 1974; Kenneth 1993; Podlubny 1999; Butzer and Westphal 2000). In the
last few decades, it is found that the fractional-order derivatives are extremely
useful to describe many real-world phenomena in fields such as in control theory,
material and mechanical systems, acoustics and thermal systems, signal processing
and system identification, reconfigurable hardware and so on (Concepcion et al.
2014; Dumitru et al. 2014; Ghasemi et al. 2014; Richard 2014; Santanu 2015).

The main aim of the researchers, who work on this field, is to find chaotic
behavior in fractional-order systems. Usually, chaotic attractors can not be observed
in nonlinear systems whose order is less than three, so it is highly interesting to
analyze the routes to chaos of fractional systems with low orders. Recently, there
has been a trend to transform integer-order in fractional-order forms. In this
direction, it was proven that many fractional-order nonlinear differential systems
behave chaotically, for instance, fractional-order Lorenz system (Grigorenko and
Grigorenko 2003), fractional-order Rössler system (Li and Chen 2004),
fractional-order Duffing oscillators (Gao and Yu 2005), fractional-order Chua cir-
cuit (Cafagna and Grassi 2008), fractional-order Chen system (Li and Peng 2004),
fractional-order Lü system (Lu 2006), fractional-order Liu system (Wang and Wang
2007) and so on. Due to the non local properties of fractional differential operators,
topological structures of fractional-order systems are different from the traditional
classical differential ones. Recently, control, synchronization and circuit imple-
mentation of fractional-order chaotic systems have received much attention.

Compared to integer-order, the fractional chaotic systems have the following
advantages:

1. the fractional derivatives have complex geometrical interpretation because of
their nonlocal character and high nonlinearity,

2. the power spectrum of fractional-order chaotic systems fluctuates complexly
increasing the chaoticity in frequency domain and

3. the computational complexity goal is also achieved.
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Therefore, new fractional chaotic systems are crucial to enhance the performance
of several integer-order chaos-based applications.

The last few years the research has been expanded into the design of
fractional-order hyperchaotic systems. Dadras et al. developed a four-wing
fractional-order hyperchaotic attractor generated from a 4-D system with one
equilibrium (Dadras et al. 2012). Wu et al. studied the case of synchronization
between two coupled identical new fractional-order hyperchaotic systems (Wu et al.
2009). Also, Matouk et al. presented the stability conditions, hyperchaos and
control in a novel fractional-order hyperchaotic system. (Matouk 2009). Other
novel fractional-order hyperchaotic systems and the cases of their synchronization
by using various methods, were presented in Yu and Li (2008), Deng et al. (2009),
Ping et al. (2009), Bai et al. (2012).

It is worth noting that all the above mentioned fractional-order chaotic and
hyperchaotic systems are characterized by one or more equilibrium points. How-
ever, a very challenging topic is about the study of fractional-order systems without
equilibrium points. In this regard, referring to the presence of chaos or hyperchaos
in fractional-order systems with no equilibria, only very few works have been
published (Li et al. 2011; Cafagna and Grassi 2013; Zhou and Huang 2014;
Cafagna and Grassi 2015). On the other hand, referring to the presence of hyper-
chaos in fractional-order memristive systems without equilibria, to the best of our
knowledge, no paper has been published in the literature so far.

3 The Memristive Hyperchaotic System Without
Equilibria

In this section a new memristive hyperchaotic system without equilibria is pre-
sented in details. Firstly, the model of the memristive device will be analyzed, while
next the mathematical description of the 4-D hyperchaotic system will be
introduced.

3.1 Model of the Memristive Device

In 1976 Chua and Kang introduced a memristive system by generalizing the
original definition of a memristor (Chua and Kang 1976). In general, a memristive
system is described by

ω ̇m =F(ωm, um, t)

ym =G(ωm, um, t)um
ð1Þ
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where um, ym and ωm denote the input, output, and state of the memristive system,
respectively. The function F is a continuous n-dimensional vector function and G is
a continuous scalar function. Based on the definition of memristive system, a
memristive device is proposed by the following form:

ω ̇m = um

ym = (1+ 0.24ω2
m − 0.0016ω4

m)um
ð2Þ

Hence the function G is a fourth degree polynomial function. In order to
investigate the fingerprints of memristive device (2), an external bipolar period
signal is applied across its terminals.

The external sinusoidal stimulus is given by

um =Asin(2π ft) ð3Þ

where A is the amplitude and f is the frequency. From the first equation of (2), the
state variable of the memristive device is described by

ωm(t) =
Z t

−∞
um(τ)dτ=ωm(0) +

Z t

−∞
Asin(2π ft)dτ

=ωm(0) +
A
2π f

1− cos(2π ft)ð Þ
ð4Þ

Substituting (3) and (4) into (2), it is easy to derive the output of the memristive
device ym. Therefore, the output ym depends on the frequency and amplitude of the
applied input stimulus. Figure 1 shows the hysteresis loop of the memristive device
(2) when it is driven by the periodic signal (3) with different frequencies.

Obviously, the proposed memristive device exhibits a “pinched hysteresis loop”
in the input-output plane (Biolek et al. 2011, 2012). In addition, when the excitation
frequency increases, the hysteresis lobe area decreases monotonically. Moreover,
when the frequency is adequately large, the pinched hysteresis loop shrinks to a
single-valued function. It is worth noting that the hysteresis loop of the memristive
device (2) pinched at different input amplitudes (see Fig. 2). Additionally, the
output ym also depends on the initial state of memristive device, as depicted in
Fig. 3. Thus, according to Adhikari et al. (2013), Biolek et al. (2013) the three main
fingerprints of memristive system have been observed in the proposed memristive
device (2) (Figs. 1–3).
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Fig. 2 Hysteresis loops of the proposed memristive device (2) driven by a sinusoidal stimulus (3),
when f = 0.1, ωm(0) = 0 and varying amplitude A

Fig. 1 Hysteresis loops of the proposed memristive device (2) driven by a sinusoidal stimulus (3),
when A = 1, ωm(0) = 0 and varying frequency f
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3.2 Model of the Memristive Hyperchaotic System

Based on the introduced memristive device (2), a four-dimensional system, which is
a modification of the system

x ̇= − 10x− bu− uz
u ̇= − 6x+1.2xz+0.1y− c
z ̇= − z− 1.2xu
ω ̇= u

8>><
>>: ð5Þ

that has been introduced in Pham et al. (2014d), is proposed as follows:

x ̇= − 10x− bu− uz
u ̇= − 6x+1.2xz+0.1y− c
z ̇= − z− 1.2u2

ω ̇= u

8>><
>>: ð6Þ

where u = um, y = ym and ω = ωm are the input, output, and state of the memristive
system, while b, c are two parameters. The difference between the two systems is
that the term xu in the third equation of (5) has been changed with u2 in (6).

The equilibrium points of the 4-D system (6) are obtained by solving the
equations

Fig. 3 Hysteresis loops of the proposed memristive device (2) driven by a sinusoidal stimulus (3),
when A = 1, f = 0.1 and using different initial states ωm(0)
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− 10x− bu− uz=0 ð7Þ

− 6x+1.2xz+0.1y− c=0 ð8Þ

− z− 1.2u2 = 0 ð9Þ

u=0 ð10Þ

From Eqs. (7), (9), (10) we have x = u = z = 0. Then, the Eq. (8) becomes

c=0 ð11Þ

Equation (11) is inconsistent, thus there is no equilibrium in system (6).
The divergence of system (6) is defined as:

∇V =
∂x ̇
∂x

+
∂u ̇
∂u

+
∂z ̇
∂z

+
∂ω ̇
∂ω

= − 10+ 0.24ω2 − 0.0016ω4 ð12Þ

So, system (6) is not conservative, and, furthermore, the contraction/expansion
of volumes is not uniform in the four dimensional space.

For the parameter values b = 5 and c = 0.001 and for the initial conditions (x
(0), u(0), z(0), ω(0)) = (0, 1, 0.2, 0,3, 0,4), the calculated Lyapunov exponents
(LEi) of the 4-D memristive system (6) are:

LE1 = 0.14779, LE2 = 0.01571, LE3 = 0, LE4 = − 15.66248 ð13Þ

There is more than one positive Lyapunov exponents in the LE spectrum (13),
thus the 4-D memristive system (6) exhibits hyperchaotic behavior (see its hyper-
chaotic attractor in Fig. 4).

The Kaplan–Yorke fractional dimension, that presents the complexity of
attractor (Sprott 2003; Strogatz 1994), is defined by

DKY = j+
1

Lj+1
�� �� ∑ji=1

Li ð14Þ

where j is the largest integer satisfying ∑
j

i=1
Li ≥ 0 and ∑

j+1

i=1
Li <0.Therefore, the

Kaplan–Yorke dimension of the novel memristive hyperjerk system (6) is calcu-
lated as: DKY = 3.0104, which is fractional.
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4 Dynamics of the Memristive Hyperchaotic System

In this section the system’s dynamical behavior is explored by using well-known
tools of nonlinear theory, such as the bifurcation diagram, the diagram of Lyapunov
exponents, the phase portraits and the Poincaré maps.

The bifurcation diagram provides a useful tool in nonlinear science because it
shows the change of system’s dynamical behavior. We investigate the dynamics of
system (6) further by using this tool for the bifurcation parameter b. In more details,
Fig. 5a presents the bifurcation diagram of the variable x versus the parameters
b. The system’s complexity has also been verified by the corresponding diagram of
Lyapunov exponents (LE) versus the parameter b (see Fig. 5b). For system
dynamical behavior’s better observation, from the diagram of Lyapunov exponents,
only the three of the four Lyapunov exponents are depicted in Fig. 5b.

It is well known that Lyapunov exponents measure the exponential rates of the
divergence and convergence of nearby trajectories in the phase space of the chaotic
system (Strogatz 1994). So, in order to have detailed view of the memristive system
(6), the Lyapunov exponents have been calculated using the algorithm in Wolf et al.
(1985) and are predicted in Fig. 5b. Obviously, Lyapunov spectrum indicates more
clearly than the bifurcation diagram that there are some narrow windows of limit
cycles [b ∈ (5.46, 5.49), b ∈ (5.61, 5.82), b ∈ (6.53, 7.00)] and of chaotic behavior
[b ∈ (4.50, 4.55], b ∈ (5.82, 5.94)], two windows of quasiperiodic behavior
through which the system is driven to chaos [b ∈ (5.55, 5.61], b ∈ (5.94, 6.53)] and

Fig. 4 Hyperchaotic attractor of system (6), for b = 5, and c = 0.001, in the (x, u, z)-space
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of hyperchaotic behavior [b ∈ (4.55, 5.46], b ∈ (5.49, 5.55)]. In Figs. 6, 7, 8 and 9
the phase portraits in (x, z)-plane and the corresponding Poincaré maps in (z, ω)-
plane are displayed, in order to present each one of system’s dynamical behavior
(limit cycle, quasiperiodic, chaotic and hyperchaotic).

Fig. 5 a Bifurcation diagram of z versus the parameter b and b the respective diagram of
Lyapunov exponents versus the parameter b, for c = 0.001, with initial conditions (x(0), u(0), z(0),
ω(0)) = (0, 1, 0.2, 0,3, 0,4)
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5 Circuit Realization of the Memristive Hyperchaotic
System

In this section, the electronic circuit, which emulates the mathematical model of the
proposed memristive hyperchaotic system (6) is presented in order to show its
feasibility. The designed circuit, which is built by using off-the-shelf electronic

Fig. 6 a Phase portrait of x versus z and b the respective Poincaré map of z versus ω, for b = 6.8
and c = 0.001, with initial conditions (x(0), u(0), z(0), ω(0)) = (0, 1, 0.2, 0,3, 0,4). The discrete
point in the Poincaré map indicates the system’s periodic behavior
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components, is an effective way for discovering dynamics of the theoretical model
practically.

Circuital design, especially of hyperchaotic systems plays an important role on
the field of nonlinear science due to its applications in many other fields, such as in
secure communication, signal processing, random bit generator, or path planning
for autonomous mobile robot etc. (Barakat et al. 2013; Gamez-Guzman et al. 2009;

Fig. 7 a Phase portrait of x versus z and b the respective Poincaré map of z versus ω, for b = 6.1
and c = 0.001, with initial conditions (x(0), u(0), z(0), ω(0)) = (0, 1, 0.2, 0,3, 0,4). The closed
curve in the Poincaré map indicates the system’s quasiperiodic behavior
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Sadoudi et al. 2013; Volos et al. 2012, 2013; Yalcin et al. 2004). In addition,
circuital implementation of chaotic/hyperchaotic systems is also provide an effec-
tive approach for investigating dynamics of such theoretical models (Buscarino
et al. 2009; Sundarapandian and Pehlivan 2012). For example, hyperchaotic
attractors can be observed on the oscilloscope easily or experimental bifurcation

Fig. 8 a Phase portrait of x versus z and b the respective Poincaré map of z versus ω, for b = 5.9
and c = 0.001, with initial conditions (x(0), u(0), z(0), ω(0)) = (0, 1, 0.2, 0,3, 0,4). The strange
attractor in the Poincaré map indicates the system’s chaotic behavior
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diagrams can be obtained by varying the values of variable resistors (Bouali et al.
2012; Fortuna et al. 2009).

Figure 10 depicts the schematic of the circuit. The main circuit that realizes the
system (6), has four integrators (U1–U4) and two inverting amplifiers (U5, U6),

Fig. 9 a Phase portrait of x versus z and b the respective Poincaré map of z versus ω, for b = 5
and c = 0.001, with initial conditions (x(0), u(0), z(0), ω(0)) = (0, 1, 0.2, 0,3, 0,4). The strange
attractor in the Poincaré map in combination with the two positive Lyapunov exponents indicates
the system’s hyperchaotic behavior
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which are implemented with the operational amplifier TL084, as well as three
signals multipliers (U8–U10) by using the analog multiplier AD633. Also, the
circuital realization of the memristor’s function y of Eq. (2), is also depicted in

Fig. 10 Schematic of the circuit, which emulates the memristive hyperchaotic system

222 C. Volos et al.



Fig. 10. Indeed the sub-circuit of the proposed memristive system only emulates the
memristive function because there is not any commercial off-the-shelf memristive
device in the market yet. So, the memristor’s function is realized by using an
inverting adder amplifier (U7) and three signals multipliers (U11–U13).

By applying Kirchhoff’s circuit laws, the corresponding circuital equations of the
designed circuit can be written as:

x ̇= 1
RC − R

R1
x− R

Rb
u− R

10V ⋅R1
uz

� �
u ̇= 1

RC − R
R2
x+ R

10V ⋅R3
xz+ R

R5
y−Vc

� �
z ̇= 1

RC − z− R
10V ⋅R3

u2
� �

ω ̇= 1
RC u

8>>>>><
>>>>>:

ð15Þ

where

y=
R

10V ⋅R1
Vy +

R

10Vð Þ2 ⋅R5
ω2 −

R

10Vð Þ4 ⋅R6
ω4

 !
u ð16Þ

In system (15), the variables x, u, z andω correspond to the voltages in the outputs
of the integrators U1–U4. Normalizing the differential equations of system (15), by
using τ = t/RC, we can see that this system is equivalent to the system (6), with
b = R/Rb. The circuit components have been selected as: R = 10 kΩ, R1 = 1 kΩ,
R2 = 2 kΩ, R3 = 0.866 kΩ, R4 = 100 kΩ, R5 = 0.416 kΩ, R6 = 0.625 kΩ,
C = 10 nF, Vc = 1 VDC, Vy = 0.001 VDC, while the power supplies of all active
devices are ±15 VDC. For the chosen set of components the system’s (6) parameter
is c = 0.001, while the value of the parameter b is adjusted via the resistor Rb.

The designed circuit is implemented in the electronic simulation package
MULTISIM and the obtained results are displayed in Figs. 11 and 12. Theoretical
attractors (see Figs. 6a and 9a) are similar with the circuital ones (see Figs. 11 and 12).

6 The Fractional-Order Memristive Hyperchaotic System

Fractional calculus is a generalization of integration and differentiation to
non-integer-order fundamental operator. Different definitions of fractional order
integration and differentiation have emerged during the development of fractional
order theory. Some definitions are the Grünwald-Letnikov definition, the Cauchy
integral formula, the Riemann-Liouville definition and the Caputo definition
(Podlubny 1999).

Let L1 = L1 a, b½ �, 0≤ a< b<∞, be a class of Lebesgue integrable function on [a,
b]. Then, the Riemman-Liouville definition of a fractional integral for the function
f ðtÞ∈ L1, of order a > 0, and t > 0, is given by
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Iαf (t) =
1

Γ αð Þ
Z t

0

f (τ)

t− τð Þ1−α dτ ð17Þ

From the practical point of view the Riemman-Liouville definition requires the
knowledge of the non-integer order derivatives of the function at t = 0. But the
problem does not exist in the Caputo definition of the fractional derivative, which is
called a smooth fractional derivative, and it is described by

Dα = Im− αy mð Þ xð Þ, α>0 ð18Þ

where m= ⌈α⌉, y(m) is the general m-order derivative, and Iα is the
Riemman-Liouville integral operator. In general the operator Dα is called α-order
Caputo differential operator, and is widely used in engineering field. The main
advantage of using the Caputo definition is that the initial conditions of the frac-
tional order differential equations are in the same form as the initial conditions of
integer order differential equations, and there are clear interpretations of the initial
conditions for integer orders. Moreover, it has the benefit of possessing a value of
zero when it is applied to a constant.

Fig. 11 Limit cycle of the designed circuit obtained from MULTISIM in the (x, z)-phase plane,
for b = 6.8, c = 0.001
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The Laplace transform of the fractional integration operator is

Iα sð Þ=L
tα− 1

ΓðαÞ
� �

=
1
sα

ð19Þ

the implicit fractional differentiation is defined as the dual operation of the frac-
tional integration. If y tð Þ= Iα x tð Þð Þ or YðsÞ= 1

sα X sð Þ, then x(t) is the αth fractional
order derivative of y(t) defined as:

xðtÞ=Dα y tð Þð Þ or X sð Þ= sαYðsÞ ð20Þ

In this scenario and by taking into account Refs. (Deng and Lu 2007; Petras
2011; Zambrano-Serrano et al. 2016), the fractional order memristive hypechaotic
system of (6) can be described by

Dαx= − 10x− bu− uz
Dαu= − 6x+1.2xz+0.1y− c
Dαz= − z− 1.2u2

Dαω= u

8>><
>>: ð21Þ

Fig. 12 Hyperchaotic attractor of the designed circuit obtained from MULTISIM in the (x, z)-
phase plane, for b = 5, c = 0.001
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Fig. 13 Bifurcation diagram of x with b = 5, c = 0.001 and commensurate order α as varying
parameter

Fig. 14 Hyperchaotic attractor without equilibrium points from the system (21) in the (x, z)-phase
plane, for b = 5, c = 0.001 and α = 0.98
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where α is the fractional order satisfying 0 < α < 1. By preserving the same values
of system’s parameters for integer case, the chaotic behavior of (21) is observed
when 0.9725 ≤ α < 1 as demonstrated by the bifurcation diagram in Fig. 13. The
resulting hyperchaotic attractor by setting b = 5, c = 0.001 and order α = 0.98 is
given in Fig. 14. We have calculated numerically the spectrum of Lyapunov
exponents in order to show the chaotic behavior of system (21). TISEAN software
has been considered as a tool to obtain the spectrum of Lyapunov exponents
(Hegger et al. 1998), from the numerical time series of the state variable x produced
from system (21). The calculated Lyapunov exponents (LEi) of the 4-D
fractional-order hyperchaotic memristive system (6) are LE1 = 0.2715, LE2 =
0.0171, LE3 = 0, LE4 = −0.2889.

7 Circuit Realization of the Fractional-Order Memristive
Hyperchaotic System

The electronic circuit synthesis of the fractional-order memristive hyperchaotic
system (21) is shown in this section. The basic idea is similar to integer order case.
It means that analog computing approach can be also used to design four integration
channels. The main difference lies on the integration, which must be performed for
fractional orders. As previously reported in Krishna and Reddy (2008), the frac-
tional impedances have been pointed out as a solution to design fractional order
operators. The fractional impedance, or fractance for short, is an electrical element
which exhibits fractional order impedance properties. The impedance of the frac-
tance device in the complex frequency domain is given by

Z(s) = asα ⇒Z(jω) = aωαejðπα 2̸Þ ð22Þ

where ω is the angular frequency, and the parameter α, for the special case of α = 1
this element represents an inductor, for α = −1 represents a capacitor while for
α = 0 represents a resistance. In the range −2 < α < 0 this element generally can
be considered to represent a fractional order capacitor. Alike, in the range
0 < α < 2 this element can be considered to represent a fractional order inductor.
At α = −2 the element represents the frequency-dependent-negative-resistor
(Radwan et al. 2008). A physical fractance device does not yet available in the
form of a single commercial device. So, the fractance device can be emulated via
higher order passive RC or RLC trees, chains or even a net grid type networks
(Krishna and Reddy 2008).

The fractance has many interesting properties. The phase angle is constant
independent of the frequency, its magnitude versus frequency is nonlinear which
can increase or decrease the effect of frequency, which means that it depends only
on the value of fractional order α. Furthermore by using an operational amplifier, a
fractional order integration can be attained. The main issue to design a fractance

Analysis of a 4-D Hyperchaotic Fractional-Order … 227



device is to find the rational approximation of the fractional order operator. This
means, that the design of fractance with order α can be done considering the rational
approximations. A general network to design a fractance for any order is shown in
Fig. 15.

To compute a solution of a fractional order system considering rational
approximations, first the fractional order equations of the system is considered in
the frequency domain, and then Laplace transform of the fractional integral operator
is replaced by its integer order approximation. One of the most common methods to
find a rational approximation of the fractional operators is Charef method (Charef
et al. 1992). Therein, the goal is to find zeros and poles of a transfer function that
has similar amplitude diagram as 1 s̸α in a given frequency range. The fractional
operator 1 s̸α has a Bode amplitude diagram characterized by a slope of I
(−20α) dB/decade. Therefore in this method, the slope is approximated by a
number of zigzag straight lines connected together with individuals slopes of
(−20α) and 0 dB/decade. The order of this linear approximation system depends on
the desired bandwidth and accuracy.

By considering α = 0.98, the approximation of 1 s̸0.98 with error of approxi-
mately 0.5 dB and bandwidth of 10−2 – 102 rad/s, and considering the method
presented in Charef et al. (1992) is given by

1
s0.98

≈
1.14s2 + 136.3s+45.6

s3 + 134.5s2 + 50.73s+0.05365
ð23Þ

Then, the high-order rational approximation in (23) is designed by using three
capacitors and three resistors from Fig. 15.

The values of circuit elements are obtained by determining the transfer function
H(s) between n1 and n2 as follows:

H(s) =R1ajj 1
sC1a

jjR2a+
1

sC2a
jjR3a+

1
sC3a

ð24Þ

where C0 is a unit parameter. In this manner, Fig. 16 depicts the schematic of the
electronic circuit of (21) by using commercial devices such as operational ampli-
fiers TL084, analog multipliers AD633, and passive components. Herein, devices
U1, U2, U3, and U4 implement the fractance device to get a fractional order
integrator for α = 0.98. Circuit equations are analogous to integer-order case in
(15) and (16). Then, by using the same values for circuit components as given in

Fig. 15 Fractional
impedance with n-resistors
and n-capacitors
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Sect. 5, and let GðsÞ=HðsÞC0 = 1
s0.98 and C0 = 1μF in (24), the values for fractance

device are: R1a = 849.9 MΩ, R2a = 24.38 MΩ, R3a = 76.55 MΩ, C1a = 8.771
µF, C2a = 1.222 µF and C3a = 1.095 µF.

Fig. 16 Circuit implementation of fractional order hyperchaotic memristive system in (21) with
fractional order α = 0.98
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The circuit simulation of fractional order hyperchaotic memristive system is
given in Fig. 17. By comparing the chaotic attractor in Fig. 17 with that in Fig. 14,
it can be concluded that the circuit simulations are consistent with the numerical
simulations.

8 Conclusion

In this chapter the first fractional-order hyperchaotic memristive system has been
introduced and analyzed. Systematic studies of the hyperchaotic behavior in the
integer and fractional-order form of the system were performed using phase por-
traits, Poincaré maps, bifurcation diagrams and Lyapunov exponents. Hyperchaotic
behavior was observed with different fractional orders as a function of the system’s
parameters. The spectrum of Lyapunov exponent was computed to give a validation
of the hyperchaotic behavior for the attractor with fractional order α = 0.98.
Finally, an electronic circuit to implement the fractional order hyperchaotic system
has been also introduced. A fractance device was designed in order to get the
fractional order hyperchaotic system from its integer-order version. Circuit simu-
lations confirm the observed hyperchaotic behavior. This research would enable
future engineering applications by considering the advantages of memristor-based
systems and fractional order theory.

Fig. 17 Hyperchaotic attractor observed from electronic circuit in Fig. 16, with fractional order
α = 0.98
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Adaptive Control and Synchronization
of a Memristor-Based Shinriki’s System

Christos Volos, Sundarapandian Vaidyanathan, V.-T. Pham,
H.E. Nistazakis, I.N. Stouboulos, I.M. Kyprianidis and G.S. Tombras

Abstract The recent discovery of memristor has aroused great interest in the
scientific community about this new fourth circuit element and its applications in
spintronic devices, ultra-dense information storage, neuromorphic circuits and
programmable electronics. Also, the intrinsic nonlinear characteristic of memristor
has been exploited in implementing novel chaotic oscillators with complex
dynamics, by replacing their nonlinear elements with memristors. However, the
increased systems’ complexity, due to the use of memristor, have been raised
significantly the interest for studying the cases of control of such systems as well as
the synchronization of coupled memristive systems. So, to this direction, this
chapter presents an adaptive controller, which is designed to stabilize a
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memristor-based chaotic system with unknown memristor’s parameters. Moreover,
an adaptive controller is designed to achieve global chaos synchronization of the
memristor-based chaotic systems with unknown memristor’s parameters. The
proposed chaotic system is a modified Shinriki nonlinear circuit, in which its
nonlinear positive conductance has been replaced with a first order memristive
diode bridge. All the main adaptive results in this chapter are proved using Lya-
punov stability theory. The simulation results confirm the effectiveness of the
proposed control and synchronization schemes.

Keywords Memristor ⋅ Shinriki system ⋅ Chaos ⋅ Control ⋅ Synchronization

1 Introduction

Three attractive inventions of Professor Leon Chua: the Chua’s circuit (Matsumoto
1984), the Cellular Neural/Nonlinear Networks (CNNs) (Chua and Yang 1988a, b),
and the memristor (Chua 1971; Chua and Kang 1976) are considered as the major
breakthroughs in the literature of the nonlinear science. While Chua’s circuit and
CNNs have been studied and applied in various areas, such as secure communi-
cations, random generators, signal processing, pattern formation of modelling of
complex systems (Arena 2005; Chua 1994, 1998), studies on memristor have only
received significant attention recently after the realization of a solid-state thin film
two-terminal memristor at Hewlett-Packard Laboratories (Strukov et al. 2008).

After this realization, a considerable number of potential memristor-based
applications have been reported because memristor can be applied in different
potential areas. The more important of them are related with spiking neural net-
work, high-speed computing, synapses of biological systems, flexible circuits,
nonvolatile memory, adaptive filter, pattern recognition systems, artificial intelli-
gence, modeling of complex systems or low power devices and sensing (Adhikari
et al. 2012; Ascoli et al. 2013; Ascoli and Corinto 2013; Corinto et al. 2012;
Driscoll et al. 2010; Joglekar and Wolf 2009; Shin et al. 2011; Tetzlaff 2014).
Interestingly, the intrinsic nonlinear characteristic of memristor has been exploited
in implementing novel chaotic oscillators with complex dynamics (Bo-Cheng et al.
2011; Buscarino et al. 2012a, b; Corinto et al. 2012; Corinto and Ascoli 2012;
Driscoll et al. 2011; Itoh and Chua 2008; Muthuswamy 2010).

Furthermore, the study of control of a chaotic system investigates methods for
designing feedback control laws that globally or locally asymptotically stabilize or
regulate the outputs of a chaotic system. Many methods have been developed for
the control and tracking of chaotic systems such as active control (Chen 1999;
Mahmoud et al. 2007; Nbendjo et al. 2003; Nbendjo and Woafo 2007), adaptive
control (Chen 2011; Zheng 2011; Lin 2008; Luo et al. 2010; Vaidyanathan and
Volos 2016a, b), backstepping control (Laoye et al. 2009; Lin 2010; Yassen 2006)
and sliding mode control (Bartoszewicz and Patton 2007; Edwards and Spurgeon
1998; Utkin 1993, 2004; Utkin et al. 2009; Young et al. 1999).
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Furthermore, chaos synchronization problem deals with the synchronization of a
couple of systems called the master or drive system and the slave or response
system. To solve this problem, control laws are designed so that the output of the
slave system tracks the output of the master system asymptotically with time. The
study of chaos in the last decades had a tremendous impact on the foundations of
science and engineering and one of the most recent exciting developments is the
discovery of chaos synchronization, which possibility was first reported by Fujisaka
and Yamada and later by Pecora and Carroll (Fujisaka and Yamada 1983; Pecora
and Carroll 1990). Because of the “butterfly” effect, the synchronization of chaotic
systems is a challenging problem in the chaos literature even when the initial
conditions of the master and slave systems are nearly identical because of the
exponential divergence of the outputs of the two systems in the absence of any
control. Different types of synchronization such as complete synchronization
(Landsman and Schwartz 2007; Lin and He 2005; Liu 2002; Mahmoud and
Mahmoud 2010; Pecora and Carroll 1990), antisynchronization (Kim et al. 2003; Li
and Zhou 2007; Wang 2009; Wedekind and Parlitz 2002; Zhang and Sun 2004),
hybrid synchronization (Barajas-Ramírez et al. 2003; Karthikeyan and Sundara-
pandian 2014; Xie 2002), lag synchronization (Li et al. 2005; Rosenblum et al.
1997; Shahverdiev et al. 2002; Taherion and Lai 1999), phase synchronization
(Pikovsky et al. 1997; Rosenblum et al. 1996, 2001), anti-phase synchronization
(Astakhov et al. 2000; Cao and Lai 1998; Liu et al. 2006), generalized synchro-
nization (Kocarev and Parlitz 1996; Rulkov et al. 1995; Wang and Guan 2006;
Yang and Duan 1998), projective synchronization (Li and Xu 2004; Mainieri and
Rehacek 1999), generalized projective synchronization (Li 2007; Sarasu and
Sundarapandian 2011; Yan and Li 2005), have been studied in the chaos literature.

Since the discovery of chaos synchronization, different approaches have been
proposed to achieve it, such as PC method (Pecora and Carroll 1990), active control
method (Agiza and Yassen 2001; Idowu et al. 2009; Vaidyanathan and Rajagopal
2011; Vincent 2008), adaptive control method (Chen and Lü 2002a, b; Vaidya-
nathan and Rajagopal 2012), backstepping control method (Huang 2005; Tan 2003;
Yassen 2007) and sliding mode control method (Tavazoei and Haeri 2008; Yau
2004; Zhang and Xu 2010).

In this chapter, adaptive control and synchronization schemes for a
memristor-based chaotic system have been developed. The proposed system is a
modified Shinriki nonlinear circuit, in which its nonlinear positive conductance has
been replaced with a first order memristive diode bridge. All the main adaptive
results in this chapter are proved using Lyapunov stability theory. Simulation results
prove the effectiveness of the proposed control and synchronization schemes.

The rest of this chapter is organized as follows. Related works are summarized in
Sect. 2. Section 3 provides the mathematical model of the memristor-based Shinriki
system, while the dynamics and properties of the system are presented in Sect. 4.
The adaptive control scheme of the memristor-based Shinriki system is introduced
in Sect. 5, while the adaptive synchronization scheme between two coupled
memristor-based Shinriki system is presented in Sect. 6. Finally, conclusions are
drawn in Sect. 7.
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2 Related Works

Based on the complex dynamical behavior that memristive systems present, in the
last five years many interesting control and synchronization schemes in those
systems have been proposed. These schemes are presented in details in this section.

Firstly, in 2012, Wu et al. proposed some sufficient conditions for guarantying
the exponential synchronization of the coupled memristor-based recurrent neural on
drive-response concept (Wu et al. 2012).

Two different types of anti-synchronization algorithms are presented by Wu and
Zeng in order to achieve the exponential anti-synchronization of coupled mem-
ristive recurrent neural networks (Wu and Zeng 2013). Huang and his co-workers
investigated the problem of intermittent control of a memristor-based Chua’s
oscillator and presented the oscillator as the T-S fuzzy model system (Huang et al.
2013). Also, in 2013, a novel kind of compound synchronization between four
memristor chaotic oscillator systems was investigated, where the drive systems
have been conceptually divided into two categories: scaling drive systems and base
drive systems (Sun et al. 2013).

In 2014, Zhang and Shen have investigated the exponential synchronization of
coupled memristor-based chaotic neural networks with both time-varying delays
and general activation functions (Zhang and Shen 2014). In the same year, the
problem of global exponential synchronization for a class of memristor-based
Cohen–Grossberg neural networks with time-varying discrete delays and unboun-
ded distributed delays was studied (Yang et al. 2014). The problem of exponential
lag synchronization control of memristive neural networks via the fuzzy method
and its application in pseudorandom number generators has been presented in Wen
et al. (2014a). In Wang et al. (2014) the synchronization control of memristor-based
recurrent neural networks with impulsive perturbations or boundary perturbations is
studied. Also, in 2014, the synchronization problem of memristive systems with
multiple networked input and output delays via observer-based control has been
investigated (Wen et al. 2014b).

Pham et al. 2015, studied the case of anti-synchronization between coupled
memristor-based hyperchaotic systems with hidden attractors (Pham et al. 2015).
The global robust synchronization of multiple memristive neural networks with
nonidentical uncertain parameters is presented in Yang et al. (2015). Wen and his
co-workers studied the problem of circuit design and global exponential stabiliza-
tion of memristive neural networks with time-varying delays and general activation
functions (Wen et al. 2015). By using the parallel-memristors connection corre-
sponding to the capacitors and memristors synaptic connection in usual recurrent
neural networks, general delayed memristive recurrent neural networks are pro-
posed in Zhang et al. (2013). The investigation of synchronization for
memristor-based neural networks with time-varying delay via an adaptive and
feedback controller is studied in Li and Cao (2015). Mathiyalagan and his
co-workers formulated and investigated the impulsive synchronization of memristor
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based bidirectional associative memory neural networks with time varying delays
(Mathiyalagan et al. 2015).

In Mathiyalagan et al. (2016) the mixed H∞ and passivity based synchronization
criteria for memristor-based recurrent neural networks with time-varying delays has
been investigated. The impulsive synchronization of stochastic memristor-based
recurrent neural networks with time delay is studied in Chandrasekar and
Rakkiyappan (2016). Li and Cao presented the lag synchronization problem of
memristor-based coupled neural networks with or without parameter mismatch using
two different algorithms (Li and Cao 2016). A memristor-based complex Lorenz
system and its modified projective synchronization have been introduced in Wang
et al. (2016). Wen and his co-workers presented the sliding-mode control scheme of
uncertain memristive Chua’s circuits via the aforementioned method (Wen et al.
2016). Finally, a new memristor-based hyperchaotic complex Lü system and its
adaptive complex generalized synchronization are presented in Wang et al. (2016).

3 Model of the Memristor-Based Shinriki’s System

In this section, the memristor-based chaotic oscillator obtained by replacing the
nonlinear positive conductance of the Shinriki’s et al. (1981) circuit with a first order
memristive diode bridge is considered, as it proposed by Kengne et al. (2015). The
original Shinriki’s oscillator, which is a modified van der Pol oscillator, has been
introduced by Shinriki and co-workers in 1981 (Fig. 1). It consists of a resonant
circuit and two nonlinear conductances, one negative, which is approximated by

ia(v1) = − a1v1 + a3v31, a1 > 0, a3 > 0 ð1Þ

and another positive, which is approximated by

id(v2 − v1) = b1(v2 − v1) + b3(v2 − v1)3, b1 > 0, b3 > 0 ð2Þ

These approximations are quite reasonable from the qualitative viewpoint.
The state equation of the Shinriki’s circuit is written as:

C0
dv1
dt

= −G1v1 + a1v1 − a3v31 + b1(v2 − v1) + b3(v2 − v1)3

C
dv2
dt

= − iL −G2v2 − b1(v2 − v1) − b3(v2 − v1)3

L
diL
dt

= v2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð3Þ

with (v1, v2, iL)∈R3.
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Shinriki and his co-workers showed that the circuit of Fig. 1 can generate
oscillations with a random waveform or a periodic waveform depending on the
chosen parameters.

In 1984, the dynamical behavior of the circuit of Fig. 1 has been further
investigated in the work (Freire et al. 1984). The circuit is shown to develop a great
variety of dynamical behaviors (equilibrium points, periodic oscillations, chaotic
motions etc.) and the analysis proceeded to catalog all of them through a bifurcation
study (pitchfork and Hopf bifurcations, flip bifurcations etc.). This study pointed
out the interest devoted to the Shinriki’s system (3).

Furthermore, in 2015 a novel memristor-based oscillator, obtained from Shin-
riki’s circuit of Fig. 1, by substituting the nonlinear positive conductance with a
first order memristive diode bridge, with a first order parallel RC filter, has been
introduced (Kengne et al. 2015). The schematic diagram of the memristor-based
Shinriki’s circuit, which is an autonomous nonlinear circuit belonging to the
memristive Chua’s circuit family, is depicted in Fig. 2.

The mathematical model of the proposed memristor is given by the following
equations:

im = g(vCm, v)v=2ISexp(− kvCm)sinh(kvm) ð4Þ
dvCm
dt

= f (vCm, v) =
2ISexp(− kvCm)cosh(kvm)

Cm
−

vCm
RmCm

−
2IS
Cm

ð5Þ

where k = 1/2nVT, while IS, n, VT denote the reverse current, the emission coeffi-
cient and the thermal voltage of the diode, respectively. Also, vm, im represent the

Fig. 1 The schematic of the original Shinriki’s circuit
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Fig. 2 The schematic of the memristor-based Shinriki’s circuit

input voltage and current of the memristor, and vCm is the voltage of the capacitor
Cm. The proposed memristor has been proved in Bao et al. (2014) that exhibits the
three characteristic fingerprints for identifying a memristor (Adhikari et al. 2013).

By using the aforementioned memristor model, the Shinriki’s system (3) has
became a fourth order dynamical system described by the following set of differ-
ential equations:

C
dvC
dt

= − iL −
vC
R5

− 2ISe− kvCmsinh(kvC − kvCo)

C0
dvCo
dt

=
1
R3

−
1
R4

� �

vCo +2ISe− kvCmsinh(kvC − kvCo)

L
diL
dt

= vC

Cm
dvCm
dt

= −
vCm
Rm

+2ISe− kvCmcosh(kvC − kvCo)− 2IS

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð6Þ

Normalizing the system (6), by using the following change of variable and
parameters:

x1 =
vC
Vref

, x2 =
vCo
Vref

, x3 =
ρiL
Vref

, x4 =
vCm
Vref

, τ=
t
ffiffiffiffiffiffi

LC
p ,

Vref =2ηVT , ρ=
ffiffiffiffiffiffiffiffi

L C̸
p

, η1 =
C
Co

, η2 =
C
Cm

,

α=
ρ

R4
, β=

ρ

R3
, γ =

2ρiL
Vref

, δ=
ρ

R5
, σ =

ρ

Rm

ð7Þ
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The dimensionless circuit’s system is defined as:

x1̇ = − x3 − δx1 − γe− x4 sinh(x1 − x2)
x2̇ = η1 (β− α)x2 + γe− x4 sinh(x1 − x2)½ �
x3̇ = x1
x4̇ = η2 − σx4 + γe− x4cosh(x1 − x2)− γ½ �

8

>

>

<

>

>

:

ð8Þ

where the over dots denotes differentiation with respect to the dimensionless time τ.
Finally, for simplifying the system (8) further, it can be written as:

x1̇ = − x3 − dx1 − ce− x4 sinh(x1 − x2)
x2̇ = (b− a)x2 + pe− x4 sinh(x1 − x2)
x3̇ = x1
x4̇ = − lx4 +me− x4cosh(x1 − x2)−m

8

>

>

<

>

>

:

ð9Þ

where, a = η1α, b = η1β, c = γ, d = δ, p = η1γ, l = η2σ and m = η2γ.

4 Dynamics of the Memristor-based Shinriki’s System

The detailed analysis of the memristor-based Shinriki’s system (8), regarding its
fixed point’s analysis, system’s symmetry and numerical study, can be found in
(Kengne et al. 2015). However, in this section the system’s chaotic behavior will be
explored, in order to study, in the next sections, its chaos control and synchro-
nization schemes.

For this reason the system (9) is solved numerically using the classical
fourth-order Runge-Kutta integration algorithm with time step Δt = 0.005 and the
calculations are performed using variables and constants parameters. Also, the
system is integrated for a sufficiently long time and the transient is cancelled. Two
indicators are substantially exploited to define the type of scenario giving rise to
chaos. The bifurcation diagram stands as the first indicator, while the second
indicator is the graph of the Lyapunov exponents.

Furthermore, the numerical analysis is performed with the following values of
circuit components: L = 225 mH, Co = 10 nF, C = 100 nF, Cm = 940 nF,
R1 = 5.6 kΩ, R2 = 5.6 kΩ, R3 = 10 kΩ, R4 = 50 kΩ, R5 = 20 kΩ, Rm—tuneable,
1N4148 diodes, with η = 1.9, VT = 26 mV and IS = 2.682 nA. With this set of
components values, the system’s dimensionless parameters values are fixed to:
a = 0.3, b = 1.5, c = 8.143724 × 10−5, d = 0.075, p = 8.143724 × 10−4, and
m = 8.6635298 × 10−4, while l is the control parameter. The choice of l as a
control parameter is done, because it is related with the memristor (via Rm). So, it is
preferable as a control parameter, in order to see how a memristor’s parameter
affects system’s behavior.

As it is known, the bifurcation diagram provides a useful tool in nonlinear
science because it shows the change of system’s dynamical behavior. So, the
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bifurcation diagram of Fig. 3a has been obtained by plotting the value of variable
x1, when the trajectory intersects the section plane x3 = 0, with x3̇ > 0, in terms of
the bifurcation parameter l that is increased with step Δl = 0.002 in the range of
0 ≤ l ≤ 2. From the observation of this diagram, the reader can see a period
doubling route to chaos as the bifurcation parameter l is increased. The extended
chaotic region is interrupted by tiny windows of periodic behavior sandwiched in
the chaotic bands.

Also, it is well known, that Lyapunov exponents measure the exponential rates
of the divergence and convergence of nearby trajectories in the phase space of the

Fig. 3 a Bifurcation diagram of x1 versus the parameter l and b the respective diagram of
Lyapunov exponents versus the parameter l
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chaotic system (Strogatz 1994). In order to have detailed view of the
memristor-based Shinriki system (9), the Lyapunov exponents (λi, with i = 1, 2, 3, 4)
have been calculated using the algorithm in Wolf et al. (1985) and are depicted in
Fig. 3b. In fact, Fig. 3b presents only the three largest Lyapunov exponents because
the fourth Lyapunov exponent (λ4) is very low. Briefly recall that for periodic
orbits, the system has λ1 = 0 and λ2, λ3, λ4 ≤ 0, for quasiperiodic orbits
λ1 = λ2 = 0 and λ3, λ4 ≤ 0, while for chaotic attractors λ1 ≥ 0, λ2 = 0, and λ3,
λ4 ≤ 0, and for hyperchaotic attractors λ1 ≥ λ2 ≥ 0, λ3 = 0 and λ4 ≤ 0. It can be
seen that the bifurcation diagram of Fig. 3a well coincide with the spectrum of the
Lyapunov exponents (Fig. 3b). Note that, the system is simply chaotic (and not
hyperchaotic), although it is a fourth order nonlinear system.

Finally, for the aforementioned set of parameters, various numerical phase
portraits in (x2 − x1) planes are depicted (Figs. 4, 5, 6 and 7).

Fig. 4 Phase portrait of x2
versus x1, for l = 0.2
(period-2 state)

Fig. 5 Phase portrait of x2
versus x1, for l = 1 (chaotic
state)
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5 Adaptive Control of the Memristor-Based Shinriki’s
System

From the results of the aforementioned simulation process, it is obvious that the
nature of the memristor add an extra complexity to system’s dynamical behavior.
So, it is useful to see if the proposed memristor-based Shinriki’s system can be
controlled by using the adaptive control method, in order to derive an adaptive
feedback control law for globally stabilizing the system with memristor’s unknown
parameters.

Fig. 6 Phase portrait of x2
versus x1 for l = 1.4 (period-6
state)

Fig. 7 Phase portrait of x2
versus x1 for l = 2 (chaotic
state)
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Thus, we consider the memristor-based Shinriki’s system given by

x1̇ = − x3 − dx1 − ce− x4 sinh(x1 − x2) + u1
x2̇ = (b− a)x2 + pe− x4 sinh(x1 − x2) + u2
x3̇ = x1 + u3
x4̇ = − lx4 +me− x4cosh(x1 − x2)−m+ u4

8

>

>

<

>

>

:

ð10Þ

In (10), xi, (i = 1, …, 4) are the states and ui, (i = 1, …, 4) are the adaptive
controls to be determined using estimates c ̂ðtÞ, p ̂ðtÞ, lð̂tÞ, m̂ðtÞ for the unknown
memristor’s parameters c, p, l, m, respectively.

We consider the adaptive feedback control laws

u1̇ = x3 + dx1 + c ̂e− x4 sinh(x1 − x2)− k1x1
u2̇ = − (b− a)x2 − p ̂e− x4 sinh(x1 − x2)− k2x2
u3̇ = − x1 − k3x3
u4̇ = lx̂4 − m̂e− x4cosh(x1 − x2) + m̂− k4x4

8

>

>

<

>

>

:

ð11Þ

where ki, (i = 1, …, 4) are positive gain constants.
Substituting (11) into (10), we get the closed-loop plant dynamics as:

x ̇1 = − (c− c ̂)e− x4 sinh(x1 − x2)− k1x1
x2̇ = (p− p ̂)e− x4 sinh(x1 − x2)− k2x2
x3̇ = − k3x3
x4̇ = − (l− l)̂x4 + (m− m̂)e− x4cosh(x1 − x2)− (m− m̂)− k4x4

8

>

>

<

>

>

:

ð12Þ

The parameter estimation errors are defined as:

ec(t) = c− c ̂ðtÞ
ep(t) = p− p ̂ðtÞ
el(t) = l− lð̂tÞ
em(t) =m− m̂ðtÞ

8

>

>

<

>

>

:

ð13Þ

In view of (13), we can simplify the plant dynamics (12) as:

x ̇1 = − ece− x4 sinh(x1 − x2)− k1x1
x2̇ = epe− x4 sinh(x1 − x2)− k2x2
x3̇ = − k3x3
x4̇ = − elx4 + eme− x4cosh(x1 − x2)− em − k4x4

8

>

>

<

>

>

:

ð14Þ

Differentiating (13) with respect to t, we obtain

e ̇c(t) = − c ̂̇ðtÞ
eṗ(t) = − p ̂̇ðtÞ
el̇(t) = − l ̂ð̇tÞ
eṁ(t) = − ṁ̂ðtÞ

8

>

>

<

>

>

:

ð15Þ
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We use adaptive control theory in order to find an update law for the parameter
estimates. We consider the quadratic candidate Lyapunov function defined by

V(x, ec, ep, el, emÞ= 1
2
ðx21 + x22 + x23 + x24Þ+

1
2
ðe2c + e2p + e2l + e2mÞ ð16Þ

Differentiating V along the trajectories of (14) and (15), we obtain

V ̇= x1x1̇ + x2x2̇ + x3x3̇ + x4x4̇ + eceċ + epeṗ + elel̇ + emeṁ

= − k1x21 − ecx1e− x4 sinh(x1 − x2)− k2x22 + epx2e− x4 sinh(x1 − x2)

− k3x23 − k4x24 − elx24 + emx4e− x4cosh(x1 − x2)− emx4

− ecc ̂̇− epp ̂̇− ell ̂−̇ emṁ̂

ð17Þ

or

V ̇= − k1x21 − k2x22 − k3x23 − k4x24 + ec − x1e− x4 sinh(x1 − x2)− c ̂̇½ �
+ ep x2e− x4 sinh(x1 − x2)− p ̂̇½ �+ el − x24 − l ̂̇

h i

− em x4e− x4cosh(x1 − x2)− x4 − ṁ̂½ �
ð18Þ

In view of (18), we take the parameter update law as

c ̂̇= − x1e− x4 sinh(x1 − x2)
p ̂̇= x2e− x4 sinh(x1 − x2)
l ̂=̇ − x24
ṁ̂= x4e− x4cosh(x1 − x2)− x4

8

>

>

<

>

>

:

ð19Þ

Next, we state and prove the main result of this section.

Theorem 1 The states xi, (i = 1, …, 4) of the memristor-based Shinriki’s system
(5) with unknown system parameters are globally and exponentially stabilized for
all initial conditions to the desired constant values c, p, l, m, respectively, by the
adaptive control law (11) and the parameter update law (19), where k1, k2, k3, k4
are positive gain constants.

Proof This result will be proved by applying Lyapunov stability theory (Khalil
2001).

The quadratic Lyapunov function defined by (16), which is clearly a positive
definite function on R8 is considered.

By substituting the parameter update law (19) into (18), the time derivative of
V is obtained as:
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V ̇= − k1x21 − k2x22 − k3x23 − k4x24 ð20Þ

From (20), it is clear that dV/dt is a negative semi-definite function on R8. Thus,
the state vector x(t) and the parameter estimation error can be concluded that are

globally bounded, i.e. x1 x2 x3 x4 ecðtÞepðtÞelðtÞemðtÞ
� �T ∈L∞.

If k = min{k1, k2, k3, k4}, then it follows from (20) that

V ̇≤ − k xðtÞk k2 ð21Þ

Thus

k xðtÞk k2 ≤ −V ̇ ð22Þ

Integrating the inequality (22) from 0 to t, as:

k
Z

t

0

xðτÞk k2dτ≤V(0)−V(t) ð23Þ

From (23), it follows that x∈L2. Using (14), x ̇∈L∞ can be concluded.
Also, by using Barbalat’s lemma (Khalil 2001), the x(t) → 0 exponentially as

t → ∞ for all initial conditions xð0Þ∈R4 can be concluded. Hence, it follows that
the states xi, (i = 1, …, 4) of the memristor-based Shinriki’s system (5) with
unknown memristor’s parameters c, p, l, m are globally and exponentially stabilized
for all initial conditions, by the adaptive control laws (11) and the parameter update
law (19).

This completes the proof. ■

For the numerical simulations, the classical fourth-order Runge-Kutta method
with step size h = 10−8 is used to solve the systems (10) and (19), when the
adaptive control laws (11) are applied. The parameter values of the memristor-based
Shinriki’s system (9) are taken as in the chaotic case, viz. a = 0.3, b = 1.5,
c = 8.143724 × 10−5, d = 0.075, p = 8.143724 × 10−4, m = 8.6635298 × 10−4

and l = 2. Also, we take the positive gain constants as ki = 5 for i = 1, …, 4.
Furthermore, as initial conditions of the memristor-based Shinriki’s system (5), we
take x1(0) = −0.2, x2(0) = 0.3, x3(0) = −0.3 and x4(0) = 1. Furthermore, as
initial conditions of the parameter estimates c ̂ðtÞ, p ̂ðtÞ, lð̂tÞ, m̂ðtÞ, we take
c ̂ðtÞ=10− 5, p ̂ðtÞ=10− 4, lð̂tÞ=0.1, m̂ðtÞ=8.143724 ⋅ 10− 5. In Fig. 8, the expo-
nential convergence of the controlled states of the memristor-based Shinriki’s
system (10) is depicted.
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6 Adaptive Synchronization of Identical Coupled
Memristor-Based Shinriki’s Systems

In this section, we derive an adaptive control law for globally and exponentially
synchronizing the identical chaotic systems with unknown memristor’s parameters.
Thus, the master system is given by the chaotic memristor-based Shinriki’s system
(9), while the slave system is given by the following system dynamics.

y1̇ = − y3 − dy1 − ce− y4 sinh(y1 − y2) + u1
y2̇ = (b− a)y2 + pe− y4 sinh(y1 − y2) + u2
y3̇ = y1 + u3
y4̇ = − ly4 +me− y4cosh(y1 − y2)−m+ u4

8

>

>

<

>

>

:

ð24Þ

where yi, (i = 1, …, 4) are the states and ui, (i = 1, …, 4) are the adaptive controls
to be determined. In (9) and (24), the memristor’s parameters c, p, l, m, are
unknown and the design goal is to find adaptive feedback controls ui that uses
estimates c ̂ðtÞ, p ̂ðtÞ, lð̂tÞ, m̂ðtÞ for the parameters c, p, l, m respectively, so as to
render the states of the systems (9) and (24) fully synchronized asymptotically.

The synchronization error between the chaotic systems (9) and (24) is defined as:

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3
e4 = y4 − x4

8

>

>

<

>

>

:

ð25Þ

Fig. 8 Time-series of the
states xi, (i = 1,…, 4)
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Thus, the synchronization error dynamics is obtained as:

e ̇1 = − e3 − de1 − ce− y4 sinh(y1 − y2) + ce− x4 sinh(x1 − x2) + u1
e2̇ = (b− a)e2 + pe− y4 sinh(y1 − y2)− pe− x4 sinh(x1 − x2) + u2
e3̇ = e1 + u3
e4̇ = − le4 +me− y4cosh(y1 − y2)−me− x4cosh(x1 − x2) + u4

8

>

>

<

>

>

:

ð26Þ

We take the adaptive control laws defined by

u1 = e3 + de1 + c ̂e− y4 sinh(y1 − y2)− c ̂e− x4 sinh(x1 − x2)− k1e1
u2 = − (b− a)e2 + p ̂e− y4 sinh(y1 − y2) + p ̂e− x4 sinh(x1 − x2)− k2e2
u3 = − e1 − k3e3
u4 = lê4 − m̂e− y4cosh(y1 − y2) + m̂e− x4cosh(x1 − x2)− k4e4

8

>

>

<

>

>

:

ð27Þ

where ki, (i = 1, …, 4) are positive gain constants.
Substituting (27) into (26), we obtain the closed-loop error dynamics as:

e ̇1 = − (c− c ̂)e− y4 sinh(y1 − y2) + (c− c ̂)e− x4 sinh(x1 − x2)− k1e1
e2̇ = (p− p ̂)e− y4 sinh(y1 − y2)− (p− p ̂)e− x4 sinh(x1 − x2)− k2e2
e3̇ = − k3e3
e4̇ = − (l− l)̂e4 + (m− m̂)e− y4cosh(y1 − y2)− (m− m̂)e− x4cosh(x1 − x2)− k4e4

8

>

>

<

>

>

:

ð28Þ

The parameter estimation errors are defined as:

ec(t) = c− c ̂ðtÞ
ep(t) = p− p ̂ðtÞ
el(t) = l− lð̂tÞ
em(t) =m− m̂ðtÞ

8

>

>

<

>

>

:

ð29Þ

Differentiating (29) with respect to t, we obtain

e ̇c(t) = − c ̂̇ðtÞ
eṗ(t) = − p ̂̇ðtÞ
el̇(t) = − l ̂ð̇tÞ
eṁ(t) = − ṁ̂ðtÞ

8

>

>

<

>

>

:

ð30Þ

By using (29), we rewrite the closed-loop system (28) as:

e1̇ = − ece− y4 sinh(y1 − y2) + ece− x4 sinh(x1 − x2)− k1e1
e2̇ = epe− y4 sinh(y1 − y2)− epe− x4 sinh(x1 − x2)− k2e2
e3̇ = − k3e3
e4̇ = − ele4 + eme− y4cosh(y1 − y2)− eme− x4cosh(x1 − x2)− k4e4

8

>

>

<

>

>

:

ð31Þ
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We consider the quadratic Lyapunov function given by

Vðe, ec, ep, el, emÞ= 1
2
ðe21 + e22 + e23 + e24Þ+

1
2
ðe2c + e2p + e2l + e2mÞ ð32Þ

Differentiating V along the trajectories of the systems (31) and (30), we obtain
the following.

V ̇= − k1e21− k2e22− k3e23− k4e24 + ec − e1e− y4 sinh(y1−y2)+ e1e−x4 sinh(x1− x2)−c ̂̇½ �
+ep e2e− y4 sinh(y1− y2)− e2e− x4 sinh(x1− x2)−p ̂̇½ �+el −e24− l ̂̇

h i

+em e4e− y4cosh(y1− y2)− e4e− x4cosh(x1− x2)− ṁ̂½ �
ð33Þ

In view of (33), we take the parameter update law as follows.

c ̂̇= − e1e− y4 sinh(y1 − y2) + e1e− x4 sinh(x1 − x2)
p ̂̇= e2e− y4 sinh(y1 − y2)− e2e− x4 sinh(x1 − x2)
l ̂=̇ − e24
ṁ̂= e4e− y4cosh(y1 − y2)− e4e− x4cosh(x1 − x2)

8

>

>

<

>

>

:

ð34Þ

Next, we establish the main result of this section.

Theorem 2 The memristor-based Shinriki’s systems (9) and (24) with unknown
parameters are globally and exponentially synchronized for all initial conditions by
the adaptive feedback control law (27) and the parameter update law (34), were ki,
(i = 1, …, 4) are positive constants.

Proof We prove this result via Lyapunov stability theory. We consider the quad-
ratic Lyapunov function V defined by (32), which is positive definite on R8. Next,
by substituting the parameter update law (34) into (33), we obtain the time
derivative of V as:

V ̇= − k1e21 − k2e22 − k3e23 − k4e24 ð35Þ

Thus, it is clear that V ̇ is a negative semi-definite function on R8.
From (35), it follows that the synchronization error vector e(t) = (e1(t), e2(t),

e3(t), e4(t)) and the parameter estimation error (ec(t), ep(t), el(t), em(t)) are globally
bounded. We define k = min(k1, k2, k3, k4).

Then it follows from (35) that

V ̇≤ − k eðtÞk k2 ð36Þ
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Thus

k eðtÞk k2 ≤ −V ̇ ð37Þ

Integrating the inequality (37) from 0 to t, as:

k
Z

t

0

eðτÞk k2dτ≤Vð0Þ−VðtÞ ð36Þ

From (36), it follows that e∈L2, while from (28), it can be deduced that e ̇∈L∞.
Thus, using Barbalat’s lemma (Khalil 2001), we can conclude that e(t) → 0
exponentially as t → ∞ for all initial conditions.

This completes the proof. ■

For numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential Eqs. (9), (24) and (34),
when the adaptive control laws (27) are applied.

The parameter values of the memristor-based Shinriki’s systems (9) and (24) are
taken as in the chaotic case of the previous section. The gain constants are taken as
ki = 10, for i = 1, 2, 3, 4.

Furthermore, as initial conditions of the master system (9), we take x1(t) = −0.2,
x2(t) = 0.3, x3(t) = −0.3 and x4(t) = 1, while the initial conditions of the slave
system (24), are y1(0) = 0.5, y2(0) = −0.2, y3(0) = −0.1 and y4(0) = 0.7.

Also, as initial conditions of the parameter estimates, we take c ̂ðtÞ=10− 5,
p ̂ðtÞ=10− 4, lð̂tÞ=0.1, m̂ðtÞ=8.143724 ⋅ 10− 5. In Figs. 9, 10, 11 and 12, the
synchronization of the states of the master system (9) and slave system (24)
are depicted, when the adaptive control law (27) and parameter update law (34) are
implemented. In Fig. 13, the time-history of the synchronization errors e1(t), e2(t),
e3(t) and e4(t) is depicted.

Fig. 9 Synchronization of
the states x1(t) and y1(t)
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Fig. 10 Synchronization of
the states x2(t) and y2(t)

Fig. 11 Synchronization of
the states x3(t) and y3(t)

Fig. 12 Synchronization of
the states x4(t) and y4(t)
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7 Conclusion

In this chapter a memristor-based chaotic system as well as its control and syn-
chronization problems were mainly investigated. As a chaotic system, a modified
Shinriki’s nonlinear circuit, in which its nonlinear positive conductance has been
replaced with a first order memristive diode bridge, was used. The study of its
dynamics and especially of its chaotic behavior, was done by using well-known
tools from nonlinear theory, such as the bifurcation diagram, Lyapunov exponents
and phase portraits.

In addition, global control and global chaos synchronization of such
memristor-based Shinriki’s systems, with unknown memristor’s parameters were
achieved by using an adaptive controller. The main adaptive results were proved
using Lyapunov stability theory. Finally, the simulation results confirmed the
effectiveness of the proposed control and synchronization schemes.

So, this work is a step forward on the direction of studying the methods of
control and synchronization of this new class of memristive chaotic systems, which
have raised the interest of the research community due to memristor’s intrinsic
nonlinear characteristic.
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Canonic Memristor: Bipolar Electrical
Switching in Metal-Metal Contacts

Gaurav Gandhi and Varun Aggarwal

Abstract In the work, by uncovering hitherto unknown electrical properties of a

set of coherer and autocoherer, we find that extremely simple devices show mem-

ristive properties. Coherer and the auto-coherer are electrically-controllable state-

dependent resistors, the state variable being the maximum current flown through the

device. Bipolar switching in these devices, wherein the device can be programmed

(electrically) to an older higher resistance state has also been observed. This shows

that simple setting such as metallic contacts show memristive properties and consti-

tute the canonic implementation of a memristor.

Keywords Memristor ⋅ Memristive system ⋅ Coherer ⋅ Resistive RAM

1 Introduction

Leon Chua defines a memristor as any two-terminal electronic device that is devoid

of an internal power-source and is capable of switching between two resistance states

upon application of an appropriate voltage or current signal that can be sensed by

applying a relatively much smaller sensing signal (Chua 2011). A pinched hysteresis

loop in the voltage versus current characteristics of the device serves as the finger-

print for memristors. Despite the simplicity of symmetry argument that predicts the

existence of memristor (Chua 2011; Strukov et al. 2008), no simple physical device

behaving as a memristor has been observed so far and thus considered to be non-

existent (Pershin and Ventra 2011). Current memristor implementations use special-

ized materials such as transition metal oxides, chalcogenides, perovskites, oxides

with valence defects, or a combination of an inert and an electrochemically active

electrode.

G. Gandhi (✉) ⋅ V. Aggarwal

mLabs, New Delhi, India

e-mail: gaurav@mlabs.in

V. Aggarwal

e-mail: varun@mlabs.in

© Springer International Publishing AG 2017

S. Vaidyanathan and C. Volos (eds.), Advances in Memristors,
Memristive Devices and Systems, Studies in Computational Intelligence 701,

DOI 10.1007/978-3-319-51724-7_11

263



264 G. Gandhi and V. Aggarwal

Fig. 1 Bose’s observation of pinched hysteresis in current (vertical axis) and voltage (horizontal
axis) for iron filing coherer. Interestingly, this reference has been missed by almost all the papers

on memristors

On the other hand, coherer, invented by Edouard Branly (Dilhac 2009; Lodge

1897; Falcon and Castaing 2010) in the 19th century, in its many embodiments such

as ball bearings, metallic filings (also referred to as granular media) in a tube or a

point-contact exhibits an initial high-resistance state and coheres to a low-resistance

state on the arrival of radio waves. The device attains its original resistance state

on being tapped mechanically. The first electrically reset-able coherer, comprising

a metal-mercury interface and named as an auto-coherer, (Bondyopadhyay 1998;

Bose 1899a, 1901, 1904; Gandhi et al. 2014) did not require tapping and resets

in the absence of radio waves. Although Bose observed that coherers demonstrate a

pinched hysteresis I-V curve in the first quadrant (arguably the first such observation;

Refer Fig. 1) (Bose 1901) and exhibit multiple stable resistance-states, he could not

establish a systematic way to electrically reverse the diminution of resistance (Bose

1899b).
1

Among several competing theories for explaining the coherer behavior, such as

joule heating, molecular rearrangement, Seebeck and Peltier Effect (Béquin and

Tournat 2010; Bose 1901; Eccles 1901, 1912; Lodge 1901), the most popular theory

1
Cat’s whisker was the first metal-semiconductor point contact device patented by JC Bose and was

actively used in early radio research.
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was that of current-induced heating resulting in the welding of metal-metal contacts

that led to diminution of resistance. For the auto-coherer, Eccles (1909) postulated

that current leads to the heating of oxide at the interface contacts and the change in

resistance is a function of the temperature of the oxide. His thermistor equation for

the said behavior is, in principle, the same as that prescribed by Chua and Kang for a

thermistor (Chua and Kang 1976), and satisfies the conditions of Chua’s memristive

one-port (Chua 1971). The equation proposed by Eccles is being reproduced here:

d𝜃
dt

= k𝜌c2 − m𝜃 (1)

Ldc
dt

+ (r + 𝜌)c = 𝜖 (2)

𝜌 = 𝜌0(1 + 𝛼𝜃) (3)

where c represents the current, 𝜌 represents the resistance of oxide, 𝜖 represents the

voltage, 𝜃 is the temperature of the oxide and other variables pertain to the setup

mentioned in Eccles (1909). L and r refer to the resistance and inductance in series

with the coherer.

Thus the existence of electrically-controllable multiple resistance-states, and the

possibility of a memristive constitutive relationship was known over a century ago.

Though no one (including Eccles and Bose) observed a pinched hysteresis in both

the quadrant. In works related to coherer in the last decade, its bi-stability has been

reported and its multi-stable behavior has been confirmed (Béquin and Tournat 2010;

Falcon and Castaing 2005). A thermal mechanism, similar to numerous others pro-

posed a century back, has been postulated to explain the resistance change. All these

studies affirm the unidirectionality of the resistance value (which fatigues with time)

and propose no method to electrically recover the older, higher resistance states of

the device. On the other hand, autocoherer has been shown to exhibit diode-like recti-

fying properties (Groenhaug 2001; Philips 1998). In the present work we have estab-

lished, by uncovering hitherto unknown electrical properties of a set of coherer and

autocoherer, that extremely simple devices show memristive properties (Fig. 2). We

have found that the coherer and the auto-coherer are electrically-controllable state-

dependent resistors, the state variable being the maximum current flown through

the device. We have, for the first time observed bipolar switching in these devices,

wherein the device can indeed be programmed (electrically) to an older higher resis-

tance state. The state-map of the resistance of the device versus current is different

for the two directions of the current (Refer Fig. 3d), which allows to write and erase it

as a memory. The programmed resistance of the device can be read by another char-

acteristic signal of small amplitude. Analogous to the phenomena of a wire showing

resistive properties, a coil being inductive, and a set of conducting plates separated

by a dielectric exhibiting capacitance, we show that two convex metallic surfaces in

contact are memristive in nature and work as a fully-functional resistive RAM (Refer

Fig. 4) (Gandhi et al. 2013).
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Fig. 2 Complete set of

canonic discrete

implementations of the four

fundamental circuit elements

Fig. 3 Left Various embodiments of coherer used for experimentation. a Iron Filing Coherer (IFC),

b Iron Chain Coherer (ICC), c Iron Mercury Coherer (IMC). Right d Resistance State Map for

the device. Here horizontal axis refers to maximum current that has flowed through the device

while vertical axis is the resistance of the device. e Current-voltage characteristics of the device

for a current-mode sine wave signal of increasing amplitude. The device shows the famous pinched

hysteresis loops and various possible current-voltage values for the same current
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Fig. 4 Device behavior as a state-dependent resistance. a Input current versus time and b current-

voltage plot. After configuring the device in the non-linear high-resistance mode, an input current

pulse with varying amplitude is applied across it. It is observed that the maximum voltage across

the device does not cross a threshold voltage, Vth. Bistable RRAM behavior, c input current versus

time, d voltage across device versus input current. One clearly observes pinched hysteresis loop for

Iron Filing Coherer

It is worth discussing what causes the resistance switching. The cause could be

existence of certain impurities or oxide at the interface or merely by the geometry

of the interface. We note, however, that no Metal-Insulator-Metal system containing

just oxide and iron, or those built in a macro-dimension, has been reported to show

memristive properties. We analytically deduce that the switching in our devices can-

not be due to the different mechanisms observed in oxide-based bipolar memristors.

Based on our material setup and experimental observations, our best understanding

is that the resistance switching is caused by electric-field induced polarization at the

interface of the metals (which may or may not contain impurities). This is discussed

in detail in a later section. The paper makes the following contributions:
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(i) Completes the entire set of canonic implementations of all the four known pas-

sive elements of circuit theory (Fig. 2),

(ii) Reports for the first time bipolar switching in simple metallic constructions

indicating the ubiquity of the memristive phenomena,

(iii) Argue that thermal mechanism of resistance change in metallic contacts is inad-

equate and hypothesize a electric-field polarization as its cause,

(iv) Shows that memristor phenomena is not limited to specific materials assembled

at small geometries, but is present in a large class of metals put together as a

point contact and

(v) Provide an inexpensive and simple memristor for widespread experimentation,

hitherto impossible.

This paper is organized as follows: Sect. 2 describes the constructions of three

embodiments of the devices. These include those with a point contact between met-

als, a granular media assembly and a third comprising of a metal in liquid form.

Section 3 describes in detail the electrical properties of these devices and their behav-

ior under different electrical stimulations. Based on the observed behavior, we postu-

late an electrical model for the devices and identify the state-variable controlling the

resistance change. In Sect. 4, we discuss the implication of our observations, hypoth-

esize the physical mechanism governing the behavior of the devices and compare it

with other memristor devices.

2 Materials and Methods

The current section discusses the construction of the devices which can be accom-

plished in any simple undergraduate electrical engineering lab. We replicated three

embodiments of the coherer and autocoherer: an Iron Filing Coherer (IFC), an Iron

Chain Coherer (ICC), and an Iron Mercury Coherer (IMC) (see Fig. 3a–c).
2

The first embodiment, namely, Iron Filing Coherer (IFC), consists of a tube con-

taining closely-packed iron filings with electrodes in contact with the metal filings

at the two ends of the tube. In the second embodiment, called Iron Chain Coherer

(ICC), iron filings are replaced by a chain (linear assembly) of iron beads and the

third embodiment is an embodiment of the self-recovering coherer consisting of a

U-tube filled with mercury forming contact with an iron screw on one side. In the

third embodiment, henceforth referred as Iron Mercury Coherer (IMC), one elec-

trode is connected to an iron screw, whereas the other dips into mercury on the other

side of the U-tube. Depending on the packing density (IFC), pressure applied (ICC)

and contact area (IMC), the devices show a continuum of states between a nonlinear

high-resistance state and a more linear low-resistance state. The next section dis-

cusses the electrical behavior exhibited by the three devices.

2
The experiment was repeated with several metals, including aluminum and magnesium flakes and

nickel and zinc-coated ball bearings. Qualitatively similar results as reported herein were observed

in all these experiments.
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3 Experimental Results

These devices were activated by different current-mode input signals in their non-

linear mode, and their transient behavior was recorded. We found that the three

devices show similar qualitative behavior and that the mercury-iron system does

not function as a diode, as previously reported (Groenhaug 2001; Philips 1998), but

exhibits state-dependent resistance. All the observed behavior is common to the three

devices. We have found that the devices exhibit three distinct behaviors: Cohering

action, multi-stable memristive behavior, and bistable resistive RAM behavior.

3.1 Cohering Action

For any input current leading to a voltage below a specific threshold voltage, Vth,

the devices exhibit a high non-linear resistance and may be used for rectification.

Whereas IMC readily shows a moderate non-linear resistance that can be used for

demodulation, IFC and ICC require considerable adjustment to do so. Due to this,

only the IMC has historically been used for demodulation. In this region, the device

remembers the resistance it had earlier, and continues to exhibit the same. We call

this region as the memory state.

At a current higher than Ith, corresponding to a voltage Vth, the resistance of the

device falls sharply (Refer P1 transition in Fig. 4), and the device exhibits lower

conductance. Once the device takes this new state, it maintains the said resistance

on excitation by current values below Ith as well. This is the well-known cohering

behavior used for detecting electromagnetic waves. The device cannot be reset elec-

trically to a resistance less than that shown at A2 (Refer Fig. 4). Contrary to earlier

observations, this behavior is also exhibited by IMC Philips (1998).

3.2 Multistable Memristive Behavior

Once cohered, the device exhibits a state-dependent resistance, the state variable

being the maximum current (Imax), i.e. Rt = f ([Imax]0−t). As the device is exposed to

pulses of subsequently larger peak current (Refer Fig. 4
3
), it sets itself to new resis-

tance values. The resistance remains non-linear, nonetheless. The maximum voltage

across the device remains practically constant at Vth. This behavior is akin to that

3
Note that the resistance changes appreciably only when the maximum current through the device

has changed. This can be seen through color correspondence, where each color shows a new stable

resistance-state and the resistance transitions are marked by the first pulse of higher amplitude: P1,

P2, P3, P4 and P5. In case the maximum current passed through the device does not change, the

resistance feebly oscillates around the same value, as seen in the region of A1, A2, A3, A4 and A5.

Furthermore, one may observe that the resistance remains fixed even when the amplitude of the

pulse is decreased (A6), since the maximum current has not changed.
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of a diode, but unlike a diode the device remembers its changed resistance when

taken to lower voltage levels. For input current pulses of same or lower amplitude

than the maximum current experienced, the device shows hysteresis loops around

the already-achieved resistance value, with small oscillations. In Béquin and Tour-

nat (2010), some of these behaviors have been observed for ICC.

3.3 Bistable Resistive RAM

We have found that the resistance of the device is a function of the magnitude of Imax
for either directions of current, but with a quantitatively different state-map, making

it behave as a resistive RAM. This can be mathematically stated as:

Let

Rp1 = f (magnitude([Imax+]0−t)) = I1), (4)

Rn1 = f (magnitude([Imax−]0−t)) = I1), (5)

⟹ Rp1 ≠ Rn1 (6)

where Rp1 is the resistance of the device when activated by a maximum current of I1
in positive direction, and Rn1 is the resistance when activated by a maximum current

of I1 in the negative direction. f (magnitude([Imax+]0−t)) implies the maximum current

the device has experienced between time= 0 and time= t (Refer Fig. 3).

When activated by any two-sided current input, the device gets programmed into

one state in the positive cycle, and a different state in the negative cycle. It keeps

oscillating between these two stable states, forming the famous eight-shaped pinched

hysteresis loop in its V-I characteristics (Refer Fig. 4
4
). It has been established that

If it is pinched, it is memristive. Pinched hysteresis loop is the fingerprint of a mem-

ristor (Kim et al. 2012).

By using various stimuli with different maximum amplitudes on either sides, the

device can be programmed to function in multiple stable resistance-states and move

between them. When used as a resistive RAM, the memory can be read in the “mem-

ory” state by providing an excitation of a small amplitude. This fulfill the conditions

of Chua’s definition of memristor, and qualifies the century-old coherer as a canon-

ical implementation of a memristor.

4
It is worth noting that the transition in resistance value happens only when the polarity of the

current is changed. For other pulses, the resistance remains constant. The device oscillates between

two stable resistance-states for the same maximum current in opposite directions. It is evident by

looking at regions depicted by A1 to A5 that the change in resistance happens at the first pulse of

the transition. One may also note that these observations show recovery of resistance to a higher

resistance state: A5 resistance is higher than A4 resistance. These results can be reproduced by

careful experimentation for all the three devices.
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4 Discussion

We have shown, through these results, that the century old coherer and auto-coherer

function as a multi-state resistance RAM and is thus the canonic implementation

of the elusive memristor. It intrigued the science of that era as much as memristor

is exciting the scientists of the present day (Prodromakis et al. 2012). The present

work shows that one does not require specific material or precise construction to

implement memristors. It is a natural property of metallic point contacts. Note that

there is another component called memistor which is an entirely different component

and must not either be confused with coherer or memristor. It is rather an ill posed 3

terminal device (Kim and Adhikari 2012; Vaidyanathan and Volos 2016; Xia et al.

2011).

There are certain differences between the behavior of coherers and other present

day memristors. Unlike Williams et al. memristor (Strukov et al. 2008), our devices

do not behave as a charge-flux based memristor. Irrespective of the increase or

decrease of flux, their resistance does not change till the maximum current or current

polarity changes. Our device have similarities in behavior (Jo and Lu 2008; Kim et al.

2010) and construction (Kim et al. 2009) to that of some other memristors recently

fabricated at nano-scale. However, none of these recent memristors have reported

observation of multiple resistance states or dependence on Imax.
The question worth discussing is whether the resistive switching mechanism is

due to existence of oxide at the interface of the metals. Our preliminary experiments

with polished gold balls showed the said behavior, which indicates (but does not

rule out) that the observations are not due to presence of oxide. From an analytical

standpoint, the construction and behavior of our device doesn’t fit those observed

in oxide based memristors. The construction and mechanism of operation of oxide

based memristors is discussed in detail in the review by Waser et al. (2009). One

class of oxide based memristors switch unipolarly due to formation and melting of

filaments thermally. This is similar to the explanation provided in coherer literature

(Béquin and Tournat 2010; Falcon and Castaing 2010). Our memristor has bipolar

switching and cannot be explained by a thermal process which is independent of cur-

rent direction. Only the initial cohering action, akin to electroforming step reported

in literature, may reasonably be explained by a thermal heating process.

Among bipolar oxide-based memristors, one class (Valence Change Mechanism)

uses specific transition metal oxides or those with defects, whereas the other class

has dissimilar electrodes (one active and one counter electrode) on the two sides of

the oxides (or an electrolyte). In the latter case, the difference in the properties of

the two electrodes leads to dependence on current direction. Our memristor has no

explicitly introduced vacancy defects at the interface, doesn’t require transition metal

oxides and works perfectly well with the same metal across all contacts. Thus, its

construction and behavior, put together, do not resemble any oxide based memristor

configuration and behavior.
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On the other hand, ferroelectric RAM containing a perovskite layer and nano-

particle assemblies (Kim et al. 2009) are symmetric, and yet show bipolar resistance-

switching caused by electric field induced polarization. We believe that the behavior

of our device is similar and a result of polarization at the contacts formed between the

metals. It is still open to investigate whether this happens due to the geometry at the

contact or due to impurities. The same requires to be investigated through material

analysis and microscopic studies.

Our results show that bipolar switching can be observed in a large class of metals

by a simple construction in form of a point-contact or granular media. It does not

require complex construction, particular materials or small geometries. The signa-

ture of all our devices is an imperfect metal-metal contact and the physical mecha-

nism for the observed behavior needs to be further studied. That the electrical behav-

ior of these simple, naturally-occurring physical constructs can be modeled by a

memristor, but not the other three passive elements, is an indication of its funda-

mental nature. By providing the canonic physical implementation for memristor, the

present work not only fills an important gap in the study of switching devices, but

also brings them into the realm of immediate practical use and implementation.
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Distributed In-Memory Computing
on Binary Memristor-Crossbar
for Machine Learning

Hao Yu, Leibin Ni and Hantao Huang

Abstract The recent emerging memristor can provide non-volatile memory stor-

age but also intrinsic computing for matrix-vector multiplication, which is ideal for

low-power and high-throughput data analytics accelerator performed in memory.

However, the existing memristor-crossbar based computing is mainly assumed as a

multi-level analog computing, whose result is sensitive to process non-uniformity

as well as additional overhead from AD-conversion and I/O. In this chapter, we

explore the matrix-vector multiplication accelerator on a binary memristor-crossbar

with adaptive 1-bit-comparator based parallel conversion. Moreover, a distributed in-

memory computing architecture is also developed with according control protocol.

Both memory array and logic accelerator are implemented on the binary memristor-

crossbar, where logic-memory pair can be distributed with protocol of control bus.

Experiment results have shown that compared to the analog memristor-crossbar, the

proposed binary memristor-crossbar can achieve significant area-saving with bet-

ter calculation accuracy. Moreover, significant speedup can be achieved for matrix-

vector multiplication in the neuron-network based machine learning such that the

overall training and testing time can be both reduced respectively. In addition, large

energy saving can be also achieved when compared to the traditional CMOS-based

out-of-memory computing architecture.
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1 Introduction

Future cyber-physical system requires efficient real-time data analytics (Kouzes et al.

2009; Wolpert 1996; Hinton et al. 2006; Müller et al. 2008; Glorot and Bengio 2010)

with applications in robotics, brain-computer interface as well as autonomous vehi-

cles. The recent works in Huang et al. (2006), Coates et al. (2011) have shown a

great potential for machine learning with significant reduced training time for real-

time data analytics.

Hardware-based accelerator is currently practiced to assist machine learning. In

traditional hardware accelerator, there is intensive data migration between memory

and logic (Kumar et al. 2014; Park et al. 2013) caused both bandwidth and power

walls. Therefore, for data-oriented computation, it is beneficial to place logic acceler-

ators as close as possible to the memory to alleviate the I/O communication overhead

(Wang et al. 2015). The cell-level in-memory computing is proposed in Matsunaga et

al. (2009), where simple logic circuits are embedded among memory arrays. Never-

theless, the according in-memory logic that is equipped in memory cannot be made

for complex logic function, and also the utilization efficiency is low as logic can-

not be shared among memory cells. In addition, there is significant memory leakage

power in CMOS based technology.

Emerging memristor (Akinaga and Shima 2010; Kim et al. 2011; Chua 1971;

Williams 2008; Strukov et al. 2008; Shang et al. 2012; Fei et al. 2012) has shown

great potential to be the solution for data-intensive applications. Besides the mini-

mized leakage power due to non-volatility, memristor in crossbar structure has been

exploited as computational elements (Kim et al. 2011; Liu et al. 2015). As such,

both memory and logic components can be realized in a power- and area- efficient

manner. More importantly, it can provide a true in-memory logic-memory integra-

tion architecture without using I/Os. Nevertheless, the previous memristor-crossbar

based computation is mainly based on an analog fashion with multi-level values

(Kim et al. 2012) or Spike Timing Dependent Plasticity (STDP) (Lu et al. 2011).

Though it improves computation capacity, the serious non-uniformity of memristor-

crossbar at nano-scale limits its wide applications for accurate and repeated data

analytics. Moreover, there is significant power consumption from additional AD-

conversion and I/Os mentioned in Lu et al. (2011).

In this chapter, we propose a distributed in-memory accelerator. Both computa-

tional energy efficiency and robustness are greatly improved by a binary memristor-

crossbar for memory and logic units. The memory arrays are paired with the

in-memory logic accelerators in a distributed fashion, operated with a protocol of

control bus for each memory-logic pair. Moreover, different from the multi-leveled

analog memristor-crossbar, a three-step digitalized memristor-crossbar is proposed

in this chapter to perform a digital matrix-vector multiplication. In addition, a 3D

CMOS-memristor accelerator is also proposed for machine learning. The area over-

head can be reduced due to the 3D architecture. CMOS based operations can be

implemented after the memristor-crossbar process in such architecture.
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2 Background of Machine Learning

The current data analytics is mainly based on machine learning algorithm and com-

putational intelligence to build a model to correlate input data with targeted output

(Vaidyanathan and Volos 2016a, b). Features extraction are also performed to extract

the key information for data analytics in Neural Network. Neural network is the com-

mon model to build (Haykin et al. 2009), and usually has two computational phases:

training and testing. In the training phase, the weight coefficients of the neural net-

work model are determined by minimizing the error between the trial and the targeted

using the training input data. In the testing phase, the neural network with determined

coefficients is utilized for the classification of the new testing data.

However, the input data may be in high dimension with redundant information.

To facilitate the training, feature extraction is usually needed performed to represent

the characteristic data with redundancy or dimension reduction.

To speed-up the training process, we tackle this challenge from two perspectives.

Firstly, we propose a general incremental machine learning architecture with mini-

mal tuning of parameters as shown in Fig. 1, which is mainly based on incremental

least-squares solution. Secondly, we analyze the key complexity of each learning step

and propose a hardware friendly algorithm to explore the parallelism with minimized

hardware operational complexity.

2.1 Feature Extraction

In general, the feature of original data 𝐗 can be extracted by projection,

𝐗′ = 𝐑 ⋅ 𝐗 (1)

where 𝐗′
is the extracted feature. The projection matrix 𝐑 can be found with the use

of principal/singular components, random embedding or convolution (Wold et al.

…

Input weight Output weight

… …

X ’ preH Y

(a)
Training data/

testing data (X)

Extracted feature (X ’)
PCA

Hidden node (preH)

Input weight

Output node(Y)

Output weight
Training

Training

Testing

X’=X·R

preH=X’·A+B

Y=f(preH)·

(b)

Fig. 1 a Single-layer neural network. b General flow of neural network training and testing
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1987). Matrix 𝐑 is computed off-line and used for dimension reductions. We can

treat 𝐑 as a new basis to represent columns of 𝐗; and remove those small values to

minimize the total squared reconstruction error by

||𝐗′ − 𝐑 ⋅ 𝐗||2 (2)

One can observe significant matrix-vector multiplications during the feature

extraction as shown in (1).

2.2 Neural Network Based Learning

After feature extraction, one can perform various machine learning algorithms

(Suykens and Vandewalle 1999; LeCun et al. 2012; Huang et al. 2006) for data ana-

lytics. As shown in Fig. 1 for a typical neural network model, one needs to determine

the network weights from training and then practice testing. We use n to represent

the number of features with training input Xf ∈ RN×n
. n is the training data size. The

extracted feature will be input to the neural network with following relationship for

the first layer output 𝐩𝐫𝐞𝐇:

𝐩𝐫𝐞𝐇 = 𝐗f𝐀 + 𝐁, 𝐇 = g(𝐩𝐫𝐞𝐇) = 1
1 + e−𝐩𝐫𝐞𝐇

(3)

where𝐀 ∈ ℝn×L
and𝐁 ∈ ℝN×L

are randomly generated input weight and bias formed

by aij and bij between [−1, 1]; 𝐇 is the hidden-layer output matrix generated from

the Sigmoid function g(⋅) for activation.

The training of neural network is to minimize error with an objective function

below

min
𝜞

||𝐇𝚪 − 𝐓||22 + 𝜂|||𝜞 ||22 (4)

where 𝜂 is the regularized parameter and 𝐓 is the label of training data.

One can solve (4) either by iterative backward propagation method (Werbos 1990)

or direct L2-norm solver method for least-squares problem (Huang et al. 2006). The

output weight can be obtained as || ̃𝐇𝜞 − ̃𝐓||, and can be solved as

𝚪 = ( ̃𝐇T
̃𝐇)−1 ̃𝐇T

̃𝐓 = (𝐇T𝐇 + 𝜂𝐈)−1𝐇T𝐓

where ̃𝐇 =
(

𝐇√
𝜂𝐈

)
,

̃𝐓 =
(
𝐓
𝟎

)
(5)

Here ̃𝐇 ∈ ℝ(N+L)×L
is formed based on 𝐇 and 𝐈. For matrix 𝚪, it is the solution of a

least-square problem, where we adopt Cholesky decomposition to solve it (Higham

2009). We have also analyzed the major computations of Cholesky decomposition

for least-square problem, which will be discussed in Sect. 5.
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As a result, in the testing phase, output node𝐘 is calculated by already determined

hidden node value and output weight value as

𝐘 = 𝐇 ⋅ 𝚪 (6)

The index of the maximum value in 𝐘 represents the class that the test data

belongs to.

Based on the computation analysis on feature extraction and neural network, we

can observe that matrix-vector multiplication is the dominant operation as shown

in (1), (5) and (6). As such, a hardware accelerator to facilitate the matrix-vector

multiplication is indeed the critical requirement for the efficient machine-learning

based data analytics.

2.3 Incremental Least-Square Solver Based Learning

The objective function (4) is a least-squares problem and can be solved using back-

wards propagations (BP) or direct solution based on matrix operations. Since our

target is to have incremental learning with latest training samples, iterative gradient

based backwards propagation is slow comparing to pseudo-inverse solutions (Huang

et al. 2006), therefore, BP will not be elaborated in details. In fact, as discussed in

the next sections, our proposed 3D multi-layer CMOS-memristor architecture can

accelerate the matrix-vector multiplications, which will also benefit BP based neural

network training method.

Equation 5 shows how to obtain the output weight𝜞 . The symmetric positive defi-

nite matrix ̃𝐇T ̃𝐇 is decomposed into𝐐𝐏𝐐𝐓
.𝐐 is a lower triangular matrix with diag-

onal elements qii = 1 and 𝐏 is a positive diagonal matrix. Such method can maintain

the same memory space as Cholesky factorization but need not perform square root

extraction, as the square root of 𝐐 is resolved by diagonal matrix 𝐏 (Krishnamoor-

thy and Menon 2011). Here, we use 𝐇l to represent the matrix decomposition at l
iteration where l ≤ L as below

̃𝐇T
l
̃𝐇l =

[
̃𝐇l−1 hl

]T[
̃𝐇l−1 hl

]

=
(
̃𝐇T

l−1
̃𝐇l−1 𝐯l

𝐯T
l g

)
(7)

where (𝐯l, g) is a new column generated from new hidden node output hT
l hl,

compared to ̃𝐇T
l−1

̃𝐇l−1. Therefore, we can find

𝐐l𝐏l𝐐T
l

=
(
𝐐l−1 0
𝐳T

l 1

)(
𝐏l−1 0
0 p

)(
𝐐T

l−1 𝐳l
0 1

)
(8)
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As a result, we can easily calculate the 𝐳l and scalar p for Cholesky factorization as

𝐐l−1𝐏l−1𝐳l = 𝐯l, p = g − 𝐳T
l 𝐏l−1𝐳l (9)

where 𝐐l and 𝐯l is known from (7), which means we can continue use previous

factorization result and update only according part. Please note that Q1 is 1 and P1
is ̃𝐇T

1
̃𝐇1.

As a conclusion, we have elaborated the basic learning on neural network and

optimize Cholesky decomposition to solve the incremental least-squares problem.

We have found the major computations are matrix-vector multiplications such as

layer output in Eqs. 3 and 6 and also Cholesky decomposition (Eqs. 7, 8 and 9).

Therefore, the proposed 3D multi-layer CMOS-memristor architecture is designed

to accelerate matrix-vector multiplication, which can be also extended to BP based

training method, where matrix-vector operation is the major computation (Cong and

Xiao 2014).

3 Memristor-Crossbar Based Accelerator

3.1 Distributed In-Memory Computing Architecture

Conventionally, processor and memory are separate components that are connected

through I/Os. With limited width and considerable RC-delay, the I/Os are considered

the bottleneck of system overall throughput. As memory is typically organized in H-

tree structure, where all leaves of the tree are data arrays, it is promising to impose

in-memory computation with parallelism at this level. In this work, we propose a

distributed memristor-crossbar in-memory architecture (XIMA). Because both data

and logic units have uniform structure when implemented on memristor-crossbar,

half of the leaves are exploited as logic elements and are paired with data arrays.

The proposed architecture is illustrated in Fig. 2. The distributed local data-logic

pairs can form one local data path such that the data can be processed locally in

parallel, without the need of being readout to the external processor.

Coordinated by the additional controlling unit called in-pair control bus the in-

memory computing is performed in following steps. (1) logic configuration: proces-

sor issues the command to configure logic by programming logic memristor-crossbar

into specific pattern according to the functionality required; (2) load operand: proces-

sor sends the data address and corresponding address of logic accelerator input; (3)

execution: logic accelerator can perform computation based on the configured logic

and obtain results after several cycles; (4) write-back: computed results are written

back to data array directly but not to the external processor.

With emphasis on different functionality, the memristor crossbars for data storage

and logic unit have distinctive interfaces. The data memristor-crossbar will have only

one row activated at one time during read and write operations, and logic memristor-

crossbar; however, we can have all rows activated spontaneously as rows are used to
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Fig. 2 Overview of distributed in-memory computing architecture on memristor-crossbar

take inputs. As such, the input and output interface of logic crossbar requires AD/DA

conversions, which could outweigh the benefits gained. Therefore, in this paper, we

propose a conversion-free digital-interfaced logic memristor crossbar design, which

uses three layers of memristor crossbars to decompose a complex function into sev-

eral simple operations that digital crossbar can tackle.

The conventional communication protocol between external processor and mem-

ory is composed of store and load action identifier, address that routes to differ-

ent locations of data arrays, and data to be operated. With additional in-memory

computation capacity, the proposed distributed in-memory computing architecture

requires modifications on the current communication protocol. The new communi-

cation instructions are proposed in Table 1, which is called in-pair control.

In-pair control bus needs to execute instructions in Table 1. SW (store word)

instruction is to write data into memristors in data array or in-memory logic. If target

Table 1 Protocols between external processor and control bus

Inst. Op. 1 Op. 2 Action Function

SW Addr 1 Addr 2 Addr 1 data to Addr 2 Store data, configure

logic, in-memory

results write-back

Data Addr Store data to Addr

LW Addr – Read data from Addr Standard read

ST Block Idx – Switch logic block on Start in-memory

computing

WT – – Wait for logic block response Halt while

performing

in-memory

computing
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address is in data array, it will be a conventional write or result write-back; otherwise

it will be logic configuration. LW (load word) instruction performs as conventional

read operation. ST (start) instruction means to switch on the logic block for com-

puting after the computation setup has been done. WT (wait) operation is to stop

reading from instruction queue during computing.

Besides communication instructions, memory address format is also different

from that in the conventional architecture. To specify a byte in the proposed architec-

ture, address includes the following identifier segments. Firstly, the data-logic pair

index segment is required, which is taken by block decoders to locate the target data-

logic pair. Secondly, one-bit flag is needed to clarify that whether the target address

is in data array or in-memory logic crossbar. Thirdly, if logic accelerator is the target,

additional segment has to specify the layer index. Lastly, rest of address segment are

row and column indexes in each memristor-crossbar. An address example for data

array and in-memory logic is shown in Fig. 3.

To perform logic operation, the following instructions are required to performed.

Firstly, we store the required input data and memristor values with SW operation.

Secondly, an ST instruction will be issued to enable all the columns and rows to

perform the logic computing. The WT instruction is also performed to wait for the

completion of logic computing. At last, LW instruction is performed to load the data

from the output of memristor-crossbar.

Given the new communication protocol between general processor and memory is

introduced, one can design the according control bus as shown in Fig. 3. The control

bus is composed of an instruction queue, an instruction decoder, an address decoder

and a SRAM array. As the operation frequency of memristor-crossbar is slower than

that of external processor, instructions issued by the external processor will be stored
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in the instruction queue first. They are then analyzed by instruction decoder on a

first-come-first-serve (FCFS) basis. The address decoder obtains the row and column

index from the instruction; and SRAM array is used to store temporary data such as

computation results, which are later written back to data array.

3.2 3D CMOS-Memristor Architecture

Recent work (Topaloglu 2015) has shown that the 3D integration supports heteroge-

neous stacking because different types of components can be fabricated separately,

and layers can be stacked and implemented with different technologies. Therefore,

stacking non-volatile memories on top of microprocessors enables cost-effective het-

erogeneous integration. Furthermore, works in Chen et al. (2012), Liauw et al. (2012)

have also shown the feasibility to stack memristor on CMOS to achieve smaller area

and lower energy consumption.

The proposed 3D multi-layer CMOS-memristor accelerator with three layers is

shown in Fig. 4a. This accelerator is composed of a two-layer memristor-crossbar

and a one-layer CMOS circuit. As Fig. 4a shows, layer 1 of memristor-crossbar is

implemented as a buffer to temporarily store input data to be processed. Layer 2 of

memristor-crossbar performs logic operations such as matrix-vector multiplication

and also vector addition. The details of implementation will be introduced in Sect. 4.

Note that buffers are designed to separate resistive networks between layer 1 and

layer 2. The last layer of CMOS contains read-out circuits for memristor-crossbar and
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learning algorithm mapping flow on proposed accelerator
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performs as logic accelerators designed for other operations besides matrix-vector

multiplication, including pipelined divider, look-up table (LUT) designed for divi-

sion operation and activation function in machine learning.

Moreover, Fig. 4b shows the work flow for incremental machine learning based

on the proposed architecture. Firstly, detailed architecture of machine learning (ML)

(e.g. number of layers and activation function) is determined based on the accuracy

requirements and data characteristics. Secondly, operations of this machine learning

algorithm are analyzed and reformulated so that all the operations can be accelerated

in 3D multi-layer CMOS-memristor architecture as illustrated in Fig. 4a. Further-

more, the bit-width operating on memristor-crossbar is also determined by balancing

the accuracy loss and energy saving. Finally, logic operations on memristor-crossbar

and CMOS are configured based on the reformulated operations, energy saving and

speed-up.

Such a 3D multi-layer CMOS-memristor architecture has advantages in three

manifold. Firstly, by utilizing memristor-crossbar for input data storage, leakage

power of memory is largely removed. In a 3D architecture with TSV interconnec-

tion, the bandwidth from this layer to next layer is sufficiently large to perform

parallel computation. Secondly, memristor-crossbar can be configured as computa-

tional units for the matrix-vector multiplication with high parallelism and low power.

Lastly, with an additional layer of CMOS-ASIC, more complicated tasks such as

division and non-linear mapping can be performed. As a result, the whole training

process of machine learning can be fully mapped to the proposed 3D multi-layer

CMOS-memristor accelerator architecture towards real-time training and testing.

4 Binary Memristor-Crossbar for Matrix-Vector
Multiplication

In this work, we implement matrix-vector multiplication on binary

memristor-crossbar. It is one always-on operation in various data-analytic applica-

tions such as compressive sensing, machine learning. For example, the feature extrac-

tion can be achieved by multiplying Bernoulli matrix in Wright et al. (2009).

Matrix multiplication can be denoted as Y = 𝛷X, where X ∈ ℤN×P
and 𝛷 ∈

{0, 1}M×N
are the multiplicand matrices, and Y ∈ ℤM×P

is the result matrix.

4.1 Memristor Device and Crossbar

Memristor is a two-terminal device that can be observed in sub-stoichiometric tran-

sition metal oxides (TMOs) sandwiched between metal electrodes. Such a device

can be used as non-volatile memory with state of ion resistance, which results in 2

non-volatile states: high resistance state HRS and low resistance state LRS. One can
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change the state from HRS to LRS or vice versa by applying a SET voltage (Vw) or

a RESET voltage (−Vw).

The two states RHS and LRS represent 0 and 1, respectively. To read a memristor

cell, one can apply a read voltage Vr to the memristor. The Vr and Vw follow

Vw > Vth > Vw∕2 > Vr, (10)

where Vth is the threshold voltage of the memristor.

Because of the high density of memristor device, one can build a crossbar struc-

ture as the array of memristor (Kim et al. 2011; Kang et al. 2014; Fan et al. 2014; Gu

et al. 2015; Srimani et al. 2015; Wang et al. 2014). Such crossbar structure can be

utilized as memory for high-density data storage. The memory array can be read or

written by controlling the voltage of wordlines (WLs) and bitlines (BLs). For exam-

ple, we can apply Vw∕2 on the ith WL and −Vw∕2 on the jth BL to write data into

the memristor cell on ith row, jth column.

4.2 Traditional Analog Memristor Crossbar

The fabric of crossbar intrinsically supports matrix-vector multiplication where vec-

tor is represented by row input voltage levels and matrix is denoted by mesh of mem-

ristor resistances. As shown in Fig. 5, by configuring 𝛷 into the memristor crossbar,

analog computation y = 𝛷x by memristor crossbar can be achieved.

However, such analog memristor-crossbar has two major drawbacks. Firstly, the

programming of continuous-valued memristor resistance is practically challenging

due to large memristor process variation. Specifically, the memristor resistance is

determined by the integral of current flowing through, which leads to a switching

curve as shown in Fig. 6a. With the process variation, the curve may shift and leave

intermediate values very unreliable to program, as shown in Fig. 6b. Secondly, the

A/D and D/A converters are both timing-consuming and power-consuming. In our

simulation, the A/D and D/A conversion may consume up to 85.5% of total operation

energy in 65 nm as shown in Fig. 7.
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4.3 Proposed Digitalized Memristor Crossbar

To overcome the aforementioned issues, we propose a full-digitalized memristor-

crossbar for matrix-vector multiplication. Firstly, as ON-state and OFF-state are

much more reliable than intermediate values shown in Fig. 6, only binary values

of memristor are allowed to reduce the inaccuracy of memristor programming. Sec-

ondly, we deploy a pure digital interface without A/D conversion.

In memristor crossbar, we use Vi
wl and Vj

bl to denote voltage on ith wordline (WL)

and jth bitline (BL). Roff and Ron denote the resistance of off-state and on-state. In

each sense amplifier (SA), there is a sense resistor Rs with fixed and small resistance.

The relation among these three resistance is Roff ≫ Ron ≫ Rs. Thus, the voltage on

jth BL can be presented by

Vj
bl =

m∑

i=1
gijVi

wlRs (11)

where gij is the conductance of Rij.

The key idea behind digitalized crossbar is the use of comparators. As each col-

umn output voltage for analog crossbar is continuous-valued, comparators are used

to digitize it according to the reference threshold applied to SA in Fig. 2,
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Oj =

{
1, if Vj

bl ≥ Vj
th

0, if Vj
bl < Vj

th
(12)

However, the issue that rises due to the digitalization of analog voltage value is

the loss of information. To overcome this, three techniques are applied. Firstly, multi-

thresholds are used to increase the quantization level so that more information can

be preserved. Secondly, the multiplication operation is decomposed into three sub-

operations that binary crossbar can well tackle. Thirdly, the thresholds are delicately

selected at the region that most information can be preserved after the digitalization.

4.4 Implementation of Digital Matrix Multiplication

In this section, hardware mapping of matrix multiplication on the proposed

architecture is introduced. The logic required is a matrix-vector multiplier by the

memristor-crossbar. Here, a three-step memristor-crossbar based binary matrix-

vector multiplier is proposed, in which both the input and output of the memristor-

crossbar are binary data without the need of ADC. The three memristor-crossbar

step: parallel digitizing, XOR and encoding are presented in details as follows. As

the output of a memristor-crossbar array can be connected to the input of another

memristor-crossbar array, we can use multiple memristor arrays in the logic block

for the mappings. Here we use symbol s to denote the result of binary matrix-vector

multiplication. Therefore, s follows

0 ≤ s ≤ N, (13)

where N is the maximum result. To illustrate the three-step procedure more clearly,

we will use the following matrix-vector multiplication as an example:

[00101011] × [10111110]T = 3 (14)

The output after the three-step procedure will be shown when s = 3 and N = 8.

4.4.1 Parallel Digitizing

The first step is called parallel digitizing, which requires N × N memristor crossbars.

The idea is to split the matrix-vector multiplication to multiple inner-product opera-

tions of two vectors. Each inner-product is produced by one memristor crossbar. For

each crossbar, as shown in Fig. 8, all columns are configured with same elements

that correspond to one column in random Boolean matrix 𝛷, and the input voltages

on word-lines (WLs) are determined by x. As gon ≫ goff , current on memristors with

high impedance are insignificant, so that the voltages on BLs approximately equal

to kVrgonRs according to Eq. (11) where k is the number of memristor with in low-

resistance state (gon).
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Fig. 8 Parallel digitizing

step of memristor crossbar in

matrix multiplication

It is obvious that voltages on bit-lines (BLs) are all identical. Therefore, the key

to obtain the inner-product is to set ladder-type sensing threshold voltages for each

column,

Vth,j =
(2j + 1)VrgonRs

2
, (15)

where Vth,j is the threshold voltage for the jth column. The Oi,j is used to denote

the output of column j in memristor crossbar step i after sensing. Therefore, for the

output we have

O1,j =

{
1, j ≤ s
0, j > s,

(16)

where s is the inner-product result. In other words, the first (N − s) output bits

are 0 and the rest s bits are 1 (s <= N). In our example, xi = [00101011] and

𝜙i = [10111110], and the corresponding output O1 = [11100000].

4.4.2 XOR

The inner-product output of parallel digitizing step is determined by the position

where O1, j changes from 0 to 1. The XOR takes the output of the first step,

and performs XOR operation for every two adjacent bits in O1, j, which gives the

result index. For the same example of s = 3, we need to convert the first-step out-

put O1 = [11100000] to O2 = [001000000]. The XOR operation based on mem-

ristor crossbar is shown in Fig. 9. According to parallel digitizing step, O1, j must

be 1 if O1, j+1 is 1. Therefore, XOR operation is equivalent to the AND operation

O1, j ⊕ O1, j+1 = O1,jO1, j+1, and therefore we have
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Fig. 9 XOR step of memristor crossbar in matrix multiplication

O2,j =

{
O1,j + O1,j+1, j < N − 1
O1,j, j = N − 1.

(17)

In addition, the threshold voltages for the columns have to follow

Vth,j =
VrgonRs

2
(18)

Eqs. (17) and (18) show that only output of sth column is 1 on the second step, where

s is the inner product result. Each crossbar in XOR step has the size of N × (2N − 1).

4.4.3 Encoding

The third step takes the output of XOR step and produces s in binary format as an

encoder. Therefore, O3 should be in the binary format of s. In our example, O3 =
[00000011] when s = 3. In the output of XOR step, as only one input will be 1 and

others are 0, according binary information is stored in corresponding row, as shown

in Fig. 10. Encoding step needs N × n memristors, where n = ⌈log2 N⌉ is the number

of bits in order to represent N in binary format. The thresholds for the encoding step

are set following Eq. 18 as well.

For activation function in (3), the exponentiation and division operations can be

implemented by look-up table (LUT). The output of XOR layer is the index of 𝐩𝐫𝐞𝐇.

Therefore, the encoding layer performs as a LUT mapping process from 𝐩𝐫𝐞𝐇 to 𝐇.

For example, if we want to map 𝐩𝐫𝐞𝐇 = 3 to𝐇 = 0.953, we can make the memristors
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Fig. 10 Encoding step of memristor crossbar in matrix multiplication

Fig. 11 Memristor-based

inner-product operation
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in column 3 as the binary format of 0.953 ([11110100], no-signed, 8-bit fixed point

with 256 scaling factor). As a result, the mapping process can be included in the

encoding step.

4.4.4 Adding and Shifting for Inner-Product Result

The output of encoding step is in binary format, but some processes are needed to

obtain the final inner-product result. Adder and shifter are designed to complete this

process as shown in Fig. 11. We suppose the original data is 8-bit and data dimen-

sion is 512, the workload of adder is 512 without any acceleration. With three-step

memristor-crossbar accelerator as pre-processing, the workload of adder can be sig-

nificantly reduced to 9 (log2 512). Detailed comparison results will be shown in

Sect. 5.
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5 Performance Evaluation

5.1 Experiment Settings

The hardware evaluation platform is implemented on a computer server with 4.0 GHz

core and 16.0 GB memory. Feature extraction is implemented by general processor,

CMOS-based ASIC, non-distributed and distributed in-memory computing based

on digitalized memristor crossbar respectively. For the memristor-crossbar design

evaluation, the resistance of memristor is set as 1 kΩ and 1 MΩ as on-state and

off-state resistance respectively according to Lee et al. (2008).

The general processor solution is performed by Matlab on a 4.0 GHz desktop.

For CMOS-ASIC implementation, we implement it by Verilog and synthesize with

CMOS 65 nm low power PDK. For memristor-crossbar based solution, we verify

the function in circuit level with SPICE tool NVMSPICE (Yu and Wang 2014). By

analyzing the machine learning algorithm, we obtain the basic operations and the

number of memristor-crossbar logic units required.

The working frequency of general processor implementation is 4.0 GHz while

the CMOS ASIC feature extraction design frequency is 1.0 GHz. For in-memory

computing based on the proposed memristor crossbar, write voltage Vw is set as 0.8
V and read voltage Vr is set as 0.1 V as well as duration time of 5 ns. In addition,

the analog computation on memristor-crossbar is performed for comparison based

on design in Singh et al. (2007).

In the followings, we will show the performance of matrix-vector multiplication

on memristor-crossbar first. A scalability study is introduced to show the area, energy

and computation delay with different matrix sizes. Afterwards, the evaluation of face

recognition on in-memory architecture is presented. Finally, we will illustrate the

object classification on 3D CMOS-memristor architecture. Performance of different

bid-width configurations will also be shown. In addition, the 3D CMOS-memristor

solution will be compared with CMOS-ASIC as well as GPU implementation.

5.2 Performance Comparison of Multiplication

To evaluate the performance of binary memristor-crossbar for matrix-vector mul-

tiplication, we use the proposed architecture to accelerate dimension reduction of

fingerprint images. 1,000 fingerprint images selected from Tan and Sun (2010) are

stored in memory with 328 × 356 resolution, with 8 bits in each pixel. To agree with

patch size, random Bernoulli N × M matrix is with fixed N and M of 356 and 64,

respectively. The original images can be seen as X ∈ ℤN×P
in matrix-vector multipli-

cation. The detailed comparison is shown in Table 2 with numerical results including

energy consumption and delay obtained for one image on average of 1,000 images.

For the digitized XIMA implementation, we need to compute the area of memristor

cell, adding and shifting as well as the control bus. For analog XIMA, the majority

of area is consumed by ADC/DACs and area of memristor cell can be neglected.



292 H. Yu et al.

Table 2 Matrix-vector multiplication performance comparison under among software and hard-

ware implementation

Implementation General purpose

processor

(MatLab)

CMOS

ASIC

Non-distributed

digitalized

XIMA

Distributed

digitalized

XIMA

Distributed

analog XIMA

Area 177 mm
2

5 mm
2

3.28 mm
2

(800

MBit memris-

tors) + 0.088

mm
2

+ 128 µ m
2

0.05 mm
2

(12 MBit

memristors) +

0.088 mm
2

+

8192 µ m
2

8.32 mm
2

Frequency 4 GHz 1 GHz 200 MHz 200 MHz 200 MHz

Cycles – 69,632 Computing: 984 Computing: 984 Computing: 328

Pre-computing:

262,144

Pre-computing:

4,096

Pre-computing:

4,096

Time 1.78 ms 69.632 µs Computing:

4,920 ns

Computing:

4,920 ns

Computing:

1,640 ns

Pre-computing:

1.311 ms

Pre-computing:

20.48 µs

Pre-computing:

20.48 µs

Dynamic power 84 W 34.938 W Memristor:

4.71 W

Memristor:

4.71 W

Memristor:

1.28 W

Control-bus:

100 µW

Control-bus:

6.4 mW

Control-bus: 6.4

mW

Energy 0.1424 J 2.4457 mJ Memristor:

23.17 µJ

Memristor:

23.17 µJ

Memristor:

2.1 µJ

Control-bus:

0.131 µJ

Control-bus:

0.131 µJ

Memristor:

0.131 µJ

Among hardware implementations, in-memory computing based on the proposed

XIMA achieves better energy-efficiency than CMOS-based ASIC. Non-distributed

XIMA (only one data and logic block inside memory) needs fewer CMOS control

bus but large data communication overhead on a single-layer crossbar compared to

distributed memristor crossbar. Although distributed analog memristor crossbar can

achieve the best in energy perspective but has larger area compared to the digital-

ized one. Shown in Table 2, memristor crossbar in analog fashion only consumes 2.1

µJ for one vector multiplication while the proposed architecture requires 23.17 µJ

because most of power consumption comes from memristor in computing instead

of ADCs. However, ADCs need more area so that memristor crossbar with analog

fashion is 8.32 mm
2

while the proposed one is only 0.15 mm
2

because of the high

density of memristor crossbar.

Calculation error of analog and digitalized memristor crossbar are compared in

Fig. 12, where M and N are both set as 256. Calculation error is very low when

memristor error rate is smaller than 0.004 for both analog and digitalized fashion

memristor. However, when memristor error rate reaches 0.01, calculation error rate

of analog memristor crossbar goes to 0.25, much higher than the other one with

only 0.07. As such, computational error can be reduced in the proposed architecture

compared to analog fashion memristor crossbar.
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Fig. 12 Calculation error

comparison between

multi-leveled and binary

memristor
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0.25

RRAM error rate
etarrorre

noitalucla
C Analog RRAM

Digitalized RRAM

5.3 Scalability Study

Hardware performance comparison among CMOS-based ASIC, non-distributed and

distributed XIMA with varying M is shown in Fig. 13. From area consumption per-

spective shown in Fig. 13a, distributed memristor-crossbar is much better than the

other implementations. With increasing M from 64 to 208, its total area is from

0.057 to 0.185 mm
2
, approximately 100x smaller than the other two approaches.

Non-distributed memristor crossbar becomes the worst one when M > 96. From

delay perspective shown in Fig. 13b, non-distributed memristor crossbar is the worst

because it has only one control bus and takes too much time on preparing of com-

puting. Delay of non-distributed memristor crossbar grows rapidly while distributed

memristor crossbar and CMOS-based ASIC implementation maintains on approxi-

mately 21 µs and 70µs respectively as the parallel design. For energy-efficiency side

shown in Fig. 13c, both non-distributed and distributed memristor crossbar do better

as logic accelerator is off at most of time. The proposed architecture also performs

the best in energy-delay product (EDP) shown in Fig. 13d. Distributed XIMA per-

forms the best among all implementation under different specifications. The EDP is

from 0.3 to 2 × 10−9sJ, which is 60× better than non-distributed memristor crossbar

and 100× better than CMOS-based ASIC.

What is more, hardware performance comparison with varying N is shown in

Fig. 14. Area and energy consumption trend is similar to Fig. 13. But for com-

putational delay, the proposed architecture cannot maintain constantly as Fig. 13b

because it needs much time to configure the input, but still the best among the three.

Distributed XIMA still achieves better performance than the other two (Fig. 15).
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Fig. 13 Hardware performance scalability under different reduced dimension for a area; b delay;

c energy; d EDP

5.4 Performance of In-Memory Architecture

In this work, we implement the face recognition application on the in-memory archi-

tecture. We will analyze the computation complexity of face recognition first, and

then evaluate the performance.

In the experiment, 200 face images of 13 people are selected from Huang et al.

(2007), with scaled image size 262 of each image 𝐗. In PCA, feature size of image

is further reduced to 128 by multiplying the matrix 𝐑. The number of hidden node L
and classes m are 160 and 13, respectively. Based on the experimental settings, com-

putation complexity is analyzed with results shown in Fig. 16. 82% of computations

are multiplication in output weight calculation, which is the most time-consuming

procedure in neural network. Time-consumption of each process in neural network

is introduced in Fig. 16b. Since processes except activation function involve matrix-

vector multiplication, we extracted this operation in the whole algorithm and found

that 64.62% of time is consumed in matrix-vector multiplication, shown in Fig. 16c.

We implement the face recognition in the distributed in-memory architecture.

In Table 3, general performance comparisons among MatLab, CMOS-ASIC and

memristor-crossbar accelerator are introduced, and the acceleration of each proce-

dure as the formula described in Sect. 2 is also addressed. Among three
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Fig. 15 Training samples and prediction value 𝐘 (6) for face recognitions

implementations, memristor-crossbar architecture performs the best in area, energy

and speed. Compared to MatLab implementation, it achieves 32.84× speed-up,

210.69× energy-saving and almost four-magnitude area-saving. We also design a

CMOS-ASIC implementation with similar structure as memristor-crossbar with bet-

ter performance compared to MatLab. memristor-crossbar architecture is 4.34×
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(a) (b) (c)

Fig. 16 a Time consumption breakdown for output weight calculation. b Neural network training

computation effort analysis. c Multiplication analysis for neural network training (N = 200, n =
128, L = 160 and m = 13)

speed-up, 13.08× energy-saving and 51.3× area-saving compared to CMOS-ASIC.

The performance comparison is quite different from Table 2, because we applied

different designs (memristor-crossbar size) is this two experiments according to the

dimension of matrices.

The result of face recognition is shown in Fig. 15. Five training classes are pro-

vided as an example with three test cases. Each test face will be recognized as the

class with the largest score (prediction result as the index of Max(𝐘), marked in red

color). In this example, case 1 is identified as class 1, while case 2 and 3 are classified

into class 3 and 5, respectively.

5.5 Performance of 3D CMOS-memristor Architecture

We implement the object classification in the 3D CMOS-memristor Architecture.

Table 4 shows the testing accuracy under different datasets (Lichman 2013; Krizhevsky

and Hinton 2009) and configurations for machine learning of support vector machine

(SVM) and single layer feed-forward neuron network (SLFN). It shows that accuracy

of classification is not very sensitive to the memristor configuration bits. For exam-

ple, the accuracy of Iris dataset is working with negligible accuracy at 5 memristor

bit-width. When the memristor bit-width increased to 6, it performs the same as 32

bit-width configurations. Similar observation is found in Chen et al. (2015) by trun-

cating algorithms with limited precision for better energy efficiency. Please note that

training data and weight related parameters are quantized to perform matrix-vector

multiplication on memristor crossbar accelerator.

Figure 17 shows the energy comparisons under different bit-width configurations

for CMOS and memristor under the same accuracy requirements. An average of 4.5×
energy saving can be achieved for the same number of bit-width configurations. The

energy consumption is normalized by the CMOS 4 bit-width configuration. Further-

more, we can observe that not always smaller number of bits achieves better energy

saving. Fewer number of bit-width may require much larger neuron network to per-

form required classification accuracy. As a result, its energy consumption increases.
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Fig. 18 On-line machine-learning for image recognition on the proposed 3D multi-layer CMOS-

memristor accelerator using benchmark CIFAR-10

5.6 Performance of Machine Learning Based Face
Recognition

Figure 18 shows the classification values in (6) on image data (Krizhevsky and Hin-

ton 2009) with an example of 5 classes. As mentioned in the Sect. 3, the index with

maximum values (highlighted in red) is selected to indicate the class of test case. A

few sample images are selected. Please note that 50,000 and 10,000 images are used

for training and testing with 10 classes.
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In Table 5, performance comparisons among Matlab, 3D-CMOS-ASIC and 3D

multi-layer CMOS-memristor accelerator are presented, and the acceleration of each

procedure based on the formula described in Sect. 2 is also addressed. Among the

three implementations, 3D multi-layer CMOS-memristor accelerator performs the

best in area, energy and speed. Compared to Matlab implementation, it achieves

14.94× speed-up, 447.17× energy-saving and 164.38× area-saving. We also design

a 3D-CMOS-ASIC implementation with similar structure as 3D multi-layer CMOS-

memristor accelerator with better performance compared to Matlab. The proposed

3D multi-layer CMOS-memristor 3D accelerator is 2.05× speed-up, 12.38× energy-

saving and 1.28× area-saving compared to 3D-CMOS-ASIC. To compare the per-

formance with GPU, we also implemented the same code using Matlab GPU parallel

toolbox. It takes 1163.42 s for training benchmark CIFAR-10, which is 4.858× faster

than CPU. Comparing to our proposed 3D multi-layer CMOS-memristor architec-

ture, our work is 3.07× speed-up and 162.86× energy saving (267.59 KJ :1.643 KJ).

Detailed comparisons of each step is not shown due to the limited space of table.

6 Conclusion

In this chapter, we have presented the distributed in-memory matrix-vector multipli-

cation accelerator using binary RRAM-crossbar for machine learning. The design

of three-step digital matrix multiplier on the binary RRAM-crossbar is presented. In

addition, the distributed in-memory computing architecture is introduced with the

according control protocol of the digital memory-logic pair. The performance of the

mapped machine learning can be boosted by the proposed accelerator with signifi-

cant improvement in speed and energy efficiency.

Experiment results have shown that as for the matrix-vector multiplication, 72%

smaller error can be observed when compared to the analog RRAM-crossbar. More-

over, 2.86× speedup and 105.6× power saving can be achieved when compared to

the CMOS-ASIC. What is more, as for the machine learning based face recognition,

4.34× speedup and 13.08× power saving can be also achieved when compared to the

CMOS-ASIC.
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Memristive-Based Neuromorphic
Applications and Associative Memories

C. Dias, J. Ventura and P. Aguiar

Abstract The recent realization of memristors opened the possibility to fabricate
novel neuromorphic computational systems, including highly scalable and low
power artificial neural networks. In fact, it has been shown that memristors can be
used as an artificial synapse or to build the spiking core of an artificial neuron. The
high resemblance between memristor and synaptic dynamics offers exciting pos-
sibilities in two major research fields: on one hand, memristors can be used to
advance our understanding of the human brain, by supporting very-large-scale
integration (VLSI) models where experiments can be performed and hypothesis
tested in an in silico testbed. On the other hand, memristors have the potential to
support novel advances in computing by providing the building blocks to
bio-inspired computing paradigms, alternative to the von Neumann architecture,
where storage and processing are supported by the same substrate. This chapter
reviews the neuromorphic properties of memristors, comparing them with the key
players of neuronal computations, synapses and neurons. The presentation is
extended to more complex systems, where multiple computing units are combined
in networks to achieve more elaborated dynamics. Emphasis is given to
memristive-based associative memories, a bio-inspired content addressable memory
system which relevant properties such as distributed storage and noise correction.
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1 Introduction

Building computers capable of learning and adapting to new environments has for
long been an aspiration of the scientific community and is an essential step towards
the realization of artificial intelligence. Modern-day computers, based on the
deterministic von Neumann architecture, where memory and processing are phys-
ically separated, cannot accomplish this goal in an efficient and practical way.
A novel approach is thus necessary and there is no better model than the human
brain itself. The brain relies on a non-deterministic approach with massive paral-
lelism of simple processing units—neurons—which take the role of essential
building blocks in learning and decision-making. This distributed computing results
in a significant power efficiency, adaptation and resilience to unit failure, all of
which might be the keys to the creation of intelligent machines.

The communication between neurons is established by synapses and it is well
known that synaptic strength is used to store information in brains. Learning is
accomplished by modifying (either increasing or decreasing) this strength through a
mechanism called synaptic plasticity. Emulating the biological synapse in an
electronic circuit is the biggest challenge to the fabrication of a neuromorphic
(brain-like) system. Fortunately this is now closer to becoming a reality, with the
recent realization of memristors (Chua 1971; Strukov et al. 2008), a device with
properties resembling those of biological synapses.

The memristor is a non-volatile two-terminal device, a metal-insulator-metal
structure, characterized by a nonlinear relationship between the histories of current
and voltage. Its response to a periodic voltage (or current) input is a “pinched
hysteretic loop”. The dynamic resistance and nanosized of memristors make them
exciting candidates for electronic synapse applications and have inspired the neu-
romorphic community to explore their potential for building low-power intelligent
machines. Noteworthy, different experimentally verified synaptic learning rules,
such as spike timing dependent plasticity (STDP), have been faithfully reproduced
in memristive devices.

Similar to what happens in biology with synaptically connected neural networks,
synthetic memristive-based neural networks can be developed for purposes of
machine learning and cognitive science. The presence of memristors allow these
synthetic networks to be trained and to learn how to perform complex computations
such as pattern recognition. One particular type of network architectures with
computational interest is associative memory networks. These networks have the
ability to store (learn) and recall (remember) associations between unrelated data
items. Importantly, they work as content-addressable memories, where pairs of
input/output patterns are stored in such a way that, if the input is presented, the
output is readily given. Moreover, associative memory networks have robustness to
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noise: the system is able to recall the correct output pattern even if the presented
input is a partial/noisy version of the original pattern (learnt during storage phase).
The memristor fast speed, adaptive properties and small size meet the necessary
specifications for these type of applications. Thereupon, memristor technology has
the potential to revolutionize computing and scientific research in the coming
decades.

The rest of the chapter is organized as follows. The next Sect. 2 provides a brief
introduction to the key neurobiological mechanisms supporting information pro-
cessing and information storage. Section 3 discusses the neuromorphic properties
of memristors and their ability to mimic fundamental computational properties from
single neurons and synapses. Then, Sect. 4 extends the discussion to the network
level, where more complex computational capabilities can be achieved by com-
bining a large number of memristive-based units. Section 5 is dedicated to a par-
ticularly relevant network architecture, the content-addressable associative
memories. Finally, Sect. 6 outlines the conclusions of this chapter and discusses
some of the open challenges for memristive-based neuromorphic computations.

2 Neural Computation

2.1 Brain Architecture and Operation

Two fundamental units of the human brain, the neuron and the synapse (Fig. 1),
play essential roles in learning and memory formation. Neurons are electrically
excitable cells which are able to respond to stimuli, to conduct impulses, and to
communicate with each other. Synapses are specialized junctions between neurons
that allow the rapid transmission of electrical and chemical signals so that neurons
can communicate with each other (Shi et al. 2011). When an action potential
generated by a neuron reaches a pre-synaptic terminal, a cascade of events leads to
the release of neurotransmitters that give rise to a flow of ionic currents into or out
of the post-synaptic neuron. The magnitude of these currents are subject to mod-
ulation—driven by synaptic plasticity mechanisms—allowing learning in the neu-
ronal circuits. The amplitude or strength of a synapse is usually described as
synaptic weight.

Figure 1 illustrates the basic structure of neurons and of their connection by
synapses. The pre-synaptic neuron sends an action potential through one of its
axons to the synaptic junction producing a response in the post-synaptic neuron.
Action potentials, commonly named spikes, are fast (stereotyped) depolarizations in
the neuron’s membrane electrical potential which propagate, without attenuation,
through axons. At rest, the membrane potential is close to −70 mV (and the
membrane is said to be polarized; the reference is the extracellular space), and
during a spike the membrane potential may be close to +30 mV (giving an
amplitude of roughly 100 mV).
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2.2 Learning and Memory

Learning and memory are the capabilities to gain new information and store it in a
recallable way. Although alternative mechanisms to store information have been
studied (Conde-Sousa and Aguiar 2013), the current dogma in neuroscience is that
information in the human brain is mostly stored in the synaptic strength (weight),
with learning being accomplished by modifying (either increasing or decreasing)
this strength. Synaptic plasticity makes it then possible to store information and to
react to inputs based on past knowledge (Kandel et al. 2003).

2.2.1 Hebbian Learning

Conditions which are consistently experienced together tend to become associated.
As a consequence, future exposure to one of the conditions automatically activates
the response to the second condition (Kandel et al. 2003). One of the most famous
experiments related to associative memory is Pavlov’s experiment on classical
conditioning. In this experiment, salivation of a dog is first set by the sight of food.
Then, if the sight of food is accompanied by a sound (bell) over a certain period of
time, the dog learns to associate the sound to the food, and salivation can start to be
triggered by the sound alone (Kozma et al. 2012). In 1949, D. Hebb addressed this
learning postulate at the neural level: “neurons that fire together, wire together” (Shi
et al. 2011). Thus, when two connected neurons are active at the same time, the
weight of the connecting synapse increases to reinforce that correlation. This
learning rule, however, is incomplete since it provides a rule for increasing synaptic
weight but not for decreasing it; also it does not specify the effective time window
between pre- and post-synaptic activity that will result in potentiation.

Fig. 1 Structure of a neuron
showing the cell body,
dendrites and synapses
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2.2.2 Spike Timing Dependent Plasticity

Spike timing dependent plasticity (STDP) is an experimentally verified biological
phenomenon in which the precise timing of spikes affects the sign and magnitude of
changes in synaptic strength. STDP contains two distinct plasticity windows defining
long-term potentiation (LTP) and long-term depression (LTD). In the former,
synapses increase their efficiency as a pre-neuron is activated shortly (in the order of
milliseconds) before a post-neuron; in the latter synapses decrease their efficiency as a
post-neuron is activated shortly before a pre-neuron (Seo et al. 2011). While the
association rule produced byHebbian learning can be seen as supporting a correlation
measure, STDP goes a step further in complexity by providing a (temporal) causality
measure. As depicted in Fig. 2, the interspike interval between action potentials in the
pre- and post-synaptic cells modulates STDP. The smaller the timing difference
between pre- and post-synaptic spikes, the larger will be the induced plasticity change
in either LTP or LTD.On the other hand, longer intervals (above 50 ms) produce little
or no change in synaptic strength (Choi et al. 2011; Karmarkar and Buonomano
2002). This shows the existence of a causality window within the events and that,
outside this causality temporal window, no changes are produced. The relative
synaptic conductance changeΔG= (Gafter − Gbefore)/Gbefore [where Gbefore (Gafter) is
the conductance before (after) the pre- and post-spike pair], has a range of [0, +1[ for
potentiation and [1, 0] for depression (Choi et al. 2011; Yu et al. 2011). Another
reason for the importance of STDP relies on the fact that it addresses both questions
left open by Hebb: it establishes a critical time window in which pre- and

Fig. 2 STDP diagram showing the relative change in synaptic connection as a function of the
time between pre- (tj) and post-synaptic spikes (ti) (Courtesy of Scholarpedia Copyright Owner ©
Wulfram Gerstner)
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post-synaptic activity must occur to produce long-term changes in synaptic strength,
and it provides a simple learning rule that decreases synaptic strength.

2.2.3 Short- and Long-Term Plasticity

The synaptic plasticity mechanisms in the human brain are diverse and occur at
different time scales. Important computing properties can be achieved with synaptic
modifications which are lost not long after the onset conditions. Therefore, in
addition to long-term potentiation/depression (LTP/D) mechanisms, neurons also
exhibit short-term potentiation/depression (STP/D). Short-term plasticity is mostly
a modulation of the release probability of the pre-synaptic vesicles. As opposed to
most synapses in the peripheral nervous system, which are deterministic, many
types of synapses in the central nervous system are probabilistic: upon the arrival of
an action potential at the synapse there is a probability p that a signal will be carried
to the post-synaptic neuron. This stochasticity has deep implications in learning and
optimization, especially because this release probability is modulated by short-term
plasticity rules: a progressive, but temporary increase in p (increase in vesicle
availability) is associated with STP, whereas a progressive decrease in p (depletion
of the vesicles’ pool) is associated with STD. In either cases, the changes in the
release probability p are temporary, decaying to its initial state in scales of seconds
to minutes. However, in situations where there is a strong consistency in the
stimulation pattern, a different plasticity mechanism can be triggered (involving
modifications in both in pre- and post-synaptic sites) and long-term changes can be
produced, lasting from hours to days, and even beyond (lasting a lifetime). For
example, repeated stimulation can cause a permanent change in the synaptic con-
nection to reach LTP and shorter repetition intervals enable efficient LTP formation
from fewer stimuli (Wang et al. 2012; Hasegawa et al. 2012; Ohno et al. 2011). On
the other hand, consistent low frequency stimulation can lead to LTD. Note how-
ever that it is erroneous to associate S/LTP to learning and S/LTD to forgetting—
information storage and memory formation in the nervous system involves plas-
ticity in both directions (just as forgetting).

3 Neuromorphic Properties of Memristors

3.1 Memristive Synapses and Bio-inspired Learning Rules

3.1.1 Spike Timing Dependent Plasticity

Since the first proposals that resistive switching structures could mimic relevant
properties of biological synapses, including spike timing dependent plasticity,
short- and long-term potentiation/depression (Hu et al. 2013a, b; Snider 2008;
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Kim et al. 2012a, b) and their integration in hybrid memristor-CMOS neuromorphic
circuits (Indiveri et al. 2013), there has been a tremendous effort in experimentally
demonstrating learning rules in these novel devices. To relate memristance to tra-
ditional biological spike timing dependent plasticity, one requires a voltage/flux
controlled bipolar memristor with voltage threshold (below which no variation of
the resistance is observed) and an exponential behavior beyond threshold (above
which a continuous increment/decrement of the resistance takes place). It was also
found that the strength of STDP learning in memristors (i.e. the induced conduc-
tance change) can be modulated by the amplitude or shape of the electric spikes.
This means that the conductivity can be tuned depending on the precise timing
between the pre- and post-synaptic spikes and the learning window by changing the
shape of the pulses (Zamarreño-Ramos et al. 2011). Different STDP learning rules
can also be obtained depending on the physical origin of resistance switching
(Serrano-Gotarredona et al. 2013). For filamentary switching, where the memris-
tor’s conductance varies due to the formation and rupture of metallic filaments
within the oxide, one expects a quadratic STDP learning rule, in which the synaptic
strength update is proportional to the square of the synaptic strength. On the other
hand, in interfacial or domain wall switching, related with uniform variations in the
conductance of the oxide, the synaptic strength update is independent of the
memristor’s conductance (additive STDP update rule). Recently, a SPICE model
able to account for STDP and synaptic dynamics in memristors was also imple-
mented (Li et al. 2015).

Jo et al. were the first to demonstrate STDP in nanoscale memristors (Jo et al.
2010). Their crossbar memristive structure consisted in bottom tungsten and top
chrome/platinum nanowire electrodes and a co-sputtered Ag and Si active layer in
which the Ag/Si ratio varied along the depth (Fig. 3a). The authors then showed
that the sample’s conductance continuously increased (decreased) during the pos-
itive (negative) voltage sweeps, and that the current-voltage (I-V) slope of each
subsequent sweep picks up where the last sweep left of (Fig. 3b). Instead of the
usual abrupt, two level switching, in the co-sputtered memristor, the applied bias
led to analog switching in which there is a continuous motion of the conduction
front (Ag ions moving from the Ag-rich region to the Ag-poor region or
vice-verse). This allowed the first demonstration of STDP in a memresistive
structure. Figure 3c shows the change in the conductance (synaptic weight) of the
memristor synapse as a function of the timing difference (Δt) between spikes arising
from pre-synaptic and post-synaptic CMOS integrate-and-fire neurons. When the
pre-synaptic neuron spikes before the post-synaptic neuron, the memristor con-
ductance increases (potentiation behavior). The opposite (depressing behavior) is
observed when the post-synaptic neuron spikes before the pre-synaptic neuron.
Furthermore, the smaller the timing difference between the pulses, the larger is the
change in the memristor conductance. Both these characteristics follow extremely
well the STDP function of biological synapses, as can be seen in Fig. 2.

Since then, synaptic behavior was observed in several memristive structures,
including in TiO2−x/TiOy bilayer systems showing multilevel conductance due to
the movement of oxygen between the TiO2−x and TiOy layers (Seo et al. 2011),
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PrCaMnO3-based memristors, in which the fabrication of a 1 kbit synaptic array
allowed to confirm the possibility to build a neuromorphic system for pattern
recognition (Park et al. 2012), asymmetric memristors showing single-sided hys-
teresis (Williamson et al. 2013), Ag/conducting polymer/Ta memristive systems (Li
et al. 2013), volatile and nonvolatile rectification in WO3-x-based nanoionic devices
(Yang et al. 2012), Ni-doped graphene oxide (Pinto et al. 2012), nanoparticle
organic memory field-effect transistors (Alibart et al. 2012) or exploring multilevel
switching in metal oxide memories (Yu et al. 2011).

Choi et al. fabricated Pt/Cu2O/W metal-insulator-metal (MIM) structures and
experimentally demonstrated the successful storing of biological synaptic weight
variations (Choi et al. 2011). They also showed the reliability of plasticity by
varying the amplitude and pulse-width of the input voltage signal, matching their
results with biological plasticity. A practical issue before the industrial imple-
mentation of memristors in actual large-scale neural networks is the dependence of
the change of the memristive synaptic weight on its initial conductance. Never-
theless, experiments carried out with Pt/Al2O3/TiO2−x/Ti/Pt memristors in a

Fig. 3 a Schematics of the structure of the fabricated memristor with a gradient of Ag
concentration. b Measured (blue) and calculated (orange) I-V characteristics and c corresponding
memristor synaptic weight as a function of the relative timing of the neuron spikes. Inset SEM
image of the crossbar array (scale: 300 nm; Reprinted with permission from (Jo et al. 2010).
Copyright 2010 American Chemical Society)
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12 × 12 crossbar array, were able to demonstrate STDP behavior with
self-adaptation of the average memristor conductance, making plasticity insensitive
to the initial conductance state of the devices (Prezioso et al. 2016).

The implementation of STDP was also achieved in a second-order memristor
(Kim et al. 2015). Kim et al. showed that the dynamics of Pd/Ta2O5−x/TaOy/Pd
structures could be well explained considering two sets of state-variables. The
first-order state-variable is related with the size of the conduction filament region
(w) due to the diffusion of oxygen vacancies that sets the memristor conductance,
while the second-order state-variable is the local temperature of the device that
changes the dynamics of the diffusion process (Fig. 4a). The characteristic short
times of temperature dynamics give rise to an internal timing mechanism and the
possibility to affect w by providing close enough pulsed stimuli that device

Fig. 4 a Operation principles of a second-order memristor in which the modulation of the
2nd-order state-variable (temperature) can trigger changes in the 1st-order state-variable (electrical
conductance). b The obtained tSet versus tinterval operating window for gradual/abrupt resistive
switching. c Observation of spike-timing dependent plasticity in a second-order memristor
(measurements—symbols and simulation—solid lines). d Simulations on the evolution of the
internal temperature of a second-order memristor when stimulated by two consecutive spikes
(Reprinted with permission from (Kim et al. 2015). Copyright 2015 American Chemical Society)
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temperature is still above its steady state value when the second pulse is triggered.
This is closer to the case of biological than the first-order memristor, as in biological
synapses the weight is also not directly modulated by the spikes, but rather by
secondary state-variable(s) such as the postsynaptic calcium ion (Ca2+) concen-
tration. By providing a set of pulses to the fabricated structures, the authors
determined the conditions (Set pulse duration tSet and time interval between pulses,
tinterval) for which the conductance showed a gradual variation which enables
plasticity (Fig. 4b). Long pulses (>800 ns) always led to abrupt switching because
of the large amount of generated heat. The same was observed for sets of short Set
pulses at low tinterval due to the accumulation of heat that fastens filament growth
and thus leads to abrupt switching. However, for sufficiently large tinterval and small
tSet, the heat generated by each pulse is dissipated before the next one arrives and
intermediate states can be obtained (gradual switching occurs). This allowed the
observation of frequency-dependent weight changes and STDP using
non-overlapping input spikes with a biorealistic implementation (Fig. 4c). The
input consisted in a long, low voltage heating pulse which resulted in a significant
temperature increase, but no change in conductance and a short, high voltage
programming pulse. Although each pulse could not change the memristor con-
ductance by itself, the rise in temperature caused by the first pulse enhanced the
effect of the second (Fig. 4d), so that STDP could be obtained.

Another second-order memristor implementation considered as state variables
the area of the conducting filament between the two electrodes and the mobility of
oxygen vacancies that was found to increase when a stimulation pulse was applied
(Du et al. 2015). This allowed the observation of different synaptic behaviors such
as spike timing dependent plasticity, paired-pulse facilitation or experience
dependent plasticity.

STDP was also replicated in a purely electronic Ti/ZnO/Pt memristor (Pan et al.
2016). In this case, regulation of the current compliance during Set and maximum
applied voltage during Reset allowed tuning the carrier trapping/detrapping level and
thus the sample’s conductance. Resistive switching based on homogeneous barrier
modulation induced by oxygen ion migration was also shown to lead to neuro-
morphic properties (Wang et al. 2015). In fact, it was found that the resistance of
Ta/TaOx/TiO2/Ti structures could be modulated by the migration of O2

- towards the
TaOx layer under negative bias (Reset) and towards the Ta/TaOx interface under
positive bias (Set). This allowed measuring and modelling spike timing dependent
plasticity related with non-filamentary O2

- evolution during potentiation and
depression. Paired-pulse facilitation (PPF), a form of biological short-term synaptic
plasticity in which synaptic weight changes are correlated with the time interval
between two consecutive potentiating pulses (Fig. 5a) was also observed in these
Ta/TaOx/TiO2/Ti structures. The paired-pulse facilitation ratio was calculated using:

PPF =
ðG2 −G1Þ

G1
=C1e− t τ̸1 +C2e− t τ̸2 , ð1Þ
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where G1 and G2 are the sample’s conductance after the first and second pulses,
respectively and C1, C2, τ1 and τ2 are fitting constants. The values obtained for the
fast (τ1 = 45 ms) and slow (τ2 = 800 ms) time constants are in good agreement
with those found in biological synapses. The emulation of biological PPF was also
achieved in NiOx-based memristors (Hu et al. 2013a, b). As in biological synapses,
the change in the memristor’s conductance induced by the second pulse is enhanced
when compared with that of the first one (Fig. 5a). Again, the PPF magnitude
decreases as the interval between the two pulses increases (Fig. 5b), going from
105.4% for 5 ms to 18.3% for 2000 ms. PPF also depended on the magnitude and
width of the pulse pair (Fig. 5c, d). With both increasing pulse magnitude (from 1
to 3 V) and width (from 5 to 1000 ms) the average PPF value was also found to
increase. These results were explained by the formation of conductive filaments of
metallic Ni phases whose number or size increased with the application of the
second pulse. However, the effect of the first pulse somehow fades away gradually,
as the conductance change induced by the second pulse decreases with the pulse
interval. Higher pulse voltages or longer pulses could also lead to the formation of
more filaments or the growth of existing ones.

Fig. 5 Paired-pulse facilitation of a a biological synapse (top) and a NiOx-based memristor
(bottom). Dependence of the paired-pulse facilitation [Eq. (2)] of the memristor on b the pulse
interval (for a pulse magnitude and width of 1.8 V and 5 ms), c pulse magnitude (for a pulse width
and interval of 5 ms and 100 ms), and d pulse width (for a pulse magnitude and interval of 2.0 V
and 100 ms; Reprinted from (Hu et al. 2013a, b), with the permission of AIP Publishing)
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3.1.2 Short- and Long-Term Memory

Short-term memory (STM) and long-term memory (LTM), and the transition from
STM to LTM through repetitions (rehearsal), have also been recreated in mem-
ristive devices. While STM can only be sustained by constantly rehearsing the same
stimulus, LTM, despite the presence of natural forgetting, can be maintained for a
longer period without follow-up stimuli (Fig. 6a). The terms short-term plasticity
(STP) and long-term plasticity (LTP) are used in neuroscience, whereas STM and
LTM are used to describe psychological phenomena (Ohno et al. 2011); plasticity is
typically used in the context of localized changes (e.g. a synapse) and memory
typically refers to system level changes (e.g. a neuronal population).

Depending on the input voltage pulses, different memorization behaviors were
observed in memristive devices (Chang et al. 2011). Using memristors based on
WOx thin-films whose low resistance state showed a spontaneous loss of retention
due to the random motion of oxygen vacancies following a stretched-exponential

Fig. 6 a Schematic of the multi-store memory model, b WOx-based memristor retention curve
and c forgetting curve of human memory (Reprinted with permission from (Chang et al. 2011).
Copyright 2011 American Chemical Society). d Three memory stages observed in NiOx

memristors upon application of consecutive voltage pulses (0.5 V in height, 0.1 s in width;
Reprinted with permission from (Liu et al. 2011). Copyright 2011 American Chemical Society)
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function law (Fig. 6b), Chang et al. demonstrated artificial properties close to those
of memory loss in biological structures (Fig. 6c). However, if repeated stimulus are
given, both the overall conductance and the retention time of the device are
enhanced with increasing number of stimulus and stimulation rate, showing simi-
larities with paired-pulse facilitation and post-tetanic potentiation. The transition
between short-term and long-term memory was then suggested based on the
existence of two memory regimes with short and long retention times.

As shown in Fig. 6d, three memory stages (unmemorized, STM and LTM) were
also observed in a Ni-rich nickel oxide device by Liu et al. (2011). Memorization
from STM to LTM is obtained by increasing the number of pulses. Behaviors such
as STM, LTM, STDP and spike-rate dependent plasticity were also observed in
Ta/PEDOT:PSS/Ag (Li et al. 2013). Tsuruoka et al. found LTM in an Ag/Ta2O5/Pt
cell under voltage bias for a high repetition rate of input pulses, which is analogous
to the behavior of biological synapses (Tsuruoka et al. 2012) and Wan et al.
mimicked STM and LTM in nanogranular phosphorus-doped SiO2 films by tuning
the pulse gate voltage amplitude (Wan et al. 2013). The compliance current during
electroforming was also shown to have an impact on the retention and analog
properties of FeOx based memristors (Wang et al. 2016).

Wang et al. reported a spontaneous decay of the synaptic weight in an amor-
phous InGaZnO memristor (Wang et al. 2012). The decay is very fast in the initial
stage and then gradually slows down, which is consistent with the human “for-
getting curve”. Their results also indicate that in synaptic devices with
“learning-experience”, re-learning is easily achieved (Fig. 7). Also, with increasing

Fig. 7 a InGaZnO memristor conductance (synaptic weight) increase with the number of applied
pulses. b Spontaneous relaxation of the conductivity (forgetting curve) upon removal of the
stimulus and corresponding fit to an exponential function. c Re-stimulation upon voltage decay,
showing now the need for only four pulses to reach the high conductance state. Bottom inset shows
the proposed oxygen ion migration model (From (Wang et al. 2012), Advanced Functional
Materials, Copyright © 2012 by [John Wiley & Sons, Inc.]. Reprinted by permission of [John
Wiley & Sons, Inc.])
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number of stimulation pulses, the relaxation time increases from several seconds to
tens of seconds and tends to saturate beyond 100 stimulations, indicating a
decreasing forgetting rate (Wang et al. 2012).

Using TiO2 bipolar memristors, R. Berdan et al. demonstrated short-term plas-
ticity with protocols similar to those used for biological synapses (Berdan et al.
2016). Figure 8a shows that the application of voltage pulses initially leads to
volatile switching, in which the memristors conductance decays back to its low
value. However, the successive application of voltage pulses eventually leads to
non-volatile switching to the high conductance state. Two cases of short-term
facilitation were emulated by providing three consecutive voltage pulses: in the first
(Fig. 8b), the memristor’s conductance is increased by each of the applied pulses
(classical short-term facilitation; STP-F); however, in some particular situations, the
conductance after the second and third pulses decreased with respect to that
obtained after the first voltage spike (Fig. 8c); saturation short-term facilitation
STP-S]. The latter effect was explained in terms of a mobility saturation of oxygen
vacancies near a partially formed filament. Spatio-temporal computation was also
achieved using these memristive synapses and an exponential integrate-and-fire
neuron. The built circuit was able to differentiate two spatio-temporal patterns each
consisting of three −4 V, 10 μs pulses separated by 250 ms applied first to a static
resistance and then to the memristive synapse (AB) or vice-versa (BA). A dis-
crimination success rate of 67.5% with 15% false positives was obtained.

3.1.3 Spintronic Memristors

Memristive behavior has also been found in spintronic devices, particularly
MgO-based magnetic tunnel junctions (MTJs). These are two-terminal devices
constituted by two ferromagnetic (FM) layers separated by an MgO thin insulator
(Parkin et al. 2004; Yuasa et al. 2004; Ikeda et al. 2010; Teixeira et al. 2011). While
the magnetization of one of the ferromagnetic layers is pinned by an antiferro-
magnet, the other is free to reverse under a small external magnetic field. This
allows obtaining two different resistance states associated with the parallel (when
the magnetization of the two FM layers point in the same direction) and anti-parallel
(when they are opposite) configurations by simply applying an external magnetic
field. Furthermore, the discovery of the Spin Transfer Torque (STT) effect opened
the possibility to switch the magnetization of the MTJ by passing a sufficiently high
spin polarized current through the stack or to induce persistent magnetization
precession in the GHz range (Spin Torque Nano Oscillators; STNOs) (Locatelli
et al. 2014; Kiselev et al. 2003; Kubota et al. 2008). However, besides magnetic
switching, these structures also display resistance variations of non-magnetic origin
arising from ionic migration within the ultra-thin insulating barrier: resistive
switching (Krzysteczko et al. 2009a, b, 2012; Teixeira et al. 2009; Ventura et al.
2007; Yoshida et al. 2008).
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Krzysteczko et al. were the first to demonstrate that MTJs possess the charac-
teristics of both of synapses (arising from non-magnetic resistive switching) and
neurons (driven by STT effects; see below) (Krzysteczko et al. 2012). Figure 9a
shows their observation of STDP in magnetic tunnel junctions given a proper
choice of the amplitudes of the voltage function. When the time interval between
the pulses (Δt) is high, the joint effect of the two spikes does not exceed the
threshold voltage for switching, so that no variation of the conductance is seen. On
the other hand, for low Δt, the applied voltage goes above the threshold and
increasingly larger conductance variations are seen with decreasing pulse interval.
The same work also reported that, by applying an electrical current large enough to

Fig. 8 a Metastable and stable conductance states in TiO2-based memristors as function of
voltage stimulus. Short-term plasticity and of a memristor acting as a b facilitating (STP-F) and
c saturated (STP-S) synapse and corresponding fitting (Reprinted from Berdan et al. 2016; used in
accordance with the Creative Commons Attribution (CC BY) license)
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induce STT effects, the magnetization of the free layer switched back-and-forward
between an intermediate and the antiparallel state (back-hopping; Fig. 9b). Such
stochastic current spikes showed a large similitude to the spiking of biological
neurons and were proposed to emulate inter-neuronal communication.

Fully magnetic spintronic memristors were proposed in 2009 based on the spin
transfer torque effect that offers a path for energy efficient, high-speed magnetiza-
tion switching in nanoscale MTJs (Dimitrov 2009). These included magnetic
tunnel junctions with perpendicular anisotropy under spin-torque excitations or
STT-driven domain wall motion of the free layer of a spin valve or MTJ. A four
terminal device based on spin-orbit torque by joining a heavy metal and a magnetic
tunnel junction displaying spike-timing dependent plasticity was also recently
proposed (Sengupta et al. 2015). An alternative proposal for spin based synapses is
to use the inherent stochastic nature of the binary switching (parallel/antiparallel
resistance states) of magnetic tunnel junctions that depends on the voltage ampli-
tude and duration of the STT pulse (Vincent et al. 2015; Kavehei and Skafidas
2014). Following such proposal, it was possible to implement a simplified STDP
rule, in which STDP occurs only when an output neuron spikes and the
STT-switching of the MTJ conductance is stochastic rather than deterministic.
System level simulations of a crossbar array of MTJs following the developed
model demonstrated the possibility to train the network to learn to detect vehicle in
a video. The impact of device-to-device variations of the parallel/antiparallel con-
ductances and tunnel magnetoresistance on the detection rate of the vehicle counter
was also studied and found to be robust for relative standard deviation (one-sigma)
up to 17%.

Fig. 9 a Spike Timing Dependent Plasticity of an MgO-based magnetic tunnel junction and
b Spin Transfer Torque driven stochastic switching between two magnetic configurations. The
inset shows the spiking behavior of a pyramidal neuron (From Krzysteczko et al. 2012, Advanced
Materials, Copyright © 2012 by [John Wiley & Sons, Inc.]. Reprinted by permission of
[John Wiley & Sons, Inc.])
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3.1.4 Atomic Switches

In atomic switches, sometimes also called electrochemical metallization cells, or
conductive-bridge random-access memories, resistive switching is related with the
migration of metallic cations (M) from the active electrode (usually Cu or Ag)
through an ionic conductor and the formation/annihilation of a conductive filament
(Hasegawa et al. 2012; Jana et al. 2015; Goux and Valov 2016; Valov et al. 2011).
Under the action of a positive bias (with the inert electrode grounded), ions from the
active electrode (anode) are oxidized and diffuse towards the inert cathode where
they are reduced. This ultimately results in the formation of a metallic filament and
thus the high conductance state. The application of a reverse voltage results in the
oxidation of the metallic ions from the filament and their reduction at the active
electrode, resulting in the dissociation of the metallic filament and thus the low
conductance state.

The first observation of learning abilities in atomic switches was achieved in
silver rich Ag2S-based structures (Hasegawa et al. 2010). In this case, an Ag
protrusion grows between the Ag2S and Pt electrodes across a vacuum gap by the
action of an applied voltage, ultimately bridging the two, with learning/unlearning
occurring with the widening/thinning of the Ag atomic bridge. With the same type
of structure, Ohno et al. were able to emulate both STP and LTP depending on the
stimulation rate (Fig. 10) (Ohno et al. 2011). When stimulated with a low repetition
rate (at 20 s intervals), the conductance of the atomic switch increases to a high
conductance state but spontaneously decreases to the low conductance state after
each pulse is removed rate (Fig. 10a). This was related with the formation of an
incomplete metallic bridge that dissolves when the applied bias voltage is removed
and can be associated with short-term plasticity of biological synapses. On the other
hand, the application of high repetition rates (2 s intervals) results in the formation
of a robust atomic bridge between the electrodes (persistent high conductance state)
and thus to a transition to LTP (Fig. 10b). The authors also showed the possibility
to implement the so called multistore model: sensory information is initially stored
as a sensory memory and then selected information is transferred from a temporary
short-term state to a permanent long-term state through rehearsal, depending on the
amplitude and width of the voltage stimulus (Ohno et al. 2011). For this, two
images were stored in a 7 × 7 array of Ag2S atomic switches (Fig. 10c). While the
image of the number ‘2’ was stored using well separated voltages pulses (20 s;
corresponding to the STP case), that of number ‘1’ was stored using closer pulses
(2 s; which led to LTP). Initially both numerals were present, but ‘2’ started to
disappear as soon as the voltage pulses were removed due to the prompt decay of
the conductance associated with the STP state and only the ‘1’ image was trans-
ferred to the LTM mode and remained after stimulus stopped. The short-term
dynamics of Ag2S atomic switches was also used to encode input spike patterns
(Ma et al. 2015).
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Furthermore, Barbera et al. showed that the STP/LTP transition could be tuned
by both the used current compliance during SET (Ic; switching from the low to the
high conductance states) and the number of excitatory pulses that can be inde-
pendently changed (Fig. 11) (Barbera et al. 2015). It was shown that higher current
compliances led to larger ON state conductance due to an increased density or
width of the formed (dendritic) filaments. By measuring the relaxation time (τ) of
the ON state conductance after the device was exposed to a train of potentiation
pulses with varying number of pulses (from 15 to 150), it was possible to observe
that samples with higher conductance before relaxation (Gmax; obtained using either
higher number of pulses or compliance current) had shorter relaxation time con-
stants (Fig. 11a). As Gmax increased, so did the stability of the filaments which then
lead to higher τ-values and to a transition from STP to LTP. The same overall result
can be seen in (Fig. 11b), where G100s stands for the conductance value 100 s after
the train of potentiation pulses was applied and G100s ≈ Gmax indicates that no
relaxation of the conductance took place, i.e. long-term plasticity.

Fig. 10 Conductance variation of an Ag2S atomic switch for a low and b high repetition rates (for
80 mV pulses) showing STP and LTP, respectively. c Storage of the numerals ‘1’ (in the LTM
mode) and ‘2’ (in the STM) in a 7 × 7 array and the decay of the ‘2’ memory 20 s after short-term
memorization (Reprinted by permission from Macmillan Publishers Ltd: Nature Materials (Ohno
et al. 2011), copyright 2011)
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An alternative proposal was recently reported based on stochastic learning rules
using GeS2-atomic switches (Suri et al. 2013). Taking into account the intrinsic
stochastic switching behavior of atomic switches at low applied voltage, a
stochastic STDP rule, similar to that presented for spintronic magnetic tunnel
junctions (Sect. 3.1.3), was developed and used for auditory and visual pattern
extraction.

3.2 Neuristors

A neuristor is a circuit capable of performing neural functions, since it successfully
generates an action potential upon sufficient excitation, and emulates its propaga-
tion through an axon following the conditions of threshold action, refractory period
and constant propagation. The term was carved in 1960 by H.D. Crane and, to
implement it, one only requires three components: an energy source, an
energy-storage element and a negative resistance (active) device (Crane 1960; Lu
2012; Pickett and Williams 2013).

The neuristor is a dynamical spiking device where the logic ‘1’ is the existence
of a spike and ‘0’ its absence. It is a system able to compute all Boolean functions,
so that it is said to be logically complete, allowing the duplication of any logic
system (Crane 1960) and enabling massive parallel bio-inspired computing archi-
tectures (Pickett and Williams 2013). Following this idea, in 2012 Pickett et al.
fabricated a neuristor based on two Mott memristors exhibiting neural functions,
where an insulating-to-conducting phase transition (in NbO2) takes place due to
Joule heating and results in the creation of a conductive channel between the two
electrodes (Fig. 12) (Pickett et al. 2012). The implemented circuit (Fig. 12a) is
composed by two units: one equivalent to the sodium channels and the other to the
potassium ones. Each capacitor serves to build up charge and the memristor in

Fig. 11 a Relaxation time constant as a function of the conductance value after a train of
potentiation pulses with varying number of pulses (from 15 to 150) is applied (Gmax) for different
compliance currents. b Conductance measured 100 s after the application of the train of
potentiation pulses for different compliance currents (Adapted with permission from (Barbera et al.
2015). Copyright 2015 American Chemical Society)
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parallel to release it suddenly. When a voltage threshold is exceeded, the Mott
insulators change into the metallic phase (Fig. 12b), discharging the capacitors and
spikes of activity that emulate an axon action potential are produced (Fig. 12c).
Changing the components values, a variety of spiking behaviors were achieved,
both experimentally and in simulations. Mott memristors turning ON and OFF can
therefore be seen as electronic and inorganic analogues of the biological neuronal
ion channels opening and closing. These neuristors can be downscaled and either be
integrated with existing circuits or implemented in transistorless designs. With this
scalable implementation, there is no need for a comparator and a logic element in
the artificial neuron design (Chabi et al. 2014; Zhou and Ramanathan 2015).
Furthermore, these schemes should allow a deep study of the nervous system
(Pickett et al. 2012).

Mehonic et al. also implemented a simplified circuit model to emulate the neuron
electrical activity using a SiOx memristor (Mehonic and Kenyon 2016). They
observed voltage spiking and a dynamic voltage output when applying a constant or

Fig. 12 a Neuristor diagram and b Mott memristors characteristics, c experimental and simulated
spikes for different inter-spike interval (ISI) and spike width (Δt) (Reprinted by permission from
Macmillan Publishers Ltd: Nature Materials (Pickett et al. 2012), copyright 2012)
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pulsed current input. Gale et al. studied non-ideal memristive networks and con-
cluded that the richness and dynamics complexity of spiking circuits increases for
three memristors in anti-series and/or anti-parallel, when compared to systems with
only two memristors (Gale et al. 2014). However, if the three memristors have the
same polarity, the circuit is stable and does not spike. They further simulated eight
circuit compositions of up to three memristors both in series and in parallel. Notice
that, in all these cases, memristive devices are used to assume the functions of a
neuron, a complement to the synapse behavior to be used in neuromorphic systems.

4 Synthetic Neural Networks

As in conventional electronics, significant processing power and complexity is
achieved in the human brain by combining multiple simpler computational units
(i.e. synapses and neurons) into large network systems with well-defined archi-
tectures. There has been, therefore, several attempts to mimic the biological
learning rules in artificial synapses and to construct artificial neural networks
(ANNs) capable of performing complex functions. A network is based on the
transmission of events from one source node (neuron) to multiple nodes by edges
(synapses; see examples in Fig. 13). In most ANN models, synapses are dynamical
two-terminal entities that connect a pre- (source) to a post-synaptic neuron (sink).
The source emits a signal that is modified by a synaptic transfer function and
delivered to the sink. To facilitate the communication between neurons, the action
potential is propagated as a digital pulse (Schemmel and Grubl 2006). The output of
a neural network node is a function of the sum of all input signals (Ha and
Ramanathan 2011). The sink has a state variable that partially depends upon the
history of incoming signals received from synapses that drive it. This variable along
with the source signal determine the evolution of the synaptic state variable.

Fig. 13 a Graph and b crossbar network architectures (Reprinted by permission from Macmillan
Publishers Ltd: Nature Nanotechnology (Yang et al. 2013), copyright 2013)
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A radical approach in the construction of artificial neural networks is to use very
large scale integration (VLSI) to implement directly in silicon the required com-
putational model of a neural system. IBM researchers built a complex chip using
5.4 billion transistors to simulate 1 million neurons and 256 million synapses
(Merolla et al. 2014).

In neuromorphic implementations, the key challenge is to design circuits with
large time constants while keeping the neuronal structure simple, occupying small
silicon area and using only one electronic device as an artificial synapse. However,
the silicon area occupied by the synaptic circuit can vary significantly, as it depends
on the choice of layout design solutions and more conservative solutions use large
transistors. Implementing the large connectivity of the brain with transistors on a
single chip is a major challenge, since a large number of transistors are needed (Shi
et al. 2011; Seo et al. 2011). Therefore, the electronic conventional implementation
is not practical and a simple and scalable device able to emulate synaptic functions
is required (Seo et al. 2011). As we have seen, the memristor displays such
properties, making it the most promising candidate to be used in scalable neural
networks.

Examples of different network architectures are discussed here, presenting
configurations, which support operations such as classification (perceptron) or
in-formation storage/memories.

4.1 Perceptron

In 1957, F. Rosenblatt developed a simple NN for pattern classification problems of
linearly separable patterns: the perceptron (Fig. 14) (Rosenblatt 1957). It is the
simplest kind of NN capable of learning and parallel processing (Wang et al. 2013).
It consists of a main neuron that accepts several inputs from sensory neurons,
connected by adjustable synaptic weights, and sums all weighted inputs (Fig. 14a).
Depending on the result this neuron will fire (or not) if the result is positive (or
negative), based on error-correlation learning (Park 2006; Haykin 2009; Daumé III
2012). The learning process for pattern classification occupies a finite number of
iterations. Rosenblatt also proved that, if the patterns (vectors) used to train the
perceptron are drawn from two linearly separable classes, then the perceptron
algorithm converges and positions the decision surface in the form of a hyperplane
between the two classes (Haykin 2009), a division of space into two halves by a
straight line, where one half is “positive” and the other is “negative” (Fig. 14b)
(Daumé III 2012).

The learning algorithm of the perceptron is based on the information that, in
brains, many neurons encode stimuli intensity in terms of their firing rate (which in
turn defines how “activated” the neuron is). Therefore, based on how much the input
neurons fire and how strong the neural connections are, the main neuron will respond
accordingly. Note that learning is nothing more than neurons becoming connected
with each other and adapting their connection strength over time (Daumé III 2012).
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Mathematically, the perceptron can be modulated as an input vector x = x1, x2,…, xn
arriving from n neurons, with n stored weights, w1, w2, …, wn, at the main neuron
that computes a sum, a. Also, it is often convenient to have a non-zero threshold,
which is achieved introducing a single scalar bias term into the neuron, so that
activation is always increased by some fixed value b. The overall sum a, parame-
terized by n weights, and a bias value b is given by (Daumé III 2012):

a= ∑
n

i=1
wixi

� �

+ b. ð2Þ

The weights are easy to interpret: if one input has a zero weight, then the
activation is the same regardless of its value. Furthermore, positive (negative)
weights are indicative of positive (negative) examples because they cause the
activation to increase (decrease). This is the first learning algorithm in which the
abilities of learning and pattern classification were achieved by Artificial Intelli-
gence (Park 2006) and one of those algorithms that is incredibly simple and yet
works amazingly well for some types of problems (Daumé III 2012).

As a classifier, perceptron applications include pattern recognition (fingerprint
and iris) (Wang et al. 2013; Ashidi et al. 2011; Gatet et al. 2009), classification of
medical images (Wang et al. 2013) (cancer classification for example Rosenblatt
1957) or gene array analysis (Bo et al. 2006), surface classification, object detec-
tion, distance measurement (Gatet et al. 2009), and forecast ozone and nitrogen
dioxide levels measurement in real-time (Agirre-Basurko et al. 2006). The per-
ceptron can thus be determinant in many fields such as obstacle detection for
autonomous robots or vehicles, identification, surveillance, security systems,
medical applications, industrial processes and navigation (Wang et al. 2013; Gatet
et al. 2009). As an example, imagine for the medical case that you have databases
from previous diagnosed patients for different disease indicators, each with a certain

Fig. 14 a Single layer perceptron and b illustration of the hyperplane for a two-dimensional
classification problem
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influence on the diagnosis. You can then train your perceptron to learn to identify
the given disease and even make it more probable to give false positives than false
negatives or vice-versa.

As we have seen, memristors are highly attractive for this purpose due to its
reconfigurable and analogue resistance, nanoscale size, automatic information
storage and non-volatility (Wang et al. 2013). Alibart et al. achieved pattern clas-
sification using a single-layer perceptron network implemented with a TiO2

memrisitive crossbar circuit (Alibart et al. 2013). This shows the possibility of
fabricating new, dense and high performance information processing systems.

4.2 Memristive Artificial Neural Network

The recent progress in the experimental realization of memristive devices has
renewed the interest in artificial neural networks (Thomas 2013) and many different
learning laws have been proposed for edges (Snider 2007). Adjustable edge weights
are the defining characteristic of neural networks and are the origin of their broad
adaptive functionality (Ha and Ramanathan 2011). An edge’s conductance changes
as a function of the voltage drop across the edge induced by forward spikes from
the source node and back spikes from the sink node. Using memristive nanodevices
to implement edges, conventional analog and digital electronics to implement
nodes, and pairs of bipolar pulses (spikes), to implement communication, it is
possible to develop fully electronic neural networks (Snider 2007). For a very large
number of synapses, a practical implementation of an artificial network using
memristors allows the weights to be updated in parallel due to the high intercon-
nectivity. For this, the logic value of the input (‘1’ and ‘0’) is multiplied by the
memristance value (Ha and Ramanathan 2011; Strukov and Kohlstedt 2012; Rose
et al. 2011). It should be noted that, for ANNs, the density of the memristive
devices is the most important property. Also, ANNs are resilient to variations in
synapses and neurons (Strukov and Kohlstedt 2012). For example, instead of a
single pulse, the average effect of hundreds of parallel synapse inputs into one
neuron determines whether the neuron will fire or not (Yu et al. 2011).

One of the possible applications of memristor-based ANNs is to carry out
position detection. This was simulated in Ref. (Ebong and Mazumder 2012), using
ANNs that combine winner-take-all and STDP learning rules. Random networks of
polymer coated Ag and oxide passivated Ni nanowires (Fig. 15), where their
placement is not important and differences in properties are averaged out, also
presented I-V memristive-like behavior (Nirmalraj et al. 2012). Atomic switch
networks of Ag/Ag2S/Ag with random topology nanowires similar to Turing’s
B-Type unorganized machine were also fabricated using SU-8 photoresist and
Ag2S nanowires where filaments formation takes place at the atomic level
(Fig. 16a, b; see Sect. 3.1.4) (Stieg et al. 2012; Stieg and Avizienis 2014). After an
electroforming step, the electrical characterization of the whole network of highly
interconnected atomic switches using macroscopic electrodes reproducibility

328 C. Dias et al.



showed pinched hysteresis loops similar to those of single devices (Fig. 16c).
Furthermore, infra-red imaging confirmed the presence of distributed power dissi-
pation throughout the network (Fig. 16d) and thus the formation of a functional
network. Finally, emergent behavior, i.e. a behavior that is not found or associated
with a single unit of the network, similar to that of neuron assemblies was also
inferred from the observation of a large number of metastable conductance states
resulting from discrete configurations of the network (Fig. 16e, f).

4.2.1 Crossbar Memory Arrays

A possible architecture for brain-based nanoelectronic computation is the crossbar
array. Passive crossbar memory arrays are simple matrices consisting only of pre-
and post-neuron connecting lines and a resistive switch at each junction acting as a
synapse (Kügeler et al. 2011; Linn et al. 2012). In a crossbar structure, a
two-terminal memristor synapse is formed at each crosspoint connecting pre- and
post-synaptic neurons (Jo et al. 2010; Linn et al. 2012). Every neuron in the
pre-neuron layer of the crossbar configuration is directly connected to every neuron

Fig. 15 a Topography of a random network of Ag nanowires. A metal coated atomic force
microscope tip was used to locally activate sites in the network by applying a voltage pulse. The
current maps shown in b–f are the result of applying the voltage pulses at selected regions (marked
1–5 on the topographic map; Reprinted with permission from (Nirmalraj et al. 2012). Copyright
2012 American Chemical Society)
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in the post-neuron layer (Jo et al. 2010; Kügeler et al. 2011). This 2D ANN can be
seen in a generic manner as mapping sets of input patterns into specific output
patterns fully connected through adaptive synapses. The information can be stored
changing the value at the edges through an applied voltage between the nodes that
they link and can have the meaning of a memory representation (data storage) or of
a function representation (computation). Furthermore, higher memory density can
be achieved in crossbar architectures than in CMOS architectures and, with 3D
stacking, the memory density can be further increased (Chen 2011).

As shown in Fig. 17a, Prezioso et al. used Al2O3/TiO2-x to fabricate a highly
dense 12 × 12 (200 nm × 200 nm) memristors crossbar (free of transistors)
(Prezioso et al. 2015). They used it to implement a stable single layer perceptron 10
(inputs) × 3 (outputs) that successfully performed pattern classification of
3 × 3-pixel images corresponding to three classes of letters, by in situ learning of
23 iterations on average. The operation is based on the self-tuning of the memristor
conductance that is assured by its STDP behavior (Prezioso et al. 2016). A critical
step was the optimization of the current-voltage nonlinearity through the aluminum
oxide thickness to achieve devices with very low variability (Fig. 17b).

Fig. 16 a Zoomed and b enlarged view of an Ag/Ag2S/Ag network of random nanowires.
c Pinched hysteresis loops associated with the electrical behavior of the whole network. d Infra-red
imaging of the network under an applied voltage displaying distributed power dissipation.
e, f Switching between metastable conductance states as the network’s response to voltage pulses
(From (Stieg et al. 2012). Advanced Materials, Copyright © 2012 by [John Wiley & Sons, Inc.].
Reprinted by permission of [John Wiley & Sons, Inc.])
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Mostafa et al. also implemented a 8 × 8 (60 μm × 60 μm) hybrid
CMOS-memristor perceptron based on an extended STDP rule connecting each two
silicon neurons by a TiO2-x memristor (Mostafa et al. 2015). Their rule has the
advantage of not involving a post-synaptic spike timing, but instead a correlation
between pre-synaptic spikes and signals from the post-synaptic neuron (membrane
potential). This means that there is no need to generate temporally long waveforms
on both synaptic sides. In both cases, each memristor was electrically prepared
before being used as an artificial synapse by an individual electroforming process.

5 Associative Memories

In biological systems, neuronal circuits are deeply involved in the transmission,
processing and storage of information. Importantly, and as previously mentioned,
these three operations are supported by the same wetware substrate. While the
mechanisms supporting efficient and reliable information transmission in neurons
are known already since the early 50 s (Hodgkin and Huxley 1952) only more
recently were the first steps given on understanding how information may be stored
in neuronal populations (Willshaw et al. 1969; Hopfield 1982) The simplest models
for information storage in neuronal populations assume that each unit (neuron) can
be in one of two states: active or inactive. The information content of a neuronal
population can then be seen as the spatiotemporal patterns of activity of its neurons:
given a population of neurons, which neurons are active (spatial coding) at a
specific time (temporal coding) encodes the information being handled in the
network. This section focuses on memory systems relying of spatial coding only, in
other words, static neuronal activation patterns in which a particular memory state
is represented by a specific constellation of active neurons (no temporal dynamics

Fig. 17 a Memristors crossbar and b I-V curve of a single memristor (Reprinted by permission
from Macmillan Publishers Ltd: Nature (Prezioso et al. 2015). copyright 2015)
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included). In a population of N neurons, and assuming each memory is represented

by M active neurons, a total of
N
M

� �

different patterns can be considered (number

of M-combinations from a population with N elements). Assuming a 5% activation
in a population with 1000 neurons, there are on the order of 1085 different (spatial)
activation patterns.

With information being encoded in the spatial patterns of activity, a simple
associative memory system consists of associating particular activity patterns in an
input population of neurons to other particular activity patterns in an output pop-
ulation of neurons. A list of associations may be stored, linking input activity
patterns to output activity patterns, and the information is stored in the connections
between neurons. In this feedforward connection architecture, the system is called
an hetero-associative memory as it involves two distinct neurons populations
(Willshaw et al. 1969). The alternative is when a single population, with recurrent
connectivity, acts both as input and output, in which case the system take the name
of auto-associative memory (Hopfield 1982).

The storage of information and memory formation in the nervous system has
multiple properties which are very interesting from the engineering point of view.
In particular, and as opposed to the standard man-made storage systems, neuronal
based memory systems are distributed, meaning that elements of information are
encoded across groups of units. These memory systems are therefore capable of
graceful degradation: the progressive loss of individual storage units (neurons) does
not lead to an abrupt failure of the memory system. Another important feature is
that neuronal memory systems are content-addressable memories—information
retrieval is achieved not with the presentation of a reference/memory address, but
instead it is triggered by the presentation of part of the stored information (cue).
Standard man-made memory systems are reference addressable instead. In the case
of a hard drive, this implies the existence of a file allocation table (FAT, or a
modern form of it) associating file contents to disk cluster addresses—simply
damaging/eliminating the allocation table impairs information retrieval (a strategy
which was commonly used by computer viruses). Neuronal based memory systems
are also intrinsically robust to noise and capable of auto-completion; that is, a
modified version of the original input pattern can be used to trigger the recall of the
originally associated output pattern. This important property links associative net-
works to the problem of pattern recognition. All together, these properties (sum-
marized in Table 1) make biology inspired associative networks extremely
attractive from the engineering point of view.

Memristors are in a unique favorable position to support the fabrication of
efficient and reliable associative memories mimicking the key features of their
biological counterparts. Memristors have been shown to be adequate for the
implementation of both hetero-associative (Dias et al. 2015) and auto-associative
(Hu et al. 2015a, b; Duan et al. 2016; Guo et al. 2015) memories.
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5.1 Principles of Operation

In both types of associative memory architectures, full connectivity is typically
assumed between the input and output populations: this means that each neuron in
the output population receives one connection from each neuron in the input
population (in the case of the auto-associative memory all neurons are connected
with all neurons except with themselves). In the simplest associative networks, not
only the neuronal state is binary (silent or active) but also the connection strength
(weak or strong). Analogously with the read/write modes in man-made systems,
current models for associative memories also assume two operation modes: storage
and recall (or retrieval). A proper separation, in terms of mechanism, between these
operations is necessary to avoid information corruption. Memory storage and
retrieval is governed by the neuronal units’ dynamics as well as by synaptic
modification (learning) rule. The common (and the original) choice for the neuronal
dynamics in the discrete associative memory is the McCullock-Pitts model
(McCulloch and Pitts 1943) in which the output state of the neuron is 1 (active)
only if the weighted sum of its inputs is equal or above a predefined threshold value
T; otherwise the output state is 0 (silent) (Fig. 18). As for the learning rule applied
in the storage phase, the typical choice is the Hebb rule. It should be noted,
nonetheless, that in general this is not an optimal learning rule in terms of storage
capacity – higher memory storage capacities can be achieved using slightly mod-
ified learning rules (see for example Refs. Dayan and Willshaw (1991); Storkey
(1997)). The Hebb rule has however the advantage of being easily recreated with
simple memristor dynamics.

In memristive-based implementations of associative memories, memristors are
used to establish the network connections while controlled voltage sources (Dias
et al. 2015) or operational amplifiers (Hu et al. 2015a, b) are used to represent the
state of input neuron units. A simple memristive-based hetero-associative memory

Table 1 Comparison between neuronal and standard man-made memory systems

Neuronal associative memory
systems

Standard man-made memory
systems

Access Content-addressable Reference-addressable
Storage Distributed Local
Intrinsic robustness to
noise

Yes No

Intrinsic
auto-completion

Yes No

Low power Yes Yes, in some implementations
Response to units loss Graceful degradation Potential memory corruption
Storage capacity Lowa High
aCurrent experimental/theoretical evidence points to a storage capacity (as a function of the
number of storage units or number of connections) which is lower than standard man-made
memory systems (Treves and Rolls 1991) (but see also Alme et al. 2014)

Memristive-Based Neuromorphic Applications … 333



is show in Fig. 19. Squares represent neuron units from two populations (input β
and output α) while circles represent memristors (empty circles represent low
conductance state and shaded circles represent high conductance state). In this
representation, the following associations are intended: {β1, β2} → {α1, α2} and
{β2, β3} → {α2, α3}. During storage, memristors conductances are modified
according to the learning rule. In the case of Hebb learning and binary synapses, the
memristor state is changed from low to high conductance state only when both
input and output units are active. During retrieval, the activation of a stored input
pattern leads (with the appropriate threshold T settings) to the recall of the asso-
ciated output pattern. Naturally, with the increasing number of stored associations
comes interference between patterns. With random, sparse activity patterns, the
capacity of this memory system scales with NαNβ

MαMβ
, where N is the total number of

units in each population, and M is the number of active units in each patterns

Fig. 18 Diagram of the
McCulloch-Pitts neuron.
Input signals x are weighted
by the corresponding synaptic
strengths w and a non-linear
transfer function f (e.g. a
threshold function) is used to
set the output signal y

Fig. 19 Hetero-associative
memory architecture. Squares
represent neuron units and
circles represent memristors
(low conductance state, empty
circles; and high conductance
states, shaded circles). Two
associations were stored in
this network: {β1,
β2} → {α1, α2} and {β2,
β3} → {α2, α3} (Reprinted
from (Dias et al. 2015). with
the permission of AIP
Publishing)
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(Willshaw et al. 1969). Intuitively, maximum capacity is achieved when half of the
memristors where modified to the high conductance state. After this stage, storage
of additional association leads to a fast memory performance degradation.

5.2 Coping with Faulty Memristors

Presently, memristor fabrication is still far from a 100% yield (Strukov and
Likharev 2007) and some variability is expected between units. Implementations of
associative memories based on memristor technology cannot rely on the assumption
that all memristor units perform equally well. A source of inspiration and insights
on how to cope with faulty memristors comes from the associative memories
literature addressing the issues of partial connectivity and different threshold setting
strategies (Buckingham and Willshaw 1993; Graham and Willshaw 1996).

In the context of memristors emulating connections with binary weights, a
common defect resulting from lithography processes is the inability to switch
between resistive states. This leaves the memristors device permanently (“stuck at”)
on the high, or in the low, resistive state. The situation of stuck at high resistance is
comparable to the absence of connections. Given the intrinsic resilience of asso-
ciative memories (distributed information, soft degradation, noise robustness) it has
been shown (Dias et al. 2015) that under appropriate operation strategies, the
presence of a significant fraction of faulty units (5%) does not necessarily imply
catastrophic failure of the memory system. Moreover, knowing a priori the expected
percentage of faulty units after the fabrication process, it is possible to devise
threshold setting strategies (different thresholds for each output unit) (Buckingham
and Willshaw 1993) which mitigate the reduction in memory capacity.

5.3 Unlearning and Palimpsest Memories

The information retrieval performance in conventional associative memory systems
collapses after the storage capacity has been exceeded. Statistically speaking, if R is
the memory system capacity, the number of correctly recalled patterns approaches
R as storage/recall cycles progress, and then abruptly falls to very low values. If one
wants to produce effective memristor-based associative memories, one needs to
surpass this problem. In the field of neuronal networks, several approaches have
been proposed to address this, introducing different forms of erasing, unlearning or
“forgetting” old and no more used associations. In the case of a memristive device
with filamentary switching, unlearning can be seen for example as the thinning of
the filament by applying an opposite bias polarity (Hasegawa et al. 2010). In
general, one interesting approach to address the memory collapse problem intro-
duces the concept of palimpsest memories (Sandberg et al. 2000; Sterratt and
Willshaw 2008). A palimpsest was a medieval manuscript that was repeatedly
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reused over time by inscribing text over the previous existing, being only the most
recent writing visible. The analogy with new memories replacing older ones can be
done (Henson 1993). There is not a catastrophic forgetting, but instead these for-
getful learning rules select the older memories to forget in order to store the new
ones (Storkey 2015).

There are three main strategies using palimpsest considering forgetting
approaches in the Willshaw network. The first is random resetting, where random
switches are turned off with a (small) random probability. The second is weight
ageing, in which switches are turned off with a probability that depends on the age
of the switch which in turn is the time since it was last triggered. The last one is
generalized learning, the only that is not random but dependent on the patterns
presented at a given time (Henson 1993).

While memristors can in principle support the construction of palimpsest asso-
ciative memory systems, this subject has not yet been appropriately addressed.

6 Conclusions and Outlook

Memristors exhibit noteworthy properties which make them excellent building
blocks to construct neuromorphic systems. They are low power devices, nanosized,
have good scalability properties and above all they mimic core aspects of the
dynamics of ion channels present at synapses and neuron membranes. As a result,
they are able to reproduce, in silico, many of the mechanisms associated with neural
computation, such as classification, decision-making, learning and memory. The
human brain is the result of more than 4.5 billion years of evolution and opti-
mization, and is therefore Nature’s solution to fast and efficient information pro-
cessing and information storage. By copying features of the human brain uncovered
by recent advances in neuroscience, one hopes to produce innovations in computing
technology and memory storage devices. Current computing paradigms face major
scalability problems, one of them being electric power demand. It is forecasted that,
by 2040, computing electric power demand will surpass the amount generated
(ITRS 2015). The human brain, capable of pattern recognition, precise motor
control, and other complex information processing tasks, has a remarkably low
power consumption (Sengupta and Stemmler 2014), in the range of 25 watts
(Kandel et al. 2003). Memristors have the potential to enable novel bio-inspired
computing paradigms.

Since the memristor hypothesis by Leon Chua, the realization of a physical
model by HP’s researchers, and through the many recent exciting results regarding
theory and fabrication, the field has made tremendous progress and the time is ripe
to explore the possibilities opened by memristors. Simulating or even discrimi-
nating actual neural activity (Gupta et al. n.d.) of the human brain, and getting
inspiration of it to produce novel computing systems is certainly one of the most
promising applications. But there are still many open challenges in
memristive-based neuromorphic systems: mathematical models of memristors’
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dynamics need to be consolidated and validated, the physical implementation of
small memristive-based circuits needs to become more consistent and reliable,
circuits to drive learning processes (as well and information storage/retrieval) in
memristive systems need to be improved, efficient coding/decoding mechanisms for
memristor memory systems need to be explored, just to name a few. As in all other
fields in science, challenges are also opportunities, and memristive-based neuro-
morphic systems offers many exciting possibilities to the research groups willing to
tackle them.
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Experimental Analogue Implementation
of Memristor Based Chaotic Oscillators

R. Jothimurugan, S. Sabarathinam, K. Suresh and K. Thamilmaran

Abstract The theory of memristor was postulated in the year of 1971 by Leon O.

Chua. The intensive interest on memristive systems is given by the researchers since

after the physical realization of the hysteresis behavior in a nanoscale TiO2 memris-

tor in 2008 by a group of researchers at HP Labs lead by Stanley Williams. Research

on memristive systems has been carried out on various capacities such as understand-

ing the mathematics of memristor, finding new materials which have memristive

properties, studying the underlying dynamics of memristive systems and revisiting

the existing concepts with memristor as a nonlinear element. As a result, memristors

have potential applications in various domains. It ranges from neural networks, mem-

ory devices, artificial intelligence, high speed computing, nano batteries and human

skin modeling, etc. In the recent times, much attention is given to explore the non-

linear dynamics of memristor based circuits. In this chapter, we consider a smooth

continuous cubic memristor as nonlinear element. It is applied to (a) an autonomous

and (b) a non-autonomous dynamical systems namely, the Chua’s circuit and Duff-

ing Oscillator, to study the associated dynamics of these systems. The numerical

simulation of the circuit systems as well as its hardware experimental studies are
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performed in the laboratory. An inductor free realization and volume expanded

period doubling scenario in a memristive Chua’s circuit is studied. The complex

behaviors, like, bifurcations and chaos, three-tori, transient chaos and intermittency

in a memristive Duffing oscillator are described. In addition, “0–1 test” for the exper-

imental time series data characterizing the regular and chaotic dynamics of the pro-

posed circuits are also discussed.

Keywords Chua’s circuit ⋅ Duffing Osillator ⋅ Chaos ⋅ Transient chaos ⋅
Intermittency ⋅ 0–1 test ⋅Memristor ⋅Electronic analogy ⋅Analogue circuit ⋅ PSpice

simulation

1 Introduction

Memristor was postulated by Leon O. Chua in the year of 1971 based on the sym-

metry arguments. It is hypothesized that the memristor would be the fourth fun-

damental passive circuit element. The resistor, capacitor and inductor are the other

three fundamental circuit elements (Chua 1971). Theory of memristors is recognised

by the scientific community since after the physical realization of nanoscale mem-

ristor by Stanley William’s group from HP labs in 2008 (Strukov et al. 2008). By

definition, memristor is a passive two-terminal electronic element described by a

nonlinear constitutive relation which takes either one of the following two forms of

the voltage-current relationship, (i) v = M(q)i and (ii) i = W(φ)v, where M(q) and

W(φ) are nonlinear functions regarded as memristance and memductance respec-

tively. These relations are defined by M(q) = d φ(q)∕dq and W(φ) = dq(φ)∕d φ (Itoh

and Chua 2008). The memristor has potential applications in almost all branches

of science such as physics, mathematics, engineering, biology, and various other

fields. Recent researches explicitly demonstrate the potentiality of the memristor

such as mathematical modeling and analysis (Botta et al. 2011; Bao et al. 2010;

Teng et al. 2014; Slipko et al. 2013; Corinto and Ascoli 2012; Secco et al. 2015),

application of memristor theory to the nano-battery (Valov et al. 2013), synthesis

of memristive devices (Strukov et al. 2008; Yang and Pickett 2008; Fouda and Rad-

wan 2014; Kyriakides and Georgiou 2014; Zidan et al. 2014), memory effects on

light emitting diodes (Zakhidov 2010), memristive behavior of electrical properties

of the human skin (Martinsen et al. 2010), and synaptic connections among brain

cells of the human (Thomas 2013). The analysis of nonlinear systems using exper-

imental circuits is always an active area of research that provides a better under-

standing of the theoretical concepts. The direct experimental implementation of the

memristor element has various challenges. Hence, the emulators and equivalent cir-

cuits of the memristor has been used to replace memristor element in experimen-

tal circuit implementations. The Chua’s circuit was first investigated with analogue

integrator based smooth memristor (Muthuswamy 2010). The occurrence of chaotic

beats in a driven Chua’s circuit and the nonsmooth bifurcations, transient hyperchaos

and hyperchaotic beats in a Murali-Lakshmanan-Chua circuit (Ishaq Ahamed and
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Lakshmanan 2013) are demonstrated using time varying resistor based memristor

(Ishaq Ahamed et al. 2011). On the otherhand, analogue circuit simulation is another

useful idea to accurately synthesize the memristor emulators (Valsa et al. 2011; Kim

et al. 2012; Bao et al. 2013; Li et al. 2013, 2014; Sánchez-Lópeza et al. 2015).

The inductor is an another critical element in the experimental implementation

since it is a low accuracy component in tuning and also has internal resistance, which

compromises the circuit operation. Usually, the inductor is a component with large

dimensions, which can be a problem to implement compact circuits on PCB/VLSI.

Although, a core is added to increase the inductance with less number of coil wind-

ings, it causes distortion to the signal via hysteresis (Bharathwaj et al. 2009). Again,

it is less likely preferable for a circuit which is highly sensitive to initial condi-

tions. Even the commercially available discrete inductors (looks like resistors) are

also offers high internal resistance (Jothimurugan et al. 2014). Many alternatives

to replace a physical inductor can be proposed for the design of oscillator, such as

the use of Wien-bridge (Morgül 1995), active band pass filter (Banerjee 2012), and

inductance emulator (Tôrres and Aguirre 2000). An interesting alternative to over-

come the difficulties on physical realization of an inductorless memristive circuit is

the construction of analogue circuit of the original system. The advantages of using

electronic analogue oscillator are (a) it do not have either physical or synthetic induc-

tors, (b) frequency of operation of the circuit can be easily varied and (c) any given

mathematical model described using differential equations can be accurately imple-

mented. Further, it is cost effective and easy to analyse and reproduce. We consider

two universally famous chaotic systems such as (1) the Chua’s circuit and (2) the

Duffing oscillator. The memristor is substituted in these circuits as a nonlinearity

and the dynamics of these two systems is discussed in this chapter in detail. This

chapter is broadly segmented into two major parts. The first part, we discusses with

the memristor based Chua’s circuit while the rest is dealing about the memristor

based Duffing oscillator.

2 The Cubic Memristor Nonlinearity

The form of the memristor used here is characterized by smooth continuous cubic

monotonic increasing nonlinearity (Itoh and Chua 2008; Muthuswamy 2010)

q(φ) = a φ + bφ3
, (1)

where a and b are constants which are assumed to be greater than zero. From Eq. (1),

the memductance W(φ) is obtained as

W(φ) =
dq(φ)
d φ

= a + 3bφ2
. (2)
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Fig. 1 Pspice analysis: a Schematic of the memristor nonlinearity with AC sweep analysis (1 V,

500 Hz) and b (v − i) characteristic curve of memristor

The schematic of the memristor emulator and its characteristic curve are shown in

the Fig. 1. The pinched hysteresis loop of Fig. 1b is obtained from PSpice simulation.

3 The Memristor Based Chua’s Oscillator

The memristor oscillator derived from the famous Chua’s circuit is shown in Fig. 2.

Here, NR is an active nonlinear element which is the parallel combination of negative

conductance (−G) and two terminal passive flux controlled memristor. The state

equations for the memristor based Chua’s circuit is written using Kirchhoff’s laws as

follows (Itoh and Chua 2008),

dv1
dt

= 1
RC1

(v2 − v1 + GRv1 − RW(φ)v1), (3a)

dv2
dt

= 1
RC2

(v1 − v2 + RiL), (3b)
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Fig. 2 The memristor based

Chua’s circuit

iC2

v1

R

C2 C1

iC1

v2

+
++

L

iL

-G

i

v

Flux controlled
memristor

NR

diL
dt

= −1
L

v2, (3c)

d φ

dt
= v1, (3d)

where, v1, v2, iL and φ are voltage across the capacitors C1, C2, current flowing

through the inductor L and the flux developed in the memristor, respectively. Sub-

stituting the functional form W(φ) into Eq. (3a) yields,

dv1
dt

= 1
RC1

(v2 − v1 + GRv1 − R(a + 3bφ2)v1). (3e)

A linear transformation is applied to Eq. (3). The transformations are x1 = v1, x2 =
v2, x3 = iL, x4 = φ, α = 1∕C1, β = 1∕L, ε = G, C2 = 1 and R = 1. Now the circuit

Eq. (3) becomes,

dx1
dt

= α(x2 − x1 + ε x1 − (a + 3bx24)x1), (4a)

dx2
dt

= x1 − x2 + x3, (4b)

dx3
dt

= − β x2, (4c)

dx4
dt

= x1. (4d)

The dynamics of Eq. (4) is studied through numerical simulation. We used Runge-

Kutta fourth order algorithm to numerically solving the equations. For the following

specific choice of system parameters in the Eq. (4), α = 9.8, β = 100∕7, ε = 9∕7,

a = 1∕7, b = 2∕7 and initial conditions {x1, x2, x3, x4} = {0, 0, 0.1, 0}, the double

band chaotic attractor is obtained.
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Scaling of System Variables
The maximum amplitude of oscillation of variables x1, x2, x3 and x4 of Eq. (4) are

measured from the simulated chaotic time series after terminating a long initial tran-

sients. They are |x1| = 1.3965V, |x2| = 0.4772V, |x3| = 2.3797A and |x4| = 0.9441
Wb. The direct implementation of memristor oscillator for the Eq. (4) is not possi-

ble due to two reasons. (a) The quantity flux can not directly implemented; at the

same time (b) value of the current iL or x3 is 2.3 A, which is well above the current

rating of the usual electronic circuit design. Hence analogue circuit simulation of

Eq. (4) is preferred whereby all the variables are converted into voltages. Since the

maximum amplitudes of the state variables x2 and x4 are less than 1, the signals of

these variables are more prone to affected by the inherent noise while implement-

ing the circuit. To avoid this limitation, we uniformly upscale the maximum value

of all the variables to ±5 V. This scaling of variables neither increase the complex-

ity nor alter the original dynamics of the system, rather it produces the oscillation

with higher magnitude than original system. It is useful in the circuit design. This

range is adequate to avoid noise and saturation effects over the op-amps considering

a power supply of ±9 V. Further, it is convenient to visualize the time waveform in

the oscilloscope traces as well as to capture the data through data acquisition sys-

tems. Applying the amplitude scaling to the Eq. (4), the new variables are defined as

x = 3.3x1, y = 10x2, z = 2x3 and w = 5x4. Rewriting the Eq. (4) to the new variables

yields the following upscaled system,

dx
dt

= α(0.33y − x + ε x − ax + 0.12bw2x), (5a)

dy
dt

= 3.03x − y + 5z, (5b)

dz
dt

= −0.2 β y, (5c)

dw
dt

= 1.5152x. (5d)

Considering a probability of any intermediate signal to surpass the saturation

voltage limits of the op-amps, the entire equation system is divided by the largest

parameter. In the present case, the largest parameter is β = 100∕7 = 14.28, we divide

the entire system by the factor 15 on both sides of the Eq. (5). Although this proce-

dure alters the operational frequency of the circuit, it does not change the dynamics

of the system. Hence, the rescaled final set of equations is given by,

dx
dt

= 0.2156y + 0.09342x − 2.24109 w2

100
x, (6a)

dy
dt

= 0.202x − 0.067y + 0.33z, (6b)

dz
dt

= −0.0133 β y (6c)
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dw
dt

= 0.10101x. (6d)

During this rescaling, the parameter values used for numerical simulation of Eq.

(4) is applied for all the parameters except β, which is used as the control parameter

for the analysis.

3.1 Numerical Results

The Eq. (6) is numerically simulated. The phase portraits of double band chaotic

oscillations in different projections for β = 100∕7 are shown in Fig. 3. The phase

portraits for different values of β during the period doubling transitions to chaos

are shown in Fig. 4. Further, the local maxima of oscillations in the variable ‘w’ is

calculated to plot the one parameter bifurcation plot in the (β−w) plane. The nature

of the system is quantified by calculating the Lyapunov exponent spectrum. The

one parameter bifurcation diagram and largest three Lyapunov exponents (λi for i =
1, 2, 3) are plotted in Fig. 5 for 12 < β < 20. The presence of one positive exponent

confirms the chaotic nature of the system. All these numerical investigations are

carried out using a particular initial conditions ({x, y, z,w} = {0, 0.1, 0, 0}). The role

of initial conditions on the dynamics of the system is also investigated, since present

state of the memristor is depends on its previous state. Figure 6 shows the bifurcation

plots for (a) (x(0) − x) and (b) (w(0) − w) planes for a wide range of initial conditions.

(a) (b) (c)

(d) (e) (f)

Fig. 3 Different projections of numerical phase portraits of Eq. (4) in the a (x − y), b (x − z), c
(x − w), d (y − z), e (y − w) and f (z − w) planes. The parameters of the system are fixed as α = 9.8,

β = 100∕7, 𝛾 = 9∕7, a = 1∕7 and b = 2∕7. The initial conditions are {x, y, z,w} = {0, 0, 1.0, 0}
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(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Fig. 4 The period doubling bifurcation sequence obtained using numerical simulation of phase

portraits of Eq. (6) in the (x − y) plane for various values of β. a period-1 limit cycle (β = 20),

b period-2 limit cycle (β = 17.7), c period-4 limit cycle (β = 17.3), d period-8 limit cycle (β =

17.268), e one band chaos (β = 17), f period-3 window (β = 16.9), g double band chaos (β =

15.93), h double band chaos (β = 14.4) and i boundary limit cycle (β = 12). Rest of the parameters

are same used for plotting Fig. 3

3.2 Experimental Realization of Memristor Based Chua’s
Oscillator

In the analogue computation, a first order differential equation can be solved pri-

marily using an weighted integrator. The dynamics of the memristor based Chua’s

oscillator is described by a set of four first order coupled nonlinear differential equa-

tions as given in Eq. (6). Hence, the analogue implementation of memristor oscil-

lator will have four weighted integrators. Unit gain inverting amplifiers are used to

change the sign of the variables. To incorporate the nonlinear function present in

the Eq. (6a), the analogue multipliers are used. Figure 7 shows three fundamental

units of the analogue memristor oscillator namely, (a) the weighted inverting inte-

grator, (b) scale changer (unit gain inverting amplifier) and (c) the multiplier chip.

The transfer function of the weighted integrator is given by

vo = − 1
RinC ∫

vindt + vc(0), (7)



Experimental Analogue Implementation of Memristor . . . 351

(a)

(b)

Fig. 5 a One parameter bifurcation diagram in the (β−w) plane, (A clear depiction of period

doubling sequence is shown in inset) and b corresponding Lyapunov exponents spectrum for first

three exponents (λi for i = 1, 2 and 3 with ‘red’, ‘blue’ and ‘green’ colours, respectively) are plotted

in the (β−λi) plane. The fourth exponent is skipped to view the rest conveniently. The positive

values in the λ1 indicates the chaotic nature of the system obtained

(a) (b)

Fig. 6 The bifurcation plots for a (x(0) − x), {y, z,w} = {0.1, 0, 0} and b (w(0) − w), {x, y, z} =
{0, 0.1, 0} planes of the Eq. (6). ({⋯} = {⋯}) represents the initial conditions of other three vari-

ables
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Fig. 7 The fundamental units of the analogue computation. Namely, a the integrator, b the invert-

ing amplifier and c schematic of an analog multiplier

where vin and v0 are the input and output voltages of the integrator, respectively. vc(0)
is the initial charge in the capacitor. We assume vc(0) = 0 for the present study. Rin
is divided in to two parts as R and R∗

. The R∗
refers a real positive number and R is

denoted as base resistance.The value of any resistor in the circuit can be represented

as the product of R∗
and R. For example, assume the value of a resistor is 47 kΩ. It

can be represented as 4.7 × 10 kΩ. This conversion is useful to determine the value

of the resistor when an analogue circuit is designed for a given set of differential

equations. The value of R∗
is simply the reciprocal of corresponding coefficient in the

equation. The values of the base resistance R and the capacitance C will determine

the frequency of operation of the analogue circuit. It does not change the dynamics

of the system rather it can slower or faster the oscillations. Thus we rewrite the Eq. 7

as,

vo = − 1
RC ∫

vin

R∗ dt, (8)

Inverting amplifier with unit gain is used to change the sign of any state variable in

the differential equations. The transfer function of the inverting amplifier at unit gain

is,

vo = −vin, when Rin = Rf , (9)

where Rin and Rf are the input and feedback resistors of an amplifier unit. These Rin
and Rf are generally fixed as equal to the base resistance R in the analogue circuit

design. The analog multiplier is useful component to multiply two analog signals.

We use this component to get the nonlinear part present in the Eq. 6(a).
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The product output W0 of a typical multiplier can be written as,

W0 =
(X1 − X2) ∗ (Y1 − Y2)

10
+ Z, (10)

Here, X1 and X2 are X-multiplicand of non-inverting and inverting inputs, Y1 and Y2
are Y-multiplicand of non-inverting and inverting inputs and Z is the summing input.

The dividing factor 10 is used to avoid the overflow of product output.

The analogue circuit to emulate the Eq. (6) is implemented using the above

described three electronic entities is shown in Fig. 8. In the circuit diagram U1, U2,

U3 and U4 are the weighted integrators, U5 and U6 are inverting amplifiers and U7
and U8 represents the multiplier chips. A feedback resistor with high value (typically

R = 2 MΩ) is connected to each integrator in order to fix the gain at low frequen-

cies and to reduce the effect of the offset voltages in the op-amps. This feedback

resistor should be at least 10 times greater than the input resistance of its respective

integrator. For similar reasons, resistors are placed at the Z terminals of the multi-

pliers also. The coefficient value of the Eq. (6) are inversely proportional to R∗
val-

ues in the circuit. To explain the calculation of the R∗
value from the coefficient of
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Fig. 8 The circuit diagram of the analogue oscillator based on memristor. The component values

given in the diagram are used for PSpice simulation. For U1–U6, TL081 op-amps and for U7 and

U8, AD633JN multiplier chips are used
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Eq. (6), we consider Eq. 6(d). The variable x in the right hand side has the coeffi-

cient value 0.10101. The corresponding R∗
value to the input resistance of the W

cell is 1∕0.10101 = 9.9. The value of corresponding resistor in the circuit is then

directly calculated as (R∗ × R) 9.9 × 10 kΩ = 99 kΩ. In the similar way, values of

the resistance corresponding to all other coefficients in Eq. (6) are determined.

3.3 Experimental Results

Initially the experimental implementation of the memristor oscillator is done using

PSpice simulation. A double band chaotic attractor is obtained in PSpice simula-

tion for R15 = 53.5 kΩ. In order to design the hardware circuit, the resistor values

used for PSpice simulation are modified to its nearest “off-the-shelf” components

values. The values of the components are chosen as C1 = C2 = C3 = C4 = 4.7 nF,

R1 = R2 = R3 = R4 = 2 MΩ, R5 = R6 = R7 = R8 = 10 kΩ, R9 = 106.8 kΩ, (R9A
= 100 kΩ + R9B = 6.8 kΩ), R10 = 100 kΩ, R11 = 4.46 kΩ, R12 = 47 kΩ, R13 =

49.2 kΩ, (R13A = 47 kΩ + R13B = 2.2 kΩ), R14 = 150 kΩ, R16 = 30 kΩ, (R16A =

10 kΩ + R16B = 10 kΩ + R16C = 10 kΩ) and R17 = R18 = 6.8 kΩ. The capacitors

and resistors have maximum of tolerance about 10% and 1%, respectively. To get the

accurate reproduction of numerical results on experiment, the resistors R9, R13, and

R16 are split into parts whereby the sum of the resistance will yield the closest pos-

sible value towards the numerical parameters. The variable resistor “R15” is used as

the control parameter which is corresponding to the parameter β in numerical analy-

sis. The polyester type capacitors, TL081 op-amps and AD633JN multiplier chips

biased with ±9 V dual power supply, are used for this implementation. The values

Fig. 9 Different projections of phase portraits for double band chaos obtained from experiment in

the a (x − y), b (x − z), c (x − w), d (y − z), e (y − w) and f (z − w) planes. Scale Horizontal axis =
1.36 V/div, Vertical axis = 1.52 V/div
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X,Y ,Z and W are the four variables in the circuit. The unit of these variables are in

‘volts’.

By varying the value of R15, different dynamical states of the circuit are captured

on ‘Agilent DSO-6014A’ oscilloscope. For instance, when R15 = 54.6 kΩ, the cir-

cuit generates the double band chaotic attractor in the phase plane as shown is Fig. 9

on different projections which are in good agreement with numerical results pre-

sented in Fig. 3. The corresponding time waveforms are plotted in Fig. 10. It clearly

shows that all the variables are oscillating in the range of ±5 V as defined in the cir-

cuit design. The dynamics of the circuit for different values of the control parameter

R15 in the range of 60–50 kΩ are given in Fig. 11. It is observed that this circuit

exhibits the familiar period-doubling bifurcation route to chaos. Most of the plots

shown in Fig. 11 are also captured on numerical simulations as shown in Fig. 4.

Fig. 10 Experimental time

waveform of the variables

x(t), y(t), z(t) and w(t)
operating in the chaotic

regime. Scale Horizontal

axis = 5 ms/div, Vertical axis

= a 2.5 V/div, b 3.0 V/div,

c 4.0 V/div and d 2.5 V/div
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Fig. 11 Period doubling

scenario of experimental

phase portraits in the (x − y)

plane for the variation of

R15. a period-1 limit cycle,

(R15 = 59.3 kΩ); b period-2

limit cycle, (R15 = 57.2
kΩ); c period-4 limit cycle,

(R15 = 55.9 kΩ); d Single

band chaos, (R15 = 55.1
kΩ); e double band chaos,

(R15 = 54.6 kΩ); and f
saturated limit cycle,

(R15 = 53.1 kΩ)

3.4 Characterization of Experimental Time Series Using
‘0–1’ Test

Recently, G. A. Gottwald and I. Melbourne has developed a new kind of test which

they named as “0–1 test” to distinguish the periodic and chaotic dynamics of any

deterministic dynamical system (Gottwald and Melbourne 2004). This test is distinct

in a way that it does not require either equations of the system or the large data. It

also not requires the phase space reconstruction as well. The dimension of the system

is also irrelevant. Its applicability is tested for periodic, quasi-periodic, chaotic and

strange nonchaotic motions (Gopal et al. 2013). The ‘0–1 test’ returns a single scalar

value either ‘0’ for periodic or ‘1’ for chaotic motion for a set of time series data

(n). The test applies to the data originated from any form of system governed by

differential or partial differential equations, difference equations etc. Consider a set

of discrete one dimensional dataΦ(n)where n = 1, 2, 3,… ,N. Define the translation

components p(n) and s(n) as

p(n) =
n∑

j=1
Φ( j)cos(𝜃( j)), n = 1, 2, 3,… ,N (11)

s(n) =
n∑

j=1
Φ( j)sin(𝜃( j)), n = 1, 2, 3,… ,N (12)
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where

𝜃( j) = jc +
j∑

i=1
Φ(i), j = 1, 2, 3,… , n. (13)

where, the value c is constant and it can be chosen arbitrarily. The translation compo-

nents (p, s) shows bounded dynamics in the (p − s) plane for periodic motion, while

it shows Brownian like random dynamics for chaotic dynamics of the given data set.

The plots in the (p − s) plane itself gives an visual confirmation to the type of the

motion. Further, mean square displacement M(n) is defined on the basis of p(n), and

s(n), which is given below

M(n) = lim
N→∞

1
N

N∑

j=1
[p( j + n) − p( j)]2 + [q( j + n) − q( j)]2. (14)

Here, it is noted that n ≪ N. For the bounded dynamics of p(n), the M(n) is also

bounded whereas for the Brownian like dynamics of p(n), the M(n) linearly grows

with time. From this the asymptotic growth rate K is defined by

K = lim
N→∞

log M(n)
log n

. (15)

For a given data set, K yields ‘0’ for periodic and ‘1’ for chaos. To characterize

the other dynamical states of a system one can follow the procedure elaborated in

reference (Gopal et al. 2013).

In general, experimental time series data would contain a small amount of noise

arises due to inherent thermal fluctuations present within the circuit. It is proven

that “0–1 test” is suitable for the time series data with low noise (Kulp and Smith

2011). We perform the “0–1 test” for the experimental data collected for the peri-

odic and chaotic motion of the circuit. The set of ‘n’-data points of the time series ‘w’

after the initial transients vanished, is collected using ‘Agilent-U2531A’ data acqui-

sition module with the sampling rate of 500 kSa/s. The value of the constant ‘c’

is randomly varied between (0 − 𝜋). The computed translation components (p, s),

the mean square displacement M(n) and the asymptotic growth rate K for regular

(period-1 limit cycle at R15 = 59.3 kΩ) and chaotic time series (double band chaotic

attractor at R15 = 54.6 kΩ) are plotted in Fig. 12. These plots clearly differentiates

the regular and chaotic motion of the circuit.

4 The Memristor Based Duffing Oscillator

One way of solving the differential equation is through their analogue simulation

of electronic circuits is very important in nonlinear science. Analogue electronic

simulation studies provide for a quick scan of the entire parameter space in real
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Fig. 12 Application of the 0–1 test to the experimental time series for a regular (R15 = 59.3 kΩ)

and b chaotic motion (R15 = 54.6 kΩ): (i) translation dynamics of (p(n), s(n)), (ii) mean square

displacement M(n) and (iii) asymptotic growth rate K

time, using simple instruments that are available even in an undergraduate labora-

tory and off the shelf electronic circuit components. Further, as they are purely RC

based circuits the drawbacks of LC networks are done away with. Their simplicity

and ease of implementation have led do not only validation of past theoretical pre-

dictions but also discoveries of many new phenomena. In this section, we present

the investigations on the memristor based Duffing oscillator. To design the mem-

ristor based non-autonomous chaotic circuit, we consider Duffing oscillator system

(George 1918; Kovacic and Brennan 2011) by replacing the cubic nonlinearity with

a flux-controlled memristor characteristic nonlinear equation (1). The state equation

for the memristor based Duffing oscillator is

ẍ + α ẋ + W(φ)x = fsin(ω t), (16)
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For convenience, the Eq. (16) is rewritten as a system of coupled first order equations

ẋ1 = x2
ẋ2 = x3
ẋ3 = − α x3 − W(φ)x2 + fsin(x4)
ẋ4 = ω . (17)

where, W(φ) = ω2
0 +3 β x21 is the memristance function. Thus by replacing the cubic

nonlinearity in the classical Duffing oscillator, a new memristor based oscillator is

defined, upon which its dynamical behaviour is investigated in detail. The electronic

implementation of analogue circuit model of the memristive Duffing oscillator is

shown in Fig. 13. In this figure, the memristor part is boxed in ‘red colour’. The

dynamical equations for the proposed memristor based Duffing oscillator are
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Fig. 13 a Schematic of the memristor based Duffing oscillator with external forcing f (t) =
f sin(ω t) (red box indicates the realization of the memristor nonlinearity) and b Photograph of

the experimental circuit realization
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obtained by using Kirchhoff’s law at voltages (v1, v2, v3) across the capacitors (C1,C2,C3)

respectively

d3v3
dt3

= − 1
R1C1

d2v3
dt2

+ 1
R2R3C1C2

dv3
dt

(18)

−
0.01v23

R2R7C1C2

dv3
dt

+ 1
R2R3R8C1C2C3

F sin(Ωt).

The normalization parameters are defined as d2v3∕dt2 = x3, dv3∕dt = x2, v3(τ) as x1,

τ = R2C1t, Ω = ω R2C1, α = R2∕R1, ω2
0 = R2∕R5 and β = 0.01R2∕R6. The mem-

ristive Duffing circuit used for this investigation is shown in Fig. 13b. In order to

study the dynamics experimentally, the values of the circuit components are fixed

as, R1 = 1 MΩ, R2 = R3 = R4 = R7 = R8 = 10 kΩ, R5 = 28.57 kΩ, R6 = 125 Ω
(α = 0.001, ω2

0 = −0.35, β = 0.8), C1, C2, C3 = 10 nF, provided ±1% of tolerance

is permitted in all the elements.

4.1 Numerical and Experimental Investigations

The dynamics of the memristor based Duffing oscillator represented by normal-

ized system Eq. (17) is sketched using the fourth-order Runge-Kutta algorithm. An

approximate global dynamics of the system is constructed in a two parameter phase

diagram in the (f − ω) plane in Eq. (17), as shown in Fig. 14 for the parameters

α = 0.1,ω2
0 = −0.35, and β = 0.8. The forcing amplitude f is varied in the range

(0.01 ≥ f ≥ 2.5) and frequency ω in the range (0.01 ≥ ω ≥ 2.5). Different dynami-

cal behaviour of the system is described using different colours. Specifically, some

of the interesting phenomena such as chaotic attractor, three tori, transient chaos,

intermittency and various periodic states are sketched. In the following sub sections,

few of such phenomena are subjected to appropriate statistical analysis.

4.2 Chaotic Attractor

By fixing the value of the parameters of system Eq. (17) as α = 0.0001, ω2
0 =

−0.35, β = 0.8 and ω = 1.0, with the initial conditions (x1, x2, x3, x4) = (0.01, 0.03,
0.003, 0.0), the system shows chaotic behaviour for red. Figure 15, shows the numer-

ical observation of (a) phase portraits and its corresponding (b) time series of (x2(t)
and x3(t)), (c) Poincaré cross section in the (x2 − x3) plane and (d) power spectrum

of the chaotic dynamics of the system. Calculation of the Lyapunov exponent values,

λ1,2,3,4 = (0.1335, 0.0,−0.1327, 0.0) which confirms the chaotic behaviour quantita-

tively by means of one positive exponent.
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Fig. 14 Numerically computed two phase diagram in the (f − ω) plane with the initial conditions

x1 = 0.0001; x2 = 0.0006; x3 = 0.01; x4 = 0.0 and fixed parameters of α = 0.1, ω2
0 = −0.35, β =

0.8 of system Eq. (17). The different color indicates various dynamical behaviors of the system,

such as Period-1 (green), Period-2 (blue), Period-3 (light green), Period-4 (yellow), Period-5 (sky
blue), Period-6 (Pink), Period-8 (black) and chaotic attractor (red)
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Fig. 15 Numerical observation of chaos: a phase portrait and its corresponding c Poincaré cross

section in the (x2 − x3) plane, b time evolution of (i) x2(t), (ii) x3(t), and d Power spectrum of the

chaotic time series, obtained with the initial conditions x1 = −0.01, x2 = 0.03, x3 = 0.003, x4 = 0.0
and fixed parameters of α = 0.0001, ω2

0 = −0.35, β = 0.8, ω = 1.0 and f = 0.8 of Eq. (17)
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Fig. 16 Experimental observation of chaos: a phase portrait and its corresponding, c Poincaré

cross section in the (v2 − v3) plane, b time evolution of voltages of (v2(t)) [yellow], (v3(t)) [green],

and d Power spectrum of the chaotic time series, the dashed red line crossing which indicating

the external forcing frequency, (i, e) 780 Hz. The observation made by fixing F = 1.120 V and

Ω = 784 Hz

For the experimental demonstration of chaotic behaviour of the circuit the para-

meters, amplitude F and frequency Ω are varied. The circuit shows chaotic dynam-

ics for F = 1.120 V and Ω = 784 Hz as shown in Fig. 16. The phase portraits and its

corresponding Poincare cross section, time series plots and the power spectrum indi-

cates the chaotic motion which is similar to the numerical observations (Fig. 16). The

robustness of the chaotic dynamics of the circuit is tested with externally supplied

noise signal. The Signal to Noise Ratio (SNR) is calculated for the various intensity

of noise (zero mean Gaussian white noise is applied for this test), the stability of the

behaviour is calculated. The SNR value of 20.06 dB is measured for chaotic signal.

4.2.1 0–1 Test for Chaos

The ‘0–1 test’ is also applied to the time series of both numerical and experimen-

tal data to detect the chaotic dynamics of the system. The dynamics of translational

components p(n), q(n), mean square displacement (m(n)) and asymptotic growth rate

(K) are plotted in Fig. 17. The value of K = 0.9696 for numerical data shown in

Fig. 17a(iii), and K = 0.9780 for experimental data as shown in Fig. 17b(iii) indi-

cates tested time series has the chaotic flow over the time.
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Fig. 17 0−1 test for chaos: a numerical and b experimental time series of (i) dynamics of trans-

lation components (p(n), q(n)), (ii) mean square displacement (M(n)) and (iii) asymptotic growth

rate (K) of the chaotic time series data

4.3 Three Tori

Torus is a phenomenon which in general occurs in a system where there exists a two

incommensurate frequencies. Three tori is a phenomena rarely encountered even in

a coupled dynamical systems. We observe three tori in a single system of memristor

based Duffing oscillator. Under the absence of external forcing, i.e. for f = 0 and

ω = 0 dynamics of the system asymptotically approaches a stable fixed point. An

external periodic force applied to the circuit modulates the environment in which

the intrinsic mode of oscillations lives. As a result of this modulation, the nonlin-

earity and dissipation will again tend to change the intrinsic mode of oscillation.

In the interval of 0.01 ≥ f ≥ 0.2, three tori is identified. The presence of 3-tori has

characterized by Lyapunov exponents, by which three of them must be zero. In the

present case, the calculated Lyapunov exponents values are λ1 = 0.0001, λ2 = 0.0,

λ3 = −0.0005 and λ4 = 0.0 for f = 0.06 and ω = 0.2009 with the initial conditions

x1 = 0.0001; x2 = 0.0006; x3 = 0.01; x4 = 0.0. The other parameters for the numeri-

cal simulation are α = 0.000119, ω2
0 = 0.35, and β = 0.51. Figure 18 shows, numeri-

cal observation of the phase portraits (Fig. 18a), the Poincaré cross section (Fig. 18b)
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Fig. 18 Numerical observation of a Phase portrait, b Poincaré cross section in the (x2 − x3) plane

and its corresponding c time series plot of state variable (i) x2(t) and (ii) x3(t) explores the presence

of three tori attractor observed with the initial conditions x1 = 0.0001; x2 = 0.0006; x3 = 0.01;

x4 = 0.0 and fixed parameters of α = 0.000119, ω2
0 = 0.35, β = 0.51, f = 0.06 and ω = 0.2009 of

system Eq. (17)

Fig. 19 Experimental observation of a Phase portrait, b Poincaré cross section in the (v2 − v3)

plane and its corresponding c time series plot of state variable (i) v2(t) and (ii) v3(t) explores the

presence of three tori

in the (x2 − x3) plane and (c) time series of (x2(t), x3(t)) of typical three tori attractor.

The corresponding experimental plots obtained for F = 1.907 V and Ω = 540 Hz

are shown in Fig. 19.
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4.4 Transient Chaos

The transient chaos termed as the trajectories starting from random initial conditions

have chaotic behaviour for a finite time length, and then quite abruptly switches

to an attractor which is usually dynamically nonchaotic (Lai and Tél 2011). This

arises due to the presence of nonattracting chaotic saddles in phase space. It is

known that chaotic saddles and transient chaos are responsible for important phys-

ical phenomena such as chaotic scattering (Bleher et al. 1990), and particle trans-

port in open hydrodynamical flows (Jung et al. 1993). They are believed to be

the culprit for catastrophic phenomena such as voltage collapse in electrical power

systems (Dhamala and Lai 1999) and species extinction in ecology. An extensive

study of chaotic transients in spatially extended systems was studied by Tél and

Lai (2008). It has also been reported in a memristive Chua’s oscillator by Bao

et al. (2010). We have found both numerically and experimentally the behaviour

of transient chaos in the memristive Duffing oscillator. To observe this, we fixed

parameters of α = 0.01, ω2
0 = −0.35, β = 0.8, ω = 0.6 and f = 1.0, while the initial

conditions of system Eq. (17) are chosen as x1 = 0.01, x2 = 0.03, x3 = 0.003, x4 =
0.0. The numerical time series of (x1(t)) variable is shown in the Fig. 20a and the

t
1000 1500 2000 2500 3000 3500

x 1

-4

-2

0

2

4(a)

(b)

Fig. 20 Transient chaos regime: a Numerical observation of time series of x1(t) with initial con-

ditions x1 = 0.01; x2 = 0.03; x3 = 0.003; x4 = 0.0 and fixed parameters of α = 0.01, ω2
0 = −0.35,

β = 0.8, ω = 0.6 and f = 1.0 of system Eq. (17). b Experimentally observed time series of v1(t)
with F = 1.230 V, and Ω = 600 Hz
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corresponding experimental time series for the variable (v1(t)) is shown in Fig. 20b

for F = 1.230 V and Ω = 600 Hz. We do not have the control on initial conditions of

the circuit, hence we have repeated the experiment several times to obtain transient

chaos time series which is very similar to the numerical observation.

4.4.1 Finite Time Lyapunov Exponent

The existence of transient chaos can be characterized by using Finite Time Lyapunov

Exponent (FTLE). The FTLE is a statistical measure of the amount of stretching (or

folding) of a trajectory over a finite time interval (Sabarathinam and Thamilmaran

2015). The FTLE is defined as,

λ
m
j = log||em

j ||,m = 1, 2,… , k (19)

The reorthonormalization vector (em
j ) is denoted as,

em
j = JM(xj, yj,Θj,φj)êm

j . (20)

Here, JM- denotes the Jacobean matrix and j-refers to the time step, and we have

calculated the FTLE for system Eq. (17). The FTLE is calculated using M = 1000
data points, as functions of time are shown in Fig. 21. For the value of t < 1000, the

largest Lyapunov exponent is positive while it becomes zero when t > 1000. Other

three exponents becomes negative for t > 1000, indicates the periodic dynamics.

This shows initially system exhibits a chaotic motion which then transforms to peri-

odic behavior after a finite time period. Hence, the chaotic regime is transient.

Fig. 21 Calculation of finite

time Lyapunov exponent

spectra with the same initial

condition and parameters as

in Figs. 18 and 19
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Fig. 22 Poincaré return

map plotted of x1(t) variable

in the (xn − xn+1) plane for

transient chaos for 5000 data

points with fixed step size of

0.01. The initial conditions

are x1 = 0.01, x2 = 0.003,

x3 = 0.1, x4 = 0.0 and the

fixed parameters are

α = 0.01, ω2
0 = −0.35,

β = 0.8, ω = 0.6 and f = 1.0
of system Eq. (17)

xn
-2 -1 0 1 2 3

x n
+1

-2

-1

0

1

2

3

The Poincaré return map constructed using the maxima of the trajectory x1. Two

successive maximas are denoted as xn and x(n + 1), respectively, are plotted in the

(xn − xn+1) plane as shown in Fig. 22. The initial chaotic motion is reflected by ran-

dom scattering of poincare points (light blue dots), which are then confined to fixed

dots as times evolves (dark blue dots).

4.5 Intermittency

Intermittency is the irregular alternation of laminar phases of apparently periodic and

chaotic dynamics or different forms of chaotic dynamics. Pomeau and Manneville

described three routes to intermittency where a nearly periodic system shows irregu-

larly spaced bursts of chaos (Manneville and Pomeau 1979). This kind of behaviour

is observed in the present memristive Duffing oscillator circuit by varying either

amplitude f or frequency ω. Figure 23 shows, the numerical (Fig. 23a) as well as the

experimental (Fig. 23b) time series of type-I intermittency. In numerical observa-

tion, we fix the initial condition at x1 = 0.01, x2 = 0.003, x3 = 0.1 and the fixed sys-

tem parameters are α = 0.1, ω2
0 = −0.35, β = 0.6, and ω = 0.928, while the external

forcing amplitude f is the controlling parameter. We get intermittent behaviour in the

range of parameter f ∈ (0.140, 0.155). In the corresponding experimental observa-

tions, the circuit parameter of either amplitude F or frequency Ω of the external peri-

odic force are varied, while the other circuit values are fixed. We obtained the entire

intermittent regions at Ω = 240 Hz, when the amplitude F ∈ (400 mV, 600 mV).
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Fig. 23 Intermittency regime: a Numerical observation of time series in the x1(t) with the initial

conditions x1 = 0.01; x2 = 0.003; x3 = 0.1; x4 = 0.0 and the fixed parameters of α = 0.1, ω2
0 =

−0.35, β = 0.6, and ω = 0.928 of system Eq. (17). a(i) laminar ( f = 0.1400), a(ii) burst-1 ( f =
0.1480), a(iii) burst-3 ( f = 0.1495), a(iv) chaos ( f = 0.1550), b The corresponding experimental

observation of the equivalent time series is produced with F = 400–600 mV and Ω = 240 Hz

5 Summary

In summary, two chaotic oscillators such as an autonomous Chua’s oscillator and a

non-autonomous Duffing oscillator are investigated in detail using cubic memristor

as nonlinear functional part. Both numerical and experimental investigations are per-

formed. Period doubling scenario in Chua’s circuit is demonstrated. Different types

of dynamical behaviours such as chaos, transient chaos, three tori and intermittency

are studied in Duffing oscillator. The applicability of ‘0–1 test’ is examined in both

the oscillators which clearly characterise the chaotic dynamics from periodic one.

All the experimental results are corroborated with numerical simulation results.
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Memristor and Inverse Memristor:
Modeling, Implementation and Experiments

Mohammed E. Fouda, Ahmed G. Radwan and Ahmed Elwakil

Abstract Pinched hysteresis is considered to be a signature of the existence of mem-

ristive behavior. However, this is not completely accurate. In this chapter, we are

discussing a general equation taking into consideration all possible cases to model

all known elements including memristor. Based on this equation, it is found that an

opposite behavior to the memristor can exist in a nonlinear inductor or a nonlin-

ear capacitor (both with quadratic nonlinearity) or a derivative-controlled nonlin-

ear resistor/transconductor which we refer to as the inverse memristor. We discuss

the behavior of this new element and introduce an emulation circuit to mimic its

behavior. Connecting the conventional elements with the memristor and/or with

inverse memeristor either in series or parallel affects the pinched hysteresis lobes

where the pinch point moves from the origin and lobes’ area shrinks or widens. Dif-

ferent cases of connecting different elements are discussed clearly especially con-

necting the memristor and the inverse memristor together either in series or in par-

allel. New observations and conditions on the memristive behavior are introduced

and discussed in detail with different illustrative examples based on numerical, and

circuit simulations.
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1 Introduction

Since postulating the existence of the memristor in 1971 by Leon Chua, a huge

number of publications have been published. These publications address modeling

(Radwan et al. 2010a, b), and analysis. Chua (1971); Kozma et al. (2012); Radwan

and Fouda (2015); Adamatzky and Chua (2013); Fouda and Radwan (2015a, b). In

addition, memristors have been used in many applications such as sinusoidal oscilla-

tors (Talukdar et al. 2011a, b, 2012), relaxation oscillators (Fouda et al. 2013; Khatib

et al. 2012; Fouda and Radwan 2015c; Zidan et al. 2011, 2014), nonlinear con-

trol systems (Vaidyanathan and Volos 2016b), chaotic systems (Vaidyanathan and

Volos 2016a; Gambuzza et al. 2015; Radwan et al. 2011), digital and analog circuits

(Radwan and Fouda 2015; ElSlehdar et al. 2015). Memristors have a unique behavior

which distinguish them from voltage–current other nonlinear devices. They exhibit

pinched hysteresis in the plane. The hysteresis lobe area of memristor decreases

monotonically as the excitation frequency increases. Also, the pinched hysteresis

loop should shrink to a single-value when the frequency tends to infinity. This means

that the lobe area declines with increased frequency. These characteristics should

exist in a device to be referred to as a memristor (Biolek et al. 2011; Adhikari et al.

2013).

There are two categories of memristor models, current- and voltage-controlled

models. The current-controlled memristor has a state variable that is function

of the current passing through the memristor such as the HP model (Joglekar and

Wolf 2009), and Picket model (Pickett et al. 2009). On the other hand, the state

variable of the voltage-controlled memristor is a function of the voltage across the

memristor (Kozma et al. 2012; Radwan and Fouda 2015). Some of these models are

simple and some of them are complex but all of them capture the main memristor

characteristics which should exist regardless of the memristor type.

There is another way to distinguish between memristor types which is based on the

ideality of the device. According to this, we have two main types of the memristor;

ideal and nonideal memristors. The memristor is called ideal if the self cross point

is the origin. Otherwise, it is called nonideal memristor (Biolek et al. 2015). The

non-ideality may appear in the devices due to the existence of reactive elements as

will be discussed in detail in this chapter.

The inverse memristor is a system that exhibits self crossing pinched hystere-

sis. Contrarily with memristors, the memristor hysteresis widens with increasing the

applied frequency (Fouda et al. 2015). The inverse memristor can be modeled as a

nonlinear inductor or a nonlinear capacitor (with quadratic nonlinearity) in series

with a resistor. As a conclusion, pinched hysteresis is a necessary but not a sufficient

condition to prove the memristivity. Other conditions should be satisfied as well.

Considering memristor and inverse memristor in circuit theory is essential. That’s

why, many publications have been published to discuss the memristor inside conven-

tional circuits. The memory existence inside memristive devices gives new character-

istics. By adding the memristor to well known circuits, new responses and behaviors

are obtained due to the unique behavior of the memristor (Radwan and Fouda 2015).
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This chapter is organized as follows: section I introduces a generalized mathemat-

ical model for all the possible cases for circuit elements. Memristor is the special case

of this modeling equation as deduced in section II. In section III, based on the gener-

alized equation, we find a new element which has the opposite characteristics of the

memristor. This element is discussed in details with some circuit emulators to proof

the concept. In section IV, different circuit configurations are discussed and its effect

on the hysteresis. Finally, conclusions are given.

2 Generalized Equation Model

A general equation can be defined as follows:

y = ax + (b + ex)dx
dt

+ (d + cx)
t

∫

0

x(𝜏)d𝜏 (1)

where y is a normalized output, x is a normalized input signal, and (a, b, c, d, e) are

scaling constants. Equation (1) describes the different cases of applying an input

signal and/or effect of integrating and differentiating the input signal.

This equation contains the definitions of all known circuit elements as we will

discuss later. But firstly, let’s study the behavior of this modeling equation under a

sinusoidal excitation assuming x(t) = ksin(𝜔t + 𝜙). Therefore,

dx
dt

= k𝜔cos(𝜔t + 𝜙) = ±𝜔
√

k2 − x2 (2)

and
t

∫

0

x(𝜏)d𝜏 = 1
𝜔

(
kcos(𝜙) ∓

√
k2 − x2

)
(3)

Substituting into (1) and using trigonometric identities, one obtains

y =ax + k(d + cx)cos(𝜙)
𝜔

±
((

e𝜔− c
𝜔

)
x +

(
b𝜔− d

𝜔

))√
k2 − x2 (4)

This equation has the following properties:

1. There exists a line of odd-symmetry given by the first order relation between y
and x

y = ax + k(d + cx)cos(𝜙)
𝜔

(5)

2. A pinched-double loop hysteresis behavior is observed in the x-y plane. The

double-loop intersects itself at a point known as the pinch-point (xp, yp) obtained
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by equating

√
k2 − x2 to zero; yielding

xp = b𝜔2 − d
c − e𝜔2 , yp = axp + k(d + cxp)

cos(𝜙)
𝜔

(6)

At high frequency, this pinched point reduces to

(
−b
e
,

−ab
e

)
while at low frequency

it reduces to

(
−d
c
, 0
)

. It is obvious that some scaling coefficient are amplified

with increasing the frequency; namely b and e while other coefficients vanish

with increasing the applied frequency like c and d. Changing the frequency does

not affect the coefficient a.

3. Generally, (4) will pass by the four boundary points:

(
0, dkcos(𝜙)

𝜔

±
(

b𝜔 − d
𝜔

)
k
)

and
(
±k, k

(
∓a + cos(𝜙)(d ∓ ck)

𝜔

))
. (7)

The basic circuit elements can be obtain easily from this equation as follows:

∙ Resistor: Resistance can be obtained by putting all the coefficients equal to zero

except a. Either x or y represents the current or the voltage. Then we have a linear

relation between current and voltage representing the resistor.

∙ Capacitor: Capacitance is the linear relation between voltage and charge. So, by

putting x(t) = i(t) and y(t) = v(t), the capacitance is 1∕d where the other coeffi-

cients are zero.

∙ Inductor: Inductance can be given by putting x(t) = i(t) and y(t) = v(t), then induc-

tance is b when the other coefficients are zero.

Based on (1), we can generate other elements such as memristor with symmet-

ric and asymmetric behavior. Also we can anticipate new behaviors such as inverse

memristor.

3 Deduced Memristive Equation

The self-crossing (pinched) hysteresis loop was shown to be a necessary charac-

teristic of all memristive devices. However, (Adhikari et al. 2013) added two more

conditions on memristive devices which are (i) starting from some critical frequency,

the hysteresis lobe area should decrease monotonically as the excitation frequency

increases and (ii) the pinched hysteresis loop should shrink to a single-valued func-

tion when the frequency tends to infinity. This means that the lobe area declines with

increased frequency. So, any memristor should have these characteristics.

As a special case of (1), a simple equation for the symmetrical and asymmetric

double-loop hysteresis behavior can be developed which was introduced in (Elwakil

et al. 2013; Radwan and Fouda 2015). This equation has the basic memristor char-

acteristics and is given as follows:
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y(t) = x(t)
⎛
⎜
⎜
⎝
a + c

t

∫

0

x(𝜏)d𝜏
⎞
⎟
⎟
⎠
+ bdx(t)

dt
, (8)

where a represents the initial state of the memristor.

This equation represents a symmetric behavior when b = 0, so let’s discuss the

symmetric case first.

3.1 Symmetrical Memristive Model

One of the test bench marks of the memristor it that the pinched hystersis decreases

with increasing the applied input frequency. Figure 1 shows the observed double-

loop behavior for a = c = 1 when x(t) = cos(𝜔t) and 𝜔 = 1. Note that two cases

are plotted in Fig. 1; namely the positive/ negative a and c cases of (8) with b = 0
resulting in either a positively inclined loop or a negatively inclined loop, respec-

tively. Two more cases; (a, c) are(+,−) and (−,+) are also possible and lead, respec-

tively, to similar positively inclined and negatively inclined loops. It is clear that for

x(t) = cos(𝜔t), y(t)
x(t)

= a + 1
T𝜔

sin(𝜔t) ∈ [a − 1
T𝜔

, a + 1
T𝜔

]. Therefore, y = ax is a sym-

metry line and the polarity of a determines the quadrant in which the hysteresis loop

appears.

The implementation of the double-loop hysteresis could be done using current or

voltage signals; when x(t) is represented by a current and y(t) is represented by a volt-

age the implementation is current-controlled. Alternatively when y(t) is represented

by a current and x(t) is represented by a voltage; a voltage-controlled memristive

device is obtained. It is worth noting that the authors of (Biolek et al. 2011) have

Fig. 1 Double-loop

hysteresis for a = c = 1 and

x(t) = cos(t) in (8)
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recently proposed conditions for symmetric pinched hysteresis. The model above

satisfies these conditions and is simpler than the one in (Biolek et al. 2011).

3.1.1 Current-Controlled Memristor

Setting x(t) = i(t)
Iref

, y(t) = v(t)
Iref Rs

, where Iref is an arbitrary reference current and Rs is

an arbitrary resistance, and substituting into (8), the current-controlled memristor

equation is given by

v(t) = ±i(t)Rs ±
i(t)Rs

TIref

t

∫

0

i(𝜏)d𝜏 = ±i(t)Rs ±
i(t)Rs

TIref
q(t), (9)

and hence the memristance Rm = v(t)∕i(t) is given by

Rm = ±Rs ±
Rs

TIref
q(t). (10)

It is seen here that Rm is a function of the accumulated current which is essen-

tially the charge q(t); similar to HP modeling equation (Elwakil et al. 2013). In

terms of the four different possibilities for Rm, which (a, c) are (+,+), (+,−), (−,+)
and (−,−) they respectively represent incremental/decremental Rm and incremen-

tal/decremental negative Rm; as demonstrated below.

3.1.2 Voltage-Controlled Memristor

Setting x(t) = v(t)
Vref

, y(t) = i(t)
Vref Gs

, where Vref is an arbitrary reference voltage and Gs is

an arbitrary transconductance, and substituting into (8), the voltage-controlled mem-

ristor equation is given by

i(t) = ±v(t)Gs ± Gs
v(t)

TVref

t

∫

0

v(𝜏)d𝜏 = ±v(t)Gs ± Gs
v(t)

TVref
𝜑(t), (11)

and hence the trans-memristance Gm is

Gm = ±Gs ±
Gs

TVref
𝜑(t), (12)

where 𝜑(t) is the accumulated flux. Similarly, there are four different possibili-

ties representing incremental/decremental Gm and incremental/decremental negative

Gm, respectively.
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Fig. 2 I-V characteristics of

an incremental Rm at

different frequencies with

Iref = 1µA and Rs = 10 kΩ
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Fig. 3 Maximum and minimum incremental Rm when Rs = 10 kΩ

Figure 2 shows the I-V characteristics for an incremental Rm for four different

frequencies of the sinusoidal input current i(t) with Iref = 1µA and Rs = 10 kΩ. The

maximum and minimum values of Rm are shown respectively in Fig. 3; plotted once

for the range of Iref spanning from 1µA to 0.1mA and another for the frequency range

1−100Hz of the input signal. In Fig. 4, the I-V characteristics for an incremental

but negative Rm is also shown for four different frequencies of the sinusoidal input

current i(t) with Iref = 1µA and Rs = 10 kΩ.

As a proof of concept, different circuit emulators have been introduced based on

this model and discussed in detail (Radwan and Fouda 2015).
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Fig. 4 I-V characteristics of

an incremental negative Rm
at different frequencies with

Iref = 1µA and Rs = 10 kΩ

3.2 Continuous Non-symmetrical Model

Adding the derivative term to the symmetric equation makes the pinched hysteresis

asymmetric. If x(t) = cos(𝜔t) then (8), with nonzero elements, yields

y(t) = ax(t) ∓ (b𝜔 − c
𝜔

x(t))
√
1 − x2(t). (13)

It can be shown that the pinch-off point, which corresponds to the vanishing of

the second term of (13), is given by

[xp, yp] =
[b

c
𝜔

2
, (ab

c
𝜔

2)
]
, (14)

where xp ≤ 1. Moreover, the generated loop always passes by the three points:

(x, y) = (1, a), (−1,−a) and (x, y) = (0,±b𝜔). Figure 5a shows the observed non-

symmetrical loops for different values of a when b = c = 1 at f = 0.1Hz. A 3D view

of these non-symmetrical loops for different values of c when a = 0, b = 1 is shown

in Fig.5b while Fig. 5c shows the case when a = b = 1; both figures at f = 0.5Hz.

Note that if xp = b
c
𝜔

2
> 1 then there is no pinched point and a single loop is observed.

4 Deduced Inverse Memristive Equation

A simple inverse memristive equation can be deduce from (1) by putting b = c = 0
as follows:

y = ax + (b + ex)dx
dt

(15)
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Fig. 5 Non-symmetrical loops when a (b, c) = (1, 1), b (a, b) = (0, 1), and c (a, b) = (1, 1)

Under a general sinusoidal excitation where x(t) = k.sin(𝜔t + 𝜑), and by using

trigonometric identities, we obtain

y = ax ± (b + ex)
√

k2 − x2 (16)

4.1 Inverse Memristor Properties

This equation has the following properties:

1. There exists a line of symmetry given by the first order equation y = ax. Evidently,

for a = 0, the y-axis is the line of symmetry.

2. A pinched double-loop hysteresis behavior is observed in the xy plane. The

double-loop intersects itself at a point known as the pinch-point (xp, yp) given

by

(xp, yp) =
−b
e
(1, a) = (0, 0)|b=0 (17)
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Fig. 6 Pinched hysteresis

from (15) when b = 0
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x
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a=3, e=2

which is independent of 𝜔. Figure 6 is a plot of the pinched loop for (a, b, e) =
(3, 0, 2).

3. The double-loop will always pass by the boundary points: 𝜔(0,±bk) and

k(±1,∓a). For b = 0, the first two points coincide with the pinch point (xp, yp) =
(0, 0).

4. The area inside the two lobes of the pinched hysteresis is given by

A = 4
∫

k

0

(
𝜔(b + ex)

√
k2 − x2

)
dx = 2k2

(
𝜋b + 2

3
ek
)

(18)

Hence, it is clear that A is directly proportional to 𝜔 ; i.e. maximizing the hys-

teresis loop area requires increasing 𝜔. This represents inverse-memristor fre-

quency characteristics since the condition in (Adhikari et al. 2013) implies that

for a memristor the lobe area should decrease monotonically as the excitation fre-

quency increases; shrinking to a single valued function when the frequency tends

to infinity.

A non-symmetrical-loop may be obtained using (15) and also by adding an inte-

gral term in the form. For example, if b = 0, then

y = ax + exdx
dt

+ d
∫

t

0
x(𝜏)d𝜏 (19)

for which the line of symmetry and pinch-point are, respectively, given by

y = ax + kd
cos(𝜑)
𝜔

and (xp, yp) =
( d

e𝜔2 ,
( ad

e𝜔2 + kd
𝜑

𝜔

))
(20)

both of which are frequency dependent. Since |xp| < k, then |d∕e𝜔2| < k and there-

fore the frequency

𝜔c =
√

|d∕e|
k

(21)
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Fig. 7 Pinched hysteresis of

an inverse memristor widens

as frequency is increased
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is the critical frequency at which the non-symmetrical double loop is born. The area

of the this double-loop increases for 𝜔 > 𝜔c. This will be demonstrated further in

the experimental results section.

From an electrical circuit point of view, Eq. (15) can represent different types

of circuits based on the nature of x and y. Restricting ourselves to the v(t) − i(t)
plane, the possible choices of x(t) and y(t) are either a voltage v(t) or a current i(t).
When x(t) = i(t) and y(t) = v(t) then (15) can be translated into series connected

components. Alternatively, if x(t) = v(t) and y(t) = i(t) then (15) can be translated

into parallel connected components as mentioned previously.

It is important to note that in case of x(t) = i(t) and y(t) = v(t), a nonlinear induc-

tor with quadratic current dependence can be obtained where ∫ v(i)dt = e∕2i2(t)
where e has the units of Henry/Ampere and can be termed pseudo-inductance. Note

that if b = 0, then (15) can be considered to collectively represent single derivative-

controlled nonlinear resistor Rd(i(t)) where

v(t) =
(

a + edi(t)
dt

)
.i(t) = Rd.i(t) (22)

Figure 7 shows the observed pinched hysteresis loop in this special case for three

different frequencies with a = 1kΩ, e = 100H∕mA, b = 0 and k = 1mA. The values

of a, e and k were chosen to obtain a current in mA and a voltage in Volts. Note the

widening of the loop as 𝜔 is increased since according to (18), Ab=0 =
4
3
ek3�̇� ≈

𝜔∕562.5. In a conventional memristor, the loop area declines as 𝜔 is increased.

Recall that

(
4
3
ek3

)
represents the energy stored in the device and has the units of

(𝜇H × A2). If we compare this to the expression of the energy stored in an effective

inductor (EL = 0.5Leff i2), we can calculate the effective inductance Leff = 267µH.

In case of x(t) = v(t) and y(t) = i(t), a nonlinear capacitor with quadratic voltage

dependence is obtained, where ∫ i(t)dt = e∕2v2(t) and e has the units of Farad/Volt
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and can be termed pseudo-capacitance. Also, if b = 0, then (15) can be considered

to represent a single derivative-controlled nonlinear transconductor Gd(v(t)) where

i(t) =
(

a + edv(t)
dt

)
.v(t) = Gd.v(t) (23)

The energy stored in this device is also

(
4
3
ek3

)
with the units of (F × V2). As

expected, this device mimics a capacitor with a stored energy of (0.5Ceff v2) resulting

in Ceff = (8e∕3)F. This device will be emulated and experimentally validated in the

next subsection.

4.2 Inverse Memristor Circuit Emulator

Due to the lack of solid-state samples, researchers are developing emulation cir-

cuits to mimic the behavior of either current-controlled memristors or voltage-

controllled memristor (Hussein and Fouda 2013; Radwan and Fouda 2014; Alharbi

et al. 2015a, b, c). In (Fouda et al. 2015), a simple emulator circuit for inverse mem-

ristor is developed based on (23) where an applied voltage V is differentiated using a

floating differentiator circuit and then used to control a voltage-controlled transcon-

ductance Gm through its control voltage Vc. Transconductance is implemented using

an LM13700 chip where Gm is proportional to a bias voltage Vc given by

Gm =
(
0.64Vc + 8.6885

) RA

RB
(m𝛺

−1) (24)

and RA,RB are external biasing resistors. If the control voltage Vc is forced to be

equal to the derivative of the applied voltage V then Gm in (24) can realize Gd in

(23). This is achieved using the circuit shown in Fig. 8 with three op amps (TL084)

controlling the bias voltage Vc of the LM13700. Consequently, (23) is realized with

a = 8.6885RA∕RB(m𝛺

−1) and e = 064RA∕(RBRC)(m𝛺

−1V−1s).
This circuit was experimentally constructed as shown in Fig. 8 after selecting

(C,R,RB,RA) equal to (1mF, 10 kΩ, 100 kΩ, 10 kΩ). A 0.25V input voltage was

applied at different frequencies. A current-to-voltage converter with equivalent resis-

tance 56 kΩ was used to observe the current flowing into the two-terminal device.

The observed loop is confirmed to widen as the frequency is increased in the

sequence 300, 500, 700 and 900Hz as shown in Fig. 9a, b. Further, we verified

(19), which indicates that by adding a capacitor in series with Gd, non-symmetrical

pinched loops can be obtained. This is shown in Fig. 10 using a 0.047µF capacitor

at 500Hz and at 700Hz, respectively. Note the widening of lobe area as frequency

is increased and using (21), the pinched loop is born at approximately 410Hz.

Figure 11a shows the effect of connecting a 10H inductor in parallel with the

inverse memristor. It is clear that the pinch point lies in the first quadrant. By
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Fig. 8 Emulation circuit of voltage-controlled inverse memristor (Fouda et al. 2015)

increasing the value of the inductance, the pinched point moves up until the loop

becomes elliptic without any intersection which means that the inductance domi-

nates the behavior of the circuit. Unlike Fig. 11b where the pinched point lies in

the third quadrant, by increasing the capacitance value, the pinch point moves down

until it gets out of the boundaries and the loop becomes inclined elliptic where the

capacitance behavior dominates the inverse memristor behavior.

5 Circuit Identification

Briefly, from a circuit point of view, (1) can represent two different types of cir-

cuits; based on the nature of x and y. When x(t) = i(t) and y(t) = v(t) then (1) can

be translated into five series connected impedances, as shown in Fig. 12a. Alterna-

tively, if x(t) = v(t) and y(t) = i(t) then (1) can be translated into five parallel con-

nected admittances, as also shown in Fig. 12b. In Fig. 12a, the five impedances are

identified respectively as

∙ a linear resistance R corresponding to the linear proportional coefficient a in (1)

(R = a).
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Fig. 9 Experimental verification of the circuit in Fig. 8 at 300, 500, 700 and 900Hz. X-axis is v(t)
and Y-axis is i(t) × 56 kΩ

∙ a linear inductance L corresponding to the linear derivative coefficient b in (1)

(L = b).
∙ a linear capacitance C corresponding to the linear integration coefficient d in (1)

(C = 1∕d).
∙ a memristor M corresponding to the nonlinear integral term with coefficient c in

(1). From (1), M(q) = c ∫ i(𝜏)d𝜏. Under sinusoidally exciting i(t), the charge q(t)



Memristor and Inverse Memristor: Modeling, Implementation and Experiments 385

Fig. 10 Experimental results showing non-symmetrical loops at 500 and 700Hz
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Fig. 11 SPICE simulation of parallel inverse memristor with a 10H inductor and b 50 nF capacitor

is inversely proportional to the frequency 𝜔 and hence the memristance decays

with increasing frequency (Adhikari et al. 2013).

∙ a new element, which we term the inverse memristance M, corresponding to the

nonlinear derivative term with coefficient e in (1). From (1), M(q) = edi(t)∕dt.
Under sinusoidal i(t), M increases proportional to 𝜔.

All series-connected cases are summarized in Table 1. Similarly, the same five

impedances can be transformed into their admittance equivalents in Fig. 12b.
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Fig. 12 Series and parallel connections of the five impedances (R,L,C,M,M)

Table 1 A summary of some special cases of the proposed Eq. (1)

Case (xp, yp) Boundary points Double-loop

b = d = e = 0 (0, 0) (0, 0)
(±k,±k(a + ck cos(𝜙)

𝜔

))
𝛥( y

x
)max =

ck
𝜔

b = c = d = 0 (0, 0) (0, 0)
(±k,±ak)

𝛥( y
x
)max = ek𝜔

b = d = 0 (0, 0) (0, 0)
(±k,±k(a + ck cos(𝜙)

𝜔

))
𝛥( y

x
)max = k(e𝜔 − c

𝜔

)

d = e = 0 xp = b𝜔2

c
yp = axp +

kdcos(𝜙)
𝜔

(0,±kb𝜔)
(±k,±k(a + ck cos(𝜙)

𝜔

))
Non-symmetrical

y ≈ (a + ckcos(𝜙)
𝜔

)x

b = c = 0 xp = d
e𝜔2

yp = axp +
kdcos(𝜙)

𝜔

(0, kd
𝜔

(cos(𝜙) ± 1))
(±k,±k(a + ck cos(𝜙)

𝜔

))
Non-symmetrical

y ≈ ax + kdcos(𝜙)
𝜔

5.1 Impedance Analysis

Referring to the first row in Table 1 where a ≠ 0 and c ≠ 0, while b = d = e = 0, (1)

then represents a current-controlled memristor M with initial memristance equals

cq(0) in series with a resistor a. This connection represents a memristor with mem-

ristance Rm = Ri + cq(t) and Ri representing the initial memristance and equals

a − cq(0). The pinched hysteresis of this memristor shrinks with increasing fre-

quency and eventually disappears since it can be shown that △(y∕x)max = ck∕𝜔.

Therefore, maximizing the hysteresis behavior requires minimizing 𝜔.

The second row in Table 1, where a ≠ 0, e ≠ 0 and b = c = d = 0 corresponds

to the inverse memristor M. A symmetric pinched hysteresis loop is also observed

and is stimulated with increasing the frequency and vanishes as 𝜔 → 0 since it can

be shown that △(y∕x)max = ek𝜔. Hence, maximizing the hysteresis loop requires

increasing 𝜔.

Row 3 in Table 1 shows the case of a memristor and inverse memristor connected

in series; in which case only b = d = 0 and △(y∕x)max = k(e𝜔 − c
𝜔

). Note the exis-

tence of a critical frequency 𝜔o =
√

c∕e at which the hysteresis loop disappears

and reduces to a straight line. Higher or lower than this critical frequency, the area

of the hysteresis loop increases. This is illustrated in Figs. 13a, b respectively for
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Fig. 13 Behaviour of an M − M series connection a increasing𝜔 above𝜔o and b reducing𝜔 below

𝜔o

Fig. 14 Maximum and

minimum resistances for a

series M − M connection
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a = 103, c = e = 105, k = 10−3 and 𝜙 = 𝜋∕2; which yields 𝜔o = 1. The maximum

and minimum resistance (Rmax,Rmin) with this series M − M connection is shown in

Fig. 14.

Adding a reactive element (capacitor or inductor) in series with M or M makes the

hysteresis loops asymmetric. Figure 5 shows the effect of varying a when b = c = 1
and 𝜔 = 0.2𝜋 on the case represented in row 4 of Table 1. This case corresponds to

an inductor in series with a memristor (series L − M). Note that all loops in Fig. 15

are asymmetric but with the same pinch point. Finally, the case in row 5 of Table 1

is that of a capacitor in series with a memristor (series C − M). Table 2 represents a

summary of the complex impedances that can be obtained from (1) along with their

circuit representations.
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Fig. 15 Asymmetric

double-loop hysteresis

corresponding to row 4 of

Table 1 (an inductor in series

with a memristor) for

variable a
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x

y
a=1
a=2
a=4

ω=0.5
b=c=1

Table 2 Impedances from (1)

Non-zero Element(s) Circuit Model

a R

b L

d C

a, b RL

a, d RC

a, b d RLC

a, c M

a, e M

a, b, c ML

a, c, d MC

a, b, c, d MLC

a, b, e ML

a, b, d, e MLC

a, b, , c, d, e MMLC
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Fig. 16 SPICE simulation of parallel inverse memristor with parallel LC

5.2 Admittance Analysis

By setting y = i(t) and x = v(t), (1) reads as

i(t) = [a + c

t

∫

0

v(𝜏)d𝜏 + edv
dt
]v(t) + bdv

dt
+ d

t

∫

0

v(𝜏)d𝜏 (25)

where the coefficient a has transconductance unit (℧), b has capacitance unit (F),

d has inverse inductance unit (H−1), c has unit (sec ⋅ V ⋅𝛺)−1, and e has the unit

of (sec∕V ⋅𝛺). Similar to the impedance formation, different complex admittance

can be obtained. For example, when a ≠ 0, c ≠ 0 and b = d = e = 0, the previous

equation represents a voltage-controlled memristor with initial memductance equal

to a − c𝜙(0). While when a ≠ 0, e ≠ 0 and b = c = d = 0, it represents a voltage-

controlled inverse memristor. It is straightforward to build a table similar to Table 2

for all cases.



390 M.E. Fouda et al.

In case of connecting parallel MLC circuit, the hysteresis loop can be either

pinched or not depending on the values of b and d. The hysteresis would be pinched

with double loops if |xp| < A where A is the input voltage amplitude and single loop

for |xp| > A. The pinch point can be in the first or the third quadrant depending on

the values of b and d where for 𝜔 <

√
d
b
, the pinch point lies in the first quadrant

and vice versa. Figure 16 is plotted by applying v(t) = sin(400𝜋t) where Fig. 16a, b

showing the effect of changing the parallel capacitance 50 nF and 100 nF at L = 10H.

However, Fig. 16c, d show the effect of changing the parallel inductance from 10 H

and 5 H at C = 50 nF. At the parallel resonance 𝜔o =
√

1
LC

, the coordinates of the

pinch point is (0, 1
L𝜔
) at 𝜔 = 400𝜋,L = 10 H and C = 63.357 nF.

6 Conclusion

In this chapter, A mathematical model to represent all the linear elements has been

discussed. Different special cases have been introduced and verified using numerical,

and circuit simulations. As we discussed, the statement “if it is pinched, it is memris-

tor” is not valid anymore since we proved that inverse memristor has pinched hystere-

sis but it has the opposite behavior. Also the inverse memristor can be obtained by a

nonlinear capacitor or nonlinear inductor. Connecting any reactive element to ideal

symmetric pinched device gives asymmetric behavior. Thus, the asymmetric pinched

devices can be modeled as symmetric devices with a reactive element. Moreover,

according to the discussion, the series and parallel connection of the conventional

elements in addition to the memristor and inverse memristor especially memristor-

inverse memristor connection give new properties. These properties are new to the

circuit theory.
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A Conservative Hyperchaotic Hyperjerk
System Based on Memristive Device

Sundarapandian Vaidyanathan

Abstract Memristor-based systems and their potential applications, in which mem-

ristor is both a nonlinear element and a memory element, have been received sig-

nificant attention in the control literature. In this work, we propose a conservative

memristor-based hyperchaotic hyperjerk system with infinite number of equilibrium

points. In classical mechanics, the third-order time-derivative of displacement is

called jerk, while the fourth-order time-derivative of displacement is called snap.

As a result, a dynamical system which is represented by an nth order ordinary dif-

ferential equation with n > 3 is considered as a hyperjerk system. Hyperjerk sys-

tems have received significant attention in the control literature. In this research

work, a conservative memristor-based hyperjerk system has been designed which

displays rich, hyperchaotic behavior. Interestingly, this hyperjerk system displays

an infinite number of equilibrium points because of the presence of a memristive

device. In this work, we obtain the Lyapunov exponents of the memristor-based sys-

tem as L1 = 0.2098, L2 = 0.2035, L3 = 0 and L4 = −0.4133. Since there are two

positive Lyapunov exponents, the memristor-based system is hyperchaotic. Also, the

Kaplan-Yorke dimension of the memristor-based hyperchaotic system is obtained

as DKY = 4. Next, we design adaptive control and synchronization schemes for the

memristor-based hyperjerk system with unknown parameters via backstepping con-

trol method. The main adaptive control and synchronization results are established

using Lyapunov stability theory. MATLAB simulations are shown to illustrate all

the main results of this work.
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1 Introduction

Chua’s circuit (Matsumoto 1984), the Cellular Neural Networks (CNNs) (Chua and

Yang 1988a, b) and the memristor (Chua 1971) are three attractive inventions of Prof.

Leon O. Chua and these inventions are widely regarded as the major breakthroughs

in the literature of the nonlinear control systems. Chua’s circuit has been applied

in various areas in engineering (Liu et al. 2004; Fortuna et al. 2009; Chua 1994;

Albuquerque et al. 2008; Tang and Wang 2005). Cellular Neural Networks have been

applied in various areas such as chaos (Vaidyanathan 2016e), secure communications

(Wang et al. 2012b), cryptosystem (Cheng and Cheng 2013), etc. The studies on

memristor (Joglekar and Wolf 2009; Shin et al. 2011; Wang et al. 2012a; Shang

et al. 2012; Adhikari et al. 2012, 2013; Yang et al. 2013) have received significant

attention only recently after the realization of a solid-state thin film two-terminal

memristor at Hewlett-Packard Laboratories (Strukov et al. 2008).

Memristor was proposed by L.O. Chua as the fourth basic circuit element besides

the three conventional ones (resistor, inductor and capacitor) (Tetzlaff 2014).

Memristor depicts the relationship between two fundamental circuit variables,

viz. the charge (q) and the flux (𝜑). Hence, there are two kinds of memristors: (1)

charge-controlled memristor, and (2) flux-controlled memristor.

A charge-controlled memristor is described by

vM = M(q)iM (1)

where vM is the voltage across the memristor and iM is the current through the mem-

ristor. Here, the memristance (M) is defined by

M(q) =
d𝜑(q)

dq
(2)

A flux-controlled memristor is given by

iM = W(𝜑)vM (3)

where W(𝜑) is the memductance, which is defined by

W(q) =
dq(𝜑)

d𝜑
(4)

By generalizing the original definition of a memristor (Chua 1971; Tetzlaff 2014),

a memristive system is defined as

{
ẋ = f (x, u, t)
y = g(x, u, t)u (5)
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where x is the state, u is the input and y is the output of the system (5). We assume

that the function f is a continuously differentiable, n-dimensional vector field and g
is a continuous scalar function.

Based on the definition of memristive system (Bao et al. 2013; Pershin et al. 2009;

Tetzlaff 2014), a memristive device is introduced in this section and used in our

whole chapter.

The memristive device is described by the following form:

{
ẋ1 = x2
ẋ2 = W(x1, x2) = (1 − x1)x2

(6)

Here x2, y and x1 are the input, output and state of the memristive device,

respectively.

The intrinsic nonlinear characteristic of memristor has applications in implement-

ing chaotic systems with complex dynamics as well as special features (Itoh and

Chua 2008; Muthuswamy and Kokate 2009). For example, a simple memristor-based

chaotic system including only three elements (an inductor, a capacitor and a memris-

tor) was introduced in Muthuswamy and Chua (2010). Also, a system containing an

HP memristor model and triangular wave sequence can generate multi-scroll chaotic

attractors (Li et al. 2014). Moreover, a four-dimensional hyperchaotic memristive

system with a line equilibrium was presented by Li et al. (2013).

Chaos theory deals with the qualitative study of chaotic dynamical systems and

their applications in science and engineering. A dynamical system is called chaotic if

it satisfies the three properties: boundedness, infinite recurrence and sensitive depen-

dence on initial conditions (Azar and Vaidyanathan 2015).

Some classical paradigms of 3-D chaotic systems in the literature are Lorenz

system (1963), Rössler system (1976), ACT system (Arneodo et al. 1981), Sprott

systems (1994), Chen system (1999), Lü system (2002), Cai system (2007), Tigan

system (2008), etc.

Many new chaotic systems have been discovered in the recent years such as Zhou

system (2008), Zhu system (2010), Li system (2008), Wei-Yang system (2010), Sun-

darapandian systems (2012; 2013), Vaidyanathan systems (2013a, b, 2014a, b, c, d,

2015b, g, m, n, 2013, 2015b, 2015, 2014c, 2015b, d, f, 2015, 2016, 2016a, c, j, 2016),

Pehlivan system (2014), Sampath system (2015), Pham system (2014), etc.

Chaos theory has many applications in science and engineering such as chemi-

cal systems (Vaidyanathan 2015i, g, s, o, t, c, k, u), biological systems (Vaidyanathan

2015d, e, a, j, p, f, x, q, y, r, z, h, v, l, w), memristors (Pham et al. 2015; Volos et al.

2015; Abdurrahman et al. 2015), etc.

The study of control of a chaotic system investigates feedback control meth-

ods that globally or locally asymptotically stabilize or regulate the outputs of a

chaotic system. Many methods have been designed for control and regulation of

chaotic systems such as active control (Sundarapandian 2010, 2011; Vaidyanathan

2011b), adaptive control (Vaidyanathan et al. 2014a, 2015e, h), backstepping control

(Li et al. 2007; Wang and Ge 2008), sliding mode control (Vaidyanathan 2012c, e,

2016k, f, i, h), etc.
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Synchronization of chaotic systems is a phenomenon that occurs when two or

more chaotic systems are coupled or when a chaotic system drives another chaotic

system. Because of the butterfly effect which causes exponential divergence of the

trajectories of two identical chaotic systems started with nearly the same initial

conditions, the synchronization of chaotic systems is a challenging research prob-

lem in the chaos literature (Azar and Vaidyanathan 2015, 2016; Azar et al. 2017;

Vaidyanathan and Volos 2016a, b).

Pecora and Carroll pioneered the research on synchronization of chaotic systems

with their seminal papers (Carroll and Pecora 1991; Pecora and Carroll 1990). The

active control method (Karthikeyan and Sundarapandian 2014; Sarasu and Sundara-

pandian 2011a, b; Sundarapandian and Karthikeyan 2012b; Vaidyanathan 2011a,

2012d; Vaidyanathan and Rajagopal 2011a, b; Vaidyanathan and Rasappan 2011)

is typically used when the system parameters are available for measurement. Adap-

tive control method (Sarasu and Sundarapandian 2012a, b, c; Sundarapandian and

Karthikeyan 2011a, b, 2012a; Vaidyanathan 2012b, 2013c; Vaidyanathan and Azar

2015a; Vaidyanathan and Pakiriswamy 2013; Vaidyanathan and Rajagopal 2011c,

2012; Vaidyanathan et al. 2014b, 2015c) is typically used when some or all the sys-

tem parameters are not available for measurement and estimates for the uncertain

parameters of the systems.

Sampled-data feedback control method (Gan and Liang 2012; Xiao et al. 2014)

and time-delay feedback control method (Chen et al. 2014; Jiang et al. 2004) are

also used for synchronization of chaotic systems. Backstepping control method

(Rasappan and Vaidyanathan 2012a, b, c, 2013, 2014; Suresh and Sundarapandian

2013; Vaidyanathan and Rasappan 2014; Vaidyanathan et al. 2015a, i; Vaidyanathan

2016g; Vaidyanathan et al. 2016) is also applied for the synchronization of chaotic

systems. Backstepping control is a recursive method for stabilizing the origin of

a control system in strict-feedback form Khalil (2001). In this research work, we

apply backstepping control method for the adaptive control and synchronization of

the novel hyperjerk system.

Sliding mode control method (Sundarapandian and Sivaperumal 2011;

Vaidyanathan 2012a, 2014e; Vaidyanathan and Azar 2015c, d; Vaidyanathan and

Sampath 2011, 2012; Sampath and Vaidyanathan 2016) is also a popular method

for the synchronization of chaotic systems.

In the control literature, there is significant interest in investigating novel jerk

chaotic systems (Azar and Vaidyanathan 2015, 2016; Azar et al. 2017; Vaidyanathan

and Volos 2016a, b). It is well-known that a jerk system is represented by an explicit

third-order differential equation which describes the time evolution of a single scalar

variable. Thus, a jerk system can be described as

d3x
dt3

= f
(

d2x
dt2

,

dx
dt
, x
)

(7)

In classical mechanics, the differential equation (7) is called a jerk system, because

the successive derivatives of the displacement in a mechanical system are velocity,

acceleration and jerk.



A Conservative Hyperchaotic Hyperjerk System Based on Memristive Device 397

A generalization of the jerk dynamics is given by the dynamics

d(n)x
dtn = f

(
d(n−1)x
dtn−1 ,… ,

dx
dt
, x
)
, (n ≥ 4) (8)

An ordinary differential equation of the form (8) is called a hyperjerk system since

it involves time derivatives of a jerk function (Vaidyanathan 2016b).

In Chlouverakis and Sprott (2006), Chlouverakis and Sprott discovered a simple

hyperchaotic hyperjerk system given by the dynamics

d4x
dt4

+ d3x
dt3

x4 + Ad2x
dt2

+ dx
dt

+ x = 0 (9)

In system form, the differential equation (9) can be expressed as

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − Ax3 − x41x4

(10)

When A = 3.6, the hyperjerk system (10) exhibits hyperchaos with the Lyapunov

exponents

L1 = 0.132, L2 = 0.035, L3 = 0, L4 = −1.25 (11)

Thus, the maximum Lyapunov exponent (MLE) of the Chlouverakis-Sprott hyper-

chaotic hyperjerk system (10) is L1 = 0.132 and the Kaplan-Yorke dimension of this

hyperjerk system is easily calculated a DKY = 3.13.

In Vaidyanathan (2016d), Vaidyanathan derived a novel hyperjerk system by

adding a hyperbolic sinusoidal nonlinearity to the Chlouverakis-Sprott hyperjerk

system (4) and with a different set of values for the system parameters.

Vaidyanathan hyperjerk system is given in system form as

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x1 − x2 − ax3 − b sinh(x2) − x41x4

(12)

where the parameter values are taken as

a = 3.7, b = 0.05, c = 1.3 (13)



398 S. Vaidyanathan

For the parameter values in (13), the Lyapunov exponents of the Vaidyanathan hyper-

jerk system (12) are obtained as

L1 = 0.14219, L2 = 0.04605, L3 = 0, L4 = −1.39267 (14)

Thus, the maximal Lyapunov exponent (MLE) of the Vaidyanathan hyperjerk sys-

tem (12) is seen as L1 = 0.14219, and the Kaplan-Yorke dimension of the

Vaidyanathan hyperjerk system (12) is derived as DKY = 3.1348.

Conservative chaotic systems are characterized by the property that they are vol-

ume preserving. Classical examples of conservative chaotic systems are Hénon-

Heiles system (1964), Nosé-Hoover system (1995), Sprott system (1997), etc.

Recently, many conservative chaotic systems have been reported such as

Vaidyanathan-Volos system (2015), Vaidyanathan-Pakiriswamy systems

(2015; 2016), etc.

In this work, we propose a conservative memristor-based hyperchaotic hyperjerk

system with infinite number of equilibrium points.

In this work, we obtain the Lyapunov exponents of the memristor-based system

as L1 = 0.2098, L2 = 0.2035, L3 = 0 and L4 = −0.4133. Since there are two pos-

itive Lyapunov exponents, the memristor-based system is hyperchaotic. Also, the

Kaplan-Yorke dimension of the memristor-based hyperchaotic system is obtained as

DKY = 4.

Next, we design adaptive control and synchronization schemes for the memristor-

based hyperjerk system with unknown parameters via backstepping control method.

The main adaptive control and synchronization results are established using Lya-

punov stability theory. MATLAB simulations are shown to illustrate all the main

results of this work.

2 A 4-D Novel Conservative Hyperchaotic Memristive
Hyperjerk System

In this chapter, a novel 4-D conservative hyperchaotic memristive hyperjerk system

is proposed by using the memristive device (6) and the reported approach in Bao

et al. (2013).

The 4-D novel memristive system is given in system form as follows:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x3 − ax4 − bx3x4 − c sin x3 − y

(15)

where a, b, c are positive parameters and y = W(x1, x2) = (1 − x1)x2 is the output of

the memristive device (6).
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Next, we take the parameters of the memristor-based system (15) as

a = 0.5, b = 0.4, c = 0.1 (16)

We choose the initial conditions of the system (15) as

x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0, x4(0) = 0 (17)

For the parameter values (16) and the initial values (17), the Lyapunov exponents

of the memristor-based system (15) are obtained as

L1 = 0.2098, L2 = 0.2035, L3 = 0, L4 = −0.4133 (18)

Thus, the memristor-based system (15) is a hyperchaotic system because it has

two positive Lyapunov exponents (Azar and Vaidyanathan 2016; Azar et al. 2017;

Vaidyanathan and Volos 2016a, b).

Since the sum of the Lyapunov exponents in (18), it follows that the hyperchaotic

memristive hyperjerk system (15) is conservative.

The Kaplan-Yorke dimension describes the complexity of a chaotic attractor

(Frederickson et al. 1983). Suppose that a chaotic system of order n has n Lyapunov

exponents L1,L2,… ,Ln, which are arranged in decreasing order, i.e.

L1 ≥ L2 ≥ ⋯ ≥ Ln (19)

Then the Kaplan-Yorke dimension of the chaotic system of order n is defined by

DKY = j + 1
|Lj+1|

j∑

i=1
Lj (20)

where j is the largest integer satisfying

j∑

i=1
Li ≥ 0 and

j+1∑

i=1
Li < 0.

The Kaplan-Yorke dimension of the hyperchaotic memristive system (15) is cal-

culated as

DKY = 3 +
L1 + L2 + L3

|L4|
= 4 (21)

The high value of the Kaplan-Yorke dimension of the hyperchaotic memristive

system (15) shows the high complexity of the system.

The equilibrium points of the hyperchaotic memristive system (15) are obtained

by solving the system of equations
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⎧
⎪
⎪
⎨
⎪
⎪
⎩

x2 = 0
x3 = 0
x4 = 0

−x3 − ax4 − bx3x4 − c sin x3 − (1 − x1)x2 = 0

(22)

Solving the system (22), we obtain infinite number of equilibrium points of the

system (15) given by

Ek =
⎡
⎢
⎢
⎢
⎣

k
0
0
0

⎤
⎥
⎥
⎥
⎦

, (k ∈ 𝐑) (23)

which are saddle-foci.

Figures 1, 2, 3 and 4 show the 3-D projections of the hyperchaotic memristive

system (15) in (x1, x2, x3), (x1, x2, x4), (x1, x3, x4), and (x2, x3, x4), spaces, respectively.

Figure 5 shows the Lyapunov exponents of the hyperchaotic memristive system (15).
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3 Adaptive Control of the Novel Hyperchaotic Memristive
Hyperjerk System

In this section, we use backstepping control method to derive an adaptive feedback

control law for globally stabilizing the 4-D novel hyperchaotic memristive hyperjerk

system with unknown parameters.

Thus, we consider the 4-D novel hyperjerk system given by

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x3 − ax4 − bx3x4 − c sin x3 − y + u

(24)

where a, b, c are unknown constant parameters, y = (1 − x1)x2 is the output of the

memristive device, and u is a backstepping control law to be determined using esti-

mates â(t), ̂b(t) and ĉ(t) for a, b and c, respectively.

The parameter estimation errors are defined as:

⎧
⎪
⎨
⎪
⎩

ea(t) = a − â(t)
eb(t) = b − ̂b(t)
ec(t) = c − ĉ(t)

(25)

Differentiating (25) with respect to t, we obtain the following equations:

⎧
⎪
⎨
⎪
⎩

ėa(t) = − ̇â(t)

ėb(t) = − ̇
̂b(t)

ėc(t) = − ̇ĉ(t)
(26)

Next, we shall state and prove the main result of this section.

Theorem 1 The 4-D novel hyperchaotic memristive hyperjerk system (24), with
unknown parameters a, b and c, is globally and exponentially stabilized by the adap-
tive feedback control law,

u(t) = −5x1 − 9x2 − 8x3 − [4 − â(t)]x4 − x1x2 + ̂b(t)x3x4 + ĉ(t) sin x3 − kz4 (27)

where k > 0 is a gain constant,

z4 = 3x1 + 5x2 + 3x3 + x4 (28)
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and the update law for the parameter estimates â(t), ̂b(t), ĉ(t) is given by

⎧
⎪
⎨
⎪
⎩

̇â(t) = −z4x4
̇
̂b(t) = −z4x3x4
̇ĉ(t) = −z4 sin x3

(29)

Proof We prove this result via Lyapunov stability theory (Khalil 2001).

First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z21 (30)

where

z1 = x1 (31)

Differentiating V1 along the dynamics (24), we get

̇V1 = z1ż1 = x1x2 = −z21 + z1(x1 + x2) (32)

Now, we define

z2 = x1 + x2 (33)

Using (33), we can simplify the Eq. (32) as

̇V1 = −z21 + z1z2 (34)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) +
1
2

z22 =
1
2
(
z21 + z22

)
(35)

Differentiating V2 along the dynamics (24), we get

̇V2 = −z21 − z22 + z2(2x1 + 2x2 + x3) (36)

Now, we define

z3 = 2x1 + 2x2 + x3 (37)

Using (37), we can simplify the Eq. (36) as

̇V2 = −z21 − z22 + z2z3 (38)
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Thirdly, we define a quadratic Lyapunov function

V3(z1, z2, x3) = V2(z1, z2) +
1
2

z23 =
1
2
(
z21 + z22 + z23

)
(39)

Differentiating V3 along the dynamics (24), we get

̇V3 = −z21 − z22 − z23 + z3(3x1 + 5x2 + 3x3 + x4) (40)

Now, we define

z4 = 3x1 + 5x2 + 3x3 + x4 (41)

Using (41), we can simplify the Eq. (40) as

̇V2 = −z21 − z22 − z23 + z3z4 (42)

Finally, we define a quadratic Lyapunov function

V(z1, z2, z3, z4, ea, eb, ec) = V3(z1, z2, z3) +
1
2

z24 +
1
2

e2a +
1
2

e2b +
1
2

e2c (43)

which is a positive definite function on 𝐑7
.

Differentiating V along the dynamics (24), we get

̇V = −z21 − z22 − z23 − z24 + z4(z4 + z3 + ż4) − ea
̇â − eb

̇
̂b − ec

̇ĉ (44)

Equation (44) can be written compactly as

̇V = −z21 − z22 − z23 − z24 + z4S − ea
̇â − eb

̇
̂b − ec

̇ĉ (45)

where

S = z4 + z3 + ż4 = z4 + z3 + 3ẋ1 + 5ẋ2 + 3ẋ3 + ẋ4 (46)

A simple calculation gives

S = 5x1 + 9x2 + 8x3 + (4 − a)x4 + x1x2 − bx3x4 − c sin x3 + u (47)

Substituting the adaptive control law (27) into (47), we obtain

S = − [a − â(t)] x4 −
[
b − ̂b(t)

]
x3x4 − [c − ĉ(t)] sin x3 − kz4 (48)

Using the definitions (26), we can simplify (48) as

S = −eax1 − ebx3 − ecx4 − kz4 (49)
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Substituting the value of S from (49) into (45), we obtain

̇V = −z21 − z22 − z23 − (1 + k)z24 + ea
[
−z4x4 − ̇â

]

+eb

[
−z4x3x4 −

̇
̂b
]
+ ec

[
−z4 sin x3 − ̇ĉ

] (50)

Substituting the update law (29) into (50), we get

̇V = −z21 − z22 − z23 − (1 + k)z24, (51)

which is a negative semi-definite function on 𝐑7
.

From (51), it follows that the vector 𝐳(t) = (z1(t), z2(t), z3(t), z4(t)) and the para-

meter estimation error (ea(t), eb(t), ec(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) z4(t) ea(t) eb(t) ec(t)

]
∈ 𝐋∞ (52)

Also, it follows from (51) that

̇V ≤ −z21 − z22 − z23 − z24 = −𝓀𝐳𝓀2
(53)

That is,

𝓀𝐳𝓀2
≤ − ̇V (54)

Integrating the inequality (54) from 0 to t, we get

t

∫

0

𝒿𝐳(𝜏)𝒿2 d𝜏 ≤ V(0) − V(t) (55)

From (55), it follows that 𝐳(t) ∈ 𝐋2.

From Eq. (24), it can be deduced that �̇�(t) ∈ 𝐋∞.

Thus, using Barbalat’s lemma (Khalil 2001), we conclude that 𝐳(t) → 𝟎 exponen-

tially as t → ∞ for all initial conditions 𝐳(0) ∈ 𝐑4
.

Hence, it is immediate that 𝐱(t) → 𝟎 exponentially as t → ∞ for all initial condi-

tions 𝐱(0) ∈ 𝐑4
.

This completes the proof. ■

For the numerical simulations, the classical fourth-order Runge-Kutta method

with step size h = 10−8 is used to solve the system of differential equations (24)

and (29), when the adaptive control law (27) and the parameter update law (29) are

applied.

The parameter values of the novel hyperjerk system (24) are taken as in the hyper-

chaotic case (16), i.e.
a = 0.5, b = 0.4, c = 0.1 (56)
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Fig. 6 Time-history of the controlled states x1, x2, x3, x4 of the novel hyperjerk system

We take the positive gain constant as k = 10.

As initial conditions of the hyperjerk system (24), we take

x1(0) = 1.8, x2(0) = 4.7, x3(0) = −6.2, x4(0) = 8.1 (57)

Also, as initial conditions of the parameter estimates â(t) and ̂b(t), we take

â(0) = 5.4, ̂b(0) = 2.9, ĉ(0) = 3.5 (58)

In Fig. 6, the exponential convergence of the controlled states x1(t), x2(t), x3(t),
x4(t) is depicted, when the adaptive control law (27) and the parameter update law

(29) are implemented.

4 Adaptive Synchronization of the Identical Novel
Hyperjerk Systems

In this section, we use backstepping control to derive an adaptive control law for

globally and exponentially synchronizing the identical novel hyperchaotic memris-

tive hyperjerk systems with unknown parameters.

As the master system, we consider the 4-D novel memristive hyperjerk system

given by
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⎧
⎪
⎪
⎨
⎪
⎪
⎩

ẋ1 = x2
ẋ2 = x3
ẋ3 = x4
ẋ4 = −x3 − ax4 − bx3x4 − c sin x3 − 𝜑

(59)

where a, b, c are unknown constant parameters and 𝜑 = (1 − x1)x2 is the output of

the memristive device.

As the slave system, we consider the 4-D novel hyperjerk system given by

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ẏ1 = y2
ẏ2 = y3
ẏ3 = y4
ẏ4 = −y3 − ay4 − by3y4 − c sin y3 − �̂� + u

(60)

where �̂� = (1 − y1)y2 is the output of the memristive device and u is a backstepping

control to be determined using estimates â(t), ̂b(t) and ĉ(t) for a, b and c, respectively.

We define the synchronization errors between the states of the master system (59)

and the slave system (60) as

ei = yi − xi, (i = 1, 2, 3, 4) (61)

Then the error dynamics is easily obtained as

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ė1 = e2
ė2 = e3
ė3 = e4
ė4 = −e2 − e3 − ae4 − b(y3y4 − x3x4) − c(sin y3 − sin x3)

+y1y2 − x1x2 + u

(62)

The parameter estimation errors are defined as:

⎧
⎪
⎨
⎪
⎩

ea(t) = a − â(t)
eb(t) = b − ̂b(t)
ec(t) = c − ĉ(t)

(63)

Differentiating (63) with respect to t, we obtain the following equations:

⎧
⎪
⎨
⎪
⎩

ėa(t) = − ̇â(t)

ėb(t) = − ̇
̂b(t)

ėc(t) = − ̇ĉ(t)
(64)
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Next, we shall state and prove the main result of this section.

Theorem 2 The identical 4-D hyperjerk systems (59) and (60) with unknown para-
meters a, b and c are globally and exponentially synchronized by the adaptive control
law

u = −5e1 − 9e2 − 8e3 − [4 − â(t)]e4 + ̂b(t)(y3y4 − x3x4)
+ĉ(t)(sin y3 − sin x3) − y1y2 + x1x2 − kz4

(65)

where k > 0 is a gain constant,

z4 = 3e1 + 5e2 + 3e3 + e4, (66)

and the update law for the parameter estimates â(t), ̂b(t), ĉ(t) is given by

⎧
⎪
⎨
⎪
⎩

̇â(t) = −z4e4
̇
̂b(t) = −z4(y3y4 − x3x4)
̇ĉ(t) = −z4(sin y3 − sin x3)

(67)

Proof We prove this result via backstepping control method and Lyapunov stability

theory (Khalil 2001).

First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z21 (68)

where

z1 = e1 (69)

Differentiating V1 along the error dynamics (62), we get

̇V1 = z1ż1 = e1e2 = −z21 + z1(e1 + e2) (70)

Now, we define

z2 = e1 + e2 (71)

Using (71), we can simplify the Eq. (70) as

̇V1 = −z21 + z1z2 (72)

Secondly, we define a quadratic Lyapunov function

V2(z1, z2) = V1(z1) +
1
2

z22 =
1
2
(
z21 + z22

)
(73)
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Differentiating V2 along the error dynamics (62), we get

̇V2 = −z21 − z22 + z2(2e1 + 2e2 + e3) (74)

Now, we define

z3 = 2e1 + 2e2 + e3 (75)

Using (75), we can simplify the Eq. (74) as

̇V2 = −z21 − z22 + z2z3 (76)

Thirdly, we define a quadratic Lyapunov function

V3(z1, z2, x3) = V2(z1, z2) +
1
2

z23 =
1
2
(
z21 + z22 + z23

)
(77)

Differentiating V3 along the error dynamics (62), we get

̇V3 = −z21 − z22 − z23 + z3(3e1 + 5e2 + 3e3 + e4) (78)

Now, we define

z4 = 3e1 + 5e2 + 3e3 + e4 (79)

Using (79), we can simplify the Eq. (78) as

̇V2 = −z21 − z22 − z23 + z3z4 (80)

Finally, we define a quadratic Lyapunov function

V(z1, z2, z3, z4, ea, eb, ec) = V3(z1, z2, z3) +
1
2

z24 +
1
2

e2a +
1
2

e2b +
1
2

e2c (81)

Differentiating V along the error dynamics (62), we get

̇V = −z21 − z22 − z23 − z24 + z4(z4 + z3 + ż4) − ea
̇â − eb

̇
̂b − ec

̇ĉ (82)

Equation (82) can be written compactly as

̇V = −z21 − z22 − z23 − z24 + z4S − ea
̇â − eb

̇
̂b − ec

̇ĉ (83)

where

S = z4 + z3 + ż4 = z4 + z3 + 3ė1 + 5ė2 + 3ė3 + ė4 (84)
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A simple calculation gives

S = 5e1 + 9e2 + 8e3 + (4 − a)e4 − b(y3y4 − x3x4) − c(sin y3 − sin x3)
+y1y2 − x1x2 + u

(85)

Substituting the adaptive control law (65) into (85), we obtain

S = −[a − â(t)]e4 − [b − ̂b(t)](y3y4 − x3x4) − [c − ĉ(t)](sin y3 − sin x3) − kz4 (86)

Using the definitions (64), we can simplify (86) as

S = −eae4 − eb(y3y4 − x3x4) − ec(sin y3 − sin x3) − kz4 (87)

Substituting the value of S from (87) into (83), we obtain

⎧
⎪
⎨
⎪
⎩

̇V = −z21 − z22 − z23 − (1 + k)z24 + ea
[
−z4e4 − ̇â

]

+eb

[
−z4(y3y4 − x3x4) −

̇
̂b
]
+ ec

[
−z4(sin y3 − sin x3) − ̇ĉ

] (88)

Substituting the update law (67) into (88), we get

̇V = −z21 − z22 − z23 − (1 + k)z24, (89)

which is a negative semi-definite function on 𝐑7
.

From (89), it follows that the vector 𝐳(t) = (z1(t), z2(t), z3(t), z4(t)) and the para-

meter estimation error (ea(t), eb(t), ec(t)) are globally bounded, i.e.

[
z1(t) z2(t) z3(t) z4(t) ea(t) eb(t) ec(t)

]
∈ 𝐋infty (90)

Also, it follows from (89) that

̇V ≤ −z21 − z22 − z23 − z24 = −𝓀𝐳𝓀2
(91)

That is,

𝓀𝐳𝓀2
≤ − ̇V (92)

Integrating the inequality (92) from 0 to t, we get

t

∫

0

𝒿𝐳(𝜏)𝒿2 d𝜏 ≤ V(0) − V(t) (93)

From (93), it follows that 𝐳(t) ∈ 𝐋2.
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From Eq. (62), it can be deduced that �̇�(t) ∈ 𝐋∞.

Thus, using Barbalat’s lemma (Khalil 2001), we conclude that 𝐳(t) → 𝟎 exponen-

tially as t → ∞ for all initial conditions 𝐳(0) ∈ 𝐑4
.

Hence, it is immediate that 𝐞(t) → 𝟎 exponentially as t → ∞ for all initial condi-

tions 𝐞(0) ∈ 𝐑4
.

This completes the proof. ■

For the numerical simulations, the classical fourth-order Runge-Kutta method

with step size h = 10−8 is used to solve the system of differential equations

(59) and (60).

The parameter values of the novel hyperjerk system are taken as in the hyper-

chaotic case (16), viz.
a = 0.5, b = 0.4, c = 0.1 (94)

Also, as initial conditions of the master system (59), we take

x1(0) = 1.7, x2(0) = −1.5, x3(0) = −0.2, x4(0) = 1.9 (95)

As initial conditions of the slave system (60), we take

y1(0) = −0.3, y2(0) = 2.4, y3(0) = 3.1, y4(0) = −1.2 (96)

Furthermore, as initial conditions of the parameter estimates â(t), ̂b(t) and ĉ(t),
we take

â(0) = 2.1, ̂b(0) = 4.9, ĉ(0) = 7.5 (97)
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Fig. 7 Synchronization of the states x1 and y1 of the novel hyperjerk systems



A Conservative Hyperchaotic Hyperjerk System Based on Memristive Device 413

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (sec)

x 2
, y

2

x
2

y
2

Fig. 8 Synchronization of the states x2 and y2 of the novel hyperjerk systems

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

4

Time (sec)

x 3
, y

3

x
3

y
3

Fig. 9 Synchronization of the states x3 and y3 of the novel hyperjerk systems

Figures 7, 8, 9 and 10 depict the complete synchronization of the identical 4-D

hyperjerk systems (59) and (60).

Figure 11 shows the time-history of the complete synchronization errors.
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5 Conclusions

In this work, we have proposed a conservative memristor-based hyperchaotic hyper-

jerk system with infinite number of equilibrium points. There is great interest in the

chaos literature in finding novel hyperchaotic hyperjerk systems. In this chapter, we

derived a conservative hyperchaotic hyperjerk system with the help of a memris-

tive device. In this work, we derived the Lyapunov exponents of the novel memris-

tive hyperjerk system as L1 = 0.2098, L2 = 0.2035, L3 = 0 and L4 = −0.4133. Since

there are two positive Lyapunov exponents, the memristor-based hyperjerk system

is hyperchaotic. Also, the Kaplan-Yorke dimension of the memristor-based hyper-

chaotic system has been found as DKY = 4. Next, we designed adaptive control and

synchronization schemes for the memristor-based hyperjerk system with unknown

parameters via backstepping control method. The main adaptive control and synchro-

nization results were established using Lyapunov stability theory. MATLAB simu-

lations have been shown to illustrate all the main results of this work. Also, it is

well-known that hyperchaotic system, which is characterized by more than one pos-

itive Lyapunov exponent, exhibits a higher level of complexity than a conventional

chaotic system. Hence, we can apply this memristor-based hyperchaotic system in

practical applications like encryption, cryptosystems, neural networks and secure

communications.
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Logic Synthesis for Majority Based
In-Memory Computing

Saeideh Shirinzadeh, Mathias Soeken, Pierre-Emmanuel Gaillardon
and Rolf Drechsler

Abstract The resistive switching property exhibited by many emerging memory

technologies enables the execution of logic operations directly with memory arrays.

This opens new horizons to a modern era of computer architectures beyond the tra-

ditional Von Neumann architectures which have separated memory and computing

units. In this chapter, the memristive behavior of RRAM is abstracted as a majority

based logic operation for efficient synthesis of logic-in-memory circuits and systems.

A majority based Programmable Logic-in-Memory (PLiM) architecture is also intro-

duced and compiled addressing the latency and area issues.

Keywords Majority-inverter graph ⋅ In-memory computing ⋅ Logic synthesis ⋅
PLiM architecture

1 Introduction

Resistive Random Access Memories (RRAMs) have gained high research attention to

the design and synthesis of in-memory computing circuits and systems. The majority

of approaches proposed so far with this respect, exploit Material Implication (IMP)

operated by RRAMs to synthesize Boolean functions. However, the high number of
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instructions that is required to implement a complete system is a serious drawback of

implication logic. Using data structures such as Binary Decision Diagrams (BDDs)

(Chakraborti et al. 2014), and And-Inverter Graphs (AIGs) (Bürger et al. 2013) has

been previously proposed for optimization of memristive in-memory computing cir-

cuits. Nevertheless, both approaches still require a high number of instructions.

A Majority-Inverter Graph (MIG) is a logic representation, proposed in

Amarù et al. (2014), which has a high flexibility in depth optimization and there-

fore enables design of high speed logic circuits and FPGA implementations (Amarù

et al. 2015a). In comparison with the well-known data structures BDDs and AIGs,

MIGs have experimentally shown better results in logic optimization, especially in

propagation delay (Amarù et al. 2014). In Gaillardon et al. (2016), it was shown that

MIGs are highly qualified for logic synthesis of RRAM-based circuits since they

can efficiently execute the intrinsic resistive majority operation in RRAMs indicated

by RM3. This enables more efficient in-memory computing exploiting a majority

oriented paradigm.

Logic synthesis for majority based in-memory computing also can vary with

respect to differently specified MIG implementation methodologies. An MIG can be

mapped to a netlist of RRAM devices in a fully customized manner such that a set of

MIG features determines the requirements of the final implementation. Obviously,

such a customized synthesis approach results in customized cost metrics, which need

specifically designed optimization schemes. On the other hand, in-memory comput-

ing can be also performed in an instruction based manner. This way, a given MIG is

translated instruction by instruction, which can be easily implemented upon a stan-

dard resistive crossbar.

An instruction based architecture based on memristive arrays called

Programmable Logic-in-Memory (PLiM) was proposed in Gaillardon et al. (2016).

For programs executed on this architecture, the number of instructions and the

required number of RRAMs are important cost metrics to measure the quality. The

instruction set for the PLiM architecture is based on the RM3 operation, which

computes the majority-of-three operands when one input is inverted. This corre-

sponds directly to the physical implementation of the RRAM proposed in Linn et

al. (2012). Consequently, MIGs are the natural abstraction to derive PLiM programs,

i.e., sequences of RM3 instructions.

An arbitrary function can be represented by several structurally different but func-

tionally equivalent MIGs, which leads to PLiM programs of different quality. Fur-

ther, even for the same MIG representation, there exists several ways to translate a

graph into PLiM programs that vary in the number of RRAM devices and instruc-

tions. Hence, the PLiM architecture can highly benefit from MIG optimization and

efficient node translation schemes.

This chapter presents logic synthesis for majority based in-memory computing

exploiting the memristive behavior of RRAMs. In Sect. 2, MIGs are introduced

and their Boolean algebra is explained. The section also provides an overview of

majority-based in-memory computing, and the state-of-the-art. In Sect. 3, a cus-

tomized MIG-based approach is presented for synthesis of logic-in-memory circuits.

Section 4 studies instruction based in-memory computing for the PLiM
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architecture and also presents an efficient and fully automated compilation procedure

for it. Experimental evaluations for the customized and instruction based approaches

are given in the corresponding sections presenting them. The concluding remarks of

the chapter are presented in Sect. 5.

2 Background

2.1 Majority-Inverter Graphs

An MIG is a data structure for Boolean function representation and optimization.

An MIG is defined as a logic network that consists of 3-input majority nodes and

regular/complemented edges (Amarù et al. 2014, 2015b, 2016).

MIGs can efficiently represent Boolean functions thanks to the expressive power

of the majority operator (MAJ) M(a, b, c) = a ⋅ b + a ⋅ c + b ⋅ c = (a + b) ⋅ (a + c) ⋅
(b + c). Indeed, a majority operator can be configured to behave as a traditional con-

junction (AND) or disjunction (OR) operator. In the case of 3-input majority opera-

tor, fixing one input to 0 realizes an AND while fixing one input to 1 realizes an OR.

As a consequence of the AND/OR inclusion by MAJ, traditional And-Or-Inverter
Graphs (AOIGs) are a special case of MIGs and MIGs can be easily derived from

AOIGs. An example MIG representation derived from its optimal AOIG is depicted

in Fig. 1a. AND/OR operators are replaced node-wise by MAJ operators with a con-

stant input, and the inverters are shown by black dots on the branches.

Intuitively, MIGs are at least as compact as AOIGs. However, even smaller MIG

representation arise when fully exploiting the majority functionality, i.e., with non-

constant inputs (Amarù et al. 2016). We are interested in compact MIG represen-

tations because they translate into smaller and faster physical implementations. In

order to manipulate MIGs and reach advantageous MIG representations, a dedicated

Boolean algebra was introduced in Amarù et al. (2014). The axiomatic system for

the MIG Boolean algebra, referred to as 𝛺, is defined by the five following primitive

axioms.

Fig. 1 Example MIG

representation a derived by

transposing its optimal

AOIG representation, and b
after optimization
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𝛺

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝐂𝐨𝐦𝐦𝐮𝐭𝐚𝐭𝐢𝐯𝐢𝐭𝐲 −𝛺.C
M(x, y, z) = M(y, x, z) = M(z, y, x)
𝐌𝐚𝐣𝐨𝐫𝐢𝐭𝐲 −𝛺.M
M(x, x, z) = x
M(x, x̄, z) = z
𝐀𝐬𝐬𝐨𝐜𝐢𝐚𝐭𝐢𝐯𝐢𝐭𝐲 −𝛺.A
M(x, u, ,M(y, u, z)) = M(z, u,M(y, u, x))
𝐃𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐯𝐢𝐭𝐲 −𝛺.D
M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z)
𝐈𝐧𝐯𝐞𝐫𝐭𝐞𝐫 𝐏𝐫𝐨𝐩𝐚𝐠𝐚𝐭𝐢𝐨𝐧 −𝛺.I
M(x, y, z) = M(x̄, ȳ, z̄)

The axioms are inspired from median algebra (Isbell 1980) and the properties

of the median operator in a distributive lattice (Birkhoff and Kiss 1947). A strong

property of MIGs and their algebraic framework concerns reachability. It has been

proved that by using a sequence of transformations drawn from 𝛺 it is possible to

traverse the entire MIG representation space (Amarù et al. 2016). In other words,

given two equivalent MIG representations, it is possible to transform one into the

other by just using axioms in 𝛺. This results is of paramount interest to logic syn-

thesis because it guarantees that the best MIG can always be reached. Unfortunately,

deriving a sequence of𝛺 transformations is an intractable problem. As for traditional

logic optimization, heuristic techniques provide here fast solutions with reasonable

quality (De Micheli 1994).

By using the MIG algebraic framework it is possible to obtain a better MIG for the

example in Fig. 1a. Figure 1b shows the MIG structure, which is optimized in both

depth (number of levels) and size (number of nodes). Such MIGs can be reached

using a sequence of 𝛺 axioms starting from their unoptimized structures.

Although 𝛺 axioms are sufficient to transform a given MIG to any equivalent one,

the length of the transformation sequence might be impractical to execute. To solve

this problem, a more advanced set of transformations derived from the basic rules

in 𝛺 was proposed in Amarù et al. (2014) which is denoted by 𝛹 . The following set

includes those axioms of 𝛹 that are used in this chapter.

𝛹

⎧
⎪
⎨
⎪
⎩

𝐑𝐞𝐥𝐞𝐯𝐚𝐧𝐜𝐞 − 𝛹.R
M(x, y, z) = M(x, z, zx∕ȳ)
𝐂𝐨𝐦𝐩𝐥𝐞𝐦𝐞𝐧𝐭𝐚𝐫𝐲 𝐀𝐬𝐬𝐨𝐜𝐢𝐚𝐭𝐢𝐯𝐢𝐭𝐲 − 𝛹.C
M(x, u,M(y, ū, z)) = M(x, u,M(y, x, z))

where zx∕ȳ means replacing x with ȳ. We refer the reader to paper (Amarù et al. 2016)

for an in-depth discussion on MIG optimization recipes.
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Fig. 2 The intrinsic

majority operation within an

RRAM

2.2 Majority for Logic-in-Memory

RRAMs are two-terminal devices which internal resistance R can be switched

between two logic states 0 and 1 designating high and low resistance values, respec-

tively. Denoting the top and bottom terminals by P and Q, the memory can be

switched with a negative or positive voltage VPQ based on the device polarity. The

truth tables in Fig. 2 show how the next state (R′
) of the switch is resulted from P,

Q, and the current state (R). The built-in majority operation described in Fig. 2 can

be formally expressed as the following (Gaillardon et al. 2016):

R′ = RM3(P,Q,R) = (P ⋅ Q) ⋅ R + (P + Q) ⋅ R
= P ⋅ R + Q ⋅ R + P ⋅ Q ⋅ R
= P ⋅ R + Q ⋅ R + P ⋅ Q ⋅ R + P ⋅ Q ⋅ R
= P ⋅ R + Q ⋅ R + P ⋅ Q
= M(P,Q,R)

The operation above is referred to 3-input resistive majority RM3(x, y, z), with

RM3(x, y, z) = M(x, ȳ, z) (Gaillardon et al. 2016). According to RM3, the next state

of a resistive switch is equal to a result of a built-in majority gate when one of the

three variables x, y, and z is already preloaded and the variable corresponding to the

logic state of the bottom electrode is inverted.

2.3 State-of-the-Art of In-Memory Computing

So far, few synthesis approaches using logic representations have been proposed for

logic synthesis of in-memory computing circuits. Most of the existing approaches in

this area exploit material implication for realization of the nodes of their employed

graph based data structures.

In Chattopadhyay and Rakosi (2011), material implication was used to synthe-

size combinational logic circuits with resistive memories using Or-Inverter Graphs
(OIGs). The approach applies an extension of the delay minimization algorithm pro-

posed in Beatty (1972) to the OIGs and also uses an area minimization to lower the

costs of the equivalent circuits constructed with resistive memories.
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Another approach presented in Bürger et al. (2013) exploits AIGs for synthesis of

in-memory computing logic circuits. The approach maps an arbitrary Boolean func-

tion to an AIG and optimizes it. An optimized AIG representing a given function is

then mapped to an equivalent network of implication gates. The approach executes a

given Boolean function with N + 2 RRAMs, where N is the number of input RRAM

devices, which keep their initial values until the target function is executed, and 2

is the number of work RRAMs, which internal states are changed during the oper-

ations. Nevertheless, some extra RRAMs are also considered to maintain values of

the implication gates possessing more than one fanout.

A BDD-based approach has been proposed in Chakraborti et al. (2014) for synthe-

sis of Boolean functions with resistive switches. Two implication based realizations

are proposed for a 2-to-1 multiplexer (MUX) one for a minimum number of resistive

switches and the other for a minimum number of operations when lower latency is

of higher importance than area. It has not been referred to any BDD optimization

method in Chakraborti et al. (2014) to lower either the number of RRAM devices

or operations. For a given Boolean function, the approach maps the nodes of the

corresponding BDD representation to a netlist of RRAM devices using one of the

aforementioned implication based MUX realizations. Two methods for serial and

parallel evaluation of BDDs are proposed in Chakraborti et al. (2014) which lead

to different cost metrics. In the serial method, the BDD is traversed in depth-first-

manner and each node corresponding to a MUX realization is computed in order.

This method decreases the number of required RRAM devices but as a consequence

the length of computational operations increases significantly with respect to the size

of Boolean function which might not be of interest for many applications. The par-

allel method evaluates all of BDD nodes in a level at the same time but still requires

more RRAMs regarding the number of complemented edges and fanouts.

3 Customized In-Memory Computing

This section presents a full custom approach for MIG-based synthesis of logic-in-

memory computing circuits. The presented customized approach is based on a real-

ization proposed for the majority gate with RRAM devices and its corresponding

MIG mapping methodology. Then, several MIG optimization algorithms are pre-

sented with respect to area and depth, i.e., the number of RRAMs and instructions,

respectively (Shirinzadeh et al. 2016).

3.1 Realization of Majority Gate with RRAMs

Exploiting RM3 (Gaillardon et al. 2016), the majority gate can be realized using four

RRAMs within only three instructions:
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𝟎𝟏 ∶X = x,Y = y,Z = z,A = 0
𝟎𝟐 ∶PA = 1,QA = y,RA = 0 → R′

A = ȳ
𝟎𝟑 ∶PZ = x,QZ = ȳ,RZ = z → R′

Z = M(x, y, z)

In the first step, the initial values of input variables as well as an additional RRAM

are loaded by applying appropriate voltage levels to the top and bottom electrodes

of RRAM devices. Step 2 executes the required NOT operation in RRAM device A.

In the last step, the majority function is executed by use of RM3 at RRAM device Z.

3.2 Design Methodology

Although the realization imposes sequential circuit implementation, it allows a

reduction in area by reusing RRAMs released from previous computations. The

presented synthesis approach considers one MIG level at each time, such that the

employed RRAMs to evaluate the level can be used for other levels. Starting from

the input of the graph, the RRAMs in a level are released when all the required

instructions are executed. Then, the RRAMs are reused for the upper level and this

procedure is continued until the target function is evaluated. Such an implemen-

tation requires as many majority gates as the maximum number of nodes in any

level of the MIG. Hence, depending on the use of IMP or MAJ in the realization,

the corresponding number of RRAMs and steps for synthesizing the MIG is four

times the number of required majority gates and three times the number of levels,

respectively. However, still some additional RRAMs are needed in the presence of

complemented edges. Table 1 shows the number of RRAMs and instructions of the

resulting in-memory computing circuits.

For every complemented edge in the graph a NOT gate is required. The negation

can be executed by an RM3 operation with 0 as one input, as shown in second step

of the realization. This will require one extra RRAM to be loaded by 0 that can be

done in parallel with the data loading step and an additional instruction. For a correct

evaluation, the ingoing complemented edges of any level should be first inverted. It

is obvious that the required instructions for all complemented edges in a level can

be executed simultaneously. In other words, the additional steps required for com-

plemented edges are equal to the number of MIG levels with ingoing complemented

edges. Similarly, the total number of RRAMs required for the synthesis of the whole

graph is equal to the maximum of four times the number of nodes in the level plus

the number of ingoing complemented edges over all MIG levels.

3.3 MIG Rewriting for Customized In-Memory Computing

Having the cost metrics shown in Table 1, an MIG representing a given Boolean

function can be optimized by applying a set of valid transformations to find an
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Table 1 The cost metrics of MIG implementation using RRAMs

Symbol Definition Value

Ni No. of nodes in the ith level of the MIG Given

Ci No. of ingoing complemented edges in the ith level of the

MIG

Given

D The depth of the MIG Given

L No. of MIG levels with ingoing complemented edges Given

R No. of RRAMs max
0≤i≤D

(4Ni + Ci)

I No. of instructions 3D + L

equivalent but more efficient MIG. MIG optimization in terms of delay and area aims

at finding the smallest depth, i.e., the number of levels, or the size of the graph, i.e.,

the number of nodes. Using RRAMs for implementation, the metrics determining

area and delay depend on a combination of MIG features that some of them are not

intended in conventional area and depth optimization. However, a reduction in area

and especially depth might lower costs of an RRAM-based implementation. Thus,

specific optimization techniques are required to find an optimum MIG with respect

to the number of RRAMs and computational steps.

Two MIG rewriting algorithms for logic synthesis of in-memory computing cir-

cuits are presented in this section. The first algorithm optimizes MIGs with respect to

both objectives simultaneously, while the other one aims at reducing the number of

instructions, which is often regarded to be more important compared to the number

of RRAM devices. For a better understanding of the MIG optimization algorithms

tailored for in-memory computing, conventional area and depth optimization algo-

rithms for standard implementation of MIGs proposed in Amarù et al. (2014) are

introduced first.

1 for (cycles = 0; cycles < effort; cycles++) do
2 𝛺.M; 𝛺.DR→L;

3 𝛺.A; 𝛹.C;

4 𝛺.M; 𝛺.DR→L;

5 end
Algorithm 1: Conventional MIG area optimization (based on (Amarù et al. 2014))

}

eliminate

The framework for area optimization given in Algorithm 1 is based on conven-

tional MIG area optimization algorithm proposed in Amarù et al. (2014). Using

eliminate (𝛺.M; 𝛺.DR→L) some of the MIG nodes can be removed by repeatedly

applying majority rule (𝛺.M) and distributivity from right to left (𝛺.DR→L) to

the entire MIG. Assuming x, y, z, u, and v as input variables 𝛺.DR→L transforms

M(M(x, y, u),M(x, y, v), z) to M(x, y,M(u, v, z)) which means the total number of

nodes has decreased from three to two. In order to enable further reduction in the

number of nodes, the MIG is reshaped by use of associativity axioms 𝛺.A, 𝛹.C,
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which allow to move the variables between adjacent levels. Then, eliminate is applied

again to optimize the size of the newly arranged MIG. The area optimization algo-

rithm can be iterated for a maximum number of cycles called effort. From the point

of area in an RRAM-based circuit, although Algorithm 1 can reduce the number of

physical RRAMs by removing unnecessary nodes, it does not address the issue of

complemented edges that are important in both aforementioned cost metrics.

1 for (cycles = 0; cycles < effort; cycles++) do
2 𝛺.M; 𝛺.DL→R; 𝛺.A; 𝛹.C;

3 𝛹.R;

4 𝛺.M; 𝛺.DL→R; 𝛺.A; 𝛹.C;

5 end
Algorithm 2: Conventional MIG depth optimization (based on (Amarù et al.

2014))

}

push-up

Algorithm 2 is structurally similar to the MIG depth optimization procedure pro-

posed in Amarù et al. (2014) with slightly shorter iterations. In general, the depth

of the graph is of high importance in MIG optimization to lower the latency of the

resulting circuits. The depth of the MIG can be reduced by pushing the critical vari-

able with the longest arrival time to upper levels. This can be possible by the process

push-up shown in Algorithm 2. Push-up includes majority, distributivity, and asso-

ciativity axioms. It is obvious that the majority rule may reduce depth by removing

unnecessary nodes. Applying distributivity from left to right (𝛺.DL→R) such that

M(x, y,M(u, v, z)) is transformed to M(M(x, y, u),M(x, y, v), z) may also result in an

MIG with smaller depth. If either x or y is the critical variable with the latest arrival,

distributivity cannot reduce the depth of M(x, y,M(u, v, z)). However, if z is the crit-

ical variable, applying 𝛺.DL→R will reduce the depth of MIG by pushing z one level

up. In the cases that the associativity rules (𝛺.A, 𝛹.C) are applicable, the depth can

be reduced by one if the axioms move the critical variable to the upper level. After

performing push-up, the relevance axiom (𝛹.R) is applied to replace the reconver-

gent variables that might provide further possibility of depth reduction for another

push-up.

Although Algorithm 2 decreases the number of instructions in an in-memory

computing circuit, it does not consider the issue of complemented edges. Moreover,

the depth reduction by Algorithm 2 is only possible at a cost in area, since 𝛺.DL→R
adds one extra node to the graph. This may increase the area of the resulting circuit

if the size of the critical level, i.e., the level with the maximum number of required

RRAMs, is increased. 𝛺.A and 𝛹.C can also have a similar effect on the maximum

level size by moving one node to the critical level. A simple example for this is apply-

ing 𝛺.A to M(x, u,M(y, u,M(p, q, r))) that has a depth of three and one node in each

level. The transformation results in M(M(p, q, r), u,M(y, u, x)) of depth two and two

nodes in the lower level. Although the late arrival variable (M(p, q, r)) is pushed up,

the number of nodes in one level, that might be the critical level, has increased from

one to two. This effect is not of interest for implementation of MIGs with resistive

arrays, however using 𝛹.C might be with a positive spin in this case because of the

possibility of reducing the number of complemented edges.
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1 for (cycles = 0; cycles < effort; cycles++) do
2 𝛺.ML→R; 𝛺.DL→R; 𝛺.A; 𝛹.C;

3 𝛺.IR→L(1−3);

4 𝛺.ML→R; 𝛺.DL→R; 𝛺.A; 𝛹.C;

5 𝛺.A; 𝛺.DR→L;

6 end
Algorithm 3: Multi-objective optimization for in-memory computing costs

}

push-up

None of the algorithms explained above suggest a solution for the issue of comple-

mented edges that contain an important part of both cost metrics of in-memory com-

puting circuits. Moreover, a single-objective MIG optimization algorithm considers

either area or delay that leads to circuits worsened with respect to the other objective.

Hence, a multi-objective MIG optimization algorithm is presented to obtain efficient

RRAM-based logic circuits with a good trade-off between both cost metrics. The

algorithm includes a combination of conventional area and depth rewritings besides

techniques tackling complemented edges from both aspects of area and delay.

As shown in Algorithm 3, the presented MIG rewriting for in-memory computing

costs starts with applying push-up to obtain a smaller depth. Then, the complemented

edges are aimed by applying an extension of inverter propagation axiom from right

to left (𝛺.IR→L) for the condition that the considered node has at least two outgoing

complemented edges. The three cases satisfying this condition and their equivalent

majority gates are shown below and discussed in the following considering their

effect on both cost metrics.

M(x̄, ȳ, z̄) = M(x, y, z) (1)

M(x̄, ȳ, z) = M(x, y, z̄) (2)

M(x̄, ȳ, z) = M(x, y, z̄) (3)

In the first case, the ingoing complemented edges of the gate are decreased from

three to zero, while one complement attribute is moved to the upper level, i.e., the

level including the output of the gate. Assuming that the current level, i.e., the

level including the ingoing edges, is the critical level with the maximum number

of required RRAMs, this case is favorable for area optimization. However, if the

upper level is the critical level, the number of required RRAMs will increase by only

one. Similar scenarios exist for the two other cases, although the last case might be

less interesting because the number of complemented edges in both levels is changed

equally by one. That means a penalty of one is possible as the cost for a reduction of

one, while transformations (1) and (2) may result in RRAM reductions of three and

two, respectively.

To reduce the number of instructions, the number of levels possessing com-

plemented edges should be reduced. Depending on the presence of complemented

edges by other gates in both levels, the two first transformations given above might

reduce or increase the number of instructions or even leave it unchanged. Case (1) is
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Fig. 3 Applying an extension of 𝛺.IR→L to reduce the extra RRAMs and steps caused by comple-

mented edges

beneficial if the upper level already has complement edges and also the transfor-

mation removes all the complemented edges from the current level. It might be also

neutral if none of the levels are going to be improved to a complement-free level. The

worst case occurs when moving the complement attribute to the upper level which

increments the number of levels with complement edges. Similar arguments can be

made for the remaining cases. However, case (2) is more favorable because it never

adds a level with complemented edges and case (3) can not be advantageous because

it can never release a level from complemented edges.

Figure 3 shows a simple MIG that is applicable to transformation (2) (𝛺.IR→L(2)).

The transformation has released one level of the MIG from the complement attribute

(indicated by a black dot on the edge), which results in a smaller number of instruc-

tions. Furthermore, as a result of removing one complemented edge from the critical

level, the required number of RRAMs is decreased by one.

After applying inverter propagation for the aforementioned conditions

(𝛺.IR→L(1−3)), the MIG is also reshaped and more chances for reducing the depth

might be created. Thus, push-up is applied to the entire MIG again to reduce the

number of instructions as much as possible. In the last step, the number of RRAMs

are reduced to make a trade-off between both cost metrics. Applying 𝛺.A, some

of changes by push-up that have increased the maximum level size can be undone.

Finally, distributivity from right to left (𝛺.DR→L) is applied to the graph to reduce

the number of nodes in levels.

1 for (cycles = 0; cycles < effort; cycles++) do
2 𝛺.ML→R; 𝛺.DL→R; 𝛺.A; 𝛹.C;

3 𝛺.IR→L
4 𝛺.IR→L(1−3)
5 𝛺.ML→R; 𝛺.DL→R; 𝛺.A; 𝛹.C;

6 end
Algorithm 4: Instruction count optimization

⎫
⎪
⎬
⎪
⎭

push-up

Due to the importance of latency in logic synthesis, and the issue of sequen-

tial implementation, another MIG optimization algorithm is also presented in this

chapter to reduce the number of instructions of logic-in-memory computing circuits.

In the presented instruction count optimization algorithm, two axioms of inverter
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propagation are applied to the MIG after push-up. First, only the axiom presented

by case (1), i.e., the base rule of inverter propagation from right to left (𝛺.IR→L), is

applied to the entire MIG to lower the number of levels with complemented edges.

Since the transformation moves one complement attribute to the upper level, it might

create new inverter propagation candidates for the all three discussed cases if the

upper level already has one or two ingoing complemented edges. Hence, 𝛺.IR→L(1−3)
is applied again to ensure maximum coverage of complemented edges. Although

case (3) can not reduce the number of instructions, it is not excluded from𝛺.IR→L(1−3)
due to its effect on balancing the levels’ sizes. Finally, push-up is applied to the MIG

to reduce the depth more if new opportunities are generated. It should be noted that

the number of instructions is mainly determined by the MIG depth. In fact, in the

worst case caused by complemented edges, the total number of instructions would

be equal to four times the number of levels, i.e., the MIG depth.

3.4 Experimental Evaluation of Customized In-Memory
Computing

To assess the performance of the presented customized logic-in-memory computing

approach, experiments are carried out over a benchmark set including 25 Boolean

functions from LGsynth91 (Yang 1991) with a number of input variables from 7 to

135. The number of cycles (effort) is set to 4 in all experiments.

The comparison of results obtained by the conventional MIG area and depth

rewritings and the presented rewritings for the customized in-memory computing

approach are shown in Table 2. The instruction count optimization algorithm has

resulted in MIGs with the smallest number of instructions that is reduced by 29.71%

on average in comparison with the conventional depth optimization algorithm. This

shows that the employed techniques to reduce the complemented edges have been

effective. The results in Table 2 also show a trade-off between both cost metrics

obtained by the presented multi-objective algorithm. It achieves an average reduc-

tion of 32.55% in the number of instructions at a fair cost of 19.77% increase in the

number of RRAMs compared to the conventional area optimization algorithm.

4 Instruction Based In-Memory Computing

This section studies PLiM architecture (Gaillardon et al. 2016) and presents an opti-

mization procedure for it, including MIG rewriting and compilation, to reduce the

the length of instructions and the number of required RRAM devices (Soeken et al.

2016).
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Table 2 Experimental results of customized in-memory computing

Benchmark PI/PO Area optimization Depth optimization Multi-objective

optimization

Instruction count

optimization

#I #R #I #R #I #R #I #R

5xp1 7/10 40 121 40 153 36 149 28 182

alu4 14/8 104 1111 88 1324 72 1370 56 1717

apex1 45/45 92 1854 68 2373 56 2343 44 2972

apex2 39/3 104 249 84 423 56 358 47 435

apex4 9/19 76 2703 64 2894 64 2820 48 3602

apex5 117/88 100 861 52 1227 47 1053 35 1286

apex6 135/99 72 763 52 891 44 1018 36 1191

apex7 49/37 64 200 52 275 48 277 44 348

b9 41/21 36 168 32 168 32 168 28 168

clip 9/5 52 184 44 198 40 217 36 275

cm150a 21/1 36 88 36 88 32 95 32 90

cm162a 14/5 36 60 28 60 30 60 24 65

cm163a 16/5 28 68 28 68 27 68 24 68

cordic 23/2 56 143 48 174 48 134 39 162

misex1 8/7 28 73 24 92 24 76 20 94

misex3 14/14 92 1112 84 1488 67 1444 52 1762

parity 16/1 64 160 64 160 53 152 48 152

seq 41/35 112 1457 88 1798 64 1970 60 2498

t481 16/1 76 71 48 120 52 90 40 123

table 5 17/15 104 1126 84 1881 64 1723 52 2252

too_large 38/3 124 213 96 370 64 322 48 392

x1 51/35 64 309 40 528 36 435 28 509

x2 10/7 35 45 28 66 26 46 24 68

x3 135/99 72 750 52 951 44 1008 36 1201

x4 94/71 44 380 32 409 28 391 24 563

AVG 68.44 570.76 54.24 727.16 46.16 711.48 38.12 887

#I: number of RM3 instructions, #R: number of RRAMs

4.1 PLiM Architecture

The Programmable Logic-in-Memory (PLiM) architecture aims at enabling logic

operations on a regular RRAM array. While every memory node can implement

basic operations, the difficulty of operating logic on a memory array lies in the dis-

tribution of signals and the scheduling of operations. The PLiM controller consists

of a wrapper of the RRAM array (Fig. 4) and works as a simple processor core,

reading instructions from the memory array and performing computing operations

(majority) within the memory array. As a wrapper, PLiM uses the addressing and

read/write peripheral circuitries of the RRAM array. When LiM = 0, the controller

is off and the whole array works as a standard RAM system. When LiM = 1, the

circuit starts performing computation. The controller consists of a simple finite state

machine and few work registers, in order to operate the RM3 instruction, as detailed
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Fig. 4 The PLiM architecture: the PLiM controller operates as a wrapper over the RRAM array

and schedules the RM3 operations (Gaillardon et al. 2016)

in Gaillardon et al. (2016). The instruction format consists of the first operand A, the

second operand B, and the destination address Z of the results. Single-bit operands

A and B are then read from constants or from the memory array, and logic operation

is performed during the write operation to the memory location Z by setting P to

A and Q to B. The new value stored in the node Z is then Z ← ⟨ABZ⟩. When the

write operation is completed, a program counter is incremented, and a new cycle of

operation is triggered.

4.2 Motivation

The main idea of a compilation procedure for PLiM computer is leveraging MIGs in

order to derive RM3 instruction sequences, which can run as programs on the PLiM

architecture. In its current form, the PLiM architecture can only handle serial oper-

ations (Gaillardon et al. 2016). Therefore, only one MIG node might be computed

each time and the total number of instructions is equal to the sum of instructions

required to compute each MIG node. Accordingly, reducing the size of the MIG is

considered to have a significant impact on the PLiM program with respect to the

number of instructions. However, still further MIG optimization is possible to lower

the costs caused by complemented edges. While the presence of a single comple-

mented edge in an MIG node is of interest for benefiting from the intrinsic majority

operation inside an RRAM, a second or third complemented edge imposes extra

costs in both number of instructions and required RRAMs. Hence, MIG area rewrit-

ing, besides reducing number of nodes with multiple complemented edges, can be

highly effective for optimizing the number of instructions, while the latter can also

lower the number of required RRAMs.

As an example, consider the two equivalent MIGs in Fig. 5a, before optimization

on the left and after optimization on the right. Translating them into RM3 instructions

yields:
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Fig. 5 Reducing the

number of instructions and

RRAMs, after a MIG

rewriting and b node

selection and translation 2
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Before MIG optimization After MIG optimization
01: 0, 1, @X1 X1 ← 0 01: 0, 1, @X1 X1 ← 0
02: 1, i3, @X1 X1 ← ̄i3 02: i3, 0, @X1 X1 ← i3
03: i1, i2, @X1 X1 ← N1 03: i2, i1, @X1 X1 ← N1
04: 0, 1, @X2 X2 ← 0 04: i4, i2, @X1 X1 ← N2
05: 1, @X1, @X2 X2 ← N1
06: i2, i4, @X2 X2 ← N2

Here @Xi refers to the address of RRAM Xi and Nj refers to the result of the MIG

node j. Program addresses are bold in front of the RM3 instruction A, B, C, and the

second and fourth column comment the action of the instruction.

It can be seen that after optimization both the number of instructions and RRAMs

are decreased, from 6 to 4 and from 2 to 1, respectively. The effect of multiple com-

plement edge elimination is much larger when translating a large MIG.

Not only the MIG structure has an effect on the PLiM program, but also the

order in which nodes are translated and which of the node’s children are selected

as operands A, B, and destination Z in the RM3 instruction. As example, consider

the MIG in Fig. 5b. Translating it in a naïve way, i.e., in order of their node indexes

and selecting the RM3 operands and destination in order of their children (from left

to right), will result in the following program:

01: 0, 1, @X1 X1 ← 0 11: 0, 1, @X5 X5 ← 0
02: 1, i1, @X1 X1 ← ̄i1 12: i3, 0, @X5 X5 ← i3
03: 0, 1, @X2 X2 ← 0 13: i1, @X4, @X5 X5 ← N3
04: i2, 0, @X2 X2 ← i2 14: 0, 1, @X6 X6 ← 0
05: 0, @X1, @X2 X2 ← N1 15: 1, i3, @X6 X6 ← ̄i3
06: 0, 1, @X3 X3 ← 0 16: 1, 0, @X7 X7 ← 1
07: i3, 0, @X3 X3 ← i3 17: @X2, @X6, @X7 X7 ← N4
08: 1, i2, @X3 X3 ← N2 18: @X2, @X3, @X5 X5 ← N5
09: 0, 1, @X4 X4 ← 0 19: @X7, @X5, @X2 X2 ← N6
10: 1, i2, @X4 X4 ← ̄i2

By changing the order in which the nodes are translated and also the order in

which children are selected as operands and destination for the RM3 instructions, a

shorter program can be found (for the same MIG representation):

01: 0, 1, @X1 X1 ← 0 09: i3, 0, @X4 X5 ← i3
02: i2, 0, @X1 X1 ← i2 10: i1, @X3, @X4 X4 ← N3
03: i1, 1, @X1 X2 ← N1 11: @X1, @X2, @X4 X4 ← N5
04: 1, 0, @X2 X2 ← 1 12: 0, 1, @X2 X2 ← 0
05: i3, i2, @X2 X2 ← N2 13: i3, 0, @X2 X2 ← i3
06: 0, 1, @X3 X3 ← 0 14: @X1, 0, @X2 X2 ← N4
07: 1, i2, @X3 X3 ← ̄i2 15: @X1, @X4, @X2 X2 ← N6
08: 0, 1, @X4 X4 ← 0
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It can be seen that by translating the nodes with a different order, the number of

instructions is reduced from 19 to 15, and the number of RRAMs is reduced from

7 to 5. Based on this observations, the next part of this section describes algorithms

for automatically finding a good MIG representation and for translating an MIG rep-

resentation in an effective way to get a small PLiM program.

4.3 MIG Rewriting for Instruction Based In-Memory
Computing

As discussed before, the first requirement for an efficient compilation process is a

dedicated MIG rewriting algorithm such that optimizes MIG structures to be more

convenient for compiling into RM3 instructions. It was already shown that both the

size of an MIG and the distribution of complemented edges have an effect on the

PLiM program in number of instructions and number of RRAMs. Hence, we are

interested in an MIG rewriting algorithm that (i) reduces the size of the MIG, and

(ii) reduces the number of MIG nodes with multiple complemented edges.

1 for (cycles = 0; cycles < effort; cycles++) do
2 𝛺.M; 𝛺.DR→L;

3 𝛺.A; 𝛹.C;

4 𝛺.M; 𝛺.DR→L;

5 𝛺.IR→L(1−3);

6 𝛺.IR→L;

7 end
Algorithm 5: MIG rewriting for PLiM architecture

The MIG rewriting approach required for PLiM is given in Algorithm 5 and fol-

lows the rewriting idea of Amarù et al. (2014). It can be iterated for a certain number

of times, controlled by effort. The first three lines of Algorithm 5 are based on the

conventional MIG area rewriting approach proposed in Amarù et al. (2014). These

node elimination techniques are repeated after reshaping the MIG by applying 𝛺.A;

𝛺.C, which may provide further size reduction opportunities. To reduce the num-

ber of nodes with multiple inverted edges, the extended inverter propagation axioms

𝛺.IR→L(1−3) shown before are applied to the MIG.

At the end, since the MIG might have been changed after the three aforementioned

transformations, 𝛺.IR→L is applied again to ensure the most costly case is eliminated.

In general, applying the last two lines of Algorithm 5 over the entire MIG repetitively

can lead to much fewer instructions and RRAM cost.
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4.4 The PLiM Compiler

After applying the rewriting algorithm, the optimized MIG is compiled into a PLiM

program. Algorithm 6 gives an overview of the compilation procedure. The algo-

rithm keeps track of a map COMP[v] that stores for each MIG node v whether it has

been computed or not. Initially, all leafs, i.e., primary inputs and the constants, are

set to be computed. A priority queue Q keeps track of all vertices that can possibly be

translated, called candidates. A vertex is a candidate if all its children are computed.

Input : MIG M
Output : PLiM program P = {I1, I2,… , Ik}

1 foreach leaf in M do
2 set COMP[v]← ⊤;

3 end
4 foreach MIG node in M do
5 if all children of v are computed then
6 Q.enqueue(v);

7 end
8 end
9 while Q is not empty do
10 set c ← Q.pop();

11 set P ← P ∪ translate(c);

12 set COMP[c]← ⊤;

13 foreach parent of c do
14 if all children of v are computed then
15 Q.enqueue(v);

16 end
17 end
18 end

Algorithm 6: Outline of compilation algorithm

The main loop of the algorithm starts by popping the best candidate c from the

priority queue and translating it into a sequence of PLiM instructions. Afterwards,

for each parent, it is checked whether it is computable, and if this is the case, it is

inserted into Q.

The remaining of this section describes the details of the sorting criteria for Q,

and the node translation process are in order.

4.4.1 Candidate Selection

The candidate selection strategy for the PLiM compiler is based on two principles:

(i) releasing the RRAMs in-use as early as possible, and (ii) allocating RRAMs at

the right time such that they are blocked as short as possible. Two example MIGs

are shown to clarify the principles. Figure 6a shows an MIG with two candidates

u and v, for which all of their children nodes are already computed. Candidate u
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(a) (b)

Fig. 6 Reducing the number of RRAMs by selecting the candidate with a more releasing children

and b smaller fanout level index

has two releasing children, i.e., children who have single fan-out, while v has only

one releasing child. In the case that u is selected for computation first, the RRAMs

keeping its releasing children can be freed and reused for the next candidate.

Figure 6b shows a small MIG with two candidates u and v to illustrate the second

principle. The output of u is only required when v is already computed. In other

words, the number of RRAMs in use can increase if u is computed before v since the

RRAM keeping u cannot be released before computing the root node of the MIG.

This way, v is computed when an RRAM has been already allocated to retain the

value of u. The number of additional RRAMs required in such condition can be

considerable for large number of nodes.

In order to sort nodes in the priority queue in Algorithm 6, two nodes u and v are

compared. Node u is preferred over v if (i) its number of releasing children is greater,

or (ii) if u’s parent with the largest level (ordered from PIs to POs) is on a lower level

than v’s parent with the smallest level. If no criteria is fulfilled, u and v are compared

according to their node index.

4.4.2 Node Translation

To translate a node of the MIG into RM3 instructions, three operands A and B, and

destination Z should be selected in a way that the number of RRAMs and instructions

are as low as possible. The operands A and B can be RRAMs or constants and the

destination Z is a RRAM. Recall that the instruction computes Z ← ⟨A ̄BZ⟩. In the

ideal case each MIG node can be translated into exactly one RM3 instruction and

can reuse one of its children’s RRAMs as destination. In other cases additional RM3
instructions and/or additional RRAMs are required.

Select Operand B

We first select which of the node’s children should serve as operand B, i.e., the second

operand of the RM3 instruction. In total, four cases with subcases are checked in the
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Fig. 7 Selecting operand B

given order which are illustrated in Fig. 7. Only the last two subcases require two

additional instructions and one additional RRAM.

(a) There is exactly one complemented child: B is the RRAM storing this comple-

mented child.

(b) There is more than one complemented child, but also a constant child: The non-

constant complemented child is selected for B, since constants allow for more flexi-

bility when selecting the remaining operands.

(c) There is no complemented child, but there is a constant child: B is assigned the

inverse of the constant. Since we consider MIGs that only have the constant 0 child,

B is assigned 1.

(d) There is more than one complemented child, but at least one with multiple fan-
out: We select the RRAM of the child with multiple fan-out, as this excludes its use

as destination.

(e) There is more than one complemented child, none with multiple fan-out: The

RRAM of the first child is selected.

(f) There is no complemented child, but for one child there exists a RRAM with its
complemented value: Each node is associated with an RRAM which holds or has

held its computed result. In addition, if its inverted value is computed once and stored

in an additional RRAM Xi, it is remembered for future use. In this case B can be

assigned Xi.

(g) There is no complemented child, but one child has multiple fan-out: The child

with multiple fan-out is selected with the same argumentation as above. Since it is
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(a) (b)

(c) (d) (e)

Fig. 8 Selecting destination Z

not inverted, an additional RRAM Xi needs to be allocated, loaded with 0, and then

set to the complement of Xn. As described above, Xi is associated to the child for

future use.

(h) There is no inverted child and none has multiple fan-out: The fist child is selected

and an additional RRAM Xi is allocated to store the complement of Xn.

Select Destination Z

After the inverter selection, the destination RRAM, i.e., the third argument of the

RM3 instruction is selected. The aim is to reuse one of the children’s RRAMs as

work RRAM instead of creating a new one. In total, four cases (with subcases) are

checked which are illustrated in Fig. 8. Only the first case allows to reuse an RRAM

of the children for the destination, all the other cases require one or two additional

instructions and one additional RRAM. Note that one of the children has already

been selected as operand B and that this is implicitly considered in the following

descriptions.

(a) There is a complemented child with one fan-out, and there exists an RRAM with
its complemented value: The existing RRAM Xi for the complemented value can be

used and it is safe to override it, since the child does not fan out to other parents.
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(b) There is a noncomplemented child with one fan-out: The RRAM of this child

can be used as destination and it is safe to override it. Note that case (a) is preferable

compared to this one to avoid complemented children for operand A.

(c) There is a constant child: If there is a constant child (with or without multiple

fan-out) a new RRAM is allocated and initialized to the constant value (considering

complemented edges into account).

(d) There is a complemented child: If there is an inverted child Xd (with or without

multiple fan-out), a new RRAM Xt is allocated and initialized to the complement of

Xd using two RM3 instructions.

(e) There is a noncomplemented child with multiple fan-out: The first child Xd is

selected and it’s value is copied into a new allocated RRAM Xt using two RM3
instructions.

Select Operand A

The child that is selected as operand A is uniquely determined at this point since

operand B and destination Z have been selected. Consequently, there is no case dis-

tinction w.r.t. to preference. However, there are still different actions to be taken

depending on the child node.

(a) The child node is constant: A is set to the constant taking the complement edge

into account.

(b) The child node is noncomplemented: A is set to the RRAM of the child node.

(c) The child node is complemented, and there exists an RRAM with its complemented
value: A is set to the computed RRAM of the complemented value.

(d) The child node is complemented, but there does not exist an RRAM with its com-
plemented value: A new RRAM Xi is allocated and assigned to the inverted value of

the node. A is set to Xi.

At least one instruction is required and no additional RRAM needs to be allocated

in order to translate one node. In the worst case, six additional instructions and three

additional RRAMs are required, e.g., cases (h), (e), and (d) for selecting operand B,

destination Z, and operand A, respectively.

We are interested in finding programs with a small number of instructions and

a small number of RRAMs, i.e., optimized w.r.t. time and space. The presented

MIG rewriting algorithm and the node translation scheme address and affect both

optimization criteria whereas the candidate selection mainly targets the number of

RRAMs.

In order to further reduce the number of RRAMs, an RRAM allocation approach

is also employed. It implements an interface with two operations: (i) request, which

returns an RRAM that is ready to use, and (ii) release, which releases an RRAM

that is not required anymore. This interface is implemented by using a free list that is

populated with released RRAMs. Whenever an RRAM is requested, first it is checked

whether a free released RRAM exists that can be re-used, or a new fresh RRAM is

allocated. RRAMs are requested whenever more than one instruction is required to
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translate a node (e.g., cases (g) and (h) for selecting operand B). RRAMs are released

whenever all parents of a child have been computed.

4.5 Experimental Evaluation of Instruction Based
In-Memory Computing

Table 3 evaluates the efficiency obtained by the presented PLiM compiler for the

EPFL benchmarks.
1

The second column includes results for a naïve translation,

where only the candidate selection scheme is disabled, based on the initial nonopti-

mized MIGs. The third and the forth columns represent results after MIG rewriting

and both rewriting and compilation, respectively. The number of MIG nodes indi-

cated by N is also provided to give a better understanding of the MIG before and after

rewriting. It is clear that N also shows the number of MIG nodes for the compiled

PLiM, since the same MIG after rewriting has been used.

As expected, the number of MIG nodes have been reduced or remained unchanged

for a few cases after MIG rewriting. Although, the number of nodes after MIG rewrit-

ing does not show a significant reduction, the average of the number of instructions

is reduced up to 20.09% compared to the naïve translation. This besides the 14.83%

reduction achieved in the total number of RRAMs imply the effectiveness of the

employed techniques for removing multiple inverted edges.

Performing both MIG rewriting and compilation, the number of required instruc-

tions and RRAMs reduces notably. The number of instructions and RRAM for the

compiled PLiM are reduced on average by up to 19.95% and 61.4%, respectively in

comparison with the corresponding values obtained for the naïve PLiM. This repre-

sents a significant reduction in both the latency and especially storage space metrics.

5 Conclusion

In this chapter, majority based in-memory computing was fully studied for two cus-

tomized and instruction based approaches exploiting the memristive behavior of

RRAMs. Both approaches benefit from the intrinsic majority operation of RRAMs.

The customized synthesis approach utilizes MIG optimization algorithms to reduce

the number of RRAMs and instructions, and maps the optimized MIGs to memris-

tive arrays according to a level based implementation methodology. The instruction

based approach presents PLiM computer architecture and its automatic compiler for

translation of large Boolean functions into programs for the in-memory computing.

It was observed that both the MIG representation and the way in which an MIG is

compiled has a large impact on the resulting PLiM programs—in terms of required

instructions as well as number of RRAMs.

1
http://lsi.epfl.ch/benchmarks.

http://lsi.epfl.ch/benchmarks
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Experimental results of the customized approach show that higher efficiency can

be obtained with respect to the cost metrics of in-memory computing by specifically

defined MIG optimization algorithms rather than conventional ones. Experiments for

the instruction based approach show that compared to a naïve translation approach

the number of instructions can be reduced and RRAMs can be reduced by up con-

siderably. The presented compiler unlocks the potential of the PLiM architecture to

process large scale computer programs using in-memory computing. This makes this

promising emerging technology immediately available for nontrivial applications.
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Analysis of Dynamic Linear Memristor
Device Models

Balwinder Raj and Sundarapandian Vaidyanathan

Abstract The aim of this book chapter is to provide a comprehensive review report
on the Memristor device. Development of linear model for memristor and analysis
of memristor are the prime focus as its current requirement for high speed and low
power circuits design. Detailed discussion about memristor device physics, struc-
ture, operation, mathematical modeling and TCAD simulations have been carried
out for better understand of memristor. Moore’s law, the semiconductor industry’s
obsession with the shrinking of transistors with the commensurate steady doubling
on chip about every two years, has been a source of about 50 year technical and
economic revolution. Numerous innovations by a large number of scientists and
engineers have helped significantly to sustain Moore’s law since the beginning of
the Integrated Circuit (IC) era. As the cost of computer power to the con-
sumer reduces, the cost of production for producers to sustain Moore’s law follows
an opposite trend, i.e. Research, Development, Manufacturing, and Test costs are
increasing continuously with each new generation of chips. This had led to the
reason for existence of Moore’s second law, also called Rock’s law, which is that
the capital cost of a semiconductor fabrication also increases exponentially over
time. The formation of memristor is a great achievement in semiconductor industry
considering Moore’s second law because of its very easy and less steps of fabri-
cation which is the reason for memristor being so cheap, while its nano scale size is
new direction to attain Moore’s first law. Therefore, the modelling and simulation
of memristor is essential to analyze more advanced features of memristor without
spending a lot of money on fabrication and testing.

Keywords Memristor ⋅ Memristive device ⋅ Logic design ⋅ Linear model ⋅
Modeling ⋅ Simulation

B. Raj
Department of Electronics and Communication, National Institute of Technology,
Jalandhar 144011, Punjab, India
e-mail: balwinderraj@gmail.com

S. Vaidyanathan (✉)
R & D Centre, Vel Tech University, #42, Avadi, Chennai 600062, Tamil Nadu, India
e-mail: sundarcontrol@gmail.com

© Springer International Publishing AG 2017
S. Vaidyanathan and C. Volos (eds.), Advances in Memristors,
Memristive Devices and Systems, Studies in Computational Intelligence 701,
DOI 10.1007/978-3-319-51724-7_18

449



1 Introduction

Today, most electronic devices in technology inventions and all other applications
use semiconductor components. The study of semiconductor devices is known as a
branch of solid-state physics, whereas the designing and construction of the cir-
cuits to solve practical problems is included in electronics engineering (Raj et al.
2009; Sharma et al. 2014; Chua 1971). Moore’s law, the semiconductor industry’s
obsession with the shrinking of transistors with the commensurate steady doubling
on chip about every two years, has been a source of about 50 year technical and
economic revolution. Whether this scaling paradigm will last for 10 or 15 years
more, it will finally come to an end. The emphasis in electronic design will have to
shift to devices that are not just increasingly infinitesimal but increasingly capable.
Numerous innovations by a large number of scientists and engineers have helped
significantly to sustain Moore’s law since the beginning of the Integrated Circuit
(IC) era (Raj et al. 2013; Pattanaik et al. 2012; Raj 2014; Gergel-Hackett et al.
2009; Bhushan et al. 2013).

Innovations listed below are examples of breakthroughs that have played a
critical role in the advancement of integrated circuit technology by more than seven
orders of magnitude in less than five decades:

i. The invention of the Integrated Circuit itself is the foremost contribution and
the reason for existence of Moore’s law, credited equally to Jack Kilby at
Texas Instruments and Robert Noyce at Fairchild Semiconductor (Noyce
1961; Prodromakis and Papavassiliou 2011).

ii. The invention of the Complementary Metal–Oxide–Semiconductor
(CMOS) in 1963 enabled extremely dense and high performance ICs (Wan-
lass 1967; Johnson 2010).

iii. Invention of the Dynamic Random Access Memory (DRAM) technology in
1967 made fabrication of single-transistor memory cells possible (Dennard
1968; Raj et al. 2009; Larrieu and Han 2013).

iv. The invention of deep UV excimer laser photolithography decreased the
smallest features in ICs from 500 nm in 1990 to 32 nm in 2012. The trend is
expected to reach smallest feature below 10 nm in next decades (Jain et al.
1982; Biolek et al. 2009).

Some of the new directions in research that may allow Moore’s law to continue
are:

i. Using deep-ultraviolet excimer laser photolithography- IBM researchers
claimed to develop a technique to print circuitry only 29.9 nm wide using
193 nm Argon Fluoride excimer laser lithography (La Fontaine 2010; Raj
et al. 2008; Joglekar and Wolf 2009).

ii. In April 2008, researchers at HP Labs successfully created a working mem-
ristor, whose existence had previously only been theorized. The memristor’s
unique properties permit the creation of smaller and better-performing elec-
tronic devices (Strukov et al. 2008; Raj et al. 2011).
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iii. In February 2010 a breakthrough in transistors with the design and fabrication
of the world’s first Junctionless Transistor was announced. The researchers
claim that the Junctionless transistors can be produced at 10 nm scale using
existing fabrication techniques (Raj et al. 2008; Vishvakarma et al. 2007;
Mohsin 2010).

iv. In April 2011, development of Single-Electron Transistor (SET) was
announced, which was 1.5 nm in diameter and made out of oxide based
materials (Fuechsle et al. 2012; Raj et al. 2011; Volos et al. 2015).

v. In February 2013, the development of the first working transistor consisting of
a single atom placed precisely in a silicon crystal (not just picked from a large
sample of random transistors) announced (Larrieu and Han 2013).

2 Background Study: Memristor Review

The analysis of Memristor fabricated on polymer sheet by simple techniques is
done by Gergel-Hackett et al. (2009). The fabricated memristor was with ratio of
ON/OFF resistance (Ron/Roff = 10000:1), life = ∼14 days, and was able to show
good characteristics even with >4000 flexes and requires V < 10 V for stability
with thermal effects. The device was providing following advantages-

i. Both soft switching and hard switching compatible
ii. Behavior is not ambient dependent
iii. Suitable for flexible memory component
iv. Portable physically flexible device

Varghese and Gandhi (2009) have proposed a design for a low area differential
pair which substantially reduces cubic distortion, provide better Total Harmonic
Distortion and hence wide linear range with the help of memristor using in place of
nonlinear resistor to provide better nonlinearity. The advantage of exploiting the
nonlinearity was evident due to the reason that the memristor is 106 times more
nonlinear at nanoscale as compared to micro scale. The possibilities of logic design
using memristors are discussed in literature (Raja and Mourad 2010). Memristor as
state element is analysed, also basic logic operation on two memristor with both
inverting and non-inverting configuration is observed. Logic implementation on
multiple memristor (wired AND) and memristor crossbar logic design for imple-
mentation of NAND gate is shown (Raja and Mourad 2010).

Figure 1 shows an example of Crossbar Array, where all possible combinations
for state of a switch is shown and also the case if no switch is present. One switch is
realized here with one memristor working as a memory cell. As a memristor does
not consume area more than required for two perpendicular wires and power to save
its state in standby mode, memristor is a best option for a switch based memory cell
in Crossbar Architectures. Selection of a memory cell (memristor) is done by
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applying voltage on those selected wire/lines. Wired AND, NAND, XOR, SOP
implementation using memristor crossbar is given in Fig. 2a and future work
includes-

i. Multiple output implementation
ii. Multi crossbar architecture
iii. Implication logic

Equivalent circuit for a NAND gate works in following three stages:

i. Latch input operation- In this stage, the input data from the three input ter-
minals A, B, C is stored in the memristors M1–M3. Here, we have to apply a
writing voltage (Vw) at the input terminal IN. Assuming that the inputs A, B, C
are outputs of other memristors; the logic state of signals A, B, C is latched
into M1–M3 respectively.

ii. Copy inputs & close AND- Here we are copying data from M1–M3 to M4–
M6 and closing M7 by applying V = 0 at IN, K and Vw at AND. M7 will be
used in next stage as this is inverting stage configuration.

No Memristor at 
junction

Memristor closed

Memristor open

Memristor un-
known

Fig. 1 Memristor crossbar
array

(a) (b)

Fig. 2 Memristor crossbar with a 3-input NAND gate. a The crossbar with a 4 × 3 tile. b The
equivalent circuit of NAND gate
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iii. Evaluate and Capture- Here we have to apply read voltage (Vr) at IN and Vw

at OUT.

In order to read the output of the memristor M8, we need to disable the mem-
ristor M7 by applying a large negative voltage on AND to open memristors M4–M7
first and then the memristor M8 can be read out by applying a voltage V = 0 at
OUT and using the output terminal as an input to a subsequent crossbar logic gate.
Figure 2b is showing Evaluate and Capture stage of 3-input NAND gate imple-
mentation. Memristor can have many resistance levels, we can use some discrete
value as different logic levels and thus can use in multi value logic system as
reported by Mohsin (2010). The memristor is basically a resistor whose resistance
increases when current flows from one direction and decreases when current flows
from opposite direction, So small pulses of current can be applied to change its
resistance level to up or down depending on duration, direction and strength of
current pulse. Both Hard switching and Soft Switching can be done on the device
for binary or multilevel storage respectively. After storing values there is no need of
refreshing as data is in resistance value form, therefore no external power source is
required to save data for very large time duration.

Liu et al. (2010) propose a behavioral modeling method by constructing two
different workable memristor models. The models proposed are based on experi-
mental measured data of Au/Ti2O5/Au and Pt/TiO2/Al memristor, fabricated in their
lab. Curve fitting in MATLAB is also used. The proposed modeling method can be
used efficiently to choose different memristor materials or fabrication technique,
and the usefulness of which will be amplified by pursuing system-level analyzing
and large scale design of memristor arrays. Compact models for current controlled
and voltage controlled memristor implementable in SPICE, verilog-A and Spectre,
which are suitable for frequency dependent memristive hysteresis behavior reported
by Shin et al. (2010). This shows unique boundary assurance to simulate mem-
ristors whether they behave memristive or resistively. Parameter extraction, simu-
lation results with macro model shown. Discussion given on- dependency of model
on type of excitation signal and nonlinear dopant drift effect.

da Costa et al. (2012) were implemented the model in verilog- AMS and sim-
ulated in mentor graphics with AMS support. Switching between memristive and
resistive states occurs when the potential barrier that separates the doped and
undoped regions moves totally to one of sides and return only when the stimulus is
inverted. The model can be used for mixed-signal or multi-domain simulation in
circuit designs using memristor.

Figure 3 shows voltage and current output response for memristor model with
input voltage frequency f0 = 1 Hz, input voltage amplitude V0 = 1 V, dopant ion
mobility μv = 10−10 cm2s −1V−1, device length D = 10 nm and off to on resistance
ratio Roff/Ron = 160. It is clear from the Fig. 3 that if the input biasing is applied for
a time period more than required for full length boundary movement, then the
resistance of memristor will be saturated to one of its boundary value (either Roff or
Ron depending upon biasing polarity) and will remain at it until the input bias
polarity is reversed. The memristor will not show any nonlinearity in the case and
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will work as simple resistor. Changing the biasing will again change the resistance
of memristor to other boundary value as shown in Fig. 3.

A preliminary SPICE macro model of memristor to develop models for the
SPICE based analysis tools like HSPICE and Spectre was reported by author
Mohanty (2013). An interpretation of the memristor device recalling the quasi-static
expansion of Maxwell’s equations and a review on Chua’s argumentation about the
memristor relating to the electromagnetic theory was also given. They have con-
cluded that the Von-Neumann architecture, which is the base of all current com-
puter systems, is not capable for carrying out computations with nano-devices and
materials. There are lots options as different components but they are poor at
mimicking the human brain. However, the memristor motivates future work in
nano-electronics and nano-computing based on its capabilities.

3 Variables and Circuit Elements

Variables and circuit elements are important key components for any type of
advanced system design. Fundamental variables and basic circuit elements had been
evolution from many decades ago. New elements envisioning for the sake of
completion of a physical system is not without scientific precedent. Indeed, the well
known discovery of the periodic table for chemical elements by Mendeleef in 1869
is a case in point. From the circuit theory point of view, the relationship between
two of four fundamental circuit variables; namely current (i), voltage (v), charge (q),
flux-linkage ðφÞ, define three basic two terminal elements (Sharma et al. 2015).
Figure 4 shows the relationships between these variables and circuit elements.

Out of the six possible combinations of these variables, five are well known

relationships. Two of these relationships are given by qðtÞ= R

t

−∞
iðτÞdτ and

φðtÞ= R

t

−∞
vðτÞdτ. Other three relationships are given by axiomatic definition of the

Fig. 3 Variation in stability memristor switching
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three fundamental circuit elements, namely, Resistor (R= v
i ; relation between

voltage and current), Capacitor ðvðtÞ= 1
C qðtÞ; relation between charge and voltage)

and inductor (iðtÞ= 1
L qðtÞ; relation between flux and current). For the sake of

completeness from logical and axiomatic point of view, Prof. Leon O. Chua argued
for the Memristor (a contraction for Memory resistor because it behaves somewhat
like a nonlinear Resistor with memory) to set up a mathematical relationship
between electric charge and magnetic flux (Chua 1971).

The memristor device is characterized by a nonlinear relation between charge
and flux, i.e. time integrals of voltage and current. The symbol of memristor is
shown in Fig. 5.

4 Linear Model of Memristor

There are two models of memristor, viz. linear model and non-linear model.
In this chapter, we shall discuss only the linear model of memristor in detail. The

linear model of memristor is described for simple dopant ion drift kinetics in the
memristor which is not including any type of nonlinearity issues for the case of

i q

v

φ

Fig. 4 Variables and circuit elements

Fig. 5 Memristor symbol
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simplicity. The modelling is done on MATLAB and results are presented in sub-
sequent sessions. This chapter deals with the proposed linear model and discussion
of its results. Further output analysis in terms of state variable has been done here
with different driving voltage waveforms. In Sect. 5, the shortcomings of the linear
model with output waveforms are being analysed. All the input parameters asso-
ciated with the model are explained here.

First, the mathematical model of linear model is developed and explained below:

4.1 Mathematical Linear Model of Memrisror

In 1971, (Chua 1971) proposed memristance as the functional property of mem-
ristors; that correlates charge and flux, i.e.

M =
dφ
dq

ð1Þ

Since the flux is integration of voltage and charge is integration of current, the
memristance has the same units as resistance. Later on, Chua and Kang (1976)
generalized the concept to memristive systems, i.e.

v=RðxÞi ð2Þ
dx
dt

= f ðx, iÞ ð3Þ

where v is the voltage, i is the current, and RðxÞ is the instantaneous resistance that
is dependent on the internal state variable x of the device. This state variable x is
bounded within the interval [0, 1], and it is simply the normalized width of the
doped region x= w

D with D being the total thickness of the switching bilayer and
w is width of doped region at the instant. At time t, the width of the doped region
w depends on the amount of charge that has passed through the device; thus, the
time derivative of w is a function of current, which can be described as

dw
dt

=Vd = μE= μRon
iðtÞ
D

ð4Þ

where Vd is the speed at which the boundary drifts between the doped and undoped
regions, μ is the average dopant mobility, μE is the electric field across the doped
region in the presence of current i(t), Ron and Roff are the net resistances of the
device when the active region is completely doped and undoped respectively.
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The definition of memristance can be generalized as follows:

vðtÞ=MðtÞiðtÞ ð5Þ

MðtÞ=RonxðtÞ+Roff ð1− ðxðtÞÞ ð6Þ

vðtÞ= RonxðtÞ+Roff ð1− ðxðtÞÞ� �

iðtÞ ð7Þ

dx
dt

= μ
Ron

D2 iðtÞ ð8Þ

It is clear from above Eq. (8) that memristive effect is considerable in nanoscale
devices due to the D2 factor in denominator, which shows that memristive effect is
106 times better in nanoscale devices as compared to micro scale devices.

The MATLAB model simulation results, based on this mathematical model, are
shown in Fig. 6 for sinusoidal Driving Voltage waveform.

The time axis is showing here the step number, as the time period T =1.5 s is
divided in 1000 steps due to the reason that MATLAB is a Digital Environment
Programming Language and all the operations like integration and differentiation
are performed here with difference equations and hence steps are required for the
same. The driving voltage for this linear model is vðtÞ=Vo sinð2πftÞ with
V0 = 1.5 V. As the signature characteristics of memristor (Chua 1971) is its
pinched hysteresis loops in current-voltage characteristics, the output waveforms
(I–V curves) in Fig. 6 are enough for validation of model by showing a pinched

Fig. 6 Simulation curves for linear model with V0 = 1.5 V, T =1.5 s,
D=10 nm, μ=10− 14m2 V̸.Sec, Ron =100 Ω, Roff =16 KΩ
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hysteresis loop. The model is showing resistance switching between the predefined
range, viz. ½Ron,Roff �. Here the state variable x is having its maximum value ∼ 0.65
and corresponding to this value the memristance of the device is ∼ 550Ω.

4.2 Boundary Movement Condition

The maximum value of state variable is not equal to 1. That is, the voltage
amplitude is not sufficient for full length conductive layer, as it can be seen in
Fig. 6. However, it also depends on the initial value of the state variable. We are
assuming the initial value of the state to be zero, i.e. xð0Þ=0.

Therefore, increasing the voltage amplitude increases the maximum value that
can be obtained by the state variable keeping the time period of the driving voltage
wave constant.

From the Eqs. (7) and (8), we have

dx
dt

= μ
Ron

D2

vðtÞ
RonxðtÞ+Roff ð1− xðtÞÞ� � ð9Þ

We know that Roff ≫Ron and 0< xðtÞ<1.
Thus, we can assume that RonxðtÞ+Roff ≈ Roff .
With this assumption, we can simplify Eq. (9) as follows:

dx
dt

= μ
Ron

D2

vðtÞ
Roff ½1− xðtÞ� ð10Þ

We define k= μ Ron
D2Roff

and β= Roff

Ron
.

Then we can write Eq. (10) as follows:

½1− xðtÞ� dxðtÞ= kvðtÞ dt ð11Þ

We integrate Eq. (11) with the initial condition xð0Þ=0. Thus, we get

xðtÞ− ½xðtÞ�2
2

= kφðtÞ ð12Þ

For the full length travel of boundary between doped and undoped layers, we can
take the final condition for the state variable as xðTÞ=1.

From Eq. (12), it is clear that for maximum value of state variable xðtÞ=1,

flux φðtÞ= 1
2k

=
βD2

2μ
ð13Þ
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Equation (13) is representing the amount of flux required for full length travel of
the boundary between doped and undoped layers for any driving voltage.

In this work, we take β=160,D=10− 8 m, and μ=10− 14 m2/V.sec. Also, the
flux value φðtÞ=0.8 Weber for t being the time instant when xðtÞ=1.

4.3 Linear Model Results with Driving Voltage

The Flux is defined as area under the voltage-time curve. We will now see the
boundary movement for different types of driving voltage waveforms. For same
Flux value the amplitude and shape of voltage wave changes. Correspondingly, the
state variable value pattern also changes.

4.3.1 Sinusoidal Wave

For a sinusoidal voltage input, flux in positive half cycle is-

Z

T 2̸

0

vðtÞdt=φ
T
2

� �

=V0
T
π

ð14Þ

with T = 2 s and V0 = 1.29 V, the following wave output in Fig. 7 is obtained with
the linear memristor model. The area under the driving voltage curve is obtained as
φ T

2

� �

=0.821 and the maximum value of state variable is obtained as x T
2

� �

=0.96.

Fig. 7 The state variable
response for sinusoidal
voltage input
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4.3.2 Triangular Wave

For a triangular voltage input, flux in positive half cycle is obtained as

Z

T 2̸

0

vðtÞdt=φ
T
2

� �

=V0
T
π

ð15Þ

with T =1.5 s and V0 = 2.19 V, the following wave output in Fig. 8 is obtained with
the linear memristor model. The area under the driving voltage curve is obtained as
φ T

2

� �

=0.821 and the maximum value of state variable is obtained as x T
2

� �

=0.96.
It is clear from Figs. 7 and 8 that the output response for both the triangular

wave and sinusoidal wave input type is almost of same shape and so the maximum
attainable value of state variable for the same flux (area under the curve) is also
same. The case will be different for the input waves with abrupt changes (Fig. 9).

4.3.3 Square Pulse

• Returning Zero type- For a square pulse (RZ) voltage input, flux in positive
half cycle is obtained as

Z

T 2̸

0

vðtÞdt=φ
T
2

� �

=
Z

T 4̸

0

vðtÞdt +
Z

T 2̸

T 4̸

vðtÞdt=V0
T
4

ð16Þ

Fig. 8 The state variable
response for triangular
voltage input
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with T =1.5 s and V0 = 2.183 V, the following wave output in Fig. 10 is obtained
with the linear memristor model. The area under the driving voltage curve is
obtained as φ T

2

� �

=0.818 and the maximum value of state variable is obtained as
x T

2

� �

=0.87.
Non-Returning Zero Type- For a square pulse (NRZ) voltage input, flux in

positive half cycle is-

Fig. 9 The state variable
response for square pulse
(RZ) voltage input

Fig. 10 The state variable
response for square pulse
(NRZ) voltage input
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Z

T 2̸

0

vðtÞdt =φ
T
2

� �

=
T
2
V0 ð17Þ

with T =1.5 s and V0 = 1.09 V, the following wave output in Fig. 11 is obtained
with the linear memristor model. The area under the driving voltage curve is
obtained as φ T

2

� �

=0.817 and the maximum value of state variable is obtained as
x T

2

� �

=0.91.

4.3.4 Two Pulse

For a two pulse (Digital) voltage input, flux in positive voltage part is-

Z

T

0

vðtÞdt=
Z

T 4̸

0

vðtÞdt+
Z

T 2̸

T 4̸

vðtÞdt+
Z

3T 4̸

T 2̸

vðtÞdt+
Z

T

3T 4̸

vðtÞdt= φðTÞ= T
2
V0 ð18Þ

with T =1.5 s and V0 = 1.05 V, the following wave output in Fig. 11 is obtained
with the linear memristor model. The area under the driving voltage curve is
obtained as φðTÞ=0.788 and the maximum value of state variable is obtained as
xðTÞ=0.84.

Fig. 11 The state variable
response for two pulse
(Digital) voltage input
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4.3.5 Four Pulse

For a Four pulse (Digital) voltage input, flux in positive voltage part is given by

Z

T

0

vðtÞdt =φðTÞ= T
2
V0 ð19Þ

with T =1.5 s and V0 = 1.05 V, the following wave output in Fig. 12 is obtained
with the linear memristor model. The area under the driving voltage curve is
obtained as φðTÞ=0.788 and the maximum value of state variable is obtained as
xðTÞ=0.84.

This is clear from state variable responses for all above waveform types of
Driving Voltage full length boundary movement can be achieved with a certain flux
value. This Flux value can be calculated from the Eq. (13) for given set of
parameter ðβ, μ,DÞ values. For abrupt changes in input voltage values there is
significant nonlinear effect in the output response and for input types with con-
tinuous value changes the output response is not showing any nonlinearities and so
the maximum attainable state variable value is more near to 1 in the same case.

The overview of results for all above types of waveforms is given in Table 1
below including maximum attainable state variable value and the Flux applied
(Area under the Driving Voltage Curve) for the same.

The Table 1 clarifies that for maximum attainable state variable value, which is
showing here full length boundary movement, the required Flux is almost same for
all types of waveforms and this itself is almost equal to the theoretically calculated
value of Flux for full length boundary Movement from (13).

Fig. 12 The state variable
response for Four pulse
(Digital) voltage input
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The same calculation procedure can be applied for any certain value of state
variable value. The only difference will be the value of xðtÞ in (12) for which we are
analyzing the model. We analyze the linear memristor model for the same set of
parameter values, i.e. β=160, D=10 nm, μ=10− 14 m2/V.Sec with the final state
variable value xðtÞ=0.27. The corresponding flux value is obtained as

φðtÞ= 1
k

xðtÞ− xðtÞ2
2

" #

=1.6 0.27−
ð0.27Þ2

2

" #

=0.374 ð20Þ

the driving voltage wave we are considering here is square pulse (RZ) with V0 = 1
V and T =1.5. For these values, the area under the curve is obtained as
V T

4

� �

=0.375, which is again equal to the theoretically calculated required flux
value given in (20). The state variable response is shown in Fig. 13.

Table 1 Flux requirement for maximum attainable state variable value for different waveforms

Waveform
shape

Area of positive
cycle

Time
period
T (s)

Amplitude
V0(V)

Flux in positive
cycle

Xmax = (w/D)max

Sinusoidal (1/π)V0.T 2 1.29 0.821 0.96
Triangular (¼)V0.T 1.5 2.19 0.821 0.96
Square
NRZ

(½)V0.T 1.5 1.09 0.817 0.91

Square RZ (¼)V0.T 1.5 2.183 0.818 0.87
2 Pulse (½)V0.T 1.5 1.05 0.787 0.84
4 Pulse (½)V0.T 1.5 1.05 0.787 0.84

Fig. 13 The state variable
response for square pulse
(RZ) voltage input
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Figure 13 clarifies that, except for the end positions, the nonlinear effects are
insignificant for middle part of the device as the nonlinearities in output response
are very less even for the input voltage wave with abrupt changes in the magnitude.

5 Shortcomings of the Linear Memristor Model

The shortcomings of the linear memristor models are its terminal state problem,
boundary issues and nonlinear effects. These are as explained below:

5.1 The Terminal State Problem

After a limit of the voltage amplitude the state variable value goes out of the defined
limit, i.e. [0,1]. This is named as ‘The Terminal State Problem’ as after a limit the
state variable cannot come to the range defined even if negative voltage is applied.

Figure 14 clarifies that in first positive half cycle the memristance is decreasing
while the state variable is going towards maximum value and vice versa for the next
negative half cycle. It can be seen that the maximum value of state variable is not
exactly equal to 1. We expect that the voltage amplitude is not sufficient for full
length conductive layer (moreover it also depends on the initial value of the state
variable, but here we are assuming it to be zero).

Fig. 14 Simulation curves for linear model with V0 = 1.69V,T =1.5 s, Steps = 100/cycle
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Increasing the voltage amplitude increases the maximum value that can be
obtained by the state variable, but up to an extent only and after that terminal state
problem arises.

Table 2 shows the corresponding maximum values of state variable. We can see
from Table 2 that voltage amplitude value 1.73 is showing terminal state problem
as the minimum value of state variable is also 1.2, which is not in the predefined
range [0, 1]. Figure 15 clarifies the terminal state problem more clearly.

There are also other problems observed in Table 2 such as the negative mini-
mum values of state variable. This is due to the programming in Digital Environ-
ment. Here application of sinusoidal driving voltage on memristor is done with 100
time steps and these steps are taking the value of V0 sinðωtÞ for total step period
which is at the starting instant of the step. So there is arising some asymmetry in
wave in positive and negative half cycle.

Figure 16 depicts this phenomena with number of steps equal to 20 and 100.

Table 2 First maximum and
minimum value of state
variable with increasing
voltage amplitude

V0 X max.1 X min1 X min2

1.69 0.86 0 –0.03
1.7 0.9 0 –0.04
1.71 0.93 –0.02 –0.04
1.72 0.953 –0.02 –0.05
1.725 0.99 –0.025 –0.055
1.73 2 1.2 1.2

Fig. 15 Simulation curves for linear model showing The Terminal State Problem, with
V0 = 1.73V,T =1.5 s, Steps = 100/cycle
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5.2 Boundary Issues and Nonlinear Effects

When assuming that the generated electric field is small enough, the linear dopant
drift model can approximate the dynamics of a memristor. However, this model is
invalidated at boundaries when the boundary between doped and undoped regions
is at either of end, i.e. when w ≳ 0 or w ≲ D. This is due to the influence of a
non-uniform electric field that significantly suppresses the drift of the dopants. The
limitations of this model are revealed when, for example, driving a TiO2/TiO2-x

memristor (Ron = 100 Ω, Roff = 16 kΩ, w0 = 5 nm, D = 10 nm, and μ = 10−14

m2/V s) into its extreme states, i.e., saturation (w = D) and depletion (w = 0). In
the case of saturation, w exceeds the limit value of D (10 nm), whereas the device’s
memristance falls below the 100 Ω cut-off value (Ron). Likewise, in depletion,

Fig. 16 Asymmetry in biasing voltage waveforms due to digital environment
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w can take negative values with the memristance exceeding the upper limit of
16 kΩ (Roff), which is clearly erroneous. At the edges of device some fringing
fields also exists and over the length of the device also some nonlinearities exists.
Applying a nonlinear drift over dopants at the edges of device to get rid of boundary
issues is called Non-linear dopant drift model.

6 Frequency-Voltage Relationship

The Linear Memristor model analysis shows that the increase in the frequency of
Driving Voltage decreases the Flux in one cycle with the same magnitude of volt-
age. As we have discussed in Table 1, the flux required for movement of boundary
up to a certain position or more clearly flux required for a certain state variable
value is constant if the parameters are taken not varying their value. So for applying
same Flux with higher Driving Voltage frequency we have to increase the peak
value of the Driving Voltage wave. The relation between this peak voltage value
and frequency is linear and given by

xðtÞ− xðtÞ½ �2
2

= kφðtÞ, k= μ
Ron

D2Roff
, β=

Roff

Ron
ð21Þ

We take two different cases with xðtÞ=1 and xðtÞ=0.5 both with xð0Þ=0. The
flux values for these boundary positions are 0.8 Wb and 0.6 Wb respectively.
Figures 17a, b show the frequency voltage curves for these two cases with sinu-
soidal biasing inputs for both linear and nonlinear memristor models. The flux in
positive half cycle for a sinusoidal input is obtained as

φ
T
2

� �

=V
T
π
=0.8 ð22Þ

Thus, the relation between frequency and voltage for full length boundary
movement can be expressed as

V =
0.8π
T

or V =2.512f ð23Þ

The relation (23) between V and f is linear. Thus, the curve V =mf is expected to
be linear with slope m=2.512. The nonlinear model is less compatible with the
theoretical model but is showing more nearby values with practically measured
data, as we will see later. The initial boundary value for these cases in nonlinear
models is xð0Þ=0.01. Similarly, the second case of xðtÞ=0.5 is giving Frequency
Voltage relationship V =1.884 f, which is linear again as expected.

It is clear from Fig. 17 that the nonlinear model is showing less correlation with
the theoretical model as compared to the linear model. While Fig. 17b shows that
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with higher values of p, the correlation nonlinear model response and theoretical
model can be increased. The equation of linear curves are (shown in graphs above)
more clearly showing the correctness of the model.

7 Effect of Parameters on F-V Curves

The reason behind the linear relationship between frequency and voltage is the
dependence of flux only on the initial and final boundary position. The flux in fact
depends upon the parameter values also i.e. the total device length ðDÞ, the off to on
resistance ratio ðβÞ and the mobility of charged dopant ions ðμÞ. To observe the
effect of these parameters on the flux or more clearly on frequency-voltage rela-
tionship, here one parameter is changing, keeping others constant.
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7.1 Effect of Device Length (D)

Figure 18 shows the effect of device length on frequency-voltage curves (with
β=160, μ=10− 14 m2/v.sec).

For theoretical understanding of dependence on D for full length boundary
movement condition, we can say

xðtÞ− xðtÞ½ �2
2

=
μ

D2β
φðtÞ ð24Þ

Thus, we have

φðtÞ= 0.5D2ð160Þ
10− 14 =V

T
π

� �

ð25Þ

or

V = ð251.2ÞD2f ×1014 ð26Þ

For D=10 nm, 50 nm, 100 nm, the frequency-voltage relationship in Eq. (26)
becomes V =2.51 f, V =62.75 f, V =251 f, respectively.

The graphs of curves in Fig. 18 show good correlation with these theoretical
equations defining the relation between voltage and frequency.

7.2 Effect of ROff to ROn Ratio (β)

Figure 19 shows the effect of ROff to ROn Ratio on frequency-voltage curves
(D = 10 nm, μ = 10−14 m2/v.sec). For theoretical understanding of dependence on
β for full length boundary movement condition, we can say
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xðtÞ− xðtÞ½ �2
2

=
μ

D2β
φðtÞ ð27Þ

Thus, we have

φðtÞ= 0.5D2ð10− 16Þ
10− 14 =V

T
π

� �

ð28Þ

or

V = ð0.0157Þβf ð29Þ

For β=160, 100, 200, the frequency-voltage relationship in Eq. (29) becomes
V =2.51 f,V =1.57 f,V =3.14 f, respectively.

The graphs of curves in Fig. 19 show good correlation with these theoretical
equations defining the relation between voltage and frequency.

7.3 Effect of Charged Dopant Mobility (μ)

Figure 20 shows the effect of Charged Dopant Mobility (μ) on frequency-voltage
curves D=10 nm, β=160ð Þ. For theoretical understanding of dependence on μ for
full length boundary movement condition, we can say

xðtÞ− xðtÞ½ �2
2

=
μ

D2β
φðtÞ ð30Þ
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Thus, we have

φðtÞ= 0.5 × 160× 10− 16

μ
=V

T
π

� �

ð31Þ

or

V =
251.2 × 10− 16

μ

� �

f ð32Þ

For μ=10− 14 m2 v̸.sec, 5 × 10− 15 m2 v̸.sec, the frequency-voltage relationship
in Eq. (32) becomes V =2.51 f, V =5.02 f, respectively. The graphs of curves in
Fig. 20 show good correlation with these theoretical equations defining the relation
between voltage and frequency.

7.4 Effect of Driving Voltage Wave

This is clear from state variable response for all waveform types of Driving Voltage
that full length boundary movement can be achieved with a certain flux value. This
Flux value can be calculated for given set of parameter β=160,D=10 nm,ð
μ=10− 14 m2 v̸.secÞ values. The overview of results for all above types of wave-
forms is given in Fig. 21 including maximum attainable state variable value and the
Flux applied (Area under the Driving Voltage Curve) for the same.

The chart shows that for full length boundary movement, with given set of
parameter values, the required flux value is φðtÞ=0.8 wb, but the maximum
boundary position xmax cannot be equal to 1 for all types of waves due to some
nonlinearities present in the device for those specific waves.
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The required flux for achievable maximum boundary position can be defined by
the following equation

xðtÞ− xðtÞ½ �2
2

=
μ

D2β
φðtÞ ð33Þ

For 2 pulse type biasing voltage, xmax = 0.84 and the required flux for the same is
φðtÞ=0.78. Also, the simulated flux value in the chart is in good coordination with
the theoretical value.

8 Applications of Memristor

Recently there has been an increased interest in research on memristors due to the
demonstration of memristor manufacturing as well as their potential applications.
Research is in full swing to use memristors in computer memory, analog circuits,
sensors, and digital logic. Memristor models need to be made available for the
design engineers to use the memristor as a circuit element during design explo-
ration. The following areas are where researchers getting interest and so getting
familiar with memristor-

(i) Application of memristor in programmable logic designing
(ii) Memristor crossbar array formation
(iii) Memristor based nonvolatile memory designing and analysis
(iv) Artificial intelligence
(v) Thinking machine
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(vi) Realization of artificial neural networks
(vii) Signal processing and control systems
(viii) Other analog and digital applications

9 Summary

A brief background of memristor and its development as a device and logic design
are discussed first in this chapter. A linear model of memristor is proposed. Next,
mathematical modelling and simulation results are presented for the linear model of
memristor. The memristor has been modelled in various tools in VLSI Design
including the nonlinear effects but till now only linear model is available for
MATLAB. The conclusions have been drawn from the simulation results. The final
boundary position depends on the flux passed through the device and initial
boundary position for constant parameter (β, μ, D) values. So the boundary will
definitely come to its initial position if the net applied flux is zero. The final state
variable value does not depend upon the driving voltage wave shape if the flux
corresponding to all the wave shapes is same. The terminal state problem can be
successfully overcome by a lesser value of scaling parameter, both for hard current
and soft current applications. Memristor is new device having both linear and
non-linear behaviour. Linear model for memristor is discussed in detail in this
chapter and non-linear model may considered as future work for memristor
development.
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Dynamics of Delayed Memristive Systems
in Combination Chaotic Circuits

O.A. Adelakun, S.T. Ogunjo and I.A. Fuwape

Abstract The use of memristor in the realization of chaotic circuits has gained

popularity in recent times. This can be attributed to its simplicity over the tra-

ditional Chua’s diode. The memristor as a nanometer-scale passive circuit ele-

ment which can be described as a resistor with memory and possesses nonlinear

characteristics. In this chapter, the numerical and experimental dynamics of non-

autonomous time delay memristive oscillator which consists of negative conduc-

tance and smooth-cubic memristor are reported. Diffusive and negative feed back

coupling of combination-combination arrays of the electronic circuits are also pre-

sented. The viability of both numerical and electronic simulation are also presented.

1 Introduction

The discovery of a chaotic attractor by Lorenz (1963) brought attention to the study

of chaos and chaotic systems. Several chaotic attractors such as Duffing oscillators,

Rossler Chaotic attractors, (Pehlivan and Uyaroglu 2010) etc. have proposed for the

study of chao s by researchers. Over the years, the study chaos has been extended to

the study of time series data. Many natural and physical systems such as population

of beetles (2013), BZ chemical reaction, economic data (Fuwape and Ogunjo 2013,

2015), atmospheric data (Fuwape et al. 2016) have been found to be chaotic. The

pioneering work of Pecora and Carroll (1990) on synchronization showed that two

similar or different systems following different trajectories can be made to track one

another.

O.A. Adelakun ⋅ S.T. Ogunjo (✉) ⋅ I.A. Fuwape

Federal University of Technology, Akure, Ondo State, Nigeria

e-mail: stogunjo@futa.edu.ng

O.A. Adelakun

e-mail: aoadelakun@futa.edu.ng

I.A. Fuwape

e-mail: iafuwape@futa.edu.ng

© Springer International Publishing AG 2017

S. Vaidyanathan and C. Volos (eds.), Advances in Memristors,
Memristive Devices and Systems, Studies in Computational Intelligence 701,

DOI 10.1007/978-3-319-51724-7_19

477



478 O.A. Adelakun et al.

Synchronization is a process wherein two (or many) chaotic systems (either equiv-

alent or nonequivalent) adjust a given property of their motion to a common behav-

ior due to a coupling or to a forcing (periodical or noisy) (Boccaletti et al. 2002).

Chaos synchronization has practical applications in secure communication (Ojo and

Ogunjo 2012; Adelakun et al. 2014b), neuronal dynamics (Wang et al. 2011), chemi-

cal reactions, etc. Different synchronization schemes have been proposed and imple-

mented for synchronization between chaotic systems, these include: active control,

adaptive control, active backstepping, feedback control. Performance of different

synchronization schemes have been investigated for integer order (Ojo et al. 2013)

and fractional order (Ogunjo et al. 2017). The need for a multiuser communica-

tion scheme has led to the development of communication systems with multiple

drives. In combination synchronization, synchronization is achieved between three

similar or dissimilar chaotic systems (Ojo et al. 2016) and combination-combination

synchronization between multiple drives and multiple slaves (Ojo et al. 2015a, b).

Increased or reduced order synchronization is the synchronization of two or more

systems with different order. Different order synchronization has been achieved

between two systems (Ogunjo 2013) and multiple systems (Ojo et al. 2014a, b).

The prospect of practical application of chaos theory in secure communication has

led to circuit implementation of chaotic circuits. Practical chaos based communica-

tion scheme has been achieved using fibre optics (Argyris et al. 2005) and semicon-

ductor lasers (Mengue and Essimbi 2012). Synchronization of systems for secure

communication has been implemented for discrete systems (Nagaraj and Vaidya

2009), integer order systems (Wang et al. 2012) and fractional order systems (El-

Sayed et al. 2016). Rigorous testing and breaking of chaos based secure communica-

tion scheme has led to continuous development of more robust chaos based commu-

nication schemes (Jinfeng and Jingbo 2008; Li et al. 2012). Elhadj and Sprott (2008)

reported that the attractors by Chua et al. (1986) has more complex dynamics than

the Lorenz type attractors. This could be attributed to the presence of a memristor.

The memory resistor or memristor is a nonlinear device. It was proposed by Chua

(1971) as the fourth circuit element after resistor, capacitor and inductor. The first

practical memristor based on titanium dioxide thin films was developed by Strukov

et al. (2008). A flux controlled memristor is characterized by a memductance (W(𝜙))
that describes the flux dependent rate of change of charge (El-Sayed et al. 2013) as

W(𝜙) =
dq(𝜙)
d𝜙

(1)

using the relationship i = dq
dt

and v = d𝜙
dt

, the current through a flux controlled mem-

ristor can be written as

i(t) = W(𝜙)v(t) (2)

Various expressions proposed for the flux-dependent rate of change of charge include:

q(𝜙) = a1𝜙 + a2𝜙3
(El-Sayed et al. 2013; Adelakun et al. 2014a), q(𝜙) = −a𝜙 +

0.5b𝜙2sgn(𝜙) (Bo-Cheng et al. 2011), q(𝜙) = 𝜙

3 + a𝜙2 + b𝜙 + c (Messias et al.

2010) and
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q(𝜙) =
⎧
⎪
⎨
⎪
⎩

b𝜙 + b − a, if 𝜙 < −1;
a𝜙, if − 1 < 𝜙 ≤ 1;
b𝜙 + a − b, if x > 1.

(3)

where a, b, cℝ (Zuo and Cao 2015).

Memristors have found applications in neuronal spike event generation (Shin et al.

2012) and artificial neuron modelling (Aihara 1991). Memristor based Chua circuit

for the generation of multiple attractors have been implemented (Xu et al. 2016). The

dynamics of different memristor based nonlinear oscillators have been derived and

explore (Itoh and Chua 2008). Theoretical analysis of memristive systems have also

gain attention over the years (Adelakun 2013, 2014).

2 Related Works

The pioneering work of Pecora and Carroll (1990) in synchronizing two chaotic sys-

tems has led to new innovations such as increased order synchronization (Ogunjo

2013), compound synchronization (Ojo et al. 2016), compound-compound synchro-

nization (Ojo et al. 2015a), fractional order synchronization (Ogunjo et al. 2017)

and others. Chua (1971) predicted the memristor as a circuit element. Significant

advances has been made in the development of the memristor and practical applica-

tions in secure communications (Xu et al. 2016; Adelakun 2013, 2014; Aihara 1991).

Recent advances in the field of chaos, intelligent and control systems have been

discussed extensively (Vaidyanathan and Volos 2016a, b; Azar and Vaidyanathan

2016).

3 System Description

Papadopoulou et al. (2008) proposed a non-autonomous chaotic system with double

bell attractor. The systems is described as

dVC1
dt

= 1
C1

(iL1 − i)

dVC2
dt

= − 1
C2

(GnVc2 + iL2 − iL1) (4)

diL1
dt

= 1
L1

(Vc2 − Vc1 − iL1R1)

diL2
dt

= 1
L1

(Vc2 + iL2R2 + Vs(t))
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Fig. 1 Fourth order chaotic

system using memristor

(Papadopoulou et al. 2008)

Papadopoulou et al. (2008) used a nonlinear function i of the form described in

Eq. 3. Synchronization of system (4) was reported by Mamat et al. (2012). This work

extends these earlier work done by introducing an extra dimension, computing the

dynamics of the system and combination-combination synchronization of the system

(Fig. 1).

A time delayed memristive system described by Eq. 5 is used in this work.

C1
dVC1
dt

= iL1 − iM

C2
dVC2
dt

= −gnVc2 + iL2 − iL1 (5)

L1
diL1
dt

= Vc2 − Vc1 − iL1r1

L2
diL2
dt

= −Vc2 − iL2r2 + Vs(t)

d𝜙
dt

= Vc1

where the current through the memristor im = W(𝜙)vc1(t − 𝜏). The memductance

of the form W(𝜙) = dq(𝜙)
d𝜙

= a + 3b𝜙2
is used in this research work. The IV char-

acteristics of the memristive element is shown in Fig. 5. Negative conductance

g = −0.475. Input sinusoidal signal Vs = vp sin 2𝜋ft with amplitude vp = 1 V, fre-

quency f = 1 kHz, internal resistance R10 = r2 = 1Ω. The circuit realization of the

system described in Eq. 5 is shown in Fig. 2.

The smooth-cubic function Memristor W(𝜙) = a + 3b𝜙2
and Negative conduc-

tance (G) were implemented using the circuits in Figs. 3 and 4 respectively. The i − v
characteristics of the smooth cubic function memristor and negative conductance are

shown in Fig. 5.
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Fig. 2 Schematic circuit of fifth order non-autonomous Time Delayed Memristor (NTDM)

chaotic system. L3 = L22 = 3.5mH, L1 = 500mH, L2 = 300mH, C1 = 33 nF, C2 = 75 nF, C3 =
47 nF, C4 − C13 = 525 nF, R1 = R3 = R4 = R5 = R7 = R8 = R9 = 2 kΩ, R2 = 1.5 kΩ, R6 =
R7 = R15 = 10 kΩ, R10 = 1Ω, R11 = 2.5 kΩ, R12 = 36 kΩ, R13 = 5 kΩ, R14 = R16 = 1 kΩ,

Multiplier AD633AN, Operational Amplifier TL084CN, RA = 1.1 kΩ, RB = 1 kΩ, RC = 1.14 kΩ,

RD = 500 Ω, AC Voltage source = 1 Vpk (1 kHz), Power supply=V1= +15 V and V2= −15 V

3.1 Equilibrium and Stability of the System

The equilibrium points of the system given in Eq. 5 can be found by equating the left

hand side of the equation to zero. One possible equilibrium point for the system is,

where 𝜙 is uncertain but constant (Bo-Cheng et al. 2011)

E = {(vC1, vC2, iL1, iL2, 𝜙)|(vC1 = vC2 = iL1 = iL2 = 0, 𝜙 = 𝜙0} (6)

The Jacobian matrix of system (5) was obtained as
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Fig. 3 Circuit realization of the smooth cubic function W(𝜙) = a + 3b𝜙2

Fig. 4 Circuit realization of

the negative conductance

G = − 1
R4
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Fig. 5 i − v characteristics of a smooth cubic nonlinear memristive element b negative conduc-

tance

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− a
C1

− 3b𝜙2

C1
0 1

C1
0 −6bVC1𝜙

C1
0 − gn

C2
− 1

C2
1
C2

0
− 1

L1
1
L1

− r1
L1

0 0
0 − 1

L2
0 − r2

L2
0

1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)

At equilibrium point E, the Jacobian matrix J(E) becomes

J(E) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− a
C1

− 3b𝜙2
0

C1
0 1

C1
0 0

0 − gn
C2

− 1
C2

1
C2

0
− 1

L1
1
L1

− r1
L1

0 0
0 − 1

L2
0 − r2

L2
0

1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)

The characteristic equation of the system can be written as

𝜆(𝜆4 + a1𝜆3 + a2𝜆2 + a3𝜆 + a4) = 0 (9)

where
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Fig. 6 Phase portraits (x(t), y(t)) of time-delayed unsaturated attractors of memristive systems

when a 1.14 kΩ b 1.1 kΩ c 1 kΩ and d 500 Ω

a4 =
1
C1
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The equilibrium point E of the system is an unstable equilibrium when at least

one root of Eq. 9 has real part greater than zero. It can be shown that the coefficients

of the quartic polynomial in Eq. 9 are all non-zero. It can be shown that one or more

roots of this polynomial have positive real parts using system parameters in Fig. 2

and the Routh-Hurwitz criteria. For a quartic polynomial the Routh-Hurwitz criteria

are given as:

a1 > 0
a3 > 0
a4 > 0

a1a2a3 > a23 + a21a4 (10)
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Fig. 7 Phase portraits (x(t)x(t − 𝜏) of chaotic attractors for the delayed memristive systems when

a 1.14 kΩ b 1.1 kΩ c 1 kΩ and d 500 Ω

Analysis of Eq. 10 suggests that the system has no stable for all positive real num-

bers, hence, the system can be said to be sensitive to initial conditions. The attractors

of the fifth-order time delayed systems under different system parameters are shown

in Figs. 6 and 7.

4 Coupling Schemes

Two different coupling schemes, diffusive and negative feedback, are used in this

work. The circuit implementation of the diffusive and negative coupling scheme are

shown in Figs. 8 and 9. In the combination-combination scheme considered in this

work, two drive systems (A and B) were coupled to two slave systems (C and D).

Circuit diagram for one each of the drive and response system are shown in Figs. 10

and 11 respectively.

5 Results and Discussion

Electronic simulation of the proposed synchronization was carried out by combin-

ing two drive systems (Fig. 10) and two response system (Fig. 11) using two dif-

ferent coupling schemes: diffusive (Fig. 8) and negative feedback coupling (Fig. 9).
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Fig. 8 Diffusive coupling scheme for combination-combination oscillators

The phase space of the two drive systems and two response systems without cou-

pling is shown in Fig. 12. After the diffusive coupling of the drive and response sys-

tems, complete synchronization was observed in the phase space and time series as

seen in Figs. 13 and 14 respectively. A similar result (Figs. 15 and 16) was obtained

when negative feedback coupling was used to couple the two drive systems and two

response system.

6 Conclusion

In this paper, a fourth order non-autonomous chaotic memristive system was modi-

fied into a fifth order time delayed chaotic memristive system. The equilibrium and

stability of the new chaotic system shows that it has no stable region at equilib-

rium. This shows that the stability of the new system is sensitive to initial conditions,

implying that it has complex dynamics. Combination-combination coupling involv-
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Fig. 9 Negative feedback coupling scheme for combination-combination oscillators

ing two drive systems and two response system of the same system was carried out

using diffusive and negative feedback coupling. Electronic simulation of the coupled

system was carried out and results presented.

Further research based on the success of this current work can be carried out.

Practical implementation and deployment of this system in real-life application is

suggested to test performance under field conditions. It is expedient to examine

the possibility of signal switching between drives during transmission and between

response systems at reception for improved security. The system needs to be sub-

jected to actual known hacking methods such as brute force to determine reliability.

Attempts should be made to test the possibility of different coupling schemes other

than the ones used here. Furthermore, the use of different memductance in the drive

to increase the complexity and security of the communication scheme. Since most

communications systems use digital signals, it will be noteworthy to design the syn-

chronization scheme for digital signal transmission.
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Fig. 10 One of the drive system

Fig. 11 One of the response system
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Fig. 12 a Combined attractor of the two drive systems when coupling R=1k b Combined attractor

of the two response systems when coupling R = 1 k

Fig. 13 Phase space of the drive and response systems after diffusive coupling

Fig. 14 Time series of the drive and response systems after diffusive coupling
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Fig. 15 Phase space of the drive and response systems after diffusive coupling

Fig. 16 Time series of the drive and response systems after diffusive coupling
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A Novel Flux-Controlled Memristive
Emulator for Analog Applications
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Abstract Emerging memristor technology is drawing widespread attention during

the recent time due to its potential diverse applications in nanoelectronic memories,

logic and neuromorphic computer architectures. Due to the absence of a practical

memristive device, most of the research works in this area are still based on mem-

ristor emulator circuits that can be of current-controlled or voltage-controlled type.

In this chapter, we introduce two emulator circuits for flux-controlled memductor

and memristor. These emulator circuits have been built based on second generation

current conveyer (CCII+), one multiplier and a square circuit to mimic the hysteresis

behavior of the memristor. The proposed memristor emulator circuits can not only

emulate memristive and plasticity function but also can be configured for floating

configurations characteristic. Furthermore, we present the mathematical modeling,

SPICE simulation and experimental results of the proposed emulator circuits. The

series and parallel connectivity of these emulator circuits have been also studied, In

addition to frequency analysis of their behavior.
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1 Introduction

Memristor is a two terminal non-linear passive element, which was first introduced

theoretically by Leon Chua in 1971 (Chua 1971; Chua and Kang 1976). He showed

that memistor is the only non-linear passive element, which can relate the miss-

ing link between flux and electrical charges. In the I-V plane, it shows a unique

pinched hysteresis loop that shrinks at higher frequency. Later in 2008, the two termi-

nal nanoscale memristor device has been successfully fabricated by HewlettPackard

(HP) lab (Strukov et al. 2008). Since then, memristor has been getting widespread

attention from the scientific community due to its revolutionary potential in memory

and various other systems. The most important physical property of the memristive

device is that it does not discharge even after the applied voltage is removed and

remains in its pre-charged state. This property can be utilized for memory appli-

cation. Memristor can be of two types: charge-dependent or current-controlled and

flux-dependent or voltage-controlled. However, in order to call any device a memris-

tor, some substantial fingerprints are required that distinguish it from other devices

(Adhikari et al. 2013). These fingerprints are discussed in details in Sect. 2. More-

over, in the last decade, many research projects and publications mentioned the

dynamic nature and the potential applications of memristor. Some of the applications

include implementation of high-speed memory arrays like resistive random access

memory (RRAM), analog and digital circuits, sinusoidal and relaxation oscillators,

neuromorphic circuits, adaptive filters (Zidan et al. 2014; Ascoli et al. 2014; Radwan

and Fouda 2015; Vourkas and Sirakoulis 2016) and Chaotic oscillator (Vaidyanathan

and Volos 2016a, b).

Since there is no physical memristive device available in the experimental labs or

commercial design houses, most of the research are still at the theoretical stage. To

validate the applications of memristor, we need precise behavior and SPICE macro

models. In fact, numerous micro models are being developed using the equations

of memristor proposed by the HP lab (Shin et al. 2010; Biolek et al. 2009; Garcia-

Redondo 2016; Batas and Fiedler 2011; Berdan et al. 2014; Abdalla and Pickett

2011). In addition, a comparison between some of these model can be found in Ascoli

et al. 2013. However, these models have many limitations for which it cannot mimic

the physically developed memristor. Most of these models are only applicable to

computer aided simulation of ideal memristor. In the absence of any practical mem-

ristive device, research community focuses on developing emulator circuits to mimic

the dynamic behavior of memristor to explore the design issues and potential applica-

tions. Therefore, many emulator circuits have been proposed and designed based on

different design methodologies using off-the-shelf active and passive devices that are

commercially available. Some of them are implemented using analog components

like Op-amps, second generation current conveyer (CCII), transistors, analog mul-

tiplier, floating capacitor, JFET, zener diodes, BJTs, diodes, and Differential Differ-

ence Current Conveyors, microcontroller unit, analog to digital converter and digital

to analog converter. For instance, the memristor emulator circuit introduced in Per-

shin and Ventra 2010 uses a microcontroller unit and analog-to-digital, digital to ana-
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log converters. This emulator is topologically complex which limits their application

in connecting with active and passive devices. In addition, a memristor emulator cir-

cuit based on Operational Transconductance Amplifier has been proposed in Kum-

ngern and Moungnoul 2015. However, the experimental results of this emulator cir-

cuit do not satisfy the condition of memristor. A memristor emulator circuit based on

an exponential amplifier and a CCII is presented in Alharbi et al. 2015b. The memris-

tor emulator presented in Sánchez-López et al. 2014 uses five second generation cur-

rent conveyors (CCII+), analog multiplier, five resistors and one capacitor. In addi-

tion, the emulator circuit proposed in Yeşil et al. 2014 requires four resistors, one Dif-

ferential Difference Current Conveyors (DDCC) blocks, one grounded capacitor and

one analog multiplier. Another memristor emulator introduced in Biolek et al. 2011

uses two current-feedback operational amplifiers (CFOAs) and one voltage-feedback

operational amplifier, a large number of passive elements and a light-dependent resis-

tor (LDR). Moreover, the emulator circuit presented in Abuelmaatti and Khalifa 2014

uses two current-feedback operational amplifiers (CFOAs), one diode, four resis-

tors, two grounded capacitors. Voltage and current controlled mermsitor emulator

is presented in Elwakil et al. 2013. Also, a CMOS based memristor emulator has

been introduced in Hussein and Fouda 2013; Yener and Kuntman 2014. In addition,

the memristor emulator uses two second generation current conveyer (CCIIs), two

diode connected transistors and one resistor is provided in Alharbi et al. 2015d. This

emulator has been improved in Alharbi et al. 2015c. A floating memristor emula-

tor based relaxation oscillator is presented in Yu et al. 2014. Another floating emu-

lator circuit is introduced in Shin et al. 2013. The emulator circuit uses an opera-

tional transconductance amplifiers (OTAs) and second generation current conveyors

(CCIIs) is introduced in Sözen and Çam 2016. Simple floating and grounded voltage-

controlled emuator are presented (Fouda and Radwan 2014; Alharbi et al. 2016).

Furthermore, in Kim et al. 2012 an emulator for the memristor has been proposed,

which is comprised of an adder, ten transistors, five OP-AMPs and eight resistors.

Also, Electromechanical Emulator of Memristive Systems is introduced in Asapu

and Pershin 2015. In addition, a cubic flux-controlled memristor is introduced in Liu

et al. 2015 based on the cubic nonlinearity in Zhong 1994. However, most of these

emulators have some drawbacks. Some are very complex and require rigid condi-

tions. Some emulators do not exhibit or satisfy the three characteristic fingerprints

of a memristor as discussed in Adhikari et al. 2013. The emulator circuit can be cus-

tomized for different memristor models by selecting appropriate circuit elements is

introduced in Alharbi et al. 2015a.

The rest of the chapter is organized as follows. In Sect. 2, a review of the funda-

mental properties of memristor is presented. In Sect. 3, we present our model and

the emulator circuit development approach. The experimental results are shown in

Sect. 4. Section 5 presents the frequency analysis of the flux-controlled memductor.

In section Sect. 6, flux-controlled memristor circuit is introduced. Section 7 demon-

strates the results and the analysis. Finally, Sect. 8 concludes the chapter with a high-

light of future work.
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2 Memristor Properties

For a device to be considered as a memristor it must have three significant finger-

prints (Adhikari et al. 2013). Therefore, any memristor emulator circuit must also

comply with these three fingerprints or defining characteristics. In this section, we

have briefly summarized these fingerprints to establish the intellectual merits of the

proposed emulator circuit.

∙ Memristor Fingerprint 1: Pinched Hysteresis Loop

The first significant signature of the memristor is its unique pinched hysteresis loop

which distinguishes it from any device that is not memristive in the (I-V plane).

(a) In I-V plane, the Lissajous figure of all memristors, having positive memristance

and operated by sinusoidal signal of any amplitude and frequency, have to go

through the origin.

(b) The value of v(t) and i(t) in the Lissajous figure should be same only when it

will pass through origin, however, for rest of the times, V-I should have different

values.

∙ Memristor Fingerprint 2: Hysteresis loop area decreases as frequency increases.

The second vital signature of the memristor is the inversely proportional relation-

ship between the frequency of periodic operating signal and memristors hysteresis

lobe area. It states that with the increment of frequency, the lobe area will decrease.

∙ Memristor Fingerprint 3: No loop at infinite frequency.

As we keep increasing the frequency, at some point, the lobe area will be reduced

so much that there will no longer remain any loop, which means the memristors

will behave as a linear device like resistor. At a very high frequency, memristor

loses its unique non-linearity and the value of V and I remain same for all times

in the I-V plane.

3 Proposed Flux-Contolled Memductor Emulator

The proposed emulator circuit for flux controlled memrductor has been designed

with voltage difference circuit, voltage integrator and analog multiplier as shown in

Fig. 1. In addition, the voltage difference circuit and the integrator are built based on

the second generation current conveyer (CCII+).

3.1 Mathematical Analysis of the Proposed Emulator

The characteristics of an ideal CCII+ can be represented as in (1).
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Fig. 1 The Proposed floating emulator circuit for flux controlled memductor

VY (t) = VX (t) and iX (t) = iZ (t) (1)

The input current to the circuit can be written as in (2)

iAB(t) =
vA − vB

R2
(2)

Based on (1), the output voltage of first CCII+, VZA, is given by (3)

VZA =VAB
R3
R2

(3)

and the second CCII+ works as integrator where the current iAB is integrated through

the capacitor. Hence, VZB is given by (4)

VZB =
−𝛼
R2C ∫

t

0
VAB(𝜏)d𝜏 + VZ (4)

The voltages VZA and VZB are multiplied, 𝛼 is the multiplier constant, and summed

to VZ of the third CCII which represents VB. Consequently, the voltage of Y terminal

of third CCII is VY = VZA + VZB + VB. The input current, Iin, is given by (5)

iin(t) =
VA−(VZAVZB+VB)

R1
(5)
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Fig. 2 Emulator circuit implementation of the flux controlled memductor model

By rearranging this equation, we obtain (6)

iin(t) =
VAB − VZAVZB

R1
(6)

This current is mirrored to the input terminal VB, so the input current to node A is

the same as the output current of node B. Hence, this emulator represents a floating

memristor emulator. So the current-voltage relation is given as in (7)

iin(t) = VAB(
1

R1
+

𝛼R3

R2
2R1C ∫

t

0
VAB(𝜏)d𝜏) (7)

Thus, the input transconductance of the emulator, Gm = iin(t)∕V(t)in = iin∕VAB rep-

resenting memductance (memory transconductance) can be given by (8)

Gm = 1
R1

+
𝛼R3

R2
2R1C

𝜑 (t) (8)

It is clear that the memductance GM is a function of the flux 𝜑 (t). So, this model is

referred as flux-controlled memductance
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4 Circuit Realization and Experimental Validation

In order to ensure the validity and efficiency of the proposed memristor emulator cir-

cuit, the circuit shown in Fig. 1 has been realized and implemented in the lab from

off-the-shelf components using AD844AN (constructed by the commercial AD844

current feedback operational amplifiers CFOA) as second-generation current con-

veyor (CCII+) and AD633 as a multiplier. Here, the used values of the passive ele-

ments are R1 = 10 kΩ,R2 = 22 kΩ,R3 = 10 kΩ and C = 1nF as shown in Fig. 2.

We used DC supply voltages = ±9V . In order to plot the I-V curves, the current was

sensed using an instrumentation amplifier sensing the differential voltage across the

resistance R1. We have used the Digilent Electronics Explorer board (EE board) and

from PC-based WaveFormsTM software the experimental data has been exported

and redrawn using MATLAB without alteration, to draw the hysteresis loop.

Figure 3 shows nonlinearity and hysteresis loop in the I-V plane for the floating

voltage controlled memristor emulator. it is clearly evident that the emulator circuit

exhibits the unique the fingerprints of a real memristor. In addition, at low frequen-

cies, the circuit shows nonlinearity in the (I-V) plane. However, at high frequency this

nonlinearity gradually decreases. Moreover, our findings indicate that the proposed

emulator circuit exhibits the fingerprints of a memristor as introduced in Adhikari

et al. 2013. In addition, it is seen that the memristor emulator acts as a non-linear

device and pinched hysteresis loop is found in the I-V plane for a particular range of

frequency. However, it is clearly evident that as we keep increasing the frequency, the

lobe area of the hysteresis loop tends to shrink. At a certain point, the loop becomes

a straight line and the emulator acts like a linear resistor as shown in Fig. 3a. More-

over, Fig. 3b shows the behavior of the proposed emulator under triangular input for

5 kHz and 8 kHz in the I-V plane.

We have also analyzed the memductance of the proposed circuit of Fig. 1. It is

observed from Fig. 4a that the memductance varies with time for applied sinusoidal
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Fig. 3 Experimental results of the pinched hysteresis loop of the emulator circuit with various

frequencies a sinusoidal input and b triangular input
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Fig. 4 SPICE transient simulation of proposed emulator signals at 1 kHz a Transient waveforms

of memductance and b waveform of input voltage v(t) (blue) and the input current i(t) (red)
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Fig. 5 Pinched hysteresis loops of two parallel connected emulators at 3 kHz

signal with amplitude 2 V and frequency 1 kHz. Furthermore, we can observe that

the memductance changes from 0.42 mS to 1.23 mS.

As it is well known that the memristor is resistive so there is no phase shift

between the current and the voltage, which is clear in the proposed emulator as

shown in Fig. 4b. Clearly, the current is zero whenever the voltage is zero, which is

the signature of a memristor. If a phase shift exists this means that there is a reactive

element attached to the device. This implies that the proposed memristor emulator

circuit is clearly resistive without any reactive element attached. In addition, in order

to prove the proposed circuit functionality, two of the emulators are connected in par-

allel/series to make sure that the current/voltage is divided equally. Figure 5 shows

the voltage and current relation (pinched hysteresis) in the I-V plane of the proposed

emulator circuit in parallel connection. It is clearly evident that the current is divided

equally between them. Whereas, Fig. 6 shows the series connection of two emulators

where the input voltage is divided across the two memristors equally.
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5 Frequency Analysis of the Flux-Controlled Memductor
Emulator

In order to ensure the accuracy of the proposed emulator, we have studied the fre-

quency analysis of the proposed emulator as in Sánchez-López et al. 2014. By apply-

ing a sinusoidal signal Vin = Asin(𝜔t), the memductance is given by (9)

Gm = 1
R1

(

1 +
𝛼R3A(1 − cos(𝜔t))

R2
2C𝜔

)

(9)

According to this equation, the minimum and maximum achievable memductances

are given as follows (10)

Gmin = 1∕R1 and Gmax =
1

R1

(

1 +
2𝛼R3A
R2
2C𝜔

)

(10)

As shown, the more the frequency, 𝜔, increases, the more memristance decreases

(Fingerprint 2). When 𝜔 tends to ∞, Rmax tends to Rmin which is a constant value

meaning there is no hysteric behavior (Fingerprint 3). However, when 𝜔 tends to 0,

Rmaxtends to ∞ which is not practical since the Rmax saturates to certain value due to

supply voltages which is corresponding to Ron and Roff in the fabricated devices.

It is obvious from (9) that the memductance equation is based on two terms, the

first terms is constant resistance which is time invariant and the second one is time-

varying resistor. The time varying term changes with function of the frequency and

time constants of the integrator. The ratio between magnitude of both terms, 𝛽, can

be defined as in (11):
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Fig. 7 Frequency behavior

for 𝛽 = 0.5 and A = 1
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(11)

where 𝛽o = 𝛼R3A∕𝜋R2, 𝜏 = R2C and T = 2𝜋∕𝜔.

It is clear with increasing the frequency, the ratio 𝛽 decreases. By studying 𝛽,

we can observe that 𝛽 tends to zero if the frequency tends to ∞ where the memristor

behavior is dominated by the linear term which is R1. Also, hysteresis loop disappears

when the time constant of the integrator 𝜏 is much greater than T .

Figure 7 shows the effect of changing the time constants 𝜏 with the frequency

while maintaining the same ratio 𝛽 = 0.5. The more 𝜏 decreases, the more operating

frequency is needed for the same 𝛽o.

6 Proposed Flux-Controlled Memristor Emulator Circuit

The proposed emulator circuit is the modification and improved version of the orig-

inal emulator circuit in Abuelmaatti and Khalifa 2015. The emulator circuit shown

in Fig. 8 consists of a practical integrator, differentiator and square function. The

practical integrator and differentiator are built by using two second-generation cur-

rent conveyors (CCII+s). Here, the square function is used to achieve the required

non-linearity for memristive behavior.
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6.1 Mathematical Analysis of the Proposed Emulator

The input current, iin, is created by subtracting the feedback voltage, Vfb from the

input voltage, Vin which can be written as in (12)

iin =
Vin − Vfb

Rs
(12)

Then, this current is imposed in the capacitor C1, so the voltage across the capacitor

is given by (13)

VC = −1
RsC1 ∫

t

0
(Vin − Vfb)d𝜏 (13)

where Vfb represents the feedback voltage (output of second CCII+). This voltage is

squared using squarer circuit, or multiplied by itself using multiplier as done in our

circuit. Then, the output voltage of the multiplier is differentiated using the second

CCII given the feedback voltage (14).

Vfb = 𝛼R2C2
dV2

C

dt
(14)

where 𝛼 is the multiplier gain. By substituting into (13), VC is given as in (15)

VC = −1
RSC1 ∫

t

0
(Vin − 𝛼R2C2

dV2
C

dt
)d𝜏 = 1

RSC1

(
𝛼R2C2V2

C − 𝜑in
)

(15)

By rearranging the equation,
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𝛼R2C2V2
C − RSC1VC − 𝜑in = 0 (16)

It is second order equation of VC, then the voltage VC can be written as in (17)

VC =
RSC1 ±

√
R2

SC2
1 + 4𝛼RSC2𝜑in

2𝛼R2C2
(17)

The feedback voltage is function of dV2
C∕dt where the derivative of VC is given as in

(18)

dVC

dt
= ±

Vin√
R2

SC2
1 + 4𝛼R2C2𝜑in

(18)

by applying the chain rule, the derivative of V2
C is given as follows (19):

dV2
C

dt
= 2VC

dVC

dt
= ±2VC

Vin√
R2

SC2
1 + 4𝛼R2C2𝜑in

, (19)

and the feedback voltage is given by (20)

Vfb = 𝛼R2C2
dV2

C

dt
=
⎛
⎜
⎜
⎜
⎝

1 ±
RSC1√

R2
SC2

1 + 4𝛼R2C2𝜑in

⎞
⎟
⎟
⎟
⎠

Vin (20)

By subistuting into (12), and simplifying the expression, the input current can written

as in (21)

iin =
C1√

R2
SC2

1 + 4𝛼R2C2𝜑in

Vin (21)

and the input memristance is given by (22)

Rm = RS

√

1 +
4𝛼R2C2𝜑in

R2
SC2

1

(22)

As we can see that this equation is the same closed form solution of HP model.

By comparing this equation and HP model solution, the initial memristance is Rs
and the memristor speed term, k′, is

k′ =
𝛼R2C2

C2
1

(23)
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Fig. 9 Effect of changing

circuit parameters on the

memristor speed for 𝛼 = 0.1
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As clear that the Memristor speed decreases quadratically with increasing C1 and

increases with the increasing the differentiator time constant R2C2. Figure 9 shows a

3D plot with changing the circuit components values.

6.2 Implementation of the Emulator Circuit

The proposed emulator circuit is simple and designed from the off-the-shelf com-

ponents. This emulator circuit has been realized and implemented using AD844AN

as second-generation current conveyors (CCII+), and the square function is imple-

mented using a commercial AD633 (voltage multiplier) and some passive elements:

Rs = 1.5 kΩ,R2 = 2 kΩ, C1 = 𝜇F and C2 = 1𝜇F as shown in Figs. 10a and 11. We
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Fig. 10 Proposed implementation of the square function: a circuit diagram. b SPICE simulation

of the Lissajous curve of the proposed square function
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Fig. 11 The schematic diagram of flux controlled emulator circuit of memristor

Fig. 12 Experimental

results of the pinched

hysteresis loop of the

proposed memristor

emulator circuit

have used ±9V as supply voltages. In addition, we have used the Digilent Electron-

ics Explorer Board and WaveFormsTM software to perform the experimentation.

The data has been exported directly to MATLAB without alteration to draw the hys-

teresis loop. Figure 10b shows the Lissajous curves of the proposed square function

obtained from SPICE simulation conducted on the implemented square function cir-

cuit.

Now, if we use the proposed square function circuit of Fig. 10a into the proposed

emulator circuit model of Fig. 8, we achieve a emulator circuit implementation for

flux controlled Memristor as shown in Fig. 11. Furthermore, the hysteresis loops

obtained from the experimental data for the proposed emulator circuit of Fig. 11 are

shown in Fig. 12. It is observed that the emulator has a pinched hysteresis loop in the

I-V plane as expected. Moreover, at low frequencies the circuit shows nonlinear hys-

teresis in the (I-V) plane. However, with the increase of frequency of the input signal

this nonlinearity gradually shrinks. Beyond 2 kHz, the emulator starts to behave like

a linear resistor, which satisfies Chuas condition in Chua 2014.
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Fig. 13 a Transient memristance at 30 Hz b input voltage v(t) (blue) and the input current i(t) (red)
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It can be observed from Fig. 13a that the memristance changes with time as we

apply the sinusoidal signal having 30 Hz of frequency and 1 V of amplitude. In addi-

tion, it is also significant to notice that the nature of changing the memristance is

also sinusoidal. Furthermore, In addition, Fig. 13b demonstrates the waveform of

the voltage and current of the proposed memristor emulator circuit. Moreover, there

is no phase shift between the current and voltage. It is also seen that no current

exists when the voltage is zero which validates a significant property of the mem-

ristor. Hence, we can conclude that our proposed emulator circuit is purely resistive

element. Figure 14 shows the maximum and the minimum achievable memristance,

which changes with the frequency. Here, Rmin is almost constant and it represents

Rs. Rmax decreases gradually with the applied frequency of the sinusoidal input signal

and at one point it coincides with Rmin. This indicates that beyond certain frequency

the emulator circuit starts to behave like a linear resistor.



508 A.G. Alharbi et al.

7 Frequency Analysis of the Voltage-Controlled Memristor
Emulator

In order to ensure the accuracy of the proposed emulator, we have studied the fre-

quency analysis of the proposed emulator. By applying a sinusoidal signal Vin =
Asin(𝜔t), the memristance is given by (24)

Rm = RS

√

1 +
4𝛼R2C2A(1 − cos (𝜔t) )

𝜔R2
SC2

1

(24)

According to this equation, the minimum and maximum acheivable memristance are

given as follows (25)

Rmin = RS and Rmax = RS

√√√√1 +
8𝛼R2C2A

𝜔R2
SC2

1

(25)

As clear with increasing the frequency 𝜔, the memristance decreases (Fingerprint 2).

When 𝜔 tends to ∞, Rmax tends to Rmin which is a constant value meaning there is

no hysteric behavior (Fingerprint 3). However, when 𝜔 tends to 0, Rmax tends to ∞
which is not practical since the Rmax saturates to certain value as shown in Fig. 14 due

to supply voltages which is corresponding to Ron and Roff in the fabricated devices.

It is obvious from (24) that the memristance equation is based on two terms, the

first terms is constant resistance and the second one is time-varying resistor. The

time varying term changes with function of the frequency and time constants of the

differentiator and integrator. The ratio between magnitude of both terms, 𝛽, can be

defined as follows (26):

𝛽 =
8𝛼R2C2

R2
s C2

1

A
𝜔

= 𝛽o
𝜏2T
𝜏

2
1

(26)

where 𝛽o = 8𝛼A∕2𝜋, 𝜏1 = RsC1, 𝜏2 = R2C2, and T = 2𝜋∕𝜔.

It is clear with increasing the frequency, the ratio 𝛽 decreases. By studying 𝛽, we

can observe that 𝛽 tends to zero if the frequency tends to ∞ where the memristor

behavior is dominated by the linear term which is Rs. Also, hysteresis loop disap-

pears when the time constant of the integrator 𝜏1 is greater than

√
T . However, by

increasing the differentiator time constant 𝜏, the hysteresis becomes larger.

Figure 15 shows the effect of changing the time constants 𝜏1 and 𝜏2 with the

frequency while maintaining the same ratio 𝛽 = 0.5. The more 𝜏1 decreases, the

more operating frequency is needed for the same 𝜏2 since they have quadratic rela-

tion. However, the more 𝜏2 decreases, a lower operating frequency is needed for the

sam 𝜏1.
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Fig. 15 Frequency behavior

for 𝛽 = 0.5 and A = 1
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8 Conclusion and Future Work

We have presented a practical memristor emulator circuit development technique to

mimic the nonlinear behavior of the memristor. We have demonstrated two different

emulator circuits for the flux-controlled memristor. Our numerical analysis and sim-

ulation using SPICE and the experimental testing match very well, which indicate

that the proposed circuits can accurately imitate the behavior of a memristor and sat-

isfy all the three fingerprints of a memristor. The proposed circuit model of Fig. 1 is

a floating memristor emulator, which is suitable for use in many digital and analog

applications as a 2-terminal device. Moreover, in the absence of a real solid-state

device for the memristor, these emulator circuits will be very useful to investigate

the properties and potential applications of memristors. Hence, our emulator circuits

have the potential to be used in many practical applications in the analog and digital

world. The proposed circuits are practical and simple to design compared to many

other emulator circuits proposed by different groups. Therefore, the proposed emula-

tor circuit development technique would have significant impact on the development

and educational aspects of this new direction of research.
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