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Abstract Using the Zhu recursion formulas for correlation functions for vertex
operator algebras, we introduce a cluster algebra structure over a non-commutative
set of variables.
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1 Introduction

The deep theory of cluster algebras [5] is connected to many different areas of
mathematics. In particular, it has intersections with the theory of Riemann surfaces,
the moduli spaces of local systems, higher Teichmüller theory, stability structures,
Donaldson–Thomas invariants, dilogarithm identities, and many others, [1–4, 7–9].
Several applications of cluster algebras in conformal field theory are known
[3, 9]. Non-trivial but natural definition of seeds and mutations this notion allows to
apply this kind of relations in various algebraic configurations. In some sense cluster
algebras unify alternative ways of description of previously known structures.

The rich theory of vertex operator algebras which constitute an algebraic lan-
guage of the conformal field theory are also known. Being a natural generalization
for Lie algebras, vertex algebras represent a version of Fourier analysis with non-
commutative modes. The expansion of vertex operators in terms of modes allows
us to operate in an algebraic manner with analytic structures associated with powers
of formal parameters attached to modes. This serves as a tool relating complicated
algebraic relations vertex operator algebra modes with descriptions of algebraic-
geometry objects.

Since both cluster algebras and vertex algebras represent two classes of quite
universal algebraic instrumentation, one would be naturally interested in possible
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connections between these two machineries. In this note we would like to sketch a
way to relate cluster algebras [5] with vertex operator algebras [6]. We formulate
definition of a vertex operator cluster algebra which possesses a structure similar to
an ordinary cluster algebra. The seeds are defined over non-commutative variables,
coordinates around marked points, and matrix elements of a number of vertex
operators. In [6] it was proven that one can describe a vertex operator algebra by
the set of all its correlation functions.

1.1 Cluster and Vertex Operator Algebras

Let P be an abelian group with binary operation ˚. Let ZP be the group ring
of P and let QP.x1; : : : ; xn/ be the field of rational functions in n variables with
coefficients in QP. A seed is a triple .x; y; B/, where x D fx1; : : : ; xng is a basis
of QP .x1; : : : ; xn/, y D fy1; : : : ; yng, is an n-tuple of elements yi 2 P, and B
is a skew-symmetrizable matrix. Given a seed .x; y; B/ its mutation �k.x; y; B/ in
direction k is a new seed .x0; y0; B0/ defined as follows. Let Œx�C D max.x; 0/.
Then we have B0 D .b0

ij/ with b0
ij D bij for i D k or j D k, and b0

ij D
bij C Œ�bik�Cbkj C bikŒbkj�C; otherwise. For new coefficients y0 D �

y0
1; : : : ; y0

n

�
,

with y0
j D y�1

k if j D k, y0
j D yjy

Œbkj�C
k .yk ˚ 1/�bkj if j ¤ k, and x D fx1; : : : ; xng,

where x0
k D

�
yk

nQ

iD1

x
Œbik �C
i C

nQ

iD1

x
Œ�bik �C
i

�
..yk ˚ 1/xk/

�1. Mutations are involutions,

i.e., �k�k.x; y; B/ D .x; y; B/.
A vertex operator algebra (VOA) [6] is determined by a quadruple .V; Y; 1; !/,

where is a linear space endowed with a Z-grading with V D L
r2Z Vr with

dim Vr < Y1. The state 1 2 V0, 1 6D 0, is the vacuum vector and ! 2 V2 is
the conformal vector with properties described below. The vertex operator Y is a
linear map Y W V ! End.V/ŒŒz; z�1�� for formal variable z so that for any vector
u 2 V we have a vertex operator Y.u; z/ D P

n2Z u.n/z�n�1. The linear operators
(modes) u.n/ W V ! V satisfy creativity Y.u; z/1 D u C O.z/, and lower truncation
u.n/v D 0, conditions for each u, v 2 V and n � 0. For the conformal vector ! one
has Y.!; z/ D P

n2Z L.n/z�n�2, where L.n/ satisfies the Virasoro algebra for some
central charge C: Œ L.m/; L.n/ � D .m � n/L.m C n/ C C

12
.m3 � m/ım;�nIdV , where

IdV is identity operator on V . Each vertex operator satisfies the translation property
Y.L.�1/u; z/ D @zY.u; z/. The Virasoro operator L.0/ provides the Z-grading with
L.0/u D ru for u 2 Vr, r 2 Z. Finally, the vertex operators satisfy the Jacobi identity
which we omit here. These axioms imply locality, .z1 �z2/NY.u; z1/Y.v; z2/ D .z1 �
z2/NY.v; z2/Y.u; z1/, skew-symmetry, Y.u; z/v D ezL.�1/Y.v; �z/u, associativity
.z0 C z2/NY.u; z0 C z2/Y.v; z2/w D .z0 C z2/NY.Y.u; z0/v; z2/w, and commutativity

u.k/Y.v; z/ � Y.v; z/u.k/ D P

j�0

�
k
j

�
Y.u.j/v; z/zk�j, conditions for u, v, w 2 V

and integers N � 0. For v D 1 one has Y.1; z/ D IdV . Note also that modes
of homogeneous states are graded operators on V , i.e., for v 2 Vk, v.n/ W Vm !
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VmCk�n�1. In particular, let us define the zero mode o.v/ of a state of weight
wt.v/ D k, i.e., v 2 Vk, as o.v/ D v.wt.v/ � 1/, extending to V additively.

1.2 Correlation Functions of Genus Zero and One Riemann
Surfaces

We define the restricted dual space of V by Frenkel [6]. Let V be a vertex operator
algebra. V 0 D L

n�0

V�
n , where V�

n is the dual space of linear functionals on the finite

dimensional space Vn. Let h:; :i denote the canonical pairing between V 0 and V .
Define matrix elements for v0 2 V 0, v 2 V and n vertex operators Y.v1; z1/,
: : :, Y.vn; zn/ by hv0; Y.v1; z1/ : : : Y.vn; zn/vi. Choosing v D 1 and v0 D 10 we
obtain the n-point correlation function on the sphere: F.0/

V .v1; z1I : : : I vn; zn/ D
h10; Y.v1; z1/ : : : Y.vn; zn/1i. Here the upper index of F.0/ stands for the genus. For
u 2 Vn,

u.k/ W Vm ! VmCn�k�1: (1)

Hence it follows that for v0 2 V 0
m0 , v 2 Vm, and u 2 Vn we obtain a monomial

hv0; Y.u; z/vi D Cu
v0v

zm0�m�n, where Cu
v0v

D hv0; u.m C n � m0 � 1/vi. Recall
now the following formal expansion: for variable x, y we adopt the convention
that .z1 C z2/m D P

n�0

� m
n

�
zm�n
1 zn

2, i.e., for m < 0 we formally expand in the
second parameter z2. Using the vertex commutator property, i.e., Œu.m/; Y.v; z/� DP

i�0

� m
i

�
Y .u.i/v; z/ zm�i, one can also derive [10] a recursive relationship. In [10]

we find a recurrent formula expressing an n C 1-point matrix element on the sphere
as a finite sum of n-point matrix elements [10, Lemma 2.2.1]. For v1; : : : ; vn 2 V ,
and a homogeneous v 2 V , we find

hv0; Y.v1; z1/ : : : Y.vn; zn/vi

D
nX

rD2

X

m�0

fwt.v1/;m.z1; zr/ � hv0; Y.v2; z2/ : : : Y.v1.m/ vr; zr/ : : : Y.vn; zn/vi

Chv0; o.v1/ Y.v2; z2/ : : : Y.vn; zn/vi; (2)

where fwt.v1/;m.z1; zr/ is a rational function defined by fn;m.z; w/ D z�n

mŠ

�
d

dw

�m wn

z�w .

�z;wfn;m.z; w/ D P

j2N

�
nCj
m

�
z�n�j�1wnCj�1. In order to consider modular-invariance of

n-point functions at genus one, Zhu introduced [10] a second “square-bracket” VOA
.V; YŒ; �; 1; Q!/ associated with a given VOA .V; Y.; /; 1; !/. The new square bracket
vertex operators are YŒv; z� D P

n2Z vŒn�z�n�1 D Y.qL.0/
z v; qz � 1/, with qz D ez,

while the new conformal vector is Q! D !� c
24

1. For v of L.0/ weight wt.v/ 2 R and
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m � 0, vŒm� D mŠ
P

i�m
c.wt.v/; i; m/v.i/, where

iP

mD0

c.wt.v/; i; m/xm D
�

wt.v/�1Cx
i

�
.

For v1; : : : ; vn 2 V the genus one n-point function [10] has the form

F.1/
V .v1; z1I : : : I vn; znI �/ D TrV

�
Y.qL.0/

1 v1; q1/ : : : Y.qL.0/
n vn; qn/ qL.0/�C=24

�
;

for q D e2� i� and qi D ezi , where � is the torus modular parameter. Then the genus
one Zhu recursion formula is given by the following [10]. For any v, v1; : : : ; vn 2 V
we find for an n C 1-point function

F.1/
V .v; zI v1; z1I : : : I vn; znI �/

D
nX

rD1

X

m�0

PmC1.z � zr; �/ � F.1/
V .v1; z1I : : : I vŒm�vr; zrI : : : I vn; znI �/

CF.1/
V .o.v/I v1; z1I : : : I vn; znI �/ ; (3)

F.1/
V .o.v/I v1; z1I : : : I vn; znI �/ D TrV

�
o.v/ Y.qL.0/

1 v1; q1/ : : : Y.qL.0/
n vn; qn/

qL.0/�C=24
�
. In this theorem Pm.z; �/ denote higher Weierstrass functions defined by

Pm.z; �/ D .�1/m

.m�1/Š

P

n2Z¤0

nm�1qn
z

1�qn .

2 Cluster Structure for a Vertex Operator Algebra
Correlation Functions

Fix a vertex operator algebra V . Choose n-marked points pi, i D 1; : : : ; n on a
compact Riemann surface. In the vicinity of each marked point pi define a local coor-
dinate zi with zero at pi. Consider n-tuples v � fv1; : : : ; vng, of arbitrary states vi 2
V , and local corresponding vertex operators Y.v; z/ � fY.v1; z1/; : : : ; Y.vn; zn/g,
with coordinates z � fz1; : : : ; zng around pi, i D 1; : : : ; n. We define a vertex
operator cluster algebra seed

.v; Y.v; z/; Fn.v; z// ; (4)

where Fn.v; z/ � Fn.v1; z1I : : : I vn; zn/ is an n-point correlation function (matrix
element for the sphere case) for n states vi. Now, define the mutation �k.v; m; z/:

�
v0; Y.v0; z/; F0

n.v0; z/
� D �k.v; m; z/ .v; Y.v; z/; Fn.v; z// ; (5)

of the seed (4) in direction k 2 1; : : : ; n for v 2 V , according to the Zhu reduction
formula for corresponding Riemann surface genus, e.g., for the sphere as in (2), for
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the torus as in (3), etc. Namely, for v, we define v0 as the mutation of v in direction
k 2 1; : : : ; n as

v0 D �k.v; m; z/v D .v1; : : : ; v.m/vk : : : ; vn/; (6)

for some m � 0. Note that due to the lower truncation property we get a finite
number of terms as a result of the action of v.m/ on vr. For the n-tuple of vertex
operators we define

Y.v0; z/ D �k.v; m; z/Y.v; z/ D .Y.v1; z1/; : : : ; Y.v.m/vk; zk/; : : : ; Y.vn; zn// :

(7)
The mutation

F0
n.v0; z/ D �k.v; m; z/Fn.v; z/; (8)

is defined by summing over mutations in all possible directions with auxiliary
functions f .wt v; m; k; z/, k 2 1; : : : ; n and all m � 0:

F0
n.v0; z/ D �k.v; m; z/Fn.v1; z1I : : : I vn; zn/

D
nX

kD1

X

m�0

f .wt v; m; k; z/Fn.v1; z1I : : : I v.m/vk; zkI : : : I vn; zn/ C eFn.v; zI v; z/;

(9)

where eFn.v; zI v; z/ denote higher terms in the Zhu reduction formula for a specific
genus of a Riemann surfaces used in the consideration. In particular, for the genus
zero case we have f .wt v; m; k; z/ D fv;m.z; zk/ for some m � 0, eFn.v; zI v; z/ D
F.0/

n .o.v/I v; z/ D h10; o.v/ Y.v1; z1/ : : : Y.vn; zn/1i, while for the genus one
Riemann surface we take and f .wt v; m; k; z/ D PmC1.z � zkI �/ given by Pm.z; �/,
eFn.v; zI v; z/ D F.1/

n .o.v/I v; z/ D TrV .o.v/Y.v1; z1/ : : : Y.vn; zn//. The mutation
�k.v; m; z/ defined by (6)–(9) is an involution, i.e.,

�k.v; m; z/�k.v; m; z/ .v; Y.v; z/; Fn.v; z// D .v; Y.v; z/; Fn.v; z// ;

subject a few conditions. As the first condition, one can take v.m/v.m/vk D vk,
k D 1; : : : ; n for the actions (6)–(7). The simplest case, in particular, for v 2 Vk, for
some specific k D 1; : : : ; n, when k � m � 1 D 0, then v.m/ D o.v/ � v.wt v � 1/.
Then due to the property (1), v.m/v.m/ W Vp �! Vp. Note that when we sum in (9)
over mutations in all possible directions k 2 1; : : : ; n and all m � 0, we obtain a
correlation function (matrix element for the sphere) of rank n C 1 (see (2) and (3))
with extra v 2 V inserted at a point p with corresponding local coordinate z:

F.g/
nC1.v; zI v1; z1I : : : I vn; znI �/



464 A. Zuevsky

D
nX

kD1

X

m�0

f .wt v; m; k; z/ � F.g/
n .v1; z1I : : : I v.m/vk : : : I vn; znI �/ C eF.g/

n .v; zI v; z/:

When we reduce F.g/
n .v1; z1I : : : I v.m/vk : : : I vn; zn/ in (9) to the partition function

F.g/
0 (i.e., the zero point function) according to the Zhu reduction formulas ((2)

or (3)), we obtain multiple action of modes
Q

m�0

vr.m/ on various vk as well as

products of f .wt vr; mr; r; zr/ functions as a result of action on zk.
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