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Abstract The goal of this paper is to give a survey of how endomorphism rings can
be used to study the behavior of modules. While the first part considers modules over
arbitrary rings, the second half focuses mainly on the case of torsion-free Abelian
groups. Although there are many applications of endomorphism rings to the theory
of mixed Abelian groups, a comprehensive discussion of this subject is beyond the
framework of a survey article. In particular, we only present core results, and provide
an extensive literature list for those who want to get deeper into the subject.

Keywords Abelian Groups • Endomorphism Rings • Flatness • Adjoint
Functors

1 Introduction

This paper has been motivated to a large part by Rüdiger’s seminal work on
endomorphism algebras. Since his contributions to this subject are discussed in
another paper in this volume, it is our goal to highlight the connections between
Rüdiger’s work and the many ways endomorphism rings are used in Abelian Group
Theory.

Traditionally, the goal of Abelian Group Theory has been to describe as large
classes of Abelian groups as possible in terms of meaningful numerical invariants.
The first major class of groups characterized in this way were the countable p-groups
[50]. Ulm’s work directly lead to the discussion of the totally projective p-groups
as the largest class of torsion groups which are determined by their Ulm-Kaplansky
invariants [32]. Baer published a similarly important result for torsion-free groups
in 1937 [27]. He showed that the subgroups of the rational numbers are determined
up to isomorphism by their types. Moreover, he showed that their rank 1 summands
completely determine the completely decomposable groups.
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Unfortunately, the hopes of the 1940s that it is possible to develop a compre-
hensive description of the structure of torsion-free groups (of finite rank) were
disappointed by a series of examples which Jonsson gave in the 1950s [46, 47].

Example 1.1 ([46]) There exists a torsion-free Abelian group G such that
G D A ˚ B D C ˚ D where A, B, C, and D are indecomposable groups with
r0.A/ D 1, r0.B/ D 3, and r0.C/ D r0.D/ D 2.

Furthermore, even the pure subgroups of completely decomposable groups
cannot be classified in any meaningful way [39]. These and many other results,
which cannot be mentioned within the framework of this survey, clearly indicate
that a variety of approaches are needed to understand the behavior of torsion-
free Abelian groups (of finite rank) better. Although numerical invariants, albeit
in a more general form, have been found for large classes of Butler groups, even
subgroups of finite index of completely decomposable groups have a structure which
is too complex to describe comprehensively in this way [39].

One way to overcome the previously mentioned difficulties is to consider
methods and tools from other areas of Mathematics. Rüdiger was one of the pioneers
using tools from set-theory and infinite combinatorics to construct large classes
of Abelian groups with prescribed properties. We follow a similar approach, but
focus on applications of non-commutative ring-theory to Abelian groups instead, an
approach initiated by Arnold in the 1970s [24]. Rüdiger’s realization theorems for
endomorphism ring clearly play a central role in this as is shown in Sect. 3.

Studying Abelian groups via their endomorphism rings takes a point of view
which is radically different from the traditional approach. Instead of developing
a structure theory, it views an Abelian group A as an object that is best studied
by looking at its interaction with other objects. This approach is philosophically
related to the one taken in modern Physics where objects like elementary particles
are studied through their interaction with other particles. To study this interaction,
methods from homological algebra and ring-theory are employed. To facilitate this
type of investigation, one usually relies on an adjoint pair of functors between
the category of Abelian groups and the category of right modules over the
endomorphism ring of A. Section 2 looks at these functors, and introduces some
of the basic concepts.

Applications are discussed in Sects. 4 and 5. We give several examples of
A-solvable Abelian groups which will answer questions concerning the size and
generality of this class. Given the constraints of a survey paper, many interesting
topics have to be omitted. Since it is the goal to relate our discussions to Rüdiger’s
work, we concentrate mostly on torsion-free groups of arbitrary rank. In particular,
the discussion of quasi-properties of torsion-free groups of finite rank as well as
properties of mixed groups which are described in terms of endomorphism rings
have to be omitted in spite of the large amount of literature related to these topics.
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2 Adjoint Functors

The interaction of a right R-module A with other R-modules is often described
by the functors HomR.A; �/ and HomR.�; A/. Each of these functors actually
carries a structure which is richer than that of an Abelian group, namely that
of a right, respectively left, module over the endomorphism ring E D EndR.A/

of A. These module structures are induced by A since the latter can be viewed
as an E-R-bimodule. Although many properties of a module, e.g., its direct sum
decompositions, can be described in terms of its endomorphism ring, the classical
theory of Abelian groups makes very little use of the information which can be
obtained from this ring. This is quite surprising in view of the Baer-Kaplansky
Theorem which states that two Abelian p-groups are isomorphic exactly if they
have isomorphic endomorphism rings [28, 48]. The situation is quite different in
the torsion-free case. Rüdiger’s work shows that there exist proper classes of non-
isomorphic torsion-free groups with isomorphic endomorphism rings [41].

Our discussion concentrates on the covariant functor HA.�/ D HomR.A; �/

between the categories MR of right R-modules and ME of right E-modules. It forms
one component of the adjoint pair .HA; TA/ of functors between MR and ME where
TA is defined by TA.X/ D X ˝E A for all right E-modules X. Associated with
this adjoint pair are natural transformations �M W TAHA.M/ ! M for M 2 MR

and ˚X W X ! HATA.X/ for X 2 ME defined by �M.˛ ˝ a/ D ˛.a/ and
Œ˚X.x/�.a/ D x ˝ a. The image of �M is called the A-socle of M, and is denoted by
SA.M/.

The idea to consider the category ME to investigate properties of a torsion-free
Abelian group A originated in two papers which appeared in 1975. Arnold and Lady
showed in [25] that HA and TA induce an equivalence between the category of A-
projective modules of finite A-rank and the category of finitely generated projective
right E-modules. Here a right R-module P is A-projective (of finite A-rank) if it is a
direct summand of a (finite) direct sum of copies of A. Arnold and Murley removed
the finiteness conditions in [26] in case that A is a self-small module where a right
R-module A is self-small if, for every index-set I and every ˛ 2 HA.˚IA/, there is
a finite subset I0 of I such that ˛.A/ � ˚I0A. Every torsion-free Abelian group of
finite rank is self-small, and so is every R-module with a countable endomorphism
ring [26]. In contrast to slenderness, which arises in the discussion of the contra-
variant functor HomR.�; A/, self-smallness is not affected by the existence of large
cardinals.

A right R-module M is (finitely, respectively �-) A-generated if it is an epimorphic
image of a module of the form ˚IA for some index-set I (with jIj < 1, respectively
jIj < �). Since TA is right exact, all R-modules of the form TA.X/ with X 2 ME are
A-generated, and it is easy to see that M is A-generated if and only if SA.M/ D M.
We say that a right R-module M has an A-projective resolution if we can find an
exact sequence

: : : PnC1

˛nC1�! Pn
˛n�! : : :

˛1�! P0

˛0�! M ! 0

in which each Pn is A-projective.
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Proposition 2.1 ([2]) Let A be a self-small right R-module. A right R-module M
has an A-projective resolution if and only if M Š TA.X/ for some right E-module X.

However, not every A-generated module has an A-projective resolution, nor is the
class of modules described by the last result closed with respect to direct summands
as the following example shows:

Example 2.2 Let A be an Abelian group which fits into a non-splitting exact
sequence 0 ! Z ! A ! Q ! 0. Then, E.A/ D Z by Arnold [24, Section 3].
If G is a torsion-free Abelian group of finite rank, then r0.TA.G// D 2r0.G/ since
r0.A/ D 2. In particular, every finite rank group with an A-projective resolution has
to have even rank by Proposition 2.1. Therefore, Q does not have an A-projective
resolution although it is a direct summand of TA.Q/ Š Q ˚ Q which has an
A-projective resolution by Proposition 2.1.

The reason for the difficulties illustrated by the last example is that the module A
need not be projective with respect to the sequences

0 ! ker ˛n ! Pn
˛n�! im ˛n ! 0

induced by an A-projective resolution of an R-module M. Adopting a standard
notion from Abelian Group Theory, we say that an exact sequence

0 ! U ! V ! W ! 0

of right R-modules is A-balanced if the induced sequence

0 ! HA.U/ ! HA.V/ ! HA.W/ ! 0

is exact. The R-module M has an A-balanced A-projective resolution if it admits an
A-projective resolution

: : : PnC1

˛n�! Pn
˛n�1�! : : :

˛1�! P0

˛0�! M ! 0

for which the induced sequences 0 ! ker ˛n ! PnC1

˛n�! im ˛n ! 0 are
A-balanced for all n < !.

Proposition 2.3 ([2]) Let A be a self-small Abelian group. If a module M has an
A-balanced A-projective resolution, then �M is an isomorphism.

Although this is a survey article, a brief proof of this result is included since it
nicely illustrates the use of the adjointness of .HA; TA/ without having to deal with
the complexities of some of the later results:

Proof An A-balanced A-projective resolution of M induces an A-balanced exact
sequence

0 ! U ! P0 ! M ! 0
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in which U is A-generated as an image of P1. Applying the functors HA and TA

successively induces the commutative diagram

TAHA (U) TAHA (P0) TAHA (M) 0

0

−−−−→ −−−−→ −−−−→
⏐
⏐
�qU qP0 qM�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ U −−−−→ P0 −−−−→ M −−−−→

in which �U is onto, and �P0 is an isomorphism by Arnold and Murley [26]. The
Snake-Lemma yields that �M is an isomorphism.

A right R-module M is A-solvable if �M is an isomorphism; and the class of
A-solvable right R-modules is denoted by CA. By Arnold and Lady [25] and Arnold
and Murley [26], A-projective modules are A-solvable if A is self-small. Arnold and
Murley also showed in [26] that every locally A-projective module M is A-solvable
if the endomorphism ring of A is discrete in the finite topology. Here M is locally
A-projective (locally A-free) if every finite subset of M is contained in an
A-projective direct summand (isomorphic to An for some n < !) of M. The
endomorphism ring E of a module A is discrete in the finite topology if there
is a finitely generated E-submodule of A with HomR.A=U; A/ D 0. By Arnold
and Murley [26], A is self-small if its endomorphism ring is discrete in the finite
topology.

An A-projective resolution of an A-solvable module need not be A-balanced
without additional conditions on A. For instance, if A D Q ˚ Z, then all groups
are A-generated; and there exists an exact sequence 0 ! U ! ˚!A ! A ! 0 with
respect to which A is not projective. Before continuing our discussion, we want to
remind the reader that a left R-module A is faithful if X ˝R A ¤ 0 for all non-zero
finitely generated right R-modules X. It is fully faithful if this holds for all right
R-modules. Faithfully flat modules are fully faithful.

Theorem 2.4 ([2] and [3]) The following conditions are equivalent for a right R-
module M:

(a) A is fully faithful as a left R-module.
(b) A right R-module M admits an A-balanced exact sequence

0 ! U ! ˚IA ! M ! 0

with SA.U/ D U if and only if M 2 CA.

(c) An exact sequence 0 ! U
˛�! M ! P ! 0 splits if ˛.U/ C SA.M/ D M and

P is A-projective.

Baer had shown in [27] that every subgroup A of Q satisfies condition (c) for
P D A. Hence, condition (c) is often referred to as Baer’s Lemma. Arnold and Lady
established the equivalence of (a) and (c) in [25] if A is a torsion-free Abelian group
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of finite rank and M D A. Unfortunately, neither Baer’s nor their arguments carry
over to the case that P is an arbitrary A-projective group.

It is well known from category theory that the kernel of a map An ! A need not
be A-generated unless A is flat as a module over its endomorphism ring (Ulmer’s
Theorem [51]). In particular, if ˛ 2 HomR.M; N/ for A-solvable modules M and N,
then neither ker ˛ nor im ˛ need to be A-solvable. Therefore, we call a class C of
A-generated groups A-closed if

(i) C is closed with respect to finite direct sums and A-generated submodules, and
(ii) ker ˛ 2 C for all M; N 2 C and all ˛ 2 HomR.M; N/.

Theorem 2.5 ([7]) The following are equivalent or a self-small right R-module A:

(a) A is flat as a module over its endomorphism ring.
(b) There exists an A-closed class C containing A.
(c) CA is the largest A-closed class containing the A-projective modules.

However, there exit R-modules A which are flat as modules over their endomor-
phism ring, but not faithful. For instance, the group A D Q ˚ Z has this property.
Therefore, A may not be projective with respect to exact sequences in CA even if the
latter is A-closed. Since the existence of sequences in CA which are not A-balanced
makes it difficult to develop a comprehensive homological algebra for CA, we call
an A-closed class C A-balanced if every exact sequence 0 ! B ! C ! M ! 0

with B; C; M 2 C is A-balanced.

Theorem 2.6 ([7]) The following are equivalent for a self-small right R-module A:

(a) A is faithfully flat as a left E-module.
(b) There exists an A-balanced, A-closed class containing all of the A-projective

modules.
(c) CA is the largest A-balanced, A-closed class containing all of the A-projective

modules.
(d) A right R-module has an A-balanced A-projective resolution if and only if it is

A-solvable.

In particular, A-balanced A-projective resolutions of an A-solvable module M
induce derived functors Bextn

A.�; �/ on CA such that

Bextn
A.M; N/ Š ExtnE.HA.M/; HA.N//

for all A-solvable modules M and N [9].
Finally, the concept of A-solvable modules carries over naturally to the quasi-

category of Abelian groups. Unfortunately, the discussion of quasi-concepts is
beyond the framework of this survey.
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3 Realization Theorems

The results of the last section raise the question whether it is possible to construct
self-small modules A such that

(a) A is flat (or, e.g., faithfully flat or projective) when viewed as an E-module, and
(b) the endomorphism ring of A can be prescribed to belong to a specific class of

rings, e.g., principal ideal domains, hereditary rings, or polynomial rings?

[38, Chapter 111] is dedicated to this question, and [38, Problem 84] particularly
asks for criteria for certain types of rings to be endomorphism rings. However, the
following example shows that one has to be somewhat careful when combining
properties of the module EA in (a) with ring-theoretic properties of E in (b):

Example 3.1 Suppose that A is a right R-module such that E is a principal ideal
domain. Then, A is an indecomposable Abelian group since E does not contain any
non-trivial idempotents. If EA were projective as a left E-module, then EA Š ˚IE
for some index-set I which is only possible if jIj D 1. Thus, EA Š E. For instance,
all Murley groups A have a principal ideal domain as an endomorphism ring [24].
Here a torsion-free groups A of finite rank is a Murley-group if dimZ=pZA=pA � 1

for all primes p.

Fortunately, module-theoretic properties like faithfulness and flatness are not
nearly as restrictive as projectivity. To see this, we are going to look at some of the
standard construction methods of modules with a prescribed endomorphism ring.
Although most of them have their origin in Abelian Group Theory, they actually
hold for substantially more general classes of rings. For instance, Rüdiger and the
author extended the construction of E-algebras to a non-commutative setting in [15].
The methods used in this extension can also be applied to the realization theorems
for endomorphism rings in [31] and [34]. As in the commutative setting, some
restrictions on R are necessary to avoid immediate counterexamples.

An element c of a ring R is regular if cr D 0 or rc D 0 implies r D 0. For any
ring R, let

C.R/ D fs 2 R j rs D sr for all r 2 Rg

denote the center of R. Clearly, C.R/ is a subring of R and 1R 2 C.R/. As in
[41], we consider a countable, multiplicatively closed subset X � C.R/ of regular
central elements of R which contains precisely one unit of R, the identity 1R. The
notions of X-density, X-purity, X-torsion-freeness, and X-cotorsion-freeness carry
over literally from the commutative setting [41]. In particular, bR denotes the X-
completion of R.

Theorem 3.2 Let S be an extension ring of R which is X-cotorsion-free and torsion-
free as a C.R/-module. If �C � � � � are cardinals such that jSj D �, � is regular,
and �� D �@0 , then there exists an X-cotorsion-free right R-module A such that
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(a) EndR.A/ D S, and
(b) every countably generated S-submodule of SA is contained in a free S-

submodule.

In particular, the endomorphism ring of A is discrete in the finite topology, and A is
flat as a left E-module. Moreover, if S is countable, then A is also faithful.

Proof Since the description of the actual construction of A is beyond the framework
of this survey, the interested reader is referred to [15] to identify which modifications
need to be made to the proof of [41, Theorem 12.3.4] in order to obtain A. In
particular, Rüdiger had pointed out during the writing of [15] that the module A
can be constructed in [41, Theorem 12.3.4] in such a way that it contains a family
F of countably generated free submodules with the following properties:

(a) Every countable subset of A is contained in an element of F .
(b) ˙n<!Fn 2 F for all families fFn j n < !g � F .

Clearly, the existence of F guarantees that A is flat as an S-module. To see
that the endomorphism ring of A is discrete in the finite topology, observe that A
is constructed as an X-dense submodule of the X-completion of a free S-module.
Therefore, we can find a left S-module monomorphism ˛ W S ! A. Consider
ˇ 2 S D EndR.A/ with 0 D ˇ.˛.1A//. Since ˛ is S-linear, we have ˇ.˛.1A// D
˛.ˇ1A// D ˛.ˇ/. Thus, ˇ D 0 since ˛ is one-to-one.

To see that A is faithful if S is countable, let I be a maximal right ideal of S with
IA D A, and select F0 2 F . There is a countable S-submodule Y0 of A such that
F0 � IY0. Select F1 2 F with IY0; Y0 � F1. Continuing inductively, we obtain an
ascending chain fFn 2 F j n < !g such that Fn � IFnC1 � FnC1 for all n < !.
Hence, F0 D [n<!Fn is a free submodule of A such that IF0 D F0. However, this is
only possible if I D E.

The countability condition in the last result can be removed under V = L by
adapting the arguments of [34] to the non-commutative setting:

Corollary 3.3 (ZFC + Þ�) Let S be an extension ring of R which is X-cotorsion-
free and torsion-free as a C.R/-module. If � is a regular uncountable cardinal
such that jSj < �, then there exists an X-cotorsion-free right R-module A with the
following properties:

(a) EndR.A/ D S, and
(b) Every �-generated S-submodule of SA is contained in a free S-submodule.

In particular, the endomorphism ring of A is discrete in the finite topology, and A is
faithfully flat as left E-module [7].

We want to point out that Faticoni used a Black Box construction similar to the
one in Theorem 3.2 to construct an Abelian group A which is faithful, but not fully
faithful as a module over its endomorphism ring [36].

Theorem 3.2 and Corollary 3.3 can be used to construct large class of A-solvable
groups which are not A-projective:
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Theorem 3.4 ([7]) Let A be a cotorsion-free self-small Abelian group which is
faithfully flat as a module over its endomorphism ring.

(a) If A is countable, then there exist a proper class of A-solvable groups with
endomorphism ring Eop.

(b) (ZFC + V = L) There exist a proper class of A-solvable groups with endomor-
phism ring Eop.

Proof We use either Theorem 3.2 or Corollary 3.3 to obtain a proper class of
Abelian groups G with End.G/ D Eop. Then, Gop is a right E-module and TA.Gop/

is A-solvable. An application of the Adjoint-Functor-Theorem completes the proof.

However, there are several question arising from the last results:

Problem 3.5 Can the Black Box be used directly to construct arbitrarily large
classes of A-solvable groups in case A is countable instead of using Eop?

In [37], Franzen and Rüdiger used the Black Box to obtain modules over
commutative rings R with prescribed endomorphism rings which contain a module
of the form ˚IB as a dense and pure submodule where B is a cotorsion-free faithful
R-module. Combining this construction with the arguments from [15] should yield
the desired result by replacing the free modules in the definition of the family F by
B-projective modules.

Problem 3.6 Show directly that large classes of A-solvable groups exist assuming
V D L instead of using Eop.

In addition to the previously mentioned realization theorems, there are also
the classical results by Zassenhaus and Corner from the 1960s, each of which
will also produce Abelian groups which are faithfully flat as modules over their
endomorphism ring:

Theorem 3.7 Let R be a countable ring whose additive group is torsion-free and
reduced.

(a) There exists a countable Abelian group A with E.A/ D R [30].
(b) If r0.R/ D n, then A can be chosen to have rank 2n [30].
(c) If RC is a free group of rank n, then A can be chosen to have rank n too [53].

In either case, A has an endomorphism ring which is discrete in the finite topology,
and is faithfully flat as an E-module [7].

Finally, we want to remark that the contra-variant functor HomZ.�; A/ induces
a duality between the direct summands of cartesian powers of A and projective left
E-modules if A is a slender Abelian group. This duality was initially discussed by
Huber and Warfield in [45] in case that A is a torsion-free group of finite rank, while
the author considered the general case in [4]. Again, Rüdiger’s realization theorems
provide us with large classes of slender groups with a prescribed endomorphism
ring.
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4 Torsion-Free Abelian Groups

We now turn our discussion to Abelian groups, although many of our results will
carry over to a more general setting, e.g., to modules over Dedekind domains. [38,
Problem 84] asks to find criteria for certain types of rings to be endomorphism rings,
but does specify what form these criteria should take, e.g., whether or not they are
to be numerical invariants or properties describing the interaction of a group with a
certain type of endomorphism ring with other groups. In the following, we interpret
this problem to have two parts, namely

(a) How are ring-theoretic properties of the endomorphism ring of an Abelian group
A reflected in the structure and the homological properties of A?

(b) How are structural and homological properties of an Abelian group A reflected
in ring-theoretic properties of its endomorphism ring?

If A is fully faithful as an E-module, then HA and TA induce a one-to-one and onto
correspondence between the right ideals of E and the A-generated subgroups of A.
Because of this, it is frequently possible to address these questions for properties of
a ring, which are definable in terms of ideals and submodules of projective modules.
On the other hand, properties like commutativity, or more generally those given by
polynomial identities, are virtually impossible to describe as can, for instance, be
seen in [23] which looks at Abelian groups with commutative endomorphism rings.

We begin our discussion by investigating the connection between ring-theoretic
properties of A and some of the fundamental properties of homogeneous completely
decomposable groups which Baer considered in his 1937 paper [27]. For instance,
if G is a subgroup of a homogeneous completely decomposable group of type � and
G D G.�/, then G is homogeneous completely decomposable.

Theorem 4.1 ([1] and [25]) The following conditions are equivalent for a self-
small torsion-free Abelian group A:

(a) A is faithfully flat as an E-module and E is right hereditary.
(b) (i) A satisfies the conclusions of Baer’s Lemma (see Theorem 2.4).

(ii) A-generated subgroups of A-projective groups are A-projective.

Arnold and Lady had investigated the conditions in (b) in the case that A is a
torsion-free group of finite rank [25]. However, their arguments do not carry over to
the general case. Furthermore, condition (b.ii) alone need not imply that E is right
hereditary as was shown in [11].

Rings satisfying chain conditions are of particular interest in ring-theory, and they
are often considered in conjunction with the requirement that the ring is right or left
non-singular [43, 49]. However, when describing groups whose endomorphism ring
satisfies chain conditions, we need to be aware of several facts that make it difficult
to describe these groups in terms of numerical invariants:

• The endomorphism ring of torsion-free groups of finite rank has finite right and
left Goldie-dimension.
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• A semi-prime subring of a finite dimensional Q-algebra is right and left
Noetherian [24, Chapter 9].

• Descending chain conditions on right or left ideals are usually too restrictive to
yield interesting classes of groups [38, Theorem 11.3].

• Standard group-theoretic concepts like types and purity have only limited
bearings on ring-theoretic properties of an endomorphism ring unless we restrict
our discussion to the finite rank case [6].

To avoid immediate restrictions on the rank of E, we turn to the notion of non-
singularity introduced by Goodearl and Stenstrom [43, 49]. Taking this approach,
the author was able to give a description of the Abelian groups A with a right
and left Noetherian, hereditary endomorphism ring in [1, Theorem 5.1]. Since
these groups have many of the homological properties usually associated with
rank 1 groups, they are called generalized rank 1 groups, and play an important
role in the theory of A-solvable groups. An important class of generalized rank 1

groups are the finitely faithful S-groups, which consists of all finite rank torsion-
free groups A such that rp.E/ D Œrp.A/�2 for all primes p [42]. Goeters showed
that each finally faithful S-group has a hereditary endomorphism ring [42]. Hence,
Bextn

A.G; H/ Š ExtnE.HA.G/; HA.H// D 0 for all A-solvable groups G and H and all
n > 1. Moreover, we can describe how Bext1A.G; A/ is embedded into ExtZ.G; A/ in
this case.

Proposition 4.2 ([14]) If A is a finitely faithful A-group, then the group

ExtZ.G; A/=Bext1A.G; A/

is torsion-free and divisible for all torsion-free A-solvable groups G.

For a right R-module M, the singular submodule of M is

Z.M/ D fx 2 MjxI D 0 for some essential right ideal I of Rg

which takes the place of the torsion submodule in the general setting. The module
M is called non-singular if Z.M/ D 0, and singular if M D Z.M/. The ring R is
right non-singular if it is non-singular as a right R-module. A ring is a right p.p.-
ring if all principal right ideals are projective. Right p.p.-ring play an important role
in the theory of non-singular rings and modules, e.g., see [22, 29, 33, 44], and [18].
Finally, a submodule U of an R-module M is S -closed if M=U is non-singular.

However, the endomorphism ring E of a non-singular module M over a non-
commutative non-singular ring may behave quite different from that of a torsion-free
module over an integral domain. For instance, R need not be a subring of E, and M
may not be non-singular over its endomorphism ring as Rüdiger and the author
showed in [16].

Problem 4.3 Abelian groups whose endomorphism ring is a right p.p.-ring were
described in [6]. Is it possible to give a description of the torsion-free Abelian groups
with a right non-singular endomorphism ring?
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However, finitely generated non-singular modules over a non-singular ring need
not be submodules of free modules in contrast to the situation in the case of integral
domains. Rings having this properties are called strongly right non-singular, and
include the semi-prime right and left Goldie-rings. In particular, a ring is right
and left strongly non-singular if it is a semi-prime subring of a finite dimensional
Q-algebra. For Abelian groups A with a strongly non-singular endomorphism ring,
it is possible to define more meaningful notions of torsion-freeness and purity for
the class of A-generated groups.

An A-generated group G is A-torsion-free if every finitely A-generated subgroup
U is isomorphic to a subgroup of an A-projective group (which need not be a
subgroup of G). An A-generated subgroup U of an A-torsion-free group G is
A-pure if .U C P/=U is A-torsion-free for all finitely A-generated subgroups P of
G. We want to emphasize that A-pure subgroups need not be A-balanced. Using
the concept of the S -closure of a submodule of a non-singular module it is also
possible to introduce the notion of the A-closure of an A-generated subgroup of a
A-torsion-free group.

Theorem 4.4 ([6]) Let A be a self-small torsion-free Abelian group which is E-flat
such that E is a right strongly non-singular ring.

(a) A group G is A-torsion-free if and only if G is A-solvable and HA.G/ is non-
singular. In particular, A-generated subgroups and direct sums of A-torsion-free
groups are A-torsion-free.

(b) An A-generated subgroup U of an A-torsion-free group G is A-pure if and only
if HA.G/=HA.U/ is non-singular.

Problem 4.5 Define the notions of A-torsion-freeness and A-purity in case that E
is not a strongly non-singular ring.

C. Walker called a subgroup U of an Abelian group G A�-pure if it is a direct
summand of all subgroups H of G which contain U and have the property that H=U
is an image of A [52]. It is P�

A-pure if it is a direct summand of all subgroups H of
G which contain U and have the property that H=U is finitely A-generated.

Theorem 4.6 ([6]) The following conditions are equivalent for an Abelian group
A which is E-flat and has a right strongly non-singular endomorphism ring:

(a) E is a right p.p.- (right semi-hereditary) ring.
(b) If ˛ 2 E (˛ 2 E.An/ for some n < !), then ker ˛ is a direct summand.
(c) An A-generated subgroup U of an A-torsion-free group is A�-pure (P�

A-pure) if
and only if it is A-pure.

Furthermore, the question arises how A-purity and the standard notion of purity
are related.

Theorem 4.7 ([6]) The following conditions are equivalent for a self-small E-flat
Abelian group A with a strongly right non-singular endomorphism ring:
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(a) If G is a torsion-free A-solvable group, then G is A-torsion-free, and every pure
A-generated subgroup of G is A-pure in G.

(b) A=U is torsion for all A-generated subgroups U of A with HomZ.A=U; A/ D 0.

The last condition is, for instance, satisfied if QE is a semi-simple Artinian ring.

Problem 4.8 Do the last two results remain true if E is not strongly non-singular?

We conclude this section by looking at locally A-projective groups and their
A-pure subgroups. In particular, we obtain a version of Pontryagin’s criterion for
A-solvable groups:

Theorem 4.9 ([8]) Let A be an E-flat Abelian group with a right strongly non-
singular, right semi-hereditary endomorphism ring which is discrete in the finite
topology.

(a) A-pure subgroups of locally A-projective subgroups are A-projective.
(b) An A-pure subgroup of a locally A-projective group is A-projective if it is an

epimorphic image of ˚!A.
(c) A countably A-generated A-torsion-free group G is A-projective if every finitely

A-generated subgroup of G is contained in a finitely A-generated A-pure
subgroup of G.

In particular, SA.AI/ is locally A-free if E is left Noetherian [20]. Surprisingly,
the converse holds too:

Corollary 4.10 ([20]) Let A be a slender Abelian group of non-measurable
cardinality whose endomorphism ring is discrete in the finite topology. If SA.AI/

is locally A-free for all index-sets of non-measurable cardinality, then E is left
Noetherian.

Problem 4.11 Can the various Black Box methods used in [41] to construct
separable Abelian groups be adapted to obtain large classes of locally A-projective
groups?

In view of Corollary 4.10, some additional ring-theoretic restrictions on E may
be necessary.

5 Applications

We want to remind the reader that the class CA of A-solvable groups consists
of all Abelian groups G for which the evaluation map �G W TAHA.G/ ! G
is an isomorphism. When looking at CA, the question immediately arises which
groups, in addition to A-projective groups, belong to CA? Arguing as in the
proof of Theorem 3.2 or Corollary 3.3, it is easy to see that CA contains the
�-A-projective groups whenever � > jAj is a regular cardinal and A is faithfully
flat as an E-module [7]. Here, an A-generated group G is �-A-projective if every
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�-A-generated subgroup U of G can be embedded into an A-projective subgroup of
G. If jAj < � and E is right hereditary, then this is equivalent to the condition that all
A-generated subgroups U with jUj < � are A-projective. However, CA may contain
cotorsion groups even if A is cotorsion-free.

Proposition 5.1 (a) If A is subgroup of Q of type � , then all torsion-free groups G
with G D G.�/ are A-solvable, and so is Z=pZ for all primes p with A ¤ pA.
However, CA need not be closed under direct sums unless A has idempotent
type [5].

(b) If A is a generalized rank 1 group, then Q is A-solvable if and only if A is
homogeneous completely decomposable [5].

We now turn to the case that r0.A/ > 1, and focus on the following questions
raised by the last example:

• Can we find indecomposable generalized rank 1 groups A such that all A-solvable
groups are (co-) torsion-free? Which indecomposable generalized rank 1 groups
other than subgroups of Q admit torsion A-solvable groups?

• Can we find cotorsion-free indecomposable generalized rank 1 groups other
than subgroups of Q such that all A-generated reduced torsion-free groups are
A-solvable?

The first of these is answered by

Theorem 5.2 ([5]) The following are a equivalent for a generalized rank 1-group
A and a prime p with A=pA ¤ 0.

(a) Every bounded p-group is A-solvable.
(b) Œrp.A/�2 D rp.E/ < 1.

In particular, A a torsion-free Abelian group of finite rank is a finitely faithful
S-group if and only if it is fully faithful as an E-module and Z=pZ is A-solvable
for all primes p with A ¤ pA. On the other hand, Corner’s realization theorem in
Theorem 3.7b always produces a torsion-free group A of finite rank with rp.A/ D
rp.E/ [7]. Thus, if A is a group of rank 4 with E Š Z C iZ which is constructed in
this way, then the elements of CA are torsion-free and reduced.

Surprisingly, the question whether there exits A-solvable torsion groups also is
closely related to categorical properties of CA. However, since CA is not an Abelian
category unless A is a subgroup of Q of idempotent type [5], we investigate when
the category of A-solvable groups is pre-Abelian.

Theorem 5.3 ([5]) The following conditions are equivalent for an indecomposable
generalized rank 1-group A with r0.A/ > 1:

(a) CA is a pre-Abelian category which does not contain Jp for any prime p.
(b) If rp.A/ < 1 for some prime p with A ¤ pA, then Œrp.A/�2 ¤ rp.E/.
(c) The elements of CA are cotorsion-free.

The realization theorems discussed in Sect. 3 allow the construction of large
classes of groups such that CA is pre-Abelian:
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Example 5.4 Let A be an indecomposable generalized rank 1 such that QE is semi-
simple and rp.A/ � 2@0 for all primes p with A ¤ pA. One of the Göbel’s realization
theorems guarantees that there exist proper classes of Abelian groups satisfying
these conditions. Since rp.A/ � 2@0 , there is a subgroup U of A such that A=U Š
Jp. If Jp 2 CA, then U is A-generated since A is a generalized rank 1 group. By
the results of Sect. 4, U is a direct summand of A which is not possible since A is
indecomposable. Hence, CA is pre-Abelian by the last result.

Furthermore, since the realization theorems produce proper classes of groups
with isomorphic endomorphism rings, the question arises which categorical prop-
erties are shared by Abelian groups A and B with isomorphic, or more generally
Morita-equivalent, endomorphism rings. Surprisingly, the categories CA and CB

need not be equivalent:

Example 5.5 Let A be a subgroup of Q with E.A/ Š Z whose type is not
idempotent. By Albrecht [5], the category CA is not pre-Abelian. On the other hand,
we can use one of the Rüdiger’s construction methods to obtain a group B with
E.B/ Š Z such that rp.A/ � 2@0 for all primes p. Arguing as in Example 5.4, we
obtain that CB is pre-Abelian. Clearly, CA and CB are not equivalent.

On the other hand, the categories of locally A-projective and locally B-projective
groups are equivalent if A and B are Abelian groups with End.A/ Š End.B/ whose
endomorphism rings are discrete in the finite topology. Every locally A-projective be
longs to the class T LA of A-torsion-less groups which consists of the A-generated
subgroups of cartesian powers of A.

Theorem 5.6 Let A and B be torsion-free Abelian groups which are faithfully flat
as modules over their endomorphism rings, and whose endomorphism rings are
discrete in the finite topology. If End.A/ is left Noetherian, and End.B/ is Morita-
equivalent to End.A/, then the categories T LA and T LA are equivalent.

Proof Since being Noetherian is a Morita-invariant property, End.B/ is left Noethe-
rian too. Moreover, Morita-equivalence preserves torsion-less modules. Because
End.A/ is left Noetherian, SA.AI/ is A-solvable [20]. Therefore, T LA is equivalent
to the category of torsion-less right End.A/-modules since A is faithfully flat as an
End.A/-module. Because a similar result holds for T LB, the theorem follows.

The author investigated Abelian groups with Morita-equivalent endomorphism
rings in [10] showing that any equivalence of CA and CB is induced by a Morita-
equivalence between End.A/ and End.B/. This and Example 5.5 give rise to

Problem 5.7 Let A and B be Abelian groups with Morita equivalent endomorphism
ring. Identify (the largest) subclasses C1 � CA and C2 � CB for which the
Morita-equivalence between End.A/ and End.B/ induces an equivalence between
C1 and C2.

We now turn to the question when CA is pre-Abelian if it contains Jp for some
prime p.
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Theorem 5.8 ([5]) The following conditions are equivalent for an indecomposable
generalized rank 1-group A with r0.A/ > 1 for which P.A/ D fp j Jp 2 CAg is not
empty:

(a) CA is a pre-Abelian category.
(b) (i) There exists an exact sequence 0 ! Ea ! A ! G ! 0 such that

G D tG ˚ Œ˚IQ� for some index-set I and GŒp� D 0 for all p 2 P.A/.
(ii) If rp.A/ < 1 for some prime p with A ¤ pA and Œrp.A/�2 D rp.E/, then

p 2 P.A/.

To see that P.A/ may be not empty, we consider the class of irreducible Murley
groups. A group A is irreducible if it does not have any proper, non-zero pure fully
invariant subgroups. A torsion-free group A is a Murley group if rp.A/ � 1 for all
primes p. A homogeneous Murley group is indecomposable; and irreducible Murley
groups are homogeneous [24, Chapter 15].

Theorem 5.9 ([17]) If A is an irreducible Murley group, then every reduced
A-generated torsion-free group G is A-solvable. In particular, P.A/ ¤ ; in this
case.

Problem 5.10 Is an indecomposable finitely faithful S-groups A for which Jp is
A-solvable for all primes p with A ¤ pA an irreducible Murley group?

Problem 5.11 Can we describe the structure of the A-solvable groups if A is a
Murley group?

A particular interesting class of @1-A-projective groups are the A-coseparable
groups. Here, an A-generated group G is said to be A-coseparable if it is
@1-A-projective and every subgroup U of G such that G=U is finitely A-presented
contains a direct summand V of G such that G=V is A-projective of finite A-rank. In
particular, every A-projective group is A-coseparable, and it is undecidable in ZFC
if there exist A-coseparable groups which are not A-projective [35].

Theorem 5.12 ([14]) Let A be a torsion-free finitely faithful S-group. A reduced
torsion-free A-generated group G such that Ext.G; A/ is torsion-free is locally
A-projective.

An Abelian group B is said to be finitely projective with respect to A if it is
projective with respect to all sequences 0 ! U ! An ! G ! 0 with SA.U/ D U.

Theorem 5.13 ([14]) Let A be a torsion-free finitely faithful S-group. Then, the
following are equivalent for a torsion-free reduced A-generated group G:

(a) Ext.G; A/ is torsion-free.
(b) G is finitely A-projective.
(c) G is A-coseparable.
(d) G is A-coseparable and locally A-projective.
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Similarly, an A-generated group G is said to be @1-A-coseparable if it is
@1-A-projective and every A-generated subgroup U of G such that G=U is countable
contains a direct summand V of G such that G=V is countable.

Theorem 5.14 ([12, Theorem 3.3]) Let A be a self-small countable torsion-free
generalized rank 1 group. A group G is @1-A-coseparable if and only if G is
A-solvable, and every exact sequence

0 ! P ! X ! G ! 0

such that P is a direct summand of ˚!A and X is A-generated splits.

We conclude this paper with an application of endomorphism rings to mixed
Abelian groups. While a detailed discussion of this interesting topic is beyond
the framework of this survey, we want to mention that self-small mixed groups A
such that r0.A=tA/ naturally arise in various problems concerning mixed groups.
For instance, Rüdiger and the author discussed cellular covers of Abelian groups
in 2014. Here, a cellular covering sequence for an Abelian group A is an exact

sequence 0 ! K ! G
��! A ! 0 for which the induced map

�� W HomZ.G; G/ ! HomZ.G; A/

is an isomorphism. Every group A admits a cellular covering sequence

0 ! 0 ! A
��! A ! 0

with � an automorphism of A, called a trivial cellular cover. In this discussion,
Rüdiger asked whether there exist (large classes of) honest, i.e., non-splitting, mixed
groups without any non-trivial covering sequences. This question was answered
positively in [13]. In the following, tA denotes the torsion subgroup of A, and Ap

its p-torsion subgroup.

Theorem 5.15 (a) No self-small Abelian group A such that A=tA is a divisible
group of finite rank has a non-trivial cellular cover.

(b) Let A be a mixed Abelian group of finite torsion-free rank such that Ap is finite
for all primes p. If A=pA is finite for all primes p with Ap ¤ 0 and A D pA
for all primes p with Ap D 0, then A has no non-trivial covering sequence
0 ! K ! G ! A ! 0 with tE.G/ Š tE.A/.

(c) There exist honest self-small mixed groups A1 and A2 of torsion-free rank n � 2

with tA1 Š tA2 and E.A1/ Š E.A2/ such that A1 admits a non-trivial cellular
cover 0 ! K ! G ! A1 ! 0 with E.G/ Š E.A1/, while A2 admits no
non-trivial cellular covering sequences at all.

Problem 5.16 In [40], Rüdiger and Laszlo Fuchs showed that a subgroups of Q
has a non-trivial cellular cover if and only if it does not have idempotent type. Is
it possible to determine which self-small mixed groups A with r0.A/ D 1 have a
non-trivial cellular cover?
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We did not discuss self-small mixed groups A such that r0.A=tA/ is finite in this
paper mostly because we were mainly focused on topics that are closely related to
Rüdiger’s work. The endomorphism rings of these groups were investigated in a
series of papers by the B. Wickless, S. Breaz and the author, e.g., see [21] and [19].

Problem 5.17 Let A be a self-small mixed group such that r0.A=tA/ is finite. When
is CA pre-Abelian?

Acknowledgements I had known Rüdiger since 1976 when I took Linear Algebra from him as a
freshman. I want to use this opportunity to express my appreciation for his support and friendship
during almost 40 years.
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